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Preface

Mathematics is a central structure in our knowledge. The rigor of mathematical proof
places the subject in a very special position with enormous prestige. For the potential
user of mathematics this has both advantages as well as disadvantages. On the one
hand, one can use mathematics with confidence that in general the concepts, definitions,
procedures, and theorems have been thoroughly examined and tested, but the sheer
amount of mathematics is often very intimidating to the non-expert. Since the results
of mathematics once proved stay in the structure forever, the subject just gets larger
and larger, and we do not have the luxury of discarding older theories as obsolete.
So the quadratic formula and the Pythagorean theorem are still useful and valid even
though they are thousands of years old. Euclid’s Elements is still used as a text in some
classrooms today, and it continues to inspire readers as it did in the past although it
treats the mathematics from the time of Plato over 2300 years ago.

Despite the prestige of mathematical proof, most mathematics that we use today
arose without proof. The history of the development of calculus is a good example.
Neither Newton nor Leibniz gave definitions of limits, derivatives, or integrals that
would meet current standards. Even the real number system was not rigorously treated
until the second half of the nineteenth century. In the past, as in modern times, large
parts of mathematics were initiated and developed by scientists and engineers. The
distinction between mathematicians and scientists was often rather vague. Consider
for example, Newton, Euler, Lagrange, Gauss, Fourier, and Riemann. Although these
men did important work in mathematics, they were also deeply involved in the sciences
of their times. Toward the end of the nineteenth century a splitting occurred between
mathematics and the sciences. Some see it in the development of non-Euclidean
geometry and especially axiomatic methods reminiscent of Euclid.

At this time mathematics appeared to be taking its own path independent of the
sciences. Here are two cases that participated in this division. In the late nineteenth
century Oliver Heaviside developed the Operational Calculus to solve problems in
electrical engineering. Although this calculus gave solutions in agreement with
experiment, the mathematicians of Heaviside’s time could not justify or condone
his procedures. Physicists also found the Dirac delta function and Green’s functions
extremely useful and developed an appropriate calculus for their use, but the underlying
mathematical theory was not available. It was not until the early 1950’s that Laurent
Schwartz was able to give a rigorous mathematical foundation for these methods with
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his Theory of Distributions. Also, early in the twentieth century the relatively new
subject of Group Theory was seen as being of use in applications to chemistry and
physics, but the few texts available at the time were written in a rather abstract and
rigorous mathematical style that was not easily accessible to most non-mathematicians.
The subject was quickly labeled the ‘‘Gruppenpest’’ and ignored by many researchers.
Needless to say, today group theory with its applications to symmetry is a fundamental
tool in science.

With the complexity of each field in science and engineering growing so rapidly, a
researcher in these fields has little time to study mathematics for its own sake. Each field
has more material than can possibly be covered in a typical undergraduate program, and
even graduate students must quickly pick a sub-area of specialization. Often, however,
there is a sense that if we just knew more mathematics of the right sort, we could
get a better grasp of the subject at hand. So, if we are still in school, we may take a
mathematics course, or if not in school, we may look at some mathematical texts. Here
some questions arise: which course should we take, do we have the correct prerequisites,
what if our mathematics instructor has no knowledge of our field or any applications
that we are interested in, are we really in the right course? Furthermore, most texts in
mathematics are intended for classroom use. They are generally very proof oriented,
and although many now include some historical remarks and have a more user friendly
tone, they may not get to the point fast enough for the reader outside of a classroom.

This book is intended to help students and researchers with this problem. The
eighteen articles included here cover a very wide range of topics in mathematics in a
compact, user oriented way. These articles originally appeared in the Encyclopedia of
Applied Physics, a magnificent twenty-three volume set edited by George L. Trigg, with
associate editors Eduardo S. Vera and Walter Greulich and managing editor Edmund H.
Immergut. The full Encyclopedia was published in the 1990’s by VCH, a subsidiary of
John Wiley & Sons, New York. Each article in this volume covers a part of mathematics
especially relevant to applications in science and engineering. The articles are designed
to give a good overview of the subject in a relatively short space with indications
of applications in applied physics. Suggestions for further reading are provided with
extensive bibliographies and glossaries. Most importantly, these articles are accessible.
Each article seeks to give a quick review of a large area within mathematics without
lapsing into vagueness or overspecialization.

Of course not all of mathematics can be covered in this volume: choices must be made
in order to keep the size of the work within bounds. We can only proceed based on those
areas that have been most useful in the past. It is certainly possible that your favorite
question is not discussed here, and certainly the future will bring new mathematics and
applications to prominence, but we sincerely expect that the articles in this volume will
be valuable to most readers.

Stuart P. Smith
CSUH – January 2005
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Università di Firenze,
Florence,
Italy

Paul Meakin
Department of Physics,
University of Oslo,
Oslo,
Norway

James Murdock
Iowa State University,
Ames,
USA

Kazuo Ohtaka
Laboratory of Applied Physics,
Faculty of Engineering,
Chiba University, Chiba-shi,
Japan

Gino Segrè
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Introduction

The use of mathematics by physicists, and
in particular of algebra, has increased in a
remarkable degree during the last 50 years,
both in the amount of space occupied
in journal articles and in the type and
abstractness of the methods employed.

Following N. Bourbaki, it is now con-
ventional to characterize as algebraic struc-
tures those parts of mathematics that em-
ploy operations, such as addition, which
act on a finite set of objects to produce a
unique corresponding object. Such oper-
ations are contrasted with ideas like limit
in calculus or closure in topology, which
associate a number or other mathemati-
cal object to an infinite set or sequence.
Thus, whereas the passage from (2, 3)
to 2 + 3 = 5 is an algebraic operation, to
go from the infinite sequence n → 1/n
(where n is any positive integer) to the
limit 0 is a topological operation. The
present section is concerned chiefly with
algebra.

In this brief article it is impossible
to describe all the many algebraic struc-
tures which occur in the literature of
applied physics. Therefore we have se-
lected those which are absolutely essential
for understanding the contemporary liter-
ature under the following rubrics: Groups;
Fields; Linear Algebra; Rings; Algebras
and Modules. As to style, we have at-
tempted to steer a course between that
which physicists would have liked 20
years ago and the austerity of contem-
porary pure mathematicians with which
all physicists will be happy 20 years

from now. This should leave all read-
ers equally unhappy! Our definitions are
seldom painstakingly detailed but rather
highlight the essential ideas leaving the
reader to use common sense to fill them
out. We shall assume that the reader is
familiar with elementary properties of vec-
tors and matrices. Recall that a square
matrix A is invertible or nonsingular if
there is a matrix B such that AB = BA = I,
where I is the identity matrix. In this
case A and B are inverses of each other
and we denote B by A−1. Although,
logically, rings should be discussed be-
fore fields, teaching experience suggests
that the reverse order is pedagogically
sounder.

NOTATION: We shall adopt the follow-
ing widely used symbolism: N: = the natu-
ral numbers, {1, 2, 3, . . .}; Z: = the positive
and negative integers and zero; R: = the
real numbers; C: = the complex numbers;
i: = √−1; Q: = the rational numbers. We
shall employ Einstein’s summation con-
vention in the restricted form that in any
monomial an index which is repeated as a
subscript and as a superscript will be in-
terpreted as summed over its range unless
the contrary is explicitly stated.

1
Groups

A group is a set, G, say, together with
a binary operation which we temporarily
denote by ‘‘∗’’, which satisfies certain
definite rules. A binary operation is one
which combines two elements of G to
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obtain an element of G. Perhaps our first
encounter with a group occurs when as
babies we push our blocks around on
the floor using the translation group in
two dimensions! Later in grade school
we learn the properties of the integers.
Under addition the integers Z exemplify
the axioms of a group:

(i) A group (G,∗) is a set, G, together
with an operation, ∗, which to any two
elements x and y of G associates an
element z = x ∗ y of G. For example,
in (Z, +), 2 + 3 = 5, 5 + (−3) = 2.
This property is described by saying
that G is closed under the binary
operation ∗.
However, for the structure (G,∗) to
be dignified with the title ‘‘group,’’ it
must satisfy the additional properties:

(ii) The operation is associative, that is
for any x, y, z in G, (x ∗ y) ∗ z =
x ∗ (y ∗ z).

(iii) There is a unique neutral or identity
element, n, such that x ∗ n = n ∗ x =
x for all x in G.

(iv) For any element x in G there is a
unique element y in G such that
x ∗ y = n. In this case, x and y are
said to be inverses of each other.

Thus while (N, +) satisfies (i) and (ii) it
is not a group because (iii) and (iv) fail.
However, (Z, +) is a group when we take
n: = 0.

If G has a finite number of elements, the
group is a finite group and the number of
elements is called the order of the group.
If x ∗ y = y ∗ x for all x, y ∈ G, the group
is Abelian or commutative.

The set of symmetries of any mathe-
matical or physical structure constitutes
a group under composition of symme-
tries. Such groups play a major role in
physics for analyzing the properties of

space-time, understanding crystal struc-
ture, and classifying the energy levels of
atoms, molecules, and nuclei. Indeed, the
role of groups is so important in physics
that an article of the Encyclopedia is devoted
to them. We therefore shall not explicitly
pursue the detailed properties of groups
further, even though they will occur as
substructures in rings and fields.

2
Fields

Whereas a group consists of a set together
with a single binary operation, a field
consists of a set together with two binary
operations linked together by a distributive
law. The two operations are usually called
addition and multiplication. The familiar
fields are the real numbers, R; the complex
numbers, C; and the rational numbers, Q.
We shall use the symbol F for an arbitrary
field. Strictly speaking, we should employ
a notation such as (F, +, ×) to denote a
field; however, the relevant operations are
generally obvious from context in which
case it is sufficient to use F alone.

(F, +, ×) is a field if:

(i) (F, +) is a commutative or Abelian
group. That is, x + y = y + x for any
x and y in F.

(ii) The elements of F other than zero
form a group under multiplication.

(iii) Multiplication distributes over addi-
tion. That is, if a, b, c, belong to F

then a × (b + c) = a × b + a × c, and
(b + c) × a = b × a + c × a.

These properties are, of course, familiar
for the reals, complexes, and rationals, but
there are fields, such as the quaternions,
for which multiplication is not commuta-
tive. There are also fields with only a finite
number of elements.
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A field always has at least two elements,
0 and 1.

2.1
The Characteristic of �

Since a field is closed under addition,
F contains 1 + 1, which cannot equal 1
since this would imply that 1 = 0, which
we excluded. But 1 + 1 might equal 0 in
which case (1 + 1) + 1 = 1 and one can
easily check that F = {0, 1} can serve as
the set of a field of two elements. This
is the smallest possible field and is both
famous and useful since it plays a key role
in the design of electric circuits, such as
those which occur in computers.

More generally, if p is a prime number,
we can obtain a field containing p elements
in which the sums of j 1’s are numbers
which are distinct if 0 ≤ j < p and equal
to 0 if j = p. When this occurs in any
field F we say that p is the characteristic
of F and that F has finite characteristic.
When there is no such p we say that F has
characteristic zero. A field of characteristic
zero has an infinite number of elements.
If F has only a finite number of elements it
will contain pn elements, where p is a prime
and n is a positive integer. If n > 1, F will
contain a subfield of the above type with p
elements. The fields with pn elements are
called Galois fields. They are important
in coding and communication theory. A
finite field is necessarily commutative.

2.2
Algebraically Closed Fields

We know that the square of a real number
is positive, so there is no real number
x such that x2 = −1. In other words,
in R there is no element x satisfying
the equation x2 + 1 = 0. If F has the
property that for every equation of the form

ajx j = 0, 0 ≤ j ≤ n, where the aj belong to
F, there is an element of F which satisfies
the equation, we say that F is algebraically
closed. Otherwise, it is not algebraically
closed. Clearly R is not algebraically closed.
If we assume that there is a ‘‘number’’ i
such that i2 + 1 = 0, then, as we know, the
field containing R and i is the complex
numbers, C. It was proved by Gauss that
C is algebraically closed.

Notice that if σ is a 1 : 1 map of C

onto itself, such that σ(x + iy) = x − iy
for all x, y ∈ R, then σ preserves all the
properties of a field and is therefore
an automorphism of C. Recall that an
isomorphism of two algebraic structures is
a bijective (or one-to-one) correspondence
between their sets, which preserves all
the relations among their elements, and
that an automorphism is an isomorphism
of an algebraic structure onto itself. Note
that σ(x) = x if x ∈ R and that σ(i) = −i,
which is the root other than i of the
equation x2 + 1 = 0. An automorphism
of C must send 0 into 0 and thus must
either leave i fixed (and so everything in
C is fixed) or, like σ , send i to −i. The
set consisting of σ and the identity map
is a group of order two under composition
of mappings. It is the Galois group of C

over R. Alternatively, it is also called the
Galois group of the equation x2 + 1 = 0
with respect to the reals. For more detail
about fields, their algebraic extensions, and
their Galois groups, the reader is referred
to Jacobson (1964) or any of the multitude
of algebra texts at the same level.

Are there fields containing R other than
C which are at most finite dimensional
over R? The answer was given by Frobe-
nius. There is one and only one, the
quaternions, but in this field multiplica-
tion is not commutative. We shall see
below that the quaternions can be realized
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as linear combinations with real coeffi-
cients of the Pauli matrices and the 2 × 2
identity matrix. The significance of the
field of quaternions is dramatized by the
observation that if it did not exist there
would be no spin in physics, therefore
no sigma and pi bonds in chemistry, and
therefore no life on planet earth if, indeed,
there were any stars or planets!

2.3
Rational Functions

If we adjoin a symbol x to any field F

and form all possible sums, differences,
products, and quotients involving x and
the elements of F, the result is a set which
is closed under any finite sequence of these
operations and forms a field, denoted by
F(x), which we might describe as the field
of rational functions in x over F. There is
a subset, denoted by F[x], of polynomials
of the form ajx j where j is summed from
0 to some n ∈ N, where n is arbitrary and
the aj ∈ F. If an is not zero we say that
the polynomial has degree n. As we shall
remark below, the polynomials constitute
a ring. As usual x0: = 1, by definition,
so when n = 0 the preceding polynomial
reduces to a0. Thus F is contained in
F[x]. The field F(x) consists of all possible
quotients of elements of F[x].

Suppose that the rational function
R(x) = P(x)/Q(x), where P and Q are
polynomials. Suppose further that Q(x) =
Q1(x)Q2(x), where Q1 and Q2 are polyno-
mials with no common factor. Since we
could have used long division to ensure
that R is the sum of a polynomial and a
rational function, the numerator of which
has degree strictly less than the degree
of Q, we may assume that deg(P) – the
degree of P – is less than deg(Q). It is
relatively easy to show that it is then pos-
sible to find polynomials P1 and P2 with

deg(Pi) < deg(Qi) such that

P

Q
= P1

Q1
+ P2

Q2
.

This is the fundamental theorem of the
so-called method of partial fractions, by
repeated application of which it follows
that any rational function can be expressed
as a sum of a polynomial and rational
functions whose denominators have no
nontrivial factors.

In particular, if F is algebraically closed
(e.g., F = C), then Q is a product of
factors such as (x − a)m, where a ∈ F. A
summand in R(x) of the form g(x)/(x −
a)m with deg(g) < m can, by Taylor’s
theorem applied to g(x), be expressed as
the sum cj(x − a)−j, where 1 ≤ j < m and
cj = g(m−j)(a)/(m − j)!. Here g(k) is the kth
order derivative of g.

The method of partial fractions is quite
useful for finding integrals of rational
functions. Books on calculus explain
helpful tricks for obtaining the partial
fraction decomposition of a given rational
function.

3
Linear Spaces

The theory of linear space with its re-
lated concepts of linear transformation,
eigenvector, matrix, determinant, and Jor-
dan canonical form is certainly one of the
most important and most useful part of
mathematics. The abstract concept of lin-
ear space is frequently approached by a
long discussion of the problem of solv-
ing systems of linear equations. We take a
direct approach defining a linear space
as consisting of a field F whose ele-
ments are called scalars, a set V, called
vectors, and two operations called vector
addition and scalar multiplication together
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with a set of rules governing the relation
among these various entities. The vectors
under addition form an additive Abelian
group (V, +). Under multiplication by
scalars the set V is closed. Thus, v ∈ V
and a ∈ F imply that av ∈ V . Another im-
portant property is that multiplication by
scalars distributes over addition of vectors.
That is a(v1 + v2) = av1 + av2 for all a ∈ F

and vi ∈ V .

3.1
Independence of Vectors

This seems to be the most difficult idea
in teaching elementary courses in linear
algebra – possibly, the only difficult idea!
Two nonzero vectors v1 and v2 are linearly
dependent if there are scalars a1 and a2,
not both zero, such that a1v1 + a2v2 = 0,
where, of course, by 0 we mean the zero
vector. It is clear that neither a1 nor a2

is zero, and thus each vector is a scalar
multiple of the other. More generally, if,
given n vectors vi, 1 ≤ i ≤ n, there exist
scalars ai such that aivi = 0, where all
vi �= 0 and not all ai = 0; then we say that
the n vectors are linearly dependent. If no
such relation holds, the vectors are linearly
independent. For example, for n ∈ N there
are no numbers an other than 0 such
that �nan × cos(nϑ) = 0 for all ϑ . Thus
the functions ϑ → cos(nϑ) are linearly
independent.

If n vectors vi are such that any vector v
can be written as v = aivi for some choice
of scalars ai, we say that the set {vi} spans V.
If the vi are also linearly independent then
the coefficients ai are unique. We then
say that B = {vi} is a basis of V, that the
linear space V has dimension n, and that
ai are the components of v with respect
to B. A basic theorem assures us that the
dimension depends only on the space V
and not on the choice of basis. If a linear

space does not have a finite basis it is
infinite dimensional.

3.2
Change of Basis

How do the components of a given vector
change if the basis is changed? This was
a key question which led to the theory
of invariants in the mid-19th century and
opened up the development of much of
contemporary algebra. It also led to the
emergence of the tensor calculus which
was essential for Einstein’s exposition of
General Relativity Theory.

Suppose V is a linear space and that
B = {vi} and B′ = {v′

i} are two different

bases for V. Then there is a matrix, P
j
i

called the transition matrix from B to B′
such that v′

i = P
j
ivj. Thus if the vector

x = x jvj = x′iv′
i = x′iPj

ivj, it follows that

x j = P
j
ix

′ i. If in the usual matrix notation
we regard x j as the jth component of a

column vector x, and P
j
i as the element in

the jth row and ith column of the transition
matrix, P, from the old base B to the new
base B′, the preceding equation takes the
form

x = Px′ or x′ = P−1x.

There is an even more convenient
notation. Define P(B′, B): = P; then the
preceding equations imply that P−1 =
P(B, B′). Subsequently we shall need the
formulas

x = P(B′, B)x′ and x′ = P(B, B′)x.

To understand tensor notation it will prove
important to note that, whereas P sends
the old to the new basis, it sends the
new coordinates to the old ones. This
observation underlies duality in homolog-
ical algebra and the distinction between
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covariant and contravariant tensors, which
we define below.

3.3
Linear Maps and Their Associated Matrices

Suppose that V and U are linear spaces of
dimension n and m with bases Bv = {vi}
and Bu = {uj}, respectively. A transforma-
tion, function, or map from V to U sends
each vector x ∈ V to a vector, say, y of
U, which we denote by Ax: = y. If A has
the property that for any two vectors x
and x′ ∈ V and arbitrary scalars a and
a′ ∈ F, A(ax + a′x′) = aAx + a′Ax′, we
say that A is linear. The condition that a
map be linear is very restrictive. Nonethe-
less, linear maps play a big role in the
application of mathematics to physics (as
well as statistics, economics, biology, etc.)
for the same reason that the derivative is
important in analysis. For example, if f (x)
is a real-valued function of the real variable
x, such that f (0) = 0, then f ′(0)x is the lin-
ear function of x which is the best possible
linear approximation to f (x) near 0.

A linear map or transformation, A: V →
U, can be completely described by an

m × n matrix A
j
i, such that Avi = A

j
iuj,

which we describe as the matrix associated
to the linear transformation or map A with
respect to the bases Bu and Bv. It has m
rows and n columns. If we denote this
matrix by A(u,v) then if the bases in V and
U are changed to B′

v and B′
u, respectively,

A(u′, v′) = P(B′
u, Bu)A(u, v)P(Bv′ , B′

v),

where we use the notation of Sec. 3.2.
In terms of coordinates, if y = Ax, then

yj = A
j
ix

i, where, as follows from the
context, 1 ≤ j ≤ m and 1 ≤ i ≤ n.

In the particular case that V = U of
dimension n, with Bu = Bv, A(u, u) is an
n × n matrix which we denote by A(u). We

deduce that for a change of basis

A(u′) = P(B′
u, Bu)A(u)P(Bu, B′

u).

We thus associate to any linear transfor-
mation a matrix which is unique, once bases
are chosen for the domain and codomain of
the transformation. But conversely, if the
bases are given, then there is a unique
linear transformation associated with a
given matrix of the appropriate shape.
Thus there is a bijection (i.e., a one-to-one
correspondence) between m × n matrices
with entries in F and linear maps from a
linear space of dimension n into one of
dimension m. We have found how the bi-
jection changes when the bases are altered.
It is this bijection which gives meaning to
the familiar addition and multiplication of
matrices.

A linear map between two spaces over
the same field F has the property of
preserving the linear structure and is said
to be a homomorphism (i.e., a structure-
preserving map), so it is common to
denote by Hom(V1, V2) the set of all
linear maps between linear spaces V1 and
V2 where both have the same field. If
A ∈ Hom(V1, V2) then V1 is the domain of
A and V2 is the codomain of A. The kernel
of A, frequently denoted by ker(A), is the
set of all elements in the domain which
are mapped onto 0 by A. The range of A
consists of all elements of the codomain
of the form Ax for some x in the domain.
Of course these last four definitions are
valid for any function, not merely linear
maps. However, when A is linear it can be
easily proved that both the kernel and the
range are linear subspaces of their ambient
spaces. This is probably the secret of the
power and relative simplicity of the theory
of linear spaces. When V1 = V2 = V , we
denote Hom(V,V) by Hom(V).

If G is a map from V1 to V2 and F one
from V2 to V3, we denote the composition
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of these two maps by FG and, having fixed
bases in the spaces, we define the matrix
corresponding to FG as the product of the
matrices corresponding to F and G. This
‘‘explains’’ the usual rule for matrices that
(FG)

j
i = F

j
kGk

i , where i, k, and j range from
1 to the dimensions of V1, V2, and V3,
respectively.

The composition (or product) of two
maps can be well-defined if the range of
the first is in the domain of the second. The
sum of two maps is only meaningful if the
codomain is an additive group in order for
the sum of Fx and Gx to be meaningful. In
this case it is possible to let F + G denote
the map such that (F + G)x = Fx + Gx for
all x in the intersection of the domains of
F and G. When the domain and codomain
are fixed linear spaces over the same
field F we can do even better and give
Hom(V1, V2) the structure of a linear
space over F. This implies that the set
of all m × n matrices with entries from F

is a linear space of dimension mn over F.
The dimension of the range of a linear

operator is called the rank of the operator
and also the rank of any matrix associated
with the operator by a particular choice of
bases. The dimension of the kernel of a
linear transformation is called the nullity
of the transformation and of its associated
matrices. It follows from this definition
that the various matrices obtained from
one another by a change of basis all have
the same rank and nullity. The rank of a
product of operators or matrices is not
greater than the minimum rank of its
factors.

3.4
Determinants

If F is a commutative field, to any square
matrix, it is possible to assign a number
in F which is expressible as a polynomial

in the elements of the matrix and which
vanishes only if the matrix is not invertible.
To two square matrices which are related
as in Sec. 3.3 by a change of basis, we
assign the same number, and therefore it
is meaningful to also assign this number
to the associated linear transformation
belonging to Hom(V). The function, det,
from Hom(V) into F, has the following
properties: (i) det(AB) = det(A)det(B); (ii)
det(fI) = f n, where n is the dimension of
V, I is the identity map, and f is any
element of F. The usual definition of the
determinant follows from these properties
(MacDuffee, 1943). In particular since,
for a fixed basis, the equation Ax = y
is equivalent to the system of equations

A
j
ix

i = y j, Cramèr’s rule implies

det(A)xi = det(Yi),

where Yi is the matrix obtained from (A
j
i)

by replacing its ith column by the column
vector (yk) where i, j, k run from 1 to
n. Thus if det(A) �= 0 there is a unique
x for every y so A is invertible; whereas if
det(A) = 0, there is an x only for particular
y satisfying the n conditions det(Yk) = 0.
Thus for a finite dimensional linear space
V, A ∈ Hom(V) is invertible if and only if
det(A) �= 0.

The theory of Hom(V1, V2) is really
equivalent to the theory of systems of
linear equations in several variables. This
topic occurs in articles of this book
devoted to NUMERICAL METHODS and to
MATHEMATICAL MODELING and in at least
one hundred elementary textbooks; so we
shall not pursue it here.

3.5
Eigenvectors and Eigenvalues

If A ∈ Hom(V) then for any x ∈ V, Ax ∈
V . In general we shall not expect Ax to
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equal x or indeed, even, that Ax be parallel
to x. However, in the latter case Ax would
be a multiple of x, say, λx. The equation
Ax = λx is equivalent to (λI − A)x = 0. By
the preceding section, if the determinant
of λI − A is different from zero, the only
possible solution of this equation is x = 0,
which is of no great interest. When there
is a nontrivial solution of this equation it
will be somewhat unusual and is called an
eigenvector of A and can occur only for
special values of λ. Such a value of λ is
the eigenvalue of A corresponding to the
particular eigenvector x. The eigenvalue,
λ, will satisfy the nth degree algebraic
equation

f (z; A): = det(zI − A) = 0.

The nth degree polynomial f (z;A) is called
the characteristic function of A, and the
preceding equation is the characteristic
equation of A. Any eigenvalue of A satisfies
its characteristic equation. For each zero of
the characteristic equation there is at least
one nontrivial eigenvector.

There is a one-to-one correspondence
between the operators in Hom(V) and the
set of n × n matrices over F, and this set
spans a linear space over F of dimen-
sion n2. If we interpret A0 as the identity
operator, I, it follows that the operators
Ak for 0 ≤ k ≤ n2 are linearly dependent.
That is, there are cj ∈ F such that cjA j = 0,
where not all cj are zero. Thus there exists
at least one polynomial, p(z), such that
p(A) = 0. From the algorithm for long
division it easily follows that there is a
unique monic polynomial (i.e., a polyno-
mial with highest coefficient 1) of minimal
degree with this property. We shall de-
note this so-called minimal polynomial
of A by m(z;A). A famous theorem of
Hamilton asserts that A satisfies its char-
acteristic equation. That is, f (A;A) = 0.
Since deg(f ) = n, deg[m(z;A)] ≤ n. Since

m(z;A) divides any polynomial p(z) such
that p(A) = 0, it follows that m(z;A) divides
f (z;A).

The form of m(z;A) provides information
about A.

(i) m(z : A) = zp implies that Ap = 0 but
that Ap−1 �= 0. Such an operator is
called nilpotent, with nilpotency index
p.

(ii) m(z;A) = (z − 1)p implies that A − I
is nilpotent with index p. Thus in this
case A = I + N, where N is nilpotent.
An operator of this form is called
unipotent.

(iii) Suppose the minimal polynomial of
A has no multiple zeros, which is
equivalent to saying that m and its
derivative have no common factors.
Then there is a basis of V consisting
of eigenvectors of A. Equivalently,
among the matrices associated with
A there is one which is diagonal.
In this case we say that A and its
associated matrices are diagonalizable
or semisimple.

(iv) If m(z;A) = (z − λ)p, then, of course,
p ≤ n. A basis can be chosen so
that the matrix corresponding to A
has zero entries except along the
diagonal where there are so-called
Jordan blocks, which in case n = 4,
for example, would be


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


 .

That is ni × ni matrices with λ on
the diagonal and 1’s on the first
superdiagonal, �ni = n, 1 ≤ ni ≤ p,
and for at least one value of i, ni = p.

In the preceding we have assumed
that the entries of the matrix A could
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be arbitrary. However, if they are real
and nonnegative the remarkable Perron-
Frobenius theorem (Senata, 1973) about
the eigenvalues and eigenvectors of A
gives information which is useful in
many contexts; we thus state it here.
A matrix M = (mij) is connected or
indecomposable if for any two indices
i and j there is a sequence rk, 1 ≤
k ≤ s, such that the continued product
mir1 mr1r2 mr2r3 . . . mrsj �= 0. We write M >

0 if all mij > 0, and M ≥ 0 if all mij ≥ 0.
Then, if M ≥ 0 is a real connected matrix,
it has a largest simple positive eigenvalue,
r(M) = r, and an associated column vector
x > 0, such that Mx = rx where r > 0; any
other eigenvalue λ of M has absolute value
less than or equal to r. Further, if N ≥ 0 is
another real matrix of the same dimension,
such that M − N ≥ 0, then r(N) ≤ r(M)

with equality only if N = M. This theorem
can be used to quickly give the basic
classification of Kac-Moody algebras.

3.6
Canonical Form of Matrices

In Sec. 3.3 we noticed that distinct matri-
ces were associated with the same linear
operator, so there is a sense in which such
matrices are ‘‘equivalent.’’ Recall that by
an equivalence relation a set is partitioned
into distinct mutually exclusive subsets
which exhaust the given set. One method
of partitioning a set is into the orbits of
a group which acts on the set. Thus if g
belongs to a group G which is acting on
a set S and we denote by gs the element
of S into which g sends s, the orbit of s
is the set Ms = {gs|g ∈ G}. It follows that
x ∈ Ms implies that Mx = Ms. Given an
equivalence relation on a set of matrices,
the problem considered in this section is
that of choosing a canonical or ‘‘simplest’’
matrix in each equivalence class. There are

different canonical forms depending on
the types of matrices we consider and the
different group actions contemplated.

Possibly the basic and most general sit-
uation is that considered by H. J. S. Smith
in 1861. It is that of Sec. 3.3 where the
equation A(u′, v′) = PA(u, v)Q occurs in
slightly different notation. There P and Q
are arbitrary invertible m × m and n × n
matrices, respectively. By choosing B′

u so
that the last elements of the basis span
the kernel of A and the first ones span a
subspace which is complementary to the
kernel, while the first elements of Bu span
the range of A, one can arrive at Smith’s
canonical matrix which has 1’s in the (i, i)
positions for 1 ≤ i ≤ r where r is the rank
of A, and zero everywhere else. It would be
difficult to demand anything ‘‘simpler.’’ It
follows that with this meaning of equiva-
lence there are p + 1 equivalence classes of
m × n matrices where p is the minimum
of {m, n}.

At first one is surprised that there are so
few classes. However, on second thought,
one notices that we have been acting on
a space of matrices of dimension mn by
the group Gl(n, F) × Gl(m, F) (= G, say),
which has n2 + m2 ≥ 2mn parameters;
there is plenty of redundancy unless one
of m and n is 1 and the other is 1 or 2.

If we consider an action on the set of
n × n matrices by a smaller group we
shall expect more equivalence classes. For
(P, Q) ∈ G, subgroups of G can be defined
by imposing restrictions on P and Q.

Recall the following definitions. If A is a
square matrix the transpose of A, denoted
by At, is obtained from A by interchanging
rows and columns or by reflecting across
the main diagonal. The operation of
taking the transpose is an involution,
that is (At)t = A. If At = A, then we
say A is symmetric. If At = −A, then
A is antisymmetric or skew-symmetric.
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An important property of transposition
is (AB)t = BtAt. It is worth noting that
once the basis of V has been fixed,
the mapping defined by transposition
of matrices can be transferred to the
associated linear transformations, thus
defining an involution on Hom(V).

If σ is an automorphism of F, we
can define an operation on the matrix
A by replacing each of its elements by
its conjugate under the automorphism,
and denote the new matrix by Aσ .
If the field is commutative (AB)σ =
Aσ Bσ . In particular, when F = C, complex
conjugation is an automorphism of period
two. We follow a common custom and
denote the complex conjugate of A by A,
so AB = A B.

The Hermitian conjugate of A is denoted
by A∗ = A

t
and satisfies (AB) = B∗A∗. A

matrix A is Hermitian if A∗ = A and anti-
Hermitian if A∗ = −A.

The approach of this section is based
on that of Turnbull and Aitken (1932),
a superb book which goes far beyond
our brief summary. They distinguish five
subgroups of G.

(i) The Collinearity Group is character-
ized by PQ = I. It arises in Sec. 3.3
when v = u and v′ = u′. Under the
action of this group, a square matrix,
A, can be reduced to Jordan canoni-
cal form, that is to a sum of diagonal
blocks, each of which has the form
λI + N, where λ is an eigenvalue of
A and N is a nilpotent matrix, all
of whose entries are zero except for
1’s along the first superdiagonal. A
particular eigenvalue occurs on the di-
agonal of the canonical form as many
times as its multiplicity in the charac-
teristic equation. For any eigenvalue
the dimension of the largest Jordan
block is equal to the multiplicity of the

eigenvalue in the minimal polynomial
m(z;A). Thus if the zeros of m(z;A) are
simple, A is diagonalizable.

(ii) The Congruent Subgroup is defined
by the condition Pt = Q . Under this
group, symmetry or antisymmetry of
A is invariant. A symmetric matrix can
be diagonalized. If F is closed under
taking square-roots, we can choose as
the canonical element of an equiva-
lence class a diagonal matrix which
has only 0’s or 1’s on the diagonal. If
F = R, the diagonal could also con-
tain −1. In the real case, Sylvester’s
Law of Inertia asserts that the num-
ber of 1’s and the number of −1’s
are invariants. A nonsingular anti-
symmetric matrix has even rank r and
there is a canonical form under the
congruent group which contains ze-
ros everywhere except for r/2 blocks
of 2 × 2 antisymmetric matrices down
the diagonal; each has 1 and −1 off
the diagonal and 0 on the diagonal.

(iii) The Conjunctive Subgroup is defined
by the condition P = Q∗. It changes
Hermitian matrices into Hermitian
matrices. For real matrices, the con-
junctive and the congruent transfor-
mations are the same. For any F,
one may choose a diagonal matrix
as canonical. If F = C, the diagonal
can consist of 1’s and 0’s.

(iv) The Orthogonal Group is defined by
PQ = I and P = Qt and is thus a
subgroup of the groups (i) and (ii).
It will preserve symmetry or anti-
symmetry of a matrix. A symmetric
matrix will be equivalent to a diagonal
matrix whose diagonal elements are
eigenvalues of the original matrix. An
antisymmetric matrix will be equiv-
alent to one with zeros everywhere
except for 2 × 2 blocks on the diago-
nal, the determinants of these blocks
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being equal to the negatives of the
squares of eigenvalues of the original
matrix.

(v) The Unitary Subgroup is defined
by PQ = I and P = Q∗, and is
thus a subgroup of (i) and (iii). It
preserves the property of a matrix
being Hermitian or anti-Hermitian.
If F = R, groups (v) and (iv) are the
same. Under this group, a Hermitian
matrix is equivalent to a diagonal
matrix whose nonzero elements are
eigenvalues of the original matrix. An
anti-Hermitian matrix is equivalent
to one with 2-dimensional blocks
on the diagonal whose determinants
are the negatives of the squares of
eigenvalues of the original matrix.

3.7
Dual Space

We have already noted that Hom(V,U),
where V and U are linear spaces of
dimension n and m, respectively, over a
common field F, can be given a structure of
a linear space of dimension nm over F. We
can, of course consider F as a linear space
of dimension 1 over F. Thus, Hom(V, F)

is a linear space of dimension n over F

and therefore isomorphic to Fn and hence
also to V. It is called the dual space of V
and usually denoted by V∗. This use of
the asterisk can be distinguished from its
use to indicate Hermitian conjugation by
the context. The elements of V∗ are linear
functions on V with values in F. We shall
denote them by lower case Greek letters.
Recall that the Kronecker symbol δi

j takes
the value 1 if i = j and 0 otherwise.

If α ∈ V∗ and x = x jvj is an arbitrary
vector in V expressed in terms of the basis
Bv, then α(x) = x jα(vj) = ajx j, where aj =
α(vj). It is possible to define various bases
for V∗. The basis which is said to be dual

to Bv, and may be denoted by B∗
v , is defined

as follows. Recall that a linear function on
V is completely determined by the values
it assumes for the elements of a basis of V.

Let αi be a linear function such that
αi(vj) = δi

j for all j, 1 ≤ j ≤ n. Then αi(x) =
xi. Thus αi is the ith coordinate function.
It easily follows that αi are linearly
independent and that α = ajα

j, where
aj = α(vj). Thus any element of V∗ is
a linear combination of the n elements
αj, 1 ≤ j ≤ n, so that B∗

v = {αj} is a basis
for V. Just as the xi are coordinates of an
arbitrary element of V with respect to Bv, so
ai are coordinates of an arbitrary element
of V∗. Since ai = α(vi), when the basis
of V is changed, ai changes by the same
transformation as, or cogrediently with,
the basis. As we noted at the end of Sec. 3.2,
the xi transform contragrediently to the
basis. This distinction reflects the fact that
the definition of the linear function α: x →
α(x) is independent of the coordinate
system used to describe it. A geometrical
or physical entity which is described
by a sequence of n numbers which
transform like (ai) is called a covariant
vector. Similarly, an entity described by a
sequence of n numbers which transform
like (xi) when the basis is changed is called
a contravariant vector.

3.8
Tensors

Possibly it was algebraic geometers in the
middle of the nineteenth century who first
focused attention on the behavior of the
coordinates of geometrical objects when
the frame of reference is changed. But the
first time this issue really impinged on
physics was with the advent of Einstein’s
General Relativity Theory (GRT). The
basic metric of GRT, gijdxidx j, is clearly
independent of the coordinate system but



Algebraic Methods 13

since dxi is a contravariant vector, gij will
have to vary covariantly in both subscripts
i and j. Then the n2 symbols gij must be
describing something (in fact, according
to Einstein, the gravitational field!) which
is a doubly covariant tensor.

The curvature of space-time, which
allegedly explains black holes and how
planets circle around the sun, is described
by the Riemann-Christoffel tensor, Ri

jkl,
which is contravariant in the index i and
covariant in the other three.

The great advantage of the indicial
notation, as it evolved in the writings
of Eddington, Weyl, Synge, and other
mathematical physicists between 1920 and
1940, is that it immediately indicates the
behavior of the tensor when the underlying
basis, or frame of reference, is changed.
Thus if aij is a double covariant tensor and
bi is a contravariant vector (or first order
tensor), then aijbk is a third order tensor
covariant in two indices and contravariant
in one. If we now contract on the indices j
and k, we see immediately that ci = aijbj is
a covariant vector.

An algebraist would say that aij are the
components of an element of V∗ ⊗ V∗, the
tensor product of the dual space of V with
itself. Similarly, aib

j
k are the components

of an element in the tensor product V ⊗
V ⊗ V∗. In general, the tensor product (see
Sec. 4) of two linear spaces of dimension
n and m is a linear space of dimension
nm. In particular, V∗ ⊗ U is isomorphic
to Hom(V,U) and is spanned by a basis
consisting of elements noted as αi ⊗ uj,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

4
Creating Algebraic Structures

What experimental apparatus is for the
physicist, the Cartesian product and

quotient structures are for the algebraist.
These are the principal tools with which
he makes new mathematical structures.

If A and B are two sets, the Cartesian
product of A and B is denoted by A × B
and defined as the set {(x, y)|x ∈ A, y ∈ B}.
Thus it is a new set consisting of ordered
pairs with the first element of the pair
belonging to A and the second to B. If
A �= B, A × B �= B × A, since by definition
two ordered pairs (a, b) and (c, d) are equal
only if a = c and b = d.

Things become more interesting when A
and B have some algebraic structure which
can be used to impose structure on the
Cartesian product. For example, suppose
that A = B = Z. We define the addition
of pairs ∈ Z × Z by (x, y) + (u, v): = (x +
u, y + v). Notice that the plus signs on
the right and left have quite different
meanings. One acts on pairs of integers;
the others on integers. If we think of +3 as
a translation by 3 units along the number
line, we can call (Z, +) a translation group
in one dimension. We could then think of
(Z × Z, +) as the translation group of a
two-dimensional lattice. Another familiar
example is the idea due to Gauss of
imposing the structure of the complex
numbers on R × R.

The direct sum of two vector spaces pro-
vides us with another important example
of this construction. Suppose X and V
are two linear spaces over the same field
F with bases {ei}, 1 ≤ i ≤ n, and {fj}, 1 ≤
j ≤ m respectively. For x, y ∈ X, u, v ∈ V ,
and α ∈ F, define (i) (x, u) + (y, v): = (x +
y, u + v); (ii) α(x, u): = (αx, αu). By these
definitions we have imposed on X × V the
structure of a linear space for which the
n + m elements {(ei, 0), (0, fj)} form a ba-
sis. This new linear space is called the
direct sum of the linear spaces X and V,
and has dimension n + m, and is denoted
by X ⊕ V .
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An apparently minor variation on the
preceding definition leads us to an
important but quite different object – the
tensor product of X and V which is de-
noted by X ⊗ V . This is a linear space
which has a basis of elements belong-
ing to the Cartesian product X × V , but
addition and scalar multiplication are dif-
ferent. (i) (x1 + x2, v1 + v2) = (x1, v1) +
(x1, v2) + (x2, v1) + (x2, v2); (ii) α(x, v) =
(αx, v) = (x, αv). These conditions imply
that X ⊗ V is a vector space over F of
dimension mn, with {(ei, fj)} as a basis.

Recall that an equivalence relation ρ on a
set S partitions S into mutually exhaustive
subsets which we call equivalence classes.
A binary relation ρ on a set is an
equivalence relation if it has the following
three properties: (i) reflexive, xρx for all
x ∈ S, (ii) symmetric, xρy implies yρx,
(iii) transitive, xρy and yρz imply xρz. A
subset of the partition of S contains exactly
all the elements of S which are related by
ρ to any one member of the subset. For
example, the nails in a hardware store can
be partitioned by length. Thus xρy means
length(x) = length(y).

Now consider the equivalence relation ρ

on Z × Z such that (a, b)ρ(u, v) if and only
if av = bu. We have used only properties
of the integers to partition Z × Z into
equivalence classes. But the condition we
used is identical with the equality of the
rational numbers a/b and u/v. We have
thus established a bijection, or one-to-
one correspondence, between Q and the
equivalence classes of Z × Z under the
relation ρ.

For any set S with equivalence relation
ρ, the new set whose elements are
equivalence classes of S is denoted by
S/ρ and called the quotient set of S by

the relation ρ. Starting from Z we have
just created the rationals Q as (Z × Z)/ρ.
The notion of quotient structure frequently
arises in physics when we have a group G
acting on some set S.

Suppose that G acts transitively on S,
that is if Q is a fixed point, and P is any
point, there is at least one transformation
in G which sends Q to P. The set of all
transformations which leave Q fixed is a
subgroup H of G – the so-called stabilizer
of Q. For any two elements f and g of G we
shall say that they are in the relation ρ, that
is f ρg, if fg−1 ∈ H. We easily prove that ρ is
an equivalence relation and that the points
of S are in one-to-one correspondence with
the elements of G/ρ. Thus the physics
of S can be transferred to G/ρ and the
symmetries of the physical situation may
become more transparent.

When the relation is defined by a
subgroup H as above, G/ρ is usually
denoted by G/H. Suppose we denote the
equivalence class containing g by π(g), if
g is any element of G. That is π is a
mapping from G to G/H, the so-called
canonical map. We could ask whether it
is possible to impose on G/H a structure
of a group in such a way that for any
f , g ∈ G, π(fg) = π( f )π(g). The answer is
yes – if and only if H is a normal subgroup
of G. A normal subgroup is not only a
group but has the additional property that
for all g ∈ G, gHg−1 = H. Further H =
{g ∈ G|π(g) = e} where e is the neutral
element of the new group G/H. When the
subgroup H is not normal, G/H is not a
group but is called a homogeneous space
on which G acts transitively.

We shall meet below other examples of
the use of quotienting as a method of
creating new structures.
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5
Rings

A ring like a field consists of a set, R, to-
gether with two binary operations which
are usually called addition and multiplica-
tion. (R, +, ×) is a ring if

(i) (R, +) is a commutative additive
group with zero;

(ii) (R, ×) is closed under multiplication
and may or may not have a unit;

(iii) multiplication distributes over addi-
tion, i.e., a(x + y) = ax + ay for all
a, x, and y in R.

We do not require that nonzero elements
of R have reciprocals in R, nor that mul-
tiplication be commutative or associative,
but we do not exclude these properties.
Thus a field is a ring but not all rings are
fields.

5.1
Examples of Rings

We now list five rings and one ‘‘almost
ring’’ which occur frequently in the physics
literature.

(a) The Integers Z. Perhaps it was this
example which led to the emergence
of the concept of ring. The integers
form a group under addition and are
therefore closed under addition and
subtraction. They are also closed under
multiplication, which distributes over
addition. However, the solution, x, of
the equation mx = n, where m, n ∈ Z,
is not, in general, an element of Z. In
contrast with some other rings there
are no divisors of zero in the integers.
That is you cannot find two integers,

neither of which is zero, whose product
is zero.

(b) Square Matrices. Suppose A = (
ai

j

)
, B =(

bi
j

)
, and C = (ci

j) are n × n matrices
with entries in a field F; then we
define A + B and AB or A × B to
be n × n matrices whose entries in
the ith row and jth column are,
respectively, ai

j + bi
j and ai

kbk
j . (Recall

the summation convention in the
Introduction.) Here 1 ≤ i, j, k ≤ n. Let
Mn(F) = Mn denote the set of all
n × n matrices with entries in the
commutative field F. Then one can
verify that (Mn, +, ×) is an associative
ring which is noncommutative if n ≥ 2.
The zero element of the ring is
the matrix all of whose entries are
0, whereas the unit or identity for
multiplication is the matrix (δi

j ) which
has 1 on the diagonal and 0 elsewhere.
Notice that if n = 2,[

0 1
0 0

] [
3 7
0 0

]
=

[
0 0
0 0

]
;

thus the ring of square matrices
possesses zero divisors.

(c) Quaternions were invented by Sir
William Rowan Hamilton in order to
give a convenient description of rota-
tions in 3-space.
In this section we shall use j, k, s, t as
indices with their ranges restricted as
follows: 1 ≤ j, k ≤ 3, and 0 ≤ s, t ≤ 3.
The quaternions, H, form an associa-
tive ring with multiplicative identity,
I = e0, and contain three elements ej

satisfying the conditions ejek + ekej =
−2δjke0, so e2

j = −e0. Further, ejek = em

where (j, k, m) is an even permutation
of (1, 2, 3). As a ring, H will contain
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e0 + e0: = 2e0, etc., so that H contains
Ze0. More generally if R denotes any
commutative ring, we could assume
that H contains Re0 and note this ex-
plicitly by denoting the quaternions as
H(R). Hamilton considered only the
possibility that R = R, the real num-
bers, since his concern was rotations
in the 3-dimensional space of Newto-
nian physics – not some esoteric space
of super string theory! Over R we can
define H by

H = {xses|xs ∈ R}.
Then it follows that H is closed
under addition and multiplication. If
we demand that the associative and
distributive properties hold, we obtain a
noncommutative associative ring. That
it is consistent to demand the preceding
properties follows from the fact that
they are satisfied by 2 × 2 matrices with
entries in R if we represent e0 by the
identity matrix and ej by −iσj, where σj

are the three Pauli matrices:

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
,

σ3 =
[

1 0
0 −1

]
.

Thus, if we set E0 = I and Ej = −iσj,
we find that

X = xsES =
[

x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

]
,

and that if x0 = 0, then det(X) =
δjkx jxk, which equals the square of
the Euclidean length of the vector with
components x j.
If T is any invertible 2 × 2 matrix and
Y = TXT−1, then trace of Y = tr(Y) =
tr(X) and the determinant det(Y) =
det(X). Since tr(X) = x0, it follows
that x0 = 0 implies y0 = 0. Further,

δjkx jxk = δjkyjyk, that is, Euclidean dis-
tance is preserved so the transforma-
tion from (x1, x2, x3) to (y1, y2, y3)

is orthogonal. In particular if T =
exp(ϑσ3)=cos ϑI +sin ϑσ3, this trans-
formation is a rotation though an angle
2ϑ about the x3 axis.
If R is a finite commutative ring with
m elements, H(R) would be a noncom-
mutative ring with m4 elements.
When is H(R) a field? Define X ′ by
X = x0I + X ′ and X by X = x0I − X ′. It
then follows that XX = δstxsxtI. If R =
R, this vanishes only if X = 0. Thus
X divided by δstxsxt is the reciprocal
of X. It is not difficult to verify that
H(R) satisfies the requirements of an
anticommutative or skew field. This
is the field discovered by Hamilton to
which we alluded in Sec. 2.2.

(d) Boolean ‘‘Ring’’. In studying what
he called ‘‘The Laws of Thought’’,
George Boole was led to introduce an
algebraic structure on the subsets of
any fixed set in which union, ∪, and
intersection, ∩, are analogs of addition
and multiplication, respectively. The
original set acts as the identity for
multiplication, and the empty set
serves as the zero for addition. The
reader can verify that most of the
properties of a commutative ring are
satisfied by Boole’s structure, but a
given subset does not have an additive
inverse so that P (S), the set of subsets
of S, is not an additive group under the
binary operation ∪.

(e) Lie Rings. Let (L, +, ◦) be a set L to-
gether with two binary operators such
that (L, +) is an additive commuta-
tive group such that the operation ◦
distributes over addition, so that

x◦(y + z) = x◦y + x◦z.
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However, the Lie product is neither
commutative nor associative but satis-
fies the properties:

x◦y + y◦x = 0

and

x◦(y◦z) + y◦(z◦x) + z◦(x◦y) = 0.

Because of the first of these conditions,
we say that the Lie product is anticom-
mutative. The second, which replaces
the associativity property of the famil-
iar rings, is referred to as the Jacobi
identity. Lie groups are discussed in
other articles of this work so we do not
go into details here. We merely remark
that the elements of a finite dimen-
sional Lie group can be parametrized
by continuous real variables and that
Sophus Lie associated to such groups
what he called an infinitesimal group
which is a particular case of a Lie ring.
Associativity of multiplication in the
group implies the validity of the Jacobi
identity in the corresponding Lie ring.
The Jacobi identity can be rewritten in
the form

z◦(x◦y) = (z◦x)◦y + x◦(z◦y),

which is the same as

D(x◦y) = (Dx)◦y + x◦(Dy),

if we set Dw = z◦w, for fixed z and
all w ∈ L. This last equation reminds
us of the product rule in calculus, so
we say that the linear map D: w → z◦w
is a derivation of L. The concept of Lie
ring, which apparently (Witt, 1937) was
first defined by Wilhelm Magnus in
1936, is a generalization of the concept
of Lie algebra introduced under the
name ‘‘infinitesimal group’’ by Lie and
Killing independently before 1880.

(f ) Grassmann Ring. As a final example of
the concept of ring we briefly describe
an algebraic structure invented by Her-
mann Grassmann about 1840 which is
basic to the theory of fermions as well
as the geometry of many dimensions.
Given a field, F, and a finite vec-
tor space (V, F, +) of dimension n,
it is possible to define a new vector
space, V∧, of dimension 2n over F

and a binary operation, denoted by ∧,
called the wedge or Grassmann prod-
uct, which distributes over addition.
(V∧, F, +, ∧) will be the Grassmann
or exterior algebra. In order to define
the product ∧, which is the same as
that for fermion creation operators in
second quantization, we proceed by in-
duction on the grade of homogeneous
elements of the algebra. Recall that in
the ring F[x, y] of all polynomials in
x and y there are special subspaces
such as ax + by, or ax2 + bxy + cy2,
or ax3 + bx2y + cxy2 + dy3, of homo-
geneous elements of dimension 2, 3,
4, respectively. Any polynomial can be
expressed as a sum of homogeneous
polynomials, and the summands are
unique. It turns out, analogously, that
if dim(V) = n, V∧ contains n + 1 sub-
spaces Vp, 0 ≤ p ≤ n, such that any
element x of V∧ can be expressed in
precisely one way as x = �n

0 xp, where
xp ∈ Vp. An element of Vp is said to
be homogeneous of grade p. If x and
y are homogeneous of grades p and q,
respectively, then x ∧ y = (−1)pqy ∧ x
is of grade p + q. In particular, V0 = F

and V1 = V by definition. It follows
that if x and y are of grade 1, that is be-
long to V, x ∧ y = −y ∧ x. So if F has
characteristic other than 2 it follows
that x ∈ V implies that x ∧ x = 0.
If {vi} is a basis of V, the n(n − 1)/2
elements vi ∧ vj for i < j are linearly
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independent and span the subspace V2

of V∧. Similarly V3 is spanned by vi ∧
vj ∧ vk: = (vi ∧ vj) ∧ vk = vi ∧ (vj ∧ vk)

with i < j < k between 1 and n. The
dim(V3) = n(n − 1) (n − 2)/6. Pro-
ceeding in this way we define all the
n + 1 homogeneous subspaces. As is
known, the sum of the coefficients
of the nth power of a binomial is
(1 + 1)n = 2n, so V∧ has dimension 2n.
The preceding terse abstract definition
does not immediately suggest that
the Grassmann ring is significant
for fermion physics. However, this
becomes plausible when one realizes
that the above basis elements of grade
p correspond to the Slater determinants
for a system of p electrons which can
be formed from a basis set of n linearly
independent spin-orbitals.

5.2
Polynomial Rings

For everyday applications there is little
doubt that the integers Z constitute the
most important ring which is not also a
field. Perhaps the next most important
is the ring of polynomials involving one
or more variables. Suppose R is any
ring; then we consider all expressions of
the form P(x) = asxs, where 0 ≤ s ≤ n, xs

denotes the sth power of the variable x,
and as ∈ R. If an �= 0 we say that P(x)
is a polynomial of degree n in x. The
set of all such polynomials of arbitrary
finite degree will be denoted by R[x]. (Note
the square bracket which distinguishes
the ring from the field R(x) of rational
functions.) Assume that the powers of
x commute with the elements of R
and define addition and multiplication
in the obvious way. Then (R[x], +, ×)

is a ring which is commutative if and
only if R is commutative. For example, if

R = Z, R[x] is the ring of all polynomials
with integer coefficients. If R is the ring
of 2 × 2 matrices with complex entries,
R[x] consists of all 2 × 2 matrices whose
entries are polynomials in x with complex
coefficients. In this case the variable is
often called λ. The theory of this particular
ring is discussed by Turnbull and Aitken
(1932), for example, under the title λ-
matrices.

An obvious extension of the preceding is
to adjoin two or more variables to R. Thus
R[x, y] denotes the set of polynomials in x
and y with coefficients in R. A term such
as 3x2y5, formed by multiplication without
addition, is called a monomial. The sum
of the powers of x and y is called the
degree of the monomial. Thus the degree
of the preceding monomial is 2 + 5 = 7.
Clearly there are 8 different monomials of
degree 7 in two variables. Any sum of these
with coefficients in R is a homogeneous
polynomial in x and y of degree 7. When
R is a field we see that the homogeneous
polynomials of degree 7 form a linear space
of dimension 8.

More generally, it is of considerable
interest to determine how many distinct
monomials of degree n can be obtained
from r variables. It is not difficult to see that
the possible such monomials occur as the
coefficients of tn in the expansion of the r-
fold product 	(1 − xit)−1, where 1 ≤ i ≤ r
and xi are distinct variables. Setting all
xi = 1, we see that the required number is
the binomial coefficient

(r+n−1
n

)
.

This is an opportune point at which to
explain the concept of a graded ring which
appeared in Sec. 5.1(f ) and has recently
entered quantum physics in connection
with super-symmetry. It is clear that any
element of R[x, y] is a unique sum of
homogeneous terms and that the product
of two homogeneous terms of degree p and
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q, respectively, is homogeneous of degree
p + q.

A graded ring (R, �) is a ring together
with a set of grades, �, closed under
addition, such that R contains special
homogeneous elements to which a grade
from � is assigned; any element of R can
be expressed in a unique manner as a sum
of homogeneous elements; the product of
two homogeneous elements of grade α

and β is homogeneous of grade α + β. For
polynomial rings we usually take � to be
the non-negative integers. For the so-called
Laurent polynomials C[t, t−1], � is the set
Z of all integers. For a Grassmann ring of
r generators, � is the set of non-negative
integers. However in that case there are
no terms of grade greater than r, and for
0 ≤ n ≤ r the subspace of homogeneous
elements of grade n has dimension

(r
n

)
.

5.2.1 Binomial and Multinomial Theorem
For r ∈ Z, r ≥ 0, (x + y)r = Cr

nxr−nyn,
where n is summed from 0 to r. The
binomial coefficients Cr

n satisfy the re-
currence relation Cr+1

n = Cr
n + Cr

n−1, with
which starting from C0

0 = 1 we can gener-
ate the famous Pascal triangle.

Define n!: = 1 × 2 × 3 · · · × n, which we
read as ‘‘n-factorial’’ or ‘‘factorial n’’. Cr

n is
often denoted by

(r
n

)
and is given by

(
r
n

)
= r!

n!(r − n)!
.

In this and most other formulas 0! is
interpreted as 1.

The binomial coefficient is also the
number of subsets of n elements in a set
of r elements, or the so-called number of
combinations of r things taken n at a time.

In the preceding, r and n are non-
negative integers but, as Newton realized,
the binomial coefficient can be defined as

follows for any real r:(
r
n

)
= r(r − 1)(r − 2) · · · (r − n + 1)

1 × 2 × 3 · · · × n
.

Here the numerator is a product of n
factors which begin with r and are decre-
mented successively by 1. For example
with r = −1,

(r
n

) = (−1)n. Hence,

(1 − x)−1 = 1 + x + x2 + x3 · · · ,
which is valid when the infinite sum
exists, that is if the absolute value of x
is less than 1. This form was used in the
preceding section to obtain the number
of distinct monomials of degree n in r
variables, viz.

(−r
n

)
.

The binomial coefficient is a particular
case of the multinomial coefficient which
arises in powers of sums of more than two
variables. Thus,

(x1 + x2 + · · · + xn)r = Cr1,r2,...,rn

× xr1
1 xr2

2 . . . xrn
n ,

where 0 ≤ ri ≤ r and the summation is
over all ri ∈ N such that �ri = r. It is not
difficult to see that

Cr1,r2,...,rn = r!

	iri!
,

with the product for 1 ≤ i ≤ n.
Like the binomial coefficient, to which it

specializes when n = 2, this number has
a combinatorial interpretation which ex-
plains its appearance in certain arguments
of statistical mechanics. Suppose a set S
of r distinct elements is partitioned into
the union of n subsets Si such that Si con-
tains exactly ri elements; then there are
Cr1,r2,...,rn distinct ways in which such a
partitioning can be effected.

5.2.2 Fundamental Theorem of Algebra
Since the square of any real number
is positive or zero, there is no x ∈ R
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such that x2 = −1. Suppose there is a
commutative ring R which contains R and
also an element i such that i2 = −1; then
R contains all elements of the form x + iy,
where x and y are arbitrary real numbers.
As a ring, together with i, R will contain
−i. If we require that R has no divisors of
zero, since x2 + 1 = (x + i)(x − i), there
are two and only two possible solutions
of x2 + 1 = 0, namely, i and −i. Further
since (x + iy)(x − iy) = x2 + y2 �= 0, any
element of R of the form x + iy has a
reciprocal of the same form. In particular
i−1 = −i. Thus the ring R[i], generated
by the reals together with i, is in fact a
field. It is of course the complex numbers
which we are denoting by C. Thus any
commutative ring R which contains the
reals and one solution of the equation
x2 + 1 = 0 contains C.

We found C by starting with R and
demanding that a simple second degree
equation have a solution. If one starts with
Z and asks for solutions of equations such
as 5x + 7 = 0, one soon realizes that one
needs more numbers than the integers.
This leads us to the rationals Q. If, like
the ancient Greeks, we ask for solutions
of equations such as x2 − 3 = 0, we are
forced beyond the rationals and are led to
define the reals, R.

The extraordinary property of the com-
plex numbers, first proved by Carl
Friedrich Gauss, is that any equation of
finite degree, ajx j = 0, 0 ≤ j ≤ n, whose
coefficients aj belong to C has a solution
which also belongs to C. This result is
so important that it has been called the
Fundamental Theorem of Algebra. A field
F which contains the zeros of all finite-
degree polynomials which can be formed
with coefficients in F is called algebraically
closed, as we noted in Sec. 2.2.

If P(x) is a polynomial of degree n
with coefficients in a field F such that

P(α) = 0 for some α ∈ F, then one easily
proves that P(x) = (x − α)Q(x), where
Q(x) is a polynomial of degree n − 1. If,
like C, F is algebrically closed, nothing
prevents us from continuing this process
so that P(x) = c	i(x − αi), 0 ≤ i ≤ n, if P
has degree n, and c is the coefficient of
xn, where the product is over the zeros
of P(x). If F = R this process will not
carry through in general; however, it can
be shown that a polynomial with real
coefficients can always be expressed as a
product of factors of first or second degree
with real coefficients.

The Fundamental Theorem of Algebra
assures us of the existence of a zero for
any polynomial P(x) ∈ C[x], but it does not
give us an effective procedure for finding
such a zero. Indeed, Evariste Galois
showed that it is only for polynomials
of degree less than five that an explicit
formula, analogous to that for solving
a quadratic equation, exists. It is worth
looking in detail at equations of degree
less than 5.

(i) deg[P(x)] = 1. Take P(x) = ax + b,
where a, b ∈ F and a �= 0. Then there
is a unique zero, x = −b/a, which
belongs to F.

(ii) deg[P(x)] = 2. Take P(x) = ax2 +
2bx + c, a �= 0, a, b, c ∈ F. Clearly
P(α) = 0 is equivalent to aP(α) = 0,
but

aP(x) = a2x2 + 2abx + ac

= (ax + b)2 + ac − b2.

Thus if α is a zero of P, (aα + b)2 =
b2 − ac = D. To find α it will be
necessary to find the square root of
D. Since by various choices of a, b,
and c, D will vary over the whole of
our ground field F, it follows that
quadratic equations with coefficients
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in F will always have solutions in F

if and only if F is closed under the
operation of taking square roots.
In elementary school we learn to
manipulate with square and cube
roots and come to take them quite
casually. But note that even the
world’s largest super-computer is not
able to find the square root of 2
exactly since it is a nonrecurring
decimal. To find it requires an infinite
process. In other words, moving from
talking about square roots to actually
calculating them takes us out of
algebra as defined in the Introduction
of this essay!
For equations of degree n, if P(x) =
ajx j, 0 ≤ j ≤ n, an �= 0, we could di-
vide P(x) by an, so there is no loss
of generality in assuming that P(x) is
monic; that is, it has leading coeffi-
cient equal to unity. It then follows
that if we replace x by y − b, where
nb = an−1, the resulting polynomial
in y has zero as the coefficient of yn−1.

(iii) deg[P(x)] = 3. By the preceding ar-
gument we may assume that P(x) =
x3 + px + q. It is easy to see that if
(x − α)2 or a higher power of (x − α)

divides a polynomial then x − α also
divides its derivative. By seeking for
a common factor of P(x) and its first
derivative we find that two or more of
the zeros of P(x) will be equal if and
only if 4p3 + 27q2 = 0.
This conclusion is valid for p and q
belonging to any field, F. If F = R

we know from a simple graphical
argument that P(x) has at least one
real zero. If p, q ∈ R, it is possible to
show that the roots will all be real or
that there will be one real and two
conjugate imaginary roots according
as 4p3 + 27q2 is, respectively, less
than or greater than 0. When it is

zero all the roots are real and at least
two are equal.
It is interesting to note that if
pq �= 0, by setting x = k cos ϑ , the
solution of x3 + px + q = 0 can be
obtained by comparison with the iden-
tity 4 cos3 ϑ − 3 cos ϑ − cos(3ϑ) = 0.
With k and ϑ such that 3k2 + 4p =
0 and pk cos(3ϑ) = 3q, the three
roots are k cos ϑ, k cos(ϑ + 2π/3), and
k cos(ϑ + 4π/3). When pq = 0, the
solution is trivial.

(iv) deg[P(x)] = 4. In this case the solu-
tion of the equation P(x) = 0 can be
made to depend on the solution of
a so-called resolvent equation of de-
gree 3. Then four zeros are obtained
as expressions involving two square
roots of rather complicated combi-
nations of the coefficients of P(x)
and one zero of the resolvent cubic
equation. These formulas are of little
theoretical value so we do not display
them. Nowadays anyone wanting ex-
plicit values for the zeros would obtain
them by a computer-implementable
algorithm.

There are elegant and deep arguments
connecting the solution of equations of
degree 5 and 6 with the theory of elliptic
functions.

Of course, even for arbitrarily high
degree there are particular equations
of simple form which have convenient
explicit solutions. For example, xn = a has
n solutions: r exp(ϑ + 2πki/n), 0 ≤ k < n,
with r > 0 and rn exp(nϑ) = a.

6
Algebras

The word ‘‘algebra’’ is used in two distinct
senses. On the one hand it refers to the
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subject which the reader began to study
with more or less enthusiasm around
the age of 13. Recall that when Einstein
asked his uncle ‘‘What is algebra?’’ the
latter replied ‘‘In algebra you let x be the
unknown and then you find x.’’ Bourbaki
would not accept this as a satisfactory
definition but it started Einstein on the
right path. Who knows? Without that
initial encouragement we would never
have had General Relativity which contains
a good deal of algebra!

But an algebra also refers to a rather
specific type of mathematical structure: a
ring, which is also a linear space over some
field. It is therefore a very rich structure.
As a linear space, an algebra has a
dimension – finite or infinite. In quantum
mechanics the observables generate an
associative algebra of operators on an
appropriate Hilbert space, which is finite
or infinite over C depending on the
physical system.

As we noted in Sec. 5.1, rings differ
among themselves according to whether
the ‘‘product’’ is or is not associative
or commutative. Because an algebra has
linear-space structure and therefore a ba-
sis, it is possible to characterize different
types of algebras by their structure con-
stants which are defined as follows. Let
{ei} be a basis for the algebra over F and
denote the product merely by juxtaposi-
tion. Then eiej is a linear combination of
the basis such that eiej = ck

ijek, where the
coefficients belong to F. It then follows by
linearity that if x = xiei and y = yiej are
any elements of the algebra, the product:

xy = xiy jck
ijek = zkek,

where

zk = ck
ijx

iyj.

The nature of the product is determined
by the structure constants ck

ij. For example,
if for all i and j they are antisymmetric
in i-j, then xy + yx = 0, as in a Lie ring
[Sec. 5.1(e)].

In understanding and classifying groups
there is a class called simple groups with
a key role in the sense that they are the
building blocks with which other groups
are constructed. For complex Lie groups
the classification of all possible simple
groups was essentially completed by Wil-
helm Killing in 1888. The solution of the
analogous problem for finite groups was
achieved only in 1980 as a result of gigantic
efforts over decades by hundreds of math-
ematicians – undoubtedly one of the truly
outstanding intellectual achievements of
all time. A simple group is one that con-
tains no normal subgroups other than the
full group and the one-element subgroup
consisting of the identity. Another way of
defining a simple group G is to say that any
homomorphism of G into another group
either is an isomorphism or sends every el-
ement of G onto a single element. Finally,
this is the same as saying that if we denote
the homomorphism by π then its kernel,
K = {g|π(g) = e}, is either G or {e}.

The concept of homomorphism – that
is, structure-preserving maps – applies to
rings and algebras as well as groups. If R
and R′ are rings and π : R → R′ is a map of
R into R′ then π is a homomorphism
if π(x + y) = π(x) + π(y) and π(xy) =
π(x)π(y) for all x and y in R. These are
the conditions for a ring-homomorphism.
If R is in fact an algebra, then π will also
have to satisfy the condition π(αx + βy) =
απ(x) + βπ(y), where α and β are in F, if π
is to qualify as an algebra-homomorphism.
If we then define K = {x ∈ R|π(x) = 0},
we easily see that K is a subring (or
subalgebra) of R. But more! If x ∈ K and
z ∈ R then both xz and zx belong to K.
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A subring of R which satisfies this last
condition is called an ideal. If K is the
kernel of a homomorphism π , and we
define an equivalence relation on R by
xρy ⇔ x − y ∈ K , then the image π(R) is
isomorphic to R/ρ. Conversely, if K is an
ideal in R there is a homomorphism of
R onto R/ρ with K as kernel. A ring (or
algebra) is simple if it has no ideals other
than {0} and itself.

The famous Wedderburn theorem
which emerged between 1895 and 1905
asserts that a simple finite-dimensional
associative algebra is isomorphic to a com-
plete matrix algebra for some n – that is,
the algebra of all n × n matrices which we
considered in Sec. 5.1(b).

6.1
Examples of Algebras

The algebra of n × n matrices over some
field F to which we have just alluded is
undoubtedly one of the most important
and useful types of algebras. We mention
three other algebras which are widely
applied by physicists.

(a) Frobenius or Group Algebra. Suppose G
is a finite group of order n. We can
decree that the elements gi of G are
a basis for a linear space over some
field F. Then the set A = {xigi|xi ∈ F}
is closed under addition and also un-
der multiplication by elements of F and
therefore is a linear space of dimension
equal to the order of G. If x = xigi and
y = yigi are arbitrary elements of A, we
can define xy: = xiyjgigj = �kzkgk, 1 ≤
i, j, k ≤ n, where zk = ck

ijx
iyj. Here, ck

ij
is 1 if gigj = gk and 0 otherwise. With
these definitions of addition and mul-
tiplication A is an algebra over F. It
is named after the Berlin mathemati-
cian G. Frobenius who made basic

contributions to the theory of group
characters, differential equations, and
other branches of mathematics.
There is a better way to display the
product xy. Denote xi by x(gi) so that
x = �gx(g)g where the sum is over
all g ∈ G. It then follows that xy =
�gz(g)g, where z(g) = �hx(h)y(h−1g)

for fixed g with summation on h ∈
G. Viewed in this way there is a
bijection between the elements of A
and functions x(g) on G. The sum
x + y is mapped onto the function
x(g) + y(g), and the product xy onto
the convolution, �hx(h)y(h−1g), of the
functions x(g) and y(g).
Now suppose that G is a continuous
group on which there is a concept of
volume or measure which is invari-
ant under translation by elements of
the group – a so-called Haar measure.
Then it is possible to extend the notion
of Frobenius algebra from finite to con-
tinuous groups where the elements of
the algebra are functions on G, addi-
tion is point-wise addition of functions,
and the product of x(g) and y(g) is the
function ∫ x(h)y(h−1g) dh. This convo-
lution of functions occurs in the theory
of Fourier and Laplace transforms. A
rigorous treatment involves deep prob-
lems of continuity, convergence, and
measure theory which analysts love.
But the algebraic structure is apparent
and explains why the idea of convolu-
tion is so useful.

(b) Clifford Algebras are generalizations of
quaternions. They are the E-numbers
of Sir A. S. Eddington’s Fundamental
Theory. They play a key role in
relativistic quantum mechanics as the
Dirac matrices. They are very useful in
the discussion of the orthogonal group
in n-dimensions.
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Suppose that Ei, 1 ≤ i ≤ n, are ele-
ments of an associative algebra over
the field F and satisfy the conditions

EiEj + EjEi = 2δijI,

where the Kronecker delta is 1 if i = j
and 0 otherwise and I is the identity of
the algebra. Since E2

i = I and distinct
E’s anticommute, it follows that the al-
gebra generated by the E’s has a basis
consisting of I, Ei, EiEj, EiEjEk, . . . 1 ≤
i < j < k < . . . ≤ n, and therefore like
the Grassmann algebra has dimension
2n. However, if X = xiEi we see that
X2 = δijxix jI, displaying the Euclidean
metric! It follows that if T is any fixed
invertible element of the Clifford alge-
bra, the transformation X → TXT−1

gives rise to a linear transformation
of the coordinates xi under which the
metric is invariant. It is therefore an
orthogonal transformation.
In the case n = 4, 2n = 16 which is
the number of entries in a 4 × 4
matrix. Indeed, there is then a faithful
representation of the Clifford algebra
by 4 × 4 matrices among which the
Dirac matrices appear in a natural
manner.

(c) Lie Algebras. A Lie algebra (L, F, +, ◦),
abbreviated as LA, is a Lie ring as
defined in Sec. 5.1, which is also a
linear space over some field F. As
such it could have finite or infinite
dimension. The smallest subalgebra
of L which contains all the elements
of the form x◦y, for x, y ∈ L, is
an ideal in L, which we denote by
L◦L: = L′. Defining an equivalence
relation ρ by xρy ⇔ x − y ∈ L′ leads
to a quotient algebra L/ρ which is
Abelian; that is the product of any
two elements of L/ρ is 0. A Lie
algebra is said to be solvable if the

descending sequence of subalgebras
Lp+1 ⊂ Lp where L0 = L, L1 = L′ and
Lp+1 = (Lp)′, terminates in {0} in a
finite number of steps. Every finite
dimensional Lie algebra has a maximal
solvable ideal, R, called the radical of
L, which is such that the quotient
algebra L/R is semisimple – that is, a
direct sum of simple LA’s. Recall that
a simple ring is one with only trivial
subideals. Thus simple and solvable
Lie algebras are the basic building
blocks needed for the analysis of any
LA.

The complete classification of simple fi-
nite dimensional LA’s over C was obtained
by W. Killing (1888) and expounded clearly
by Elie Cartan in his thesis (1894). The
classification of simple finite dimensional
LA’s over R was achieved by Cartan (1913).

The concept of a simple LA was given a
far-reaching extension by the Canadian R.
V. Moody (1967) and the Russian Victor
Kac (1967) quite independently of one an-
other. These infinite dimensional algebras,
which are now called Kac–Moody (K-M) al-
gebras, quickly proved to play a key role
in fundamental particle theory as does the
closely related Virasoro algebra which can
be thought of as a set of derivations of a K-
M algebra (Goddard and Olive, 1988). The
most accessible K-M algebras are the so-
called affine or Euclidean algebras which,
together with the finite-dimensional sim-
ple algebras, can be classified rather con-
veniently by means of the Coxeter-Dynkin
diagrams, which are exhibited in Table 1.
In this table the left-hand column names
the finite-dimensional simple algebras and
the right-hand column, the affine algebras.
These diagrams encode so much useful in-
formation that it is worthwhile explaining
them in some detail.

Up to isomorphism, a K-M algebra is
characterized by a square matrix (aij),
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Tab. 1 Coxeter-Dynkin diagram of the finite and affine Lie algebras

An :
n(n + 2) 1 2 3

An :1

1 111

A1 :
1

1 1

A1 :
2

1 2

G2 :
1

1 2 3

G2 :
3

1 2 1

F4 :
1

1 22 3 4

F4 :
2

1 12 3 2

Bn :1

1

1

1

2 2 2 2 2 2

Bn :2

1 1 1 1 1 1 1

BCn :2

1 2 2 2 2 2 2

Cn :1

1 2 2 2 2 2 1

Cn :2

1 2 2 2 2 1

1 1

Dn :1

1

1 1

222 2 1

E6 :
1

1

1

2

232 1

E7 :
1

1 1

2

43 32 2

E8 :
1

1 4 2

3

43 52 6

1

n − 1 n

Bn :
n(2n + 1) 1 2 3 n − 2 n − 1 n

Cn :
n(2n + 1) 1 2 3 n − 2 n − 1 n

n

Dn :
n(2n − 1) 1

1

2 3

E6 :
78 2 3 4 5 6

7

E7 :
133

E8 :
248

21 3 4 5 6

8

A1 :
3

21

1

G2 :
14 1 2

F4 :
52 1 2 3 4

3 4 5 6 7

n − 2 n − 1
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called a Cartan matrix even though it
was first defined by Killing, which has
the following properties: (i) aij ∈ Z, 1 ≤
i, j ≤ n. (ii) aii = 2. (iii) For i �= j, aij ≤ 0
and if aij = 0 then aji = 0. Then L is
a LA generated by 2n elements {ei, fi}
satisfying the following conditions: (a)
ei◦fj = hiδij; (b) hi◦ej = aijej; (c) hi◦fj =
−aijfj; (d) hi◦hj = 0; (e) the hi, 1 ≤ i ≤ n,

are linearly independent; (f) ê
1−aij

i ej =
f̂

1−aij

i fj = 0.
In (f) we use the notation x̂ = ad(x)

to denote a linear map of L into L
defined by x̂y = x◦y. The hi span an
Abelian subalgebra, H, called the Cartan
subalgebra of L of dimension n, which
is also the rank of L. For h = tihi, define
αj(h) = aijti, so αj is a linear function on H.
Then (b) and (c) imply that h◦ej = αj(h)ej

and h◦fj = −αj(h)fj.
The algebra L is spanned by monomials

which are products of the e’s and f ’s
but (a) – (d) imply that nonzero products
involve only the e’s or only the f ’s or
belong to H. The algebra is graded by
ascribing a grade αi to ei, 0 to h ∈ H, and
−αi to fi. Hence the possible grades for
nonzero elements of L are 0 or α = kiαi,
where the ki are all non-negative integers,
in which case α is said to be positive
and noted α > 0, or where the ki are all
non-positive integers, in which case α

is negative or α < 0. Thus L is a direct
sum of homogeneous terms which have
positive, negative, or zero grade. That is,
L = L− ⊕ H ⊕ L+ where L− is spanned
by products of f ’s and L+ by products
of e’s.

The grades form a lattice kiαi with
ki ∈ Z. This lattice is an additive Abelian
group, generated by αi for 1 ≤ i ≤ n, whose
elements can be pictured as the points of
a crystallographic lattice. The grades for
which there is a non-zero homogeneous

element of L are called roots and span a
sublattice of the lattice of grades. The set of
roots other than 0 is generally denoted by
� which has the obvious partition into the
positive and negative roots � = �− ∪ �+,
with �− = −�+. A nonzero element xα

of L with grade α is called an α-root vector.
As mentioned above, the K-M algebras

and the simple finite LA’s are classified by
means of the Coxeter-Dynkin diagrams
(CDD) of Table 1. These were first
employed by Coxeter (1931) in his study
of finite groups generated by reflections
and applied by him to LA’s in 1934.
They were also introduced independently
by Dynkin (1946). Bourbaki named them
after Dynkin, having first learned about
them from Dynkin’s important work
concerning LA’s. It was only in 1949 that
Claude Chevalley, a founding member of
Bourbaki, learned of Coxeter’s papers from
the author of the present article.

In 1888 or earlier, Killing noticed that
the operation Si: α → α − α(hi)αi effects a
permutation of � such that S2

i = I. The n
operations Si, 1 ≤ i ≤ n, generate a group
which is now usually called the Weyl group
because in 1923 Hermann Weyl popu-
larized a particular representation of this
group. I prefer to call it the Killing-Weyl
group. A particular element of this group,
R = S1S2S3 . . . Sn, which is usually called
the Coxeter transformation, was used by
Killing to effect the classification of the fi-
nite simple LA’s over C. He exhibited the
orders of all the ‘‘Coxeter’’ transformations
some years before Coxeter was born. It is
perhaps only fair to follow B. Kostant’s
usage (1959) and call this operator the
Killing-Coxeter transformation. The order
of the R associated with a simple LA on the
LHS of Table 1 is the sum of the digits ap-
pearing on the diagram immediately to the
right. For example, the order of R(G2) is
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1 + 2 + 3 = 6. The Killing-Coxeter trans-
formation is discussed in Coleman (1989),
where additional references may be found.

The CDD gives the Cartan matrix
(aij) and also the relations among the
generators of the Killing-Weyl group for
the corresponding LA. The nodes of the
diagram are numbered by the indices 1
to n for the finite algebras and 0 to n
for the affine algebras. A branch between
i and j indicates that aij and aji are
different from zero and, therefore, both
are negative integers. A simple branch
indicates that the product aijaji is 1 and,
therefore, each factor is −1; a double
branch indicates that the product is 2,
so the factors are −1 and −2; a triple
branch indicates that the factors are −1
and −3. An arrow pointing from i to
j indicates that aij is numerically larger
than aji. Thus in the graph G2, a12 = −3
and a21 = −1. The symbols An, Bn, Cn, Dn

were introduced by Killing and Cartan
to denote the four infinite classes of Lie
algebras corresponding, respectively, to
SL(n + 1), the general linear group on
n + 1 variables with determinant 1; the
orthogonal group on 2n + 1 variables; the
symplectic group on 2n variables; and the
orthogonal group on 2n variables. E, F,
G denote the exceptional LA’s and the
subscripts 2, 4, 6, 7, 8, n denote the rank
of the algebra. For the finite algebras their
dimension is noted in Table 1 under the
name of the algebra. The left-hand column
thus encodes the Cartan matrix for all the
finite simple LA’s.

But these diagrams also enable us to
infer the relations among n or n + 1
generators, Si, of the Killing-Weyl group of
the finite simple LA’s or the affine algebras.
S2

i = I, and for i �= j, (SiSj)p = I, where p
equals 2, 3, 4, or 6 according as the i-
node and the j-node are joined by a 0-, 1-,
2-, or 3-fold branch. For the simple LA’s

in the first column the determinants of
the Cartan matrix and of all its principal
subminors are strictly positive, whereas
for the matrices in the second column
the determinant of the matrix itself is
zero but those of all principal subminors,
positive. This corresponds to the fact that
can be observed from the diagrams that
if one node is removed from a diagram
in the second column we obtain one or
two diagrams of the first column. From
this we infer immediately a class of finite
semisimple LA’s which are subalgebras of
the affine algebras.

An open node is numbered 0 and
the others retain their numbers from
the diagram immediately to the left.
The numbers attached to the nodes of
the affine diagrams are the coefficients
of the canonical null-root of the affine
algebra. The affine algebras have infinite
dimension, Killing-Weyl groups of infinite
order, and an infinite number of roots.
The dimension of a root space is finite
and called the root multiplicity. Roots are
distinguished according as they are in the
orbit under the K-W group of a simple
root αi or not. The former are called real,
the latter, imaginary. The real roots all have
multiplicity 1, whereas imaginary roots can
have arbitrarily high finite multiplicity.

By the height, ht(α), of the positive
root α = kiαi we mean �ki. A finite
dimensional simple LA has a unique root
of greatest height which can be read from
Table 1. The numbers attached to nodes 1
to n in the diagram X1

n give the coefficients
of αi for the root of greatest height in
the corresponding finite algebra Xn. Thus
α = 2α1 + 3α2 + 4α3 + 2α4 is the highest
root of �(F4).

We should note that some authors use
the symbols A(2)

2 , D(3)
4 , E(2)

6 , D(2)
n+1, A(2)

2n ,
and A2

2n−1 for our algebras A2
1, G3

2, F2
4, B2

n,
BC2

n, and C2
n, respectively.
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7
Modules

So far we have not discussed exact
sequences, commutative diagrams, or the
game called diagram chasing which have
played an increasingly important role in
algebra in recent decades. The theory of
modules provides a convenient context in
which to introduce these ideas and is also
significant in its own right.

Recall that a linear space is an additive
group (V, +), which is closed under
multiplication by elements of a field
F (usually commutative). We frequently
denote the space (V, F, +, ×) by V. A
module is an additive group (M, +) which
is closed under multiplication by elements
of a ring, R (often non-commutative).
Frequently, when the context is clear,
a module (M, R, +, ×) is denoted by
M. Essential conditions in the definition
of an R-module M are that for r ∈ R,
and m1, m2 ∈ M, (i) rm1 ∈ M, (ii) r(m1 +
m2) = rm1 + rm2.

7.1
Examples of Modules

(a) Suppose R = Z and M = {3n|n ∈
Z} = 3Z. Clearly M is an additive
group. Define the action of R on M as
multiplication of integers. Obviously, if
n, m ∈ Z, 3n ∈ M and m(3n) = 3mn ∈
M.

(b) Let M = Z/3Z: = Z3. M has three
elements which we could denote [0],
[1], and [2]. For example [1] = {.. −
5, −2, 1, 4, 7, . . .}. Take R = Z. For
n ∈ R and m ∈ {0, 1, 2}, define n[m] =
[nm]. For example, 7[2] = [14] = [2 +
3 × 4] = [2]. We easily check that M is
an R-module.

(c) For the physicist perhaps the most
important example of a module occurs

when R is the Frobenius algebra of a
group G and M is a linear space over
R or C. In this case the action of R
on M is called a linear representation
of G. This example will be treated
in other articles in this book. Of
course it was via the representations
of groups that Hermann Weyl and
Eugene Wigner introduced the ‘‘group
pest’’ into physics around 1930. The
algebraization of physics then took a
dramatic leap forward, and we were
able to understand the periodic table,
relativistic wave equations, and the
classification of fundamental particles.

7.2
Morphisms of Modules

A mapping f : M1 → M2 of one R-module
into another could merely map one set
into the other set. As such it could be (i)
injective, such that x �= y ⇔ f (x) �= f (y),
(ii) surjective such that for each y ∈ M2

there is an x ∈ M1 for which f (x) = y,
or (iii) bijective, that is both injective
and surjective – or, one-to-one and onto.
However, f might also have the property
that for all x, y ∈ M1, f (x + y) = f (x) +
f (y). We would then say that f is a
homomorphism, or, now more frequently,
simply, a morphism of additive groups.
Even better, f might not only be a
morphism of additive groups but also
have the property f (rm) = rf (m) for all
r ∈ R and m ∈ M1. It would then have the
distinction of being called an R-module
morphism.

The kernel K = {x ∈ M1|f (x) = 0} of an
R-module morphism f is an R-submodule
of M1. The image or range of f , f (M1) ⊂
M2, is an R-submodule of M2 and is
isomorphic to the quotient module M1/K .
When f is surjective, this situation is
now frequently described by saying that
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the following diagram portrays an exact
sequence of mappings:

0 −→ K −→ M1
f−→M2 −→ 0.

The preceding statement presupposes that
the reader realizes that given our context
(i) an arrow denotes a morphism of R-
modules, (ii) the sequence is exact at
K, M1, and M2. By exact is meant that
the image of an incoming morphism is
the kernel of the outgoing morphism.
Hence, (i) the mapping from K to M1

is injective since its kernel is 0, (ii) the
mapping f is surjective since its image
must be the whole of M2 because this is
the kernel of the final map. Since f is an
R-module morphism the diagram implies
that M2 = f (M1) = M1/K .

Though we chose to introduce the
concept of an exact sequence for modules,
it has wider application. Consider the
diagram:

1 −→ K −→ G −→ H −→ 1,

where now the arrows represent homor-
phism of groups. Then if the sequence
is exact, K is injected into G and can be
identified with the normal subgroup of G
which is the kernel of the map from G
to H. We conclude that H is isomorphic
to G/K. So this particular exact sequence
encapsulates the familiar and basic First
Isomorphism Theorem of group theory.

Returning to modules or additive groups
for which the neutral element is denoted
by 0, we see that for any exact sequence:

. . .
∂n−3−→Mn−2

∂n−2−→Mn−1
∂n−1−→Mn

∂n−→

Mn+1
∂n+1−→Mn+2

∂n+2−→ . . . ,

∂n+1∂nMn = 0, since ∂nMn is the kernel of
∂n+1 and is mapped onto 0.

A topologist will inevitably recall that
the boundary of a boundary is empty;
a physicist will recall that the curl of a
gradient is zero and that the divergence of
a curl is zero. Indeed, these observations
are the key to the algebraization of
topology and of differential forms which
led to homology and cohomology theory.
The algebraic core of these topics has
proliferated as Homological Algebra in
which exact sequences and commutative
diagrams are rampant.

Diagrams of maps can become quite
complex and frequently admit two or more
paths from object A to object B. If for all
pairs A and B the compositions of maps
along all different paths from A to B are
identical, the diagram is said to be commu-
tative. The game, art, or science of diagram
chasing is the process of verifying that a
given diagram is or is not commutative.
Here, finally, is a simple but important
example of a commutative diagram. It il-
lustrates a method now widely used by
algebraists to define universal objects.

Suppose G and Ĝ are given topological
groups and π : Ĝ → G a given homomor-
phism of Ĝ onto G. Suppose further
that for any group H and any homomor-
phism τ such that τ(H) = G there exists
a homomorphism σ which makes the ac-
companying diagram commutative:

Then Ĝ is the universal covering group
of G, the kernel K of π is the Poincaré
group of G, and the cardinality of K is
the connectivity index of G. An example
of this, which ‘‘explains’’ the occurrence
of spin in physics, is that if G were
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SO(3) then Ĝ would be isomorphic
to SU(2).

Glossary

This article contains so many words which
may be unfamiliar to the reader that if
we gave their definition here the glossary
would be almost as long as the article.
Therefore, we list the most important
concepts followed by the section number
in which the concept can be found.

Abelian: see Sec. 1
Affine Lie Algebra: see Sec. 6.1(c)
Algebra: see Sec. 6
Algebraically Closed: see Sec. 2.2
Anti-Hermitian: see Sec. 3.6
Antisymmetric: see Sec. 3.6
Associativity: see Sec. 1
Automorphism: see Sec. 2.2
Basis: see Sec. 3.1
Bijective: see Sec. 7.2
Binary: see Sec. 1
Binomial Coefficient: see Sec. 5.2.1
Canonical Matrix: see Sec. 3.6
Cartan Matrix: see Sec. 6.1(c)
Cartan Subalgebra: see Sec. 6.1(c)
Chasing Diagrams: see sec. 7.2
Characteristic Function: see Sec. 3.5
Characteristic of a Field: see Sec. 2.1
Clifford Algebra: see Sec. 6.1(b)
Cogredient: see Sec. 3.7
Commutative: see Sec. 1
Commutative Diagram: see Sec. 7.2
Component: see Sec. 3.1
Connected Matrix: see Sec. 3.5
Contravariant: see Sec. 3.7
Contragredient: see Sec. 3.7
Contragredient Vector: see Sec. 3.7
Convolution: see Sec. 6.1(a)
Covariant: see Sec. 3.7
Covariant Vector: see Sec. 3.7
Coxeter-Dynkin Diagram: see Sec. 6.1(c)

Degree: see Sec. 2.3
Derivation: see Sec. 5.1(e)
Determinant: see Sec. 3.4
Diagonalizable: see Sec. 3.5
Dimension: see Sec. 3.1
Direct Sum: see Sec. 5
Distributivity: see Sec. 2
Domain: see Sec. 7
Dual Space: see Sec. 3.7
Eigenvalue: see Sec. 3.5
Eigenvector: see Sec. 3.5
Equivalence Relation: see Sec. 4
Exact Sequence: see Sec. 7.2
Field: see Sec. 2
Frobenius Algebra: see Sec. 6.1(a)
Fundamental Theorem of Algebra: see
Sec. 5.2.2
Galois Field: see Sec. 2.1
Galois Group: see Sec. 2.2
Graded Ring: see Sec. 5.2
Grassmann Product: see Sec. 5.1
Grassmann Ring: see Sec. 5.1(f)
Group: see Sec. 1
Height of a Root: see Sec. 6.1(c)
Hermitian: see Sec. 3.6
Homogeneous Space: see Sec. 4
Homogeneous Subspace: see Sec. 5.1(f)
Homomorphism: see Secs. 3.3 and 6
Ideal: see Sec. 6
Identity Element: see Sec. 1
Imaginary Root: see Sec. 6.1(c)
Indecomposable: see Sec. 3.5
Injective: see Sec. 7.2
Invertible: see Introduction
Isomorphism: see Sec. 2.2
Jacobi Identity: see Sec. 5.1(e)
Jordan Block: see Sec. 3.5
Jordan Canonical Form: see Sec. 3.6(i)
Kernel: see Secs. 3.3 and 7.2
Killing-Coxeter Transformation:
see Sec. 6.1(c)
Killing-Weyl Group: see Sec. 6.1(c)
Laurent Polynomials: see Sec. 5.2
Lie Algebra: see Sec. 6.1(c)
Lie Ring: see Sec. 5.1(e)
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Linear Dependence and Independence: see
Sec. 3.1
Linear Map: see Sec. 3.3
Linear Space: see Sec. 3
Matrix Ring: see Sec. 5.1(b)
Minimal Polynomial: see Sec. 3.5
Module: see Sec. 7
Monic: see Sec. 3.5
Monomial: see Sec. 5.2
Morphism: see Sec. 7.2
Multinomial Coefficient: see Sec. 5.2.1
Neutral Element: see Sec. 1
Nilpotent Matrix: see Sec. 3.5
Normal Subgroup: see Sec. 4
Nullity: see Sec. 3.3
Order of a Group: see Sec. 1
Partial Fractions: see Sec. 2.3
Pauli Matrices: see Sec. 5.1(c)
Polynomial of Degree n: see Sec. 5.2
Quaternion: see Secs. 2.2 and 5.1(c)
Quotient Set: see Sec. 4
Radical: see Sec. 6.1(c)
Range: see Sec. 3.3
Rank: see Sec. 3.3
Rational Functions �(x): see Sec. 2.3
Real Roots: see Sec. 6.1(c)
Reflexive Relation: see Sec. 4
Ring: see Sec. 5
Root: see Sec. 6.1(c)
Root Multiplicity: see Sec. 6.1(c)
Root Vector: see Sec. 6.1(c)
Scalar: see Sec. 3
Semisimple Lie Algebra: see Sec. 6.1(c)
Simple Group: see Sec. 6
Skew Field: see Sec. 5.1(c)
Solvable Lie Algebra: see Sec. 6.1(c)
Span: see Sec. 3.1
Stabilizer: see Sec. 4
Structure Constants: see Sec. 6
Sum of Maps: see Sec. 3.3
Surjective: see Sec. 7.2
Symmetric Matrix: see Sec. 3.6
Symmetric Relation: see Sec. 4
Tensor: see Secs. 3.5 and 3.8
Tensor Product: see Sec. 3.8 and 4

Transition Matrix: see Sec. 3.2
Transitive Group: see Sec. 4
Transitive Relation: see Sec. 4
Transpose: see Sec. 3.6
Unipotent: see Sec. 3.5
Universal Covering Group: see Sec. 7.2
Wedderburn Theorem: see Sec. 6
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Introduction

The article on analytic methods is sub-
divided into the following five broad
and interrelated subjects: functions of
a complex variable, ordinary differential
equations, partial differential equations,
integral equations, and applied functional
analysis. Throughout the article, empha-
sis is placed on methods of application
involving physical problems and physi-
cal interpretations of solutions rather than
on a rigorous mathematical presentation.
Special cases of linear relations in one
and two Cartesian dimensions are used
to explain techniques. Extensions to more
general cases and different coordinate sys-
tems are straightforward, in principle.

Section 1 is devoted to some aspects of
complex variable theory needed in math-
ematical physics. The section begins with
a discussion of complex variables and
their representations, analytic and singular
functions of a complex variable, impor-
tant integral relations, and the Taylor and
Laurent expansions. The Cauchy residue
theorem is applied to obtain the Cauchy
principal value of an integral and disper-
sion relations. A discussion of the uses of
dispersion relations throughout physics is
also given. The section is concluded with a
brief discussion of physical applications of
conformal transformations and Riemann
surfaces.

Section 2, on ordinary differential equa-
tions, treats classes of physical problems
that lead to first- and second-order ordi-
nary linear differential equations. Proce-
dures for obtaining solutions for first- and

second-order ordinary linear differential
equations are presented. Methods of apply-
ing initial and boundary conditions are dis-
cussed. Green’s functions are introduced
in connection with the variation of pa-
rameters method for solving second-order
nonhomogeneous differential equations
with variable coefficients. A brief intro-
duction to numerical methods for solving
first- and second-order ordinary differen-
tial equations is also presented.

In the section on partial differential
equations (Sec. 3), some important partial
differential equations involving the Lapla-
cian operator are presented and explained.
Separation of variables and Fourier trans-
form methods for solving partial differ-
ential equations are illustrated. Green’s
functions for three-dimensional problems
are discussed in this section. Extensions
to cylindrical and spherical coordinates
and to certain special functions in mathe-
matical physics are discussed. The section
is concluded with a brief presentation of
numerical methods for solving partial dif-
ferential equations.

An introduction to one-dimensional
linear integral equations is given in Sec. 4.
Discussions of classifications and methods
of solution of integral equations are
given. The essential difference between
an integral- and a differential-equation
formulation of a physical problem is
discussed. The Abel problem is presented
as an example of a physical problem that
leads directly to an integral equation.

The focus of Sec. 5 is on applied
functional analysis. The method of the
calculus of variations is introduced in
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connection with finding the extremum
of the definite integral of a functional,
and techniques of variational calculus
are applied to Hamilton’s variational
principle of mechanics. The Feynman path
integral approach to quantum mechanics
is presented as an example of functional
integration.

1
Functions of a Complex Variable

1.1
Introduction

The imaginary number, i = √−1, was
introduced into mathematics during the
latter part of the sixteenth century. Imag-
inary numbers are needed since certain
equations, for example, x2 + 1 = 0, have
no solutions that involve only real num-
bers. In physics, one writes the solution
of the equation of motion for the linear
harmonic oscillator, ẍ + ω2x = 0, in the
form x(t) = A exp(iωt). Index of refraction
is written in complex (containing real and
imaginary parts) form in modern optics,
and the wave function in quantum me-
chanics is often a complex quantity. How
physical results are obtained from com-
plex numbers or functions of a complex
variable will be explained below. Complex
variables are used throughout physics, and
this section is devoted to discussions of
some properties of complex variables that
are useful in physical applications.

1.2
Complex Variables and Their
Representations

A complex variable may be written in the
general form

z = x + iy = reiθ . (1)

In Eq. (1), x and y are the respective
real and imaginary parts of z and are
written as x = Rez and y = Imz; θ is the
argument (phase) of z and is written as θ =
argz = θp + 2πn for n = 0, 1, 2, . . . ; θp is
the principal argument of z and varies
from 0 to 2π; eiθ = cos θ + i sin θ (Euler’s
formula); and r = |z| is the absolute value
(magnitude, modulus) of z where r =
(x2 + y2)1/2. The complex conjugate of z is
denoted as z∗ (for notational convenience,
z̄ is sometimes used to denote complex
conjugate) and is obtained by changing the
sign of the imaginary part (or imaginary
terms) of z, z∗ = x − iy. It is clear, and
useful to note for physical purposes, that
z∗z is a real quantity. Complex variables
are subject to the same algebraic laws as
real variables. The Argand diagram (z-
plane diagram) is a convenient geometrical
representation of a complex variable and
is illustrated in Fig. 1.

On raising Eq. (1) to the nth power, one
obtains

zn = rn(cos θ + i sin θ)n = rneinθ

(n = 0, ±1, ±2, . . . and z �= 0). (2)

y = Im z

x = Re z

r

z

z*

q

Fig. 1 Argand diagram
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Equation (2) is de Moivre’s theorem and
is often written as

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

(3)

de Moivre’s theorem may be used to
obtain relations involving sines and
cosines of multiple angles. On consid-
ering de Moivre’s theorem for n = 2,
expanding the left-hand side, and equat-
ing corresponding real and imaginary
parts, the following well-known relations
are obtained: cos 2θ = cos2 θ − sin2 θ and
sin 2θ = 2 cos θ sin θ . For n > 2, the bino-
mial expansion may be used to expand
the left-hand side of de Moivre’s theorem,
Eq. (3).

By use of de Moivre’s theorem, the nth
root of z may be written as

z1/n = r1/n
[

cos
(

θ + 2πk

n

)

+ i sin
(

θ + 2πk

n

)]
;

k = 0, 1, 2, . . . , n − 1. (4)

The quantity r1/n represents the positive
nth root of r. The square root of i, where
r = 1 and θp = π/2, is found to illustrate
the procedure for applying Eq. (4). Roots
for k = 0 and k = 1, respectively, are

z = cos
(π

4

)
+ i sin

(π
4

)
= 1 + i√

2
(5)

and

z = cos
(

3π

4

)
+ i sin

(
3π

4

)
= −1 + i√

2
.

(6)

The above two roots may be checked
for correctness. The procedure used to
calculate the square root of i can be applied
to calculate the nth root of any quantity
z(z �= 0).

1.3
Analytic Functions of a Complex Variable

A function f (z) of a complex variable is
itself a complex quantity and may be
written in terms of real and imaginary
parts in the following manner:

f (z) = u(x, y) + iv(x, y). (7)

The Argand diagram representations of z
and f (z) are respectively called z-plane and
w-plane diagrams. The number w = f (z)

is the value of f (z) at z. A single-
valued function f (z) is analytic (regular,
holomorphic) at z0 if it has a unique
derivative at z0 and at every point in the
neighborhood of z0. If a function fails to be
analytic at some point z0 but is analytic at
points in the neighborhood of z0, then z0

is said to be a singular point (singularity)
of f (z). In this connection, note that
the function 1/z is analytic everywhere
except at z = 0 (singular point). Liouville’s
theorem states that a function which is
analytic for all z (including infinity) must
equal a constant.

By analogy with the case of real variables,
the derivative of a function of a complex
variable is defined as

f ′(z) = lim
�z → 0

(
f (z + �z) − f (z)

�z

)

= lim
�z → 0

(
�u + i�v

�x + i�y

)
. (8)

The evaluation of Eq. (8) for the two paths
(a) �x = 0 and �y → 0 and (b) �x → 0
and �y = 0 leads to

∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+ ∂v

∂y
. (9)

The Cauchy–Riemann conditions for ana-
lytic f (z) result from equating correspond-
ing real and imaginary parts of Eq. (9); the
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results are

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= − ∂v

∂x
. (10)

If u and v possess continuous partial
derivatives to second order, Eq. (10) leads
to

∂2u

∂x2 + ∂2u

∂y2 = 0 and
∂2v

∂x2 + ∂2v

∂y2 = 0.

(11)

The equations in Eq. (11) are two-
dimensional Laplace equations, and func-
tions u and v (called harmonic or conjugate
functions) are, therefore, solutions of the
two-dimensional Laplace equations. The
theory of analytic functions is extremely
useful in solving problems in electro-
statics, fluid mechanics, or whenever the
two-dimensional Laplace equation occurs.
The function f (z) also satisfies the two-
dimensional Laplace equation.

1.4
Contour Integrals

The integral of a function of a complex
variable f (z) is defined in a manner
analogous to the case of real variable theory
and may be written as∫

C
f (z)dz

≡ lim
n → ∞

max |zj − zj−1| → 0


 n∑

j=1

f (ξj)

× (zj − zj−1)




≡
∫ z′

z0

f (z) dz. (12)

The path (contour) of integration C is di-
vided into n segments by points zj, and ξj

y

x

z0

zj – 1

zj

z ′

xj

z1

z2

Fig. 2 Path for the contour integral in Eq. (12)

is a point between zj and zj−1 (see Fig. 2).
In complex variable theory, the integral in
Eq. (12) is referred to as the contour in-
tegral of f (z) along the path C from z0

to z′. The integral around a closed path
is denoted as

∮
f (z)dz. The sign conven-

tion for contour integrals is as follows:
When the path of integration is traversed
such that the region of interest is on the
left, the integral is considered positive. Re-
gions in the complex plane are classified as
either simply connected or multiply con-
nected. Simply connected regions possess
the following three equivalent properties:
every closed path within the region con-
tains only points that belong to the region,
every closed path within the region can be
shrunk to a point, and every scissors cut
starting at an arbitrary point on the bound-
ary and finishing at another point on the
boundary separates the region into two
unconnected pieces. Regions that are not
simply connected are said to be multiply
connected.

Two extremely important relations in-
volving integrals of a function of a complex
variable, the Cauchy integral theorem and
the Cauchy integral formula, will now be
discussed.
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The Cauchy Integral Theorem: If f (z) is
analytic throughout a simply connected
region � and C is a closed path within �,
then ∮

C
f (z)dz = 0. (13)

Cauchy’s integral theorem applies to
special cases that are important in physics
where the value of the integral of a
function depends only on end points and
is independent of the path taken between
end points. The inverse of this theorem is
also valid.

The Cauchy Integral Formula is written
as ∮

C

f (z)dz

z − z0
= 2π i f (z0). (14)

The function f (z) in Eq. (14) is analytic
within C, z0 is within C, and the integrand
is not analytic at z = z0.

By use of the definition of f ′(z) and
Cauchy’s integral formula, the nth deriva-
tive of f (z) evaluated at z = z0 may be

written as

f (n)(z0) = n!

2π i

∮
C

f (z)dz

(z − z0)n+1 . (15)

Equation (15) will be used below in
developing the Taylor expansion for f (z).

1.5
The Taylor and Laurent Expansions

Two important series expansions, Taylor’s
series and Laurent’s series, are valid for
a function of a complex variable. If f (z)
is analytic in a region � and C is a circle
within � with center at z0 (see Fig. 3),
then the Taylor expansion of f (z) where
f (n)(z0) = n!an is

f (z) =
∞∑

n=0

(z − z0)
n

n!
f (n)(z0)

=
∞∑

n=0

an(z − z0)
n. (16)

The Taylor expansion of f (z) is obtained
and applied in a manner similar to that in

Fig. 3 Diagram for the Taylor expansion



40 Analytic Methods

Fig. 4 Diagram for the Laurent expansion

real variable theory. Classification of the
zeros of f (z) is made by use of Taylor’s
expansion of f (z) as follows: (a) If f (z) = 0
at z = z0, the point z0 is said to be a zero
of f (z). (b) If a0 = a1 = · · · = am−1 = 0
but am �= 0, then f (z) has a zero of order
m at z = z0. It is therefore clear that
the conditions f (z0) = 0 and f ′(z0) �= 0
indicate the existence of a zero of order
m = 1 (called simple zero) at z = z0.

The Laurent expansion of f (z) has no
real-variable counterpart and is key in the
discussion of singularities and residues. If
f (z) is analytic in the interior and on the
boundary of a circular ring between two
circles C1 and C2 (see Fig. 4), it may be
represented as a Laurent expansion which
has the form

f (z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

a−n

(z − z0)n .

(17)

In Eq. (17), the coefficients an and a−n

have the forms

an = 1

2π i

∮
C

f (z)dz

(z − z0)n+1 ,

n = 0, 1, 2, . . . , (18)

and

a−n = 1

2π i

∮
C
(z − z0)

n−1f (z) dz,

n = 1, 2, . . . . (19)

The first series in the Laurent expansion,
Eq. (17), is called the analytic part, and
it converges everywhere within C1. The
second series in the Laurent expansion
is the principal part which converges
everywhere outside C2. The quantity a−1

is the residue of f (z) at z = z0 and is given
by

a−1 = 1

2π i

∮
C

f (z) dz. (20)

In the above three equations, C is any circle
between C1 and C2 that encloses z0. Note
that 2π ia−1 is the value of the integral
in Eq. (20). For cases where the residue
can be determined directly, an indirect
method of evaluating definite integrals
may be developed. First, the classification
of isolated singularities and calculations of
corresponding residues are considered.

A singularity at z0 is said to be isolated
if a circle of radius ε, containing no
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other singularities, can be drawn with z0

as its center. Singularities are classified
using the principal part of the Laurent
expansion. If the first m terms in the
principal part are different from zero but
the remaining terms equal zero, then f (z)
has a singularity (a pole) of order m at z0.
When m = 1, the pole is called a simple
pole. If m is infinite, the singularity at z0

is said to be an essential singularity. The
residue of f (z) at z0 may be obtained by
use of the following three methods.

1. The Laurent expansion directly [the
coefficient of the 1/(z − z0) term]. In
the Laurent expansion

f (z) = 1

z3 − 1

3!z
+ z

3!
− z3

7!
+ . . . ,

(21)

there is a third-order pole at z = 0 with
residue a−1 = 1/3!.

2. The general formula

a−1 = lim
z → z0

(
1

(m − 1)!

dm−1φ(z)

dzm−1

)
,

(22)

where

φ(z) = (z − z0)
mf (z)

for limz→z0 [φ(z)] analytic and nonzero.
To illustrate the procedure for applying
the general formula, let us classify the
singularities and calculate the residues
of

f (z) = 1

(z2 + a2)2

= 1

(z + ia)2(z − ia)2 for a > 0.

(23)

There are singularities at z = ±ia.
Note that m = 2, φ(ia) is nonzero and
analytic, and the residue is 1/(4ia3)

when z = ia. In a similar manner, the

residue for the singularity at −ia is
−1/(4ia3).

3. If f (z) = g(z)/h(z) where g(z0) �=
0, h(z0) = 0, but h′(z0) �= 0, then

a−1 = g(z0)

h′(z0)
. (24)

For analytic A(z) in f (z) = A(z)/ sin z,
method 3 may be used to calculate
the residue. There are singularities at
z = nπ for n = 0, ±1, ±2, . . .; here the
quantity h(nπ) equals zero, but h′(nπ)

is different from zero. These poles are
therefore simple poles and the residue
is a−1 = (−1)nA(nπ).

1.6
The Cauchy Residue Theorem

The Cauchy residue theorem and Cauchy
principal value of an integral result from
the applications of the Cauchy integral
theorem and the Cauchy integral formula.
The residue theorem and principal value
of an integral are extremely important in
physics.

Cauchy’s Residue Theorem: If f (z) is
analytic within and on a closed region
� (except at a finite number of isolated

y

x

Γ

z j

z1

z0

C1

C2

Cj

Fig. 5 Diagram for the Cauchy residue theorem
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z plane
Γ

Γ

Fig. 6 Simple pole on the path

singular points zj within �), then (see
Fig. 5)

∮
�

f (z)dz

= 2π i
n∑

j=1

a−1zj

= 2π i
n∑

j=1

[enclosed residue of f (z)].

(25)

For a simple pole on the path of inte-
gration (see Fig. 6), the residue theorem
yields ∮

C
f (z)dz = π ia−1. (26)

The extension of the residue theorem
to cases of simple poles on the path of
integration is important in physics, and
the residue theorem is written as

∮
C

f (z)dz = 2π i
n∑

j=1

(enclosed residue)

+ π i
m∑

k=1

(residue of simple

poles on path).

(27)

The residue theorem may be used to
evaluate certain definite integrals that
occur when solving physical problems, and
the procedure for evaluating four types of
integrals will now be illustrated.

Type 1 Integrals:

I1 =
∫ 2π

0
f (sin θ, cos θ)dθ.

It is assumed that the integrand
f (sin θ, cos θ) contains no singularities
other than poles. If z = eiθ (unit circle),
then

sin θ = eiθ − e−iθ

2i
= z2 − 1

2iz

and

cos θ = eiθ + e−iθ

2
= z2 + 1

2z
.

In terms of z, the integral I1 becomes

I1 = −i
∮

unit
circle

f

(
z2 − 1

2iz
,

z2 + 1

2z

)
dz

z

= 2π
∑ (residue within

the unit circle).
(28)

The analysis for Type 1 integrals may be
used to evaluate the following integral:

I1 =
∫ 2π

0

dθ

5 + 4 cos θ

= −i
∮

unit
circle

dz

(2z + 1)(z + 2)
= 2π

3
.(29)

Type 2 Integrals: If (a) f (z) is analytic
in the upper-half plane except for a finite
number of enclosed singularities zj and/or
simple poles xk on the real axis, and
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(b) zf (z) approaches zero as |z| approaches
infinity, then

I2 =
∫ ∞

−∞
f (x)dx

= 2π i
n∑

j=1

a−1,zj + π i
m∑

k=1

a−1,xk . (30)

By use of the analysis for Type 2 integrals,
let us evaluate

I2 =
∫ ∞

−∞
dx

1 + x2

=
∮

semicircle

dz

(z − i)(z + i)
= π. (31)

Types 3 and 4 Integrals: If (a) f (z) is
analytic in the upper-half plane except at a
finite number of enclosed singular points
and/or simple poles on the real axis and
(b) f (z) approaches zeros as |z| approaches
infinity, then integrals of the form∫ ∞

−∞
f (x) exp(imx) dx

yield I3 and I4 where

I3 =
∫ ∞

−∞
f (x) cos mx dx

= −2π
∑

enclosed

Im{residue[f (z) exp(imz)]}

− π
∑
on the

path

Im{residue[f (z) exp(imz)]} (32)

and

I4 =
∫ ∞

−∞
f (x) sin mx dx

= 2π
∑

enclosed

Re{residue[f (z) exp(imz)]}

+ π
∑
on the

path

Re{residue[f (z) exp(imz)]}. (33)

The application of Type 3 integrals is
similar to that for Type 4 integrals. Type 4
may be used to evaluate

I4 =
∫ ∞

−∞
sin x dx

x

= π
∑

Re{residue[exp(iz)/z]} = π.

(34)

1.7
The Cauchy Principal Value and Dispersion
Relations

On returning to the case of a simple pole
on the real axis, note that it is useful to
express the result in terms of the Cauchy
principal value of an integral. The integral
of a function f (x) which has a simple pole
at x = x0 for x0 within [a, b] may be written
as ∫ b

a
f (x)dx = lim

ε→0

{∫ x0−ε

a
f (x)dx

+
∫ b

x0+ε

f (x) dx

}

≡ P
∫ b

a
f (x) dx. (35)

The symbol P in front of an integral
indicates the Cauchy principal value of the
integral and means carry out the limiting
process in Eq. (35). Note that the Cauchy
principal value may exist even if the regular
value of the integral does not exist; for
example, P

∫ 1
−1 dx/x3 = 0.

Dispersion relations (also known as
spectral representations, Kronig-Kramers
relations, and Hilbert transforms) result
from the analytic properties of the complex
representation of physical quantities and
the Cauchy residue theorem. Originally,
Kronig and Kramers were concerned
with the dispersion of light and the
relation between the real (dispersive) and
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imaginary (absorptive) parts of the index
of refraction at different frequencies. The
basic idea of dispersion relations is applied
in areas ranging from electronic design
to quantum field theory. Here, general
forms for dispersion relations will be
presented. For a physical quantity χ(ω)

which approaches zero as ω approaches
infinity and is analytic in the upper-half
plane (see Fig. 7), consider the evaluation
of the integral ∮

�

χ(ω)dω

ω − ω0
. (36)

By use of the Cauchy residue theorem
for a simple pole at ω0 on the contour and
the physical property that χ(ω) approaches
zero as ω approaches infinity, Eq. (36)
yields

−χ(ω0) = i

π
P
∫ ∞

−∞
χ(ω)dω

ω − ω0
. (37)

On equating corresponding real and imag-
inary parts in Eq. (37), the dispersion
relations are obtained:

Reχ(ω0) = 1

π
P
∫ ∞

−∞
Imχ(ω)dω

ω − ω0
,

Imχ(ω0) = − 1

π
P
∫ ∞

−∞
Reχ(ω)dω

ω − ω0
.

(38)

The equations in Eq. (38) express one part
of an analytic function in terms of an
integral involving the other part and are
called dispersion relations. In electronics,

w

−Q +Qw = w0 w0 + dw0 − d

C

Fig. 7 Contour for Eq. (36)

one has Z(ω) = R(ω) + iX(ω) where Z
is impedance, R is resistance, and X is
reactance. Dispersion relations may be
used to express resistance in terms of
reactance. Dispersion relations for light
(complex index of refraction η = nc +
iaa) yield relations between dispersive
power and absorption. In addition, a
large number of definite integrals may
be evaluated by use of the dispersion
relations. Dispersion relations applied
to f (z) = cos x + i sin x lead to values
of integrals with integrands of forms
(sin x)/x and (cos x)/x for limits of
integration from minus infinity to plus
infinity.

1.8
Conformal Transformations

An analytic function w = f (z) = u(x, y) +
iv(x, y) for z = x + iy is completely charac-
terized by two pairs of variables (x, y) and
(u, v). Riemann developed a mode of visu-
alizing the relation w = f (z) which uses
two separate complex planes, z plane for
(x, y) and w plane for the corresponding
(u, v). By use of the two-plane picture,
the equation w = f (z) defines the trans-
formation (relation, correspondence, or
mapping) between the two planes. That is
to say, w = f (z) may be used for mapping
a set of points (locus, figure) in the z plane
(or w plane) into the corresponding figure
in the w plane (or z plane). For physical
problems, the basic idea involves trans-
forming the geometry of a complicated
problem in the z plane into a simpler ge-
ometry in the w plane, solving the problem
with the simpler geometry, and inverting
the transformation to obtain the desired
solution in the z plane. The most im-
portant class of transformations used in
solving physical problems are those that
preserve the angle between two straight
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lines (conformal transformations). The
angle-preserving property of conformal
transformations will now be illustrated:
Assume that two lines intersect at z = a in
the z plane and at w = f (a) in the w plane,
with elements of length along two lines
given respectively by dz1 = |dz1| exp(iθ1)

and dz2 = |dz2| exp(iθ2). The correspond-
ing elements of length in the w plane
are dw1 = |dz1||f ′(z)| exp[i(φ + θ1)] and
dw2 = |dz2| × |f ′(z)| exp[i(φ + θ2)] since
dw = dz|f ′(z)| × exp(iφ). Finally, note that
the direction of the corresponding lines in
the w plane is rotated by φ, but the angle
between the lines in the z plane (θ2 − θ1)

equals the angle between the lines in the
w plane [(φ + θ2) − (φ + θ1)].

Four often used elementary transforma-
tions are the following.

1. Translation: w = z + z0 for z0 constant.
The transformation equations are

w = (x + x0) + i(y + y0),

u = x + x0,

v = y + y0. (39)

2. Magnification: w = az for constant and
real a. The transformation equations
are

w = ax + iay, u = ax, and v = ay.
(40)

3. Rotation: w = z0z. Here one may write

w = ρ exp(iφ) = r0r exp[i(θ + θ0)].
(41)

The angle in the w plane is φ = θ + θ0
where θ0 is the angle of rotation and r0
corresponds to the magnification.

4. Inversion: w = 1/z. In polar form, w
may be written as

w = ρ exp(iφ) = 1

r
exp(−iθ). (42)

The transformation equations for inver-
sion are

u = x

x2 + y2 , v = − y

x2 + y2 ,

x = u

u2 + v2 , y = − v

u2 + v2 .

(43)

The following transformation is also use-
ful in physical applications: w = z2 which
yields w = ρ exp(iφ) = r2 exp(i2θ)or ρ =
r2 and φ = 2θ with transformation equa-
tions given by u = x2 − y2 and v = 2xy.
Here one finds that a circle with radius r0
is mapped into a corresponding circle with
radius R = r2

0 , and θ0 is mapped into 2θ0.
In potential theory, the two-dimensional
Laplace equation is to be solved with ap-
propriate boundary conditions. Note that
the transformation w = z2 maps the right
angle in the z plane into a straight line in
the w plane (see Fig. 8) where boundary
conditions may be applied more conve-
niently.

In connection with the transformation
w = z2 (and other multivalued functions),
note that the transformation is conformal
except at w = 0 which is called a branch
point, and separately maps the upper- and
lower-half planes of the z plane into the
whole w plane (points z and −z are mapped

Fig. 8 Diagram for the
transformation w = z2

y
v

x u
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into the same points in the w plane). The
inverse transformation z = √

w cannot be
unique. The quantity z may be written as

z = √
ρ exp
(

i
φ

2

)
= √

ρ exp
(

i
φp

2
+ iπk

)
.

(44)

Odd and even values of k in Eq. (44) yield
opposite signs for z. In describing values
of a unit circle about the origin in the
z plane for k = 0, it is found that (a)
z = 1 for φp = 0 and (b) z = −1 when
φp = 2π . When k = 1, the values become
(a) z = −1 when φp = 0 and (b) z = 1
when φp = 2π . One may avoid the double
values by assuming a cut, which may not
be crossed, from zero to infinity along the
u axis in the w plane. Riemann introduced
the scheme of two planes (sheets, surfaces)
joined edge to edge at the cut as a way
to combine cases for k = 0 (all evens)
and k = 1 (all odds) and to eliminate the
cut. For example, a lower sheet contains
the set of values for k = 0 and an upper

sheet contains the values for k = 1 (see
Fig. 9).

The function
√

w is analytic over the
whole Riemann surface (two sheets) except
at the branch point, w = 0. In summary, it
is found that the w plane is mapped into
two sheets (Riemann surface). The concept
of Riemann surfaces has broad application
in physics.

2
Ordinary Differential Equations

2.1
Introduction

A differential equation is an equation
which contains derivative(s), and it may be
either an ordinary or a partial differential
equation. Ordinary differential equations
contain derivative(s) with respect to one
independent variable, and partial differen-
tial equations contain partial derivatives

Positive values

Negative values

Im

Im

Re

cut

Fig. 9 Riemann surface
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with respect to two or more independent
variables.

The order of a differential equation
is the order of the highest derivative
appearing in the equation. The degree of
a differential equation is the power of the
highest derivative after fractional powers
of all derivatives have been removed. If the
dependent variable and all of its derivatives
are to first power without a product of the
dependent variable and a derivative, the
differential equation is said to be linear. If
a differential equation is not linear, it is
classified as nonlinear.

Applications of appropriate physical
laws to a large number of physical prob-
lems lead to differential equations. In
general, a physical process is described by
use of a differential equation with appro-
priate boundary conditions in space and/or
initial conditions in time and/or an inte-
gral equation. The boundary and/or initial
conditions determine from the many pos-
sible solutions the one that describes the
specific physical phenomenon involved.

The main purpose here concerns the
development of solutions for differential
equations which adequately describe phys-
ical processes under investigation. The
mathematical subjects of existence and
uniqueness theorems for solutions of dif-
ferential equations will not be discussed.

An elementary introduction to the sub-
ject of ordinary differential equations, as
it relates to the needs in solving physi-
cal problems, can be reduced to that of
treating linear (or reducible to the linear
form) first- and second-order differential
equations. This presentation is devoted to
the construction of solutions and physical
applications of such ordinary differential
equations.

First- and second-order linear ordinary
differential equations have the following

standard forms, respectively:

dy

dx
+ p(x)y = Q(x) or y′ + p(x)y = Q(x)

(45)

and

d2y

dx2 + p(x)
dy

dx
+ q(x)y = f (x)

or

y′′ + p(x)y′ + q(x)y = f (x). (46)

In Eqs. (45) and (46), the notations y′ =
dy/dx and y′′ = d2y/dx2 have been used.
When time t is the independent variable,
one writes ẏ = dy/dt and ÿ = d2y/dt2. If the
right-hand side of Eqs. (45) or (46) equals
zero, the equation is classified as homoge-
neous; otherwise, the equation is classified
as nonhomogeneous (inhomogeneous).

2.2
First-Order Linear Differential Equations

The formulation of many physics prob-
lems leads to first-order differential equa-
tions, and this section is devoted to solu-
tions of such problems.

2.2.1 Separable Differential Equations
Differential equations that can be put
in the form g(y)dy = f (x) dx are called
separable differential equations since the
left-hand side is a function of y only and
the right-hand side is a function of x only.
For dy = f (x) dx, the general solution is

y =
∫

f (x)dx + C. (47)

Since the general solution of a first-order
differential equation results from one in-
tegration, it will contain one arbitrary
constant. Similarly, the general solution of
a second-order ordinary differential equa-
tion will contain two arbitrary constants.
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Values of arbitrary constants are deter-
mined by use of physical boundary or
initial conditions.

EXAMPLE 2.1: In the radioactive decay of
nuclei, the process is governed by the
following differential equation: dN/dt =
−λN with initial condition N(t = 0) = N0.
The number of parent nuclei present at
time t is represented by N(t), and the
decay constant λ is characteristic of the
particular nuclei involved. The negative
sign is used to indicate that the number of
nuclei decreases with time. Let us find N(t)
subject to the indicated initial condition.

Solution: The differential equation may
be written in the form

dN

N
= −λ dt

with general solution

ln N = −λt + C1 or N(t) = C2 exp(−λt).
(48)

The value of the constant of integration is
determined by use of the initial condition,
N(t = 0) = N0; the initial condition leads
to N(0) = N0 = C2. The specific (particu-
lar) solution of the problem is the familiar
relation

N(t) = N0e−λt. (49)

2.2.2 Exact Differential Equations
The general first-order differential equa-
tion, dy/dx = f (x, y), may be written in
the form

M(x, y)dx + N(x, y)dy = 0. (50)

The total (exact) differential of F(x, y) = C
(where F is continuous with continuous
derivatives) is

dF =
(

∂F

∂x

)
y

dx +
(

∂F

∂y

)
x

dy = 0.

Note that the general differential equation
in Eq. (50) is exact if

M(x, y) =
(

∂F

∂x

)
y

and

N(x, y) =
(

∂F

∂y

)
x
. (51)

Since it is assumed that F(x, y) has
continuous first derivatives, note that(

∂M

∂y

)
x

=
(

∂N

∂x

)
y
. (52)

The condition indicated in Eq. (52) is both
necessary and sufficient for Eq. (50) to be
an exact differential equation.

EXAMPLE 2.2: Determine whether the
following differential equation is exact and
find its solution if it is exact: (4x3 + 6xy +
y2) × dx/dy = −(3x2 + 2xy + 2).

Solution: The standard form of this dif-
ferential equation is (4x3 + 6xy + y2)dx +
(3x2 + 2xy + 2)dy = 0; it is exact since the
condition in Eq. (52) is satisfied. The solu-
tion of the original differential, therefore,
has the form F(x, y) = C. The function
F(x, y) is obtained as follows:

∂F

∂x
= 4x3 + 6xy + y2

or

F(x, y) = x4 + 3x2y + y2x + f (y) (53)

and
∂F

∂y
= 3x2 + 2xy + 2

or

F(x, y) = 3x2y + y2x + 2y + g(x). (54)

Functions f (y) and g(x) arise from in-
tegrating with respect to x and y, re-
spectively. For consistency, it is required
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that f (y) = 2y and g(x) = x4. The solu-
tion of the original differential equation is
x4 + 3x2y + xy2 + 2y = C.

2.2.3 Solution of the General Linear
Differential Equation
A good feature of first-order linear differen-
tial equations is that the general equation
in this category can be solved. It can be
shown that the general solution of Eq. (45)
may be obtained from the formula

y(x) = exp
(

−
∫

p(x) dx

)

×
∫

Q(x) exp

(∫
p(x) dx

)
dx

+ C exp
(

−
∫

p(x) dx

)
. (55)

If the first-order linear differential equa-
tion is separable, the method of Sec. 2.2.1
for separable equation should be followed,
and the method of Sec. 2.2.2 for exact
differential equations yields solutions for
exact differential equations. The formula
in Eq. (55) will now be applied to obtain the
general solution of the differential equa-
tion generated by applying Kirchhoff’s loop
method to the circuit in Fig. 10.

EXAMPLE 2.3: The appropriate differential
equation and initial condition for the
circuit in Fig. 10 are

L
dI

dt
+ RI = E, where I(0) = 0. (56)

On applying the formula in Eq. (55) for
p(x) = R/L and Q(x) = E/L and initial

Fig. 10 Diagram for Example 2.3

condition, the solution of Eq. (56) re-
duces to

I(t) = E

R

[
1 − exp

(−Rt

L

)]
. (57)

Differential equations of the form y′ +
p(x)y = Q(x)yn where n > 1 (Bernoulli’s
equation) often occur in physical prob-
lems. Bernoulli’s type of nonlinear first-
order differential equation can be reduced
to the linear form by use of the trans-
formation z = y1−n, z′ + (1 − n)p(x)z =
(1 − n)Q(x). The differential equation
with dependent variable z can be solved
by use of the formula in Eq. (55).

EXAMPLE 2.4: The motion of a particle in a
viscous fluid with Stokes damping, av, and
Newtonian damping, bv2, is characterized
by an equation of motion of the form
v̇ + av = −βv2 subject to v(0) = v0. This
equation of motion is of the Bernoulli form
where n = 2, Q(t) = −β, and p(t) = α,
and the general solution is obtained from

z = v−1 = −β

α
+ C exp(αt). (58)

The particular solution is

v(t) = αv0

(α + v0β) exp(αt) − βv0
. (59)

A graph of Eq. (59) characterizes the speed
of the particle as a function of time. To
obtain position as a function of time,
replace v with ẋ and solve the resulting
first-order differential equation for x(t).

2.3
Second-Order Linear Differential Equations

The superposition of solutions principle,
stated here in the form of two theorems,
will be assumed valid for second-order lin-
ear homogeneous differential equations.
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THEOREM 1: The set of all solutions of an
nth-order linear homogeneous differential
equation forms an n-dimensional vector
space (see ALGEBRAIC METHODS).

For a second-order differential equation,
Theorem 1 means that y = y1 + y2 is a so-
lution of y′′ + p(x)y′ + q(x)y = 0 if y1 and
y2 are two linearly independent solutions
of the original differential equation.

THEOREM 2: A necessary and sufficient
condition that solutions y1 and y2 of
a second-order linear differential equa-
tion be linearly independent is that the
Wronskian of these solutions be differ-
ent from zero. The Wronskian of y1
and y2 is the determinant with elements
a11 = y1, a12 = y2, a21 = y′

1, and a22 = y′
2.

2.3.1 Homogeneous Differential
Equations with Constant Coefficients
The standard form for the general second-
order homogeneous differential equation
with constant coefficients is y′′ + p0y′ +
q0y = 0 which may be written as (D2 +
p0D + q0)y = 0 where D = d/dx. The pro-
cedure for solving differential equations in
this category involves treating D2 + p0D +
q0 = 0, the auxiliary or characteristic equa-
tion, algebraically and using techniques
for solving first-order differential equa-
tions. The roots of the auxiliary equation
(quadratic) may be real and unequal, real
and equal, or a complex-conjugate pair.
For real and unequal roots a and b of the
auxiliary equation, the differential equa-
tion may be written in the symbolic
form (D − a)u = 0 where u = (D − b)y.
The form of the general solution becomes
y(x) = c1eax + c2ebx when the two indi-
cated first-order differential equations are
solved. If the roots of the auxiliary equation
are a complex-conjugate pair a∗ = b, the
solution of the differential equation has the
same form as the case for real and unequal

roots with a∗ replacing b. The solution of
the differential equation for real and equal
roots of the auxiliary equation is obtained
from solving the two indicated first-order
differential equations (D − a)u = 0 where
u = (D − a)y; the form of the general so-
lution is y(x) = (c1x + c2)eax.

EXAMPLE 2.5: Consider the motion of a
particle of mass m initially at rest and
subject to a restoring force of −kx and a
damping force of −aẋ. The equation of
motion of this particle is mẍ = −kx − aẋ.
The equation of motion in standard form
is ẍ + 2δẋ + ω2x = 0 where ω2 = k/m
and 2δ = a/m (the factor 2 is used for
convenience). Find the solution of the
equation of motion for the following cases:

1. δ = 0 (no damping);
2. δ = ω (critical damping);
3. δ < ω (light damping); and
4. δ > ω (heavy damping).

Case 1: The equation of motion for δ = 0
reduces to ẍ + ω2x = 0 with solution

x(t) = c1eiωt + c2e−iωt

= A cos ωt + B sin ωt

= X0 cos ωt for x(0) = X0

and ẋ(0) = 0. (60)

The motion without damping is oscillatory
and periodic (with constant amplitude X0).

Case 2: For δ �= 0 and ω �= 0, the so-
lutions of the corresponding auxiliary
equation are −δ + � and −δ − � where
� = √

δ2 − ω2. The solution of the equa-
tion of motion for critical damping δ = ω

is

x(t) = (c1t + c2)e
−δt

= X0(δt + 1)e−δt

for x(0) = X0 and ẋ(0) = 0. (61)
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Here the motion is not oscillatory and
approaches equilibrium at a rapid rate.

Case 3: The solution for light damping
δ < ω using �′ = √

ω2 − δ2 is

x(t) = (A cos �′t + B sin �′t)e−δt

= X0

(
cos �′t + δ

�′ sin �′t
)

e−δt

for x(0) = X0 and ẋ(0) = 0. (62)

In this case, the motion is oscillatory with
decreasing amplitude (not periodic).

Case 4: The solution for heavy damping
δ > ω is

x(t) = (δ + �)

2�
X0 exp[(−δ + �)t]

+ (� − δ)

2�
X0 exp[−(δ + �)t]. (63)

The motion in this case is not oscillatory
and approaches equilibrium at a rate less
rapid than for critical damping.

2.3.2 Nonhomogeneous Differential
Equations with Constant Coefficients
The standard form for second-order non-
homogeneous differential equations with
constant coefficients is y′′ + p0y′ + q0y =
f (x), and the two widely used methods
for solving differential equations in this
category are (a) y = yh + yp where yh
is the solution of the corresponding
homogeneous equation and yp is any
solution of the original nonhomogeneous
differential equation, and (b) successive
integration. The method of successive
integration involves writing the differential
equation in the factored form (D − a)u =
f (x) where u = (D − b)y, and solving
the two indicated first-order differential
equations.

Physical problems are often solved by
use of the first method since yp can often
be obtained without difficulty. Systematic

methods for finding yp for three types
of nonhomogeneous terms (polynomial,
exponential, and sine and/or cosine) will
now be given.

1. The nonhomogeneous term f (x) is a
polynomial of degree n ≥ 0.
(A) If zero is not a root of the
characteristic equation, then assume

yp = A0 + A1x + · · · + Anxn.

(B) If zero is a single root of the
characteristic equation, then assume

yp = x(A0 + A1x + · · · + Anxn).

(C) If zero is a double root of the
characteristic equation, then assume

yp = x2(A0 + A1x + · · · + Anxn).

2. The nonhomogeneous term f (x) is of
the form C exp (kx).
(A) If k is not a root of the characteristic
equation, then assume

yp = A exp(kx).

(B) If k is a single root of the
characteristic equation, then assume

yp = Ax exp(kx).

(C) If k is a double root of the
characteristic equation, then assume

yp = Ax2 exp(kx).

3. The nonhomogeneous term f (x) is of
the form sin kx, cos kx, or sin kx +
cos kx.
(A) If ik is not a root of the characteristic
equation, then assume

yp = A cos kx + B sin kx.
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(B) If ik is a single root of the
characteristic equation, then assume

yp = Ax cos kx + Bx sin kx.

Values for constants in the assumed
expression for yp are obtained when that
expression is substituted into the original
nonhomogeneous differential equation.

EXAMPLE 2.6: The equation of motion for a
mass attached to the end of a vertical spring
fixed at the other end is ÿ + ω2y = −g
where g is the acceleration due to gravity.
The general solution of the homogeneous
equation, ÿ + ω2y = 0, is yh = A cos ωt +
B sin ωt. By use of inspection, it is clear that
yp = −g/ω2 is a solution of the original
nonhomogeneous equation. The solution
of the equation of motion for y(0) = Y0
and ẏ(0) = 0 is

y(t) = yh + yp

= A cos ωt + B sin ωt − g

ω2

=
(

Y0 + g

ω2

)
cos ωt − g

ω2 . (64)

A graph of Eq. (64) characterizes the
motion, position as a function of time,
of this particle.

2.3.3 Homogeneous Differential
Equations with Variable Coefficients
The general procedure used to solve differ-
ential equations of the form y′′ + p(x)y′ +
q(x)y = 0 is the power-series method. The
power-series method due to Frobenius and
Fuchs yields the following two kinds of in-
formation concerning the nature of the
solution for x �= 0: form of the solution
as a result of the nature of p(x) and q(x),
and form of the solution as indicated by
the nature of the solution of the indicial
equation. As normally needed in solving

physical problems, the general form of the
power series solution is

y(x) =
∞∑

λ=0

aλxλ+k for a0 �= 0. (65)

EXAMPLE 2.7: Consider the differential
equation xy′′ + 2y′ + xy = 0. By use of the
power-series method, obtain the indicial
equation and its two solutions, recursion
formula, and general solution of the differ-
ential equation. On substituting Eq. (65)
into the differential equation to be solved,
one obtains

∞∑
λ=0

aλ(λ + k + 1)(λ + k)xλ+k−2

+
∞∑

λ=0

aλxλ+k = 0. (66)

The basic plan at this stage is to write the
result using a single sum. On replacing λ

with λ′ + 2 in the first sum, the power of
x in the first sum becomes the same as
that in the second sum. Equation (66) now
becomes

a0k(k + 1)xk−2 + a1(k + 1)(k + 2)xk−1

+
∞∑

λ=0

{aλ+2(λ + k + 3)(λ + k + 2) + aλ}

× xλ+k = 0. (67)

Since terms in Eq. (67) are linearly inde-
pendent, it is required that

a0k(k + 1) = 0 (indicial equation), (68)

a1(k + 1)(k + 2) = 0, (69)

and

aλ+2(λ + k + 3)(λ + k + 2) + aλ = 0

(recursion formula).

(70)
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The indicial equation results from equat-
ing the coefficient of the lowest power of
the variable to zero. In this case, the so-
lutions of the indicial equation are k = 0
and k = −1. When k = 0, a1 = 0 because
of Eq. (69). The coefficient a1 is arbitrary
when k = −1, and two independent solu-
tions of the original differential equation
may be obtained by use of k = −1 since a0
is arbitrary by hypothesis. The form of the
solution becomes

y(x) =
∞∑

λ=0

aλxλ−1. (71)

Coefficients in Eq. (71) are obtained from
the recursion formula using k = −1. The
general expressions for even and odd
expansion coefficients, respectively, are

a2j = (−1) ja0

(2j)!
,

a2j+1 = (−1) ja1

(2j + 1)!
, j = 0, 1, 2, . . . .

(72)

The general solution of the original differ-
ential equation is obtained by substituting
coefficients in Eq. (72) into Eq. (71).

2.3.4 Nonhomogeneous Differential
Equations with Variable Coefficients
Variation of parameters and Green’s-
function methods are normally used to
solve nonhomogeneous linear differential
equations with variable coefficients that
occur in physics. The standard form for
these differential equations is

y′′ + p(x)y′ + q(x)y = f (x). (73)

The method of variation of parameters
due to Lagrange will now be used to solve
Eq. (73) subject to the conditions given
below. Assume the solution has the form

y(x) = C1y1 + C2y2

= v1(x)y1 + v2(x)y2. (74)

In Eq. (74), y1 and y2 are two linearly in-
dependent solutions of the corresponding
homogeneous differential equation, and
constant parameters C1 and C2 are re-
placed with functions v1 and v2. Functions
v1 and v2 are unknown parameters to be
determined. If v′

1y1 + v′
2y2 = 0, and f (x)

is continuous in the region of interest,
then the solution of the original differ-
ential equation, Eq. (73), is obtained by
use of

y(x) = −y1

∫
f (x)y2dx

W(y1, y2)

+ y2

∫
f (x)y1dx

W(y1, y2)
. (75)

The quantity W(y1, y2) is the Wronskian
of y1 and y2.

On using Eq. (75) to solve y′′ − (2y′/x) +
(2y/x2) = (ln x)/x for x �= 0, it is found
that y1 = x and y2 = x2 are two lin-
early independent solutions of the cor-
responding homogeneous equation, the
Wronskian equals x2, and the solution
becomes

y(x) = −x

[
(ln x)2

2
+ ln x + 1

]

− C1x + C2x2.

Equation (75) will now be put in the
form of a definite integral that is useful in
solving initial or boundary value problems.
Let x be a point in the closed interval
[a, b] such that the first term in Eq. (75)
is replaced by a definite integral from x
to b and the second term in Eq. (75) is
replaced by a definite integral from a to
x. In terms of the indicated two definite
integrals, Eq. (75) becomes
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y(x) =
∫ x

a

y1(t)y2(x)f (t)dt

W(t)

+
∫ b

x

y1(x)y2(t)f (t)dt

W(t)

=
∫ b

a
G(x, t)f (t) dt. (76)

The function G(x, t) in Eq. (76) is called
the Green’s function for Eq. (73) subject to
the appropriate boundary conditions. The
Green’s function is defined by

G(x, t) =


y1(t)y2(x)

W(t)
≡ G1 for a ≤ t ≤ x,

y1(x)y2(t)

W(t)
≡ G2 for x ≤ t ≤ b.

(77)

Note that the Green’s function depends
only on y1, y2, and the Wronskian. The
quantity W(t) means W(y1(t), y2(t)). The
value of the Green’s-function approach is
related to the fact that initial or bound-
ary conditions are incorporated in the
formulation of the problem in a nat-
ural manner. At t = a, G1(x, t) satisfies
the boundary condition imposed on y(x),
and G2(x, t) satisfies the boundary con-
dition for y(x) at t = b. On applying
the Green’s function method to solve
y′′ = 6x subject to y(0) = y(1) = 0, it is
found that y1 = x and y2 = x − 1 are
two linearly independent solutions of the
homogeneous equation, the Wronskian
equals unity, the Green’s functions be-
come G1(x, t) = t(x − 1) for 0 ≤ t ≤ x and
G2(x, t) = x(t − 1) for x ≤ t ≤ 1, and the
solution of the differential equation is
y(x) = ∫ 1

0 G(x, t)6t dt = x3 − x.

2.4
Some Numerical Methods for Ordinary
Differential Equations

Numerical methods are treated in detail
elsewhere in this book (see NUMERICAL

METHODS), and a summary of essential
features related to solutions of ordinary
differential equations is given in this
section. In general, the numerical solution
of a differential equation consists of a table
of values of the dependent variable for
corresponding values of the independent
variable.

2.4.1 The Improved Euler Method for
First-Order Differential Equations
The basic idea of Euler’s method for
solving first-order ordinary differential
equations is to convert the differential
equation (continuous) to a difference
equation (discrete). The general form for
a first-order ordinary differential equation
will now be written as

dy

dx
= f (x, y). (78)

By use of the definition of a derivative, one
may write

dy

dx
= lim

�x→0

�y

�x

= lim
�x→0

(
y(x + �x) − y(x)

�x

)
= f (x, y). (79)

The scheme of the finite difference method
involves writing Eq. (79) as

y(xn+1) = y(xn) + f (xn, yn)�x. (80)
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Equation (80) is the Euler algorithm for
solving first-order ordinary differential
equations. The notations in Eq. (80) have
the following meanings: xn+1 = xn + �x,
and y(xn+1) = yn+1. To apply Euler’s
method, select the interval size �x,
evaluate y(x) at x0, and evaluate f (x, y)
at x0, y0; the result for y(x1) is

y(x1) = y(x0) + f (x0, y0)�x. (81)

A second iteration with inputs y(x1) from
Eq. (81) and f (x1, y1) yields y(x2); the
result is

y(x2) = y(x1) + f (x1, y1)�x. (82)

The iteration is continued to yield a
numerical solution of the required first-
order ordinary differential equation in the
region of interest. A systematic procedure
for calculating the error involved during
each iteration does not exist for Euler’s
method.

To improve the simple Euler method, the
class of first-order differential equations is
restricted to those whose solutions can be
expanded in a Taylor series. Neglecting
terms of order O((�x)3), one obtains

y(xn+1) = y(xn) + �xf (xn, yn)

+ (�x)2

2

(
∂ f (xn, yn)

∂x

+f (xn, yn)
∂ f (xn, yn)

∂y

)
. (83)

Equation (83) is referred to as the
improved Euler method and will be used to
obtain the solution of first-order ordinary
differential equations.

EXAMPLE 2.8: The equation of motion for
a certain particle is v̇ + αv = g where α =
0.01 s−1, g = 9.8 m s−2, and v(0) = 0. The
analytical solution of this equation of
motion is

v(t) = g

α
(1 − e−αt). (84)

Find the numerical solution of this
equation of motion by use of the improved
Euler method.

Solution: The general form of the
improved Euler method for the differential
equation v̇ = g − αv is

v(tn+1) = v(tn) + f (tn, vn)�t + (�x)2

2

×
(

∂ f (tn, vn)

∂t
+ f (tn, vn)

∂ f (xn, vn)

∂v

)
.

(85)

For arbitrary �t in Eq. (85), the quantities
reduce to

f (tn, vn) = g − αv(tn),

∂ f (tn, vn)

∂t
= 0,

∂ f (tn, vn)

∂v
= −α. (86)

The essential programming statement for
calculating the numerical solution of the
original differential equation is

v(n + 1) = v(n) + [g − αv(n)]

×
[
�t − α(�t)2

2

]
.

(87)
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2.4.2 The Runge–Kutta Method for
First-Order Differential Equations
There exist many methods for finding
numerical solutions of first-order ordinary
differential equations, and the fourth-
order Runge–Kutta method is probably
the most often used method. As with the
Euler and the improved Euler methods,
the essential problem is to generate a
table of values for x and y for the
differential equation y′ = f (x, y) when y(x)
at x = x0 is given. The task is to develop
a method for finding y1 at x0 + �x, y2
at x0 + 2�x, and successive values for
yn throughout the range of interest. For
calculating successive values of y(xn)

in the differential equation y′ = f (x, y),
Runge–Kutta methods use a recurrence
formula in the form

yi+1 = yi + �x
n∑

i=1

aiki. (88)

Of the many parameters ai and ki in
Eq. (88), some are chosen arbitrarily and
others are obtained by use of the Taylor
series involving one and two variables. The
order of the Runge–Kutta approximation
is indicated by the value of n in Eq. (88).
Evaluation of the parameters in Eq. (88) for
n > 4 in the Runge–Kutta approximation
is straightforward but involves tedious
algebraic manipulations. For h = �x, the
formula for the fourth-order Runge–Kutta
method reduces to

yi+1 = yi + 1

6
(k1 + 2k2 + 2k3 + k4)

+ O(h5). (89)

The parameters in Eq. (89) are determined
by use of

k1 = hf (xi, yi),

k2 = hf

(
xi + h

2
, yi + k1

2

)
,

k3 = hf

(
xi + h

2
, yi + k2

2

)
,

k4 = hf (xi + h, yi + k3).

EXAMPLE 2.9: Find the numerical solution
of the differential equation in Example 2.8
by use of the fourth-order Runge–Kutta
method.

Solution: The general form of the
Runge–Kutta method for the differential
equation v̇ = g − αv is

v(n + 1)=v(n) + 1
6 (k1 + 2k2 + 2k3 + k4).

(90)

The k parameters reduce to k1 = h[g −
αv(n)], k2 = h{g − α[v(n + h/2) + k1/2]},
k3 = h{g − α[v(n + h/2) + k2/2]}, and k4
= h{g − α[v(n + h) + k3]}.

2.4.3 Second-Order Differential Equations
Numerical solutions of second-order dif-
ferential equations are obtained by first
reducing them to a system of first-order
differential equations and applying the
methods for solving first-order differen-
tial equations. The general second-order
differential equation may be written as

d2y

dx2 = f (x, y, y′). (91)

For z = dy/dx, Eq. (91) reduces to the
following pair of first-order differential
equations:

dz

dx
= f (x, y, z) and

dy

dx
= z = g(x, y, z). (92)

The procedure for solving Eq. (91) is to
solve the first equation in Eq. (92) with
condition y′(0) and use that result as an
input for the second equation in Eq. (92)
to obtain the solution y(x) with condition
y(0).
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3
Partial Differential Equations

3.1
Introduction

Physical problems involving two or more
independent variables are often described
by use of partial differential equations. Par-
tial differential equations contain partial
derivatives with respect to two or more
independent variables. The procedures for
determining order, degree, whether linear
or nonlinear, and whether homogeneous
or nonhomogeneous for partial differen-
tial equations are the same as for ordinary
differential equations. Some methods for
solving partial differential equations are di-
rect integration, characteristics, separation
of variables, Fourier and Laplace trans-
forms, and Green’s functions. Appropriate
boundary (space) and/or initial (time) con-
ditions must be applied to the general
solution of a partial differential equation
to obtain a suitable solution for the prob-
lem under investigation. Three common
types of boundary conditions are Dirich-
let, specification of the solution at each
point on the boundary; Neumann, spec-
ification of the normal derivative of the
solution at each point on the boundary;
and Cauchy, specification of both initial
value(s) and the Dirichlet or Neumann
condition.

The following equations are examples of
important partial differential equations in
physics involving the Laplacian operator,
∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 :

∇2u = 0; Laplace’s equation. (93)

The function u(x, y, z) in Eq. (93) may
represent electric potential in a charge-
free region, gravitational potential in a

region free of matter, or steady-state (time-
independent) temperature in a region
without a heat source.

∇2u = f (x, y, z);
Poisson’s equation. (94)

The function u(x, y, z) in Eq. (94) may
represent electric potential, gravitational
potential, or steady-state temperature in
regions with respective sources denoted
by f (x, y, z).

∇2u = 1

σ

∂u

∂t
; heat conduction

(or diffusion) equation. (95)

In Eq. (95), the function u(x, y, z, t) may
represent a time-dependent temperature
in a region without a heat source or
concentration of a diffusing substance.
The constant σ is called the diffusivity.

∇2u = 1

v2

∂2u

∂t2
;

mechanical wave equation. (96)

The function u(x, y, z, t) in Eq. (96) may
represent the motion of a vibrating string
or membrane, and v is the speed of the
wave motion.{

− h̄2

2m
∇2 + V(x, y, z)

}
� = ih̄

∂�

∂t
;

Schrödinger’s equation. (97)

Schrödinger’s wave equation is the basic
equation of motion of a microscopic
particle of mass m, and �(x, y, z, t) is
called the wave function. The potential
energy of the particle is represented by
V(x, y, z), and other quantities in this
equation have their usual meaning.

This section on partial differential equa-
tions is mainly devoted to the physical



58 Analytic Methods

applications of linear second-order homo-
geneous partial differential equations in
two independent variables; the general
form for equations in this category is

A
∂2u

∂x2 + 2B
∂2u

∂x∂y
+ C

∂2u

∂y2

+ D
∂u

∂x
+ E

∂u

∂y
+ Fu = 0. (98)

In Eq. (98), the coefficients may be func-
tions of x and y, and properties of the
solution of the differential equation de-
pend on the relative magnitudes of the
coefficients. Based on the coefficients, par-
tial differential equations are classified
as elliptic, hyperbolic, or parabolic for
AC − B2 greater than zero, less than zero,
or equal to zero, respectively. This classi-
fication is related to the general equation
of a conic section (Ax2 + 2Bxy + Cy2 = 1)

representing an ellipse, a hyperbola, or
a parabola. According to these classifi-
cations, note that Laplace’s equation is
elliptic, the mechanical wave equation is
hyperbolic, and the heat conduction (dif-
fusion) and Schrödinger equations are
parabolic. The geometrically related clas-
sifications are not of primary importance
when solving the differential equation by
use of analytical methods but do reflect
the nature of the boundary conditions.
Solutions of elliptic equations must sat-
isfy conditions on a closed boundary. In
this section, the focus will be on separa-
tion of variables and Fourier transforms
as methods for solving the partial differ-
entials involved in physical applications.
The method of separation of variables is il-
lustrated in the following four sections.
The Fourier transform method is pre-
sented in Sec. 3.6, and Sec. 3.7 is devoted
to the Green’s-function method for three-
dimensional problems.

3.2
The Time-Independent Schr

..
odinger Wave

Equation

The method of separation of vari-
ables will now be used to obtain
the time-independent Schrödinger wave
equation. Assuming that �(x, y, z, t) =
ψ(x, y, z)T(t) in Eq. (97) and dividing both
sides of the resulting equation by ψT , the
result obtained is

1

ψ

(
− h̄2

2m

)
∇2ψ + V(x, y, z) = ih̄

T

dT

dt

≡ E. (99)

Since the left-hand side of Eq. (99) is
a function of space only and the right-
hand side is a function of time only
(time has been separated from the space
variables), each side must equal a constant
(separation constant) that is independent
of space and time. The separation constant
is a physical parameter when solving
physical problems and has the dimensions
of energy, denoted by E, in Eq. (99).
Equation (99) leads to

T(t) = C exp
(−iEt

h̄

)
, (100)

(
− h̄2

2m
∇2 + V(x, y, z)

)
ψ = Eψ. (101)

Equation (101) is the time-independent
(steady-state) Schrödinger wave equation.
Analyses of solutions of Eq. (101) for vari-
ous potentials and use of fundamental pos-
tulates of quantum theory form the major
part of the study of quantum mechanics.

3.3
One-Dimensional Mechanical Wave
Equation

Here the one-dimensional mechanical
wave equation characterizing the motion
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y

x

a

L L
2

Fig. 11 Initial configuration of the string

of a string fixed at the ends u(0, t) =
u(L, t) = 0 with initial configuration such
that u(x, 0) = 2hx/L for x in the closed
interval [0, L/2] and u(x, 0) = 2h(L − x)/L
for x in the closed interval [L/2, L] is solved.
The string is initially at rest which means
that the partial derivative of u(x, t) with
respect to t evaluated at t = 0 equals zero,
ut(x, 0) = 0 (see Fig. 11). The method of
separation of variables is applied to the
equation

∂2u

∂x2 = 1

v2

∂2u

∂t2
. (102)

Assume u(x, t) = X(x)T(t) in Eq. (102)
and divide the resulting equation by XT.
The result is

1

X

d2X

dx2 = 1

v2

1

T

d2T

dt2
. (103)

Since the left-hand side of Eq. (103) is a
function of x only and the right-hand side
is a function of time only, the two sides
must equal a constant (separation con-
stant). The separation constant is denoted
by −λ2. The square is used for convenience
as will be seen below. The negative sign is
selected since an oscillatory solution is an-
ticipated. Boundary conditions, however,
will determine the required sign for the
separation constant. Equation (103) leads
to the following two ordinary differential
equations:

d2X

dx2 + λ2X = 0 with solution

X(x) = A cos λx + B sin λx (104)

and

d2T

dt2
+ λ2v2T = 0 with solution

T(t) = C cos λvt + D sin λvt. (105)

The general solution of Eq. (102) is

u(x, t) = (A cos λx + B sin λx)(C cos λvt

+ D sin λvt). (106)

Boundary and initial conditions will now
be used to determine the values of
the arbitrary constants in Eq. (106). The
first end-point condition u(0, t) = 0 in
Eq. (106) leads to A = 0. The second end-
point condition u(L, t) = 0 requires that
sin λL = 0 for a nontrivial solution or
λn = nπ/L where n ranges from unity to
infinity. The solution now reduces to

u(x, t) =
∞∑

n=1

Bn sin
(nπx

L

)

×
[

Cn cos
(

nπvt

L

)
+ Dn sin

(
nπvt

L

)]
.

(107)

Condition ut(x, 0) = 0 substituted into the
partial derivative of u(x, t) with respect to
t requires that Dn = 0 for all n, and the
resulting solution becomes

(x, t) =
∞∑

n=1

B′
n sin
(nπx

L

)
cos

(
nπvt

L

)
;

B′
n = BnCn. (108)

The B′
n coefficients in Eq. (108) are eval-

uated by use of the Fourier sine series.
A detailed discussion of the Fourier se-
ries method is given elsewhere in this
book (see FOURIER AND OTHER MATHE-

MATICAL TRANSFORMS). Here a summary
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of Fourier series concepts needed in
solving boundary valued problems is
presented.

The Fourier representation of f (x) in the
closed interval [−L, L] is

f (x) = a0

2
+

∞∑
n=1

[
an cos

(nπx

L

)

+bn sin
nπx

L

]
. (109)

Coefficients in Eq. (109) are determined by
use of (Euler’s formulas)

an = 1

L

∫ L

−L
f (x) cos

(nπx

L

)
dx,

n = 0, 1, 2, . . . , (110)

and

bn = 1

L

∫ L

−L
f (x) sin

(nπx

L

)
dx,

n = 1, 2, 3, . . . . (111)

Equation (109) is valid in [−L, L] when
f (x) is single valued, is bounded, has at
most a finite number of maxima and
minima, and has at most a finite number of
discontinuities. If f (x) is an even function,
f (x) = f (−x), the Fourier cosine series
results, and the Fourier sine series results
when f (x) is odd, f (x) = −f (−x).

The final condition for Eq. (108), u(x, 0)

= 2hx/L for [0,L/2] and u(x, 0) = 2h(L −
x)/L for [L/2,L], leads to a Fourier sine
series from which the B′

n may be obtained.
The expression for the B′

n coefficients is

B′
n = 2

L

∫ L

0
f (x) sin

(nπx

L

)
dx

= 4h

L2

[∫ L/2

0
x sin
(nπx

L

)
dx

+ L
∫ L

L/2
sin
(nπx

L

)
dx

−
∫ L

L/2
x sin
(nπx

L

)
dx

]

= 8h

n2π2 sin
(nπ

2

)
for n odd,

= 0 for n even. (112)

The particular solution of Eq. (102)
reduces to

u(x, t) = 8h

π2

∞∑
odd

[
(−1)(n−1)/2

n2

× sin
(nπx

L

)
cos
(

nπvt

L

)]
.

(113)

The motion of the string is such that only
odd-harmonics occur and is symmetrical
about the midpoint.

3.4
One-Dimensional Heat Conduction
Equation

The method of separation of variables
will now be applied to solve the one-
dimensional heat conduction equation for
the temperature distribution u(x, t) in a rod
of length L such that u(0, t) = u(L, t) = 0
and u(x, 0) = T0 × exp(−ax2). The one-
dimensional heat conduction equation is

∂2u

∂x2 = 1

σ

∂u

∂t
. (114)

In Eq. (114), substitute u(x, t) = X(x)

T(t) and divide the resulting equation by
XT; the resulting two ordinary differential
equations for separation constant −λ2 are

d2X

dx2 + λ2X = 0 with solution

X(t) = A cos λx + B sin λx (115)

and

dT

dt
+ λ2σT = 0 with solution
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T(t) = C exp(−λ2σ t). (116)

The general solution of Eq. (114) is

u(x, t) = (A cos λx + B sin λx)

× [C exp(−λ2σ t)]. (117)

Conditions u(0, t) = u(L, t) = 0 lead to
A = 0 and λn = nπ/L for n = 1, 2, . . .,
respectively. The final condition yields

u(x, 0) = T0 exp(−ax2)

=
∞∑

n=1

B′
n sin
(nπx

L

)
. (118)

Equation (118) is just a Fourier sine series,
and the B′

n coefficients are given by

B′
n = 2

L

∫ L

0
T0 exp(−ax2) sin

(nπx

L

)
dx

= 4T0

nπ
for n odd , (119)

= 0 for n even .

The particular relation for the temperature
distribution in the rod is therefore given
by

u(x, t) = 4T0

π

∞∑
odd

1

n
sin
(nπx

L

)

× exp
(

−n2π4σ t

L

)
. (120)

3.5
The Two-Dimensional Laplace Equation

Laplace’s equation is an example of an
elliptic differential equation, and solutions
of Laplace’s equations are called harmonic
functions. The electric potential u(x, y) at
points inside a rectangle (see Fig. 12) will
now be determined from the solution of
the two-dimensional Laplace equation with

u(0,y) = 0

u(x,0) = u0

u(a,y) = 0

0 a

Fig. 12 Boundary configuration for Eq. (121)

the indicated boundary conditions:

∂2u

∂x2 + ∂2u

∂y2 = 0;
u(0, y) = u(a, y) = u(x, ∞) = 0

and u(x, 0) = u0. (121)

Separation of variables with separation
constant −λ2 yields

d2X

dx2 + λ2X = 0 with solution

X(x) = A cos λx + B sin λx (122)

and

d2Y

dy2 − λ2Y = 0 with solution

Y(y) = C exp(λy) + D exp(−λy). (123)

The general solution of Eq. (121) is

u(x, y) = (A cos λx + B sin λx)[C exp(λy)

+ D exp(−λy)]. (124)

Condition u(x, ∞) = 0 requires that C =
0, condition u(0, y) = 0 leads to A = 0, and
condition u(a, y) = 0 gives λn = nπ/a for
n = 1, 2, 3, . . .. The general solution now
reduces to

u(x, y) =
∞∑

n=1

B′
n sin
(nπx

a

)
exp
(
−nπy

a

)
,

B′
n = BnDn. (125)
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The final condition is used to determine
the values of B′

n as follows:

u(x, 0) = u0 =
∞∑

n=1

B′
n sin
(nπx

a

)
.

(126)

Equation (126) is just a Fourier sine series,
and the B′

n are given by

B′
n = 2

a

∫ a

0
u0 sin

(nπx

a

)
dx

= −4u0

nπ
for n odd,

= 0 for n even. (127)

The particular solution, expression for
the potential at points within the rectangle
in Fig. 12, is therefore

u(x, y) = −4u0

π

∞∑
odd

1

n
sin
(nπx

a

)

× exp
(
−nπy

a

)
. (128)

The extension to more than two indepen-
dent variables is straightforward. While the
presentation has been restricted to Carte-
sian coordinates, inclusion of other coordi-
nate systems (for example, cylindrical and
spherical) may be carried out in the usual
manner. In general, time-independent
equations involving the Laplacian operator
may be put in the form of Helmholtz’s dif-
ferential equation, ∇2u + k2u = 0, when
the appropriate k is used. Hence, solu-
tions of Helmholtz’s equation in various
coordinate systems apply to all problems
involving the Laplacian operator. In spher-
ical coordinates (r, θ, φ), use of separation
of variables, the power-series method, and
the appropriate k for Helmholtz’s equa-
tion lead to the following special functions:
spherical harmonics, associated Legendre
polynomials and Legendre polynomials,

associated Laguerre polynomials and La-
guerre polynomials, and spherical Bessel
functions. Bessel functions result when
cylindrical coordinates (ρ, φ, z) are used
in Helmholtz’s differential equation.

3.6
Fourier Transform Method

Methods of integral transforms are treated
in detail elsewhere in the Encyclopedia
(see FOURIER AND OTHER MATHEMATICAL

TRANSFORMS). This section is devoted
to the technique for solving differential
equations (ordinary and partial) by use of
the Fourier transform method. The one-
dimensional Fourier transform pairs in
symmetrical notation are given by

F(k) = 1√
2π

∫ ∞

−∞
f (x)eikx dx,

f (x) = 1√
2π

∫ ∞

−∞
F(k)e−ikx dk.

(129)

In Eq. (129), F(k) is referred to as the
Fourier transform of f (x), and f (x) is the
inverse transform of F(k). The conven-
tion for quantum-mechanical problems
involves a sign change in the exponents.
Relations in Eq. (129) may be extended to
multiple dimensions in a natural manner.
The basic idea of the Fourier transform
method for solving differential equations
(ordinary or partial) is to transform the
original equation (ordinary or partial) into
a simpler equation (algebraic or ordinary
differential) that can be easily solved. The
required solution of the original differen-
tial equation is then obtained by finding
the inverse transform of the solution of
the simpler equation which is in transform
space.

EXAMPLE 3.1: By use of the Fourier
transform method, solve the ordinary dif-
ferential equation, ẍ + 2αẋ + w2

0x = f (t)
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subject to conditions that x(t) and ẋ(t) go
to zero as t goes to plus and minus infinity.

Solution: On taking the Fourier trans-
form of each term in the original differen-
tial, the result is

1√
2π

∫ ∞

−∞
ẍ(t)eiωtdt

+ 2α√
2π

∫ ∞

−∞
ẋ(t)eiωtdt

+ ω2
0√

2π

∫ ∞

−∞
x(t)eiωtdt

= 1√
2π

∫ ∞

−∞
f (t)eiωt dt. (130)

By use of partial integration and the
conditions that x(t) and ẋ(t) approach zero
as t approaches plus and minus infinity,
Eq. (130) reduces to the algebraic equation

−ω2X(ω) − 2αiωX(ω) + ω2
0X(ω) = F(ω).

(131)

On solving the algebraic equation in
Eq. (131) for X(ω) and inverting the
transform, the solution x(t) is obtained:

x(t) = 1√
2π

∫ ∞

−∞
F(ω)e−iωtdω

ω2
0 − ω2 − 2iαω

.

(132)

The integral in Eq. (132) can be evaluated
by use of the methods of calculus of
residues when f (t) is known.

EXAMPLE 3.2: By use of the Fourier
transform method, solve the one-dimen-
sional heat conduction equation for the
temperature distribution T(x, t) such that
T(x, t) and Tx(x, t) approach zero as x
approaches plus and minus infinity and
T(x, 0) = T0 exp(−ax2) for constant a.

Solution: Here, one transforms out
the space variable so that the resulting
equation will be a first-order ordinary
differential equation in t. On taking the

Fourier transform of each term in the one-
dimensional heat conduction equation,
one obtains

1√
2π

∫ ∞

−∞
∂2T

∂x2 eikxdx

= 1

σ

1√
2π

∂

∂t

∫ ∞

−∞
T(x, t)eikx dx. (133)

By use of partial integration and the condi-
tions that T(x, t) and Tx(x, t) approach zero
as x approaches plus and minus infinity,
Eq. (133) reduces to

∂T(k, t)

∂t
+ σk2T(k, t) = 0. (134)

The solution of Eq. (134) is

T(k, t) = A(k)e−σk2t

= 1√
2π

∫ ∞

−∞
T(x, t)eikx dx. (135)

Substituting the condition T(x, 0) = T0 ×
exp(−ax2) into Eq. (135) yields

A(k) = T0√
2a

exp
(

− k2

4a

)
. (136)

The solution in transform space (k space)
is therefore

T(k, t) = T0√
2a

exp
(

−1 + 4σat

4a

)
k2.

(137)

The solution in x space is obtained
when the k-space solution in Eq. (137) is
inverted; the result is

T(x, t) = T0√
1 + 4σat

exp
( −ax2

1 + 4σat

)
.

(138)

The convolution theorem,∫ ∞

−∞
f (x − ξ)g(ξ)dξ

=
∫ ∞

−∞
F(k)G(k) exp(−ikx) dk,
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may be used to find the inverse transform
when the solution in transform space is
the product of two functions F(k)G(k).

3.7
Green’s Functions in Potential Theory

Here the three-dimensional Fourier trans-
form method will be used to solve Pois-
son’s equation for the electric potential
φ(r) due to a volume charge density ρ(r),
and the three-dimensional Green’s func-
tion will be defined. Poisson’s equation is
written as

∇2φ(r) = −ρ(r)
ε0

. (139)

The quantity ε0 is the permittivity of free
space. The Fourier transform of φ(r) has
the form

�(k) = 1

(2π)2/3

∫ ∞

−∞
φ(r) exp(ik · r)d3r.

(140)

A shorthand notation for triple integral,
d3r = dx dy dz, is used in Eq. (140). On
taking the Fourier transform of both sides
of Eq. (139), the solution in transform
space [subject to the conditions that φ(r)
and ∂φ/∂r approach zero as r approaches
plus and minus infinity] becomes

�(k) = ρ(k)

k2 ε0. (141)

The inverse transform of �(k) yields the
solution φ(r), and the result is

φ(r) = 1

(2π)3/2

∫ ∞

−∞
ρ(k)

k2ε0
exp(−ik · r)d3r

= 1

(2π)3

∫ ∞

−∞

∫ ∞

−∞
ρ(r′)
k2ε0

× exp[ik · (r − r′)] d3k d3r′

= 1

(2π)2ε0

∫ ∞

−∞
ρ(r′)G(r, r′)d3r′.

(142)

The function G(r, r′), Green’s function for
the operator ∇2, is given by

G(r, r′) =
∫ ∞

−∞
exp[−ik · (r − r′)]d3k

k2 .

When spherical polar coordinates are
chosen where d3k = −k2d(cos θ)dφdk and
r − r′ is assumed to be along the polar axis,
the expression for the Green’s function
reduces to G(r, r′) = 2π2/|r − r′|.

Physically, the Green’s function G(r, r′)
is the electric potential at point r due to
a point charge located at r′. For a volume
charge density ρ(r′), the potential at r is
given by

∫
ρ(r′)G(r, r′)d3r′. In differential

equation form, this analysis may be written
as ∇2G(r, r′) = −4πδ(r − r′) subject to ap-
propriate boundary conditions for G(r, r′).
The Dirac delta function δ(r − r′) means

δ(x − x′)δ(y − y′)δ(z − z′)

with properties δ(r − r′) = 0 for r − r′ �= 0
and
∫∞
−∞ δ(r − r′)d3r′ = 1. For Dirichlet

boundary conditions, G(r, r′) = 0 on the
boundary surface enclosing the charge
distribution ρ(r′). It can be shown that the
Neumann problem requires appropriate
nonzero values for the normal derivative
of the Green’s function on the boundary
surface. Use of the Green’s function
method simplifies the problem of applying
boundary conditions.

3.8
Numerical Methods for Partial Differential
Equations

Numerical methods in partial differential
equations form a vast subject and are
treated in detail elsewhere in this book
(see NUMERICAL METHODS). Here the focus
is on essential concepts involved in
converting a partial differential equation
to its corresponding difference equation
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by use of finite difference methods.
One should consult the references for
a detailed discussion of the various
special techniques for finding numerical
solutions, convergence of solutions, and
stability of the various methods.

3.8.1 Fundamental Relations in Finite
Differences
First differences �xu and �yu for positive
h and k are defined by

�xu = u(x + h, y) − u(x, y)

h
,

�yu = u(x, y + k) − u(x, y)

k
.

The corresponding second differences are
defined by

�xxu =
u(x + h, y) − 2u(x, y) + u(x − h, y)

h2

and

�yyu =
u(x, y + k) − 2u(x, y) + u(x, y − k)

k2 .

For notational convenience, �x and �y
are replaced with h and k, respectively, in
the above finite difference equations, and
k replaces �t in Secs. 3.8.3 and 3.8.4.

3.8.2 Two-Dimensional Laplace Equation:
Elliptic Equation
The two-dimensional Laplace equation in
terms of finite differences reduces to

u(x, y) = 1

4
[u(x + h, y) + u(x − h, y)

+ u(x, y + h) + u(x, y − h)].

The computational procedure involves
replacing u(x, y), for example, a potential,
at a particular grid point (see Fig. 13) by the
average value of its four closest neighbors.
The function u(x, y) or its derivative must

Fig. 13 Grid representation for Laplace’s equation
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Fig. 14 Space-time grid for the heat equation

Fig. 15 Space-time grid for the wave equation
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be specified at all points surrounding a
given region.

3.8.3 One-Dimensional Heat Conduction
Equation: Parabolic Equation
In terms of finite differences, the one-
dimensional heat conduction equation
reduces to

u(x, t + k) = σk

h2 [u(x + h, t) − 2u(x, t)

+ u(x − h, t)] + u(x, t). (143)

The numerical solution involves determin-
ing the initial values of u(x, t) at various
x locations (see Fig. 14 for the space-time
grid) and applying Eq. (143) to obtain the
u(x, t) at other times.

3.8.4 One-Dimensional Wave Equation:
Hyperbolic Equation
The finite-difference representation of the
one-dimensional wave equation reduces to

u(x, t + k) = k2v2

h2 [u(x + h, t) − 2u(x, t)

+ u(x − h, t)] + 2u(x, t) − u(x, t − k).

(144)

The starting value for u(x, t + k) is de-
termined from the initial conditions (see
Fig. 15), and remaining values are deter-
mined by use of Eq. (144).

4
Integral Equations

4.1
Introduction

This section is devoted to a discussion
of solutions and applications of one-
dimensional linear integral equations of
the first and second kinds. The formula-
tions of many problems in physics lead

to either differential or integral equations.
Certain problems can only be represented
by integral equations of the general form

u(x) = f (x) + λ

∫ b

a
k(x, s)u(s) ds. (145)

Equation (145) is an integral equation since
the unknown function u(x) appears in the
integrand. Functions f (x) and k(x, s) are
to be given, and λ is a known parameter
used here for convenience. The function
f (x) is called the free term, and k(x, s)
is referred to as the kernel (nucleus).
Quantities f (x), k(x, s), and λ may be
either real or complex but are considered
real in this section. Equation (145) is a
linear integral equation since u is linear.
An integral equation is singular if either
(or both) of the limits of integration is
infinite and/or if the kernel becomes
infinite in the range of integration. When
f (x) equals zero, Eq. (145) is classified
as a homogeneous integral equation. If
the kernel is continuous in the closed
region [a, b], then Eq. (145) is classified
as a Fredholm-type integral equation of
the second kind. The equation (where the
upper limit is a variable)

u(x) = f (x) + λ

∫ x

a
k(x, s)u(s)ds (146)

is known as a Volterra-type integral
equation of the second kind. Fredholm
integral equations of the first kind have
the form

f (x) =
∫ b

a
k(x, s)u(s) ds. (147)

Volterra-type integral equations of the first
kind have the form

f (x) =
∫ x

a
k(x, s)u(s) ds. (148)
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In summary, classifications are Fred-
holm type if the limits of integration are
fixed and Volterra type if one limit is
variable, and first kind if the unknown
function appears only in the integrand and
second kind if the unknown function ap-
pears both in the integrand and outside
the integrand.

Physical problems may be formulated
as differential equations with appropriate
boundary and/or initial conditions, inte-
gral equations, or either differential or
integral equations. An essential difference
in the formulation is that boundary con-
ditions are imposed on general solutions
of differential equations while boundary
conditions are incorporated within the
formulation of integral equations. While
there exist procedures of converting dif-
ferential equations to integral equations,
use of integral equations seems more ap-
propriate when formulations of problems
lead directly to integral equations, or when
solutions of the corresponding integral
equations are easier to obtain than those
for the corresponding differential equa-
tions. Laplace and Fourier transforms as
well as dispersion relations are examples
of singular integral equations of the first
kind.

It is important to note that certain prob-
lems in classical mechanics, transport and
diffusion phenomena, scattering theory,
and other areas of physics can be formu-
lated only by use of integral equations;
the number of such problems is very
small when compared to those leading
to differential equations. In general, the
theory of solution techniques needed in
solving integral equations is not as famil-
iar to physicists as techniques for solving
differential equations. Integral equations
are seldom treated in detail in introduc-
tory mathematical physics textbooks but
are, however, discussed in advanced books

in theoretical physics and mathematical
physics. See Further Reading for some ex-
cellent books on integral equations. Many
integral equations encountered in physics
are normally solved by use of intuitive
analytical methods, intuitive approxima-
tion methods and numerical techniques,
or Laplace or Fourier transform methods.

Some systematic methods for solving
nonsingular and linear integral equations
are transform theory, Neumann series,
separable kernel, Schmidt–Hilbert theory,
Wiener–Hopf theory, and numerical. The
Wiener–Hopf method is a different type
of transform method which may be ap-
plied to certain integral equations with
displacement kernels, k(x, s) = k(x − s).
Schmidt–Hilbert theory is an approach
that applies to integral equations with
Hermitian kernels, k(x, s) = k∗(s, x). Fred-
holm theory involves representing the
kernel as an infinite series of degenerate
kernels (Sec. 4.2) and reducing the integral
equation to a set of algebraic equations.
Numerical solutions of Volterra equations
involve reducing the original equations to
linear algebraic equations, successive ap-
proximations and numerical evaluation of
integrals. Numerical techniques for Fred-
holm equations involve solving a system
of simultaneous equations.

4.2
Integral Equations with Degenerate Kernels

A subset of Fredholm equations of the
first and second kinds with degenerate
(separable) kernels can be solved by
reducing them to a system of algebraic
equations. In general, degenerate kernels
may be written as

K(x, s) =
N∑

j=1

gj (x)φj (s). (149)
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In Eq. (149), it is assumed that gj(x) and
φj(s) are linearly independent quantities,
respectively. Substituting Eq. (149) into
Eq. (145) yields

u(x) = f (x) + λ

N∑
j=1

gj (x)Cj. (150)

The coefficients Cj are given by

Cj =
∫ b

a
φj (s)u(s) ds. (151)

The solution of Eq. (145) has now been re-
duced to finding the Cj from the indicated
algebraic equations and substituting the Cj

into Eq. (150).

EXAMPLE 4.1: By use of the degenerate
kernel method, find the solution of u(x) =
x + λ
∫ 1

0 xsu(s) ds. The integral equation
becomes

u(x) = x + λx
∫ 1

0
su(s)ds = x + λxC.

(152)

The coefficient C reduces to

C =
∫ 1

0
su(s)ds =

∫ 1

0
s(s + λsC)ds

= 1

3 − λ
. (153)

The second step in Eq. (153) results when
the second step of Eq. (152) is substituted
into the first step of Eq. (153). From
Eqs. (152) and (153), the solution of the
original equation is u(x) = 3x/(3 − λ). It
is seen that solutions exist for values of λ

different from 3.

EXAMPLE 4.2: By use of the degenerate
kernel method, find the solution of u(x) =
x + 1

2

∫ 1
−1(s + x) ds. The equation becomes

u(x) = x + C1

2
+ xC2

2
. (154)

The coefficients C1 and C2 are

C1 =
∫ 1

−1
su(s)ds = 2 − C2

3
and

C2 =
∫ 1

−1
u(s)ds = C1 or C1 = C2 = 1.

(155)

On substituting the values for C1 and C2

into Eq. (154), the solution of the original
equation becomes u(x) = (3x + 1)/2.

4.3
Integral Equations with Displacement
Kernels

If the kernel is of the form k(x − s), it
is referred to as a displacement kernel.
Fredholm equations of the first and sec-
ond kinds with displacement kernels and
limits from minus infinity to plus infinity
or from zero to plus infinity can normally
be solved by use of Fourier and Laplace
transform methods, respectively. Here the
Fourier transform approach for solving
integral equations with displacement ker-
nels will be illustrated. Taking the Fourier
transform of each term in Eq. (145) yields∫ ∞

−∞
u(x) exp(ikx)dx

=
∫ ∞

−∞
f (x) exp(ikx)dx

+ λ

∫ ∞

−∞

(∫ ∞

−∞
K(x − s)u(s) ds

)
× exp(ikx) dx. (156)

In transform space, Eq. (156) is u(k) =
F(k) + λK(k)u(k). The solution in x space
is obtained when the inverse transform of
u(k) is taken, and the result becomes

u(x) = 1√
2π

∫ ∞

−∞
F(k) exp(−ikx)dk

1 − λK(k)
.

(157)
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4.4
The Neumann Series Method

Consider the set of Fredholm equations of
the second kind such that∫ b

a
|f (x)|2dx and

∫ b

a
|K(x, s)|2 ds

are bounded. Assume the solution may
be written as a power series, Neumann
series (also known as Liouville–Neumann
series), with form

u(x) =
∞∑

n=0

λnun(x). (158)

Terms in the successive approximation are
obtained by substituting the Neumann se-
ries into the Fredholm equation, Eq. (145),
and equating coefficients of like powers of
λ; the results are

u0 = f (x);

u1(x) =
∫ b

a
K(x, s)u0ds; . . . ;

un(x) =
∫ b

a
K(x, s)un−1(s) ds. (159)

It can be shown that the Neumann series
converges for all values of λ for Volterra
equations and converges for small values
of λ for Fredholm equations; techniques
exist for improving the convergence in the
Fredholm case. Numerical techniques may
be used to evaluate terms in the Neumann
series.

4.5
The Abel Problem

The section on integral equations is
concluded with the earliest application of
integral equations to a physical problem,
Abel’s problem. The Abel problem is as
follows: Consider a bead sliding on a

smooth wire under the influence of gravity
and find the curve for which the time of
descent is a given function of the initial
position.

Let the starting position of the bead be
(x0, y0) and position of the bead at time t
be (x, y) such that y equals zero at the end
of the fall. The speed of the bead at (x, y)
for ds an element of arc length along the
path is determined from the conservation
of energy principle and is given by

ds

dt
= √2g(y0 − y).

If the shape of the curve is u(y), then
ds = u(y) dy and the time of descent is
given by

T =
∫ y0

0

u(y)dy√
2g(y0 − y)

.

The Abel problem is to find the curve
u(y) for which the time T of descent is a
given function f (y0) of the initial vertical
position, and the result is obtained from
the integral equation (Abel’s equation):

f (y0) =
∫ y0

0

u(y)dy√
2g(y0 − y)

. (160)

It can be shown that the curve in question
is a portion of a cycloid.

5
Applied Functional Analysis

5.1
Introduction

Concepts of functions (of one variable) and
operators were introduced into mathemat-
ics in connection with the development
of calculus during the latter part of the
seventeenth century. In general, an oper-
ator applied to a given function yields a
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new function. The problem of finding an
extremum (maximum or minimum) of a
function is carried out in the usual manner
by use of ordinary calculus, but the general
problem of finding the stationary value (an
extremum) of certain definite integrals that
occur in mathematical physics is the sub-
ject matter of the branch of mathematics
called the calculus of variations.

In relation to the calculus of varia-
tions, the process of connecting (mapping)
each function y(x) in [a, b] with a num-
ber represented by the definite integral∫ b

a F(y, y′, x) dx (where y′ = dy/dx) which
depends on y(x) was given the name func-
tional during the end of the nineteenth
century. The basic idea of functional anal-
ysis is that problems are often easier to
solve if a function is considered to be a
member of a whole space of functions,
X. The space X is assumed to carry a
metric, have a linear space structure, and
be infinite dimensional. The concept of
a metric involves topological and geomet-
rical language while linear operators on
X involve concepts of linear algebra, and
relations among these concepts constitute
linear functional analysis.

A function which depends on one or
more functions rather than on discrete
variables is referred to as a functional.
The domain of a functional is a space
of admissible functions. More precisely,
functionals are continuous linear maps,
from a normed space into itself or into
some other normed space. The basic
ingredient of the various definitions of
a functional and of functional analysis
is the existence of a linear space with a
topology.

The main topics in Secs. 1–4 (func-
tions of a complex variable and ana-
lytic functions, ordinary and partial dif-
ferential equations, Fourier series and
Fourier transform theory, and integral

equations) are technically topics in func-
tional analysis even though the topol-
ogy and geometry of the linear spaces
involved were not stressed. Mathemat-
ically, a valid argument can be made
that concluding this article with a discus-
sion of functional analysis is analogous
to putting the cart before the horse.
This argument, however, neglects the
applications-of-techniques approach em-
phasized throughout the article.

In mathematical physics, functional
analysis often involves discussions con-
nected with the calculus of variations;
theory of ordinary and partial differential
equations; integral equations and trans-
form theory; spectral theory involving
eigenvalues, eigenfunctions, and Fourier
series expansion theory involving orthog-
onal functions; functional calculus used
in the path integral formulation of quan-
tum mechanics, quantum field theory,
and statistical mechanics; C∗ algebra; and
the theory of distributions. In mathemat-
ics, functional analysis often involves the
general theory of linear normed spaces,
the topological structure of linear spaces
and continuous transformations, measure
spaces and general theories of integration,
spectral theories, C∗ algebra, distribution
theory, and number theory.

In this section, the original problem
of functional analysis (the calculus of
variations) and applications of functional
integration to quantum mechanics, quan-
tum field theory, and statistical mechanics
will be discussed.

5.2
Stationary Values of Certain Definite
Integrals

Consider the following definite integral
of the functional F(y, y′, x) where F is a
known function of y, y′ (where y′ = dy/dx),



72 Analytic Methods

and x, but y(x) is unknown:

J =
∫ x2

x1

F(y, y′, x) dx. (161)

A fundamental problem in the calculus
of variations (a problem which occurs fre-
quently in mathematical physics) is that
of finding a function y(x) such that the
functional J is stationary (an extremum;
a minimum in most cases of physical
interest). The basic procedure here is to
evaluate the integral for a slightly modi-
fied path y(x, a) = y(x, 0) + αη(x) where
η(x1) = η(x2) = 0 (all paths pass through
the end points) and show that the change in
the value of the integral due to the change
in the path becomes zero. The function
η(x) is an arbitrary differentiable function,
and α is a small scale factor (see Fig. 16).
The function y(x, α) describes neighbor-
ing paths where δy = y(x, a) − y(x, 0) =
αη(x) is the variation (hence the name
calculus of variations) of y(x,0) at some x.
The delta symbol, δ, was introduced by
Lagrange to denote a variation (a virtual
change) and means a change made in an
arbitrary manner. Both dy and δy denote
infinitesimal changes in y, but dy means
an infinitesimal change in y(x) produced

y

xx

(x1, y1)

(x2, y2)

y(x)
dy

Fig. 16 A varied path between (x1, y1) and
(x2, y2)

by dx while δy is an infinitesimal change
which produces y + δy. It is straightfor-
ward to show that dδy/dx = δdy/dx and
δ
∫ x2

x1
F(y, y′, x)dx = ∫ x2

x1
δF(y, y′, x) dx. On

substituting y(x, α) = y(x, 0) + αη(x) into
Eq. (161) and differentiating both sides of
the resulting equation with respect to α,
one obtains

dJ(α)

dα
=
∫ x2

x1

(
∂F

∂y
η(x) + ∂F

∂y′ η
′(x)

)
dx.

(162)

Integrating the second term in Eq. (162)
by parts and using the fact that η(x) is
arbitrary yield

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0. (163)

Equation (163) is known as Euler’s equa-
tion and its solution yields the y(x) which
makes J an extremum (minimum). An
alternative and often used approach for
obtaining Euler’s equation makes use of
expanding the right-hand side of δF in
a Taylor’s series with two variables; the
result becomes

δF = F(y + αη, y′ + αη′, x) − F(y, y′, x)

= α

(
∂F

∂y
η + ∂F

∂y′ η
′
)

. (164)

Higher-order terms in the Taylor expan-
sion may be used to determine the nature
of the extremum (maximum or mini-
mum), and neglected here since α is a
small parameter. As a result of substitut-
ing Eq. (164) into the integrand for δJ,
integrating the second term by parts as
before, and setting δJ/α = 0, one obtains
the Euler equation in Eq. (163).

The above processes of obtaining Eu-
ler’s equation, Eq. (163), may be extended
to functionals involving several dependent
and/or independent variables; for exam-
ple, the variational process applied to
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F(y1, . . . , yn, y′
1, . . . , y′

n, x) yields the fol-
lowing set of Euler’s equations:

∂F

∂yk
− d

dx

(
∂F

∂y′
k

)
= 0 (k = 1, 2, . . . , n).

(165)

EXAMPLE 4.3: By use of the variational
calculus method (Euler’s equation), deter-
mine the equation of the shortest path
between two points (x1, y1) and (x2, y2) in
Cartesian coordinates.

Solution: The element of distance along
the path between the two points is given
by

1.
ds =
√

dx2 + dy2.

The expression for the distance between
the two points is therefore

2.

s =
∫ x2

x1

√
1 + (y′)2 dx,

where

y′ = dy

dx
.

For F(y, y′, x) = √1 + (y′)2, the differ-
ential equation for the equation of the
shortest path between the two points,
Euler’s equation, reduces to

3.

dy

dx
= A since

∂F

∂y
= 0 and

∂F

∂y′ = y′√
1 + (y′)2

.

The equation of the shortest path
between the two points is therefore that
of a straight line, y(x) = Ax + B.

EXAMPLE 4.4 (the Brachistochrone Prob-
lem): The brachistochrone (shortest time)
problem, first formulated and solved by

Johann Bernoulli in 1696, is one of the
first variational problems. The problem is
as follows: Consider a bead of mass m
which slides, under the influence of grav-
ity, down a frictionless wire bent into the
appropriate shape. The goal is to find the
equation (shape of the wire) of the path
along which the bead travels so that the
time is a minimum.

Solution: For convenience, it is assumed
that the bead starts from rest at the
origin of a coordinate system (see Fig. 17).
Since this is a conservative system, the
following relations are valid: T1 + V1 =
T2 + V2, V2 = −mgy, T1 = V1 = 0, T2 =
1
2 mv2, and v = √2gy. The expression for
the time required for the bead to travel
from the origin to point (x, y) is therefore
given by

1.

t =
∫ √

dx2 + dy2√
2gy

=
∫ y2

0

√
1 + (x′)2dy√

2gy
, x′ = dx

dy
.

The unknown function y(x) must be
determined such that the time is a min-
imum. On applying Euler’s equation

y

x
(x 1 =

 0, y 1 =
 0)

(x2, y2)

Fig. 17 Diagram for the brachistochrone
example
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with

F =
(

1 + (x′)2

y

)1/2

and independent variable y, one obtains
2.

x =
∫

Ay dy√
y − A2y2

since

∂F

∂x
= 0 and

∂F

∂x′ = x′√
y[1 + (x′)2]

= A.

On letting A = 1/
√

2a and making the
change of variable y = a(1 − cos θ), the
above integral reduces to x = a(θ −
sin θ) + const. The path that yields a
minimum time of travel is in the
form of parametric equations x =
a(θ − sin θ) and y = a(1 − cos θ), equa-
tions for a cycloid that passes through
the origin.

5.3
Hamilton’s Variational Principle in
Mechanics

5.3.1 Introduction
Mechanics is the study of the motions
(including rest) of physical objects. The
laws of classical mechanics are valid for
macroscopic objects (size larger than 10−10

m), and the laws of quantum mechanics
are valid in the microworld (object size
smaller than 10−10 m). In this section, the
focus is on the study of classical mechan-
ics. Widely used equivalent formulations
of classical mechanics are Newtonian
mechanics (1687), Lagrangian mechan-
ics (1788), Hamiltonian mechanics (1834),
and Hamilton-Jacobi theory (1837).

Formulations of classical mechanics de-
veloped since Newtonian mechanics are

generalizations and equivalent represen-
tations of Newtonian mechanics. These
generalizations do not lead to new in-
formation but offer different ways of
approaching problems. Certain problems
can be solved by use of all four approaches
with equal amounts of ease (or difficulty).
Other problems are more amenable to so-
lution by use of one approach than by use
of the others. The specific nature of the
problem to be solved usually dictates the
approach that should be used.

Newton’s second law is the basic equa-
tion of motion in the Newtonian picture of
mechanics. In Lagrangian mechanics, La-
grange’s equations are the required set
of equations of motion for the system
(particle or group of particles) under inves-
tigation. Hamilton’s canonical equations
are basic to Hamiltonian mechanics, and
the Hamilton–Jacobi equation is the foun-
dation of the Hamilton–Jacobi theory.

The approach in this section begins with
Hamilton’s variational principle for con-
servative systems (where the forces acting
on the system may be derived from a po-
tential function) from which Lagrange’s
equations will be developed by use of
the variational calculus method. By use of
a Legendre transformation, the Hamilto-
nian and subsequently Hamilton’s canon-
ical equations are obtained.

The variational technique used in me-
chanics was developed mainly by Euler
and Lagrange and is a mathematical for-
mulation of mechanics in which kinetic
energy and potential energy play an essen-
tial role. In Newtonian mechanics, forces
play the central role.

5.3.2 Generalized Coordinates
Linearly independent quantities {qk} =
q1, . . . , qk that completely define the po-
sition (configuration) of a system as a
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function of time are called generalized co-
ordinates. Quantities {qk} are said to be
linearly independent if

∑
k αkqk = 0 im-

plies that αk = 0 for all k. Generalized
coordinates may be selected to match the
conditions of the problem to be solved.
The number of generalized coordinates
that must be used to define uniquely the
position of a system represents the number
of degrees of freedom for the system. The
corresponding quantities {q̇k} are called
generalized velocities.

The simultaneous specification of {qk}
and {q̇k} for a system determines the me-
chanical state of the system at that time,
and subsequent motion is obtained from
the solutions qk(t) of the appropriate equa-
tions of motion. The appropriate second-
order differential equations expressing the
relations among generalized coordinates
qk, generalized velocities {q̇k}, and general-
ized accelerations {q̈k} are called equations
of motion for the system under investiga-
tion.

Although the set of generalized coordi-
nates used to solve a problem is not unique,
a proper set of generalized coordinates is
that set which leads to an equation of
motion whose solution has a straightfor-
ward physical interpretation. No general
rule exists for obtaining a proper set of
generalized coordinates.

5.3.3 Lagrange’s Equations
Hamilton’s variational principle asserts
that the actual motion of a particle or
system of particles (conservative system)
from its initial configuration at time t1 to
its configuration at time t2 is such that

δS = δ

∫ t2

t1
L(qk, q̇k)dt = 0. (166)

In Eq. (166), qk = qk(t), L = T − V is de-
fined as the Lagrangian for the system

under investigation, L dt is called the ac-
tion, and

S =
∫ t2

t1
L dt

denotes the action integral. The quantities
T and V are kinetic and potential energy,
respectively.

Among the infinite number of trajecto-
ries q(t) that connect the end points q(t1)
and q(t2), the physical (actual) path yields
a stationary value for the action integral.
The action is therefore a functional of
the functions qk(t) satisfying the bound-
ary conditions that all trajectories pass
through the end points. By use of the
variational technique leading to Eq. (165),
one finds that q(t) is obtained from the
following set of differential equations:

∂L

∂qk
− d

dt

(
∂L

∂ q̇k

)
= 0, k = 1, 2, . . . , n.

(167)

The equations in Eq. (167) are called La-
grange’s (or Euler–Lagrange) equations.
Lagrange’s equations, the equations of mo-
tion for the system under investigation,
are a set of n second-order differential
equations. The general solutions of these
equations contain 2n arbitrary constants
of integration. The values of these 2n ar-
bitrary constants are determined when the
initial state (initial values for the qk and
{q̇k} at t = 0) of the system is specified.

Quantities ∂L/∂ q̇k and ∂L/∂qk are de-
fined to be canonical momenta (also called
conjugate or generalized momenta) and
generalized forces, respectively,

pk = ∂L

∂ q̇k
and Fk = ∂L

∂qk
. (168)

By use of the definitions in Eq. (168), it is
observed that Lagrange’s equations may
be considered a generalized version of
Newton’s second law where generalized
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force equals the rate of change of canonical
momentum.

Basic conservation laws of mechanics re-
sult from invariance of the Lagrangian un-
der time translation–conservation of en-
ergy, coordinate translation–conservation
of canonical momentum, translation in
space–conservation of total linear momen-
tum, and rotation in space–conservation
of angular momentum. In spite of the
important role of the Lagrangian, it is
not a unique function for a system since
the equations of motion for the system,
Lagrange’s equations, are unchanged if
df (qk, t)/dt is added to the Lagrangian.

5.3.4 Format for Solving Problems by Use
of Lagrange’s Equations
The following steps should be used when
applying Lagrange’s equations.

1. Draw a detailed diagram. Specify the
degrees of freedom and the level where
potential energy V equals zero.

2. Write down the appropriate expressions
for T, V, and L.

3. Write down the specific set of La-
grange’s equation(s).

4. Work out the terms in the set of
equations in Step 3.

5. Solve the resulting equation(s) of mo-
tion subject to the given initial condi-
tions.

5.4
Formulation of Hamiltonian Mechanics

It has been shown that Hamilton’s varia-
tional principle combined with techniques
of the calculus of variations transforms
the process of finding the solution of
a mechanical problem to that of obtain-
ing solutions for Lagrange’s equations.
Hamilton developed a procedure for trans-
forming Lagrange equations to a simpler

(canonical) form by replacing them (a set
of n second-order differential equations)
with a set of 2n first-order differential
equations now called Hamilton’s canon-
ical equations of motion.

5.4.1 Derivation of Hamilton’s Canonical
Equations
The Lagrangian is a function of qk and
q̇k; now the change of variable q̇k → pk
where pk = ∂L/∂ q̇k will be made. By
use of a Legendre transformation [new
function equals the old function minus
(the derivative of the old function with
respect to the old variable) times the
old variable; the physical and geometrical
content of the new and old functions is the
same], one obtains

−H ≡ L −
n∑

k=1

pkq̇k. (169)

The negative sign in Eq. (169) is by
convention. The new function H(qk, pk)

contains the same geometrical and phys-
ical content as L(qk, q̇k) and is called the
Hamiltonian of the system. Note that the
action integral may now be written as

S =
∫ t2

t1

(
n∑

k=1

pkq̇k − H

)
dt. (170)

Applying the variational techniques of
Sec. 5.2 to Eq. (170) yields

q̇k = ∂H

∂pk
and ṗk = −∂H

∂qk
. (171)

The equations in Eq. (171) are referred
to as Hamilton’s canonical equations of
motion (or simply Hamilton’s equations).
Hamilton’s equations can be used to
develop the specific set of equations of
motion for the system under investigation
in terms of the phase space variables qk and
pk. Note that Lagrange’s equations consist
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of n second-order differential equations
whereas Hamilton’s equations form a set
of 2n first-order differential equations. For
a conservative system, it can be shown that
the Hamiltonian equals the total energy of
the system (H = T + V).

5.4.2 Format for Solving Problems by Use
of Hamilton’s Equations
In solving problems by use of Hamiltonian
mechanics, the following five-step proce-
dure is highly recommended.

1. Write out the Lagrangian as in La-
grangian mechanics, L = T − V .

2. Solve the equation pk = ∂L/∂ q̇k for
q̇k and eliminate q̇k from the La-
grangian.

3. Construct the Hamiltonian for the
system, H =∑n

k=1 q̇kpk − L.
4. Obtain Hamilton’s equations, q̇k =

−∂H/∂pk and ṗk = −∂H/∂qk.
5. Solve the 2n first-order differential

equations (equations of motion) devel-
oped in step 4.

5.4.3 Poisson’s Brackets
The total time derivative of a function
f (qk, pk) is

df

dt
=

n∑
k=1

(
∂ f

∂qk
q̇k + ∂ f

∂pk
ṗk

)

=
n∑

k=1

(
∂ f

∂qk

∂H

∂pk
− ∂ f

∂pk

∂H

∂qk

)
= { f , H}.

(172)

Hamilton’s equations were used in
obtaining Eq. (172). The last quantity in
Eq. (172) is called a Poisson bracket. A
Poisson bracket is defined by

{f , g} =
n∑

k=1

(
∂ f

∂qk

∂g

∂pk
− ∂ f

∂pk

∂g

∂qk

)
.

(173)

Hamilton’s canonical equations in terms
of Poisson brackets are given by

q̇k = ∂H

∂pk
= {qk, H},

ṗk = −∂H

∂qk
= {pk, H}. (174)

Two variables ξi and φi are said to be
canonically conjugate if

{ξi, ξk} = {φi, φk} = 0 and

{ξi, φk} = δik. (175)

The Kronecker delta function is defined by

δik =
{

1; i = k,
0; i �= k.

(176)

The quantities qj and pj are canonically
conjugate variables since {qj, pk} = δjk and
{qj, qk} = {pj, pk} = 0; these three Poisson
brackets are referred to as fundamental
Poisson brackets.

5.5
Continuous Media and Fields

Thus far, only conservative systems com-
posed of discrete particles have been
considered. The Lagrangian of a system
composed of N free particles may be writ-
ten as

L =
N∑

i=1

Li. (177)

The extension of the above analysis to a
system with an infinite number of de-
grees of freedom (a continuous medium)
is achieved by replacing the subscript k
with a continuous variable (say x), qk with
a new function qk → Q(x, t), the sum
with an integral

∑
i → ∫ d3x, and canon-

ical momenta with canonical momentum
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density given by π(x) = ∂L /∂Q̇ where
L is the Lagrangian density. The quan-
tity Q(x, t) is called a field. To denote
several fields, the notation Qα(x, t) may
be used. The parameter α distinguishes
among the different fields. From a math-
ematical point of view, a field is a set of
functions of space-time, and these func-
tions satisfy a set of partial differential
equations. The corresponding Hamilton’s
variational principle is

0 = δ

∫ t2

t1

N∑
i=1

Li(qk, q̇k)dt

= δ

∫ t2

t1

∫
physical

space

L {Qα(x, t), Q̇α(x, t)}d4x;

d4x = dx dy dz dt. (178)

Assuming that fields interact only with
infinitesimal neighbors, the Lagrangian
density should be a function of Qα(x, t),
Q̇α(x, t), and ∂Qα(x, t)/∂xk or Qα(xµ)

and ∂µQα in four-vector notation. By use
of appropriate boundary conditions, the
variation in Eq. (178) leads to the following
set of equations of motion:

∂L

∂Qα
− ∂µ

(
∂L

∂(∂µQα)

)
= 0,

µ = 0, 1, 2, 3. (179)

The equations in Eq. (179) are the La-
grange’s equations for classical fields.

5.6
Transitions to Quantum Mechanics

The laws of classical mechanics are not in
general valid for the microworld, and new
laws (quantum theory) that are appropriate
for the microworld were developed during
the period 1900–1927. In this section,
the transition from classical mechanics to

quantum mechanics in the Heisenberg
picture, in the Schrödinger picture, and by
use of the action functional (path integral)
approach due to Dirac and Feynman will
be made. For notational convenience, the
discussion is restricted to the case of one
nonrelativistic particle. The starting point
in both the Heisenberg and Schrödinger
pictures is Hamiltonian mechanics while
the Feynman (Dirac–Feynman) approach
begins with Lagrangian mechanics.

The postulates of quantum mechanics
may be stated as follows.

1. Each state of a physical system corre-
sponds to a normalized vector in Hilbert
space called the state vector, � or |�〉.

2. Physical quantities are represented by
linear Hermitian operators in Hilbert
space.

3. If a system is in a state |�〉, then
the probability that a measurement
(consistent with quantum theory) of
the quantity corresponding to Â will
yield one of the eigenvalues ak (where
Â|�〉 = ak|�〉) is given by |〈ak|�〉|2.
The system will change from state |�〉
to |ak〉 as a result of the measurement.
The quantity 〈ak|�〉 is the amplitude.

5.6.1 The Heisenberg Picture
In the Heisenberg approach, a system is
quantized by letting qk and pk be Her-
mitian operators in a Hilbert space such
that qk → q̂k and pk → −ih̄∂/∂qk, and
replacing Poisson brackets with commu-
tators, {A, B} → [̂A, B̂]/ih̄ where [̂A, B̂] =
ÂB̂ − B̂Â. If [̂f , ĝ] = ih̄, the operators f̂ and
ĝ are said to be canonically conjugate. The
resulting Heisenberg equations of motion
for a quantum and mechanical system are

ih̄ṗk = [pk, H] and ih̄q̇k = [qk, H].
(180)
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The equations in Eq. (180) are basic for
Heisenberg (matrix) mechanics.

5.6.2 The Schr
..
odinger Picture

From a classical mechanical point of view,
the Hamiltonian of a particle subject to
conservative forces equals the total energy
of the particle, and one may write

H = E = p2

2m
+ V(x, y, z). (181)

The transition to quantum mechanics in
the Schrödinger picture is achieved by
use of the replacements E → ih̄∂/∂t and
p → −ih̄∇; by use of these replacements,
Eq. (182) is transformed into an operator
equation. Operating on some function
�(x, y, z, t) or |�〉 in Hilbert space yields

ih̄
∂�

∂t
= − h̄2

2m
∇2� + V� or

ih̄
∂|�〉
∂t

= Ĥ|�〉. (182)

Schrödinger’s equation, Eq. (182), is the
basic equation of motion of a particle in
quantum mechanics in the Schrödinger
picture.

5.6.3 The Feynman Path-Integral
Approach to Quantum Mechanics
The special case of one particle with one
degree of freedom is considered here to
simplify the notation and make the ex-
planations clear. Feynman’s formulation
of quantum mechanics was stimulated by
some work of Dirac (1933) and is based on
the following two postulates:

1. The amplitude 〈q(t′′)|q(t′)〉 for a particle
to be found at q(t′′) at time t′′ if its initial
position is q(t′) at time t′ equals a sum
of complex contributions (amplitudes)

for each space-time path starting at q(t′)
and ending at q(t′′).

2. All paths connecting q(t′) and q(t′′)
contribute equally in magnitude, but
the phase (weight) of their contribution
is exp(iS/h̄) where S is the classical
action integral for the corresponding
paths.

The measure on the functional space
of paths q(t) is denoted by D [q(t)],
and appropriate normalization factors for
the amplitude are contained in D [q(t)].
Feynman’s interpretation of the indicated
functional integration is as follows: Divide
the time interval t′′ − t′ into N equal parts,
each with duration ε = tk+1 − tk; and in
the limit N → ∞(ε → 0), it is assumed
that the sequence of points q(t0), . . . , q(tn)

approximates the path q(t). The action
functional associated with the classical
path joining q(tk) = qk and q(tk+1) = qk+1
is

S[qk+1, qk] =
∫ tk+1

tk
L(q, q̇) dt.

Feynman’s postulates thus assert that the
amplitude 〈q(t′′)|q(t′)〉 is a sum of all
amplitudes for all paths connecting q(t′′)

t

q

t ′
q(t ′ )

q(t ″)
t ″

q1

q2

qi∋

Fig. 18 A representative sequence of paths
between q(t′) and q(t′′)
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and q(t′), and it may be written as (see
Fig. 18)

〈q(t′′)|q(t′)〉 =

lim
ε→0

N→∞

∫
· · ·
∫ N∏

k=0

exp
(

i

h̄
S(qk+1, qk)

)
dqk

Ak

=
∫

· · ·
∫

exp

(
i

h̄

∫ t′′

t′
L(q, q̇) dt

)
D [q(t)].

(183)

The normalization factors Ak in Eq. (183)
are independent of the path from qk to qk+1
but depend on the mass of the particle
and on the time interval ε. Equation
(183) is a mathematical statement that the
amplitude for a particle at q(t′) at time
t′ to move to q(t′′) at time t′′ equals the
sum of all possible paths between the two
points times exp (iS/h̄); the probability is
the absolute square of the amplitude.

The path integral approach to quantum
mechanics can be extended to include
formulations of quantum field theory (a
combination of quantum mechanics and
special relativity), the partition function in
statistical mechanics, and systems obeying
Bose–Einstein and Fermi–Dirac statistics.
The path integral method is the foundation
for Feynman diagrams.

Glossary

Complex Variable: An ordered pair of real
variables (z = x + iy) with a real and an
imaginary part.

Ordinary Differential Equation: An equa-
tion containing derivative(s) with respect
to one independent variable.

Partial Differential Equation: An equation
containing partial derivatives with respect
to two or more independent variables.

Integral Equation: An equation where the
unknown function appears in an inte-
grand.

Functional: A function which depends on
one or more functions.
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84 Fourier and Other Mathematical Transforms

Introduction

Fourier analysis, which gained promi-
nence from the work of J. B. J. Fourier
in the early 1800s, led immediately to
applications in mechanics and heat con-
duction but also contributed to the advance
of pure mathematics as regards the basic
notions of limit, convergence, and inte-
grability; the impact on mathematics and
applied physics has continued to this day.
Applications of transform methods were
developed in connection with differential
and integral equations and became very
powerful; more recently, numerical anal-
ysis, aided by electronic computing, has
added an extra dimension to the applied
relevance of mathematical transforms and
especially of the Fourier transform. The
analytic and computational aspects will be
dealt with first; among applied examples,
heat conduction, Fourier-transform spec-
troscopy, diffraction, sampled data, and
tomography will be mentioned.

When one looks for antecedents from
which Fourier analysis might have evolved
they are not hard to find. Euler had
published trigonometric series, and the
sum to infinity, in such statements as

sin x − 1
2 sin 2x + 1

3 sin 3x + · · · = 1
2 x.

(1)

Gauss analyzed motion in astronomical
orbits into harmonics and indeed utilized
the fast algorithm now favored for com-
puting. Much earlier in Roman times
Claudius Ptolemy expressed motion in
planetary orbits by the geometrical equiva-
lent of trigonometric series and, according
to Neugebauer (1983), the idea of epicy-
cles has roots in Mesopotamian astronomy
where the solar motion was matched by

Much of this material was published earlier in
Science, 248, 697–704, 1990.

zigzag functions, rough approximations of
the sinusoids to come.

1
The Fourier Transform

There are many transforms, each charac-
terized by its own explicit operator, which
we may call T. The operand, or entity oper-
ated on, is a function such as f (x), where x
is a real variable ranging from −∞ to ∞.
The notation T{f (x)} signifies the outcome
of applying the operator T to the function
f (x). To illustrate, the operation that con-
verts a given function f (x) to its Fourier
transform, which is a different function
F(s), is as follows: ‘‘Multiply the function
f (x) by exp(−i2πsx) and integrate with re-
spect to x from −∞ to ∞.’’ Applying this
operation to f (x) = exp(−|x|) we find that
T{f (x)} = F(s) = 2/[1 + (2πs)2], which is
the Fourier transform of exp(−|x|). The
symbolic expression of the Fourier trans-
form operation is

F(s) =
∫ ∞

−∞
f (x)e−i2π sx dx. (2)

It is apparent that any particular value
of F(s) [for example, F(2), which equals
0.0126] takes into account the whole range
of x; that is, the value depends on the
shape of f ( ) as a whole, not on any single
point. Thus the Fourier operation is quite
unlike the operation that converts f (x) =
exp(−|x|) to sin[exp(−|x|)]; the outcome
of this latter operation is referred to as a
‘‘function of a function,’’ and the resulting
values each depend on only a single value
of x. When the result depends on the shape
of f (x) over part or all of the range of x, an
entity such as F(s) is called a functional of
f ( ). The variable s is called the transform
variable and may have a physical meaning;
if so, its units will be cycles per unit of
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Tab. 1 Selected Fourier transforms. The
quantity a is a constant

f (x) F(s)

e−|x| 2/[1 + (2π s)2]
δ(x) 1
cos(2πx/a) 1

2 δ(s + a−1) +
1
2 δ(s − a−1)

rect x sinc s
e−πx2

e−π s2

e−π(x/a)2 |a|e−π(as)2

f (x/a) |a| F(as)
f (x + a) ei2πasF(s)
f ′(x) i2π sF(s)
Autocorrelation of f (x) |F(s)|2
∫∞−∞ f (x − u)g(u) du F(s)G(s)

x. A short list of Fourier transforms for
illustration is shown in Table 1.

In this list rect x is the unit rectangle
function (equal to unity where |x| < 0.5,
else-where zero) and sinc x = (sin πs)/πs.
The last five lines are representative
theorems of the form, ‘‘If f (x) has Fourier
transform F(s), then [modification of f (x)]
has transform [modification of F(s)].’’
Extensive lists of such transform pairs and
theorems are available from the reference
texts; the short list given would cover
a sizable fraction of the analytic forms
encountered in the literature.

With some transforms – the Abel trans-
form is an example – each transform value
depends on only a part of, not all of, f ( );
and with other transforms the transform
variable does not necessarily have a dif-
ferent identity (as s is different from x)
but may have the same identity (Hilbert
transform). The integral from −∞ to x is a
transform with both of the above restrictive
properties.

All the transforms dealt with here are lin-
ear transforms, which are the commonest
type; they all obey the superposition rule
that T{f1(x) + f2(x)} = T{f1(x)} + T{f2(x)}

for any choice of the given functions f1(x)

and f2(x). An example of a nonlinear
transformation is provided by T{f (x)} =
a + bf (x), as may be tested by reference
to the superposition definition; clearly the
term linear in ‘‘linear transform’’ does not
have the same meaning as in Cartesian
geometry.

2
Continuous Versus Discrete Transforms

Before defining the main transforms
succinctly by their operations T, all of
which involve integration over some range,
it is worth commenting on a numerical
aspect. One could take the point of view, as
is customary with numerical integration,
that the desired integral is an entity in
its own right; that the integral may on
occasion be subject to precise evaluation
in analytic terms, as with F(s) = 2/[1 +
(2πs)2]; and that if numerical methods are
required a sum will be evaluated that is
an approximation to the desired integral.
One would then discuss the desired degree
of approximation and how to reach it.
Now this is quite unlike the customary
way of thinking about the discrete Fourier
transform. What we evaluate is indeed a
sum, but we regard the sum as precise and
not as an approximation to an integral.
There are excellent reasons for this.
Meanwhile, the important thing to realize
is that there are both a Fourier transform
and a discrete Fourier transform, each with
its own definition. The discrete Fourier
transform operation is

F(v) = 1

N

N−1∑
τ=0

f (τ )e−i2πvτ/N . (3)

The word ‘‘discrete’’ is used in antithe-
sis to ‘‘continuous,’’ and in the cases
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discussed here means that an indepen-
dent variable assumes integer values. In
order to understand the discrete Fourier
transform, which is exclusively what we
compute when in numerical mode, it is
best to forget the Fourier integral and
to start afresh. Instead of starting with
a complex function f (x) that depends on
the continuous real variable x, we start
with N data (complex in general, but often
real) indexed by an integer serial number
τ (like time) that runs from 0 to N − 1.
In the days when FORTRAN did not ac-
cept zero as a subscript, summation from
τ = 0 caused much schizophrenia, but the
mathematical tradition of counting from
zero prevailed and is now unanimous. In
cases where f ( ) is a wave form, as it often
is, the quantity τ can be thought of as time
that is counted in units starting from time
zero. Clearly, N samples can never fully
represent exp(−|x|), for two reasons: the
samples take no account of the function
where x exceeds some finite value, and no
account is taken of fine detail between the
samples. Nevertheless, one may judge that,
for a given particular purpose, 100 samples
will suffice, and the confidence to judge
may be bolstered by trying whether acqui-
sition of 200 samples significantly affects
the purpose in hand. Numerical intuition
as developed by hand calculation has al-
ways been a feature of mathematical work
but was regarded as weak compared with
physical intuition. Nowadays, however, nu-
merical intuition is so readily acquired that
it has become a matter of choice whether
to attack questions about the size of N by
traditional analytic approaches. A new mix
of tools from analysis, finite mathematics,
and numerical analysis is evolving.

The discrete transform variable v re-
minds us of frequency. If τ is thought
of as time measured in integral numbers
of seconds, then v is measured in cycles

per second, and is indeed like frequency
(c/s or Hz), but not exactly. It is v/N that
gives correct frequencies in Hz, and then
only for v ≤ N/2. Where v exceeds N/2
we encounter a domain where the discrete
approach conflicts with the continuous.
When the Fourier transform is evaluated
as an integral, it is quite ordinary to con-
template negative values of s, and a graph
of F(s) will ordinarily have the vertical s = 0
axis in the middle, giving equal weight to
positive and negative ‘‘frequencies.’’ (The
unit of s is always cycles per unit of x; if x
is in meters, s will be a spatial frequency in
cycles per meter; if x is in seconds, s will
be a temporal frequency in cycles per sec-
ond, or Hz.) However, the discrete Fourier
transform, as conventionally defined, ex-
plicitly requires the transform variable v to
range from 0 to N − 1, not exhibiting neg-
ative values at all. There is nothing wrong
with that, but persons coming from con-
tinuous mathematics or from physics may
like to know that, when v is in the range
from N/2 to N − 1, the quantities N − v
correspond to the negative frequencies fa-
miliar to them as residing to the left of
the origin on the frequency axis. This is
because the discrete transform is periodic
in v, with period N.

In the familiar Fourier series

p(x) = a0 +
∞∑
1

(av cos 2πvx

+ bv sin 2πvx), (4)

for a periodic function p(x) of period 2π ,
the first term a0 represents the direct-
current, zero-frequency, or mean value
over one period as calculated from

a0 = 1

2π

∫ 2π

0
p(x) dx.

So the first term F(0) of the discrete
Fourier transform is the average of the
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N data values. This is the reason for the
factor 1/N in front of the summation
sign in Eq. (3), a factor that must be
remembered when checking. In practical
computing it is efficient to combine the
factor 1/N with other factors such as
calibration factors and graphical scale
factors that are applied later at the display
stage. The remaining Fourier coefficients,
given by

av = 1

π

∫ 2π

0
p(x) cos 2πvx dx,

bv = 1

π

∫ 2π

0
p(x) sin 2πvx dx,

are related to the discrete Fourier trans-
form by av − ibv = F(v). The minus sign
arises from the negative exponent in
the Fourier kernel e−i2π sx. The reason
for the choice of the negative expo-
nent is to preserve the convention that
d/dt be replaceable by +iω in the solu-
tion of linear differential equations, as
when the impedance of an inductance
L to alternating voltage of angular fre-
quency ω is written +iωL (more usually
jωL).

How to decide whether the discrete
Fourier transform is an adequate approxi-
mation to the Fourier transform is a very
interesting question. But the question it-
self is open to challenge. If I am studying
cyclicity in animal populations, perhaps
seasonal influence on bird migration, I
may start with 365 reports of how many
birds were seen each day of the year. In
such a case, and in many other cases, dis-
crete data mean that the integrals, even
though convenient, are themselves the
approximations; the discrete Fourier trans-
form, given N equispaced data, is a valid
entity in its own right. Unexpected dis-
crepancies may arise, however, over the
choice of N, which may be taken too

large or too small. Among the bad con-
sequences are slow computing (N too
large), unwanted sensitivity to measure-
ment error (N too small), and aliasing.
Aliasing is the word for the following
phenomenon. Measurements are made
of some time-varying phenomenon at
regularly spaced time intervals – perhaps
temperature is recorded twice a day or
perhaps speech samples are taken at a
10-kHz rate. Such data can represent har-
monic components with period longer
than one day or longer than 2 × 10−4s, but
cannot faithfully follow faster harmonic
variation. The samples will not ignore the
presence of such high frequencies, be-
cause the high-frequency variations will
indeed be sampled, but the samples will
be consistent with, and indistinguishable
from, a long-period sinusoidal compo-
nent that is not actually present. The
imperfectly sampled component emerges
under the alias of a lower, counterfeit
frequency.

3
Some Common Transforms

As a convenient reference source, def-
initions of several transforms (Laplace,
Fourier, Hartley, Mellin, Hilbert, Abel,
Hankel, Radon) are presented in Table 2.
When one has the transform, there is a
way of returning to the original function
in all the cases chosen. In some cases
the inverse operation T−1 is the same as
the defining operation T (e.g., Hartley and
Hilbert, which are reciprocal transforms),
but the majority differ, as shown. In ad-
dition, examples of each transform are
presented. These will be found to convey
various general properties at a glance and
may be helpful for numerical checking.
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4
The Laplace Transform

A long and diverse history (Deakin, 1985)
characterizes the Laplace transform, which
was in use long before Laplace, but be-
came known to current generations mainly
through its pertinence to the linear dif-
ferential equations of transient behavior
in electricity and heat conduction. Many
tough technological problems of electric
circuits that arose in connection with teleg-
raphy, submarine cables, and wireless,
and related industrial-process problems of
thermal diffusion, were cracked around
the turn of the century, sometimes by
novel methods such as those of Heaviside
(1970), which were to be justified subse-
quently (Nahin, 1987) to the satisfaction
of academic mathematics by systematic
application of the Laplace transform. Heav-
iside is remembered for stimulating the
application of the Laplace transform to
convergence of series and for Maxwell’s
equations, the delta function, the Heav-
iside layer, impedance, non-convergent
series that are useful for computing, frac-
tional order derivatives and integrals, and
operational calculus.

Table 2 gives, as an example, the Laplace
transform of f (x) = exp(−x − 1.5)H(x +
1.5). The Heaviside unit step function
H(x) jumps, as x increases, from 0 to
1, the jump being where x = 0; one of
its uses is as a multiplying factor to
allow algebraic expression of functions
that switch on. The transform of f (x),
which is easy to verify by integration, is
(exp 1.5s)/(1 + s); the transform variable
s may be complex but must lie among
those numbers whose real parts are greater
than −1 (otherwise the integral does not
exist). It is rather cumbersome to exhibit
the complex transform graphically on the
complex plane, and so an illustration is

omitted. To invert the transform requires
integration on the complex plane along
a semicircular contour with indentations
if necessary to circumvent points where
the integrand goes to infinity (poles). The
constant c in the inversion formula is to be
chosen to the right of all poles.

To some extent Laplace transforms
were computed numerically, but more
typically, development led to compilations
of analytic transforms resembling the
tables of integrals (Erdélyi et al., 1954;
Campbell and Foster, 1948). Programs
for deriving the Laplace transform of the
impulse response from electrical networks
given diagrammatically are also available.
Consequently it is hardly ever necessary
to derive Laplace transforms analytically
today. The analytic solution of transients
in electric circuits, a subject traditionally
used for sharpening the minds of electrical
engineers, is obsolescent because impulse
responses and transfer functions have
been concisely published (McCollum and
Brown, 1965). Furthermore, the advent
of integrated circuits has meant that
inductance is seldom included in new
designs, and that circuits containing more
than two or three elements have become
less common. Mature programs are also
available for step-by-step integration of
circuit differential equations.

On the numerical side the Laplace
transform has also been largely eroded
by use of the Fourier transform. This
is because angular frequency ω is a real
quantity, mathematically, and it ought to
be possible to compute the behavior of an
electrical, acoustical, or mechanical system
without reference to a complex frequency
ω − iσ . Certainly the Laplace transform is
computable over its strip of convergence
from any single slice therein. Nevertheless
practitioners of control theory find it
convenient to think on the complex plane
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of s in terms of poles and zeros that are
off the real frequency axis, and theirs is
one tradition that keeps the complex plane
alive; the convenience stems from the fact
that the Laplace transform is analytic, and
thus specifiable by its poles and isolated
zeroes. There are problems that used to
be handled by the Laplace transform,
paying strict attention to the strip of
convergence, because the Fourier integral
did not converge; but these situations
are now universally handled by Fourier
methodology with the aid of delta-function
notation for impulses and their derivatives,
and no longer call for special treatment.
When it comes to discrete computing,
the impulse, and its associated spectrum
reaching to indefinitely large frequencies,
may in any case be forgotten. Thus, it has
been wondered (Körner, 1988) ‘‘whether
the Laplace transform will keep its place
in the standard mathematical methods
course for very much longer,’’ but it will
never die out; a new balance between
curricular segments will be struck.

5
Convergence Conditions

Much attention used to be given to the
existence of the Fourier integral because
of paradoxes with such wanted entities
as f (x) = 1, f (x) = cos x, or f (x) = δ(x),
where δ(x) is the unit impulse at x = 0,
none of which possessed a Fourier inte-
gral. Today we reason as a physicist would,
recognizing that a voltage waveform can-
not have a value of 1 V forever, but must
have turned on at some time in the past and
will turn off at some time in the future.
The finite-duration function does have a
Fourier transform. We then consider a se-
quence of waveforms of longer and longer
duration and the corresponding sequence

of transforms, arriving at the concept of
‘‘transforms in the limit.’’ This attitude
has received mathematical respectability
under the rubric of generalized functions
(Lighthill, 1958) and is the basis for say-
ing that the Fourier transform of δ(x) is
1 [while conversely the Fourier transform
of 1 is δ(s)]. The elaborate conditions for
the existence of a transform when gener-
alized functions were excluded have thus
lost interest. Even δ′(x) now has the indis-
pensable transform i2πs; under the rules
of analysis δ′(x) was an unthinkable en-
tity – certainly not qualifying as a function
of x; to physicists it was a commonplace
dipole, and in mechanics a local load such
as a moment applied at a point on a beam.

The fact that the Laplace integral con-
verged when the Fourier transform did
not gave the Laplace transform a certain
prestige, even though convergence was
achieved at the cost of tapering the given
function by a real, exponentially decaying
factor. In addition, the strip of convergence
had to be specified for the complex trans-
form variable s. The convenience of dealing
with the real and physically intuitive fre-
quency as the transform variable has
shifted preference in favor of the Fourier
and Hartley transforms. The only effective
condition for the existence of a Fourier or
Hartley transform today is that the given
function should have a physical interpreta-
tion, or be representable by a sequence of
physically interpretable functions whose
individual transforms approach a limit.
Consequently it is no longer necessary to
require that f (x) be absolutely integrable
(∫∞−∞ |f (x)| dx exists) or that any discon-
tinuities be finite; on the contrary, the
‘‘shah function’’ III(x) = �n=∞

n=−∞δ(x − n),
which could be said to possess an infinite
number of infinite discontinuities, now
has a Fourier transform thanks to the the-
ory of generalized functions (Bracewell,
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1956). Interestingly, the Fourier transform
of III(x) is III(s).

The function sin(x−1) raises a conver-
gence question as a result of possessing an
infinite number of maxima in any interval
containing x = 0; this sort of behavior is
without interest in the world of numeri-
cal computing but of considerable interest
to the theory of integration. Possession of
an infinite number of maxima does not
in itself define the convergence condition
because the Fourier integral may converge
if the amplitude of the oscillation dies
down so that the function exhibits bounded
variation. Nor does bounded variation de-
fine the convergence condition because
Lipschitz has demonstrated functions of
unbounded variation whose Fourier in-
tegrals converge. However, the Lipschitz
condition is not the ultimate convergence
condition, as has been shown by Dini
(Bracewell, 1986a). This style of analysis
has lost practitioners as activity has moved
in the direction of finite, or discrete, math-
ematics.

6
Why Transforms Are Useful

Many problems can be posed in the form
of a differential equation (or a difference
equation, or an integral equation, or an
integro-differential equation) that has to
be solved for some wanted function sub-
ject to stated boundary conditions or initial
conditions. Laplace’s equation in three
dimensions describes the potential dis-
tribution set up by an array of electric
charges, and the diffusion equation de-
scribes the heat flow distribution set up by
a given distribution of heat. By applying
a transformation such as the Laplace or
Fourier to each term of such an equa-
tion, we arrive at a new equation that

describes the transform rather than the
original wanted function. The interesting
thing about this is that the new equation
may be simpler, sometimes solvable just
by algebra. We solve that equation for the
transform of the solution, and then invert.
Not all differential equations simplify in
this way; those that do are characterized by
linearity and coordinate invariance (such
as time invariance), and the presence of
these characteristics in nature is responsi-
ble for a good deal of the numerical activity
with transforms. Transfer functions, such
as the frequency response curves of am-
plifiers, are corresponding manifestations
of these same characteristics. The passage
of a speech waveform through an ampli-
fier is described by a differential equation
that may be hard to solve; but having
used a Fourier transform to go to the
frequency domain, we apply the transfer
function, frequency by frequency, by com-
plex multiplication to get the transform of
the output. Then retransforming gives the
output waveform.

There is also a differential equation,
describing the bending of a beam under
the influence of a load distribution, that
may be thought of as a spatial input
analogous to an input waveform, while
the curve of deflection is analogous to
the output waveform. Although Hooke’s
law, the first of the linear laws, may
apply, we do not use transform methods.
If we analyze the load distribution into
spatially sinusoidal components and find
the bending response to each component,
and linearly sum the responses, we will
get the desired shape of the bent beam,
but there is no transfer function to
facilitate getting the individual responses
by simple algebra. The reason is that we
have linearity but not space invariance – if
we shift the load, the response does
not shift correspondingly without change
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of shape; a sinusoidal load does not
produce sinusoidal deflection. If, on the
contrary, we delay the input to an amplifier
or a vibratory mechanical system, the
response is correspondingly delayed but
is unchanged as to shape; furthermore,
a sinusoidal input produces a sinusoidal
output.

7
Fields of Application

Fourier (Grattan-Guinness, 1972) origi-
nally thought of representing the tem-
perature on a heat-conducting bar as a
sum of sinusoids. To avoid a problem
of integration he considered the bar to
be bent around on itself in a large cir-
cle, a distortion that is not harmful to
the discussion of any given finite straight
bar because the arc of interest can be
made as straight as you wish by taking
the circle large enough. Since the tem-
perature distribution on the ring is of
necessity now periodic in space, only a
fundamental and harmonics need be con-
sidered, plus the constant temperature a0

representing the mean temperature. As
time elapses, the temperature distribu-
tion varies as the heat flows under the
influence of the temperature gradients, ul-
timately approaching the uniform value
a0 in the limit. Fourier found that the
component sinusoids decay exponentially
with a time constant proportional to the
spatial period, or wavelength, the nodes
of each sinusoid remaining fixed. By at-
tenuating each component in accordance
with the elapsed time, and summing, one
gets the same result as if the spatially vari-
able heat flow were followed in real time.
This is an example of the duality of the
function domain (space domain in this in-
stance) and the transform domain (spatial

frequency domain) that permeates Fourier
applications.

Music can be thought of in terms of
the wave form of the wave that con-
veys the sound through the air (function
domain), or in terms of the harmonic
constituents (spectral domain) that are
separately discernible by the ear and are
treated separately by an amplifier. In crys-
tallography there is the arrangement of the
atoms in space (crystal lattice domain) and
the spatial Fourier components (reciprocal
lattice domain) which, under illumination
by x rays or neutron beams, evidence them-
selves by diffraction at defined angles.
Image formation with cameras and radio
telescopes can be conceived as operating
on the object domain, or ‘‘sky plane,’’ or we
can think in terms of complex coherence
measurements in the transform domain.
All these dual modes of thought, under
their respective terminologies, are fully
equivalent; it helps to be familiar with both
and to be able to translate from one domain
to the other. In addition, it is most help-
ful to be able to translate between fields,
converting a problem in one subject into
the analogous problem in another subject
where the solution may be intuitively ob-
vious. As an example, persons who know
very well that the diffraction from a pair
of side-by-side pinholes is sinusoidal in
space may not know that the spectrum of a
pair of audible clicks in succession is sinu-
soidal in frequency. How much richer this
knowledge becomes when they are able to
translate from acoustics to optics and vice
versa!

As a formal illustration of the method-
ology let us calculate the response of an
electric circuit consisting of an inductance
L in series with a resistance R to which
a voltage impulse of strength A is applied
at t = −1.5. Equating the sum of the volt-
ages in the circuit to zero, as taught by
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Kirchhoff, gives the differential equation

Aδ(t) = L
di

dt
+ Ri,

where i(t) is the current flow in response
to the applied voltage. Taking the Fourier
transforms term by term (Table 1) we find
that

Aei2π×1.5s = i2πsLI(s) + RI(s),

where I(s) is the transform of the wanted
current. Solving this algebraic equation
gives

I(s) = Aei2π×1.5s

R + i2πLs
,

and taking the inverse Fourier transforms
of both sides gives

i(t) = A

L
e−R(t+1.5)/LH(t + 1.5).

The transform involved is illustrated
in Table 2 for the Fourier transform.
The method for solving the same prob-
lem by the Laplace transform is similar
but involves reference to convergence
of the integral, a complication that is
circumvented when generalized function
theory is combined with the Fourier
integral.

Newton showed how to split sunlight
into its constituent colors with a prism,
where we think in the spatial domain,
but there is another way that we learned
from Michelson that is explicable in the
time domain. We split a beam of light,
and then recombine the two beams on
a photodetector, but not before a con-
trolled delay is introduced into one of
the beams, for example, by retroreflec-
tion from a movable plane mirror. The
detector output reveals the autocorre-
lation of the light beam from which,
by using the autocorrelation theorem
(Table 1) and numerical Fourier transfor-
mation, we get the spectral distribution of
power.

8
The Hartley Transform

Table 2 illustrates by example that the
Fourier transform in general is a complex
function of the real transform variable s;
consequently two transform curves must
be drawn, one for the real part and
one (broken) for the imaginary part. The
example f (τ ) for the discrete Fourier
transform is based on samples of the
previous f (x). Imaginary values of the
discrete transform F(v) are shown as
hollow circles. Three features may be
noted: no matter how closely samples are
spaced, some detail can be missed; no
outlying parts beyond a finite range are
represented; the indexing convention 0 to
N − 1 has the effect of cutting off the left
side of F(s), translating it to the right, and
reconnecting it. To convey the nature of
this third comment, the points for τ > N/2
have been copied back on the left.

The Hartley transform differs from the
Fourier transform in that the kernel is
the real function cas 2πsx instead of
exp(−i2πsx). The cas function, which was
introduced by Hartley (1942), is defined
by casx = cos x + sin x and is simply a
sinusoid of amplitude

√
2 shifted one-eight

of a period to the left. The consequences of
the change are that the Hartley transform
is real rather than complex and that
the transformation is identical to the
inverse transformation. As may be obvious
from the graphical example, the Hartley
transform contains all the information that
is in the Fourier transform and one may
move freely from one to the other using
the relations

H(s) = Re F(s) − Im F(s)

and

2F(s) = H(s) + H(N − s) − iH(s)

+ iH(N − s).
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The convenience that arises from famil-
iarity with complex algebra when one is
thinking about transforms loses its value in
computing. What one thinks of compactly
as one complex product still means four
real multiplications to computer hardware,
which must be instructed accordingly.

The Hartley transform is fully equivalent
to the Fourier transform and can be
used for any purpose for which the
Fourier transform is used, such as spectral
analysis. To get the power spectrum from
the complex-valued Fourier transform one
forms [Re f (s)]2 + [ImF(s)]2; starting from
the real-valued Hartley transform one
forms [H(s)]2 + [H(−s)]2. The phase is
obtained from

tan φ(s) = Im(s)

Re(s)

=
[

H(−s)

H(s)

]
− π

4
.

We see that for purposes of spectral
analysis by the Hartley transform it is not
necessary to work with complex quantities,
since power spectrum is an intrinsic
property independent of choice of kernel;
the phase depends on the x origin which is
locked to the peak of the cosine function in
one case and the peak of the cas function
in the other, hence the term π/4.

9
The Fast Fourier Transform

Around 1805 C.F. Gauss, who was then
28, was computing orbits by a technique
of trigonometric sums equivalent to to-
day’s discrete Fourier synthesis. To get the
coefficients from a set of a dozen regu-
larly spaced data he could if he wished
explicitly implement the formula that we
recognize as the discrete Fourier trans-
form. To do this he would multiply the

N data values f (τ ) by the weighting fac-
tors exp(−i2πvτ), sum the products, and
repeat these N multiplications N times,
once for each value of v, making a to-
tal of N2 multiplications. But he found
that, in the case where N is a composite
number with factors such that N = n1n2,
the number of multiplications was re-
duced when the data were partitioned
into n2 sets of n1 terms. Where N was
composed of three or more factors a fur-
ther advantage could be obtained. Gauss
(1876) wrote, ‘‘illam vero methodum cal-
culi mechanici taedium magis minuere,
praxis tentatem docebit.’’ He refers to
diminishing the tedium of mechanical cal-
culation, as practice will teach him who
tries. This factoring procedure, usually
into factors of 2, is the basis of the fast
Fourier transform (FFT) algorithm, which
is explained in many textbooks (Bracewell,
1986a; Elliott and Rao, 1982; IEEE, 1979;
Nussbaumer, 1982; Press et al., 1986; Ra-
biner and Gold, 1975) and is available
in software packages. The fast method
(Cooley and Tukey, 1965) burst on the
world of signal analysis in 1965 and was
for a time known as the Cooley-Tukey
algorithm (IEEE, 1967), but as the inter-
esting history (Heideman et al., 1985) of
prior usage in computing circles became
known the term FFT became univer-
sal.

Most FFT programs in use take advan-
tage of factors by adopting a choice of N
that is some power P of 2, i.e., N = 2P. The
user may then design the data collection
to gather, for example, 256 = 28 readings.
Alternatively, when such a choice does
not offer, a user with 365 data points can
simply append sufficient zeros to reach
512 = 29 values. This might seem waste-
ful, but an attendant feature is the closer
spacing of the resulting transform sam-
ples, which is advantageous for visual
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presentation. Perhaps one could do the
job faster, say by factoring into 5 × 73.
There are fast algorithms for 5 points
and for many other small primes, but
not for 73, as far as I know; it is sim-
ply not practical to store and select from
lots of special programs for peculiar val-
ues of N. On the other hand, a significant
speed advantage is gained if one elects
more rigidity rather than more flexibility,
tailors one’s data collection to a total of
4P values, and uses what is referred to as
a radix-4 program. Since 1024 = 45, the
radix-4 approach is applicable to N = 1024
data samples (or to 256 for example),
but not to 512 unless one appends 512
zeros. Packing with just as many zeros
as there are data is commonly practised
because twice as many transform values
result from the computation, and when
the power spectrum is presented graphi-
cally as a polygon connecting the computed
values the appearance to the eye is much
smoother.

Much practical technique is involved. If
the sound level of an aircraft passing over
a residential area is to be recorded as a
set of measurements equispaced in time,
the quantity under study begins and ends
at zero value. But in other cases, such
as a record of freeway noise, the noise is
present when measurements begin and
is still there when they cease; if the N
values recorded are then packed with ze-
ros, a discontinuity is introduced whose
effects on the transform, such as over-
shoot and negative-going oscillation, may
be undesirable. Packing with plausible (but
unobserved) data can eliminate the unde-
sired artifacts and is probably practised
in more cases than are admitted to. Au-
thors often mitigate the effects of implied
discontinuities in the data by multiply-
ing by a tapering function, such as a set
of binomial coefficients, that approaches

zero at both the beginning and end of the
data taken; they should then explain that
they value freedom from negatives more
than accuracy of amplitude values of spec-
tral peaks or than resolution of adjacent
peaks.

The FFT is carried out in P successive
stages, each entailing N multiplications,
for a total of NP. When NP is compared
with N2 (as for direct implementation
of the defining formula) the savings
are substantial for large N and make
operations feasible, especially on large
digital images, that would otherwise be
unreasonably time consuming.

10
The Fast Hartley Algorithm

When data values are real, which is very
commonly the case, the Fourier transform
is nevertheless complex. The N transform
values are also redundant (if you have the
results for 0 ≤ v ≤ N/2 you can deduce
the rest). This inefficiency was originally
dealt with by the introduction of a variety
of efficient but unilateral algorithms that
transformed in half of the time of the
FFT, albeit in one direction only; now we
have the Hartley transform, which for real
data is itself real, is not redundant, and
is bidirectional. The Hartley transform is
elegant and simple and takes you to the
other domain, regardless of which one
you are in currently (Bracewell, 1986b;
Buneman, 1989).

When a Hartley transform is obtained,
there may be a further step required
to get to the more familiar complex
Fourier transform. The time taken is al-
ways negligible, but even so the step is
usually unnecessary. The reason is that
although we are accustomed to think-
ing in terms of complex quantities for



98 Fourier and Other Mathematical Transforms

convenience, it is never obligatory to
do so. As a common example, suppose
we want the power spectrum, which is
defined in terms of the real and imag-
inary parts of the Fourier transform
by P(v) = [ReF(v)]2 + [ImF(v)]2. If we al-
ready have the Hartley transform H(v),
then it is not necessary to move first
to the complex plane and then to get
the power spectrum; the desired result
is obtained directly as {[H(v)]2 + [H(N −
v)]2}/2. Likewise phase φ(v), which is
required much less often than P(v), is
defined by tan[φ(v)] = ImF(v)/ReF(v); al-
ternatively, one can get phase directly
from tan[φ(v) + π/4] = H(N − v)/H(v),
thus circumventing the further step
that would be necessary to go via the
well-beaten path of real and imaginary
parts.

To illustrate the application to power
spectra take as a short example the data
set {1 2 3 4 5 6 7 8}, whose discrete Hartley
transform is

H(v) = { 4.5 −1.707 −1 −0.707

−0.5 −0.293 0 0.707 }.
The first term, 4.5, is the mean value
of the data set. The power spectrum
for zero frequency is 4.52, for fre-
quency 1/8(v = 1), P(1) = (−1.707)2 +
(0.707)2, for frequency 2/8(v = 2), P(2) =
(−1)2 + 02. Similarly P(3) = (−0.707)2 +
(−0.293)2 and P(4) = (−0.5)2 + (0.5)2.
The highest frequency reached is 4/8, cor-
responding to a period of 2, which is the
shortest period countenanced by data at
unit interval.

The encoding of phase by a real trans-
form has added a physical dimension to the
interest of the Hartley transform, which
has been constructed in the laboratory
with light and microwaves (Villasenor and
Bracewell, 1987, 1988, 1990; Bracewell,

1989; Bracewell and Villasenor, 1990) and
has suggested a new sort of hologram.

11
The Mellin Transform

The vast majority of transform calculations
that are done every day fall into categories
that have already been dealt with and
much of what has been said is applicable
to the special transforms that remain
to be mentioned. The Mellin transform
has the property that FM(n + 1) is the
nth moment of f (x) when n assumes
a finite number of integer values 1, 2,
3, . . . . The special value FM(1) is the
zeroth moment of, or area under, f (x).
But the transform variable does not have
to be integral, or even real, so one can
think of the Mellin transform as a sort of
interpolate passing through the moment
values. When the scale of x is stretched
or compressed, for example, when f (x) is
changed to f (ax), the Mellin transform
becomes a−2FM(s), a modification that
leaves the position of features on the s axis
unchanged and is useful in some pattern-
recognition problems.

If we plot f (x) on a logarithmic scale
of x, a familiar type of distortion re-
sults, and we have a new function f (e−x)

whose Laplace transform is exactly the
same as the Mellin transform of f (x).
An equally intimate relation exists with
the Fourier transform. Consequently the
FFT may be applicable in numerical situa-
tions. Because of the intimate relationship
with moments and with spectral anal-
ysis, Mellin transforms have very wide
application. A specific example is given
by the solution of the two-dimensional
Laplace equation expressed in polar co-
ordinates, namely ∂2V/∂r2 + r−1∂V/∂r +
r−2∂2V/∂θ2 = 0. Multiply each term by
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rs−1 and integrate with respect to r from 0
to ∞. We get d2FM/dθ2 + s2FM = 0. Solve
this for FM() and invert the transform to
get the solution. In this example, a partial
differential equation is converted to a sim-
ple differential equation by the transform
technique.

12
The Hilbert Transform

As the example in Table 2 shows, the
Hilbert transform, or quadrature func-
tion, of a cosinusoidal wave packet is a
similar, but odd, waveform sharing the
same envelope. But what do we mean
by the envelope of an oscillation that
only touches the intuitively conceived en-
velope at discrete points? The Hilbert
transform provides an answer in the form√

[f (x)]2 + [fHi(x)]2. Likewise, the original
wave packet reveals its phase at its zero
crossings. But what is the phase at in-
termediate points? The Hilbert transform
supplies an instantaneous phase φ in the
form tan φ = fHi(x)/f (x). The operation T
for the Hilbert transform is simply convo-
lution with −1/πx. It is known that the
Fourier transform of −1/πx is i sgn s,
where sgn s is 1 for s > 0 and −1 for s < 0.
Therefore, by the convolution theorem
(last line of Table 1), according to which
the Fourier transform of a convolution is
the product of the separate Fourier trans-
forms, it would seem that a fast Hilbert
transform of f (x) could be calculated as fol-
lows. Take the FFT of f (x), multiply by i for
0 < v < N/2 and by −i for N/2 < v < N,
set F(0) and F(N/2) equal to zero, and
invert the FFT to obtain the Hilbert trans-
form. This sounds straightforward, but the
procedure is fraught with peril, for two
reasons. We are proposing to multiply a
given function f (x) by −1/π [(x + const)]

and to integrate from −∞ to ∞, but we
are only given N samples. The extrem-
ities of −1/πx approach zero and have
opposite signs, but there is infinite area
under these tails no matter how far out
we start. Consequently we are asking two
oppositely signed large numbers to cancel
acceptably. How can we expect satisfac-
tion when the convolving function −1/πx
is not symmetrically situated about the
extremes of the data range? The second
reason is that we are asking for similar
cancellation in the vicinity of the pole of
1/x. Experience shows that satisfactory en-
velopes and phases only result when f (x)
is a rather narrow-band function. Under
other circumstances an N-point discrete
Hilbert transform can be defined and will
give valid results free from worries about
the infinities of analysis, but the outcome
may not suit expectation.

An optical wave packet exp(−π t2/T2)

sin 2πvt of equivalent duration T easily
meets the narrow-band condition when
the duration T is much greater than the
wave period 1/v; it has a Hilbert trans-
form exp(−π t2/T2) cos 2πvt. The square
root of the sum of the squares yields
exp(−π t2/T2) for the envelope, in full ac-
cord with expectation.

13
Multidimensional Transforms

The two-dimensional Fourier and Hartley
transforms are defined respectively by

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)

× e−i2π(ux+vy)dxdy,

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)

× cas[2π(ux + vy)]dxdy,



100 Fourier and Other Mathematical Transforms

where the transform variables u and v
mean spatial frequency components in
the x and y directions. Work with images
involves two dimensions, electrostatics
and x-ray crystallography involve three,
and fluid dynamics involves four. Multi-
dimensional transforms can be handled
numerically with a one-dimensional FFT
subprogram, or a fast Hartley, as follows.
Consider an N × N data array. Take the
1-D (one-dimensional) transform of each
row and write the N transform values
in over the data values. Now take the
1-D transform of each resulting column
(Bracewell, 1984; Bracewell et al., 1986).
In three and four dimensions the pro-
cedure is analogous (Hao and Bracewell,
1987; Buneman, 1989). Further simple
steps lead to the Hartley transform and to
the real and imaginary parts of the Fourier
transform if they are wanted, but usu-
ally they are not; more often the quadratic
content (power spectrum) suffices.

When a 2-D function has circular
symmetry, as commonly arises with the
response functions of optical instruments,
not so much work is required, as explained
below in connection with the Hankel
transform. Cylindrical symmetry in 3-D
is essentially the same, while spherical
symmetry in 3-D is also referred to below.

14
The Hankel Transform

In two dimensions, where there is cir-
cular symmetry as expressed by a given
function f (r), the two-dimensional Fourier
transform is also circularly symmetrical;
call it FHa(s). It can be arrived at by taking
the full 2-D transform as described earlier,
or it can be obtained from a single 1-D
Hankel transform as defined in Table 2.
The inverse transform is identical. There

is apparently no opening for the Hart-
ley transform because in the presence of
circular symmetry the 2-D Fourier trans-
form of real data contains no imaginary
part. The kernel for the Hankel trans-
form is a zero-order Bessel function, which
is a complication that hampers the FFT
factoring approach, but there is an ele-
gant sidestep around this that is explained
below in connection with the Abel trans-
form. Under spherical symmetry, the 3-D
Fourier transform reduces to a different
one-dimensional transform

4π

∫ ∞

0
f (r)sinc(2sr)r2 dr. (5)

The inverse transform is identical.
To illustrate by a well-known result

from optical diffraction we consider a
telescope aperture f (r) representable as
rect(r/D), a two-dimensional function that
is equal to unity over a circle of diameter
D. The Hankel transform is D2jincDs,
the familiar Fraunhofer diffraction field
of a circular aperture. The jinc function
[jincx = J1(πx)/2x], which is the Hankel
transform of the unit rectangle function
of unit height within a radius of 0.5, has
the property that jinc 1.22 = 0; this is the
source of the constant in the expression
1.22λ/D for the angular resolution of a
telescope.

15
The Abel Transform

Most commonly, although not always, the
Abel transform arises when a 2-D function
g(x, y) has circular symmetry, as given by
f (r). The Abel transform (Table 2) then
simplifies to FA(x) = ∫∞−∞ g(x, y) dy. In
other words, if the given f (r) is represented
by a square matrix of suitably spaced
samples, then the Abel transform results
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when the columns are summed. There
might not seem to be any future in trying
to speed up such a basic operation, apart
from the obvious step of summing only
half-way and doubling. However, when it is
remembered that for each of N2/8 matrix
elements we have to calculate

√
x2 + y2 to

find r, and thence f (r), it gives pause.
The alternative is to proceed by equal
steps in r rather than in y; then the
oversampling near the x axis is mitigated.
But the variable radial spacing of elements
stacked in a column needs correction by
a factor r/

√
r2 − s2, which takes more

time to compute than
√

x2 + y2. This is
an excellent case for decision by using
the millisecond timer found on personal
computers. Of course, if many runs are
to be made, the factors r/

√
r2 − s2 can be

precomputed and the preparation time can
be amortized over the successive runs.

Figure 1 shows a given function g(x, y)
and its one-dimensional projection (la-
beled P) which is derived by integrating
along the y axis in the (x, y) plane. In-
tegrating along the y′ axis of a rotated
coordinate system gives the projection P′.
Now if g(x, y) were circularly symmetrical,
being a function f (r) of r only, then the
projections P and P′ would be identical
and equal to the Abel transform of f (r).
This is the graphical interpretation of the
Abel transform.

Applications of the Abel transform arise
wherever circular or spherical symmetry
exists. As an example of the latter consider
a photograph of a globular cluster of stars
in the outer reaches of the galaxy. The
number of stars per unit area can be
counted as a function of distance from the
center of the cluster; this is the projected
density. To find the true volume density

Fig. 1 Illustrating the projection-slice theorem, which states that if a
distribution g(x, y) has a projection P′, in the y′ direction, its 1-D Fourier
transform is the slice S′ through the 2-D Fourier transform of g(x, y). The set
of projections P′ for all inclination angles of the (x′, y′) coordinates
constitutes the Radon transform. In the presence of circular symmetry
where g(x, y) = f (r), the projection P in any direction is the Abel transform
of f (r). The 1-D Fourier transform of P is the slice S in any direction; this
slice S is then the Hankel transform of f (r). Thus the Abel, Fourier, and
Hankel transforms form a cycle of transforms.
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as a function of radius requires taking the
inverse Abel transform (Table 2) of the
projected density.

With the Abel transform under control
we can now see a way of doing the Hankel
transform without having to call up Bessel
functions. The Abel, Fourier, and Hankel
transforms form a cycle known as the FHA
cycle (Bracewell, 1956), so that if we take
the Abel transform and then take the FFT
we get the Hankel transform; the theorem
is ∫ ∞

0
drJ0(2πξ r)r

∫ ∞

−∞
dsei2πrs

×
∫ ∞

s

dx2xf (x)√
x2 − s2

= f (ξ).

The FFT required will not be complex,
except in the extraordinary case of complex
2-D data; consequently it will in fact be
appropriate to use the fast Hartley to get the
Hankel transform. Because of symmetry
the result will also be exactly the same as
obtained with the FFT, if after taking the
FFT we pay no attention to the imaginary
parts that have been computed, which
should all be zero or close to zero.

The FHA cycle of transforms is a spe-
cial case of the projection slice theorem,
a theorem which refers to the more gen-
eral situation where g(x, y) is not circularly
symmetrical. Circular symmetry charac-
terizes instruments, especially optical in-
struments, which are artifacts. Lack of
symmetry characterizes data; tomographic
data will be taken as the illustration for the
projection-slice theorem.

16
Tomography and the Radon Transform

Consider a set of rotated coordinates
(x′, y′) centered on the (x, y) plane,
but rotated through θ . The expression

∫∞−∞ g(x, y) dy given for the Abel trans-
form, representing a line integral in the
y direction at a given value of x, would
equal the line integral ∫∞−∞ g(x, y) dy′ in
the rotated direction y′ provided g(x, y) had
circular symmetry as specified for the Abel
transform. But when g(x, y) does not have
symmetry, then the line-integral values de-
pend both on x′ and on the angle θ (Fig. 1).
The set of integrals with respect to dy′ is
the Radon transform of g(x, y), named after
Johann Radon (1917). Such integrals arise
in computed x-ray tomography, where a
needle-beam of x rays scans within a thin
plane section of an organ such as the brain
with a view to determining the distribu-
tion of absorption coefficient in that plane.
If there are N2 pixels for which values
have to be determined, and since one scan
will give N data, at least N different di-
rections of scan spaced 180◦/N apart will
be needed to acquire enough data to solve
for the N2 unknowns. In practice more
than 2N directions are helpful in order to
compensate for diminished sample den-
sity at the periphery. To compute a Radon
transform is easy; the only tricky part is
summing a given matrix along inclined
directions. One approach is to rotate all
the matrix and interpolate onto a rotated
grid, for each direction of scan; but this
may be too costly. At the other extreme
one sums, without weighting, the matrix
values lying within inclined strips that, in-
dependently of inclination, preserve unit
width in the direction parallel to the nearer
coordinate direction. How coarse the incre-
ment inclination angle may be depends on
acceptability as judged by the user in the
presence of actual data.

The harder problem is to invert the line-
integral data to retrieve the wanted absorp-
tion coefficient distribution. A solution
was given by Radon (1917). Later Cormack
(1963, 1964, 1980), working in the context
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of x-ray scanning of a solid object, gave
a solution in terms of sums of transcen-
dental functions. Other solutions include
the modified back-projection algorithm
(Bracewell, 1956; Bracewell and Riddle,
1967) used in CAT scanners (Deans, 1983;
Brooks and Di Chiro, 1976; Rosenfeld and
Kac, 1982). The algorithm depends on the
projection-slice theorem (see Fig. 1). Ac-
cording to this theorem (Bracewell, 1956)
the 1-D Fourier transform of the projection
P′ (or scan) of g(x, y) in any one direction
is the corresponding central cross section
or slice S′ through the 2-D Fourier trans-
form of the wanted distribution g(x, y).
The proof is as follows. Let the 2-D Fourier
transform of g(x, y) be G(u, v) as defined
by

G(u, v) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)

× e−i2π(ux+vy)dxdy.

Setting v = 0, so as to have the representa-
tion G(u, 0) for the slice S, we get

G(u, 0) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)

× e−i2πuxdx dy

=
∫ ∞

−∞

[∫ ∞

−∞
g(x, y) dy

]

× e−i2πux dx

=
∫ ∞

−∞
P(x)e−i2πux dx,

where P(x) is the projection of g(x, y) onto
the x axis. Thus the 1-D transform of the
projection P(x) is the slice G(u, 0) through
the 2-D transform of g(x, y). If we rotate
the coordinate axes to any other orientation
(x′, y′) we see that the same proof applies.

Because the density of polar coordinate
samples is inversely proportional to radius
in the Fourier transform plane, a simple
correction factor followed by an inverse 2-D

Fourier transform will yield the solution.
But a way was found (Bracewell and Riddle,
1967; Brooks and Di Chiro, 1976), based
on this theoretical reasoning, to avoid
numerical Fourier transforms entirely. An
equivalent correction term, arrived at by
convolving each projection P′ with a few
coefficients, can be directly applied to each
P′, after which the modified projections
are accumulated on the (x, y) plane by
back projection to reconstitute g(x, y). Back
projection means assigning the projected
value at x′ to all points of the (x, y) plane
which, in the rotated coordinate system,
have the abscissa x′. Accumulation means
summing the back-projected distributions
for all inclination angles.

17
The Walsh Transform

A function defined on the interval (0,1)
can be expressed as a sum of sines and
cosines of frequency 1, 2, 3, . . ., but can
also be expressed as a sum of many other
sets of basis functions. Among the al-
ternatives, Walsh functions (Elliott and
Rao, 1982; Walsh, 1923; Hsu and Wu,
1987) are particularly interesting because
they oscillate between values of +1, 0,
and −1, a property that is most appropri-
ate to digital circuits, telecommunications,
and radar. Furthermore, multiplication by
a Walsh function value takes much less
time than multiplication by a trigonomet-
ric function. Walsh functions, not being
periodic, are not to be confused with the
periodic square cosine and sine functions
C(x) = sgn(cos x) and S(x) = sgn(sin x);
but on a finite support they do form a com-
plete set from which any given function
can be composed. They are also orthonor-
mal (mutually orthogonal and with fixed
quadratic content, as with Fourier compo-
nents), which leads to simple relations for
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both analysis and synthesis. The Walsh (or
Walsh–Hadamard) transform has found
use in digital signal and image process-
ing and for fast spectral analysis. Fast
algorithms are available that use only
addition and subtraction and have been
implemented in hardware. A vast, enthu-
siastic literature sprang into existence in
the 1970s, a guide to which can be found
in the text by Elliott and Rao (1982).

18
The z Transform

In control theory, in dealing with signals
of the form

f (t) =
∞∑

−∞
anδ(t − n) (6)

and systems whose response to δ(t) is

h(t) =
∞∑
0

hnδ(t − n), (7)

the response g(t) is the convolution integral

g(t) =
∫ ∞

−∞
f (t′)h(t − t′) dt′. (8)

This response is a series of equispaced
impulses whose strengths are given by
�iaihn−i, an expression representable in
asterisk notation for convolution by {gn} =
{an} ∗ {hn} [in this notation the sequence
{an} sufficiently represents f (t)]. For exam-
ple, a signal {1 1 1 1 1 1 . . .} ap-
plied to a system whose impulse response
is {8 4 2 1} produces a response
{ 1 1 1 1 1 1 . . . } ∗ { 8 4 2 1 }

= { 8 12 14 15 15 15 . . . }.
This is the same rule as that which pro-
duces the coefficients of the polynomial
that is the product of the two poly-
nomials �anzn and �hnzn, as may be
verified by multiplying 1 + z + z2 + z3 +
z4 + z5 + · · · by 8 + 4z + 2z2 + z3. The z
transform of the sequence {8 4 2 1}
is, by one definition, just the polynomial

8 + 4z + 2z2 + z3; more often one sees
8 + 4z−1 + 2z−2 + z−3. If, conversely, we
ask what applied signal would produce the
response { 8 12 14 15 15 15 . . . }
we get the answer by long division:

(8 + 12z + 14z2 + 15z3

+15z4 + 15z5 + · · ·)
(8 + 4z + 2z2 + z3)

.

Occasionally, one of the polynomials may
factor, or simplify, allowing cancellation of
factors in the numerator and denominator.
For example, the z transform of the infinite
impulse response { 8 4 2 1 0.5 . . . },
where successive elements are halved,
simplifies to 8/(1 − z/2). But with mea-
sured data, or measured system responses,
or both, this never happens and the
z notation for a polynomial quotient
is then just a waste of ink compared
with straightforward sequence notation
such as { 8 12 14 15 15 15 . . . } ∗
{ 8 4 2 1 . . . }−1. Whenever sampled
data are operated on by a convolution
operator (examples would be finite dif-
ferences, finite sums, weighted running
means, finite-impulse-response filters) the
z transform of the outcome is expressible
as a product of z transforms. Thus to take
the finite difference of a data sequence one
could multiply its z transform by 1 − z
and the resulting polynomial would be the
z transform of the desired answer; in a
numerical environment one would simply
convolve the data with {1 − 1}. In control
theory and filter design, the complex plane
of z is valued as a tool for thinking about
the topology of the poles and zeroes of
transfer functions.

19
Convolution

Sequences to be convolved may be handled
directly with available subprograms for
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convolution and inverse convolution that
operate by complex multiplication in the
Fourier transform domain. When two real
sequences are to be convolved you can do
it conveniently by calling the two Hartley
transforms, multiplying term by term,
and calling the same Hartley transform
again to get the answer. Some subtleties
are involved when the sequences are of
unequal length or in the unusual event
that neither of the factors has symmetry
(even or odd) (Bracewell, 1986b). If one
of the sequences is short, having less
than about 32 elements, depending on
the machine, then slow convolution by
direct evaluation of the convolution sum
may be faster, and a shorter program will
suffice. When the Fourier transform is
used, the multiplications are complex but
half of them may be avoided because of
Hermitian symmetry. Software packages
such as CNVLV (Press et al., 1986) are
available that handle these technicalities
by calling two unilateral transforms, each
faster than the FFT, or two equivalent
subprograms; one fast Hartley transform,
which is bilateral and, conveniently for
the computer, real valued, now replaces
such packages. Fast convolution using
prime-factor algorithms is also available
if general-purpose use is not a requisite.

As an example, suppose that { 1 2 1 }
is to be convolved with { 1 4 6 4 1 },
a simple situation where we know that the
answer is the binomial sequence

{ 1 6 15 20 15 6 1 }.
If we select N = 8 for the discrete
transform calculation, the given factors
become in effect

f1(τ ) = { 1 2 1 0 0 0 0 0 }
and

f2(τ ) = { 1 4 6 4 1 0 0 0 },

respectively, where the boldface empha-
sizes the zeroth elements f1(0) and f2(0).
The sequence { 1 2 1 } is commonly
used to apply some smoothing to a data se-
quence, but since the center of symmetry
at the element 2 is offset from the origin
at τ = 0, a shift will be introduced in addi-
tion to the smoothing. Therefore it makes
sense to permute the sequence cyclically
and use

f1(τ ) = { 2 1 0 0 0 0 0 1 }.
To compute the convolution

f3 = f1 ∗ f2

= { 2 1 0 0 0 0 0 1 }
∗ { 1 4 6 4 1 0 0 0 },

we take the two 8-element Hartley trans-
forms to get the values H1 and H2
tabulated in Table 3. Multiply the corre-
sponding values as shown under H1H2

and take the Hartley transform again. The
result is as expected; notice that the peak
value 20 occurs where the peak value 6 of
f2(τ ) occurs; this is a result of the precau-
tion of centering { 1 2 1 } appropriately.
The noninteger results are a consequence
of rounding to three decimals for demon-
stration purposes, and these errors will be

Tab. 3 Performing convolution by multiplying
Hartley transforms

f1 f2 H1 H2 H1H2 f3

2 1 0.5 2 1 6
1 4 0.427 1.457 0.622 15.008
0 6 0.25 −0.5 −0.125 20
0 4 0.073 −0.043 −0.003 15.008
0 1 0 0 0 6
0 0 0.073 0.043 0.003 0.992
0 0 0.25 −0.5 −0.125 0
1 0 0.427 −1.457 −0.622 0.992
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present, though smaller, if more decimals
are retained.

20
Summary

A great analytic tradition of mathematical
transform theory has gained far-ranging
everyday importance by virtue of new
numerical possibilities opened up by
automatic computing machines.

Glossary

Alias: A sinusoid of low frequency spuri-
ously introduced by insufficient sampling
in the presence of a sinusoidal component
of semiperiod shorter than the sampling
interval.

Convolution of Two Functions: A third
function composed by spreading each
element of one given function out into
the form of the second function and
superimposing the spread components.

Discrete Transform: One suited to func-
tions, such as those constituted by equi-
spaced data samples, where the function
values occur at discrete intervals and are
usually finite in number.

Fast Fourier Transform (FFT): An algo-
rithm for computing the discrete Fourier
transform in less time than would be re-
quired to evaluate the sum of the products
indicated in the defining formula.

Frequency, Negative: A convenient fiction
arising from the representation of real
sinusoids by complex quantities. The rep-
resentation of the real function cos 2π ft
in the form 1

2 exp[i2π ft] + 1
2 exp[i2π(−f )t]

involves clockwise rotation at frequency
f and counter-clockwise rotation at fre-
quency −f .

Frequency, Spatial: The reciprocal of the
period of a periodic function of space.
Values of spatial frequency are expressed
in cycles per meter, or in cycles per radian,
according as the spatial variable is distance
or angle.

Frequency, Temporal: The reciprocal of the
period of a periodic function of time.
Values are expressed in cycles per second,
or hertz.

Heaviside Unit Step Function: A function
H(x) that is equal to zero to the left of the
origin and equal to unity to the right. The
value H(0) at the origin has no effect on the
value of integrals but may conventionally
be taken as 0.5.

Inverse Transformation: An operation that,
when applied to the transform of a
function, effectively recovers the function.

Linear Transformation: A transformation
with the property that the transform of
the sum of any two functions is the sum
of the separate transforms.

Tomography: Originally a photographic
technique for obtaining an x-ray image of a
slice of tissue within the body; now applied
in many fields to a technique of combin-
ing projections in many orientations to
reconstruct an image.

Transform: A mathematical function, each
value of which is derived from a set of
values of a given function by an explicit
operation.
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terial on any of the special branches men-
tioned in this article is Mathematical Ab-
stracts.
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Introduction

A quantitative description of the structure
of physical objects plays an important role
in our understanding of a wide range
of phenomena. In many areas such as
spectroscopy, solid-state physics, and engi-
neering physics, the symmetry properties
associated with this geometric description
lead to important insights that would be
difficult to obtain in other ways. Until
recently structures have been described
in terms of Euclidean geometry (straight
lines, planar surfaces, spherical particles,
etc.) and the associated symmetries of in-
variance to rotation, reflection, translation,
and inversion. However, many systems of
practical importance (colloids, rough sur-
faces and interfaces, polymer molecules,
etc.) cannot be described satisfactorily in
such terms. In the decade or so follow-
ing the development and popularization
of fractal geometry by Mandelbrot (1977,
1982) it has been shown that fractal geom-
etry and the associated symmetry of scale
invariance can be used to describe a wide
variety of disorderly structures.

1
Self-Similar Fractals

1.1
The Cantor Set, A Simple Example

The first and perhaps the most simple
example of a fractal (the Cantor set) is
illustrated in Fig. 1. The Cantor set can
be constructed by first taking a line and
removing the middle third. In the next
stage of this process the middle third
from each of the remaining line segments
is removed, etc. After n generations the
number of line segments has grown to
2n but their total length has decreased to

( 2
3

)n
. In the limit n → ∞ a self-similar

fractal has been constructed. If this fractal
is dilated by a factor of 3, it can be
covered by two replicas of itself. Such
self-similar fractals can be characterized
in terms of their fractal dimensionality
D given by D = log n/ log λ, where n is
the number of replicas required to cover
the fractal after dilation by a factor of λ.
For the Cantor set illustrated in Fig. 1 the
fractal dimensionality is log 2/log 3, or
about 0.6309. This is intuitively reasonable;
the Cantor set is clearly more than a
point (D = 0), since it contains an infinite
number of them, but less than a line
(D = 1), since its total length is zero. In
many applications the fractal dimension
can be thought of as the exponent that
relates mass M to length L,

M ∼ LD. (1)

Here, L is a characteristic length, such as
the radius of gyration Rg or maximum
diameter, that describes the overall spatial
extent. Equation (1) is also appropriate
for Euclidean shapes where D is now the
ordinary, Euclidean, dimensionality d.

After they were first introduced, fractals
such as the Cantor set were considered to
be very unusual objects with no possible
applications in the physical sciences. In

L

L/3 L/3

L/9 L/9 L/9 L/9

(a)

(b)

(c)

(d)

Fig. 1 Three stages in the construction of a
Cantor set with a fractal dimensionality of
log 2/log 3. The bottom line shows the
third-generation prefractal
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some areas fractals are still referred to
by terms such as ‘‘strange sets’’; this no
longer seems to be appropriate. There is
no precise definition of a fractal, but in
general terms a fractal is an object that has
the same degree of complexity on different
length scales.

In real systems the geometric scaling re-
lationships that characterize fractal objects
do not extend over an infinite range of
length scales. There are in general both
lower (ε) and upper (L) cutoff lengths
that limit the range of fractal scaling. For
example, in the case of a flexible poly-
mer molecule ε might correspond to the
monomer size and L to the radius of gyra-
tion. If the ratio L/ε is large, then fractal
geometry can be a very important asset in
our attempts to understand complex, dis-
orderly systems. If L/ε is small (say less
than one order of magnitude), then frac-
tal geometry is not likely to be of much
practical importance. However, it may still
be of considerable conceptual value if the
structure was assembled by a mechanism
that would lead to a fractal structure if it
were not perturbed by other processes.

1.2
Statistically Self-Similar Fractals

Highly organized regular fractals such as
the Cantor set (Fig. 1) that can be mapped
exactly onto themselves after a change of
length scales do not provide realistic mod-
els for describing most natural structures.
Such natural fractals have a more com-
plex disorderly structure that is self-similar
only in a statistical sense. Statistically self-
similar fractals can be described in terms
of the scaling relationships such as Eq. (1)
that describe regular, hierarchical fractals,
but these equations must now be inter-
preted statistically (for example L might be

Diffusion–limited Cl–Cl–3d
M = 10,732

260 diameters

Fig. 2 A cluster of 10,732 particles generated
using a three-dimensional off-lattice
diffusion-limited cluster-cluster aggregation
model. In this model the cluster size distribution
is allowed to evolve in a natural way

the average radius of gyration for a large
ensemble of structures of mass M).

Figure 2 shows an example of a sta-
tistically self-similar fractal structure. It
is a projection, onto a plane, of a
cluster of spherical particles generated
by a three-dimensional model for the
diffusion-limited cluster-cluster aggrega-
tion (colloidal flocculation: Meakin, 1988;
Jullien and Botet, 1986). The fractal di-
mensionality of this structure is about
1.8. Since D < 2, the projection also
has a fractal dimensionality of 1.8 (see
Sec. 1.4).

The use of correlation functions has,
for a long time, been a valuable approach
toward the quantitative characterization of
disorderly systems. For example, density
correlation functions such as Cn(r1, r2,
. . ., rn) defined as

Cn(r1, r2, . . . , rn) = 〈ρ(r0)ρ(r0 + r1) · · ·
· · · ρ(r0 + rn)〉 (2)
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can be used to describe both fractal and
nonfractal structure. Here ρ(r) is the
density at position r and the averaging
is over all possible origins (r0). For self-
similar fractals these correlation functions
have a homogeneous power-law form,

Cn(λr1, λr2, . . . , λrn) =
λ−nαCn(r1, r2, . . . , rn). (3)

The exponent α (called the co-dimen-
sionality) in Eq. (3) is d − D, where d
is the Euclidean dimensionality of the
embedding space.

By far the most frequently used corre-
lation function is the two-point density-
density correlation function C(r) given by

C(r) = 〈〈ρ(r0)ρ(r0 + r)〉〉|r|=r . (4)

Here 〈〈〉〉 implies averaging over all origins
(r0) and orientations. In addition C(r) may
be averaged over an ensemble of samples.
For a simple self-similar fractal C(r) has
the powerlaw form

C(r) ∼ r−α, (5)

and the fractal dimensionality Dα is equal
to d − α.

1.3
The Characterization of Self-Similar Fractals

Correlation functions such as those de-
scribed above can be used to measure
the fractal dimensionality. In practice only
the two-point density-density correlation
function has been used extensively for
this purpose. Figure 3(a) shows the two-
point density-density correlation functions
for clusters of different sizes generated
using the three-dimensional diffusion-
limited cluster-cluster aggregation model
illustrated in Fig. 2. These correlation

functions have the form

C(r) = r−α f
( r

L

)
, (6)

where L is the cutoff length. The cutoff
function f (x) has the form f (x) = const
for x � 1 and f (x) decays faster than any
power of x with increasing x for x � 1.
Figure 3(b) shows that the density-density
correlation function can be represented by
the scaling form

C(r) = N(D−d)/Dg
( r

N1/D

)
, (7)

where N is the number of particles in the
cluster. Since L ∼ N1/D and α = d − D,
the scaling forms in Eqs. (6) and (7)
are equivalent. [The functions f (x) and
g(x) are related by g(x) ∼ x−α f (x)]. The
results shown in Fig. 3 demonstrate that
the internal structure of the clusters and
their global mass-length scaling can be
described in terms of the same fractal
dimensionality (D � 1.8).

Most approaches to the characterization
of self-similar fractals are based on Eq. (1).
For example, if we are concerned with
structures formed by growth processes
or systems in which a large number of
objects of different sizes are present, then
the fractal dimensionality can be obtained
from the dependence of the radius of
gyration on the mass. For an ensemble
of statistically self-similar fractals we have

〈Rg〉 ∼ Mβ, (8)

where 〈Rg〉 is the mean radius of gyration
for structures of mass M. The correspond-
ing fractal dimensionality Dβ is then given
by Dβ = 1/β. In practice Dβ is obtained
by fitting the dependence of log Rg on log
M by a straight line and taking the slope of
the straight line as the exponent β. If data
are available from many realizations over a
broad range of length scales, the exponent
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Fig. 3 Scaling of the two-point density-density correlation function for clusters
generated using an off-lattice diffusion-limited cluster-cluster aggregation
model illustrated in Fig. 2. (a) The correlation functions obtained from 10,000
100-particle clusters, 1000 300-particle clusters, 100 1000-particle clusters, 39
3000-particle clusters, and 13 10,000-particle clusters. (b) How these correlation
functions can be scaled onto a common curve using the scaling form given in
Eq. (7)

β can be measured over a number of mass
intervals to assess how accurately Eq. (8)
represents the dependence of Rg on M.

Another popular approach to the mea-
surement of the fractal dimension of
self-similar fractals is to cover the fractal by
a series of grids with elements having sides
of length ε. The number of elements com-
pletely or partially occupied by the fractal
is then given by

N(ε) ∼ ε−Dε , (9)

so that the fractal dimensionality (Dε) can
be obtained by plotting log N(ε) against
log ε. In practice this method appears to
be quite sensitive to corrections associated
with a limited range of accessible length
scales, and it is difficult to obtain reliable
results.

In many cases structures grow from
a unique ‘‘seed’’ or nucleation site. In
this case the fractal dimensionality can
be obtained by measuring the mass M(l)
contained within a distance l measured
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from this unique point. For a self-similar
fractal M(l) is given by

M(l) ∼ lDγ , (10)

so that Dγ can be obtained by fitting a
straight line to the dependence of log M(l)
on log l over a suitable range of length
scales.

In principle all of the methods described
above (and many other methods) should
lead to the same value for the fractal di-
mensionality (Dα = Dβ = Dγ = Dε = D,
where D is the ‘‘all purpose’’ fractal dimen-
sionality) for simple self-similar fractals.
In practice it is a good idea to use several
approaches to measure D. This provides
an assessment of the uncertainty in D
and some indication of whether or not the
structure is indeed a self-similar fractal.
These methods can be applied equally well
to fractal structures generated by physical
phenomena or computer simulations.

1.4
Simple Rules for Self-Similar Fractals

The ability to describe complex, disorderly
structures in quantitative terms (via fractal
geometry) has stimulated scientific inter-
est in problems that only a decade or so
ago were thought to lie outside of the realm
of quantitative scientific investigation. For
a variety of model systems we now have
quantitative (frequently exact but rarely rig-
orous) results and at least the beginnings
of a sound theoretical understanding. In
attempting to apply the concepts of fractal
geometry to self-similar systems the fol-
lowing simple rules or ideas have been
found to be useful (Vicsek, 1989; Meakin,
1990).

1. Two fractals with dimensionalities D1
and D2 can be placed together in
the same region of a d-dimensional

embedding space or lattice without
contacting each other if d > D1 + D2. If
the two fractals are following a relative
trajectory with a fractal dimensionality
of Dt, then they will not contact each
other (except by accident) if d > D1 +
D2 + Dt. An important implication of
this rule is that fractals with D < 2
will be asymptotically transparent in
three-dimensional space since they will
not be contacted by ‘‘point’’ objects
(D = 0) such as photons or electrons
following linear (D = 1) trajectories.
For such fractals one part is (in general)
not hidden by another, and the fractal
dimensionality of a projection onto a
plane is the same as that of the fractal
itself. If D > 2, then the structure is
asymptotically opaque and the fractal
dimensionality cannot be determined
by analyzing a projection onto a plane.
It follows from this that the projection
of a D-dimensional fractal onto a d-
dimensional space will have a fractal
dimension of D if D < d. In this event
the area (measure) of the projection will
be proportional to the mass (measure
of the fractal in the d-dimensional
space).

2. A d1-dimensional cross section of a D-
dimensional fractal in a d2-dimensional
space will have a fractal dimensionality
of D + d1 − d2.

3. The (set theoretical) intersection of
two fractals with dimensionalities D1

and D2 in a d-dimensional space is
given by D1 + D2 − d. This rule can
be applied repeatedly to obtain the
dimensionality of the intersection of
three (D1 + D2 + D3 − 2d) or more
fractals.

4. The union of two fractals with dimen-
sionalities D1 and D2 has a fractal
dimensionality of max (D1, D2).
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5. The product of two fractals with di-
mensionalities D1 and D2 has a di-
mensionality of D1 + D2. For example,
the region swept out by a fractal of
dimensionality D following a trajec-
tory of dimensionality Dt is D + Dt (if
D + Dt < d).

6. Many random fractals can be described
in terms of a power-law distribution of
unoccupied ‘‘holes,’’

Ns ∼ s−τ , (11)

where Ns is the number of holes
of size s (s would be the number
of sites contained in the hole for a
lattice model). For such fractals the
size distribution exponent τ is given
by τ = (d + D)/d.

2
Self-Affine Fractals

2.1
The Brownian Process, A Simple Example

Fractals that have different scaling struc-
tures in different directions are said to be
self-affine. Perhaps the most simple and
most important example of a self-affine
fractal is the Brownian process B(t) that
describes the distance moved by a Brow-
nian particle in time t. It is well known
that (on average) the distance moved by a
Brownian particle in time t is proportional
to t1/2 so that the Brownian process can be
rescaled by simultaneously changing the
time scale by a factor of b and the distance
scale by a factor of b1/2. More formally
this symmetry property of the Brownian
process can be written as

B(t) ≡ b−1/2B(bt). (12)

In this equation the symbol ‘‘≡’’ should
be interpreted as meaning ‘‘statistically
equivalent to.’’

Figure 4 shows different ‘‘lengths’’ of
the same discretized Brownian process in
which the distance is increased randomly
by +1 or −1 each time the time is
incremented by 1. In each part of the figure
the horizontal (time) scale is proportional
to the total time T and the vertical
(distance) scale is proportional to T1/2. The
observation that the four rescaled curves
in Fig. 4 look ‘‘similar’’ illustrates the self-
affine scaling of the Brownian process.

The Brownian process can be general-
ized to give the ‘‘fractal’’ Brownian process
BH(t), for which the self-affine scaling
properties can be represented as

BH(t) ≡ b−HB(bt), (13)

where the exponent H is referred to as the
Hurst exponent (roughness exponent or
wandering exponent). Values of H larger
than 1

2 correspond to persistent processes
and H < 1

2 implies antipersistent fluctu-
ations. This is illustrated in Fig. 5 where
fractal Brownian curves with Hurst expo-
nents of 0.1, 0.5, and 0.9 are shown.

2.2
The Characterization of Self-Affine Fractals

In many cases (such as the Brownian pro-
cess described above) self-affine fractals
can be represented as single-valued func-
tions z(x) of the coordinates x1, x2, . . . , xn.
For this class of self-affine fractals the scal-
ing properties can be described in terms
of the correlation functions Cq(x) defined
as

(Cq(x))q = 〈|z(x0) − z(x0 + x)|q〉|x|=x.

(14)

In this case it has been assumed that
all of the coordinates (x1, . . . , xn) are
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Fig. 4 Four sections of the same (discretized) Brownian process starting at the point
[t = 0, B(t) = 0]. In each successive stage the time scale is increased by a factor of 4 and the
vertical scale by 2 (41/2)

equivalent. In general the self-affine fractal
z(x) can be characterized by taking cross
sections through the function z(x) in the
direction xm, y(xm), and measuring the
correlation function

(Cq(xm))q = 〈|y(x0
m) − y(x0

m − xm)|q〉.
(15)

For self-affine fractals the correlation
functions Cq(x) or Cq(xm) have the form

Cq(x) ∼ xH (16a)

or
Cq(xm) ∼ xHm

m . (16b)

3
Fractal Surfaces and Interfaces

3.1
Some Applications

One of the most important applications
of fractal geometry is the quantitative de-
scription of irregular surfaces and the
development of a better understanding
of their behavior. During the past few
decades the technological importance of
rough surfaces has motivated the devel-
opment of a large number of procedures
for characterizing their structure. Many of
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Fig. 5 Fractal Brownian curves generated using three different values for the
Hurst exponent [H = 0.9 (top), H = 0.5, and H = 0.1]. This figure is taken from
Feder (1988) and was provided by J. Feder

these approaches involve a large number
of parameters that are of little funda-
mental importance. In a recent review
(Nowicki, 1985) 32 parameters and/or
functions that have been used to charac-
terize rough surfaces are described. More
recently it has been shown that a wide

variety of rough surfaces generated by
processes such as fracture (Mandelbrot
et al., 1984; Charmet et al., 1989; Her-
rmann and Roux, 1990), corrosion (Op-
penheim et al., 1991; Holland-Moritz et al.,
1991), deposition (Meakin, 1987; Family
and Vicsek, 1991; Krug and Spohn, 1991),
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or fluid-fluid displacement (Feder, 1988)
can be described in terms of fractal geome-
try. Both self-similar and self-affine fractal
surfaces are common but most surfaces
appear to be self-affine.

3.2
The Growth of Rough Surfaces

In many processes of practical importance
rough surfaces are generated from a more
or less smooth surface. Under these cir-
cumstances the surface roughness can
often be described in terms of the cor-
relation lengths ξ⊥ and ξ‖ and the manner
in which they grow. The correlation length
ξ⊥ describes the amplitude of the surface
roughness in a direction perpendicular to
the general direction of the surface and
ξ‖ is the distance over which fluctuations
in the surface height persist in a direction
parallel to the coarse-grained surface. The
length ξ⊥ can be defined as

ξ2⊥ = 〈h2〉 − 〈h〉2, (17)

where h(x) is the height of the surface
above (or below) position x on the initially
smooth surface.

For many simple processes the corre-
lation length ξ⊥ grows algebraically with
increasing time

ξ⊥ ∼ tω. (18)

For self-affine surfaces the correlation
lengths ξ⊥ and ξ‖ are related by

ξ⊥ ∼ ξH‖ , (19)

where H is the Hurst exponent. In some
cases surface properties in the x and y
directions parallel to the surface may be
quite distinct so that Eq. (17) may be
replaced by

ξ⊥ ∼ ξHx
x ∼ ξ

Hy
y . (20)

In some simple cases the amplitude of
the surface roughness (ξ⊥) may grow
indefinitely according to Eq. (18); but in
many cases ξ⊥ is limited by other physical
processes, and this limits the range of
length scales over which fractal scaling
can be observed.

Simple model systems that are quite
well understood are used to illustrate
how rough surfaces can be characterized
using fractal geometry and scaling ideas in
Secs. 3.3 and 3.4.

3.2.1 Self-Similar Rough Surfaces
The invasion percolation model (Lenor-
mand and Bories, 1980; Wilkinson and
Willemsen, 1983; Feder, 1988) provides a
simple description of the slow displace-
ment of a wetting fluid by a nonwetting
fluid in a porous medium. In the site-
invasion percolation model the sites on
a lattice are assigned random ‘‘thresh-
old’’ values at the start of a simulation.
At each step in the simulation the un-
occupied perimeter site with the lowest
threshold value is filled to represent the
fluid-fluid displacement process (unoccu-
pied perimeter sites are unoccupied sites
with one or more occupied nearest neigh-
bors). In the two-dimensional version of
this model the displacement pattern is
self-similar with a fractal dimensional-
ity of 91

48 (about 1.89), or about 1.82 if
growth is not allowed to take place in re-
gions that have been surrounded by the
growing cluster. The invasion front (outer
perimeter) has a fractal dimensionality of
4
3 (Grossman and Aharony, 1986; Saleur
and Duplantier, 1987; Coniglio et al., 1987)
for both versions of the model (with and
without ‘‘trapping’’).

If the fluid-fluid displacement processes
take place in a vertical or inclined cell and
the two fluids have different densities, the
process may be either stabilized (Birovljev



Fractal Geometry 119

et al., 1991) or destabilized by gravity.
In this situation the invasion percolation
process can be simulated using thresholds
given by

ti = xi + ghi, (21)

where ti is the threshold associated with
the ith site, xi is a random number (in the
most simple model, used here, the random
numbers are uniformly distributed over
the range 0 < xi < 1), and hi is the
height of the ith site. Figure 6 shows
the displacement fronts generated during
simulations carried out using the gravity-
stabilized invasion percolation model. In
this model the invasion front evolves
toward an asymptotic regime in which the
statistical properties become stationary.

The fronts shown in Fig. 6 were recorded
in this asymptotic regime.

Self-similar fractal surfaces can be
described in terms of the correlation
functions defined in Eqs. (2) and (4). For
structures generated by physical processes,
Eqs. (3) and (5) are accurate over a limited
range of length scales (ε � r � ξ).
For the invasion percolation simulations
described in this section, the inner cutoff
length ε is one lattice unit and the outer
cutoff length ξ is related to the stabilizing
gradient g by

ξ ∼ g−γ , (22)

where the exponent γ is given by (Wilkin-
son, 1984)

Fig. 6 Invasion fronts (unoccupied external perimeter sites) obtained
from two-dimensional gradient-stabilized invasion percolation
simulations. Fronts generated using four values of the stabilizing
gradient g (10−1, 10−2, 10−3, and 10−4) are shown
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γ = v

(v + 1)
, (23)

where v is the correlation length exponent
for ordinary percolation. The exponent v
has a value of exactly 4

3 for two-dimensional
percolation (Stauffer, 1985).

Figure 7(a) shows the density-density
correlation functions C(r) for the invasion
fronts obtained from two-dimensional
invasion percolation simulations with five

values for the stabilizing gradient (g):
g = 0.1, 0.01, 0.001, 0.0001, 0.00001. In
these plots a crossover from a slope of − 2

3
on short length scales (corresponding to
a fractal dimensionality of 4

3 ) to a slope
of −1 on longer length scales (D = 1)

can be seen. The results shown in Figs. 6
and 7 were obtained by starting with a
flat surface and allowing the simulations
to proceed until the vertical correlation
length ξ⊥ has grown to a stationary value

Fig. 7 Two-point density-density correlation functions for invasion fronts similar to
those shown in Fig. 6. Each correlation function was obtained from 20 simulations
carried out using a strip width L of 2048 lattice units. (b) How these correlation
functions can be scaled using the scaling form given in Eq. (24)
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ξ⊥(∞) given by Eq. (22). In this stationary
regime the growth of the invasion front
exhibits large fluctuations, but the mean
statistical properties such as ξ⊥ and C(r)
do not change.

Figure 7(b) shows how the correlation
function C(r) shown in Fig. 7(a) can be
collapsed onto a single curve. This figure
illustrates that C(r) (in the stationary
regime) can be represented by the scaling
form

C(r) = g(8/21)f (g4/7r) (24)

or
C(r) = gαγ f (gγ r), (25)

where the scaling function f (x) has the
form f (x) ∼ x−2/3 for x � 1 and f (x) ∼
x−1 for x � 1. This means that the
surface appears to be self-similar

(
D = 4

3

)
for x � 1 and flat (D = 1) for x � 1.

3.2.2 Self-Affine Rough Surfaces
The Brownian process described above
provides a valuable paradigm for the ge-
ometry of rough surfaces. The correlation
functions Cq(x) [Eq. (14)] can be used to
measure the Hurst exponent (by least-
squares fitting of straight lines to the
dependence of log Cq(x) on log x. For
q = 1 and 2 the value for the Hurst expo-
nent is well within the 1% of the expected
value

(
H = 1

2

)
.

In many real systems the correlation
length ξ⊥ may be finite because ξ⊥ has
not had enough time to grow or because it
is limited by physical processes or finite
size effects. Figure 8 shows ‘‘surfaces’’
generated using a simple modification of
the discrete Brownian process model in
which the probability of moving toward the
origin is 0.5 + k|x| and the probability of
moving away from the origin is 0.5 − k|x|,
where x is the displacement from the
origin. This may be regarded as a model
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Fig. 8 Displacement curves x(t) obtained from
a simple model for Brownian motion in a
harmonic potential. (a)–(c) Results for
k = 10−2, 10−3, and 10−4, respectively
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Fig. 9 (a) Correlation functions C2(t), obtained from simulations carried out using the
model illustrated in Fig. 8 for eight values of k(0, 10−4, 3 × 10−4, 10−3, 3 × 10−3, 10−2,
3 × 10−2, and 10−1). (b) How these curves can be collapsed onto a common curve using
the scaling form given in Eq. (24)

for the motion of a Brownian particle in
a harmonic potential. Figure 9(a) shows
the height-difference correlation functions
C2(t) [Eq. (13)] obtained from simulations
carried out using this model for six values
of the parameter k (and k = 0). Figure 9(b)
shows that these correlation functions can
be represented quite well by the scaling
form

C2(t) = k−1/2h(kt), (26)

where the scaling function h(x) has the
form h(x) ∼ x−1/2 for x � 1 and h(x) =
const for x � 1. This means that the
surface appears to be self-affine

(
H = 1

2

)
for x � 1 and flat for x � 1.

If a cross section is taken through
a self-affine curve or surface parallel
to the coarse-grained direction of the
surface, then the intersection between the
self-affine surface and the d-dimensional
intersecting plane is a self-similar fractal
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with a dimensionality Ds given by

Ds = d − H. (27)

Consequently, the relatively reliable meth-
ods that have been used to analyze self-
similar fractals can be used [via Eq. (27)]
to measure the Hurst exponent of self-
affine fractal surfaces. This is the basis of
the slit island method (Mandelbrot et al.,
1984) that has been applied successfully to
a variety of rough surfaces.

4
Practical Considerations

In Sec. 3 it was shown that quite accurate
values for the fractal dimensionality can
be obtained for self-similar and self-affine
surfaces using simple procedures. Very
similar approaches can be used for other
types of fractal structures. However, large
quantities of data spanning a large range
of length scales were available from the
simple models used in Sec. 3. In practice
the statistical uncertainties may be larger
and the range of length scales smaller
for experiments or more realistic models.
In most cases statistical uncertainties can
be reduced to quite tolerable levels by
averaging, but symmetric uncertainties
due to correlations to the asymptotic
scaling behavior and other finite-size
effects may be much more difficult to
detect and control. In addition, real
systems may have a much more complex
scaling structure than that of the examples
used here.

An account of the geometric proper-
ties of systems that must be described
in terms of multifractal geometry and re-
lated concepts such as multiscaling and
multiaffinity is beyond the scope of this
survey. Information on those topics may

be found in recent books (Feder, 1988), re-
views (Paladin and Vulpiani, 1987; Stanley
and Meakin, 1988; Meakin, 1990), and con-
ference proceedings (Pietronero, 1988).
In general, there is no well-established
general procedure for characterizing the
scaling structure of these more complex
systems. In some cases it appears that the
corrections to the asymptotic scaling be-
havior are large and convergence is slow.

One of the main difficulties in the
past has been a failure to distinguish
carefully between self-similar and self-
affine fractals. This is particularly true in
the case of surfaces and interfaces. As a
consequence much of the literature in this
area is subject to reinterpretation and/or
is ambiguous.

Finally, there are no simple standards
or criteria for determining whether a
structure is fractal or not. To some
extent this depends on the application and
on theoretical considerations. However,
geometric scaling (power-law behavior)
over at least a decade of length scales
combined with some understanding of
the deviations from scaling outside of this
range is probably a minimum requirement
for fractal analysis to be a useful practical
tool. In practice, scaling over more than
two orders of magnitude of the length
scale is rare.

Glossary

Dimensionality: Dimensionality can be de-
fined in many ways, but in practical terms
it is the exponent relating mass (or mea-
sure) to length.

Embedding Space: The Euclidean space in
which a structure resides. In most practical
cases this is ordinary three-dimensional
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space (R3), but two-dimensional embed-
ding spaces are common in computer
simulations and for processes occurring
at smooth interfaces.

Fractal: A structure that exhibits geometric
scaling. In general terms a fractal is a
structure that has similar complexity on
all length scales; it ‘‘looks the same’’
on different length scales or at different
magnifications.

Percolation: The transition associated with
the formation of a continuous path
spanning an arbitrarily large (‘‘infinite’’)
range. Site percolation on a lattice is
a simple model for percolation. In this
model the sites on a lattice are selected
randomly and filled. For an infinitely large
lattice an infinite cluster will be formed
when a fraction ρc (the site percolation
threshold probability) of the lattice sites
have been filled. This cluster is a self-
similar fractal. However, the entire system
(including all the smaller clusters) has a
finite density (ρc) and is uniform on all
but small length scales.

Prefractal: An intermediate (nonasymp-
totic) stage in the construction of a regular
fractal.

Radius of Gyration: The root mean square
(rms) radius measured from the center of
mass.

Self-Affine Fractal: A fractal that can be
rescaled by a transformation that requires
different changes of length scale (with dif-
ferent exponents) in different directions.

Self-Similar Fractal: A fractal that can
be rescaled by an isotropic change of
length scales (by the same amount in all
directions).
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Further Reading

At the present time several dozen books con-
cerned with fractal geometry and its applications
in the physical sciences have appeared. The Man-
delbrot (1977, 1982) classics (particularly The
Fractal Geometry of Nature, Mandelbrot, 1982)
are still a primary source of information. For
those interested in the applications of fractal
geometry to physical processes the books by

Feder (1988) and Vicsek (1989) are highly rec-
ommended. A reprint collection (with useful
commentaries) assembled by Family and Vic-
sek (1991) provides an up-to-date account of
the rapidly developing surface growth area. Sur-
veys of the applications to growth phenomena
may be found in the books by Feder and Vic-
sek and recent reviews (Meakin, 1988, 1990).
A collection of reviews concerned with applica-
tion in chemistry has been edited by Avnir [D.
Avnir (Ed.) (1989), The Fractal Approach to Het-
erogeneous Chemistry: Surfaces, Colloids, Polymers,
Chichester: Wiley]. Many conference proceed-
ings have appeared: A selection of those most
relevant to applied physics include A. Aharony
and J. Feder (Eds.) (1989), Fractals in Physics,
Essays in Honour of Benoit B. Mandelbrot, Ams-
terdam: North Holland; M. Fleischmann, D. J.
Tildesley, and R. C. Ball (Eds.), (1990), Fractals in
the Natural Sciences, Princeton: Princeton Univ.
Press; and the proceedings edited by Pietronero
(1988).
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Introduction

The word ‘‘geometry’’ derives from Greek,
meaning ‘‘earth measurement.’’ Geometry
was originally the mathematics describ-
ing the shapes of objects and their spatial
relationships. Simple geometrical notions
and ideas were known to ancient Baby-
lonians and Egyptians 4000 years ago.
Starting approximately 2500 years ago, the
ancient Greeks developed fundamental ge-
ometrical ideas, including some relatively
rigorous proofs based on logical reason-
ing. Dating from this era is Euclid’s
Elements, which introduced the basis for
the axiomatic method and summarizes the
knowledge at that time.

Prior to the sixteenth century, geometry
and algebra were treated as independent
subjects. The notion of combining the
two was introduced in 1631 by René
Descartes (1596–1650). This led to the
field of analytic geometry, which per-
mits the investigation of geometric ques-
tions using analytical methods. This area
was extensively investigated in the eigh-
teenth century, in particular by Leonhard
Euler (1707–1783) and Gaspard Monge
(1746–1818). Toward the end of the eigh-
teenth century the use of calculus resulted
in the beginnings of differential geometry,
studied by Christian Gauss (1777–1855)
and others. The introduction by Bernhard
Riemann (1826–1866) of the theory of
algebraic functions initiated the field of
algebraic geometry. In parallel with these
developments, the synthetic approach to
geometry was extended by Victor Poncelet
(1788–1867), who formulated postulates
for projective geometry. In the past cen-
tury and a half, the work of David Hilbert
(1862–1943) and others has led to an exten-
sion of the scope of geometry to include the
study of geometrical relationships between
abstract quantities.

This article presents material concern-
ing analytical, differential, projective, and
algebraic geometry. The choice of topics
and their depth of coverage were dic-
tated primarily by consideration of their
importance in applied physics and by lim-
itations of space. In particular, the reader
is warned that the weighting assigned to
the topics discussed is uncorrelated with
their present importance as mathemati-
cal fields of research. The treatment is
not mathematically rigorous, but intro-
duces sufficient mathematical terminology
to make basic textbooks in the subject ac-
cessible. Some of these are listed in the
references at the end of the article.

1
Analytic Geometry

The underlying concepts of analytic ge-
ometry are the simple geometric ele-
ments: points, lines and curves, planes
and surfaces, and extensions to higher di-
mensions. The fundamental method is
the use of coordinates to convert geo-
metrical questions into algebraic ones.
This is called the ‘‘method of coordi-
nates.’’

To illustrate the basic notion, consider
a straight line l. Following the method
of coordinates, select one point O on l
as the origin. This separates l into two
halves. Call one half positive, the other
negative. Any point P on the line can
then be labeled by a real number, given
by the distance OP for the positive half
and by the negative of the distance OP for
the negative half. There is thus a unique
real number x assigned to every point P
on l, called the Cartesian coordinate of P.
Geometrical questions about the line can
now be transcribed into analytical ones
involving x.
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1.1
Plane Analytic Geometry

In two dimensions, basic geometric enti-
ties include points, lines, and planes. For
a plane π the method of coordinates pro-
vides to each point P an assignment of two
real numbers, obtained as follows. Take
two straight lines in the plane, and at-
tribute Cartesian coordinates to each line
as described above. For simplicity, the lines
will be assumed perpendicular and inter-
secting at their origins. These lines are
called rectangular coordinate axes, and the
Cartesian coordinates of the first are called
abscissae while those of the second are
called ordinates. The lines themselves are
also referred to as the abscissa and the ordi-
nate. The location of a point P on π is then
specified uniquely by two real numbers,
written (x, y). The number x is defined
as the perpendicular distance to the first
coordinate axis, while y is the distance to
the second. Using these Cartesian coordi-
nates, geometrical questions about points
can be expressed in analytical terms. For
example, a formula for the distance d be-
tween two points P and Q specified by the
coordinates (x1, y1) and (x2, y2) is

d =
√

(x1 − x2)2 + (y1 − y2)2). (1)

Given an assignment of Cartesian coor-
dinates on a plane π , a curve segment s
in the plane may be analytically specified
by providing a set of paired real numbers
(x, y) assigned to all points on the curve.
In many useful cases, s can be specified
by an equation f (x, y) = 0 between x and
y that is satisfied by all points P on s
but not by any other points on π . For ex-
ample, the equation x = 0 describes the
straight line consisting of all points hav-
ing coordinates of the form (0, y), i.e., the

ordinate. The method of coordinates thus
permits geometrical questions about s to be
transcribed into analytical ones concerning
f (x, y). For example, the set of points lying
both on a curve f (x, y) = 0 and on another
curve g(x, y) = 0 is specified by values (x,
y) satisfying both equations, which can in
principle be found by analytical methods.

A simple example of a curve in the plane
is a straight line l. The slope m of l can be
defined in terms of the coordinates (x1, y1)

and (x2, y2) of any two distinct points on l.
Provided x1 �= x2, the slope is given by

m = y1 − y2

x1 − x2
. (2)

The slope is zero for lines parallel to the
abscissa, and is undefined (infinite) for
lines parallel to the ordinate. A line l with
given finite slope m is uniquely specified
by its intersection point (x, y) = (0, c) with
the ordinate. The equation for l is

y = mx + c. (3)

If l is parallel to the ordinate instead, it
is determined by its intersection point
(x, y) = (a, 0) with the abscissa, and its
equation is simply x = a.

The equation of a straight line l is also
determined entirely by the coordinates
(x1, y1) and (x2, y2) of any two distinct
points on l. It can be written

y − y1

y2 − y1
= x − x1

x2 − x1
. (4)

Alternatively, a straight line can be viewed
as the curve given by the most general
equation linear in the coordinates x and y:

Ax + By + C = 0, (5)

where at least one of A and B is nonzero.
Analytical solutions to geometrical prob-

lems involving straight lines and points
can be obtained using the above results.
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For example, the equation of the line lP that
is perpendicular to a given line l with equa-
tion y = mx + c and that passes through
the point P on l with abscissa x1 is

y = − 1

m
x + m2 + 1

m
x1 + c. (6)

Another example is the expression for the
perpendicular distance dP between a line l
with equation y = mx + c and a point P at
(a, b), which is

dP = |b − ma − c|√
m2 + 1

. (7)

1.2
Conic Sections

An important curve is the circle, denoted
by S1, which can be viewed as the set of
points in the plane that are equidistant
from a specified fixed point. The fixed
point C is called the center of the circle,
and the distance r between the center and
the points on the circle is called the radius.
If the Cartesian coordinates of C are (h, k),
then the equation of the circle is

(x − h)2 + (y − k)2 = r2. (8)

The circle is a special case of a set
of curves called conic sections or conics.
These curves include ellipses, parabolas,
and hyperbolas. Geometrically, the conics
can be introduced as the curves obtained
by slicing a right circular cone with a
plane. Analytically, they can be viewed
as the curves given by the most general
expression quadratic in the coordinates x
and y:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

(9)

where at least one of the coefficients A, B, C
is nonzero. These are called second-order

curves. From this equation it follows that
any five points lying on the conic specify
it completely. The quantity B2 − 4AC is
called the discriminant of the conic. If
the discriminant is positive, the conic is
a hyperbola; if negative, an ellipse; and if
zero, a parabola.

A third definition, combining geometri-
cal and analytical notions, is often useful.
Consider a straight line l, a fixed point F
not on l, and another point P. Denote the
distance between P and F by dF and the
perpendicular distance between P and l by
dl. Then the conic sections are given by the
set of points P that obey the equation

dF = edl, (10)

where e ≥ 0 is a constant real number
called the eccentricity. The line l is called
the directrix and the point F is called the
focus. If e > 1, the conic is a hyperbola. If
e = 1, the conic is a parabola. If 0 < e < 1,
the conic is an ellipse. The degenerate
case e = 0 gives a circle; in this case, the
directrix is at infinity.

The equation determining a conic has
a particularly simple form, called the
canonical form, if the focus F is chosen
to lie on the abscissa and the directrix
l is chosen parallel to the ordinate. The
canonical form depends on at most two
real positive parameters a and b, where
a ≥ b is taken for convenience.

For a hyperbola, the canonical form is(
x2

a2

)
−

(
y2

b2

)
= 1. (11)

The eccentricity of the hyperbola is e =√
a2 + b2/a. One focus is the point (ae,

0), and the corresponding directrix is the
line x = a/e. There is a second focus at
(−ae, 0) and a second directrix at x =
−a/e. The hyperbola has two branches,
each of which asymptotically approaches
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the lines y = ±bx/a as |x| becomes large.
The distance between the points where the
hyperbola intersects the abscissa is 2a. This
is also the difference between the distances
from the two foci to any given point on the
hyperbola. If a = b, the hyperbola is called
rectangular.

For a parabola, the canonical form is

y2 = 4ax. (12)

The eccentricity is e = 1, the focus is at
(a, 0), and the directrix is the line x = −a.

For an ellipse, the canonical form is(
x2

a2

)
+

(
y2

b2

)
= 1. (13)

The ellipse has eccentricity e = √
a2 − b2

/a. There are again two foci, at (±ae, 0),
and two directrices x = ±a/e. The sum of
the distances from the two foci to any given
point on the ellipse is a constant, 2a. The
line between the points of intersection of
the ellipse with the abscissa is called the
major axis of the ellipse, and it has length
2a. Similarly, the minor axis of the ellipse
is given by the intersection points with
the ordinate and has length 2b. If a = b
the equation reduces to that of a circle of
radius a centered at the origin.

1.3
Plane Trigonometry

Consider a point P with coordinates (x,
y) lying on a circle of radius r centered
at the origin O. Denote by X the point
(x, 0). Call θ the angle XOP between the
line segments OX and OP. The choice of
a unit of measure for angles permits the
assignment of a numerical value to θ . One
widely used unit is the degree, defined by
the statement that there are 360 degrees in
a circle. The SI unit is the radian, of which
there are 2π in a circle.

Certain functions of the angle θ , called
trigonometric or circular functions, are of
particular use in plane analytic geometry.
The ratio sin θ = y/r is called the sine of
θ while cos θ = x/r is called the cosine of
θ . The sine is odd in θ while the cosine
is even, and both functions have period π

radians. They obey the relations

sin2 θ + cos2 θ = 1 (14)

following from the Pythagorean theorem,
and

sin(θ ± φ) = sin θ cos φ ± sin φ cos θ,

(15)

cos(θ ± φ) = cos θ cos φ ∓ sin θ sin φ.

(16)

The latter two equations are called ad-
dition formulas. Other, related func-
tions of θ include the tangent tan θ =
y/x = sin θ/ cos θ , the cosecant csc θ =
r/y = 1/ sin θ , the secant sec θ = r/x =
1/ cos θ , and the cotangent cot θ = x/y =
cos θ/ sin θ . From these definitions and
the above equations many identities can
be obtained. Inverse trigonometric func-
tions can also be introduced; for example,
if x = sin θ then sin−1 x = θ .

Consider a triangle with angles A, B,
C and sides of length a, b, c, where by
convention the side labeled by a is opposite
the vertex with angle A and there are
similar conventions for the other sides.
A basic problem in plane trigonometry is
to determine one of a, b, c, A, B, C in
terms of the others. This is called solving
a triangle. The following relations hold:
the law of sines,

sin A

a
= sin B

b
= sin C

c
; (17)
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the first law of cosines,

a = b cos C + c cos B; (18)

and the second law of cosines,

a2 = b2 + c2 − 2bc cos A. (19)

1.4
Curvilinear Coordinates

For certain geometrical problems, the
analytical details of a calculation may be
simplified if a non-Cartesian coordinate
system is used. Consider two functions
u = u(x, y) and v = v(x, y) of the Cartesian
coordinates x and y on a plane π . Take the
functions to be continuous and invertible,
except perhaps at certain special points that
require separate treatment. Any curve u =
c for some constant c is called a coordinate
curve, as is any curve v = c. A point P on π

is uniquely specified by two real numbers
(u1, v1) that are the values of the constants
determining the two coordinate curves
passing through P. This construction
generalizes the method of coordinates,
and the functions u and v are called
curvilinear coordinates. If the coordinate
curves meet at right angles, the curvilinear
coordinates are called orthogonal. All the
analytical geometry described above using
Cartesian coordinates can be rephrased
using orthogonal curvilinear coordinates.

An important set of orthogonal curvi-
linear coordinates is generated by the
equations

x = r cos θ, y = r sin θ;
r =

√
x2 + y2, θ = tan−1

( y

x

)
, (20)

where r ≥ 0 and 0 ≤ θ < 2π . In this
system, the coordinate curves consist of
circles of varying radii centered at the
origin and straight lines through the origin

at varying angles with respect to the
abscissa. The coordinates (r, θ) of a point
P are called plane polar coordinates. As an
illustration of their use, consider the conic
sections expressed in polar coordinates. In
canonical form, with the origin of the polar
coordinates placed at the focus at (ae, 0),
the equation for a conic section is

r = l

(1 + e cos θ)
, (21)

where l is called the latus rectum. It is given
by l = b2/a for hyperbolas and ellipses and
by l = 2a for parabolas, and it represents
the distance from the focus to the curve
as measured along a straight line parallel
to the ordinate. The quantity l/e is the
distance from the focus to the associated
directrix.

The conic sections themselves can be
used to generate systems of orthogo-
nal curvilinear coordinates. For example,
parabolic coordinates can be defined by

x = 1
2 (u2 − v2), y = uv, (22)

where v ≥ 0. The coordinate curves are
parabolas. Similarly, elliptic coordinates
can be defined by

x = a cosh u cos v, y = a sinh u sin v,

(23)

where u ≥ 0 and 0 ≤ v < 2π . Here, the
so-called hyperbolic functions sinh u and
cosh u are defined by

sinh u = 1
2 (eu − e−u),

cosh u = 1
2 (eu + e−u). (24)

The coordinate curves are ellipses and
hyperbolas. Another common set is the
system of bipolar coordinates, defined by

x = a sinh v

cosh v − cos u′ , y = a sin u

cosh v − cos u′
(25)



Geometrical Methods 133

with 0 ≤ u < 2π . The coordinate curves
are sets of intersecting circles.

1.5
Solid Analytic Geometry

Solid analytic geometry involves the study
of geometry in three dimensions rather
than two. Many of the ideas of plane ana-
lytic geometry extend to three dimensions.
For instance, the method of coordinates
now provides an assignment of three
real numbers (x,y,z) to each point P. A
three-dimensional rectangular coordinate
system can be introduced by taking three
mutually perpendicular straight lines, each
given Cartesian coordinates, to form the
coordinate axes. The axes are called the ab-
scissa, the ordinate, and the applicate. Each
of the values (x,y,z) is defined as the per-
pendicular distance to the corresponding
axis.

A two-dimensional surface σ can now
be specified by providing an equation
f (x, y, z) = 0 that is satisfied only by points
on the surface. The method of coordinates
thus converts geometrical questions about
σ to analytical questions about f (x,y,z).
Similarly, a curve s can be viewed as the
intersection set of two surfaces. If the
surfaces are specified by the equations
f (x, y, z) = 0 and g(x, y, z) = 0, s is given
analytically by the set of points (x,y,z)
obeying both equations simultaneously.

By definition, a surface of the first order
is given by the most general equation linear
in x, y, z:

Ax + By + Cz + D = 0. (26)

If at least one of A, B, C is nonzero, this
equation describes a plane. A straight line
can be viewed as the intersection of two
nonparallel planes and is therefore given
analytically by two equations of this form.

Just as in the two-dimensional case, the
analytical formulation allows solutions to
geometrical questions involving planes,
lines, and points to be obtained. For
example, the perpendicular distance dP

between a plane given by the above
equation and a point P located at (a,b,c)
can be shown to be

dP = |Aa + Bb + Cc + D|√
A2 + B2 + C2

. (27)

As another example, two planes given by

A1x + B1y + C1z + D1 = 0,

A2x + B2y + C2z + D2 = 0 (28)

are parallel if and only if

(A1, B1, C1) = (cA2, cB2, cC2) (29)

for some constant c.
In analogy to the two-dimensional in-

troduction of conics as curves obeying a
quadratic expression in x and y, a surface
of the second order is defined to consist of
points satisfying a quadratic expression in
x, y, and z:

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz

+ Gx + Hy + Iz + J = 0. (30)

Such surfaces are also called quadrics. An
important example is the sphere, denoted
by S2, which can be viewed as the set of
points equidistant from a fixed point called
the center. The distance from the center
to any point on the sphere is called the
radius. If the Cartesian coordinates of the
center are (h,k,l), the equation of a sphere
of radius r is

(x − h)2 + (y − k)2 + (z − l)2 = r2.

(31)

The quadrics can be classified. Among
the surfaces described are ellipsoids,
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hyperboloids, paraboloids, cylinders, and
cones. Canonical forms of these surfaces
are (

x2

a2

)
+

(
y2

b2

)
+

(
z2

c2

)
= 1 (32)

for an ellipsoid;

(
x2

a2

)
+

(
y2

b2

)
−

(
z2

c2

)
= 1 (33)

for a hyperboloid of one sheet;

(
x2

a2

)
−

(
y2

b2

)
−

(
z2

c2

)
= 1 (34)

for a hyperboloid of two sheets;(
x2

a2

)
+

(
y2

b2

)
= 2z (35)

for an elliptic paraboloid;(
x2

a2

)
−

(
y2

b2

)
= 2z (36)

for a hyperbolic paraboloid;(
x2

a2

)
+

(
y2

b2

)
= 1 (37)

for an elliptic cylinder;(
x2

a2

)
−

(
y2

b2

)
= 1 (38)

for a hyperbolic cylinder;(
x2

a2

)
= 2z (39)

for a parabolic cylinder; and(
x2

a2

)
±

(
y2

b2

)
−

(
z2

c2

)
= 0 (40)

for a cone. The parameters a, b, c are called
the lengths of the principal axes of the
quadric.

The notions of plane trigonometry also
extend to three dimensions. A spherical
triangle is defined as a portion of a
spherical surface that is bounded by three
arcs of great circles. Denote by A, B,
C the angles generated by straight lines
tangent to the great circles intersecting at
the vertices, and call the lengths of the
opposite sides a, b, c as for the planar case.
The angles now add up to more than π

radians, by an amount called the spherical
excess E:

A + B + C = π + E. (41)

The following relations hold for a spherical
triangle:
the law of sines,

sin A

sin a
= sin B

sin b
= sin C

sin c
; (42)

the first law of cosines,

cos a = cos b cos c + sin b sin c cos A;
(43)

and the second law of cosines,

cos A = − cos B cos C + sin B sin C cos a.

(44)

Curvilinear coordinates can be intro-
duced via three locally continuous invert-
ible functions u(x, y, z), v(x, y, z), w(x, y,
z), following the two-dimensional case.
A coordinate surface is specified by set-
ting any curvilinear coordinate u, v, or
w equal to a constant. The coordinate
curves are generated by the intersection
of the coordinate surfaces, and the system
is said to be orthogonal if the surfaces
intersect at right angles. Many useful
three-dimensional orthogonal curvilinear
coordinate systems can be generated from
families of quadrics. One particularly use-
ful set is the system of spherical polar
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coordinates, defined by

x = r sin θ cos φ,

y = r sin θ sin φ,

z = r cos θ, (45)

where r ≥ 0, 0 ≤ θ ≤ π , and 0 ≤ φ < 2π .
The coordinate surfaces are spheres cen-
tered at the origin, right circular cones with
axes along the applicate and vertices at the
origin, and half-planes with the applicate
as one edge. Other common coordinates
are the cylindrical coordinates, given by

x = r cos θ, y = r sin θ, z = z, (46)

where r ≥ 0 and 0 ≤ θ < 2π . This system
is generated from plane polar coordinates
by translation along the applicate. The
coordinate surfaces are right circular
cylinders centered at the origin, half-planes
with the applicate as one edge, and planes
parallel to the plane of the abscissa and
ordinate.

The notions of plane and solid analytic
geometry can be extended to higher dimen-
sions, too. A space can be defined in which
the method of coordinates specifies a point
by n real numbers (x1, x2, . . . , xn). This n-
dimensional space, called Euclidean space,
is denoted by the symbol Rn. Using coordi-
nates, geometrical questions in n dimen-
sions can be converted to analytical ones
involving functions of n variables. Surfaces
of the first order are (n − 1)-dimensional
hyperplanes, and surfaces of the second
order, or quadric hypersurfaces, can be in-
troduced. An example is the hypersphere
of radius r in n dimensions, denoted by
Sn−1, which when centered at the origin
satisfies the equation

(x1)2 + (x2)2 + · · · + (xn)2 = r2. (47)

The notion of curvilinear coordinates also
extends to higher dimensions.

A one-dimensional curve s in n dimen-
sions can be specified by n − 1 equations
among the n coordinates (x1, . . . , xn). If s
is continuous, its points can be labeled by a
parameter t that is a real number. Any par-
ticular point can be specified by giving the
values of the n coordinates (x1, . . . , xn). As
t varies, so do the coordinates. This means
that an alternative specification of s can be
given in terms of the n expressions

xj = xj(t), j = 1, . . . , n, (48)

determining the n coordinates (x1, . . . , xn)

as functions of t. This is called the
parametric representation of a curve.
Similarly, the points of a continuous two-
dimensional surface can be labeled by two
real numbers (t1, t2). The surface can be
specified either in terms of n − 2 equations
among the n coordinates (x1, . . . , xn) or in
parametric form by the n equations

xj = xj(t1, t2), j = 1, . . . , n. (49)

A parametric representation can also be
given for continuous surfaces of more than
two dimensions.

1.6
Example: The Kepler Problem

An example of the appearance of analytic
geometry in a physical problem occurs
in the study of the classical motion of
two bodies under a mutual inverse-square
attractive force. Consider for definiteness
two bodies of masses m1 and m2, each
acted on by the gravitational field of
the other and free to move in three
dimensions. This is called the Kepler
problem.

The first step is to introduce a convenient
coordinate system. For simplicity, the
origin can be placed on one mass.
The problem can then be reduced to
determining the relative position of the
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second mass and the uniform motion of
the center of mass. The latter is neglected
here for simplicity. It is natural to select
a system of spherical polar coordinates
with the applicate along the direction of
the angular momentum. Since angular
momentum is conserved, the motion of
the second mass about the origin must lie
in a plane. This means that plane polar
coordinates (r, θ) suffice to describe the
position of the second mass relative to the
first.

It can be shown that the resulting
equations governing the motion of the
second mass are precisely those obtained
for the behavior of a reduced mass m =
m1m2/(m1 + m2) orbiting a fixed center
of force. In polar coordinates, the kinetic
energy T of the reduced mass is

T = 1
2 m(ṙ2 + r2θ̇2), (50)

where a dot over a letter signifies a
derivative with respect to time. The
potential energy is

V = −k

r
(51)

with k = Gm1m2, where G is Newton’s
gravitational constant.

The equations of motion are

d

dt
(mr2θ̇ ) = 0 (52)

and

mr̈ − mrθ̇2 +
(

k

r2

)
= 0. (53)

The first of these integrates immediately
in terms of the constant magnitude L of
the angular momentum:

mr2θ̇ = L. (54)

This equation can be used to eliminate θ̇

from Eq. (53) by direct substitution. Also,
since d

dt
= θ̇

d

dθ
, (55)

the independent variable in Eq. (53) can
be converted from time t to angle θ . An
additional change of dependent variable
from r to

s =
(

1

r

)
−

(
mk

L2

)
(56)

converts Eq. (53) into the simple form

d2s

dθ2 = −s. (57)

The solution is readily found. Reconvert-
ing s to the variable r yields the equation
for the orbit as

r = l

(1 + e cos θ)
, (58)

where a particular choice for the location
of the abscissa relative to the orbit has been
made for simplicity. In this equation,

e =
√

1 + 2EL2

mk2 , l = L2

mk
, (59)

and E can be identified with the energy
of the two bodies in the orbit. This
demonstrates that the motion of two
masses under gravity is described by a
conic section; cf. Eq. (21). The energy
E determines the shape of the orbit. If
E > 0, e > 1 and the orbit is a hyperbola.
If E = 0, e = 1 and the orbit is a parabola.
If E < 0, e < 1 and the orbit is an ellipse.
Finally, if E = −mk2/2L2, e = 0 and the
orbit is a circle.

2
Differential Geometry

The requirement of differentiability pro-
vides a restriction on geometrical objects
that is sufficiently tight for new and useful
results to be obtained and sufficiently loose
to include plenty of interesting cases. Dif-
ferential geometry is of vital importance in
physics because many physical problems
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involve variables that are both continuous
and differentiable throughout their range.

2.1
Manifolds

A manifold is an extension of the usual
notions of curves and surfaces to arbitrary
dimensions. The basic idea is to introduce
an n-dimensional manifold as a space that
is like Euclidean space Rn locally, i.e.,
near each point. Globally, i.e., taken as
a whole, a manifold may be very different
from Rn. An example of a one-dimensional
manifold is a straight line. This is both
locally and globally like R1. Another one-
dimensional example is a circle S1. The
neighborhood of each point on a circle
looks like the neighborhood of a point in
R1, but globally the two are different. The
circle can be constructed by taking two
pieces of R1, bending them, and attaching
them smoothly at each end. Generalized to
n dimensions, this notion of taking pieces
of Rn and attaching them smoothly forms
the basis for the definition of a manifold.

To define a manifold more rigorously,
first introduce the concept of a topological
space T. This is a set S and a collection t of
(open) subsets of S satisfying the following
criteria:

1. Both the null set and S itself are in t.
2. The intersection of any two subsets of t

is in t.
3. The union of any collection of subsets

of t is in t.

Suppose in addition there is a criterion
of separability: For any two elements of S
there exist two disjoint subsets of S, each
containing one of the elements. Then T is
called a Hausdorff space. The elements of
S for a manifold are its points.

Next, define a chart C of the set S as
a subset U of S, called a neighborhood,

together with a continuous invertible map
f : U → Rn called the coordinate function.
For a manifold, the subset U plays the
role of a region locally like Rn, and the
function f represents the introduction of
local coordinates in that region. Two charts
C1, C2 with overlapping neighborhoods
and coordinate functions f1, f2 are called
compatible if the composition map f1◦f −1

2
is differentiable. The requirement of
compatibility basically ensures that the
transition from one coordinate patch to
another is smooth. A set of compatible
charts covering S is called an atlas.

A differentiable manifold M can now be
defined as a Hausdorff topological space
with an atlas. Given that the range of the
coordinate functions is Rn, the dimension
of M is defined as n and M is sometimes
denoted by Mn. An example of an n-
dimensional manifold is the hypersphere
Sn. An example of an object that is not a
manifold is a figure-eight curve, since the
neighborhood of the intersection point is
not locally like Rn for any n.

2.2
Vectors and One-Forms

The usual definition of a vector in a
Euclidean space as a directed straight-
line segment does not immediately extend
to a general manifold. For instance, the
circle S1 does not contain any straight-line
segments. Instead, vectors at a point of
a manifold can be introduced using the
notion of the tangents to curves passing
through the point.

Consider a curve s through a point P.
In a neighborhood of P, local coordinates
(x1, . . . , xn) can be used to specify s
in the parametric representation xj =
xj(t), j = 1, . . . , n. A vector tangent to s
at P can be specified by the n quantities
dxj/dt forming its components. A familiar
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example in mechanics is the velocity
vector of a moving particle, obtained
by differentiation with respect to time
of the particle’s position vector. If the
tangent vectors to all possible curves in the
manifold through P are considered, an n-
dimensional vector space (see ALGEBRAIC

METHODS, See. 3) is generated. This is
called the tangent space TPM to M at P.

In differential geometry, it is desirable to
introduce basic concepts in a manner that
is independent of any coordinate choice.
For this reason, the differential-geometric
definition of a tangent vector is different
from the more intuitive one above. Given
a curve s, introduce an arbitrary differen-
tiable function f assigning a real number
to every point t on s. The derivative df /dt of
f along s is called the directional derivative.
In a local coordinate patch,

df

dt
=

n∑
j=1

dxj

dt
∂jf , (60)

where ∂jf = ∂ f /∂xj. This shows that the
operator d/dt acting on the space of real
functions on M contains all components
of the tangent vector, each associated with
the corresponding partial derivative ∂j. A
tangent vector at P can therefore be defined
as the directional-derivative operator d/dt,
with a natural coordinate basis of vectors
for the vector space being the set of partial-
derivative operators {∂j}. However, this
definition has the disadvantage that it still
explicitly includes the parameter t.

The formal definition of a tangent vector
is therefore slightly more abstract. Given
the space F(M) of all differentiable real
functions on a manifold M, a tangent
vector at P is defined as an object v
acting on elements of F(M) to produce
real numbers,

v : F(M) → R, (61)

that satisfies two criteria:

v(af + bg) = av(f ) + bf (g),

v(f ◦g) = g(P)v(f ) + f (P)v(g), (62)

where f , g ∈ F(M) and a, b ∈ R. This
definition extracts the important prop-
erties of the tangent vector without ex-
plicit reference to a coordinate system or
parametrization. Note that the coordinate
realization of a tangent vector at P along
xj as ∂j acting at P satisfies this defini-
tion. The set of all linearly independent
tangent vectors at P spans the tangent
space TPM to M at P, and the set {∂j}
forms a basis for TPM called the coor-
dinate basis. An arbitrary vector v can be
expanded in this basis as v = �j vj∂j. Physi-
cists sometimes say that the components
vj are the contravariant components of a
vector. Although in a coordinate basis the
intuitive physics notion of a vector and
the differential-geometric one contain the
same information about components, the
latter also contains information about the
coordinate basis itself. In the remainder of
this article except where noted, the word
vector refers to the differential-geometric
object.

Since TPM is a vector space, there
exists a dual vector space Hom(TPM, R)

consisting of linear maps

ω : TPM → R (63)

(see ALGEBRAIC METHODS, Sec. 3.7). This
space is called the cotangent space at P and
is denoted by T∗

PM. Notice that duality also
implies TPM = Hom(T∗

PM, R). Elements
of T∗

PM are called one-forms. An important
example of a one-form is the total
differential df of a function f ∈ F(M),
defined as the element of T∗

PM satisfying

df (v) = v(f ) (64)

for any v ∈ TPM.
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In a chart around P, the set {dxj} of total
differentials of the coordinates forms a
natural coordinate basis for the cotangent
space T∗

PM. It is a dual basis to {∂j}, since

dxj(∂k) = ∂kxj = δ
j
k. (65)

An arbitrary one-form ω can be expanded
in the dual basis as ω = �jωj dxj. Note that
for an arbitrary vector v = �jvj∂j the action
of ω on v is then

ω(v) = ωjv
k dxj(∂k) = ωjv

j. (66)

In this equation and subsequent ones,
the Einstein summation convention is
introduced to simplify notation: Repeated
indices in the same term are understood
to be summed. The vector v is said to be
contracted with the one-form ω. Physicists
sometimes say the components ωj form
the covariant components of a vector. As
an example, the definitions above can be
used to show that

df = ∂j f dxj, (67)

a standard result.

2.3
Tensors

The generalization of vectors and one-
forms to tensors is straightforward. A
tensor T of type (a, b) can be defined at a
point P of a manifold M as a multilinear
mapping of a one-forms and b vectors
giving a real number:

T :T∗
PM ⊗ · · · ⊗ T∗

PM ⊗ TPM ⊗ · · ·
⊗ TPM → R, (68)

where there are a factors of T∗
PM and b

factors of TPM. The space of tensors of
type (a, b) at P is denoted Ta

b (P). Examples
introduced above include T1

0 (P) = TPM
and T0

1 (P) = T∗
PM.

A tensor T of type (a, b) can be expanded
using a coordinate basis. In the natural
basis introduced above,

T = T
j1j2···ja
k1k2···kb

∂j1 · · · ∂ja dxk1 · · · dxkb .

(69)

Almost all physicists and the older mathe-

matics literature call the quantities T
j1j2···ja
k1k2···kb

the components of an ath-rank contravari-
ant and bth-rank covariant tensor. Most
modern mathematicians by convention in-
terchange the usage of contravariant and
covariant. This article uses the physicists’
convention.

A tensor is called symmetric with re-
spect to two contravariant or two covariant
indices if its components are unaltered
when the indices are interchanged. A ten-
sor with indices of only one type is said to
be totally symmetric if it is symmetric with
respect to all pairs of indices. Similarly,
a tensor is antisymmetric with respect to
two contravariant or two covariant indices
if its components change sign when the
indices are interchanged, and a totally
antisymmetric tensor is one with pair-
wise-antisymmetric indices of only one
type. The sum and difference of two ten-
sors of the same type is another tensor of
the same type. The tensor product T1 ⊗ T2
of two tensors T1 and T2 of types (a1, b1)

and (a2, b2), respectively, is a tensor of
type (a1 + a2, b1 + b1) with components
given by the product of components of T1
and T2 (see ALGEBRAIC METHODS, Sec. 3.8).
Various contractions of two tensors can be
introduced that generalize the contraction
of a vector with a one-form.

A useful concept in physical applications
is that of a tensor field of type (a, b) defined
as a particular choice of tensor of type
(a, b) at each point of M. The field is

called smooth if the components T
j1j2···ja
k1k2···kb

of a tensor field are differentiable. Special
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cases are vector fields and one-form fields.
By convention, if a = b = 0 the field is
called a scalar field and is just an element
of F(M), the real-valued functions on M.

An example of a tensor that plays a
crucial role in physics is the metric tensor
g. On the manifold M, it is a symmetric
tensor field of type (0,2) such that if
g(v1, v2) = 0 for any v1 ∈ TPM, then
v2 = 0. In component form in a coordinate
basis near a point P

g = gjk dxj dxk, (70)

where gjk form the components of a
symmetric, invertible matrix. The metric
tensor g associates any two vectors with a
real number. For instance, in the usual ge-
ometry in a Euclidean space Rn the matrix
gjk = δjk and the real number is the scalar
or dot product of the two vectors. In other
applications different metrics may be re-
quired. For example, in special relativity
space-time is taken as a four-dimensional
manifold with a Minkowskian metric. If
the number g(v1, v2) has the same sign
for all v1, v2 at all P on M, i.e., if the
eigenvalues of the matrix gjk are all of the
same sign, the metric is called Rieman-
nian. Manifolds admitting such metrics
are called Riemannian manifolds. Other
metrics are called pseudo-Riemannian.
The special case of a metric with one eigen-
value of different sign is called Lorentzian.
By diagonalization and normalization, it is
always possible to choose a basis at any
given P such that gjk(P) is a diagonal ma-
trix with entries that are ±1. If the entries
are all of the same sign, the metric in this
form is called Euclidean. If one entry has
a different sign, it is called Minkowskian.

Since g is a map TPM ⊗ TPM → R, any
given vector v defines a linear map g(v)
from TPM to R. This map is evidently a
one-form, by definition. The components

vj of this one-form are given by

vj = gjkvk. (71)

The map is said to lower the index of
the vector, and the result is called the
associated one-form. An inverse map can
be defined that uses the matrix inverse gjk

of gjk to raise the index of a form, yielding
a vector.

A significant part of the classical litera-
ture on differential geometry is concerned
with the relationships between different
manifolds, in particular in manifolds en-
dowed with metrics. Consider two man-
ifolds M1 and M2 of dimensions n1 and
n2. If there exists a smooth and regular
map f : M1 → M2, then M1 is said to be a
submanifold of M2. The map f is called an
embedding. The notion of a regular map is
readily understood in coordinate patches
{xj} on a chart U in M1 and {yk} on a chart V
in M2: the matrix with components ∂yk/∂xj

must have maximal rank n1 at each point.
Intuitively, the requirements for an em-
bedding can be viewed as ensuring for the
submanifold its differentiability, the ab-
sence of self-intersections, and that curves
through a point in M1 look locally like their
images in M2. The references at the end
of this article provide details of the meth-
ods and results of this subject. A simple
example of a question involving the no-
tion of embedding is the determination of
equations, called the Frenet-Serret formu-
las, for a curve in Rn. A more complicated
example is the description of the embed-
ding of a hypersurface M into Rn, which,
according to Bonnet’s theorem, is deter-
mined by the metric tensor g on M (which
in this context is called the first fundamen-
tal form), by another symmetric tensor of
type (0,2) called the second fundamental
form, and by a set of partial differential
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equations called the Gauss-Codazzi equa-
tions. General results on the possibility
of embedding an m-dimensional manifold
into Rn are also available. An example is
Whitney’s theorem, which may be viewed
as the statement that for compact mani-
folds such an embedding is possible for
n = 2m + 1.

2.4
Differential Forms

A particularly important class of tensors
is the set of totally antisymmetric tensors
of type (0,p) at a point of Mn. These span
a vector space denoted by ∧pT∗

PM or just
∧pT∗, and they are called p-forms. The
number p ≤ n is called the degree of the
form. For the case p = 0, ∧0T∗

PM is chosen
as F(M), the space of real smooth functions
on M. The dimension of ∧pT∗ as a vector
space is given by the binomial coefficient
nCp. Note that this implies that ∧pT∗ and
∧(n−p)T∗ have the same dimension.

Introduce the wedge product ω1 ∧ ω2 of
two one-forms by the definition

ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1. (72)

By construction, this is an antisymmetric
tensor of type (0,2), i.e., a two-form. It
can be shown that a coordinate basis for
the two-forms is the set {dxj ∧ dxk}. In
general, antisymmetric tensor products of
one-forms can be used to generate p-forms,
and an element ω ∈ ∧pT∗ can be expanded
in a coordinate basis as

ωp = 1

p!
ωj1···jP dxj1 ∧ · · · ∧ dxjp . (73)

A natural induced wedge product exists
that combines a p-form ω1 with a q-form
ω2 to give a (p + q)-form. This product
obeys

ω1 ∧ ω2 = (−1)pqω2 ∧ ω1. (74)

A larger vector space ∧T∗ consisting of the
direct sum of all the spaces ∧pT∗ can also
be considered. Its dimension is 2n, and it is
called the Cartan exterior algebra of T∗

PM.
Analogous constructions can be intro-

duced for the case of antisymmetric ten-
sors of type (p,0), called p-vectors. The
totality of these spans a space denoted ∧pT .
The p-forms, (n − p)-forms, p-vectors, and
(n − p)-vectors thus all form vector spaces
of dimension nCp at a point P of Mn. Var-
ious relations can be constructed between
these spaces. An important example is the
Hodge star map ∗, defined for manifolds
M that have a metric g. This is a lin-
ear map ∗ : ∧pT∗

PM → ∧(n−p)T∗
PM that is

most easily understood by its action on
coordinate components. Define the totally
antisymmetric symbol by

ej1···jn =




+1 if (j1 · · · jn) is an even
permutation of
(1, . . ., n)

−1 if (j1 · · · jn) is an odd
permutation of
(1, . . ., n)

0 otherwise.
(75)

If a p-form ω is given in a coordinate
basis by Eq. (73), then

∗ω =
√|g|

p!(n − p)!
gj1k1 · · · gjpkpωk1···kp

ej1···jn

dxjp+1 ∧ · · · ∧ dxjn, (76)

where gjk is the inverse metric matrix
introduced in Sec. 2.3 and g is the
determinant of the matrix gjk.

From the definition (64), the total
differential of a zero-form is a one-form.
An extension of the notion of differential
can be introduced to obtain a (p + 1)-form
via a p-form. Formally, a map d : ∧pT∗ →
∧(p+1)T∗ called the exterior derivative can
be defined by the following requirements:
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1. d(ω1 + ω2) = dω1 + dω2 for ω1, ω2

∈ ∧pT ;
2. d(ω1 ∧ ω2) = (dω1 ∧ ω2) + (−1)p(ω1

∧ dω2) for ω1 ∈ ∧pT and ω2 ∈ ∧qT ;
and

3. d(dω) = 0 for ω ∈ ∧pT .

It can be shown that the exterior derivative
is unique. In a coordinate basis, the
exterior derivative of a p-form given by
Eq. (73) is

dωp =
(

1

p!

)
∂kωj1···jp dxk∧

dxj1 ∧ · · · ∧ dxjp . (77)

A p-form field with vanishing exterior
derivative is said to be closed, while one
that is obtained as the exterior derivative
of a (p − 1)-form is called exact. The
definition of d implies that an exact form
is necessarily closed.

The exterior derivative combines in a
single notation valid for manifolds Mn

extensions of the gradient, divergence, and
curl operations of usual three-dimensional
vector calculus. For instance, the gradient
of a function f is a covariant vector with
components ∂jf . These are precisely the
components of the one-form in Eq. (67).
The components of the curl make their
appearance in the exterior derivative of a
one-form ω = ωxdx + ωydy + ωzdz:

dω = (∂xωy − ∂yωx) dx ∧ dy

+ (∂yωz − ∂zωy)dy ∧ dz

+ (∂zωx − ∂xωz) dz ∧ dx. (78)

The divergence enters the expression for
the exterior derivative of a two-form ω =
ωxydx ∧ dy + ωyzdy ∧ dz + ωzxdz ∧ dx:

dω = (∂xωyz + ∂yωzx

+ ∂zωxy) dx ∧ dy ∧ dz. (79)

The statement dd = 0 contains the usual
identities div(curl v) = curl(grad f ) = 0
for a vector v and a function f.

The existence of the Hodge star map ∗
makes it possible to define a map from p-
forms to (p − 1)-forms by applying first ∗
[producing an (n − p)-form], then d [giving
an (n − p + 1)-form], and finally ∗ again.
This map is called the adjoint exterior
derivative and denoted δ. For Riemannian
metrics it is defined as

δ = (−1)np+n+1 ∗ d∗, (80)

while for Lorentzian metrics there is an
additional factor of −1. The adjoint exterior
derivative satisfies δδω = 0. A p-form field
with vanishing adjoint exterior derivative
is said to be coclosed, while one that is
obtained as the adjoint exterior derivative
of a (p + 1)-form is called coexact.

It is possible to express the Laplacian 	

on a manifold Mn in terms of the maps d
and δ:

	 = (d + δ)2 = dδ + δd. (81)

For example, acting on a function f in three
dimensions, this definition reproduces the
standard expression of vector calculus,

	f =
(

1√|g|

)
∂j(

√|g|gjk∂kf ). (82)

A p-form ω is said to be harmonic if
	ω = 0. This generalizes the usual notion
of harmonic functions.

2.5
Fiber Bundles

In addition to involving a manifold
of variables, many physical situations
also exhibit symmetry of some kind.
The natural geometrical framework in
which to formulate such problems is the
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language of fiber bundles. Here, attention
is restricted to a special type of bundle,
appearing widely in physics, that involves
continuous symmetries. The latter are
described mathematically via the theory
of Lie groups.

This paragraph presents a few essential
definitions involving Lie groups. More
details may be found in the articles GROUP

THEORY and ALGEBRAIC METHODS. For the
present purposes, a Lie group G may
be viewed as a group that is also an r-
dimensional manifold such that for two
group elements g, h ∈ G the map gh−1 :
G × G → G exists and is continuous.
Denote coordinates in a chart near some
point P of G by {aA}, A = 1, . . . , r. Then
the group composition function f : G ×
G → G defined for g(a), h(b), k(c) ∈ G by
f (h, g) = k = hg can be written in terms of
r functions φA acting on the coordinates
as

cA = φA(b, a). (83)

The generators DA of infinitesimal group
transformations on G span the tangent
space T0G at the group identity and are
given by

DA = UB
A∂B, UB

A = ∂φB

∂bA

∣∣∣∣
b=0

. (84)

This space is called the Lie algebra
associated with the group. The dual basis
is spanned by the one-forms


A = daB(U−1)A
B . (85)

As a simple example, consider the group
U(1). The group manifold is a circle S1; if
the coordinate is denoted by θ , the group
composition function is θ3 = θ2 + θ1. The
generator Dθ is just ∂θ and the dual basis
is dθ .

A fiber bundle is basically a manifold
acted on by a symmetry. One important
type of bundle, called a principal bundle,
looks locally (but not necessarily globally)

like a product of a continuous symmetry
group with a manifold. The action of
the symmetry provides a natural means
of moving around in each local piece
of bundle. The idea is to patch together
these local pieces in a smooth way to get
the whole principal bundle. Globally, the
patching can introduce various twists into
the overall structure, in which case the
bundle is called nontrivial. A trivial bundle
is one where no twists arise: the global and
local structure are similar.

Here is a more formal definition. Given
a manifold B and a Lie group G, a principal
fiber bundle E(B,G) is a manifold such that

1. G acts differentiably and without fixed
points on E;

2. B is the quotient space of E by
equivalence under G, and there exists a
differentiable map π : E → B; and

3. for each chart Uj in an atlas for B,
there exists a differential and invertible
mapping φj : π−1(Uj) → Uj × G given
by E → (π(P), f (P)) for any point
P ∈ E, where f : π−1(Uj) → G satisfies
f (gP) = gf (P) for any g ∈ G.

The group G is called the structure
group and the manifold B is called the
base manifold. The map π is called the
projection. The inverse image of π is the
fiber; in effect, each fiber is like a copy of
G. A (global) cross section or section s of
a bundle is defined as a smooth map s:
B → E such that π

◦s is the identity on B.
Local sections, i.e., sections defined only
on π−1(Uj), always exist. If the bundle
admits a global section, it is called trivial.

2.6
Connection and Curvature

Since {∂j} is a basis for the tangent space of
the base manifold and {DA} is one for the
tangent space of the group, a basis for the
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tangent space to a point in the bundle is
the set {∂j, DA}. It has dual basis {dxj, 
A}.
However, linear combinations could also
be taken. The existence of this freedom
permits the definition of a natural one-
form called the connection that contains
essential information about the structure
of the bundle. The connection is basically
a separation of the tangent space of E into
two pieces, one along the group.

Formally, a connection is a choice of a
subspace TPH of TPE at each point P of E
such that

1. TPE = TPG ⊗ TPH, where TPG is the
space of vectors tangent to the fiber at
P;

2. TPH is invariant under action by G; and
3. the components in TPG and TPH of

a smooth vector field in TPE are also
smooth. The spaces TPG and TPH
are called the vertical and horizontal
subspaces, respectively.

Some of the implications of this defini-
tion are most easily seen in a coordinate
basis on the bundle. Let a basis for TPH be
defined as the linear combination

Dj = ∂j − hA
j DA, (86)

and require that Dj commute with DA

(among other consequences, this implies
that hA

j transforms under a particular
representation of the Lie algebra of G,
called the adjoint representation). Then
the coefficients hA

j are called connection
coefficients and the basis elements {Dj} are
called the horizontal lifts or the covariant
derivatives of the basis elements {∂j}. The
dual to the basis {Dj, DA} for TPE is the set
{dxj, ωA}, where the ωA are given by

ωA = 
A + hA
j dxj. (87)

They form the components of a com-
posite one-form ω = ωADA called the
connection form.

The connection form ω encodes many of
the interesting properties of the bundle in
a concise notation. Its exterior derivative
is also an important quantity in physical
applications. Introduce a two-form R called
the curvature form of the bundle by the
definition

R = dω + ω ∧ ω. (88)

The curvature is said to be a horizontal
form because its action on any vertical
vector vanishes. Its nonzero components
are given by the expressions

R = RADA, RA
jk = RA(Dj, Dk), (89)

and it follows that

[Dj, Dk] = RA
jkDA. (90)

Applying another exterior derivative gives
an identity

dR ≡ R ∧ ω − ω ∧ R = 0 (91)

called the Bianchi identity, with compo-
nents ∑

jkl

DjR
A
kl = 0, (92)

where the sum is over cyclic permutations
of the indices j, k, l.

2.7
Example: Electromagnetism

An illustration of the role of some of these
ideas in physics is provided by the formu-
lation of the theory of electromagnetism
in differential-geometric language. First,
here is a summary of a few of the key equa-
tions of electromagnetism. In this section,
a boldfaced symbol denotes a vector viewed
as a collection of components. The symbol
∇ is the usual vector gradient operator,
while · indicates the vector dot product
and × represents the vector cross product.
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The Maxwell equations in SI units include:
Gauss’s law,

∇ · E = ρ

ε0
; (93)

Faraday’s law,

∇ × E + ∂tB = 0; (94)

the equation expressing the absence of
magnetic monopoles,

∇ · B = 0; (95)

and the Ampère-Maxwell law,

∇ × B = µ0J + c−2∂tE, (96)

where ε0 is the absolute permittivity,
µ0 is the absolute permeability, and c =
1/

√
ε0µ0 is the speed of light in vacuo.

Although these equations can be solved
directly in simple cases, it is often useful to
introduce new variables, called potentials,
in terms of which the four first-order
Maxwell equations are replaced with two
second-order equations. The scalar and
vector potentials φ and A are defined by

E = −∇φ − ∂tA, B = ∇ × A. (97)

With these definitions, the homoge-
neous equations (94) and (95) are au-
tomatically satisfied. The two inhomoge-
neous Maxwell equations become coupled
second-order equations for the potentials:

∇2φ + ∂t∇ · A = − ρ

ε0
(98)

and

∇2A − c−2∂2
t A − ∇(∇ · A + c−1∂tφ)

= −µ0J. (99)

There exists a freedom in the definition
of φ and A. The electric field E and the
magnetic induction B are unchanged by
the replacements

φ → φ′ = φ − ∂t
 (100)

and

A → A′ = A − ∇
, (101)

where 
 is a function of x and t.
These replacements are called gauge
transformations. Their existence provides
sufficient freedom to decouple Eqs. (98)
and (99).

It is easiest to approach the differential-
geometric formulation of electromag-
netism in stages, each incorporating more
aspects of the theory. Here, the Maxwell
equations for E and B are first expressed us-
ing the language of differential forms. The
structure of the theory as a fiber bundle
is then described, thereby incorporating
the potentials φ and A and the notion
of gauge transformations. To obtain con-
sistent physical dimensionalities within
expressions, it is convenient to work with
a coordinate x0 = ct with dimensions of
length rather than with the time coordinate
t. In what follows, the spatial coordinates
(x, y, z) are denoted (x1, x2, x3).

Begin with the identification of the
space and time dimensions as a four-
dimensional smooth manifold M. The
manifold is often taken to be R4 but this
is not essential. The tangent space to M at
a point P is also four-dimensional, and a
basis for this space is the set {∂µ}, µ =
0, 1, 2, 3, of derivatives with respect to
the four coordinates (x0, x1, x2, x3). An
arbitrary vector can be expanded with
respect to this basis. One vector, denoted
by j and called the four-vector current, has
components jµ formed from the charge
and current densities ρ, J:

j = jµ∂µ =
(µ0ρ

c

)
∂0 + µ0J · ∇. (102)

An important tensor field on M is the
Minkowskian metric g, defined to have
components gµv in a coordinate basis
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forming a matrix given by

gµv =



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (103)

This incorporates the essential elements
of special relativity.

The Maxwell equations can be expressed
in terms of a two-form field F defined on M.
This antisymmetric tensor of type (0,2) is
called the field strength. The components
Fµv of F are related to the components of
the electric field and magnetic induction,
and are given by

Fµv=



0 +E1/c +E2/c +E3/c
−E1/c 0 −B3 +B2

−E2/c +B3 0 −B1

−E3/c −B2 +B1 0


 .

(104)

This assignment of E and B is not a priori
mathematically unique but establishes
agreement of the resulting theory with
experiment. In terms of the two-form F, the
inhomogeneous Maxwell equations can be
rewritten as

dF = j, (105)

and the homogeneous ones become

d ∗ F = 0. (106)

The two-form ∗F is called the dual
field strength. In component form in a
coordinate basis, these equations read

∂µFµv = jv (107)

and
eµvρσ ∂ρFµv = 0. (108)

Each of these represents four equations,
and an inspection shows they reduce to
the usual form of the Maxwell equations
upon substitution in F and j of E, B, ρ,
and J.

The discussion so far has excluded the
potentials φ and A. These can be combined
to form the components Aµ of a vector,
called the gauge potential:

Aµ∂µ =
(

φ

c

)
∂0 + A · ∇. (109)

The factor of c is introduced to maintain
dimensional consistency. The metric g
provides the associated one-form

A = Aµdxµ = gµvAvdxµ, (110)

with components obtained by lower-
ing the index. A complete description
of the differential-geometric role of the
gauge potential in electromagnetism re-
quires a framework in which to place its
nonuniqueness under gauge transforma-
tions. This freedom can be interpreted
as a symmetry of Eqs. (98) and (99) ex-
pressing electromagnetism in terms of
the potentials. It can be shown that this
symmetry is a Lie group, called U(1). A
natural geometrical framework to express
this is a fiber bundle, as is discussed next.
For simplicity in what follows, the charge
and current densities are taken to vanish.
Nonzero distributions can be incorporated
consistently with the addition of some ex-
tra structure.

The bundle of interest is a principal
fiber bundle with the four-dimensional
space-time manifold taken as the base
manifold B and the symmetry group U(1)
of gauge transformations taken for the
structure group G. Since the manifold of
the group U(1) is a circle S1, the principal
bundle is five-dimensional. Denote the
coordinate on S1 by θ . The introduction
of a connection separates the tangent
space to a point P in the bundle into
a four-dimensional horizontal subspace
spanned by the basis {Dµ = ∂µ} and a one-
dimensional vertical subspace spanned by
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the generator Dθ = ∂θ of the Lie algebra of
U(1). The dual basis is the set {dxµ, 
θ =
dθ}. The composite connection form ω is
ω = 
θ Dθ = dθ∂θ .

The gauge potential A can be identified
with the value of the one-form 
θ on
a section s of the bundle. Suppose that
the surface s through the bundle E is
specified in a chart U by choosing the
group coordinate θ as a function of the
coordinates {xµ} provided by U. Then the
dual form becomes


θ ≡ dθ = ∂µθ(x)dxµ ≡ Aµ(x)dxµ,

(111)

where the identification of the components
of the one-form 
θ with the components
of the gauge-potential one-form has been
made. Under a change of cross section,
which is equivalent to the action of a group
element with a parameter 
, say, the po-
tentials Aµ change by an amount ∂µ
.
This provides the geometrical interpreta-
tion for the gauge transformations (100)
and (101).

The curvature two-form dω + ω ∧ ω

derived from the connection form ω is
denoted by F. Evaluated on a local section,
it has components

Fµv = ∂µAv − ∂vAµ. (112)

In terms of the scalar and vector potentials,
this equation reproduces the definitions of
Eq. (97). The Bianchi identity in compo-
nent form in this case can be written

d ∗ F = 0, (113)

thereby reproducing the homogeneous
Maxwell equations. To complete the speci-
fication of the bundle, additional equations
are needed that explicitly determine in
each section the connection and the curva-
ture. These are called equations of motion.

Requiring these to transform as usual un-
der Lorentz transformations and to be
second-order differential equations for the
connection or first-order equations for
the curvature significantly restricts the
options. An inspection of the Lorentz
representation content of the general first-
order term ∂λFµv shows that the simplest
choice is ∂µFµv = 0 or its form equivalent

dF = 0. (114)

This reveals the geometrical role of the
remaining two equations in Maxwell’s
theory.

In the presence of monopoles, the homo-
geneous Maxwell equations are modified
by the introduction of sources. A geometri-
cal setting for the equations describing the
fields of a monopole is provided by a non-
trivial principal bundle. It can be shown
that the essential physics is contained in
a bundle with base space S2 and structure
group U(1). The bundle space E looks like
S3 and the projection map π is called the
Hopf map.

2.8
Complex Manifolds

Just as the requirement of differentiability
for manifolds introduces many useful
structures, a further restriction imposing
complex analyticity is of considerable
interest. The resulting manifolds, called
complex manifolds, look locally like the
complex plane. Some of their main
features are outlined in this section. Basic
methods of complex analysis are assumed
here. See ANALYTIC METHODS, Sec. 1, for
more details.

The formal definition of a complex mani-
fold M parallels that for a real differentiable
manifold presented in Sec. 2.1. The key dif-
ference is that the local charts now contain
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maps f taking neighborhoods U into Cn,
the product of n complex planes C, and that
the composition map f1◦f −1

2 is required to
be holomorphic rather than differentiable.
This ensures that the methods of complex
analysis can be used on M independently
of any choice of chart. The number n is
called the complex dimension of M; the
real dimension is 2n. An important fea-
ture is that a complex manifold may have
two or more incompatible atlases, i.e., the
union of two atlases may not satisfy the
requirements for an atlas. In this case the
atlases are said to define different complex
structures. An example is the torus T2 with
two real dimensions; it can be shown that
the complex structures on the torus are
distinguished by a complex number called
the modular parameter.

Denote the n complex coordinates on
M in a chart U by zj = xj + iyj, j =
1, . . . , n, with z̄j = xj − iyj. The tangent
space TPM at a point P of Mn is spanned
by a 2n-dimensional coordinate basis
{∂/∂xj, ∂/∂yj}. It is useful to define

∂j ≡ ∂

∂zj
= 1

2

(
∂

∂xj
− i

∂

∂yj

)
,

∂j̄ ≡ ∂

∂ z̄j
= 1

2

(
∂∂xj + i

∂

∂yj

)
. (115)

The cotangent space is spanned by the dual
basis {dxj, dyj}, or equivalently by

{dzj = dxj + idyj, dz̄j = dxj − idyj}.
(116)

Define the linear map J : TPM → TPM
by

J∂j = i∂j, J∂j̄ = −i∂j̄. (117)

Note that J◦J = −I. This map is smooth
and globally defined on any complex
manifold M. It is called the almost
complex structure of M. The action of J
separates TPM into two separate vector

spaces, one spanned by vectors v such
that Jv = iv and the other by vectors such
that Jv = −iv. It follows that a vector
in TPM can be uniquely decomposed
into two pieces, called the holomorphic
and antiholomorphic parts. The cotangent
space T∗

PM can be separated into two
corresponding pieces.

Complex differential forms of degree
(p, q) can also be introduced. These are
elements of a vector space denoted by
∧(p,q)T . In local coordinates, ∧(p,q)T is
spanned by a coordinate basis containing
p factors of dzj and q factors of dz̄j. The
exterior derivative d naturally separates
into the sum of two pieces,

d = ∂ + ∂, (118)

called the Dolbeault operators. They satisfy

∂∂ = ∂∂ = ∂∂ + ∂∂ = 0. (119)

All complex manifolds admit a Hermi-
tian metric. A Riemannian metric g on M
is said to be Hermitian if

g(Jv1, Jv2) = g(v1, v2) (120)

for all vectors v1, v2 ∈ TPM at all points P.
In a coordinate basis, g can be shown to
have the form

g = gjk̄dzj ∧ dz̄k + gj̄kdz̄j ∧ dzk. (121)

One can also define a two-form 
 called
the Kähler form by


(v1, v2) = g(Jv1, v2). (122)

If the Kähler form is closed, d
 = 0, the
manifold is called a Kähler manifold and
the metric g is said to be a Kähler metric.
In a chart, the components of a Kähler
metric can be written as

gjk̄ = ∂j∂k̄K, (123)
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where K is a scalar function called
the Kähler potential. Compact Kähler
manifolds in one complex dimension
are called Riemann surfaces and are of
great importance in certain branches of
physics, notably string theory. Examples
of Riemann surfaces are the two-sphere S2

and the two-torus T2.

2.9
Global Considerations

Essentially all the differential geometry
considered above has involved local con-
cepts. It is also of interest to address the
issue of the extent to which the local prop-
erties of a manifold determine its global
ones. The study of global properties of a
manifold forms part of the branch of math-
ematics called topology (q.v.) and as such is
tangential to the scope of this article. This
section provides a sketch of some con-
nections between the two subjects. Details
may be found in the references provided
at the end of the article.

One link between the geometry and
topology of a differentiable manifold M
can be introduced by considering the
space of all closed p-forms on M. This
space can be separated into classes, each
containing closed forms differing from
one another only by exact ones. The set
of all classes is a vector space called the
pth de Rham cohomology group of M
and denoted Hp(M). This vector space
contains topological information about M.
For example, the dimension of Hp, called
the pth Betti number, is a topological
invariant of M that contains information
about the holes in M. The Betti numbers
also determine the number of harmonic
forms on M.

There are relationships between the
number of critical points of functions
on a manifold M and the topology of

M. This is the subject of the calculus of
variations in the large, or Morse theory.
Among the results obtained are the Morse
inequalities, which relate the number of
certain types of critical points of a function
to combinations of the Betti numbers
on M.

The presence of a metric on M permits
other types of global information to be
obtained. An example is the Hodge de-
composition theorem. This can be viewed
as the statement that on a compact ori-
entable Riemannian manifold M without
boundary, any p-form can be uniquely de-
composed into the sum of an exact form,
a coexact form, and a harmonic form.

The issue of describing the global struc-
ture of a bundle (not necessarily principal)
provides another link between geometry
and topology. It is possible to develop
measures of the ways in which a given
bundle differs from the trivial bundle. The
relevant mathematical objects are called
characteristic classes. They are elements
of the cohomology classes of the base
manifold, and are given different names
depending on the type of bundle being
considered. Among these are Pontrjagin,
Euler, and Chern classes, corresponding
to orthogonal, special orthogonal, and uni-
tary structure groups. Elements in these
classes can be expressed in terms of the
curvature two-form of the bundle. An-
other set of characteristic classes, the
Steifel-Whitney classes, determines the
orientability of a manifold and whether
a spinor field can be consistently defined
on it.

There are also relations between certain
aspects of differential operators on bundles
and the topology of the bundles. These are
given by index theorems. An important
example is the Gauss-Bonnet theorem,
which connects the number of harmonic
forms on a manifold (this is a property
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of the exterior derivative operator) to an
integral over the Euler class (this is a
topological quantity). Another important
example is the Riemann-Roch theorem for
complex manifolds. These are special cases
of the Atiyah-Singer index theorem.

2.10
Further Examples

Many sets of smooth physical variables can
be viewed as differentiable manifolds, and
so differential-geometric concepts such as
vectors, tensors, forms, and bundles play
key roles in much of theoretical physics.
Examples can be found in every ma-
jor branch of physics. For instance, the
modern formulation of the Hamiltonian
dynamics of a system proceeds via the
investigation of a manifold M called the
phase space, with local coordinates corre-
sponding to the generalized coordinates
and momenta of the system. A closed non-
degenerate two-form called the symplectic
form is defined on M, making the phase
space a symplectic manifold. The study of
the properties of the phase space using
the methods of differential geometry pro-
vides information about the behavior of the
system. An extension of this example oc-
curs in quantum mechanics. Quantization
of a system involves the introduction of
complex structure on the symplectic man-
ifold. The study of this procedure is called
geometric quantization.

Differential geometry is particularly cru-
cial in the development of theories of
fundamental interactions and particles.
The geometrical constructions presented
above for electromagnetism can readily
be extended to other theories of funda-
mental forces. For example, the equations
believed to describe the underlying physics
of the strong interactions form a theory
called chromodynamics. This theory can

be expressed geometrically using a princi-
pal bundle over space-time but where the
structure group is the eight-dimensional
Lie group called SU(3) rather than U(1).
The presence of a multidimensional group
manifold with a nontrivial group compo-
sition law means that, unlike the elec-
trodynamic case, the horizontal lifts are
inequivalent to the basis for the tangent
space to the base manifold. As a result,
the structure of the Bianchi identities and
the equations of motion are somewhat
more complicated in detail. The essen-
tial construction, however, remains the
same.

Another important physical theory is
general relativity, which provides a good
description of the gravitational interactions
at the classical level. This theory can also
be given a geometrical interpretation as
a fiber bundle, but it is of a somewhat
different kind, called a bundle of frames.
Each point on a fiber of this bundle
consists of a choice of basis vectors for the
tangent space to the space-time manifold,
and the symmetry group that plays the
role of the structure group of a principal
bundle now acts to rotate these bases into
one another. A connection form and an
associated curvature still exist, and they are
closely related to the Christoffel symbols
and the Riemann space-time curvature
tensor of general relativity. In addition,
there exists new freedom arising from
the choice of basis vector on the base
manifold, which leads to the existence
of a second natural one-form on the
bundle called the solder form or vierbein.
This also has an associated two-form,
called the torsion. In Einstein’s general
relativity the torsion form is specified to
be zero, although other possibilities can be
envisaged.

Attempts to unify the known funda-
mental forces and particles make wide
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use of geometrical constructions. Exam-
ples of such theories in four dimensions
are the grand unified theories, describ-
ing the strong, weak, and electromagnetic
forces in a single framework. The geo-
metrical structures discussed above can
be extended to more complicated sym-
metry groups large enough so that the
connection forms include all the force
fields needed for these theories. Certain el-
ementary particles play the role of sources
for these fields and can also be incorpo-
rated in bundles called associated bundles.
Many unified theories involve higher-
dimensional manifolds, in which physical
space-time is a submanifold. These in-
clude the so-called Kaluza-Klein theories.
Often, the symmetries of the extra di-
mensions permit them to play the role
of the structure group in a principal bun-
dle.

Generalizations of the geometrical
framework of gravitation are also possible.
For example, if the base manifold for
a bundle of frames is generalized in a
certain way, it is possible to specify bundles
describing extensions of general relativity
that include fundamental particles and
forces other than gravity and that
incorporate enlarged symmetries called
supersymmetries. The resulting theories
are called supergravities.

String theories are candidate unified
theories including gravity that are believed
to be consistent with quantum mechanics.
In these theories, the fundamental forces
and particles are interpreted as objects
that are extended in one dimension
(hence the name string). As a string
propagates in space-time, it sweeps out a
two-dimensional surface called the world
sheet. A description of the world sheet
involves the study of complex manifolds,
in particular Riemann surfaces, as well as
the notions of global differential geometry.

3
Projective Geometry

In its basic form, projective geometry is
essentially the theory of perspective, i.e.,
the study of those features of geometrical
objects that remain the same when
the objects are projected from a point
onto a line or plane. The elements of
projective geometry are implicitly used
by artistic painters, designers, and other
people who represent three-dimensional
objects on a two-dimensional medium.
In its generalized form, the subject is
fundamental in axiomatic geometry. It
can be viewed as subsuming the classical
Euclidean and non-Euclidean geometries.

There are two approaches to projective
geometry. Synthetic projective geometry
seeks to develop the subject as a series of
deductions starting from certain axioms,
in the Euclidean tradition. Analytical pro-
jective geometry introduces homogeneous
coordinates and uses analytical techniques
to obtain results. The two approaches
are complementary, although projective
geometries exist for which coordinates
cannot be introduced.

A key feature of projective geometry is
that parallel lines are assumed to meet in a
single point, called the point at infinity, and
that parallel planes meet in a single line,
called the line at infinity. One advantage
of these assumptions is that geometrical
statements do not require exceptions for
parallelism. For example, it is now true
that any two lines in the plane determine
a point, and any two planes in three
dimensions determine a line.

In a plane, the statement that two lines
determine a point is strikingly similar to
the statement that two points determine
a line. In general, projective-geometric
statements involving points and lines in
the plane remain valid when the roles of
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the points and lines are interchanged. In
the plane, points are said to be dual to
lines. In three dimensions the notion of
duality applies between points and planes,
or between lines and lines. A similar
concept exists in higher dimensions.

With these ideas, a set of axioms
for synthetic projective geometry can be
formulated in terms of three basic notions:
point, line, and incidence. The latter is
meant in the sense of intersection: for
example, a point is incident to a line if it lies
on the line. The axioms can be expressed
in dual pairs, so that propositions deduced
necessarily have valid duals.

3.1
Some Theorems

There are several theorems that play a cen-
tral role both in the development of the
basic theory and in its extension to more
abstract situations. A key result is Desar-
gues’s theorem: Given six distinct points in
two sets, {A1, A2, A3} and {B1, B2, B3} (i.e.,
the vertices of two triangles), if the lines
A1B1, A2B2, A3B3 meet at a point, then the
three points C1, C2, C3 given respectively
by the pairwise line intersections A1B2

and A2B1, A2B3 and A3B2, A3B1 and A1B3
are collinear. This theorem holds in all
projective geometries in three dimensions
or more and in certain two-dimensional
cases, including the usual plane projective
geometry. However, in two dimensions
non-Desarguesian geometries also exist.

Another important result that holds
for a large class of projective geometries
including the usual plane and solid ones is
Pappus’s theorem: Given two lines a and
b lying in a plane and two sets of three
distinct points {A1, A2, A3} incident to a
and {B1, B2, B3} incident to b, then the
three points C1, C2, C3 given respectively
by the pairwise line intersections A1B2

and A2B1, A2B3 and A3B2, A3B1 and A1B3

are collinear. Non-Pappian geometries also
exist.

A pencil of lines about a point P is
defined as the set of all lines lying in a
plane and incident with P. A line s in the
plane not incident with P is called a section
of the pencil, and the pencil is said to
project the section from P. Two pencils can
be projectively related through a common
section. Two distinct sections are said to
be related by a projective transformation
from the point P. The fundamental
theorem of projective geometry states that
a projective transformation is specified
when three collinear points and their
images are given. The theorem generalizes
to projective transformations of higher-
dimensional figures.

Conic sections (see Sec. 1.2) have a nat-
ural construction in projective geometry,
and their theory can be developed entirely
within this subject. Since all conics can be
generated by projection of a circle from
a point onto a plane, the projective ap-
proach gives them a unified treatment and
consequently several results of analytical
geometry can follow from a single projec-
tive theorem. Plane-projective definitions
also play an important role. For example,
the locus of intersections of corresponding
lines in two projectively related pencils is a
conic. A well-known result in this branch
of the subject is Pascal’s theorem: Given
six points {A1, A2, A3, A4, A5, A6} incident
to a conic, then the three points B1, B2, B3

given respectively by the pairwise line
intersections A1A2 and A4A5, A2A3 and
A5A6, A3A4 and A6A1 are collinear. The
dual to Pascal’s theorem is sometimes
called Brianchon’s theorem. These meth-
ods of projective geometry can also be
extended to the study of quadrics and
higher-dimensional hypersurfaces.
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3.2
Homogeneous Coordinates

In analytical projective geometry, a set
of coordinates called homogeneous co-
ordinates is introduced. Consider first
homogeneous coordinates on the line. A
Cartesian coordinate system assigns a sin-
gle real number x to each point P. In
contrast, a homogeneous coordinate sys-
tem assigns two real numbers (x0, x1)

to each point, where x = x1/x0 and at
least one of (x0, x1) is nonzero. Evidently,
the homogeneous coordinates (x0, x1) and
(cx0, cx1), where c is a constant, both rep-
resent P. The advantage of homogeneous
coordinates is that the point (0,1) at infin-
ity is treated on the same footing as, say,
the origin (1,0). It also makes any polyno-
mial equation f (x) = 0 homogeneous in
(x0, x1) without affecting the degree of the
equation.

In the plane, the homogeneous coordi-
nates of a point P specified in Cartesian
coordinates by (x, y) are three real num-
bers (x0, x1, x2), not all zero, for which
x = x1/x0, y = x2/x0. A line in Cartesian
coordinates is given by the linear equation
Ax + By + C = 0. In homogeneous coor-
dinates this becomes the homogeneous
linear equation

Ax1 + Bx2 + Cx0 = 0. (124)

The line at infinity has equation x0 = 0
and is thereby treated on a similar footing
to other lines; for example, the x and
y coordinate axes have equations x2 = 0
and x1 = 0, respectively. All these ideas
generalize to higher dimensions.

In addition to providing a framework
in which analytical calculations can be
developed, the homogeneous coordinate
system offers a simple setting for du-
ality. For example, given Eq. (124), the
three numbers (A, B, C) can be viewed

as homogeneous coordinates for a line
in the plane. Then, coordinate statements
about a point are expressed in terms of
three numbers (x0, x1, x2), while state-
ments about a line are expressed in
terms of a dual set of three numbers
(A, B, C). A single equation thus repre-
sents a line or a point depending on
which three numbers are considered vari-
ables.

Any set of three coordinates (̂x0, x̂1, x̂2),
obtained from the homogeneous coordi-
nate system (x0, x1, x2) in the plane by an
invertible linear transformation

x̂j = Ajkxk (125)

(see ALGEBRAIC METHODS, Sec. 3.3), also
leaves unchanged the degree of any poly-
nomial function of the coordinates. The
set (̂x0, x̂1, x̂2) can be taken as alternative
homogeneous coordinates.

3.3
Group of Projective Transformations

Instead of being taken as a change of co-
ordinates for a fixed point P, the linear
transformation (125) can be interpreted as
a mapping from a point P at (x0, x1, x2)

to another point P̂ at (̂x0, x̂1, x̂2). This pro-
vides a mapping of the projective plane
onto itself. Such mappings form a group
G called the group of projective transfor-
mations for the plane. Similarly, groups
of projective transformations can be intro-
duced for higher-dimensional cases.

According to the so-called erlangen
program, projective geometry can be
viewed as the study of properties of figures
that are invariant under the action of G.
Various other geometries can be obtained
by requiring invariance under a subgroup
of G. They include the regular Euclidean
geometry, as well as affine geometry and
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the non-Euclidean elliptic and hyperbolic
geometries.

Extensions of projective geometry to
fields other than the real numbers exist.
For example, complex projective geometry
is defined over the complex numbers. The
field may be finite or even noncommuta-
tive (see ALGEBRAIC METHODS, Sec. 2). For
example, a finite geometry in the plane
called PG(2,5) can be constructed using
31 points and 31 lines, with six points on
each line and six lines through each point.
Details of these generalized projective ge-
ometries may be found in the references
at the end of this article.

4
Algebraic Geometry

Algebraic geometry involves the study
of mathematical objects called varieties,
which are generalized curves, surfaces,
and hypersurfaces. The subject has several
levels of abstraction, in each of which the
precise meaning of the word variety is
different. For the purposes of this article
a relatively simple level of sophistication
suffices, in which a variety can roughly
be viewed as the solution to a set of
polynomial equations for variables in a
space. Note, however, that the modern
definition of variety is considerably more
abstract. It uses a branch of mathematics
called the theory of schemes, about which
more can be found in the references at the
end of this article.

This section presents a few simple
notions of algebraic geometry in the
framework of polynomial equations. The
discussion refers to several concepts (e.g.,
field, polynomial ring, rational functions)
that are defined and described in the article
ALGEBRAIC METHODS.

4.1
Affine Varieties

Here is a more precise definition of
one important type of variety. Consider
an algebraically closed field F. An n-
dimensional affine space An over F is
defined as the set of points specified by the
coordinates (f1, . . . , fn) with fj ∈ F. Denote
by F[f1, . . . , fn] the polynomial ring in n
variables over F. An affine variety V is a
subset of An given by the common zeros of
a set S of polynomials in F[f1, . . . , fn]. If S
contains only one polynomial, V is called
an affine curve for n = 2, an affine surface
for n = 3, and an affine hypersurface for
n > 3.

A subset of V satisfying the definition
of a variety is called a subvariety. If V is
the union of two subvarieties, it is called
reducible; otherwise, it is irreducible. For
example, an irreducible affine curve is
one for which the defining polynomial is
irreducible (i.e., cannot be factored). An
irreducible component of V is defined
as a maximal irreducible subvariety of
V. One result in this subject is that any
variety V can be written uniquely as the
union of finitely many distinct irreducible
components.

Starting with a variety V, a sequence
of irreducible varieties can be constructed
such that each member of the sequence
is a subvariety of the preceding one.
This sequence is of finite length, and the
number of subvarieties in it is called the
dimension of V.

The unions and finite intersections of
subvarieties of V are also subvarieties.
This means that the complements of the
subvarieties of V can be used as the
collection t of subsets for a topological
space (see Sec. 2.1). Therefore, An and
hence also V can be endowed with a
topology, called the Zariski topology. This
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topology is not Hausdorff but, unlike the
usual Hausdorff topology on Cn, it is
defined for all affine varieties over F.

4.2
Projective Varieties

Several extensions of the notion of affine
variety to more general varieties exist. One
generalization uses an approach similar to
that taken in the construction of differen-
tiable manifolds: The meaning of variety
is extended to include objects constructed
by patching together affine varieties. This
generalization then looks locally like an
affine variety but globally is different. An
important result in algebraic geometry is
that certain subsets of projective spaces
form varieties of this sort, called projective
varieties.

An n-dimensional projective space Pn

over F can be introduced as the set of points
specified by the homogeneous coordinates
(f0, f1, . . . , fn) with fj ∈ F not all zero,
subject to the restriction that two such
sets of homogeneous coordinates related
via a single nonzero constant c ∈ F as

(f0, f1, . . . , fn) = (cf0, cf1, . . . , cfn) (126)

specify the same point (cf. Sec. 3.2). De-
note by H[f1, . . . , fn] the ring of homoge-
neous polynomials in n variables over F.
A projective variety V is a subset of Pn

given by the common zeros of a set S of
polynomials in H[f1, . . . , fn]. If S contains
only one polynomial, V is called a projec-
tive curve for n = 2, a projective surface
for n = 3, and a projective hypersurface
for n > 3.

4.3
Classification

The ultimate aims of algebraic geometry
are the classification and characterization

of varieties. These are difficult and un-
solved problems in the generic case. To
attack the classification problem, a means
of relating varieties to one another is
needed. This is provided by the notion
of a rational map.

A rational map f : V → An from an
affine variety to n-dimensional affine space
is basically a set of n rational functions fj.
The domain of f is by definition taken
as the union of the domains of the n
functions fj. A rational map f : V1 → V2

between two affine varieties V1 ⊂ An1 and
V2 ⊂ An2 is defined to be a rational map
f : V1 → An1 such that the range of f
lies in V2. If the map f also has a
rational inverse, it is called a birational
equivalence.

The classification problem is approached
by seeking a classification up to birational
equivalence. Ideally, this means provid-
ing discrete and/or continuous numerical
quantities that are invariant under bira-
tional equivalence and that characterize
inequivalent varieties. Then, given a bira-
tionally equivalent set of varieties, a stan-
dard subset with desirable features (e.g.,
no singularities) can be sought and a clas-
sification attempted. Finally, one can seek
some means of measuring the deviation
from this standard subset of the remain-
ing members of the birational-equivalence
class.

An example is provided by the special
case of the algebraic curves over F. For
these varieties, a discrete quantity called
the genus g can be introduced, which is
a nonnegative real number that is invari-
ant under birational equivalence. Curves
with g = 1 are sometimes called elliptic
curves. For each nonzero g the birational-
equivalence classes can be labeled by a
one-dimensional continuous variable if
g = 1 and by a (3g − 3)-dimensional set
of continuous variables otherwise. The
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continuous variables are called moduli.
They also form an irreducible variety,
called moduli space, that can in turn be
studied with the methods of algebraic ge-
ometry.

If the field F is the field C of complex
numbers, the resulting algebraic curves
are the Riemann surfaces. A curve with
g = 0 is topologically a sphere, while
one with g = 1 is topologically a torus.
The set of Riemann surfaces plays an
important role in string theories (see
Sec. 2.10). For example, at a particular
order in perturbation theory for a scat-
tering process the string world sheet
is topologically a Riemann surface with
punctures for the incoming and outgo-
ing strings. The methods of differential
and algebraic geometry play a signif-
icant role in the evaluation of such
contributions to the scattering ampli-
tudes.

Glossary

Considerations of space prevent an exten-
sive glossary being provided for this article.
Instead, the following is a list incorporat-
ing important concepts together with the
number of the section in which the concept
appears.

Abscissa: See Sec. 1.1.
Adjoint Exterior Derivative: See Sec. 2.4.
Affine Space: See Sec. 4.1.
Affine Variety: See Sec. 4.1.
Almost Complex Structure: See Sec. 2.8.
Antisymmetric Symbol: See Sec. 2.4.
Antisymmetric Tensor: See Sec. 2.3.
Applicate: See Sec. 1.5.
Atlas: See Sec. 2.1.
Base Manifold: See Sec. 2.5.
Betti Number: See Sec. 2.9.
Bianchi Identity: See Sec. 2.6.

Birational Equivalence: See Sec. 4.3.
Brianchon’s Theorem: See Sec. 3.1.
Bundle of Frames: See Sec. 2.10.
Cartan Exterior Algebra: See Sec. 2.4.
Cartesian Coordinates: See Sec. 1.1.
Characteristic Class: See Sec. 2.9.
Chart: See Sec. 2.1.
Circle: See Sec. 1.2.
Closed Form: See Sec. 2.4.
Coclosed Form: See Sec. 2.4.
Coexact Form: See Sec. 2.4.
Complex Manifold: See Sec. 2.8.
Complex Structure: See Sec. 2.8.
Cone: See Sec. 1.5.
Conic Section: See Sec. 1.2.
Connection: See Sec. 2.6.
Contraction: See Sec. 2.2.
Contravariant Components: See Sec. 2.2.
Coordinate Basis: See Sec. 2.2.
Cosine: See Sec. 1.3.
Cotangent Space: See Sec. 2.2.
Covariant Components: See Sec. 2.2.
Covariant Derivative: See Sec. 2.6.
Cross Section: See Sec. 2.5.
Curvature Form: See Sec. 2.6.
Curvilinear Coordinates: See Sec. 1.4.
Cylinder: See Sec. 1.5.
Cylindrical Coordinates: See Sec. 1.5.
De Rham Cohomology: See Sec. 2.9.
Desargues’s Theorem: See Sec. 3.1.
Differential Forms: See Sec. 2.4.
Directrix: See Sec. 1.2.
Discriminant: See Sec. 1.2.
Dolbeault Operator: See Sec. 2.8.
Dual Basis: See Sec. 2.2.
Dual Vector Space: See Sec. 2.2.
Duality, Projective: See Sec. 3.
Eccentricity: See Sec. 1.2.
Einstein Summation Convention: See
Sec. 2.2.
Ellipse: See Sec. 1.2.
Ellipsoid: See Sec. 1.5.
Embedding: See Sec. 2.3.
Erlangen Program: See Sec. 3.3.
Euclidean Space: See Sec. 1.5.
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Exact Form: See Sec. 2.4.
Exterior Derivative: See Sec. 2.4.
Fiber: See Sec. 2.5.
Fiber Bundle: See Sec. 2.5.
Finite Geometry: See Sec. 3.3.
Focus: See Sec. 1.2.
Fundamental Theorem of Projective
Geometry: See Sec. 3.1.
Genus: See Sec. 4.3.
Geometric Quantization: See Sec. 2.10.
Group of Projective Transformations: See
Sec. 3.3.
Harmonic Form: See Sec. 2.4.
Hausdorff: See Sec. 2.1.
Hermitian Metric: See Sec. 2.8.
Hodge Decomposition Theorem: See
Sec. 2.9.
Hodge Star: See Sec. 2.4.
Homogeneous Coordinates: See Sec. 3.2.
Hopf Map: See Sec. 2.7.
Horizontal Lift: See Sec. 2.6.
Horizontal Subspace: See Sec. 2.6.
Hyperbola: See Sec. 1.2.
Hyperboloid: See Sec. 1.5.
Hypersphere: See Sec. 1.5.
Hypersurface: See Sec. 1.5.
Incidence: See Sec. 3.
Index Theorem: See Sec. 2.9.
Irreducible Variety: See Sec. 4.1.
K
..
ahler Metric: See Sec. 2.8.

Kepler Problem: See Sec. 1.6.
Lie Algebra: See Sec. 2.5.
Lie Group: See Sec. 2.5.
Line At Infinity: See Sec. 3.
Manifold: See Sec. 2.1.
Maxwell Equations: See Sec. 2.7.
Method of Coordinates: See Sec. 1.
Metric: See Sec. 2.3.
Modular Parameter: See Sec. 2.8.
Moduli: See Sec. 4.3.
Morse Theory: See Sec. 2.9.
Neighborhood: See Sec. 2.1.
Ordinate: See Sec. 1.1.
Pappus’s Theorem: See Sec. 3.1.
Parabola: See Sec. 1.2.

Paraboloid: See Sec. 1.5.
Parametric Representation: See Sec. 1.5.
Pascal’s Theorem: See Sec. 3.1.
Pencil: See Sec. 3.1.
Plane Analytic Geometry: See Sec. 1.5.
Plane Polar Coordinates: See Sec. 1.4.
Point at Infinity: See Sec. 3.
Potentials: See Sec. 2.7.
Principal Bundle: See Sec. 2.5.
Projective Geometry: See Sec. 3.
Projection Map: See Sec. 2.5.
Projective Transformation: See Sec. 3.1.
Projective Variety: See Sec. 4.2.
Quadric: See Sec. 1.5.
Riemann Surface: See Secs. 2.8, 2.10, 4.3.
Riemannian Manifold: See Sec. 2.3.
Scalar Field: See Sec. 2.3.
Sine: See Sec. 1.3.
Slope: See Sec. 1.1.
Solid Analytic Geometry: See Sec. 1.5.
Sphere: See Sec. 1.5.
Spherical Polar Coordinates: See Sec. 1.5.
Spherical Triangle: See Sec. 1.5.
Structure Group: See Sec. 2.5.
Submanifold: See Sec. 2.3.
Symmetric Tensor: See Sec. 2.3.
Symplectic Form: See Sec. 2.10.
Tangent: See Sec. 1.3.
Tangent Space: See Sec. 2.2.
Tensor: See Sec. 2.3.
Tensor Field: See Sec. 2.3.
Topological Space: See Sec. 2.1.
Variety: See Sec. 4.
Vector: See Sec. 2.2.
Vector Field: See Sec. 2.3.
Vertical Subspace: See Sec. 2.6.
Wedge Product: See Sec. 2.4.
Zariski Topology: See Sec. 4.1.
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Introduction

In mathematics the term Green’s function
is usually given to a solution of an
initial- or boundary-value problem of a
differential equation with a δ-function
inhomogeneous term. Let us be more
specific. Consider an ordinary or partial
differential equation

LxG(x, x′) = δ(x − x′), (1)

with Lx a linear differential operator with
respect to the variable x. Here, x may stand
for either the position r, the time t, or the
pair (r,t). Then the solution G(x, x′) is
called the Green’s function if it satisfies
a given homogeneous boundary condi-
tion – a condition relating the value of G
to its derivative Gx on the boundary of
the domain, a simple example of which is
G(x, x′) = 0 or Gx(x, x′) = 0. In physics
and applied physics, however, the term
Green’s function is often used without

explicitly referring to the boundary condi-
tion. For example, a fundamental solution
in mathematics is often called simply a
Green’s function. Thus it is desired to
seek an alternative and more generalized
definition that enables us to deal with a
wider class of functions encountered in
various areas of physical science. This can
be achieved by formulating the concept
of Green’s functions in terms of response
theory: The Green’s function is then a re-
sponse function that connects the output
signal O(x) of the system with the input
signal I(x) in the form of a linear integral
transform:

O(x) =
∫

G(x, x′)I(x′) dx′, (2)

the integral range over x′ depending upon
the problem under consideration. In the
present article the term Green’s function
is employed in this generalized sense.

When the linear response of a system is
described by a linear operator Lx, which
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may be differential, integral, integro-
differential, or of any other kind, the two
signals O(x) and I(x) are related through

LxO(x) = I(x). (3)

Comparing this equation with Eq. (2), we
see that the Green’s function is formally
defined by L−1

x . When, in particular,
Lx is a differential operator in Eq. (3)
and a homogeneous boundary condition,
u(x) = 0, for example, is imposed on
the boundary �, the definition used in
mathematics is recovered. This is because
the superposition over x′ in Eq. (2) solves
the problem when G satisfies Eq. (1)
with the boundary condition G(x, x′) = 0
for x on �. There are, however, many
cases where it is difficult to specify the
operator Lx for describing the response.
The relationship between the responses
of a black box to a δ-function type and
distributed input signals is shown in Fig. 1.

Although the principle of superposition
and hence the validity of the form given
by Eq. (2) hold only when the solution
satisfies a homogenous boundary condi-
tion, Green’s functions are also central
when one tries to construct a solution
of a boundary-value problem with an
inhomogeneous boundary condition – for

Fig. 1 Response at x of a black box to an input
signal: (a) an input signal localized at x′ with unit
strength, (b) an input signal distributed with
magnitude I(x′)

example, a solution having a prescribed
nonzero value on the boundary. This is
one reason why Green’s functions are so
widely used.

The quantities called ‘‘resolvent’’, ‘‘re-
solvent kernel’’, ‘‘signal function’’, ‘‘point
response function’’, or ‘‘transfer func-
tion’’, encountered in various fields of
mathematics, physics, applied physics, and
engineering, are nothing but the Green’s
functions in the generalized definition.
We note that in Eq. (1) the Green’s func-
tion G(x, x′) describes the response to
a ‘‘point’’ input source and in Eq. (2) it
‘‘transfers’’ the input signal into the output
response of the system in question. When
one recalls that many problems in physics
and applied physics ultimately reduce to
finding the output O(x) for a given in-
put I(x), one can understand why Green’s
functions are very popular today in many
fields – hydrodynamics, electrodynamics,
acoustics, elasticity, quantum mechan-
ics, solid-state physics, elementary-particle
physics, and so on. To imagine how widely
they are used, it is enough to remember
the diverse names given to them, listed
above. Their usefulness is still growing
progressively today, as various numerical
techniques continue to develop for calcu-
lations involving Green’s functions.

The subjects of the present article are the
definitions, significances, constructions,
utilizations, and usefulness of Green’s
functions. We try to make the description
as illustrative as possible. The Green’s
functions we deal with in this article
range from those treated in mathematical
textbooks to the ones used in many fields
of pure and applied physics.

Although, unless stated otherwise, the
concrete forms of the Green’s functions
will be given for the case of three-
dimensional space, the reader should keep
in mind that they depend intrinsically on
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the dimensionality of the space considered.
The reader can consult the monographs
quoted in the text for the case of other
dimensionalities. Also, it should be noted
that in defining a Green’s function in this
article the coefficient of a δ function of
the point input signal is not always unity,
reflecting some arbitrariness existing in
the literature.

The present article is organized as
follows. We sketch in Sec. 1 a brief
history of Green’s functions including
their modern development. In Sec. 2
some typical methods of constructing
Green’s functions are explained for several
differential equations. The usefulness of
Green’s functions in initial- and boundary-
value problems is demonstrated in Sec. 3.
The boundary-element method, devised
to handle boundary-value problems for a
nontrivial geometry, is explained in Sec. 4,
together with the presentation of some
of its applications. Up to this point, the
description is given for the role of Green’s
functions as a convenient tool for solving
a mathematical or physical problem. In
Sec. 5, a number of Green’s functions
are given which have a direct relevance
with a physical reality. The treatments
as combined with perturbation method
are described in Sec. 6. The Green’s
functions popular in many-body problems
are described in Sec. 7, where, among
other things, we review their extremely
important application in linear response
theory of condensed-matter physics. A
brief sketch of their use in quantum field
theory is also given.

1
History of Green’s Functions

In the history of Green’s functions, it
will be appropriate to go back to 1828,

when N. Green put forth Green’s formula
(Kellog, 1939)∫

�

[u(r)�v(r) − v(r)�u(r)]d3r

=
∫

�

(
u(r)

∂

∂n
v(r) − v(r)

∂

∂n
u(r)

)
ds.

(4)

It converts the volume integral within a
region � of the left-hand side into the
surface integral on its boundary �, with �

the Laplacian and (∂/∂n)v(r) = n̂ · ∇v(r),
n̂ being the outward normal with unit
length to the boundary �. This formula
holds for arbitrary u(r) and v(r). When,
in particular, u(r) is a harmonic function,
�u(r) = 0, and v(r) is the Green’s function
of the Laplace equation

�v(r) = −δ(r − r′) (5)

or

v(r) = 1

(4π |r − r′|) , (6)

Green’s formula yields for r within �

u(r) = 1

4π

∫
�

(
1

|r − r′|
∂

∂n′ u(r′)

−u(r′) ∂

∂n′
1

|r − r′|
)

ds′. (7)

It shows that, as in Cauchy’s formula for
regular functions of complex argument
z = x + iy, we can express a harmonic
function inside a region as an integral
over its boundary: we may evaluate the
value of u(r) inside � only if we know
values of both u(r) and ∂u(r)/∂n on �.
If we let the argument r approach the
boundary �, Eq. (7) becomes a Fredholm
integral equation, which allows us to
express u(r) in terms of ∂u(r)/∂n. Likewise,
differentiating Eq. (7) over r and letting r
tend to � lead to the equation for ∂u(r)/∂n.
Thus u(r) and ∂u(r)/∂n cannot both be
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specified freely on �. From this fact stem
the Dirichlet and Neumann problems of
the Laplace equation, i.e., the problems
of finding a harmonic function u(r) that
has a prescribed boundary value u(r) and
outward derivative ∂u(r)/∂n, respectively,
on the boundary �.

In the latter half of the 19th century,
Green’s functions played a fundamental
role in the discussion of the existence
and uniqueness of the solution of inter-
nal or external boundary-value problems
(Courant and Hilbert, 1937). In addition to
their significance in these basic problems,
they were also the key quantities in the
practical side of constructing the solutions
of boundary-value problems, as analyzed
fully by Lyapunov for the potential problem
(Smirnov, 1965).

Towards the end of the 19th century
and at the beginning of the 20th century,
Green’s functions were used in examining
the completeness property (closure prop-
erty) of the set of eigenfunctions of self-
adjoint operators and in proving the expan-
sion theorem for an arbitrary function in
terms of the complete set obtained from,
say, a Sturm-Liouville operator (Courant
and Hilbert, 1937). In mathematics, these
concepts opened the way to functional
analysis, which has since refined and
generalized greatly the theory of partial dif-
ferential equations (Yosida, 1965). In the
fields of pure and applied physics, not only
were they adopted in solving various prac-
tical problems, but they were also used in
clarifying many fundamental concepts un-
derlying quantum mechanics, which was
founded in 1925 and has been develop-
ing ever since. Indeed, one of the easiest
ways to recognize a marked peculiarity
of quantum mechanics contrasting with
classical mechanics is to change the ac-
tion integral for a classical motion into
the form involving the Green’s function of

the Schrödinger equation (Sakurai, 1985).
Also, in many quantum-mechanical appli-
cations, the Green’s functions enable us to
take into account a perturbation series to
an infinite order to give a deep insight not
attainable by a finite-order treatment.

As elementary-particle physics and solid-
state physics began to develop rapidly after
World War II, the extended applications of
Green’s functions were actively pursued.
One example is seen in many-particle
physics in which the Green’s functions
are defined in terms of field operators
and used in conjunction with the graphi-
cal representation of many-body processes
(see, e.g., Feynman, 1972). In these graphs,
which have came to be called Feynman di-
agrams, each line standing for a Green’s
function describes temporal and spatial
evolution of an elementary particle or exci-
tation. The crossing or branching of the
lines represents the interaction among
particles, implying that the Green’s func-
tion carries all the information on the
‘‘personal history’’ of an electron, proton,
photon, etc. Because of this character-
istic, these Green’s functions are more
often called ‘‘propagators.’’ Their contri-
butions in the development of quantum
electrodynamics (Bogoliubov and Shirkov,
1959) and solid-state physics (Abrikosov
et al., 1963) have been quite remarkable.
Despite the apparent difference in defini-
tion, Green’s functions defined in terms
of Feynman’s path integral in quantum
field theory constitute the second example
belonging to this category (Feynman and
Hibbs, 1965; Itzykson and Zuber, 1980).
Since the functional integral seems to be
the most powerful tool to date to quan-
tize nonlinear Lagrangians, the Green’s
functions will continue to be a useful tool
in the future development of this field.
As a last example, we refer the reader to
linear response theory applied widely in
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condensed-matter physics. In this exam-
ple. too, Green’s functions have been very
useful in that the theory of Kubo is most
powerful when it is applied in conjunction
with the temperature Green’s functions in-
troduced by Matsubara (Kubo et al., 1991).

Parallel to such generalizations in pure
physics, the Green’s functions of tradi-
tional usage have been refined in various
ways, yielding many important concepts.
Especially, many practical problems re-
lated to the Laplace, heat, wave, or
Schrödinger equation, previously left un-
touched simply because the boundaries of
the domains in question were too complex
for analytical treatment, have come to be
solved with the help of numerical tech-
niques. The boundary-element method,
one of the methods designed for just
such problems, takes full advantage of the
Green’s-function approach (Brebbia, 1978;
Brebbia and Walker, 1980). Green’s func-
tions are now so widely used everywhere
that familiarity with them is becoming
more and more important.

2
Construction of Green’s Functions

A number of typical methods of construct-
ing Green’s functions are illustrated.

2.1
One-Dimensional Equation of
Sturm-Liouville Type with Dirichlet-Type
Boundary Conditions

The Green’s function for the Sturm-
Liouville operator satisfies [p(x) > 0]

L[G(x, x′)] ≡ d

dx

(
p(x)

d

dx
G(x, x′)

)
− q(x)G(x, x′)

= −δ(x − x′), (8)

where the one-dimensional region 0 <

x < 1 is assumed. Suppose that a Dirichlet-
type boundary condition is imposed on G:

G(x, x′) = 0 at x = 0 and 1. (9)

The solution of this problem is constructed
as follows:

G(x, x′) ={
γ u<(x)u>(x′), 0 ≤ x ≤ x′ ≤ 1,
γ u>(x)u<(x′), 0 ≤ x′ ≤ x ≤ 1.

(10)

Here u<(x) is a solution of L[u<(x)] = 0
with the boundary value u<(0) = 0 at
the left boundary, while u>(x) satisfies
L[u>(x)] = 0 with u>(1) = 0 at the right
boundary. The constant γ in Eq. (10),
independent of x and x′, is given by

γ = 1/p(x′)
u′

<(x′)u>(x′) − u′
>(x′)u<(x′) ,

(11)

with u′
<(x′) =

(
d

dx′

)
u<(x′). It is deter-

mined such that

p(x′)[G′(x′+, x′) − G′(x′−, x′)] = −1,

(12)

with G′(x′±, x′) = (d/dx)G(x, x′)|x=x′± ,
which is the condition obtained by inte-
grating both sides of Eq. (8) in the in-
finitesimal interval x′− < x < x′+, where
x′± = x′ ± ε(ε → 0 +). When the left-
hand solution u<(x) happens to satisfy
simultaneously the condition u<(1) = 0,
i.e., when u<(x) happens to be the true
eigenfunction of the operator L with zero
eigenvalue, the constant γ diverges, mean-
ing that the system resonates with the
point external force expressed by the δ

function in Eq. (8). Still, in this case,
one can redefine a generalized Green’s
function so that Eq. (2) remains valid in
taking into account the inhomogeneous
term (Smirnov, 1965). In the case of a
Neumann- or mixed-type homogeneous
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boundary condition in place of Eq. (9),
Eq. (10) still provides us with the Green’s
function if u<(x) and u>(x) therein sat-
isfy the given boundary conditions. For
various types of Sturm-Liouville operators
and their generalizations, Green’s func-
tions are tabulated in many books. See,
e.g., Butkovskiy (1982).

2.2
Retarded, Advanced, and Causal Green’s
Functions of the Helmholtz Equation

The Green’s function of the Helmholtz
equation is defined by

(� + κ2)G(r, r′; κ) = −δ(r − r′). (13)

By Fourier transform we find

G(r, r′; κ) =
∫

d3k

(2π)3

exp[ik · (r − r′)]
k2 − κ2 .

(14)

As such the Green’s function is unde-
termined because the integral is divergent.
If we add a small imaginary part iε to
κ(ε → 0+), one may construct the follow-
ing three types of Green’s functions:

1. By putting κ equal to κ + iε, one obtains

GR(r, r′; κ) = exp(iκ|r − r′|)
4π |r − r′| , (15)

which is called the retarded Green’s
function. It is regular in the upper half
of the complex κ plane.

2. By putting κ equal to κ − iε, one obtains
a complex conjugate of the retarded
function,

GA(r, r′; κ) = exp(−iκ|r − r′|)
4π |r − r′| . (16)

This Green’s function is called the
advanced Green’s function and is

regular in the lower half of the complex
κ plane.

3. By putting κ equal to κ + iε sgn κ , sgn
κ being κ/|κ|, (i.e., κ2 to κ2 + iε), one
obtains the causal Green’s function

GC(r, r′; κ) = GR(r, r′; κ)θ(κ)

+ GA(r, r′; κ)θ(−κ), (17)

the Heaviside step function θ(κ) being
defined by

θ(κ) =
{

1, κ > 0,
0, κ < 0.

(18)

We see that GR(GA) is obtained by
analytically continuing GC of the range
κ > 0 (κ < 0) to the upper (lower) half of
the complex κ plane. Except in many-body
theories, GC is seldom used [see Eq. (88)].
The names ‘‘retarded’’ and ‘‘advanced’’
come from the time dependence of the
Green’s functions of the (time-dependent)
wave equation(

1

c2

∂2

∂t2
− �

)
G(r, t; r′, t′) =

δ(r − r′)δ(t − t′), (19)

c being a positive constant. Upon con-
verting from t to the Fourier space ω,
we obtain the Helmholtz equation given
by Eq. (13) with κ2 = ω2/c2. The inverse
Fourier transform back to the variables t
and t′ of Eq. (14) [or Eq. (15) or (16)] shows
that GR(r, t; r′, t′) has nonzero values only
in the case t > t′, while GA is finite in the
opposite case, t < t′. Namely, when GR or
GA is substituted for G in the input-output
relation (2), it turns out that

O(r, t) =
∫ t

−∞
dt′

×
∫

d3r′GR(r, t; r′, t′)I(r′, t′),
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O(r, t) =
∫ ∞

t
dt′

×
∫

d3r′GA(r, t; r′, t′)I(r′, t′).

(20)

That is, the retarded Green’s function
duly satisfies the causality condition in
the sense that a perturbation due to I(r′, t′)
precedes its consequence observed at time
t. The advanced Green’s function describes
the time-reversed process of the physical
one. These features are also obvious in
the time-independent version G(r, r′; κ),
which describes the scattering of, e.g., a
monochromatic sound wave with a fixed
frequency ω (κ = ω/c, c being the velocity
of sound). Here GR given by Eq. (15)
leads properly to the outgoing scattered
wave, while GA gives rise to an incoming
scattered wave (Sommerfeld, 1949). To
summarize, the three Green’s functions
of wave equation are defined by

GR(r, t; r′, t′) = lim
ε→0

∫
d3k dω

(2π)4

× exp[ik · (r − r′) − iω(t − t′)]
k2 − (ω + iε)2/c2 ,

GA(r, t; r′, t′) = lim
ε→0

∫
d3k dω

(2π)4

× exp[ik · (r − r′) − iω(t − t′)]
k2 − (ω − iε)2/c2 ,

GC(r, t; r′, t′) = lim
ε→0

∫
d3k dω

(2π)4

× exp[ik · (r − r′) − iω(t − t′)]
k2 − ω2/c2 − iε

. (21)

After evaluating the integrals, we find

GR(r, t; r′, t′) =
( c

2π

)
θ(t − t′)

× δ(c2(t − t′)2 − |r − r′|2),

GA(r, t; r′, t′) =
( c

2π

)
θ(t′ − t)

× δ(c2(t − t′)2 − |r − r′|2),
GC(r, t; r′, t′) =

ic/(2π)2

|r − r|2 − c2(t − t′)2 + iε
.

(22)

The first of the three leads to Huygens’s
principle (See Sec. 5.1).

2.3
Green’s Functions Obtained by Fourier
Transform

As shown in Sec. 2.2, the Fourier trans-
form is a convenient way to obtain Green’s
functions. It is powerful only for obtain-
ing the Green’s function for an infinite
domain, however, i.e., a fundamental so-
lution. Nevertheless, it should be noted
that such a Green’s function enables us
to derive a Green’s function subject to a
homogeneous boundary condition on the
boundary of a finite domain (see Sec. 2.4).
Note also that the infinite-domain Green’s
functions are used very often to solve
the problems for a finite domain [the
boundary-element method is one of the ex-
amples (see Secs. 4.2 and 4.3)]. With this
remark in mind, we will in this section
give some Green’s functions obtained by
Fourier transform.

2.3.1 Heat Equation
The Green’s function of the heat equation
is defined by

(
∂

∂t
− σ 2�

)
G(r, t; r′, t′) =

δ(r − r′)δ(t − t′). (23)

In Fourier space, it holds that
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G(r, t; r′, t′) =
∫

d3k dω

(2π)4

× exp[ik·(r − r′) − iω(t − t′)]
σ 2k2 − iω

=




[4πσ 2(t − t′)]−3/2

× exp
{ −|r − r′|2

4σ 2(t − t′)

}
, t > t′,

0, t < t′,
(24)

the second relation being obtained by
calculating the residue in the ω integral.
We should note that the integral over
ω is well defined in contrast to the
wave equation treated in Sec. 2.2. The
finiteness of the Green’s function only in
the case t > t′ is in accord with the law of
increase of entropy or the second law of
thermodynamics.

2.3.2 Time-Dependent Schr
..
odinger

Equation
The Green’s function for a free particle
with mass m obeying Schrödinger’s equa-
tion is defined by(

ih̄
∂

∂t
+ h̄2

2m
�

)
G(r, t; r′, t′) =

ih̄δ(r − r′)δ(t − t′). (25)

Fourier transform then yields

GR(r, t; r′, t′) = i
∫

d3k dω

(2π)4

× exp[ik·(r − r′) − iω(t − t′)]
ω − h̄k2/2m + iε

=




[
m

2π ih̄(t − t′)

]3/2

× exp

[
im|r − r′|2
2h̄(t − t′)

] , t > t′,

0, t < t′.
(26)

In the ω integral, we have replaced ω

by ω + iε to obtain the retarded Green’s
function. The advanced Green’s function,
finite for t < t′, is obtained by putting
ω equal to ω − iε. Thus the Schrödinger
equation allows a time-reversed solution,
like what we have seen for the wave
equation [Eq. (19)].

2.3.3 Klein-Gordon Equation
The Green’s functions of the Klein-Gordon
equation are defined by

(
1

c2

∂2

∂t2
− � + µ2

)
G(r, t; r′, t′) =

δ(r − r′)δ(t − t′), (27)

c and µ being two positive constants.
Replacing µ2 by −µ2 defines the Green’s
function of the telegraphic equation. By
Fourier transform we find

G(r, t; r′, t′) =
∫

d3kdω

(2π)4

× exp[ik · (r − r′) − iω(t − t′)]
k2 + µ2 − (ω/c)2 . (28)

Since the integral is not well defined,
we can construct three Green’s functions,
GR, GA, and GC, by replacing ω as in
Eq. (21). They are obtained, respectively,
as (Bogoliubov and Shirkov, 1959)

GR(x) = −θ(t − t′)�(x; µ2),

GA(x) = θ(t′ − t)�(x; µ2),

GC(x) = �(x; µ2) +
(

i

2

)
�(1)(x; µ2).

(29)

Here G(r, t; r′, t′) is expressed simply
as G(x), x standing for (c(t − t′), r − r′),
and θ(t − t′) is the step function defined
by Eq. (18). The other quantities are
defined by
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�(x; µ2) =
(−c

2π

)
sgn(t − t′)

×
[
δ(x2) − θ(x2)

(
µ2

2

)
J1

(µx)

(µx)

]
,

�(x; µ2) = −1

2
sgn(t − t′)�(x; µ2),

�(1)(x; µ2) =
(

c

4π |r − r′|
)(

∂

∂r

)

× [θ(x2)N0(µx) − iθ(−x2)

× H0(iµ(−x2)1/2)], (30)

where sgn(t) = t/|t|, x2 = c2(t − t′)2 −
|r − r′|2, x = (x2)1/2, J1 is the first-order
Bessel function, and N0 and H0 are the
Neumann and first-kind Hankel func-
tions of the zeroth order, respectively
(Abramowitz and Stegun, 1965). In quan-
tum field theory, the Green’s functions in
Fourier space [(k, ω) representation] are
more often used than the (r,t) represen-
tation given above. The Green’s functions
treated in Sec. 2.2 are reproduced by taking
the limit µ → 0 in the above.

2.4
Green’s Functions Matching
Homogeneous Boundary Conditions at the
Boundary of a Finite Region

As an illustration, let us consider the
Green’s function of the Laplace equation
for a region �:

�G(r, r′) = −δ(r − r′), (31)

with a homogeneous Dirichlet condition
imposed on the boundary �:

G(r, r′)|r on � = 0. (32)

Were it not for the restriction (32), the
Green’s function would be nothing more
than the fundamental solution of the
Laplace equation, the Coulomb potential

given by Eq. (6). It satisfies the boundary
condition G(r, r′) → 0, as r → ∞. To
match the boundary condition (32), the
Green’s function must have the form

G(r, r′) = g(r, r′) + 1

4π |r − r′| , (33)

where g(r, r′) is the solution of the
homogeneous equation

�g(r, r′) = 0 (34)

subject to the boundary condition

g(r, r′)|r on � = −1

4π |r − r′|
∣∣∣∣
r on �

. (35)

The second term of Eq. (33) takes ac-
count of the δ function of the Poisson
equation, while the first term g(r, r′) in-
corporates the boundary condition. The
problem of finding the Green’s function
thus reduces to an orthodox Dirichlet prob-
lem of Eqs. (34) and (35) of finding a
harmonic function g(r, r′) satisfying the
inhomogeneous boundary condition. Al-
though the existence and uniqueness of
the solution is well established, a concrete
expression for g(r, r′) is hard to obtain ana-
lytically, unless the boundary � has a good
symmetry (Kellog, 1939; Smirnov, 1965).
Nevertheless, this method of obtaining the
Green’s functions satisfying the boundary
condition has a wide applicability in many
differential equations, and is not restricted
to the Laplace equation treated here.

2.5
Spectral Representation of Green’s
Functions

As an example of Green’s functions of
three-dimensional self-adjoint operators,
we treat here that of the Schrödinger
equation defined by

[E − H(r)]G(r, r′; E) = ih̄δ(r − r′). (36)
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For an electron in a hydrogen atom, for
example, the Hamiltonian H is given by

H(r) = − h̄2

2m
� − e2

4πε0r
, (37)

the proton being taken as the origin of
coordinates. From Eq. (36) one obtains

G(r, r′; E) =
∑

n

ih̄ψn(r)ψn(r′)∗
E − En

, (38)

with the eigenfunction ψn satisfying

H(r)ψn(r) = Enψn(r). (39)

Equation (38) can easily be verified by
applying E − H(r) to both sides and using
the completeness of {ψn} for the self-
adjoint operator H(r). The set of states
n includes not only the states with discrete
energy eigenvalues but also the states
within continuous spectra, if there are any,
as in the case of a hydrogen atom. To
describe a physical process occurring in a
hydrogen atom, we must use the retarded
version of the Green’s function obtained
by changing E to E + iε in Eq. (38), in
accordance with the remark made in 2.2.

Even in a finite-domain problem subject
to a homogeneous restriction imposed on
the boundary, the expression (38) remains
valid, with the understanding that the ψn’s
are now the solutions for the eigenvalue
problem with that boundary condition.

3
Green’s Functions used in Solving Initial-
and Boundary-Value Problems

In solving an initial- or boundary-value
problem, the Green’s function is useful in
taking account of not only an inhomoge-
neous term but also an inhomogeneous

initial or boundary condition. Some exam-
ples are given in Kellog (1939) and Morse
and Feshbach (1953).

3.1
Dirichlet and Neumann Problems of
Poisson’s Equation

The internal Dirichlet problem of the
Poisson equation is defined by

�u(r) = −f (r), (40)

with the inhomogeneous boundary condi-
tion imposed on �,

u(r)|� = g(r). (41)

The solution u(r) of this problem may be
written down if we know the Green’s
function G1(r, r′) of the Laplace equa-
tion satisfying the boundary condition
G1(r, r′)|� = 0 [i.e., the Green’s function
given by Eq. (33)]. It reads

u(r) =
∫

�

G1(r, r′)f (r′)d3r′

−
∫

�

(
∂

∂n′ G1(r, r′)
)

g(r′) ds′, (42)

where n defines the outward normal to
� as in Eq. (4). The right-hand side is
being written solely in terms of the given
boundary value g(r). The reader can easily
convince himself that this formula is
correct by noting that the first term satisfies
the Poisson equation with the boundary
value u(r)|� = 0, while the second is the
solution of the Laplace equation with
u(r)|� = g(r), as can be checked by the use
of the Green’s formula (4) with u = u(r)
and v = G1(r, r′).

Let G2(r, r′) be the Green’s function
satisfying the homogeneous Neumann-
type condition, (∂/∂n)G2(r, r′) = 0 for r
on �. If we employ G2 in place of G1 and
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replace −∂G1/∂n′ by G2, the expression
given by Eq. (42) gives the solution of
the Poisson equation subject to the
inhomogeneous Neumann-type boundary
condition, (∂/∂n)u(r)|� = g(r), in place of
Eq. (41). The external problems are treated
analogously.

3.2
Initial- and Boundary-Value Problem for the
Heat Equation

The Green’s formula (4) is generalized
to an arbitrary second-order differential
operator L – to that of the heat equation,
L = ∂/∂t − σ 2�, for example. By using it,
we can express the solution for, say, the
following problem of the heat equation for
r ∈ � and t > 0:(

∂

∂t
− σ 2�

)
u(r, t) = f (r, t), (43)

with the initial temperature distribution
specified by

u(r, 0) = g(r) (44)

and the boundary condition of Dirichlet
type given by

u(r, t)|� = h(r, t). (45)

Suppose we already happen to know the
Green’s function H1(r, t; r′, t′) for the
operator M(= −∂/∂t − σ 2�), the adjoint
of the operator L:(

− ∂

∂t
− σ 2�

)
H1(r, t; r′, t′) =

δ(r − r′)δ(t − t′), (46)

which satisfies the homogeneous bound-
ary condition

H1(r, t; r′, t′)|r on � = 0. (47)

Then it is shown that the solution of the
problem (43)–(45) is given by

u(r, t) =
∫ t

0
dt′

∫
�

d3r′H1(r′, t′; r, t)f (r′, t′)

+
∫

�

d3r′H1(r′, 0; r, t)g(r′)

− σ 2
∫ t

0
dt′

∫
�

ds′ ∂H1(r′, t′, r, t)

∂n′
× h(r′, t′). (48)

If we employ, in place of H1, an-
other Green’s function H2 satisfying the
boundary condition [∂H2(r, r′)/∂n]|� = 0
instead of Eq. (47), we obtain the solu-
tion of Eqs. (43) and (44) with, in place
of Eq. (45), the Neumann-type inhomo-
geneous boundary condition, (∂/∂n) ×
u(r)|� = h(r, t). We should note that, as
in Sec. 3.1, −∂H1/∂n′ in Eq. (48) must be
replaced by H2.

The present examples given for oper-
ators that are not self-adjoint will suf-
fice to illustrate the practical value of
Green’s functions in a rather wide class of
boundary-value problems. An important
point is that the Green’s function used in
the input-output relation (2) is not defined
by a δ-function inhomogeneous term for
the operator L but by the one for its adjoint
operator M. Also, note that the reciprocity
relation of Green’s functions is in general
established between the Green’s functions
G and H for the operator L and its adjoint
M. Namely, for the Green’s function G and
H for the operators L and M, respectively,
it holds that

Gi(r, t; r′, t′) = Hi(r
′, t′; r, t), (49)

i = 1 and 2 corresponding to the Dirichlet
and Neumann boundary conditions, re-
spectively. If the operator L is self-adjoint,
with the relation L = M, the Green’s
function H is automatically identical to
G, leading to the well-known reciprocity
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relation:

Gi(r, t; r′, t′) = Gi(r
′, t′; r, t). (50)

The operator L for the Laplace, wave,
Klein-Gordon, or Schrödinger equation is
self-adjoint but that for the heat equation
is not (Courant and Hilbert, 1937).

4
Boundary-Element Method

4.1
Practical Boundary-Value Problems

In actual situations, we often encounter
a complex boundary �. If we insist on
applying the formulas given in Sec. 3, we
will be forced to solve additional boundary-
value problems in order to find Green’s
functions G1, H1, etc., as the example in
Sec. 2.4 shows. Therefore these formulas
are not very helpful in such problems, and
more direct methods, taking full advantage
of numerical techniques, are more often
employed in practice. The difference
method and finite-element method are two
such popular examples. The boundary-
element method, developed and applied
widely in recent years, also belongs to
this class. In contrast to the former
two, which have nothing to do with
Green’s functions, this method is related
deeply to Green’s formula and hence
Green’s functions. Conceptually, it is a
revival of the old method of expressing
the solution of the Laplace equation
in the form of the potential caused
by a monopole or dipole layer on the
boundary �, the unknown density of which
is determined by solving the Fredholm
integral equation (Courant and Hilbert,
1937). The Green’s functions involved are
the fundamental solution (6) (in the case
of the Laplace equation), instead of the

complicated Green’s functions G1, etc.
Let us briefly see the characteristic points
of the boundary-element method (BEM)
through the following examples (Brebbia
and Walker, 1980).

4.2
Poisson’s Equation as Treated by the
Boundary-Element Method

We return to the Poisson equation treated
in Sec. 3.1. If the fundamental solution of
the Laplace equation [Eq. (6)] is substituted
for v(r) in Green’s formula (4), we can
express the solution for the Poisson
equation by using the boundary values
of both u(r) and ∂u(r)/∂n on �. The result
is the extension of Eq. (7) to the Poisson
equation. For r ∈ �, we find

u(r) =
∫

�

G(r, r′)f (r′)d3r′

+
∫

�

(
G(r, r′)∂u(r′)

∂n′ − ∂G(r, r′)
∂n′ u(r′)

)
ds′

(51)

with G(r, r′) = 1/4π |r − r′|. Since we
know the value of u(r) on � through the
Dirichlet condition (41), u(r) = g(r), this
formula provides us with the solution of
the original problem, if we somehow find
the value of ∂u(r)/∂n on � on the right-
hand side. The procedure characterizing
the BEM is that the unknown quantity
∂u/∂n is determined from Eq. (51) by let-
ting r tend to a point on � and setting
u(r) = g(r). The result is a Fredholm in-
tegral equation of the first kind for the
unknown function ∂u(r)/∂n on �:

1

2
g(r) −

∫
�

G(r, r′)f (r′)d3r′

+
∫

�

∂G(r, r′)
∂n′ g(r′) ds′

=
∫

�

G(r, r′)∂u(r′)
∂n′ ds′. (52)
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Here the factor 1
2 takes account of

the discontinuous nature of ∂G/∂n in
letting r tend to the boundary. What
Eq. (52) shows is that we need to make
a numerical calculation of the unknown
quantity [∂u(r)/∂n]|� . This can be carried
out readily by discretizing the integral on �

using the well-established algorithm of the
finite-element method. Following similar
steps, the internal Neumann problem
and the external problems are eventually
reduced to an integral equation on the
boundary � as in this example.

4.3
Applications of the Boundary-Element
Method

4.3.1 Fluid Mechanics
In fluid mechanics, this method has been
known as the surface-singularity method.
For an incompressible and irrotational
fluid, it is well known that the velocity
potential satisfies the Laplace equation.
Hence Eq. (52), with the inhomogeneous
term f (r) dropped, is the key equation in
analyzing various boundary problems for
perfect fluids. In practical problems, such
as the analyses for the air flow around
an aircraft or a space shuttle flying with
relatively low velocity, a distribution of
vortices must often be taken into account.
In such cases the final integral equation
like Eq. (52) needs to be modified, but the
BEM is still quite powerful. See for details
the report by Morino et al. (1975).

4.3.2 Sound and Electromagnetic Waves
If the retarded Green’s function GR for the
Helmholtz equation [Eq. (15)] is used in
place of G, Eq. (52) turns out to be the key
equation for the wave equation [here f (r)
therein is an inhomogeneous term of the
wave equation]. Then if we let u(r) stand

for the velocity potential associated with a
sound wave, the boundary values for u(r)
and ∂u(r)/∂n will be related, respectively,
to the pressure and the velocity on �. For a
region bounded by a rigid wall, it holds that
[∂u(r)/∂n]|� = 0. When f (r) = 0, Eq. (52)
becomes a homogeneous integral equation
for g(r), yielding the eigen-frequencies
for the sound modes established in that
region, which can be, in an actual problem,
an auditorium or a complicated resonator
such as that of a violin. By converting
the integral equation to the linear coupled
equations, we can find the eigenvalues ω

[involved in the Green’s function through
κ = ω/c in Eq. (15)].

An external problem may be formulated
similarly to deal with sound propagation
from a source with a complicated shape.
Needless to say, the BEM for the wave
equation is not limited to acoustics.

4.3.3 Elasticity
The final example we give on the ap-
plication of the BEM is the problem of
determining the strain tensor of an elas-
tic body caused by a body force f(r) and
a surface force p(r), both applied exter-
nally. Since the basic equation of elasticity
is rather complicated, an analytical treat-
ment is possible only for the exceptional
case of very simple f(r) and p(r), applied
to an elastic body whose shape, too, is
very simple. In the BEM, these restric-
tions may be largely relaxed. First we need
the Green’s function for an infinite elastic
body. For an isotropic and homogeneous
system the tensor of the Green’s functions
satisfies (Landau and Lifshitz, 1986)

�Gij(r, r′) + 1

1 − 2σ

∑
k

∂

∂xi

∂

∂xk
Gkj(r, r′)

= −2(1 + σ)

E
δijδ(r − r′) (53)
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with Young’s modulus E, Poisson’s ratio
σ , and Kronecker’s delta δij. Here Gij is the
ith component of the deformation field at
r induced by the j-directed point force at r′
with unit strength. The solution to Eq. (53)
is known as Kelvin’s solution, which reads

Gij(r, r′) = 1 + σ

8πE(1 − σ)
[(3 − 4σ)δij + ninj]

× 1

|r − r′| , (54)

where n = (r − r′)/|r − r′|. In terms of Gij
one may obtain the basic integral equation
on the external surface �, involving the
body force f(r), an analog of Eq. (52) for the
strain tensor uij(r) (Brebbia and Walker,
1980). The boundary value for �j∂uij/∂xj
on � may be related to the given surface
force p(r).

5
Green’s Functions Having a Direct
Relevance to Physical Reality

The Green’s functions treated in Secs. 3
and 4 were used mainly as a tool for solving
a partial differential equation. The reader
will recall that by definition they describe
an output signal in response to a point
input signal. This suggests that they are
also usually related to a physical reality.
That this is indeed so will be seen through
the examples presented below.

5.1
Wave Front of Radiation Emitted from a
Point Source and Huygens’s Principle

The retarded Green’s function given by
Eq. (22) for the wave equation shows
where the wave front of the radiation is
found at time t, when it is emitted at
a former time t′ from the point source
located at r′. If we consider conversely a

Fig. 2 Huygens’s principle for wave
propagation. The wave observed at the
observation point O(r,t) is the sum of the
wavelets leaving, at t = 0, the sources
distributed on the sphere with radius ct, c being
the velocity of the wave

point of observation fixed at r and point
sources distributed around that point, we
can regard the radiation observed there at
time t as a composition of the propagating
wavelets that leave at t = 0 the various
point sources, whose distance from point
r is ct (Fig. 2). In fact, this situation is well
expressed by the solution of the following
initial-value problem for the wave equation
in three-dimensional space:

(
1

c2

∂2

∂t2
− �

)
u(r, t) = h(r, t) (55)

with the initial conditions

u(r, 0) = f (r), ut(r, 0) = g(r). (56)

The solution is given by Kirchhoff’s
formula (Baker and Copson, 1950; Morse
and Feshbach, 1953)

u(r, t) =
∫

|r−r′|<ct
d3r′ h(r′, t − |r − r′|/c)

4π |r − r′|

+ ∂

∂t
[tf (r)ct] + tg(r)ct. (57)

Here the first term takes into account
the inhomogeneous term of Eq. (55) in the
form of a retarded potential. The quantities
f ct and gct are the averages of their values
on the surface of the sphere centered at r
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with radius ct: for example,

f (r)ct =
∫

d�f (r + ctr̂0)

4π
, (58)

the integral being over the solid angle in
the direction r̂0 from the point r. Equation
(57) demonstrates in mathematical form
the well-known Huygens’s principle. Al-
though the detailed derivation is omitted,
the important role of the Green’s function
in this principle will be understood if the
constraint imposed by Green’s functions
in Eq. (22) is compared with those involved
in the integrals in Eqs. (57) and (58). The
name ‘‘propagators’’ given very often to
the Green’s functions of the wave equa-
tion or its generalizations stems from the
concepts involved in Huygens’s principle.

5.2
Retarded Green’s Function of
Schr

..
odinger’s Equation

The inverse Fourier transform of the
retarded version of the Green’s function
given by Eq. (38) is

GR(r, t; r′, t′) =


�nψn(r)ψ∗
n (r′)

× exp

[
−

(
i

h̄

)
En(t − t′)

]
, t > t′,

0, t < t′.
(59)

This quantity provides the probability
amplitude for a particle observed at (r′, t′)
to be found at (r,t). To see this, we note that
Eq. (59) is the solution of the Schrödinger
equation

ih̄
∂

∂t
�(r, t) = H(r)�(r, t), (60)

subject to the condition that at time t′

�(r, t′) = δ(r − r′). (61)

This interpretation applies to an arbitrary
Hamiltonian and is not restricted to that
of an electron in a hydrogen atom, which
we had in mind in Sec. 2.5. The above
argument, when taken together with the
brief explanation to be given in Sec. 7.5
on the path-integral approach to quantum
mechanics, shows that the Green’s func-
tion of the Schrödinger equation bridges
the gap between quantum mechanics and
classical dynamics (Sakurai, 1985). Also, in
the perturbational treatment, we can fol-
low an actual process of electron scattering
in (r, t) space, by making use of the Green’s
function (see Secs. 6.2 and 6.3).

5.3
Dislocations

A dislocation is a line of singularities
in the deformation field of an elastic
body. Equation (53) thus describes a
dislocation if the strength and distribution
of the δ functions of the right-hand side
are specified appropriately. For example,
around a straight edge dislocation on the
z axis with a y-directed Burgers vector
b (|b| = b), the elastic deformation u(ρ)

as a function of the two-dimensional
coordinate ρ = (x, y) is given by (Landau
and Lifshitz, 1986)

u(ρ) = u0(ρ) + w(ρ). (62)

Here the vector u0(ρ) = (u0x(ρ), u0y(ρ),
u0z(ρ)) takes account of the multivalued-
ness of the deformation field and is defined
by u0z(ρ) = 0 and

u0x(ρ) + iu0y(ρ) = i

(
b

2π

)
ln(x − iy).

(63)

It is essentially a fundamental solution of
the two-dimensional Laplace equation. On
the other hand, the vector w(ρ) in Eq. (62)
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is obtained as

wi(ρ) = Eb

(1 + σ)

∫ ∞

−∞
Giy(r, r′) dz′, (64)

with r = (ρ, 0), r′ = (0, 0, z′), and Gij,
Kelvin’s solution, given by Eq. (54). The
integral over z′ takes account of the line of
δ-function singularities on the z axis. From
Eqs. (63) and (64), one can determine the
strain and stress fields around a straight
edge dislocation.

5.4
Magnetic Field around a Vortex Line in a
Type-II Superconductor

It is well known, as the Meissner effect,
that a magnetic field applied externally
cannot penetrate into a superconductor.
In a type-II superconductor, however, su-
perconducting and nonsuperconducting
regions coexist in a phase called the mixed
phase, which is realized above a certain
threshold strength for the magnetic field:
As the field strength increases to pass the
threshold, the magnetic flux begins to pen-
etrate the sample in the form of a quantized
flux line, called a vortex. Well below the
upper critical field, above which the super-
conducting phase can no longer exist, the
density of such vortices is so low that one
may treat each of them as independent.
It is shown that around an isolated rec-
tilinear vortex, the microscopic magnetic
field configuration is determined by (in
cgs units following the convection of this
field)

(� − λ−2)h(r) = −φ0λ
−2̂zδ(ρ), (65)

φ0 = hc/2e being the flux quantum and
λ the penetration depth (Fetter and
Hohenberg, 1969). Here ẑ is the unit vector
in the z direction and the vortex line is

assumed to be situated on the z axis ρ =
0, ρ = (x, y) being the two-dimensional
position vector. The field h(r) is thus
expressed by the Green’s function of
the two-dimensional Helmholtz equation
[note, however, that κ2 in Eq. (13) is
replaced by −λ−2]:

h(r) =
(

φ0λ
−2

2π

)
ẑK0

(ρ

λ

)
, (66)

with K0 the modified Hankel function
of order zero. If the right-hand side of
Eq. (65) is replaced by a two-dimensional
periodic distribution of δ functions, one
may determine the magnetic field set up
in a vortex lattice and calculate the gain
in the free-energy density. The discus-
sion of the equilibrium lattice structure
that minimizes the free-energy density
provides us with a basis for the more
complete analysis due to Abrikosov et al.,
based on the Ginzburg-Landau equations.
See for details Fetter and Hohenberg
(1969).

6
Perturbational Treatment to Obtain Green’s
Functions

When an operator can be divided into two
parts and the Green’s function for one of
the two is obtained straightforwardly, one
may treat the remaining part perturbatively
to obtain the full Green’s function. For
illustration, let us consider the stationary
solution of the Schrödinger equation
for the Hamiltonian of the following
form:

H = H0 + V . (67)

It is very convenient to define the Green’s
function using the operator (E − H)−1,
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which is sometimes called the Greenian,
and to examine it as a function of the
energy variable E. One may show that the
quantity 〈r|(E − H)−1|r′〉, the (r, r′) matrix
element of the Greenian, behaves as a
Green’s function, and one may reasonably
denote it simply as G(r, r′; E) (see, e.g.,
Schiff, 1968). [The present definition leads
to the Green’s function (ih̄)−1 times that
defined in Eq. (38)]. Rewriting the operator
(E − H)−1 as a power series with respect to
the perturbation V, we obtain the following
integral equation for G:

G(r, r′; E) = G0(r, r′; E) +
∫

d3r1

× G0(r, r1; E)V(r1)G(r1, r′; E), (68)

G0(r, r′; E) being the unperturbed Green’s
function 〈r|(E − H0)

−1|r′〉. The expres-
sion is given for a local operator V,
i.e., 〈r|V |r′〉 = V(r)δ(r − r′). Iterating the
right-hand side, we find

G = G0 + G0VG0 + G0VG0VG0 + · · ·
= G0 + G0TG0. (69)

Here the simplified notation of G0VG0,
etc., should be interpreted as in the second
term of Eq. (68) by supplementing the
arguments and integrals. The series in
the first equality, the Born series, defines
the operator T, which is usually called the
t matrix by identifying its (r, r′) matrix
element T(r, r′; E) with the operator itself.
It is an effective scattering potential, taking
into account the multiple scattering effect
to all orders of V through the relation

T = V + VG0V + VG0VG0V + · · ·
= V + VGV . (70)

Note that the Green’s function in the
second equality is G, not G0, which already
takes full account of the effect of V.

6.1
Slater-Koster Model

As shown by Eqs. (38) and (39), the eigen-
values for a Hamiltonian operator H are
given by the poles of the Green’s function
〈r|(E − H)−1|r′〉. The Slater-Koster model
is a typical model in which the series (69)
is exactly calculable. Usually, it is defined
by the model Hamiltonian which has a δ-
function-type (contact-type) perturbation,
V(r) = v0δ(r), v0 being a constant for the
potential strength. In this case, Eq. (69)
leads to

G(r, r′; E) = G0(r, r′; E) + G0(r, 0; E)

×
{

v0

1 − v0G0(0, 0; E)

}
G0(0, r′; E).

(71)

Thus, the zeros of the denominator of the
second term as a function of E provide the
eigenvalues for the full Hamiltonian:

1 − v0G0(0, 0; E) = 0. (72)

Considering that G0 has poles at the unper-
turbed energy eigenvalues [the eigenvalues
of the Hamiltonian H0 in Eq. (67)], we
see that this equation has a form quite
adequate to see how these eigenvalues
are modified by the perturbation. Using
Eq. (72), one can discuss, for example, how
a plane-wave state k is affected by the po-
tential V(r) and whether or not a bound
state appears for an attractive potential
V(r) for a given unperturbed energy spec-
trum. In condensed-matter physics these
problems are very frequently encoun-
tered in dealing with electrons, phonons,
magnons, etc. For a detailed analysis, see,
e.g., the book by Economou (1990).

The treatment for a photon along this
line is just the perturbational treatment
of the Maxwell equations. For example,
the reflection and transmission of light
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for a rough solid surface was analyzed
successfully by this approach (see, e.g.,
Maradudin et al., 1990).

6.2
Scattering Cross Section of a Plane Wave
from a Scatterer with Spherical Symmetry

In the scattering of an incident wave ψ0
of, say, an electron with energy E by a
perturbing potential V(r), the total wave
function for the Schrödinger equation
Hψ = Eψ with H given by Eq. (67) may
be expressed as (Schiff, 1968)

ψ(r) = ψ0(r) +
∫

d3r′G0(r, r′; E)

× V(r′)ψ(r′)

= ψ0(r) +
∫ ∫

d3r1d3r2G0(r, r1; E)

× T(r1, r2; E)ψ0(r2). (73)

The second equality is obtained by iterating
the first equality and using the definition
(70) for the t matrix T. For a spherically
symmetric potential V(r) = V(r), we may
go further by resolving ψ(r) and ψ0(r) into
partial waves according to the magnitudes
of angular momentum h̄l. The partial-wave
expansion of the incident plane wave with
wave vector ki is

ψ0(r) = eiki·r

=
∞∑
l=0

(2l + 1)iljl(kir)Pl(cos θ), (74)

where jl(kir) is the spherical Bessel
function of order l, the scattering angle
θ is the angle between ki and r, and
Pl(cos θ) is the Legendre function of order
l. Asymptotically, the solution ψ in Eq. (73)
behaves as

ψ(r) = ψ0(r) + f (θ)eiksr

r
, (75)

with ks the wave number of the scattered
spherical wave. Comparing Eqs. (73) and
(75) and using the form given by Eq. (15),
we find that the amplitude of the outgoing
spherical wave is given by

f (θ) = −
(

m

2π h̄2

)
T(ks, ki; E), (76)

where

T(ks, ki; E) =
∫ ∫

e−iks·rT(r, r′; E)

× eiki·r′
d3r d3r′, (77)

with ks the wave vector of the scattered
wave, directed from the origin to the
observation point r (ks = ki by energy
conservation). The t matrix T(ks, ki; E)

for the two wave vectors, both related
to the incident energy E through the
relation ki = ks = (2mE/h̄2)1/2, is called
the t matrix on the energy shell and is
known to be expressed in terms of the
phase shift δl(E) of the partial wave l. In
this way, f (θ) is finally expressed as

f (θ) = 1

2iki

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ).

(78)

The differential and total cross sections are
then obtained from |f (θ)|2.

To carry out the partial-wave expansion
for the Maxwell equations, we need the
tensor of the Green’s functions (Mahan,
1990) and the vector spherical wave for
each l (Stratton, 1941). With the difference
that we now require two kinds of phase
shifts for each l because of the character of
light as a transverse vector field, the Mie
and Rayleigh scatterings of light (Born and
Wolf, 1975) may be treated compactly as
in the electron case.
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6.3
Band Structure of Electrons and Photons
and Diffraction Experiments

The band structure of electron states in
solids may be viewed as arising from
the electron scattering by atoms arrayed
periodically in a lattice. With the difference
that the perturbation V is now due to a
periodic array of scatterers, Eqs. (67)–(70)
still hold here without modification. Since
the poles of the full Green’s function
are identical to those of the t matrix
[Eq. (69)], the calculation of the t matrix
for arrayed scatterers is equivalent to the
band-structure calculation. If we denote
the multiple-scattering effect of the kth
scatterer by the t matrix tk, the scattering
from the array as a whole is described by
the following t matrix:

T =
∑

k

tk +
∑
k,k′

(k�=k′)

tkG0tk′ + · · · , (79)

where G0 is the Green’s function for free
motion. The first term describes the scat-
tering from a single site. The second
exhibits the process where an electron,
once scattered by the kth scatterer, prop-
agates to another site k′ and undergoes a

Fig. 3 Scattering of an electron in a solid. The
vertical solid line at site k is the t matrix tk used
in Eq. (79) and the arrowed horizontal lines
show G0. The t matrix tk is defined by the lower
graph, which shows the series given by Eq. (70)
with the dotted lines for the atomic potential V

multiple scattering there. The constraint
k �= k′ eliminates double counting, be-
cause the term tkG0tk to be removed is
already involved in the single t matrix tk
[see the series expansion of the first equal-
ity of Eq. (70)]. The higher-order terms
in Eq. (79) incorporate processes involving
three or more scatterers. These scattering
processes are exhibited in Fig. 3. If the
potentials are spherical and nonoverlap-
ping with each other, as is usually the case
to a good approximation, only the on-the-
energy-shell values are involved in each
tk (see Sec. 6.2). Since G0 sandwiched be-
tween tk and tk′ in Eq. (79) describes the
free propagation of an electron from one
atom k to another k′, it depends solely
upon the structure of the lattice. Therefore
Eq. (79) shows that the band structure of
electron energies in solids is determined
quite generally by two quantities: the phase
shifts of the atoms and the structure fac-
tor of the periodic array they form. This
is indeed explicit in the Korringa-Kohn-
Rostoker (KKR) eigenvalue equation for
the band structure of electrons. See the
monograph by Lukes (1969) for the deriva-
tion of the KKR equation based on Eq. (79).

When we apply Eq. (73) to a periodic
array of scatterers, the solution ψ(r)
describes how the atomic array responds to
an incident electron. When, in particular,
an incident electron from the outside
has an energy that is not very different
from the positions of the poles of the t
matrix, the amplitude of the scattered wave
reflects, through T(r1, r2; E) of Eq. (73),
the detailed band structure as a function of
incident energy E and wave vector. This is
essentially the origin of the fine structure
observed in the usual low-energy-electron
diffraction (Tong, 1975).

Similar fine structure is expected to arise
in the diffraction of visible light, i.e., in the
light scattered from a periodic array of
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scatterers with periodicity in the visible
range. X-ray diffraction is simply its high-
energy limit. For details of the diffraction
of visible light reflecting the photon band
structure, see Ohtaka (1980) and Inoue
and Ohtaka (1982) and the analysis by
Yablonovitch and Gmitter (1989).

7
Green’s Functions in Many-Body Theories

The developments of condensed-matter
physics and elementary-particle physics
owe considerably to the use of Green’s
functions in the treatment of many-
body interactions. How they are defined
and why they have been so widely
used will be shown through several
examples. For more details, see the books
by, e.g., Abrikosov et al. (1963), Fetter
and Walecka (1971), Economou (1990),
and Mahan (1990). For illustration we
have in mind a model Hamiltonian
for interacting spinless particles, either
bosons or fermions:

K =
∫

d3r�†(r)[

(
−h̄2

2m

)
� − µ]�(r)

+ 1

2

∫ ∫
d3r d3r′�†(r)�†(r′)

× v(|r − r′|)�(r′)�(r)

= K0 + K ′ (80)

expressed in the second quantized form.
Here �†(r) and �(r) are the field
operators for creating and annihilating,
respectively, a particle at position r. The
term proportional to the chemical potential
µ in the first term on the right-hand
side shows that we are considering the
grand canonical ensemble. The two-body
correlation described by the operator K ′
may be treated using Green’s functions.

7.1
Single- and Two-Particle Green’s Functions

The single-particle Green’s function is
defined in many-body theories by

G(x, x′) = − i〈�0|T(�(x)�†(x′))|�0〉
〈�0|�0〉 .

(81)

Here x and x′ denote (r,t) and (r′, t′),
respectively, �0 is the exact ground state
for the Hamiltonian given by Eq. (80), and
the time-dependent operators �(x) etc. are
the operators in the Heisenberg picture
defined by

�(x) = eiKt/h̄�(r)e−iKt/h̄. (82)

The symbol T in Eq. (81) is the time-
ordering operator that is defined by the
rule

T(�(x)�†(x′)) ={
�(x)�†(x′), t > t′,
±�†(x′)�(x), t < t′,

(83)

the upper (lower) sign referring to bosons
(fermions). Aside from the presence of
the time-ordering operator T, the Green’s
function defined by Eq. (81) can be given
the physical interpretation of a probabil-
ity amplitude, analogous to that given by
Eq. (59). Indeed, when the particle inter-
action vanishes, i.e., K = K0 in Eq. (80), G
tends to the unperturbed Green’s function

G0(x, x′) = −i〈0|T(�(x)�†(x′))|0〉,
(84)

|0〉 being the normalized ground state for
K0. It satisfies(

ih̄
∂

∂t
+ h̄2

2m
� + µ

)
G0(x, x′) =

h̄δ(x − x′). (85)

The inhomogeneous term comes from
the presence of the operator T, the
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origin of the step function via Eq. (83),
and the commutation (anticommutation)
relation of the field operators for bosons
(fermions). Through Eq. (85), we see
obviously that iG0 is the many-body analog
of the single-particle Green’s function
treated in Sec. 5.2.

The first reason why the single-particle
Green’s function is so useful is that
many important observables such as the
ground-state energy, number or current
density, etc. of the many-body system, are
expressed in terms of the Green’s function
(81). The second reason is that the effect
of K ′ may be handled by applying Wick’s
theorem and interpreted visually with the
help of Feynman diagrams (see Sec. 7.2).
Third, part of the interaction process is
taken into account to all orders with respect
to K ′.

For example, the modification of a
single-particle energy due to the mutual
interaction K ′ is taken into account by
Dyson’s equation

G(k, ω) = G0(k, ω)

+ G0(k, ω)�(k, ω)G(k, ω) (86)

in the Fourier space (k, ω). From this, we
find

G(k, ω) =
[
ω −

(
h̄k2

2m

)
+

(
µ

h̄

)

− �(k, ω)

]−1

, (87)

where we have used

G0(k, ω) =
[
ω −

(
h̄k2

2m

)
+

(
µ

h̄

)

+ iε sgn(ω)

]−1

(88)

given by Eq. (85). Note that G0 has a
causal form (see Sec. 2.2). The complex

quantity �(k, ω) is called the self-energy
part. The form (87) provides an exact
expression for G, if the self-energy part
is exactly given. In this sense, Dyson’s
equation (86) is one of the key equations
in treating many-body interactions. The
imaginary part of �(k, ω) determines the
lifetime of a plane-wave state k, caused
by the many-body interaction. Although
it is generally a hopeless task to attempt
to make an exact calculation of �(k, ω)

with all possible many-body processes
included, an important subset may usually
be taken into account. For a system
of electrons interacting with Coulomb
repulsion (the electron-gas model), for
example, we may now say that some of
the physical quantities have so far been
obtained almost exactly.

The two-particle Green’s function is
defined by

G(x1, x2; x′
1, x′

2)

=
(−i)2〈�0|T(�(x1)�(x2)

�†(x′
2)�

†(x′
1))|�0〉

〈�0|�0〉 . (89)

It is so called because it deals with the
two particles created at x′

1 and x′
2. Since

a correlation function between two physi-
cal quantities is usually expressed by the
two-particle Green’s function, the latter is
an important quantity, yielding transport
coefficients, conductivity, and dielectric
constant, for example (see Sec. 7.4). As
mentioned before, Wick’s theorem is a key
theorem for calculating the Green’s func-
tion. The names ‘‘random-phase approxi-
mation’’, ‘‘ladder approximation’’, etc., are
each assigned to a special choice of infinite
series of Feynman diagrams considered in
two-particle Green’s functions. We give in
Fig. 4 two typical examples, which exhibit
how the two particles interact with each
other, sometimes involving other particles.
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Fig. 4 Two-particle Green’s function taking into
account the particle interaction: (a) ladder
diagram, (b) random-phase approximation. The
dotted lines show the particle interaction, v of
Eq. (80), and the arrowed solid lines show the
unperturbed Green’s function G0, defined by
Eq. (84). When v is an attractive short-range
interaction for an narrow energy range, the
ladder diagram for a singlet pair of electrons
leads to superconductivity. When v is a repulsive
Coulomb potential, the random-phase
approximation leads, in the low-density limit, to
the exact ground-state energy of interacting
electrons

7.2
Wick’s Theorem and Feynman Diagrams

The Green’s functions (81) and (89) are
defined in terms of the operators in the
Heisenberg picture for the full Hamil-
tonian K. In calculating them perturba-
tionally, using the relationships between
�0 and |0〉 and between the operators in
the Heisenberg and interaction represen-
tations, we encounter the following types
of quantities:

〈0|T(�0(x1)�0(x2)�0(x3) · · · �†
0 (x2n−1)

× �
†
0 (x2n))|0〉, (90)

where �0(x) etc. are the operators in the
interaction picture defined by

�0(x) = eiK0t/h̄�(r)e−iK0t/h̄. (91)

Fig. 5 Examples of Feynman diagrams. The
graphs a through c show examples of
second-order corrections to the single-particle
Green’s functions for the Hamiltonian given by
Eq. (80). The vertical dotted lines show the
particle interaction v. The graphs d and e are two
higher-order corrections

Quantities such as (90) are the expectation
values in the state |0〉 of the time-ordered
product of an equal number of operators
�0(x) and �

†
0 (x). Wick’s theorem handles

just such quantities and guarantees that
the quantity given above may be resolved
into a sum of products of n unperturbed
Green’s functions G0’s, formed by pair-
ing a �0 with a �

†
0 in all possible ways.

For a rigorous proof, see, e.g., Fetter and
Walecka (1971). In this way the perturba-
tion series for a Green’s function, either
a single-particle one or a two- or many-
particle one, is expressed as a sum of
products of a number of G0’s, and each
product is given a graphical representa-
tion called Feynman diagram (Feynman
graph), where a line represents an un-
perturbed propagator G0. Some examples
were already given for the two-particle
Green’s functions in Fig. 4. For K given by
Eq. (80), several second- and higher-order
corrections for the single-particle Green’s
function are shown in Fig. 5.

7.3
Temperature Green’s Functions

The temperature Green’s functions are es-
sentially the Green’s functions treated in
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Sec. 7.1 with the time argument t and t′
replaced by the imaginary time −iτ and
−iτ ′, respectively, and with the expecta-
tion value 〈�0| · · · |�0〉 for the ground
state replaced by the thermal average
〈· · ·〉. The temperature Green’s function
also goes under the name of Matsub-
ara, who first introduced them (Kubo
et al., 1991). They are convenient tools
for calculating various physical quanti-
ties in thermal equilibrium – for instance,
the single-particle energy and thermody-
namic potential. Wick’s theorem holds
here again. Because of the periodic prop-
erties with respect to the argument τ − τ ′,
the Fourier components of the Green’s
function G(τ − τ ′) are defined at the dis-
crete frequencies ωn = (2n + 1)πkBT/h̄
for fermions and ωn = 2nπkBT/h̄ for
bosons, n being an integer, T the tem-
perature, and kB the Boltzmann constant.
For those frequencies, the Dyson equa-
tion (86) holds and is solved algebraically.
The single-particle energy is obtained by
analytically continuing G(ωn) from the dis-
crete points iωn on the imaginary axis
to the complex ω plane. For the BCS
Hamiltonian of superconductivity, for ex-
ample, all the predictions of the BCS theory
(Bardeen et al., 1957) have been repro-
duced straightforwardly in this way and
the Ginzburg-Landau equations, originally
introduced semiphenomenologically, have
been given an unambiguous microscopic
foundation. The developments of the the-
ory and experiment of superconductivity
owed much to the use of temperature
Green’s functions (see, e.g., Abrikosov
et al., 1963; Parks, 1969; Mahan, 1990).
The advantage of the two-particle tem-
perature Green’s functions can be best
appreciated in connection with the lin-
ear response theory of Kubo treated
below.

7.4
Linear Response Theory of Kubo and
Temperature Green’s Functions

How the system responds to a small
external signal is summarized by the Kubo
formula of linear response theory. Its
essence lies in that the response function is
given by a spatial and temporal correlation
function of fluctuations, calculated in
thermal equilibrium without the external
perturbation. For example, when a weak
electric field, whose v component is
Ev(r′, t′), of frequency ω is an input signal
I(r′, t′) in the input-output relation given
by Eq. (2), an Ohmic electric current at the
position (r,t) is the output signal O(r,t). The
response function, the Green’s function
G(x, x′) in Eq. (2), is in this case the ac
conductivity tensor σµv(x, x′). Here the
fluctuation in the Kubo formula is that of
the current density. Letting jα(x) be the
operator for the current density in the α

direction in the Heisenberg picture, the
fluctuation is defined by jα(x) − 〈jα(x)〉 [=
jα(x), because 〈jα(x)〉 = 0 in equilibrium].
The response function is then expressed by

σµv(x, x′) = i

(
ne2

mω

)
δµvδ(r − r′)

+
(−1

h̄ω

)
〈[jµ(x), jv(x

′)]〉θ(t − t′),(92)

with n the electron density, m the mass,
and the Heaviside step function in the
second term guaranteeing causality (see
Sec. 2.2). The square bracket in the second
term is the commutator and 〈〉 denotes
the thermal average. Because of the
presence of the step function, quantities
like that in the second term of Eq. (92)
are called retarded Green’s functions in
linear response theory, in analogy with
their counterpart for the wave equation in
Sec. 2.2.
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The way of calculating the Fourier trans-
form of the correlation function involved
in the second term of Eq. (92) is summa-
rized by the theorem, sometimes called the
Abrikosov-Gor’kov-Dzyaloshinski-Fradkin
theorem, which relates a retarded Green’s
function to the corresponding temperature
Green’s function (Abrikosov et al., 1963).
According to this theorem, the first step is
the calculation of the two-particle temper-
ature Green’s function

G̃2(r, τ ; r′, τ ′) = 〈Tτ ( jµ(r, τ )jv(r′, τ ′))〉
(93)

for the Fourier component G̃2(k, ωn), and
the second is the analytic continuation of
the result to the real frequency ω, carried
out simply by changing iωn to ω + iε.
The first step is carried out with the
help of Wick’s theorem, and the second
is a procedure analogous to that used in
obtaining a retarded Green’s function in
Sec. 2.2 (Abrikosov et al., 1963).

Since this method of calculation using
the temperature Green’s functions was
introduced, the usefulness of the Kubo
formula has increased remarkably. This
was indeed one of the key steps in the
development of condensed-matter physics.

7.5
Green’s Functions in Quantum Field
Theories

One typical way of quantizing a classical
Lagrangian is based on the functional
integral. One of the merits of this method
is that we may treat the field theory and
statistical physics on the same footing
(Amit, 1984).

The Green’s functions and the related
quantities developed in this field are
outlined here by taking an interacting
scalar Bose field φ(x) in four-dimensional
space as an example (Ramond, 1981). The

Lagrangian density L(φ(x)) for the model
called the φ4 model is defined [in natural
units, where c = h̄ = 1 and the dimension
of the field φ(x) is (length)−1] by

L(φ) = L0(φ) + Lint(φ), (94)

with

L0(φ) = φt(x)2 − φx(x)2 − µ2φ(x)2,

Lint(φ) =
(

λ

4!

)
φ4(x), (95)

φt and φx being ∂φ/∂t and ∂φ/∂x, respec-
tively. The functional Z(J) for generating
the Green’s functions is defined by

Z(J) =

N −1
∫

D φ exp
(

i
∫

[L(φ) + Jφ]d4x

)
.

(96)

Here J(x) is a fictitious external field
linearly coupled to φ(x), the factor N −1

normalizes Z(J) such that Z(0) = 1, and
the measure D φ of the functional integral
is defined by

D φ = lim
N→∞

N∏
n=1

dφ(xn). (97)

Here it is understood that the integral
over x in Eq. (96) is treated as a sum
over the integrand at N discrete points
{xn} in four-dimensional space, and the
limit for N is taken after the integrals
over the N independent variables {φ(xn)}
have been carried out. Equation (96) is a
generalization of the quantization scheme
for the classical one-dimensional motion
of a particle carried out through the
quantity

F(t2, t1) =∫
D q exp

(
i

h̄

∫ t2

t1
L(q(t), q′(t)) dt

)
,

(98)
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where the classical Lagrangian L is de-
fined in terms of q(t) and q′(t), the particle
position and velocity at time t, respec-
tively. With the restriction q(t1) = q1 and
q(t2) = q2 imposed on the path, it may be
shown that, if the measure D q is defined
appropriately (Sakurai, 1985), Eq. (98) is
identical to the quantum-mechanical prob-
ability amplitude of a particle, just de-
scribed by the Green’s function treated
in Secs. 2.3.2 and 5.2. Thus the quantiza-
tion through the functional integral is well
established.

From Eq. (96), the Green’s function is
obtained as follows:

G(x1, x2) = δ2Z(J)

δJ(x1)δJ(x2)

∣∣∣∣
J=0

= −N −1
∫

D φT

[
φ(x1)φ(x2)

× exp

(
i
∫

L(x)d4x

)]
, (99)

where the functional derivative δZ(J)/δJ
(x1) is defined by the ratio of the in-
duced change of Z(J) to the infinitesimal
variation δJ(x1) at x1 of the external
field. Many-point correlation functions,
G2(x1, x2, x3, x4), etc., are defined simi-
larly. The unperturbed Green’s function is
then calculated from Z0(J), the generating
function for L = L0. It is shown that

Z0(J) = exp
(

i

2

∫ ∫
J(x)g(x − y)

× J(y)d4x d4y

)
, (100)

with g(x − y) the Green’s function for the
Klein-Gordon equation, GR, GA, or GC of
Eq. (29), according to the way of avoiding
the poles in the ω integral (see Secs. 2.2
and 2.3.3). From Eq. (99), the unperturbed

Green’s function G0 is then obtained as

G0(x1, x2) = ig(x1 − x2). (101)

In order to take into account Lint, the
following relation is useful:

Z(J) = N −1 exp

[
i
∫

d4xLint

(
− iδ

δJ(x)

)]
× Z0(J), (102)

Z0(J) being given by Eq. (100). With
Eqs. (100) and (102), we can calculate
Green’s functions to any desired order.
For example, to obtain the perturbation
expansion of G with respect to the
parameter λ involved in Lint, we have only
to expand the exponential of Eq. (102) in
terms of Lint.

It is remarkable that Wick’s theorem,
Dyson’s equation, Feynman diagrams,
etc., all apply here without any modifica-
tion. The difficulty of ultraviolet divergence
is thus handled and then a number of phys-
ical quantities are defined by a procedure
that extracts the finite part of every term
in the perturbation series. This is the reg-
ularization and renormalization program.

To connect field theory with statistical
physics, we need only to change the
time t to the imaginary time −iτ (called
in this field the Wick rotation), just as
in introducing the temperature Green’s
functions in Sec. 7.3. The point is that
the generating function Z(J) converts itself
essentially to a partition function. In our
example this will be seen by noting that the
Lagrangian is then transformed to minus
the Hamiltonian. Taking advantage of this
remarkable connection, and combining
it with renormalization-group procedures,
the critical properties of a statistical system
near a second-order phase transition
can be discussed using field-theoretical
methods. For example, the critical index
of the specific heat of the Ising model
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can be successfully obtained in this way.
See, for more detail, e.g., Amit (1984) and
Itzykson and Drouffe (1989).

Glossary

Adjoint Operator: For a second-order dif-
ferential operator L with respect to x, y,
and z, we may transform the integral in
the region �,∫

�

v(r)L[u(r)]d3r,

by integrating by parts until all the
derivatives on u(r) in the volume integral
are transferred to v(r). Finally the volume
integral reduces to the form∫

�

u(r)M[v(r)]d3r,

with a new differential operator M, called
the adjoint operator of L. Thus we obtain
the following relation, the generalized
Green’s formula:∫

�

(vL[u] − uM[v])d3r

=
∫

�

(Pxn + Qyn + Rzn) ds.

The right-hand side shows the surface
integral that remains in the integration
by parts, where xn, yn, and zn are the
directional cosines of the outward normal
n̂ to the boundary �, and P, Q, and R
are functions of u, v, and their derivatives,
determined dependent upon the form of L
(see, e.g., Courant and Hilbert, 1937).

Dirichlet Problem: A boundary-value prob-
lem of a differential equation that seeks a
solution with a specified boundary value.
These types of boundary conditions are
called the Dirichlet condition.

Fredholm Integral Equation: For an un-
known function u(r) in the domain �, the
following integral equation is called the
Fredholm integral equation of the second
kind:

u(r) −
∫

�

K(r, r′)u(r′)d3r′ = f (r),

f (r) being a given function and K the
integral kernel. The Fredholm integral
equation of the first kind is the one with
the first term u(r) missing on the left-hand
side.

Generalized Green’s Formula: For the
Laplacian operator the Green’s formula
is given by Eq. (4). It is generalized to an
arbitrary second-order differential opera-
tor L and its adjoint M in the form shown
in the definition of the adjoint operator.

Homogeneous Boundary Condition: The
boundary condition such as u(r)|� = 0 or
(∂/∂n)u(r)|� = 0 on the boundary � of the
domain under consideration is a homo-
geneous boundary condition. In general,
homogeneous boundary conditions con-
sist of relations between the value of u(r)|�
and its derivative (∂/∂n)u(r)|� . If u(r) satis-
fies the homogeneous boundary condition,
so does cu(r), c being an arbitrary constant.
Boundary conditions for which this does
not hold are called inhomogeneous bound-
ary conditions. Examples are u(r)|� = f (r)
or (∂/∂n)u(r)|� = g(r), with given nonzero
f (r) or g(r) defined on the boundary.

Internal or External Boundary-Value Pro-
blem: When the solution of a boun-
dary-value problem is sought inside the
boundary on which a boundary condition
is imposed, it is called the internal
boundary-value problem. The problem for
the outside region is the external problem.

Neumann Problem: The boundary condi-
tion specifying ∂u/∂n, the derivative in
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the direction of the outward normal to
the boundary, is called the Neumann con-
dition. A boundary-value problem with
a Neumann condition is a Neumann
problem.

Vector Spherical Waves: Let � be a scalar
function satisfying the scalar Helmholtz
equation

(� + k2)� = 0.

From � one may construct three vec-
tor fields, L = grad�, M = rot(a�), and
N = (1/k)rotM, with a any constant vec-
tor. They all satisfy the vector Helmholtz
equation. The two vectors M and N are
solenoidal, while L is irrotational. For
� = Cl(kr)Ylm (̂n), Cl being the lth cylin-
drical function and Ylm(̂n) the spherical
harmonic, the vectors L, M, and N are
called the lth vector spherical waves.

Wick’s Theorem: The theorem transform-
ing the time-ordered product T(�(x)

�(x′) · · ·) of any number of field opera-
tors in the interaction picture into a sum
of products of simpler quantities (see, e.g.,
Fetter and Walecka, 1971). The expectation
value of a product of field operators in the
noninteracting state may be calculated by
use of this theorem.
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Introduction

Group theory is a mathematical technique
for dealing with problems of symmetry.
Such problems appear repeatedly in all
branches of physics. The use of formal
group theory is a very recent development,
but notions of symmetry had been used
extensively 1000 years ago. The design of
ornaments with symmetries, the observa-
tion of periodic patterns, and the regular
appearance of the Sun and other astro-
nomical objects showed that symmetry
was a useful concept. The first modern
uses of symmetry were in crystallography.
The first clear statement of the importance
of symmetry was made by Pierre Curie
around 1870. Since then group theory
has become the principal tool for dealing
with difficult problems in solid-state the-
ory, relativity theory, atomic and nuclear
spectroscopy, and the theory of elemen-
tary particles. In these problems we assert
(or assume) that the laws describing the
interactions of particles have some sym-
metry. In the simpler cases, such as the
Coulomb field, the symmetry is easy to
see. In nuclear physics the charge symme-
try between neutrons and protons required
a careful and bold extrapolation of ex-
perimental results. In elementary-particle
physics we have very little clear under-
standing of the forces that determine the
structure of the fundamental particles and

their relations with one another. This has
required us to assume some symmetry
of the interactions, even though we know
almost nothing about the details of the
laws governing them. Once a symmetry
is assumed we can then make predictions
about the families of particles that are re-
lated to one another.

1
Elementary Definitions

1.1
Transformation Groups

We first give the definition of a transforma-
tion group, because these are the groups
of direct importance for physics. For ex-
ample, if we are considering the motion
of a particle in a central field we real-
ize that a rotation about any axis through
the center will take a given orbit into an-
other orbit with the same energy. So we
want to study rotations around the center.
Two successive rotations around the cen-
ter again give a rotation to an orbit with
the same energy. A reverse rotation would
bring the orbit back to its original posi-
tion. We see that the set of rotations of
the three-dimensional space form a set of
transformations that is closed under com-
position and contains all inverses. Now we
give the rigorous definition. We have a
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linear vector space on which a set of trans-
formations act. The transformations form
a group if

1. The ‘‘product’’ of any two elements a
and b of the set is also a transformation
in the set: ab = c. By product we
mean the transformation c that results
from the sequence of transformations
b followed by a.

2. The product is associative, i.e., ((ab)c)
= (a(bc)). The product of a whole
sequence of transformations gives the
same final result if we split the sequence
into any clumps that preserve the order.

3. The set of transformations includes the
identity transformation e, that leaves all
the coordinates unchanged.

4. If the set includes the transformation
a, it must also contain the inverse
transformation b, such that ab = ba =
e. We usually write the inverse element
of a as a−1 so that aa−1 = a−1a = e.

In the example given above we note
that in general, if we reverse the order
of rotations a and b around different axes
we get different results. In general the
multiplication is not commutative, i.e.,
ab �= ba. If the product of any two elements
of the set is commutative (ab = ba for all
a, b in the set), we say that the group
is Abelian (the group is a commutative
group). In general the transformations
of a group will not all commute with
one another. Then we say that the group
is non-Abelian. If we take the product
of an element a of the group with
itself, i.e., we form aa, we write the
product as a2, the ‘‘square’’ of a. Similarly
we write successive products of a with
itself as a3, a4, etc. – powers of a. If we
perform repeated transformations using
the inverse a−1 of a, we get the negative
powers a−2, a−3, etc. The total number of
distinct elements in the group is called the

order g of the group. If the order of the
group is finite we say that the group is a
finite group. An infinite discrete group is
one in which the distinct elements can be
labeled by the integers. Often the elements
of the group can only be labeled by one
or more continuous parameters. Then we
say that the group is a continuous group.
If we talk about a group of objects with
some product that satisfies our definitions
we have an abstract group. We give some
examples of groups.

The numbers 0,1,2,3 form a group if
the product is addition modulo 4 : 2 + 1 =
1 + 2 = 3, 2 + 3 = 3 + 2 ∼= 5 − 4 = 1, 2 +
2 ∼= 4 − 4 = 0, etc. The inverse of 2 is 2,
the inverse of 1 is 3. This is the group Z4,
an Abelian group of order 4. Similarly the
numbers 0, 1, . . . , n − 1 give the Abelian
group Zn of order n. If we take all the
integers . . . , −2, −1, 0, 1, 2, . . . we get the
infinite discrete Abelian group Z, in which
the identity element is 0 and the inverse of
s is −s.

Cyclic group. This is a group that
consists of positive powers of some
element a, for which there is a finite
positive n such that an = e. Thus an−1

is the inverse of a. So the group consists
of a, a2, a3, . . . , an = e. One example of a
cyclic group is the set of rotations about
some axis through angles θ = 2πm/n
where n is a fixed integer and m =
1, 2, . . . , n. This is the cyclic crystal group
Cn. Here the product of rotations with
m = r and m = s is the rotation through
the angle (2π/n)(r + s). This group Cn has
the same abstract structure as Zn. Clearly
cyclic groups are Abelian.

An example of an infinite Abelian group
is the group of translations along the x
axis given by x′ = x + nδ, where δ is fixed
and n is an integer, positive or negative
or zero (which is the identity translation).
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This group has the same abstract structure
as the group Z.

Permutation groups. Another important
class of groups comprises the permutation
groups on n letters. In these groups
each letter is replaced by some letter,
while no two are replaced by the same
letter. If each letter is replaced by itself,
we get the identity permutation e. We
first illustrate for the case of n = 6. A
permutation of the numbers 1 to 6 replaces
each number by one of the six numbers,
and no two numbers are replaced by the
same number. A simple notation for a
permutation is(

1 2 3 4 5 6
i1 i2 i3 i4 i5 i6

)
,

where each number in the upper line is
replaced by the number appearing below
it. For example, the permutation(

1 2 3 4 5 6
6 2 4 5 3 1

)

replaces 1 by 6 (1 → 6), 2 → 2, 3 → 4,
4 → 5, 5 → 3, 6 → 1. Note that 2 → 2,
so 2 is unchanged by this permutation.
There are 6! = 720 different permutations.
(If all the symbols are left unchanged we
get the identity permutation with 1 → 1,
2 → 2, etc.). This same permutation can
be written in cyclic notation: we start with
any symbol, say 1. We record 1, and note
that 1 → 6, so we write 1 → 6. 6 → 1, and
we have a cycle (closed loop), so we put 1
and 6 in parentheses: (1 6). The number 2
is unchanged so we write (2). Next we start
with 3 and find 3 → 4 → 5 → 3, giving
the cycle (3 4 5) [which is the same as
(4 5 3) or (5 3 4)]. Thus the original
permutation is recorded as (16) (2) (3 4 5).
The symbols inside a parenthesis are
distinct. This particular permutation has
the cycle structure [3, 2, 1]: it contains a cycle

of three symbols, a cycle of two symbols,
and a cycle of one symbol – a 3-cycle, a 2-
cycle, and a 1-cycle. Often the permutation
is written omitting its 1-cycles, so this
would be (16) (345). Other examples are
(134652) which consists of one 6-cycle,
or (142)(365), with two 3-cycles (notation
[32]), or (15)(26)(34) which contains three
2-cycles (notation [23]), or (135), where the
three 1-cycles (unchanged symbols) are
omitted, so its cycle structure is [3 13].
To find the inverse of a permutation
expressed in cycle notation, we read
the numbers from right to left, so the
inverse of (142)(365) is (241)(563). The
group that contains all the permutations
on six symbols is called the symmetric
group on six symbols S6. We can form
permutations on n letters and form the
symmetric group Sn whose order is n! This
group Sn is very important in spectroscopy
and especially when we consider identical
(indistinguishable) particles, where the
physical situation is unchanged when we
make any permutation of the identical
particles.

1.1.1 Subgroups
Suppose that we have a subset H of
elements in the group G(H ⊂ G). If the
elements of H form a group under the
same product law as in G, we say that H is
a subgroup of G. For example, the group S6
contains all the permutations on five letters
(e.g., we drop all permutations containing
the number 6, or those that omit any single
one of the six letters). Thus S6 contains six
subgroups that have the same structure
as S5.S6 also contains many differently
appearing subgroups that have the same
structure as S4. (We omit permutations
that contain some two of the numbers
1–6). Such subgroups are isomorphic to
one another. Clearly the group G is a
subgroup of G. Also the group element e,
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the identity of G, is necessarily a subgroup.
These two subgroups of G are said to be
improper, while all other subgroups in G
are called proper subgroups of G.

Suppose that H is a subgroup in G. If
H does not exhaust G, take any element
a not contained in H and form the set
aH, which contains all elements of the
form ah where h runs through H. The set
aH contains no elements of H, since, if
ah = h′ where h′ is in H, applying h−1 on
the right we would get a = h′h−1, which
says that a is a product of elements in H
and is therefore in H. If the elements of
G are not all included in H and aH, we
choose one of the residual elements k of
G and form kH. We continue this process
until we have obtained all the elements
of G. So G consists of the subsets of
elements H, aH, kH, . . ., sH, which have
no elements in common and each contain
m elements of G. We see then that the
number m of elements in H (the order
of H) must divide the order of G. This
is called Lagrange’s theorem. Note that the
subgroups S5 in S6 have order 5! = 120,
which divides the order 6! = 720 of S6.

1.1.2 Cosets
The individual pieces in this decompo-
sition of G are called the left cosets of
H in G. We write this symbolically as
G = H + a2H + a3H + · · · + arH. If in-
stead we formed the cosets by multiplying
H from the right, giving disjoint sets Ha,
we would get the right coset decomposition
of G with respect to the subgroup H.

1.1.3 Conjugate Classes
If a and b are elements of the group G,
the elements bab−1 = c, where b is any
element of G, are said to be conjugate to a
in G. We denote this by writing c ∼ a. If we
let b run through all the elements of G, we

get the set of transforms of a, the conjugate
class of a in G. The determination of
transforms gives a decomposition of G into
conjugate classes that have no elements in
common, i.e., the conjugation operation is
an equivalence relation:

1. a ∼ a.
2. If a ∼ b and b ∼ c, then a ∼ c.
3. If a ∼ b, then b ∼ a.

We prove 2. a ∼ b means that a =
kbk−1, where k is in G. Similarly b ∼
c means that b = k′ck′−1, where k′ is
in G. So a = kbk−1 = k(k′ck′−1)k−1 =
(kk′)c(k′−1k−1)=(kk′) × c(kk′)−1, so a ∼ c.

For geometrical transformations the
conjugate has a simple interpretation.
Suppose that a is a rotation through angle
θ about a direction along the unit vector n:
a = (n, θ). Let b be a rotation that turns
the unit vector n into the direction of
n′. Then, since b turns n into n′, in the
conjugate bab−1, b−1 first turns n′ into n,
then a rotates about n through θ , then
b brings n back to n′, so the net result
is a rotation through the angle θ about
the unit vector n′. Thus the conjugate of
a rotation is always a rotation through
the same angle θ about some other axis.
Similarly, if a were a translation through
a vector s, the conjugate bab−1 would be
a translation through the vector s′, into
which b takes s.

For the permutation groups, the con-
jugate is also obtained simply. Suppose
we want to find the conjugate c of
the permutation a that results from tak-
ing c = bab−1, where a = (135)(24), b =
(325). Then b−1 = (523), and we get
c = (325)(135)(24)(523) = (54)(123). We
note that the conjugate of a has the same
cycle structure as a; we get it by letting
the permutation b act on the cycle symbol
for a: apply (325) to a; it replaces 3 by 2,
2 by 5, and 5 by 3, so a is changed to



194 Group Theory

(123)(54), where 4 and 1 are untouched,
since b does not contain 1 or 4. Another
example would be the transform of a =
(142)(365) by b = (16)(345)(2). Applying
the permutation b to the cycle symbol for
a replaces 1 → 6 → 1, 3 → 4 → 5 → 3,
giving bab−1 = (652)(413).

We emphasize that the transforming
element b must be in the group G. If
the group is Abelian, then all its elements
commute, and the conjugate class of an
element a is just a itself. If an element
a commutes with all the elements of the
group G, its class consists of a alone. This
is always the case for the identity element
e for any group – the identity is a class
containing the single element e. Suppose
we consider the permutation group S3
on three letters 1, 2, 3. There are six
elements in this group: e, (12),(23),(13);
(123),(132). Only permutations with the
same structure can be in the same
conjugate class, so we have three classes: e;
(12),(23),(13); (123),(132); with one, three,
and two members, and cycle structures
[13], [2 1], and [3], respectively.

1.1.4 Invariant Subgroups
If H is a subgroup of G, we consider the
set aHa−1, containing all elements aha−1,
where h runs through the members of H.
The elements of this set are all distinct, and
the product of any two, ah1a−1ah2a−1 =
ah1h2a−1, is also in aHa−1, since h1h2
is in H. Clearly the set aHa−1 is a
subgroup that looks like H in form. It
is a conjugate subgroup of H. If all the
conjugate subgroups of H in G are the
same as H, we say that H is an invariant
subgroup in G. But if aHa−1 = H for all
elements a, then multiplying on the right
by a, we get aH = Ha, i.e., the sets of right
and left cosets of H in G are identical.
We also note that the invariant subgroup
contains complete classes. Thus, in the

example of the permutations on three
letters, the group S3 contains the proper
subgroup e, (123),(132). Since it consists
of complete classes, it is an invariant
subgroup. For the permutation group on
four letters S4, the group contains 4! = 24
elements. The different classes are e; type
(12), type (123), type (1234), and type
(12)(34), with numbers of elements 1, 6, 8,
6, 3, respectively. The classes correspond
to the possible cycle structures given by
the partitions of 4 into sums of positive
integers. Thus e has four 1-cycles, partition
[14]; (12) has one 2-cycle and two 1-cycles
(partition [212]), (123) has one 3-cycle and
one 1-cycle, (partition [31]), (1234) has one
4-cycle (partition [4]), and (12)(34) has two
2-cycles (partition [22]).

As another example, we consider the
group of all rotations and translations in
a space with dimension m. We denote the
elements by (R|a), where this means that
we first perform the rotation R and then
the translation a. The translations a form a
subgroup (Abelian), and we showed earlier
that the transform of any a by a rotation R
is again a translation. Thus the subgroup
of the translations is invariant in the whole
group.

1.1.5 Isomorphic Groups
Two groups G and G′ are said to be
isomorphic if their elements can be put into
a one-to-one correspondence so that if a ↔
a′ and b ↔ b′ then ab ↔ a′b′. For example,
consider the group consisting of the
identity e and the inversion of coordinates
i. Here i2 = e, so the group contains two
elements. Now look at the group consisting
of the numbers 1 and −1 with the product
being ordinary multiplication, so that
(−1)(−1) = 1. We see that these groups
can be put into one-to-one correspondence
e ↔ 1, i ↔ −1, with ii = e corresponding
to (−1)(−1) = 1. There can be many
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groups with the same abstract structure.
They are isomorphic to one another.

1.1.6 Homomorphic Groups
Instead of a one-to-one correspondence,
we may have two groups with a corre-
spondence of products, but where several
elements of the group G correspond to a
single element of G′. We say that there is
a homomorphism of the group G onto G′.
For example, in the cyclic group of order
4, generated by an element a with a4 = e,
the elements a2 and a4 = e are a subgroup
H in G. If we take the odd powers a and
a3 and map them onto the number −1,
and map the subgroup H onto 1, we have
a two-to-one correspondence between the
cyclic group and the two-element group.

1.1.7 Factor Groups
If the subgroup H is an invariant subgroup
in G, we can write G as a ‘‘sum’’ of cosets of
H in G : G = H+̇a2H+̇a3H+̇ · · · +̇arH,
where aiH = Hai. But then the prod-
uct of cosets (aiH)(ajH) = ai(Haj)H =
ai(ajH)H = (aiaj)H, so the cosets them-
selves form a group, for which the identity
is the coset H itself. This new group is
called the factor group F of G by the
(invariant) subgroup H. There is a ho-
momorphism of the group G onto the
subgroup H where all the elements in a
coset are mapped on the same element of
the factor group F = G/H.

1.1.8 Direct Product
If we have two groups, G and H, and
the elements of one commute with all the
elements of the other, we can form a new
group, their direct product, by taking pairs
(g, h) of elements g from G and h from H.
The product of two elements (g1, h1) and
(g2, h2) in this new group is the ordered
pair (g1g2, h1h2). This group is called the

direct product G ⊗ H of the two groups
G and H. If we have a number of groups
G, H, K, . . ., and the elements of any one
commute with all the elements of the
others, we can form the direct product
G ⊗ H ⊗ K ⊗ . . ., whose elements are
obtained by taking one element from
each group: (g, h, k, . . .). Clearly all the
elements (g, ei, ej, . . .), where the ei, ej, . . .

are the identity elements for the other
factors, form a group isomorphic to G. This
group can be identified with G and is an
invariant subgroup of the direct product.
The direct product is thus a product of the
groups, G, H, K . . ., and each of them is an
invariant subgroup of the direct product.

For the crystal group that we described
earlier, with elements (R|a), the trans-
lations are an invariant subgroup, since
RaR−1 is again a translation, while the sub-
group of rotations is not invariant. Instead
the rotations act on the translations and
transform the translation vectors. Such a
group is called the semidirect product of
the groups R and A, where R contains all
the pure rotations and A all the pure trans-
lations, and is written as A ⊗ R, where the
invariant subgroup is the first symbol.

1.1.9 Finite Groups
For a finite group one can describe the
group structure by recording the Cayley
table for the group. We write the elements
of the group as a matrix with each column
headed by an element of the group, and
similarly, each row. We then get a square
matrix of products by placing the product
gigj at the i, j position.

The group formed by taking all products
of r and s, where r3 = s2 = (rs)2 = e, is a
group with six elements. Its Cayley table
is shown in Table 1. Note that each row
contains all six elements of the group,
but they are rearranged. In other words,
applying an element of the group from the
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Tab. 1 A Cayley Table

e r r2 s sr sr2

r r2 e sr2 s sr
r2 e r sr sr2 s
s sr sr2 e r r2

sr sr2 s r2 e r
sr2 s sr r r2 e

left permutes the elements. We thus have
a group of permutations that is isomorphic
to the group in the table.

This is a group of permutations of
six elements, and is a subgroup of the
symmetric group S6. In the same way,
every finite group of order n is isomorphic
to a subgroup of the symmetry group
Sn. This result is called Cayley’s theorem.
An important collection of finite groups
consists of the so-called point groups:
rotations through submultiples of 2π that
keep the origin fixed and reflections in
planes passing through the origin (or
inversion in the origin). These finite
groups describe the point symmetry of
crystals.

1.1.10 Infinite Discrete Groups
In three dimensions the translations
through a displacement r = n1a1 + n2a2 +
n3a3, where the ni are integers and the
vectors ai are fixed, form an infinite dis-
crete group. This is the translation group
of a crystal lattice. Similar groups can be
constructed for any space dimension. We
can also have crystal space groups, that
contain elements (R|a) that preserve the
crystal lattice. If the translations appear-
ing in (R|a) are always lattice vectors the
crystal group is said to be symmorphic.
There are some crystals in which there
are additional symmetries which involve
elements (R|a) where the translation is
some rational fraction of a lattice vector

along the direction of the rotation axis,
giving a screw motion. Or we may have
glide motions where we translate parallel
to some crystal plane through a rational
fraction of a lattice vector and then re-
flect in the crystal plane. Crystals that
have such symmetry elements are said
to be nonsymmorphic. [For further infor-
mation about space groups see Burns
1977, Chap. 11.] More detailed treatments
of Sec. 1.1 can be found in Burns (1977),
Chaps. 1, 2, and 13; Elliott and Dauber,
(1979), Chaps. 1 and 2; and Hamermesh
(1989), Chaps. 1 and 2.

1.2
Continuous Groups

When we consider continuous groups we
combine the algebraic concept of ‘‘group’’
with the topological concept of ‘‘nearness.’’
The law of combination of elements a, b
of G now requires the product ab to
depend continuously on its factors, and the
inverse a−1 must depend continuously on
a. We shall not discuss general topological
groups but will assume that there is a
metric (a measure of distance between
group elements) on the group. So the
group itself is a metric space on which
the product and inverse are defined and
continuous. We can look upon the group
as a space in which the points are the
elements of the group. We shall deal
only with groups of transformations, so
the group elements form a space whose
points are the transformations of the
group. Multiplying the element b on the
left by some transformation a of the
group moves the point b in the group
space to the point ab. Thus the group
elements can be regarded as operators
that act on the group space itself and
rearrange the points. The changed points
also fill the space since any element of
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the group space c can be reached from
b by applying the element cb−1 to it.
Thus the group space looks the same
everywhere. It is a homogeneous space,
and we can obtain all our information by,
e.g., working in the neighborhood of the
identity e.

A group is said to be a mixed continuous
group if the elements depend on discrete
labels as well as continuous ones. For
example, the translation group on the
line G is the set of transformation x′ =
x + a, (−∞ ≤ a ≤ ∞). If we adjoin the
single transformation x′ = −x we also
get the transformations x′ = −x + a. The
transformations x′ = x + a are in one
piece and can be reached continuously
from the identity. Thus this piece forms
a group. The second piece, containing the
transformations x′ = −x + a, cannot be
reached continuously from the identity,
and is not a group. This piece is the
coset of the first piece, obtained by
multiplying elements of the first piece by
the transformation x′ = −x.

A connected group is a continuous group
in which we can join any two points of the
group by a continuous arc in the group
space. Our last example showed a group
consisting of two pieces (components).
The piece that contains the identity is
called the component of the identity. If
a group is connected it consists of a single
component. One basic theorem is the
following: In a connected group G, every
neighborhood of the identity generates the
group. By taking products of elements near
the identity we keep expanding the set
of products and fill the whole connected
piece containing the identity. For example,
in the group of translations x′ = x + a,
if we take some neighborhood of the
identity a = 0, say −ε ≤ a ≤ ε, and keep
applying these translations, we get the
whole line.

1.3
Lie Groups

A Lie group is a group in which the neigh-
borhood of the identity looks like (is homo-
morphic to) a piece of an r-dimensional Eu-
clidean space (an r-parameter Lie group).
In other words, in the neighborhood of
the identity the group elements can be
parametrized using r parameters (coordi-
nates on the group manifold). Thus each
element can be labeled by r parameters
a1, a2, . . . , ar . Since we want continuity,
this parametrization may not be possible
over the whole group space, but we can
use several maps that overlap to cover the
whole space without singularities. (For ex-
ample, to cover a sphere with continuous
maps requires more than one map.) An ele-
ment of the group is R(a) = R(a1, . . . , ar)

where the parameters a1, . . . , ar are es-
sential, i.e., all r parameters are needed
to describe the space. The product of two
elements with parameters a and b, respec-
tively, R(a)R(b), is the element R(c) with
parameters c1, . . . , cr that are functions of
a1, . . . , ar and b1, . . . , b2, i.e.,

ci = ϕi(a1, . . . , ar; b1, . . . , br), or,

symbolically,

c = ϕ(a; b). (1)

The simplest assumption is that the
functions ϕ are analytic functions of the a’s
and b’s. This was the original requirement
for a Lie group. But this requirement is too
strong. In fact, every parametric group is a
Lie group. The group structure combined
with continuity implies the analyticity of ϕ

(Hilbert’s ‘‘Fifth Problem’’).
For Lie groups with a finite number

of parameters, the neighborhood of any
point is bounded and contains all its limit
points (the group is locally compact). If
the parameter space is unbounded this
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may not be true as we move out to large
distances in the parameter space. For most
of the groups used in physics the group
space is compact, but we shall see some
cases of noncompact groups.

Consider transformations in n-space:

x′
i = fi(x1, . . . , xn), i = 1, . . . , n,

(2)

or, symbolically, x′ = f (x). Suppose that
we have a set of f ’s labeled by r parameters:

x′
i = fi(x1, . . . , xn; a1, . . . , ar), (3)

forming a Lie group. The transformation
a is x → x′ = f (x; a), and b is x′ → x′′ =
f (x′; b). If we first apply a and then b, we
get

x′′ = f (x′; b) = f (f (x; a); b)

= f (x; ϕ(a, b)) = f (x; c), (4)

where c = ϕ(a, b) and ϕ is an analytic
function of the parameters a and b. We
give examples of Lie groups that comprise
most of the groups of interest to physics.

1. The dilation group. In one dimension
this is the group of transformations
x′ = ax, a �= 0. The identity has a = 1.
All distances on the line are multiplied
by the number a. The transformation
with a = −1 reflects the line about
the origin. The parameter a for the
inverse is ā = 1/a, and c = ϕ(a, b) =
ab. The group space is the real line
with the origin cut out, R\{0}. It
consists of the two separate pieces
x >

<
0. The group space for the dilations

in two dimensions, x′ = ax, y′ = ay,
is the real plane with the origin
removed (the punctured plane R2\{0}).
In this case the group space remains a
single connected piece. It is convenient
to assign the parameter 0 to the

identity. We write the group as x′ =
(1 + α)x, withα �= −1.
The group x′ = ax, y′ = a2y, with a �=
0, has only one parameter, but now
the transformations are in a space of
dimension 2. We note that the number
of parameters is not determined by the
dimension of the space on which the
transformations act.

2. GL(n), the general linear group in
n dimensions, is the set of non-
singular linear transformations in
n-dimensional space. For real en-
tries we write GL(n, R), for com-
plex entries GL(n, C): x′ = Ax, or x′

i =
aijxj(i = 1, . . . , n), where we sum over
the repeated index, and det A �= 0
(the nonsingular transformations). The
number of real parameters is n2 for
GL(n, R), and 2n2 for GL(n, C). A =
A−1, ϕ(A, B) = BA. The elements aij
vary over an infinite range (−∞ ≤
aij ≤ ∞), so the group is not compact.
The elements of GL(n, C) are the sub-
set of the n × n complex matrices with
determinant �= 0.

3. SL(n) is the special linear group (uni-
modular group) with det = 1. SL(n, C)
and SL(n, R) are subgroups of GL(n, C).
Thus SL(2) is the collection of 2 × 2
matrices(

a b
c d

)
with ad − bc = 1.

4. O(n) is the orthogonal group, a sub-
group of GL(n), where we impose the
requirement that the transformations
leave scalar products of any two vectors
x, y unchanged; i.e., (Ox, Oy) = (x, y),
where the scalar product is

(x, y) =
∑

i

xiyi.

Then (x, y) = (Ox, Oy) = (x, ÕOy),
where Õ is the transpose of the matrix
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O, so that

ÕO = 1, the unit matrix, or

ÕijOjk = δik = OjiOjk. (5)

Taking determinants, (det O)2 = 1, or
det O = ±1. The column vectors of the
orthogonal matrix are orthogonal unit
vectors. Similarly OÕ = 1, so the rows
are orthogonal unit vectors. For O(n, R),
there are n conditions from the norm
and n(n − 1)/2 from the orthogonality,
so the number of parameters is r =
n(n − 1)/2. The subgroup with positive
determinant +1 is called O+(n, R) or
SO(n, R), the special orthogonal group
(or proper orthogonal group).

5. U(n) is the unitary group that acts
in a complex unitary space, where
we have an inner product (x, y) =
�ix∗

i yi, and the asterisk denotes the
complex conjugate, so that (x, y) =
(Ux, Uy) = (x, U†Uy), where U† =
Ũ∗ is the adjoint of U, so U†U = 1 =
UU†, �iU∗

ijUik = δjk, and |det U|2 = 1,
so det U = exp(iε). Note that for j = k
there are n conditions �i|Uij|2 = 1,
while for j �= k there are 2n(n − 1)/2 or-
thogonality conditions (real and imagi-
nary parts both equal to zero). Thus the
number of parameters is r = n2. The
sum of the absolute squares of all the
matrix entries is n, so the group space is
bounded and U(n) is a compact group.

6. SU(n) is the unitary unimodular group
(special unitary group), a subgroup of
U(n) having det U = 1, so r = n2 − 1.

7. The Euclidean group E(n) in real space,
x′ = Ax + a, where A is an orthogonal
matrix and a is a translation vector,
preserves the Euclidean distance, so
ÃA = 1, and the number of parameters
is r = n(n + 1)/2. For n = 3, r = 6.
This group E(3) can be regarded as a
group of block matrices (A, a), where A

is a 3 × 3 orthogonal matrix, O is the
(1 × 3) null matrix,


a1

A a2
a3

O 1


 ,

and (A, a) acts on the column vectors


x1

x2
x3
1


 .

This group describes the rigid-body
displacements in 3-space.

In obtaining O(n, R) we required the
invariance of the scalar product (x, y). If
we had required the invariance of any
positive definite symmetric bilinear form
gijxiyj = (x, gy), with g = g̃, we could bring
it back to the unit form by a change of basis.
Thus the group O(n, R) is obtained for all
of these. If we extend this argument to
include all nonsingular symmetric bilinear
forms, a change of basis will bring them
(Sylvester’s law of inertia) to diagonal form
with p 1’s and q(−1)’s, where p + q = n.
We get the pseudo-orthogonal groups
O(p,q), defined over the real numbers. If
we define a matrix

Spq =
(

1p 0
0 −1q

)
,

where the 1p and 1q are the unit ma-
trices for dimension p and q, these
groups are defined by the requirement that
(x, sy) = (Ox, sOy) = (x, ÕsOy) for arbi-
trary x and y, so that ÕsO = s. Again we
have (det O)2 = 1, so by choosing those
transformations with det = 1, we can de-
fine the special groups SO(n − q, q). An
important example of this kind of group
is the Lorentz group, where we require
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the invariance of x2 + y2 + z2 − τ 2 (where
τ = ct) under the group.

What about skew-symmetric bilinear
forms? Given a nondegenerate skew-
symmetric bilinear form, with

{x, y} = gijxiyj and gij = −gji, (6)

g = −̃g, det g = (−1)m det g, so the
form will be nondegenerate only for
even dimension m. If we want the
transformations to preserve {x, y}, we
must have ÕgO = g, so (det O)2 = 1. By
a change of basis we can bring g to the
canonical form

g =
(

0 1n

−1n 0

)
,

where O is the n × n null matrix and 1n

is the n × n unit matrix. These groups are
the symplectic groups Sp(2n). For further
details and examples, see Hamermesh
(1989), p. 283ff.

2
Linear Representations of Lie Groups

In Sec. 1 we gave an introduction to group
theory and a description of some of the
important transformation groups that have
application to physics. Now we want to
show how groups can be used in the
solution of physical problems.

2.1
Group Theory and Quantum Mechanics

In quantum mechanics the states of a
system of n particles are described by
wave functions (state vectors) 	 that are
functions of the time t, the coordinate
vectors r1, r2, . . . , rn of the n-particle
system, and any other internal coordinates
of the particles. The changes of the system
with time (the equations of motion) are
governed by the Hamiltonian operator

H = T + V , where T is the kinetic energy
and V is the potential energy of the
system, which includes the interaction of
the particles with one another and with
any external fields. V is a function of
the coordinates, while T involves both the
coordinates and derivatives with respect to
the coordinates. The time behavior of the
system will be given by the Schrödinger
equation:

H	 = − h̄

i

δ	

∂t
, (7)

where h̄ = (1/2π) × ( the Planck con-
stant h). For most problems we look for the
stationary states, i.e., states whose time de-
pendence is given by an exponential factor
exp(−iEt/h̄):

	(r1, . . . , rn; t) = ψ(r1, . . . , rn)

× exp

(−iEt

h̄

)
. (8a)

E is the energy of this stationary state
(energy eigenstate) and Hψ = Eψ . A par-
ticular problem will have many different
solutions ψi with corresponding energies
Ei. The set of all the eigenvalues Ei gives
the spectrum of energy levels of the sys-
tem. If there are several independent state
vectors for a given energy level, we say
that the state is degenerate. The theory is
linear: we can superpose any states ψi to
get a new state ψ = αψr + βψs, where α

and β are arbitrary complex numbers. If
we assume that the state at time t = 0 is
given by

ψ =
m∑

i=1

ciψi,

then at time t, it will have developed into
the function

ψ(t) =
m∑

i=1

ciψi(r1, . . . , rn) exp

(−iEit

h̄

)
.

(8b)
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The quantities that are measured for a
state ψ (the observables, such as position
of the nth particle, the dipole moment of
the system, etc.) are operators that act on
the state vector, and in general change it to
a new state. If the operator S leaves the state
ψ unchanged except for a complex factor,
so that Sψ = sψ , we say that the state is an
eigenstate of the operator with eigenvalue
s. If we measure S on a state ϕ = �ibiϕi,
where the ϕi are normalized eigenstates
of the operator S, the result will be one
of the si, with a probability |bi|2, and the
average value over many measurements
(the expectation value of S in this state)
will be

〈S〉 = |(ϕ, Sϕ)|2 =
∑

i

|bi|2si. (9)

In addition to observables we can in-
troduce other operators that act on the
states of the system. For example, if the
coordinates are changed by some trans-
formation, there will be a corresponding
change in the state vector ψ(r). The new
state vector ψ ′ will be obtained by acting on
the state vector ψ with an operator related
to the coordinate transformation. Some
coordinate transformations may leave the
physical situation unchanged. For exam-
ple, for a particle in a central field, a
rotation R about any axis through the cen-
ter has no apparent effect on the physics,
since the field depends only on the radius
vector to the particle. The operator OR cor-
responding to the rotation R acts on the
state vector ψ to give a new state ψ ′ = ORψ

that looks the same in the rotated coordi-
nates r′ = Rr as did the original ψ in terms
of the coordinates r:

ORψ(r′) = ψ(r),

ORψ(Rr) = ψ(r),

or
ORψ(r) = ψ(R−1r). (10a)

If the state ψ is an eigenstate of the
Hamiltonian H with eigenvalue E, Hψ =
Eψ, ORψ will also be an eigenstate of H
with the same energy E, i.e., HORψ =
EORψ , so the states ψ and ORψ will be
degenerate (or differ by a phase). Applying
the operator O−1

R on the left, we get

O−1
R HORψ = Eψ = Hψ. (10b)

Since this equation holds for any eigen-
state, it holds for all states ψ , so the
operators on both sides coincide:

O−1
R HOR = H; HOR = ORH.

(10c)
Thus the operator OR commutes with
the Hamiltonian H. It is a symmetry
operator for this Hamiltonian. If we
choose some other rotation S we get a
corresponding symmetry operator OS that
acts on the state vectors. The product of
the operators OSOR is the operator OSR

that corresponds to the result of successive
transformations by R and then by S. In
general, if we have a collection of symmetry
operators their products and inverses will
also be symmetry operators. The identity
operator is a symmetry operator and the
operators satisfy the associative law. Thus
the operators obtained by using Eq. (10a)
for all the symmetry transformations
will form a group of operators that is
isomorphic to the group of symmetry
transformations. The group of operators
acting on some space of functions provides
us with a representation of the symmetry
group.

2.2
Construction of Representations

As a simple example of the construction
of representations, we again consider the
problem of a particle in a central field. The
group of symmetry operators OR will take
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an eigenfunction ψ into an eigenfunction
ORψ with the same energy E. If we apply all
the rotation operators to the same ψ we will
not always get a linearly independent ORψ

as the result. For example, if our ψ(x, y, z)

depends only on the radius r, ORψ will
leave ψ unchanged, since this state vector
is spherically symmetric. If ψ(x, y, z) =
x, the rotation operators will give only
x, y, z or linear combinations of them. So
this will be a representation in a three-
dimensional carrier space, and we say that
this is a three-dimensional representation
of the rotation group. Calling these basis
functions ψ

(1)
i (i = 1, 2, 3), ORψ

(1)
i will be

a linear combination of ψ
(1)
i :

ORψ
(1)
i =

3∑
j=1

D(1)
ji (R)ψ

(1)
j ,

(i = 1, 2, 3), (11)

where the superscript (1) labels the
representation D(1), and D(1)

ij (R) is the
matrix representative of the rotation in
this representation. If we perform a second
rotation S, we get

Os(Orψ
(1)
i ) =

∑
j

D(1)
ji (R)Osψ

(1)
j

=
∑
k,j

D(1)
ji (R)D(1)

kj (R)ψ
(1)

k

=
∑

k


∑

j

D(1)

kj (R)D(1)
ji (R)


 ψ

(1)

k

=
∑

k

D(1)

ki (SR)ψ
(1)

k . (12)

The matrices D(1) thus give a three-
dimensional representation of the rotation
group. If we take any linear subspace
of this three-dimensional space, applying
the rotation operators will automatically
generate the rest of the three-dimensional

space. There is no proper subspace that is
invariant, i.e., is reproduced by the rotation
operators. We say that the representation
D(1) is an irreducible three-dimensional
representation of the rotation group.

If we start with quadratic expressions in
x, y, z: xy, yz, zx, x2, y2, z2, we will obtain
a six-dimensional carrier space on which
the rotation operators will act, giving us
a six-dimensional representation D. But
this representation is reducible: we can
find a proper subspace which is invari-
ant. It is the one-dimensional subspace
of the multiples of the function ψ

(0)
11 =

x2 + y2 + z2, which is unchanged by ro-
tations (orthogonal transformations). The
remaining five-dimensional space with ba-
sis xy, yz, zx, x2 − z2, y2 − z2, contains no
invariant subspace, so the matrices ob-
tained by applying the rotation operators
OR to this subspace will give an irreducible
five-dimensional representation of the ro-
tation group. Thus by changing the basis
we can decompose the representation into
two independent irreducible representa-
tions.

In general, for any transformation group
G with elements R, starting with some
functions ψ , we can apply the corre-
sponding operators OR to the ψ ’s, find
an independent basis set, and obtain an
equation just like Eq. (11):

ORψ
(µ)

i =
dµ∑
j=1

D(µ)

ji (R)ψ
(µ)

j ,

(i, j = 1, . . . , dµ), (13)

where µ labels the representation D(µ),
with dimension dµ.

We mention again the two important
steps:

1. We start with some functions and find
the space of functions generated by the
operator group.
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2. We make changes of basis and look
for invariant subspaces. If there are no
invariant subspaces, the representation
is irreducible. The basis functions
must be degenerate with one another.
If there are invariant subspaces, we
check these separately. We finally end
up with a collection of irreducible
representations. The basis functions
of each of these form a necessarily
degenerate set.

In describing this process, it is con-
venient in general to use a ‘‘coordinate
space’’ of dimension dµ = m, and call the
basis set y1, . . . , ym. The transformations R
of the group G are represented by operators
OR that act on the coordinates (y1, . . . , ym)

or by their matrix representatives D(µ)(R).
An important method for constructing

representations for transformation groups
is to realize that the group supplies us with
a representation of itself: each element
R of the group is its own representative
D(R). If n is the dimension of the
coordinate space on which the group acts,
the representatives will be n × n matrices
D(1)(R). This is the vector representation of
the group G. Any quantity that transforms
according to this representation is called
a vector relative to the group G. The
product of representatives of R and S
is D(1)(RS) = D(1)(R)D(1)(S). We also
sometimes refer to the basis of this
representation as a tensor of rank 1
(relative to G). We can define tensors of
higher rank relative to G as follows: If
x and y are vectors we can form the n2

products xiyj. Under the transformations
of G these will transform so that x′

iy
′
j =

D(1)

ik (R)D(1)

jl (R)xkyl, where we always use
the convention of summing over any
repeated index. (Note that the same
transformation R is applied to each factor.)
Any set of quantities Tij that transform like

this product is called a second-rank tensor:
T ′

ij = D(1)

ik (R)D(1)

jl (R)Tkl. Similarly we can
construct tensors of any rank:

T ′
i1,...,in

= D(1)
i1j1

(R)D(1)
i2j2

(R) · · ·
· · · D(1)

imjm
(R)Tj1 , . . . , jm. (14)

These representations will be reducible,
but can be reduced by the methods de-
scribed in Hamermesh (1989), Chap. 10.

2.2.1 Equivalent Representations
If we have a representation D(R) of the
group G and make a transformation of
basis in the space of the representation,
using some matrix P, we can form matri-
ces PD(R)P−1 = D′(R), and it is easy to
verify that these also form a representation
of G with the same dimension as D. We
also see that D′(E) = 1, and D′(R)D′(S) =
D′(RS), since PD(R)P−1 × PD(S)P−1 =
PD(R)D(S)P−1 = PD(RS)P−1. We say
that the two representations D and D′
are equivalent. They are isomorphic and
represent only a change of basis. Equiv-
alent representations have the same set
of eigenvalues. The diagonal sum (trace)
is the same for D(R) and D′(R). We call
this quantity which is the same for any
two equivalent representations the char-
acter χ(R) of R in the representation D:
Tr D′ = D′

ii = Dii = Tr D. If two elements
R and S of the group G are in the same
conjugate class, so that there is an element
P of the group such that S = PRP−1, then
D(S) = D(P)D(R)D(P−1) and, taking the
trace, we get χ(S) = χ(R). Thus all ele-
ments in the same class in G have the
same character.

2.2.2 Addition of Representations.
Reducibility and Irreducibility
Suppose that we have two representations
D(1) and D(2) of the same group G, where
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D(1) has dimension n1 and acts on co-
ordinates xi, i = 1, . . . , n1, and D(2) has
dimension n2 and acts on some other
space with coordinates xi, i = n1 + 1,
. . . , n1 + n2. Thus the matrices D(1)(R)

are n1 × n1 matrices and the D(2)(R) are
n2 × n2. For each R in G, we construct a
new representation D that has dimension
n1 + n2,

D(R) =
(

D(1)(R) 0
0 D(2)(R)

)

and acts on the column vectors




x1
...

xn1

xn1+1
...

xn1+n2




and D(R) = D(1)(R) + D(2)(R). The two
representations act separately in the two
subspaces. If we make a change of basis
in the (n1 + n2)-dimensional space so that
the x’s mix, the equivalent representation
will no longer have this block form,
and it will not be evident that the
representation is actually a ‘‘sum’’ of
two independent representations. Now we
proceed in the reverse directions. Given
a representation of the group in some
space of dimension N, we ask whether
it is possible to find a simultaneous
decomposition of the matrices for all R
into invariant subspaces of dimensions
n1, n2 such that n1 + n2 = N, so that D(R)
acting on vectors in subspace 1 gives
vectors in that subspace, and similarly
for subspace 2. If this is true for all
R in G we say that the representation
D of dimension N is reducible and
has been decomposed into the sum of
D(1) and D(2). Next we try to find

decompositions of the subspaces 1 and
2 into invariant subspaces. This process
must end in a finite number of steps, and
we finally have a decomposition of the
original representation space into a sum
of subspaces, and D = D(1) + D(2) + · · · +
D(r), where none of the representations
D(i) has an invariant subspace. Then
we say that the original representation
D(R) has been fully reduced. If the carrier
space of D contains no proper invariant
subspace, we say that the representation
is irreducible. Note that the character of
the representation D(R) is the sum of the
characters of its irreducible component
representations: χ(R) = �iχ

(i)(R). The
same irreducible representation can occur
several times in the decomposition, so
that, in general, D = �iaiD(i), and χ =
�iaiχ

(i), where ai are positive integers.

2.2.3 Invariance of Functions and
Operators
We found earlier that ORψ(x) = ψ(R−1x),
so ORψ is not the same as ψ . If ORψ is the
same as ψ , so that ψ(Rx) = ψ(x), we see
that the function ψ is invariant under the
transformations. To test for invariance we
replace the arguments x of any function
ψ(x) by Rx and see whether we get the
same expression. If an operator T acts on a
function ψ we get a function ϕ = Tψ , and
applying the operator OR to Tψ we get

ORTψ(x) = ϕ(R−1x)

= T(R−1x)ψ(R−1x), (15)

ORT(x)O−1
R ORψ(x) = T(R−1x)ORψ(x)

= T ′(x)ORψ(x),

(16)

where T ′(x) = T(R−1x). In general the
operators T and T ′ are different. If they
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are the same, i.e., if

ORT(x)O−1
R = T(x), (17)

the operator T is invariant under the trans-
formation. In other words the operator
T commutes with OR. For example, the
function x2 + y2 is invariant under rota-
tions around the z axis, and also under
inversion. The operator ∂2/∂x2 + ∂2/∂y2

is also invariant under these transforma-
tions. A function describing the state of
a system of identical particles is invariant
under any permutation of the particles.

Now we can see the connection of group
theory with physics. The Hamiltonian H of
a physical problem may be invariant under
some operators T. The collection of these
operators and all possible products form
a group G – the symmetry group of the
Hamiltonian H. The basis functions for
an irreducible representation of this sym-
metry group must be transformed into
vectors in this same space by the opera-
tors D(µ)(R). This m-dimensional space
provides us with an m-fold degeneracy
of the particular energy level. For a re-
ducible representation of the symmetry
group G more states seem to be trans-
formed among themselves, but we can
reduce the representation by finding the
irreducible components. The basis func-
tions for an irreducible representation
must transform into one another under
the operations of the symmetry group.
It may happen that a problem gives de-
generacies that are greater than expected
from the assumed symmetry group. We
must then search for some symmetry op-
eration beyond those assumed. Often this
occurrence is labeled as ‘‘accidental’’ de-
generacy. Note that the basis function
ψ

(µ)

i for the irreducible representation
D(µ) is said to belong to the ith row of
the representation.

2.3
General Theorems

We now list without proof the general
theorems that enable us to reduce any
representation of a group G into its
irreducible constituents.

Schur Lemma 1. If D and D′ are two
irreducible representations of a group
G, having different dimensions, and the
matrix T satisfies D(R)T = TD′(R) for all
R in G, then the matrix T must be the null
matrix T = 0.

Schur Lemma 1a. If D and D′ have
the same dimensions and are irreducible
representations of G, and if D(R)T =
TD′(R) for all R, then either D and D′
are equivalent or T = 0.

Schur Lemma 2. If the matrices D(R)
are an irreducible representation of G
and if TD(R) = D(R)T for all R, then
T is a multiple of the unit matrix: T =
const 1. This lemma gives an easy test of
irreducibility.

Next we present the orthogonality re-
lations. The quantities D(µ)

ij (R) for fixed
µ, i, j form a vector (whose components
are labeled by R) in a g-dimensional space
(where g is the order of G). If D(µ) and D(v)

are two nonequivalent irreducible repre-
sentations of G, then∑

R

D(µ)

il (R)D(v)
mj (R

−1) = g

nµ
δµvδijδlm,

(18)

where nµ is the dimension of the represen-
tation D(µ). If D(µ) and D(v) are the same
D, then∑

R

Dil(R)Dmj(R
−1) = g

n
δijδlm. (19)

If the representations are unitary, we
replace Dmj(R−1) by D∗

jm(R). Thus each

irreducible representation D(µ) gives us
n2

µ vectors D(µ)

ij (R)(i, j = 1, . . . , nµ) that
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are orthogonal to one another and to all
such vectors formed from nonequivalent
representations. Since the number of
orthogonal vectors in a g-dimensional
space cannot exceed g, we must have
�µn2

µ ≤ g. We can obtain similar formulas
for the characters χ(µ) by setting i = l and
j = m and summing over i and j:∑

R

χ(µ)(R)χ(v)(R−1) = gδµv, (20)

or ∑
R

χ(µ)(R)χ(v)∗(R) = gδµv (21)

if the representation is unitary. We saw
earlier that all the group elements in the
same class have the same character. We
label the classes K1 to Kr , and denote by gi

the number in the class Ki. Then the last
equation becomes

r∑
i=1

χ
(µ)

i χ
(v)∗
i gi = gδµv, (22)

where χµ(R) = χ
(µ)

i for all elements in
the class Ki.

2.4
Kronecker Product of Representations

If we have two irreducible representations
D(µ) and D(v) of the symmetry group,
we can take products of their basis
functions and get the Kronecker product
representation D(µ×v)(R) with matrices

[D(µ×v)(R)]ik,jl = D(µ)

ij (R)D(v)
kl (R). (23)

The character of D(µ×v) can be found by
setting j = i, l = k, and summing over i
and k:

χ(µ×v)(R) = χ(µ)(R)χ(v)(R). (24)

All elements R in the same class Ki will
have the same character χ

(µ×v)
i . The scalar

product of the basis functions is

(ψ
(µ)

i , ϕ
(v)
j ) =

∫
dτψ

(µ)∗
i ϕ

(v)
j . (25)

For unitary representations this expression
is identical with (D(µ)(R)ψ

(µ)

i , D(v)(R)

ϕ
(v)
j ) for any R. If we use Eq. (13) and

the orthogonality relation of Eq. (18) we
find

(ψ
(µ)

i , ϕ
(v)
j = 1

nµ

∑
k

(ψ
(µ)

k , ϕ
(v)
k )δµvδij.

(26)

The scalar product is zero for i �= j, i.e.,
basis functions belonging to different rows
are orthogonal. Setting µ = v and i = j, we
find that (ψ

(µ)

i , ϕ
(µ)

i ) is independent of i.
This means that the scalar product of two
functions belonging to the same row of an
irreducible representation is independent
of the row. We shall see that this result
is the basis of the use of perturbation
theory and selection rules throughout the
applications of group theory.

2.5
Analysis of Representations

If we know the characters of the irreducible
representations of the group G, we can
use the above theorems to find how
a given representation decomposes into
irreducible constituents. We found (see p.
376) the equation

D(R) =
∑
µ

aµD(µ)(R). (27)

Taking the trace for an element R in the
class Ki, we get

χi =
∑
µ

aµχ
(µ)

i . (28)
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Next we multiply by χ
(v)∗
i gi and sum over i.

Using the orthogonality relations found
earlier, this gives

av = 1

g

∑
i

giχ
(v)∗
i χi. (29)

Thus the number of times a given
irreducible representation is contained in
D is given by this formula. In particular
this shows that if two representations
have the same set of characters, they are
equivalent. Again, if we multiply Eq. (29)
by g times its complex conjugate equation
and sum over i, we find∑

i

gi|χi|2 = g
∑
µ

a2
µ. (30)

If the representation is irreducible, all the
aµ must be zero, except for one which
is equal to 1. So if the representation is
irreducible, its characters must satisfy the
equation. ∑

i

gi|χi|2 = g, (31)

which gives a simple test for irreducibility.
Finally one can show that the number of
inequivalent irreducible representations is
precisely equal to the number of conjugate
classes in the group, and that

g =
r∑

µ=1

n2
µ, (32)

i.e., the sum of the squares of the dimen-
sions of all the nonequivalent irreducible
representations is equal to the order of the
group.

We give some examples of finding
characters for some groups.

1. Cyclic groups: a, . . . , an = e. These
groups are Abelian, so all irreducible
representations have dimension 1. The

matrices are 1 × 1 and the represen-
tative is just the character, a complex
number. Since an = e, the nth power
of the character D(a) must equal 1,
so D(a) = exp(2π im/n), m = 1, . . . , n,
and D(ar) = exp(2π imr/n).

2. General Abelian group. Again all
irreducible representations are one-
dimensional. We choose any element
and take its powers. This gives a cyclic
subgroup of G. We repeat this process
with some other element. We see that
the group is a direct product of cyclic
subgroups. For example, if G = C2 ⊗
C3 ⊗ C5, with g = 30, we have genera-
tors a, b, c, with a2 = b3 = c5 = e, and
the character of any element ambncp is
exp[2π i(mr/2 + ns/3 + pt/5)].

3. Point groups. These are the groups of
rotations about a fixed point (the origin)
and reflections in planes through the
origin. For crystals, only the rotations
through multiples of 2π( 1

2 ; 1
3 ; 1

4 ; 1
6 ) are

permitted, i.e., only cyclic subgroups
C2, C3, C4, C6. As a typical example, we
treat the octahedral (cubic) group O.
This is the group of rotations about
axes through the center of the cube that
take the cube into itself. It consists of
24 rotations in 5 classes: 6 rotations
C4, C3

4 around lines joining the mid-
points of opposite faces; 3 rotations C2

4
around these same axes; 6 rotations
C2 around lines joining the midpoints
of opposite edges; 8 rotations C3, C2

3
around lines joining opposite vertices
of the cube; and the identity E. There
are five nonequivalent irreducible rep-
resentations. Using Eq. (32) we find

24 =
5∑

µ=1

n2
µ

which has the unique solution nµ =
3, 3, 2, 1, 1. The character table for this
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group is

E C3,C2
3(8) C2

4(3) C2(6) C4,C3
4(6)

�1 1 1 1 1 1
�2 1 1 1 −1 −1
�3 2 −1 2 0 0
�4 3 0 −1 1 −1
�5 3 0 −1 −1 1

where �1, . . . , �5 label the irreducible
representations. The column vectors
are orthogonal:

1(1) + 1(1) + 2(−1)

+ 3(0) + 3(0) = 0, etc.,

and normalized to g = 24:

12 + 12 + 22 + 32 + 32 = 24,

8[12 + 12 + (−1)2] = 24, etc.

The row vectors are also orthonormal
when we include the factors gi:

1(2) + 8(1)(−1) + 3(1)(2)

+ 6(−1)(0) + 6(−1)(0) = 0,

32 + 8(0)(0) + 3(−1)2 + 6(1)2

+ 6(−1)2 = 24, etc.

4. The permutation groups Sn. These
finite groups are important for dealing
with identical particles, construction of
irreducible tensors, and finding states
in atomic or nuclear shell models.
Earlier we described the conjugate
classes in Sn. We found that there is
a class corresponding to each partition
of n. For example, for n = 3, we have
r = 3 and g = 3!, so 6 = �in2

i , so ni =
2, 1, 1. There are two one-dimensional
and one two-dimensional irreducible
representations. The character table is

E (12)3 (123)2
�1 1 1 1
�2 1 −1 1
�3 2 0 −1

For large n, the simple procedure
becomes impractical. Instead we use
Young diagrams. For each partition of
n = n1 + n2 + · · · + nr , with n1 ≥ n2 ≥
. . . ≥ nr , we draw a diagram with n1

dots in the top row, n2 in the second,
etc. For example, for n = 5 = 3 + 1 + 1
we get the Young diagram

• • •

•
•

Each such partition gives an irreducible
representation of the group Sn. Next
we enter the digits 1–5 in the boxes in
all possible ways that keep the entries
increasing to the right in rows and down
in columns. These arrangements are
the standard Young tableaux:

123 124 125 134 135 145
4 3 3 2 2 2
5 5 4 5 4 3.

There are six standard tableaux so the
dimension of this irreducible represen-
tation is 6. The use of the symmetric
group Sn and the construction of irre-
ducible representations is discussed in
Hamermesh (1989), Chaps. 7 and 10.

5. SO(3) is the group of pure rotations in
three dimensions. All rotations through
a given angle θ about any axis n are in
the same class (see p. 368), so if we
choose the z axis for n the rotation
matrix is( cos θ − sin θ 0

sin θ cos θ 0
0 0 1

)
,

and the character for the vector rep-
resentation is χ(1)(θ) = 1 + 2 cos θ =
eiθ + e0 + e−iθ . One can show that there
is a single irreducible representation for
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each integer l = 0, 1, . . . with

χ(l)(θ) =
+l∑

m=−l

eimθ , (33)

and the dimension of the representa-
tion is χ(l)(0) = 2l + 1. There are also
irreducible representations of SO(3) for
l = 1

2 , 3
2 , etc. These are double-valued

representations that can be derived
by using the group SU(2), which is
homomorphic to SO(3) with two ele-
ments corresponding to each element
of SO(3). These irreducible representa-
tions give all information needed about
states in a central field. For a detailed
treatment of group representations, see
Elliott and Dauber (1979), Chaps. 4
and 7; Hamermesh (1989), Chaps. 3,
4, and 5.

3
Applications

3.1
Atomic Structure

The application of group theory to most
physical problems requires the use of some
model. It should be evident that we cannot
consider the quantum problem exactly if
we have more than two entities interacting
with one another. We must find some
method of successive approximations that
enables us finally to get satisfactory
agreement with experimental results. In
atomic physics our procedure is first to
consider the individual electrons to be
moving in the field of the nucleus and
some spherically symmetric averaged field
of the other electrons in the atom. In
this central field the Hamiltonian for
the individual electron has the symmetry
group SO(3), so the states of a single

electron have quantum numbers l and m =
−l, . . . , +l. A single-particle level with
quantum number l has degeneracy 2l + 1.
There will be many states with a given
lm, with energies E = b/n2 approximately,
where n = 1, 2, . . . giving us a triple of
labels n, l, m, with n ≥ l + 1, and l =
0, 1, . . ., where l is the orbital angular
momentum. Often we use letters in place
of l:

l = 0 1 2 3 4

state
label s p d f g.

For l = 0, we have 1s, 2s, 3s, . . .; For l = 1,
we have 2p, 3p, . . .; For l = 2, we have
3d, 4d, . . ., etc. The energy levels are given
approximately by E = b/n2, so the level
ns is nondegenerate (m = 0), the level
np has m = ±1, 0, etc. In addition we
know that each electron carries an internal
angular momentum (spin) with s = 1

2 . In
light atoms the spin results in there being
two states (with m = ± 1

2 ). This results in
doubling the occupancy of each level. Thus
we have a level sequence

Level 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

Degene- 2 2 6 2 6 10 2 6 10 14,
racy

etc., where the atomic shells are labeled by
n, and have a total number of electrons =
2, 8, 18, . . .. The order of the levels goes
with n, but some changes occur when the
3d and 4f levels become partly filled.

To study the spectrum of levels for
an atom with atomic number Z, we
fill the single-particle levels successively.
For example, for Z = 16, the only un-
filled shell would be 3p, with two elec-
trons. This state would be described by
(1s)2(2s)2(2p)6(3s)2(3p)2. The closed in-
ner shells have spherical symmetry, so
we consider only the two electrons in the
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3p shell. The orbital states of the two elec-
trons have l1 = l2 = 1, while the spin states
are s1 = s2 = 1

2 . For light atoms we use
Russell-Saunders coupling, in which we
first find the Kronecker product of all the
space functions, and separately of all the
spin functions, and then couple the two
resultants. To keep the Coulomb force be-
tween the electrons unchanged requires
that the same rotation R be applied to both
electrons, so that we are taking the product
representation D(l1)(R)D(l2)(R). The basis
functions are ψ

(1)
m1 (1)ψ

(1)
m2 (2), giving nine

coupled wave functions. This reducible
representation can be decomposed into
L = 2, 1, 0. The two spins will couple to
S = 1, 0. Finally we include the weaker
coupling of orbit and spin to give the states
of total angular momentum J = L + S, and
find states 3D,3 P,3 S and 1D,1 P,1 S. But
we must also consider that the electrons
are identical particles (fermions), and so
the Pauli principle requires that the to-
tal wave function must be antisymmetric
under the interchange of all coordinates
of the two electrons. For this simple
case of two electrons the nine functions
ψ

(1)
m1 (1)ψ

(1)
m2 (2) can be split into a symmet-

ric second-rank tensor (with trace zero),
an antisymmetric second-rank tensor, and
a scalar. The orbital states with L = 2, 0
are symmetric while the state with L = 1
is antisymmetric. The spin states with
S = 1 are symmetric (triplet states) while
the S = 0 singlet states are antisymmetric.
Thus the Pauli principle allows only the
states 3P,1 D,1 S. Note that this argument
would not apply to the case of (3p)(4p) be-
cause then the states of the two electrons
are not the same, so the Pauli principle has
no effect.

This simple procedure fails if there are
more than two electrons in the same
subshell. For example, for the case of
(3p)3 we would have 27 product functions

ψ
(1)
m1 (1)ψ

(1)
m2 (2)ψ

(1)
m3 (3) while the spin part

would be the product of three spin- 1
2 func-

tions. The general procedure requires the
use of irreducible tensors. If we have r
electrons in a subshell with angular mo-
mentum l our spatial wave function for
one electron is ψ

(l)
m , and for the r elec-

trons the product is 	 = ψ
(l)
m1(1) . . . ψ

(l)
mr (r)

with mi = −l, . . . , +l. Thus 	 is an rth-
rank tensor in a space of dimension
2l + 1. Since all these functions are de-
generate, the transformations of the group
SU(2l + 1) act on these ψ ’s. We then
must classify them according to the ir-
reducible representations of SU(2l + 1)

with their particular symmetries. Sim-
ilarly, for the spins we have tensors
ϕ

(1/2)
µ1 (1), . . . , ϕ

(1/2)
µr (r) of rank r in the

space of dimension 2. Again we must find
the irreducible pieces. Finally, to satisfy the
Pauli principle we must assure that the to-
tal wave function is antisymmetric. For
the detailed treatment, see Hamermesh
(1989), Chap. 11, or Elliott and Dauber
(1979), Chap. 8.

3.2
Nuclear Structure

In the case of atoms, we know that the
interactions are electromagnetic, and we
have just one type of identical particle,
electrons. In the case of the nucleus
we have two constituents, neutrons and
protons, which have approximately equal
masses and can transform into one
another in β-ray processes. The Coulomb
force between protons is small compared
with the specific nuclear force, so we
use a model in which we disregard the
differences between n and p, and deal
with a single type of identical particles,
nucleons, in two charge states. This looks
like the case of two possible spin states for
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electrons. Both n and p have an intrinsic
angular momentum s = 1

2 , but now there
is another intrinsic feature, the isospin
t = 1

2 . The other important difference is
that we have little basis for choice of a
model. We start with no knowledge of the
interaction and must try various shapes for
its radial dependence and its dependence
on spin and isospin.

The most successful model requires the
use of j– j coupling. In such models we
first couple (i.e., take the product of) the
ψ(l) and ψ(s) for an individual nucleon
to give a resultant ψ(j) and then couple
the ψ(j)s (i.e., take products of ψ

(j)
m for

the nucleons). Since the nuclear force is
attractive, the state with lowest j for a given
l,s will have the highest symmetry (since
the particles can get closest to one another).
The order of the levels will also depend on
the choice of the radial dependence of
the potential. One model is shown in the
following diagram of single-particle levels
and their degeneracies:

Nucleon states Occupation Total

1g9/2 10 50
2p1/2 2

1f5/2 6
2p3/2 4

1g7/2 8 28
1d3/2 4 20

2s1/2 2
1d5/2 6
1p1/2 2 8
1p3/2 4
1s1/2 2 2

The numbers in the right-hand column
are the magic numbers corresponding to
the closed shells.

As in the atomic case, we look only at the
partially filled shells. If we consider a level
(j)3, the single-particle state has a wave
function ψ(j) that is a vector in a space of
dimension 2j + 1. Since the js are halves
of odd integers, 2j + 1 is even. The wave

function for (j)3 is ψ
(j)
mi (1)ψ

(j)
m2(2)ψ

(j)
m3(3), a

third-rank tensor in a space of dimension
2j + 1. Next we take the product of the
three isospin functions which are vectors
in a space of dimension 2. Just as in the
atomic case, we must find the irreducible
parts of each tensor. For the isospin tensor
we get T = 3

2 , 1
2 , 1

2 . The completion of
the problem would be the same as in
the atomic case [see Hamermesh (1989),
Chap. 11–9].

3.3
Solid State and Crystal-Field Theory

In discussing atomic structure we used a
central-field model in which the Hamil-
tonian had the symmetry group SO(3). If
we study the energy levels of electrons
in a crystal, this is no longer the correct
symmetry group. Now the electron moves
in the periodic field of the crystal lattice.
In the neighborhood of a lattice point the
field is no longer spherically symmetric. It
now has the symmetry of one of the crystal
point groups. For example, the wave func-
tion of an electron in a cubic crystal will
belong to an irreducible representation of
the cubic point group O. Thus the possi-
ble degeneracy of a level will be 1, 2, or
3. (See the character table on p. 378.) If
the crystal is distorted, the point symme-
try group will be reduced from O to some
lower symmetry and the levels may split.
Or we may consider what happens to a
level in a free atom when the atom is put
at a crystal site. In the free atom the levels
correspond to irreducible representations
of the symmetry group SO(3). When the
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atom is placed in the crystal, we must
use the crystal-field symmetry. The level
with a given l may split into levels belong-
ing to the symmetry group of the crystal
(‘‘crystal-field theory’’). We illustrate this
for the octahedral group. A level belonging
to the irreducible representation D(L) of
SO(3) has the character

χ
(L)
(θ)

=
+L∑

m=−L

eimθ .

In the crystal this representation will
be reducible. The cubic field has only
rotations through angles θ = 0, π/2, π ,
and 2π/3. In the crystal we need to record
only the χ(L)(θ) for these values of θ . We
repeat the character table of O from p. 376
and enter below the characters for L = 0,
1, etc. Then we decompose using Eq. (29):

E C3 C2
4(3) C2(6) C4

C2
3(8) C3

4(6)

�1 1 1 1 1 1
�2 1 1 1 −1 −1
�3 2 −1 2 0 0
�4 3 0 −1 1 −1
�5 3 0 −1 −1 1
L = 0 1 1 1 1 1
L = 1 3 0 −1 −1 1
L = 2 5 −1 1 1 −1
L = 3 7 1 −1 −1 −1
L = 4 9 0 1 1 1

For example, we see that L = 0 gives �1.
L = 1 is just �5 so the vector does not
split in a cubic field. For L = 2 we find
�3 + �4, so the level splits into a doublet
and a triplet. L = 3 splits into �2 + �4 +
�5, while L = 4 gives �1 + �3 + �4 + �5.

For details and applications to various
point groups and the construction of
wave-functions, see Hamermesh (1989),
Chap. 9; Elliott and Dauber (1979), Chap.
14; or Burns (1977), Chaps. 8, 11, and 12.

4
Summary

Group theory has developed in the last 60
years to become an essential tool in many
branches of physics and chemistry. After a
mathematical introduction to the subject,
we have given examples of its application
to atomic and nuclear structure, and to
crystal-field theory.
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Introduction

A mathematical model is a set of equations
and algorithms, together with a collection
of interpretive rules, designed to repre-
sent something. Mathematical models are
invariably approximations. They include
physical laws that, like Newtonian me-
chanics, the special and general theories of
relativity, or quantum mechanics, are guid-
ing precepts at the moment, within their
specified limits. They also include expo-
nential growth models that are Band-Aids,
meant to be replaced. Mathematical mod-
els selectively magnify some parts of a sys-
tem while ignoring or severely approximat-
ing other parts. The art of modeling is to
distinguish essential from superfluous de-
tail and to be able to ‘‘consider a spherical
cow’’ (Harte, 1988). To learn of the goals,
philosophy, and methods of mathematical
modeling within any field of physics, one
can do nothing better than read the article
in this Encyclopedia pertaining to the field.
The purpose here is to sample the breadth
of emerging tools and techniques.

Change through computer power is
the dominant feature in the world of
mathematical modeling. During the brief
history of electronic computation, barriers
to formal mathematics eroded slowly. In
1976, the four-color problem was solved: It
was proved that only four colors are needed
for maps to assure that no two countries
sharing a common border have the same
color (Appel and Haken, 1978). This is a
combinatoric problem, solved by making
use of a computer in essential ways. Since
then, computer-assisted researchers have
won acceptance as not being children of a
lesser God.

Although analytic methods and rigor-
ous mathematics theorems continue to be
pillars, they are enhanced by modern-day
computers, sometimes through the use
of symbolic computer software. Computer
technology at present can give us com-
mercially available teraflop speeds (1012

floating point operations per second), and
will perhaps give 1015 flops in ten years
(Pool, 1992). Massively parallel processing
already exists. Every two years produces
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workstations and personal computers us-
ing more sophisticated graphics and soft-
ware, making the previous generation ob-
solete. A researcher must carefully choose
the appropriate hardware and software sys-
tem, because of overhead costs in financial
resources (measurable in units of $10 000)
and learning time (units of 6 months).
The reward is the power to explore new
models of greater complexity and old mod-
els to greater depth and to share rapidly
advancing computer visualization.

Just as a treatise on mathematical
modeling 180 years ago would have
been remiss to omit mention of Fourier
analysis, so would it be remiss today to
omit mention of wavelets, chaos, fractals,
nonlinear dynamics, numerical modeling,
rational functions, symbolic computation,
time series, Monte Carlo and inverse
methods, systems analysis, and principal-
component analysis. In their present form,
they all are children of the computer
age, with a scope extending beyond the
context of their inception. We concentrate
on these and add statistical inference,
information theory, cellular automata, self-
organization, and data assimilation, which
are comparable in breadth of interest. We
also mention software development.

Our discussion is illustrative rather than
comprehensive and is not rigorously par-
allel or hierarchical. The recent treatise on
mathematical modeling with which this
article most overlaps is the two-volume
work of Casti (1992). Each work con-
tains things the other does not. Whereas
Casti tends to emphasize techniques more
than the models, and the journal Applied
Mathematical Modelling emphasizes mod-
els more than techniques, we attempt to
strike a median between the two. Our
physicist’s viewpoint relegates – perhaps
unfairly – numerical modeling to less than

10% of the whole. Consequently, some im-
portant numerical analysis developments
such as splines, singular integrals, and
large matrix inversion are given little or
no space. Whether one uses commercial
numerical software systems or does one’s
own numerical programming, we advise
caution and careful testing. We refer the
reader to the article NUMERICAL METHODS

for more detailed advice. By mathemati-
cians’ standards, this work is decidedly
qualitative. We omit or relegate to the in-
cidental almost all the standard fare of a
first course on mathematical methods of
physics, such as tensor analysis, finite-
and infinite-dimensional linear spaces,
distribution theory, Fourier and Hilbert
transforms, special functions, methods of
solving integral and differential equations,
and group theory, for which excellent text-
books exist (Hassani, 1991; Arfken, 1985).
What remains are topics we believe prac-
ticing scientific modelers can ignore only
at their own peril!

1
About Models: Types and Trends

We follow the classification of climate
modelers (Schneider and Dickinson, 1974)
in identifying two types of models: mech-
anistic models, which emphasize mecha-
nisms; and simulation models, which intro-
duce explicitly as many relevant degrees
of freedom as possible. Most models are a
mixture of the two. Consider, for example,
models designed to simulate circulations
in the atmosphere and the oceans. They are
called general circulation models (GCM’s).
The GCM’s do not possess a grid scale
sufficiently fine to permit simulation of
clouds. However, insight gained from
cloud simulation models within which en-
vironments of clouds are mechanistically
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described has led to a better mechanistic
description of cloudiness within GCM’s.
The interplay between mechanistic and
simulation models also sheds light on
feedbacks.

A mechanistic description of a subphe-
nomenon within a larger simulational sys-
tem is called parametrization. In GCM’s,
both cloudiness and precipitation are
parametrized. The more mechanistic a
model, the more directly observable are
its variables. For example, pressure as an
operationally defined variable in thermo-
dynamics, a mechanistic model, contrasts
with pressure as an end product of a
lengthy computation in kinetic theory, a
simulation model. The ideal gas law is
an often-used parametrization. The valida-
tions of parametrizations within GCM’s,
particularly for climatic regimes other than
the present and, hence, only indirectly ac-
cessible to observation, have been perhaps
the major issue in their development and
are crucial in the study of global warming.

Models are further classified according
to their relation to experimental observa-
tions. Direct models make predictions for
comparison with experiment, using given
parameters. Inverse models make predic-
tions of parameters of direct models, using
experimental data. Data-assimilation mod-
els make direct predictions of the near
future or more complete descriptions of
the present, while using inverse methods
for the purpose of updating and improv-
ing parameter values. Models that show
temporal evolution are called dynamic mod-
els. Dynamic models are further classified
as deterministic if the rule by which the
next successive state in time computed is
unique or stochastic if that rule can lead
to more than one next state, with some
probability.

We comment on two environmen-
tal systems: El Niño and the Southern

Oscillation, in which various models are
discussed; and North Atlantic Ocean cir-
culation, where mechanistic models reveal
a possibility of low-dimensional chaos.
Also, we touch on two major successes:
controlling chaos and soliton propagation
in optical fibers. Three dominant motifs
recur throughout the present discussion.
They are centered on chaos, complex sys-
tems, and computer simulation, as we now
explain.

1.1
Chaos as a New Paradigm in Science

Chaos is the apparently random behav-
ior seen in some deterministic nonlinear
dynamical systems. Noisy processes once
thought to require stochastic modeling
may be chaotic (Tufillaro et al., 1992).
Even in planetary motions, chaos has a
long-time destabilizing effect. Chaotic sys-
tems, intrinsically classical, have a poorly
understood relationship with quantum
mechanics. Therefore, chaos is sometimes
advanced as a fundamentally new point of
view, a new paradigm (Ford and Martica,
1992).

Distinguished from randomness by
measures of order, chaotic evolution al-
ways has a fractal orbital structure, and
there is always sensitivity to initial con-
ditions (SIC). Both conservative and dis-
sipative systems can be chaotic. Dissi-
pative chaotic systems evolve to a low-
dimensional asymptotic orbit, called an
attractor. The attractor is reached from ini-
tial conditions in a region of phase space
called the basin of attraction. Since lower
dimensions are easier to work with, the
existence of an attractor helps analyze dis-
sipative chaos. There is information loss,
measurable in bits per time step. Weather,
with its long-range unpredictability, is
probably chaotic.
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1.2
Complex Systems as a Focus
of Mathematical Modeling

As prime examples of complex systems,
GCM’s are heavily parametrized. Sys-
tems analysis, emphasizing the relation-
ship among the components of a system,
is relevant here; mechanistic models of
complex systems use systems concepts
of feedback and control. In other de-
velopments, phase-transition models for
aggregate matter are used in the theory
of strongly interacting elementary parti-
cles, self-organization, and chaos. Adaptive
learning systems such as neural networks,
themselves models of complex systems,
are used heuristically for model building
(Zurada, 1992).

1.3
Computer Simulation Experiments
as a Third Branch of Science

Simulation of complex or chaotic systems
generates large data sets. Complex sys-
tems may be deterministic, such as with
molecular dynamics (Yonezawa, 1993),
stochastic, as in Monte Carlo simula-
tions (Creutz, 1992), or a mixture of the
two. Interesting, complicated data are also
produced from simulation of a chaotic
one-dimensional nonlinear driven oscilla-
tor. Investigations using such computer-
generated data have become a dominant
effort in scientific work and are some-
times referred to as experimental theoretical
physics (ETP). Improved digital computer
power will make possible ETP simula-
tions of aerodynamic flows and many
important systems, which can also in-
clude hypothetical structures such as exotic
chemical compounds not yet seen in the
laboratory.

2
Digital Computing Developments

Trends in digital computing today are

1. the explosion of computer power, both
serial and parallel;

2. a rapid increase in connectivity (‘‘net-
working’’ and ‘‘clustering’’) making
stand-alone computing obsolete;

3. a rapid increase in specialized software;
and

4. the broadening scope of software sys-
tems.

2.1
Hardware

The order of magnitude of current work-
station speed is 100 megaflops. This re-
sembles supercomputer speed of just ten
years ago. It is slower by many orders of
magnitude than current linear supercom-
puters, now in the gigaflop range; how-
ever, through parallel links of the slower
workstation processors, competitive par-
allel computers are obtained. Massively
parallel computer designs are now at a
teraflop level. Pressure to increase com-
puter speeds continues from industrial,
defense, environmental, medical, and aca-
demic demands.

Massively parallel computer designs cur-
rently couple 103 to 104 individual proces-
sors with their own individual memories
(Pool, 1992). In a large class of designs,
each processor is only interconnected with
its nearest neighbors. Current major ef-
forts are devoted to solving the problem of
communications among processors and
the problem of programming for their ef-
ficient use. Modeling of some, but not all,
complex systems lends itself to massively
parallel computing. Modern supercomput-
ers, such as those produced by Cray, excel
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because of their sequential power, even
though some can possess up to 16 parallel
processors. A sequential problem run on
the current generation of massively par-
allel computers will go slowly, because
their individual processors are slow by
supercomputer standards. There are di-
verse concepts of parallel processors. They
in turn can be modeled in broad cate-
gories such as non-shared memory, shared
memory, and Boolean circuits (Lakshmi-
varahan and Dhall, 1990). It is useful for
mathematical modelers whose work chal-
lenges modern computer capabilities to
become familiar with computer architec-
ture at this level. Consequently, modelers
collaborate with computer manufacturer
in-house scientists (Butler et al., 1993).
Highly connected parallel computers be-
ing built show promise for problems that
are not essentially sequential and that do
contain synchronous parts.

2.2
Software

The past 30 years have seen the develop-
ment of numerous higher-level program-
ming languages and the increased use of
software systems. FORTRAN, long a stan-
dard bearer for numerical programming,
has progressed to FORTRAN 90 with par-
allel processing capabilities. Many other
supported programming languages are
available. Programming languages are ac-
companied by increasingly sophisticated
debugging and structuring software.

Commercial software systems exist for
practically every purpose and are heav-
ily advertised in computer journals. The
journal Computers in Physics also has
sections on research and education, visu-
alization, techniques and technology, and
refereed articles. Technical emphasis in

universities is on learning to use a progres-
sion of specialized software systems, often
starting with spread-sheets and including
computer algebra. MATLAB is a commercial
numerical software system for interactive
use. Accessible graphics, facile handling
of matrix problems, some limited symbol
manipulation, and continual broadening
of scope are features of MATLAB. For
numerical work, Numerical Recipes and
NAG (Numerical Algorithms Group) are
well-known commercial groups that also
continue to diversify. Several commercial
software systems exist for neural networks.
In the public domain are many specialized
software packages such as FERRET, used by
geophysicists to do interactive processing
of large data sets.

Historically, computer algebra has been
developed for analytic problems of celestial
mechanics, general relativity, and quan-
tum mechanics, saving months to years
over pencil and paper. The oldest well-
known symbolic software system, REDUCE,
is open and accessible to independent
developers. MATHEMATICA has strong advo-
cates, and its graphics have been extolled in
recent reviews. MAPLE continues its devel-
opment through an academic consortium,
and like MATHEMATICA has strong graph-
ics, a users’ group, and a newsletter. Many
find the academic commitment to MAPLE,
through Ph.D. dissertations and faculty in-
terest at the University of Waterloo and
Eidgenössische Technische Hochschule,
Zurich, to be appealing. Users can affect
work on MAPLE through direct electronic
mail correspondence with faculty. These
symbolic systems and others, including AX-

IOM, DERIVE, and MACSYMA, have recently
been discussed (Fitch, 1993).

Computer algebra is playing an increas-
ing role in the study of ordinary and partial
differential equations (Tournier, 1991).
This is because symmetries (characterized
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through Lie algebras and Lie groups) and
analytic transformations among classes of
differential equations (such as Bäcklund
and auto-Bäcklund transforms) are some-
times far more easily explored with com-
puter algebra than by hand.

Another modeling enhancement is
telecommunications. Electronic mail and
networking, remote and local, are cur-
rently estimated to serve more than 107

individual workers. For many researchers,
telecommunications provides ready ac-
cess to remote installations offering vastly
more powerful machines when needed,
with more versatile and more appropriate
software. Collaborations of groups spread
across the globe can be carried out on
just one computer, in some cases with al-
most instant response to comments and
queries.

3
Selected Models and Modeling Tools

3.1
Fractals

A ‘‘fractal’’ is an infinite set of points de-
scribed in terms of a noninteger scaling
parameter. This common thread encom-
passes an increasing variety. One broad
class, finite-size fractals, was first analyzed
by Mandelbrot, who originated the mod-
ern study of fractals, coining the word
fractal (Mandelbrot, 1983). Some finite-
size fractals are described in terms of a
self-affine scaling behavior: if one looks
at them through a magnifier, the images
will have clear similarities to the originals,
although there may be distortions in differ-
ent directions. If there are no distortions
at all, these fractals are called self-similar.
The Hausdorff dimension is the noninte-
gral scaling parameter for many finite-size

fractals. Fat fractals, an exception, have in-
tegral Hausdorff dimension, though they
still possess a nonintegral scaling param-
eter (Vicsek, 1992). Growth fractals form
another major class of fractals. They are
not self-affine except in some statisti-
cal sense. Prototypes are plane dendritic
growths (Vicsek, 1992). A union of frac-
tals with differing scaling behaviors is
called a multifractal. It is easy to construct
fractals (including multifractals), using ei-
ther deterministic or stochastic rules. It
is harder to identify naturally occurring
fractal structures.

Fractals are ubiquitous in spatial struc-
tures and are even associated with modern
art. A chaotic system always possesses a
fractal orbit. For example, fractal structures
have been observed in preturbulent flow
(Brandstater and Swinney, 1987). Fully de-
veloped turbulence has been shown to have
a well-defined multifractal spatial structure
(Sreenivasan, 1991), which is not yet fully
understood. The detection and characteri-
zation of fractals anywhere in nature is an
important step in mathematical modeling.
Models of fractal growth are being studied
intensively (Vicsek, 1992). In Secs. 3.2.1,
3.5.1, 4.4, and 5.3, fractal structure is in-
trinsic to the discussions. It is therefore
relevant to understand how, in a simpler
context, noninteger scaling is inferred.

Here we introduce a fractal dimension
D which is a standard approximation to
the Hausdorff dimension. Dimension D is
defined so that, intuitively, D is an integer
for nonfractal sets. Consider first a line
segment of length L. The number N(l)
of small segments of length l needed to
cover the length L is Ll−1. This is true for
progressively smaller l. The negative of the
exponent of l is the scaling parameter, D;
the fractal dimension D is unity for this
nonfractal set. Now consider a square of
side L. The number N(l) of small squares



220 Mathematical Modeling

of side l needed to cover the square of size
L2 is L2l−2. Then again, N(l) ∼ l−D, and
the scaling parameter D is the integer 2 for
this nonfractal set. This relation can also
be written

D = − lim
l→0

ln
N(l)

ln(l)
. (1)

We now construct a fractal, Smale’s
horseshoe map, perhaps the simplest ex-
emplar of a chaotic dynamical system
(Smale, 1967). We define an infinite se-
quence of iterations by first drawing a
rectangle of width W and height H. Each
iteration occurs in two steps. The first step,
stretching, is to draw another rectangle of
width 2W and height reduced by a fac-
tor 1/2δ where δ is some fixed number
greater than 1 – say, 2. The last step of
the iteration, folding, is to bend the rect-
angle over into the shape of a horseshoe
of width W again, whose sides do not
touch. The new area inside the boundary
of the stretched and folded rectangle is,
of course, less than the old. If we draw
a vertical line through the new shape,
its intersection with the inner area is in
two pieces, each of height H(1/2δ) = H/4.
When the stretching and folding process
is iterated exactly the same way k times,
a layered structure develops whose inner
area makes 2k intersections with a vertical
line, each of height H(1/2δ)k. We now use
Eq. (1) to obtain D = (ln 2)/(ln 2δ) = 0.5.
The limiting internal area is zero. The
fractal dimension of the whole layered
figure is the sum of the vertical and hor-
izontal fractal dimensions, or 1 + (ln 2)/

(ln 2δ) = 1.5.
Shown in Fig. 1 are the first few itera-

tions that in the limit k → ∞ define two
other fractals. They are the Cantor middle-
thirds set in (a) finite-size and (b) growth
versions. We compute the fractal dimen-
sion in (a) as before. Case (a) corresponds

to a chaotic orbit of the logistic map (see
Sec. 3.5.1). After k iterations, there are
2k pieces, each of length 3−k, leading
to a value D = (ln 2/ ln 3) = 0.6309 . . . .
Figure 1(a) is converted to a fat fractal by
removing the middle (1/3k)th piece rather
than the middle third. The fractal dimen-
sion D for this fat fractal equals unity.

For growth fractals [case (b)], D is
calculated differently. Consider a growth
fractal of maximum linear extent L. Here,
there is some minimum number N(L) of
covering segments of fixed edge length l.
As k → ∞, we have L → ∞, and D is
defined through the relation N(L) ∼ LD.
The growth rule is iterated three times in
Fig. 1(b). The result for k → ∞ is the same
as before, D = (ln 2)/(ln 3). The union of
all iterations in Fig. 1(b) also has the same
fractal dimension. In nature, the infinite
limit never occurs, but scale invariance

l 1 1/3 1/9 1/27
0 1 2 3
1 2 4 8
1 3 9 27

=
k =
N =
L =

(a)

(b)

Fig. 1 Construction of a Cantor middle-thirds
fractal, for two cases: (a) finite-size and (b)
growth fractals. Fractals are defined iteratively in
the limit where k → ∞. In both cases, the fractal
dimension D equals ln(2)/ln(3) (see text for
details). Figs. 1 and 3 were quickly drawn using
‘‘paint’’ facility on a DEC-5000 workstation



Mathematical Modeling 221

can be found where L or l varies over many
powers of ten (Mandelbrot, 1983).

It is simple to generalize the concep-
tual process for finding D to a higher-
dimensional space, where covering balls
(or hypercubes) of volume V ∝ ld are used,
with d representing the usual dimension
of the underlying space, frequently as
large as 10. However, when d exceeds 2,
a method of computing D based upon
its definition, known as a box-counting
method, must be replaced by a more
computation-efficient method (Schuster,
1988). Finally, multifractals are observed
by using scaling parameters sensitive to
the density distribution within a fractal.
The examples given here are not multi-
fractal because the distribution of points
within the fractals is uniform. Detect-
ing nonuniformity can be accomplished
through introduction of generalized di-
mensions, Dq, defined in terms of the
qth moments of this density distribution.
The values of q for which Dq is measured
can be q = 0, ±1, ±2, . . . , ±∞, and D0 is
identified with the previously defined D.
For multifractals, Dq decreases rather than
remaining constant as q increases. The art
of measuring multifractals is discussed by
Sreenivasan (1991). Major efforts to refine
the experimental determination of all these
non-integral scaling parameters continue
(Abraham et al., 1990).

3.2
Nonlinear Dynamics

3.2.1 Deterministic Models
Dynamics is the study of how systems
change in time. If time changes in discrete
intervals, the evolution is described as an
iterative map, or simply, a map. A map can
be written

XM+1 = F(XM, µ). (2)

Here, X can lie in an N-dimensional vector
space, F(X) is a vector-valued function in
that space, and µ is a set of parameters.
The space is called the phase space. If the
time changes continuously, the evolution
is referred to as a flow. The dynamical
equations for a flow can be written

d

dt
X = F(X, µ). (3)

Here, X, F(X, µ), and µ are defined as
before, except that now X depends upon
continuous time. Solutions of both kinds
of systems are referred to as orbits. Flows
are numerically approximated as maps.
Hence, the connection between these two
versions of dynamics is important.

Nonlinear dynamics is a rich field
for modelers. In controlled experiments,
a change of control parameters some-
times leads to topologically distinguishable
states. The non-linear dynamics theory of
such transitions, called bifurcations, is well
developed (Schuster, 1988). Bifurcations
in lasers can lead to chaotic states, and
circuits have been designed that bifurcate
into chaos.

3.2.2 Stochastic Models
What have just been defined are determin-
istic dynamical systems. Other systems,
referred to as stochastic, have functions
describing time evolution, such as F, that
are random variables, wholly or partially.
A class of stochastic dynamical systems
of considerable interest (Abraham et al.,
1990) are the kth order Markov processes,
defined in the discrete case by

P(XL|X1, . . . , XL−1)

= P(XL|XL−k, . . . , XL−1), (4)

representing the conditional probability
of observing XL as the Lth state in the
sequence X1, . . . , XL. When k = 1, this is
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simply called a Markov process. Stochastic
noise is usually mixed in with chaos.

Analysis of chaotic data attempts to
distinguish between stochastic noise and
true chaotic variability. Stochastic reso-
nance also can occur, in which noise
plays an essential role (Moss, 1991). In
stochastic resonance, transitions occur
among different stable states of a de-
terministic nonlinear dynamical system
driven by a periodic function plus noise.
Stochastic resonance has been observed
in lasers, and provides one conceptual
model for climatic change. Nonlinear dy-
namics – deterministic, stochastic, or both
together – is the framework for modeling
of weather and climate.

3.2.3 Formal and Experimental Dynamics
The literature on nonlinear dynamics
is blossoming. In describing this work,
we use the word ‘‘formal’’ to denote
an analytic mathematical approach. For-
mal work is sometimes concerned with
questions pertaining to effects of finite
numerical precision; however, any re-
sults reached in a formal approach are
characterized by a logical precision that
meets the standards of pure mathemat-
ics. We employ the broadened meaning
of the word ‘‘experimental’’ to include ex-
periments with computer-generated data.
Monographs tend to contain a mixture
of formal and experimental work (Schus-
ter, 1988). Lorenz’s computation of chaotic
behavior in 1963, discussed below, is a pre-
mier example of experimental dynamical
theory. Incisive formal results buttress the
field non-linear dynamics. They include
those of Sharkovsky in 1964, discussed
here in Sec. 3.5.1, and Gardner et al. in
1967, discussed here in Sec. 5.4. Also, in
1967 Smale investigated classes of smooth
maps and developed an important exem-
plar, the horseshoe map (Tufillaro et al.,

1992). Formal, too, was the 1971 proposal
by Ruelle and Takens of a new route to
chaotic turbulence via a few bifurcations,
seen experimentally in 1975 (Lichtenberg
and Lieberman, 1992).

The formal and the experimental are
combined in shadowing theorems. A
shadowing theorem seeks to answer an
important question in chaotic dynam-
ics. All chaotic systems show SIC, seen
in divergence of nearby orbits and loss
of memory of initial conditions when
finite precision calculations are made.
Then can any finite precision calcula-
tion approximate an asymptotic orbit?
Formal computer-assisted answers in the
affirmative have been found in special
cases – for example, for the Hénon and
the Ikeda maps – through the introduc-
tion of machine-independent procedures,
both in defining truncation and in find-
ing overlapping regions, i.e., a shadow, of
a large succession of mapped neighbor-
hoods (Hammel et al., 1988).

3.2.4 Time-Delay Embedding
Time-delay embedding is a technique for
reconstructing an orbit in a nonlinear
dynamical system from a time series
of a single scalar observable y(t). If
d is the topological dimension of the
manifold in which the orbit lies, there
is now considerable evidence that the
vector whose components are time-delayed
values of y(t), namely,

X(t) =(y(t), y(t + τ), y(t + 2τ),

. . . , y(t + {dE − 1}τ))T (5)

(where T is matrix transposition), often
adequately mimics the topological and
metric behavior of that orbit. If so, the
orbit is said to be embedded in the
reconstructed finite-dimensional space.
This is an indispensable insight: Without
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it, one would be required to identify and
measure all the observables relevant to
that orbit for an adequate description.
Time-delay embedding was articulated ca
1980 independently by physicists and a
mathematician (Tufillaro et al., 1992). In
the absence of an infinite set of noise-free
data, it becomes important to optimize the
delay parameter τ and to find a practical
embedding dimension dE smaller than the
value 2d + 1, which has been conditionally
proved to be sufficient. Information theory
has been of practical value in finding
τ (Fraser and Swinney, 1986), while
numerical experiments show that a good
dE is often smaller than 2d + 1. Time-delay
embedding is a major experimental tool of
chaos research.

3.2.5 Cellular Automata
Cellular automaton (CA) models are sim-
plified dynamical systems having discrete
spatial and temporal degrees of freedom
(Wolfram, 1986). The spatially distinct
points, called ‘‘cells,’’ can be interpreted
to represent arrays filling different dimen-
sions, according to how they are made
to interact with their defined ‘‘neighbor-
hoods.’’ The CA models have seen use
in describing excitable media, both bio-
logical and chemical, lattice-gas automata
and turbulence, and deterministic evolu-
tion of Ising lattices. In three-dimensional
excitable media, CA models of propagat-
ing scroll-shaped waves are two orders
of magnitude faster than partial differ-
ential equation (PDE) models (Gerhardt
et al., 1991); however, the validation of CA
models is relatively more problematic. Al-
though straightforward computationally,
allowing rapid checks of various hypothe-
ses, CAs need development of their formal
foundations. For example, formal criteria
for determining conserved quantities are

not generally known (Hattori and Takesue,
1991).

3.3
Rational Functions

A rational function is any ratio of two
polynomials, written PL(x)/QM(x), where
the degrees of the polynomials are L and
M. Taking a function f (x) to be rational
is a potent working assumption. Use
can often be made of the meromorphic
extension of f (x) to the complex plane.
Differing from a smoothing technique like
a spline, the rational function Ansatz is
a global statement about the nature of
the analyticity as well as the asymptotic
nature of f (x). Rational approximants are
successfully applied in solving integral
and differential equations, but still, much
about them remains to be understood
(McInnes and Marshall, 1993).

High-degree rational functions some-
times require ultrahigh-precision arith-
metic to distinguish between noncancel-
ing poles and zeros. Hence, restriction to a
rational function is seminumerical model-
ing in that analytic structure is maintained,
while ultimately numerical evaluation is
needed. Sometimes the function to be
approximated is entire, having no singu-
larities in the finite complex plane, but, as
Padé discovered in his doctoral disserta-
tion in 1892, even the exponential can be
represented as a rational function in some
domains. Baker rediscovered the power
of Padé approximants in 1960 while solv-
ing for critical exponents in the theory
of phase transitions. Recognition of the
power of this tool continues to grow. Even
functions with cuts in the complex plane
are sometimes representable as rational
functions, with arrays of poles and zeros
tracing the cuts.
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As reintroduced by Baker (Baker and
Graves-Morris, 1981), Padé approximants
are easily obtained by solving linear
equations or linear recursion relations that
lead to numerical values of the {ai} and the
{bj} in the expression

f (z) = a0 + a1z + · · · + aLzL

b0 + b1z + · · · + bMzM

+ O(zL+M+1) (6)

when the Taylor series expansion

f (z) = c0 + c1z + c2z2 + · · · (7)

is known. The Baker convention is to make
the additional constraint b0 = 1.

One extension of rational-function ap-
proximants useful for data modeling and
inverse models is the ‘‘statistical Padé ap-
proximant’’ (SPA). The SPA has the same
form as the PA but is obtained by fitting
numerical data by a linear iterative method
(Yidana and Hartt, 1988) that frequently
converges well even in the presence of sig-
nificant noise. The SPA has been used for
fitting nuclear-scattering data, for inverse-
scattering problems, for direct solutions of
the Schrödinger equation, and for finding
analytic solutions to Riemann boundary-
value problems.

Rational functions are fully described by
enumeration of their zeros and poles and
a leading numerical coefficient and are
highly accessible to symbolic computer
software and iteration dynamics studies,
including chaos. Rational-function itera-
tions form nonlinear dynamical systems
through which Fatou, Julia, and Mandel-
brot sets are definable (Mandelbrot, 1983)
and which occur in fractal image compres-
sion methods. Finally, rational functions
play a central role in linear circuit theory
and in signal processing. Because of their
computability and usefulness, they have

an interdisciplinary following and are the
subject of frequent conferences:

3.4
Monte Carlo Methods

The Monte Carlo (MC) method (q.v.)
employs algorithms that use random num-
bers for making convergent statistical es-
timates. These estimates can be solutions
of deterministic problems, evaluations of
high-dimensional integrals, or averages
over random processes. This method vastly
increases the range of problems that can be
dealt with theoretically. Although analytic
approaches are continually being proposed
for complex systems, there are many
problems for which no known analytic
procedure yet works. Massively parallel
computer architecture is useful in MC
calculations.

Historically, the MC approach to a
modeling problem has had three aspects:

1. generation of random numbers;
2. development of algorithms to use ran-

dom numbers for solving deterministic
problems; and

3. development of models for the use of
the other two aspects.

Currently, there is activity in all three.
Even the first has its hazards. All methods
using computers to generate number se-
quences involve finite algorithms, which
must fail some test for randomness, if
for no other reason than that computers
are finite-state systems. Such computer-
generated sequences are therefore called
‘‘pseudorandom numbers.’’ All finite tests
for randomness are incomplete (Knuth,
1981), and even the concept of randomness
is debated (Lichtenberg and Lieberman,
1992). Linear congruence methods, which
perform multiplications modulo a prop-
erly chosen large number, receive heavy
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use in the constructions of uniformly
distributed sequences in [0,1]. Recent cal-
culations solving problems with known
solutions show some methods to be better
than others (Ferrenberg et al., 1992). It be-
hooves MC users to validate their methods
separately for all algorithms.

For MC modeling, algorithms are
needed that generate a pseudorandom
number sequence according to an arbi-
trary probability distribution p(x), given a
pseudorandom sequence {yj} distributed
in [0,1]. This is sometimes done ana-
lytically in one dimension (Gould and
Tobochnik, 1988), by direct inversion of
P(x) = ∫ x

−∞ dxp(x), since dP(x) = dy =
p(x) dx. Direct inversion generalizes to a
small dimension m and a rapid MC ap-
proximation of

∫
dmxF(x1, . . . , xm) only

if F(x1, . . . , xm) resembles a tractable
probability density function p(x1, . . . , xm).
Efficient numerical inversion methods are
necessary for higher dimensions.

The powerful Metropolis-Hastings (MH)
procedure (Creutz, 1992) was first used
40 years ago. The MH introduces an ar-
tificial first-order Markov process and is
known as a dynamic MC method. Like di-
rect inversion, MH produces ‘‘importance
sampling’’ through which a nonuniform
distribution emphasizes regions where
the integrand is large (Binder, 1987). It
converges by selecting a long string of
steps through successive configurations of
the random variables, in accordance with
general constraints such as the detailed-
balance condition. The steps are highly
correlated. If an uncorrelated sequence of
N configurations is used, as in the sim-
plest MC calculations, estimated errors
diminish notoriously slowly, by N−1/2. As
the sequence becomes more correlated,
convergence is slower, because smaller re-
gions tend to be sampled by a fixed number
of configurations. The evaluation of when

convergence has occurred must consider
these correlations.

Models are often formulated from the
start for use of the MC method. Sub-
jects of separate monographs are the
MC approach to boundary value prob-
lems (Sabelfeld, 1991), atmospheric radia-
tive transfer (Marchuk et al., 1980), small
quantum mechanical systems (Kalos and
Whitlock, 1986), quantum fields (Creutz,
1992), and statistical physics (Binder,
1987). Each subfield has its own set of
computational algorithms. We illustrate
current activities with two recent accom-
plishments.

The quantum mechanical ground-state
energy Eg of a few-body system satisfies
the inequality Eg ≤ Et, where Et is the
expectation value of the energy operator
using a trial wave function �t(X, µ). The
function �t(X, µ) is an approximate solu-
tion of the time-independent Schrödinger
equation. For an n-particle system, X has
up to 4n space and spin components, and
µ is a parameter vector whose value de-
termines an analytic �t. For electrons in a
molecule, �t can contain 102 parameters.
The parameters are not directly associated
with the electronic degrees of freedom.
Rather, they give the relative weights of an-
alytically defined Slater determinants and
the shapes of state-dependent correlation
functions. Evaluation of Et requires im-
portance sampling of large numbers of
values of X, referred to as configurations.
This whole process must be repeated many
times with a minimization algorithm. Even
super-computer power can be too slow to
reach convergence. However, the variance
of the local energy mean over all config-
urations of an exact solution is zero. In
practice, that variance is adequately ap-
proximated using far fewer configurations
(by a factor of 103) than needed for energy
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evaluation. Little accuracy is lost in us-
ing the same configurations for successive
steps of the parameter vector µ (Umri-
gar, 1989), and a positive benefit accrues
through noise reduction among succes-
sive values of the variance, which must
be compared. Immense time savings oc-
cur from minimizing the variance with
infrequent calculations of the energy. As
a result, molecular-structure problems can
sometimes be done on workstations.

Recent MC calculations of eight parti-
cle masses were good to 6% (Butler et al.,
1993). They took one year on a special-
purpose massively parallel computer, the
IBM GF11 computer, where integrals on a
space-time lattice were evaluated. Succes-
sively larger lattices up to 30 × 322 × 40
in size approximated the limit of zero
lattice spacing and infinite volume, re-
quiring 1017 floating point operations.
This result is a breakthrough for com-
puter modeling, for the QCD (quantum
chromodynamics) particle model, and for
parallel processing. A similar program, the
QCD Teraflops Project, is underway. It
will use a 1283 × 256 lattice on a platform
derived from the Thinking Machines Cor-
poration’s CM5 massively parallel, highly
connected computer.

3.5
Numerical Modeling

A numerical model is a set of com-
putational algorithms associated with a
mathematical model. In order to be com-
plete, all but the simplest mathematical
models must contain a numerical model.
Just a few examples illustrate this need.
The logistic equation,

xN+1 = 4λxN(1 − xN), (8)

where x is real and lies in the interval [0,1],
provides the prime textbook example of the

period-doubling approach to chaos, as λ

increases from 0. Feigenbaum’s discovery
in 1978 of universality in the bifurcation
sequence of this map has been a corner-
stone in the development of chaos theory
(Schuster, 1988). Yet this iterative equation
is also an approximate numerical scheme
to solve the differential equation, dx/dt =
ax − bx2, with a and b suitably chosen,
which has only analytic, nonchaotic so-
lutions. However, the logistic map also
approximates a delay-differential equation,
which can have chaotic solutions. Delay-
difference and delay-differential equations
are frequently used in biological modeling.
Clearly, studies of their global behavior are
important.

Discretization is the approximation of a
continuum by points with some minimum
spacing, as can be carried out formally
to obtain the logistic equation. Alterna-
tively, spectral models maintain a partial
continuum description in introducing ex-
pansions of continuous functions of some
space-time degrees of freedom. The expan-
sions may use infinite complete orthonor-
mal sets. The approximation in using them
lies in keeping only a finite number of
terms. As a byproduct, such truncation
reduces the spectral width of the observ-
ables, a form of filtering – important both
in spectral and discrete methods (Ghil and
Malanotte-Rizzoli, 1991; O’Brien, 1986).

Smoothing is a process by which numer-
ical data are either replaced or interpolated
by means of other data that display a mini-
mum of short-range fluctuations. Smooth-
ing is standard experimental practice as a
preliminary to applying the finite Fourier
transform (see Sec. 4.3). This is sometimes
accomplished by averaging over a finite
subset of nearby data. The data can be
results of experimental measurements or
results of computations. The smoothing
assumptions are that



Mathematical Modeling 227

1. local data fluctuations represent an
imperfection best eliminated; or

2. analyticity requirements need to be
enforced (as opposed to requiring a
specific functional form).

In chaotic systems with sparse data,
smoothing is sometimes unwarranted and
leads to the inference of spurious low
fractal dimensions (Grassberger, 1986).
Therefore, the issue as to whether to
smooth needs to be settled first. From
a systems point of view, smoothing is a
special kind of filtering (see Sec. 3.7).

If smoothing is warranted, splines repre-
sent a computer intensive, yet conceptually
simple, approach. The spline process in-
troduces a basis set of functions in one
or more dimensions that possess smooth-
ness often defined in terms of existence
of higher-order derivatives. The data are
partitioned, and the spline basis is fit-
ted within each separate partition so as
to satisfy interpartition smoothness crite-
ria (Schumaker, 1980). A cubic spline, in
which the cubic polynomial is the basis
function, has long been a common option
available to modelers (Press et al., 1987).
Yet cubic interpolation continues to be
refined (Huynh, 1993). Spline smoothing
also provides a foundation for nonpara-
metric regression analysis, which in some
contexts is an alternative to autoregres-
sive/moving average (ARMA) (Eubank,
1988; also see Sec. 4.3).

3.5.1 Chaotic Systems
An approach sometimes used in numer-
ical modeling of chaotic systems is to
create a kind of coarsegraining of the
possible states associated with a mathe-
matical model. Each coarse-grained state
is assigned a different letter, and the to-
tality of letters is called the alphabet. This

approach is referred to as symbolic dynam-
ics. There are other valid ways than that
mentioned to create an alphabet, such as,
for example, a symbolic classification of the
unstable periodic orbits. Here, the impact
of the Sharkovsky theorem (Sharkovsky,
1964) becomes evident, as it introduces
symbolic dynamics to make fundamental
topological statements suggesting a certain
set of preconditions for chaos (coexistence
of infinite numbers of kinds of periodic
solutions). It holds for all one-dimensional
continuous, unimodal maps on the in-
terval [0,1]. The continuous function f (x)

which maps the interval [0,1] into itself is
termed unimodal if f (0) = f (1) = 0 and
f (x) possesses exactly one critical point.
Sharkovsky’s theorem does not necessar-
ily imply a positive Liapunov exponent
(Schuster, 1988). It establishes the follow-
ing ordering of the natural numbers:

3 � 5 � 7 � · · · � 2 · 3 � 2 · 5 � · · · �
22 · 3 � 22 · 5 � · · · � 23 · 3 � 23 · 5 � · · ·
· · · � 23 � 22 � 2 � 1,

where the symbol � is used for ‘‘precedes.’’
If f (x) has a cycle of period p then there
exist points x′ in [0,1] that are members
of cycles of period q, for all q that satisfy
p � q. In particular, if one numerically
determines the presence of a cycle of
period three, then the map f (x) contains
cycles of all integral periods. The search
goes on for similar insights using symbolic
dynamics in higher dimensions (Tufillaro
et al., 1992).

The Lorenz equations, which ushered in
the modern era of chaos theory (Lorenz,
1963), are themselves a drastically trun-
cated spectral model of a dissipative system
undergoing Rayleigh-Bénard convection.
Rayleigh-Bénard convection is essentially
the motion of a closed fluid system in re-
sponse to heating from the bottom. It is
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known experimentally to exhibit chaotic
behavior in regions of its parameter space.
Yet the Lorenz equations do not properly
describe the real physical system when it
is in its chaotic state: this is a case where a
model takes on a life of its own, indepen-
dently of its original motivation. In partic-
ular, identification of chaotic behavior as
characterized by one-dimensional maps,
both through computation (Lorenz, 1963)
and experiment in similar systems (Brand-
stater and Swinney, 1987), reveals how low
dimensionality of the fractal attractor pro-
vides a simplifying insight into complex
phenomena. The Lorenz equations, a set of
three coupled first-order differential equa-
tions, require further numerical modeling
(discretization). There is continued inter-
est in the dependence of chaotic solutions
upon numerical algorithms.

The local evolution of chaotic systems
is extremely sensitive to discretization
errors; however, the global properties,
such as the Liapunov exponents {λi}, the
Kolmogoroff-Sinai entropy KKS, and the
generalized fractal dimensions {Dq}, are
not (Schuster, 1988; see also Secs. 3.1
and 4.5). All chaotic states have fractal
orbits. Therefore, determining that at least
one measure of dimensionality of the
orbit, such as the Hausdorff dimension, is
nonintegral and hence fractal is suggestive
that chaos is present. For the logistic map,
a wide range of values of λ gives chaos
(Schuster, 1988). The asymptotic chaotic
orbit for the value λ = 9

8 is just the Cantor
middle-thirds set discussed in Sec. 3.1.

The maximum Liapunov exponent λ0

is the real litmus test for chaos, because
only the inequality λ0 > 0 yields exponen-
tial divergence of nearby orbital points,
assuring SIC. Smale’s horseshoe map
discussed in Sec. 3.1 has two Liapunov
exponents. They are both computed from

a relation derivable from the general defi-
nition (Schuster, 1988) in this special case:
�x′ = exp(λ�t)�x. We take �t = 1 for
one iteration step, and �x′ and �x are the
new and the old distances between nearby
points after one iteration measured

1. along the direction of stretching in the
asymptotic chaotic orbit and

2. perpendicular to that direction.

The Liapunov exponents are λ0 = ln 2
and λ1 = ln(1/2δ). Dissipative chaos corre-
sponds to the present case in which the
sum of Liapunov exponents is negative,
which implies that an elementary volume
element in the space of the dynamical sys-
tem evolves to zero. Conservative chaos, in
which the sum of all the Liapunov expo-
nents is zero, denotes systems in which
the size of a volume element evolves un-
changed. Conservative chaos occurs in
Hamiltonian systems and is heavily inves-
tigated for its relevance to the foundations
of classical and quantum mechanics (Ford
and Mantica, 1992).

The 1980s saw successful numerical
modeling, much of it using time-delay
embedding (Abraham et al., 1990; Schus-
ter, 1988). Improvement is sought in the
study of experimental data. A typical exer-
cise is to generate small, noisy data sets
from known chaotic attractors and to try
to recover their chaotic properties. There
are procedures to identify spurious Lia-
punov exponents generated by time-delay
embedding (Parlitz, 1992).

3.5.2 Finite Elements
Finite elements is a form of numerical
analysis devoted to continuum systems
such as solid structures and electromag-
netic fields (Cook et al., 1989), in which
continua are discretized into highly sym-
metric elements. For example, these might
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be triangles, tetrahedra, or hexahedra.
Algorithms are then developed for inter-
polating between nodes. Finite elements is
also applied in simple quantum mechan-
ical systems of low symmetry for which
analytic solutions do not exist (Shertzer,
1989). Large generalized eigenvalue prob-
lems sometimes result, with variational
bounds.

3.5.3 General Circulation Models
The GCM’s coupling the atmosphere,
ocean, land, biosphere, and cryosphere
on global scales are faced with Her-
culean tasks. This is because space-time
discretization must be so coarse-grained.
Consider the global atmosphere. Even 106

cells, counting 20 vertical levels, make
a sparse approximation to a continuum
and corresponds to somewhere in a mid-
mesoscale size, far too large to simulate
the physics of clouds, precipitation, turbu-
lence, or local storms or eddies. Therefore,
the dynamical and thermodynamical laws
must be averaged. If the horizontal and ver-
tical scales are reduced by a factor of 100
and if the order of 10 quantities are calcu-
lated at each time, a microscale description
of the atmosphere could result in which a
teraflop computer would require 10 s to
simulate one time step. Within such a dis-
cretization, eddies might be resolved, but
clouds, precipitation, and turbulent dissi-
pation still need to be parametrized. For
oceanic phenomena, characteristic time
scales are orders of magnitude larger and
length scales orders of magnitude smaller.

Decrease in GCM computation times
has been achieved with hybrid spectral
and discretization methods (Peixoto and
Oort, 1992). The horizontal fluxes are ex-
pressed in terms of a truncated spherical-
harmonics expansion; the vertical and the
time coordinates are discretized. Spheri-
cal harmonics make a complete set on a

Fig. 2 Three-dimensional plot of a small
perturbation of a sphere by the surface spherical
harmonic Y3

7 . Requiring a few short commands
in MAPLE, this illustrates computer visualization
in modeling

sphere. Figure 2 shows a perturbation of
a sphere by a higher-order spherical har-
monic. It was produced by a few simple
MAPLE graphics commands. When dis-
cretizing, modelers work within required
upper bounds to products of �t�x, the
space and time intervals, and employ fil-
ters to remove fluctuations corresponding
to unwanted sound and gravity waves
(O’Brien, 1986). Different numerical mod-
eling schemes are regularly compared.

3.5.4 Data-Assimilation Models
The goal of several-day weather pre-
diction has been achieved through su-
percomputer calculations of atmospheric
circulation fields on fine grids, com-
bined with updates, i.e., corrections, from
measurements. Sophisticated assimilation
models have been developed for atmo-
spheric and oceanographic purposes (Ghil
and Malanotte-Rizzoli, 1991). Assimila-
tion models are needed because of lack
of knowledge of a complete set of initial
conditions, inaccuracies in the numerical
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models, and atmospheric chaos. Atmo-
spheric sampling and modeling are good
enough for the National Meteorological
Center (NMC) to create ensembles of com-
puter runs that, combined, make possible
predictions and estimates of reliability. In
contrast, experimental sampling of oceanic
temperature, salinity, and velocity fields is
poor and will continue to be so in the fore-
seeable future. Its ill-posed nature makes
oceanic circulation the greater challenge.
Many techniques are used, including two
discussed in this article – singular-value
decomposition and Kalman filters (Ghil
and Malanotte-Rizzoli, 1991; Carter, 1989).

3.6
Wavelets

A wavelet is an integral transform designed
to perform a localized time-frequency anal-
ysis. It provides a microscope with which
to look at details of a function’s spec-
trum within a small time interval centered
about some arbitrary time. Taking its early
motivation from geophysical applications,
the wavelet has undergone robust devel-
opment mathematically and in application
(Daubechies, 1992). The wavelet transform
provides a useful tool to study signals
that, like speech, impart information that
evolves in time. There is a discrete wavelet
transform, and it is important, but we shall
concentrate here on salient defining char-
acteristics of the continuous transform.
Wavelets and windowed Fourier trans-
forms are sometimes similar. Remarkably,
the slight generalization of the windowed
Fourier transform in the wavelet transform
can make a vast difference.

Consider a one-dimensional Fourier
transform:

g(ω) = ∫ dte−iωtf (t). (9)

The Fourier transform takes one from
the time (t) domain to the frequency
domain (ω is the angular frequency).
The windowed Fourier transform replaces
f (t)e−iωt with

fwin(t)e−iωt = f (t)h(t − s)e−iωt, (10)

to produce gwin(ω). Here, h is a simple
function, such as a Gaussian, centered
around t − s = 0, giving a smooth cutoff
for large values of its argument. This
transformation does not yet provide the
microscope – just the localization. In the
wavelet transform, the function he−iωt is
replaced by a function �, referred to
as the ‘‘mother wavelet,’’ which there is
considerable leeway to define:

|a|−1/2�

(
t − b

a

)
(11)

subject to the condition

∫ dt�(t) = 0. (12)

For acceptable �, a serves as a microscope
parameter and b a localization parameter.
As a decreases, the wavelet transform
gwav(ω) zooms in to a decreasing width
of times, centered around b. The function
� is reminiscent of, but not equivalent
to, the spectral window introduced in the
Fourier transform (Priestley, 1988).

The form �(t) = (1 − t2) exp(−t2/2),
sometimes called the Mexican hat func-
tion, is a typical choice for �. Significant
progress has been made in developing or-
thonormal bases for the mother wavelet. A
mother wavelet and associated orthonor-
mal bases of compact support have also
seen considerable attention. In analogy
with Fourier analysis, the wavelet trans-
form can often be inverted to recover the
original function, which can thereby be
formally expressed in terms of the wavelet
basis (Daubechies, 1992).
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Wavelets promote systematic investiga-
tions of data. Turbulence is an application
of wavelet transforms, because theories of
turbulence point to self-similarity, which
wavelets elegantly characterize (Vergassola
and Frisch, 1991). Wavelets also provide a
tool for studying multifractals.

3.7
Systems Analysis

A system is a process or a structure or both
combined. In systems analysis (SA), the re-
lationships among a system’s parts are
studied. SA is concerned with explanation
and prediction, when applied to natu-
ral systems, and achieving a goal, when
applied to constructed systems. Natural
systems include climate, living organisms,
neural networks, a flow into a pile of grains
of sand, and much more. Constructed
systems include manufacturing processes,
servomechanisms, circuit networks, com-
munication devices, and artificial neural
networks. Social hierarchies could be con-
sidered either natural or constructed. The
same concepts from SA can be univer-
sally applied. In natural systems, synergetics
is a SA that seeks extensions of physi-
cal principles required for explanation of
self-organization. In climate and weather,
SA is used for mechanistic modeling and
for understanding simulation models. Life
processes such as self-replication, evolu-
tion, and cell specification are another
endeavor of SA. SA is a framework for
mechanistic modeling.

Frequently encountered concepts are
feedback, control, filter, and optimality.
Unfortunately, working definitions vary.
The concepts are precise in engineering.
In signal processing, a system is any
process that transforms signals, a signal
being a function of one or more indepen-
dent variables. Linear systems, feedbacks,

filters, and control theory are standard
in engineering curricula. Unless formal,
SA heavily employs flow diagrams. An
overview of applications and modern re-
search, including the theory of nonlinear
systems, is in a Kalman Festschrift (An-
toulas, 1991).

Filter is a name for a dynamical system
that performs a task such as removing
some unwanted variance, such as noise,
in a signal. As viewed in time-series
analysis (Priestley, 1988), a linear and time-
invariant system which relates input Ut to
output Vt through the equation

Vt =
∞∑

s=0

asUt−s (13)

is a filter. Filters can be more generally
defined and are not necessarily linear. A
Kalman filter, in its simpler form, is a
linear finite-state process that optimally
estimates the state of a linear dynamical
system in the presence of noise and
deterministic control input. Optimality
is defined as minimization of variance.
The Kalman filter becomes a unique,
recursive algorithm and can be adapted to
smoothing, prediction, or control. Unlike
earlier filters, the Kalman filter works for
nonstationary time series. The Kalman
filter has been extended now for use with
nonlinear systems. A textbook example is
to estimate the orbit of a satellite (Chui and
Chen, 1987).

3.7.1 Control Theory
Viewed dynamically, a system is describ-
able in terms of an n-dimensional state
vector, X(t, �), where � can be an
m-dimensional control vector. Much of
control theory is a subfield of nonlinear dy-
namics and can be stated in terms of either
maps or flows. When the system is non-
linear, bifurcations can sometimes occur
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and be relevant. One problem in control
theory is to find an optimal control vector
�(t) such that some state Z(t) is reached.
Optimality can be defined in terms of min-
imization of cost or of time taken to reach
Z(t), within defined constraints on �(t).

The concept of a closed-loop or feedback
control arises simply in a linear stochastic
system as represented by a vector flow
equation

d

dt
X(t, �) = F(t)X(t, �) + G(t)w(t)

+ L(t)�(t) (14)

where w(t) is a noise process, and
F(t), G(t), and L(t) are gain operators.
In particular, L(t) contains the influence
of the control vector �(t) upon the state
vector X(t, �). If �(t) is a function of time
alone, then this is open-loop control, while
if �(t) is explicitly a function of X(t, �)

also, then this is called a closed-loop or
feedback control.

Stringent necessary conditions for at-
tainability, reachability within a fixed in-
terval, and controllability are more easily
obtained for linear than nonlinear sys-
tems. Such conditions, sometimes for
open-loop control, can be useful to mathe-
matical modeling. Consider, for example,
the growth of several competing species
controlled by a single essential growth-
limiting nutrient. There is a well-known
principle of competitive exclusion: if the
rate of input and washout are constant,
then at most one species survives. It turns
out that extinctions do not always have
to occur. Input and washout rates can be
allowed to vary with time. Under rather
general conditions, a nonlinear control-
theoretic mathematical model establishes
necessary and sufficient conditions for
admissible controls [i.e., an admissible nu-
trient concentration s(t)] such that all n

species can coexist, and it gives insight into
producing controlled selective extinctions
(Rao and Roxin, 1990).

Atmospheric and oceanographic mod-
eling often focuses on natural feedback
loops and can use a SA approach. In un-
raveling the impact of atmospheric CO2

doubling, for example, modelers are con-
cerned about many feedback loops; the
radiation – cloudiness – temperature feed-
back, for example, has only recently been
understood to be globally stabilizing (Levi
et al., 1992). A more explicit SA model was
for large-scale climate oscillations in the
global glacier-ocean-atmosphere system
(Sergin, 1980). Schlesinger (1989) seeks to
unify the climate modelers’ nomenclature
by employing standard electrical engineer-
ing definitions of feedback. Figure 3 shows
a block diagram for the climate system
adapted and redrawn from his work. In it,
the ‘‘feedback factor’’ of the climate sys-
tem is f = GF, where G is the gain, F is
a measure of the feedback, and the input
forcing, caused for example by increase of
CO2, is �Q . When no feedback is present,

∆Q

∆J

∆TJ
G

F

Fig. 3 Block diagram for natural climate
feedback control. In the absence of feedback
(F = 0), an amount of input forcing heat �Q
produces an output J, which multiplied by the
gain G equals the temperature change response
�T. In the presence of feedback (F 	= 0), the
output is changed by �J = F�T, causing �T to
be multiplied by 1/(1 − f ), with a feedback factor
f = GF
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J = �Q and the surface temperature re-
sponse is just �T = GJ = G�Q . When
there is feedback, the output J is increased
by �J = F�T to become J = �Q + F�T .
Then

�T = G

1 − f
�Q. (15)

A positive feedback factor destabilizes,
while a negative factor diminishes the
response (the case f ≥ 1 is excluded).
Numerical simulation experiments and
ingenious physical experimentation are
ingredients in SA modeling like this.
Low-dimensional climate models viewed
as spatial averages, with few competing
feedbacks, have also produced insights
(Peixoto and Oort, 1992).

3.7.2 Self-Organization
Self-organization is modeled in many
ways. These include specializations and
extensions of known physical models such
as thermodynamics and dynamical sys-
tems theory, as well as control theory.
Neural networks have been employed. Fur-
ther, a relatively new field, synergetics,
pioneered by H. Haken, is dedicated to
the study of structures arising within far-
from-equilibrium systems that manifest
self-organization (Yates, 1987). Synerget-
ics has enunciated a slaving principle,
supported by various examples both from
animate and inanimate phenomena. Es-
sentially, slaving occurs when long-lasting
quantities serve as order parameters in
transient states and dominate over short-
lasting quantities. For example, when
pump power in a laser goes from weak to
strong, the laser’s fluctuating dipoles be-
come coherently enslaved by the external
field. At just enough pumping, a bifurca-
tion occurs, symmetry is broken, and the
motion of each dipole is enslaved by the
external electric field. In such a manner,

it is posited that enslaving creates a hier-
archic structure that reduces the number
of degrees of freedom of complex systems.
Synergetics attempts to describe the devel-
opment and operation of living structures
in this way.

Fractal structures abound in large sys-
tems. The suggestion of a fractal structure
is an inverse power-law (or 1/f ) behavior of
a temporal or spatial power spectrum S( f ),
taken to mean S( f ) ∝ f −α , with α > 0
(West and Shlesinger, 1990). Some mod-
els predict 1/f phenomena associated with
critical states toward which large systems
naturally evolve. Such a self-organized crit-
icality stems from work initiated by Bak
and his collaborators (Bak et al., 1987).
Using CAs to simulate grain-by-grain for-
mation of a sandpile, they reached a critical
state. In the critical state, temporal self-
similarity (yielding flicker noise) arises,
and spatial self-similarity is also observed
in the comparable probabilities of large
and small avalanches. Self-organized criti-
cal states are only weakly chaotic, neighbor-
ing points showing power-law rather than
exponential divergence. This modeling has
stimulated theoretical and experimental
work; a notable success is a power-law
prediction for energies and spatial distri-
butions of earthquakes (Lichtenberg and
Lieberman, 1992).

4
Information Processing Models

4.1
Principal-Component Analysis

Principal-component analysis (PCA) is a
method of analyzing the variance within
a data stream for the purpose of finding
a reduced set of variables. Ideally, these
variables should be
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1. statistically uncorrelated and
2. responsible for most of the variance.

Property 1 is automatically achieved, but
property 2 is just a possible outcome. In
analogy with Fourier series, an orthonor-
mal basis set is obtained, but with PCA, the
basis is empirically defined. After the ad-
vent of the digital computer, outstanding
successes in meteorology and oceanog-
raphy (Preisendorfer, 1988) and signal
processing have marked the history of this
90-year-old method. The PCA has many ap-
plications, sometimes used as a low-pass
filter in conjunction with statistical regres-
sion. Another major use of PCA is in chaos
research, to help separate extraneous noise
from chaotic variability.

A standard first step is to construct a
symmetric covariance matrix of space-time
events. We use bold face for matrices but
not their components, superscript T for
transpose, and matrix notation for vectors.
Consider a time series of p-dimensional
vectors xi of some observable scalar field,
such as temperatures at p different places,
measured at n times. Assume that these
are all zero-mean measurements, i.e., they
are all given relative to their mean values.
The sample covariance matrix S for the
vectors x1, x2, . . . , xn has as its (j, k)th
element

1

(n − 1)

n∑
i=1

xijxik, (16)

where xij is the jth component of the ith
vector. This is a symmetric matrix diago-
nalizable by a matrix whose columns are its
orthonormal eigenvectors. Here we adopt
geophysical terminology and refer to an
eigenvector ar as an empirical orthogonal
function (EOF). In statistics literature, it is
referred to as a principal component. The
matrix S is non-negative; the eigenvalue

lr for each nontrivial solution is positive
and is the variance associated with its
eigenvector, SAr = lrAr. This eigenvalue
problem satisfies a variance maximization
principle. Hence, the first EOF, having the
largest eigenvalue, is the normalized linear
combination of the p variables with maxi-
mum variance. The second eigenvector is
the combination of largest variance such
that it is orthogonal to the first, and so on.
Each of the n data vectors is expandable in
terms of the p EOF’s. In geophysical ter-
minology, the time-dependent expansion
coefficients of the n data vectors are the
principal components (PCs). Criteria for
dropping terms associated with small vari-
ances, called selection rules, are developed
in the context of the applications. In one of
the first computer-assisted PCA analyses,
E. N. Lorenz at MIT made prediction stud-
ies in 1956 of a 500-mbar-height anomaly
field over North America, using five years
of data obtained at 64 stations. The first
nine eigenvectors obtained accounted for
88% of the variance for a one-day predic-
tion (Preisendorfer, 1988).

Singular-value decomposition (SVD) is
a different but equivalent formulation of
this eigenvalue problem, based on an
SVD theorem showing that an arbitrary
n × p matrix is expressible in the form
X = ULAT. Here, L is an r × r diagonal
matrix, where r is the rank of X, and U and
A are matrices with orthonormal columns.
In a PCA application, the elements of L are
proportional to l1/2

r , where lr is the rth
eigenvalue of S. SVD has an algorithm for
finding EOFs.

PCA is also adaptable to data vectors
{xi} having components that represent
different kinds of physical quantities, such
as pressures and temperatures. A PCA
is then usually defined in terms of a
correlation matrix, formed by dividing
each element xij of the n data vectors by
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σ
1/2
jj , where σjj is the variance among the

jth components, the variance being taken
over the columns in xij defined by fixed
values of j.

4.2
Neural Networks

A neural network (q.v.) is a system
containing a highly interconnected set
of elements inspired by characteristics
of the brain. In one simple formulation,
the elements (called nodes or neurons)
fire (i.e., are placed in a binary ‘‘up’’
state of +1 as opposed to 0) when
the summed weighted inputs S, both
external and from all other elements,
reach some threshold condition, S ≥ T .
A node thereby receives multiple inputs
but produces a single output. A typical
nonlinear feedback to a node is the sigmoid
function 1/[1 + exp(−Gz)], with G the
gain parameter and z the sum of binary
inputs from other nodes, each input taking
values ±1. Then +1 acts as an excitation
and −1 an inhibition. Generally, a neural
network as a whole accepts multiple inputs
and delivers multiple outputs. There is
a wealth of significantly differing neural
networks using these simple ideas, along
with feedforward, feedback, nonlinear
dynamics, and hidden layers. A hidden
layer is a collection of nodes not directly
connected to input or output. The weights
can generally be made to change in
the training mode of operation. Back-
propagation is the name for algorithms
by which output errors are sent back to
a hidden layer to process changes of the
weights (Zurada, 1992).

Neural networks have had a slow begin-
ning from their earliest inceptions 50 years
ago, which antedated Rosenblatt’s feed-
forward ‘‘perceptron’’ of 1962. But now

the effort devoted to neural network re-
search and implementation has become
staggering. The reason is partly that neu-
ral networks can be trained to perform
easily and quickly valuable pattern recogni-
tion tasks. Such tasks as optical character
recognition (OCR), financial forecasting
(through function estimation), and man-
ufacturing process control are among
present major uses of neural networks
(Hammerstrom, 1993). Neural networks
are parallel structures, and recently de-
veloped parallel integrated circuit devices
have increased performance speeds by fac-
tors of 103. Training times tend to be long,
on the order of months, but the trained
neural network can often perform in real
time. A drawback is that although the non-
linearity and feedback structures of neural
networks mirror complexities of real sys-
tems, their results, even when correct, are
difficult to explain.

Some implementations have a capac-
ity for unsupervised learning. Some of
the Hopfield type, with symmetric con-
nections, achieve associative memory, and
neural networks over a wide range of
complexity can become chaotic. Neural
networks are used in meteorology, where
their pattern recognition and predictive
skills are competitive with older methods
(Elsner and Tsonis, 1993).

4.3
Time-Series Analysis

A time series is a record of the values of
any set of fluctuating quantities measured
at different times. In the analysis of time
series, regularities are sought, sometimes
for making predictions. If there is more
than one fluctuating quantity, the time
series is called multivariate; otherwise,
it is called univariate or scalar. A time
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series can be continuous or discrete. Time-
series analysis is used in information
theory, dynamical systems theory, systems
analysis, and data assimilation.

Recent work is considerably beyond
the pioneering 1956 success of Lorenz,
for using PCA to uncover dynamical
processes in multivariate time series
(Vautard et al., 1992) and to forecast.
A related El Niño forecast is discussed
in Sec. 5.1 (Keppenne and Ghil, 1992).
The analysis of noise is often crucial:
for example, whether determinism in
paleoclimate variability could be construed
from the present climatic time series data
hangs in the balance of the inference of
noise (Vautard and Ghil, 1989). Retreating
from criteria for chaotic determinism,
one can settle for less and test for
the existence of nonlinearity in short,
noisy series (Theiler et al., 1992). Testing
for nonlinearity uses advanced statistical
inference techniques, to be discussed.
In spoken communication, where the
temporal behavior of the sound pulse is
vital, signal processing has made use of
SVD and PCA applied to the discretized
data stream.

The modeling of time series is generally
begun with the definition of a strict white
noise process, denoted by {et}. For a sta-
tionary (i.e., exhibiting time-independent
statistical behavior) strict white noise pro-
cess, the mean µ and variance σ 2 are
independent of time t. In any case, the au-
tocovariance function, cov{et, et′ }, is zero
for all t 	= t′. Here we specialize our dis-
cussion to the covariance function for a
univariate continuous random variable Xt,
given by

cov{Xt, Xt′ } = E[(Xt − µ)(Xt′ − µ)]. (17)

The expectation, or mean, is just E[Xt] = µ,
a constant whenever Xt is stationary.

Modeling in terms of a random variable
such as Xt implies the existence of
an associated probability distribution pt,
which is time dependent unless Xt is
stationary. If Xt can take a continuous
range of values, x ∈ [a, b], then pt is called
a probability density function. One then
defines the expectation E of Xt at time t
by

E[Xt] = µt =
∫ b

a
xpt(x) dx. (18)

Finally, the variance of Xt is σ 2 =
cov{Xt, Xt}. Such statistical quantities are
estimated from the data stream. A com-
putational method is often a basis for
choosing a form of time-series analysis.

Although for brevity we explicitly refer
to scalar time series, the extensions to
the multivariate case are generally neces-
sary and straightforward. Even scalar series
from a dynamical system become mul-
tivariate through time-delay embedding.
Consider now a discretized time series
{Xt} with t taking on only integer values. A
model for this series is an equation

F{. . . Xt−2, Xt−1, Xt, Xt+1, Xt+2, . . .} = et,

(19)

where et is a zero-mean strict white noise
process and F{·} is the model function.
Finding the model function is equivalent to
reducing the unexplained part of the series
to a strict white noise process. Well-known
linear model functions include AR (au-
toregressive), MA (moving average), and
ARMA (autoregressive/moving average).
The ARMA(k,l) model includes the AR(k)
and MA(l) models as special cases and is ex-
pressible as a linear operator: Xt = G(B)et,
where G(u) is the rational function G(u) =
βl(u)/αk(u), and u is replaced by the lin-
ear back-shift operator, B : Bet = et−1. Also
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βl(z) = 1 + b1z + · · · + blz
l and αk(u) =

1 + a1u + · · · + akuk. This process can be
pictured as representing the action of a lin-
ear filter. The estimation of the unknown
parameters k, l, a1, . . . , ak, b1, . . . , bt is a
model-fitting problem. For convergence
with this model, it is necessary that the
time series be stationary; also, consis-
tency requires G(u) to have no poles for
|u| ≤ 1. An ARMA model works only if
the system is stationary. Optimal sim-
ulation and parameter estimation both
for stationary and nonstationary time se-
ries can be done through modeling of
filters.

An explicit representation of nonlinear
series arises from inverting and expanding
the function F. Just up to the first nonlinear
term, the resulting discrete-time Volterra
series is

Xt = µ +
∞∑

i=0

hiet−i

+
∞∑

i=0

∞∑
j=0

hijet−iet−j + · · · . (20)

A way to look for nonlinearity is to com-
pute polyspectra. Polyspectra are multiple
Fourier transforms of third- and higher-
order moments of the series about its
mean. If {Xt} is a Gaussian process, the bis-
pectrum and all higher-order polyspectra
vanish (Priestly, 1988).

4.3.1 Signal Processing
With digital technology come new and
powerful modeling techniques following
quantization. A signal is quantized by
sampling it at a time interval T, the sam-
pling period, and rounding to a certain
fixed number of significant figures. The
quantized signal (and also the unquan-
tized one) can be subjected to spectral
analysis, which is the determination of

its frequency content. The Fourier trans-
form, in either its discrete or its windowed
version, permits useful analysis in the fre-
quency domain. Finding the finite Fourier
transform is a common step in spec-
tral analysis. It can now be performed
in real time by use of the fast Fourier-
transform (FFT) algorithm proposed by
Cooley and Tukey in 1965 (see FOURIER

AND OTHER MATHEMATICAL TRANSFORMS).
The power spectrum S( f ), which is the
square of the magnitude of the Fourier
transform, provides the most accessible
vital characterization of a signal. For a
chaotic system, the windowed power spec-
trum must be continuous and not just
contain a large, finite collection of peaks.
Quasiperiodicity and complicated period-
icity can be identified but not usually
distinguished in the power spectrum. The
Fourier transform creates a frequency-
domain representation sometimes used in
ARMA, other parameter-estimation algo-
rithms, and SVD (Kumaresan, 1993). Me-
teorological and oceanographic PCA can
also be profitably recast through Fourier
transforms of the time or the azimuth
variables, to focus upon wave structures
(Bernardet et al., 1990).

Discrete-time analysis uses the z trans-
form, a generalization of the Fourier
transform. The z transform of a signal ex-
pressible as a sum of exponentials can be
written as a rational function in the variable
z = exp(i ω). This allows a ‘‘pole–zero’’
approach to signal analysis and the use
of non-numerical, symbol manipulation
modeling of signals. In the context of
digital signal processing, it is easy to
understand various pitfalls of spectral anal-
ysis such as aliasing, the misidentification
of power spectrum frequencies because
of low sampling rates (Oppenheim and
Schafer, 1989).
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4.4
Statistical Inference

Statistical inference in the computer age
has dramatically changed (Efron and Tib-
shirani, 1991) and is developing rapidly.
Powerful formal results such as the central
limit theorem, which establishes asymp-
totic normal distributions (Priestly, 1982),
are more useful than ever, because dig-
ital computers help reach the asymptotic
region in a statistical analysis. More impor-
tant is that computer experiments make
it possible to learn some of the limi-
tations of statistical inference methods.
Estimation errors are more easily eval-
uated from finite sampling of infinite
populations, noise, and finite sampling of
finite populations. With the use of cur-
rent computer-intensive data processing
techniques, the original data can be

1. sampled through partitioning or
through successive computer-assisted
selection models;

2. altered in definable ways to generate
surrogate data; or

3. reorganized along paths linking com-
mon characteristics.

The jackknife and bootstrap methods ex-
emplify 1, randomizing phases of Fourier-
transformed data exemplify 2, and the
CART (classification and regression trees)
method exemplifies 3. Given small and
imperfect historical data sets of natu-
ral phenomena such as sunspot activity,
global temperatures, or various proxy data
for global climate (Peixoto and Oort, 1992),
processing techniques give new meaning
to calculations of fractal dimensions (Vau-
tard and Ghil, 1989; Theiler et al., 1992)
in searches for underlying nonlinear dy-
namics and possibly chaos. Theories of

processing of samples of finite popula-
tions are developed along similar lines by
Särndal et al. (1992).

Simplicity serves as a guiding principle
in model development (Harte, 1988). The
Bayesian approach to scientific inference,
though controversial, gives support to
simplicity. The Bayesian approach asserts
that probability can be associated with
plausibility in evaluation of theories. In
particular, a theory that gives the higher
probability to what is actually observed
is the more likely to be correct. Bayes’s
theorem, proved by the English clergyman
in 1761, is suggestive of such an approach
(Jefferys and Berger, 1992): Let P(X |Y) be
the conditional probability that hypothesis
X is true, given information Y. Then
Bayes’s theorem states

P(Hi|D&I) = P(D|Hi&I)P(Hi|I)
P(D|I) . (21)

This theorem relates the contingent prob-
ability of the truth of hypothesis Hi to the
prior information I and to the new data D.
In this way, Bayesian inference supports
simplicity: Consider an alternative, more
complicated hypothesis Hj. If the new data
are more sharply predicted by Hi than by
Hj, then this can increase P(Hi|D&I). But
by their nature, simpler theories tend to
have fewer possible outcomes over which
to spread the probability, tending to make
sharper predictions.

Less controversial is another plausible
inference method, the method of maxi-
mum likelihood, which also has an analogy
with Bayes’s theorem. Maximum likeli-
hood is used in the same contexts as
least-squares estimation: Assume that the
probability density for a measured vector
X is f (X, �), where the parameter vector
� is to be estimated from the data. One
reinterprets f (X, �) to signify the likeli-
hood for a particular choice of �, given
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the measurement X. The parameter esti-
mate is reduced to finding that parameter
vector �̂ that maximizes f or ln( f ). Under
general conditions, the estimator �̂ can
be proved to have a normal distribution
asymptotically when the number n of mea-
surements gets large (Priestly, 1982). With
computing power available, the details of
the large-n limit become more tractable,
increasing the significance of such formal
results.

4.5
Information Theory

Information theory was developed as a
mathematical model of communication
by Shannon in 1948. It considers trans-
mission rates in the presence of noise
(Gallager, 1968). Defined by analogy with
physical entropy, the information H is
given by

H(Q) = −
∑

i

pi log2(pi), (22)

where pi is the probability of a possible
message i. Here, Q represents the space
of all possible messages, and H(Q) is
the information gained, on the average,
from measuring which message occurs.
All messages are treated as statistically
independent, and 	ipi = 1. A continuum
formulation is also often used. An impor-
tant quantity in communication theory is
mutual information, I(Q, S), defined in the
space of ordered pairs of outcomes from
Q and S, and given by

I(Q, S) = H(Q) + H(S) − H(S, Q).

(23)

Given a measurement in S, I(Q, S) gives
the number of bits of information, on the
average, that can be predicted about a sub-
sequent measurement in Q. Here, I can

represent a rate with which information
crosses a channel in the presence of noise,
computable from the conditional distribu-
tion function Pq|s(qi, sj), where qi ∈ Q and
sj ∈ S. Shannon’s channel capacity theo-
rem employs I(Q, S).

Information is an important concept for
dynamical systems. So are extensions of
information, following work in the late
1950s of Kolmogoroff and Sinai (Schuster,
1988). The Kolmogoroff-Sinai (or metric)
entropy KKS and an infinite sequence
of generalized entropies are computable
from time series, where KKS is a measure
of the rate at which information is gener-
ated in a map or a flow. Chaotic systems
constantly generate information; conse-
quently, the information existing at any
one moment is insufficient to make long-
range predictions. Hence, the long-range
unpredictability of the weather (viewed as a
deterministic chaotic system) is explained
in information-theoretic terms. A random
sequence has an infinite KKS, because the
same finite amount of information �H
is generated at successive times, no mat-
ter how small the time interval �t, and
hence dH/dt = ∞. Mutual information is
also definable for a map or flow, giving
the number of bits of information, on the
average, that can be predicted about the
measurement of the state at time t from
having measured the state at a time t − T .
When time-delay embedding is used, the
delay time τ taken as the first minimum of
the mutual information of the vectorized
series is more optimal than a τ chosen as
the first zero of the correlation function
(Fraser and Swinney, 1986).

Ergodic theory is related to information
theory. By the ergodic property, the
time average of an observable equals
its phase-space average. Only when a
dynamical system is ergodic are most of
the procedures described in this article
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for analyzing dynamical systems valid.
Formal theorems exist using KKS to
compare ergodic systems (Schuster, 1988;
Lichtenberg and Lieberman, 1992).

5
Applications

5.1
El Niño

El Niño is an anomalous persistent
warming of the eastern equatorial Pacific
that occurs irregularly, generally every
two to five years. Invariably, this sea-
surface temperature (SST) anomaly is
accompanied by a reversal of the usual
low atmospheric pressure in the western
equatorial Pacific and high pressure in the
eastern equatorial Pacific. One measure
of this is the southern oscillation index
(SOI). The SOI is a scalar time series that
can be constructed as a normalized and
smoothed sea-level pressure difference
between Darwin, Australia, and Tahiti
(Keppenne and Ghil, 1992).

A mechanism for El Niño seems clear:
positive feedback between the equatorial
easterly trade winds and the SST gra-
dient. When the pressures reverse, the
mean wind forcing of the Pacific surface
waters toward the west stops, and as a
consequence, the warmer surface waters
accumulate off the western South Ameri-
can coast. Upwelling of cold eastern Pacific
water stops. This promotes a convergence
of warm moist air, cloudiness, precipita-
tion, and low-surface atmospheric pres-
sure. This positive feedback works in the
other direction, as well, to produce a cold
SST episode (La Niña). The two coupled
phenomena are referred to as ENSO (El
Niño–Southern Oscillation). It is ENSO
that is modeled (Philander, 1990). Predict-
ing ENSO would have practical importance

to the South American fishing indus-
try, as ENSO episodes are destructive to
west coastal fish abundance. Various glob-
ally distributed largescale atmospheric and
oceanic phenomena are correlated with
ENSO, referred to as ‘‘teleconnections.’’

Modeling ENSO poses a major chal-
lenge. So far, mechanistic models can
reproduce the phenomenon qualitatively,
without necessarily being reliable pre-
dictors either of the occurrence or the
structure of episodes. The ENSO occurs
in a large variety of ways with respect to
frequency, intensity, duration, and spatial
distribution (Philander, 1990). The extent
to which GCM’s will be able to describe
and/or predict ENSO and its teleconnec-
tions is an open question. To what extent
tropically based mechanisms are sufficient
to trigger ENSO episodes is an important
theoretical question. On a more technical
level, the role played by the annual weather
cycle and the relationship of the quasibi-
ennial oscillation (QBO) to ENSO, if any,
require clarification. The QBO is a tropi-
cal lower stratospheric fluctuation of zonal
winds of approximately a 2-yr period.

One simple mechanistic model of ENSO
is Vallis’ one-dimensional, two-point de-
scription, the equations of which resemble
the Lorenz system. In his model, a mean
Pacific equatorial wind creates a mean
westward ocean flow, with feedbacks. The
equations are

du

dt
= B(Te − Tw)

2�x
− C(u − u∗); (24)

dTw

dt
= u

2�x
(T̄ − Te) − A(Tw − T∗);

(25)

dTe

dt
= u

2�x
(Tw − T̄) − A(Te − T∗).

(26)
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Here, Te and Tw are east and west
upper-ocean temperatures separated at a
distance �x, T̄ is the deep-ocean constant
temperature, and u is eastward oceanic
current. The terms A, B, C, u∗, and T∗
are constants. The mechanism is simply
that an eastward (westward) wind field
driven in part by a temperature differ-
ence Te > Tw(Te < Tw) would produce an
oceanic downwelling (upwelling) in the
east and upwelling (downwelling) in the
west. The equations conserve mass. Low-
dimensional chaos is produced, as can
be inferred by evaluation of the random-
appearing model data.

Vallis has extended this mechanism to
a one-dimensional continuum and inte-
grated the resulting equations, making the
chaos disappear and fluctuations be modu-
lated (Vallis, 1988). One-dimensional mod-
els allow easy exploration of ideas. With
stochastic forcing, the Vallis continuum
model can produce stochastic resonance
oscillations. When natural seasonal vari-
ability is introduced, ENSO appears as
the occasional enlargement of an annual
signal. In the spirit of Lorenz’s origi-
nal modeling effort, the prediction itself
of chaos is interesting. Because of the
paucity of long-term, frequently sampled
time series for ENSO, chaos is difficult to
corroborate experimentally.

A recent model has used simplified
equatorial ocean and atmosphere dynam-
ics, computed on an equatorial grid. In
turn, Münnich et al. (1991) have con-
structed an interpretive mechanistic model
of that model. Included is oceanic ther-
mal reservoir feedback, expressed as a
nonlinear relation between the depth of
the eastern Pacific ocean thermocline, he,
and the amplitude A of the zonal forcing
wind stress τ . The thermocline depth is
the mean depth of the thin oceanic layer
where the temperature changes rapidly

between the warm surface and the cold
deeper region. Hence, he is a measure of
the thermal energy of the western equato-
rial Pacific ocean. When A(he) is expressed
as a nonlinear function, bifurcations occur
as the strength parameter of the func-
tion A(he) increases. Successively more
realistic parameterizations, starting with a
simple cubic nonlinearity

A(he) = κ(he − h3
e ), (27)

have all produced three bifurcations, the
last being into a nonperiodic regime as
the strength parameter κ is increased.
This pattern of bifurcations suggests that
a chaotic state has been reached via the
Ruelle-Takens-Newhouse route (Schuster,
1988). For their model of ENSO, Münnich
et al. conclude that stochastic forcing
is not needed, various mechanisms for
chaos are possible within their simplified
framework, and annual forcing enhances
ENSO episodes.

Keppenne and Ghil (1992) have done
a PCA of a time series of the SOI. A
temporal PCA is referred to as a singular
spectral analysis (SSA). By keeping just
the first four principal components in a
reconstruction of the time series, they fil-
ter out higher-frequency oscillations. This
smooths the reconstructed series, filter-
ing some possible noise perturbations of a
deterministic system. The agreement be-
tween the 50-yr time series (smoothed by
taking a 5-month running mean) and the
recombined first four PCs is remarkable,
with El Niño and La Niña episodes iden-
tified with all the maxima and minima of
greatest amplitude. Yet these four princi-
pal components only account for 21.7%
of the SOI variance! When Keppenne and
Ghil combine the two high-frequency com-
ponents and the two low-frequency compo-
nents separately, they obtain smooth oscil-
latory behavior amenable to autoregressive
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linear prediction. The 36-month predic-
tions agree with El Niño and La Niña events
over the last ten years, and suggest a La
Niña event in the winter of 1993–1994.
This prediction uses no SST data at all
and a minimal procedure – time-delay em-
bedding and temporal PCA analysis – for
filtering out external noise.

5.2
Chaotic Ocean Heat Transport

Climatic data show fluctuations on all time
scales. In the long paleoclimatological time
scales, the fluctuations are partly governed
by stochastic mixing in data storaging
and accessing processes (Crowley and
North, 1991). However, climate also shows
a significant variability associated with
Earth’s orbital variations on these same
time scales. On decadal and interdecadal
time scales, some observed fluctuations
may be associated with the important
poleward ocean transport of heat driven
by thermohaline circulation (THC) (Covey,
1991). THC is the largely vertical oceanic
motion caused by differing densities. It
is an Archimedes-principle buoyancy that
lifts warmer and less saline water. In the
present climatic regime, THC produces
an equator-to-poles flow of warm surface
water and a deep cold-water return flow.

Modeling searches for a significant cli-
matic impact of THC. Just as with ENSO,
a major problem is to model the air-
sea interaction. Here we discuss models
where the ocean physics (momentum,
heat, and salinity transport) is discretized
while boundary conditions describe the at-
mospheric effects. Models differ on the
amount of natural variability and stabil-
ity. Recent numerical experiments with
oceanic GCM’s (OGCM’s) have produced
a phenomenon known as the polar halo-
cline catastrophe. This is a blocking of the

polar downwelling component of oceanic
circulation, to alter dramatically oceanic
salinity and heat fluxes.

A recent series of numerical OGCM
experiments (Weaver et al., 1993) has
parametrized the freshwater flux forcing
of THC in an OGCM computed with a
coarse grid and other features allowing for
rapid numerical modeling. One of these
features is use of a linearized numerical
model for horizontal momentum trans-
port. Subsystem time steps are allowed to
differ, and they range between 2 h and 5 d.
The ocean system is a flat-bottomed basin
60◦ wide, with latitude ranges from 0◦ to
between 64◦N and 72◦N. Different runs of
this OGCM employ 15 to 33 vertical levels
and horizontal grids ranging from 2◦ × 2◦
to 4◦ × 3.75◦. This ‘‘spherical cow’’ is not
quite complete: boundary conditions are
needed, both to ‘‘wind up’’ the system,
i.e., to start it up and put it into some cli-
matologically reasonable steady state, and
to maintain a reasonable air-sea interac-
tion. A temporally constant wind field and
windstress forcing are set up. The air-sea
interaction involves only negligible trans-
port of salts between air and sea. However,
the freshwater flux, P − E, where P is pre-
cipitation and E is evaporation (in zonally
averaged units of m · yr−1) clearly affects
salinity (measured in grams of salts per
kilogram of seawater). During the windup,
the salinity and heat fluxes are subjected
to restoring damping laws:

QT = CT(TO − TA), (28)

QS = CS(SO − SA), (29)

where QT and QS are heat and salinity
fluxes, CT and CS are positive constants,
while TO and TA are temperatures and
SO and SA are salinities of ocean and
atmosphere. The forcing temperature and
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salinity fields TA and SA are prescribed
from data.

After windups to experimental zonally
averaged salinity and temperature fields,
the systems are cut loose from the
restoring salinity forcing, but are subjected
to a temporally constant value of P − E,
inferred from the model in its wound-up
steady state. This is called mixed boundary
conditions, because the thermal forcing
is still maintained. Grounds for mixed
boundary conditions are the absence of any
physical basis for forcing through salinity
damping.

Here is where chaos can set in. If the
salinity boundary condition used in spin-
ups equals the zonally averaged salinity
field, a P − E minimum occurs at 54◦N,
and an unstable downwelling takes place
at that point, a reverse circulation cell
occurring at high latitudes. An irregular
flush takes place on the average every eight
years, restoring to normal downwelling at
the Pole. A stochastic forcing component
changes the frequency and intensity of
the flushes. To what extent the reported
results here are artifacts is a matter of
ongoing debate. Again, in the spirit of
the Lorenz equations, what is important
here is perhaps not this model’s validation
and its detailed predictions so much as the
possibility of chaos or stochastic resonance
it presents.

5.3
Controlling Chaos

Controlling chaos is a process of forcing
a chaotic system to reach and remain in a
state or a sequence of states. Control theory
uses the high leverage of chaotic behavior
to advantage: SIC is exploited both to
rapidly target a state and to remain there.
The formal insight that chaotic orbits
consist of unstable periodic orbits and their

limit points can be used here. A full range
of technical tools such as embedding and
numerical determination of the stability
matrix (with or without knowledge of the
underlying dynamics) has already been
employed since some practical methods
of controlling chaos were introduced in
1990 by Ott, Grebogi, and Yorke (Auerbach
et al., 1992). Technological applications
have been rapid, and to date they include
controlling the following chaotic systems:
vibrations of a magnetoelastic ribbon,
lasers operating at ultrahigh intensities,
diode circuits, and cardiac arrhythmia
(Garfinkel et al., 1992). An associated
message-encoding algorithm has been
developed that appears robust in the
presence of noise and advantageous for
information transmission (Hayes et al.,
1993).

5.4
Solitons

Solitons are solutions of nonlinear, dis-
persive wave equations with particle-like
properties. They are spatially localized
and do not change shape either when
propagating or after colliding with other
solitons. Solitons can only be solutions
to equations for which the effects of dis-
persion and nonlinearity somehow cancel.
Theoretical interest has been high since
demonstration of their mathematical prop-
erties in a numerical computer experiment
by Zabusky and Kruskal in 1965, although
a physical soliton had been observed over
a century before (in 1834) as a wave in
a Scottish canal. Solitons of widely dif-
fering topological characteristics arise in
many mathematical systems, including
nuclear interactions, elementary particles,
and plasmas. Now, engineering interest
is high, too. Solitonic pulses on optical
fibers may soon become the mechanism
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for transoceanic communications, at rates
exceeding 1010 bits per second (10 Gb/s)
(Haus, 1993).

The history of solitons reveals interplay
among different approaches to model-
ing. In 1895, Kortweg and deVries suc-
ceeded in deriving a shallow-water equa-
tion for small-amplitude gravity waves.
Their (KdV) equation takes the form

ut − 6uux + uxxx = 0. (30)

Here the subscripts refer to time and space
differentiation. Dissipation effects were
ignored in the derivation. Analytic solu-
tions were known in 1895, but the general
stability and behavior of multiple-soliton
solutions were first obtained numerically
in 1965. Then, with another breakthrough,
Gardner et al. in 1967 discovered pow-
erful formal solutions by reducing the
problem to inverse scattering in a linear
Schrödinger-type equation. The develop-
ments of inverse scattering theory (IST),
originally motivated by nuclear physics,
saw their first major application in this
soliton context. Nonlinear equations, if
cast into IST form, are shown to be in-
tegrable – as is the one-dimensional non-
linear Schrödinger equation, relevant to
optical fibers.

There is no general recipe for deter-
mining whether a nonlinear equation is
reducible to IST (Drazin and Johnson,
1990). However, a determined effort is
underway to develop better tests, and
with them, appropriate reductions to IST
(Ames and Rogers, 1992). One key would
be to find sufficiently simple equivalent
characterizations of complete integrabil-
ity (Ablowitz and Segur, 1981). This can
be succinctly expressed in the language
of Hamiltonian dynamics. Qualitatively,
completely integrable systems of differen-
tial equations when cast into the Hamilto-
nian form must have a sufficient number

of properly constrained functionals whose
Poisson brackets with each other vanish.
Not all initial conditions lead to solitonic
solutions. If a solitonic solution occurs,
the IST generates the soliton or solitons
through a process equivalent to generating
action-angle variables. Such action-angle
variables contain constants of the motion
required to exist from complete integra-
bility. Some of the relationships among
some possible alternative approaches to
determining complete integrability are dis-
cussed by Ablowitz and Segur (1981), and
newer formulations and updates are given
by Ames and Rogers (1992).

The IST is concerned with finding a
linear Schrödinger-type equation, given
the data in the form of asymptotic be-
havior of its solution. What remains to
be determined is a potential energy op-
erator. The integral equations for that
potential, the Marchenko equations, are
linear; hence, IST simplifies the solution
of the original nonlinear equation. The
data include scattering phase shifts (or
in one dimension, reflection coefficients),
and bound-state poles and residues. Soli-
tonic solutions are found after setting the
reflection coefficient equal to zero. Rele-
vant to optical fiber design, the nonzero
reflection-coefficient case is algebraically
challenging, even when data are pro-
vided in terms of rational functions
(Sabatier, 1988). The IST work should
benefit from computer algebra. As yet,
only numerical methods are used to
study solitonic stability in the presence
of dissipation.

Glossary

Cellular Automaton: Dynamical system
temporally and spatially discrete (in cells).
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Chaotic System: Deterministic dynamical
system that exhibits noisy, random-
appearing behavior. Technically, must
show sensitivity to initial conditions (SIC).

Deterministic Dynamical System: Dyna-
mical system having a rule that specifies its
state at the next instant of time uniquely,
given the state at any specific time.

Discretization: The approximation of a
continuum by a discrete set of points or a
discrete set of elements. These elements
can be finite physical segments, or they can
be sets of functions. Invariably performed
when there are space-time dimensions to
be modeled.

Dynamical System: Mathematical model of
time evolution.

El Niño: Sporadic anomalous warming of
the waters of the eastern equatorial Pacific.

Filter: General term for a dynamical sys-
tem that performs a task such as tuning or
removing some unwanted variance, such
as noise, in a signal.

Finite Elements: A form of discretization
of a continuum that treats the system
as composed of small, highly symmetric,
interacting parts, such as polyhedra.

Flow: Name for continuous time evolution
of a dynamical system.

General Circulation Model (GCM): Para-
metrized simulation model of the circu-
lation within Earth’s oceans, the global
atmosphere, or both combined.

Importance Sampling: A method for gen-
erating a sequence of configurations for
performing Monte Carlo (MC) calcula-
tions, in which successive configurations
are correlated.

Inverse Scattering Theory (IST): A formu-
lation of scattering theory, the solution

of which is a potential operator in a
Schrödinger-type equation, given suffi-
cient data.

La Niña: Sporadic anomalous cooling of
the waters of the eastern equatorial Pacific.

Map (Or Iterative Map): Name for discrete-
time evolution of a dynamical system.

Mechanistic Model: Mathematical model
that attempts to describe the processes,
or mechanisms, within a system that are
relevant to the problem at hand.

Markov Process of Order k: Dynamical
process that is accurately described in
terms of transition probabilities between
states, or configurations, of the system,
P(X → X′), that are functions only of the
last k states. When k = 1, it is simply
referred to as Markov process.

Monte Carlo Method: Computational
method of great scope based upon the
use of random-number sequences and
stochastic algorithms.

Neural Network: A system possessing ele-
ments, called nodes or neurons, with large
numbers of interconnections. Patterned
after real neural systems and capable of
learning to perform complex tasks such as
pattern-matching.

Padé Approximant: Rational approxima-
tion matching a function’s partial Taylor
series.

Paleoclimatology: The study of climate on
time scales that can be observed using
historical and geological data ranging,
approximately, from 102 to 108 years.

Parametrization: Introduction of a mecha-
nistic description of an important subsys-
tem within a simulation model.

Power Spectrum: The magnitude squared
of a Fourier transform. An important
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tool for distinguishing periodicity and
quasiperiodicity from noise and 1/f phe-
nomena.

Pseudorandom Numbers: A sequence of
numbers generated by a computer algo-
rithm, which passes a set of tests for
randomness.

Rational Function: Function expressed as a
ratio of two polynomials.

Self-Organized Criticality: State toward
which some large systems naturally evolve,
characterized by spatial and temporal self-
similarity. Weakly chaotic.

Simulation Model: Model containing as
many of the known relevant degrees
of freedom of the system as possible.
In the ideal limiting case, there is no
parametrization.

Soliton: A particle-like solution to a non-
linear, dispersive wave equation. It is
localized and retains its shape while
propagating or upon colliding with another
soliton.

Statistical Padé Approximant: Rational
function that is fitted to numerical data
by minimizing errors in some way.

Stochastic Dynamical System: Dynamical
system having a rule that specifies its
state at the next instant of time only as
one of several possible states with some
probability.

Synergetics: An approach to the study
of large, complex systems, which seeks
explanations in terms of the slaving
principle, bifurcations, order parameters,
and physical principles.

Time-Delay Embedding: Technique used to
reconstruct a vector orbit in a nonlinear
dynamical system, using time-delayed
values of a scalar observable y(t).
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Introduction and Overview

Many problems in science are very com-
plex: e.g., statistical thermodynamics con-
siders thermal properties of matter result-
ing from the interplay of a large number
of elementary particles. A deterministic
description in terms of the equation of
motion of all these particles would make
no sense, and a probabilistic description
is required. A probabilistic description
may even be intrinsically implied by the
quantum-mechanical nature of the basic
processes (e.g., emission of neutrons in
radioactive decay) or because the problem
is incompletely characterized, only some
degrees of freedom being considered ex-
plicitly while the others act as a kind of
background causing random noise. While

thus the concept of probability distribu-
tions is ubiquitous in physics, often it is
not possible to compute these probability
distribution functions analytically in ex-
plicit form, because of the complexity of
the problem. For example, interactions be-
tween atoms in a fluid produce strong and
nontrivial correlations between atomic po-
sitions, and, hence, it is not possible to
calculate these correlations analytically.

Monte-Carlo methods now aim at a
numerical estimation of probability dis-
tributions (as well as of averages, that can
be calculated from them), making use of
(pseudo) random numbers. By ‘‘pseudo-
random numbers’’ one means a sequence
of numbers produced on a computer with
a deterministic procedure from a suitable
‘‘seed.’’ This sequence, hence, is not truly
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random – see Sec. 1 for a discussion of this
problem.

The outline of the present article is as fol-
lows. Since all Monte-Carlo methods heav-
ily rely on the use of random numbers, we
briefly review random-number generation
in Sec. 1. In Sec. 2, we then elaborate on
the discussion of ‘‘simple sampling,’’ i.e.,
problems where a straightforward genera-
tion of probability distributions using ran-
dom numbers is possible. Section 3 briefly
mentions some applications to transport
problems, such as radiation shielding, and
growth phenomena, such as ‘‘diffusion-
limited aggregation’’ (DLA).

Section 4 then considers the importance
sampling methods of statistical thermo-
dynamics, including the use of different
thermodynamic ensembles. This article
emphasizes applications in statistical me-
chanics of condensed matter, since this is
the field where most activity with Monte-
Carlo methods occurs.

Some more practical aspects important
for the implementation of algorithms
and the judgment of the tractability
of simulation approaches to physical
problems are then considered in Sec. 5:
effects resulting from the finite size
of simulation boxes, effects of choosing
various boundary conditions, dynamic
correlation of errors, and the application
to studies of the dynamics of thermal
fluctuations.

The extension to quantum-mechanical
problems is mentioned in Sec. 6 and the
application to elementary particle theory
(lattice gauge theory) in Sec. 7. Section 8
then illustrates some of the general
concepts with a variety of applications
taken from condensed matter physics,
while Sec. 9 contains concluding remarks.

We do not discuss problems of ap-
plied mathematics such as applications to
the solution of linear operator equations

(Fredholm integral equations, the Dirich-
let boundary-value problem, eigenvalue
problems, etc.); for a concise discussion
of such problems, see, e.g., Hammersley
and Handscomb (1964). Nor do we discuss
simulations of chemical kinetics, such as
polymerization processes (see, e.g., Bruns
et al. 1981).

1
Random-Number Generation

1.1
General Introduction

The precise definition of ‘‘randomness’’ is
a problem in itself (see, e.g., Compagner,
1991) and is outside the scope of the
present article. Truly random numbers
are unpredictable in advance and must
be produced by an appropriate physical
process such as radioactive decay. Series
of such numbers have been documented
but would be very inconvenient to use
for Monte-Carlo simulations, and usually
their total number is too limited anyhow.
Thus, we do not discuss them here any
further.

Pseudorandom numbers are produced
in the computer by one of several simple
algorithms, some of which will be dis-
cussed below, and thus are predictable,
as their sequence is exactly reproducible.
(This reproducibility, of course, is a desir-
able property, as it allows detailed checks of
Monte-Carlo simulation programs.) They
are thus not truly random, but they
have statistical properties (nearly uniform
distribution, nearly vanishing correlation
coefficients, etc.) that are very similar
to the statistical properties of truly ran-
dom numbers. Thus, a given sequence of
(pseudo)random numbers appears ‘‘ran-
dom’’ for many practical purposes. In the
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following, the prefix ‘‘pseudo’’ will be omit-
ted throughout.

1.2
Properties That a Random-Number
Generator Should Have

What one needs are numbers that are uni-
formly distributed in the interval [0,1] and
that are uncorrelated. By ‘‘uncorrelated’’
we not only mean vanishing pair corre-
lations for arbitrary distances along the
random-number sequence, but also van-
ishing triplet and higher correlations. No
algorithm exists that satisfies these de-
sirable requirements fully, of course; the
extent to which the remaining correlations
between the generated random numbers
lead to erroneous results of Monte-Carlo
simulations has been a matter of long-
standing concern (Knuth, 1969; James,
1990); even random-number generators
that have passed all common statistical
tests and have been used successfully for
years may fail for a new application, in
particular if it involves a new type of
Monte-Carlo algorithm (see, e.g., Ferren-
berg et al., 1992, for a recent example).
Therefore, the testing of random-number
generators is a field of research in itself
(see, e.g., Marsaglia, 1985; Compagner and
Hoogland, 1987).

A limitation due to the finite word
length of computers is the finite period:
Every generator begins after a long but
finite period to produce exactly the same
sequence again. For example, simple
generators for 32-bit computers have a
maximum period of 230(≈ 109) numbers
only. This is not enough for recent high-
quality applications! Of course, one can
get around this problem (Knuth, 1969;
James, 1990), but, at the same time, one
likes the code representing the random-
number generator to be ‘‘portable’’ (i.e.,

in a high-level programing language like
FORTRAN usable for computers from
different manufactures) and ‘‘efficient’’
(i.e., extremely fast so it does not unduly
slow down the simulation program as
a whole). Thus, inventing new random-
number generators that are in certain
respects a better compromise between
these partially conflicting requirements is
still of interest (e.g., Marsaglia et al., 1990).

1.3
Comments about a Few Frequently Used
Generators

Best known is the linear multiplicative
algorithm (Lehmer, 1951), which produces
random integers Xi recursively from the
formula

Xi = aXi−1 + c(modulo m), (1)

which means that m is added when the
results otherwise were negative. For 32-
bit computers, m = 231 − 1 (the largest
integer that can be used for that computer).
The integer constants a, c, and X0 (the
starting value of the recursion, the so-
called ‘‘seed’’) need to be appropriately
chosen {e.g., a = 16 807, c = 0, X0 odd}.
Obviously, the ‘‘randomness’’ of the Xi

results since, after a few multiplications
with a, the result would exceed m and
hence is truncated, and so the leading
digits of Xi are more or less random. But
there are severe correlations: If d-tuples of
such numbers are used to represent points
in d-dimensional space having a lattice
structure, they lie on a certain number of
hyperplanes (Marsaglia, 1968).

Equation (1) produces random numbers
between 0 and m. Converting them into
real numbers and dividing by m yields
random numbers in the interval [0,1], as
desired.
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More popular now are shift-register
generators (Tausworthe, 1965; Kirkpatrick
and Stoll, 1981), based on the formula

Xi = Xi−p · XOR · Xi−q, (2)

where ·XOR· is the bitwise ‘‘exclusive or’’
operation, and the ‘‘lags’’ p, q have to be
properly chosen [the popular ‘‘R250’’ (Kirk-
patrick and Stoll, 1981) uses p = 109, q =
250 and thus needs 250 initializing inte-
gers]. ‘‘Good’’ generators based on Eq. (2)
have fewer correlations between random
numbers than those resulting from Eq. (1),
and much larger period.

A third type of generators is based on
Fibonacci series and also recommended
in the literature (Knuth, 1969; Ahrens and
Dieter, 1979; James, 1990). But a general
recommendation is that every user of
random numbers should not rely on their
quality blindly, and should perform his
own tests in the context of his application.

2
Simple Sampling of Probability
Distributions Using Random Numbers

In this section, we give a few nearly
trivial examples of the use of Monte-
Carlo methods, which will be useful for
the understanding of later sections. More
material on this subject can be found in
standard textbooks like Koonin (1981) and
Gould and Tobochnik (1988).

2.1
Numerical Estimation of Known Probability
Distributions

A known probability distribution pi that a
(discrete) state i occurs with 1 ≤ i ≤ n, with
�n

i=1pi = 1, is numerically realized using
random numbers uniformly distributed in
the interval from zero to unity: defining

Pi = �i
j=1pi, we choose a state i if the

random number ζ satisfies Pi−1 ≤ ζ < Pi,
with P0 = 0. In the limit of a large number
(M) of trials, the generated distribution
approximates pi, with errors of order
1/

√
M.

Monte-Carlo methods in statistical me-
chanics can be viewed as an extension of
this simple concept to the probability that
a point X in phase space occurs,

Peq(X) =
(

1

Z

)
exp

{−H (X)

kBT

}
,

kB being Boltzmann’s constant, T the abso-
lute temperature, and Z=�X exp{−H (X)

/kBT} the partition function, although in
general neither Z nor Peq(X) can be writ-
ten explicitly (as function of the variables
of interest, such as T, particle number N,
volume V, etc.). The term H (X) denotes
the Hamiltonian of the (classical) system.

2.2
‘‘Importance Sampling’’ versus ‘‘Simple
Sampling’’

The sampling of the Boltzmann probability
Peq(X) by Monte-Carlo methods is not
completely straightforward: One must not
choose the points X in phase space
completely at random, since Peq(X) is
extremely sharply peaked. Thus, one needs
‘‘importance sampling’’ methods which
generate points X preferably from the
‘‘important’’ region of space where this
narrow peak occurs.

Before we treat this problem of statistical
mechanics in more detail, we emphasize
the more straightforward applications of
‘‘simple sampling’’ techniques. In the fol-
lowing, we list a few problems for which
simple sampling is useful. Suppose one
wishes to generate a configuration of a
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randomly mixed crystal of a given lat-
tice structure, e.g., a binary mixture of
composition AxB1−x. Again, one uses
pseudorandom numbers ζ uniformly dis-
tributed in [0,1] to choose the occupancy
of lattice sites {j}: If ζi < x, the site j is
taken by an A atom, and else by a B atom.
Such configurations now can be used as
starting point for a numerical study of the
dynamical matrix, if one is interested in
the phonon spectrum of mixed crystals.
One can study the distribution of sizes of
‘‘clusters’’ formed by neighboring A atoms
if one is interested in the ‘‘site percolation
problem’’ (Stauffer, 1985), etc.

If one is interested in simulating
transport processes such as diffusion,
a basic approach is the generation of
simple random walks. Such random walks,
resulting from addition of vectors whose
orientation is random, can be generated
both on lattices and in the continuum.
Such simulations are desirable if one
wishes to consider complicated geometries
or boundary conditions of the medium
where the diffusion takes place. Also, it
is straightforward to include competing
processes (e.g., in a reactor, diffusion of
neutrons in the moderator competes with
loss of neutrons due to nuclear reactions,
radiation going to the outside, etc., or
gain due to fission events). Actually, this
problem of reactor criticality (and related
problems for nuclear weapons!) was the
starting point for the first large-scale
applications of Monte-Carlo methods by
Fermi, von Neumann, Ulam, and their co-
workers (Hammersley and Handscomb,
1964).

2.3
Monte Carlo as a Method of Integration

Many Monte-Carlo computations may be
viewed as attempts to estimate the value of

a (multiple) integral. To give the flavor
of this idea, let us discuss the one-
dimensional integral

I =
∫ 1

0
f (x)dx ≡

∫ 1

0

∫ 1

0
g(x, y)dxdy,

with g(x, y) =
{

0 if f (x) < y,
1 if f (x) ≥ y,

(3)

as an example (suppose, for simplicity, that
also 0 ≤ f (x) ≤ 1 for 0 ≤ x ≤ 1). Then I
simply is interpreted as the fraction of the
unit square 0 ≤ x, y ≤ 1 lying underneath
the curve y = f (x). Now a straightforward
(though often not very efficient) Monte-
Carlo estimation of Eq. (3) is the ‘‘hit
or miss’’ method: We take n points
(ζx, ζy) uniformly distributed in the unit
square 0 ≤ ζx ≤ 1, 0 ≤ ζy ≤ 1. Then I is
estimated by

ḡ = 1

n

n∑
i=1

g(ζxi, ζyi) = n∗
n

, (4)

n∗ being the number of points for which
f (ζxi) ≥ ζyi. Thus, we count the fraction
of points that lie underneath the curve
y = f (x). Of course, such Monte-Carlo
integration methods are inferior to many
other techniques of numerical integration,
if the integration space is low dimensional,
but the situation is worse for high-
dimensional integration spaces: For any
method using a regular grid of points for
which the integrand needs to be evaluated,
the number of points sampled along each
coordinate is M1/d in d dimensions, which
is small for any reasonable sample size M
if d is very large.

2.1
Infinite Integration Space

Not always is the integration space limited
to a bounded interval in space. For
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example, the φ4 model of field theory
considers a field variable φ(x), where x
is drawn from a d-dimensional space and
φ(x) is a real variable with distribution

P(φ) ∝ exp
[
−α

(
− 1

2φ2 + 1
4φ4

)]
;

α > 0. (5a)

While −∞ < φ < +∞, the distribution
P′(y)

P′(y) =

∫ y

−∞
P(φ)dφ∫ +∞

−∞
P(φ)dφ

(5b)

varies in the unit interval, 0 ≤ P′ ≤ 1.
Hence, defining Y = Y(P′) as the inverse
function of P′(y), we can choose a
random number ζ uniformly distributed
between zero and one, to obtain φ =
Y(ζ ) distributed according to the chosen
distribution P(φ). Of course, this method
works not only for the example chosen in
Eq. (5) but for any distribution of interest.
Often it will not be possible to obtain Y(P′)
analytically, but then one can compute
numerically a table before the start of the
sampling (Heermann, 1986).

2.5
Random Selection of Lattice Sites

A problem that occurs very frequently (e.g.,
in solid-state physics) is that one considers
a large lattice (e.g., a model of a sim-
ple cubic crystal with N = Lx × Ly × Lz

sites), and one wishes to select a lattice site
(nx, ny, nz) at random. This is trivially done
using the integer arithmetics of standard
computers, converting a uniformly dis-
tributed random number ζx(0 ≤ ζx < 1)

to an integer nx with 1 ≤ nx ≤ Lx via
the statement nx = int(ζxLx + 1). This
is already an example where one must

be careful, however, when three succes-
sive pseudorandom numbers drawn from
a random-number generator (RNG) are
used for this purpose: If one uses a RNG
with bad statistical qualities, the frequency
with which individual sites are visited may
deviate distinctly from a truly random
choice. In unfavorable cases, successive
pseudorandom numbers are so strongly
correlated that certain lattice sites would
be never visited!

2.6
The Self-Avoiding Walk Problem

As an example of the straightforward use
of simple sampling techniques, we now
discuss the study of self-avoiding walks
(SAWs) on lattices (which may be consid-
ered as a simple model for polymer chains
in good solvents; see Kremer and Binder,
1988). Suppose one considers a square
or simple cubic lattice with coordination
number (number of nearest neighbors)
z. Then, for a random walk (RW) with N
steps, we would have ZRW = zN configura-
tions, but many of these random walks in-
tersect themselves and thus would, not be
self-avoiding. For SAWs, one only expects
of the order of ZSAW = const. × Nγ−1zN

eff
configurations, where γ > 1 is a character-
istic exponent (which is not known exactly
for d = 3 dimensions), and zeff ≤ z − 1 is
an effective coordination number, which
also is not known exactly. But it is al-
ready obvious that an exact enumeration
of all configurations would be possible for
rather small N only, while most questions
of interest refer to the behavior for large
N; e.g., one wishes to study the end-to-end
distance of the SAW,

〈R2〉SAW = 1

ZSAW

∑
X

[R(X)]2, (6)
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the sum being extended over all configura-
tions of SAWs which we denote formally
as points X in phase space. One expects
that 〈R2〉SAW ∝ N2v, where v is another
characteristic exponent. A Monte-Carlo es-
timation of 〈R2〉SAW now is based on
generating a sample of only M � ZSAW
configurations Xl, i.e.:

R2 = 1

M

M∑
l=1

[R(Xl)]
2 ≈ 〈R2〉SAW. (7)

If the M configurations are statistically
independent, standard error analysis ap-
plies, and we expect that the relative error
behaves as

(δR2)2

(R2)2
≈ 1

M − 1

[
〈R4〉SAW

〈R2〉2
SAW

− 1

]
. (8)

While the law of large numbers then
implies that R2 is Gaussian distributed
around 〈R2〉SAW with a variance deter-
mined by Eq. (8), one should note that
the variance does not decrease with in-
creasing N. Statistical mechanics tells us
that fluctuations decrease with increasing
number N of degrees of freedom; i.e., one
equilibrium configuration differs in its en-
ergy E(x) from the average 〈E〉 only by an
amount of order 1/

√
N. This property is

called ‘‘self-averaging.’’ Obviously, such a
property is not true for 〈R2〉SAW. This ‘‘lack
of self-averaging’’ is easy to show already
for ordinary random walks (Binder and
Heermann, 1988).

2.7
Simple Sampling versus Biased Sampling:
the Example of SAWs Continued

Apart from this problem, that the accu-
racy of the estimation of R2 does not
increase with the number of steps of

the walk, it is also not easy to gen-
erate a large sample of configurations
of SAWs for large N. Suppose we do
this at each step by choosing one of
z − 1 neighbors at random (eliminat-
ing from the start immediate reversals,
which would violate the SAW condi-
tion). Whenever the chosen lattice site
is already taken, we also would violate
the SAW condition, and the attempted
walk is terminated. Now the fraction
of walks that will continue successfully
for N steps will only be of the order
of ZSAW/(z − 1)N ∝ [zeff /(z − 1)]NNγ−1,
which decreases to zero exponentially
{∝ exp(−Nµ) with µ = ln[(z − 1)/zeff ] for
large N}; this failure of success in gener-
ating long SAWs is called the ‘‘attrition
problem.’’

The obvious recipe, to select at each
step only from among the lattice sites that
do not violate the SAW restriction, does
not give equal statistical weight for each
configuration generated, of course, and so
the average would not be the averaging
that one needs in Eq. (6). One finds that
this method would create a ‘‘bias’’ toward
more compact configurations of the walk.
But one can calculate the weights of
configurations w(X) that result in this
so-called ‘‘inversely restricted sampling’’
(Rosenbluth and Rosenbluth, 1955), and
in this way correct for the bias and estimate
the SAW averages as

R2 =
{

M∑
l=1

[w(Xl)]
−1

}−1

×
M∑

l=1

[w(Xl)]
−1[R(Xl)]

2. (9)

However, error analysis of this biased
sampling is rather delicate (Kremer and
Binder, 1988).
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A popular alternative to overcome the
above attrition problem is the ‘‘enrichment
technique,’’ founded on the principle
‘‘Hold fast to that which is good.’’ Namely,
whenever a walk attains a length that is
a multiple of s steps without intersecting
itself, n independent attempts to continue
it (rather than a single attempt) are made.
The numbers n, s are fixed, and, if
we choose n ≈ exp(µs), the numbers of
walks of various lengths generated will
be approximately equal. Enrichment has
the advantage over inversely restricted
sampling that all walks of a given length
have equal weights, while the weights in
Eq. (9) vary over many orders of magnitude
for large N. But the disadvantage is, on the
other hand, that the linear dimensions of
the walks are highly correlated, since some
of them have many steps in common!
For these reasons, simple sampling and
its extensions are useful only for a
small fraction of problems in polymer
science, and now importance sampling
(Sec. 4) is much more used. But we
emphasize that related problems are
encountered for the sampling of ‘‘random
surfaces’’ (this problem arises in the
field theory of quantum gravity), in
path-integral Monte-Carlo treatments of
quantum problems, and in many other
contexts.

3
Survey of Applications to Simulation of
Transport Processes

The possibilities to simulate the ran-
dom motions of particles are extremely
widespread. Therefore, it is difficult to
comment about such problems in general.
Thus, we rather prefer again to proceed
by briefly discussing a few examples that
illustrate the spirit of the approach.

3.1
The ‘‘Shielding Problem’’

A thick shield of absorbing material is
exposed to γ radiation (energetic photons),
of specified distribution of energy and
angle of incidence. We want to know the
intensity and energy distribution of the
radiation that penetrates that shield.

The level of description is here that
one may generate a lot of ‘‘histories’’
of those particles traveling through the
medium. The paths of these γ particles
between scattering events are straight
lines, and different γ particles do not
interact with each other. A particle with
energy E, instantaneously at the point
r and traveling in the direction of the
unit vector w, continues to travel in the
same direction with the same energy, until
a scattering event with an atom of the
medium occurs. The standard assumption
is that the atoms of the medium are
distributed randomly in space. Then the
total probability that the particle will collide
with an atom while traveling a length
δs of its path is σc(E)δs, σc(E) being
the cross section. In a region of space
where σc(E) is constant, the probability
that a particle travels without collision a
distance s is Fc(s) = 1 − exp[−σc(E)s]. If a
collision occurs, it may lead to absorption
or scattering, and the cross sections for
these types of events are assumed to be
known.

A Monte-Carlo solution now simply
involves the tracking of simulated parti-
cles from collision to collision, generating
the distances s that the particles travel
without collision from the exponential dis-
tribution quoted above. Particles leaving
a collision point are sampled from the
appropriate conditional probabilities as de-
termined from the respective differential
cross sections. For increasing sampling
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efficiency, many obvious tricks are known.
For example, one may avoid losing parti-
cles by absorption events: If the absorption
probability (i.e., the conditional probability
that absorption occurs given that a collision
has occurred) is α, one may replace σc(E)

by σc(E)(1 − α), and allow only scattering
to take place with the appropriate rela-
tive probability. Special methods for the
shielding problem have been extensively
developed and already have been reviewed
by Hammersley and Handscomb (1964).

3.2
Diffusion-Limited Aggregation (DLA)

Diffusion-limited aggregation is a model
for the irreversible formation of random
aggregates by diffusion of particles, which
get stuck at random positions on the al-
ready formed object if they hit its surface
in the course of their diffusion [sec Vic-
sek (1989), Meakin (1988), and Herrmann
(1986, 1992) for detailed reviews of this
problem and related phenomena]. Many
problems (shapes of snowflakes, size dis-
tribution of asteroids, roughness of crack
surfaces, etc.) can be understood as the end
product of similar random dynamical and
irreversible growth processes. Diffusion-
limited aggregation is just one example
of them. It may be simulated by iterat-
ing the following steps: From a randomly
selected position on a spherical surface
of radius Rm that encloses the aggregate
(that has already been grown in the pre-
vious steps, its center of gravity being in
the center of the sphere), a particle of
unit mass is launched to start a simple
random-walk trajectory. If it touches the
aggregate, it sticks irreversibly on its sur-
face. After the particle has either stuck or
moved a distance Rf from the center of
the aggregate such that it is unlikely that
it will hit in the future, a new particle is

launched. Ideally one would like to have
Rf → ∞, but, in practice, Rf = 2Rm is suf-
ficient. By this irreversible aggregation of
particles, one forms fractal clusters. That
means that the dimension df characteriz-
ing the relation between the mass of the
grown object and its (gyration) radius R,
M ∝ Rdf , is less than the dimension d of
space in which the growth takes place.
Again there are some tricks to make such
simulations more efficient: For example,
one may allow the particles to jump over
larger steps when they travel in empty
regions. From such studies, researchers
have found that df = 1.715 ± 0.004 for
DLA in d = 2, while df = 2.485 ± 0.005 in
d = 3 (Tolman and Meakin, 1989). Such
exponents as yet cannot be analytically
predicted.

4
Monte-Carlo Methods in Statistical
Thermodynamics: Importance Sampling

4.1
The General Idea of the Metropolis
Importance Sampling Method

In the canonical ensemble, the average of
an observable A(X) takes the form

〈A〉 = 1

Z

∫
�

dkXA(X) exp
[
−H (X)

kBT

]
,

(10)

where Z is the partition function,

Z =
∫

�

dkX exp

[
−H (X)

kBT

]
, (11)

� denoting the (k-dimensional) volume
of phase space {X} over which is in-
tegrated, H (X) being the (classical)
Hamiltonian. For this problem, a sim-
ple sampling analog to Sec. 2 would not
work: The probability distribution p(X) =
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(1/Z) exp[−H (X)/kBT ] has a very sharp
peak in phase space where all extensive
variables A(X) are close to their average val-
ues 〈A〉. This peak may be approximated
by a Gaussian centered at 〈A〉, with a rel-
ative halfwidth of order 1/

√
N only, if we

consider a system of N particles. Hence,
for a practically useful method, one can-
not sample the phase space uniformly,
but the points Xv must be chosen pref-
erentially from the important region of
phase space, i.e., the vicinity of the peak
of this probability distribution. This goal
is achieved by the importance sampling
method (Metropolis et al., 1953): Starting
from some initial configuration X1, one
constructs a sequence of configurations Xv

defined in terms of a transition probability
W(Xv → X′

v) that rules stochastic ‘‘moves’’
from an old state Xv to a new state X′

v,
and, hence, one creates a ‘‘random walk
through phase space.’’ The idea of that
method is to choose W(X → X′) such that
the probability with which a point X is cho-
sen in this process converges toward the
canonical probability

Peq(X) =
(

1

Z

)
exp

[
−H (X)

kBT

]

in the limit where the number M of states
X generated goes to infinity. A condition
sufficient to ensure this convergence is the
so-called principle of detailed balance,

Peq(X)W(X → X′) = Peq(X′)W(X′ − X).

(12)

For a justification that Eq. (12) actu-
ally yields this desired convergence, we
refer to Hammersley and Handscomb
(1964), Binder (1976), Heermann (1986),
and Kalos and Whitlock (1986). In this im-
portance sampling technique, the average
Eq. (10) then is estimated in terms of a

simple arithmetic average,

Ā = 1

M − M0

M∑
v=M0+1

A(Xv). (13)

Here it is anticipated that it is advanta-
geous to eliminate the residual influence
of the initial configuration X1 by elim-
inating a large enough number M0 of
states from the average. [The judgment
of what is ‘‘large enough’’ is often dif-
ficult; see Binder (1976) and Sec. 5.3
below.] It should also be pointed out that
this Metropolis method can be used for
sampling any distribution P(X): One sim-
ply must choose a transition probability
W(X → X′) that satisfies a detailed bal-
ance condition with P(X) rather than with
Peq(X).

4.2
Comments on the Formulation of a
Monte-Carlo Algorithm

What is now meant in practice by the
transition X → X′? Again there is no
general answer to this question; the
choice of the process may depend both
on the model under consideration and
the purpose of the simulation. Since
Eq. (12) implies that W(X − X′)/W(X′ →
X) = exp(−δH /kBT), δH being the en-
ergy change caused by the move from
X → X′, typically it is necessary to con-
sider small changes of the state X only.
Otherwise the absolute value of the en-
ergy change |δH | would be rather large,
and then either W(X → X′) or W(X′ → X)

would be very small. Then it would be al-
most always forbidden to carry out that
move, and the procedure would be poorly
convergent. For example, in the lattice gas
model at constant particle number, a tran-
sition X → X′ may consist of moving one
particle to a randomly chosen neighboring
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site. In the lattice gas at constant chem-
ical potential, one removes (or adds) just
one particle at a time, which is isomor-
phic to single flips in the Ising model of
anisotropic magnets.

Another arbitrariness concerns the or-
der in which the particles are selected for
considering a move. Often one chooses
to select them in the order of their la-
bels (in the simulation of a fluid or lattice
gas at constant particle number) or to go
through the lattice in a regular typewriter-
type fashion (in the case of spin models,
for instance). For lattice systems, it may
be convenient to use sublattices (e.g.,
the ‘‘checkerboard algorithm,’’ where the
white and black sublattices are updated
alternatively, for the sake of an efficient
‘‘vectorization’’ of the program; see Lan-
dau, 1992). An alternative is to choose
the lattice sites (or particle numbers) ran-
domly. The latter procedure is somewhat
more time consuming, but it is a more
faithful representation of a dynamic time
evolution of the model described by a mas-
ter equation (see below).

It is also helpful to realize that often the
transition probability W(X → X′) can be
written as a product of an ‘‘attempt fre-
quency’’ times an ‘‘acceptance frequency.’’
By clever choice of the attempt frequency,
it is possible sometimes to attempt large
moves and still have a high acceptance,
and thus make the computations more
efficient.

For spin models on lattices, such as
Ising or Potts models, XY and Heisenberg
ferromagnets, etc., algorithms have been
devised where one does not update single
spins in the move X → X′, but, rather, one
updates specially constructed clusters of
spins (see Swendsen et al., 1992, for a re-
view). These algorithms have the merit that
they reduce critical slowing down, which
hampers the efficiency of Monte-Carlo

simulations near second-order phase tran-
sitions. ‘‘Critical slowing down’’ means a
dramatic increase of relaxation times at
the critical point of second-order phase
transitions, and these relaxation times also
control statistical errors in Monte-Carlo
simulations, as we shall see in Sec. 5.
Since these ‘‘cluster algorithms’’ work for
rather special models only, they will not be
discussed further here. But further devel-
opment of such algorithms is an important
area of current research (e.g., Barkema and
Marko, 1993).

There is also some arbitrariness in
the choice of the transition probability
W(X → X′) itself. The original choice of
Metropolis et al. (1953) is

W(X → X′) =


exp
(−δH

kBT

)
if δH > 0,

1 otherwise.
(14)

An alternative choice is the so-called
‘‘heat-bath method.’’ There one assigns
the new value α′

i of the ith local degree
of freedom in the move from X to X′
irrespective of what the old value α′

i was.
One thereby considers the local energy
H i(α

′
i) and chooses the state α′

i with
probability

exp[−H i(α
′
i)/kBT]∑

{α′′
i }

exp[−H i(α
′′
i )/kBT ]

.

We now outline the realization of
the sequence of states X with chosen
transition probability W. At each step of
the procedure, one performs a trial move
αi → α′

i , computes W(X → X′) for this
trial move, and compares it with a random
number η, uniformly distributed in the
interval 0 < η < 1. If W < η, the trial
move is rejected, and the old state (with
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αi) is counted once more in the average,
Eq. (13). Then another trial is made. If
W > η, on the other hand, the trial move
is accepted, and the new configuration
thus generated is taken into account in
the average, Eq. (13). It serves then also as
a starting point of the next step.

Since subsequent states Xv in this
Markov chain differ by the coordinate αi
of one particle only (if they differ at all),
they are highly correlated. Therefore, it is
not straightforward to estimate the error
of the average, Eq. (13). Let us assume
for the moment that, after n steps, these
correlations have died out. Then we may
estimate the statistical error δA of the
estimate Ā from the standard formula,

(δA)2 = 1

m(m − 1)

m+µ0−1∑
µ=µ0

[A(Xµ) − Ā]2,

m � 1, (15)

where the integers µ0, µ, m are defined
by m = (M − M0)/n, µ0 labels the state
v = M0 + 1, µ = µ0 + 1 labels the state
v = M0 + 1 + n, etc. Then also Ā for
consistency should be taken as

Ā = 1

m

m+µ0−1∑
µ=µ0

A(Xµ). (16)

If the computational effort of carrying out
the ‘‘measurement’’ of A(Xµ) in the simu-
lation is rather small, it is advantageous to
keep taking measurements every Monte-
Carlo step per degree of freedom but to
construct block averages over n successive
measurements, varying n until uncorre-
lated block averages are obtained.

4.3
The Dynamic Interpretation of the
Monte-Carlo Method

It is not always easy to estimate the
appropriate number of configurations M0

after which the correlations to the initial
state X1, which typically is a state far from
equilibrium, have died out, nor is it easy
to estimate the number n between steps
after which correlations in equilibrium
have died out. A formal answer to this
problem, in terms of relaxation times of
the associated master equation describing
the Monte-Carlo process, is discussed
in the next section. This interpretation
of Monte-Carlo sampling in terms of
master equations is also the basis for
Monte-Carlo studies of the dynamics of
fluctuations near thermal equilibrium, and
is discussed now. One introduces the
probability P(X, t) that a state X occurs
at time t. This probability then decreases
by all moves X → X′, where the system
reaches a neighboring state X′; on the other
hand, inverse processes X′ → X lead to a
gain of probability. Thus, one can write
down a rate equation, similar to chemical
kinetics, considering the balance of all gain
and loss processes:

d

dt
P(X, t) = −

∑
X′

W(X → X′)P(X, t)

+
∑
X′

W(X′ → X)P(X′, t). (17)

The Monte-Carlo sampling (i.e., the se-
quence of generated states X1 → X2 →
. . . → Xv → . . .) can hence be interpreted
as a numerical realization of the master
equation, Eq. (17), and then a ‘‘time’’ t is
associated with the index v of subsequent
configurations. In a system with N parti-
cles, we may normalize the ‘‘time unit’’
such that N single-particle moves are at-
tempted per unit time. This is often called
a ‘‘sweep’’ or ‘‘1 Monte-Carlo step (MCS).’’

For the thermal equilibrium distribution
Peq(X), because of the detailed balance
principle, Eq. (12); there is no change
of probability with time, dP(X, t)/dt = 0;
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thus, thermal equilibrium arises as the
stationary solution of the master equation,
Eq. (17). Thus, it is also plausible that
Markov processes described by Eq. (17)
describe a relaxation that always leads
toward thermal equilibrium, as desired.

Now, for a physical system (whose
trajectory in phase space, according to
classical statistical mechanics, follows
from Newton’s laws of motion), it is
clear that the stochastic trajectory through
phase space that is described by Eq. (17) in
general has nothing to do with the actual
dynamics. For example, Eq. (17) never
describes any propagating waves (such as
spin waves in a magnet, or sound waves in
a crystal or fluid, etc.).

In spite of this observation, the dynamics
of the Monte-Carlo ‘‘trajectory’’ described
by Eq. (17) sometimes does have physical
significance. In many situations, one does
not wish to consider the full set of
dynamical variables of the system, but
rather a subset only: For instance, in an
interstitial alloy where one is interested
in modeling the diffusion processes,
the diffusion of the interstitials may be
modeled by a stochastic hopping between
the available lattice sites. Since the mean
time between two successive jumps is
orders of magnitude larger than the
time scale of atomic vibrations in the
solid, the phonons can be reasonably well
approximated as a heat bath, as far as the
diffusion is concerned.

There are many examples where such
a separation of time scales for different
degrees of freedom occurs: For example,
for a description of the Brownian mo-
tion of polymer chains in polymer melts,
the fast bond-angle and bond-length vi-
brations may be treated as heat bath,
etc. As a rule of thumb, any very slow
relaxation phenomena (kinetics of nucle-
ation, decay of remanent magnetization in

spin glasses, growth of ordered domains
in adsorbed monolayers at surfaces, etc.)
can be modeled by Monte-Carlo meth-
ods. Of course, one must pay attention
to building in relevant conservation laws
into the model properly (e.g., in an inter-
stitial alloy, the overall concentration of
interstitials is conserved; in a spin glass,
the magnetization is not conserved) and
to choosing microscopically reasonable el-
ementary steps representing the move
X → X′. The great flexibility of the Monte-
Carlo method, where one can choose the
level of the modeling appropriately for the
model at hand and identify the degrees of
freedom that one wishes to consider, as
well as the type and nature of transitions
between them, is a great advantage and
thus allows complementary applications
to more atomistically realistic simulation
approaches such as the molecular dynam-
ics (q.v.) method where one numerically
integrates Newton’s equations of motion
(Heermann, 1986; Ciccotti and Hoover,
1986; Hockney and Eastwood, 1988). By a
clever combination with cluster-flip algo-
rithms, one sometimes can construct very
efficient algorithms and hence span a very
broad range of time scales (Barkema and
Marko, 1993).

4.4
Monte-Carlo Study of the Dynamics of
Fluctuations near Equilibrium and of the
Approach toward Equilibrium

Accepting Eq. (17), the average in Eq. (13)
then is simply interpreted as a time average
along the stochastic trajectory in phase
space,

Ā = 1

tM − tM0

∫ tM

tM0

A(t) dt,

tM = M

N
, tM0 = M0

N
. (18)
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It is thus no surprise that, for the imp-
ortance-sampling Monte-Carlo method,
one needs to consider carefully the prob-
lem of ergodicity: Time averages need not
agree with ensemble averages. For exam-
ple, near first-order phase transitions there
may be long-lived metastable states. Some-
times the considered moves do not allow
one to reach all configurations (e.g., in
dynamic Monte-Carlo methods for self-
avoiding walks; see Kremer and Binder,
1988).

One can also define time-displaced
correlation functions: 〈A(t)B(0)〉, where
A, B stand symbolically for any physical
observables, is estimated by

A(t)B(0) = 1

tM − t − tM0

×
∫ tM−t

tM0

A(t + t′)B(t′) dt′,

tM − t > tM0 . (19)

Equation (19) refers to a situation where
tM0 is chosen large enough such that the
system has relaxed toward equilibrium
during the time tM0 ; then the pair
correlation depends on the difference t
and not the two individual times t′, t′ + t
separately.

However, it is also interesting to study
the nonequilibrium relaxation process
by which equilibrium is approached.
In this region, A(t) − Ā is systemati-
cally dependent on the observation time
t, and an ensemble average 〈A(t)〉T −
〈A(∞)〉T [limt→∞ Ā = 〈A〉T ≡ 〈A(∞)〉T if
the system is ergodic] is nonzero. One may
define

〈A(t)〉T =
∑
{X}

P(X, t)A(X)

=
∑
{X}

P(X, 0)A(X(t)). (20)

In the second step of this equation, the
fact was used that the ensemble average
involved is actually an average weighted
by P(X,0) over an ensemble of initial states
X(t = 0), which then evolve as described by
the master equation, Eq. (17). In practice,
Eq. (20) means an average over a large
number nrun � 1 statistically independent
runs,

[Ā(t)]av = 1

nrun

nrun∑
l=1

A(t, l), (21)

where A(t,l) is the observable A observed at
time t in the lth run of this nonequilibrium
Monte-Carlo averaging.

Many concepts of nonequilibrium sta-
tistical mechanics can immediately be
introduced in such simulations. For in-
stance, one can introduce arbitrary ‘‘fields’’
that can be switched off to study the dy-
namic response functions, for both linear
and nonlinear response (Binder, 1984).

4.5
The Choice of Statistical Ensembles

While so far the discussion has been
(implicitly) restricted to the case of the
canonical ensemble (NVT ensemble, for
the case of a fluid), it is sometimes
useful to use other statistical ensembles.
Particularly useful is the grand canonical
ensemble (µVT), where the chemical
potential µ rather than the particle number
N is fixed. In addition to moves where
the configuration of particles in the box
relaxes, one has moves where one attempts
to add or remove a particle from the box.

In the case of binary (AB) mixtures,
a useful variation is the ‘‘semi-grand
canonical’’ ensemble, where 
µ = µA −
µB is held fixed and moves where an A
particle is converted into a B particle (or
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vice versa) are considered, in an otherwise
identical system configuration.

The isothermal-isobaric (NpT) ensem-
ble, on the other hand, fixes the pres-
sure, and then volume changes V → V ′ =

V + 
V need to be considered (rescaling
properly the positions of the particles).

It also is possible to define artificial
ensembles that are not in the textbooks
on statistical mechanics. An example is

Fig. 1 Schematic evolution of the order-parameter probability distribution
PL(M) from T > Tc to T < Tc (from above to below, left part), for an Ising
ferromagnet (where M is the magnetization) in a box of volume V = Ld. The right
part shows the corresponding temperature dependence of the mean order
parameter 〈|M|〉, the susceptibility kBTχ

′ = Ld(〈M2〉 − 〈|M|〉2), and the reduced
fourth-order cumulant UL = 1 − 〈M4〉/[3〈M2〉2]. Dash-dotted curves indicate the
singular variation that results in the thermodynamic limit, L → ∞
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the so-called Gaussian ensemble (which
interpolates between the canonical and mi-
crocanonical ensembles and is useful for
the study of first-order phase transitions, as
the so-called ‘‘multicanonical ensemble’’).
Particularly useful is the ‘‘Gibbs ensem-
ble,’’ where one considers the equilibrium
between two simulation boxes (one con-
taining liquid, the other gas), which can
exchange both volume 
V and parti-
cles (
N), while the total volume and
total particle number contained in the
two boxes are held fixed. The Gibbs en-
semble is widely used for the simulation
of gas-fluid coexistence, avoiding inter-
faces (Panagiotopoulos, 1992; Levesque
and Weis, 1992).

A simulation at a given state point (NVT)
contains information not only on averages
at that state point but also on neighboring
state points (NVT ′), via suitable reweight-
ing of the energy distribution PN(E) with
a factor exp(E/kBT) exp(−E/kBT ′). Such
‘‘histogram methods’’ are particularly use-
ful near critical points (Swendsen et al.,
1992).

5
Accuracy Problems: Finite-Size Problems,
Dynamic Correlation of Errors, Boundary
Conditions

5.1
Finite-Size-Induced Rounding and Shifting
of Phase Transitions

A prominent application of Monte-Carlo
simulation in statistical thermodynamics
and lattice theory is the study of phase
transitions. Now it is well known in
statistical physics that sharp phase tran-
sitions can occur in the thermodynamic
limit only, N → ∞. Of course, this is no
practical problem in everyday life – even

a small water droplet freezing into a
snowflake contains about N = 1018 H2O
molecules, and, thus, the rounding and
shifting of the freezing are on a relative
scale of 1/

√
N = 10−9 and thus completely

negligible. But the situation is different
for simulations, which often consider ex-
tremely small systems (e.g., a hypercubic
d-dimensional box with linear dimensions
L, V = Ld, and periodic boundary condi-
tions), where only N ∼ 102 to 104 particles
are involved.

In such small systems, phase transitions
are strongly rounded and shifted (Barber,
1983; Binder, 1987, 1992a; Privman, 1990).
Thus, care needs to be applied when
simulated systems indicate phase changes.
It turns out, however, that these finite-
size effects can be used as a valuable
tool to infer properties of the infinite
system from the finite-size behavior.
As a typical example, we discuss the
phase transition of an Ising ferromagnet
(Fig. 1), which has a second-order phase
transition at a critical temperature Tc. For
L → ∞, the spontaneous magnetization
Mspont vanishes according to a power
law, Mspont = B(1 − T/Tc)

β , B being a
critical amplitude and β a critical exponent
(Stanley, 1971), and the susceptibility χ

and correlation length ξ diverge,

χ ∝
∣∣∣∣1 − T

Tc

∣∣∣∣−γ

, ξ ∝
∣∣∣∣1 − T

Tc

∣∣∣∣−ν

,

(22)

where γ, ν are the associated critical
exponents. In a finite system, ξ cannot
exceed L, and, hence, these singularities
are smeared out.

Now finite-size scaling theory (Barber,
1983; Privman, 1990) implies that basically
these finite-size effects can be understood
from the principle that ‘‘L scales with
ξ ’’; i.e., the order-parameter probability
distribution PL(M) can be written (Binder,
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1987, 1992a)

PL = Lβ/vP̃

(
L

ξ
, MLβ/v

)
, (23)

where P̃ is a ‘‘scaling function.’’ From
Eq. (23), one immediately obtains the
finite-size scaling relations for order pa-
rameter 〈|M|〉 and the susceptibility (de-
fined from a fluctuation relation) by taking
the moments of the distribution PL:

〈|M|〉 = L−β/vM̃

(
L

ξ

)
, (24)

kBT ′
χ = Ld(〈M2〉 − 〈|M|〉2) = Lγ /vX̃

(
L

ξ

)
,

(25)

where M̃, χ̃ are scaling functions that
follow from P̃ in Eq. (23). At Tc where
ξ → ∞, we thus have χ ′ ∝ Lγ /v; from the
variation of the peak height of χ ′ with
system size, hence, the exponent γ /v can
be extracted.

The fourth-order cumulant UL is a
function of L/ξ only,

UL ≡ 1 − 〈M4〉
3〈M2〉2 = Ũ

(
L

ξ

)
. (26)

Here UL → 0 for a Gaussian centered
at M = 0, i.e., for T > Tc; UL → 2

3 for
the double-Gaussian distribution, i.e., for
T < Tc; while UL = Ũ(0) is a universal
nontrivial constant for T = Tc. Cumulants
for different system sizes hence intersect
at Tc, and this can be used to locate Tc

precisely (Binder, 1987, 1992a).
A simple discussion of finite-size ef-

fects at first-order transitions is similarly
possible. There one describes the various
phases that coexist at the first-order transi-
tion in terms of Gaussians if L � ξ (note
that ξ stays finite at the first-order tran-
sition). In a finite system, these phases
can coexist not only right at the transi-
tion but over a finite parameter region.

The weights of the respective peaks are
given in terms of the free-energy differ-
ence of the various phases. From this
phenomenological description, energy and
order-parameter distributions and their
moments can be worked out. Of course,
this description applies only for long
enough runs where the system jumps
from one phase to the other many times,
while for short runs where the systems
stay in a single phase, one would observe
hysteresis.

5.2
Different Boundary Conditions: Simulation
of Surfaces and Interfaces

We now briefly mention the effect of
various boundary conditions. Typically one
uses periodic boundary conditions to study
bulk properties of systems not obscured by
surface effects. However, it also is possible
to choose different boundary conditions to
study surface effects deliberately; e.g., one
may simulate thin films in a L × L × D
geometry with two free L × L surfaces and
periodic boundary conditions otherwise.
If the film thickness D is large enough,
the two surfaces do not influence each
other, and one can infer the properties
of a semi-infinite system. One may
choose special interactions near the free
surfaces, apply surface ‘‘fields’’ (even if
they cannot be applied in the laboratory,
it may nevertheless be useful to study
the response to them in the simulation),
etc.

Sometimes the boundary conditions
may stabilize interfaces in the system (e.g.,
in an Ising model for T < Tc a domain wall
between phases with opposite magnetiza-
tion will be present, if we apply strong
enough surface fields of opposite sign).
Such interfaces also are often the object
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of study in simulation. It may be desir-
able to simulate interfaces without having
the systems disturbed by free surfaces.
In an Ising system, this may simply be
done by choosing antiperiodic boundary
conditions. Combining antiperiodic and
staggered periodic boundary conditions,
even tilted interfaces may be stabilized
in the system. In all such simulations of
systems containing interfaces one must
keep in mind, however, that because of
capillary-wave excitations, interfaces usu-
ally are very slowly relaxing objects, and
often a major effort in computing time
is needed to equilibrate them. A fur-
ther difficulty (when one is interested
in interfacial profiles) is the fact that
the center of the interface is typically
delocalized.

5.3
Estimation of Statistical Errors

We now return to the problem of judging
the time needed for having reasonably
small errors in Monte-Carlo sampling. If
the subsequent configurations used were
uncorrelated, we simply could use Eq. (15),
but in the case of correlations we have
rather

〈(δA)2〉 =
〈
1

n

n∑
µ=1

Aµ − 〈A〉

2〉

= 1

n


〈A2〉 − 〈A〉2 + 2

n∑
µ=1

(
1 − µ

n

)

× (〈A0Aµ〉 − 〈A〉2)


 . (27)

Now we remember that a time tµ =
µδt is associated with the Monte-Carlo
process, δt being the time interval between
two successive observations Aµ, Aµ+1.

Transforming the summation to a time
integration yields

〈(δA)2〉 = 1

n
(〈A2〉 − 〈A〉2)

×
[

1 + 2

δt

∫ tn

0

(
1 − t

tn

)
φA(t) dt

]
,

(28)

where

φA(t) ≡ 〈A(0)A(t)〉 − 〈A〉2

〈A2〉 − 〈A〉2 .

Defining a relaxation time τA = ∫ ∞
0 dt

φA(t), one obtains for τA � nδt = τobs (the
observation time)

〈(δA)2〉 = 1

n
[〈A2〉 − 〈A〉2]

(
1 + 2τA

δt

)

≈ 2
(

τA

τobs

)
[〈A2〉 − 〈A〉2]. (29)

In comparison with Eq. (15), the dynamic
correlations inherent in a Monte-Carlo
sampling as described by the master
equation, Eq. (17), lead to an enhancement
of the expected statistical error 〈(δA)2〉 by
a ‘‘dynamic factor’’ 1 + 2τA/δt (sometimes
also called the ‘‘statistical inefficiency’’).

This dynamic factor is particularly cum-
bersome near second-order phase transi-
tions (τA diverges: critical slowing down)
and near first-order phase transitions (τA

diverges at phase coexistence, because of
the large life-time of metastable states).
Thus, even if one is interested only in
static quantities in a Monte-Carlo simu-
lation, understanding the dynamics may
be useful for estimating errors. Also the
question of how many configurations (M0)
must be omitted at the start of the averag-
ing for the sake of equilibrium [Eq. (18)]
can be formally answered in terms of a
nonlinear relaxation function

φ(nl)(t) = 〈A(t)〉T − 〈A(∞)〉T

〈A(0)〉T − 〈A(∞)〉T
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and its associated time τ
(nl)
A = ∫ ∞

0 φ
(nl)
A (t)

dt by the condition tM0 � τ
(nl)
A .

6
Quantum Monte-Carlo Techniques

6.1
General Remarks

Development of Monte-Carlo techniques
to study ground-state and finite-tempe-
rature properties of interacting quantum
many-body systems is an active area of
research (for reviews see Ceperley and
Kalos, 1979; Schmidt and Kalos, 1984;
Kalos, 1984; Berne and Thirumalai, 1986;
Suzuki, 1986; Schmidt and Ceperley,
1992; De Raedt and von der Linden,
1992). These methods are of interest
for problems such as the structure of
nuclei (Carlson, 1988) and elementary
particles (De Grand, 1992), superfluidity
of 3He and 4He (Schmidt and Ceperley,
1992), high-Tc superconductivity (e.g.,
Frick et al., 1990), magnetism (e.g., Reger
and Young, 1988), surface physics (Marx
et al., 1993), etc. Despite this widespread
interest, much of this research has the
character of ‘‘work in progress’’ and hence
cannot feature more prominently in the
present article. Besides, there is not just
one quantum Monte-Carlo method, but
many variants exist: variational Monte
Carlo (VMC), Green’s-function Monte
Carlo (GFMC), projector Monte Carlo
(PMC), path-integral Monte Carlo (PIMC),
grand canonical quantum Monte Carlo
(GCMC), world-line quantum Monte Carlo
(WLQMC), etc. Some of these (like VMC,
GFMC) address ground-state properties,
others (like PIMC) finite temperatures.
Here only the PIMC technique will be
briefly sketched, following Gillan and
Christodoulos (1993).

6.2
Path-Integral Monte-Carlo Methods

We wish to calculate thermal averages for
a quantum system and thus rewrite Eqs.
(10) and (11) appropriately,

〈A〉 = 1

Z
Tr exp

(
− Ĥ

kBT

)
Â,

Z = Tr exp

(
− Ĥ

kBT

)
, (30)

using a notation that emphasizes the
operator character of the Hamiltonian Ĥ

and of the quantity Â associated with the
variable A that we consider. For simplicity,
we consider first a system of a single
particle in one dimension acted on by a
potential V(x). Its Hamiltonian is

Ĥ = − h̄2

2m

d2

dx2 + V(x). (31)

Expressing the trace in the position repre-
sentation, the partition function becomes

Z =
∫

dx

〈
x

∣∣∣∣∣exp

(
−Ĥ

kBT

)∣∣∣∣∣ x

〉
, (32)

where |x〉 is an eigenvector of the position
operator. Writing exp(−Ĥ /kBT) formally
as [exp(−Ĥ /kBTP)]P, where P is a positive
integer, we can insert a complete set of
states between the factors:

Z =
∫

dx1 . . .

∫
dxP

〈
x1

∣∣∣∣∣exp

(
−Ĥ

kBTP

)∣∣∣∣∣ x2

〉

〈x2| . . . |xP〉
〈

xP

∣∣∣∣∣exp

(
−Ĥ

kBTP

)∣∣∣∣∣ x1

〉
.

(33)

For large P, it is a good approximation
to ignore the fact that kinetic and potential
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energy do not commute. Hence, one gets〈
x

∣∣∣∣∣exp

(
−Ĥ

kBTP

)∣∣∣∣∣ x′
〉

≈
(

kBTmP

2π h̄2

)1/2

× exp
[−kBTmP

2π h̄2 (x − x′)2
]

× exp
{ −1

2kBTP
[V(x) + V(x′)]

}
, (34)

and

Z ≈
(

kBTmP

2π h̄2

)P/2

×
∫

dx1 . . .

∫
dxP exp

{
− 1

kBT

× 1

2

P∑
s=1

κ(xs − xs+1)
2

+ P−1
P∑

s=1

V(xs)

}
, (35)

where

κ ≡
(

kBT

h̄

)2

mP. (36)

In the limit P → ∞, Eq. (35) becomes
exact. Apart from the prefactor, Eq. (35)
is precisely the configurational partition
function of a classical system of a ring
polymer, consisting of P beads coupled by
harmonic springs with spring constant κ .
Each bead is under the action of a potential
V(x)/P.

This approach is straightforwardly gen-
erated to a system of N interacting quan-
tum particles – one ends up with a system
of N classical cyclic ‘‘polymer’’ chains. As
a result of this isomorphism, the Monte-
Carlo method developed for simulating
classical systems can be carried over to
such quantum-mechanical problems, too.
It is also easy to see that the system
always behaves classically at high tempera-
tures – κ gets very large, and then the cyclic
chains contract essentially to a point, while

at low temperatures they are spread out,
representing zero-point motion. However,
PIMC becomes increasingly difficult at low
temperatures, since P has to be the larger
the lower T : If σ is a characteristic distance
over which the potential V(x) changes, one
must have h̄2/mσ 2 � kBTP in order that
two neighbors along the ‘‘polymer chain’’
are at a distance much smaller than σ .
In PIMC simulations, one empirically de-
termines and uses that P beyond which
the thermodynamic properties do not ef-
fectively change.

This approach can be generalized im-
mediately to the density matrix ρ(x − x′)
= 〈x| exp(−Ĥ /kBT)|x′〉, while there are
problems with the calculation of time-
displaced correlation functions 〈A(t)B(0)〉,
where t is now the true time (associated
with the time evolution of states follow-
ing from the Schrödinger equation, rather
than the ‘‘time’’ of Sec. 4.3 related to the
master equation).

The step leading to Eq. (34) can
be viewed as a special case of the
Suzuki–Trotter formula (Suzuki, 1986)

exp(Â+B̂) = lim
P→∞

[
exp

(
Â

P

)
exp

(
B̂

P

)]P

,

(37)

which is also used for mapping d-
dimensional quantum problems on lat-
tices to equivalent classical problems (in
d + 1 dimensions, because of the addi-
tional ‘‘Trotter direction’’ corresponding to
the imaginary time direction of the path-
integral).

6.3
An Application Example: the Momentum
Distribution of Fluid 4He

We now consider the dynamic structure
factor S(k, ω), which is the Fourier trans-
form of a time-displaced pair correlation
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function of the density at a point r1 at time
t1 and the density at point r2 at time t2
[h̄k being the momentum transfer and h̄ω

the energy transfer of an inelastic scatter-
ing experiment by which one can measure
S(k, ω)]. In the ‘‘impulse approximation,’’
the dynamic structure factor S(k, ω) can
be related to the Fourier transform of the
single-particle density matrix ρ1(r), which
for 4He can be written in terms of the wave
function ψ(r) as ρ1(r) = 〈ψ+(r′ + r)ψ(r)〉.
This relation is

S(k, ω) ∝ J(Y) = 1

π

∫ ∞

0
ρ1(r) cos(Yr) dr,

where Y ≡ m(ω − k2/2m)/k (West, 1975).
Since S(k,ω) has been measured via
neutron scattering (Sokol et al., 1989),
a comparison between experiment and
simulation can be performed without
adjustable parameters (Fig. 2). Thus, the
PIMC method yields accurate data in good
agreement with experiment.

The studies of 4He have also yielded
qualitative evidence for superfluidity (Cep-
erley and Pollock, 1987). For a quantitative
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Fig. 2 The measured momentum distribution
J(Y) of 4He at T = 3.3 K (circles, from Sokol
et al., 1989) compared with the PIMC result of
Ceperley and Pollock (1987) (solid line). From
Schmidt and Ceperley (1992)

analysis of the λ transition, a careful
assessment of finite-size effects (Fig. 1) is
needed since one works with very small
particle numbers (of the order of 102 4He
atoms only). This has not been possible so
far.

6.4
A Few qualitative Comments on Fermion
Problems

Particles obeying Fermi–Dirac statistics
(such as electrons or 3He, for instance)
pose particular challenges to Monte-Carlo
simulation. If one tries to solve the
Schrödinger equation of a many-body
system by Monte-Carlo methods, one ex-
ploits its analogy with a diffusion equation
(Ceperley and Kalos, 1979; Kalos, 1984).
As mentioned at various places in this
article, diffusion processes correspond to
random walks and are hence accessible to
Monte-Carlo simulation. However, while
the diffusion equation (for one particle)
considers the probability P(r,t) that a par-
ticle starting at time t = 0 at the origin has
reached the position r at time t, the wave
function ψ in the Schrödinger equation
is not positive definite. This fact creates
severe problems for wave functions of
many-fermion systems, since these wave
functions must be antisymmetric, and the
‘‘nodal surface’’ in configuration space
(where ψ changes sign) is unknown.

Formally the difficulty of applying
importance-sampling techniques to dis-
tributions ρ(r) that are not always pos-
itive can be overcome by splitting ρ(r)
into its sign, s = sign(ρ), and its abso-
lute value, ρ = s|ρ|, and one can use
ρ̃(r) = |ρ(r)|/ ∫ |ρ(r)|d3r as a probability
density for importance sampling, and ab-
sorb the sign of ρ(r) in the quantity to
be measured (e.g., De Raedt and von der
Linden, 1992). Symbolically, the average of
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an observable A is obtained as

〈A〉 =

∫
d3rA(r)s(r)ρ̃(r)∫

s(r)ρ̃(r)d3r
= 〈As〉ρ̃

〈s〉ρ̃ ,

where 〈. . .〉ρ̃ means averaging with ρ̃

as weight function. However, as is not
unexpected, using ρ̃ one predominantly
samples unimportant regions in phase
space; therefore, in sampling the sign
〈s〉ρ̃ , one has large cancellations from
regions where the sign is negative, and,
for N degrees of freedom, one gets 〈s〉ρ̃ ∝
exp(−const. × N). This difficulty is known
as the ‘‘minus-sign problem’’ and still
hampers applications to fermion problems
significantly!

Sometimes it is possible to start with
a trial wave function where nodes are
a reasonable first approximation to the
actual nodes, and, starting with the
population of random walks from this
fixed-node approximation given by the trial
function, one now admits walks that cross
this nodal surface and sample the sign
as indicated above. In this way, it has
been possible to estimate the exchange-
correlation energy of the homogeneous
electron gas (Ceperley and Alder, 1980)
over a wide range of densities very well.

7
Lattice Gauge Theory

Monte-Carlo simulation has become the
primary tool for nonperturbative quan-
tum chromodynamics, the field theory of
quarks and hadrons and other elemen-
tary particles (e.g., Rebbi, 1984; De Grand,
1992). In this section, we first stress the ba-
sic problem, to make the analogy with the
calculations of statistical mechanics clear.

Then we very briefly highlight some of the
results that have been obtained so far.

7.1
Some Basic Ideas of Lattice Gauge Theory

The theory of elementary particles is a field
theory of gauge fields and matter fields.
Choice of a lattice is useful to provide a cut-
off that removes the ultraviolet divergences
that would otherwise occur in these quan-
tum field theories. The first step, hence, is
the appropriate translation from the four-
dimensional continuum (3 space + 1 time
dimensions) to the lattice.

The generating functional (analogous
to the partition function in statistical
mechanics) is

Z = ∫ DADψ̄Dψ exp[−Sg(A, ψ̄, ψ)],
(38)

where A represents the gauge fields, ψ̄ and
ψ represent the (fermionic) matter field,
Sg is the action of the theory (containing
a coupling constant g, which corresponds
to inverse temperature in statistical me-
chanics as const./g2 → 1/kBT), and the
symbols ∫ D stand for functional integra-
tion. The action of the gauge field itself
is, using the summation convention that
indices that appear twice are summed over,

SG = 1
4 ∫ d4xFα

µv(x)Fµv
α (x), (39)

Fα
µv being the fields that derive from the

vector potential Aα
µ(x). These are

Fα
µv(x) = ∂µAα

v (x) − ∂vAα
µ(x)

+ gf α
βγ Aβ

µ(x)Aγ
v (x), (40)

f α
βγ being the structure constants of the

gauge group, and g a coupling constant.
The fundamental variables that one then

introduces are elements Uµ(x) of the
gauge group G, which are associated with
the links of the four-dimensional lattice,
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connecting x and a nearest neighbor point
x + µ:

Uµ(x) = exp[igaTαAα
µ(x)],

[Um(x + m)]† = Um(x), (41)

where a is the lattice spacing and Tα a
group generator. Here U† denotes the
Hermitean conjugate of U. Wilson (1974)
invented a lattice action that reduces in the
continuum limit to Eq. (39), namely

SU

kBT
= 1

g2

∑
n

∑
µ>v

Re TrUµ(n)

× Uv(n + µ)U
†
µ(n + v)U

†
v (n),

(42)

where the links in Eq. (42) form a closed
contour along an elementary plaquette of
the lattice.

Using Eq. (42) in Eq. (38), which amo-
unts to the study of a ‘‘pure’’ gauge
theory (no matter fields), we recognize that
the problem is equivalent to a statistical
mechanics problem (such as spins on
a lattice), the difference being that now
the dynamical variables are the gauge
group elements Uµ(n). Thus importance-
sampling Monte-Carlo algorithms can be
put to work, just as in statistical mechanics.

In order to include also matter fields,
one starts from a partition function of the
form

Z =
∫

DUDψ̄Dψ

× exp

{
− SU

kB̄T
+

nf∑
i=1

ψ̄Mψ

}

=
∫

DU(detM)nf exp
(

− SU

kBT

)
, (43)

where we have assumed fermions with
nf degenerate ‘‘flavors.’’ It has also been
indicated that the fermion fields can be

integrated out analytically, but the price is
that one has to deal with the ‘‘fermion de-
terminant’’ of the matrix M. In principle,
for any change of the U’s this determinant
needs to be recomputed; together with the
fact that one needs to work on rather large
lattices in four dimensions, in order to re-
produce the continuum limit, this problem
is responsible for the huge requirement of
computing resources in this field.

It is clear that lattice gauge theory cannot
be explained in depth on two pages – we
only intend to give a vague idea of what
these calculations are about to a reader
who is not familiar with this subject.

7.2
A Recent Application

Among the many Monte-Carlo studies of
various problems (which include problems
in cosmology, like the phase transition
from the quark-gluon plasma to hadronic
matter in the early universe), we focus here
on the problem of predicting the masses
of elementary particles. Butler et al. (1993)
have used a new massively parallel super-
computer with 480 processors (‘‘GF11’’)
exclusively for one year to run lattice
sizes ranging from 83 × 32 to 243 × 32,
243 × 36, and 30 × 322 × 40. Their pro-
gram executes at a speed of more than
5 Gflops (Giga floating point operations
per second), and the rather good statistics
reached allowed a meaningful elimination
of finite-size effects by an extrapolation
to the infinite-volume limit. This problem
is important, since the wave function of
a hadron is spread out over many lattice
sites.

Even with this impressive effort, several
approximations are necessary:

1. The fermion determinant mentioned
above is neglected (this is called
‘‘quenched approximation’’).
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Fig. 3 For a 30 × 322 × 40 lattice at
(kBT)−1 = 6.17, m2

π , mρ , mN, and m
 in units
of the physical rho meson mass mρ(mn), as
functions of the quark mass mq in units of the
strange quark mass ms. Particles studied are
pion, rho meson, nucleon, and delta baryon,
respectively. From Butler et al. (1993)

2. One cannot work at the (physically
relevant) very small quark mass mq, but
rather has to take data on the various
hadron masses for a range of quark
masses and extrapolate these data to
zero (Fig. 3).

After a double extrapolation (mq → 0, lat-
tice spacing at fixed volume → 0), one
obtains mass ratios that are in very sat-
isfactory agreement with experiment. For
example, for the nucleon the mass ra-
tio for the finite volume is mN/mρ =
1.285 ± 0.070, extrapolated to infinite vol-
ume 1.219 ± 0.105, the experimental value
being 1.222 (all masses in units of the mass
mρ of a rho meson).

8
Selected Comments on Applications in
Classical Statistical Mechanics of
Condensed-Matter Systems

In this section, we mention a few applica-
tions very briefly, just in order to give the
flavor of the type of work that is done and

the kind of questions that are asked and an-
swered by Monte-Carlo simulations. More
extensive reviews can be found in the liter-
ature (Binder, 1976, 1979, 1984, 1992b).

8.1
Metallurgy and Materials Science

A widespread application of Monte-Carlo
simulation in this area is the study of
order-disorder phenomena in alloys: One
tests analytical approximations to calculate
phase diagrams, such as the cluster
variation (CV) method, and one tests to
what extent a simple model can describe
the properties of complicated materials.

An example (Fig. 4) shows the order
parameter for long-range order (LRO)
and short-range order (SRO, for nearest
neighbors) as function of temperature
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0.0
0.6 1.0 1.2T/TC0.8
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Cu3 Au
MC
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A3 B

LRO
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Kittler & Falicov

Fig. 4 Long-range order parameter (LRO) and
absolute value of nearest-neighbor short-range
order parameter (SRO) plotted versus
temperature T (in units of the temperature Tc
where the first-order transition occurs) for a
nearest-neighbor model of binary alloys on the
face-centered cubic lattice with A3B structure.
Open circles: experimental data for Cu3Au;
broken and dash-dotted curves: results of
analytical theories. Full dots: Monte-Carlo results
obtained from a simulation in the semi-grand
canonical ensemble (chemical potential
difference between A and B atoms treated as
independent variable); circles with crosses:
values obtained from a canonical ensemble
simulation (concentration of B atoms fixed at
25%). From Binder et al. (1981)
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for a model of Cu3Au alloys on the
fcc lattice. Here an Ising model with
antiferromagnetic interactions between
nearest neighbors only is studied, and
the Monte-Carlo data (filled symbols
and symbols with crosses) are compared
to CV calculations (broken curve) and
other analytical calculations (dash-dotted
curve) and to experiment (open circles).
The simulation shows that the analytical
approximations describe the ordering of
the model only qualitatively. Of course,
there is no perfect agreement with the
experimental data either; this is to be
expected, of course, since in real alloys
the interaction range is considerably larger
than just extending to nearest neighbors
only.

8.2
Polymer Science

One can study phase transitions not only
for models of magnets or alloys, of course,
but also for complex systems such as mix-
tures of flexible polymers. A question heav-
ily debated in the recent literature is the
dependence of the critical temperature of
unmixing of a symmetric polymer mixture
(both constituents have the same degree of
polymerization NA = NB = N) on chain
length N. The classical Flory–Huggins
theory predicted Tc ∝ N, while a recent in-
tegral equation theory predicted Tc ∝ √

N
(Schweizer and Curro, 1990). This law
would lead in the plot of Fig. 5 to a
straight line through the origin. Obviously,
the data seem to rule out this behavior,
and are rather qualitatively consistent with
Flory–Huggins theory (though the latter
significantly overestimates the prefactor in
the relation Tc ∝ N).

Polymer physics provides examples for
many scientific questions where simu-
lations could contribute significantly to

Fig. 5 Normalized critical temperature kBT/Nε

of a symmetric polymer mixture (N = chain
length, ε = energy parameter describing the
repulsive interaction between A-B pairs of
monomers) plotted versus N−1/2. Data are
results of simulations for the bond-fluctuation
model, using N in the range from N = 16 to
N = 256, as indicated. The data are consistent
with an asymptotic extrapolation
kBTc/ε ≈ 2.15N, while Flory–Huggins theory (in
the present units) would yield kBTc/ε ≈ 7N, and
the integral-equation theory kBTc/ε ∝ √

N. From
Deutsch and Binder (1992)

provide a better understanding. Figure 6
provides one more example (Paul et al.,
1991a). The problem is to provide truly
microscopic evidence for the reptation
concept (Doi and Edwards, 1986). This
concept implies that, as a result of ‘‘en-
tanglements’’ between chains in a dense
melt, each chain moves snakelike along
its own contour. This behavior leads to
a special behavior of mean square dis-
placements: After a characteristic time
τe, one should see a crossover from a
law g1(t) ≡ 〈[ri(t) − ri(0)]2〉 ∝ t1/2 (Rouse
model) to a law g1(t) ∝ t1/4, and, at a
still later time (τR), one should see an-
other crossover to g1(t) ∝ t1/2 again. At the
same time, the center of gravity displace-
ment should also show an intermediate
regime of anomalously slow diffusion,
g3(t) ∝ t1/2. Figure 6 provides qualitative
evidence for these predictions – although
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Fig. 6 Log-log plot of the mean square displacements of inner monomers
[g1(t)] and of the center of gravity of the chain [g3(t)] versus time t
(measured in units of Monte-Carlo steps, while lengths are measured in
units of the lattice spacing). Straight lines show various power laws as
indicated; various characteristic times are indicated by arrows (see text).
Data refer to the bond-fluctuation model on the simple cubic lattice, for an
athermal model of a polymer melt with chain length N = 200 and a volume
fraction φ = 0.5 of occupied lattice sites. From Paul et al. (1991a)

the effective exponents indicated do not
quite have the expected values. A chal-
lenge for further theoretical explanation
is the anomalous center-of-gravity diffu-
sion in the initial Rouse regime, g3(t) ∝
t0.8.

While this is an example where dy-
namic Monte-Carlo simulations are used
to check theories – and pose further the-
oretical questions – one can also compare
to experiment if one uses data in suitably
normalized form. In Fig. 7, the diffusion
constant D of the chains is normalized by
its value in the Rouse regime (limit for
small N) and plotted versus N/Ne where
the characteristic ‘‘entanglement chain
length’’ Ne is extracted from τe shown in
Fig. 6 (see Paul et al., 1991a, b, for details).
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Fig. 7 Log-log plot of the self-diffusion constant
D of polymer chains, normalized by the Rouse
diffusivity, versus N/Ne (Ne = entanglement
chain length, estimated independently and
indicated in the inset). Circles: from Monte-Carlo
simulations of Paul et al. (1991b); squares: from
molecular dynamics simulations (Kremer and
Grest, 1990); triangles: experimental data
(Pearson et al., 1987). From Paul et al. (1991b)
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The Monte-Carlo data presented in this
scaled form agree with results from both
a molecular dynamics (MD) simulation
(Kremer and Grest, 1990) and experiment
on polyethylene (PE) (Pearson et al., 1987).

This example also shows that, for slow
diffusive motions, Monte-Carlo simulation
is competitive to molecular dynamics,
although it does not describe the fast
atomic motions realistically.

8.3
Surface Physics

Our last example considers phenomena far
from thermal equilibrium. Studying the
ordering behavior of ordered superstruc-
tures, we treat the problem where initially
the adatoms are adsorbed at random,
and one gradually follows the formation
of ordered domains out of initially dis-
ordered configurations. In a scattering
experiment, one expects to see this by the
gradual growth of a peak at the Bragg
position qB. Figure 8 shows a simulation

Fig. 8 Structure factor S(q,t) versus wavevector
q at various times t (in units MCS per lattice
site), after the system was started in a completely
random configuration. Temperature (measured
in units of the nearest-neighbor repulsion Wnn)
is 1.33 (Tc ≈ 2.07 in these units), and coverage
θ = 1

2 . From Sadiq and Binder (1984)

Fig. 9 Structure factor of Fig. 8 plotted in scaled
form, normalizing S(q,t) by its peak value S(π, t)
and normalizing q/π − 1 by the halfwidth
σ(t) = L−1(t), where L(t) thus defined is the
characteristic domain size. From Sadiq and
Binder (1984)

for the case of the (2 × 1) structure on
the square lattice, where the Bragg po-
sition is at the Brillouin-zone boundary
(qB = π if lengths are measured in units
of the lattice spacing). Here a lattice gas
with repulsive interactions between near-
est and next-nearest neighbors (of equal
strength) was used (Sadiq and Binder,
1984), using a single–spin-flip kinetics (if
the lattice gas is translated to an Ising spin
model), as is appropriate for a descrip-
tion of a monolayer in equilibrium with
surrounding gas (the random ‘‘spin flips’’
then correspond to random evaporation-
condensation events). Figure 9 presents
evidence that these data on the kinetics
of ordering satisfy a scaling hypothesis,
namely

S(q, t) = [L(t)]2S̃(|q − qB|L(t)), (44)

where S̃ is a scaling function. This
hypothesis, Eq. (44), was first proposed on
the basis of simulations, and later it was
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established to describe experimental data
as well.

Of course, surface physics provides
many more examples where simulations
have been useful; see Binder and Landau
(1989) for a review.

9
Concluding Remarks

In this article, the basic features of the
most widely used numerical techniques
that fall into the category of Monte-
Carlo calculations were described. There
is a vast literature on the subject – the
author estimates the number of papers
using Monte-Carlo methods in condensed-
matter physics of the order of 104, in lattice
gauge theory of the order of 103! Thus
many important variants of algorithms
could not be treated here, and interesting
applications (e.g., the study of neural-
network models) were completely omitted.

There also exist other techniques for the
numerical simulation of complex systems,
which sometimes are an alternative ap-
proach to Monte-Carlo simulation. The
molecular dynamics (MD) method (nu-
merical integration of Newton’s equations)
has already been mentioned in the text, and
there exist combinations of both meth-
ods (‘‘hybrid Monte Carlo,’’ ‘‘Brownian
dynamics,’’ etc.). A combination of MD
with the local-density approximation of
quantum mechanics is the basis of the
Car–Parrinello method.

Problems like that shown in Figs. 8 and
9 can also be formulated in terms of
numerically solving appropriate differen-
tial equations, which may in turn even
be discretized to cellular automata. When
planning a Monte Carlo simulation, hence,
some thought to the question ‘‘When
which method?’’ should be given.

Glossary

Critical Slowing Down: Divergence of the
relaxation time of dynamic models of
statistical mechanics at a second-order
phase transition (critical point).

Detailed Balance Principle: Relation link-
ing the transition probability for a move
and the transition probability for the in-
verse move to the ratio of the probability for
the occurrence of these states in thermal
equilibrium. This condition is sufficient
for a Markov process to tend toward ther-
mal equilibrium.

Ergodicity: Property that ensures equality
of statistical ensemble averages (such
as the ‘‘canonic ensemble’’ of statistical
mechanics) and time averages along the
trajectory of the system through phase
space.

Finite-Size Scaling: Theory that describes
the finite-size-induced rounding of singu-
larities that would occur at phase transi-
tions in the thermodynamic limit.

Heat-Bath Method: Choice of transition
probability where the probability to ‘‘draw’’
a trial value for a degree of freedom does
not depend on its previous value.

Importance Sampling: Monte-Carlo me-
thod that chooses the states that are gen-
erated according to the desired probability
distribution. For example, for statistical
mechanics applications, states are chosen
with weights proportional to the Boltz-
mann factor.

Lattice Gauge Theory: Field theory of
quarks and gluons in which space and time
are discretized into a four-dimensional lat-
tice, gauge field variables being associated
to the links of the lattice.
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Master Equation: Rate equation describing
the ‘‘time’’ evolution of the probability that
a state occurs as a function of a ‘‘time’’
coordinate labeling the sequence of states
(in the context of importance-sampling
Monte-Carlo methods).

Molecular-Dynamics Method: Simulation
method for interacting many-body systems
based on numerical integration of the
Newtonian equations of motion.

Monte-Carlo Step: Unit of (pseudo) time
in (dynamically interpreted) importance
sampling where, on the average, each
degree of freedom in the system gets one
chance to be changed (or ‘‘updated’’).

Random Number Generator (RNG): Com-
puter subroutine to produce pseudoran-
dom numbers that are approximately not
correlated with each other and approxi-
mately uniformly distributed in the in-
terval from zero to one. RNGs typically
are strictly periodic, but the period is large
enough that, for practical applications, this
periodicity does not matter.

Simple Sampling: Monte-Carlo method
that chooses states uniformly and at ran-
dom from the available phase space.

Transition Probability: Probability that con-
trols the move from one state to the next
one in a Monte-Carlo process.
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Further Reading

A textbook describing for the beginner how to
learn to write Monte-Carlo programs and to
analyze the output generated by them has
been written by Binder, K., Heermann, D. W.
(1988), Monte Carlo Simulation in Statistical
Physics: An Introduction, Berlin: Springer. This
book emphasizes applications of statistical
mechanics such as random walks, percolation,
and the Ising model.

A useful book that gives much weight to
applications outside of statistical mechanics
is Kalos, M. H., Whitlock, P. A. (1986), Monte
Carlo Methods, Vol. 1, New York: Wiley.

A more general but pedagogic introduction to
computer simulation is presented in Gould,

H., Tobochnik, J. (1988), An Introduction to
Computer Simulation Methods/Applications to
Physical Systems, Parts 1 and 2, Reading, MA:
Addison-Wesley.

A rather systematic collection of applications of
Monte-Carlo studies in statistical mechanics
and condensed matter physics has been
compiled in a series of books edited by
the author of this article: Binder, K. (1979)
(Ed.), Monte Carlo Methods in Statistical
Physics, Berlin: Springer; Binder, K. (1984)
(Ed.), Applications of the Monte Carlo Method
in Statistical Physics, Berlin: Springer; and
Binder, K. (1992) (Ed.), The Monte Carlo Method
in Condensed Matter Physics, Berlin: Springer.

Finally we draw attention to two important
areas which are only briefly covered in the
present article: For quantum problems, see
Suzuki, M. H. (1987) (Ed.), Quantum Monte
Carlo Methods, Berlin: Springer; Doll, J. D.,
Gubernaitis, J. E. (1990) (Eds.), Quantum
Simulations, Singapore: World Scientific. For
lattice gauge theory, see Bunk, B., Mütter, K.
H., Schilling, K. (1986) (Eds.), Lattice Gauge
Theory, A Challenge in Large-Scale Computing,
New York: Plenum; De Grand, T. (1992), in:
H. Gausterer, C. B. Lang (Eds.), Computational
Methods in Field Theory, Berlin: Springer, pp.
159–203; Smit, J., van Baal, P. (1993) (Eds.),
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Introduction
Numerical methods are an indispensable
tool in solving many problems that arise in
science and engineering. In this article, we
briefly survey a few of the most common
mathematical problems and review some
numerical methods to solve them.

As can be seen from the table of contents,
the topics covered in this survey are
those that appear in most introductory
numerical methods books. However, our
discussion of each topic is more brief
than is normally the case in such texts
and we frequently provide references to
more advanced topics that are not usually
considered in introductory books.

Definitions of the more specialized
mathematical terms used in this survey
can be found in the Glossary at the
end of the article. We also list some

mathematical symbols and abbreviations
used throughout the survey in the two
sections following the Glossary.

1
Floating-Point Arithmetic

In this section, we consider the represen-
tation of floating-point numbers, floating-
point arithmetic, rounding errors, and
the effects of inexact arithmetic in some
simple examples. For a more detailed dis-
cussion of these topics, see Wilkinson
(1965) and Goldberg (1991) or an intro-
ductory numerical methods text.

1.1
The IEEE Standard

The approval of the IEEE (Institute
of Electrical and Electronics Engineers)
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Standard for Binary Floating-Point
Arithmetic (IEEE, 1985) was a significant
advance for scientific computation. Not
only has this led to cleaner floating-point
arithmetic than was commonly available
previously, thus greatly facilitating the
development of reliable, robust numerical
software, but, because many computer
manufacturers have since adopted the
standard, it has significantly increased the
portability of programs.

The IEEE standard specifies both single-
and double-precision floating-point num-
bers, each of the form

(−1)s × b0.b1b2 · · · bp−1 × 2E, (1)

where s = 0 or 1, (−1)s is the sign
of the number, bi = 0 or 1 for i =
0, . . . , p − 1; b0.b1b2 · · · bp−1 is the sig-
nificand (sometimes called the man-
tissa) of the number, and the exponent
E is an integer satisfying Emin ≤ E ≤
Emax. In single-precision, p = 24, Emin =
−126 and Emax = +127, whereas, in
double-precision, p = 53, Emin = −1022,
and Emax = +1023. We emphasize that
a number written in the form (1) is binary.
So, for example, 1.100 · · · 0 × 20 written
in the format (1) is equal to the decimal
number 1.5

A normalized number is either 0 or a
floating-point number of the form (1) with
b0 = 1 (and so it is not necessary to store
the leading bit). In single-precision, this
provides the equivalent of 7 to 8 significant
decimal digits with positive and negative
numbers having magnitudes roughly in
the range [1.2 × 10−38, 3.4 × 10+38]. In
double-precision, this is increased to about
16 significant decimal digits and a range
of roughly [2.2 × 10−308, 1.8 × 10+308].

An underflow occurs when an operation
produces a nonzero result in the range
(−2Emin , +2Emin). In the IEEE standard, the
default is to raise an underflow exception

flag and to continue the computation
with the result correctly rounded to the
nearest denormalized number or zero. A
denormalized floating-point number has
the form (1) with E = Emin and b0 = 0.
Because denormalized numbers use some
of the leading digits from the significand
to represent the magnitude of the number,
there are fewer digits available to represent
its significant digits. Using denormalized
numbers in this way for underflows is
sometimes referred to as gradual underflow.
Many older non-IEEE machines do not
have denormalized numbers and, when
an underflow occurs, they either abort the
computation or replace the result by zero.

An overflow occurs when an operation
produces a nonzero result outside the
range of floating-point numbers of the
form (1). In the IEEE standard, the default
is to raise an overflow exception flag and to
continue the computation with the result
replaced by either +∞ or −∞, depending
on the sign of the overflow value. Many
older non-IEEE machines do not have +∞
or −∞ and, when an overflow occurs, they
usually abort the computation.

The IEEE standard also includes at least
two NaNs (Not-a-Number) in both preci-
sions, representing indeterminate values
that may arise from invalid or inexact op-
erations such as (+∞) + (−∞), 0 × ∞,
0/0, ∞/∞, or

√
x for x < 0. When a NaN

arises in this way, the default is to raise an
exception flag and to continue the compu-
tation. This novel feature is not available
on most older non-IEEE machines.

It follows immediately from the format
(1) that floating-point numbers are discrete
and finite, whereas real numbers are dense
and infinite. As a result, an arithmetic
operation performed on two floating-point
numbers may return a result that cannot
be represented exactly in the form (1) in
the same precision as the operands.
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A key feature of the IEEE standard is
that it requires that the basic arithmetic
operations +, −, ×, /, and √ return prop-
erly rounded results. That is, we may think
of the operation as first being done exactly
and then properly rounded to the preci-
sion of the result. An operation with ±∞
is interpreted as the limiting case of the
operation with an arbitrary large value in
place of the ∞, when such an interpreta-
tion makes sense; otherwise the result is a
NaN. An operation involving one or more
NaNs returns a NaN.

The default rounding mode is round-
to-nearest; that is, the exact result of the
arithmetic operation is rounded to the
nearest floating-point number, where, in
the case of a tie, the floating-point number
with the least significant bit equal to 0 is
selected. The standard also provides for
directed roundings (round-towards- +∞,
round-towards- −∞, and round-towards-
0), but these are not easily accessed from
most programming languages.

Another important feature of the IEEE
standard is that comparisons are exact
and never overflow or underflow. The
comparisons <, >, and = work as expected
with finite floating-point numbers of the
form (1) and −∞ < x < +∞ for any
finite floating-point number x. NaNs
are unordered and the comparison of
a NaN with any other value – including
itself – returns false.

The IEEE standard also provides for
extended single- and double-precision
floating-point numbers, but these are not
easily accessed from most programming
languages, and so we do not discuss them
here.

As noted above, the IEEE standard has
been widely adopted in the computer
industry, but there are several important
classes of machines that do not conform to
it, including Crays, DEC Vaxes, and IBM

mainframes. Although their floating-point
numbers are similar to those described
above, there are important differences.
Space limitations, though, do not permit
us to explore these systems here.

1.2
Rounding Errors

Since IEEE standard floating-point arith-
metic returns the correctly rounded result
for the basic operations +, −, ×, /, and√, one might expect that rounding errors
would never pose a problem, particularly in
double-precision computations. Although
rounding errors can be ignored in many
cases, the examples in the next subsection
show that they may be significant even
in simple calculations. Before considering
these examples, though, we need to de-
fine an important machine constant and
describe its significance in floating-point
computation.

Machine epsilon, often abbreviated mach-
eps, is the distance from 1 to the next larger
floating-point number. For numbers of the
form (1), mach-eps = 21−p. So for IEEE
single- and double-precision numbers,
mach-eps is 2−23 ≈ 1.19209 × 10−7 and
2−52 ≈ 2.22045 × 10−16, respectively.

A common alternative definition of
machine epsilon is that it is the smallest
positive floating-point number ∈ such that
1+ ∈> 1 in floating-point arithmetic. We
prefer the definition given in the previous
paragraph, and use it throughout this
section, because it is independent of the
rounding mode and so is characteristic of
the floating-point number system itself,
while the alternative definition given in
this paragraph depends on the rounding
mode as well. We also assume throughout
this section that round-to-nearest is in
effect. The discussion below, though, can
be modified easily for the alternative
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definition of mach-eps and other rounding
modes.

It follows immediately from the floating-
point format (1) that the absolute distance
between floating-point numbers is not uni-
form. Rather, from (1) and the definition
of mach-eps above, we see that the spac-
ing between floating-point numbers in the
intervals [2k, 2k+1) and (−2k+1, −2k] is
mach-eps ×2k for Emin ≤ k ≤ Emax. Thus,
the absolute distance between neighboring
nonzero normalized floating-point num-
bers with the same exponent is uniform,
but the floating-point numbers near 2Emin

are much closer together in an absolute
sense than those near 2Emax . However, the
relative spacing between all nonzero nor-
malized floating-point numbers does not
vary significantly. It is easy to see that, if x1
and x2 are any two neighboring nonzero
normalized floating-point numbers, then

mach-eps

2
≤
∣∣∣∣x1 − x2

x1

∣∣∣∣ ≤ mach-eps.

(2)

As a result, it is more natural to consider
relative, rather than absolute, errors in
arithmetic operations on floating-point
numbers, as is explained in more detail
below.

For x ∈ R, let fl(x) be the floating-point
number nearest to x, where, in the case of
a tie, the floating-point number with the
least significant bit equal to 0 is selected.
The importance of mach-eps stems largely
from the observation that, if fl(x) does not
overflow or underflow, then

fl(x) = x(1 + δ) for some |δ| ≤ u, (3)

where u, the relative roundoff error bound,
satisfies u = mach-eps/2 for round-to-
nearest and u = mach-eps for the other
IEEE rounding modes. Rewriting (3) as

δ = [fl(x) − x]

x
,

we see that δ is the relative error incurred
in approximating x by fl(x), and so (3) is
closely related to (2).

If op is one of +, −, ×, or/and x
and y are two floating-point numbers,
let fl(x op y) stand for the result of
performing the arithmetic operation x
op y in floating-point arithmetic. If no
arithmetic exception arises in the floating-
point operation, then

fl(x op y) = (x op y)(1 + δ) for some

|δ| ≤ u, (4)

where the (x op y) on the right side of (4) is
the exact result of the arithmetic operation.
Similarly, if x is a nonnegative normalized
floating-point number, then

fl(
√

x) = √
x(1 + δ) for some |δ| ≤ u.

(5)

Again, the u in either (4) or (5) is
the relative roundoff error bound and
the δ is the relative error incurred in
approximating x op y by fl(x op y) or

√
x

by fl(
√

x), respectively.
Although the relations (4)–(5) are not

quite as tight as the requirement that
the basic operations +, −, ×, /, and √
return the correctly rounded result, they
are very useful in deriving error bounds
and explaining the effects of rounding
errors in computations.

1.3
The Effects of Inexact Arithmetic: Some
Illustrative Examples

As noted at the start of the last subsection,
since IEEE standard floating-point arith-
metic returns the correctly rounded result
for the basic operations +, −, ×, /, and√, one might expect that rounding errors
would never pose a problem, particularly
in double-precision computations. This,
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though, is not the case. In this subsection
we consider a simple example that illus-
trates some of the pitfalls of numerical
computation.

Suppose that we compute the expression

1 + 1010 − 1010 (6)

in single precision from left to right.
We first compute fl(1 + 1010) = 1010, the
correctly rounded single-precision result.
Then we use this value to compute
fl(1010 − 1010) = 0, without committing
an additional rounding error. Thus, fl((1 +
1010) − 1010) = 0, whereas the true result
is 1.

The key point to note here is
that fl(1 + 1010) = 1010 = (1 + 1010)(1 +
δ), where |δ| = 1/(1 + 1010) < 10−10 <

u = 2−24. So the rounding error that we
commit in computing 1 + 1010 is small
relative to 1 + 1010, the true result of the
first addition, but the absolute error of 1
associated with this addition is not small
compared with the true final answer, 1,
thus illustrating the Rule for Sums:

Although a rounding error is always small
relative to the result that gives rise to it,
it might be large relative to the true final
answer if intermediate terms in a sum are
large relative to the true final answer.

The Rule for Sums is important to re-
member when computing more complex
expressions such as the truncated Tay-
lor series Tk(x) = 1 + x + x2/2 + · · · +
xk/k! ≈ ex, where k is chosen large enough
so that the truncation error

ex − Tk(x) =
∞∑

i=k+1

xi

i!

is insignificant relative to ex. It is easy
to prove that, if x ≥ 0 and k is large
enough, then Tk(x) is a good approxi-
mation to ex. However, if x < 0 and of

moderate magnitude, then the rounding
error associated with some of the in-
termediate terms xi/i! in Tk(x) might
be much larger in magnitude than ei-
ther the true value of Tk(x) or ex. As a
result, fl(Tk(x)), the computed value of
Tk(x), might be completely erroneous, no
matter how large we choose k. For ex-
ample, e−15 ≈ 3.05902 × 10−7, while we
computed fl(Tk(x)) ≈ 2.12335 × 10−2 in
IEEE single-precision arithmetic on a Sun
Sparcstation.

A similar problem is less likely to occur
with multiplications, provided no overflow
or underflow occurs, since from (4)

fl(x1 · x2 · · · xn) = x1 · x2 · · · xn(1 + δ1)

· · · (1 + δn−1), (7)

where |δi| ≤ u for i = 1, . . . , n − 1. More-
over, if nu ≤ 0.1, then (1 + δ1) · · · (1 +
δn−1) = 1 + 1.1nδ for some δ ∈ [−u, u].
Therefore, unless n is very large, fl(x1 ·
x2 · · · xn) is guaranteed to be a good ap-
proximation to x1 · x2 · · · xn. However, it
is not hard to find examples for which
nu � 1 and fl(x1 · x2 · · · xn) is a poor ap-
proximation to x1 · x2 · · · xn.

The example (6) also illustrates another
important phenomenon commonly called
catastrophic cancellation: all the digits in
the second sum, fl(1010 − 1010), cancel,
signaling a catastrophic loss of precision.
Catastrophic cancellation refers also to
the case that many, but not all, of the
digits cancel. This is often a sign that a
disastrous loss of accuracy has occurred,
but, as in this example when we compute
fl(1 + 1010) = 1010 and lose the 1, it is
often the case that the accuracy is lost
before the catastrophic cancellation occurs.

For an example of catastrophic cancella-
tion in a more realistic computation, con-
sider calculating the roots of the quadratic
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ax2 + bx + c by the standard formula

r± = −b ± √
b2 − 4ac

2a
. (8)

We used this formula to compute the
roots of the quadratic x2 − 104x + 1 in
IEEE single-precision arithmetic on a
Sun Sparcstation. The computed roots
were 104 and 0, the larger of which is
accurate, having a relative error of about
10−8, but the smaller one is completely
wrong, the true root being about 10−4.
A similar result usually occurs whenever
|ac|/b2 � 1. The root of larger magnitude
is usually computed precisely, but the
smaller one is frequently very inaccurate as
a result of catastrophic cancellation, since
b2 − 4ac ≈ b2 and so |b| − √

b2 − 4ac ≈ 0.
Although the second of these relations
signals catastrophic cancellation, the loss
of precision occurs in the first.

There is an easy remedy for the loss of
precision due to catastrophic cancellation
in this case. Use (8) to compute r1, the
root of larger magnitude, and then use the
alternative formula r2 = c/ar1 to compute
the smaller one. The relative error in r2 is at
most (1 + u)2 times larger than the relative
error in r1, provided that no overflows or
underflows occur in computing c/ar1.

Another point to note is that, if we
compute (6) from right to left, instead of
left to right, then

fl(1 + (1010 − 1010)) = fl(1 + 0) = 1.

It is not particularly significant that this
computation gives the correct answer, but
what is important is that it illustrates that
floating-point addition is not associative,
although it is commutative, since fl(a + b)
and fl(b + a) are both required to be the
correctly rounded value for a + b = b + a.
Similar results hold for multiplication and
division.

Many other fundamental mathematical
relations that we take for granted do not
hold for floating-point computations. For
example, the result that sin(x) is strictly
increasing for x ∈ (0, π/2) cannot hold in
any floating-point system in which x and
sin(x) are in the same precision, since
there are more floating-point numbers in
the domain (0, π/2) than there are in (0,1),
the range of sin(x).

Finally, we end this section by noting
that overflows and underflows often cause
problems in computations. After an over-
flow, ±∞ or NaN frequently propagates
through the computation. Although this
can sometimes yield a useful result, it is
more often a signal of an error in the
program or its input. On the other hand,
continuing the computation with denor-
malized numbers or zero in place of an
underflow can often yield a useful nu-
merical result. However, there are cases
when this can be disastrous. For example,
if x2 underflows, but y2 is not too close
to the underflow limit, then fl(

√
x2 + y2),

the computed value of
√

x2 + y2, is still
accurate. However, if both x2 and y2 under-
flow to 0, then fl(

√
x2 + y2) = 0, although√

x2 + y2 ≥ max(|x|, |y|) may be far from
the underflow limit.

It is often possible to ensure that
overflows do not occur and that un-
derflows are harmless. For the example
considered above, note that

√
x2 + y2 =

s
√

(x/s)2 + (y/s)2 for any scaling factor
s > 0. If we choose s = 2k for an integer
k ≈ log2[max(|x|, |y|)], then neither (x/s)2

nor (y/s)2 can overflow, and any under-
flow that occurs is harmless, since one of
(x/s)2 or (y/s)2 is close to 1. Moreover,
in IEEE floating-point arithmetic, multi-
plying and dividing by s = 2k does not
introduce any additional rounding error
into the computation.
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A similar problem with overflows and
underflows occurs in formula (8) and
in many other numerical computations.
Overflows can be avoided and underflows
can be rendered harmless in computing√

b2 − 4ac in (8) by scaling in much the
same way as described above for

√
x2 + y2.

2
The Direct Solution of Linear Algebraic
Systems

In this section, we consider the direct
solution of linear algebraic systems of the
form Ax = b, where A ∈ Rn×n (or Cn×n)
is a nonsingular matrix and x and b ∈ Rn

(or Cn). A numerical method for solving
Ax = b is direct if it computes the exact
solution of the system when implemented
in exact arithmetic. Iterative methods for
nonsingular linear systems and methods
for overdetermined and underdetermined
systems are considered in Secs. 4 and 5,
respectively.

The standard direct methods for solv-
ing Ax = b are based on, or closely related
to, Gaussian elimination (GE), the famil-
iar variable elimination technique that
reduces the original system Ax = b to
an upper-triangular system, Ux = b̃, which
has the same solution x. We present a
simple form of GE in Sec. 2.1 and show
how Ux = b̃ can be solved easily by back
substitution in Sec. 2.2. We then explain
how the simple form of GE presented
in Sec. 2.1 for Ax = b relates to the LU
factorization of the coefficient matrix A
in Sec. 2.3 and to forward elimination in
Sec. 2.4. Enhancements to this simple
form of GE to make it an efficient, robust,
reliable numerical method for the solution
of linear systems are outlined in Sec. 2.5.
The closely related Cholesky factorization
for symmetric positive-definite matrices is

presented in Sec. 2.6. We consider how
to adapt these methods to banded and
sparse linear systems in Sec. 2.7. We
end with a discussion of the effects of
rounding errors on the direct methods
in Sec. 2.8 and of iterative improvement,
a technique to ameliorate these effects,
in Sec. 2.9. See Sec. 13 for a discussion
of sources of high-quality numerical soft-
ware for solving systems of linear algebraic
equations.

GE can also be applied to singular
systems of linear equations or overdeter-
mined or underdetermined linear systems
of m equations in n unknowns. How-
ever, it is not as robust as the methods
discussed in Sec. 5 for these problems,
and so we do not present these gener-
alizations of GE here. In addition, we
note that there are several mathematically
equivalent, but computationally distinct,
implementations of GE and the factor-
izations discussed here. The reader inter-
ested in a more comprehensive treatment
of these topics should consult an ad-
vanced text, such as Golub and Van Loan
(1989).

Finally we note that it is generally
inadvisable to solve a system Ax = b by
first computing A−1 and then calculating
x = A−1b. The techniques discussed in
this section are usually both more reliable
and more cost effective than methods
using A−1. We also note that, although
Cramer’s rule is a useful theoretical tool, it
is an extremely ineffective computational
scheme.

2.1
Gaussian Elimination

First, to unify the notation used below, let
A0 = A and b0 = b.

GE for Ax = b proceeds in n − 1 stages.
For k = 1, . . . , n − 1, we begin stage k
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of GE with the reduced system Ak−1x =
bk−1, where columns 1, . . . , k − 1 of Ak−1
contain 0’s below the main diagonal.
That is, for Ak−1 = [a(k−1)

ij ], a(k−1)
ij = 0 for

j = 1, . . . , k − 1 and i = j + 1, . . . , n. This
corresponds to the variables x1, . . . , xi−1
having been eliminated from equation i
of Ak−1x = bk−1 for i = 2, . . . , k − 1 and
the variables x1, . . . , xk−1 having been
eliminated from the remaining equations
k, . . . , n. Moreover, x is the unique
solution of both Ak−1x = bk−1 and Ax = b.
Note that all the assumptions above hold
vacuously for k = 1, since, in this case,
the ‘‘reduced’’ system A0x = b0 is just the
original system Ax = b from which no
variables have yet been eliminated.

During stage k of GE, we further
the reduction process by eliminating the
variable xk from row i of Ak−1x = bk−1
for i = k + 1, . . . , n by multiplying row k
of this system by mik = a(k−1)

ik /a(k−1)

kk and
subtracting it from row i.

Note that the multipliers mik are not
properly defined by mik = a(k−1)

ik /a(k−1)

kk

if the pivot element a(k−1)

kk = 0. In exact
arithmetic, this can happen only if the
k × k leading principal minor of A is
singular. We consider how to deal with
zero (or nearly zero) pivots in Sec. 2.5. For
now, though, we say that this simple form
of GE ‘‘breaks down’’ at stage k and we
terminate the process.

After the last stage of GE, the original
system Ax = b has been reduced to Ux =
b̃, where b̃ = bn−1 and U = An−1. Note that
U = [uij] is an upper-triangular matrix (i.e.,

uij = 0 for 1 ≤ j < i ≤ n) with ukk = a(k−1)

kk
for k = 1, . . . , n. Therefore, if A and all its
leading principal minors are nonsingular,
then ukk = a(k−1)

kk 	= 0 for k = 1, . . . , n, so
U is nonsingular too. Moreover, in this
case, x is the unique solution of both
Ax = b and Ux = b̃. The latter system can

be solved easily by back substitution, as
described in Sec. 2.2.

The complete GE process can be written
in pseudocode as shown in Table 1.
Note that at stage k of GE, we know
the elements a(k)

ik = a(k−1)

ik − mik · a(k−1)

kk =
0 for i = k + 1, . . . , n, and so we do not
need to perform this calculation explicitly.
Consequently, instead of j running for
k, . . . , n in Table 1, as might be expected, j
runs from k + 1, . . . , n instead.

To reduce the storage needed for GE,
the original matrix A and vector b are
often overwritten by the intermediate
matrices Ak and vectors bk, so that at
the end of the GE process, the upper-
triangular part of A contains U and b
contains b̃. The only change required to
the algorithm in Table 1 to implement
this reduced storage scheme is to remove
the superscripts from the coefficients aij

and bi. As explained below, it is also
important to store the multipliers mik.
Fortunately, the n − k multipliers {mik :
i = k + 1, . . . , n} created at stage k of GE
can be stored in the n − k positions in
column k of A below the main diagonal
that are eliminated in stage k. Thus, in
many implementations of GE, the upper-
triangular part of A is overwritten by
U and the strictly lower part of A is

Tab. 1 Gaussian elimination (GE) for the
system Ax = b

for k = 1, . . . , n − 1 do
for i = k + 1, . . . , n do

mik = a(k−1)

ik /a(k−1)

kk
for j = k + 1, . . . , n do

a(k)
ij = a(k−1)

ij − mik · a(k−1)

kj

end
b(k)

i = b(k−1)

i − mik · b(k−1)

k
end

end
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overwritten by the multipliers mik for
1 ≤ k < i ≤ n.

A straightforward count of the opera-
tions in Table 1 shows that GE requires
n(n − 1)/2 ≈ n2/2 divisions to com-
pute the multipliers mik, n(2n − 1)(n −
1)/6 ≈ n3/3 multiplications and subtrac-
tions to compute the coefficients of U, and
n(n − 1)/2 ≈ n2/2 multiplications and
subtractions to compute the coefficients of
b̃. Since multiplications and subtractions
(or additions) occur in pairs so frequently
in matrix calculations, we refer to this pair
of operations as a flop, which is short for
floating-point operation. Thus, the compu-
tational work required to reduce a system
Ax = b of n equations in n unknowns to
Ux = b̃ is about n3/3 flops. We show in
Sec. 2.2 that Ux = b̃ can be solved by back
substitution using n divisions and about
n2/2 flops.

2.2
Back Substitution

Let U = [uij] be an n × n nonsingular
upper-triangular matrix. That is, uij = 0
for 1 ≤ j < i ≤ n and uii 	= 0 for 1 ≤ i ≤ n.
Then the linear algebraic system Ux = b̃
can be solved easily by back substitution,
as shown in Table 2.

It is easy to see from Table 2 that
back substitution requires n divisions and
n(n − 1)/2 ≈ n2/2 multiplications and
subtractions. So the computational work
is about n2/2 flops.

Tab. 2 Back substitution to solve Ux = b̃

for i = n, . . . , 1 do

xi =
(

b̃i −
n∑

j=i+1
uijxj

)/
uii

end

2.3
The LU Factorization

Applying Gaussian elimination (GE) as
described in Sec. 2.1 to solve the linear
algebraic system Ax = b of n equations in
n unknowns is closely related to computing
the LU factorization of the matrix A, where
L1 = [l(1)

ij ] is a unit lower-triangular matrix

(i.e., l(1)
ii = 1 for i = 1, . . . , n and l(1)

ij = 0

for 1 ≤ i < j ≤ n) and U1 = [u(1)
ij ] is an

upper-triangular matrix (i.e., u(1)
ij = 0 for

1 ≤ j < i ≤ n) satisfying

A = L1U1. (9)

The factorization (9) exists and is unique
if and only if all the leading principal
minors of A are nonsingular. In this case,
it can be shown that the matrix U1 in (9) is
the same as the upper-triangular matrix U
produced by GE, and the elements in the
strictly lower-triangular part of L1 = [l(1)

ij ]

satisfy l(1)
ij = mij for 1 ≤ j < i ≤ n, where

the mij are the multipliers used in GE.
Moreover, the U1 in (9) is nonsingular
if A is; L1 is always nonsingular if the
factorization exists.

From the discussion in Sec. 2.1, it fol-
lows that computing the LU factorization
of an n × n matrix A in this way re-
quires n(n − 1)/2 ≈ n2/2 divisions and
n(2n − 1)(n − 1)/6 ≈ n3/3 multiplica-
tions and subtractions. Thus, the com-
putational work required to calculate it is
about n3/3 flops.

If we need to solve m > 1 systems
Axi = bi, i = 1, . . . , m, (or AX = B, where
X and B ∈ Rn×m or Cn×m), we may
obtain significant computational savings
by computing the LU factorization of A
once only and using the factors L1 and
U1 to solve each system Axi = bi for
i = 1, . . . , m by first solving L1b̃i = bi for
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b̃i by forward elimination, as described in
Sec. 2.4, and then solving U1xi = b̃i for
xi by back substitution, as outlined in
Sec. 2.2. This procedure is essentially the
same as performing GE to reduce A to
U once only, saving the multipliers {mik}
used in the process, and then, for each
system Axi = bi, using the multipliers to
perform the same transformation on bi

to produce b̃i and solving Uxi = b̃i for
xi by back substitution. With either of
these procedures, the computational work
required to solve all m systems Axi = bi

is about n3/3 + mn2 flops, whereas, if
we apply GE as outlined in Sec. 2.1 to
each system Axi = bi, recomputing U each
time, the computational work required
to solve all m systems Axi = bi is about
m(n3/3 + n2) flops, which is much greater
if m and/or n is large.

Finally, note that we intentionally used
the same symbol b̃i for the solution of
Lb̃i = bi and the transformed right-side
vector produced by GE, since these vectors
are identical.

2.4
Forward Elimination

Let L = [lij] be an n × n lower-triangular
matrix (i.e., lij = 0 for 1 ≤ i < j ≤ n). If L
is nonsingular too, then lii 	= 0 for 1 ≤
i ≤ n and so the linear algebraic system
Lb̃ = b can be solved easily by forward
elimination, as shown in Table 3.

It is easy to see from Table 3 that
forward elimination requires n divisions

Tab. 3 Forward elimination too solve Lb̃ = b

for i = 1, . . . , n do

b̃i =
(

bi −
i−1∑
j=1

lijb̃j

)/
lii

end

and n(n − 1)/2 ≈ n2/2 multiplications
and subtractions. So the computational
work is about n2/2 flops.

If L = [lij] is unit lower-triangular (i.e.,
lii = 1 for i = 1, . . . , n as well as L being
lower-triangular), as is the case for the
L produced by the LU factorization de-
scribed in Sec. 2.3, then the division by lii
in Table 3 is not required, reducing the op-
eration count slightly to about n2/2 flops.
However, we have presented the forward-
elimination procedure in Table 3 with
general lii 	= 0, since other schemes, such
as the Cholesky factorization described in
Sec. 2.6, produce a lower-triangular matrix
that is typically not unit lower-triangular.

The name ‘‘forward elimination’’ for this
procedure comes from the observation
that it is mathematically equivalent to
the forward-elimination procedure used in
GE to eliminate the variables x1, . . . , xi−1
from equation i of the original system
Ax = b to produce the reduced system
Ux = b̃.

2.5
Scaling and Pivoting

As noted in Sec. 2.1, the simple form of
Gaussian elimination (GE) presented there
may ‘‘break down’’ at stage k if the pivot
a(k−1)

kk = 0. Moreover, even if a(k−1)

kk 	= 0,

but |a(k−1)

kk | � |a(k−1)

ik | for some i ∈ {k +
1, . . . , n}, then |mik| = |a(k−1)

ik /a(k−1)

kk | �
1. So multiplying row k of Ak−1 by mik and
subtracting it from row i may produce large
elements in the resulting row i of Ak, which
in turn may produce still larger elements
during later stages of the GE process.
Since, as noted in Sec. 2.8, the bound on
the rounding errors in the GE process is
proportional to the largest element that
occurs in Ak for k = 0, . . . , n − 1, creating
large elements during the GE reduction
process may introduce excessive rounding
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error into the computation, resulting in an
unstable numerical process and destroying
the accuracy of the LU factorization and the
computed solution x of the linear system
Ax = b. We present in this section scaling
and pivoting strategies that enhance GE
to make it an efficient, robust, reliable
numerical method for the solution of
linear systems.

Scaling, often called balancing or equi-
libration, is the process by which the
equations and unknowns of the system
Ax = b are scaled in an attempt to reduce
the rounding errors incurred in solving the
problem and improve its conditioning, as
described in Sec. 2.8. The effects can be
quite dramatic.

Typically, scaling is done by choosing
two n × n diagonal matrices D1 = [d(1)

ij ]

and D2 = [d(2)
ij ] (i.e., d(1)

ij = d(2)
ij = 0 for

i 	= j) and forming the new system Âx̂ =
b̂, where Â = D1AD−1

2 , x̂ = D2x, and
b̂ = D1b. Thus, D1 scales the rows and
D2 scales the unknowns of Ax = b, or,
equivalently, D1 scales the rows and D−1

2
scales the columns of A. Of course, the
solution of Ax = b can be recovered easily
from the solution of Âx̂ = b̂, since x =
D−1

2 x̂. Moreover, if the diagonal entries

d(1)
11 , . . . , d(1)

nn of D1 and d(2)
11 , . . . , d(2)

nn of D2
are chosen to be powers of the base of the
floating-point number system (i.e., powers
of 2 for IEEE floating-point arithmetic),
then scaling introduces no rounding errors
into the computation.

One common technique is to scale the
rows only by taking D2 = I and choosing
D1 so that largest element in each row of
the scaled matrix Â = D1A is about the
same size. A slightly more complicated
procedure is to scale the rows and columns
of A so that the largest element in each row
and column of Â = D1AD−1

2 is about the
same size.

These strategies, although usually help-
ful, are not foolproof: it is easy to find
examples for which row scaling or row
and column scaling as described above
makes the numerical solution worse. The
best strategy is to scale on a problem-
by-problem basis depending on what the
source problem says about the significance
of each coefficient aij in A = [aij]. See an
advanced text such as Golub and Van Loan
(1989) for a more detailed discussion of
scaling.

For the remainder of this section, we
assume that scaling, if done at all, has
already been performed.

The most commonly used pivoting
strategy is partial pivoting. The only
modification required to stage k of GE
described in Sec. 2.1 to implement GE with
partial pivoting is to first search column k

of Ak−1 for the largest element a(k−1)

ik on or
below the main diagonal. That is, find i ∈
{k, . . . , n} such that |a(k−1)

ik | ≥ |a(k−1)

µk | for
µ = k, . . . , n. Then interchange equations
i and k in the reduced system Ak−1x = bk−1
and proceed with stage k of GE as described
in Sec. 2.1.

After the equation interchange described
above, the pivot element a(k−1)

kk satisfies

|a(k−1)

kk | ≥ |a(k−1)

ik | for i = k, . . . , n. So, if

a(k−1)

kk 	= 0, then the multiplier mik =
a(k−1)

ik /a(k−1)

kk must satisfy |mik| ≤ 1 for
i = k + 1, . . . , n. Thus no large multipliers
can occur in GE with partial pivoting.

On the other hand, if the pivot ele-
ment a(k−1)

kk = 0, then a(k−1)

ik = 0 for i =
k, . . . , n, whence Ak−1 is singular and so A
must be too. Thus, GE with partial pivoting
never ‘‘breaks down’’ (in exact arithmetic)
if A is nonsingular.

Partial pivoting adds a little overhead
only to the GE process. At stage k,
we must perform n − k comparisons to
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determine the row i with |a(k−1)

ik | ≥ |a(k−1)

jk |
for j = k, . . . , n. Thus, GE with partial
pivoting requires a total of n(n − 1)/2 ≈
n2/2 comparisons. In addition, we must
interchange rows i and k if i > k, or use
some form of indirect addressing if the
interchange is not performed explicitly.
On the other hand, exactly the same
number of arithmetic operations must
be executed whether or not pivoting is
performed. Therefore, if n is large, the
added cost of pivoting is small compared
with performing approximately n3/3 flops
to reduce A to upper-triangular form.

Complete pivoting is similar to partial
pivoting except that the search for the
pivot at stage k of GE is not restricted
to column k of Ak−1. Instead, in GE
with complete pivoting, we search the
(n − k) × (n − k) lower right block of Ak−1
for the largest element. That is, find i and
j ∈ {k, . . . , n} such that |a(k−1)

ij | ≥ |a(k−1)
µv

for µ = k, . . . , n and v = k, . . . , n. Then
interchange equations i and k and variables
j and k in the reduced system Ak−1xk−1 =
bk−1 and proceed with stage k of GE
as described in Sec. 2.1. Note that the
vector xk−1 in the reduced system above
is a reordered version of the vector of
unknowns x in the original system Ax = b,
incorporating the variable interchanges
that have occurred in stages 1, . . . , k − 1
of GE with complete pivoting.

After the equation and variable inter-
changes described above, the pivot element
a(k−1)

kk satisfies |a(k−1)

kk | ≥ |a(k−1)

ik | for i =
k, . . . , n. So, if a(k−1)

kk 	= 0, the multiplier

mik = a(k−1)

ik /a(k−1)

kk must satisfy |mik| ≤ 1
for i = k + 1, . . . , n, as is the case with
partial pivoting. However, with complete
pivoting, the multipliers tend to be even
smaller than they are with partial pivoting,
since the pivots tend to be larger, and so
the numerical solution might suffer less

loss of accuracy due to rounding errors, as
discussed further in Sec. 2.8.

After the row and column interchanges
in stage k, the pivot element a(k−1)

kk = 0

only if a(k−1)
ij = 0 for i = k, . . . , n and

j = k, . . . , n in which case Ak−1 is singular
and so A must be too. Thus, like GE with
partial pivoting, GE with complete pivoting
never ‘‘breaks down’’ (in exact arithmetic)
if A is nonsingular.

Moreover, if A is singular and a(k−1)
ij = 0

for i = k, . . . , n and j = k, . . . , n, then the
GE process can be terminated at this
stage and the factorization computed so
far used to advantage in determining a
solution (or approximate solution) to the
singular system Ax = b. However, this is
not as robust a technique as the methods
discussed in Sec. 4 for overdetermined
problems, and so we do not discuss this
further here. The reader interested in
this application of GE should consult an
advanced text such as Golub and Van Loan
(1989).

Complete pivoting, unlike partial pivot-
ing, adds significantly to the cost of the
GE process. At stage k, we must perform
(n − k + 1)2 − 1 comparisons to deter-
mine the row i and column j with |a(k−1)

ij | ≥
|a(k−1)

µv | for µ = k, . . . , n and v = k, . . . , n.
Thus, GE with partial pivoting requires a
total of n(n − 1)(2n + 5)/6 ≈ n3/3 com-
parisons. On the other hand, exactly the
same number of arithmetic operations
must be executed whether or not pivoting
is performed. So the cost of determining
the pivots is comparable to the cost of per-
forming approximately n3/3 flops required
to reduce A to upper-triangular form. In
addition, we must interchange rows i and
k if i > k and columns j and k if j > k or
use some form of indirect addressing if
the interchange is not performed explic-
itly. Thus even though GE with complete
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pivoting has better roundoff-error prop-
erties than GE with partial pivoting, GE
with partial pivoting is used more often in
practice.

As is the case for the simple version of
GE presented in Sec. 2.1, GE with partial
or complete pivoting is closely related to
computing the LU factorization of the
matrix A. However, in this case, we must
account for the row or row and column
interchanges by extending (9) to

P2A = L2U2 (10)

for partial pivoting and

P3AQT
3 = L3U3 (11)

for complete pivoting, where P2 and P3

are permutation matrices that record the
row interchanges performed in GE with
partial and complete pivoting, respectively;
QT

3 is a permutation matrix that records
the column interchanges performed in
GE with complete pivoting; L2 and L3

are unit lower-triangular matrices with
the n − k multipliers from stage k of
GE with partial and complete pivoting,
respectively, in column k below the main
diagonal, but permuted according to the
row interchanges that occur in stages
k + 1, . . . , n − 1 of GE with partial and
complete pivoting, respectively; and U2

and U3 are the upper-triangular matrices
produced by GE with partial and complete
pivoting, respectively.

A permutation matrix P has exactly one
1 in each row and column and all other
elements equal to 0. It is easy to check
that PPT = I so that P is nonsingular
and PT = P−1. That is, P is an orthogonal
matrix. Also note that we do not need a full
n × n array to store P: The information
required to form or multiply by P = [Pij]
can be stored in an n-vector p = [pi], where

pi = j if and only if Pij = 1 and Pik = 0 for
k 	= j.

The factorizations (9), (10), and (11)
are all called LU factorizations; (10) is
also called a PLU factorization. Unlike (9),
the LU factorizations (10) and (11) always
exist. P2, P3, Q3, L2, and L3 are always
nonsingular; U2 and U3 are nonsingular
if and only if A is nonsingular. Moreover,
the factorizations (10) and (11) are unique
if there is a well-defined choice for the
pivot if more than one element of maximal
size occurs in the search for the pivot and
if there is a well-defined choice for the
multipliers in L if the pivot is zero.

The LU factorization (10) can be used
to solve the linear system Ax = b by first
computing b̂2 = P2b, then solving L2b̃2 =
b̃2 by forward elimination, and finally
solving U2x = b̃2 by back substitution.
The steps are similar if we use the LU
factorization (11) instead of (10), except
that the back substitution U3x̂3 = b̃3 yields
the permuted vector of unknowns x̂3. The
original vector of unknowns x can be
recovered by x = QT

3 x̂3. We have used
b̃2 and b̃3 for the intermediate results
above to emphasize that this is the same
as the vector b̃ that is obtained if we
perform GE with partial and complete
pivoting, respectively, on the original
system Ax = b.

As noted earlier for (9), if we need
to solve m > 1 systems Axi = bi, i =
1, . . . , m (or AX = B, where X, B ∈ Rn×m

or Cn×m), we may obtain significant
computational savings by computing the
LU factorization of A once only. The
same observation applies to the LU
factorizations (10) and (11).

We end by noting that not having to pivot
to ensure numerical stability can be a great
advantage in some cases – for example,
when factoring a banded or sparse matrix,
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as described in Sec. 2.7. Moreover, there
are classes of matrices for which pivoting is
not required to ensure numerical stability.
Three such classes are complex Hermitian
positive-definite matrices, real symmetric
positive-definite matrices, and diagonally
dominant matrices.

2.6
The Cholesky Factorization

In this subsection, we present the Cholesky
factorization of a real symmetric positive-
definite n × n matrix A. It is straightfor-
ward to modify the scheme for complex
Hermitian positive-definite matrices.

Recall that A ∈ Rn×n is symmetric if
A = AT, where AT is the transpose of A,
and it is positive definite if xTAx > 0 for all
x ∈ Rn, x 	= 0. The Cholesky factorization
exploits these properties of A to compute
a lower-triangular matrix L satisfying

A = LLT. (12)

The similar LDL factorization computes
a unit lower-triangular matrix L̃ and a
diagonal matrix D satisfying

A = L̃DL̃T. (13)

We present the dot product form of the
Cholesky factorization in Table 4. It is
derived by equating the terms of A = [aij] to
those of LLT in the order (1, 1), (2, 1), . . .,
(n, 1), (2, 2), (3, 2), . . ., (n, 2), . . ., (n, n)
and using the lower-triangular structure
of L = [lij] (i.e., lij = 0 for 1 ≤ i < j ≤ n).
Other forms of the Cholesky factorization
are discussed in advanced texts such as
Golub and Van Loan (1989).

It can be shown that, if A is symmetric
positive-definite, then

aj j −
j−1∑
k=1

l2jk > 0

Tab. 4 The Cholesky factorization of a
symmetric positive-definite matrix A

for j = 1, . . . , n do

lj j =
√

aj j −
j−1∑
k=1

l2jk

for i = j + 1, . . . , n do

lij =
(

aij −
j−1∑
k=1

likljk

)/
lj j

end
end

(in exact arithmetic) each time this expres-
sion is computed in the Cholesky factoriza-
tion. Therefore, we may take the associated
square root to be positive, whence lj j > 0
for j = 1, . . . , n. With this convention, the
Cholesky factorization is unique.

Moreover, it follows from

lj j =

aj j −

j−1∑
k=1

l2jk


1/2

that

aj j =
j∑

k=1

l2jk.

So the elements in row j of the Cholesky
factor L are bounded by √

aj j even if we
do not pivot. Consequently, as noted in
Sec. 2.5, it is customary to compute the
Cholesky factorization without pivoting.

Note that the method in Table 4 accesses
the lower-triangular part of A only, and so
only those elements need to be stored.
Moreover, if we replace lj j and lij by aj j

and aij, respectively, in Table 4, then the
modified algorithm overwrites the lower-
triangular part of A with the Cholesky
factor L.

A straightforward count of the opera-
tions in Table 4 shows that the Cholesky
factorization requires n square roots,
n(n − 1)/2 ≈ n2/2 divisions, and n(n −



298 Numerical Methods

1)(n + 1)/6 ≈ n3/6 multiplications and
subtractions. This is approximately half the
arithmetic operations required to compute
the LU factorization of A. Of course, the
storage required for the Cholesky factor-
ization is also about half that required for
the LU factorization.

The Cholesky, LDL, and LU factoriza-
tions are closely related. Let D1 = [d(1)

ij ] be
the diagonal matrix with the same diago-
nal elements as L = [lij] (i.e., d(1)

j j = lj j for

j = 1, . . . , n and d(1)
ij = 0 for i 	= j). D1 is

nonsingular, since, as noted above, lj j > 0
for j = 1, . . . , n. Moreover, L̃ = LD−1

1 is
unit lower-triangular. If we also let D =
D1D1 = D1DT

1 , then

A = LLT = (L̃D1)(L̃D1)
T

= L̃D1DT
1 L̃T = L̃DL̃T,

where L̃DL̃T is the LDL factorization of A.
Furthermore, if we let U = DL̃T, then L̃U
is the LU factorization of A.

The LDL factorization can be computed
directly by equating the terms of A to
those of L̃DL̃T, just as we did above
for the Cholesky factorization. This leads
to a scheme similar to that shown in
Table 4, but without any square roots,
although it has n(n − 1)/2 ≈ n2/2
more multiplications. Thus the cost of
computing the factorization remains about
n3/6 flops and the storage requirement
remains about n2/2.

An advantage of the LDL factorization
is that it can be applied to a symmetric
indefinite matrix. The Cholesky factoriza-
tion is not applicable in this case, since LLT

is always symmetric positive-semidefinite.
However, since LDLT is always symmetric,
pivoting must be restricted to ensure that
the reordered matrix PAQT is symmetric.
The simplest way to maintain symmetry is
to use symmetric pivoting in which Q = P.

This, though, restricts the choice of the
pivot at stage k of the LDL factorization to
aj j for j = k, . . . , n. As a result, in some
cases, the LDL factorization may incur
much more rounding error than GE with
partial or complete pivoting.

2.7
Banded and Sparse Matrices

Significant savings in both computational
work and storage can often be obtained
in solving Ax = b by taking advantage
of zeros in the coefficient matrix A.
We outline in this subsection how these
savings may be realized for banded and
more general sparse matrices.

To begin, note that an n × n matrix
A is said to be sparse if the number of
nonzero elements in A is much less than
n2, the total number of elements in A.
Banded matrices are an important subclass
of sparse matrices in which the nonzero
elements of the matrix are restricted to
a band around the main diagonal of the
matrix. The lower bandwidth of a matrix
A = [aij] is the smallest integer p such that
aij = 0 for i − j > p, the upper bandwidth
of A is the smallest integer q such that
aij = 0 for j − i > q, and the bandwidth of
A is 1 + p + q. Clearly, if p and q � n,
then A is sparse, since A has at most
(1 + p + q)n � n2 nonzero elements.

Banded and more general sparse matri-
ces arise in many important applications.
For example, quadratic spline interpola-
tion, as described in Sec. 8.6.2, requires the
solution of a linear system Tc = g, where
T is a tridiagonal matrix (i.e., banded with
p = q = 1) and c is the vector of coeffi-
cients for the quadratic spline interpolant.
Banded matrices also arise in the solution
of boundary-value problems for ordinary
differential equations. See Sec. 11.3.1 for
an example of a system Tu = g, where T
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is a symmetric positive-definite tridiago-
nal matrix. More general sparse matrices
arise in the numerical solution of partial
differential equations. See Sec. 11.3.2 for
an example of the matrix associated with
the standard five-point difference scheme
for Poisson’s equation.

If A is large and sparse, it is common
to store only the nonzero elements of
A, since this greatly reduces the storage
requirements. This is easy to do if A is
banded, since we can map the elements
from the band of A to a (1 + p + q) × n
array representing A in a packed format,
several of which are commonly used in
practice. If A = [aij] is a general sparse
matrix, then we require a more general
sparse-matrix data structure that stores each
nonzero element aij of A along with some
information used to recover the indices i
and j.

We consider Gaussian elimination (GE)
for a banded matrix first. To begin,
note that the reduction process described
in Sec. 2.1 maintains the band struc-
ture of A. In particular, a(k−1)

ik = 0 for
i − k > p, whence the multipliers mik =
a(k−1)

ik /a(k−1)

kk in Table 1 need to be calcu-
lated for i = k + 1, . . . min(k + p, n) only
and the i loop can be changed accordingly.
Similarly a(k−1)

kj = 0 for j − k > q, and

so the reduction a(k)
ij = a(k−1)

ij − mija
(k−1)

kj
in Table 1 needs to be calculated for
j = k + 1, . . . , min(k + q, n) only and the
j loop can be charged accordingly. It
therefore follows from a straightforward
operation count that GE modified as
described above for banded matrices re-
quires np − p(p + 1)/2 ≈ np divisions
to compute the multipliers mik, either
npq − p(3q2 + 3q + p2 − 1)/6 ≈ npq (if
p ≤ q) or npq − q(3p2 + 3p + q2 − 1)/6 ≈
npq (if p ≥ q) multiplications and subtrac-
tions to compute the coefficients of U, and

np − p(p + 1)2 ≈ np multiplications and
subtractions to compute the coefficients
of b̃. Furthermore, note that, if we use
this modified GE procedure to compute
the LU factorization of A, then the lower-
triangular matrix L has lower bandwidth
p and the upper-triangular matrix U has
upper bandwidth q. As noted in Sec. 2.1,
it is common to overwrite A with L and
U. This can be done even if A is stored in
packed format, thereby achieving signifi-
cant reduction in storage requirements.

The back-substitution method shown
in Table 2 and the forward-elimination
method shown in Table 3 can be mod-
ified similarly so that each requires n
divisions, the back-substitution method
requires nq − q(q + 1)/2 ≈ nq multi-
plications and subtractions, while the
forward-elimination method requires np −
p(p + 1)/2 ≈ np multiplications and sub-
tractions. In addition, recall that the n
divisions are not needed in forward elim-
ination if L is unit lower-triangular, as is
the case for the modified LU factorization
described here.

A similar modification of the
Cholesky method shown in Table 4
results in a procedure that requires
n square roots, np − p(p + 1)/2 ≈ np
divisions, and (n − p)p(p + 1)/2 + (p −
1)p(p + 1)/6 ≈ np2/2 multiplications and
subtractions. In deriving these operation
counts, we used p = q, since the matrix
A must be symmetric for the Cholesky
factorization to be applicable. Moreover,
the Cholesky factor L has lower bandwidth
p. Thus, as for the general case, the
Cholesky factorization of a band matrix
requires about half as many arithmetic
operations and about half as much storage
as the LU factorization, since packed
storage can also be used for the Cholesky
factor L.
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If partial pivoting is used in the LU fac-
torization of A, then the upper bandwidth
of U may increase to p + q. The associated
matrix L is a permuted version of a lower-
triangular matrix with lower bandwidth
p. Both factors L and U can be stored
in packed format in a (1 + 2p + q) × n
array. The operation count for the LU fac-
torization, forward elimination, and back
solution is the same as though A were a
banded matrix with upper bandwidth p + q
and lower bandwidth p. Thus, if p > q,
both computational work and storage can
be saved by factoring AT instead of A and
using the LU factors of AT to solve Ax = b.
If complete pivoting is used in the LU
factorization of A, then L and U may fill
in so much that there is little advantage
to using a band solver. Consequently, it
is advantageous not to pivot when factor-
ing a band matrix, provided this does not
lead to an unacceptable growth in round-
ing errors. As noted in Sec. 2.5, it is not
necessary to pivot for numerical stability
if A is complex Hermitian positive def-
inite, real symmetric positive definite, or
column-diagonally dominant. If pivoting is
required, it is advantageous to use partial,
rather than complete, pivoting, again pro-
vided this does not lead to an unacceptable
growth in rounding errors.

Extending GE to take advantage of
the zeros in a general sparse matrix is
considerably more complicated than for
banded matrices. The difficulty is that,
when row k of Ak−1 is multiplied by mik
and added to row i of Ak−1 to eliminate
a(k−1)

ik in stage k of GE, as described in
Sec. 2.1, some zero elements in row i of
Ak−1 may become nonzero in the resulting
row i of Ak. These elements are said to fill
in and are collectively referred to as fill-in
or fill.

However, pivoting can often greatly
reduce the amount of fill-in. To see how

this comes about, the interested reader
may wish to work through an example
with the arrow-head matrix

A =




5 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1


 .

Since A is a real symmetric positive-
definite matrix, there is no need to pivot
for numerical stability. It is easy to see
that the Cholesky and LU factors of A
completely fill in. Interchanging the first
and last rows and the first and last
columns of A corresponds to forming
the permuted matrix B = PAPT, where
P = I − [1, 0, 0, 0, −1]T[1, 0, 0, 0, −1] is a
permutation matrix. Since B is also a real
symmetric positive-definite matrix, there
is no need to pivot for numerical stability
when factoring B. However, in this case,
the Cholesky and LU factors of B suffer
no fill-in at all. This small example can
be generalized easily to arbitrarily large
arrowhead matrices having the similar
properties that the LU factors of A com-
pletely fill in while those of the permuted
matrix B = PAPT suffer no fill-in at all.

If we use an appropriate sparse-matrix
data structure to store only the nonzeros
elements of a sparse matrix A and its LU
factors, then reducing the fill-in reduces
both the storage needed for the LU factors
and the computational work required
to calculate them. It also reduces the
computational work required for forward
elimination and back substitution, since
the methods shown in Tables 2 and 3
can be modified easily so that they use
the nonzero elements in L and U only,
thereby avoiding multiplications by zero
and the associated subtractions.

Therefore, the goal in a sparse LU or
Cholesky factorization is to reorder the
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rows and columns of A to reduce the
amount of fill-in. If we need to pivot to
ensure numerical stability, then this might
conflict with pivoting to reduce fill-in.
Unfortunately, even without this compli-
cation, finding the optimal reordering to
minimize the fill-in is computationally too
expensive to be feasible in general. There
are, though, many good heuristic methods
to reorder the rows and columns of A
that greatly reduce the fill-in and computa-
tional work in many important cases. The
reader seeking a more complete descrip-
tion of sparse-matrix factorizations should
consult a text on this topic, such as Duff
et al. (1986) or George and Liu (1981).

We end this subsection with an example
illustrating the importance of exploiting
the zeros in a sparse matrix A. Consider
the linear system derived in Sec. 11.3.2
by discretizing Poisson’s equation on an
m × m grid. A is an n × n symmetric
positive-definite matrix with n = m2 and
5m2 − 4m ≈ 5m2 = 5n nonzero elements,
out of a total of n2 elements in A. So, if m
is large, A is very sparse. Moreover, if we
use the natural ordering for the equations
and variables in the system, then A, as
shown in Sec. 11.3.2, is a banded matrix
with lower and upper bandwidth m = √

n.
The computational work and storage

required to solve this linear system are
shown in Table 5. We consider three cases:

Tab. 5 Computational work and storage
required to solve the linear system Ax = b
derived from discretizing Poisson’s equation on
an m × m grid

Factor Solve Store A Store L

Dense m6/6 m4 m4/2 m4/2
Banded m4/2 2m3 m3 m3

Sparse O(m3) O(m2 5m2 O(m2

log m) log m)

1. dense, the zeros in A are not exploited
at all;

2. banded, we use a band solver that
exploits the band structure of A;

3. sparse, we use a general sparse solver
together with the nested dissection order-
ing (see George and Liu, 1981) for the
equations and variables in the system.

The columns labeled factor and solve,
respectively, give the approximate number
of flops needed to compute the Cholesky
factorization of the matrix A and to solve
the linear system given the factors. The
columns labeled store A and store L,
respectively, give the approximate number
of storage locations needed to store A and
its Cholesky factor L.

2.8
Rounding Errors, Condition Numbers, and
Error Bounds

In this subsection, we consider the effects
of rounding errors in solving Ax = b. In
doing so, we use vector and matrix norms
extensively. Therefore, we recommend
that, if you are not acquainted with
norms, you familiarize yourself with
this topic before reading this subsection.
Most introductory numerical methods
texts or advanced books on numerical
linear algebra contain a section on vector
and matrix norms.

The analysis of the effects of rounding
errors in solving Ax = b usually proceeds
in two stages. First we establish that the
computed solution x̃ is the exact solution
of a perturbed system

(A + E)x̃ = b + r (14)

with bounds on the size of E and r. Then
we use (14) together with bounds on the
size of A and A−1 to bound the error
x − x̃.
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The first step is called a backward error
analysis, since it casts the error in the
solution back onto the problem and allows
us to relate the effects of rounding errors
in the computed solution x̃ to other errors
in the problem, such as measurement
errors in determining the coefficients of
A and b. Another advantage of proceeding
in this two-stage fashion is that, if x̃ is
not sufficiently accurate, it allows us to
determine whether this is because the
numerical method is faulty or whether the
problem itself is unstable.

Throughout this section we assume that
A is an n × n nonsingular matrix and
nu < 0.1, where u is the relative roundoff
error bound for the machine arithmetic
used in the computation (see Sec. 1.2).

If we use Gaussian elimination (GE)
with either partial or complete pivoting
together with forward elimination and
back substitution to solve Ax = b, then it
can be shown that the computed solution
x̃ satisfies (14) with r = 0 and

‖E‖∞ ≤ 8n3γ ‖A‖∞u + O(u2), (15)

where

γ = max
i,j,k

|a(k)
ij |

‖A‖∞

is the growth factor and Ak = [a(k)
ij ] for

k = 0, . . . , n − 1 are the intermediate re-
duced matrices produced during the GE
process (see Secs. 2.1 and 2.5). It can be
shown that γ ≤ 2n−1 for GE with par-
tial pivoting and γ ≤ [n(2 × 31/2 × 41/3 ×
· · · n1/(n−1))]1/2 � 2n−1 for GE with com-
plete pivoting. Moreover, the former upper
bound can be achieved. However, for GE
with both partial and complete pivoting,
the actual error incurred is usually much
smaller than the bound (15) suggests: it
is typically the case that ‖E‖∞ ∝ ‖A‖∞u.

Thus, GE with partial pivoting usually pro-
duces a computed solution with a small
backward error, but, unlike GE with com-
plete pivoting, there is no guarantee that
this will be the case.

If A is column-diagonally dominant,
then applying GE without pivoting to solve
Ax = b is effectively the same as applying
GE with partial pivoting to solve this
system. Therefore, all the remarks above
for GE with partial pivoting apply in this
special case.

If we use the Cholesky factorization
without pivoting together with forward
elimination and back substitution to solve
Ax = b, where A is a symmetric positive-
definite matrix, then it can be shown that
the computed solution x̃ satisfies (14) with
r = 0 and

‖E‖2 ≤ cn‖A‖2u, (16)

where cn is a constant of moderate size
that depends on n only. Thus the Cholesky
factorization without pivoting produces a
solution with a small backward error in all
cases.

Similar bounds on the backward error
for other factorizations and matrices with
special properties, such as symmetric or
band matrices, can be found in advanced
texts, such as Golub and Van Loan (1989).

It is also worth noting that we can easily
compute an a posteriori backward error
estimate of the form (14) with E = 0 by
calculating the residual r = Ax̃ − b after
computing x̃. Typically ‖r‖∞ ∝ ‖b‖∞u
if GE with partial or complete pivoting
or the Cholesky factorization is used to
compute x̃.

Now we use (14) together with bounds
on the size of A and A−1 to bound the
error x − x̃. To do so, we first introduce
the condition number κ(A) = ‖A‖ ‖A−1‖
associated with the problem Ax = b.
Although κ(A) clearly depends on the
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matrix norm used, it is roughly of the
same magnitude for all the commonly
used norms, and it is the magnitude only
of κ(A) that is important here. Moreover,
for the result below to hold, we require only
that the matrix norm associated with κ(A)

is sub-multiplicative (i.e., ‖AB‖ ≤ ‖A‖ ‖B‖
for all A and B ∈ Cn×n) and that it is
consistent with the vector norm used (i.e.,
‖Av‖ ≤ ‖A‖ ‖v‖ for all A ∈ Cn×n and v ∈
Cn). It follows immediately from these two
properties that κ(A) ≥ 1 for all A ∈ Cn×n.
More importantly, it can be shown that,
if ‖E‖/‖A‖ ≤ δ, ‖r‖/‖b‖ ≤ δ, and δκ(A) =
r < 1, then A + E is nonsingular and

‖x − x̃‖
‖x‖ ≤ 2δ

1 − r
κ(A). (17)

Moreover, for any given A, there are
some b, E, and r for which ‖x − x̃‖/‖x‖ is
as large as the right side of (17) suggests it
might be, although this is not the case for
all b, E, and r. Thus we see that, if κ(A) is
not too large, then small relative errors
‖E‖/‖A‖ and ‖r‖/‖b‖ ensure a small
relative error ‖x − x̃‖/‖x‖, and so the
problem is well-conditioned. On the other
hand, if κ(A) is large, then ‖x − x̃‖/‖x‖
might be large even though ‖E‖/‖A‖ and
‖r‖/‖b‖ are small, and so the problem
is ill-conditioned. Thus, as the name
suggests, the condition number κ(A) gives
a good measure of the conditioning – or
stability – of the problem Ax = b.

Combining the discussion above with
the earlier observation that typically
‖r‖∞ ∝ ‖b‖∞u if GE with partial or com-
plete pivoting or the Cholesky factorization
is used to compute x̃, we get the gen-
eral rule of thumb that, if u ≈ 10−d and
κ∞ = ‖A‖∞‖A−1‖∞ ≈ 10q, then x̃ con-
tains about d − q correct digits.

Many routines for solving linear systems
provide an estimate of κ(A), although most

do not compute ‖A‖ ‖A−1‖ directly, since
they do not compute A−1.

There are many other useful inequalities
of the form (17). The interested reader
should consult an advanced text, such as
Golub and Van Loan (1989).

2.9
Iterative Improvement

The basis of iterative improvement is the
observation that, if x1 is an approximate
solution to Ax = b, we can form the
residual r1 = b − Ax1, which satisfies r1 =
A(x − x1), and then solve Ad1 = r1 for the
difference d1 = x − x1 and finally compute
the improved solution x2 = x1 + d1. In
exact arithmetic, x2 = x, but, in floating-
point arithmetic, x2 	= x normally. So we
can repeat the process using x2 in place of
x1 to form another improved solution x3,
and so on. Moreover, if we have factored A
to compute x1, then, as noted in Secs. 2.3
and 2.5, there is relatively little extra
computational work required to compute
a few iterations of iterative improvement.

The catch here is that, as noted in
Sec. 2.8, typically ‖r‖∞ ∝ ‖b‖∞u if GE
with partial or complete pivoting or the
Cholesky factorization is used to compute
x̃. So, if we compute r1 = b − Ax1 in
the same precision, then r1 will contain
few if any correct digits. Consequently,
using it in iterative improvement usually
does not lead to a reduction of the
error in x2, although it may lead to a
smaller E in (14) in some cases. However,
if we compute rk = b − Axk in double
precision for k = 1, 2, . . ., then iterative
improvement may be quite effective.
Roughly speaking, if the relative roundoff
error bound u ≈ 10−d and the condition
number κ(A) = ‖A‖ ‖A−1‖ ≈ 10q, then
after k iterations of iterative improvement
the computed solution xk typically has
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about min(d, k(d − q)) correct digits. Thus,
if κ(A) is large, but not too large, and, as
a result, the initial computed solution x1

is inaccurate, but not completely wrong,
then iterative improvement can be used
to obtain almost full single-precision
accuracy in the solution.

The discussion above can be made
more rigorous by noting that iterative
improvement is a basic iterative method
of the form (19)–(20) for solving Ax = b
and applying the analysis in Sec. 3.1.

3
The Iterative Solution of Linear Algebraic
Systems

In this section, we consider iterative
methods for the numerical solution of
linear algebraic systems of the form
Ax = b, where A ∈ Rn×n (or Cn×n) is a
nonsingular matrix, x, and b ∈ Rn (or Cn).
Such schemes compute a sequence of
approximations x1, x2, . . . to x in the hope
that xk → x as k → ∞. Direct methods for
solving Ax = b are considered in Sec. 2.

Iterative methods are most frequently
used when A is large and sparse, but
not banded with a small bandwidth. Such
matrices arise frequently in the numerical
solution of partial differential equations
(PDEs). See, for example, the matrix shown
in Sec. 11.3.2 that is associated with the
standard five-point difference scheme for
Poisson’s equation. In many such cases,
iterative methods are more efficient than
direct methods for solving Ax = b: They
usually use far less storage and often
require significantly less computational
work as well.

We discuss basic iterative methods in
Sec. 3.1 and the conjugate-gradient accelera-
tion of these schemes in Sec. 3.2. A more
complete description and analysis of these

methods and other iterative schemes are
provided in Axelsson (1994), Golub and
Van Loan (1989), Hageman and Young
(1981), Young (1971), and Varga (1962).
See Sec. 13 for a discussion of sources of
high-quality numerical software for solv-
ing systems of linear algebraic equations.

We discuss multigrid methods in
Sec. 11.8, because these iterative schemes
are so closely tied to the PDE that gives
rise to the linear system Ax = b to which
they are applied.

3.1
Basic Iterative Methods

Many iterative methods for solving Ax = b
are based on splitting the matrix A into two
parts, M and N, such that A = M − N with
M nonsingular. M is frequently called the
splitting matrix. Starting from an initial
guess x0 for x, we compute x1, x2, . . .

recursively from

Mxk+1 = Nxk + b. (18)

We call such a scheme a basic iterative
method, but it is often also referred to as a
linear stationary method of the first degree.

Since N = M − A, (18) can be rewritten
as

Mxk+1 = (M − A)xk + b = Mxk

+ (b − Axk),

which is equivalent to

Mdk = rk, (19)

xk+1 = xk + dk, (20)

where rk = b − Axk is the residual at
iteration k. Although (18) and (19)–(20)
are mathematically equivalent, it might
be computationally more effective to
implement a method in one form than
the other.
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Clearly, for either (18) or (19)–(20) to be
effective,

1. it must be much easier to solve systems
with M than with A, and

2. the iterates x1, x2, . . . generated by (18)
or (19)–(20) must converge quickly to
x, the solution of Ax = b.

To address point 2, first note that, since
Ax = b and A = M − N, Mx = Nx + b.
So, if the sequence x1, x2, . . . converges, it
must converge to x. To determine whether
the sequence x1, x2, . . . converges and, if
so, how fast, subtract (18) from Mx =
Nx + b and note that the error ek = x − xk
satisfies the recurrence Mek+1 = Nek, or
equivalently ek+1 = Gek, where

G = M−1N = I − M−1A

is the associated iteration matrix. So

ek = Gke0. (21)

Using (21), we can show that, starting
from any initial guess x0, the sequence
x1, x2, . . . generated by (18) converges to x
if and only if ρ(G) < 1, where

ρ(G) = max{|λ| : λ an eigenvalue of G}
is the spectral radius of G. Moreover, ρ(G)

is the ‘‘asymptotically average’’ amount
by which the error ek decreases at each
iteration. Consequently, (log ∈)/ log ρ(G)

is a rough estimate of the number of
iterations of (18) required to reduce the
initial error e0 by a factor ∈. Thus, it is
common to define

R(G) = − log ρ(G) (22)

to be the rate of convergence (sometimes
called the asymptotic rate of convergence or
the asymptotic average rate of convergence)
of the iteration (18).

One useful general result is that, if
A = M − N is Hermitian positive-definite
and if the Hermitian matrix MH + N is
positive-definite too, then ρ(G) < 1 and
the associated iteration (18) converges.

Possibly the simplest iterative scheme is
the RF method (a variant of Richardson’s
method) for which M = I and N = I − A,
whence (18) reduces to

xk+1 = xk + rk,

where rk = b − Axk is the residual at itera-
tion k. From the general discussion above,
it follows that this scheme converges if and
only if ρ(I − A) < 1. Because of this severe
constraint on convergence, this scheme is
not often effective in its own right, but it
can be used productively as the basis for
polynomial acceleration, as discussed in
Sec. 3.2.

We describe the Jacobi, Gauss–Seidel,
SOR, and SSOR methods next, and then
consider their convergence. In describing
them, we use the notation A = D − L − U,
where D is assumed to be nonsingular
and consists of the diagonal elements of
A for the point variant of each method
or the diagonal submatrices of A for the
block variant. L and U are the negatives
of the strictly lower- and upper-triangular
parts of A, respectively, either point or
block, as the case may be. Typically, the
block variant of each method converges
faster than the point version, but requires
more computational work per iteration.
Thus, it is usually not clear without
additional analysis which variant will be
more effective.

The Jacobi iteration takes MJ = D and
NJ = L + U, resulting in the recurrence

Dxk+1 = (L + U)xk + b. (23)

The associated iteration matrix is GJ =
D−1(L + U). The Gauss–Seidel iteration
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takes MGS = D − L and NGS = U, result-
ing in the recurrence

(D − L)xk+1 = Uxk + b. (24)

The associated iteration matrix is GGS =
(D − L)−1U. Although (24) may at first
appear a little more complicated than (23),
it is in fact easier to implement in practice
on a sequential machine, since one can
overwrite xk when computing xk+1 in
(24), whereas this is generally not possible
for (23). However, for the Gauss–Seidel
iteration, the jth component of xk+1 might
depend on the ith component of xk+1 for
i < j, because of the factor L on the left side
of (24). This often inhibits vectorization
and parallelization of the Gauss–Seidel
iteration. Note that the Jacobi iteration
has no such dependence, and so might
be more effective on a vector or parallel
machine.

Relaxation methods for Ax = b can be
written in the form

xk+1 = xk + ω(x̂k+1 − xk), (25)

where ω 	= 0 is the relaxation parameter
and x̂k+1 is computed from xk by some
other iterative method. The best known of
these schemes is successive overrelaxation
(SOR) for which

Dx̂k+1 = Lxk+1 + Uxk + b. (26)

Equations(25) and (26) can be combined
to give (

1

ω
D − L

)
xk+1 =

(
1 − ω

ω
D + U

)
xk + b, (27)

which is an iteration of the form (18) with
MSOR(ω) = (1/ω)D − L and NSOR(ω) =
[(1 − ω)/ω]D + U. It follows immediately
from (24) and (27) that the SOR iteration

reduces to the Gauss–Seidel method if
ω = 1. Moreover, because of the similarity
between (24) and (27), the SOR iteration
shares with the Gauss–Seidel method the
implementation advantages and disadvan-
tages noted above.

Overrelaxation corresponds to choosing
ω > 1 in (25) or (27), while underrelax-
ation corresponds to choosing ω ∈ (0, 1).
Historically, ω > 1 was used in SOR for
the solution of elliptic PDEs – hence the
name successive overrelaxation – but un-
derrelaxation is more effective for some
problems. See for example Young (1971)
for a more complete discussion.

The symmetric SOR (SSOR) method
takes one half step of SOR with the
equations solved in the standard order
followed by one half step of SOR with
the equations solved in the reverse order:(

1

ω
D − L

)
xk+1/2 =

(
1 − ω

ω
D + U

)
xk + b, (28)

(
1

ω
D − U

)
xk+1 =

(
1 − ω

ω
D + L

)
xk+1/2 + b. (29)

These two half steps can be combined
into one step of the form (18) with

MSSOR(ω) = ω

2 − ω

(
1

ω
D − L

)
D−1

(
1

ω
D − U

)

and

NSSOR(ω)= (ω − 1)2

ω(2 − ω)
D+ 1 − ω

2 − ω
(L + U)

+ ω

2 − ω
LD−1U.
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Note that, if A = D − L − U is a real,
symmetric, positive-definite matrix and
ω ∈ (0, 2), then MSSOR(ω) is a real, sym-
metric, positive-definite matrix too, since,
in this case, ω/(2 − ω) > 0, both D and
D−1 are symmetric positive-definite, and
(1/ω)D − L = [(1/ω)D − U]T is nonsin-
gular. This property of MSSOR(ω) plays
an important role in the effective accelera-
tion of the SSOR iteration, as discussed in
Sec. 3.2.

We now consider the convergence of
the Jacobi, Gauss–Seidel, SOR, and SSOR
methods. It is easy to show that the Jacobi
iteration (23) converges if A is either row-
or column-diagonally dominant. It can also
be shown that the Gauss–Seidel iteration
(24) converges if A is Hermitian positive-
definite. Furthermore, if A is consistently
ordered, a property enjoyed by a large
class of matrices, including many that
arise from the discretization of PDEs [see,
for example, Young (1971) for details],
it can be shown that the Gauss–Seidel
iteration converges twice as fast as the
Jacobi iteration if either one converges.

The iteration matrix associated with the
SOR iteration (27) is

GSOR(ω)= [MSOR(ω)]−1NSOR(ω)

=
(

1

ω
D − L

)−1(1 − ω

ω
D + U

)
.

For any nonsingular A with nonsingular
D, it can be shown that ρ(GSOR(ω)) ≥
|ω − 1| with equality possible if and
only if all eigenvalues of GSOR(ω) have
magnitude |ω − 1|. So, if ω ∈ R, as is
normally the case, a necessary condition
for the convergence of SOR is ω ∈ (0, 2).
It can also be shown that, if A is Hermitian,
D is positive-definite, and ω ∈ R, then
the SOR iteration converges if and only
if A is positive-definite and ω ∈ (0, 2).
Furthermore, if A is consistently ordered

and all the eigenvalues of GJ = D−1(L +
U) are real and lie in (−1, 1), then the
optimal choice of the SOR parameter ω is

ω0 = 2

1 +
√

1 − [ρ(GJ)]2
∈ (1, 2)

and

ρ(GSOR(ω0)) = ω0 − 1

=

 ρ(GJ)

1 +
√

1 − [ρ(GJ)]2




2

= min
ω

ρ(GSOR(ω)) < ρ(G1)

= ρ(GGS) = [ρ(GJ)]2

< ρ(GJ). (30)

In many cases, though, it is not conve-
nient to calculate the optimal ω. Hageman
and Young (1981) discuss heuristics for
choosing a ‘‘good’’ ω.

If A is a real, symmetric, positive-
definite matrix, then the SSOR iteration
(28)–(29) converges for any ω ∈ (0, 2).
Moreover, determining the precise value
of the optimal ω is not nearly as critical
for SSOR as it is for SOR, since, unlike
SOR, the rate of convergence of SSOR is
relatively insensitive to the choice of ω.
However, for SSOR to be effective,

ρ(D−1LD−1U) ≤ 1

4

should be satisfied – or nearly so. If this is
the case, then a good value for ω is

ω1 = 2

1 +√
2[1 − ρ(GJ)]

and

ρ(GSSOR(ω1)) ≤ 1 − {[1 − ρ(GJ)]/2}1/2

1 + {[1 − ρ(GJ)]/2}1/2 ,

(31)
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where GSSOR(ω)= [MSSOR(ω)]−1NSSOR(ω)

is the SSOR iteration matrix.
For a large class of problems, including

many that arise from the discretization of
elliptic PDEs, ρ(GJ) = 1 − ε for some ε

satisfying 0 < ε � 1. For such problems,
if (30) is valid and (31) holds with =
in place of ≤, then

ρ(GJ) = 1 − ε,

ρ(GGS) = (ρ(GJ))
2 ≈ 1 − 2ε,

ρ(GSSOR(ω1)) ≈ 1 − 2
√

ε/2,

ρ(GSOR(ω0)) ≈ 1 − 2
√

2ε,

whence the rates of convergence for these
schemes are

R(GJ) ≈ ε,

R(GGS) = 2R(GJ) ≈ 2ε,

R(GSSOR(ω1)) ≈ 2
√

ε/2,

R(GSOR(ω0))≈ 2
√

2ε ≈ 2R(GSSOR(ω1)),

showing that the Gauss–Seidel iteration
converges twice as fast as the Jacobi
iteration, the SOR iteration converges
about twice as fast as the SSOR iteration,
and the SOR and SSOR iterations converge
much faster than either the Gauss–Seidel
or Jacobi iteration. However, the SSOR
iteration often has the advantage, not
normally shared by the SOR method, that it
can be accelerated effectively, as discussed
in Sec. 3.2.

Another class of basic iterative methods
is based on incomplete factorizations. For
brevity, we describe only the subclass of
incomplete Cholesky factorizations (ICFs)
here; the other schemes are similar. See
an advanced text, such as Axelsson (1994),
for details.

For an ICF to be effective, A should
be symmetric positive-definite (or nearly
so), large, and sparse. If A is banded,

then the band containing the nonzeros
should also be sparse, as is the case for
the discretization of Poisson’s equation
shown in Sec. 11.3.2. The general idea
behind the ICFs is to compute a lower-
triangular matrix LICF such that MICF =
LICFLT

ICF is in some sense close to A and
LICF is much sparser than L, the true
Cholesky factor of A. Then employ the
iteration (19)–(20) to compute a sequence
of approximations x1, x2, . . . to x, the
solution of Ax = b. Note that (19) can be
solved efficiently by forward elimination
and back substitution as described in
Secs. 2.4 and 2.2, respectively, since the
factorization MICF = LICFLT

ICF is known.
This scheme, or an accelerated variant of
it, is often very effective if it converges
rapidly and LICF is much sparser than L.

A simple, but often effective, way
of computing LICF = [lij] is to apply
the Cholesky factorization described in
Table 4, but to set lij = 0 whenever aij = 0,
where A = [aij]. Thus, LICF has the same
sparsity pattern as the lower-triangular part
of A, whereas the true Cholesky factor
L of A might suffer significant fill-in, as
described in Sec. 2.7. Unfortunately, this
simple ICF is not always stable.

As noted in Sec. 2.9, iterative improve-
ment is a basic iterative method of this
form, although, for iterative improvement,
the error N = M − A is due entirely to
rounding errors, whereas, for the incom-
plete factorizations considered here, the
error N = M − A is typically also due to
dropping elements from the factors of M
to reduce fill-in.

For a more complete discussion of ICFs
and other incomplete factorizations, their
convergence properties, and their potential
for acceleration, see an advanced text such
as Axelsson (1994).

We end this section with a brief discus-
sion of alternating-direction implicit (ADI)
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methods. A typical example of a scheme
of this class is the Peaceman–Rachford
method

(H + αnI)xn+1/2 = b − (V − αnI)xn,

(32)

(V + α′
nI)xn+1 = b − (H − α′

nI)xn+1/2,

(33)

where A = H + V, αn > 0, α′
n > 0, and

A, H, and V are real, symmetric, positive-
definite matrices. For many problems,
it is possible to choose H, V, and
{αn, α′

n}, so that the iteration (32)–(33)
converges rapidly, and it is much cheaper
to solve (32) and (33) than it is to solve
Ax = b. For example, for the standard
five-point discretization of a separable two-
dimensional elliptic PDE, H and V can be
chosen to be essentially tridiagonal and
the rate of convergence of (32)–(33) is
proportional to 1/ log h−1, where h is the
mesh size used in the discretization. In
contrast, the rate of convergence for SOR
with the optimal ω is proportional to h.
Note that h � 1/ log h−1 for 0 < h � 1,
supporting the empirical evidence that
ADI schemes converge much more rapidly
than SOR for many problems. However,
ADI schemes are not applicable to as wide
a class of problems as SOR is.

For a more complete discussion of ADI
schemes, see an advanced text such as
Varga (1962) or Young (1971).

3.2
The Conjugate-Gradient Method

The conjugate-gradient (CG) method for the
solution of the linear system Ax = b is
a member of a broader class of methods
often called polynomial acceleration tech-
niques or Krylov-subspace methods. (The
basis of these names is explained below.)
Although many schemes in this broader

class are very useful in practice, we dis-
cuss only CG here, but note that several
of these schemes, including Chebyshev
acceleration and GMRES, apply to more
general problems than CG. The inter-
ested reader should consult an advanced
text such as Axelsson (1994), Golub and
Van Loan (1989), Hageman and Young
(1981) for a more complete discussion
of polynomial acceleration techniques and
Krylov-subspace methods. The close re-
lationship between CG and the Lanczos
method is discussed in Golub and Van
Loan (1989).

The preconditioned conjugate-gradient
(PCG) method can be viewed either as
an acceleration technique for the basic
iterative method (18) or as CG applied
to the preconditioned system M−1Ax =
M−1b, where the splitting matrix M of (18)
is typically called a preconditioning matrix
in this context. We adopt the second point
of view in this subsection.

An instructive way of deriving PCG is to
exploit its relationship to the minimization
technique of the same name described in
Sec. 7.5. To this end, assume that the basic
iterative method (18) is symmetrizable.
That is, there exists a real, nonsingular
matrix W such that S = WM−1AW−1 is
a real, symmetric, positive-definite (SPD)
matrix. Consider the quadratic functional
F(y) = 1

2 yTSy − yTb̂, where b̂ = WM−1b
and y ∈ Rn. It is easy to show that the
unique minimum of F(y) is the solution
x̂ of Sx̂ = b̂. It follows immediately from
the relations for S and b̂ given above that
x = W−1x̂ is the solution of both the
preconditioned system M−1Ax = M−1b
and the original system Ax = b. If we take
M = W = I, then S = W(M−1A)W−1 =
A and, if we assume that A is a real
SPD matrix, PCG reduces to the standard
(unpreconditioned) CG method.
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It is easy to show that if both A and
M are real SPD matrices, then M−1A
is symmetrizable. Moreover, many im-
portant practical problems, such as the
numerical solution of self-adjoint elliptic
PDEs, give rise to matrices A that are
real SPD. Furthermore, if A is a real SPD
matrix, then the splitting matrix M associ-
ated with the RF, Jacobi, and SSOR [with
ω ∈ (0, 2)] iterations is a real SPD matrix
too, as is the M given by an incomplete
Cholesky factorization, provided it exists.
Hence, these basic iterative methods are
symmetrizable in this case and so PCG can
be used to accelerate their convergence. In
contrast, the SOR iteration with the opti-
mal ω is generally not symmetrizable. So
PCG is not even applicable and more gen-
eral Krylov-subspace methods normally do
not accelerate its convergence.

We assume throughout the rest of
this subsection that A and M are real
SPD matrices, because this case arises
most frequently in practice and also
because it simplifies the discussion below.
Using this assumption and applying
several mathematical identities, we get
the computationally effective variant of
PCG shown in Table 6. Note that W does
not appear explicitly in this algorithm.
Also note that, if we choose M = I, then
r̃k = rk and the PCG method reduces to the
unpreconditioned CG method for Ax = b.

Many other mathematically equivalent
forms of PCG exist. Moreover, as noted
above, a more general form of PCG can be
used if M−1A is symmetrizable, without
either A or M being a real SPD matrix. For
a discussion of the points, see an advanced
text such as Hageman and Young (1981).

Before considering the convergence of
PCG, we introduce some notation. The en-
ergy norm of a vector y ∈ Rn with respect to
a real SPD matrix B is ‖y‖B1/2 = (yTBy)1/2.

Tab. 6 The preconditioned conjugate-gradient
(PCG) method for solving Ax = b

choose an initial guess x0
compute r0 = b − Ax0
solve Mr̃0 = r0
set p0 = r̃0
for k = 0, 1, . . . until convergence do

αk = rT
k r̃k/pT

k Apk
xk+1 = xk + αkpk
rk+1 = rk − αkApk
solve Mr̃k+1 = rk+1
βk = rT

k+1 r̃k+1/rT
k r̃k

pk+1 = r̃k+1 + βkpk
end

The Krylov subspace of degree k − 1 gen-
erated by a vector v and a matrix W is
K k(v, W) = span{v, Wv, . . . , Wk−1v}.

It is easy to show that the rk that occurs
in Table 6 is the residual rk = b − Axk as-
sociated with xk for the system Ax = b and
that r̃k = M−1rk = M−1b − M−1Axk is the
residual associated with xk for the pre-
conditioned system M−1Ax = M−1b. Let
ek = x − xk be the error associated with
xk. It can be shown that the xk generated
by PCG is a member of the shifted Krylov
subspace x0 + K k(r̃0, M−1A) ≡ {x0 + v :
v ∈ K k(r̃0, M−1A)}. Hence, PCG is in the
broader class of Krylov-subspace methods
characterized by this property. Moreover,
it can be shown that the xk gener-
ated by PCG is the unique member
of x0 + K k(r̃0, M−1A) that minimizes
the energy norm of the error ‖ek‖A1/2 =
(eT

k Aek)
1/2 over all vectors of the form

e′
k = x − x′

k, where x′
k is any other mem-

ber of x0 + K k(r̃0, M−1A). Equivalently,
ek = P∗

k (M−1A)e0, where P∗
k (z) is the poly-

nomial that minimizes ‖Pk(M
−1A)e0‖A1/2

over all polynomials Pk(z) of degree k that
satisfy Pk(0) = 1. This result is the basis
of the characterization that PCG is the op-
timal polynomial acceleration scheme for
the basic iterative method (18).
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In passing, note that the iterate
xk generated by the basic iteration
(18) is in the shifted Krylov subspace
x0 + K k(r̃0, M−1A) also and that, by
(21), the associated error satisfies ek =
(I − M−1A)ke0. So (18) is a Krylov-
subspace method too and its error sat-
isfies the polynomial relation described
above with Pk(z) = (1 − z)k. Thus, the
associated PCG method is guaranteed
to accelerate the convergence of the ba-
sic iteration (18) – at least when the
errors are measured in the energy
norm.

The characterization of its error dis-
cussed above can be very useful in un-
derstanding the performance of PCG. For
example, it can be used to prove the fi-
nite termination property of PCG. That is,
if M−1A has m distinct eigenvalues, then
xm = x, the exact solution of Ax = b. Since
M−1A has n eigenvalues, m ≤ n always
and m � n sometimes. We caution the
reader, though, that the argument used to
prove this property of PCG assumes exact
arithmetic. In floating-point arithmetic, we
rarely get em = 0, although we frequently
get em̃ small for some m̃ possibly a little
larger than m.

The proof of the finite termination
property can be extended easily to ex-
plain the rapid convergence of PCG
when the eigenvalues of M−1A fall into
a few small clusters. So a precondi-
tioner M is good if the eigenvalues of
M−1A are much more closely clustered
than those of the unpreconditioned ma-
trix A.

Because of the finite termination prop-
erty, both CG and PCG can be considered
direct methods. However, both are fre-
quently used as iterative schemes, with the
iteration terminated long before em = 0.
Therefore, it is important to understand

how the error decreases with k, the iter-
ation count. To this end, first note that
the characterization of the error ensures
that ‖ek+1‖A1/2 ≤ ‖ek‖A1/2 with equality
only if ek = 0. That is, PCG is a descent
method in the sense that some norm
of the error decreases on every iteration.
Not all iterative methods enjoy this useful
property.

The characterization of the error can also
be used to show that

‖ek‖A1/2 ≤ 2
(√

λn/λ1 − 1√
λn/λ1 + 1

)k

‖e0‖A1/2,

(34)

where λn and λ1 are the largest and small-
est eigenvalues, respectively, of M−1A.
(Note that λn, λ1 ∈ R and λn ≥ λ1 > 0
since M−1A is symmetrizable.) It follows
easily from the definition of the energy
norm and (34) that

‖ek‖2 ≤ 2
√

κ2(A)

(√
λn/λ1 − 1√
λn/λ1 + 1

)k

‖e0‖2,

(35)

where κ2(A) = ‖A‖2‖A−1‖2 is the con-
dition number of A in the 2-norm (see
Sec. 2.8). Although (35) is generally not as
tight as (34), it may be more relevant to the
practitioner. It follows from either (34) or
(35) that, in this context, a preconditioner
M is good if λn/λ1 is (much) closer to 1
than is the ratio of the largest to smallest
eigenvalues of A.

Unlike many other iterative methods,
such as SOR, PCG does not require an
estimate of any parameters, although some
stopping procedures for PCG require an
estimate of the extreme eigenvalues of
A or M−1A. See an advanced text such
as Axelsson (1994), Golub and Van Loan
(1989), Hageman and Young (1981) for
details.
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4
Overdetermined and Underdetermined
Linear Systems

A linear system Ax = b, with A ∈ Rm×n

and b ∈ Rm given and x ∈ Rn unknown,
is called overdetermined if m > n. Such a
system typically has no solution. However,
there is always an x that minimizes ‖b −
Ax‖2. Such an x is called a least-squares
solution to the overdetermined linear
system Ax = b. Moreover, if rank(A) =
n, then the least-squares solution is
unique.

A linear system Ax = b, as above, is
called underdetermined if m < n. Such
a system typically has infinitely many
solutions. If Ax = b has a solution, then
there is an x of minimum Euclidean
norm, ‖x‖2, that satisfies Ax = b. Such
an x is called a least-squares solution to the
underdetermined linear system Ax = b. It
can be shown that, if rank(A) = m, then
the least-squares solution is unique.

In the following subsections, we de-
scribe methods to compute the least-
squares solution of overdetermined and
underdetermined linear systems, assum-
ing that the matrix A has full rank, i.e.,
rank(A) = min(m, n). For the more gen-
eral case of rank(A) < min(m, n), see an
advanced text such as Golub and Van Loan
(1989).

4.1
The Normal Equations for Overdetermined
Linear Systems

Let Ax = b be an overdetermined linear
system with m equations in n unknowns
and with rank(A) = n. The x that mini-
mizes ‖b − Ax‖2 satisfies

∂ [(b − Ax)T(b − Ax)]

∂xj
=0 for j = 1, . . . , n.

These relations can be rewritten in
matrix form as AT(b − Ax) = 0 or equiva-
lently

ATAx = ATb, (36)

which is called the system of normal
equations for the overdetermined linear
system Ax = b. It can be shown that the
matrix ATA is symmetric and positive-
definite if rank(A) = n. So the system (36)
has a unique solution, which is the least-
squares solution to Ax = b.

Note that the matrix ATA is n × n.
Computing the matrix ATA requires about
mn2/2 flops (floating-point operations),
while computing ATb requires about mn
flops, and solving (36) requires about n3/6
flops, if we assume that the Cholesky
factorization (see Sec. 2.6) is used.

The condition number of the matrix
ATA is often large. More specifically, it
can be shown that if A is square and
nonsingular, then the condition number
of ATA is the square of the condition
number of A (see Sec. 2.8). As a result,
the approach described above of forming
and solving the normal equations (36)
often leads to a serious loss of accuracy.
Therefore, in Secs. 4.4 and 4.7, we discuss
more stable alternatives for solving least-
squares problems.

4.2
The Normal Equations for
Underdetermined Linear Systems

Let Ax = b be an underdetermined linear
system with m equations in n unknowns
and with rank(A) = m. It can be shown
that the least-squares solution x to Ax = b
can be written in the form ATy for some
y ∈ Rm that satisfies

AATy = b. (37)
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This is a linear system of size m × m,
called the system of normal equations
for the underdetermined linear system
Ax = b. It can be shown that the matrix
AAT is symmetric and positive-definite if
rank(A) = m. So the system (37) has a
unique solution. The unique least-squares
solution to Ax = b is x = ATy.

Computing the matrix AAT requires
about nm2/2 flops, while computing ATy
requires about mn flops, and solving (37)
requires about m3/6 flops, if the Cholesky
factorization (see Sec. 2.6) is used.

As is the case for overdetermined
systems, the method of forming and
solving the normal equations (37) to
compute the least-squares solution to
Ax = b is numerically unstable in some
cases. In Secs. 4.5 and 4.8, we discuss more
stable alternatives.

4.3
Householder Transformations and the QR
Factorization

An orthogonal transformation is a linear
change of variables that preserves the
length of vectors in the Euclidean norm.
Examples are a rotation about an axis
or a reflection across a plane. The
following is an example of an orthogonal
transformation y = (y1, y2) to x = (x1, x2):

x1 = 0.6y1 + 0.8y2,

x2 = 0.8y1 − 0.6y2.

It is easy to see that ‖x‖2 = ‖y‖2.
An orthogonal matrix is an m × n matrix

Q with the property QTQ = I. Note that,
if (and only if ) Q is square, i.e., m = n, the
relation QTQ = I is equivalent to QQT =
I and so QT = Q−1. An orthogonal
transformation of y to x can be written as
x = Qy, where Q is an orthogonal matrix.
In the above example, the corresponding

orthogonal matrix is

Q =
(

0.6 0.8
0.8 −0.6

)
.

If Q is an orthogonal matrix, then

‖x‖2
2 = ‖Qy‖2

2 = (Qy)T(Qy) = yT(QTQ)y

= yTy = ‖y‖2
2,

whence ‖x‖2 = ‖y‖2. This property is ex-
ploited in the methods described below
to solve least-squares problems. Moreover,
the numerical stability of these schemes
is due at least in part to the related obser-
vation that orthogonal transformations do
not magnify rounding error.

A Householder transformation or House-
holder reflection is an orthogonal matrix of
the form H = I − 2wwT, where ‖w‖2 = 1.
Note that, when H is 2 × 2, the effect of
H on a vector x is equivalent to reflecting
the vector x across the plane perpendicu-
lar to w and passing through the origin of
x. A Householder reflection can be used
to transform a nonzero vector into one
containing mainly zeros.

An m × n matrix R = [rij] is right trian-
gular if rij = 0 for i > j. Note that if (and
only if ) R is square, i.e., m = n, the terms
right triangular and upper triangular are
equivalent.

Let A be an m × n matrix with m ≥ n.
The QR factorization of A expresses A
as the product of an m × m orthogonal
matrix Q and an m × n right-triangular
matrix R. It can be computed by a
sequence H1, H2, . . . , Hn of Householder
transformations to reduce A to right-
triangular form R. More specifically, this
variant of the QR factorization proceeds in
n steps (or n − 1 if n = m). Starting with
A0 = A, at step k for k = 1, . . . , n, Hk
is applied to the partially processed
matrix Ak−1 to zero the components
k + 1 to m of column k of Ak−1. Q =
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H1H2, . . . , Hn and R = An, the last matrix
to be computed. For the details of
the QR factorization algorithm using
Householder transformations or other
elementary orthogonal transformations,
see Hager (1988) or Golub and Van Loan
(1989).

4.4
Using the QR Factorization to Solve
Overdetermined Linear Systems

Assume that A is an m × n matrix, with
m ≥ n and rank(A) = n. Let Ax = b be the
linear system to be solved (in the least-
squares sense, if m > n). Let A = QR be
the QR factorization of A. Note that

||Ax − b||2 = ||QRx − b||2
= ||Q(Rx − QTb)||2
= ||Rx − QTb||2.

Therefore, we can use the QR factoriza-
tion of A to reduce the problem of solving
Ax = b to that of solving Rx = QTb, a
much simpler task. We solve the latter
by first computing y = QTb. Let ŷ be the
vector consisting of the first n components
of y and R̂ the upper-triangular matrix con-
sisting of the first n rows of R. Now solve
R̂x = ŷ by back substitution (see Sec. 2.2).
Then x is the least-squares solution to both
Rx = QTb and Ax = b.

It can be shown that the QR factorization
algorithm applied to an n × n linear system
requires about 2n3/3 flops, which is about
twice as many as the LU factorization
needs. However, QR is a more stable
method than LU and it requires no
pivoting. The QR factorization algorithm
applied to an m × n linear system requires
about twice as many flops as forming and
solving the normal equations. However,

QR is a more stable method than solving
the normal equations.

4.5
Using the QR Factorization to Solve
Underdetermined Linear Systems

Assume that A is an m × n matrix,
with m < n and rank(A) = m. Let Ax = b
be the linear system to be solved (in
the least-squares sense). Obtain the QR
factorization of AT by the QR factorization
algorithm: AT = QR, where Q is an
n × n orthogonal matrix and R is an
n × m right-triangular matrix. Let R̂ be
the upper-triangular matrix consisting of
the first m rows of R. Solve R̂Tŷ = b by
back substitution (see Sec. 2.2) and let
y = (ŷT, 0, . . . , 0)T ∈ Rn. Note that y is
the vector of minimal Euclidean norm
that satisfies RTy = b. Finally compute
x = Qy and note that x is the vector of
minimal Euclidean norm that satisfies
RTQTx = b or equivalently Ax = b. That
is, x is the least-squares solution to
Ax = b.

4.6
The Gram–Schmidt Orthogonalization
Algorithm

The Gram–Schmidt orthogonalization algo-
rithm is an alternative to QR. The modified
version of the algorithm presented below is
approximately twice as fast as QR and more
stable than solving the normal equations.

Assume that A ∈ Rm×n with m ≥ n and
that A has n linearly independent columns
{aj}n

j=1. The Gram–Schmidt algorithm ap-
plied to A generates an m × n orthogonal
matrix Q and an n × n upper-triangular
matrix R satisfying A = QR. In Table 7, we
present a stable version of the algorithm,
often called the modified Gram–Schmidt
algorithm.
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Tab. 7 The modified Gram–Schmidt algorithm

for j = 1, . . . , n do (qj and aj are
qj = aj columns j of Q
for i = 1, . . . , j − 1 do and A,

rij = qT
i qj respectively)

qj = qj − rijqi

end
rj j = ||qj||2
qj = qj/rj j

end

4.7
Using Gram–Schmidt to Solve
Overdetermined Linear Systems

Assume that A is an m × n matrix, with
m ≥ n and rank(A) = n. Let Ax = b be
the linear system to be solved (in the
least-squares sense, if nonsquare). The
method for solving Ax = b using the
Gram–Schmidt algorithm is similar to
that described in Sec. 4.4 for the QR
factorization.

First compute the QR factorization
of A by the Gram–Schmidt algorithm.
Next compute y = QTb and solve Rx =
y by back substitution (see Sec. 2.2).
Then x is the least-squares solution to
Ax = b.

It can be shown that the Gram–Schmidt
algorithm applied to an n × n linear sys-
tem requires about n3/3 flops, which is
about the same number of arithmetic op-
erations as the LU factorization algorithm
needs and about half of what the QR fac-
torization algorithm requires. Moreover,
the modified Gram–Schmidt algorithm,
as presented in Table 7, is relatively stable.
The Gram–Schmidt algorithm applied to
an m × n linear system requires about the
same number of flops as that needed to
form and to solve the normal equations,
but the Gram–Schmidt algorithm is more
stable.

4.8
Using Gram–Schmidt to Solve
Underdetermined Linear Systems

Assume that A is an m × n matrix,
with m < n and rank(A) = m. Let Ax = b
be the linear system to be solved (in
the least-squares sense). The method for
solving Ax = b using the Gram–Schmidt
algorithm is similar to that described in
Sec. 4.5 for the QR factorization.

First compute the QR factorization of
AT by the Gram–Schmidt algorithm. Next
solve RTy = b by back substitution (see
Sec. 2.2) and set x = Qy. Then x is the
least-squares solution to Ax = b.

5
Eigenvalues and Eigenvectors of Matrices

Given an n × n matrix A, λ ∈ C, and
x ∈ Cn satisfying Ax = λx, λ is called an
eigenvalue of A and x is called an eigenvector
of A. The relation Ax = λx can be rewritten
as (A − λI)x = 0, emphasizing that λ is
an eigenvalue of A if and only if A − λI
is singular and that an eigenvector x is
a nontrivial solution to (A − λI)x = 0.
It also follows that the eigenvalues of
A are the roots of det(A − λI) = 0, the
characteristic equation of A. The polynomial
p(λ) = det(A − λI) of degree n is called the
characteristic polynomial of A and plays an
important role in the theory of eigenvalues.

An n × n matrix A has precisely n
eigenvalues, not necessarily distinct. It
also has at least one eigenvector for each
distinct eigenvalue. Note also that, if x is
an eigenvector of A, then so is any (scalar)
multiple of x and the corresponding
eigenvalue is the same. We often choose
an eigenvector of norm one in some vector
norm, often the Euclidean norm, as the
representative.
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Two matrices A and B are similar if
A = W−1BW for some nonsingular matrix
W. The matrix W is often referred to as
a similarity transformation. It is easy to see
that, if Ax = λx, then B(Wx) = λ(Wx).
Thus, similar matrices have the same
eigenvalues and their eigenvectors are
related by the similarity transformation W.
Similarity transformations are often used
in numerical methods for eigenvalues
and eigenvectors to transform a matrix
A into another one B that has the same
eigenvalues and related eigenvectors, but
whose eigenvalues and eigenvectors are in
some sense easier to compute than those
of A.

Eigenvalues play a major role in the
study of convergence of iterative methods
(see Sec. 3). Eigenvalues and eigenvectors
are also of great importance in understand-
ing the stability and other fundamental
properties of many physical systems.

The matrix A is often large, sparse,
and symmetric. These properties can be
exploited to great advantage in numerical
schemes for calculating the eigenvalues
and eigenvectors of A.

A common approach to calculate the
eigenvalues (and possibly the eigenvec-
tors) of a matrix A consists of two stages.
First, the matrix A is transformed to a
similar but simpler matrix B, usually tridi-
agonal, if A is symmetric (or Hermitian), or
Hessenberg, if A is nonsymmetric (or non-
Hermitian). Then, the eigenvalues (and
possibly the eigenvectors) of B are calcu-
lated. An exception to this approach is the
power method (see Sec. 5.1).

A standard procedure for computing
the eigenvectors of a matrix A is to
calculate the eigenvalues first then use
them to compute the eigenvectors by
inverse iteration (see Sec. 5.4). Again, an
exception to this approach is the power
method (see Sec. 5.1).

Before describing numerical methods
for the eigenvalue problem, we comment
briefly on the sensitivity of the eigenval-
ues and eigenvectors to perturbations in
the matrix A, since a backward error anal-
ysis can often show that the computed
eigenvalues and eigenvectors are the exact
eigenvalues and eigenvectors of a slightly
perturbed matrix Â = A + E, where E is
usually small relative to A. In general,
if A is symmetric, its eigenvalues are
well-conditioned with respect to small per-
turbations E. That is, the eigenvalues of
Â and A are very close. This, though,
is not always true of the eigenvectors
of A, particularly if the associated eigen-
value is a multiple eigenvalue or close
to another eigenvalue of A. If A is non-
symmetric, then both its eigenvalues and
eigenvectors may be poorly conditioned
with respect to small perturbations E.
Therefore, the user of a computer pack-
age for calculating the eigenvalues of a
matrix should be cautious about the ac-
curacy of the numerical results. For a
further discussion of the conditioning of
the eigenvalue problem, see Wilkinson
(1965).

5.1
The Power Method

The power method is used to calculate
the eigenvalue of largest magnitude of a
matrix A and the associated eigenvector.
Since matrix–vector products are the
dominant computational work required
by the power method, this scheme can
exploit the sparsity of the matrix to great
advantage.

Let λ be the eigenvalue of A of largest
magnitude and let x be an associated
eigenvector. Also let z0 be an initial
guess for some multiple of x. The
power method, shown in Table 8, is an
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Tab. 8 The power method

Pick z0
for k = 1, 2, . . . do

wk = Azk−1
Choose m ∈ {1, . . . , n} such that

|(wk)m)| ≥ |(wk)i)| for i = 1, . . . , n
zk = wk/(wk)m
µk = (wk)m/(zk−1)m
test stopping criterion

end

iterative scheme that generates a sequence
of approximations z1, z2, . . . to some
multiple of x and another sequence
of approximations µ1, µ2, . . . to λ. In
the scheme shown in Table 8, zk is
normalized so that the sequence z1, z2, . . .

converges to an eigenvector x of A
satisfying ‖x‖∝ = 1. Normalizations of
this sort are frequently used in eigenvector
calculations.

The power method is guaranteed to
converge if A has a single eigenvalue
λ of largest magnitude. The rate of
convergence depends on |λ2|/|λ|, where
λ2 is the eigenvalue of A of next largest
magnitude. With some modifications the
power method can be used when A
has more than one eigenvalue of largest
magnitude.

After the absolutely largest eigenvalue
of A has been calculated, the power
method can be applied to an appropriately
deflated matrix to calculate the next largest
eigenvalue and the associated eigenvector
of A, and so on. However, this approach
is inefficient if all or many eigenvalues are
needed. The next sections describe more
general-purpose methods for eigenvalue
and eigenvector computations. For an
introduction to the power method, see
Atkinson (1989). For further reading, see
Golub and Van Loan (1989) or Wilkinson
(1965).

5.2
The QR Method

The QR method is widely used to calculate
all the eigenvalues of a matrix A. It
employs the QR factorization algorithm
presented briefly in Sec. 4.4. Here, we
recall that, given an n × n matrix A, there
is a factorization A = QR, where R is an
n × n upper-triangular matrix and Q an
n × n orthogonal matrix.

The QR method, shown in Table 9,
is an iterative scheme to compute the
eigenvalues of A. It proceeds by generating
a sequence A1, A2, . . . of matrices, all of
which are similar to each other and to
the starting matrix A0 = A. The sequence
converges either to a triangular matrix with
the eigenvalues of A on its diagonal or to
an almost triangular matrix from which
the eigenvalues can be calculated easily.

For a real, nonsingular matrix A with
no two (or more) eigenvalues of the same
magnitude, the QR method is guaranteed
to converge. The iterates Ak converge to an
upper-triangular matrix with the eigenval-
ues of A on its diagonal. If A is symmetric,
the iterates converge to a diagonal ma-
trix. The rate of convergence depends
on max{|λi+1/λi|: i = 1, . . . , n − 1}, where
|λ1| > |λ2| > · · · > |λn|.

If two or more eigenvalues of A have the
same magnitude, the sequence A1, A2, . . .

may not converge to an upper-triangular
matrix. If A is symmetric, the sequence

Tab. 9 The QR method

Set A0 = A
for k = 1, 2, . . . do

Compute the QR factorization of
Ak−1 = QkRk
Set Ak = RkQk
test stopping criterion

end
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converges to a block-diagonal matrix, with
blocks of order 1 or 2, from which the
eigenvalues of A can be calculated easily.
If A is nonsymmetric, the problem is
more complicated. See Wilkinson (1965)
or Parlett (1968) for details.

In many cases, the QR method is com-
bined with a technique known as shifting
to accelerate convergence. A discussion of
this procedure can be found in Atkinson
(1989), Golub and Van Loan (1989), Parlett
(1980), and Wilkinson (1965).

The QR method for eigenvalues requires
the computation of the QR factorization of
a matrix and a matrix–matrix multiplica-
tion at each iteration. For a large matrix
A, this is an expensive computation, mak-
ing the method inefficient. To improve its
efficiency, the matrix A is normally prepro-
cessed, reducing it to a simpler form. If A
is symmetric, it is reduced to a similar tridi-
agonal matrix, as described in Sec. 5.3. If A
is nonsymmetric, it is reduced to a similar
upper Hessenberg matrix by a compara-
ble algorithm. It can be shown that, if
A0 = A is in Hessenberg or tridiagonal
form, then all the iterates Ak generated by
the QR method will also be in Hessenberg
or tridiagonal form, respectively. With ap-
propriate implementation techniques, the
QR factorization and the matrix–matrix
products applied to matrices with these
special structures require fewer operations
than would be needed for arbitrary dense
matrices.

With the modifications discussed above,
the QR method is an efficient, general-
purpose scheme for calculating the eigen-
values of a dense matrix. The eigen-
vectors can also be calculated if all
the similarity transformations employed
in the QR process are stored. Alter-
natively, the eigenvectors can be calcu-
lated by inverse iteration, as described in
Sec. 5.4.

5.3
Transforming a Symmetric Matrix to
Tridiagonal Form

As noted above, the eigenvalues of
a symmetric (or Hermitian) matrix A
are often calculated by first transform-
ing A into a similar tridiagonal ma-
trix T. Householder transformations (see
Sec. 4.3) are usually employed to perform
this task.

The algorithm to obtain the matrix T,
given A, resembles the QR factorization
algorithm described briefly in Sec. 4.3.
It proceeds in n − 2 steps and gener-
ates a sequence H1, H2, . . . , Hn−2 of
Householder transformations to reduce
A to tridiagonal form T. Starting with
A(0) = A, at step k for k = 1, . . . , n − 2,
we form Ak = HkAk−1Hk, where Hk is
chosen to zero the components k + 2
to n of both row k and column k of
Ak−1. T is An−2, the last matrix com-
puted by this process. Note that T =
Hn−2 · · · H1AH1 · · · Hn−2 is similar to
A because each Hk is symmetric and
orthogonal.

It can be shown that the reduction to
tridiagonal form by Householder transfor-
mations is a stable computation in the
sense that the computed T is the exact T
for a slightly perturbed matrix Â = A + E,
where E is usually small relative to A. As
a result, it can be shown that the eigenval-
ues of A and T differ very little. For a brief
introduction to tridiagonal reduction, see
Atkinson (1989). For further reading, see
Golub and Van Loan (1989) or Wilkinson
(1965). For other methods to reduce A to
tridiagonal form, such as planar rotation
orthogonal matrices, see Golub and Van
Loan (1989).

Similar schemes can be used to reduce a
nonsymmetric (or non-Hermitian) matrix
to Hessenberg form.
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5.4
Inverse Iteration

Inverse iteration is the standard method
to calculate the eigenvectors of a matrix A,
once its eigenvalues have been calculated.
This scheme can be viewed as the power
method (see Sec. 5.1) applied to the matrix
(A − λ̃I)−1 instead of A, where λ̃ is an
(approximate) eigenvalue of A.

To see how inverse iteration works,
let λ̃ be an approximation to a simple
eigenvalue λ of A and let x be the
associated eigenvector. Also let z0 be
an initial guess to some multiple of x.
Inverse iteration, shown in Table 10,
is an iterative method that generates a
sequence of approximations z1, z2, . . .

to some multiple of x. In the scheme
shown in Table 10, zk is normalized so that
the sequence z1, z2, . . . converges to an
eigenvector x of A satisfying ‖x‖∞ = 1. As
noted already in Sec. 5.1, normalizations of
this sort are frequently used in eigenvector
calculations.

Note that, if λ̃ = λ, then A − λ̃I is
singular. Moreover, if λ̃ ≈ λ, then A − λ̃I
is ‘‘nearly’’ singular. As a result, we can
expect the system (A − λ̃I)wk = zk−1 to
be very poorly conditioned (see Sec. 2.8).
This, though, is not a problem in this
context, since any large perturbation in the
solution of the ill-conditioned system is in
the direction of the desired eigenvector x.

The sequence of approximate eigenvec-
tors z1, z2, . . . is typically calculated by

Tab. 10 Inverse iteration

Pick z0
for k = 1, 2, . . . do

Solve (A − λ̃I)wk = zk−1
zk = wk/||wk||∝
test stopping criterion

end

first performing an LU decomposition of
A − λ̃I, often with pivoting, before the start
of the iteration and then using the same LU
factorization to perform a forward elimi-
nation followed by a back substitution to
solve (A − λ̃I)wk = zk−1 for k = 1, 2, . . .

(see Sec. 2). We emphasize that only one
LU factorization of A − λ̃I is needed to
solve all (A − λ̃I)wk = zk−1, k = 1, 2, . . ..

For a brief discussion of the inverse
iteration, including its stability and rate
of convergence, see Atkinson (1989). For
further reading, see Wilkinson (1965).

5.5
Other Methods

Another way to calculate the eigenvalues
of A is to compute the roots of the
characteristic polynomial p(λ) = det(A −
λI). The techniques discussed in Sec. 6.9
can be used for this purpose. However,
this approach is often less stable than
the techniques described above and it is
usually not more efficient. Therefore, it is
not normally recommended.

An obvious method for calculating an
eigenvector x, once the corresponding
eigenvalue λ is known, is to solve the
system (A − λI)x = 0. Since this system
is singular, one approach is to delete one
equation from (A − λI)x = 0 and replace it
by another linear constraint, such as xj = 1
for some component j of x. However, it can
be shown [see Wilkinson (1965)] that this
method is not always stable and can lead to
very poor numerical results in some cases.
Thus, it is not recommended either.

Several other methods for calculating the
eigenvalues and eigenvectors of a matrix
have been omitted from our discussion
because of space limitations. We should,
though, at least mention one of them,
the Jacobi method, a simple, rapidly
convergent iterative scheme, applicable
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to symmetric matrices, including sparse
ones.

The eigenvalue problem for large sparse
matrices is a very active area of research.
Although the QR method described in
Sec. 5.2 is effective for small- to medium-
sized dense matrices, it is computationally
very expensive for large matrices, in part
because it does not exploit sparsity effec-
tively. The Lanczos and Arnoldi methods
are much better suited for large sparse
problems. For a discussion of these meth-
ods, see Cullum and Willoughby (1985),
Parlett (1980), Saad (1992), and Scott
(1981).

6
Nonlinear Algebraic Equations and Systems

Consider a nonlinear algebraic equation or
system f (x) = 0, where f : Rn → Rn, n ≥
1. A root of f (x) is a value α ∈ Rn satisfying
f (α) = 0. A nonlinear function may have
one, many, or no roots.

Most numerical methods for computing
approximations to roots of a nonlinear
equation or system are iterative in nature.
That is, the scheme starts with some initial
guess x0 and computes new successive
approximations xk, k = 1, 2, . . ., by some
formula until a stopping criterion such as

‖f (xk)‖ ≤ ε,

‖f (xk)‖ ≤ ε‖f (x0)‖,

‖xk − xk−1‖ ≤ ε,

‖xk − xk−1‖ ≤ ε‖xk‖, or

k > maxit

is satisfied, where ε is the error tolerance
and maxit is the maximum number of
iterations allowed.

6.1
Fixed-Point Iteration

A fixed point of a function g(x) is a value α

satisfying α = g(α). A fixed-point iteration
is a scheme of the form xk = g(xk−1) that
uses the most recent approximation xk−1
to the fixed point α to compute a new
approximation xk to α. In this context,
the function g is also called the iteration
function.

One reason for studying fixed-point
iterations is that given a function f (x),
it is easy to find another function g(x)
such that α is a root of f (x) if and only
if it is a fixed point of g(x). For example,
take g(x) = x − f (x). Many root-finding
methods can be viewed as fixed-point
iterations.

Given an iteration function g, a fixed-
point scheme starts with an initial guess x0
and proceeds with the iteration as follows:

for k = 1, 2, . . . do

xk = g(xk−1)

test stopping criterion

end

6.2
Newton’s Method for Nonlinear Equations

We consider scalar equations (i.e., n = 1)
first, and extend the results to systems of
equations (i.e., n > 1) in Sec. 6.7.

Newton’s method is a fixed-point it-
eration based on the iteration function
g(x) = x − f (x)/f ′(x), where f ′(x) is the
first derivative of f. More specifically, the
new approximation xk to the root α of f is
computed by the formula

xk = xk−1 − f (xk−1)

f ′(xk−1)
,

which uses the previous approximation
xk−1 to α. Geometrically, Newton’s method
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approximates the nonlinear function f (x)
by its tangent (a straight line) at the current
approximation xk−1 and takes xk to be
the intersection of the tangent with the x
axis. That is, xk is the root of the local
linear approximation to f (x). Newton’s
method is applicable if and only if f is
differentiable and f ′ is nonzero at the point
of approximation.

6.3
The Secant Method

The secant method is applicable to scalar
equations only and is not a fixed-point
iteration. The new approximation xk to
the root α of f is computed using two
previous approximations xk−1 and xk−2 by
the formula

xk = xk−1 − f (xk−1)
xk−1 − xk−2

f (xk−1) − f (xk−2)
.

The secant method can be viewed as
a variant of Newton’s method in which
f ′(xk−1) is approximated by [f (xk−1) −
f (xk−2)]/[xk−1 − xk−2]. Geometrically, the
secant method approximates the nonlinear
function f (x) by the chord subtending
the graph of f at the two most recently
computed points of approximation xk−1
and xk−2 and takes xk to be the intersection
of the chord with the x axis. That is, xk is
the root of the local linear approximation
to f (x). The secant method is applicable
if and only if f (x) is continuous and
takes different values at xk−1 and xk−2.
To start, the secant method requires initial
guesses for x0 and x1. These are usually
chosen close to each other and must satisfy
f (x0) 	= f (x1).

6.4
The Bisection and Regula Falsi Methods

The bisection method is not a fixed-
point iteration. It is applicable to a scalar

equation f (x) = 0 if and only if f (x) is
continuous and there are two points L
and R for which f (L)f (R) ≤ 0. These
conditions guarantee the existence of at
least one root of f (x) in the interval [L, R].
Without loss of generality, let L < R. To
start, the bisection method approximates
the root by the midpoint M = (L + R)/2
of [L, R] and halves the interval at each
iteration as follows.

forever do M = (L + R)/2 if f (L)f (M) ≤
0 then R = M else L = M test stopping
criterion end

Note that this iteration maintains the
property f (L)f (R) ≤ 0, as L and R are
changed. So, when the algorithm termi-
nates, a root of f is guaranteed to be in
[L, R]. M = (L + R)/2 is often taken as the
approximation to the root.

Several root-finding methods are similar
to bisection. For example, regula falsi
chooses

M = f (R)L − f (L)R

f (R) − f (L)
(38)

but is otherwise the same as bisection.
Note that the M computed from (38) is the
intersection of the chord subtending the
graph of f (x) at L and R with the x axis
and so is guaranteed to lie in [L, R], since
the property f (L)f (R) ≤ 0 is maintained
throughout the iteration even though L
and R are changed.

6.5
Convergence

Iterative methods for nonlinear equations
can be guaranteed to converge under
certain conditions, although they may
diverge in some cases.

The bisection method converges when-
ever it is applicable, but if f (x) has more
than one root in the interval of application,
there is no guarantee which of the roots
the method will converge to.
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The convergence of a fixed-point itera-
tion depends critically on the properties of
the iteration function g(x). If g is smooth in
an interval containing a fixed point α and
|g ′(α)| < 1, then there is an m ∈ [0, 1) and
a neighborhood I around the fixed point
α in which |g ′(x)| ≤ m < 1. In this case,
the fixed-point iteration xk = g(xk−1) con-
verges to α if x0 ∈ I. To give an intuitive
understanding why this is so, we assume
that x0, . . . , xk−1 ∈ I and note that

xk − α = g(xk−1) − g(α)

= g ′(ξk)(xk−1 − α),

where we have used xk = g(xk−1), α =
g(α) and, by the mean-value theorem, ξk
is some point in I between xk−1 and α.
Thus, |g ′(ξk)| ≤ m < 1 and so |xk − α| ≤
m|xk−1 − α| ≤ mk|x0 − α|, whence xk ∈ I
too and xk → α as k → ∞.

A more formal statement of this the-
orem and other similar results giving
sufficient conditions for the convergence
of fixed-point iterations can be found
in many introductory numerical methods
textbooks. See for example Conte and de
Boor (1980); Dahlquist and Björck (1974);
Johnson and Riess (1982); Stoer and Bu-
lirsch (1980).

Newton’s method converges if the condi-
tions for convergence of a fixed-point itera-
tion are met. [For Newton’s method, the it-
eration function is g(x) = x − f (x)/f ′(x).]
However, it can be shown that New-
ton’s method converges quadratically (see
Sec. 6.6) to the root α of f if the initial
guess x0 is chosen sufficiently close to α,
f is smooth, and f ′(x) 	= 0 close to α. It
can also be shown that Newton’s method
converges from any starting guess in some
cases. A more formal statement of these
and other similar results can be found
in many introductory numerical methods
textbooks. See for example Conte and de

Boor (1980); Dahlquist and Björck (1974);
Johnson and Riess (1982); Stoer and Bu-
lirsch (1980). For a deeper discussion of
this topic, see Dennis and Schnabel (1983).

6.6
Rate of Convergence

The rate of convergence of a sequence
x1, x2, . . . to α is the largest number p ≥ 1
satisfying

‖xk+1 − α‖ ≤ C‖xk − α‖p as k → ∞

for some constant C > 0. If p = 1, we also
require that C < 1. The larger the value
of p the faster the convergence, at least
asymptotically. Between two converging
sequences with the same rate p, the faster
is the one with the smaller C.

A fixed-point iteration with iteration
function g converges at a rate p with
C = |g(p)(α)|/p if g ∈ C p, g(i)(α) = 0, for
i = 0, 1, 2, . . . , p − 1, and g(p)(α) 	= 0,
where g(i)(x) is the ith derivative of
g(x). Thus, Newton’s method usually con-
verges quadratically, i.e., p = 2 with C =
|g ′′(α)|/2, where g(x) = x − f (x)/f ′(x). If
f ′(α) = 0, Newton’s method typically con-
verges linearly. If f ′(α) 	= 0 and f ′′(α) = 0,
Newton’s method converges at least cu-
bically, i.e., p ≥ 3. The secant method
converges at a superlinear rate of p =
(1 + √

5)/2 ≈ 1.618, i.e., faster than lin-
ear but slower than quadratic. Bisection
converges linearly, i.e., p = 1 and C = 1/2.

6.7
Newton’s Method for Systems of Nonlinear
Equations

Newton’s method for a scalar nonlinear
equation (see Sec. 6.2) can be extended
to a system of nonlinear equations with
f : Rn → Rn, for n > 1. In this case, the
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new iterate xk is computed by

xk = xk−1 − [ J(xk−1)]
−1f (xk−1),

where J(x) is the Jacobian of f, an
n × n matrix with its (i, j) entry equal to
∂ fi(x)/∂xj. To implement this scheme ef-
fectively, the matrix–vector product z =
[J(xk−1)]−1f (xk−1) should not be calcu-
lated by first computing the inverse of
the Jacobian and then performing the ma-
trix–vector multiplication, but rather by
first solving the linear system [J(xk−1)]zk =
f (xk−1) by Gaussian elimination (see
Sec. 2.1) or some other effective method
for solving linear equations (see Secs. 2
and 3) and then setting xk = xk−1 − zk.

6.8
Modifications and Alternatives to Newton’s
Method

Solving the linear system [J(xk−1)]zk =
f (xk−1) requires first evaluating all the
partial derivatives of all components of f at
the point xk−1 and then solving the linear
system by performing Gaussian elimina-
tion (see Sec. 2.1) or some other effective
method for solving linear equations (see
Secs.2 and 3). In the unmodified Newton’s
method, this procedure is repeated at every
iteration, requiring O(n3) flops (floating-
point operations) if Gaussian elimination
is used. There exist variants of New-
ton’s method that reduce the computa-
tional work per iteration significantly. Even
though these schemes typically converge
more slowly, they often dramatically re-
duce the cost of solving a nonlinear system,
particularly if n � 1.

The chord Newton method, often called
the simplified Newton method, holds J(xk−1)

fixed for several steps, thus avoiding many
Jacobian evaluations and LU factoriza-
tions. However, it still requires one f
evaluation and both a forward elimination

and a back substitution (see Secs. 2.4 and
2.2, respectively) at each iteration.

Some other variants approximate the
Jacobian by matrices that are easier to com-
pute and simpler to solve. For example, the
Jacobian may be approximated by its diag-
onal, giving rise to a Jacobi-like Newton’s
iteration, or by its lower-triangular part,
giving rise to a Gauss–Seidel-like Newton’s
scheme. (See Sec. 3 for a discussion of Ja-
cobi and Gauss–Seidel iterations for linear
equations.)

Quasi-Newton schemes, which avoid
the computation of partial derivatives,
are alternatives to Newton’s method.
Some quasi-Newton schemes approximate
partial derivatives by finite differences. For
example,

[J(x)]ij = ∂ fi
∂xj

(x) ≈ fi(x + δej) − fi(x)

δ
,

where δ is a small nonzero number and
ej ∈ Rn is the jth unit vector, with a 1 in
component j and 0’s in all other entries.

Possibly the best-known quasi-Newton
scheme is Broyden’s method. It does not
require the computation of any partial
derivatives nor the solution of any lin-
ear systems. Rather, it uses one evaluation
only of f and a matrix–vector multiply,
requiring O(n2) flops, per iteration. Start-
ing with an initial guess for the inverse of
the Jacobian, J(x0), it updates its approx-
imation to the inverse Jacobian at every
iteration. Broyden’s method can be viewed
as an extension of the secant method to
n > 1 dimensions. For a brief description
of the algorithm, see Hager (1988).

6.9
Polynomial Equations

Polynomial equations are a special case
of nonlinear equations. A polynomial of
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degree k has exactly k roots, counting
multiplicity. One may wish to compute
all roots of a polynomial or only a few
select ones. The methods for nonlinear
equations described above can be used
in either case, although more effective
schemes exist for this special class of
problems. The efficient evaluation of the
polynomial and its derivative is discussed
below in Sec. 6.10.

Deflation is often used to compute
roots of polynomials. It starts by locating
one root r1 of p(x) and then proceeds
recursively to compute the roots of p̂(x),
where p(x) = (x − r1)p̂(x). Note that, by
the fundamental theorem of algebra,
given a root r1 of p(x), p̂(x) is uniquely
defined and is a polynomial of degree
k − 1. However, deflation may be unstable
unless implemented carefully. See an
introductory numerical methods textbook
for details.

Localization techniques can be used to
identify regions of the complex plane that
contain zeros. Such techniques include
the Lehmer–Schur method, Laguerre’s
method, and methods based on Sturm
sequences [see Householder (1970)]. Lo-
calization can be very helpful, for example,
when searching for a particular root of
a polynomial or when implementing de-
flation, since in the latter case, the roots
should be computed in increasing order of
magnitude to ensure numerical stability.

The roots of a polynomial p(x) can
also be found by first forming the
companion matrix A of the polynomial
p(x) – the eigenvalues {λi : i = 1, . . . , n} of
A are the roots of p(x) – and then finding
all, or a select few, of the eigenvalues
of A. See Sec. 5 for a discussion of
the computation of eigenvalues and an
introductory numerical methods book,
such as Hager (1988), for a further
discussion of this root-finding technique.

6.10
Horner’s Rule

Horner’s rule, also called nested multipli-
cation or synthetic division, is an efficient
method to evaluate a polynomial and its
derivative. Let p(x) = a0 + a1x + a2x2 +
· · · + anxn be the polynomial of interest,
and α the point of evaluation. The follow-
ing algorithm computes p(α) in z0 and
p′(α) in y1 efficiently:

zn = an

yn = an

for j = n − 1, . . . , 1 do

zj = αzj+1 + aj

yj = αyj+1 + zj

end

z0 = z1α + a0

7
Unconstrained Optimization

The optimization problem is to find a
value x∗ ∈ Rn that either minimizes or
maximizes a function f : Rn → R. We
consider only the minimization problem
here, since maximizing f (x) is equivalent
to minimizing −f (x).

Sometimes the minimizer must
satisfy constraints such as gi(x) = 0, i =
1, . . . , m1, or hj(x) ≥ 0, j = 1, . . . , m2,
where gi and hj : Rn → R. Thus, the
general minimization problem can be
written as

min
x∈Rn

f (x)

subject to

gi(x) = 0, i = 1, . . . , m1,

hj(x) ≥ 0, j = 1, . . . , m2.



Numerical Methods 325

If any of the functions f, gi, or hj are
nonlinear then the minimization problem
is nonlinear; otherwise, it is called a linear
programming problem. If there are no
constraints, the minimization problem is
called unconstrained; otherwise, it is called
constrained.

In this section, we present numerical
methods for nonlinear unconstrained
minimization problems (NLUMPs) only.
For a more detailed discussion of these
schemes, see an advanced text such as
Dennis and Schnabel (1983).

7.1
Some Definitions and Properties

Let x = (x1, x2, . . . , xn)
T ∈ Rn and f :

Rn → R. The gradient ∇f of the function f
is the vector of the n first partial derivatives
of f :

∇f (x) =
(

∂ f

∂x1
,

∂ f

∂x2
, . . . ,

∂ f

∂xn

)T

.

Note ∇f (x) : Rn → Rn.
A point x∗ is a critical point of f if

∇f (x∗) = 0. A point x∗ is a global minimum
of f if f (x∗) ≤ f (x) for all x ∈ Rn. A point
x∗ is a local minimum of f if f (x∗) ≤ f (x)

for all x in a neighborhood of x∗. If x∗ is a
local minimum of f, then it is also a critical
point of f, assuming ∇f (x∗) exists, but the
converse is not necessarily true.

The Hessian ∇2f (x) = H(x) of f is an
n × n matrix with entries

Hij(x) = ∂2f

∂xi∂xj
(x).

If f is smooth, then

∂2f

∂xi∂xj
= ∂2f

∂xj∂xi
,

and so the Hessian is symmetric. A critical
point x∗ is a local minimum of f if H(x∗)
is symmetric positive-definite.

Numerical methods for solving
NLUMPs are all iterative in character.
Some try to compute roots of the gradient,
i.e., critical points of f, which are also
local minima. These methods are related to
schemes used to solve nonlinear equations
described in Sec. 6.

Minimization methods can be classified
into three main categories:

• direct-search methods, which make use of
function values only,

• gradient methods, which make use of
function and derivative values, and

• Hessian methods, which make use
of function, derivative, and second-
derivative values.

Methods from each class are discussed
below.

7.2
The Fibonacci and Golden-Section Search
Methods

The Fibonacci and golden-section search
methods belong to the class of direct-
search methods. They are similar to the
bisection method for nonlinear equations
described in Sec. 6.4, although important
differences exist. They are used in one-
dimensional minimization only.

The Fibonacci and golden-section search
methods are applicable if f (x) is continu-
ous and unimodal in the interval of interest
[a, b], where by unimodal we mean that f (x)
has exactly one local minimum x∗ ∈ [a, b]
and f (x) strictly decreases for x ∈ [a, x∗]
and strictly increases for x ∈ [x∗, b].

The main idea behind these methods
is the following. Let x1 and x2 be
two points satisfying a < x1 < x2 < b. If
f (x1) ≥ f (x2), then x∗ must lie in [x1, b].
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On the other hand, if f (x1) ≤ f (x2) then x∗
must lie in [a, x2]. Thus, by evaluating f at
a sequence of test points x1, x2, . . . , xk,
we can successively reduce the length
of the interval in which we know the
local minimum lies, called the interval of
uncertainty.

The Fibonacci and golden-section search
methods differ only in the way the
sequence of test points is chosen. Before
describing the two methods, we give two
more definitions.

The coordinate v of a point x relative to an
interval [a, b] is v = (x − a)/(b − a).

The Fibonacci numbers are defined by
the initial condition F0 = F1 = 1 and the
recurrence Fk = Fk−1 + Fk−2 for k ≥ 2.

The Fibonacci search method applied to
a function f on an interval [a, b] starts with
two points xk and xk−1 satisfying (xk −
a)/(b − a) = Fk−1/Fk and (xk−1 − a)/(b −
a) = Fk−2/Fk = 1 − Fk−1/Fk, whence a <

xk−1 < xk < b. It then computes the se-
quence xk−2, xk−3, . . . , x1 as follows. After
evaluating f (xk) and f (xk−1), the interval
of uncertainty is either [a, xk] or [xk−1, b].

• If the interval of uncertainty is [a, xk],
then xk−1 belongs to it and (xk−1 −
a)/(xk − a) = Fk−2/Fk−1. In this case,
xk−2 is chosen to satisfy (xk−2 −
a)/(xk − a) = Fk−3/Fk−1. The method
proceeds to the next iteration with the
two points xk−1 and xk−2 in the in-
terval [a, xk], with relative coordinates
Fk−2/Fk−1 and Fk−3/Fk−1, respectively.
Note that f (xk−1) is already computed,
so that only f (xk−2) needs to be evalu-
ated in the next iteration.

• If the interval of uncertainty is [xk−1, b],
then xk belongs to it and (xk −
xk−1)/(b − xk−1) = Fk−3/Fk−1. In this
case, xk−2 is chosen to satisfy (xk−2 −
xk−1)/(b − xk−1) = Fk−2/Fk−1. The me-
thod proceeds to the next iteration

with the two points xk and xk−2
in the interval [xk−1, b], with relative
coordinates Fk−3/Fk−1 and Fk−2/Fk−1,
respectively. Note that f (xk) is already
computed, so that only f (xk−2) needs to
be evaluated in the next iteration.

Thus, at the start of the second iteration,
the situation is similar to that at the start
of the first iteration, except that the length
of the interval of uncertainty has been
reduced. Therefore, the process described
above can be repeated.

Before the last iteration, the interval of
uncertainty is [c, d] and x1 is chosen to
be (c + d)/2+ ∈, for some small positive
number ∈.

As noted above, the Fibonacci search
method requires one function evaluation
per iteration. The main disadvantage of the
method is that the number of iterations k
must be chosen at the start of the method.
However, it can be proved that, given k, the
length of the final interval of uncertainty
is the shortest possible. Thus, in a sense,
it is an optimal method.

The golden-section search method also
requires one function evaluation per
iteration, but the number of iterations k
does not need to be chosen at the start
of the method. It produces a sequence of
test points x1, x2, . . . and stops when a
predetermined accuracy is reached.

Let r = (
√

5 − 1)/2 ≈ 0.618 be the posi-
tive root of the quadratic x2 + x − 1. Note
that 1/r = (

√
5 + 1)/2 ≈ 1.618 is the fa-

mous golden ratio. For the Fibonacci search
method, it can be proved that, for large k,
the coordinates of the two initial points
xk and xk−1 relative to [a, b] are approxi-
mately r and 1 − r, respectively. Thus, if,
at each iteration, the two points are chosen
with these coordinates relative to the inter-
val of uncertainty, the resulting method,
called the golden-section search method, is
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an approximation to the Fibonacci search.
Moreover, if a point has coordinate 1 − r
relative to [a, b], then it has coordinate
r relative to [a, a + (b − a)r]. Similarly,
if a point has coordinate r relative to
[a, b], then it has coordinate 1 − r rela-
tive to [a + (b − a)(1 − r), b]. This property
is exploited in the golden-section search
method, enabling it to use one function
evaluation only per iteration.

Both methods described above are
guaranteed to converge whenever they are
applicable and both have a linear rate of
convergence (see Sec. 6.6). On the average,
the length of the interval of uncertainty is
multiplied by r at each iteration. For a
further discussion of these methods, see
an introductory numerical methods text
such as Kahaner et al. (1989).

7.3
The Steepest-Descent Method

The steepest-descent (SD) method belongs
to the class of gradient schemes. It is
applicable whenever the partial derivatives
of f exist and f has at least one local
minimum. Whenever it is applicable, it
is guaranteed to converge to some local
minimum if the partial derivatives of f
are continuous. However, it may converge
slowly for multidimensional problems.
Moreover, if f possesses more than one
local minimum, there is no guarantee to
which minimum SD will converge.

At iteration k, the SD method performs
a search for the minimum of f along the
line xk − α∇f (xk), where α is a scalar
variable and −∇f (xk) is the direction
of the steepest descent of f at xk.
Note that, since α is scalar, minimizing
f (xk − α∇f (xk)) with respect to (w.r.t.) α is
a one-dimensional minimization problem.
If α∗ is the minimizer, xk+1 is taken to
be xk − α∗∇f (xk). A brief outline of SD

Tab. 11 The steepest-descent method

Pick an initial guess x0 and a tolerance ∈
for k = 1, . . ., maxit do

sk−1 = −∇f (xk−1)

if ||sk−1|| ≤∈ exit loop
find α∗ ∈ R that minimizes f (xk−1 + αsk−1)

xk = xk−1 + α∗sk−1
end

is given in Table 11. See Buchanan and
Turner (1992), Johnson and Riess (1982),
or Ortega (1988) for further details.

7.4
Conjugate-Direction Methods

The definition of conjugate directions
is given w.r.t. a symmetric positive-
definite (SPD) matrix A: the vectors
(directions) u and v are A-conjugate if
uTAv = 0. Thus, conjugate directions are
orthogonal or perpendicular directions
w.r.t. an inner product (u, v) = uTAv and,
as such, are often associated with some
shortest-distance property.

The conjugate-direction (CD) meth-
ods form a large class of minimization
schemes. Their common characteristic is
that the search direction at every iteration
is conjugate to previous search direc-
tions. Proceeding along conjugate search
directions guarantees, in some sense,
finding the shortest path to the mini-
mum.

The CD methods are guaranteed to
converge in at most n iterations for
the SPD quadratic function f (x) = c +
bTx − 1

2 xTAx, where A is an n × n SPD
matrix.

There are several techniques to construct
conjugate directions, each one giving rise
to a different CD method. The best-known
is Powell’s method [see Buchanan and
Turner (1992) or Ortega (1988)].
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Tab. 12 The conjugate-gradient (CG) method

Pick an initial guess x0 and a tolerance ∈
Initialize s0 = 0 and β = 1
for k = 1, . . ., maxit do

if ||∇f (xk−1)|| ≤∈ exit loop
sk = −∇f (xk−1) + βsk−1
find α∗ ∈ R that minimizes f (xk−1 + αsk)

xk = xk−1 + α∗sk
β = ||∇f (xk)||2/||∇f (xk−1)||2

end

7.5
The Conjugate-Gradient Method

As the name implies, at each iteration,
the conjugate-gradient (CG) method takes
information from the gradient of f to
construct conjugate directions. Its search
direction is a linear combination of
the direction of steepest descent and
the search direction of the previous
iteration. A brief outline of CG is given
in Table 12.

The CG method is guaranteed to con-
verge in at most n iterations for the
SPD quadratic function f (x) = c + bTx −
1
2 xTAx, where A is a n × n SPD matrix.
See Sec. 3.2, Golub and Van Loan (1989),
or Ortega (1988) for a more detailed dis-
cussion of this minimization technique
applied to solve linear algebraic systems.

There exist several variants of the CG
method, most of which are based on
slightly different ways of computing the
step size β.

7.6
Newton’s Method

Newton’s method for minimizing f is just
Newton’s method for nonlinear systems
applied to solve ∇f (x) = 0. The new
iterate xk is computed by xk = xk−1 −
[H(xx−1)]−1 × ∇f (fk−1), where H(xk−1) is

the Hessian of f at xk−1. See Sec. 6.7 for
further details.

If f is convex, then the Hessian is
SPD and the search direction generated
by Newton’s method at each iteration is
a descent (downhill) direction. Thus, for
any initial guess x0, Newton’s method
is guaranteed to converge quadratically,
provided f is sufficiently smooth.

For a general function f, there is no guar-
antee that Newton’s method will converge
for an arbitrary initial guess x0. However,
if started close enough to the minimum of
a sufficiently smooth function f, Newton’s
method normally converges quadratically,
as noted in Sec. 6.6. There exist several
variants of Newton’s method that improve
upon the reliability of the standard scheme.

7.7
Quasi-Newton Methods

At every iteration, Newton’s method
requires the evaluation of the Hessian
and the solution of a linear system
[H(xk−1)]sk = −∇f (xk−1) for the search
direction sk. Quasi-Newton methods
update an approximation to the inverse
Hessian at every iteration, thus reducing
the task of solving a linear system
to a simple matrix–vector multiply.
The best-known of these schemes are
the Davidon–Fletcher–Powell (DFP) and
the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) methods. See Buchanan and
Turner (1992) or Dennis and Schnabel
(1983) for further details.

8
Approximation

It is often desirable to find a function
f (x) in some class that approximates
the data {(xi, yi) : i = 1, . . . , n}. That is,
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f (xi) ≈ yi, i = 1, . . . , n. If f matches the
data exactly, that is, f satisfies the inter-
polation relations or interpolation conditions
f (xi) = yi, i = 1, . . . , n, then f is called the
interpolating function or the interpolant of
the given data.

Similarly, it is often desirable to find a
simple function f (x) in some class that
approximates a more complex function
y(x). We say that f interpolates y, or f is
the interpolant of y, at the points xi, i =
1, . . . , n, if f (xi) = y(xi), i = 1, . . . , n. The
problem of computing the interpolant f of
y at the points xi, i = 1, . . . , n, reduces to
the problem of computing the interpolant
f of the data {(xi, yi) : i = 1, . . . , n}, where
yi = y(xi).

An interpolant does not always exist and,
when it does, it is not necessarily unique.
However, a unique interpolant does exist
in many important cases, as discussed
below.

A standard approach for constructing an
interpolant is to choose a set of basis func-
tions {b1(x), b2(x), . . . , bn(x)} and form a
model

f (x) =
n∑

j=1

ajbj(x),

where the numbers aj are unknown
coefficients. For f to be an interpolant, it
must satisfy f (xi) = yi, i = 1, . . . , n, which
is equivalent to

n∑
j=1

ajbj(xi) = yi, i = 1, . . . , n.

These n conditions form a system
Ba = y of n linear equations in n un-
knowns, where a = (a1, a2, . . . , an)

T, y =
(y1, y2, . . . , yn)

T, and Bij = bj(xi), i, j =
1, . . . , n. If B is nonsingular, then
the interpolant of the data {(xi, yi) :

i = 1, . . . , n} w.r.t. the basis func-
tions b1(x), b2(x), . . . , bn(x) exists and is
unique. On the other hand, if B is sin-
gular, then either the interpolant may fail
to exist or there may be infinitely many
interpolants.

8.1
Polynomial Approximation

Polynomial approximation is the founda-
tion for many numerical procedures. The
basic idea is that, if we want to apply
some procedure to a function, such as
integration (see Sec. 9), we approximate
the function by a polynomial and ap-
ply the procedure to the approximating
polynomial. Polynomials are often cho-
sen as approximating functions because
they are easy to evaluate (see Sec. 6.10),
to integrate, and to differentiate. More-
over, polynomials approximate well more
complicated functions, provided the lat-
ter are sufficiently smooth. The following
mathematical result ensures that arbitrar-
ily accurate polynomial approximations
exist for a broad class of functions.

WEIERSTRASS THEOREM: If g(x) ∈
L [a, b], then, for every ∈> 0, there exists a
polynomial pn(x) of degree n = n(∈) such
that max{|g(x) − pn(x)| : x ∈ [a, b]} ≤∈.

8.2
Polynomial Interpolation

Techniques to construct a polynomial
interpolant for a set of data {(xi, yi) : i =
1, . . . , n} are discussed below. Here we
state only the following key result.

THEOREM: If the points {xi : i = 1, . . . , n}
are distinct, then there exists a unique
polynomial of degree at most n − 1
that interpolates the data {(xi, yi) : i =
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1, . . . , n}. (There are no restrictions on
the yi’s.)

8.2.1 Monomial Basis
One way to construct a polynomial that in-
terpolates the data {(xi, yi) : i = 1, . . . , n}
is to choose as basis functions the
monomials bj(x) = x j−1, j = 1, . . . , n, giv-
ing rise to the model pn−1(x) = a1 + a2x +
a3x2 + · · · + anxn−1. As noted above, the
interpolation conditions take the form
Ba = y. In this case, B is the Vandermonde

matrix for which Bij = x
j−1
i , i, j = 1, . . . , n,

where we use the convention that x0 = 1
for all x.

It can be shown that the Vandermonde
matrix B is nonsingular if and only if the
points {xi : i = 1, . . . , n} are distinct. If B is
nonsingular, then, of course, we can solve
the system Ba = y to obtain the coefficients
aj, j = 1, . . . , n, for the unique interpolant
of the data.

It can also be shown that, although the
Vandermonde matrix is nonsingular for
distinct points, it can be ill-conditioned,
particularly for large n. As a result,
the methods described below are often
computationally much more effective than
the scheme described here.

8.2.2 Lagrange Basis
An alternative to the monomial basis
functions discussed above is the Lagrange
basis polynomials

bj(x) = lj(x) =
n∏

i=1
i 	=j

x − xi

xj − xi
j = 1, . . . , n,

which are of degree n − 1 and satisfy

bj(xi) =
{

1 if i = j,
0 if i 	= j.

Hence B = I and the system Ba = y of
interpolation conditions has the obvious
unique solution aj = yj, j = 1, . . . , n.

Note that changing the basis from
monomials to Lagrange polynomials does
not change the resulting interpolating
polynomial pn−1(x), since the interpolant
is unique. It only affects the representation
of pn−1(x).

8.2.3 Newton Basis and Divided
Differences
Another useful basis is the set of Newton
polynomials

bj(x) =
j−1∏
i=1

(x − xi) j = 1, . . . , n.

The coefficients aj of the interpolating
polynomial written with the Newton basis
are relatively easy to compute by a recursive
algorithm using divided differences. Before
describing this form of the interpolating
polynomial, though, we must introduce
divided differences.

Given a function f with f (xi) = yi, i =
1, . . . , n, define the divided difference with
one point by

f [xi] = yi i = 1, . . . , n.

If xi+1 	= xi, define the divided differ-
ence with two points by

f [xi, xi+1] = yi+1 − yi

xi+1 − xi
i = 1, . . . , n − 1.

If xi 	= xi+k, define the divided differ-
ence with k + 1 points by

f [xi, xi+1, . . . , xi+k] =
f [xi+1, xi+2, . . . , xi+k]−

f [xi, xi+1, . . . , xi+k−1]
xi+k − xi

i = 1, . . . , n − k.
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We can extend this definition of divided
differences to sets {xi : i = 1, . . . , n} with
repeated values by noting that

lim
xi+1→xi

f [xi+1, xi] = lim
xi+1→xi

yi+1 − yi

xi+1 − xi

= f ′(xi).

So, if xi = xi+1, we define f [xi, xi+1] =
f ′(xi). Similarly, it can be shown that

lim
xi+1→xi...
xi+k→xi·

f [xi, xi+1, . . . , xi+k] = f (k)(xi)

k!

So, if xi = xi+1 = · · · = xi+k, we define
f [xi, xi+1, . . . , xi+k] = f (k)(xi)/k!.

Using divided differences, the coef-
ficients aj can be computed as aj =
f [x1, . . . , xj]. An advantage of the divided-
difference form is that it extends easily
to the interpolation of derivatives as well
as function values, as discussed below.
Another advantage is that if the coeffi-
cients aj, j = 1, . . . , n, are computed from
n data points, it is easy to add more data
points and construct a higher-degree in-
terpolating polynomial without redoing
the whole computation, since the new
data can be added easily to the existing
divided-difference table and the interpolat-
ing polynomial extended.

8.3
Polynomial Interpolation with Derivative
Data

In this section, we consider Hermite
or osculatory interpolation, which requires
that a function and its first derivative
be interpolated at the points {xi : i =
1, . . . , n}. The key result is stated below.

THEOREM: Given the data {(xi, yi, y′
i) :

i = 1, . . . , n}, where the points {xi : i =
1, . . . , n} are distinct, there exists a unique

polynomial interpolant p2n−1(x) of degree
at most 2n − 1 that satisfies p2n−1(xi) =
yi, i = 1, . . . , n, and p′

2n−1(xi) = y′
i, i =

1, . . . , n.

The techniques used to construct such a
polynomial are similar to those described
in Sec. 8.2. The following choices of basis
functions are often used.

1. Monomials: bj(x) = xj−1, j = 1, . . . ,

2n;
2. Generalized Lagrange basis polynomi-

als: bj(x) = [1 − 2(x − xj)l′j(xj)][lj(x)]2,
j = 1, . . . , n, and bn+j(x) = (x − xj)

[lj(x)]2, j = 1, . . . , n;
3. Newton basis polynomials:

bj(x) =
j−1∏
i=1

(x − xi)
2, j = 1, . . . , n,

and

bn+j(x) =

j−1∏

i=1

(x − xi)
2


 (x − xj),

j = 1, . . . , n.

More general forms of polynomial inter-
polants are discussed in some numerical
methods books. See for example Davis
(1975).

8.4
The Error in Polynomial Interpolation

Two key results for the error in polynomial
interpolation are given in the following two
theorems. For their proofs, see an intro-
ductory numerical methods text such as
Dahlquist and Björck (1974), Johnson and
Riess (1982), or Stoer and Bulirsch (1980).
Before stating the results, though, we must
define spr[x, x1, x2, . . . , xn] to be the small-
est interval containing x, x1, x2, . . . , xn.
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THEOREM: Let g(x) ∈ L n, and let pn−1(x)

be the polynomial of degree at most n − 1
that interpolates g(x) at the n distinct points
x1, x2, . . . , xn. Then, for any x,

g(x) − pn−1(x) = g(n)(ξ)

n!

n∏
i=1

(x − xi),

where g(n)(x) is the nth derivative
of g(x) and ξ is some point in
spr[x, x1, x2, . . . , xn].

THEOREM: Let g(x) ∈ L 2n, and let p2n−1(x)

be the polynomial of degree at most 2n − 1
that interpolates g(x) and g ′(x) at the n
distinct points x1, x2, . . . , xn. Then, for
any x,

g(x) − p2n−1(x) = g(2n)(ξ)

(2n)!

n∏
i=1

(x − xi)
2,

where g(2n)(x) is the 2nth derivative
of g(x) and ξ is some point in
spr[x, x1, x2, . . . , xn].

Note that there is a close relationship
between the error in polynomial interpo-
lation and the error in a Taylor series.
As a result, polynomial interpolation is
normally effective if and only if g can be
approximated well by a Taylor series.

More specifically, the polynomial inter-
polation error can be large if the derivative
appearing in the error formula is big or if
spr[x, x1, x2, . . . , xn] is big, particularly if
the point x of evaluation is close to an end
point of spr[x1, x2, . . . , xn] or outside this
interval.

8.5
Piecewise Polynomials and Splines

Given a set of knots or grid points {xi : i =
1, . . . , n} satisfying a = x0 < x1 < · · · <

xn = b, s(x) is a piecewise polynomial (PP) of
degree N w.r.t. the knots {xi, i = 0, . . . , n}
if s(x) is a polynomial of degree N
on each interval (xi−1, xi), i = 1, . . . , n.
A polynomial of degree N is always a
PP of degree N, but the converse is not
necessarily true.

A spline s(x) of degree N is a PP of de-
gree N. The term spline usually implies
the continuity of s(x), s′(x), . . . , s(N−1)(x)

at the knots {x0, x1, . . . , xn}. In this
case, s ∈ L N−1, the space of contin-
uous functions with N − 1 continuous
derivatives. Sometimes, though, the terms
PP and spline are used interchange-
ably.

Let s(x) be a PP of degree N, and
assume that s(x), s′(x), . . . , s(K)(x) are con-
tinuous at the knots {x0, x1, . . . , xn}. Since
s(x) is a polynomial of degree N on
each of the n subintervals (xi, xi−1), i =
1, . . . , n, it is defined by D = n(N + 1)

coefficients. To determine these coeffi-
cients, we take into account the conti-
nuity conditions that s and its K deriva-
tives must satisfy at the n − 1 interior
knots {x1, . . . , xn−1}. There are K + 1
such conditions at each interior knot,
giving rise to C = (n − 1)(K + 1) condi-
tions. Thus, we need M = D − C = n(N −
K) + K + 1 properly chosen additional
conditions to determine the coefficients
of s.

In the following we give examples of
PPs and splines and their associated basis
functions.

8.5.1 Constant Splines
The constant PP model function

φ(x) =
{

1 for 0 ≤ x ≤ 1,
0 elsewhere,

is a constant spline w.r.t. the knots {0, 1}.
Note that it is not continuous at the
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knots, so that φ ∈ L −1. The constant PP
functions

φi(x) = φ

(
(x − a)

h − i + 1

)
, i = 1, . . . , n,

are constant splines w.r.t. the evenly
spaced knots {xi = a + ih : i = 0, . . . , n},
where h = (b − a)/n, and form a set of
basis functions for the space of constant
splines w.r.t. these knots.

8.5.2 Linear Splines
The linear PP model function

φ(x) =



x for 0 ≤ x ≤ 1,
2 − x for 1 ≤ x ≤ 2,
0 elsewhere,

is a linear spline w.r.t. the knots {0, 1, 2}.
Note that φ is continuous, but φ′ does not
exist at the knots, so that φ ∈ L 0. The
linear PP functions

φi(x) = φ

(
(x − a)

h − i + 1

)
, i = 0, . . . , n,

(39)

are linear splines w.r.t. the evenly spaced
knots {xi = a + ih : i = 0, . . . , n}, where
h = (b − a)/n, and form a set of basis
functions for the space of linear splines
w.r.t. these knots.

8.5.3 Quadratic Splines
The quadratic PP model function

φ(x) =




x2

2
for 0 ≤ x ≤ 1,

[x2 − 3(x − 1)2]

2
for 1 ≤ x ≤ 2,

[x2 − 3(x − 1)2 + 3(x − 2)2]

2
for 2 ≤ x ≤ 3,

0 elsewhere,

is a quadratic spline w.r.t. the knots
{0, 1, 2, 3, }. Note that φ and φ′ are
continuous, but φ′′ does not exist at the
knots, so that φ ∈ L 1. The quadratic PP
functions

φi(x) = φ

[
(x − a)

h − i + 2

]
, i=0, . . . , n + 1

(40)

are quadratic splines w.r.t. the evenly
spaced knots {xi = a + ih : i = 0, . . . , n},
where h = (b − a)/n, and form a set of
basis functions for the space of quadratic
splines w.r.t. these knots.

8.5.4 Quadratic Piecewise Polynomials
The quadratic PP model functions

φ(x)=



x(2x−1) for 0 ≤ x ≤ 1,
(x−2)(2x−3) for 1 ≤ x ≤ 2,
0 elsewhere,

ψ(x)=
{−4x(x − 1) for 0 ≤ x ≤ 1,

0 elsewhere,

are continuous, but neither φ′ nor ψ ′
exists at their knots {0, 1, 2} and {0, 1},
respectively. So φ and ψ ∈ L 0. The
functions

φi(x) =




φ((x − a)/h − i/2 + 1)

for i even,
ψ((x − a)/h − (i + 1)/2 + 1)

for i odd,
i = 0, . . . , 2n

are quadratic PPs w.r.t. the evenly
spaced knots {xi = a + ih : i = 0, . . . , n},
where h = (b − a)/n. Note that φi is
continuous, but φ′

i does not exist at
the knots, and so φi ∈ L 0. These
functions form a basis for the space
of quadratic PPs in L 0 w.r.t. these
knots.
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8.5.5 Cubic Splines
The cubic PP model function

φ(x) =




x3/6 for 0 ≤ x ≤ 1,

[x3 − 4(x − 1)3]

6
for 1 ≤ x ≤ 2,

[x3 − 4(x − 1)3 + 6(x − 2)3]

6
for 2 ≤ x ≤ 3,

[x3 − 4(x − 1)3 + 6(x − 2)3

−4(x − 3)3]
6

for 3 ≤ x ≤ 4,

0 elsewhere,

is a cubic spline w.r.t. the knots
{0, 1, 2, 3, 4}. Note that φ, φ′, and φ′′ are
continuous, but φ′′′ does not exist at the
knots, and so φ ∈ L 2. The cubic PP func-
tions

φi(x) = φ

(
(x − a)

h − i + 2

)
, i = −1, . . . , n + 1

(41)

are cubic splines w.r.t. the evenly spaced
knots {xi = a + ih : i = 0, . . . , n}, where
h = (b − a)/n, and form a set of basis
functions for the space of cubic splines
w.r.t. these knots.

8.5.6 Cubic Hermite Piecewise Polynomials
The cubic PP model functions

φ(x)=



x2(3−2x) for 0 ≤ x ≤ 1,

(2−x)2(2x−1) for 1 ≤ x ≤ 2,

0 elsewhere,

ψ(x)=



x2(x − 1) for 0 ≤ x ≤ 1,

(2 − x)2(x − 1) for 1 ≤ x ≤ 2,

0 elsewhere,

are in L 1 since φ, φ′, ψ , and ψ ′ are
all continuous at the knots {0, 1, 2}, but
neither φ′′ nor ψ ′′ exists at the knots. The

functions

φi(x) =




φ(
(x − a)

h − i/2 + 1
)

for i even,

ψ(
(x − a)

h − (i − 1)/2 + 1
)

for i odd,

i = 0, . . . , 2n + 1

(42)

are cubic PPs w.r.t. the evenly spaced
knots {xi = a + ih : i = 0, . . . , n}, where
h = (b − a)/n. Note that φi and φ′

i
are continuous, but φ′′

i does not ex-
ist at the knots, and so φi ∈ L 1.
These functions form a basis for the
space of cubic PPs in L 1 w.r.t. these
knots.

8.6
Piecewise Polynomial Interpolation

Piecewise polynomials, including splines,
are often used for interpolation, especially
for large data sets. The main advantage
in using PPs, instead of polynomials, to
interpolate a function g(x) at n points,
where n � 1, is that the error of a
PP interpolant does not depend on the
nth derivative of g(x), but rather on a
low-order derivative of g(x). Usually, if
g(x) ∈ L N+1[a, b] and SN(x) is a PP of
degree N in L K that interpolates g(x) at
n(N − K) + K + 1 properly chosen points,
then the interpolation error at any point
x ∈ [a, b] satisfies

|g(x) − sN(x)| ≤ ChN+1 max
a≤ξ≤b

|g(N+1)(ξ)|

for some constant C independent of h =
max{xi − xi−1 : i = 1, . . . , n}. Another ad-
vantage of PP interpolation is that it
leads either to simple relations that de-
fine the PP interpolant or gives rise
to banded systems that can be solved
easily for the coefficients of the PP in-
terpolant by the techniques described
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in Sec. 2.7. In the following subsec-
tions, we give examples of PP interpo-
lation. We assume throughout that h =
(b − a)/n and xi = a + ih for i = 0, . . . , n,
but these restrictions can be removed
easily.

An introduction to PP interpolation is
presented in many introductory numer-
ical analysis textbooks, such as John-
son and Riess (1982). For a more de-
tailed discussion, see an advanced text
such as Prenter (1975) or de Boor
(1978).

8.6.1 Linear Spline Interpolation
Let φi(x) be defined by (39). The function

S1(x) =
n∑

i=0

ciφi(x)

with ci = g(xi) is the unique linear spline
that interpolates g(x) at the knots {xi: i =
0, . . . , n}.

8.6.2 Quadratic Spline Interpolation
Let φi(x) be defined by (40). The function

s2(x) =
n+1∑
i=0

ciφi(x)

is the unique quadratic spline that interpo-
lates g(x) at the n + 2 points x0, (xi−1 +
xi)/2, i = 1, . . . , n, and xn, if the coef-
ficients ci, i = 0, . . . , n + 1, are chosen
so that they satisfy the n + 2 con-
ditions s2(x0) = g(x0), s2((xi−1 + xi)/2) =
g((xi−1 + xi)/2), i = 1, . . . , n, and s2(xn)

= g(xn). These conditions give rise to a
tridiagonal linear system of n + 2 equa-
tions in the n + 2 unknowns ci, i =
0, . . . , n + 1:




0.5 0.5
0.125 0.75 0.125

0.125 0.75 0.125
. . .

. . .
. . .

0.125 0.75 0.125
0.5 0.5




×




c0
c1
c2
...

cn

cn+1




=




g(x0)

g((x0 + x1)/2)

g((x1 + x2)/2)
...

g((xn−1 + xn)/2)

g(xn)




.

Since this system is column diagonally
dominant, it is nonsingular and has a
unique solution. Moreover, if the first and
last equations are multiplied by 0.25, the
resulting system is symmetric positive-
definite. So the coefficients {ci} of the
associated quadratic spline interpolant can
be computed easily by the techniques
described in Sec. 2.7.

8.6.3 Cubic Spline Interpolation
Let φi(x) be defined by (41). The function

s32(x) =
n+1∑

i=−1

ciφi(x)

is a cubic spline that interpolates g(x) at
the n + 1 points xi, i = 0, . . . , n, if the co-
efficients ci, i = −1, . . . , n + 1, are chosen
so that they satisfy the n + 1 conditions
s32(xi) = g(xi), i = 0, . . . , n. These condi-
tions give rise to a linear system of n + 1
equations in the n + 3 unknowns ci, i =
−1, . . . , n + 1. To determine the unknown
coefficients uniquely, two more appropri-
ately chosen conditions (equations) are
needed. The standard choices are

1. s′′32(x0) = 0 and s′′32(xn) = 0, giving rise
to the natural or minimum-curvature
cubic spline interpolant;
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2. s′32(x0) = g ′(x0) and s′32(xn) = g ′(xn),
giving rise to a more accurate cubic
spline interpolant, but one that requires
knowledge of g ′(x) (or a good approxi-
mation to it) at both end points;

3. the not-a-knot conditions, which force
s32(x) to have a continuous third
derivative at the knots x1 and xn−1.

In all three cases, the resulting linear sys-
tem of n + 3 equations in n + 3 unknowns
is almost tridiagonal. More specifically,
it is tridiagonal with the exception of
the two rows corresponding to the ex-
tra conditions. So the coefficients {ci} of
the associated cubic spline interpolant can
be computed easily by the techniques de-
scribed in Sec. 2.7.

8.6.4 Cubic Hermite Piecewise Polynomial
Interpolation
Let φi(x) be defined by (42). The function

s31(x) =
2n+1∑
i=0

ciφi(x)

with c2i = g(xi), i = 0, . . . , n, and c2i+1 =
g ′(xi), i = 0, . . . , n, is the unique Hermite
PP that interpolates g(x) and its derivative
at the n + 1 points xi, i = 0, . . . , n.

8.7
Least-Squares Approximation

It is possible to construct a function f (x)
that approximates the data {(xi, yi): i =
0, . . . , m} in the sense that f (xi) − yi is
‘‘small’’ for i = 0, . . . , m, but f (xi) 	= yi in
general. One way is to construct an f in
some class of functions that minimizes

m∑
i=0

wi[ f (xi) − yi]
2

for some positive weights wi, i = 0, . . . , m.
Such an f is called a discrete least-squares
approximation to the data.

Similarly, it is possible to construct
a function f (x) that approximates a
continuous function y(x) on an interval
[a, b] in the sense that | f (x) − y(x)| is
‘‘small’’ for all x ∈ [a, b]. One way is to
construct an f in some class of functions
that minimizes∫ b

a
w(x)[ f (x) − y(x)]2 dx

for some positive and continuous weight
function w(x) on (a, b). Such an f is called a
continuous least-squares approximation to y.

Often, f is chosen to be a polynomial
of degree n < m. (For the discrete least-
squares problem, if f is a polynomial of
degree n = m, then f interpolates the data.)

Let f and g ∈ L [a, b]. We denote the
discrete inner product of f and g at distinct
points xi, i = 0, . . . , m, w.r.t. the weights
wi, i = 0, . . . , m, by

(f , g) =
m∑

i=0

wi f (xi)g(xi)

and the continuous inner product of f and g
on [a, b] w.r.t. weight function w(x) by

(f , g) =
∫ b

a
w(x)f (x)g(x) dx.

Given an inner product (·, ·), as above,
we denote the norm of f by ‖f ‖ = (f , f )1/2.
Thus we have the discrete norm

‖f ‖ =
(

m∑
i=0

wif (xi)
2

)1/2

and the continuous norm

‖f ‖ =
(∫ b

a
w(x)f (x)2 dx

)1/2

.
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Therefore, the problem of constructing
a least-squares approximation f (x) to
a given set of data {(xi, yi)} or to a
given function y(x) is to construct an
f (x) that minimizes the norm, discrete
or continuous, respectively, of the error
‖f − y‖.

We note that the ‘‘discrete inner prod-
uct’’ is not strictly speaking an inner
product in all cases, since it may fail to
satisfy the property that ( f , f ) = 0 implies
f (x) = 0 for all x. However, if we restrict
the class of functions to which f belongs
appropriately, then (·, ·), is a true inner
product. For example, if we restrict f to
the class of polynomials of degree at most
n and if n < m, then (f , f ) = 0 implies
f (x) = 0 for all x. Similar remarks apply
to the discrete norm.

Before giving the main theorem on how
to construct the least-squares polynomial
approximation to a given set of data or
to a given function, we introduce orthog-
onal polynomials and the Gram–Schmidt
process to construct them.

8.7.1 Orthogonal Polynomials
A set of n + 1 polynomials {qi(x): i =
0, . . . , n} is orthogonal w.r.t. the inner
product (·, ·) if (qi, qj) = 0 for i 	= j. A set
of n + 1 orthogonal polynomials {qi(x): i =
0, . . . , n} is orthonormal w.r.t. the inner
product (·, ·) if in addition (qi, qi) = 1 for
i = 0, . . . , n.

8.7.2 The Gram–Schmidt
Orthogonalization Algorithm
The Gram–Schmidt algorithm applied
to a set of n + 1 linearly independent
polynomials {pj : j = 0, . . . , n} generates
a set of n + 1 orthonormal polynomi-
als {qi(x) : i = 0, . . . , n} and a set of
n + 1 orthogonal polynomials {si(x) : i =
0, . . . , n}. Often the set of n + 1 linearly in-
dependent polynomials {pj : j = 0, . . . , n}

is chosen to be the set of monomials
{x j: j = 0, . . . , n}.

The Gram–Schmidt algorithm for poly-
nomials is similar to the Gram–Schmidt
algorithm for matrices described in
Sec. 4.6. The reader may refer to an in-
troductory numerical methods text such
as Johnson and Riess (1982) for more de-
tails. Here we note only that the role of the
inner product of vectors in the algorithm
in Sec. 4.6 is replaced by the inner prod-
uct, discrete or continuous, of functions as
defined in Sec. 8.7.1.

8.7.3 Constructing the Least-Squares
Polynomial Approximation
The following result is proved in many
introductory numerical methods books.
See for example Johnson and Riess (1982).

THEOREM: Assume that we are given ei-
ther a continuous function y(x) on [a, b]
or a data set {(xi, yi) : i = 0, . . . , m}. Let
{qj : j = 0, . . . , n} be a set of orthonor-
mal polynomials w.r.t. an inner product
(·, ·) appropriate for the given data and
assume that {qj : j = 0, . . . , n} spans {xi :
i = 0, . . . , n}, where n < m for the discrete
problem. Then

p∗(x) =
n∑

j=0

(y, qj)qj(x)

is the least-squares polynomial approxi-
mate of degree at most n. It is optimal in
the sense that, if p(x) is any other polyno-
mial of degree at most n, then ‖y − p∗‖ <

‖y − p‖, where ‖ · ‖ is the norm associated
with the inner product (·, ·).

As noted in Sec. 8.7.2, a set of or-
thonormal polynomials {qj : j = 0, . . . , n}
that spans {xi : i = 0, . . . , n} can be con-
structed by the Gram–Schmidt algorithm
applied to the monomial basis polynomials
{xi : i = 0, . . . , n}.
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9
Numerical Integration – Quadrature

In this section, we consider formulas for
approximating integrals of the form

I(f ) =
∫ b

a
f (x) dx.

Such formulas are often called quadra-
ture rules. We assume that a and b are
finite and that f is smooth in most cases,
but we briefly discuss infinite integrals and
singularities in Sec. 9.5.

In many practical problems, f (x) is given
either as a set of values f (x1), . . . , f (xn)

or f (x) is hard or impossible to integrate
exactly. In these cases, the integral may
be approximated by numerical techniques,
which often take the form

Q(f ) =
n∑

i=1

wi f (xi).

Such a formula is called a quadrature
rule, the {wi} are called weights, and the {xi}
are called abscissae or nodes.

Most quadrature rules are derived by first
approximating f by a simpler function, fre-
quently a polynomial, and then integrating
the simpler function. Thus, the area un-
der the curve f, which is the exact value of
I(f ), is approximated by the area under the
curve of the simpler function.

For a more detailed discussion of the
topics in this section, see an introductory
numerical methods text such as Conte
and de Boor (1980), Dahlquist and Björck
(1974), Johnson and Riess (1982), or Stoer
and Bulirsch (1980).

9.1
Simple Quadrature Rules

Several simple quadrature rules follow:
• The rectangle rule approximates I(f ) by

the area under the constant y = f (a) or
y = f (b).

• The midpoint rule approximates I(f )
by the area under the constant y =
f ((a + b)/2).

• The trapezoidal rule approximates I(f ) by
the area under the straight line joining
the points (a, f (a)) and (b, f (b)).

• Simpson’s rule approximates I(f ) by the
area under the quadratic that interpo-
lates (a, f (a)), (m, f (m)) and (b, f (b)),
where m = (a + b)/2.

• The corrected trapezoidal rule approxi-
mates I(f ) by the area under the cubic
Hermite that interpolates (a, f (a),f ′(a))
and (b, f (b), f ′(b)).

• Newton–Cotes rules are discussed in
Sec. 9.1.1 below.

• Gaussian rules are discussed in
Sec. 9.1.2 below.

The formula Q(f ) and the associated
error I(f ) − Q(f ) for each quadrature rule
listed above are given in Table 13, where
n is the number of function and derivative
evaluations, d is the polynomial degree of
the quadrature rule (see Sec. 9.1.1 below),
η is an unknown point in [a, b] (generally
different for each rule), m = (a + b)/2 is
the midpoint of the interval [a, b], and
C and K are some constants. For the
derivation of these quadrature rules and
their associated error formulas, see an
introductory numerical methods text such
as Conte and de Boor (1980); Dahlquist and
Björck (1974); Johnson and Riess (1982);
Stoer and Bulirsch (1980).

9.1.1 Some Definitions
A quadrature rule that is based on integrat-
ing a polynomial interpolant is called an
interpolatory rule. All the simple quadrature
rules listed in Table 13 are interpolatory.
Writing the polynomial interpolant in La-
grange form and integrating it, we see
immediately that the weights wi do not
depend on the function f, but only on the
abscissae {xi : i = 1, . . . , n}.
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Quadrature rules are, in general, not ex-
act. An error formula for an interpolatory
rule can often be derived by integrating the
associated polynomial interpolant error.
Error formulas for some simple quadra-
ture rules are listed in Table 13.

A quadrature rule that is exact for all
polynomials of degree d or less, but is not
exact for all polynomials of degree d + 1,
is said to have polynomial degree d. An
interpolatory rule based on n function and
derivative values has polynomial degree at
least n − 1.

Quadrature rules that include the end
points of the interval of integration [a, b] as
abscissae are called closed rules, while those
that do not include the end points are called
open rules. An advantage of open rules is
that they can be applied to integrals with
singularities at the end points, whereas
closed rules usually can not.

Interpolatory rules based on equidistant
abscissae are called Newton–Cotes rules.
This class includes the rectangle, mid-
point, trapezoidal, corrected trapezoidal,
and Simpson’s rules. Both open and closed
Newton–Cotes quadrature rules exist.

9.1.2 Gaussian Quadrature Rules
A quadrature rule

Q(f ) =
n∑

i=1

wif (xi)

is fully determined by n, the abscissae
{xi : i = 1, . . . , n}, and the weights {wi :
i = 1, . . . , n}. Gauss showed that, given n
and the end points a and b of the integral,
1. there exists a unique set of abscissae {xi}

and weights {wi} that give a quadrature
rule – called the Gaussian quadrature
rule – that is exact for all polynomials
of degree 2n − 1 or less;

2. no quadrature rule with n abscissae and
n weights is exact for all polynomials of
degree 2n;

3. the weights {wi} of the Gaussian
quadrature rule are all positive;

4. the Gaussian quadrature rule is open;
5. the abscissae {xi} of the Gaussian

quadrature rule are the roots of the
shifted Legendre polynomial qn(x) of
degree n, which is the unique monic
polynomial of degree n that is orthogo-
nal to all polynomials of degree n − 1 or
less w.r.t. the continuous inner product

(f , g) =
∫ b

a
f (x)g(x) dx

(see Sec. 8.7.1);
6. the Gaussian quadrature rule is inter-

polatory, i.e., it can be derived by inte-
grating the polynomial of degree n − 1
that interpolates f at the abscissae {xi}.

Thus, Gauss derived the class of open in-
terpolatory quadrature rules of maximum
polynomial degree d = 2n − 1. As noted
above, these formulas are called Gaussian
quadrature rules or Gauss–Legendre quadra-
ture rules.

9.1.3 Translating the Interval of
Integration
The weights and abscissae of simple
quadrature rules are usually given w.r.t.
a specific interval of integration, such as
[0,1] or [−1, 1]. However, the weights and
abscissae can be transformed easily to ob-
tain a related quadrature rule appropriate
for some other interval.

One simple way to do this is
based on the linear change of
variables x̂ = β(x − a)/(b − a) + α(b −
x)/(b − a), which leads to the relation∫ β

α

f (x̂)dx̂ =
∫ b

a
f

(
β

x − a

b − a
+ α

b − x

b − a

)

× β − α

b − a
dx. (43)
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So, if we are given a quadrature rule on
[a, b] with weights {wi : i = 1, . . . , n} and
abscissae {xi : i = 1, . . . , n}, but we want
to compute ∫ β

α

f (x̂)dx̂,

we can apply the quadrature rule to the
integral on the right side of (43). An
equivalent way of viewing this is that we
have developed a related quadrature rule
for the interval of integration [α, β] with
weights and abscissae

ŵi = β − α

b − a
wi and

x̂i = β
xi − a

b − a
+ α

b − xi

b − a

for i = 1, . . . , n. Note that, because we
have used a linear change of variables,
the original rule for [a, b] and the related
one for [α, β] have the same polynomial
degree.

9.1.4 Comparison of Gaussian and
Newton–Cotes Quadrature Rules
We list some similarities and differences
between Gaussian and Newton–Cotes
quadrature rules:

1. The weights of a Gaussian rule are
all positive, which contributes to the
stability of the formula. High-order
Newton–Cotes rules typically have both
positive and negative weights, which is
less desirable, since it leads to poorer
stability properties.

2. Gaussian rules are open, whereas there
are both open Newton–Cotes rules and
closed Newton–Cotes rules.

3. Gaussian rules attain the maximum
possible polynomial degree 2n − 1 for a
formula with n weights and abscissae,
whereas the polynomial degree d of a

Newton–Cotes rules satisfies n − 1 ≤
d ≤ 2n − 1 and the upper bound can be
obtained for n = 1 only.

4. The abscissae and weights of Gaussian
rules are often irrational numbers and
hard to remember, but they are not
difficult to compute. The abscissae
of a Newton–Cotes rule are easy to
remember and the weights are simple
to compute.

5. The set of abscissae for an n-point
Gaussian rule and for an m-point
Gaussian rule are almost disjoint for
all n 	= m. Thus we can not reuse
function evaluations performed for one
Gaussian rule in another Gaussian
rule. Appropriately chosen pairs of
Newton–Cotes rules can share function
evaluations effectively.

6. Both Gaussian and Newton–Cotes
rules are interpolatory.

9.2
Composite (Compound) Quadrature Rules

To increase the accuracy of a numerical
approximation to an integral, we could
use a rule with more weights and abscis-
sae. This often works with Gaussian rules,
if f is sufficiently smooth, but it is not
advisable with Newton–Cotes rules, for
example, because of stability problems as-
sociated with high-order formulas in this
class.

Another effective way to achieve high
accuracy is to use composite quadrature
rules, often also called compound quadra-
ture rules. In these schemes, the interval
of integration [a, b] is subdivided into pan-
els (or subintervals) and on each panel the
same simple quadrature rule is applied. If
the associated simple quadrature rule is
interpolatory, then this approach leads to
the integration of a piecewise polynomial
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(PP) interpolant. Thus, using a compos-
ite quadrature rule, instead of a simple
one with high polynomial degree, leads to
many of the same benefits that are ob-
tained in using PP interpolants compared
with high-degree polynomial interpolants
(see Sec. 8.5).

Table 14 summarizes the composite
quadrature rules and the associated error
formulas. In the table, n is the number of
function and derivative evaluations, d is the
polynomial degree of the quadrature rule,
η is an unknown point in [a, b] (in general
different for each rule), h = (b − a)/s is
the step size of each panel, s is the number
of panels, and PP stands for piecewise
polynomial. Composite quadrature rules
based on Gaussian or Newton–Cotes rules
can also be used, although they are not
listed in Table 14.

9.3
Adaptive Quadrature

We see from Table 14 of composite
quadrature rules that the smaller the
step size h of a panel, the smaller the
expected error. It is often the case that an
approximation to the integral

I(f ) =
∫ b

a
f (x) dx

is needed to within a specified accuracy ∈.
In this case, adaptive quadrature is often
used. Such schemes refine the grid (or
collection of panels) until an estimate
of the total error in the integration is
within the desired precision ∈. Adaptive
quadrature is particularly useful when
the behavior of the function f varies
significantly in the interval of integration
[a, b], since the scheme can use a fine grid
where f is hard to integrate and a coarse
grid where it is easy, leading to an efficient
and accurate quadrature procedure.

Tab. 15 Adaptive quadrature procedure

subroutine AQ(a, b, ∈)

(Q, E) = LQM(a, b)

if (E ≤∈) then
return (Q, E)

else
m = (a + b)/2
return AQ(a, m, ∈ /2) + AQ(m, b, ∈ /2)

end
end

Table 15 gives a simple general recursive
procedure for adaptive quadrature. We
assume that we can make use of a
routine LQM (Local Quadrature Module)
that implements a quadrature rule in
some interval [a, b] and returns Q, an
approximation to the integral, and E, an
estimate of the error. In the next section,
we discuss how an error estimate may be
obtained.

We note that the adaptive quadrature
procedure shown in Table 15 does not
illustrate how to reuse function evaluations
where possible. An effective adaptive
quadrature routine should do this, since
function evaluations are often the most
computationally expensive part of the
procedure.

9.4
Romberg Integration and Error Estimation

As discussed in the last subsection,
adaptive quadrature requires an error
estimate. As an illustration, we consider
how one may be obtained for the composite
trapezoidal rule.

Let Ts( f ) denote the composite-
trapezoidal-rule approximation to

I(f ) =
∫ b

a
f (x) dx

using s panels and let Es = I(f ) − Ts(f )

be the associated error. On the basis of
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the error formula in Table 13, we expect
E2s to be about four times smaller than
Es, assuming that f ′′(x) does not vary too
much. That is,

I(f ) − Ts(f ) = Es,

I(f ) − T2s(f ) = E2s ≈ 1
4 Es.

Subtracting these two equations, we get

T2s(f ) − Ts(f ) = Es − E2s ≈ 3
4 Es.

So Es ≈ 4[T2s(f ) − Ts(f )]/3 and E2s ≈
[T2s(f ) − Ts(f )]/3. Thus, by applying the
composite trapezoidal rule first with s and
then with 2s panels, we obtain estimates of
the error in both Ts(f ) and T2s(f ).

If we add the estimate of the er-
ror Es = I(f ) − Ts(f ) to Ts(f ) we of-
ten obtain a better approximation to
I(f ) than either Ts(f ) or T2s(f ). That
is, T̂s(f ) = Ts(f ) + 4[T2s(f ) − Ts(f )]/3 =
[4T2s(f ) − Ts(f )]/3 is often a better ap-
proximation to I(f ) than either Ts(f ) or
T2s(f ), particularly if the function f is
smooth and the grid is fine. Thus, by
applying the compound trapezoidal rule
with s and 2s panels and taking an ap-
propriate linear combination of the two
approximations, we construct a better ap-
proximation to I(f ). To be more specific,
it can be shown that this eliminates the
lowest-order term in the error Es or E2s.
This process can be repeated to elimi-
nate the next higher-order term in the
error and so on. In addition, it can be
generalized easily to other quadrature
rules.

This is the basic idea behind Romberg
integration. By applying a quadrature
rule repeatedly with more panels each
time, we can eliminate the leading terms
of the error expansion, and thereby
obtain better and better approximations
to I(f ).

9.5
Infinite Integrals and Singularities

If one or both end points of the interval of
integration [a, b] are infinite, the integral is
called infinite. We restrict the discussion
of infinite integrals to the case

I(f ) =
∫ ∞

a
f (x) dx,

sometimes called a semi-infinite integral,
since only one end point is infinite. Other
cases can be handled similarly.

Under the assumption that

I(f ) =
∫ ∞

a
f (x) dx

exists, one way to approximate the integral
is to truncate I(f ), and compute instead

Î(f ) =
∫ b

a
f (x) dx,

for some sufficiently large b, by a standard
quadrature rule Q(f ). The error in this
approach is I(f ) − Q(f ) = [I(f ) − Î(f )] +
[Î(f ) − Q(f )]. It is often possible to choose
b so that

I(f ) − Î(f ) =
∫ ∞

b
f (x) dx

is small and to choose Q so that Î(f ) −
Q(f ) is also small.

I(f ) can also be approximated by first
performing a change of variables to
transform the infinite integral to a standard
one. More specifically, let x = g(t). Then

I(f ) =
∫ ∞

a
f (x)dx

=
∫ g−1(∞)

g−1(a)

f (g(t)) · g ′(t) dt,

where g−1(x) is the inverse of g(x). If we
can choose g so that g−1(a) and g−1(∞)

are both finite, then I(f ) is transformed
to a finite integral that can be evaluated
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by a standard quadrature rule. However,
this procedure may introduce singularities
(discussed below). If so, it might not lead
to a computationally easier problem to
solve.

Infinite integrals can also be approx-
imated by special quadrature formulas
that are directly applicable to infinite in-
tervals of integration. For further details
concerning this approach, see an intro-
ductory numerical methods text such as
Conte and de Boor (1980), Dahlquist and
Björck (1974), Johnson and Riess (1982),
or Stoer and Bulirsch (1980).

A singular integral

I(f ) =
∫ b

a
f (x) dx

is one in which f is singular (i.e., becomes
infinite) at some point in [a, b]. Singular
and infinite integrals are closely related: A
change of variables often transforms one
into the other.

In the computing of singular integrals
by a quadrature rule, the value of f might
be required at or close to a point of
singularity, and so the quadrature rule
may be either inapplicable or inaccurate.
It often happens that the singularity in f
occurs at the end point a or b, in which
case, an open formula, such as a Gaussian
rule, may be effective.

The performance of a quadrature rule
applied to a singular integral might be
improved by a change of variables. A
transformation x = g(t) that often helps
to remove or lessen the effect of a
singularity is g(t) = b − (b − a)u2(2u + 3)

for u = (t − b)/(b − a).

9.6
Monte-Carlo Methods

Monte-Carlo methods (q.v.) are of a statis-
tical nature. For the sake of simplicity, we

briefly present them for one-dimensional
integrals only, but they can be extended
easily to multidimensional integrals and
are most useful in this context.

To begin, choose n random points
{Ui : i = 1, . . . , n} ⊂ [0, 1] and scale each
Ui to [a, b] by ui = a + Ui(b − a). Then

Qn(f ) = (b − a)

n

n∑
i=1

f (ui)

is a Monte-Carlo approximation to

I(f ) =
∫ b

a
f (x) dx.

If we consider Qn(f ) to be a ran-
dom variable, then it can be shown
that its mean is I(f ) and its stan-
dard deviation is |b − a| × ρ(f )/

√
n, where

ρ(f ) is a constant that depends on
f, but not n. Assuming that Qn(f ) is
close to being normally distributed, we
are led to statistical statements about
the error, such as that |Qn(f ) − I(f )| ≤
2|b − a|ρ(f )/

√
n nineteen times out of

twenty.
Note that the error bound above de-

creases like 1/
√

n, much more slowly
than the bounds for the standard com-
pound quadrature rules given in Table 14.
This suggests that Monte-Carlo methods
are not very effective for one-dimensional
integrals of smooth functions. How-
ever, an error formula similar to that
given above continues to hold for mul-
tidimensional integrals, while extensions
of standard methods become increas-
ingly less efficient as the dimension
of the integral to be approximated in-
creases. As a result, Monte-Carlo meth-
ods are among the best schemes avail-
able for approximating high-dimensional
integrals.
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10
Ordinary Differential Equations

In this section, we consider numeri-
cal methods for the solution of or-
dinary differential equations (ODEs).
We begin by introducing some simple
schemes for the initial-value problem
(IVP)

y′(x) = f (x, y(x)) x ∈ [a, b],

y(a) = y0, (44)

where y : R → Rm and f : R × Rm → Rm.
We assume throughout that the IVP
(44) has a unique solution for x ∈
[a, b]. We also discuss more sophisti-
cated adaptive methods and explain the
terms stiff and nonstiff problems and
how to choose methods appropriate for
these two classes of problems. We then
briefly consider the boundary-value prob-
lem (BVP)

y′(x) = f (x, y(x)) x ∈ [a, b],

g(y(a), y(b)) = 0, (45)

which we assume has a locally unique
solution.

For both IVPs and BVPs, we consider
systems of first-order ODEs only, since
most commonly available codes are for
first-order systems and any higher-order
ODE can be reduced to a system of first-
order equations. However, using a method
designed for higher-order equations di-
rectly may lead to a more efficient solution
of the problem.

Because of space constraints, we do
not discuss many important related prob-
lems such as differential-algebraic equa-
tions or delay differential equations. For a
more comprehensive discussion of these
and other related topics, see an ad-
vanced text such as Ascher et al. (1988),

Butcher (1987), Hairer et al. (1987), Hairer
and Wanner (1991), Lambert (1991), or
Shampine (1994).

10.1
Initial-Value Problems (IVPs)

10.1.1 Two Simple Formulas
Most standard numerical methods for the
IVP (44) start with the initial value y0

at x0 = a and then compute approxima-
tions yn ≈ y(xn) for n = 1, . . . , N on a
discrete grid a = x0 < x1 < · · · < xN = b.
The distance between adjacent grid points,
hn = xn+1 − xn, n = 0, . . . , N − 1, is re-
ferred to as the step size at step n + 1.
Schemes are often presented with a con-
stant step size h = hn for all n, but this is
generally not required. Moreover, as dis-
cussed below, variable–step-size methods
are often much more efficient.

Possibly the simplest numerical scheme
for (44) is Euler’s method, sometimes called
the forward Euler method:

yn+1 = yn + hnf (xn, yn). (46)

This formula is motivated from the
observation that the true solution of a
scalar IVP of the form (44) satisfies

y(xn+1) = y(xn) + hny′(xn) + h2
n

2
y′′(ηn)

= y(xn) + hnf (xn, y(xn))

+ h2
n

2
y′′(ηn) (47)

for some point ηn ∈ [xn, xn+1], which
follows from standard Taylor-series theory.
Thus, the true solution of the IVP (44)
satisfies an equation that is very similar to
(46). This argument can be extended easily
to systems.

The approximations yn ≈ y(xn) are com-
puted in the order n = 1, . . . , N using the
formula (46). To be more specific, on
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the first step of Euler’s method from x0

to x1 = x0 + h0, we substitute the initial
value (x0, y0) into the right side of (46)
to compute y1 ≈ y(x1). Thus, at the end
of the first step, we have (x1, y1). On the
second step of Euler’s method from x1

to x2 = x1 + h1, we substitute (x1, y1) into
the right side of (46) to compute y2 ≈ y(x2).
The procedure continues in a similar way
for n = 2, . . . , N. Note that this evaluation
process applies equally well to systems of
equations (i.e., m > 1). In this case, hn is
a scalar, but yn+1, yn and f (xn, yn) are all
m-vectors.

Euler’s method is an explicit formula in
the sense that the evaluation process de-
scribed above does not require the solution
of any linear or nonlinear algebraic equa-
tions. The backward Euler formula

yn+1 = yn + hnf (xn+1, yn+1) (48)

is a typical example of an implicit formula.
It can be motivated from a Taylor-
series expansion of the true solution y(x)
of the IVP (44) about xn+1 similar to
the expansion (47) above for y(x) about
xn. Moreover, we again compute the
approximations yn ≈ y(xn) in the order
n = 1, . . . , N. However, note that, on step
n + 1 from xn to xn+1 = xn + hn, we start
with (xn, yn) and must solve Eq. (48) for
yn+1.

We will return to the question of how to
solve for yn+1 shortly, but first we explain
briefly in the next subsection why we may
wish to use an implicit scheme (such as
the backward Euler formula) rather than
an explicit one (such as the forward Euler
formula) even though the former clearly
requires more work per step than the latter.

10.1.2 Stiff IVPs
Roughly speaking, a stiff IVP is one in
which some terms in the solution decay

rapidly with respect to the length of the
integration, while others vary slowly on
this time scale. To illustrate this concept,
consider the linear constant-coefficient
problem y′ = Ay, y(0) = y0, for x ∈ [0, 1],
where

A = 1
2

(−106 − 1 106 − 1
106 − 1 −106 − 1

)
,

y0 =
(

2
0

)
.

If we let z = Py, where

P = 1
2

(
1 −1
1 1

)
, P−1 =

(
1 1

−1 1

)
,

D = PAP−1 =
(−106 0

0 −1

)
,

then z′ = Py′ = PAy = PAP−1z = Dz and
z(0) = Py(0) = (1, 1)T. Therefore, z(x) =
(e−106x, e−x)T and so y(x) = P−1z(x) =
(e−x + e−106x, e−x − e−106x)T. The term
e−106x that occurs in both z(x) and y(x)
gives rise to an initial transient that decays
rapidly with respect to the interval of
integration [0,1], while the term e−x is
associated with a slowly varying smooth
term on this scale. The fast and slow terms
occur in different components of z(x), but
they are mixed in y(x), which is often the
case in practice. After the e−106x term dies
out, both components of y(x) vary smoothly
like e−x.

If we apply the forward Euler formula to
y′ = Ay, we get yn+1 = yn + hnAyn = (I +
hnA)yn. If we multiply the last equation
through by P and perform the change
of variables zn = Pyn, we get zn+1 = (I +
hnD)zn. The two components of zn satisfy
z(1)

n+1 = (1 − 106hn)z(1)
n and z(2)

n+1 = (1 −
hn)z(2)

n . If we let hn > 2 × 10−6 at any point
during the integration, then (1 − 106hn) <
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−1 and z(1)
n will grow in magnitude and

oscillate in sign as n increases. Since yn =
P−1zn, this will cause both components of
yn to oscillate about e−xn with growing
amplitude as n increases. Since this
instability is undesirable, we must restrict
hn < 2 × 10−6 throughout the integration,
even though, after the initial transient, this
is likely a much smaller step size than
would be required to integrate the slowly
varying e−x component of the solution
accurately.

On the other hand, if we apply the
backward Euler formula to y′ = Ay, we
get yn+1 = yn + hnAyn+1 and so yn+1 =
(I − hA)−1yn. If we multiply this equa-
tion through by P and perform the change
of variables zn = Pyn, we get zn+1 = (I −
hnD)−1zn. Therefore, z(1)

n+1 = z(1)
n /(1 +

106hn) and z(2)
n+1 = z(2)

n /(1 + hn). Hence,

no matter how large hn > 0 is, z(1)
n de-

cays as n increases. Consequently, af-
ter the initial transient, we can choose
hn > 0 to integrate z(2)

n accurately with-
out fear of z(1)

n becoming unstable. Since
yn = P−1zn, the same conclusion applies
to yn.

The example above can be generalized
to larger systems of equations y′ = Ay.
If A is diagonalizable, then the perfor-
mance of the method on y′ = Ay can
be deduced from its performance on the
scalar test problems y′ = λy, where the
λ’s range over the eigenvalues of A. If
the real part of each λ is negative, then
y(x) → 0 as x → ∞. We would like the
numerical solution to have the same be-
havior without having to restrict hn outside
the transient region. Methods with this
property are called A-stable. Generaliz-
ing the example above, it is easy to see
that the backward Euler formula is A-
stable, while the forward Euler formula
is not.

The importance of the example above
and the scalar test problem y′ = λy in par-
ticular is that the performance of methods
on these simple problems is indicative of
their behavior on more general nonlinear
stiff problems. A nonrigorous, but intu-
itive, justification of this follows from the
local linearization of y′ = f (x, y) at (xn, yn):

y′(x) ≈ f (xn, yn) + fx(xn, yn)(x − xn)

+ fy(xn, yn)(y − yn),

where fy(x, y) = ∂ f (x, y)/∂y ∈ Rm×m is
the Jacobian of f. This problem is usually
stiff if

1. some eigenvalue of fy(xn, yn) has a large
negative real part with respect to the
interval of integration,

2. no eigenvalue of fy(xn, yn) has a large
positive real part with respect to the
interval of integration, and

3. no eigenvalue of fy(xn, yn) has a large
imaginary part unless it also has a
relatively large negative real part.

An IVP that is not stiff is called nonstiff.
Stiff IVPs arise in many applications,

such as chemical kinetics and electrical
circuits. As noted earlier, they are charac-
terized by components that vary on vastly
different time scales: Some terms in the
solution decay rapidly to steady state while
others vary slowly.

The observation above that the explicit
forward Euler formula is not appropriate
for a stiff problem, while the implicit back-
ward Euler formula is, can be generalized.
All commonly used formulas that are suit-
able for stiff problems are implicit in some
sense.

See the survey article of Shampine and
Gear (1979) or an advanced text such as
Butcher (1987), Hairer and Wanner (1991),
Lambert (1991), or Shampine (1994) for a
more detailed discussion of stiffness.
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10.1.3 Solving Implicit Equations
We return now to methods for solving
for yn+1 in an implicit formula such
as (48). One common approach is the
predictor–corrector technique, which is
just a fixed-point iteration as described
in Sec. 6.1. For this scheme (and most
others), we need in initial approximation
y(0)

n+1 to yn+1. This could be computed,
for example, from the forward Euler for-
mula or some other explicit scheme, or
simply by taking y(0)

n+1 = yn. In the termi-
nology of predictor–corrector techniques,
the formula for computing y(0)

n+1 is re-
ferred to as the predictor formula. For a
predictor–corrector method based on the
backward Euler formula (48), the corrector
formula would be

y(l+1)
n+1 = yn + hnf (xn+1, y(l)

n+1),

l = 0, 1, . . . . (49)

We substitute y(0)
n+1 into the right side of

(49) to compute y(1)
n+1, which we in turn

substitute into the right side of (49) to
compute y(2)

n+1, and so on. It is easy to show

that y(l)
n+1 → yn+1 as l → ∞ if f satisfies

the Lipschitz condition

‖f (xn+1, y) − f (xn+1, z)‖ ≤ L‖y − z‖
for some constant L and all y, z in a convex
domain containing yn+1 and y(l)

n+1 for l =
0, 1, . . . and hnL < 1. In most codes, one
or two corrections only are needed, since
the initial guess y(0)

n+1 is normally a good
approximation to yn+1. Consequently, this
scheme is not much more expensive to
implement than the explicit forward Euler
formula. However, a predictor–corrector
implementation of an A-stable method
(such as the backward Euler formula) is
not A-stable. On the contrary, because of
the requirement hnL < 1, it will suffer a

step size restriction on a stiff problem
similar to that of an explicit formula.

Alternatively, we could rewrite the back-
ward Euler formula (48) as

F(y) = y − yn − hnf (xn+1, y) = 0, (50)

where we have replaced the unknown yn+1

by y, and then apply one of the other
techniques described in Sec. 6 for finding
roots of equations to compute the solution
y = yn+1 of (50). The most commonly used
root-finding technique in this context is
Newton’s method – or a variant of it. As
noted in Sec. 6.7, for systems of equations,
Newton’s method takes the form

[I − hnfy(xn+1, y(l)
n+1)]∆l

= yn + hnf (xn+1, y(l)
n+1) − y(l)

n+1, (51)

y(l+1)
n+1 = y(l)

n+1 + ∆l, (52)

where fy(x, y) = ∂ f (x, y)/∂y ∈ Rm×m is
the Jacobian of f. Note that we must solve
a linear system of m equations in m un-
knowns to compute the Newton update
vector ∆l in (51). Typically, Gaussian elim-
ination with partial pivoting (see Sec. 2.5)
is used to solve such linear systems. A
band or sparse solver (see Sec. 2.7) may
dramatically decrease the cost of solving
(51) if I − hnfy(xn+1, y(l)

n+1) is large and
sparse. Similarly, iterative methods, such
as the preconditioned conjugate-gradient
method (see Sec. 3.2), may significantly
reduce the cost of solving some large
sparse problems. See Sec. 13 for a discus-
sion of sources of high-quality numerical
software, including stiff-ODE solvers that
incorporate sparse and iterative linear
equation solvers.

The computational work required to
solve (51) can be decreased significantly
by using a chord Newton method, of-
ten called a simplified Newton method,
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that holds the Newton iteration matrix
I − hnfy(xn+1, y(l)

n+1) constant over several
iterations and possibly several steps of
the integration, thus avoiding the neces-
sity to factor the Newton iteration matrix
on each iteration (see Sec. 6.8). However,
even with this savings, the cost per step
of the Newton iteration may be much
larger than a predictor–corrector method.
However, it has the advantage for formu-
las appropriate for stiff problems that it
avoids the step size restriction associated
with the predictor–corrector technique or
explicit formulas. Thus, even though the
Newton iteration might make the scheme
much more expensive per step, the step
sizes that can be used might be so much
larger that the total cost of the integration
is significantly less. Finally note that, as
for predictor–corrector methods, an initial
guess for y(0)

n+1 is required. It can be com-
puted by the techniques described above.

10.1.4 Higher-order Formulas
A numerical method for ODEs is said
to be of order p or pth order or pth-order
convergent if yn = y(xn) + O(hp) for some
integer p ≥ 1, where O(hp) is any quantity
(in this case, the global error) that can be
bounded by hp times a constant that is
independent of h, but that may depend on
the IVP and the numerical method. Most
standard texts on the numerical solution
of ODEs show that both the forward and
backward Euler methods are first-order
convergent.

Higher-order methods are frequently
used in practice because they offer the
potential of significantly reducing the
computational work required to generate
an accurate solution to the IVP (44). To get
an intuitive feeling for this, suppose that
the length of integration b − a = 1, that
we use a constant step size h throughout
the numerical integration, that the global

error for a pth-order method satisfies
yn − y(xn) = hp, and that we require this
error to be of size 10−10. Under these
assumptions, the optimal step size for the
method is h = 10−10/p, and the resulting
number of steps needed to integrate
from a to b is N = 10+10/p. To be more
specific, for p = 1, 2, 5, 10, the number of
steps required is N = 1010, 105, 102, 101,
respectively. Thus, even though a higher-
order method may require more work
per step than a lower-order scheme, the
dramatic reduction in the number of steps
required frequently makes a higher-order
method much more efficient than a lower-
order one – particularly for problems with
stringent error tolerances.

Two common second-order formulas are
the trapezoidal rule

yn+1 = yn + 1
2 hn[f (xn, yn)

+ f (xn+1, yn+1)] (53)

and the implicit midpoint rule

yn+1 = yn + f

(
xn + hn

2
, (yn, +yn+1)/2

)
,

(54)

each of which is implicit, since one clearly
needs to solve for yn+1. Note that neither
formula requires much more work per
step than the backward Euler formula.
Moreover, both formulas are A-stable and
effective for solving stiff problems at
relaxed error tolerances.

10.1.5 Runge–Kutta Formulas
Runge–Kutta (RK) formulas are a general
class of methods containing many higher-
order schemes. The general form of an
s-stage RK formula is

ki = f


xn + cihn, yn + hn

s∑
j=1

aijkj


 ,
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i = 1, . . . , s,

yn+1 = yn + hn

s∑
i=1

biki. (55)

That is, we must first compute the
s function values ki and then form a
weighted average of the ki’s to compute
yn+1 from yn.

RK formulas are one-step schemes in
the sense that all the information required
to compute yn+1 from yn is generated on
the current step from xn to xn+1. That
is, unlike multistep formulas discussed in
the next subsection, a RK formula does not
require any information from past steps.

If the stages of the RK formula can
be ordered so that aij = 0 for all j ≥ i,
then the formula (55) is explicit in the
sense that the ki’s can be computed in
the order i = 1, . . . , s without having to
solve any linear or nonlinear equations. In
what follows, we assume that the formula
has been so ordered if possible. If the
RK formula (55) is not explicit, then it is
implicit and at least one linear or nonlinear
equation must be solved to compute the
ki’s.

The coefficients of a RK formula are
frequently displayed in a tableau as

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
... ... ... ...
cs as1 as2 . . . ass

b1 b2 . . . bs

If all the elements in the tableau on the
diagonal and above it are zero, then the
associated formula is explicit.

All the methods considered so far are
in fact RK formulas. The RK tableaux
for the forward Euler formula, backward
Euler formula, implicit midpoint rule, and
trapezoidal rule are listed below in that

order:

0 0 1 1 1/2 1/2
, , ,

1 1 1

0 0 0
1 1/2 1/2

1/2 1/2

Note that the first three are one-stage RK
formulas and the final one, the trapezoidal
rule, is a two-stage RK formula. The
tableau for the classical four-stage fourth-
order explicit RK formula is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

This formula has been widely used since
it was published by Kutta in 1901. In
the days of hand calculation, the zero
coefficients below the diagonal were a
distinct benefit, but this is no longer
a significant advantage on a modern
computer. Moreover, there are now many
better formulas, both of order four and
of higher order. The interested reader
should consult an advanced text such as
Butcher (1987), Hairer et al. (1987), Hairer
and Wanner (1991), Lambert (1991), or
Shampine (1994) for further details.

As the sample formulas above suggest,
a high-order RK formula requires more
stages than a low-order one. The minimum
number of stages that an explicit RK
formula requires to attain orders 1 to 8
are listed below.

Order 1 2 3 4 5 6 7 8
Stages 1 2 3 4 6 7 9 11

On the other hand, implicit s-stage RK
formulas of order 2s exist for all s ≥ 1.
Moreover, it can be shown that this is the
maximal order possible.
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Explicit RK formulas are frequently used
to solve nonstiff IVPs. Some implicit
RK formulas are A-stable (or nearly so)
and are suitable for solving stiff IVPs.
Formulas with four or fewer stages are
quite effective for problems with relaxed
error tolerances, while formulas with
five or more stages are suitable for
problems with more stringent accuracy
requirements. Since RK formulas are one-
step schemes, unlike linear multistep
formulas (LMFs) discussed in the next
subsection, RK formulas are more suitable
than LMFs for problems that require
rapid changes in step size, such as
problems with discontinuities. See Sec. 13
for a discussion of sources of high-quality
numerical software, including routines
based on RK formulas.

10.1.6 Linear Multistep Formulas
Linear multistep formulas (LMFs) can be
written in the form

yn+1 =
k∑

i=1

αiyn+1−i

+ h
k∑

i=0

βif (xn+1−i, yn+1−i),

(56)

where we assume that at least one of αk
or βk is nonzero [otherwise we can reduce
k in (56)]. Formula (56) is in fact a k-
step method, since it uses values over
k steps to compute yn+1. Therefore, we
assume that, at the start of step n + 1,
we have yn+1−k, . . . , yn and our task is
to compute yn+1 by (56). In this case, if
β0 = 0, then the f (xn+1, yn+1) term can be
dropped from the right side of (56), and
so we can evaluate the right side of (56)
to compute yn+1 without having to solve
any linear or nonlinear equations. That is,
if β0 = 0, the formula is explicit. On the

other hand, if β0 	= 0, then yn+1 occurs
on both sides of (56), and so a linear
or nonlinear equation must be solved
to compute yn+1. Therefore, the formula
is implicit. Depending on the context,
a predictor–corrector method or some
variant of Newton’s method is typically
used to solve for yn+1.

Of course, at the start of the integration,
n = 0 and y1−k, . . . , y−1 are typically not
available for k > 1. One solution to this
problem is to compute y1, . . . , yk−1 by a
one-step method (such as a RK formula)
of the same order as the k-step LMF and
then start using the k-step LMF at step k.
Alternatively, we could use a one-step LMF
on step 1, a two-step LMF on step 2, and
so on, until we reach step k, after which we
can use (56) on that step and all subsequent
steps. Most LMF codes employ the latter
strategy and adjust the step size so that the
accuracy obtained by the formulas with
smaller k is comparable to that obtained by
formulas with larger k.

If we ignore stability, then it is possible
to obtain a k-step LMF of order 2k for
any k ≥ 1. Moreover, it is easy to show
that this is the maximal order possible.
However, these maximal-order formulas
are unstable for k ≥ 3 and so are not useful
in practice. It can be shown that, for any
k ≥ 1, the maximal order of a stable k-step
LMF is k + 1 if k is odd and k + 2 if k is
even.

We have presented the LMFs in this
section for fixed step size only, since
variable–step-size formulas are consider-
ably more complicated. However, a vari-
able–step-size variable-order scheme may
be far more efficient in practice. Such
schemes are discussed in advanced texts
on the numerical solution of ODEs, such
as Hairer et al. (1987), Hairer and Wan-
ner (1991), Lambert (1991), and Shampine
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(1994), but not usually in introductory nu-
merical methods books.

10.1.7 Adams Formulas
Adams formulas are a subclass of LMFs
that have the form

yn+1 = yn + h
k∑

i=0

βif (xn+1−i, yn+1−i).

(57)

In the explicit Adams–Bashforth for-
mulas, β0 = 0 and the remaining k βi’s
are chosen to obtain the maximal possible
order k. In the implicit Adams–Moulton
formulas, β0 	= 0 and the k + 1βi’s are
chosen to obtain the maximal possible
order k + 1. These coefficients are listed
in most advanced texts on numerical
methods for ODEs and in many in-
troductory numerical methods books. It
turns out that the forward Euler for-
mula is the one-step Adams–Bashforth
formula, and the trapezoidal rule is
the one-step Adams–Moulton formula.
Moreover, note that the order of the
Adams–Moulton formulas is optimal
for k odd and nearly optimal for k
even.

The implicit Adams–Moulton for-
mulas have somewhat better nu-
merical characteristics than the ex-
plicit Adams–Bashforth formulas. Con-
sequently, Adams formulas are usually
implemented in a predictor–corrector
fashion, with the k- or (k + 1)-step
Adams–Bashforth formula used for the
predictor and a k-step Adams–Moulton
formula used for the corrector. Adams
predictor–corrector schemes are the basis
for several very effective variable–step-
size variable-order codes for nonstiff IVPs.
See Sec. 13 for a discussion of sources of
high-quality numerical software, including
routines based on Adams formulas.

10.1.8 Backward Differentiation Formulas
Backward differentiation formulas (BDFs),
sometimes called Gear formulas, are an-
other subclass of LMFs that have the form

yn+1 =
k∑

i=1

αiyn+1−i + hβ0f (xn+1, yn+1),

(58)

where β0 	= 0 and so the BDFs are implicit.
The k + 1 coefficients of a k-step BDF are
chosen to obtain the maximal possible
order k. However, the BDFs are stable for
1 ≤ k ≤ 6 only. They are A-stable for k = 1
and 2 and nearly A-stable for k = 3, 4, and
5, with the loss of A-stability increasing
with k. For k = 6 the loss of A-stability
increases to such an extent that this
formula is frequently excluded from use.

The coefficients for the BDFs are listed in
most advanced texts on numerical meth-
ods for ODEs and in many introductory
numerical methods books. It turns out that
the backward Euler formula is the one-step
BDF.

Because the BDFs are usually used to
solve stiff problems, the implicit equation
is normally solved by Newton’s method or
some variant of this root-finding scheme.

BDFs are the basis for several very
effective variable–step-size variable-order
codes for stiff IVPs. See Sec. 13 for
a discussion of sources of high-quality
numerical software, including routines
based on BDFs.

10.1.9 Other Methods
Taylor-series methods and extrapolation
schemes are two other classes of formulas
that are sometimes used in practice, but
much less frequently than Runge–Kutta
or linear multistep formulas. See an
advanced text such as Butcher (1987),
Hairer et al. (1987), Hairer and Wanner
(1991), Lambert (1991), or Shampine
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(1994) for a discussion of these and other
classes of methods.

10.1.10 Adaptive Methods
Most good programs for the numerical
solution of ODEs vary their step size – and
possibly their order – in an attempt to
solve the problem as efficiently as possible
subject to a user-specified error tolerance,
tol. The error that is controlled is usually
the local error on each step, rather than
the global error yn − y(xn) that the user
might at first expect. However, in most
good programs the global error is at
least roughly proportional to tol, so that
reducing tol usually reduces the global
error. A few codes report an estimate
of the global error as well. If such an
estimate is available, it is often optional,
since estimating the global error frequently
increases the cost of the integration
significantly.

A useful way to interpret tol and the
associated local error is in the backward
error sense. (See Sec. 2.8 for a discussion
of backward error analysis in the context
of solving linear algebraic systems Ax =
b.) When called to solve the IVP (44),
many good programs generate a numerical
solution that is the exact solution of the
slightly perturbed problem

z′(x) = f (x, z(x)) + δ(x), z(a) = y0,

(59)

where ‖δ(x)‖ � tol. A few codes compute
δ(x) explicitly and attempt to ensure that
it is bounded by tol, but most satisfy
(59) indirectly (some less reliably than
others) by controlling some measure of
the local error. For a more complete
discussion of global errors, local errors,
and their relationship to the perturbed
equation (59), see an advanced text such as
Butcher (1987), Hairer et al. (1987), Hairer

and Wanner (1991), Lambert (1991), or
Shampine (1994).

We believe that this backward error
approach is often the most natural way
to view the error in the numerical
integration of an IVP. In many practical
problems, we know f (x, y) approximately
only, possibly because of measurement
errors or neglected terms in the model.
Therefore, the true solution of the system
satisfies an equation of the form (59),
where in this case δ(x) is the error in the
model. So, any solution to an IVP of the
form (59) may be equally good provided
‖δ(x)‖ is less than the error in the model.

Programs for the numerical solution of
ODEs often contain many other useful
features. For example, some routines for
nonstiff IVPs warn the user if the prob-
lem is stiff, while others automatically
switch between stiff and nonstiff meth-
ods depending on the characteristics of the
problem. Some programs contain sophis-
ticated strategies to integrate problems
with discontinuities in f or its derivatives
much more efficiently and reliably than
programs that do not attempt to detect dis-
continuities. Also, some programs return
an interpolant for the numerical solution
or allow the user to evaluate the numerical
solution at very closely spaced points more
efficiently than if the integration method it-
self produced all these output points. This
can greatly increase the efficiency of codes
when used to produce graphical output or
to detect when the numerical solution sat-
isfies some condition [such as y(x) = c for
some constant c].

10.2
Boundary-Value Problems (BVPs)

10.2.1 Shooting Methods
Shooting is conceptionally one of the
simplest numerical techniques for solving
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the boundary-value problem (BVP) (45).
In its simplest form, often called simple
shooting, we guess an initial condition
y(a) = y0 for the IVP (44) for the same
ODE as the BVP (45), solve the IVP
(44), and test whether the boundary
condition g(y0, y(b; a, y0)) = 0 is satisfied,
or nearly so, where y(b; a, y0) is the
solution at x = b of the IVP (44) with the
initial condition y(a) = y0. In most cases,
the first guess for the initial condition
y(a) = y0 does not yield a g(y0, y(b; a, y0))

that is close enough to 0. So we must
apply some root-finding technique to
adjust the initial condition y(a) = y0 until
g(y0, y(b; a, y0)) = 0 is satisfied, or nearly
so, assuming that there is a solution to the
BVP.

Each time we adjust the initial condition,
we must solve the IVP (44) again with the
new initial condition y(a) = y(l)

0 to com-

pute y(b; a, y(l)
0 ) and then g(y(l)

0 , (b; a, y(l)
0 )).

For a scalar ODE (m = 1), we could try a
simple technique such as bisection (see
Sec. 6.4) to solve g(y0, y(b; a, y0)) = 0, but
this converges slowly and so requires
many solutions of the IVP (44) with dif-
ferent initial conditions y(l)

0 . Moreover,
bisection is not applicable to systems of
ODEs (m > 1).

The usual approach is to apply a vari-
ant of Newton’s method (see Sec. 6.7) to
solve g(y0, y(b; a, y0)) = 0. However, this
requires that we compute an approxima-
tion to the Newton iteration matrix

dg(y(l)
0 , y(b; a, y(l)

0 ))

dy0
= ∂g(y(l)

0 , y(b; a, y(l)
0 )

∂ya

+ ∂g(y(l)
0 , y(b; a, y(l)

0 ))

∂yb

∂y(b; a, y(l)
0 )

∂y0
,

where ∂g(y(l)
0 , y(b; a, y(l)

0 ))/∂ya is the par-
tial derivative of g with respect to its first
argument, ∂g(y(l)

0 , y(b; a, y(l)
0 ))/∂yb is the

partial derivative of g with respect to its sec-
ond argument, and ∂y(b; a, y(l)

0 )/∂y0 is the

partial derivative of y(b; a, y(l)
0 ) with respect

to the initial condition y(a) = y(l)
0 . It can

be shown that ∂y(b; a, y(l)
0 )/∂y0 = Yl(b) for

Yl : R → Rm×m the solution of the varia-
tional equation

Y ′
l (x) = fy(x, yl(x))Yl(x), Yl(a) = I, (60)

where yl(x) is the solution of the associated
IVP (44) with initial condition y(a) = y(l)

0
and fy(x, y) = ∂ f (x, y)/∂y ∈ Rm×m is the
Jacobian of f. Therefore, on each iteration
of Newton’s method, we must solve the
IVP (44) with initial condition y(a) = y(l)

0
for yl(x) as well as the variational equation
(60) associated with yl(x). Since it may
take many iterations before we find a y(l)

0

for which g(y(l)
0 , y(b; a, y(l)

0 )) is sufficiently
close to 0, this is often a computationally
expensive process.

Moreover, the associated IVP (44) may
be unstable even though the BVP (45) is
stable. As a result, simple shooting may
break down or perform poorly. One way
around this difficulty is to employ multiple
shooting. In this scheme, we choose N + 1
shooting points {xi : i = 0, . . . , N} sat-
isfying a = x0 < x1 < · · · < xN−1 < xN =
b, guess at N initial conditions si, i =
0, . . . , N − 1, and solve the N IVPs

y′
i = f (x, yi), x ∈ [xi, xi+1] i = 0, . . . ,

N − 1, yi(xi) = si. (61)

These IVPs are completely independent
and so could be integrated simultaneously.
Hence, this scheme is often called parallel
shooting.

We need to adjust the initial conditions
si, i = 0, . . . , N − 1, so that

yi(xi+1) = si+1, i = 0, . . . , N − 2, (62)

g(s0, yN(b)) = 0, (63)
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where the first set of conditions (62)
ensures yi(xi+1) = yi+1(xi+1) at the N − 1
interior shooting points x1, . . . , xN−1, thus
allowing us to patch the functions yi(x)

together into a continuous function y(x)
on [a, b], and the second condition (63)
enforces the boundary condition for the
BVP (45).

A variant of Newton’s method (see
Sec. 6.7) is usually used to solve (62)–(63).
The solution process is similar to, but
somewhat more complicated than, that
described above for simple shooting. It
should be noted that the linear systems
associated with Newton’s method for
(62)–(63) have a very special structure that
can be exploited to great computational
advantage. See an advanced text such as
Ascher et al. (1988) for details.

Both simple and multiple shooting
simplify significantly when applied to a
linear ODE y′ = A(x)y + b(x). Newton’s
method converges in one iteration and
the resulting scheme is equivalent to
what is frequently called the method of
superposition. If the boundary conditions
are separated, this scheme simplifies still
further. See an advanced text such as
Ascher et al. (1988) for details.

Good shooting programs contain heuris-
tics for choosing the shooting points and
adjusting the tolerance for the IVP solver
in an attempt to solve the BVP to within a
user-specified tolerance. They also contain
many other components, similar to those
described in Sec. 10.1.10 for IVPs.

10.2.2 One-Step Methods
It is common to apply a one-step method,
such as a Runge–Kutta (RK) formula, to
solve the BVP (45). Since a collocation
method applied to an ODE often reduces
to a RK formula, this class of methods is
broader than it might at first appear.

To simplify the discussion, assume that
the one-step method can be written in the
form

yn+1 = yn + hnφ(xn, yn, hn), (64)

where yn ≈ y(xn), hn = xn+1 − xn, and
a = x0 < x1 < . . . < xN = b. Note that the
RK formula (55) is of this form with

φ(xn, yn, hn) =
s∑

i=1

biki,

ki = f


xn + cihn, yn + hn

s∑
j=1

aijkj


 . (65)

To apply the one-step formula (64) to
the BVP (45), we simply combine the
equations (64) together with the boundary
conditions to get a large system of
equations

�(y0, . . . , yN) ={ yn+1 − yn − hnφ(xn, yn, hn),
n = 0, . . . , N − 1,

g(y0, yN)

}
= 0. (66)

It is usual to apply a variant of
Newton’s method (see Sec. 6.7) to solve
(66). As for shooting, the main dif-
ficulty here is to compute the (N +
1)m × (N + 1)m Newton iteration matrix
∂�(y0, . . . , yN)/∂(y0, . . . , yN) and solve
the associated linear system for the update
to the approximate solution y(l)

0 , . . . , y(l)
N to

(66). See an advanced text such as Ascher
et al. (1988) for a more complete discus-
sion of this important point.

Good BVP codes contain heuristics for
choosing the grid points to solve the BVP to
within a user-specified tolerance. They also
contain many other components, similar
to those described in Sec. 10.1.10 for IVPs.

10.2.3 Other Methods
There are several other classes of numeri-
cal methods for BVPs for ODEs. Some of
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these are discussed in Sec. 11 as numerical
methods for BVPs for partial differential
equations. An important class of meth-
ods, not discussed there, consists of defect
correction schemes, including deferred cor-
rection as a special case. The basic idea
behind these schemes is to apply a simple
technique, possibly in the class discussed
in the last subsection, and then estimate
the defect or truncation error in the dis-
cretization and solve a related problem
again with the same simple technique in
an attempt to eliminate the error. See an
advanced text such as Ascher et al. (1988)
for further details.

11
Partial Differential Equations (PDEs)

A partial differential equation (PDE) is an
equation in which the partial derivative
of some order of the unknown function
w.r.t. some independent variable occurs.
For example,

∂2u

∂x2 + ∂2u

∂y2 = g(x, y) (67)

is a PDE, where u(x, y) is an unknown
function, ∂2u/∂x2 and ∂2u/∂y2 denote
the partial second derivatives of u w.r.t.
x and y, respectively (often denoted by
uxx and uyy, respectively), and g(x, y) is
a given function. The terms that involve
u and its derivatives define the (partial
differential) operator L, where, for example,
L = ∂2/∂x2 + ∂2/∂y2 in (67), and the rest
of the terms (usually the right side of the
equation) form the source term.

11.1
Classes of Problems and PDEs

PDEs describe many important physical
and technological phenomena. These phe-
nomena can be divided into two basic

types, which in turn are associated with
two basic classes of problems for PDEs.

1. Equilibrium phenomena, elliptic PDEs,
boundary-value problems. In steady-
state phenomena, the equilibrium con-
figuration u often satisfies

Lu = g in �, (68)

Bu = γ on ∂�, (69)

where � is a spatial N-dimensional do-
main, ∂� is the boundary of �, u is
the unknown function of N variables,
g and γ are known functions of N
variables, and L and B are partial dif-
ferential operators. Such problems are
called boundary-value problems (BVPs).
Often L is an elliptic operator. Equa-
tion (69) is frequently referred to as the
boundary condition (BC). The definition
of an elliptic operator in the general case
is beyond the scope of this article, but
some typical examples are given below.

2. Propagation phenomena, parabolic and
hyperbolic PDEs, initial-value prob-
lems. In phenomena of a transient
nature, the initial state is often given
and we wish to predict the subsequent
behavior. The function u at some point
t ∈ (0, T) frequently satisfies

Lu = g in � × (0, T), (70)

Bu = γ on ∂� × (0, T), (71)

while the initial configuration satisfies

Iu = g0 in � ∪ ∂�, (72)

where (0,T) is the time interval of
interest, � is a spatial N-dimensional
domain, ∂� is the boundary of �, u
is the unknown function of N spatial
variables and one-time variable t, g
and γ are known functions of N
spatial variables and t, g0 is a known
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function of N spatial variables, and L, B,
and I are partial differential operators.
Such problems are called initial-value
problems (IVPs). L is often either a
parabolic or a hyperbolic operator (see
below). Equation (72) is often referred
to as an initial condition (IC).

11.1.1 Some Definitions
The dimension of a PDE is the number
of independent variables in the PDE.
The order of a PDE is the order of the
highest derivative of the unknown function
occurring in the PDE. A PDE is called
linear if there are no nonlinear terms in the
equation involving the unknown function
or its derivatives; otherwise it is called
nonlinear.

For example,

N∑
i=1

N∑
j=1

aij(x)
∂2u

∂xi∂xj

+
N∑

j=1

bj(x)
∂u

∂xj
+ c(x)u = d(x) (73)

is N-dimensional, second order, and lin-
ear, where x = (x1, . . . , xN) is an N-
dimensional vector of independent vari-
ables, u(x) is the unknown function, and
{aij : i, j = 1, . . . , N}, {bj : j = 1, . . . , N}, c,
and d are given functions of x. If any of
the functions aij, bj, or c depends on u or
its derivatives, or if d is nonlinear in u or
its derivatives, then the PDE is nonlinear.

A linear operator L is called positive-
definite if (Lu, u) > 0 for all u 	= 0, where
(·, ·) denotes an inner product (see
Sec. 8.7). In addition, L is called self-adjoint
if (Lu, v) = (u, Lv) for all u and v in the as-
sociated function space. For example, the
two-dimensional second-order linear PDE

auxx + buxy + cuyy + dux + euy + fu = g

(74)

is self-adjoint if d(x, y) = ∂a/∂x, e(x, y) =
∂c/∂y and b(x, y) = 0.

Consider the linear differential equation
Lu = g, with L self-adjoint and positive-
definite. Consider also the quadratic func-
tional F(u) defined by F(u) = (Lu, u) −
2(u, g). The minimum functional theorem
states that the solution of the differential
equation Lu = g coincides with the func-
tion u that minimizes F(u). In general,
when a solution to a differential equation
corresponds to an extremum of a related
functional, we have a variational principle.
Numerical methods that construct approx-
imations to the solution of a differential
equation by using such a relationship are
called variational methods, Ritz methods,
Rayleigh–Ritz methods, or energy methods.
The latter term comes from the obser-
vation that many variational methods are
based on the physical principle of energy
minimization.

The two-dimensional second-order lin-
ear PDE (74) is elliptic, parabolic, or
hyperbolic if D = b2 − 4ac < 0, = 0, or
>0, respectively. For the definitions
of these terms in the general case,
the reader is referred to any introduc-
tory PDE book, such as Ames (1992),
Celia and Gray (1992), or Hall and
Porsching (1990). Typical examples of
elliptic, parabolic, and hyperbolic PDEs
are

• Laplace’s equation, ux1x1 + ux2x2 + · · · +
uxN−1xN−1 + uxN xN = 0, which is elliptic;

• the heat equation, ux1x1 + ux2x2 + · · · +
uxN−1xN−1 − uxN = 0, which is parabolic;
and

• the wave equation ux1x1 + ux2x2 + · · · +
uxN−1xN−1 − uxN xN = 0, which is
hyperbolic.

Two other classical elliptic PDEs (given
in two dimensions) are
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• Poisson’s equation, uxx + uyy = f (x, y),
and

• the Helmholtz equation, uxx + uyy +
κu = f (x, y), where κ is a constant.

The normal derivative of a surface u(x, y)
is the rate of change of u along the
direction of the outward normal (i.e., the
direction perpendicular to the surface). Let
α be the angle that the direction of the
outward normal makes with the x axis
at a point (x, y) on u. Then the normal
derivative ∂u/∂n of u (often denoted by
un) at the point (x, y) is un = ux × cos α +
uy sin α. The normal derivative can also
be written as the inner product of the
gradient of u, ∇u, with the unit outward
normal vector, n. That is, un = ∇u · n. This
definition of the normal derivative for two
dimensions can be generalized easily to N
dimensions.

11.1.2 Boundary Conditions
We now list some common types of
boundary conditions (BCs) corresponding
to the partial differential operator B in (69)
or (71).

• Dirichlet: Bu = u.
• Neumann: Bu = un.
• General (for second-order PDEs): Bu =

α(x)u + β(x)un.
• Mixed (for second-order PDEs): Often,

on parts of the boundary we have
Dirichlet BCs and on the other parts
Neumann ones. (Also, the term ‘‘mixed’’
may sometimes refer to more general
types of BCs.)

• Essential: For PDEs of order 2m, essen-
tial BCs involve u and its derivatives of
order up to m − 1.

• Natural: For PDEs of order 2m, natural
BCs involve the derivatives of u from
order m to 2m − 1.

For further reading on the classification
of PDE problems, operators, and boundary
conditions, see Ames (1992), Celia and
Gray (1992), or Hall and Porsching (1990).

11.2
Classes of Numerical Methods for PDEs

The two most commonly used methods
for approximating the solution of PDEs
are next described briefly.

Finite-Difference Methods (FDMs) have
the following main steps:

1. Choose a finite-difference (FD) approx-
imation of the derivatives involved in
the PDE, BCs, and ICs. The result is a
discretized PDE, BCs, and ICs.

2. Choose a set of n data points in the
domain and on the boundary, on which
the discretized PDE, BCs, and ICs must
be satisfied. The result is a set of n
equations w.r.t. the approximate values
of u at the n data points.

3. Write the n equations of step 2 as a
system and solve the system (discrete
model). (If the PDE is linear, the system
will usually be linear.) The solution is
the approximate value of u at each of
the n data points.

4. Evaluate the approximation to u at some
point(s) of the domain (if needed).

Finite-Element Methods (FEMs) have the
following main steps:

1. Choose a finite-element (FE) space, say
n-dimensional, in which the approxi-
mation u∆ is constrained to belong,
and a set of basis functions that span
the space, say {φi : i = 1, . . . , n}. Then
write

u∆(x) =
n∑

i=1

αiφi(x).
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The unknown scalars αi, i = 1, . . . , n,
are often called the degrees of freedom
(DOF), or coefficients, of the FE repre-
sentation of u∆.

2. Choose a set of n conditions that the
approximation u∆ must satisfy. The
result is a set of n equations w.r.t. the n
coefficients of u∆.

3. Write the n equations of step 2 as a
system and solve the system (discrete
model). (If the PDE is linear, the system
will usually be linear.) The solution is
the vector of coefficients of u∆.

4. Evaluate the approximation to u at some
point(s) of the domain.

11.2.1 Analysis of Numerical Methods for
PDEs
Some common techniques used to analyze
numerical methods for PDEs are discussed
below. The analysis can be used to evaluate
a method w.r.t. some chosen criteria or
measures. In the following discussion, we
use u∆ to denote the approximation to u
computed by the method.

11.2.1.1 Convergence Analysis (for BVPs
and IVPs) We study the behavior of the
error u − u∆ as n increases. Assuming
‖u − u∆‖ → 0 as n → ∞, we can write
‖u − u∆‖ ≤ C(1/n)α for some constants
C and α. The largest constant α for
which this inequality holds is called the
order of convergence of the method. As a
first rough measure, the larger the α the
better the method, as (1/n)α will converge
to 0 faster as n → ∞ for larger α. To
estimate the order of convergence of a
method experimentally, we often devise
PDE problems with known solutions and
then solve them using the PDE method
under investigation, first using n DOF,
then 2n DOF, etc. We then plot ‖u − u∆‖
versus n on a log–log scale. The slope of

the plotted line is an approximation to the
order of convergence of the method.

11.2.1.2 Stability Analysis (for IVPs) We
study the behavior of the error u − u∆ as a
function of t for increasing t. We often say
that a method is stable if ‖u − u∆‖ remains
bounded as t → ∞. Otherwise, it is called
unstable. Or, we study how the error at
some point in time propagates to the next
point in time. In a stable method, the error
is not amplified.

11.2.1.3 Time (Computational) Complexity
Analysis We study the time that the
method takes to compute the approximate
solution to the PDE as a function of the n
DOF. The time is usually proportional to
the number of floating-point operations,
although it also depends on the imple-
mentation and the hardware (computer)
used. The most time-consuming part of
a FDM or FEM is usually the third step
(solution of the system), while the second
most time-consuming part is usually the
second step (generation of the system).
For FDMs, the fourth step can also be
time consuming, particularly if the value
of the approximation at arbitrary points of
the domain is required, since this compu-
tation requires interpolation, often using
piecewise polynomials (PPs) or splines.
The data to be interpolated are the ap-
proximate values of u at the grid points.
Interpolation is not required in step 4 of a
FEM, since the approximate solution can
be evaluated at any point of the domain by
the formula

u∆(x) =
n∑

i=1

αiφi(x).

By studying the particular implemen-
tation of a method, we are usually able
to derive an approximate formula, such
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as time ≈ Knβ , for some constant K, or
time = O(nβ), relating the computational
complexity to n. The smaller the β, the
faster the method, and, among methods
with the same β, the smaller the K, the
faster the method.

11.2.1.4 Memory Complexity Analysis
We study the memory (storage)
requirements of a method as a function
of the n DOF. These requirements depend
on the storage scheme used for the matrix
arising in step 2 and the solver used in
step 3.

11.2.1.5 Overall Efficiency Analysis Of-
ten, the most practical way of comparing
two methods is to ask

1. if the methods were to run for the same
length of time, which one would give
the least error, or

2. given a certain error tolerance, which
method satisfies that tolerance faster.

ux(x) = h2
Wu(x + hE) + (h2

E − h2
W)u(x) − h2

Eu(x − hW)

hE(hE + hW)hW
+ O(hEhW), (78)

uxx(x) = u(x + h) − 2u(x) + u(x − h)

h2 + O(h2), (79)

uxx(x) = 2hWu(x + hE) − 2(hE + hW)u(x) + 2hEu(x − hW)

hE(hE + hW)hW
+ O(hE − hW)

+ O([max(hE, hW)]2). (80)

To test the overall efficiency of methods,
we usually plot the error versus the
time required to compute the approximate
solution on a log–log scale. The method
with the steepest slope is the most
efficient.

11.3
Finite-Difference Methods for BVPs

A FD approximation to a derivative of
a function u at a point x is a linear
combination of values of u at points
near x (often including x). Usually, a
FD approximation is first derived for
some derivative of a function of one
variable, and then it is extended to
partial derivatives of functions of several
variables.

Let x be the point of interest and h,
hE, hW small step sizes. The following are
several examples of FD approximations in
one dimension:

ux(x) = u(x + h) − u(x)

h
+ O(h), (75)

ux(x) = u(x) − u(x − h)

h
+ O(h), (76)

ux(x) = u(x + h) − u(x − h)

2h
+ O(h2),

(77)

Let (x, y) be the point of inter-
est and h, hE, hW , hN, hS small step
sizes. The following are several examples
of FD approximations in two dimen-
sions.
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uxx(x, y) = u(x+h, y)−2u(x, y)+u(x−h, y)

h2 +O(h2), (81)

uxx(x, y)+uyy(x, y) = u(x+h, y)+u(x, y+h)−4u(x, y)+u(x, y−h)+u(x−h, y)

h2

+O(h2), (82)

uxy(x) = u(x+h, y+h)−u(x−h, y+h)−u(x+h, y−h)+u(x−h, y−h)

4h2

+O(h2), (83)

uxy(x) = u(x+hE, y+hN)−u(x−hW , y+hN)−u(x+hE, y−hS)+u(x−hW , y−hS)

(hE +hW )(hS+hN)

+O(max(hE, hW , hS, hN)). (84)

Note the following.

1. Each FD approximation listed above
includes an error term. The actual FD
approximation is the right side of the
equation excluding the error term.

2. Approximations (75)–(79) and (81)–
(83) use uniform step sizes, while the
rest use nonuniform step sizes.

3. Approximations (75), (76), (80), and (84)
are of first order, while the rest are of
second order. The order refers to the
(lowest) exponent of the step size(s) in
the error term.

4. All FD approximation formulas are
derived by using appropriate Taylor-
series expansions around the point of
approximation.

5. Approximations (81)–(84) are derived
by using combinations of one-
dimensional Taylor series and make use
of values of u at points on a rectangular
grid.

6. It is possible to derive two-dimensional
FD approximations that make use of
values of u at points on a triangu-
lar, quadrilateral (but not rectangular),
polygonal, or irregular grid with points

positioned arbitrarily. Such approxima-
tions can be derived by using two-
dimensional Taylor’s series.

11.3.1 An Example of a Finite-Difference
Method in One Dimension
Consider the problem

uxx = g(x) in (0, 1), (85)

u = γ (x) at x = 0 and x = 1. (86)

Using the FD approximation (79), we
transform (85) to

[u(x + h) − 2u(x) + u(x − h)]/h2

= g(x) + O(h2). (87)

Let {xi = ih : i = 0, . . . , n} with h = 1/n
be the set of grid points and let Ui ≈ u(xi)

for i = 1, . . . , n. Without the O(h2) error
term, the discretized PDE (87) at the grid
point xi becomes

(Ui+1 − 2Ui + Ui−1)

h2 = g(xi). (88)
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From (86), we have for the point x1

(U2 − 2U1)

h2 = g(x1) − γ (x0)

h2 . (89)

By writing equation (89) first, then (88)
for i = 2, . . . , n − 2, and finally a relation
similar to (89) for the point xn−1, and then
multiplying each equation by h2, we get
the following linear system:


−2 1
1−2 1

1−2 1
. . .

. . .
. . .

1 −2 1
1−2







U1
U2
U3
...

Un−2
Un−1




= h2




g(x1)

g(x2)

g(x3)
...

g(xn−2)

g(xn−1)




−




γ (x0)

0
0
...
0

γ (xn)




. (90)

Note that this system is symmetric, di-
agonally dominant in all rows, and strictly
diagonally dominant in the first and last
rows. Therefore it is also positive-definite
and has a unique solution. By solving it, we
obtain Ui ≈ u(xi), i = 1, . . . , n − 1. Using
interpolation, we can approximate u at any
other point of the domain.

It can be proved that max{|u(xi) − Ui| :
i = 1, . . . , n − 1} = O(h2). That is, the
approximation is second order at the grid
points.

The computational complexity of the
method described is O(n), since the linear
system (90) is tridiagonal and of size n − 1
(see Sec. 2.7).

11.3.2 An Example of a Finite-Difference
Method in Two Dimensions
Consider the problem

uxx + uyy = g(x, y) in (0, 1) × (0, 1),

(91)

u = γ (x, y) on x = 0, x = 1,

y = 0, y = 1. (92)

Using the FD approximation (82), we
transform (91) to

u(x + h, y) + u(x, y + h) − 4u(x, y)
+u(x, y − h) + u(x − h, y)

h2

= g(x, y) + O(h2). (93)

Let {(xi, yj) : xi = ih, yj = jh, i, j = 0,

. . . , n} with h = 1/n be the set of grid
points and let Uij ≈ u(xi, yj). Without the
O(h2) error term, the discretized PDE
(93) at the grid point (xi, yj), i = 1, . . . , n −
1, j = 1, . . . , n − 1, becomes

(Ui+1,j + Ui,j+1 − 4Ui,j + Ui,j−1 + Ui−1,j)

h2

= g(xi, yj). (94)

From (92), we have for the point (x1, y1)

(U1,2 + U2,1 − 4U1,1)

h2

= g(x1, y1) − [γ (x0, y1) + γ (x1, y0)]

h2 .

(95)

Similar relations hold at the three other
corners of the domain. Also, for the points
(x1, yj), j = 2, . . . , n − 2, we have

(U1,j+1 − 4U1,j + U1,j−1 + U2,j)

h2

= g(x1, yj) − γ (x0, yj)

h2 . (96)

Similar relations hold for other grid
points one grid line away from the
boundary.

One way to number the grid points, and
also the equations and unknowns, is bot-
tom up then left to right: (1, 1), (1, 2),

(1, 3), . . . , (1, n − 2), (1, n − 1), (2, 1),

(2, 2), (2, 3), . . . , (2, n− 2), (2, n− 1), . . . .
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That is, first (95), then (96) for j =
2, . . . , n − 2, then relations similar to (95)
for the points (x1, yn−1), (x2, y1), then (94)
for i = 2, j = 2, . . . , n − 2, etc. Using this
ordering, we get a linear system AU = g,
where, after multiplying each equation by
h2, the matrix A has the form




−4 1 1
1 −4 1 1

. . .
. . .

. . .

1 −4 1 1
1 −4 1

1 −4 1 1
1 1 −4 1 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

1 1 −4 1 1
1 1 −4 1

1 −4 1
1 1 −4 1

. . .
. . .

. . .
. . .

1 1 −4 1
1 1 −4




.

This can be rewritten as


T I
I T I

. . .
. . .

. . .

I T I
I T


 ,

where T is a tridiagonal matrix of size
n − 1 with −4’s on the diagonal and 1’s
on the super- and subdiagonal and I is
the identity matrix of size n − 1. Thus the
matrix is block-tridiagonal of size (n − 1)2.
The vector of unknown is

U = (U1,1, U1,2, . . . , U1,n−2, U1,n−1,

U2,1, U2,2, . . . , U2,n−2, U2,n−1, . . .

Un−2,1, Un−2,2, . . . , Un−2,n−2,

Un−2,n−1,

Un−1,1, Un−1,2, . . . , Un−1,n−2,

Un−1,n−1)
T.

The right-side vector g is:

g=(h2g1,1 − γ0,1 − γ1,0,

h2g1,2 − γ0,2, . . . ,

h2g1,n−2 − γ0,n−2,

h2g1,n−1 − γ0,n−1 − γ1,n,

h2g2,1 − γ2,0, h2g2,2, . . . , h2g2,n−2,

h2g2,n−1 − γ2,n, . . . ,

h2gn−2,1 − γn−2,0,

h2gn−2,2, . . . , h2gn−2,n−2,

h2gn−2,n−1 − γn−2,n,

h2gn−1,1 − γn,1 − γn−1,0,

h2gn−1,2 − γn,2, . . . ,
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h2gn−1,n−2 − γn,n−2,

h2gn−1,n−1 − γn,n−1 − γn−1,n)T,

where gij = g(xi, yj) and γij = γ (xi, yj).
Note that this system is symmetric,
diagonally dominant in all rows, and
strictly diagonally dominant in all rows
corresponding to grid points one grid line
away from the boundary. Therefore, it is
positive-definite and has a unique solution.
By solving the system AU = g, we obtain
Uij ≈ u(xi, yj) for i = 1, . . . , n − 1 and j =
1, . . . , n − 1. Using interpolation, we can
approximate the value of u at any other
point of the domain.

It can be proved that max{|u(xi, yj) −
Ui,j| : i, j = 1, . . . , n − 1} = O(h2). That is,
the approximation is second order at the
grid points.

The computational complexity of the
method described above depends on the
method used to solve the linear system
AU = g. Note that A has at most five
nonzero entries per row, it is banded
with lower and upper bandwidth n − 1,
and its size is (n − 1)2. If a direct band
solver is used to solve AU = g, then the
computational complexity of the method is
O(n4), but sparse direct solvers are more
efficient (see Sec. 2.7). In addition, there
exist iterative methods (e.g., multigrid;
see Sec. 11.8 and Briggs, 1987) that can
solve this system much more efficiently,
reducing the computational complexity of
the method to almost O(n2).

Note that the properties of the matrix A,
such as symmetry, diagonal dominance,
positive-definiteness, and the sparsity pat-
tern (block-tridiagonal with at most five
nonzero entries per row), are highly depen-
dent on the simplicity of the differential
operator associated with (91) and bound-
ary conditions (92), the choice of uniform
and rectangular grid, and the FD approx-
imation (93). For a differential operator

with first-order derivative terms and/or
Neumann BCs, symmetry is lost. Sym-
metry may also be lost if a nonuniform
grid is chosen, even if it is rectangular.
Diagonal dominance depends on the coef-
ficients of the differential operator and on
the absence of first-order derivative terms.
The block-tridiagonal form will most likely
be affected if an irregular grid is chosen.
Fast linear solvers, such as multigrid and
FFT (fast Fourier transform) solvers, work
well on the matrix A, but may not perform
as well on more general systems. The de-
velopment of fast linear solvers for such
matrices is an open and active area of re-
search. See, for example, Van Loan (1992)
or Hackbusch (1994) and the references
therein. For further reading on FDMs, see
Strikwerda (1989).

11.4
Finite-Element Methods for BVPs

The first step in a FEM is to choose a
FE approximation space and a basis for
it. The most commonly used spaces are
piecewise polynomials (PPs) or splines
(see Sec. 8.5). Let n be the dimension of
the approximation space and let {φj(x) :
j = 1, . . . , n} be a set of basis functions for
the space.

Consider the problem (68)–(69). Let

u∆(x) =
n∑

j=1

αjφj(x)

be the approximation to u. The next step
in a FEM is to choose n conditions that
the approximation must satisfy. A FEM
is characterized by these conditions. The
most common FEMs are the Galerkin
method and the collocation method.
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11.4.1 The Galerkin Method
Given an inner product (·, ·), usually
defined by

(f , g) =
∫

Ω

f (x)g(x) dx,

we require that u∆ satisfies

(φi, Lu∆ − g) = 0, i = 1, . . . , n, (97)

forcing the residual Lu∆ − g to be or-
thogonal to the approximation space, and
making it, in a sense, as ‘‘small’’ as pos-
sible. If L is a linear operator, then the
relations (97) are equivalent to

n∑
j=1

αj(φi, Lφj) = (φi, g), i = 1, . . . , n,

(98)

which can be written in the form
Aα = g, where A is an n × n ma-
trix with entries Aij = (φi, Lφj), i =
1, . . . , n, j = 1, . . . , n, α = (α1, . . . , αn)

T is
the vector of coefficients, and g is a vec-
tor with entries gi = (φi, g), i = 1, . . . , n.
We usually use numerical integration to
compute the entries of A and g (see Sec. 9).

As an example of the Galerkin method
in one dimension, consider the problem
(85)–(86) and the set of grid points
{xi = ih : i = 0, . . . , n} with h = 1/n. Let
{φi : i = 0, . . . , n} be the set of linear
spline basis functions w.r.t. the knots (grid
points) {xi}, as defined by (39). Then

u∆(x) =
n∑

i=0

αiφi(x)

is the linear spline approximation to u.
From the BC (86), we get u∆(x0) = γ (x0),
which implies α0 = γ (x0). Similarly, αn =
γ (xn). The remaining unknowns {αi : i =
1, . . . , n − 1} are determined by the n − 1

Galerkin conditions

n∑
j=0

αj(φi, Lφj) = (φi, g),

i = 1, . . . , n − 1,

which, for the particular L associated with
(85), are equivalent to

n∑
j=0

αj(φi, φ′′
j ) = (φi, g),

i = 1, . . . , n − 1.

Writing the inner product (φi, φ′′
j ) as an

integral and applying integration by parts,
these conditions reduce to

n−1∑
j=1

αj

∫ 1

0
φ′

iφ
′
j dx =


φi

n∑
j=0

αjφ
′
j


1

0

−
∫ 1

0
φigdx − α0

∫ 1

0
φ′

iφ
′
0dx

− αn

∫ 1

0
φ′

iφ
′
n dx, i = 1, . . . , n − 1.

(99)

Note that the term
φi

n∑
j=0

αjφ
′
j


1

0

= 0,

since φi(0)=φi(1)=0 for i = 1, . . . , n−1.
Relations (99) form a linear system of
size n − 1; the associated matrix A has
elements

Ai,j =
∫ 1

0
φ′

iφ
′
j dx.

Since the basis functions {φi} are
nonzero on at most two subintervals, A
is tridiagonal with elements

Ai,i =
∫ xi+1

xi−1

φ′
iφ

′
i dx, i = 1, . . . , n − 1,
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Ai,i−1 =
∫ xi

xi−1

φ′
iφ

′
i−1 dx, i = 2, . . . , n − 1,

Ai,i+1 =
∫ xi+1

xi

φ′
iφ

′
i+1 dx, i = 1, . . . , n − 2.

It can be proved that this matrix is
also symmetric positive-definite. Thus, the
associated system has a unique solution.
By solving the system, we obtain the
coefficients {αi : i = 0, . . . , n} of u∆, which
we can evaluate at any point of the domain
(0, 1).

It can be proved that max{|u(x) −
u∆(x)| : x ∈ [0, 1]} = O(h2). That is, the
approximation is second order on the
whole domain.

The computational complexity of the
method described is O(n), since the linear
system that has to be solved is tridiagonal
and of size n − 1 (see Sec. 2.7).

Relations (99) can also be derived us-
ing a variational method (see Sec. 11.1.1).
Thus, for problem (85)–(86), there is a vari-
ational method equivalent to the Galerkin
method. This is true for every differen-
tial equation problem with a self-adjoint
positive-definite operator. There exist dif-
ferential equation problems, though, that
are not characterized by variational princi-
ples. In such cases, the Galerkin method
is applicable, while the variational method
is not.

As an example in two dimensions,
consider problem (91)–(92) with the
grid points {(xi, yj) : xi = ih, yj = jh, i, j =
0, . . . , n} for h = 1/n. A common way to
define an approximation space for two-
dimensional problems is to choose a tensor
product of approximation spaces in each
dimension. Let {φi(x) : i = 0, . . . , n} be the
linear spline basis functions w.r.t. the
knots {xi : i = 0, . . . , n} and let {φj(y) : j =
0, . . . , n} be the linear spline basis func-
tions w.r.t. the knots {yj : j = 0, . . . , n}, as

defined in (39). Then

u∆(x, y) =
n∑

i=0

n∑
j=0

αijφi(x)φj(y)

is the bilinear spline approximation to
u. Continuing as in the one-dimensional
case, we derive a system of (n + 1)2

equations in (n + 1)2 unknowns. The
associated matrix A is block-tridiagonal,
with at most nine non-zero entries per
row and bandwidth n + 2. It is also
symmetric positive-definite. Thus, the
associated system has a unique solution.
Moreover, it can be proved that the
approximation u∆ is second order.

Note that, if instead of a rectangular
subdivision of the domain and bilinear
elements, we choose a triangular subdivi-
sion and linear elements (w.r.t. x and y),
we would get a system similar to that of
Sec. 11.3.2.

An important property of the Galerkin
method is that, for any self-adjoint positive-
definite differential operator, the resulting
matrix is symmetric positive-definite, even
if the grid is irregular. As stated before,
for every differential equation problem
with a self-adjoint and positive-definite
operator, there is a variational method
equivalent to the Galerkin method. This
holds for higher-dimension problems too.
Thus, large, sparse, symmetric, positive-
definite matrices arise from the application
of variational methods.

For an introduction to the FEM, in-
cluding its computer implementation, see
Becker et al. (1981). An error analysis is
carried out in Strang and Fix (1973).

11.4.2 The Collocation Method
We first pick n collocation points {ti : i =
1, . . . , n} in � and on ∂�. We then require
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that u∆ satisfies

Lu∆(ti) − g(ti) = 0, if ti ∈ �, (100)

Bu∆(ti) − γ (ti) = 0, if ti ∈ ∂�, (101)

forcing the residuals Lu∆ − g and Bu∆ − γ

to be zero at the collocation points, and
making them, in a sense, as ‘‘small’’ as
possible. If L and B are linear, relations
(100)–(101) are equivalent to

n∑
j=1

αjLφj(ti) = g(ti), if ti ∈ �, (102)

n∑
j=1

αjBφj(ti) = γ (ti), if ti ∈ ∂�,

(103)

which can be written in the form Aα =
g, where A is an n × n matrix with
entries Aij = Lφj(ti), j = 1, . . . , n, for all
ti ∈ �, and Aij = Bφj(ti), j = 1, . . . , n, for
all ti ∈ ∂�; α = (α1, . . . , αn)

T is the vector
coefficients; and g is a vector with entries
gi = g(ti) for all ti ∈ � and gi = γ (ti) for
all ti ∈ ∂�.

The choice of collocation points is critical
to the success of the method. It affects not
only the solvability and other properties
(such as symmetry, diagonal dominance,
bandedness) of the matrix A but also
the accuracy of the approximation u∆.
Depending on the FE approximation space
that u∆ belongs to, some standard choices
of collocation points in one dimension are
listed below.

1. If the FE approximation space is the
space of quadratic splines (quadratic
PPs in C 1), the collocation points
are chosen to be the midpoints of
the subintervals (xi−1, xi), i = 1, . . . , n,
and the two boundary points. The
same choice of collocation points is
effective if the FE approximation space
is composed of any other even-degree

splines, with the exception that some
additional collocation conditions may
be required at boundary points or points
close to the boundary.

2. If the FE approximation space is the
space of cubic splines (cubic PPs in
C 2), the collocation points are chosen
to be the grid points {xi : i = 0, . . . , n}.
At each of the boundary points, x0
and xn, both conditions (100) and
(101) are imposed. The same choice
of collocation points is effective if the
FE approximation space is composed
of any other odd-degree splines, with
the exception that some additional
collocation conditions may be required
at boundary points or points close to the
boundary.

3. If the FE approximation space is the
space of cubic PPs in C 1 (cubic
Hermite PPs), the collocation points
are chosen to be the two Gauss
points xi−1 + (3 ± √

3) × (xi − xi−1)/6
in each subinterval (xi−1, xi), i =
1, . . . , n, and the two boundary grid
points.

As an example in one dimension,
consider problem (85)–(86) and the set
of grid points {xi = ih : i = 0, . . . , n} with
h = 1/n. Let the collocation points be the
midpoints ti = (xi−1 + xi)/2, i = 1, . . . , n,
and the end points t0 = x0 and tn+1 = xn.
Let {φi : i = 0, . . . , n + 1} be the quadratic
spline basis functions w.r.t. the knots (grid
points) {xi}, as defined in (40). Then

u∆(x) =
n+1∑
i=0

αiφi(x)

is the quadratic spline approximation
to u. Relation (100) for the PDE (85)
becomes u′′

∆(ti) = g(ti), and so relation
(102) becomes

αi−1φ
′′
i−1(ti) + αiφ

′′
i (ti) + αi+1φ

′′
i+1(ti) =

g(ti),
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which reduces to

(αi−1 − 2αi + αi+1)/h2 = g(ti),

i = 1, . . . , n. (104)

Relation (101) for the BC (86) becomes
u∆(t0) = γ (t0), and so relation (103) be-
comes

α0φ0(t0) + α1φ1(t0) = γ (t0),

which reduces to

(α0 + α1)

2
= γ (t0). (105)

Similarly, the collocation condition at
tn+1 = 1 reduces to

(αn + αn+1)

2
= γ (tn+1). (106)

Writing (105) first, then (104) for
i = 1, . . . , n, and finally (106), we get
a tridiagonal system of equations w.r.t.
the coefficients {αi : i = 0, . . . , n + 1}. The
system is diagonally dominant and it can
be proved that it has a unique solution. It
can also be scaled so that it is symmetric
positive-definite.

It can be proved that max{|u(x) −
u∆(x)| : x ∈ [0, 1]} = O(h2). That is, the
approximation is second order on the
whole domain. There exists a variant of
this method, though, that is fourth order
at the grid points and midpoints and third
order on the whole domain (Houstis et al.,
1988).

The computational complexity of the
method described above is O(n), since
the linear system that must be solved is
tridiagonal and of size n + 1 (see Sec. 2.7).

As an example in two dimensions, con-
sider problem (91)–(92) and the set of
grid points {(xi, yj) : xi = ih, yj = jh, i, j =
0, . . . , n} with h = 1/n. A common ap-
proximation space for two-dimensional

problems is a tensor product of approx-
imation spaces in each dimension. Let
{φi(x) : i = 0, . . . , n + 1} be the quadratic
spline basis functions w.r.t. the knots
(grid points) {xi : i = 0, . . . , n} and let
{φj(y) : j = 0, . . . , n + 1} be the quadratic
spline basis functions w.r.t. the knots
{yj : j = 0, . . . , n}, as defined in (40). Then

u∆(x, y) =
n+1∑
i=0

n+1∑
j=0

αijφi(x)φj(y)

is the biquadratic spline approximation to
u. Continuing as in the one-dimensional
case, we derive a system of (n + 2)2

equations and unknowns. The associated
matrix is block-tridiagonal, with at most
nine nonzero entries per row, and has
bandwidth n + 3. It can be proved that
this system has a unique solution and
that the approximation u∆ is second order.
With appropriate modifications, though,
the order can be improved as in the one-
dimensional case (Christara, 1994).

For a general introduction to collocation
methods, see Prenter (1975).

11.5
Finite-Difference Methods for IVPs

Consider the problem (70)–(72). Let the
temporal grid points be {tj = jht : j =
0, . . . , m} with ht = T/m. Starting with
the initial values of u at t0, given by
(72), most FDMs for IVPs compute
approximate values of u at each subsequent
temporal grid point tj, in the order j =
1, . . . , m, using previous and/or current
approximate values of u at neighboring
space points.

If at each temporal grid point tj a method
uses only approximations from previous
temporal grid points, it is called explicit, as
it does not require the solution of a system
of equations to proceed from one temporal
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grid point to the next. If at some temporal
grid point tj a method uses approximations
from the current temporal grid point tj, it
is called implicit, as it requires the solution
of a system of equations to proceed from
one temporal grid point to the next. If at
the time step from tj−1 to tj a method uses
approximations from tj−1 and tj only, it
is called one-step. Likewise, we can define
two-step methods, etc. These definitions for
PDEs are similar to those given in Sec. 10
for ODEs.

11.5.1 An Example of an Explicit One-Step
Method for a Parabolic IVP
Consider the problem

ut = uxx in (0, 1) × (0, T), (107)

u = γ0(t) on x = 0, t ∈ (0, T), (108)

u = γ1(t) on x = 1, t ∈ (0, T), (109)

u = g(x) on t = 0, x ∈ [0, 1]. (110)

Using the FD approximations (79) for
uxx and (75) for ut, we transform (107) to

[u(x, t + ht) − u(x, t)]

ht

= [u(x + h, t) − 2u(x, t) + u(x − h, t)]

h2

+ O(ht + h2). (111)

Let {xi = ih : i = 0, . . . , n} with h = 1/n
be the set of spatial grid points and
{tj = jht : j = 0, . . . , m} with ht = T/m be
the set of temporal grid points. Also let
Ui,j ≈ u(xi, tj) for i = 0, . . . , n and j =
0, . . . , m. Then the discretized PDE (111)
at the point (xi, tj), i = 1, . . . , n − 1, j =
1, . . . , m, becomes

(Ui,j+1 − Ui,j)

ht
=

(Ui+1,j − 2Ui,j + Ui−1,j)

h2 .

Letting r = ht/h2, we can rewrite this
relation as

Ui,j+1 = rUi+1,j + (1 − 2r)Ui,j + rUi−1,j

(112)

for i = 2, . . . , n − 2. For i = 1, we have
from (108)

U1,j+1 = rU2,j + (1 − 2r)U1,j + rγ0(t)j.

(113)

Similarly, for i = n − 1, we have from
(109)

Un−1,j+1 = rγ1(tj) + (1 − 2r)Un−1,j

+ rUn−2,j. (114)

For j = 1, we have from (110)

Ui,1 = rg(xi+1) + (1 − 2r)g(xi)

+ rg(xi−1). (115)

Thus, we can compute Ui,j ≈ u(xi, tj)
from a linear combination of three neigh-
boring spatial approximations at tj−1.

It can be proved that if r < 1
2 , then

max{|u(xi, tj) − Ui,j| : i = 1, . . . , n, j = 1,

. . . , m} = O(h2 + ht); thus the order of
convergence is one w.r.t. to ht and two
w.r.t. h. It can also be proved that if r < 1

2 ,
the method is stable. However, the restric-
tion r < 1

2 may be impractical for many
problems, since it forces ht to be very small
if h is small and so the method must take
many steps to integrate the problem.

The computational complexity of the
method is O(nm), since for each grid point
(xi, tj) a constant number of floating-point
operations must be performed.

11.5.2 An Example of an Implicit One-Step
Method for a Parabolic IVP
Consider the problem (107)–(110) once
more. Using the FD approximations (79)
for uxx and (76) for ut, we transform
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(107) to

[u(x, t + ht) − u(x, t)]

ht
=

[u(x + h, t + ht) − 2u(x, t + ht)+u(x − h, t + ht)]
h2

+ O(ht + h2). (116)

Again let {xi = ih : i = 0, . . . , n} with
h = 1/n be the set of spatial grid points
and {tj = jht : j = 0, . . . , m} with ht = T/m
be the set of temporal grid points. Also
let Ui,j ≈ u(xi, tj) for i = 0, . . . , n and j =
0, . . . , m. Then, the discretized PDE (116)
at the point (xi, tj), i = 1, . . . , n − 1, j =
1, . . . , m, becomes

(Ui,j+1 − Ui,j)

ht
=

(Ui+1,j+1 − 2Ui,j+1
+Ui−1,j+1)

h2 .

Letting r = ht/h2 again, we can rewrite
this relation as

− rUi−1,j+1 + (1 + 2r)Ui,j+1 − rUi+1,j+1

= Ui,j (117)

for i = 2, . . . , n − 2. For i = 1, we have
from (108)

(1 + 2r)U1,j+1 − rU2,j+1 = U1,j

+ rγ0(tj+1). (118)

Similarly, for i = n − 1, we have from
(109)

− rUn−2,j+1 + (1 + 2r)Un−1,j+1 =
Un−1,j + rγ1(tj+1). (119)

For j = 1, we have from (110)

− rUi−1,1 + (1 + 2r)Ui,1 − rUi+1,1 =g(xi).

(120)

Thus, at the jth time step, a tridiagonal
linear system must be solved to compute

Ui,j ≈ u(xi, tj). The diagonal entries of the
associated matrix are all equal to 1 + 2r,
while the off-diagonal entries are all equal
to −r. The system is symmetric positive-
definite and strictly diagonally dominant;
thus it has a unique solution.

It can be proved that max{|u(xi, tj) −
Ui,j| : i = 1, . . . , n, j = 1, . . . , m} = O(h2

+ ht); thus the order of convergence is one
w.r.t. to ht and two w.r.t. h. It can also be
proved that the method is stable without
any restrictions on r (except r > 0). The
computational complexity of the method
is O(nm), since at each time step we must
solve a tridiagonal linear system of size
n − 1 (see Sec. 2.7).

Note that for the problem (107)–(110),
which is one-dimensional w.r.t. to space,
both the explicit and implicit methods
have the same computational complexity.
This is not true for problems in more
space dimensions. For such problems,
the solution of a linear system at each
time step can be very time consuming,
making an implicit method much more
expensive per step than an explicit one.
However, because there is no restriction on
r for some implicit schemes, while there
always is for an explicit one, some implicit
schemes may be able to take far fewer time
steps than an implicit one. As a result, an
implicit method may be computationally
more efficient than an explicit one.

11.5.3 An Example of an Explicit Two-Step
Method for a Hyperbolic IVP
Consider the problem

utt = uxx in (0, 1) × (0, T), (121)

u = γ0(t) on x = 0, t ∈ (0, T), (122)

u = γ1(t) on x = 1, t ∈ (0, T), (123)

u = γ0(x) on t = 0, x ∈ (0, 1), (124)

ut = γ1(x) on t = 0, x ∈ (0, 1). (125)
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Using the FD approximation (79) for uxx

and utt, we transform (121) to

[u(x, t + ht) − 2u(x, t) + u(x, t − ht)]

h2
t

= [u(x + h, t) − 2u(x, t) + u(x − h, t)]

h2

+ O(h2
t + h2). (126)

Again let {xi = ih : i = 0, . . . , n} with
h = 1/n be the set of spatial grid points
and {tj = jht : j = 0, . . . , m} with ht = T/m
be the set of temporal grid points. Also
let Ui,j ≈ u(xi, tj) for i = 0, . . . , n and j =
0, . . . , m. Then, the discretized PDE (126)
at the point (xi, tj), i = 1, . . . , n − 1, j =
1, . . . , m, becomes

(Ui,j+1 − 2Ui,j + Ui,j−1)

h2
t

= (Ui+1,j − 2Ui,j + Ui−1,j)

h2 .

Letting r = ht/h, we can rewrite this
relation as

Ui,j+1 = r2Ui−1,j + 2(1 − r2)Ui,j

+ r2Ui+1,j − Ui,j−1 (127)

for i = 2, . . . , n − 1. For grid points close
to the boundary, the approximate values
of U are replaced by the values of the
functions γ0 and γ1 at the appropriate
points, as in Secs. 11.5.1 and 11.5.2. Thus,
we can compute Ui,j+1 ≈ u(xi, tj+1) from
a linear combination of three neighboring
spatial approximations at time tj and one
approximation at time tj−1.

Since (127) is a two-step formula, at the
initial time point t0 it cannot be applied as
is. At that point, we use the ICs (124)–(125)
and the FD approximation (75) to get

Ui,1 = g0(xi) + htg1(xi). (128)

It can be proved that, if r < 1,
then the method is stable. It can also
be shown that max{|u(xi, tj) − Ui,j| : i =
1, . . . , n, j = 1, . . . , m} = O(h2 + h2

t ); thus
the order of convergence is two w.r.t. to
both ht and h. Note that the restriction
r < 1 is not impractical in this case, since
it requires only that ht < h. The computa-
tional complexity of the method is O(nm),
since for each grid point (xi, tj) we ap-
ply a formula with a constant number of
floating-point operations.

11.6
The Method of Lines

The general idea behind the method of
lines (MOL) is to use an ODE solver along
one of the dimensions of the PDE, while
using a PDE discretization across the other
dimensions. In its most common form
for the solution of IVPs for PDEs, an
ODE solver is used along the temporal
dimension, while a PDE discretization is
employed across the spatial dimensions,
transforming an IVP for a PDE into a
system of IVPs for ODEs.

To see how this is done, consider the
problem (107)–(110) again. Let

u∆(x, t) =
n∑

j=1

αj(t)φj(x)

be a FE approximation to the true solution
u(x, t). Now apply a FEM condition to u∆

to discretize the PDE (107) w.r.t. the spatial
dimension. For example, collocation at the
points xi, i = 1, . . . , n, yields

n∑
j=1

α′
j (t)φj(xi) =

n∑
j=1

αj(t)φ
′′
j (xi).

Let α(t) = (α1(t), . . . , αn(t))T, � be the
matrix with entries �ij = φj(xi), and A
be the matrix with entries Aij = φ′′

j (xi).
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Then the PDE (107) is approximated by
the system of ODEs �α′(t) = Aα(t).

To obtain an IC for the ODE, we
construct an interpolant g∆ of g in the
same space as that spanned by {φj : j =
1, . . . , n}. Let

g∆(x) =
n∑

j=1

βiφi(x)

be the FE representation of g∆ in that space
and set β = (β1, . . . , βn)

T. Then

�α′(t) = Aα(t), (129)

α(0) = β (130)

is a well-defined IVP for ODEs. Thus, the
PDE problem (107)–(110) is converted to
an IVP for a system of n ODEs. The latter
can be solved by the techniques described
in Sec. 10.

Note that applying an ODE method to
discretize the IVP (129)–(130) results in
a discretization for the PDE (107)–(110).
That is, the MOL produces a discretization
for a PDE. However, it is generally agreed
that standard software for ODEs is more
highly developed than for PDEs. Thus,
using the MOL to decouple the discretiza-
tion of the spatial and temporal variables
allows us to exploit easily sophisticated
time-stepping techniques. As a result, the
MOL is often the simplest effective method
to solve a PDE.

11.7
Boundary-Element Methods

The general idea behind boundary-element
methods (BEMs) is to transform the PDE
to an integral equation in which the
integrations take place along the boundary
only of the PDE domain, thus eliminating
the need for domain discretization and
reducing the dimension of the PDE by

one. For example, a one-dimensional
integral equation is solved instead of
an equivalent two-dimensional PDE. The
BEM is applicable to BVPs for Laplace’s
or Poisson’s equation, and many other
simple PDEs. If applicable, this approach
is often very effective, especially when the
PDE domain is highly irregular.

11.8
The Multigrid Method

The multigrid method (MM) exploits
the connection between a physical prob-
lem and its matrix analog to accelerate
the convergence of an iterative method
(see Sec. 3). For simplicity, we describe
the MM for the one-dimensional prob-
lem (85)–(86), although the merits of
the scheme become apparent for two-
and higher-dimensional problems (see
Sec. 11.3.2). Also, we illustrate the tech-
nique using Jacobi’s method as the basic
iterative scheme. The MM, though, can be
used with many other iterative methods as
a preconditioning technique.

Let A be the matrix in (90). Apply Jacobi’s
method (see Sec. 3.1) with an extra damp-
ing factor of 2 to the linear system (90). The
associated iteration matrix is G = I − A/4.
It can be shown that the eigenvalues of
G are µi = cos2[iπ/(2n)], i = 1, . . . , n − 1,
and that the components of the eigenvector
vi associated with µi are sin[iπ( j/n)], j =
1, . . . , n − 1. These are also the eigen-
vectors of A. Since {vi : i = 1, . . . , n − 1}
spans Rn−1, we can write the error e0 asso-
ciated with the initial guess for the damped
Jacobi iteration as

e0 =
n−1∑
i=1

αivi

for some scalars {αi : i = 1, . . . , n − 1}. It
then follows easily from the discussion in
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Sec. 3.1 that the error at iteration k is

ek =
n−1∑
i=1

αiµ
k
i vi.

The terms of the sum corresponding to
small values of i are called low-frequency
components, while those corresponding to
large values of i are called high-frequency
components. Note that 0 < µn−1 < µn−2 <

· · · < µ2 < µ1 < 1. Moreover, µ1 ≈ 1 −
(π/2n)2, while µn−1 ≈ (π/2n)2. Conse-
quently, ek → 0 as k → ∞, but the low-
frequency components of the error con-
verge slowly, while the high-frequency
components converge rapidly.

To accelerate the convergence of the
low-frequency components of the error,
consider solving the problem (90) on a
coarse grid with n̂ = n/2 subintervals and
n̂ + 1 grid points, assuming for simplicity
that n is even. Although the coarse grid
has about half the number of grid points
of the fine one, the n̂ − 1 eigenvectors of
the matrix Â for the coarse grid provide
a good representation of the low- to
middle-frequency eigenvectors of A. As
a result, the solution to the problem
(90) on the coarse grid provides a good
approximation to the low- to middle-
frequency components of the fine-grid
solution. This suggests that the coarse-
grid solution can be used to provide good
approximations to the low- to middle-
frequency components of the fine-grid
solution, while the damped Jacobi iteration
on the fine grid can be used to provide
good approximations to the middle- to
high-frequency components of the fine-
grid solution.

This is the motivation behind the MM.
The term ‘‘multigrid’’ refers to the use
of several levels of grids (possibly a fine
grid, several intermediate-level grids, and

a coarse grid), so that each level damps
certain components of the error fast.

To view the MM as a precondition-
ing technique, consider the linear system
Au = g corresponding to the discretiza-
tion of problem (85)–(86) on some fine
grid. Apply one (or a few) damped Jacobi
iteration(s) to Au = g to obtain an approx-
imate solution vector ũ. Let r = g − Aũ be
the residual vector. Project r to a coarse grid
to obtain the coarse-grid residual vector r̂.
This can be done by appropriately interpo-
lating the components of r and evaluating
the interpolant at the points of the coarse
grid (see Sec. 8). Let Â be the matrix corre-
sponding to the discretization of problem
(85)–(86) on the coarse grid. Solve (or
approximately solve) Âr̃ = r̂. This can be
done by applying a few damped Jacobi iter-
ations, or by recursively applying the MM
to Âr̃ = r̂, or by using a direct solver (see
Sec. 2), since Â is a smaller matrix than
A. Now r̃ is the preconditioned coarse-grid
residual vector. Extend r̃ to the fine grid to
obtain the preconditioned fine-grid residual
vector r̄. This can be done by appropriately
interpolating the components of r̃ and eval-
uating the interpolant at the points of the
fine grid. Add r̄ to ũ to obtain a new
approximate solution vector. Repeat the
process until convergence. Usually, only a
few iterations are needed. Note that this
scheme has some similarities to iterative
improvement, as described in Sec. 2.9.

The power of the MM lies in the
fact that the coarse grid, which acts as
a preconditioner, allows the information
to pass from a point of the problem
domain to another point in a few steps,
while the fine grid maintains the accuracy
required. Note that the interpolation and
the evaluation of the interpolant needed
for the projection of a fine-grid vector to a
coarse-grid vector and for the extension
of a coarse-grid vector to a fine-grid
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vector often reduce to simple relations,
such as averaging neighboring vector
components. A practical introduction to
the MM, including an error analysis, can
be found in Briggs (1987).

12
Parallel Computation

The increasing demand by scientists and
engineers to solve larger and larger prob-
lems constitutes the primary motivation
for parallel computation. Another impetus
is the cost effectiveness of computers con-
sisting of many standard CPUs compared
with those based on one very fast CPU.

A parallel computer has the ability to
execute simultaneously many different
processes by having several independent
processors concurrently perform opera-
tions on different data. A parallel com-
puter in which all processors perform
the same operation on different data
is called a single-instruction, multiple-data
(SIMD) machine, while one in which each
processor has the ability to perform dif-
ferent operation(s) on data is called a
multiple-instruction, multiple-data (MIMD)
machine. Sometimes a processor may use
data computed by another processor, ei-
ther by exchanging messages with it or
by sharing some common memory area.
The former is characteristic of distributed-
memory or message-passing machines, while
the latter is characteristic of shared-memory
machines.

A vector computer may be viewed as
a restricted form of a parallel machine.
On such a computer, one arithmetic
operation is performed by several (usually
a few) processors, which cooperate in a
pipelined manner. Each processor receives
an input operand from another processor,
performs a part of the operation on it,

and passes the result on to the next
processor. While a processor performs its
part of the operation on an operand, the
next processor performs its part of the
operation on the previous operand, etc.
This pipelining technique is very effective
when the same operation is performed
on many data – for example, on each
component of a long vector.

To utilize parallel computers effectively,
we must be able to split the computa-
tion into parallel processes to be assigned
to different processors. To this end, it
is desirable to have fully independent
computations in each process. For many
problems, though, this is impossible, but
there are techniques to minimize the
dependence of the computation of one
process on another. It is also desirable to
have almost equal amounts of computa-
tion in each process for load balancing.
This is also hard to accomplish in many
cases, but again there exist techniques to
achieve reasonable load balancing.

Many computational scientists study
the parallelization of existing numerical
methods, as well as the development of
new methods appropriate for parallel ma-
chines. In the next subsection, we discuss,
as a simple example, a numerical method
that is effective for solving tridiagonal lin-
ear systems on parallel computers.

12.1
Cyclic Reduction

Consider solving the tridiagonal system




a1 c1
b2 a2 c2

b3 a3 c3
. . .

. . .
. . .

bn−1 an−1 cn−1
bn an







x1
x2

x3
...

xn−1
xn



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=




d1
d2

d3
...

dn−1
dn




by the following LU factorization algo-
rithm for tridiagonal matrices:

for k = 1, . . . , n − 1 do

bk+1 = bk+1/ak

ak+1 = ak+1 − bk+1ck

end

At the end of the computation, the
modified b’s form the subdiagonal of the
unit lower-triangular matrix L and the
modified a’s and c’s form the diagonal and
superdiagonal, respectively, of the upper-
triangular matrix U (see Secs. 2.3 and 2.7).

Note that the computation proceeds in
the order b2, a2, b3, a3, . . . . Each value
computed depends on the previous one.
Therefore, it seems that the computation
is purely sequential and that there is
no easy way to parallelize it. However,
there are other ways to solve tridiagonal
linear systems, and some of them can
be implemented effectively on a parallel
machine.

Assume, for simplicity, that n = 2q − 1,
where q is a positive integer. Multiply row
1 by b2/a1 and subtract it from row 2,
eliminating x1 from row 2. Also multiply
row 3 by c2/a3 and subtract it from row 2,
eliminating x3 from row 2. The new row 2
involves variables x2 and x4 only.

Repeat the process described above for
the (n − 1)/2 groups of rows (3, 4, 5),
(5, 6, 7), etc. This eliminates the odd
unknowns from the even equations. The
even equations form a new tridiagonal
linear system of about half the size,

(n − 1)/2 = 2q−1 − 1, called the reduced
system. This technique is often called
odd–even reduction.

Now apply odd–even reduction to the
reduced system to obtain another reduced
system that is again about half as big as
the first reduced system. The recursive ap-
plication of odd–even reduction continues
for q = log2(n + 1) steps. At each step, the
even equations of the previous step form
a reduced tridiagonal system of about half
the size of the system from the previous
step. At the end of step q, one equation in
one unknown remains, so that unknown
can be computed easily. This recursive
technique is often called cyclic reduction.

Then the computation continues in
the reverse order with a process called
back substitution. At each step of back
substitution, the even variables are known
from the solution of the associated reduced
system of about half the size. Substituting
these values back into the odd equations of
the larger system, we can easily compute
all the odd variables.

Both the cyclic-reduction algorithm and
the back-substitution algorithm require
q = log2(n + 1) steps each. In cyclic re-
duction, the number of floating-point
operations is divided by 2 at each step,
starting with O(n) floating-point opera-
tions in the first step. Thus, it requires
O(n logn) arithmetic operations. Similarly,
back substitution also requires O(n logn)
arithmetic operations. Therefore, the com-
putational complexity of the full solution
is O(n logn).

Observe that the algorithm described
above is highly parallel. The elimination
operations applied to a group of three
rows to obtain the reduced system at
each step are independent of the elim-
ination operations applied to any other
group of three rows, and so can be
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carried out in parallel. Similarly, the sub-
stitution operations to compute the odd
unknowns in a reduced system given
the even ones are independent of each
other. Thus, the unknowns of each back-
substitution step can also be computed in
parallel.

Assume that we have p = (n − 1)/2 pro-
cessors. Initially, processor 1 is assigned
rows (1, 2, 3), processor 2 is assigned
rows (3, 4, 5), processor 3 is assigned
rows (5, 6, 7), and so on. After the first
odd–even reduction step, processor 2 will
use equation 2 from processor 1, equation
4 from itself, and equation 6 from pro-
cessor 3. Similarly, processor 4 will use
equation 6 from processor 3, equation 8
from itself, and equation 10 from proces-
sor 5, and so on. Only the even processors
will continue. The procedure is repeated.
The final reduced system is solved by one
processor. For the back substitution, one
processor works first, then two, then four,
and so on.

Thus, the algorithm requires 2 log2(n +
1) steps with a constant amount of com-
putation done on each processor per step,
So the parallel computational complexity
of the algorithm is O(logn), which is a fac-
tor of O(n) = O(p) improvement over the
O(n × log n) computational complexity of
the serial version of the algorithm, and
a little less than O(n) improvement over
the O(n) serial computational complexity
of the standard LU factorization algorithm
for tridiagonal systems. So we can say that,
asymptotically, the algorithm has perfect
speedup.

Note that when a processor uses rows
computed by another processor, some
communication and/or synchronization
must take place between processors. This
may degrade the parallel performance of
the algorithm from the perfect asymp-
totic performance. The time spent in

communication and/or synchronization
depends heavily on the way the processors
cooperate. More specifically, it depends
on the interconnection network between
processors and on the implementation of
specific hardware instructions.

For an introduction to parallel numerical
methods, see Bertsekas and Tsitsiklis
(1989), Ortega (1988), or Van de Velde
(1994).

13
Sources of numerical software

Although most of this article has dealt
with elementary numerical methods, we
strongly recommend that readers do not
program these schemes themselves. High-
quality software incorporating these – or
more sophisticated – numerical methods
is readily available. In addition, good
library routines often contain many ad-
ditional strategies and heuristics (not dis-
cussed here) to improve their efficiency
and reliability. Using such routines, rather
than attempting to reprogram them, will
likely save readers a significant amount of
time as well as produce superior numerical
results.

We highly recommend that readers fa-
miliarize themselves with the Guide to
Available Mathematical Software (GAMS)
recently developed by the National Insti-
tute of Standards and Technology (NIST).
GAMS is both an on-line cross-index of
available mathematical software as well
as a repository of some 9000 high-quality
problem-solving modules from more than
80 software packages. It provides central-
ized access to such items as abstracts,
documentation, and source code of the
software modules that it catalogs. Most of
this software represents FORTRAN sub-
programs for mathematical problems that
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commonly occur in computational science
and engineering, such as solution of
systems of linear algebraic equations, com-
puting matrix eigenvalues, solving non-
linear systems of differential equations,
finding minima of nonlinear functions
of several variables, evaluating the spe-
cial functions of applied mathematics, and
performing nonlinear regression. Among
the packages cataloged in GAMS are

• the IMSL, NAG, PORT, and SLATEC
libraries;

• the BLAS, EISPACK, FISHPAK, FNLIB,
FFTPACK, LAPACK, LINPACK, and
STARPAC packages;

• the DATAPLOT and SAS statistical
analysis systems;

• the netlib routines, including the Col-
lected Algorithms of the ACM (see
below).

Note that although GAMS catalogs
both public-domain and proprietary soft-
ware, source code of proprietary soft-
ware is not available through GAMS,
although related items such as docu-
mentation and example programs often
are. Software can be found either by
browsing through a decision tree or
performing a key-word search. GAMS
can be accessed in several ways: tel-
net gams.nist.gov; gopher gams.nist.gov;
or 〈www browser〉 http://gams.nist.gov,
where 〈www browser〉 is a World Wide
Web browser such as Mosaic or Netscape.
Report any questions or problems to
gams@cam.nist.gov. For more details, log
in to the system or see Boisvert et al. (1985)
and Boisvert (1990).

Included in the software cataloged by
GAMS are many high-quality public-
domain routines available by electronic
mail (e-mail) from netlib. These rou-
tines are now also available through

Xnetlib, a more sophisticated X interface
to netlib and the NA-Net Whitepages, or
through the World Wide Web at the ad-
dress http://www.netlib.org/index.html.
For more information on netlib, see Don-
garra and Grosse (1987) or Dongarra
et al. (1995), send the message ‘‘send in-
dex’’ by e-mail to either netlib@ornl.gov
or netlib@research.att.com, or access
http://www.netlib.org/index.html through
the World Wide Web.

The ACM Transactions on Mathemat-
ical Software publishes refereed public-
domain software. These high-quality rou-
tines, covering a broad range of problem
areas, are included in the Collected Algo-
rithms of the ACM, available through both
GAMS and netlib.

Not mentioned above are the commer-
cial interactive packages MATLAB, Maple,
and Mathematica. MATLAB is built upon
a foundation of sophisticated matrix soft-
ware and includes routines for solving
many standard mathematical and statis-
tical problems. In addition, ‘‘toolboxes’’
for several application areas, such as con-
trol theory, are available. Both Maple
and Mathematica are primarily symbolic
algebra packages, but contain many high-
quality numerical routines as well. For
more information on MATLAB, contact
The MathWorks Inc., 24 Prime Park
Way, Natick, MA 01760; phone: (508)
653-1415; FAX: (508) 653-2997; e-mail:
info@mathworks.com. For more informa-
tion on Maple, contact Waterloo Maple
Software, 450 Phillip St., Waterloo, On-
tario, Canada, N2L 5J2; phone: (519)
747-2373; FAX: (519) 747-5284; e-mail:
info@maplesoft.on.ca. For more informa-
tion on Mathematica, contact Wolfram
Research Inc., 100 Trade Center Dr.,
Champaign, IL 61820-7237; phone: (217)
398-0700; FAX: (217) 398-0747; e-mail:
info@wri.com.
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Glossary

Banded Matrix: An m × n matrix all of
whose nonzero elements occur in a band
around its main diagonal.

Block Diagonal: See Diagonal.

Characteristic Equation of a Matrix: Defi-
ned only for an n × n matrix A, the
equation det(a − λI).

Characteristic Polynomial of a Matrix: Defi-
ned only for an n × n matrix A, the
polynomial p(λ) = det(A − λI), of degree
n.

Column-Diagonally Dominant: Describing
a matrix A if AT is row-diagonally domi-
nant.

Diagonal: Describing an m × n matrix
D = [dij] for which dij = 0 for i 	= j. The
matrix D is block-diagonal if each dij in the
preceding definition is a submatrix rather
than a single number.

Diagonally Dominant: Describing a matrix
A if either A or AT is row-diagonally
dominant.

Eigenvector: Defined only for an n × n
matrix A, a (possibly complex) number
λ such that for some nonzero vector
x, Ax = λx. Any vector satisfying this
equation is an eigenvector associated with
the eigenvalue λ.

Euclidean Norm (of a vector x): The quan-
tity ‖x‖2 = (xHx)1/2, where xH is the
complex-conjugate transpose of the vector
x. Often called the 2-norm.

Flop: A floating-point operation on a
computer; a multiplication and either an
addition or a subtraction.

Hermitian: Describing an n × n matrix
A for which AH = A, where AH is the
complex-conjugate transpose of A.

Hessenberg: Either upper or lower Hes-
senberg. A symmetric Hessenberg matrix
is tridiagonal.

Leading Principal Minor of a Matrix A: The
k × k submatrix in the top left corner of A.

Lower Hessenberg: Describing a matrix A
for which aij = 0 for i < j − 1. That is,
it is lower-triangular except for a single
non-zero superdiagonal.

Lower Triangular: Describing an n × n
matrix L = [lij] for which lij = 0 for 1 ≤
i < j ≤ n. It is strictly lower-triangular if
lij = 0 for 1 ≤ i ≤ j ≤ n, and block lower-
triangular or block strictly lower-triangular,
respectively, if each lij in the preceding
definitions is a submatrix rather than a
single number.

Orthogonal: Describing an m × n matrix
Q for which QTQ = I.

Permutation Matrix: An n × n matrix with
exactly one element in each row and
column equal to 1 and all other elements
equal to 0.

Rank of a Matrix: The maximal number
of independent rows (or columns) of the
matrix.

Right Triangular: Describing an m × n
matrix R = [rij] such that rij = 0 for i > j. If
m = n, the terms right triangular and upper
triangular are equivalent.

Row-Diagonally Dominant: Describing an
m × n matrix, with m ≤ n, for which

n∑
j=1,j 	=i

|aij| < |aii|

for i = 1, 2, . . . , m.



380 Numerical Methods

Similar Matrices: Any two matrices A and
B such that B = WAW−1 for some non-
singular matrix W, which is called the
associated similarity transformation.

Sparse: Describing a matrix in which the
number of nonzero elements is much less
than the total number of elements in the
matrix.

Spectral Radius of a (Square) Matrix A: The
quantity ρ(A) = max{|λ| : λan eigenvalue
of A}.
Strictly Lower Triangular: See Lower Trian-
gular.

Strictly Upper Triangular: See Upper Trian-
gular.

Symmetric: Describing an n × n matrix for
which AT = A, where AT is the transpose
of A.

Symmetric Indefinite: Describing a real
symmetric matrix A for which xTAx > 0
for some real n-vector x and yTAy < 0 for
some real n-vector y.

Symmetric Positive (Negative) Definite: De-
scribing a real symmetric matrix A for
which xTAx > 0(xTAx < 0) for all real n-
vectors x 	= 0.

Symmetric Positive (Negative) Semidefi-
nite: Describing a real symmetric matrix
A for which xTAx ≥ 0(xTAx ≤ 0) for all
real n-vectors x 	= 0.

Transpose: For an m × n matrix A = [aij],
the n × m matrix AT = [at

ij] where at
ij = aji

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. The
transpose of a column (row) vector is a row
(column) vector.

Unit Lower Triangular: Describing a lower-
triangular matrix L = [lij] for which lii = 1
for i = 1, 2, . . . , n.

Upper Hessenberg: Describing a matrix
A = [aij] such that aij = 0 for i > j + 1.
That is, it is upper-triangular except for a
single nonzero subdiagonal.

Upper Triangular: An n × n matrix U =
[uij] such that uij = 0 for 1 ≤ j < i ≤ n.
It is strictly upper-triangular if uij = 0 for
1 ≤ j ≤ i ≤ n, and block upper-triangular or
block strictly upper-triangular, respectively,
if each uij in the preceding definitions
is a submatrix rather than a single
number.

Tridiagonal: Describing an m × n matrix
A = [aij] such that aij = 0 for |i − j| > 1.

Mathematical Symbols Used

AH: The complex-conjugate transpose of
the matrix A.

AT: The transpose of the matrix A.
C: The set of complex numbers.
Cn: The set of complex vectors with n

components.
Cm×n: The set of complex m × n matri-

ces.
C : The set of continuous functions.
C [a, b]: The set of continuous functions

on the interval [a, b].
C p: The set of continuous functions with

p continuous derivatives.
C p[a, b]: The set of continuous functions

with p continuous derivatives on the
interval [a, b].

O(hp): Any quantity that depends on h
that can be bounded above by Chp for
some constant C and all h ∈ (0, H] for
some H > 0.

O(np): Any quantity that depends on
n that can be bounded above by Cnp

for some constant C and all positive
integers n.

R: The set of real numbers.
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Rn: The set of real vectors with n
components.

Rm×n: The set of real m × n matrices.
xT: The transpose of the vector x.
‖x‖ and ‖A‖: Norms of the vector x and

the matrix A, respectively.
‖x‖2 and ‖A‖2: Euclidean norms (also

called two-norms) of the vector x and the
matrix A, respectively.

zH: The complex-conjugate transpose of
the vector z.

ρ(A): The spectral radius of a square
matrix A.

Abbreviations Used

ACM: Association for Computing Ma-
chinery.

ADI: Alternating direction implicit.
BC: Boundary condition.
BVP: Boundary-value problem.
CD: Conjugate direction.
CG: Conjugate gradient.
DOF: Degrees of freedom.
FD: Finite difference.
FDM: Finite-difference method.
FE: Finite element.
FEM: Finite-element method.
GAMS: Guide to Available Mathematical

Software.
GE: Gaussian elimination.
IC: Initial condition.
ICF: Incomplete Cholesky factorization.
IEEE: Institute of Electrical and Elec-

tronics Engineers.
IVP: Initial-value problem.
LMF: Linear multistep formula.
MM: Multigrid method.
ODE: Ordinary differential equation.
PCG: Preconditioned conjugate gradi-

ent.
PDE: Partial differential equation.
PP: Piecewise polynomial.

RK: Runge–Kutta.
SD: Steepest descent.
SOR: Successive overrelaxation.
SPD: Symmetric positive-definite.
SSOR: Symmetric successive overrelax-

ation.
w.r.t.: With respect to.
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Methods, Englewood Cliffs, NJ: Prentice-Hall.

Davis, P. J. (1975), Interpolation and Approxima-
tion, New York: Dover.

de Boor, C. (1978), A Practical Guide to Splines,
New York: Springer-Verlag.

Dennis, J. E., Schnabel, R. B. (1983), Numerical
Methods for Unconstrained Optimisation and
Nonlinear Equations, Englewood Cliffs, NJ:
Prentice-Hall.

Dongarra, J., Grosse, E. (1987), ‘‘Distribution of
Mathematical Software via Electronic Mail,’’
Commun. ACM 30 (5), 403–407.

Dongarra, J., Rowan, T., Wade, R. (1995),
‘‘Software Distribution Using XNETLIB,’’
ACM Trans. Math. Software 21 (1), 79–88.

Duff, I., Erisman, A., Reid, J. (1986), Direct
Methods for Sparse Matrices, Oxford, U.K.:
Oxford Univ. Press.

George, A., Liu, J. (1981), Computer Solution
of Large Sparse Positive Definite Systems,
Englewood Cliffs, NJ: Prentice-Hall.

Goldberg, D. (1991), ‘‘What Every Computer
Scientist Should Know about Floating-Point
Arithmetic,’’ ACM Comput. Surveys 23, 5–48.

Golub, G. H., Van Loan, C. F. (1989), Matrix
Computations, 2nd ed., Baltimore: John Hop-
kins Univ. Press.

Hackbusch, W. (1994), Iterative Solution of
Large Sparse Systems of Equations, New York:
Springer-Verlag.

Hageman, L. A., Young, D. M. (1981), Applied
Iterative Methods, New York: Academic.

Hager, W. W. (1988), Applied Numerical Linear
Algebra, Englewood Cliffs, NJ: Prentice-Hall.

Hairer, E., Nørsett, S. P., Wanner, G. (1987),
Solving Ordinary Differential Equations I:
Nonstiff Problems, New York: Springer-Verlag.

Hairer, E., Wanner, G. (1991), Solving Ordinary
Differential Equations II: Stiff and Differential-
Algebraic Problems, New York: Springer-Verlag.

Hall, C. A., Porsching, T. A. (1990), Numeri-
cal Analysis of Partial Differential Equations,
Englewood Cliffs, NJ: Prentice-Hall.

Householder, A. (1970), The Numerical Treatment
of a Single Nonlinear Equation, New York:
McGraw-Hill.

Houstis, E. N., Christara, C. C., Rice, J. R. (1988),
‘‘Quadratic Spline Collocation Methods for

Two-Point Boundary Value Problems,’’ Int.
J. Numer. Methods Eng. 26, 935–952.

IEEE (1985), IEEE Standard for Binary Floating-
Point Arithmetic, New York: American Na-
tional Standards Institute, Std. 754-1985.

Johnson, L. W., Riess, R. D. (1982), Numerical
Analysis, Reading, MA: Addison-Wesley.

Kahaner, D., Moler, C., Nash, S. (1989),
Numerical Methods and Software, Englewood
Cliffs, NJ: Prentice-Hall.

Lambert, J. D. (1991), Numerical Methods for
Ordinary Differential Equations, New York:
Wiley.

Ortega, J. M. (1988), Introduction to Parallel and
Vector Solution of Linear Systems, New York:
Plenum.

Parlett, B. N. (1968), ‘‘Global Convergence
of the Basic QR Algorithm on Hessenberg
Matrices,’’ Math. Comput. 22, 803–817.

Parlett, B. N. (1980), The Symmetric Eigenvalue
Problem, Englewood Cliffs, NJ: Prentice-
Hall.

Prenter, P. M. (1975), Splines and Variational
Methods, New York: Wiley.

Saad, Y. (1992), Numerical Methods for Large
Eigenvalue Problems, New York: Manchester
Univ. Press (Wiley).

Scott, D. (1981) ‘‘The Lanczos Algorithm,’’ in:
I. S. Duff (Ed.), Sparse Matrices and Their Uses,
London: Academic, pp. 139–160.

Shampine, L. F. (1994), Numerical Solution of
Ordinary Differential Equations, New York:
Chapman & Hall.

Shampine, L. F., Gear, C. W. (1979), ‘‘A User’s
View of Solving Stiff Ordinary Differential
Equations,’’ SIAM Rev. 21, 1–17.

Stoer, J., Bulirsch, R. (1980), Introduction to
Numerical Analysis, New York: Springer-
Verlag.

Strang, G., Fix, G. J. (1973), An Analysis of the
Finite Element Method, Englewood Cliffs, NJ:
Prentice-Hall.

Strikwerda, J. C. (1989), Finite Difference Schemes
and Partial Differential Equations, Pacific
Grove, CA: Wadsworth and Brooks/Cole.

Van de Velde, E. F.. (1994), Concurrent Scientific
Computing, New York: Springer-Verlag.

Van Loan, C. F. (1992), Computational Frame-
works for the Fast Fourier Transform, Philadel-
phia: SIAM.

Varga, R. S. (1962), Matrix Iterative Analysis,
Englewood Cliffs, NJ: Prentice-Hall.

Wilkinson, J. H. (1965), The Algebraic Eigenvalue
Problem, Oxford, U.K.: Oxford Univ. Press.



Numerical Methods 383

Young, D. M. (1971), Iterative Solution of Large
Linear Systems, New York: Academic.

Further Reading

Ciarlet, P. G. (1989), Introduction to Numerical
Linear Algebra and Optimization, Cambridge,
U.K.: Cambridge Univ. Press.

Forsythe, G. E., Malcolm, M. A., Moler, C. B.
(1977), Computer Methods for Mathematical
Computations, Englewood Cliffs, NJ: Prentice-
Hall.

Forsythe, G. E., Moler, C. B. (1967), Computer
Solution of Linear Algebraic Systems, Englewood
Cliffs, NJ: Prentice-Hall.

Golub, G. H., Ortega, J. M. (1992), Scientific
Computing and Differential Equations, New
York: Academic.

Golub, G. H., Ortega, J. M. (1993), Scientific
Computing: An Introduction with Parallel
Computing, New York: Academic.

Isaacson, E., Keller, H. B. (1966), Anal-
ysis of Numerical Methods, New York:
Wiley.

Press, W. H., Flannery, B. P., Teukolsky, S. A.,
Vetterling, W. T. (1986), Numerical Recipes: The
Art of Scientific Computing, Cambridge, U.K.:
Cambridge Univ. Press.

Schultz, M. H. (1973), Spline Analysis, Englewood
Cliffs, NJ: Prentice-Hall.

Stewart, G. W. (1973), Introduction to Matrix
Computations, New York: Academic.

Wilkinson, J. H. (1963), Rounding Errors in
Algebraic Processes, Englewood Cliffs, NJ:
Prentice-Hall.





385

Perturbation Methods

James Murdock
Iowa State University, Ames, USA

Introduction 386
1 Basic Concepts 387
1.1 Perturbation Methods Versus Numerical Methods 387
1.2 Perturbation Parameters 387
1.3 Perturbation Series 389
1.4 Uniformity 390
2 Nonlinear Oscillations and Dynamical Systems 392
2.1 Rest Points and Regular Perturbations 393
2.2 Simple Nonlinear Oscillators and Lindstedt’s Method 394
2.3 Averaging Method for Single-Frequency Systems 397
2.4 Multifrequency Systems and Hamiltonian Systems 399
2.5 Multiple-Scale Method 400
2.6 Normal Forms 402
2.7 Perturbation of Stable Manifolds; Melnikov Functions 403
3 Initial and Boundary Layers 404
3.1 Multiple-Scale Method for Initial Layer Problems 404
3.2 Matching for Initial Layer Problems 405
3.3 Slow–Fast Systems 407
3.4 Boundary Layer Problems 407
3.5 WKB Method 408
3.6 Fluid Flow 409
4 Perturbations of Matrices and Spectra 410

Glossary 412
List of Works Cited 414
Further Reading 415

Mathematical Tools for Physicists. Edited by George L. Trigg
© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40548-8



386 Perturbation Methods

Introduction

Perturbation theory and arises when
a situation is given that admits of a
mathematical description, and one asks
how this description changes when the
situation is varied slightly, or ‘‘perturbed.’’
This could result either in a continuation
of the original situation with only small
quantitative changes, or in an abrupt
qualitative change in the nature of the
situation. Among the possible ‘‘abrupt’’
changes are the formation of a transition
layer, and the creation of various types of
bifurcations; although bifurcation theory
is usually treated as a separate subject
from perturbation theory, the two areas are
closely related. The specific subject matter
of the present article will be the following
two topics.

1. A system of ordinary or partial differ-
ential equations is given, together with
initial or boundary conditions. The sys-
tem contains a small parameter, and
is explicitly solvable when the parame-
ter is zero. One asks how to construct
approximate solutions (in explicit ana-
lytic form) when the parameter is small
but nonzero; one asks for error esti-
mates for these approximate solutions,
and whether the approximate solutions
exhibit the same qualitative behavior as
the unknown exact solutions.

2. A matrix or linear transformation is
given, depending on a small parameter.
The eigenvalues and eigenvectors (or
the Jordan normal form) are known
when the parameter is zero, and one
asks for approximate calculations of the
eigenvalues or normal form when the
parameter is small but nonzero.

The origins of perturbation theory lie in
three classical problems, planetary motion,
viscous fluid flow past a wall, and changes

in the spectrum as a matrix or linear
operator is varied. The present article is
structured in the same threefold way:
after an initial section presenting basic
concepts common to the three areas,
we take up in turn dynamical systems
(Sec. 2), transition layer problems (Sec. 3),
and spectra (Sec. 4). To conclude this
introduction, we briefly describe the three
classical problems.

Isaac Newton showed that the inverse
square law of gravitational force implies
that a single planet will move around the
sun in an ellipse, satisfying Kepler’s laws of
planetary motion. The same law of gravity,
however, implies that the several planets
will exert attractive forces on each other,
which will ‘‘perturb’’ their orbits. Laplace
computed the perturbations, to a certain
degree of approximation, and found that
they were periodic, so that the solar sys-
tem was ‘‘stable’’ (in Laplace’s sense) and
would not destroy itself. His techniques
were laborious, and can be much simpli-
fied today by Hamiltonian mechanics; fur-
thermore, he did not entirely prove that the
solar system is stable, since his method,
if carried to higher orders, does not nec-
essarily converge. However, a great many
of the ideas of modern perturbation theory
originated here: variation of parameters,
averaging, multiple scales, and the prob-
lems that in the twentieth century led to the
Kolmogorov–Arnol’d–Moser (KAM) theo-
rem, the Nekhoroshev theorem, and other
topics in dynamical systems theory.

In theory, a fluid that is viscous (even to
the smallest degree) will adhere to the walls
of any container (such as a pipe) in which
it is flowing. However, at any reasonable
distance from the walls the fluid flows
almost as if the wall were not there. In
order to resolve this apparent paradox, L.
Prandtl introduced the idea of a ‘‘boundary
layer,’’ a thin layer of fluid against the
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wall in which the fluid passes from rest
to rapid motion. Here, the ‘‘unperturbed’’
problem is the inviscid flow (which does
not adhere to the wall), the ‘‘perturbation’’
is the small viscosity, and the effect of the
perturbation is not a small correction of
the motion but a quite drastic correction
confined to a small region (the boundary
layer). This example leads to the ideas of
stretched or scaled coordinates, inner and
outer solutions, and matching.

According to quantum mechanics, all
observable quantities are the eigenvalues
of operators on a Hilbert space. In simple
problems, the Hilbert space will be finite
dimensional and the operators are repre-
sentable as matrices; in other cases, they
are partial differential operators. In model-
ing an atom, for instance, the eigenvalues
will be related to the frequencies of light
(the spectrum) emitted by the atom when
electrons jump from one shell to another.
These frequencies can be perturbed, for
instance, if the atom is placed in a weak
magnetic field. Mathematically, the result-
ing problem is to determine the changes
in the ‘‘spectrum’’ (the set of eigenvalues)
of a matrix or other operator when the
operator is slightly perturbed. One strik-
ing difference between this problem and
the first two is that quantum mechanics
is entirely a linear theory, whereas in both
the dynamical systems problems and the
boundary layer problems, nonlinearities
can play a crucial role.

1
Basic Concepts

1.1
Perturbation Methods Versus Numerical
Methods

A system of differential equations that
is not explicitly solvable calls for an

approximate solution method of some
type. The most useful approximate meth-
ods are numerical methods (implemented
on a digital computer) and perturbation
methods. Perturbation methods are usable
only if the system is ‘‘close’’ to an explic-
itly solvable system, in the sense that the
system would become solvable if certain
small changes were made, such as delet-
ing small terms or averaging some term
over a rapidly rotating angle. In such a case,
perturbation theory takes the solution of
the simplified problem as a ‘‘zeroth order
approximation’’ that can be successively
improved, giving higher-order approxima-
tions having explicit formulas. Numerical
methods operate without the restriction
that the problem be nearly solvable, but
give a solution in the form of numerical
tables or graphs. The advantage of a for-
mula is that one can see by inspection
the manner in which each variable affects
the solution. However, since both types of
solution are approximate, it is often best
to verify a perturbation solution by com-
paring it with numerical ones (or directly
with experimental data), especially when a
mathematically valid error estimate for the
perturbation solution is missing.

1.2
Perturbation Parameters

Mathematical models of physical phe-
nomena typically contain several vari-
ables, which are divided into ‘‘coordinates’’
(of space or time) and ‘‘parameters.’’ A
spring/mass system with a cubic nonlin-
earity, for instance, will contain position
and time coordinates as well as parame-
ters for the mass and for the coefficients
of the linear and cubic terms in the restor-
ing force. The first step in preparing such
a system for perturbation analysis is to
nondimensionalize these variables. The
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second step is to look for solvable special
cases that can serve as the starting point
for approximating the solution of nearby
cases. Most often, these solvable cases will
be obtained by setting some of the parame-
ters equal to zero. For instance, the forced
and damped nonlinear oscillator given by

ÿ + Cẏ + k2y + Ay3 = B cos ωt (1)

becomes easily solvable if A = B = C = 0;
it is still solvable if only A = 0, but not quite
as simply. It is therefore plausible to look
for approximate solutions by perturbation
theory if A, B, and C are small, and it may
also be possible if only A is small.

Suppose that we choose to investigate
the case when A, B, and C are small. Ide-
ally, we could treat these as three small
independent parameters, and consider-
able work is now being devoted to the
investigation of such ‘‘multi-parameter’’
perturbation methods, especially in the
context of bifurcation theory (see Gol-
ubitsky and Schaeffer, 1985). However,
most classical perturbation methods are
developed only for single-parameter prob-
lems. Therefore, it is necessary to make
a choice as to how to reduce Eq. (1) to
a single-parameter problem. The simplest
way is to write A = aε, B = bε, and C = cε,
obtaining

ÿ + εcẏ + k2y + εay3 = εb cos ωt. (2)

We appear to have added a parameter
instead of reducing the number, but now a,
b, and c are regarded as constants, whereas
ε, the perturbation parameter, is taken as a
small, but variable, quantity; typically, we
expect the perturbation solution to have
the form of a power series in ε. We have
in effect chosen to investigate a particular
path leading from the origin in the space
of variables A, B, C. It is at once clear that

other paths are possible, for instance

ÿ + ε2cẏ + k2y + εay3 = εb cos ωt. (3)

One might choose Eq. (3) over Eq. (2) if
the goal is to investigate systems in which
the damping is extremely small, small even
when compared to the cubic term and
the forcing. But it is not clear, without
experience, what the best formulation will
be for a given problem. As an example of
the role of experience, one might expect
(knowing something about resonance in
the linear case) that the results of studying
Eq. (2) will be different if ω is close to k than
if it is far away. But how do you express
mathematically the idea that ‘‘ω is close
to k’’? Recalling that the only parameter
available to express ‘‘smallness’’ is ε, the
best answer turns out to be

ω2 = k2 + εd (4)

where d is another constant. Substituting
Eq. (4) into Eq. (2) leads to the ‘‘correct’’
formulation of the near-resonance prob-
lem. One can see that the setting up of
perturbation problems is sometimes an
art rather than a science. In the present
article we will for the most part assume
that a perturbation problem has been cho-
sen. Mathematical analysis of the problem
may then suggest the use of stretched or
otherwise rescaled variables, which in fact
amount to a modification of the initial
perturbation problem.

In recent years, a further consideration
has come to the fore regarding the choice
of parameters in a mathematical model.
Physical considerations may have led to a
model such as Eq. (1), and yet we know that
this model is not exactly correct; there may,
for instance, be very small nonlinearities
other than the cubic term in the restoring
force, or nonlinearities in the damping, or
additional harmonics in the forcing. How
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many such effects should be included in
the model? In the past, it was simply a
matter of trial and error. But in certain
cases, there now exists a mathematical
theory that is able to determine just
which additional small terms might make
a qualitative (rather than just a tiny
quantitative) difference in the solution. In
these cases, it is sometimes best to add all
such significant small terms to the equation
before attempting the solution, even if there is
no evident physical reason for doing so. The
process of adding these additional terms is
called finding the universal unfolding of the
system. The advantage is that the universal
unfolding will account for all possible
qualitative behaviors that may be observed
as a result of unknown perturbations. For
instance, in the past many bifurcations
were not observed to occur exactly as
predicted. They were called imperfect
bifurcations, and each situation required
that the specific perturbation responsible
for the imperfection be discovered and
incorporated into the model. Now it is
often possible to determine all possible
imperfections in advance by examining the
universal unfolding of the original model.
See Golubitsky and Schaeffer (1985).

In addition to the types of problems al-
ready discussed, there exist problems that
do not contain a perturbation parameter
but nonetheless allow treatment by pertur-
bation methods. For instance, a system of
differential equations may have a particu-
lar solution (often an equilibrium solution
or a periodic solution) that can be com-
puted exactly, and one may wish to study
the solutions lying in a neighborhood of
this one. One way to treat such problems
is called coordinate perturbations; the co-
ordinates themselves (or more precisely,
the differences between the coordinates
of the known and unknown solutions)
are treated as small quantities, in place

of a perturbation parameter. Another ap-
proach is to introduce a parameter ε as
a scale factor multiplying these coordinate
differences. Both ideas will be illustrated in
the discussion of normal forms in Sec. 2.6
below.

1.3
Perturbation Series

Let us suppose that a perturbation problem
has been posed, and let the exact solution
(which we wish to approximate) be denoted
u(x, ε). Here ε is the (scalar) perturbation
parameter, x is a vector consisting of all
other variables in the problem including
coordinates and other parameters, and u
is the quantity being solved for. (In the
case of Eq. (2), u = y and x = (t, a, b, c, ω),
or if Eq. (4) is used then x = (t, a, b, c, d).)
The simplest form in which to seek an
approximation is that of a (truncated) power
series in ε:

u(x, ε) ∼= u0(x) + εu1(x) + · · · + εkuk(x).

(5)

There are times when this is insufficient
and we require a Poincaré series

u(x, ε) ∼= δ0(ε)u0(x) + δ1(ε)u1(x)

+ · · · + δk(ε)uk(x) (6)

where each δi is a monotone function of ε

defined for ε > 0 satisfying

lim
ε→0

δi+1(ε)

δi(ε)
= 0; (7)

such functions δi are called gauges. (Of
course, a Poincaré series reduces to a
power series if δi(ε) = εi.) Finally, there
are times when not even a Poincaré series
is sufficient and a generalized series is
needed:

u(x, ε) ∼= δ0(ε)u0(x, ε) + δ1(ε)u1(x, ε)

+ · · · + δk(ε)uk(x, ε). (8)
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With such a series, it might appear
that we could delete the gauges, or rather
assimilate them into the ui since these
are now allowed to depend upon ε; but
the intention is that the dependence of
ui on ε should not affect its order of
magnitude. An example is the following
two-term generalized series where the
vector x consists only of the time t:

u(t, ε) ∼= sin(1 + ε)t + ε cos(1 + ε)t. (9)

Here, u0(t, ε)=sin(1+ε)t and u1(t, ε)=
cos(1 + ε)t; the dependence of these
coefficients upon ε modifies their period
but not their amplitude, and the second
term still has the order of magnitude of its
gauge ε.

Notice that we have written only trun-
cated series in the previous paragraph.
While most perturbation methods allow
in principle for the computation of infi-
nite series, these series very often do not
converge, and in practice it is impossible
to calculate more than a few terms. The
type of accuracy that we hope for in a
perturbation solution is not convergence
(improvement in accuracy as the number
of terms increases), but rather asymptotic
validity, which means improvement in ac-
curacy as ε approaches zero. To explain
this concept, let us consider a generalized
series

u(ε) ∼= δ0(ε)u0(ε) + δ1(ε)u1(ε)

+ · · · + δk(ε)uk(ε) (10)

that contains no variables other than ε. We
will say that this series is an asymptotic
approximation to u(ε) if

u(ε) = δ0(ε)u0(ε) + δ1(ε)u1(ε)

+ · · · + δk(ε)uk(ε) + R(ε) (11)

where the remainder or error R(ε) satisfies
a bound of the form

|R(ε)| ≤ cδk+1(ε) (12)

for some constant c > 0 and some gauge
δk+1 that approaches zero more rapidly
than δk as ε → 0. (If the series is vector-
valued, then |R(ε)| denotes a vector norm.)
Equation (12) is abbreviated with the ‘‘big-
oh’’ notation

R(ε) = O(δk+1(ε)). (13)

The series (10) is called asymptotically
valid, or an asymptotic series, if it is an
asymptotic approximation (in the above
sense) and in addition, every truncation
of Eq. (10) is also an asymptotic approxi-
mation, with the error being ‘‘big-oh’’ of
the first omitted gauge. The case in which
u(x, ε) depends upon variables x in addi-
tion to ε will be discussed in the following
section on ‘‘Uniformity.’’

As a technical matter, any bound such as
Eq. (12) is not intended to hold for all ε, but
only for ε in some interval 0 ≤ ε ≤ ε0. A
perturbation solution is never expected to
be valid for large values of the perturbation
parameter, and the meaning of ‘‘large’’ is
relative. In this article, we will not continue
to mention ε0, but it is always lurking in
the background.

To conclude this discussion of types of
series in perturbation theory, it should
be mentioned that Fourier series arise
frequently in dealing with oscillatory prob-
lems, but a Fourier series is never a
perturbation series. Rather, if a perturba-
tion series such as u(t, ε) ∼= u0(t) + εu1(t)
depends periodically on time t, then the co-
efficients uk(t) may be expressed as Fourier
series in t.

1.4
Uniformity

In the previous section, we have defined
asymptotic validity of a perturbation series
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for a function u(ε) depending only on ε.
This is adequate for a problem such as find-
ing a root of a polynomial (supposing that
the polynomial contains a perturbation pa-
rameter ε) because the root is a single
number. But for most perturbation prob-
lems (such as differential equations), the
solution is a function of space and/or time
coordinates, and possibly various parame-
ters, in addition to ε. For such problems,
the previous definition of asymptotic valid-
ity is insufficient.

Let us return to the generalized series
(8), and denote the error by R(x, ε). Now
we may require that for each fixed x this
error is of order δk+1(ε):

|R(x, ε)| ≤ c(x)δk+1(ε). (14)

Notice that the ‘‘constant’’ c here may
change when we move to a new point x. In
this case, we say that the error is pointwise
of order δk+1.

Alternatively, we can choose a domain
D of the variable x (remember that x may
have several components, so D may be a
subset of a vector space) and require that
the error be uniformly of order δk+1 for all
x in D:

|R(x, ε)| ≤ cδk+1(ε). (15)

Here, the constant c is truly constant.
In this case, we say R(x, ε) = O(δk+1(ε))

uniformly in x for x in D. If every trunca-
tion of a perturbation series is uniformly
of the order of the first omitted gauge, we
say that the series is uniformly valid. (In the
last sentence, we neglected to say ‘‘in D’’,
but it is important to remember that such
an expression has no meaning unless the
domain D is understood.) Obviously, uni-
form asymptotic validity is stronger than
pointwise validity, and it is safe to say
that every method used in perturbation
theory has been introduced in order to

gain uniform validity for a problem for
which previous methods only gave point-
wise validity.

Now the definition of uniform validity
calls for an estimate of the error of an
approximation, and such an estimate is
a difficult thing to come by. It would be
convenient if there were an easier test
for uniformity. In actuality there is not.
However, it is possible to obtain a simple
necessary (but not sufficient) condition for
a series to be uniformly valid. Namely, it is
not difficult to show that if the series (8) is
uniformly valid in a domain D, then each
coefficient uk(x) with k ≥ 1 is bounded on
D, that is, there exist constants ck such that

|uk(x, ε)| ≤ ck (16)

for x in D. If this is true, we say that
the series (8) is uniformly ordered. We
have already encountered the concept of a
uniformly ordered series when discussing
Eq. (9). A uniformly ordered series is one
in which each term after the first is of
no greater order than is indicated by its
gauge. It is easy to inspect a perturbation
series, once it has been constructed, and
determine whether it is uniformly ordered.
If not, the series is called disordered, and
it cannot be uniformly valid. On the other
hand, if it is uniformly ordered, it does not
follow that it is uniformly valid, since one
has done nothing toward estimating the
error. Almost all textbooks are misleading
on this point, since they almost invariably
claim to be showing the uniform validity of
a series when in fact they are only showing
that it is uniformly ordered. However, if
a perturbation series is constructed on
the basis of good intuitive insight into
a problem, and if it is uniformly ordered,
then it frequently turns out to be uniformly
valid as well. (A very elementary example
in which this is not the case will be given
in Sec. 2.1.)



392 Perturbation Methods

With regard to uniform ordering,
Poincaré series occupy a special place.
Recall that a series is a Poincaré series
if its coefficients do not depend on ε;
see Eq. (6). In this case, if the domain
D is compact and the coefficients uk(x)

are continuous, then the coefficients are
automatically bounded and the series is
uniformly ordered (but still not automat-
ically uniformly valid). However, even a
Poincaré series may fail to be uniformly
ordered if D is not compact or if D is
allowed to depend on ε. We have not con-
sidered this latter possibility until now,
but, in fact, in many problems one must
consider domains D(ε) that depend upon
ε. An important example is a boundary
layer, a thin domain near the boundary
of some larger region, whose thickness
depends on ε. For such domains, the def-
initions (15) and (16) of uniform validity
and uniform ordering are the same, except
that they are to hold for all x in D(ε); that
is, for each value of ε, Eqs. (15) or (16) hold
for a different range of x.

It is now possible to explain one of
the principal divisions in the subject
of perturbation theory, the division of
perturbation problems into regular and
singular. A perturbation problem is regular
if there exists a Poincaré series that is
uniformly valid on the intended domain;
it is singular if it is necessary to use a
generalized series in order to obtain a
uniformly valid solution on the intended
domain. This is the only correct definition.
Many textbooks give partial definitions
such as ‘‘a perturbation problem for
a differential equation is singular if ε

multiplies the highest derivative.’’ Such
a definition, which refers only to the
differential equation without stating an
intended domain, cannot be correct. The
presence of an ε multiplying the highest
derivative does, of course, affect the

domain on which a problem can be
regular; we will see below that a problem
such as ü + u + εu3 = 0 is regular on
any fixed interval [0, T ] but singular on
an expanding interval [0, 1/ε], while a
problem such as εü + (t2 + 1)u̇ + u = 0 is
regular only on a shrinking interval [0, ε]
and singular on a fixed interval.

2
Nonlinear Oscillations and Dynamical
Systems

In this section, we discuss the major per-
turbation methods used in the study of
nonlinear ordinary differential equations
(dynamical systems). Typical problems in-
clude the location of rest (or equilibrium)
points and periodic or quasi-periodic so-
lutions; the approximation of solutions
close to these; the solution of initial value
problems for systems that become solvable
(usually either linear or integrable Hamil-
tonian) when a small parameter vanishes;
and the splitting of a homoclinic orbit un-
der perturbation. In all of these problems,
there is an interplay between qualitative
and quantitative behavior. Advance knowl-
edge of the qualitative behavior may assist
the choice of a successful perturbation
method. Alternatively, if the qualitative be-
havior is unknown, perturbation methods
may be used in an exploratory fashion, as
long as it is kept in mind that very fre-
quently, especially in nonlinear problems,
a perturbation solution may appear cor-
rect but may predict qualitative features
(such as periodicity, stability, or presence
of chaos) erroneously. Many such faulty
results appear in the literature, and more
are published every year. As a general rule,
qualitative results obtained from perturba-
tion solutions (or any other approximate
solutions) should be taken as conjectural,
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until supported by some combination of
numerical or experimental evidence and
rigorous mathematical proof.

2.1
Rest Points and Regular Perturbations

Given a system of differential equations of
the form

ẋ = f (x, ε) = f0(x) + εf1(x) + O(ε2),

(17)

with x = (x1, . . . , xn) ∈ Rn and ε ∈ R, the
rest points are the solutions of the algebraic
system f (x, ε) = 0. If a rest point a0 is
known when ε = 0, it may continue to
exist as a function a(ε) with

f (a(ε), ε) = 0 (18)

for ε near zero, or it may bifurcate into
two or more rest points, or disappear
altogether; the results may differ for ε > 0
and ε < 0. A crucial role is played by the
matrix A0 = fx(x0, 0) of partial derivatives
of f at the unperturbed rest point and its
eigenvalues. If A0 is invertible (zero is not
an eigenvalue), then a unique continuation
a(ε) exists and is computable as a series

a(ε) = a0 + εa1 + O(ε2). (19)

This is the simplest example of a pertur-
bation series. Putting Eq. (19) into Eq. (18)
and expanding gives f0(a0) + ε(A0a1 +
f1(a0)) + · · · = 0, or (since f0(a0) = 0)

a1 = −A−1
0 f1(a0). (20)

The solution may be continued to higher
order, and the matrix function

A(ε) = fx(a(ε), ε) (21)

may also be studied, since (in most cases)
it determines the stability of the rest point.
If all of the eigenvalues of A0 are off the
imaginary axis (A0 is hyperbolic), the same
will be true for A(ε) for small ε, and the
stability type (dimensions of the stable and
unstable manifolds) of the rest point will
not change. When this is not the case, the
methods described in Sec. 4 determine the
spectrum of A(ε), and thus usually suffice
to decide how the stability changes.

When A0 is not invertible, bifurcation
(change in the number of rest points) usu-
ally occurs. Even when A0 has only one
zero eigenvalue, various possibilities (such
as saddle-node and pitchfork bifurcations)
exist, and it is not possible to give de-
tails here. A reference treating the subject
from the standpoint of perturbation theory
is Iooss and Joseph (1980); a quite differ-
ent modern treatment is Golubitsky and
Schaeffer (1985).

Now suppose that a solution

x(t, ε) = x0(t) + εx1(t) + O(ε2) (22)

of the system in Eq. (17) is to be found, with
initial condition x(0, ε) = a(ε) (no longer
a rest point) given by Eq. (19). Substituting
Eq. (22) into Eq. (17), expanding, and
equating terms of the same degree in ε

yields

ẋ0 = f0(x0),

ẋ1 = f0x(x0(t))x1 + f1(x0(t)). (23)

If the first equation of (23), which is the
same as the unperturbed equation ((17)
with ε = 0), can be solved with initial
condition x0(0) = a0, its solution x0(t) can
be placed in the second equation of (23),
which then becomes an inhomogeneous
linear equation for x1; it is to be solved with
initial condition x1(0) = a1. Equations of
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this type are not necessarily easy to
solve, but are certainly easier than the
nonlinear Eq. (17). If this is successful,
the procedure may be continued to higher
order.

This is usually called the regular pertur-
bation method or the method of straightfor-
ward expansion. According to our earlier
definition, a perturbation method is regu-
lar if it provides a Poincaré series that is
uniformly valid on the intended domain.
Here Eq. (22) is a Poincaré series, and it
can be shown to be uniformly valid on
any finite interval [0, T ]; that is, the error
bound is of the order of the first omitted
term, and once T is chosen, the coefficient
in the error bound is fixed. So the term
‘‘regular’’ is justified if this is the intended
domain. In many problems (below) one
seeks a solution valid on an ‘‘expanding’’
interval such as [0, 1/ε]; the straightfor-
ward expansion is usually not valid for this
purpose.

There are situations in which straight-
forward expansion is valid for much longer
than finite intervals. For instance, if a so-
lution is approaching a sink (a rest point
with all eigenvalues in the left half plane),
the straightforward expansion is valid for
all future time (t in [0, ∞)). More gen-
erally, if the first equation of (23) has a
solution that connects two hyperbolic rest
points, then a straightforward expansion
(to any order) beginning with that solu-
tion will be shadowed by an exact solution
of Eq. (17) connecting two hyperbolic rest
points of that system; that is, the approxi-
mate and exact solutions will remain close
(to the order of the first omitted term) for
all time, both past and future, although the
two solutions may not have any point in
common. (In particular, the approximate
and shadowing solutions will not satisfy
the same initial conditions.) For a precise
statement, see Murdock (1996).

2.2
Simple Nonlinear Oscillators
and Lindstedt’s Method

The ‘‘hard’’ nonlinear spring or unforced
Duffing equation is given by

ü + u + εu3 = 0 (24)

for ε > 0. It can be expressed as a first-
order system in the (u, u̇) phase plane
in the form u̇ = v, v̇ = −u − εu3. In the
phase plane, the orbits are closed curves
surrounding the rest point at the origin;
this may be seen from the conservation
of energy. (The ‘‘soft’’ spring with ε < 0
behaves differently.) Since the solutions
of Eq. (24) with any initial conditions
u(0) = a, u̇(0) = b are smooth functions
of ε, they may be expanded as Taylor series
having the form (if we retain two terms)

u(t, ε) ∼= u0(t) + εu1(t). (25)

The coefficients may be determined
by substituting Eq. (25) into Eq. (24),
expanding the u3 term, dropping powers
of ε higher than the first, and setting each
order in ε separately equal to zero. This
gives two linear equations that can be
solved (recursively) for u0 and u1. The
result, for b = 0 (and it is enough to
consider this case because every solution
is at rest momentarily when its amplitude
is at its maximum), is

u(t, ε) ∼= a cos t − ε
a3

32
×(cos t+12t sin t−cos 3t).

(26)

Upon examining Eq. (26) for uniform
ordering, we discover that all functions
of t appearing there are bounded for
all t except for 12t sin t, which becomes
unbounded as t approaches infinity. This
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is an example of a so-called ‘‘secular’’
term, one which grows over the ‘‘ages’’
(saecula in Latin). We conclude from this
that Eq. (26) is uniformly ordered for t
in any finite interval D = [0, T ] but not
for D = [0, ∞). According to the general
principles discussed in Sec. 1.4, this shows
that Eq. (26) is not uniformly valid on
[0, ∞), and it leads us to suspect, but does
not prove that Eq. (16) is uniformly valid on
[0, T ]. In the present case, this conjecture
is correct. If the intended domain D for the
solution of Eq. (24) is a finite interval, then
we have obtained a uniform approximation
in the form of a Poincaré series, and the
problem is a regular one. If a solution valid
for a longer time is desired, the problem
will prove to be singular.

In an effort to extend the validity of the
solution, we recall that the actual solutions
of Eq. (24) are periodic, whereas Eq. (26) is
not. The problem is that the period of the
exact solution depends upon ε, and there
is no way that a Poincaré series can have
such a period since the coefficients are not
allowed to depend on ε. To remedy this,
we seek to approximate the (unknown)
frequency of the solution in the form

ν(ε) ∼= ν̃(ε) = ν0 + εν1 + ε2ν2 (27)

with the solution itself being repre-
sented as

u(t, ε) ∼= u0(ν̃(ε)t) + εu1(ν̃(ε)t), (28)

which is now a generalized series. Notice
that we have carried Eq. (27) to one more
order than Eq. (28). Now we substitute
Eqs. (27) and (28) into Eq. (24) and attempt
to determine ν0, u0, ν1, u1, ν2 recursively,
in that order, in such a way that each ui

is periodic. The mechanics of doing this
will be explained in the next paragraph; the

result is

u(t, ε) ∼= a cos t+

+ ε

(
− 1

32
a3 cos t+ + 1

32
a3 cos 3t+

)
(29)

where

t+ = ν̃(ε)t =
(

1 + ε
3

8
a2 − ε2 21

256
a4

)
t.

(30)

Examining Eq. (29) we see that it is
uniformly ordered for all time, since
the coefficients are bounded (there are
no secular terms). One might therefore
conjecture that the solution is uniformly
valid for all time, but this would be incorrect!
(This example is an excellent warning
as to the need for proofs of validity
in perturbation theory.) The difficulty is
that t+ uses the approximate frequency
ν̃(ε) in place of the exact frequency ν(ε);
there is no escape from this, as the exact
frequency remains unknown. Therefore,
Eq. (29) gradually gets out of phase with
the exact solution. The reason for taking
Eq. (27) to one higher order than Eq. (28)
is to minimize this effect. It can be shown
that Eq. (29) is uniformly valid on the
expanding interval D(ε) = [0, 1/ε]. (This
is our first example of a domain that
depends on ε, as discussed in Sec. 1.4.) If
the intended domain is such an expanding
interval, then Eq. (29) provides a uniformly
valid generalized series, and the problem
is seen to be singular. (If the intended
domain is all t, the problem is simply
impossible to approximate asymptotically.)

In order to complete the example in the
last paragraph, we must indicate how to
obtain Eqs. (29) and (30). The easiest way
is to substitute τ = ν(ε)t into Eq. (24) to
obtain

ν(ε)2 d2u

dτ 2 + u + εu3 = 0. (31)
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Then substitute Eqs. (27) and (28) into
Eq. (31), expand, and set the coefficient
of each power of ε equal to zero as
usual. It is easy to find that ν0 = 1 and
u0 = a cos τ (which in the end becomes
a cos t+ because we do not know the exact
frequency ν). The crucial step arises when
examining the equation for u1, which is
(writing ′ = d/dτ )

u′′
1 + u1 = −a3 cos3 τ + 2ν1a cos τ

=
(

−3

4
a3 + 2ν1a

)
cos τ

− 1

4
a3 cos 3τ. (32)

From the Fourier series expansion (the
second line of Eq. (32)), we see that the
term in cos τ will be resonant with the free
frequency, and hence produce unbounded
(secular) terms in u1, unless the coefficient
of cos τ vanishes. In this way, we conclude
that

ν1 = 3

8
a2 (33)

and, after deleting the cos τ term from
Eq. (32), we solve it for u1. This procedure
is repeated at each subsequent stage.

The previous example is typical of un-
forced conservative oscillators, where every
solution (at least in a certain region) is
periodic. There are two additional classes
of oscillators that must be mentioned, al-
though we cannot give them as much space
as they deserve: self-excited oscillators and
forced oscillators.

The standard example of a self-excited
oscillator is the Van der Pol equation

ü + ε(u2 − 1)u̇ + u = 0. (34)

Instead of a region in the phase plane
filled with periodic solutions, this equation
has a single periodic solution (limit cycle)
for ε > 0. The Lindstedt method, described

above, can be used to approximate the
periodic solution, but must be modified
slightly: the initial condition can no longer
be assigned arbitrarily, because to do
so will in general yield a nonperiodic
solution for which the Lindstedt method
fails. (These solutions can be found by
averaging or multiple scales; see Secs.
2.3 and 2.5.) Suppose that the limit cycle
crosses the positive x axis (in the phase
plane) at (a(ε), 0) and has frequency
ν(ε). Then the solution is sought in the
form of Eqs. (27) and (28) together with
an additional expansion a(ε) = a0 + εa1 +
· · ·; the coefficients ui, νi, and ai are
determined recursively, choosing νi and ai

so that no secular terms arise in ui+1. This
example shows the effect of the dynamics
of a system on the correct formulation of a
perturbation problem.

The general nearly linear, periodically
forced oscillator can be written as

ü + u = εf (u, u̇, ωt), (35)

where f (u, v, θ) is 2π -periodic in θ ; thus,
the period of the forcing is 2π/ω. The
dynamics of Eq. (35) can be complicated,
and we will limit ourselves to one type
of periodic solution, the harmonic oscilla-
tions, which are entrained by the forcing
so that they have the same frequency ω;
these harmonic solutions occur for ε small
and ω close to 1 (the frequency of the so-
lutions when ε = 0). Since the problem
contains two parameters (ε and ω) and
we are limited to one-parameter methods,
it is necessary to express the statement
‘‘ω is close to 1’’ in terms of the pertur-
bation parameter ε. (A study using two
independent parameters would uncover
the phenomenon of ‘‘resonance horns’’
or ‘‘resonance tongues.’’ See Murdock,
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(1999), Sec. 4.5.) It turns out that an ef-
ficient way to do so is to write

ω2 = 1 + εβ, (36)

where β is a new parameter that is
considered fixed (not small). With Eq. (36),
the Eq. (35) can have one or more isolated
periodic solutions with unknown initial
conditions (a(ε), b(ε)). (We can no longer
assume b = 0.) On the other hand, the
frequency of the solution this time is not
unknown but equals ω. So the Lindstedt
method undergoes another modification
dictated by the dynamics: u, a, and b
are expanded in ε and solved recursively,
choosing the coefficients of a and b
to eliminate secular terms from u. In
contrast with the previous cases, there
is no accumulating phase error since the
frequency is known, and the perturbation
approximations are uniformly valid for all
time.

2.3
Averaging Method for Single-Frequency
Systems

All of the systems discussed in the previous
section, and a great many others, can be
expressed in periodic standard form,

ẋ = εf (x, t, ε), (37)

where x = (x1, . . . , xn) ∈ Rn and where
f is 2π -periodic in t. The solutions of
Eq. (37) may be approximated by the
method of averaging, which not only lo-
cates the periodic solutions (and proves
their existence) but also determines their
stability or instability and approximates
the transient (nonperiodic) solutions. The
method of averaging has been rediscov-
ered many times and exists (with slight
variations) under a variety of names, in-
cluding: method of Van der Pol; method

of Krylov–Bogoliubov–Mitropolski (KBM
method); method of slowly varying am-
plitude and phase; stroboscopic method;
Struble’s method; Von Zeipel’s method
(in the Hamiltonian case); method of Lie
series or Lie transforms. Some of the dif-
ferences in these ‘‘methods’’ pertain to
how the original system is put into peri-
odic standard form, and others to details
about how the near-identity transforma-
tions (described below) are handled.

To illustrate how a system may be put
into periodic standard form, consider the
Van der Pol equation (34), or, written as a
system,

u̇ = v,

v̇ = −u + ε(1 − u2)v. (38)

Rotating polar coordinates (r, ϕ) may
be introduced by u = r cos(ϕ − t), v =
r sin(ϕ − t), giving

ṙ = ε(1 − r2 cos2(ϕ − t))r sin2(ϕ − t),

ϕ̇ = ε(1 − r2 cos2(ϕ − t))

× sin(ϕ − t) cos(ϕ − t), (39)

which is in periodic standard form with
x = (r, ϕ). The same result may be
achieved by seeking a solution for Eq. (34)
by variation of parameters, in the form
u = r cos(ϕ − t) where r and ϕ are vari-
ables, and imposing the requirement that
u̇ = r sin(ϕ − t); the motivation for these
choices is that with r and ϕ constant, these
solve Eq. (34) for ε = 0. The transforma-
tion to periodic standard form is merely a
change of coordinates, not an assumption
about the nature of the solutions.

In its crudest form, the method of
averaging simply consists in replacing
Eq. (37) by

ż = εf (z), (40)
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where

f (z) = 1

2π

∫ 2π

0
f (z, t, 0) dt. (41)

System (40) is easier to solve than
Eq. (37) because it is autonomous. The
form of Eq. (40) can be motivated by
the fact that for small ε, x in Eq. (37)
is slowly varying and therefore nearly
constant over one period; therefore, to
a first approximation we might hold x
constant while integrating over one period
in Eq. (37) to find the ‘‘average’’ influence
due to f. But this sort of motivation
gives no idea how to estimate the error
or to extend the method to higher-order
approximations. A much better procedure
is to return to Eq. (37) and perform a
near-identity change of variables of the
form

x = y + εu1(y, t, ε), (42)

where u is a periodic function of t, which is
to be determined so that the transformed
equation has the form

ẏ = εg1(y) + ε2ĝ(y, t, ε) (43)

where g1 is independent of t. It turns
out that such a transformation is possible
only if we take g1 = f ; by doing so,
Eq. (40) can be obtained from Eq. (43)
simply by deleting the ε2 term. When
it is formulated in this way, the entire
method of average is seen to consist
of nothing but coordinate changes (first
into periodic standard form, then into
form (43)), followed by truncation; it is
only the truncation that introduces error,
and this error can be estimated using
Gronwall’s inequality. It is also clear how
to proceed to higher orders; simply replace
Eq. (42) by

x = y + εu1(y, t, ε) + · · · + εkuk(y, t, ε)

(44)

and Eq. (43) by

ẏ = εg1(y) + · · · + εkgk(y)

+ εk+1ĝ(y, t, ε); (45)

the averaged equations are obtained by
deleting ĝ. It is of course necessary to
determine the ui and gi recursively in
such a way that the ui are periodic
and the gi are independent of t; this
is where the technical details of var-
ious versions of averaging come into
play.

The final conclusion of the method of
averaging is that if Eq. (45) is truncated
to order εk and solved, and the solutions
are put back into the transformation (44),
the resulting approximate solutions of
Eq. (37) will differ from the exact solutions
(with the same initial condition) by O(εk)

during a time interval of length O(1/ε).
Since the error is of the same order as
the last term in Eq. (44), this term can
be omitted when the solution of Eq. (45)
is inserted. A recent variation in the
method omits the last term of Eq. (44)
altogether, with a change in the form
of Eq. (45); the arguments are harder,
and the result is the same in the case
of smooth ordinary differential equations,
but it is much more widely applicable, for
instance, to partial differential equations.
See Ellison et al. (1990) and the work of
A. Ben Lemlih cited there. For additional
information about the use of averaging in
partial differential equations, see Verhulst
(1999).

As for regular perturbation theory, under
special conditions it is possible to obtain
results on half-infinite or infinite intervals
of time. See Sanders and Verhulst (1985)
for the Sanchez-Palencia theorem (for so-
lutions approaching a sink) and Murdock
(1996) for shadowing.
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2.4
Multifrequency Systems and Hamiltonian
Systems

Oscillatory problems that cannot be put
into periodic standard form can often be
put into the following angular standard
form:

ṙ = εf (r, θ, ε),

θ̇ = 
(r) + εg(r, θ, ε), (46)

where r = (r1, . . . , rn) is a vector of
amplitudes and θ = (θ1, . . . , θm) a vector
of angles (so that f and g are periodic in
each θi with period 2π ). This form includes
the periodic standard form, by taking
m = 1 and θ̇ = 1. The ‘‘naive’’ method of
averaging for Eq. (46) would be to replace f
and g by their averages over θ , for instance

f (r) = 1

(2π)m

∫ 2π

0
· · ·

∫ 2π

0

f (r, θ, 0) dθ1 · · · dθm. (47)

To justify this process, and to extend the
method to higher order, one tries (as in
the method of averaging) to make a near-
identity change of variables (r, θ) → (ρ, ϕ)

that will render the system independent
of θ up through a given order k in ε.
However, one encounters at once the
famous difficulty of ‘‘small divisors,’’
which make the existence of such a
transformation doubtful. If f is expanded
in a convergent multiple Fourier series

f (r, θ, 0) =
∑
ν

aν(r)e
i(ν1θ1+···+νmθm),

(48)

then the transformation to averaged form
necessarily involves the series∑

ν �=0

aν(r)

i(ν1
1(r) + · · · + νm
m(r))

× ei(ν1θ1+···+νmθm), (49)

which may not converge because the de-
nominators i(ν1θ1 + · · · + νmθm) may be
small (or even zero), causing the coeffi-
cients to become large. It is of no use at
this point to say that ‘‘perturbation theory
is not concerned with the convergence of
series’’, since the series in question are
not being used for approximation, but to
prove the existence of a transformation
that is needed in order to justify a method.

Some preliminary progress can be made
by considering the case in which the series
(48), and hence Eq. (49), are finite. In
this case, convergence difficulties cannot
arise, but there is still the difficulty
that for some r one or more of the
denominators of Eq. (49) may become
zero. Since 
i(r) are the frequencies of the
free oscillations (ε = 0) of Eq. (46), we see
that averaging must fail when there exists
a resonance relationship among these free
frequencies (more precisely, when there
exists a resonance relationship defined by
an integer vector ν for which aν �= 0).
In general, for each ν there will be a
manifold of r, called a resonance surface,
for which the resonance relation defined
by ν holds. On (or near) any such surface
it is not permissible to average overall
angles θ , although it may be possible to
average over a subset of these angles or
over certain integral linear combinations
of them.

Results beyond these have been obtained
in the important special case of Hamil-
tonian systems; the Kolmogorov–Arnol’d–
Moser (or KAM) theorem and the Nekhoro-
shev theorem are the high point of modern
perturbation theory and together give the
definitive answer to the problem of the
stability (in the sense of Laplace) of the
(idealized Newtonian) solar system, with
which this article began. Consider a sys-
tem defined by a Hamiltonian function of
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the form

H(r, θ, ε) = H0(r) + εH1(r, θ)

+ ε2H2(r, θ) + · · · , (50)

where r and θ are as before except that
m = n. Written in the form (46), this
system is

ṙ = ε
∂H1

∂θ
+ · · · ,

θ̇ = −∂H0

∂r
− ε

∂H1

∂r
+ · · · . (51)

Since H1 is assumed to be periodic
in the components of θ , it may be
expanded in a multiple Fourier series
like Eq. (48); differentiating with respect
to any component of θ then eliminates the
constant term (a0(r), which is the average).
It follows that ∂H1/∂θ has zero average,
so that the (naive) first-order averaged
equation for r becomes

ṙ ∼= 0. (52)

This suggests that the motion is oscil-
latory with nearly constant amplitudes; if
this is true, the solar system (and all other
systems having the same general form)
will be stable (in the sense of Laplace).
Of course, the argument we have given
does not prove the result, unless the small-
divisor problem can be overcome in this
situation. This is exactly what the KAM and
Nekhoroshev theorems accomplish. The
KAM theorem states that (if a certain deter-
minant does not vanish) the great majority
of initial conditions will lead to motion
on an invariant torus close to a torus
r = constant. The Nekhoroshev theorem
states that even for those initial conditions
that do not lie on invariant tori, the drift
in r (called Arnol’d diffusion) takes place
exponentially slowly (as ε → 0). (Notice
that n-dimensional tori in 2n-dimensional

space do not have an inside, so the pres-
ence of many such invariant tori does not
prevent other solutions from slowly drift-
ing off to infinity.) For details see Lochak
and Meunier (1988).

In all applications of averaging and re-
lated methods to Hamiltonian systems,
it is necessary to have a means of han-
dling near-identity transformations that
preserve the Hamiltonian form of the
equations; that is, one needs to con-
struct near-identity transformations that
are canonical (or symplectic). Classically,
such transformations can be constructed
from their generating functions (in the sense
of Hamilton-Jacobi theory); averaging pro-
cedures carried out in this way are called
von Zeipel’s method. Currently, this ap-
proach can be regarded as obsolete. It
has been replaced by the method of Lie
transforms, in which near-identity canon-
ical transformations are generated as the
flows of Hamiltonian systems in which ε

takes the place of time. (The Lie method
is not limited to Hamiltonian systems,
but is particularly useful in this context.)
Algorithmic procedures for handling near-
identity transformations in this way have
been developed, and they are considerably
simpler than using generating functions.
See Nayfeh (1973), Sec. 5.7.

2.5
Multiple-Scale Method

The earliest perturbation problem, that of
planetary motion, illustrates the appeal
of the idea of multiple scales. A single
planet under the influence of Newtonian
gravitation would travel around the sun
in an elliptic orbit characterized by certain
quantities called the Keplerian elements (the
eccentricity, major axis, and certain angles
giving the position of the ellipse in space).
Since the actual (perturbed) motion of the
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planets fits this same pattern for long
periods of time, it is natural to describe
the perturbed motion as ‘‘elliptical motion
with slowly varying Keplerian elements.’’
A simpler example would be a decaying
oscillation of the form e−εt sin t, which
could be described as a periodic motion
with slowly decaying amplitude. Solutions
of nonlinear oscillations obtained by the
method of averaging frequently have this
form, where time appears both as t and as
εt, the latter representing slow variation;
sometimes other combinations such as ε2t
appear.

This leads to the question whether it
is possible to arrive at such solutions
more directly, by postulating the neces-
sary timescales in advance. The ‘‘method
of multiple scales’’ is the result of such
an approach, and is sometimes regarded
as the most flexible general method in
perturbation theory, since it is applica-
ble both to oscillatory problems (such
as those covered by averaging) and to
boundary layer problems (discussed be-
low). However, this very flexibility is also
its drawback, because the ‘‘method’’ exists
in an immense variety of ad hoc formu-
lations adapted to particular problems.
(See Nayfeh, (1973) for examples of many
of these variations.) There are two-scale
methods using fast time t and slow time
εt; two-scale methods using strained fast
time (ν0 + εν1 + ε2ν2 + · · ·)t (similar to
the strained time in the Lindstedt method)
and slow time εt; multiple-scale methods
using t, εt, ε2t, . . . , εnt; and methods us-
ing scales that are nonlinear functions of t.
The scales to be used must be selected
in advance by intuition or experience,
while in other methods (averaging and
matching) the required scales are gener-
ated automatically. Sometimes the length
of validity of a solution can be increased
by increasing the number of scales, but

(contrary to popular impression) this is by
no means always the case. Some problems
come with more than one timescale from
the beginning, for instance, problems that
contain a ‘‘slowly varying parameter’’ de-
pending on εt. It may seem natural to
treat such a system by the method of
multiple scales, but another possibility is
to introduce τ = εt as an additional in-
dependent variable subject to τ̇ = ε. In
summary, the popularity of multiple scales
results from its shorter calculations, but
this aside, other methods have greater
power.

The general outlines of the method are
as follows. Suppose the chosen timescales
are t, τ, σ with τ = εt, σ = ε2t. An approx-
imate solution is sought as a series taken
to a certain number of terms, such as

x0(t, τ, σ ) + εx1(t, τ, σ ) + ε2x2(t, τ, σ ).

(53)

In substituting Eq. (53) into the differen-
tial equations to be solved, the definitions
of the scales (such as τ = εt) are used,
so that ordinary derivatives with respect
to t are replaced by combinations of par-
tial derivatives with respect to the different
scales; thus

d

dt
= ∂

∂t
+ ε

∂

∂τ
+ ε2 ∂

∂σ
. (54)

From this point on (until the very end,
when τ and σ are again replaced by their
definitions), the separate timescales are
treated as independent variables. This has
the effect of changing ordinary differential
equations into partial differential equa-
tions that are highly underdetermined,
so that various free choices are possible
in expressing the solution. The point of
the method is now to make these choices
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skillfully so that the final series (53) is uni-
formly ordered (and, it is hoped, uniformly
valid) on the desired domain.

As an illustration, we return to the
Van der Pol equation (34) with initial
conditions u(0) = a, u̇(0) = 0. Choosing
timescales t and τ = εt, and writing the
solution as u ∼= u0(t, τ ) + εu1(t, τ ), one
finds recursively that (with subscripts
denoting partial derivatives) u0tt + u0 =
0 and u1tt + u1 = −2u0tτ − u2

0u0t. The
first equation gives u0(t, τ ) = A(τ ) cos t +
B(τ ) sin t, a modulated oscillation with
slowly varying coefficients. The solution
remains underdetermined, since there is
nothing here to fix A(τ ) and B(τ ). The
solution for u0 is now substituted into
the right-hand side of the differential
equation for u1, and A(τ ) and B(τ )

are chosen to eliminate resonant terms
so that the solution for u1 will remain
bounded. (This is similar to the way the
undetermined quantities are fixed in the
Lindstedt method.) The result is

u(t) ∼= u0(t, εt)

= 2a√
a2 + (4 − a2)e−εt

cos t. (55)

This is the same result (to first order) as
would be found by applying averaging to
Eq. (39), but it has been found without any
preliminary coordinate transformations.
On the other hand, the possibility of
constructing the solution depended on the
correct initial guess as to the timescales to
be used; the method of averaging generates
the needed timescales automatically. The
solution (55) exhibits oscillations tending
toward a limit cycle that is a simple
harmonic motion of amplitude 2. This
is qualitatively correct, but the motion
is not simple harmonic; carrying the
solution to higher orders will introduce
corrections.

2.6
Normal Forms

Suppose that the origin is a rest point for a
system ẋ = f (x), x ∈ Rn, and it is desired
to study solutions of the system near
this point. (Any rest point can be moved
to the origin by a shift of coordinates.)
The system can be expanded in a (not
necessarily convergent) series

ẋ = Ax + f2(x) + f3(x) + · · · , (56)

where A is a matrix, f2 consists of
homogeneous quadratic terms, and so
forth. The matrix A can be brought into real
canonical form by a change of coordinates
(or into Jordan canonical form, if one
is willing to allow complex variables and
keep track of the conditions guaranteeing
reality in the original variables). The
object of normal form theory is to
continue this simplification process into
the higher-order terms. This is usually
done recursively, one degree at a time, by
applying changes of coordinates that differ
from the identity by terms having the same
degree as the term to be simplified. This
is an example of a coordinate perturbation
(Sec. 1.2), since it is ‖x‖ that is small, not a
perturbation parameter. However, writing
x = εξ turns Eq. (56) into

ξ̇ = Aξ + εf2(ξ) + ε2f3(ξ) + · · · , (57)

which is an ordinary perturbation of a
linear problem.

When A is semisimple (diagonalizable
using complex numbers), it is possible
to bring all of the terms f2, f3, . . . (up to
any desired order) into a form that exhibits
symmetries determined by A. For instance,[

ẋ
ẏ

]
=

[
0 −1
1 0

] [
x
y

]

+ α1

(
x2 + y2

) [
x
y

]
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+ β1

(
x2 + y2

) [−y
x

]

+ α2

(
x2 + y2

)2
[

x
y

]

+ β2

(
x2 + y2

)2
[−y

x

]
+ · · · (58)

is the normal form for any system having
this 2 × 2 matrix for its linear part; all
terms of even degree have been removed,
and all remaining terms of odd degree are
symmetrical under rotation. Because of
this symmetry, the system is quite simple
in polar coordinates:

ṙ = α1r3 + α2r5 + · · · + αkr2k+1,

θ̇ = 1 + β1r2 + β2r4 + · · · + βkr2k. (59)

This is solvable by quadrature, and (even
without integration) the first nonzero αj

determines the stability of the origin. In
general, when A is semisimple the system
in normal form always gains enough
symmetry to reveal certain geometrical
structures called preserved foliations, and
frequently is solvable by quadrature. These
solutions have error estimates (due to
truncation) similar to those of the method
of averaging, to which the method of
normal forms is closely related.

When A is not semisimple (its Jordan
form has off-diagonal ones), the results of
normalization are not so easy to explain
or to use, because the nonlinear terms
acquire a symmetry different from that
of the linear term. Nevertheless, the
normal form in such cases has proven
essential to the study of such problems as
the Takens–Bogdanov and Hamiltonian
Hopf bifurcations. A full exposition of
normal form theory is given in Murdock
(2003). Popular expositions covering only
the semisimple case are Nayfeh (1993)
and Kahn and Zarmi (1998).

2.7
Perturbation of Stable Manifolds; Melnikov
Functions

With the steadily increasing importance
of nonlinear phenomena such as chaos
and strange attractors, finding solutions
of specific initial value problems often be-
comes less important than finding families
(manifolds) of solutions characterized by
their qualitative behavior. Many of these
problems are accessible by means of per-
turbation theory. We will briefly describe
one example. If a dynamical system has a
rest point of saddle type, there will exist
a stable manifold and an unstable manifold
of the saddle point; the former consists of
all points that approach the saddle point
as t → ∞, the latter of points approaching
the saddle as t → −∞. In some cases, the
stable and unstable manifold will coincide;
that is, points that approach the saddle in
the distant future also emerged from it in
the distant past. (The simplest case occurs
in the plane when the stable and unsta-
ble manifolds form a figure-eight pattern
with the saddle at the crossing point.) If
such a system is perturbed, it is important
to decide whether the stable and unstable
manifolds separate, or continue to inter-
sect; and if they intersect, whether they are
transverse. (The latter case leads to chaotic
motion.) The criterion that in many cases
decides between these alternatives is based
on the Melnikov function; if this function
has simple zeroes, the manifolds will in-
tersect transversely and there will be a
chaotic region. The Melnikov function is
an integral over the homoclinic orbit of
the normal component of the perturba-
tion; the form of the integral is determined
by applying regular perturbation methods
to the solutions in the stable and unsta-
ble manifolds and measuring the distance



404 Perturbation Methods

between the approximate solutions. For
details see Wiggins (2003).

3
Initial and Boundary Layers

The problems considered in Secs. 2.2–2.5
are regular perturbation problems when
considered on a fixed interval of time, but
become singular when considered on an
expanding interval such as 0 ≤ t ≤ 1/ε.
We now turn to problems that are singular
even on a fixed interval. It is not easy
to solve these problems even numerically,
because, for sufficiently small ε, they are
what numerical analysts call ‘‘stiff’’. Each
of these problems has (in some coordinate
system) a small parameter multiplying a
(highest order) derivative.

3.1
Multiple-Scale Method for Initial Layer
Problems

As a first example, we consider initial value
problems of the form

εü + b(t)u̇ + c(t)u = 0,

u(0) = α,

u̇(0) = β

ε
+ γ. (60)

One may think, for instance, of an object
of small mass ε subjected to a time-
dependent restoring force and friction;
at time zero, the position and velocity
have just reached α and γ when the
object is subjected to an impulse imparting
momentum β, increasing the velocity by
an amount β/ε, which is large since ε is
small. We will use this example to explain
two methods that are applicable to many
problems in which a small parameter
multiplies the highest derivative.

In approaching any perturbation prob-
lem, one first tries to understand the case
ε = 0, but here it does not make sense
to set ε = 0. On one hand, the differen-
tial equation drops from second order to
first, and can no longer accept two ini-
tial conditions; on the other hand, the
second initial condition becomes infinite.
Progress can be made, however, by intro-
ducing the ‘‘stretched’’ time variable

τ = t

ε
. (61)

Upon substituting Eq. (61) into Eq. (60)
and writing ′ = d/dτ , we obtain

u′′ + b(ετ)u′ + εc(ετ)u = 0,

u(0) = α,

u′(0) = β + εγ. (62)

This problem is regular (for a fixed
interval of τ ) and can be solved readily.
For a first approximation, it suffices to set
ε = 0 in Eq. (62) to obtain u′′ + b0u′ = 0
with b0 = b(0); the solution is

ui
0 = − β

b0
e−b0τ + α + β

b0
, (63)

called the first-order inner solution. (Higher-
order approximations can be found by
substituting a perturbation series ui

0 +
εui

1 + · · · into Eq. (62).) The name ‘‘inner
solution’’ comes from the fact that Eq. (63)
is only uniformly valid on an interval
such as 0 ≤ τ ≤ 1, which translates into
0 ≤ t ≤ ε in the original time variable; this
is a narrow ‘‘inner region’’ close to the
initial conditions. It is necessary somehow
to extend this to a solution valid for a fixed
interval of t. This is of course equivalent
to an expanding interval of τ , and one
might attempt to solve Eq. (62) on such an
expanding interval by previously discussed
methods. The equation cannot be put in
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a form suitable for averaging. However,
the method of multiple scales is flexible
enough to be adapted to this situation.
One takes as timescales τ and t, and seeks
a solution in the form

u ∼= {ui
0(τ ) + ucor

0 (t)} + ε{ui
1(τ )

+ ucor
1 (t)} + · · · . (64)

(We could have taken u0(τ, t) + εu1(τ, t) +
· · ·, but the solution turns out to be the
sum of the previously calculated ui and
a ‘‘correction’’ ucor , so it is convenient
to postulate this form initially.) One can
differentiate Eq. (64) with respect to τ us-
ing Eq. (61) and substitute it into Eq. (62),
or equivalently differentiate with respect
to t and substitute into Eq. (60). Assum-
ing that ucor(0) = 0 (since the inner part
ui should suffice initially), one finds that
ui must satisfy Eq. (62) as expected, and
that ucor satisfies a first-order differential
equation together with the assumed ini-
tial condition ucor(0) = 0; thus, ucor is fully
determined. At the first order, ucor

0 in fact
satisfies the differential equation obtained
from Eq. (60) by setting ε = 0; this is the
very equation that we initially discarded as
unlikely to be meaningful. Upon solving
this equation (with zero initial conditions)
and adding the result to ui

0 we obtain the
composite solution

uc
0 = ui

0 + ucor
0 = − β

b0
e−b0t/ε

+
(

α + β

b0

)
exp

[
−

∫ t

0

c(s)

b(s)
ds

]
. (65)

This solution is uniformly valid on any
fixed interval of t.

3.2
Matching for Initial Layer Problems

Although the method of multiple scales
is successful for problems of this type,
it is not used as widely as the method

of matched asymptotic expansions, probably
because multiple scales require that the
choices of gauges and scales be made in
advance, whereas matching allows for the
discovery of the correct gauges and scales
as one proceeds. (Recall that gauges are
the functions δi(ε), usually just powers
εi, that multiply successive terms of a
perturbation series; scales are the stretched
time or space variables used.) To apply
the matching method to Eq. (60), begin
with the first-order inner solution (63) that
is valid near the origin. Assume that at
some distance from the origin, a good first
approximation should be given by setting
ε = 0 in Eq. (60) and discarding the initial
conditions (which we have already seen do
not make sense with ε = 0); the result is

uo
0 = A exp

[
−

∫ t

0

c(s)

b(s)
ds

]
, (66)

called the first-order outer solution. Since
we have discarded the initial conditions,
the quantity A in Eq. (66) remains unde-
termined at this point. At this point, one
compares the inner solution (63) with the
outer solution (66) in an effort to determine
the correct value of A so that these solu-
tions ‘‘match.’’ In the present instance,
the inner solution decays rapidly (assum-
ing b0 > 0) to α + β/b0, while the outer
solution has A as its initial value (at t = 0).
One might try to determine where the ‘‘ini-
tial layer’’ ends, and choose A so that ui

0
and uo

0 agree at that point; but in fact it is
sufficient to set A = α + β/b0 on the as-
sumption that the inner solution reaches
this value at a point close enough to t = 0
to allow taking it as the initial condition
for the outer solution. Finally, we note
that adding the inner and outer solutions
would duplicate the quantity α + β/b0 with
which one ends and the other begins, so
we subtract this ‘‘common part’’ uio of the
inner and outer solutions to obtain the
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composite solution

uc = ui + uo − uio, (67)

which is equal to the result (65) obtained
by multiple scales.

In the last paragraph, we have cobbled
together the inner and outer solution in
a very ad hoc manner. In fact, several
systematic procedures exist for carrying
out the matching of ui and uo to any
order and extracting the common part
uio. The most common procedure consists
of what are sometimes called the Van
Dyke matching rules, details of which will
be given below. Although this procedure
is simple to use, it does not always
lead to correct results, in particular,
when it is necessary to use logarithmic
gauges. The other methods, matching in
an intermediate variable and matching in an
overlap domain are too lengthy to explain
here (see Lagerstrom (1988)), but give
better results in difficult cases. None of
these methods has a rigorous justification
as a method, although it is often possible to
justify the results for a particular problem
or class of problems. Occasionally, one
encounters problems in which the inner
and outer solutions cannot be matched.
These cases sometimes require a ‘‘triple
deck,’’ that is, a third (or even fourth)
layer timescale. In other cases, there
does not exist a computable asymptotic
approximation to the exact solution.

To explain the Van Dyke matching rules,
we will first assume that the inner and
outer solutions ui(τ, ε) and uo(t, ε) have
been computed to some order εk. In the
problem we have been studying, the outer
solution contains undetermined constants
whose value must be determined, and the
inner solution contains none, but in more
general problems to be considered below
there may be undetermined constants
in both. It is important to understand

that the inner and outer solutions are
naturally computed in such a way that ui

is ‘‘expanded in powers of ε with τ fixed’’
while uo is ‘‘expanded in powers of ε with
t fixed.’’ We are about to reexpand each
solution with the opposite variable fixed.
The first step is to express ui in the outer
variable t by setting τ = εt. The resulting
function of t and ε is then expanded in
powers of ε to order εk, holding t fixed.
This new expansion is called uio, the outer
expansion of the inner solution. Notice that
in computing uio we retain only the terms
of degree ≤ k, so that in effect part of ui

is discarded because it moves up to order
higher than k; the meaning of this is that
the discarded terms of ui are insignificant,
at the desired order of approximation,
in the outer region. The second step is
to express uo in the inner variable τ by
setting t = τ/ε, and expand the resulting
function of τ and ε in powers of ε to
order k holding τ constant. The result,
called uoi or the inner expansion of the
outer solution, contains those parts of uo

that are significant in the inner region
(to order k), arranged according to their
significance in the inner region. The third
step is to set uio = uoi and use this equation
to determine the unknown constants. The
rationale for this is that if the domains of
validity of the inner and outer regions
overlap, then, since the inner solution
is valid in the overlap, but the overlap
belongs to the outer region, uio, which
is the inner solution stripped of the part
that is insignificant in the outer region,
should be valid there; similarly, since the
outer solution is valid in the overlap, but
the overlap belongs to the inner region,
uoi should be valid there. Now in setting
uio = uoi it is not possible to carry out
the necessary computations unless both
are expressed in the same variable, so it
is necessary to choose either t or τ and
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express both sides in that variable before
attempting to determine the unknown
constants. The fourth step is to compute
the composite solution uc = ui + uo − uio.
At this stage, uio (which is equal to uoi) is
known as the common part of ui and uo;
it is subtracted because otherwise it would
be represented twice in the solution.

3.3
Slow–Fast Systems

The systems considered above, and many
others, can be put into the form

ẋ = f (x, y, ε),

εẏ = g(x, y, ε), (68)

with x ∈ Rn and y ∈ Rm, which is called
a slow–fast system. When ε = 0, the
second equation changes drastically, from
differential to algebraic; the motion is
confined to the set g(x, y) = 0, called the
slow manifold, or (when n = m = 1, which
we now assume for simplicity) the slow
curve. For ε �= 0 the entire (x, y) plane
is available, but (assuming ∂g/∂y < 0, in
which case we say the slow curve is stable)
any point moves rapidly toward the slow
curve and then slowly along it. These two
stages of the motion can be approximated
separately as inner and outer solutions and
then matched. To obtain the inner solution
(the rapid part), one rescales time by
setting t = ετ and obtains (with ′ = d/dτ )

x′ = εf (x, y, ε),

y′ = g(x, y, ε), (69)

in which ε no longer multiplies a deriva-
tive. This problem is regular (Sec. 2.1) on
finite intervals of τ , which are short in-
tervals of t. For details of the matching
see Murdock (1999) Sec. 7.7 and Smith
(1985) Chs. 6, 7.

An interesting case arises when the slow
curve is S shaped, with the upper and lower

branches stable and the middle section (the
doubled-over part) unstable. A point can
move along a stable branch until it reaches
a vertical tangent point, then ‘‘fall off’’ and
move rapidly to the other stable branch,
then move along that branch to the other
vertical tangent point and ‘‘fall off’’ the
other way, leading to a cyclic motion called
a relaxation oscillation. In a further, very
unusual scenario, the point may actually
turn the corner at the vertical tangent
point and follow the unstable branch for
some distance before ‘‘falling.’’ This rather
recently discovered phenomenon is called
a canard. The explanation of canards is
that several timescales become involved;
the solution is actually ‘‘falling’’ away from
the unstable branch all the time, but doing
so at a rate that is slow even compared to
the already slow motion along the branch.
For relaxation oscillations and canards,
see Grasman (1987).

Recently, an approach to slow–fast
systems (in any number of dimensions)
called geometric singular perturbation theory
has come into prominence. Initiated by
Fenichel, the idea is to prove that Eq. (68)
for ε near zero has an actual invariant
manifold close to the slow manifold
defined above, and that solutions off
this manifold are (in the stable case)
asymptotic to solutions in the manifold,
with asymptotic phase. The emphasis is
on a clear geometric description of the
motion rather than on computation, but
computational aspects are included. A
good introduction is Jones (1994).

3.4
Boundary Layer Problems

Problems in which a small parame-
ter multiplies the highest derivative are
encountered among boundary value prob-
lems at least as frequently as among initial
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value problems. Since the basic ideas have
been covered in the previous sections, it
is only necessary to point out the differ-
ences that arise in the boundary value
case. Either the multiple-scale or match-
ing methods may be used; we will use
matching. The method will be illustrated
here with an ordinary differential equa-
tion; a partial differential equation will be
treated in Sec. 3.5.

Consider the problem

εy′′ + b(x)y′ + c(x)y = 0,

y(0) = α,

y(1) = β (70)

on the interval 0 ≤ x ≤ 1. The differential
equation here is the same as Eq. (60), only
the independent variable is a space variable
rather than time in view of the usual
applications. If b(x) is positive throughout
0 < x < 1, there will be a boundary layer
at the left endpoint x = 0; if negative,
the boundary layer will be at the right
endpoint; and if b(x) changes sign, there
may be internal transition layers as well.
We will consider the former case. To the
first order, the outer solution yo will satisfy
the first-order equation b(x)y′ + c(x)y = 0
obtained by setting ε = 0 in Eq. (70); it
will also satisfy the right-hand boundary
condition y(1) = β. Therefore, the outer
solution is completely determined. The
first-order inner solution yi will satisfy
the equation d2y/dξ2 + b0y = 0 with b0 =
b(0), obtained by substituting the stretched
variable ξ = x/ε into Eq. (70) and setting
ε = 0; it will also satisfy the left-hand
boundary condition y(0) = α. Since this
is a second-order equation with only
one boundary condition, it will contain
an undetermined constant that must be
identified by matching the inner and
outer solutions. The differential equations
satisfied by the inner and outer solutions

are the same as in the case of Eq. (60),
the only difference being that this time the
constant that must be fixed by matching
belongs to the inner solution rather than
the outer.

3.5
WKB Method

There are a great variety of problems that
are more degenerate than the one we have
just discussed, which can exhibit a wide
range of exotic behaviors. These include
internal layers, in which a stretched
variable such as ξ = (x − x0)/ε must be
introduced around a point x0 in the interior
of the domain; triple decks, in which
two stretched variables such as x/ε and
x/ε2 must be introduced at one end;
and problems in which the order of the
differential equation drops by more than
one. The simplest example of the latter
type is

ε2y′′ + a(x)y = 0. (71)

This problem is usually addressed by
a technique called the WKB or WKBJ
method. This method is rather different in
spirit than the others we have discussed,
because it depends heavily on the linear-
ity of the perturbed problem. Rather than
pose initial or boundary value problems,
one finds approximations for two linearly
independent solutions of the linear equa-
tion (71) on the whole real line. The general
solution then consists of the linear combi-
nations of these two. If a(x) = k2(x) > 0,
these approximate solutions are

y(1) ∼= 1√
k(x)

cos
1

ε

∫
k(x) dx (72)

and

y(2) ∼= 1√
k(x)

sin
1

ε

∫
k(x) dx. (73)



Perturbation Methods 409

If a(x) = −k2(x) < 0 the two solutions
are

y(1),(2) ∼= 1√
k(x)

exp
1

ε

∫
±k(x) dx. (74)

If a(x) changes sign, one has a difficult
situation called a turning point problem.
This can be addressed in various ways
by matching solutions of these two types
or by using Airy functions. The latter
are solutions of the differential equation
y′′ + xy = 0, which is the simplest problem
with a turning point at the origin. These
Airy functions can be considered as known
(they can be expressed using Bessel
functions of order 1/3), and solutions
to more general turning point problems
can be expressed in terms of them.
For an introduction to turning point
problems see Lakin and Sanchez (1970),
Chapter 2, and for theory see Wasow
(1976), Chapter 8.

3.6
Fluid Flow

We will conclude this section with a brief
discussion of the problem of fluid flow
past a flat plate because of its historical
importance (see the Introduction) and
because it illustrates several aspects of
perturbation theory that we have avoided
so far: the use of perturbation theory
for partial differential equations, and the
need to combine undetermined scales
with undetermined gauges. The classic
reference for this material is Van Dyke
(1975). Consider a plane fluid flow in
the upper half plane, with a ‘‘flat plate’’
occupying the interval 0 ≤ x ≤ 1 on the
x-axis; that is, the fluid will adhere to this
interval, but not to the rest of the x-axis.
The stream function ψ(x, y) of such a fluid

will satisfy

ε(ψxxxx + 2ψxxyy + ψyyyy)

− ψy(ψxxx + ψxyy)

+ ψx(ψxxy + ψyyy) = 0 (75)

with ψ(x, 0) = 0 for −∞ < x < ∞, ψy

(x, 0) = 0 for 0 ≤ x ≤ 1, and ψ(x, y) → y
as x2 + y2 → ∞. The latter condition
describes the flow away from the plate,
and this in fact gives the leading order
outer solution as

ψo(x, y) = y. (76)

To find an inner solution, we stretch y
by an undetermined scale factor,

η = y

µ(ε)
, (77)

and expand the inner solution using
undetermined gauges, giving (to first
order)

ψ i = δ(ε)�(x, η). (78)

Substituting this into Eq. (75) and dis-
carding terms that are clearly of higher-
order yields

ε

µ
�ηηηη + δ

[
�x�ηηη − �η�xηη

] = 0.

(79)

The relative significance of ε/µ and δ has
not yet been determined, but if either of
them were dominant, the other term would
drop out of Eq. (79) to first order, and the
resulting solution would be too simple to
capture the behavior of the problem. So we
must set

ε

µ
= δ (80)

and conclude that the first-order inner
solution satisfies

�ηηηη + �x�ηηη − �η�xηη = 0. (81)
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It is not possible to solve Eq. (81) in
closed form, but it is possible to express
the solution as

�(x, η) = √
2x f

(
η√
2x

)
, (82)

where f is the solution of the ordinary
differential equation f ′′′ + ff ′′ = 0 with
f (0) = 0, f ′(0) = 0, and f ′(∞) = 1. In
attempting to match the inner and outer
solutions, it is discovered that this is only
possible if δ = µ. Together with Eq. (8)
this finally fixes the undetermined scales
and gauges as

δ = µ = √
ε. (83)

Upon attempting to continue the so-
lution to higher orders, obstacles are
encountered that can only be overcome by
introducing triple decks and other inno-
vations. See Sychev (1998) and Rothmayer
and Smith (1998).

4
Perturbations of Matrices and Spectra

In this section, we address the question: if

A(ε) = A0 + εA1 + · · · (84)

is a matrix or linear operator depending
on a small parameter, and the spectrum
of A0 is known, can we determine the
spectrum of A(ε) for small ε? For the case
of a matrix, the spectrum is simply the
set of eigenvalues (values of λ for which
Av = λv for some nonzero column vector
v called an eigenvector). More generally, the
spectrum is defined as the set of λ for
which A − λI is not invertible; for linear
transformations on infinite-dimensional
spaces (such as Hilbert or Banach spaces),
this need not imply the existence of an
eigenvector. Our attention here will be
focused on the matrix case, but many
of the procedures (excluding those that

involve the determinant or the Jordan
normal form) are applicable as well to
any operators whose spectrum consists
of eigenvalues. The classical reference
for the general infinite dimensional case
is Kato (1966). For matrices that are
not diagonalizable, one can (and should)
ask not only for the eigenvalues and
eigenvectors but also for generalized
eigenvectors v for which (A − λI)kv = 0
for some integer k > 1.

The most direct approach (which we do
not recommend) to finding the eigenval-
ues of Eq. (84) in the matrix case would be
to examine the characteristic equation

P(λ, ε) = det(A(ε) − λI) = 0, (85)

having the eigenvalues as roots. There are
standard perturbation methods for finding
the roots of polynomials (see Murdock
(1999) chapter 1), the simplest of which
is to substitute

λ(ε) = λ0 + ελ1 + · · · (86)

into Eq. (85) and solve recursively for λi.
This method works if λ0 is a simple
root of P(λ, 0) = 0; that is, it will work
if A0 has distinct eigenvalues. If there
are repeated eigenvalues, then, in general,
it is necessary to replace Eq. (86) with
a fractional power series involving gauges
δi(ε) = εi/q for some integer q that is most
readily determined by using Newton’s
diagram. Although these are the best
available perturbation methods for finding
roots of general polynomials, they have
two drawbacks in the case of eigenvalues:
if the matrices are large, it is difficult
to compute the characteristic polynomial;
and, more importantly, these methods do
not take into account the special features
of eigenvalue problems. For instance, if
A(ε) is a symmetric matrix, then its
eigenvalues will be real, and fractional
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powers will not be required (even if A0 has
repeated eigenvalues). But the fact that
A is symmetric is lost in passing to the
characteristic polynomial, and one cannot
take advantage of these facts.

For these reasons, it is best to seek not
only the eigenvalues, but also at the same
time the eigenvectors that go with them.
The general procedure (which must be
refined in particular situations) is to seek
solutions of

A(ε)v(ε) = λ(ε)v(ε) (87)

in the form

λ(ε) = λ0 + ελ1 + ε2λ2 + · · · ,
v(ε) = v0 + εv1 + ε2v2 + · · · . (88)

In the first 2 orders, the resulting
equations are

(A0 − λ0I)v0 = 0,

(A0 − λ0I)v1 = (λ1I − A1)v0. (89)

We will now discuss how to solve Eq. (89)
under various circumstances.

The simplest case occurs if A0 is real and
symmetric (or complex and Hermitian),
and also has distinct eigenvalues. In this
case, the first equation of (89) can be
solved simply by choosing an eigenvector
v0 for each eigenvalue λ0 of A0. It is
convenient to normalize v0 to have length
one, that is, (v0, v0) = 1 where (·, ·) is
the inner (or ‘‘dot’’) product. Now we
fix a choice of λ0 and v0 and insert
these into the second equation of Eq. (89).
The next step is to choose λ1 so that
the right-hand side lies in the image of
A0 − λ0I; once this is accomplished, it
is possible to solve for v1. To determine
λ1, we rely upon special properties of the
eigenvectors of a symmetric matrix; that
is, they are orthogonal (with respect to
the inner product). Thus, there exists an

orthogonal basis of eigenvectors in which
A0 is diagonal; examining A0 − λ0I in this
basis, we see that its kernel (or null space)
is spanned by v0 and its image (or range)
is spanned by the rest of the eigenvectors.
Therefore, the image is perpendicular to
the kernel. It follows that (λ1I − A1)v0 will
lie in the image of A0 − λ0I if and only if
its orthogonal projection onto v0 is zero,
that is, if and only if (λ1v0 − A1v0, v0) = 0,
or, using (v0, v0) = 1,

λ1 = (A1v0, v0). (90)

It is not necessary to find v1 unless it is
desired to go on to the next stage and find
λ2. (There is a close similarity between
these steps and those of the Lindstedt
method, Sec. 2.2, in which each term in
the frequency expansion is determined to
make the next equation solvable.)

If A0 has distinct eigenvalues but is not
symmetric, most of the last paragraph still
applies, but the eigenvectors of A0 need
not be orthogonal. The vector space still
decomposes as a direct sum of the image
and kernel of A0 − λ0I, but the inner
product can no longer be used to effect the
decomposition; λ1 can still be determined
but cannot be written in the form (90).

If A0 does not have distinct eigenvalues,
the situation can become quite compli-
cated. First, suppose A(ε) is symmetric
for all ε, so that all Ai are symmetric.
In this case, every eigenvalue has a ‘‘full
set’’ of eigenvectors (as many linearly in-
dependent eigenvectors as its algebraic
multiplicity). However, suppose that A0
has an eigenvalue λ0 of multiplicity two,
with eigenvectors w and z. It is likely that
for ε �= 0 the eigenvalue λ0 splits into two
distinct eigenvalues having separate eigen-
vectors. In this case, it is not possible to
choose an arbitrary eigenvector v0 from the
plane of z and w to use in the second equa-
tion of (89); only the limiting positions (as
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ε → 0) of the two eigenvectors for ε �= 0
are suitable candidates for v0. Since these
are unknown in advance, one must put
v0 = az + bw (for unknown real a and b)
into Eq. (89), then find two choices of a,
b, and λ1 that make the second equation
solvable. It also may happen that the de-
generacy cannot be resolved at this stage
but must be carried forward to higher
stages before the eigenvalues split; or, of
course, they may never split.

If A(ε) is not symmetric, and hence not
necessarily diagonalizable, the possibili-
ties become even worse. The example

A(ε) =
[

1 ε

0 1

]
(91)

shows that a full set of eigenvectors may
exist when ε = 0 but not for ε �= 0; the
contrary case (diagonalizable for ε �= 0 but
not for ε = 0) is exhibited by

A(ε) =
[

1 1
0 1 + ε

]
. (92)

These examples show that the Jordan
normal form of A(ε) is not in general a
continuous function of ε.

There is a normal form method, closely
related to that of Sec. 2.6, that is successful
in all cases. It consists in simplifying the
terms of Eq. (84) by applying successive
coordinate transformations of the form I +
εkSk for k = 1, 2, . . . or a single coordinate
transformation of the form T(ε) = I +
εT1 + ε2T2 + · · ·; the matrices Sk or Tk
are determined recursively. It is usually
assumed that A0 is in Jordan canonical
form, hence is diagonal if possible. If A0

is diagonal and A(ε) is diagonalizable, the
normalized Ak will be diagonal for k ≥ 1,
so that Eq. (84) will give the asymptotic
expansion of the eigenvalues and T(ε) the
asymptotic expansion of all the eigenvalues
(as its columns). In more complicated
cases, the normalized series Eq. (84) will

belong to a class of matrices called the
Arnol’d unfolding of A0, and although it
will not always be in Jordan form, it will
be in the simplest form compatible with
smooth dependence on ε. Still further
simplifications (the metanormal form) can
be obtained using fractional powers of
ε. This theory is described in Murdock
(2003), Chapter 3.

Glossary

Asymptotic approximation: An approxi-
mate solution to a perturbation problem
that increases in accuracy at a known rate
as the perturbation parameter approaches
zero.

Asymptotic Series: A series, the partial
sums of which are asymptotic approxi-
mations of some function to successively
higher order.

Averaging: A method of constructing
asymptotic approximations to oscillatory
problems. In the simplest case, it involves
replacing periodic functions by their av-
erages to simplify the equations to be
solved.

Bifurcation: Any change in the number or
qualitative character (such as stability) of
the solutions to an equation as a parameter
is varied.

Boundary Layer: A transition layer located
near the boundary of a region where
boundary values are imposed.

Composite Solution: A solution uniformly
valid on a certain domain, created by
matching an inner solution and an outer
solution each valid on part of the domain.

Gauge: A monotonic function of a pertur-
bation parameter used to express the order
of a term in an asymptotic series.
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Generalized Series: An asymptotic series
of the form

∑
δi(ε)ui(x, ε) in which the

perturbation parameter ε appears both in
the gauges and in the coefficients. See
Poincaré Series.

Initial Layer: A transition layer located near
the point at which an initial value is
prescribed.

Inner Solution: An approximate solution
uniformly valid within a transition layer.

Lie Series: A means of representing a
near-identity transformation by a function
called a generator. There are several
forms; in Deprit’s form, if W(x, ε) is the
generator, then the solution of dx/dε =
W(x, ε) with x(0) = y for small ε is a
near-identity transformation of the form
x = y + εu1(y) + · · ·.
Lindstedt Method: A method of approx-
imating periodic solutions whose fre-
quency varies with the perturbation pa-
rameter by using a scaled time variable.

Matching: Any of several methods for
choosing the arbitrary constants in an
inner and an outer solution so that they
both approximate the same exact solution.

Multiple Scales: The simultaneous use of
two or more variables having the same
physical significance (for instance, time
or distance) but proceeding at different
‘‘rates’’ (in terms of the small parameter),
for instance, ‘‘normal time’’ t and ‘‘slow
time’’ τ = εt. The variables are treated as
if they were independent during part of
the discussion, but at the end are reduced
to a single variable again.

Outer Solution: An approximate solution
uniformly valid in a region away from a
transition layer.

Overlap Domain: A region in which both
an inner and an outer approximation are

valid, and where they can be compared for
purposes of matching.

Perturbation Parameter: A parameter, usu-
ally denoted ε, occurring in a mathemat-
ical problem, such that the problem has
a known solution when ε = 0 and an
approximate solution is sought when ε

is small but nonzero.

Perturbation Series: A finite or infinite se-
ries obtained as a formal approximate
solution to a perturbation problem, in the
hope that it will be uniformly asymptoti-
cally valid on some domain.

Poincaré Series: An asymptotic series of
the form

∑
δi(ε)ui(x) in which the per-

turbation parameter ε appears only in the
gauges. See Generalized Series.

Regular Perturbation Problem: A pertur-
bation problem having an approximate
solution in the form of a Poincaré se-
ries that is uniformly valid on the entire
intended domain.

Relaxation Oscillation: A self-sustained os-
cillation characterized by a slow buildup
of tension (in a spring, for instance) fol-
lowed by a rapid release or relaxation. The
rapid phase is an example of a transition
layer.

Rescaled Coordinate: A coordinate that
has been obtained from an original
variable by a transformation depending
on the perturbation parameter, usually
by multiplying by a scaling factor. For
instance, time t may be rescaled to give
a ‘‘slow time’’ εt (see multiple scales) or
a ‘‘strained time’’ (ω0 + εω1 + · · ·)t (see
Lindstedt method).

Resonance: In linear problems, an equality
of two frequencies. In nonlinear prob-
lems, any integer relationship holding
between two or more frequencies, of
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the form ν1ω1 + · · · + νkωk = 0, especially
one involving small integers or one that
produces zero denominators in a Fourier
series.

Self-Excited Oscillation: An oscillation
about an unstable equilibrium, that occurs
because of the instability and has its
own natural frequency, rather than an
oscillation in response to an external
periodic forcing.

Singular Perturbation Problem: A pertur-
bation problem that cannot be uniformly
approximated by a Poincaré series on the
entire intended domain, although this may
be possible over part of the domain. For
singular problems one seeks a solution in
the form of a generalized series.

Transition Layer: A small region in which
the solution of a differential equation
changes rapidly and in which some
approximate solution (outer solution) that
is valid elsewhere fails.

Triple Deck: A problem that exhibits a
transition layer within a transition layer
and that therefore requires the matching
of three approximate solutions rather than
only two.

Unfolding: A family of perturbations of a
given system obtained by adding several
small parameters. An unfolding is uni-
versal if (roughly) it exhibits all possible
qualitative behaviors for perturbations of
the given system using the least possible
number of parameters.
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Introduction

A quantum computer is a device that can
arbitrarily manipulate the quantum state
of a part of itself. The field of quantum

computation is largely a body of theoret-
ical promises for some impressively fast
algorithms that could be executed on quan-
tum computers. However, since the first
significant algorithm was proposed in 1994
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(Shor, 1994) experimental progress has
been rapid with several schemes yielding
two–(Turchette et al., 1995; Monroe et al.,
1995) and three–quantum-bit manipula-
tions (Gershenfeld and Chuang, 1997). At
the writing of this article it does not seem
unreasonable to expect that small quan-
tum computers capable of manipulating
the quantum states of five or six two-level
systems will be available within around
five years. In addition, with the discovery of
quantum error-correction schemes (Shor,
1995), such machines have the promise of
providing long-term storage of quantum
information and possibly allowing the abil-
ity to manipulate many more bits. It is still
too early to tell whether the promises of
rapid computation are achievable, nor is
it yet well understood how broad a class
of problems could be significantly speeded
up by quantum computers.

Quantum computers were first dis-
cussed by Benioff (1980, 1981, 1982) in
the context of simulating classical Turing
machines (very elementary conventional
computers) with quantum unitary evolu-
tion. Feynman (1982, 1986) considered
the converse question of how well clas-
sical computers can simulate quantum
systems. It was concluded that classi-
cal computers invariably suffer from an
exponential slowdown in trying to sim-
ulate quantum systems, but that quan-
tum systems could, in principle, simulate
each other without this slowdown. It was
Deutsch (1985a, 1985b), however, who
first suggested that quantum superposi-
tion might allow quantum evolution to
perform many classical computations in
parallel.

To demonstrate where such capabilities
may lie hidden, we review an elemen-
tary quantum mechanical experiment.
The two-slit experiment is prototypic for
observing one key feature of quantum

mechanics: a source emits photons, elec-
trons, or other particles that arrive at a
pair of slits. These particles undergo uni-
tary evolution and finally measurement.
We see an interference pattern, with both
slits open, which wholly vanishes if either
slit is covered. In some sense, each particle
passes through both slits in parallel. If such
unitary evolution were to represent a calcu-
lation (or an operation within a calculation)
then the quantum system would be per-
forming computations in parallel. In some
sense this quantum parallelism comes for
free without our having to construct many
copies of the ‘‘processing unit.’’ The output
of this system would be given by the con-
structive interference among the parallel
computations.

In this article we give a tutorial on how
quantum mechanics can be used to im-
prove computation. We concentrate on
the only known algorithm that demon-
strates an exponential speedup relative
to the best known classical algorithms.
Our challenge: solving a problem that is
exponentially difficult for a conventional
computer – that of factoring a large num-
ber. As a prelude, we review the standard
tools of computation, universal gates and
machines. These ideas are then applied
first to classical, dissipationless comput-
ers and then to quantum computers.
A schematic model of a quantum com-
puter is described as well as some of the
subtleties in its programming. The Shor
algorithm (Shor, 1994; Ekert and Jozsa,
1996) for efficiently factoring numbers
on a quantum computer is presented in
two parts: the quantum procedure within
the algorithm and the classical algorithm
that calls the quantum procedure. The
mathematical structure within the factor-
ing problem is discussed, making it clear
what contribution the quantum computer
makes to the calculation. The complexity of
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the Shor algorithm is compared with that
of factoring on conventional machines,
and its relevance to public-key cryptog-
raphy is noted. In addition, we discuss the
experimental status of the field and also
quantum error correction, which may in
the long run help solve some of the most
pressing difficulties. We conclude with an
outlook as to the feasibility and prospects
for quantum computation in the coming
years.

1
Computing at the Atomic Scale

Quantum computers will perform compu-
tations at the atomic scale (DiVincenzo,
1995b). We might ask at this point how
close conventional computations are to
this scale already. Figure 1 shows a sur-
vey made by Keyes (1988): the number of
dopant impurities in the bases of bipolar
transistors used for digital logic against
the year. This plot may be thought of as
showing the number of electrons required
to store a single bit of information. An
extrapolation of the plot suggests that we
might be within reach of the atomic-scale
computations within the next two decades.

Fig. 1 Number of dopant impurities involved in
logic in bipolar transistors versus year. (From
Keyes, 1998; copyright 1988 by International
Business Machines Corporation, reprinted with
permission.)

Another way of viewing this plot is
perhaps even more relevant for the devel-
opment of quantum computation: conven-
tional computers have been improving in
speed and miniaturization at an exponen-
tial rate since their earliest days. Clearly
there is a bound to our ability to minia-
turize conventional electronics, and we
will likely be touching that limit within
the next 20 years. The question is raised:
can we continue to expect to see an ex-
ponential improvement in performance
20 and more years from now? As we
approach some of the physical limits to
conventional computational construction
we may begin to see a slowdown of this
exponential rate. A detailed study of quan-
tum computation may help us understand
the fundamental physical limitations upon
computation-conventional or otherwise.

2
Reversible Computation

What are the difficulties in trying to
build a classical computing machine
on such a small scale? One of the
biggest problems with the program of
miniaturizing conventional computers is
the difficulty of dissipated heat. As early
as 1961 Landauer studied the physical
limitations placed on computation from
dissipation (Landauer, 1961). Surprisingly,
he was able to show that all but one
operation required in computation could
be performed in a reversible manner, thus
dissipating no heat! The first condition for
any deterministic device to be reversible
is that its input and output be uniquely
retrievable from each other. This is called
logical reversibility. If, in addition to
being logically reversible, a device can
actually run backwards then it is called
physically reversible and the second law
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of thermodynamics guarantees that it
dissipates no heat.

The work on classical, reversible compu-
tation laid the foundation for the develop-
ment of quantum mechanical computers.
On a quantum computer, programs are ex-
ecuted by unitary evolution of an input that
is given by the state of the system. Since
all unitary operators U are invertible with
U−1 = U†, we can always ‘‘uncompute’’
(reverse) a computation on a quantum
computer.

3
Classical Universal Machines and Logic
Gates

We now review the basic logic elements
used in computation and explain how
conventional computers may be used
for any ‘‘reasonable’’ computation. A
reasonable computation is one that may be
written in terms of some (possibly large)
Boolean expression, and any Boolean
expression may be constructed out of
a fixed set of logic gates. Such a set
(e.g., AND, OR, and NOT) is called
universal. In fact we can get by with
only two gates, such as AND and NOT
or OR and NOT. Alternatively, we may
replace some of these primitive gates
by others, such as the exclusive-OR
(called XOR or often controlled-NOT);
then AND and XOR form a universal
set. The truth tables for these gates are
displayed in Table 1. Any machine that
can build up arbitrary combinations of
logic gates from a universal set is then
a universal computer. Further, which
universal set of gates is chosen makes little
difference: a theorem by Muller (1956)
states that the complexity of the simplest
circuits needed to compute any reasonable

Tab. 1 Truth table defining the operation of
some simple logic gates. Each row shows two
input values A and B and the corresponding
output values for gates AND, OR, and XOR. The
output for the NOT gate is shown only for
input B

A B AND OR XOR NOTB

0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 1 1 0 0

Boolean function is affected by at most a
constant multiplicative factor.

Which of the above gates is reversible?
Since AND, OR, and XOR are many-to-one
operations, information is lost and they
are not, as they stand, logically reversible.
Before we discuss how these logic gates
may be made reversible we consider some
nonstandard gates that we shall require.

3.1
FANOUT and ERASE

Although the above gates are sufficient
for the mathematics of logic, they are not
sufficient to build a machine. A useful
computer will also require the FANOUT
and ERASE gates (Fig. 2).

First consider the FANOUT gate: is it
reversible? Certainly no information has
been destroyed, and so it is at least logically
reversible. Landauer (1961) showed that

Fig. 2 Two nonstandard gates that are required
to build a computer, in addition to a universal
set of logic gates: (a) the FANOUT gate, which
duplicates an input A; and (b) the ERASE gate,
which deletes its input
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Fig. 3 A reversible measurement of the
existence of a (light) ball in a trap of mirrors
(dark rectangles). A (dark) ball enters the trap
from Y. In the absence of a light ball in the trap
the dark ball will follow the path HN. In presence
of a light ball (timed to start at X) the dark ball
will deflect the light one from its unhindered
trajectory ABCDEF to ABGDEF and will follow
the path HIJKLM itself. (From Bennett, 1998;
copyright 1988 by International Business
Machines Corporation, reprinted with
permission.)

it could also be physically reversible. Let
us describe a simple model for FANOUT
based on Bennett’s (1988) scheme for a
reversible measurement (Fig. 3). [We note,
however, that the concepts involved in
this scheme come from Toffoli (1980) and
Fredkin and Toffoli (1982).] Here a dark
ball is used to determine the presence or
absence of a second (light) ball inside a
trap. The trap consists of a set of mirrors
and may be thought of as a one-bit memory
register. If the trap is occupied then the
dark ball is reflected and leaves along
direction M (with the light ball continuing
along its original trajectory); otherwise
it passes unhindered towards N. Upon
leaving the trap, the dark ball’s direction is
used to populate, or not, another trap.

Let us now consider the ERASE op-
eration, required to ‘‘clean out’’ the
computer’s memory periodically. One type

of erasure can be performed reversibly: if
we have a backup copy of some infor-
mation, we can erase further copies by
uncomputing the FANOUT gate. The dif-
ficulty arises when we wish to erase our
last copy, referred to here as the primitive
ERASE.

Consider a single bit represented by a
pair of equally probable classical states
of some particle. To erase the informa-
tion about the particle’s state we must
irreversibly compress phase-space by a fac-
tor of two. If we allowed this compressed
phase space to expand, at temperature T,
to its original size, we could obtain an
amount of work equal to kBT ln 2 (where kB

is Boltzmann’s constant). Landauer (1961)
concluded, on the basis of simple mod-
els and more general arguments about
the compression of phase space, that the
erasure of a bit of information at temper-
ature T requires the dissipation of at least
kBT ln 2 heat (a result known as Landauer’s
principle).

3.2
Computation without ERASE

Fortunately, the primitive ERASE is not
absolutely essential in computation. To see
why, consider what is required to compute
arbitrary functions using reversible logic
(where the primitive ERASE is forbidden).
Landauer showed how any function f (a)

could be made one-to-one by keeping a
copy of the input:

f : a −→ (a, f (a)). (1)

Here the bold parentheses represent an
ordered set of values, in this case, two.
Extra ‘‘slots’’ will be added (or removed) as
required in our discussion below.

How can this trick be used to perform
reversible logic? One solution, known as
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Fig. 4 Three-input, three-output universal
reversible Toffoli gate. This gate is clearly
reversible since a second application of it
retrieves the original input

the Toffoli gate (Toffoli, 1980; Fredkin and
Toffoli 1982; Landauer 1961), is shown
in Fig. 4. The output of this gate may be
decomposed into various gates:

B ⊕ (A · C)

=




A · C, for B = 0 (AND),

A ⊕ B, for C = 1 (XOR),

Ā, for B = C = 1 (NOT),

A, for B �= C = 1 (FANOUT),

(2)

where A · B represents an AND gate,
A ⊕ B represents an XOR gate, and Ā
represents a NOT gate. We see that this
gate is universal, because it performs AND,
XOR, NOT, or FANOUT depending on its
inputs. A combination of many such gates
could then be used for any computation
and would still be reversible.

As noted by Landauer, this procedure
leads to an immediate problem because
of the absence of the primitive ERASE.
The more gates we employ, the more
‘‘junk’’ bits we accumulate: at each gate
we must save input bits in order to
preserve reversibility. In other words a
computer built out of reversible logic
instead of conventional, irreversible logic
gates would behave like

f : a −→ (a, j(a), f (a)), (3)

with many extra junk bits j(a).
Bennett (1973 and 1989; Li et al., 1997)

solved this problem by showing that the
junk bits could be reversibly erased at
intermediate steps with minimal run-time
and memory costs. The spirit of Bennett’s

solution may be understood in terms of
the following procedure:

f : a −→ (a, j(a), f (a)), (4a)

FANOUT : (a, j(a), f (a))

−→ (a, j(a), f (a), f (a)), (4b)

f † : (a, j(a), f (a), f (a)) −→ (a, f (a)), (4c)

where f † denotes uncomputing f, as op-
posed to computing f −1. First, f is com-
puted, producing both junk bits and the
desired output. Then the FANOUT gate
is applied to duplicate the output. Finally,
we uncompute the original function f by
running its computation backwards. This
procedure removes the junk bits and the
original output. The duplicate, however,
remains!

This completes our discussion of the
construction of classical, reversible com-
puters. We have found that reversibility
does not bar the logical design of com-
puting machines. Before mapping these
ideas to quantum systems, however, we
introduce some elementary quantum me-
chanical notation.

4
Elementary Quantum Notation

A simple quantum system is the two-
level spin-1/2 particle. Its basis states,
spin down |↓〉 and spin up |↑〉, may be
relabeled to represent binary zero and one,
i.e., |0〉 and |1〉, respectively. The state
of a single such particle is described by
the wave function ψ = α|0〉 + β|1〉, i.e.,
a linear superposition among any of the
possible ‘‘classical’’ states of the system.
The squares of the complex coefficients
|α|2 and |β|2 represent the probabilities for
finding the particle in the corresponding
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states. Generalizing this to a set of k spin-
1/2 particles we find that there are now 2k

basis states (quantum mechanical vectors
that span a Hilbert space) corresponding,
say, to the 2k possible bit strings of length
k. Freely moving between decimal, binary,
and spin labels then we might write, for
example for k = 5, a state |25〉 = |11001〉 =
| ↑↑↓↓↑〉.

The dimensionality of the Hilbert space
grows exponentially with k. In some very
real sense quantum computations make
use of this enormous size latent in even
the smallest systems.

5
Logic Gates for Quantum Bits

In this section we describe how arbitrary
logic gates may be constructed for quan-
tum bits. We start by considering various
one-bit unitary operations and a single
two-bit one – the XOR operation. Combi-
nations of these are sufficient to construct
a Toffoli gate for quantum bits or, indeed,
any unitary operation on a finite number
of bits.

Start with a single quantum bit. If we
represent the states |↓〉 and |↑〉 (i.e., |0〉
and |1〉) as the vectors

(
1
0

)
and

(
0
1

)
,

respectively, then the most general unitary
transformation corresponds to a 2 × 2
matrix of the form

Uθ ≡(
ei(δ+σ/2+τ/2) cos(θ/2) ei(δ+σ/2−τ/2) sin(θ/2)

−ei(δ−σ/2+τ/2) sin(θ/2) ei(δ−σ/2−τ/2) cos(θ/2)

)
,

(5)

where we typically take δ = σ = τ = 0
(Barenco et al., 1995a). Using this operator
we can flip bits via

Uπ |0〉 = −|1〉 and Uπ |1〉 = |0〉. (6)

Fig. 5 Schematic of the quantum circuit
diagram for a one-bit gate. The line represents a
single quantum bit (such as a spin-1/2 particle).
Initially, this bit has a state described by |A〉; after
it has ‘‘passed’’ through this circuit it comes out
in the state Uθ |A〉.

The extraneous sign represents a phase
factor that does not affect the logical
operation of the gates and may be removed
if we wish, now or at a later stage.
Such one-bit computations are illustrated
schematically as a quantum circuit in
Fig. 5 (Barenco et al., 1995a; DiVincenzo
1995a).

Another important one-bit gate is U−π/2,
which maps a spin-down particle to an
equal superposition of down and up:

U−π/2|0〉 = 1√
2
(|0〉 + |1〉). (7)

Consider a string of k spin-1/2 particles
initially spin-down. If we apply this gate
independently to each particle we obtain a
superposition of every possible bit string
of length k:

|0〉 −→ 1√
q

q−1∑
a=0

|a〉, (8)

where q = 2k. Our computer is now in
a superposition of an exponentially large
number of integers a from 0 to 2k − 1.
Suppose further that we could construct
a unitary operation that maps a pair of
bit strings |a; 0〉 into the pair |a; f (a)〉 for
some function f(a). Then such a unitary
operator acting on the superposition of
states

1√
q

q−1∑
a=0

|a; 0〉 −→ 1√
q

q−1∑
a=0

|a; f (a)〉, (9)
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would compute f(a) in parallel an exponen-
tially large number of times for the various
inputs a. This follows from the linearity of
quantum mechanics.

To see how such unitary operators may
be constructed from a few elementary
ones we must also consider the XOR gate
(Barenco et al., 1995a; DiVincenzo 1995a).
Writing the two-particle basis states as the
vectors

|00〉 =



1
0
0
0


 , |01〉 =




0
1
0
0


 , (10a)

|10〉 =



0
0
1
0


 , |11〉 =




0
0
0
1


 , (10b)

we may represent the XOR gate as a unitary
operator.

UXOR =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (11)

Here the first particle acts as a conditional
gate to flip the state of the second particle.
It is easy to check that the state of
the second particle corresponds to the
action of the XOR gate given in Table 1.
The quantum circuit for an XOR gate
is illustrated in Fig. 6. This circuit is
equivalent to the elementary instruction

if (|A〉 = 1)|B〉 = NOT|B〉 (12)

Fig. 6 Quantum circuit diagram for an XOR
gate. The lower bit |B〉 is flipped whenever the
upper bit |A〉 is set

Fig. 7 Circuit for swapping a pair of bits

which may be thought of as example
of quantum computer code (suggest by
DiVincenzo at the 1995 Quantum Com-
putation, Villa Gualino Workshop). The
ket brackets |〉 are reminders that we are
dealing with quantum rather than classi-
cal bits. The XOR gate allows us to move
information around, as is illustrated in
Fig. 7.

How do we construct the Toffoli gate?
One major problem with this gate is
that it requires three bits in and three
out. Quantum mechanically, this seems
to correspond to a scattering process in-
volving three-particle collisions (Deutsch,
1989) calling for a (possibly) unreason-
able control of the particles. Fortunately,
the Toffoli gate may be constructed by
two-particle scattering processes alone (Di-
Vincenzo, 1995a; Barenco et al., 1995b;
Sleator and Weinfurter, 1995; Deutsch
et al., 1995; Lloyd, 1995). In particular,
we show a construction here involving
the XOR gate and some one-bit gates Uθ

(Fig. 8) (Barenco et al., 1995a). Not only is
the XOR sufficient for all logic operations
on a quantum computer, but it can be used
to construct arbitrary unitary transforma-
tions on any finite set of bits. Numerous
proposals for producing such gates have

Fig. 8 Toffoli gate built from two-bit XOR gates
plus some one-bit gates (Barenco et al., 1995a).
This circuit introduces some extra signs in the
unitary matrix UXOR, which may be removed at a
later stage



Quantum Computation 425

been considered (Ekert and Jozsa 1996;
DiVincenzo 1995b), and we discuss some
promising experimental results in the next
section.

6
Logic Gates in the Laboratory

In this section we briefly review two recent
experiments that demonstrate conditional
dynamics of a type that is promising
for constructing quantum logic gates
(Turchette et al., 1995; Monroe et al.,
1995). These two results appeared back to
back in the same issue of Physical Review
Letters.

The first experiment, by Turchette et al.
(1995), demonstrated that the phase of
a weak coherent optical field could be
controlled by the intensity of a second
coherent field at a slightly different
frequency. The chief result is that such a
high nonlinear susceptibility was achieved
that a large phase shift (up to 16◦)
was produced by a change in intensity
corresponding to a single photon in
the second field. The coupling between
the optical fields was obtained using
the hyperfine level structure of cesium.
A stream of Cs atoms was dropped
through an optical cavity, which effectively
restrained the atomic decay modes to the
cavity modes. This allowed the atoms
to couple strongly to the optical fields
passing through the cavity with minimal
incoherent emission into free space. Since
coherent instead of single-photon states
were used in this experiment, however,
there could be no direct demonstration of
the coherence retained in the final state of
the optical fields. In this scheme a qubit
would need to be represented by single-
photon states rather than weak coherent

states, but that does not appear to be a
great difficulty.

The second experiment, by Monroe et al.
(1995), involved a direct demonstration of
an XOR gate in a radio-frequency ion trap
(also known as a Paul trap). Here the
lowest vibrational excitation of a single
9Be+ ion in the trap and its hyperfine state
represented the two qubits. A pair of off-
resonant laser beams were used to drive
stimulated Raman transitions between the
basis states of these two qubits. The XOR
gate was executed using three laser pulses,
as had been suggested by Cirac and Zoller
(1995). The coherence of the qubits in
this system was reported to have survived
for around to 10–20 XOR operations
(Thompson, 1996).

Cirac and Zoller had suggested using a
linear ion trap to hold a set of ions in a well
localized manner by mutual electrostatic
repulsion. Each ion would be ‘‘addressed’’
separately by its own laser. By tuning the
lasers shining on individual ions to the
appropriate levels, either single-qubit op-
erations could be performed or the internal
ionic state could be transferred to that of
the lowest two vibrational modes of the
trap. In this way two-qubit gates could be
simulated between even non-contiguous
ions via their interactions with the trap’s vi-
brational modes. This ability significantly
reduces the complexity of elementary oper-
ations over other proposals (Lloyd, 1993).
The fact that this theoretical proposal was
implemented within a few months, though
in a slightly modified form, suggests that
few-qubit processors could become a re-
ality within a relatively short period of
time. In Sec. 13 we discuss the short-term
prospects for such machines.

In quantum computation we normally
aim at having the qubits couple maximally
to each other and minimally to the out-
side world. This lessens the actions of
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environment-induced decoherence. From
this perspective the latter scheme, in-
volving ion traps, appears more nearly
ideal. However, there is another class
of quantum logic processor, which aims
at communicating quantum information
between various, possibly distantly, sepa-
rated subsystems. This might allow for the
combining of smaller quantum computers
into larger ones operating on more qubits
through combination. It is likely also to be
important for the area of quantum com-
munication and potential technologies that
few-bit quantum logic processors might
enable. For such tasks the former scheme
involving ‘‘flying’’ qubits appears a more
likely direction. It is possible that a mature
quantum computation technology would
have components incorporating the posi-
tive aspects of both the above schemes.

7
Model Quantum Computer and Quantum
Code

In this section we describe a simple
abstract model for a quantum computer
based on a classical computer instructing
a machine to manipulate a set of spins.
This model has some intrinsic limitations
that make designing algorithms in a
high-level language somewhat tricky. We
discuss some of the rules for writing such
quantum computer code as a high-level
language and give an example.

Consider the following model for the
operation of a quantum computer. Several
thousand spin-1/2 particles (or two-level
systems) are initially in some well de-
fined state, such as spin down. A classical
machine takes single spins or pairs of
spins and entangles them (performing an
elementary one-bit operation Uθ or the
two-bit XOR gate); see Figs. 9(a), 9(b),

Fig. 9 Model quantum computer as pictured by
Shor (presented at the 1994 Quantum
Computation, Villa Gualino Workshop). Initially
all particles are spin-down. In stage (a) a
classical machine takes a single or pair of spirts
and in stage (b) it performs a selected one-bit or
two-bit operation; in stage (c) the ‘‘entangled’’
particles are returned to their original locations.
These three stages are repeated many times in
accord with the instructions given by an ordinary
classical computer. When this cycle is complete
stage (d) consists of measuring the state of the
particles (leaving them is some particular bit
string); this bit string is the result of the
computation

and 9(c). These stages are repeated on
different pairs of spins according to the
instructions of a conventional computer
program. Since the spins are entangled,
we must not look at the spins at interme-
diate stages. We must keep the quantum
superposition intact. Furthermore, noth-
ing else may interfere with the spins that
could destroy their orientation or interrupt
their unitary evolution. Once this well-
defined cycle of manipulation is complete
the orientations of the spins are measured
[Fig. 9(d)]. This set of measured orienta-
tions is the output of the computation.

Given this paradigm for a quantum com-
puter, what might its high-level language
(its computer code) look like? The most
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serious difficulty that must be dealt with
is that the quantum information is ma-
nipulated by a conventional computer in
a completely blind manner – without any
access to the values of this quantum in-
formation. This means that the program
cannot utilize ‘‘shortcuts’’ conditional on
the value of a quantum variable (or reg-
ister or bit). For example, loops must be
iterated through exactly the same number
of times independent of the values of the
quantum variables. Similarly, conditional
branches around large pieces of code must
be broken down into repeated conditions
for each step. In addition, each instruction
performed upon the quantum bits must
be logically reversible. Thus, ordinary as-
signments of a value to a variable, such
as |a〉 = n, are not legal and must instead
be performed as increments on an initially
zeroed variable, such as |a〉 = |a〉 + n.

An example of such code that could
run on this machine might look like
this (suggested by DiVincenzo at the
1995 Quantum Computation, Villa Gualino
Workshop):

do 10 k = 1, worstdiv

|a〉 = |a〉 − n

if (|a〉 > = 0) |q〉 = |q〉 + 1

10 continue

do 20 k = 1, worstdiv

if (k > |q〉) |a〉 = |a〉 + n

20 continue

This code fragment could be used to
calculate the quotient and the remainder,
placed in |q〉 and |a〉, respectively, for
the division of |a〉 by n; the constant
worstdiv is the worst-case number of times
the loop must be traversed. Here |q〉 is
initially zero. Each instruction here is
either a conventional computer instruction
or one involving some quantum variables.
The former are direct instructions for the

external computer, while the latter must be
interpreted as a sequence of manipulations
to be performed upon the quantum bits.
As it stands, this code is not reversible
(neither is it very efficient); e.g., the label
10 gives no specification of which routes
might be used to get to it. It can, however,
be easily rewritten.

8
Quantum Parallelism: Period of a Sequence

We now have sufficient ingredients to
understand how a quantum computer can
perform logical operations and compute
just like an ordinary computer. In this
section we describe an algorithm that
makes use of the quantum parallelism
that we have hinted at already: finding
the period of a long sequence.

Consider the sequence

f (0), f (1), . . . , f (q − 1), (13)

where q ≡ 2k; we shall use quantum
parallelism to find its period. We start with
a set of initially spin-down particles, which
we group into two sets (two quantum
registers, or quantum variables):

|0; 0〉 = | ↓, ↓, . . . ; ↓, ↓, . . .〉, (14)

the first set having k bits, the next having
sufficient for our needs. (In fact other
registers are required, but by applying
Bennett’s solution to space management
they may be suppressed in our discussion
here.) On each bit of the first register
we perform the U−π/2 one-bit operation,
yielding a superposition of every possible
bit-string of length k in this register:

−→ 1√
q

q−1∑
a=0

|a; 0〉. (15)

The next stage is to break down the compu-
tation corresponding to the function f (a)
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into a set of one-bit and two-bit unitary
operations. The sequence of operations is
designed to map the state |a; 0〉 to the
state |a; f (a)〉 for any input a. Now we see
that the number of bits required for this
second register must be at least sufficient
to store the longest result f (a) for any of
these computations. When, however, this
sequence of operations is applied to our
exponentially large superposition, instead
of the single input, we obtain

−→ 1√
q

q−1∑
a=0

|a; f (a)〉. (16)

An exponentially large amount of compu-
tation has been performed essentially for
free.

The final computational step, like the
first, is again a purely quantum mechan-
ical one. Consider a discrete ‘‘quantum’’
Fourier transform on the first register

|a〉 −→ 1√
q

q−1∑
c=0

e2π iac/q|c〉. (17)

It is easy to see that this is reversible via
the inverse transform, and indeed it is
readily verified to be unitary. Further, an
efficient way to compute this transform
with one-bit and two-bit gates has been
described by Coppersmith (1994; Cleve
1994; DiVincenzo 1995b) (Fig. 10).

When this quantum Fourier transform
is applied to our superposition, we obtain

−→ 1

q

q−1∑
a=0

q=1∑
c=0

e2π iac/q|c; f (a)〉. (18)

The computation is now complete and
we retrieve the output from the quantum
computer by measuring the state of all
spins in the first register (the first k bits).
Indeed, once the Fourier transform has
been performed the second register may
even be discarded (Chuang et al., 1996).

Fig. 10 Circuit for the quantum Fourier
transform of the variable |ak−1 . . . a1a0〉 using
Coppersmith’s (1994; Cleve 1994; DiVincenzo
1995b) fast Fourier-transform approach. The
two-bit ‘‘Xn’’ gate may itself be decomposed into
various one-bit and XOR gates (Barenco et al.,
1995a)

What will the output look like? Suppose
f (a) has period r so that f (a + r) = f (a).
The sum over a will yield constructive
interference from the coefficients e2π iac/q

only when c/q is a multiple of the reciprocal
period 1/r. (In fact, we must be careful
that the discrete Fourier transform yields
sufficient resolution to extract the multiple
of the inverse period from c/q. This
is always possible provided the number
of bits k in the first quantum register
satisfies r2 ≤ q = 2k.) All other values of
c/q will produce destructive interference
to a greater or lesser extent. Thus, the
probability distribution for finding the
first register with various values is shown
schematically by Fig. 11.

One complete run of the quantum
computer yields a random value of c/q
underneath one of the peaks in the
probability of each result prob(c). That is,
we obtain a random multiple of the inverse
period. To extract the period itself we need
only repeat this quantum computation
roughly log(r/k) times in order to have
a high probability for at least one of the
multiples to be relatively prime to the
period r – uniquely determining it (Shor
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Fig. 11 Idealized plot of the probability of each
result prob(c) versus c/q. Constructive
interference produces narrow peaks at multiples
of the inverse period of the sequence 1/r. (The
discrete approximation means that the peaks will
actually have a nonzero width.)

1994). Thus, this algorithm yields only a
probabilistic result. Fortunately, we can
make this probability as high as we like.

All the above work may appear a little
anticlimactic. We have gone to a lot of
trouble to design a quantum computer to
find the period of a sequence. The point
is, however, that the sequence is calculated
in parallel and is exponentially long – even
for a small value of, say, k = 270 bits in the
first register, the quantum computer has
calculated and stored more results than
there are particles in the universe.

This algorithm for finding the period of
an exponentially long sequence on a quan-
tum computer lies at the heart of efficiently
factoring numbers. We first proceed to
review the computational difficulty of fac-
toring for conventional computers. Then
we discuss the implications this compu-
tational difficulty has had for the secure
transmission of private information via
public key cryptosystems. We then follow
these discussions with Shor’s (1994) new
result for efficient factoring.

9
The Complexity of Factoring

How can we quantify the difficulty of
solving a problem with a conventional
computer? Surely once the computer

program is written and debugged we
may simply let it run and wait for the
answer. But this brings us to the crux
of the difficulty. For a given problem
how long must we expect to wait for the
solution? When more carefully phrased
this becomes the simplest measure of
computational difficulty of an algorithm,
yielding the ‘‘algorithmic complexity’’ of
the problem.

To be more specific, without getting into
technicalities, let us consider the problem
of factoring a number N into its prime
factors (e.g., the number 51 688 may be
decomposed as 23 × 7 × 13 × 71). A con-
venient way to quantify how quickly a
particular algorithm may solve this, or
any, problem is to ask how the number
of steps to complete the algorithm scales
with the size of the ‘‘input’’ the algorithm
is fed. For the factoring problem, this in-
put is just the number N we wish to factor;
hence the length of the input is log N.
(The base of the logarithm is determined
by our numbering system. Thus a base
of 2 gives the length in binary; a base of
10 in decimal. For example, the number
51 688 requires 16 binary digits, but only
five decimal digits, to specify it.) ‘‘Reason-
able’’ algorithms are ones that scale as
some small-degree polynomial in the in-
put size (with a degree of perhaps 2 or 3).
One famous example of a fast algorithm is
the fast Fourier transform, which requires
roughly O(M log2 M) steps to perform the
discrete Fourier transform of M points
(so for a fixed precision the input scales
as M); by contrast, a conceptually simpler
algorithm equivalent to matrix multiplica-
tion would require O(M2) computational
steps (Press et al., 1988). This modest im-
provement from a quadratic to a roughly
linear complexity has made many image-
processing applications possible with even
quite modest computers.
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On conventional computers the best
known factoring algorithm runs in
O(exp[(64/9)1/3 × (ln N)1/3(ln ln N)2/3])
steps (Odlyzko, 1995). This algorithm,
therefore, scales exponentially with the in-
put size log N. For instance, in 1994 a 129-
digit number (known as RSA129; Rivest
et al., 1978) was successfully factored us-
ing this algorithm on approximately 1600
work-stations scattered around the world;
the entire factorization took eight months
(Atkins et al., 1995). Using this to estimate
the prefactor of the above exponential scal-
ing, we find that it would take roughly
800 000 years to factor a 250-digit number
with the same computer power; similarly,
a 1000-digit number would require 1025

years (significantly longer than the age of
the universe). This difficulty is, however,
almost certainly exaggerated since it takes
no account of the constant improvement
in factoring algorithms and the constant
speedup of computer hardware. In fact,
both of these components have shown
a more or less exponential improvement
over the last few decades (Odlyzko, 1995),
with each contributing roughly equally to
the increased computational power. The
difficulty of factoring large numbers is cru-
cial for public-key cryptosystems, such as
ones used by banks. There, such codes rely
on the difficulty of factoring numbers with
around 250 digits.

10
Security and RSA

Cryptography as a discipline aims at min-
imizing the affect of the dishonest. One
such situation is the need for secure com-
munication between two parties across an
insecure channel. The sender encrypts a
plain-text message with an encryption key
yielding the cypher text. The message is

sent across an insecure medium where,
we must assume, an eavesdropper may
have access. The receiver takes the cypher
text and uses a decryption algorithm to
restore the plaintext. If we assume that
the eavesdropper has access to the de-
cryption algorithm, then the receiver must
have something in addition to ensure the
security of the transmitted message; this
is the decryption key. According to Shan-
non’s information theory the cypher text
must contain some information about the
plain-text message unless the decryption
key is at least as long as the message itself
(Goldreich, 1995). Such a perfect cipher
was invented in 1917, and is known as the
Vernam cipher or one-time pad; it requires
a key equal in size to the plain-text mes-
sage. Thus, for perfect security we have
the problem of distributing the key itself,
which must be done over a secure channel
such as by trusted courier. In many situa-
tions, such as banking transactions where
the volume of information is very large,
this is unreasonable.

An understanding of computational
complexity allows us to ‘‘circumvent’’
the restriction of Shannon’s theory. A
pseudorandom-number generator can be
used to generate a long almost random
key from a much smaller secret key. If
the lack of randomness cannot be dis-
covered except through an unreasonable
amount of computational effort by the
eavesdropper then we have a secure en-
cryption system. An excellent example of
such a scheme is the U.S. Data Encryption
Standard (DES), which uses a 56-bit key
(Press et al., 1988). One estimate of the
security of DES suggests that for around
one million dollars a special-purpose ma-
chine could be built to try all 256 keys in
a few hours, though security can be eas-
ily enhanced by multiple application and a
larger effective key (Odlyzko, 1994). Clearly
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short keys reduce the burden of key dis-
tribution amongst single pairs of users,
but for n users n(n − 1)/2 keys would be
required to allow any pair to communi-
cate securely. This becomes unwieldy for
commercial applications where millions of
users may be involved.

Another approach, also based on compu-
tational complexity, is known as public-key
encryption. The most popular scheme, and
one used in may commercial applications,
is RSA encryption (Rivest et al., 1978). A
person wishing to receive secret communi-
cations simply publishes a pair of numbers
(N, e) that form the public key. Encryption
involves converting the message to nu-
merical data and dividing it into blocks of
numbers mj each smaller than N. Each
block mj of the message is then encrypted
by its modular exponentiation

cj ≡ mj
e(mod N), (19)

where mod N represents modulo arith-
metic (the expression is computed and
only the remainder after division by N is
retained). The encrypted blocks cj are then
transmitted to the receiver via a public
channel. Thus, RSA (and any other pub-
lic key scheme) efficiently solves the key
distribution problem.

Decryption by the receiver requires
knowing the inverse operation, i.e., know-
ing the d such that

mj ≡ cj
d(mod N), (20)

reconstructs the original message mj from
the encrypted data cj. The size of N
makes the direct determination of d
too difficult. Instead, d is constructed
along with the public key pair (N, e) in
an efficient manner. This construction
involves choosing N = pq as the product
of a pair of comparably sized primes, with
e relatively prime to both p − 1 and q − 1,
and solving the much simpler problem

ed ≡ 1(mod p − 1) (21a)

ed ≡ 1(mod q − 1). (21b)

It is important to note that the best
algorithms for finding d proceed by first
factoring N; thus the security of RSA
relies on the assumed difficulty of factoring
(Schneier, 1994).

11
Shor’s Result: Factoring Numbers

Recently, an algorithm was developed by
Shor (1994; Beckman et al., 1996) of AT&T
for factoring numbers on a quantum
computer that runs in O((log N)3) steps.
This is cubic in the input size, so that
factoring a 250-digit number with such
an algorithm would require only a few
billion steps. The implication is that public-
key cryptosystems based on factoring may
be breakable. In this section we give
the classical portion of Shor’s algorithm,
which relates factoring to finding the
period of an exponentially long sequence
and hence makes the problem tractable for
a quantum computer.

We wish to factor the number N. It
will be sufficient to find even a single
factor, since then we can reduce the
problem to a simpler one. First, select
a number x. Euclid’s algorithm (see
Appendix) could be used to compute
efficiently the common factors between
N and x, hence reducing our problem.
We therefore assume that these numbers
are co-prime. Next, consider the sequence
formed by the function f (a) = xa(mod N).
This sequence has the form

1, x, . . . , xr−1, xr, xr+1, . . .

1, x, . . . , xr−1,︸ ︷︷ ︸
r terms

1, x, . . . ,︸ ︷︷ ︸
r terms

1, x, . . .︸ ︷︷ ︸
r terms

(22)
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Here the top row is just the sequence of
powers {xa}; the bottom row is the same
sequence written in modulo arithmetic,
namely {xa(mod N)}. The number r is
just the first nontrivial power where xr ≡
1(mod N). A close look at this sequence
shows that it has a periodic structure with
period r. Using standard algorithms this
period would not be readily accessible
for a long sequence. However, with the
quantum computer algorithm described
in Sec. 8 it could be calculated efficiently.
This possibility opens up a novel way to
find the factors of N, as we shall now
describe.

Let us suppose that we have obtained the
period r by the above quantum computer
algorithm. [Note that since the period
r is not known beforehand, we require
N2 ≤ q = 2k for the Fourier transform step
to yield sufficient resolution (Shor 1994;
Ekert and Jozsa, 1996)]. If now this period
is even we may proceed with our factoring
algorithm. If not, we must select another
x and start again. A randomly chosen x
will yield a suitably even period r 50% of
the time, and so not too many trials will
be needed (Shor, 1994; Ekert and Jozsa,
1996).

Having chosen an x so that the sequence
{xa(mod N)} has an even period r, we
rewrite the expression xr ≡ 1(mod N) as
the difference of two squares:

(xr/2)2 − 1 ≡ 0 (mod N). (23)

Expressing the left-hand-side as a product
between a sum and difference we obtain

(xr/2 + 1)(xr/2 − 1) ≡ 0 (mod N). (24)

This says that the product of the two terms
on the left is a multiple of the number
N we wish to factor. Thus, either one
or the other of these terms must have
a factor in common with N. The final step

in the algorithm then is to calculate the
greatest common divisor of these terms
individually with N (see the Appendix
for an efficient classical algorithm); any
nontrivial common divisor will be a factor
we have sought. This completes our
search.

As an example, consider the number
N = 91. Choosing x = 3 we find that the
sequence 3a(mod 91) has the form:

a : 0, 1, 2, 3, 4, 5, 6, 7, . . .

3a : 1, 3, 9, 27, 81, 243, 729, 2187, . . . (25)

3a(mod 91) : 1, 3, 9, 27, 81, 61, 1, 3, . . . .

A quantum computer could calculate
the period in parallel; however, it is
sufficient here to see by eye that this
sequence has a period of r = 6 (since
it is even we may proceed with the
algorithm). Rearranging the expression
36 ≡ 1(mod 91) as discussed above we
conclude that 28 × 26 ≡ 0(mod 91). This
implies that either gcd(28, 91) or gcd(26,
91) will be a nontrivial factor of 91
(where gcd is the greatest common divisor
function). In fact, in this case, the two
terms yield different factors, 7 and 13,
respectively. This completes the prime
factorization of 91 yielding 91 = 7 × 13.

12
Quantum Error Correction

Building a quantum computer is a daunt-
ing task. Even within apparently small
atomic-scale systems, quantum compu-
tation runs on the enormous size of
Hilbert space. Quantum computation in-
volves building a trajectory from a standard
initial state to a complex final state. The
main difficulty is keeping to this trajec-
tory. To fail is to be lost in Hilbert space.
The largest problem is hypersensitivity to
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perturbations, shifting the computational
trajectory randomly from its path. Such
perturbations come from an unintentional
coupling to external noise (Unruh, 1995).
In this section we briefly touch on quan-
tum error correction and fault-tolerant
computing, both introduced by Shor (1995,
1996), which promise to alleviate greatly
the problem associated with unwanted per-
turbations.

In straight quantum error correction
the state of a fragile quantum system is
encoded into a quantum system having
more degrees of freedom. By choosing
the mapping to a suitable subspace of the
larger system, a limited class of errors
that occur on this larger space may be
corrected. In Fig. 12 we see a circuit for
Shor’s original scheme. [Since then much
work has been done in the last year
(Steane, 1996, 1997a, 1997b; Calderbank
and Shor, 1996; Calderbank et al., 1997;
Laflamme et al., 1996; Knill and Laflamme,
1997; Gottesman, 1996, to cite just a
few).] The unprotected single qubit |ψ〉 is

processed by the left half of the circuit
shown in Fig. 12 until just before the
shaded region. The resulting combined
nine-qubit state represents the now error-
protected encoded state. Any single-qubit
error (represented by the shaded region) on
this encoded state may now be ‘‘undone’’
by sending the state through the decoding
and correcting circuit shown to the right
of the shaded region.

We have introduced three new circuit
elements in Fig. 12, which we now explain.
The first three-qubit gate involves a single
control qubit (at the heavy dot) from qubit
1 to qubits 4 and 7. This gate is a shorthand
notation for a pair of XOR gates (or
controlled-NOT gates) between gates 1 and
4 and gates 1 and 7. The second new three-
qubit gate involves two control qubits (see,
for example, the last gate in the decoding
circuit). This is a Toffoli gate with the
condition to flip qubit 1 given by the logical
AND of qubits 4 and 7 (recall that these
logical operations occur separately for each
branch of the wave function). (In this

Fig. 12 Schematic of Shor’s (1995) original error-correction
scheme to protect one qubit in a nine-qubit code against
arbitrary one-qubit decoherence. The unprotected qubit enters
as qubit 1 from the left. Its error protection encoded state is
just to the left of the shaded region. This region represents an
arbitrary one-qubit error that may be introduced through
coupling to the environment. To recover the original qubit one
performs the remainder of the circuit to the right of the
decoherence. (The text describes the new circuit elements.)
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circuit a Toffoli gate without extraneous
phases is required.) Finally, the single-
qubit gate labeled R̂ is defined by

R̂|0〉 = |0〉 + |1〉√
2

, (26a)

R̂|1〉 = |0〉 − |1〉√
2

, (26b)

which is a variation of the operation Û−π/2

discussed earlier.
The above scheme and its variations al-

low for the long-term storage of quantum
information. Unfortunately, they require
that the encoding and decoding circuitry
operate without error. Further, the above
circuitry only slows the rate of decoher-
ence, but does not eliminate its effect. By
contrast, fault-tolerant quantum computa-
tion can get around these problems and,
in principle, allows for unlimited quan-
tum computation provided a threshold in
accuracy for each elementary gate’s oper-
ation in the presence of decoherence can
be surpassed. Fault-tolerant computation
involves a redesign of the error-correction
and computation circuitry so as to allow
for the imperfect operation of individual
gates or for a decoherence event during
computation. The future success of quan-
tum computation will almost certainly rely
on these techniques and upon our ability
to determine theoretically, and experimen-
tally surpass, the threshold (see Shor, 1996,
DiVincenzo and Shor, 1996; Plenio et al.,
1997; Aharonov and Ben-Or, 1996; Steane,
1997d; Zalka, 1996; Gottesman, 1997).

13
Prospects

We now describe the likely prospects for
quantum computation. In this article we
have discussed a single algorithm yielding

an exponential speedup over conventional
methods: effectively the calculation of the
period of a long sequence. To date this
is the only algorithm displaying such a
speedup. This algorithm was applied to
a traditional computer-science problem,
factoring, only by recognizing a deeper
structure within that problem. This re-
quirement appears to be a general one:
quantum parallelism will only yield an
exponential speedup in problems whose
structure avoids the need to try exponen-
tially many solutions (Jozsa, 1991; Deutsch
and Jozsa, 1992; Yao, 1993; Bennett et al.,
1997). Thus, a brute-force approach to
some of the hardest computational ques-
tions, known as NP-complete problems,
will not succeed with the aid of quan-
tum parallelism. Any progress for such
problems will require finding a deeper
structure within them. Thus, it is possi-
ble that the direction the field of quantum
computation will take will be along the
line of simulating (or manipulating) small
quantum systems (Feynman, 1982, 1986;
DiVincenzo, 1995b; Lloyd, 1996). Notwith-
standing the above comments, another
class of algorithms for quantum comput-
ers gives more modest gains, though still
sizable in comparison with the best clas-
sical algorithms. This class is based on
Grover’s (1996a, 1996b, 1997; Boyer et al.,
1996) database-searching algorithm which
searches a ‘‘virtual’’ database for a spe-
cific entry. Unlike a classical database, a
virtual database is a function that must
be computed each time it is used. For
searching a unique item from such a vir-
tual database of N items, only π

√
N/4

iterations calling the virtual database are
required for a close to 100% efficiency
compared with only a 50% probability of
success requiring N/2 iterations for a con-
ventional computer. Certainly if quantum
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computers ever get to rival the complex-
ity of conventional computers, the Grover
algorithm will play a central role in their
surpassing their rival’s performance for
the traditionally hard problems of com-
puter science.

How difficult will it be to build a
quantum computer? Currently, several im-
plementations are being considered by
theoreticians and experimentalists world-
wide (Barenco et al., 1995b; Sleator and
Weinfurter, 1995; Turchette et al., 1995;
Monroe et al., 1995; Cirac and Zoller,
1995; Pellizzari et al., 1995; Lloyd, 1993;
Gershenfeld and Chuang, 1997; Loss and
DiVincenzo, 1997). The most promising
scheme to date appears to involve lin-
ear ion traps (Monroe et al., 1995; Cirac
and Zoller, 1995; Pellizzari et al., 1995).
There are already several theoretical stud-
ies investigating the limitations to these
systems, and for numerous reasons it
seems that ion-trap quantum computers
will be limited to computations involving
no more than around 10–20 ions (Ple-
nio and Knight, 1996a, 1996b; Hughes
et al., 1996; Steane, 1997c). It seems likely,
then, that the first generation of quantum
computers will not be performing tradi-
tional computations but will be used for the
manipulation of small amounts of quan-
tum information: a quantum information
processor employed possibly for quan-
tum cryptography, quantum teleportation,
quantum storage, and quantum commu-
nication of quantum information. Indeed,
these nontraditional tasks will probably
lead to new types of technology, even with
the relatively modest quantum computers
we will be capable of building within a few
years.

Over the next couple of decades we
will approach computing at the atomic
scale. Heat dissipation will become an
ever increasing problem. The lessons from

reversible classical computation and quan-
tum computation may help us overcome
this engineering hurdle and may even
open doors to new faster algorithms.

Glossary

Algorithmic Complexity: See Computa-
tional Complexity.
Computational Complexity: A measure of
the complexity of a question as measured
by the number of computational steps that
must be performed to find the answer.
The scaling relation of the number of
steps required to the size of the input
information described in the question
is typically quoted as the associated
complexity of that question (or class of
questions).
Environment: Any uncontrolled external
degrees of freedom.
Fault-Tolerant Computation: Computation
that is robust even when a modest
amount of noise is present in the logic
gates performing operations and the wires
connecting them.
Modular Exponentiation: The operation of
taking the remainder after division by N
of some number m to a power e, is called
the modular exponential; it is written me

(mod N).
Public-Key Cryptography: A method of en-
coding secret information to a specific
recipient who has made his/her encod-
ing key publically known. The security of
this scheme relies on the computational
complexity of any attempt to invert the
known encoding procedure.
Quantum Bit: See Qubit.
Quantum Error Correction: A scheme to
‘‘reverse’’ the affects of dissipation, deco-
herence, or dephasing due to inadvertent
coupling to an environment.
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Quantum Fourier Transform: A quantum
mechanical analog of the discrete Fourier
transform acting on a superposition of
quantum states.
Qubit: Quantum bit of information; the
amount of information that can be stored
by a two-level quantum system.
Reversible Computer: A hypothetical com-
puter that can actually ‘‘run’’ backwards,
yielding its input from its output.
RSA: An acronym based on the names,
Rivest, Shamir, and Adleman, of the
inventors of the prototypically public-key
cryptographic system.
Toffoli Gate: A specific three-bit gate
that is universal for classical reversible
computations.
Turing Machine: Prototypical classical uni-
versal computer using a read/write head
and one or more paper tapes.

Appendix

Here we describe Euclid’s algorithm for
finding the greatest common divisor (gcd)
between a pair of numbers n0 ≥ n1 (Hardy
and Wright 1979). The algorithm proceeds
by calculating the sequence of divisions
with remainder for these numbers:

n0 = d1 × n1 + n2

n1 = d2 × n2 + n3

... (A1)

nm−2 = dm−1 × nm−1 + nm

nm−1 = dm × nm + 0,

where the dm are the quotients and
nm−1 ≥ nm at each stage. The last
nonzero remainder nm yields the answer,
i.e., gcd(n0, n1) = nm. For example, the
sequence

91 = 3 × 28 + 7 (A2a)

28 = 4 × 7 + 0 (A2b)

shows that gcd(28, 91) = 7 in just two
steps. The worst-case number of steps
required to complete Euclid’s algorithm
is O(log log n1).
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Introduction

In formulating and studying principles
of valid reasoning, logicians have been
guided not only by introspection and
philosophical reflection, but also by an
analysis of various rational procedures
commonly employed by mathematicians
and scientists. Because these principles
have a multitude of disparate sources,
efforts to consolidate them in a sin-
gle coherent system have been un-
successful. Instead, philosophers, logi-
cians, and mathematicians have created a
panoply of competing logical formalisms,
each with its own domain of appli-
cability. Among these formalisms are
Boolean-based propositional and predi-
cate calculi, modal and multivalued log-
ics, intuitionistic logic, and quantum
logic.

Our purpose in this article is to outline
the history and present some of the main
ideas of quantum logic. In what follows, it
will be helpful to keep in mind that there
are four levels involved in any exposition
of logic and its relation to the experimental
sciences.

1. Philosophical: Addresses the episte-
mology of the experimental sciences.
Guides and motivates the activities at
the remaining levels while assimilating
and coordinating the insights gained
from these activities.

2. Syntactic: Emphasizes the formal struc-
ture of a general calculus of experimen-
tal propositions.

3. Semantic: Focuses on the construction
of classes of mathematical models for a
logical calculus.

4. Pragmatic: Concentrates on a spe-
cific mathematical model pertinent to
a particular branch of experimental
science.

For instance, studies regarding the logics
associated with classical physics could be
categorized as follows:

1. Philosophical writings extending back
at least to Aristotle.

2. Propositional and predicate calculi.
3. The class of Boolean algebras.
4. The Boolean σ algebra of all Borel

subsets of the phase space of a
mechanical system.
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Likewise, for quantum logic, we have

1. Philosophical writings beginning with
Schrödinger, von Neumann, Bohr, Ein-
stein, et al.

2. Quantum-logical calculi.
3. The class of orthoalgebras.
4. The lattice of projection operators on a

Hilbert space.

For expository reasons, our survey pro-
ceeds roughly in the order 1, 4, 3, 2. Thus,
we give a brief history of quantum logic
in Sec. 1, outline the standard quantum
logic of projections on a Hilbert space in
Sec. 2, introduce orthoalgebras as models
for quantum logic in Sec. 3, and discuss a
general quantum-logical calculus of propo-
sitions in Sec. 4.

1
Brief History of Quantum Logic

1.1
The Origin of Quantum Logic

The publication of John von Neumann’s
Mathematische Grundlagen der Quanten-
mechanik (1932) was the genesis of a
novel system of logical principles based
on propositions affiliated with quantum-
mechanical entities.

According to von Neumann, a quantum-
mechanical system S is represented
mathematically by a separable (i.e., count-
able dimensional) complex Hilbert space
H , observables for S correspond to self-
adjoint operators on H , and the spectrum
of a self-adjoint operator is the set of all
numerical values that could be obtained by
measuring the corresponding observable.
Hence, a self-adjoint operator with spec-
trum consisting at most of the numbers
0 and 1 can be regarded as a quantum-
mechanical proposition by identifying 0 with

‘‘false’’ and 1 with ‘‘true.’’ Since a self-
adjoint operator has spectrum contained
in {0, 1} if and only if it is an (orthogonal)
projection onto a closed linear subspace of
H , von Neumann (1955, p. 253) observed
that

. . . the relation between the properties of a
physical system on the one hand, and the
projections on the other, makes possible a
sort of logical calculus with these.

1.2
The Work of Birkhoff and von Neumann

In 1936, von Neumann, now in collabo-
ration with Garrett Birkhoff, reconsidered
the matter of a logical calculus for physical
systems and proposed an axiomatic foun-
dation for such a calculus. They argued that
the experimental propositions regarding a
physical system S should band together to
form a lattice L (Birkhoff, 1967) in which
the meet and join operations are formal
analogs of the and and or connectives of
classical logic (although they admitted that
there could be a question of the experimen-
tal meaning of these operations). They also
argued that L should be equipped with a
mapping carrying each proposition a ∈ L
into its negation a′ ∈ L. In present-day ter-
minology, they proposed that L forms an
orthocomplemented lattice with ∧, ∨, and
a → a′ as meet, join, and orthocomple-
mentation, respectively (Kalmbach, 1983;
Pták and Pulmannová, 1991).

Birkhoff and von Neumann observed
that the experimental propositions con-
cerning a classical mechanical system S

can be identified with members of a field
of subsets of the phase space for S , (or,
more accurately, with elements of a quo-
tient of such a field by an ideal). In any
case, for a classical mechanical system S ,
they concluded that L forms a Boolean
algebra.
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An orthocomplemented lattice L is a
Boolean algebra if and only if it satisfies
the distributive law:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). (1)

An example in which a ∈ L denotes the
observation of a wave packet on one side
of a plane, a′ ∈ L its observation on the
other side, and b ∈ L its observation in a
state symmetric about the plane shows that

b = b ∧ (a ∨ a′) �= (b ∧ a) ∨ (b ∧ a′) = 0,

so that the distributive law of classical
logic breaks down even for the simplest of
quantum-mechanical systems. As Birkhoff
and von Neumann observed,

. . . whereas logicians have usually assumed
that properties of negation were the ones
least able to withstand a critical analysis, the
study of mechanics points to the distributive
identities as the weakest link in the algebra of
logic.

Invoking the desirability of an ‘‘a
priori thermo-dynamic weight of states,’’
Birkhoff and von Neumann argued that
L should satisfy a weakened version of
Eq. (1), called the modular law, and having
the following form:

If z ≤ x, then x ∧ (y ∨ z) = (x ∧ y) ∨ z.

(2)

If Eq. (1) holds, then so does Eq. (2) in view
of the fact that z ≤ x implies x ∧ z = z.
However, Eq. (2) is weaker than Eq. (1)
since the projection operators for a Hilbert
space of finite dimension n ≥ 2 form
a modular, but nondistributive, lattice.
Thus, Birkhoff and von Neumann pro-
posed an orthocomplemented modular lattice
as a model for a quantum-mechanical cal-
culus of logic, although they admitted that
it would be satisfying if one could inter-
pret the modular law in Eq. (2) ‘‘by simpler

phenomenological properties of quantum
physics.’’

Birkhoff and von Neumann also gave an
example to show that the projection op-
erators on an infinite-dimensional Hilbert
space fail to satisfy the modular law. Evi-
dently, von Neumann considered this to be
a possible serious flaw of the Hilbert-space
formulation of quantum mechanics as pro-
posed in his own Grundlagen. Much of von
Neumann’s work on continuous geome-
tries (1960) and rings of operators (Murray
and von Neumann, 1936) was motivated
by his desire to construct concrete com-
plemented modular lattices carrying an ‘‘a
priori thermo-dynamic weight of states,’’
that is, a continuous dimension or trace
function.

1.3
The Orthomodular Law

Although the projection lattice of an
infinite-dimensional Hilbert space fails to
satisfy the modular law in Eq. (2), it was
discovered by Husimi (1937) that it does
satisfy the following weaker condition,
now called the orthomodular law:

If z ≤ x, then x = (x ∧ z′) ∨ z. (3)

If Eq. (2) holds, then so does Eq. (3)
in view of the fact that x = x ∧ (z′ ∨ z).
The same condition was rediscovered
independently by Loomis (1955) and
Maeda (1955) in connection with their
work on extension of the Murray–von
Neumann dimension theory of rings of
operators to orthocomplemented lattices.
An orthocomplemented lattice satisfying
Eq. (3) is called an orthomodular lattice.

In 1957, Mackey published an expository
article on quantum mechanics in Hilbert
space based on notes for lectures that he
was then giving at Harvard. These notes
were later published in the form of a



Quantum Logic 443

monograph (Mackey, 1963) in which the
basic principles of quantum mechanics
were introduced in terms of a function

p = Prob(A, ψ, E) (4)

interpreted as the probability p that a
measurement of the observable A in state
ψ results in a value in a set of E of real
numbers. The square A2 of A is then
defined by the condition

Prob(A2, ψ, E) = Prob(A, ψ, F),

where F is the set of all real numbers
x such that x2 ∈ E. If A = A2, then A
is called a question. Under certain more
or less reasonable hypotheses, it can be
shown that the set of all questions forms
an orthomodular lattice L.

The generality of Mackey’s formulation
and the natural way in which Mackey’s
questions give rise to an orthomodular
lattice engendered the heady idea of a
universal logical calculus for all of the
experimental sciences. Such a calculus
would be based on the class of all ortho-
modular lattices – including the Boolean
algebras that would serve as models for
the logics affiliated with classical mechan-
ical systems. Would this be the realization
of Leibniz’s dream of a calculus ratioci-
nator? This captivating thought helped to
motivate an ongoing study of the theory of
orthomodular lattices by a relatively small
but devoted group of researchers. An au-
thoritative account of the resulting theory
of orthomodular lattices as developed up
to about 1983 can be found in Kalmbach
(1983).

1.4
The Interpretation of Meet and Join

In spite of the appeal of a general scien-
tific logic based on orthomodular lattices, a

nagging question raised in the 1936 paper
of Birkhoff and von Neumann was still
unresolved. If, for a quantum-mechanical
system, most pairs of observations are
incompatible and cannot be made simulta-
neously, what experimental meaning can
one attach to the meet p ∧ q of two propo-
sitions? Two and a half decades after his
initial paper with von Neumann, Birkhoff
returned to this question (Birkhoff, 1961),
calling for an autonomous quantum logic
that draws its authority directly from ex-
periments. (A similar question arises in
connection with the logic of relativistic
physics where the traditional notion of
simultaneity is meaningless for spatially
separated events.) After all, simultaneity
is an indispensable constituent of classical
propositional conjunction.

An obvious way to avoid the interpre-
tation issue for p ∧ q is to replace the
assumption that p ∧ q always exists with
the weaker assumption that it exists if p
and q are compatible in the sense that they
can be simultaneously tested by means of
a single experiment. In this connection,
Birkhoff and von Neumann were careful
to point out that ‘‘. . . one may regard a set
of compatible measurements as a single
composite ‘measurement’.’’

Thus, for compatible propositions, ex-
perimental meaning can be bestowed
upon the meet and join by regarding these
connectives as the conjunction and dis-
junction in the usual sense of classical
logic.

Although the mainstream effort to
develop a viable quantum logic has
concentrated on the use of orthomodular
lattices as the basic models (Jauch, 1968;
Piron, 1976; Mittelstaedt, 1978; Beltrametti
and Cassinelli, 1981), alternative models
have been introduced that avoid the
interpretation issue for meet and join
by invoking the notion of compatibility.
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Among these are the orthomodular posets
introduced in the early 1960s (Foulis,
1962) and the orthoalgebras proposed in
the late 1970s (Randall and Foulis, 1978;
Hardegree and Frazer, 1981; Lock and
Hardegree, 1984a,b). Thus, the evolution
of quantum logic from the 1930s to the
present has been the story of a slow retreat
from Boolean-algebra-based logic and the
concurrent development of more and more
general mathematical models.

2
Standard Quantum Logic

2.1
The Orthomodular Lattice of Projections on
a Hilbert Space

As a mathematical model for a calculus of
quantum logic, the orthomodular lattice
L of projection operators on a Hilbert
space H is called a standard quantum logic.
Wilbur (1977) has given a purely lattice-
theoretic characterization of the standard
quantum logics.

In the present section, we sketch the
theory of standard quantum logics, consid-
ering only the special case in which H is
a separable Hilbert space of dimension at
least three over the complex number field
C. Thus, we leave aside real or quaternionic
Hilbert spaces as well as the generalized
Hilbert spaces of Gross and Keller (Keller,
1980). We regard H as the Hilbert space
corresponding to a quantum-mechanical
system S . (For the time being, we do not
consider superselection rules.)

If A is a bounded operator on H , we
denote by A∗ the adjoint of A. Thus,
〈Aψ |φ〉 = 〈ψ |A∗φ〉 for all ψ, φ ∈ H . A
bounded operator P on H is called a
projection if P = P∗ = P2, and we define
L = L(H ) to be the set of all such

projection operators. If P ∈ L and

M = P(H ) = {P(ψ)|ψ ∈ H } (5)

is the range of P, then M is a closed linear
subspace of H ; conversely, every closed
linear subspace M of H is of the form
given in Eq. (5) for a uniquely determined
P ∈ L. If P and M are related as in Eq. (5),
we say that P is the projection onto M. The
zero operator 0 is the projection onto {0}
and the identity operator 1 is the projection
onto H .

If P is the projection onto M and Q is
the projection onto N , we write P ≤ Q if
and only if M is a linear subspace of N .
Thus, L is a partially ordered set (poset)
under ≤. If M is a closed linear subspace
of H , we write M⊥ for the set of all vectors
in H that are orthogonal to every vector
in M. Then M⊥ is again a closed linear
subspace of H . If P is the projection onto
M, we write the projection onto M⊥ as
P′. Note that

P′ = 1 − P, (P′)′ = P, 0′ = 1,

and 1′ = 0.

Furthermore, if P, Q ∈ L with P ≤ Q , then
Q ′ ≤ P′.

If M and N are closed linear sub-
spaces of H , then so is the set-theoretic
intersection M ∩ N . If P is the projec-
tion onto M and Q is the projection
onto N , we define P ∧ Q to be the pro-
jection onto M ∩ N , noting that P ∧ Q
is the meet of P and Q in the poset
L. If we define P ∨ Q = (P′ ∧ Q ′)′, we
find that P ∨ Q is the join of P and Q
in L. Also, P ∧ P′ = 0 and P ∨ P′ = 1,
and so L forms a lattice that is ortho-
complemented by P → P′. Furthermore,
L satisfies Eq. (3), and hence it is an ortho-
modular lattice.

If P is the projection onto M and Q is
the projection onto N , then M is a linear
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subspace of N ⊥ if and only if P ≤ Q ′. If
P ≤ Q ′, we say that P and Q are orthogonal
to each other and write P ⊥ Q . It can be
shown that P ⊥ Q if and only if P + Q is
again a projection operator, in which case,
P + Q = P ∨ Q .

If (Mα) is a family of closed linear
subspaces of H , then the set-theoretic
intersection ∩αMα is again a closed linear
subspace of H . If Pα is the projection
onto Mα for all α and P is the projection
onto ∩αMα , then P is the greatest lower
bound in L of the family (Pα), and we write
∧αPα = P. Likewise, (∧α(Pα)′)′ is the least
upper bound on L of the family (Pα), and we
write ∨αPα = (∧α(Pα)′)′. Consequently,
the standard quantum logic L is actually a
complete orthomodular lattice.

The interpretation of L as a model for a
logic of quantum mechanics is based on
the following premise:

The two-valued (true/false), experi-
mentally testable propositions for the
quantum-mechanical system S are rep-
resented by the projections in the standard
quantum logic L for the Hilbert space H

corresponding to S .

Furthermore, if each experimental propo-
sition for S is identified with its corre-
sponding projection P ∈ L, it is assumed
that

if P, Q ∈ L, then P ≤ Q holds if and only
if P and Q are simultaneously testable
and, whenever they are both tested and P
is found to be true, then Q will also be
true.

2.2
Observables

As is customary, we assume that an observ-
able or dynamical variable for the quantum-
mechanical system S is represented by

a (not necessarily bounded) self-adjoint
operator A on the Hilbert space H . In
particular, then, each projection operator
P ∈ L represents an observable that, when
measured, can only produce the values 1
(true) or 0 (false). As we shall see, the con-
nection between general observables and
projection observables is effected by the
celebrated spectral theorem.

The smallest collection of subsets of the
real numbers R that contains all open
intervals and is closed under the formation
of complements and countable unions is
called the σ field of real Borel sets. A
spectral measure is a mapping E → PE from
real Borel sets into projections such that
Pφ = 0, PR = 1, and, for every pairwise
disjoint sequence E1, E2, E3, . . . of real
Borel sets,

∞∨
k = 1

PEk = PE1∪E2∪E3∪···.

If E → PE is a spectral measure, λ ∈ R,
and J = (−∞, λ], define Pλ = PJ . Then,
by the spectral theorem there is a one-to-
one correspondence between observables
A and spectral measures E → PE such that

A =
∫ ∞

−∞
λdPλ.

The projections in the family (PE) are
called the spectral projections for the
observable A.

We can now be quite explicit about the
connection between observables in general
and projection observables in particular.
Suppose that A is an observable and that
(PE) is the corresponding family of spectral
projections. Then

PE represents the experimental proposi-
tion asserting that a measurement of the
observable A yields a result r that belongs
to the real Borel set E ⊆ R.



446 Quantum Logic

In quantum mechanics it is understood
that a family of observables (Aα) is
compatible (that is, jointly or simultaneously
observable) if and only if AαAβ = AβAα

for all α, β (that is, if and only if the
observables commute with each other).
On the basis of this understanding, we
can state the following:

A family of projections (Pα) ⊆ L is com-
patible (that is, simultaneously testable)
if and only if PαPβ = PβPα for all pro-
jections in the family.

It can be shown that two observables
commute with each other if and only if
their spectral projections commute with
each other.

It is interesting to note that the question
of whether or not two projections commute
can be settled in purely lattice-theoretic
terms. Indeed, for P, Q ∈ L,

PQ = QP if and only if

P = (P ∧ Q) ∨ (P ∧ Q ′).

The equation stating the condition is a
special case of the distributive law in
Eq. (1); hence, in a standard quantum
logic, the failure of the distributive law
is a direct consequence of the fact that
there are incompatible pairs of quantum-
mechanical observables.

2.3
States

A bounded self-adjoint operator W on H

is said to be nonnegative if 〈Wψ |ψ〉 ≥ 0
for all ψ ∈ H . A nonnegative operator W
belongs to the trace class if the series

tr(W) =
∑
ψ∈B

〈Wψ |ψ〉

converges for an orthonormal basis B ⊆
H . Convergence on any one orthonormal

basis implies convergence on all orthonor-
mal bases.

A (von Neumann) density operator on H

is a bounded, self-adjoint, nonnegative,
trace-class operator W on H such that
tr(W) = 1. Denote by � = �(H ) the set
of all density operators on H . One of the
basic assumptions of statistical quantum
mechanics is the following:

There is a one-to-one correspondence
between the possible states of the system
S and the density operators W ∈ � such
that, for every experimental proposition
P ∈ L, tr(WP) is the probability that
P will be true when tested in the state
corresponding to W.

In accordance with this assumption, we
shall identify each possible state of the
system S with the corresponding density
operator W. In particular, if A is an
observable with spectral family (PE), the
probability function, Eq. (4) in Mackey’s
formulation, is realized as

Prob(A, W, E) = tr(WPE). (6)

Equation (6), one of the fundamental equa-
tions of quantum mechanics, says that

the probability that a measurement of the
observable A in the state W yields a result
r in the Borel set E is given by tr(WPE).

By a countably additive probability measure
on the orthomodular lattice L is meant a
function ω: L → [0, 1] ⊆ R such that, for
every sequence P1, P2, P3, . . . of pairwise
orthogonal projections in L,

ω(∨kPk) =
∑

k

ω(Pk).

By a celebrated theorem of Gleason (1957),
ω is a countably additive probability
measure on L if and only if there is
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a (uniquely determined) density operator
W ∈ � such that

ω(P) = tr(WP) for all P ∈ L.

2.4
Superposition of States

If W1, W2, W3, . . . ∈ � is a sequence of
density operators and t1, t2, t3, . . . is a
corresponding sequence of nonnegative
real numbers such that 	tk = 1, then
W = 	ktkWk is again a density operator,
which is referred to as a mixture or an
incoherent superposition of the states Wk.
For instance, W could be regarded as the
state of a statistical ensemble of systems
for which tk is the fraction of the systems
that are in the state Wk.

A state W is called a pure state if it cannot
be obtained as a mixture of other states. It
is customary to assume that individual
physical systems are always in a pure
state and that mixed states apply only to
statistical ensembles of systems each of
which is in a pure state, or to physical
systems that are interactively coupled with
other physical systems.

It can be shown that W ∈ � is a pure
state if and only if it is a projection onto
a one-dimensional linear subspace M of
H . Thus, any normalized vector ψ ∈ H

determines a unique pure state, namely
the projection onto the linear subspace of
complex multiples of ψ . Such a state is
called a vector state, and two normalized
vectors determine the same vector state if
and only if each can be obtained from the
other by multiplying by a complex number
of modulus 1 (a phase factor). Every state W
is a mixture of pure (that is, vector) states.

We define the support of W ∈ �, in
symbols supp(W), to be the set of all
P ∈ L such that tr(WP) �= 0. This is the
same as the set of all P ∈ L for which
WP �= 0. If W = 	ktkWk is an incoherent

superposition of the sequence (Wk), then
it is clear that supp(W) is contained in the
set-theoretic union ∪ksupp(Wk).

More generally, if (Wα) is a family
of states, we say that the state W is a
superposition of the states Wα if and only if

supp(W) ⊆ ∪αsupp(Wα)

(Bennett and Foulis, 1990). If W as well as
every Wα is a pure state, then W is said to
be a coherent superposition of the states Wα .
For instance, if W is the vector state deter-
mined by ψ ∈ H , each Wα is the vector
state determined by ψα ∈ H , and ψ dif-
fers from a normalized linear combination
of the ψα by a phase factor, then W is a
coherent superposition of the Wα.

2.5
Dynamics

By dynamics is meant a study of the
way in which the states (Schrödinger
picture) or the observables (Heisenberg
picture) of a system change or evolve in
time. The Schrödinger and Heisenberg
pictures are mathematically equivalent.
For definiteness, we adopt the Schrödinger
picture. Thus, if the space � of density
operators represents the state space of
the quantum-mechanical system S , then
the dynamical evolution of the system is
represented by a function f (t,W) of the
time t ∈ R and the state W ∈ � such that

f (t, W) ∈ �, f (0, W) = W and

f (t + s, W) = f (t, f (s, W)). (7)

The understanding in Eq. (7) is that f (t,W)
represents the state of the system after a
time interval t if it is in state W at time 0.
The function f is called the dynamical law
for the system S .

If the dynamical law f in Eq. (7)
preserves superpositions, and is contin-
uous in a suitable sense, it can be shown
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(Mackey, 1963) that there is a family (Ut)

of unitary operators continuously indexed
by real numbers such that

f (t, W) = UtWU−1
t

holds for all t ∈ R. Hence, by a celebrated
representation theorem of Stone (1932), it
follows that there is a self-adjoint operator
H on H such that

Ut = e−itH (8)

for all t ∈ R. Equation (8) is the operator
form of the Schrödinger equation and H is
the Hamiltonian operator for the system.

2.6
Combinations of Standard Quantum Logics

Suppose that H 1 and H 2 are complex
separable Hilbert spaces with correspond-
ing standard quantum logics L1 and L2.
There are two natural ways to combine
H 1 and H 2 to form a composite Hilbert
space H with its own standard quantum
logic L: We can form either the direct sum
H = H 1 ⊕ H 2 or the tensor product
H = H 1 ⊗ H 2 (Foulis, 1989). In neither
case is the structure of the resulting stan-
dard quantum logic L easy to describe in
terms of the structures of L1 and L2.

If S 1 and S 2 are quantum-mechanical
systems represented by corresponding
Hilbert spaces H 1 and H 2, it is customary
to regard the tensor product H = H 2 ⊗
H 2 as the Hilbert space corresponding
to the ‘‘combined system’’ S = S 1 + S 2

(Jauch, 1968). If this is so, then in the
combination S 1 + S 2 the systems can
be tightly correlated, but they cannot exert
instantaneous influences on each other
(Kläy et al., 1987).

If W is a state for the combined system
S = S 1 + S 2, there exist uniquely de-
termined states W1 for S 1 and W2 for S 2

such that for all P1 ∈ L1 and all P2 ∈ L2

tr(W1P1) = tr(W(P1 ⊗ 1)) and

tr(W2P2) = tr(W(1 ⊗ P2)).

The states W1 and W2 are called reduced
states. In general, W is not determined by
W1 and W2, but depends on the details
of the coupling between S 1 and S 2.
However, if W is a pure state and either
W1 or W2 is pure, then both W1 and W2

are pure and W = W1 ⊗ W2. Therefore,
if S = S 1 + S 2 is in a pure state and if
S 1 and S 2 are correlated in any way, then
neither S 1 nor S 2 can be in a pure state.

If H = H 1 ⊕ H 2, a superselection rule
(Wick et al., 1952) may be imposed, in
which case the quantum logic L associated
with H is understood to consist only of
projections that commute with the projec-
tions P1 and P2 of H onto the subspaces
H 1 ⊕ {0} and {0} ⊕ H 2, respectively. In
this case, L is isomorphic to the Cartesian
product L1 × L2 of the standard quantum
logics L1 and L2, but L is no longer a
standard quantum logic. If such a supers-
election rule is imposed, it is assumed that
the superselected observables are those
with spectral projections in L and the
super-selected states are represented by
density operators W that commute with
both P1 and P2.

3
Orthoalgebras as Models for a General
Quantum Logic

3.1
Orthoalgebras

In this section, we present an axiomatic
mathematical structure called an orthoalge-
bra (Foulis et al., 1992), which generalizes
the standard quantum logics. The idea is to
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endow a generic orthoalgebra with an ab-
solute minimum of mathematical structure
so that it becomes possible to investi-
gate the meaning and consequences of the
special features that distinguish particular
orthoalgebras – for instance, Boolean al-
gebras, orthomodular lattices, or standard
quantum logics – as models for a calculus
of experimental propositions.

By definition, an orthoalgebra is a set
L containing two special elements 0 and
1 and equipped with a relation ⊥ called
orthogonality such that, for each pair p, q ∈
L with p ⊥ q, an orthogonal sum p ⊕ q is
defined in L and subject to the following
four axioms:

(Commutativity) If p ⊥ q, then q ⊥ p and
p ⊕ q = q ⊕ p.

(Associativity) If p ⊥ q and (p ⊕ q) ⊥ r,
then q ⊥ r, p ⊥ (q ⊕ r), and p ⊕ (q ⊕
r) = (p ⊕ q) ⊕ r.

(Orthocomplementation) For each p ∈ L
there is a unique p′ ∈ L such that p ⊥ p′
and p ⊕ p′ = 1.

(Consistency) If p ⊥ p, then p = 0.

We note that every orthomodular lattice L
becomes an orthoalgebra if we define p ⊕
q = p ∨ q whenever p ≤ q′. In particular,
every Boolean algebra and every standard
quantum logic is an orthoalgebra.

If L is an orthoalgebra and p, q ∈ L, we
define p ≤ q to mean that there exists
r ∈ L with p ⊥ r such that p ⊕ r = q. It
can be shown that L is partially ordered by
≤; 0 ≤ p ≤ 1 and p = p′′ hold for all p ∈ L;
and, if p ≤ q, then q′ ≤ p′. Also, if p ⊥ q,
then with respect to ≤, p ⊕ q is a minimal
upper bound for p and q; that is,

p, q ≤ p ⊕ q and there exists

no r ∈ L with

p, q ≤ r < p ⊕ q.

However, p ⊕ q may not be the least upper
bound for p and q; that is, the conditions

r ∈ L and p, q ≤ r do not necessarily imply
that p ⊕ q ≤ r.

If x, y ∈ L have a least upper bound
(respectively, a greatest lower bound), we
write it as x ∨ y (respectively, as x ∧ y).
By definition, an orthomodular poset is an
orthoalgebra L satisfying the condition
that p ⊕ q = p ∨ q whenever p ⊥ q. An
orthomodular lattice is the same thing as
an orthoalgebra in which every pair of
elements x, y has a meet x ∧ y and a join
x ∨ y. A Boolean algebra is the same thing
as an orthomodular lattice satisfying the
condition that x ∧ y = 0 only if x ⊥ y.

By a subalgebra of the orthoalgebra L,
we mean a subset S ⊆ L such that 0, 1 ∈ S
and, if p, q ∈ S with p ⊥ q, then p ⊕ q ∈ S
and p′ ∈ S. Evidently, a subalgebra of
an orthoalgebra is an orthoalgebra in its
own right under the operations inherited
from the parent orthoalgebra. If, as an
orthoalgebra in its own right, a subalgebra
B of L is a Boolean algebra, we refer to B
as a Boolean subalgebra of L. If p ⊥ q in L,
then

B = {0, 1, p, q, p′, q′, p ⊕ q, (p ⊕ q)′}

is a Boolean subalgebra of L, so L is a set-
theoretic union of Boolean subalgebras.

3.2
Compatibility, Conjunction, and
Disjunction in an Orthoalgebra

We say that a subset of an orthoalgebra
L is a compatible set if it is contained in
a Boolean subalgebra of L. A compatible
set of pairwise orthogonal elements is
called an orthogonal subset of L. If L is a
standard quantum logic, then a subset of L
is compatible if and only if the projections
in the subset commute with one another.

Let A = {a1, a2, a3, . . . , an} be a finite
orthogonal subset of L. Then, it can be
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shown that the least upper bound

∨BA = a1 ∨B a2 ∨B a3 ∨B · · · ∨B an

as calculated in any Boolean subalgebra B
of L that contains A is independent of the
choice of B. Thus, we define the orthogonal
sum

⊕A = ∨BA

as calculated in any such B. If C and
D are finite orthogonal subsets of L,
then ⊕C ⊥ ⊕D if and only if C ∩ D ⊆
{0} and C ∪ D is an orthogonal set,
in which case ⊕C ⊕ ⊕D = ⊕(C ∪ D). If
A = {a1, a2}, then ⊕A = a1 ⊕ a2. Thus, if
A = {a1, a2, a3, . . . , an}, is an orthogonal
set, we can define

a1 ⊕ a2 ⊕ a3 ⊕ · · · ⊕ an = ⊕A

without notational conflict.
If p, q ∈ L and both p and q belong to

a Boolean subalgebra B of L, then the
greatest lower bound p ∧B q and the least
upper bound p ∨B q of p and q as calculated
in B may well depend on the choice of B.
If p ∧B q is independent of the choice of B,
we define the conjunction p & q of p and q
by

p & q = p ∧B q.

Likewise, if p ∨B q is independent of the
choice of B, we define the disjunction p + q
of p and q by

p + q = p ∨B q.

It can be shown that the compatible
elements p and q have a conjunction
if and only if they have a disjunction.
Furthermore, if p & q and p + q exist,
then p & q is a maximal lower bound
and p + q is a minimal upper bound for p
and q in L. If p and q are compatible and
at least one of p ∧ q or p ∨ q exists in L,
then p & q and p + q exist, p & q = p ∧ q,

and p + q = p ∨ q. If p & q exists, then
so do p′ & q′ and p′ + q′, and we have
p + q = (p′ & q′)′ and p & q = (p′ + q′)′. If
p ⊥ q, then p + q = p ⊕ q and p & q = 0.

If L is an orthomodular poset, then
any two compatible elements p, q ∈ L have
a conjunction p & q = p ∧ q and a dis-
junction p + q = p ∨ q; however, there are
orthoalgebras containing compatible pairs
of elements that do not admit conjunctions
or disjunctions. There are non-Boolean
orthoalgebras in which every pair of ele-
ments forms a compatible set. There exist
orthomodular posets containing three el-
ements that are pairwise compatible, but
that do not form a compatible set; however,
in an orthomodular poset, every pairwise
orthogonal subset is an orthogonal sub-
set. There exist orthoalgebras containing
three elements that are pairwise orthog-
onal, but do not form an orthogonal
set.

3.3
Probability Measures on and Supports in an
Orthoalgebra

By a probability measure on an orthoalgebra
L, we mean a mapping ω : L → [0, 1] ⊆ R

such that, for p, q ∈ L, with p ⊥ q,

ω(p ⊕ q) = ω(p) + ω(q). (9)

It is possible to define σ -complete orthoal-
gebras and countably additive probability
measures thereon, and thus extend Eq. (9)
to sequences in L, but we do not do
so here. The set of all probability mea-
sures on L is denoted by � = �(L).
Evidently, � is a convex subset of the
vector space of all real-valued functions
on L.

If the elements of L are regarded
as representing two-valued experimental
propositions concerning a physical system



Quantum Logic 451

S , then a probability measure ω ∈ � may
be interpreted in any of the following ways:

(Frequency) ω is a complete stochastic model
for S in the sense that ω(p) is
the ‘‘longrun relative frequency’’ with
which the proposition p ∈ L will be true
when repeatedly tested (D’Espagnat,
1971).

(Subjective) ω is a model for coherent belief
encoding all of our current information
about the system S . Thus, if p ∈ L,
then ω(p) measures our current ‘‘degree
of belief,’’ on a scale from 0 to 1, in
the truth of the proposition p (Jaynes,
1989).

(Propensity) ω(p) is a measure on a scale
from 0 to 1 of the ‘‘propensity’’ of
the system S to produce the outcome
1(= true) when the proposition p is
tested (Popper, 1959).

(Mathematical) ω is a mathematical artifact
that may be of use in making inferences
about S using data secured by making
measurements on S (Kolmogorov,
1933).

For ω ∈ �, we define the support of ω by

supp(ω) = {p ∈ L | ω(p) > 0}.
If S = supp(ω), then 1 ∈ S and, for all
p, q ∈ L with p ⊥ q,

p ⊕ q ∈ S if and only if p ∈ S or q ∈ S.

(10)

A subset S of L such that Eq. (10) holds
is called a support in L. In general, there
are supports S ⊆ L that are not of the
form supp(ω) for ω ∈ �; those that are of
this form are called stochastic supports. The
set-theoretic union of supports is again a
support, and it follows that the collection
of all supports in L forms a complete lattice
under set-theoretic inclusion.

3.4
Cartesian and Tensor Products of
Orthoalgebras

If L1 and L2 are orthoalgebras, the Carte-
sian product L1 × L2 becomes an orthoal-
gebra under the obvious componentwise
operations. If L1 is identified with L1 × {0}
and L2 is identified with {0} × L2 in
L1 × L2, then every element in L1 × L2
can be written uniquely in the form p ⊕ q
with p ∈ L1 and q ∈ L2. This construction
generalizes the superselected direct sum of
standard quantum logics. Just as is the case
for standard quantum logics, �(L1 × L2) is
isomorphic in a natural way to the convex
hull of �(L1) and �(L2).

A construction for the tensor product
L1 ⊗ L2 of orthoalgebras based on Foulis
and Randall (1981) can be found in
Lock (1981). The factors L1 and L2 are
embedded in the orthoalgebra L1 ⊗ L2
by mappings p → p ⊗ 1 and q → 1 ⊗ q
for p ∈ L1, q ∈ L2 in such a way that
p ⊗ 1 and 1 ⊗ q are compatible and
have a conjunction (p ⊗ 1)&(1 ⊗ q) = p ⊗
q. Furthermore, elements of the form p ⊗ q
generate L1 ⊗ L2. If α ∈ �(L1) and β ∈
�(L2), there is a unique γ = αβ ∈ �(L1 ⊗
L2) such that γ (p ⊗ q) = α(p)β(q) for all
p ∈ L1, q ∈ L2. A probability measure on
L1 ⊗ L2 of the form αβ is said to be
factorizable, and a convex combination of
factorizable probability measures is said to
be separable (Kläy, 1988). The existence of
probability measures on L1 ⊗ L2 that are
not separable seems to be a characteristic
feature of the tensor product of non-
Boolean orthoalgebras.

3.5
The Logic of a Physical System

We are now in a position to summarize
the quantum logic approach to the study of
physical systems (quantum-mechanical or
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not). The basic postulate of quantum logic
for a physical system S is as follows:

(Logic postulate) The set L of all two-
valued, experimentally testable proposi-
tions for S has the structure of an or-
thoalgebra such that every simultaneously
testable set of propositions forms a compat-
ible subset of L and every finite compatible
subset of L is a simultaneously testable set
of propositions. If p, q ∈ L with p ⊥ q,
and if p, q, and p ⊕ q are tested simulta-
neously, then at most one of the proposi-
tions p, q will be true, and p ⊕ q will be
true if and only if either p or q is true.

We refer to L as the logic of the system S .
It is customary to assume that there

is a state space � associated with the
physical system S . The elements ψ ∈ �

are called states, and, at any given moment,
S is presumed to be in one and only
one state ψ ∈ �. A state is supposed
to encode all available information about
the consequences of performing tests or
making measurements on S when S is
in that state.

Whereas the truth or falsity of an
experimental proposition p ∈ L can be
determined by a suitable test, it may
or may not be possible to determine
the current state ψ ∈ � of S by a
test or measurement; however, it may
be possible to bring S into a state ψ

by means of a suitable state-preparation
procedure. The state of the system S can
change under the action of a dynamical
law, under a state collapse when an
observer tests a proposition or measures
an observable, because a state-preparation
procedure is executed, or simply by virtue
of a spontaneous state transition.

A connection between the state space �

for S and its logic L is effected as follows:

(Stochastic postulate) Each state ψ ∈ �

determines a corresponding probability

measure ωψ on L in such a way that,
for p ∈ L, ωψ(p) is the probability that
the proposition p is true when tested with
the system S in the state ψ .

In the stochastic postulate, the proba-
bility measure ωψ can be interpreted in
any of the four ways (frequency, subjec-
tive, propensity, mathematical) suggested
in Sec. 3.3. In what follows, we denote
by 	 the subset of �(L) consisting of
all probability measures of the form ωψ

for ψ ∈ �, and we refer to each ωψ ∈ 	

as a probability state for the system S .
It is customary to identify the state ψ

with the corresponding probability state
ωψ and to speak of the elements in 	

as states for S . Although this custom can
lead to philosophical and mathematical
difficulties (what if φ, ψ ∈ �, φ �= ψ , and
yet ωφ = ωψ?), we shall follow it in the
interests of simplicity.

Let ω ∈ 	 be a state and let p ∈ L
be an experimental proposition for the
physical system S . We say that p is
possible, impossible, or certain in the state
ω if p ∈ supp(ω), p �∈ supp(ω), or p′ �∈
supp(ω), respectively. If both p and p′ are
possible, we say that p is contingent in the
state ω. The state space 	 is said to be
unital if every nonzero p ∈ L is certain in
at least one state ω ∈ 	.

If � ⊆ 	 is a set of states, then a state
ω ∈ 	 is said to be a superposition of the
states in � if

supp(ω) ⊆ ∪{supp(λ)|λ ∈ �}.
The superposition closure of � is defined to
be the set �sp of all superpositions of states
in �. If � = �sp, then � is called superposi-
tion closed. A state ω is pure if the set {ω} is
superposition closed. If ω is a pure state, �
is a set of pure states, and ω ∈ �sp, then ω

is a coherent superposition of the states in �.
In what follows, we denote by L the set of
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all superposition-closed subsets of 	. Note
that L is closed under set-theoretic inter-
section, and hence, it forms a complete
lattice under set-theoretic inclusion.

It has long been a tenet of natural
philosophy that affiliated with a physical
system S is a class A of attributes or
properties. At any given moment, some of
these attributes may be actual, while the
others are only potential. The attributes
of S that are always actual are its intrinsic
attributes; those that can be either actual or
potential are its accidental attributes. The
charge of an electron is one of its intrinsic
attributes, whereas the attribute ‘‘spin up
in the z direction’’ is accidental.

To each attribute A ∈ A there corre-
sponds a set �A ⊆ 	 consisting precisely
of those states ω such that A is actual
whenever S is in the state ω. A heuristic
argument, which we omit here, indicates
that �A should be superposition closed, so
that �A ∈ L . Similar arguments suggest
that every element of L corresponds in
this way to an attribute, and thus lead us
to our third postulate:

(Attribute postulate) Each attribute A
determines a corresponding superposition-
closed subset �A of the state space 	 such
that A is actual if and only if the system
S is in a state ω ∈ �A; furthermore,
every � ∈ L has the form �A for some
A ∈ A.

Just as we identified states with probabil-
ity states, we propose to identify elements
� of the complete lattice L with attributes
of the system S . (Note that, as a perhaps
undesirable consequence, all of the intrin-
sic attributes of S become identified with
the superposition-closed subset 	 itself.)
Thus, we shall refer to the complete lattice
L as the attribute lattice for the system S .

If �, 
 ∈ L are attributes of S , then
� ⊆ 
 if and only if 
 is actual whenever

� is actual. Furthermore, the attribute
� ∩ 
 ∈ L corresponds to a bona fide
conjunction of the attributes � and 
 in
the sense that � ∩ 
 is actual if and only
if both � and 
 are actual. However, the
least upper bound of � and 
 in L is
(� ∪ 
)sp, and it can be actual in states in
which neither � nor 
 is actual. Following
Aerts (1982), we say that the attributes �

and 
 are separated by a superselection rule
if � ∪ 
 is superposition closed, so that
the least upper bound of � and 
 in L

corresponds to a bona fide disjunction of
the attributes � and 
.

3.6
The Canonical Mapping

We continue our discussion of the physical
system S subject to the logic, stochastic,
and attribute postulates of Sec. 3.5.

Von Neumann (1955, p. 249) writes,

Apart from the physical quantities . . . , there
exists another category of concepts that are
important objects of physics – namely the
properties of the states of the system S .

Furthermore, he goes on to identify
these properties (or attributes) with the
projections in the standard quantum logic
L affiliated with the quantum-mechanical
system S .

In the more general situation under
discussion, it is also possible to relate
propositions p ∈ L and properties (i.e.,
attributes) � ∈ L . For p ∈ L, define

[p] = {ω ∈ � | ω(p) = 1}.
We claim that [p] is superposition closed.
Indeed, suppose that α ∈ [p]sp, but that α �∈
[p]. Then α(p) �= 1, and so α(p′) > 0, p′ ∈
supp(α), and so p′ ∈ supp(ω) for some ω ∈
[p]. But, then, ω(p′) > 0, and so ω(p) <

1, contradicting ω ∈ [p]. Thus p → [p]
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provides a mapping from experimental
propositions p ∈ L to attributes [p] ∈ L .
We refer to p → [p] as the canonical
mapping (Foulis et al., 1983).

An attribute of the form [p] is called a
principal attribute; the principal attributes
are those that can be identified with ex-
perimental propositions as von Neumann
did. It is not difficult to show that every
attribute is an intersection (i.e., a conjunc-
tion) of (possibly infinitely many) principal
attributes. The state space 	 is unital if and
only if [p] = 0 implies that p = 0.

Evidently, p, q ∈ L with p ≤ q implies
that [p] ⊆ [q]. If the converse holds, so that
[p] ⊆ [q] implies that p ≤ q, then S is said
to have a full set of states. If S has a full
set of states and every attribute is princi-
pal, then the logic L is isomorphic to the
attribute lattice L – this is precisely what
happens for a standard quantum logic and
it accounts for von Neumann’s identifica-
tion of projections and properties.

3.7
Critique of Quantum Logic

Quantum logic is a relatively young sub-
ject, it is still under vigorous development,
and many consequences of the epis-
temological and mathematical insights
that it has already provided have yet
to be exploited. Quantum-logical tech-
niques involving the tensor product have
already cast some light on the well-
known Einstein–Podolsky–Rosen para-
dox (Kläy, 1988), and it is hoped that
they will also clarify some of the
other classical paradoxes (Wigner’s friend,
Schrödinger’s cat, etc.). The problem of
hidden variable can be formulated, un-
derstood, and studied rigorously in terms
of quantum logics (Greechie and Gud-
der, 1973). Quantum-logical techniques
have enhanced our understanding of

group-theoretic imprimitivity methods
and the role of superselection rules (Piron,
1976), and ideas related to quantum logic
have been used to help unravel the mea-
surement problem (Busch et al., 1991)

There is a strong possibility that unre-
stricted orthoalgebras are too general to
serve as viable models for quantum logic.
Some orthoalgebras are extremely ‘‘patho-
logical’’ and thus may be suitable only
for the construction of counterexamples. It
seems likely that only an appropriately spe-
cialized class of orthoalgebras, e.g., unital
orthoalgebras, might prove to be adequate
as models for a general logic of experimen-
tal propositions.

The main drawback of quantum logic
is already evident in the standard quan-
tum logic L of a Hilbert space H : In
the passage from the wave functions ψ

in H to the projections P ∈ L, all phase
information is lost. The lost information
becomes critical when sequential mea-
surements – e.g., iterated Stern–Gehrlach
spin resolutions (Wright, 1978) – are to be
performed. There are at least two ways
to restore the lost information, both of
which are currently being studied. One
can introduce complex-valued amplitude
functions on the logic L (Gudder, 1988), or
one can introduce a general mathemati-
cal infrastructure called a manual or test
space (Randall and Foulis, 1973; Foulis,
1989) that can carry phase information
and that gives rise to orthoalgebras as de-
rived structures in much the same way that
Hilbert spaces give rise to the standard
quantum logics.

4
The Logician’s Approach

We now present an approach to quantum
logic more closely aligned with that
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of standard logical techniques. In the
preceding section, we gave an axiomatic
approach to orthoalgebras, the most gen-
eral mathematical structures currently
used as models for quantum logic. This
section deals with quantum logics by us-
ing the methods of logical tradition. In so
doing, we will speak of abstract quantum
logics. As we have seen, standard quantum
logic is identified with the complete or-
thomodular lattice of the projections on
a separable Hilbert space of dimension
at least three over the complex number
field. Thus standard quantum logic is a
particular kind of semantic model for a
form of abstract quantum logic. Gener-
ally, a logic L can be determined as a triple
〈FL, �, |=〉, consisting of a formal language
FL, a proof-theoretic consequence relation,
and a semantic-(or model-theoretic) conse-
quence relation. For the sake of simplicity,
we will consider only sentential languages,
generated by an alphabet containing

1. a denumerably infinite sequence of
atomic sentences (i.e., sentences whose
proper parts are not sentences),

2. a finite sequence of primitive logical
connectives.

The set of the sentences of the language FL
is the smallest set that contains the atomic
sentences and is closed under the logical
connectives.

The proof-theoretic concept of conse-
quence � for L is defined by referring to a
calculus (a set of axioms and of rules) that,
in turn, determines a notion of proof from
a set of premises to a conclusion. A sentence
β is called a proof-theoretic consequence of a
sentence α(α � β) if and only if (hereafter
abbreviated as iff ) there is a proof where ω

is the premise and β the conclusion. The
semantic-consequence relation |= refers to
a class of possible interpretations (models)
of the language, which render any sentence

‘‘more or less’’ true or false. A sentence β is
called a semantic consequence of α(α |= β)

iff in any possible model of the language,
β is at least as true as α.

The two consequence relations � and |=
are reciprocally adequate iff they are equiv-
alent. In other words: for any sentences
α, β:

α � β iff α |= β.

The ‘‘if arrow’’ represents the soundness
property of the logic, whereas the ‘‘only
if arrow’’ is the semantic completeness
property.

Naturally, a logic can be characterized by
different consequence relations that turn
out to be equivalent. A logic L is called
axiomatizable iff it admits a proof-theoretic
relation, where the notion of proof is
decidable. Further, L is called decidable iff
the proof-theoretic-consequence relation �
is decidable.

5
Algebraic and Possible-World Semantics

In the logical tradition, logics can be
generally characterized by means of two
privileged kinds of semantics: an algebraic
semantics, or a possible-world semantics
(called also Kripkean semantics).

These semantics give different answers
to the question: What does it mean
to interpret a formal language? In the
algebraic semantics, the basic idea is
that interpreting a language essentially
means associating to any sentence an
abstract truth value or, more generally,
an abstract meaning: an element of an
algebraic structure. Hence, generally, an
algebraic model for a logic L will have the
form

M = 〈A, v〉,
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where A is an algebraic structure belong-
ing to a class M of structures satisfying a
given set of conditions and v transforms
sentences into elements of A, preserving
the logical form (in other words, logical
constants are interpreted as operations of
the structure). We will consider only struc-
tures where a binary relation ≤ (possibly a
partial order) is defined. On this basis, the
semantic-consequence relation is defined
as follows:

DEFINITION 5.1 – β is a semantic conse-
quence of α(α |= β) iff for any model
M = 〈A, v〉, v(α) ≤ v(β) (in other words,
the abstract meaning of α precedes the
abstract meaning of β).

In the possible-world semantics, instead,
one assumes that interpreting a language
essentially means associating to any sen-
tence α the set of the possible worlds (or
situations) where α holds: This set, that
represents the extensional meaning of α, is
called the proposition associated to α (sim-
ply, the proposition of α). Hence, generally,
a Kripkean model for a logic L will have
the form:

M = 〈I, Ri, oj, �, v〉,
where the meanings of the symbols are as
follows.

1. I is a nonempty set of possible worlds
possibly correlated by relations in the
sequence Ri and operations in the
sequence oj. In most cases, we have only
one relation R, called the accessibility
relation.

2. � is a set of sets of possible worlds,
representing possible propositions of
sentences. Any proposition and the to-
tal set of propositions � must satisfy
convenient closure conditions that de-
pend on the particular logic.

3. v transforms sentences into proposi-
tions preserving the logical form.

A world i is said to verify a sentence
α(i |= α) iff i ∈ v(α).

On this basis, the Kripkean semantic-
consequence relation is defined as follows:

DEFINITION 5.2 – β is a semantic conse-
quence of α(α |= β) iff for any model
M = 〈I, Ri, oj, �, v〉 and for any world
i ∈ I,

if i |= α then i |= β

(in other words: whenever α is verified,
also β is verified).

In both semantics, a sentence α is
called a logical truth (|= α) iff α is the
consequence of any sentence β.

An interesting variant of Kripkean se-
mantics is represented by the many-valued
possible-world semantics, founded on a
generalization of the notion of proposi-
tion. As we have seen, in the standard
possible-world semantics, the proposition
of a sentence α is a set of worlds: the
worlds where α holds. This automati-
cally determines the set of the worlds
where α does not hold (the ‘‘meaning’’
of the negation of α). Intermediate truth
values are not considered. In the many-
valued possible-world semantics, instead,
one fixes, at the very beginning, a set of
truth values V ⊆ [0, 1] and any proposi-
tion is represented as a function X that
associates to any truth value r ∈ [0, 1] a
convenient set of possible worlds (the
worlds where our proposition holds with
truth value r). As a consequence, the to-
tal set of propositions � turns out to
behave like a family of fuzzy subsets
of I.

Classical logic (CL) can be character-
ized both in the algebraic and in the
Kripkean semantics. Algebraically, it is
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determined by the class of all alge-
braic structures 〈A, v〉, where A is a
Boolean algebra and v interprets the
classical connectives (negation, conjunc-
tion, disjunction) as the corresponding
Boolean operations (complement, meet,
join). In the framework of Kripkean
semantics, instead, CL is characterized
by the class of all models 〈I, R, �, v〉,
where

1. the accessibility relation R is the identity
relation (in other words, any world is
accessible only to itself );

2. the set of the possible propositions � is
the set of all subsets of I;

3. v interprets the classical connectives as
the corresponding set-theoretic opera-
tions.

6
Orthodox Quantum Logic

In the abstract quantum-logical universe,
a privileged element is represented by
orthodox quantum logic (QL), first de-
scribed ‘‘as a logic’’ by Birkhoff and von
Neumann (Birkhoff and von Neumann,
1936). QL is a singular point in the
class of all logics that are weaker than
classical logic. Many logical and met-
alogical problems concerning QL have
been solved. However, some questions
seem to be stubbornly resistant to being
resolved.

6.1
Semantic Characterizations of QL

Similarly to classical logic, QL can be
characterized both in the algebraic and in
the Kripkean semantics. The language of
QL contains the two primitive connectives
¬ (not), ©∧ (and). Disjunction is supposed

to be metalinguistically defined via De
Morgan’s law:

α ©∨ β := ¬(¬α ©∧ ¬β).

A conditional connective can be defined as
the ‘‘Sasaki hook’’:

α → β := ¬α ©∨ (α ©∧ β).

DEFINITION 6.1.1 – An algebraic model of
QL is a pair M = 〈A, v〉, where

1. A = 〈A, ≤,′ , 1,0〉 is an orthomodular
lattice;

2. v (the interpretation function) inter-
prets the connective ¬ as the operation
′, the connective ©∧ as the lattice-meet
∧:
a. v(α) ∈ A for any atomic sentence α.
b. v(¬β) = v(β)′.
c. v(β ©∧ γ ) = v(β) ∧ v(γ ).

DEFINITION 6.1.2 – A sentence α is called
true in a model 〈A, v〉 iff v(α) = 1.
Accordingly, we will have that β is a
consequence of α in the algebraic semantics
of QL (α |=A

QL β) iff v(α) ≤ v(β) in any
model 〈A, v〉 based on an orthomodular
lattice A. Further, α is a quantum-logical
truth in the algebraic semantics (|=A

QL α) iff
α is true in any algebraic model of QL.

As a consequence of the orthomodular
property, a semantic version of a ‘‘deduc-
tion lemma’’ can be proved:

LEMMA 6.1.1 – α |=A
QL β iff |=A

QL α → β.
In other words, → represents a ‘‘good’’
conditional connective: α → β is logically
true iff β is a consequence of α.

DEFINITION 6.1.3 – A Kripkean model of QL
has the form M = 〈I, R, �, v〉, where the
following conditions held:

1. The accessibility relation R is reflexive
and symmetric [we will also write
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i �⊥ j for Rij; and i ⊥ j for not Rij.
Moreover, if X ⊆ I, we will write i ⊥ X
for ∀j ∈ X(i ⊥ j)].
A possible proposition of M is a maximal
set X of worlds, which contains all
and only those worlds whose accessible
worlds are accessible to at least one
element of X. In other words, i ∈ X iff
∀j �⊥ i, ∃k �⊥ j with k ∈ X .
For any X ⊆ I, let X©⊥ := {i ∈ I|i ⊥ X}.
One can prove that X©⊥ is a possible
proposition for any X ⊆ I; X is a
possible proposition iff X = X©⊥ ©⊥ ; ∅
and I are possible propositions; if X, Y
are possible propositions, then X ∩ Y is
a possible proposition.

2. � is a set of possible propositions closed
under, I, ©⊥, ∩.

3. � is orthomodular: X ∩ (X ∩ (X ∩
Y)©⊥)©⊥ ⊆ Y , for any X, Y ∈ �.

4. a. v(α) ∈ �, for any atomic sentence α;
b. v(¬β) = v(β)©⊥;
c. v(β ©∧ γ ) = v(β) ∩ v(γ ).

DEFINITION 6.1.4 – A sentence α is called
true in a model M = 〈I, R, �, v〉 iff α is
verified by any world i ∈ I.

Accordingly, we will have that β is a
consequence of α in the Kripkean semantics
of QL (α |=K

QL β) iff for any Kripkean
model M = 〈I, R, �, v〉 of QL and for any
world i, if i |= α then i |= β. Further, α

is a quantum-logical truth in the Kripkean
semantics for QL (|=K

QL α) iff α is true in
any Kripkean model of QL.

The algebraic and the Kripkean seman-
tics for QL turn out to characterize the
same logic:

THEOREM 6.1.1 – α |=A
QL β iff α |=K

QL β.
This permits us to write simply α |=QL β

instead of α |=A
QL β and α |=K

QL β.

Both the algebraic and the Kripkean
models of QL admit of Hilbert-space

exemplifications, which are the basis
for the physical interpretations. Let H

be the separable complex Hilbert space
associated to a physical system S . An
algebraic model 〈A, v〉 can be constructed
by taking as A the standard quantum
logic based on H – in other words, the
orthomodular lattice of the projections on
H ; whereas v will follow the intended
physical meaning of the atomic sentences.
At the same time, a Kripkean model
M = 〈I, R, �, v〉 can be constructed by
putting I = the set of the pure states
(represented by normalized vectors ψ of
H ), R = the non-orthogonality relation
between pure states, and � = the set of the
possible propositions, which are uniquely
determined by the closed subspaces of H .
v will follow the physical meaning of the
atomic sentences. It turns out that the
propositions of the model correspond to
superposition-closed subsets of the pure-
state space. We will call this kind of models
Hilbertian models of QL.

A question arises: Is QL characterized by
the class of all algebraic Hilbertian mod-
els? The answer is negative as proved by
Greechie (1981). For instance, there is a
complicated sentence of QL (correspond-
ing to the so-called orthoarguesian law) that
is true in all Hilbertian models, and not
true in some QL models. Let us call Hilber-
tian quantum logic (HQL) the logic that is
semantically characterized by the class of
all Hilbertian models. Apparently, HQL is
stronger than QL. Hence, abstract quan-
tum logic turns out to be definitely more
general with respect to its physical and his-
torical origin. The axiomatizability of HQL
is still an open problem.

DEFINITION 6.1.5 – A sentence α is called
semantically consistent iff for any β, α �|=QL

β ©∧ ¬β (in other words, no contradiction
is a semantic consequence of α).
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One can show that α is semantically
consistent iff there is at least one algebraic
model 〈A, v〉 such that v(α) �= 0 iff there
exists at least one Kripkean model M =
〈I, R, �, v〉 and at least one world i such
that i |= α.

6.2
An Axiomatization of QL

QL is an axiomatizable logic. Many axiom-
atizations are known: in the Hilbert–Ber-
nays style (Hardegree, 1979), in the natural
deduction, and in the sequent style (Gib-
bins, 1985; Nishimura, 1980). We will
present here a calculus (Goldblatt, 1974;
Dalla Chiara, 1986) that represents a kind
of ‘‘logical copy’’ of orthomodular lattices.
Our calculus (that has no axioms) is deter-
mined as a set of rules. Any rule has the
form

α1 � β1, . . . , αn � βn

α � β
.

(If β1 is inferred from α1, . . . , βn is in-
ferred from αn, then β can be inferred from
α.) The configurations α1 � β1, . . . , αn �
βn represent the premises of the rule, while
α � β is the conclusion. An improper rule
is a rule whose set of premises is empty.
Instead of ∅

α � β
,

we will write α � β.
The rules of QL are as follows:

R1 α � α (identity).

R2
α � β β � γ

α � γ
(transitivity).

R3 α ©∧ β � α.
R4 α ©∧ β � β.

R5
γ � α γ � β

γ � α ©∧ β
.

R6 α � ¬¬α (weak double negation).
R7 ¬¬α � α (strong double negation).

R8
α � β

¬β � ¬α
(contraposition).

R9 α ©∧ ¬(α ©∧ ¬(α ©∧ β)) � β

(orthomodularity).

DEFINITION 6.2.1 – A proof is a finite
sequence of configurations α � β where
any element of the sequence is either an
improper rule or the conclusion of a proper
rule whose premises are previous elements
of the sequence.

DEFINITION 6.2.2 – β is a proof-theoretic
consequence of α (or provable from α)
(α �QL β) iff there is a proof whose last
configuration is α � β.

DEFINITION 6.2.3 – β is a proof-theoretic
consequence of a set of sentences T (or
provable from T) (T �QL β) iff T includes
a finite subset {α1, . . . , αn} such that
α1, ©∧ · · · ©∧ αn �QL β.

DEFINITION 6.2.4 – A set of sentences T
is called contradictory if T �QL β ©∧ ¬β

for some sentence β; noncontradictory,
otherwise. A sentence α is contradictory
if {α} is contradictory; noncontradictory,
otherwise.

The proof-theoretic and the semantic-
consequence relations turn out to be
equivalent. Namely, a soundness and a
completeness theorem can be proved:

THEOREM 6.2.1 – Soundness

If α �QL β then α |=QL β.

THEOREM 6.2.2 – Completeness

If α |=QL β then α �QL β.

As a consequence, one obtains the result
that a sentence is noncontradictory iff it is
semantically consistent.
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A characteristic ‘‘anomaly’’ of QL is the
violation of a metalogical condition, which
is satisfied not only by CL but also by a large
class of nonclassical logics. This condition
is represented by the Lindenbaum property,
according to which any noncontradictory
set of sentences T can be extended to a
noncontradictory and complete set T∗ such
that for any sentence α, either α ∈ T∗ or
¬α ∈ T∗. The set T := {¬(α → (β → α))}
(which contains the negation of the a for-
tiori principle) represents an example of
a noncontradictory set that cannot be ex-
tended to a noncontradictory and complete
set. The set T is noncontradictory, be-
cause in some models 〈A, v〉: v(¬(α →
(β → α))) �= 0. For instance, take 〈A, v〉
based on the orthomodular lattice of the
closed subspaces of R2, where v(α) and
v(β) are two nonorthogonal unidimen-
sional subspaces. However, one can easily
check that v(¬(α → (β → α))) = 1 is im-
possible. Hence, ¬(α → (β → α)) cannot
belong to a noncontradictory and complete
set T∗, which would trivially admit a model
〈A, v〉 such that v(β) = 1, for any β ∈ T∗.
From an intuitive point of view, the failure
of the Lindenbaum property represents a
very strong incompleteness result. The ter-
tium non datur principle breaks down at
the very deep level: There are theories that
are intrinsically incomplete, even in mente
Dei.

Among the questions that are still
unsolved, let us mention at least the
following:

1. Is QL decidable?
2. Does QL admit the finite-model property?

In other words, if a sentence is
not a quantum-logical truth, is there
any finite model where our sentence
is not verified? A positive answer
to the finite-model property would
automatically provide a positive answer

to the decidability question, but not vice
versa.

3. Is the set of all possible propositions
in the Kripkean canonical model of
QL orthomodular? (The worlds of the
canonical model are all the noncontra-
dictory and deductively closed sets of
sentences T, whereas two worlds T and
T ′ are accessible iff whenever T con-
tains a sentence α, T ′ does not contain
its negation ¬α.) This problem is cor-
related to the critical question whether
any orthomodular lattice is embeddable
into a complete orthomodular lattice.
Only partial answers are known.

7
Orthologic and Unsharp Quantum Logics

By dropping the orthomodular condition
both in the algebraic and in the Krip-
kean semantics, one can characterize a
weaker form of quantum logic, which is
usually called orthologic or minimal quan-
tum logic (MQL). This logic turns out to
be more ‘‘tractable’’ from a metalogical
point of view: It satisfies the finite-model
property; consequently, it is decidable
(Goldblatt, 1974). A calculus that repre-
sents an adequate axiomatization for MQL
can be, naturally, obtained by replacing
the orthomodular rule R9 of our QL cal-
culus with the weaker Duns Scotus rule
α ©∧ ¬α � β (ex absurdo sequitur quodli-
bet: Any sentence is a consequence of a
contradiction).

A less investigated form of quantum
logic is represented by paraconsistent
quantum logic (PQL) (Dalla Chiara and
Giuntini, 1989), which is a weak example
of an unsharp quantum logic, possibly
violating the noncontradiction and the
excluded-middle principles. As we will see,
unsharp quantum logics represent natural
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abstractions from the unsharp approaches
to quantum theory. Algebraically, PQL is
characterized by the class of all models
based on an involutive lattice 〈A, ≤,′ , 1, 0〉,
with smallest element 0 and largest
element 1. Equivalently, in the Kripkean
semantics, PQL is characterized by the
class of all models 〈I, R, �, v〉, where R
is a symmetric, not necessarily reflexive,
relation, and � behaves like in the MQL
case. Differently from QL and MQL, a
world i of a PQL model may verify a
contradiction. Since R is generally not
reflexive, it may happen that i ∈ v(β)

and i ⊥ v(β). Hence: i |= β ©∧ ¬β. An
adequate axiomatization for PQL can be
obtained by dropping the orthomodular
rule R9 in our QL calculus. Like MQL, also
PQL satisfies the finite-model property and
consequently is decidable.

Interesting unsharp extensions of PQL
are the Brouwer–Zadeh logics first investi-
gated by Cattaneo and Nisticò (1989). A
characteristic of these logics is a splitting
of the connective ‘‘not’’ into two forms
of negation: a fuzzylike negation, which
gives rise to a paraconsistent behavior, and
an intuitionisticlike negation. The fuzzy
‘‘not’’ represents a weak negation, which
inverts the truth values truth and falsity,
satisfies the double-negation principle, but
generally violates the noncontradiction
and the excluded-middle principles. The
second ‘‘not’’ is a stronger negation, a
kind of necessitation of the fuzzy ‘‘not.’’
As a consequence, the language of the
Brouwer–Zadeh logics is an extension
of the QL language, with two primitive
negations: ¬ represents the fuzzy ‘‘not,’’
whereas ∼ is the intuitionistic ‘‘not.’’ On
this basis, a necessity operator can be de-
fined in terms of the two negations:

Lα :=∼ ¬α.

In other words: ‘‘necessarily α’’ means
the intuitionistic negation of the fuzzy
negation of α. A possibility operator is
then defined in terms of L and ¬:

Mα := ¬L¬α.

We will consider two forms of
Brouwer–Zadeh logics: BZL (weak
Brouwer–Zadeh logic) and BZL3, which
represents a form of three-valued quantum
logic. Both logics admit of Hilbert-space
exemplifications. Algebraically, BZL is
characterized by the class of all models
M = 〈A, v〉, where A = 〈A, ≤,′ ,∼ , 1,0〉
is a Brouwer–Zadeh lattice (simply a BZ
lattice). In other words:

1. a. 〈A, ≤,′ , 1,0〉 is an involutive lattice
with smallest element 0 and largest
element 1.
b. ∼ behaves like an intuitionistic
complement:

a ∧ a∼ = 0.

a ≤ a∼∼.

If a ≤ b, then b∼ ≤ a∼.

c. The following relation holds between
the fuzzy and the intuitionistic comple-
ment:

a∼′ = a∼∼.

d. The regularity condition holds:

a ∧ a′ ≤ b ∨ b′.

2. v interprets the fuzzy negation ¬ as the
fuzzy complement ′, and the intuition-
istic negation ∼ as the intuitionistic
complement ∼.

The logic BZL, which can be equiva-
lently characterized also by a Kripkean
semantics, is axiomatizable and decidable
(Giuntini, 1991). The modal operators of
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BZL behave similarly to the corresponding
operators of the famous modal system S5.
For instance, LLα is equivalent to Lα; and
LMα is equivalent to Mα.

The three-valued BZL3 can be naturally
characterized by a kind of many-valued
possible-world semantics. The intuitive
idea can be sketched as follows: One
supposes that interpreting a language
means associating to any sentence two
domains of certainty: the domain of possible
worlds where the sentence holds, and
the domain of possible worlds where
the sentence does not hold. All the
other worlds are supposed to associate
an intermediate truth value (indetermined)
to our sentence. The models of this
semantics will be called models with positive
and negative domains (shortly, ortho-pair
models).

Briefly, an ortho-pair model has the form
M = 〈I, R, �, v〉, where

1. I is a nonempty set of worlds and R
(the accessibility relation) is reflexive
and symmetric (like in the Kripkean
characterization of QL).

The possible propositions (in the sense of
our definition of the Kripkean model for
QL) will be here called simple propositions.
The set 	 of all simple propositions gives
rise to an ortholattice; let us indicate
by #, �, � the lattice operations defined
on 	.

2. A possible proposition of M is any
pair 〈X1, X0〉, where X1, X0 are simple
propositions such that X1 ⊆ X#

0 (in
other words: X1, X0 are orthogonal).
The following operations and relations
are defined on the set of all possible
propositions:
a. the fuzzy complement

〈X1, X0〉′ = 〈X0, X1〉;

b. the intuitionistic complement

〈X1, X0〉∼ = 〈X0, X#
0 〉;

c. the propositional conjunction

〈X1, X0〉 ∧ 〈Y1, Y0〉 = 〈X1 � Y1,

X0 � Y0〉;

d. the order relation

〈X1, X0〉 ≤ 〈Y1, Y0〉 iff X1 ⊆ Y1

and Y0 ⊆ X0.

3. � is a set of possible propositions closed
under ∧,′ ,∼, and 0 := 〈∅, I〉.

4. v (the interpretation function) maps
sentences into propositions in � and
interprets the connectives ©∧ , ∼, ¬ as
the corresponding operations.

The other basic semantic definitions are
like in the algebraic semantics. One can
show that in any ortho-pair model the
set of propositions has the structure of
a BZ lattice. As a consequence, the logic
BZL3 is at least as strong as BZL. In
fact, one can prove that BZL3 is properly
stronger than BZL. As a counterexample,
let us consider an instance of the fuzzy
excluded middle and an instance of the
intuitionistic excluded middle applied to
the same sentence α. One can easily check:

α ©∨ ¬α |=BZL3 α ©∨ ∼ α and

α ©∨ ∼ α |=BZL3 α ©∨ ¬α.

However, generally

α ©∨ ¬α � |=BZLα ©∨ ∼ α.

Also BZL3 is axiomatizable (Cattaneo et al.,
1993) and can be characterized by means
of an algebraic semantics.
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8
Hilbert-Space Models of the
Brouwer–Zadeh Logics

Hilbert-space models of both BZL and
BZL3 can be obtained in the framework
of the unsharp (or operational) approach to
quantum theory that was first proposed
by Ludwig (1954) and developed (among
others) by Kraus (1983), Davies (1976),
Busch et al. (1991), and Cattaneo and Laud-
isa (1994). One of the basic ideas of this
approach is a ‘‘liberalization’’ of the mathe-
matical counterpart for the intuitive notion
of ‘‘experimentally testable proposition.’’
As we have seen, in orthodox Hilbert-space
quantum mechanics, experimental propo-
sitions are mathematically represented as
projections P on the Hilbert space H

corresponding to the physical system S

under investigation. If P is a projection
representing a proposition and W is a den-
sity operator representing a state of S ,
the number tr(WP) represents the proba-
bility value that the system S in the state
W verifies P (Born probability). However,
projections are not the only operators for
which a Born probability can be defined.
Let us consider the class E (H ) of all lin-
ear bounded operators D such that for any
density operator W,

tr(WD) ∈ [0, 1].

It turns out that E (H ) properly includes
the set L(H ) of all projections on H .
In a sense, the elements of E (H )

represent a ‘‘maximal’’ possible notion
of experimental proposition, in agreement
with the probabilistic rules of quantum
theory. In the framework of the unsharp
approach, the elements of E (H ) have
been called effects. An important difference
between projections and proper effects
is the following: Projections can be
associated to sharp propositions having the

form ‘‘the value for the observable A lies
in the exact Borel set F,’’ whereas effects
may represent also fuzzy propositions like
‘‘the value of the observable A lies in the
fuzzy Borel set F.’’ As a consequence, there
are effects D that are different from the
null projection 0 and that are verified
with certainty by no state [for any W,
tr(WD) �= 1]. A limit case is represented
by the semitransparent effect 1

21 (where 1
is the identity operator), to which any state
W assigns probability value 1

2 .
The class of all effects of H gives rise to

a structure 〈E (H ), ≤,′ ,∼ , 1,0〉 which is a
BZ poset (not a BZ lattice!). In other words,
≤ is a partial order with largest element
1 and smallest element 0, while the fuzzy
and the intuitionistic complement (′ and ∼)
behave like in the BZ lattices. The relation
and the operations of the effect-structure
are defined as follows:

1. D1 ≤ D2 iff for any density operator W,
tr(WD1) ≤ tr(WD2).

2. 1 = 1.
3. D′ = 1 − D.
4. D∼ is the projection PKer(D) into

the subspace Ker(D), consisting of all
vectors that are transformed by the
operator D into the null vector.

5. 0 = 1′.

In the particular case where D is a
projection, it turns out that D′ = D∼.
In other words, the fuzzy and the intu-
itionistic complement coincide for sharp
propositions. One can show that any BZ
poset can be embedded into a complete
BZ lattice [for the MacNeille completion
(Birkhoff, 1967) of a BZ poset is a com-
plete BZ lattice (Giuntini, 1991)]. As a
consequence, the MacNeille completions
of the effect-BZ posets represent natu-
ral Hilbert-space models for the logic
BZL.
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As to BZL3, Hilbert-space models
〈I, R, �, v〉 in the ortho-pair semantics can
be constructed as follows:

1. I and R are defined like in the Kripkean
Hilbertian models of QL. The simple
propositions turn out to be in one-to-
one correspondence to the set of the
projections of H .

2. � is the set of all possible propositions.
Any effect D can be transformed
into a proposition f (D) = 〈XD

1 , XD
0 〉,

where

XD
1 := {ψ ∈ I|tr(PψD) = 1} and

XD
0 := {ψ ∈ I|tr(PψD) = 0}

(Pψ is the projection onto the unidi-
mensional subspace spanned by the
vector ψ ). In other words, XD

1 and XD
0

represent respectively the positive and
the negative domain of D (in a sense,
the extensional meaning of D in the
model). The map f turns out to pre-
serve the order relation and the two
complements.

3. The interpretation function v follows
the intuitive physical meaning of the
atomic sentences.

9
Partial Quantum Logics

So far we have considered only examples
of abstract quantum logics, where conjunc-
tions and disjunctions are supposed to be
always defined. However, as we have seen,
the experimental and the probabilistic
meaning of conjunctions of incompatible
propositions in quantum theory has been
often put in question. How do we construct
logics where we admit that conjunctions
and disjunctions are possibly meaning-
less? For instance, how do we give a natural

semantic characterization for a logic corre-
sponding to the class of all orthoalgebras
or to the class of all orthomodular posets?
Let us call these logics respectively weak
partial quantum logic (WPaQL) and strong
partial quantum logic (SPaQL). Are WPaQL
and SPaQL axiomatizable?

9.1
Algebraic Semantics for WPaQL

The language of WPaQL contains two
primitive connectives: the negation ¬,
and the exclusive disjunction �+ (aut). A
conjunction is metalinguistically defined,
via De Morgan’s law:

α �. β := ¬(¬α �+ ¬β).

The intuitive idea underlying our seman-
tics for WPaQL is the following: Dis-
junctions and conjunctions are considered
‘‘legitimate’’ from a mere linguistic point
of view. However, semantically, a disjunc-
tion α �+ β will have the intended meaning
only in the ‘‘well-behaved cases’’ (where
the values of α and β are orthogonal in the
corresponding orthoalgebra). Otherwise,
α �+ β will have any meaning whatsoever
(generally not connected with the mean-
ings of α and β). A similar semantic ‘‘trick’’
is used in some standard treatments of the
description operator ι (‘‘the unique indi-
vidual that satisfies a given property’’) in
classical model theory.

DEFINITION 9.1.1 – An algebraic model of
WPaQL is a pair M = 〈A, v〉, where

1. A = 〈A, ⊕, 1,0〉 is an orthoalgebra.
2. v (the interpretation function) satisfies

the following conditions:
v(α) ∈ A, for any atomic sentence α;
v(¬β) = v(β)′, where ′ is the orthocom-
plement operation that is defined in
A;
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v(β �+ γ ) ={
v(β) ⊕ v(γ ), ifv(β) ⊕ v(γ )is defined
inA, any element otherwise.

Accordingly, we will have that

α |=WPaQL β iff in any WPaQL model

M = 〈A, v〉, v(α) ≤ v(β),

where ≤ is the partial order relation
defined in A.

9.2
An Axiomatization of Partial Quantum
Logics

The logic WPaQL is axiomatizable. We
present here a calculus that is obtained as a
natural transformation of our QL calculus.

The rules of WPaQL are as follows:

R1 α � α (identity).

R2
α � ββ � γ

α � γ
(transitivity).

R3 α � ¬¬α (weak double negation).
R4 ¬¬α � α (strong double negation).

R5
α � β

¬β � ¬α
(contraposition).

R6 β � α �+ ¬α (excluded middle).

R7
α � ¬βα �+ ¬α � α �+ β

¬α � β
(unicity of

negation).

R8
α � ¬βα � α1α1 � αβ � β1β1 � β

α �+ β � α1 �+ β1
(weak substitutivity).

R9
α � ¬β

α �+ β � β �+ α
(weak commutativity).

R10
β � ¬γα � ¬(β �+ γ )

α � ¬β
.

R11
β � ¬γα � ¬(β �+ γ )

α �+ β � ¬γ
.

R12
β � ¬γα � ¬(β �+ γ )

α �+ (β �+ γ ) � (α �+ β) �+ γ
.

R13
β � ¬γα � ¬(β �+ γ )

(α �+ β) �+ γ ) � α �+ (β �+ γ )
.

(R10–R13 require a weak associativity.)

The other basic proof-theoretic defini-
tions are given like in the QL case. Some
derivable rules of the calculus are the fol-
lowing:

D1
α � β

β � α �+ ¬(α �+ ¬β)
.

D2
α � β

α �+ ¬(α �+ ¬β) � β
.

D3

α � ¬γβ � ¬γα �+ γ � β �+ γβ �+ γ
� α �+ γ

α � β
.

D4
α � ¬βα � γβ � γ γ � α �+ β

α �+ β � γ
.

The proof-theoretic and the semantic-
consequence relations for the logic WPaQL
are reciprocally adequate. Namely, a
soundness and a completeness theorem
can be proved.

THEOREM 9.2.1 – Soundness

If α �WPaQL β then α |=WPaQL β.

THEOREM 9.2.2 – Completeness

If α |=WPaQL β then α �WPaQL β.
As to strong partial quantum logic

(SPaQL), an axiomatization can be ob-
tained by adding to our WPaQL calculus
the following rule:

R14
α � ¬β α � γ β � γ

α �+ β � γ
.

Semantically, the models of SPaQL
will be based on orthoalgebras A =
〈A, ⊕, 1,0〉, satisfying the following condi-
tion: If defined, a ⊕ b is the sup of a and b.
As we have seen in Sec. 3.1, this condition
is necessary and sufficient in order to make
the orthoposet induced by the orthoalgebra
A an orthomodular poset. The soundness
and the completeness theorems for SPaQL
(with respect to this semantics) can be
proved similarly to the case of WPaQL.
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10
Critique of Abstract Quantum Logics

Do abstract quantum logics represent
‘‘real’’ logics or should they rather be
regarded as mere extrapolations from
particular algebraic structures that arise in
the mathematical formalism of quantum
mechanics? Different answers to this
question have been given in the history of
the logicoalgebraic approach to quantum
theory. According to our analysis, the
logical status of abstract quantum logics
can be hardly put in question. These
logics turn out to satisfy all the canonical
conditions that the present community
of logicians require in order to call a
given abstract object a logic: syntactical
and semantical descriptions, proofs of
soundness and completeness theorems,
and so on.

Has the quantum-logical research defi-
nitely shown that ‘‘logic is empirical’’? At
the very beginning of the history of quan-
tum logic, the thesis according to which
the choice of the ‘‘right’’ logic to be used
in a given theoretic situation may depend
also on experimental data appeared a kind
of extremistic view, in contrast with the
traditional description of logic as ‘‘an a
priori and analytical science.’’ These days,
an empirical position in logic is no more
regarded as a ‘‘daring heresy.’’ At the same
time, we are facing a new difficulty: As we
have seen, quantum logic is not unique.
Besides orthodox quantum logic, different
forms of partial and unsharp quantum log-
ics have been developed. In this situation,
one can wonder whether it is still reason-
able to look for the most adequate abstract
logic that should faithfully represent the
structures arising in the quantum world.

A question that has been often discussed
concerns the compatibility between quan-
tum logic and the mathematical formalism

of quantum theory, based on classical
logic. Is the quantum physicist bound to
a kind of ‘‘logical schizophrenia’’? At first
sight, the compresence of different logics
in one and the same theory may give a
sense of uneasiness. However, the split-
ting of the basic logical operations (nega-
tion, conjunction, disjunction,. . .) into dif-
ferent connectives with different meanings
and uses is now a well-accepted logical
phenomenon that admits consistent de-
scriptions. As we have seen, classical and
quantum logic turn out to apply to differ-
ent sublanguages of quantum theory that
must be sharply distinguished.

Glossary

Abstract Quantum Logic: A logic 〈FL, �, |=
〉, where the proof-theoretic and the
semantic-consequence relations violate
some characteristic classical principles like
the distributivity of conjunction and dis-
junction.

Adjoint: If A is a bounded operator on a
Hilbert space, then the adjoint of A is the
unique bounded operator A∗ that satisfies
〈Aψ |φ〉 = 〈ψ |A∗φ〉 for all vectors ψ, φ in
the space.

Algebraic Model of a Language: A pair
〈A, v〉 consisting of an algebraic structure
A and of an interpretation function v that
transforms the sentences of the language
into elements of A, preserving the logical
form.

Algebraic Semantics: The basic idea is that
interpreting a formal language means
associating to any sentence an element
of an algebraic structure.

Attribute: One of a class of properties
affiliated with a physical system. At any
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given moment some of the attributes of
the system may be actual, while others are
only potential.

Axiomatizable Logic: A logic is axiomatiz-
able when its concept of proof is decid-
able.

Boolean Algebra: An orthocomplemented
lattice L that satisfies the distributive
law p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r) for all
p, q, r ∈ L.

Borel Set: A (real) Borel set is a set
that belongs to the smallest collection of
subsets of the real numbers R that contains
all open intervals and is closed under the
formation of complements and countable
unions.

Brouwer–Zadeh Lattice (or Poset): A lattice
(or poset) L with smallest element 1 and
largest element 0, equipped with a regular
involution ′ (a fuzzylike complement),
and an intuitionisticlike complement ∼,
subject to the following conditions for all
p, q ∈ L: (i) p ≤ q ⇒ q∼ ≤ p∼, (ii) p ∧ p∼ =
0, (iii) p ≤ p∼∼, (iv) p∼′ = p∼∼.

Brouwer–Zadeh Logic: A logic that is
characterized by the class of all models
based on Brouwer–Zadeh lattices.

Compatible: A set C of elements in an
orthoalgebra L is a compatible set if there
is a Boolean subalgebra B of L such that
C ⊆ B.

Complete Lattice: A lattice in which every
subset has a least upper bound, or
join, and a greatest lower bound, or
meet.

Completeness: A logic 〈FL, �, |=〉 is (se-
mantically) complete when all the se-
mantic consequences are proof-theoretic
consequences (if α |= β then α � β).

Conjunction (in an Orthoalgebra): If L is
an orthoalgebra and p, q ∈ L, then p and q
have a conjunction p & q ∈ L if there is a
Boolean subalgebra B of L with p, q ∈ B,
and the meet p ∧B q of p and q in B is
independent of the choice of B, in which
case p & q = p ∧B q.

Decidable Logic: A logic is decidable when
its proof-theoretic consequence relation is
decidable.

Density Operator: A self-adjoint, nonneg-
ative, trace-class operator W on a Hilbert
space, such that tr(W) = 1.

Direct Sum (or Cartesian Product) of Hilbert
Spaces: The direct sum of the Hilbert
spaces H and K is the Hilbert space
H ⊕ K consisting of all ordered pairs
(x, y) with x ∈ H , y ∈ K , and with co-
ordinatewise vector operations. The inner
product is defined by 〈(x1, y1)|(x2, y2)〉 =
〈x1|x2〉 + 〈y1|y2〉.
Disjunction (in an Orthoalgebra): If L is
an orthoalgebra and p, q ∈ L, then p and
q have a disjunction p + q if there is a
Boolean subalgebra B of L with p, q ∈ B
and the join p ∨B q of p and q in B is
independent of the choice of B, in which
case p + q = p ∨B q.

Dynamics: The evolution in time of the
state of a physical system.

Effect: A linear bounded operator A of a
Hilbert space such that for any density op-
erator W, tr(WA) ∈ [0, 1]. In the unsharp
approach to quantum mechanics, effects
represent possible experimental proposi-
tions.

Experimental Proposition: A proposition
whose truth value can be determined by
conducting an experiment.
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Greatest vs Maximal: If L is a partially
ordered set (poset) and X ⊆ L, then an
element b ∈ X is a greatest element of X
if x ≤ b for all x ∈ X . An element b ∈ X is
a maximal element of X if there exists no
element x ∈ X with b < x.

Involution: A mapping p → p′ on a poset
L satisfying the following conditions for
all p, q ∈ L: (i) p ≤ q ⇒ q′ ≤ p′, (ii) p′′ =
p.

Involutive Lattice (or Poset): A lattice (or
poset) with smallest element 0 and largest
element 1, equipped with an involution.

Join: If L is a partially ordered set (poset)
and p, q ∈ L, then the join (or least upper
bound) of p and q in L, denoted by p ∨ q if it
exists, is the unique element of L satisfying
the following conditions: (i) p, q ≤ p ∨ q
and (ii) r ∈ L with p, q ≤ r ⇒ p ∨ q ≤ r.

Kripkean Model of a Language: A sys-
tem 〈I, R1, . . . , Rm, o1, . . . , on, �, v〉 con-
sisting of a set I of possible worlds,
a (possibly empty) sequence of world
relations R1, . . . , Rm and of world op-
erations o1, . . . , on, a family � of sub-
sets of I (called the propositions), and
an interpretation function v that trans-
forms the sentences of the language
into propositions, preserving the logical
form.

Kripkean Semantics: The basic idea is that
interpreting a formal language means
associating to any sentence the set of
the possible worlds where the sentence
holds. This set is called also the proposition
associated to the sentence.

Lattice: A partially ordered set (poset) in
which every pair of elements p, q has a
least upper bound, or join, p ∨ q and a
greatest lower bound, or meet, p ∧ q.

Least vs Minimal: If L is a partially ordered
set (poset) and X ⊆ L, then an element
a ∈ X is a least element of X if a ≤ x for
all x ∈ X . An element a ∈ X is a minimal
element of X if there exists no element
x ∈ X with x < a.

Lindenbaum Property: A logic satisfies the
Lindenbaum property when any noncon-
tradictory set of sentences T can be
extended to a noncontradictory and com-
plete set T∗ (such that T∗ contains, for any
sentence of the language, either the sen-
tence or its negation). Abstract quantum
logics generally violate the Lindenbaum
property.

Logic: According to the tradition of logi-
cal methods, a logic can be described as
a system 〈FL, �, |=〉 consisting of a formal
language, a proof-theoretic-consequence rela-
tion � (based on a notion of proof ), and a
semantic-consequence relation |= (based on
a notion of model and of truth).

MacNeille Completion of a Brouwer–Zadeh
Lattice: Let L be a Brouwer–Zadeh lattice
(or poset). For X ⊆ L, let X ′ = {p ∈ L|∀q ∈
X, p ≤ q′}, X∼ = {p ∈ L|∀q ∈ X , p ≤ q∼},
and P(L) = {X ⊆ L|X = X ′′}. The struc-
ture P (L) = 〈P(L), ⊆,′ ,∼ , {}′′, L〉 is called
the MacNeille completion of L. P (L) is
a complete Brouwer–Zadeh lattice and L
is embeddable into P (L) via the mapping
p → 〈p], where 〈p] = {q ∈ L|q ≤ p}.
Meet: If L is a partially ordered set (poset)
and p, q ∈ L, then the meet (or greatest
lower bound) of p and q, denoted by
p ∧ q if it exists, is the unique element
of L satisfying the following conditions: (i)
p ∧ q ≤ p, q and (ii) r ∈ L with r ≤ p, q ⇒
r ≤ p ∧ q.

Minimal Quantum Logic: A logic that is
semantically characterized by the class of
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all models based on orthocomplemented
lattices.

Modular Lattice: A lattice L satisfying the
modular law: p ≤ r ⇒ p ∨ (q ∧ r) = (p ∨
q) ∧ r for all p, q, r ∈ L.

Nonnegative Operator: A self-adjoint oper-
ator A on a Hilbert space H such that
〈Aψ |ψ〉 ≥ 0 for all vectors ψ ∈ H .

Observable or Dynamical Variable: A nu-
merical variable associated with a phys-
ical system the value of which can
be determined by conducting a test, a
measurement, or an experiment on the
system.

Orthoalgebra: A mathematical system con-
sisting of a set L with two special elements
0, 1 and equipped with a relation ⊥
such that, for each pair p, q ∈ L with
p ⊥ q, an orthogonal sum p ⊕ q ∈ L is
defined subject to the following condi-
tions for all p, q, r ∈ L: (i) p ⊥ q ⇒ q ⊥ p
and p ⊕ q = q ⊕ p, (ii) p ⊥ q and (p ⊕ q) ⊥
r ⇒ q ⊥ r, p ⊥ (q ⊕ r) and p ⊕ (q ⊕ r) =
(p ⊕ q) ⊕ r, (iii) p ∈ L ⇒ there is a unique
p′ ∈ L such that p ⊥ p′ and p ⊕ p′ = 1, and
(iv) p ⊥ p ⇒ p = 0.

Orthocomplementation: A mapping p →
p′ on a poset L with smallest element 0 and
largest element 1 satisfying the following
conditions for all p, q ∈ L: (i) p ∨ p′ = 1,
(ii) p ∧ p′ = 0, (iii) p ≤ q ⇒ q′ ≤ p′, and
(iv) p′′ = p.

Orthocomplemented Lattice (or Poset): A
lattice (or poset) equipped with an ortho-
complementation p → p′.

Orthodox Quantum Logic: A logic that is
semantically characterized by the class of
all algebraic models based on orthomod-
ular lattices. Standard quantum logic is

a particular model of orthodox quantum
logic.

Orthogonal: If L is an orthocomplemented
poset and p, q ∈ L, then p is orthogonal to
q, in symbols p ⊥ q, if p ≤ q′.

Orthomodular Lattice: An orthocomple-
mented lattice L satisfying the ortho-
modular law: For all p, q ∈ L, p ≤ q ⇒ q =
p ∨ (q ∧ p′).

Orthomodular Poset: An orthoalgebra L
such that, for all p, q ∈ L, p ⊥ q ⇒ p ⊕ q =
p ∨ q.

Paraconsistent Quantum Logic: A logic
that is semantically characterized by the
class of all models based on involutive
lattices with smallest element 0 and largest
element 1.

Partially Ordered Set (or Poset): A set L
equipped with a relation ≤ satisfying the
following conditions for all p, q, r ∈ L: (i)
p ≤ p, (ii) p ≤ q and q ≤ p ⇒ p = q, (iii)
p ≤ q and q ≤ r ⇒ p ≤ r.

Probability Measure: A function ω : L →
[0, 1] ⊆ R on an orthoalgebra L such
that ω(0) = 0, ω(1) = 1, and, for all
p, q ∈ L with p ⊥ q, ω(p ⊕ q) = ω(p) +
ω(q).

Projection: An operator P on a Hilbert
space that is self-adjoint (P = P∗) and
idem-potent (P = P2).

Pure State: A state ψ is pure if the
set {ψ} consisting only of that state
is superposition closed. In Hilbert-space
quantum mechanics, the pure states are
precisely the vector states.

Quantum Logic: The study of the formal
structure of experimental propositions af-
filiated with a quantum physical system, or
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any mathematical model (e.g., an orthoal-
gebra) representing such a structure.

Regular Involution: An involution ′ on
a poset L that satisfies the regularity
condition: For all p, q ∈ L: p ≤ p′ and q ≤
q′ ⇒ p ≤ q′. If L is a lattice, then an
involution is regular iff it satisfies the
Kleene condition: For all p, q ∈ L: p ∧ p′ ≤
q ∨ q′.

Soundness: A logic 〈FL, �, |=〉 is sound
when all the proof-theoretic consequences
are semantic consequences (if α � β then
α |= β).

Spectral Measure: A mapping from real
Borel sets into projection operators on
a Hilbert space that maps the empty
set into 0, maps R into 1, and maps
the union of a disjoint sequence of real
Borel sets into the least upper bound
(join) of the corresponding projection
operators.

Spectral Theorem: The theorem establish-
ing a one-to-one correspondence between
(not necessarily bounded) self-adjoint op-
erators A on a Hilbert space H and
spectral measures E → PE on H such
that, if Pλ = P(−∞,λ] for all λ ∈ R, then
A = ∫ ∞

−∞ λdPλ.

Spectrum: If A is a (not necessarily
bounded) self-adjoint operator on a Hilbert
space and E → PE is the corresponding
spectral measure, then a real number
λ belongs to the spectrum of A if
P(λ−∈,λ+∈) �= 0 for all ε > 0.

Standard Quantum Logic: The complete
orthomodular lattice L of all projection
operators on a Hilbert space. For P, Q ∈
L, P ≤ Q is defined to mean that P = PQ
and the orthocomplement of P is defined
by P′ = 1 − P.

State: The state of a physical system
encodes all information concerning the
results of conducting tests or measuring
observables on the system. It is usually
assumed that, corresponding to each state
ψ of the system, there is a probability
measure ωψ on the logic L of the system
such that ωψ(p) is the probability that
the experimental proposition p ∈ L is true
when the system is in the state ψ .

State Space: The set of all possible states
of the physical system.

Strong Partial Quantum Logic: A logic that
is semantically characterized by the class of
all models based on orthomodular posets.

Superselection Rule: A rule that deter-
mines the possible states of a physical
system. The usual quantum-mechanical
superselection rules state that only vector
states that commute with a certain set
of pairwise orthogonal projections (i.e.,
projections onto superposition sectors)
represent possible states of the systems.

Support: If W is a density operator on
a Hilbert space H , then the support of
W is defined to be the set supp(W) of
all projection operators P on H such
that tr(WP) �= 0. More generally, if ω is
a probability measure on an orthoalgebra
L, then supp(ω) = {p ∈ L|ω(p) �= 0}.
Superposition Closed: A set of states is
superposition closed if it contains all of
its own superpositions.

Superposition in Hilbert Space: For a
Hilbert space H , if (Wα) is a family of vec-
tor states determined by the corresponding
family (ψα) of normalized vectors in H ,
and if ψ is a normalized linear combi-
nation of the vectors in this family, then
the vector state W determined by ψ is
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a (coherent) superposition of the fam-
ily (Wα). If (Wα) is an arbitrary family
of density operators on H and (tα) is
a corresponding family of nonnegative
real numbers such that 	αtα = 1, then
W = 	αtαWα is an (incoherent) superpo-
sition (or mixtures) of the family (Wα).

Superposition in an Orthoalgebra: A prob-
ability measure ω on an orthoalgebra L
is a superposition of a family (ωα) of
probability measures on L if supp(ω) ⊆
∪αsupp(ωα).

Tensor Product of Hilbert Spaces: If H

and K are Hilbert spaces, then the
tensor product H ⊗ K is a Hilbert
space together with a mapping (x, y) →
x ⊗ y ∈ H ⊗ K for x ∈ H , y ∈ K that
is separately linear in each argument
and has the property that if (ψi) is an
orthonormal basis for H and (φj) is an
orthonormal basis for K , then (ψi ⊗ φj)

is an orthonormal basis for H ⊗ K .

Trace: The trace of an operator A on a
Hilbert space H is defined by tr(A) =
	ψ∈B〈Aψ |ψ〉, where B is an orthonormal
basis for H , provided that the series
converges.

Trace Class: An operator A on a Hilbert
space H belongs to the trace class
if tr(A) = 	ψ∈B〈Aψ |ψ〉 converges abso-
lutely, where B is an orthonormal basis for
H .

Unsharp Quantum Logics: Examples of
paraconsistent logics where the non-
contradiction principle is generally vio-
lated.

Vector State: A probability measure on the
standard quantum logic L of a Hilbert
space H determined by a normalized
vector ψ ∈ H and assigning to each

projection operator P ∈ L the probability
〈Pψ |ψ〉.
Weak Partial Quantum Logic: A logic that
is semantically characterized by the class
of all models based on orthoalgebras.
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Introduction

This article is devoted to the theory and
applications of a set higher transcendental
functions that arise naturally in mathemat-
ical physics. These higher transcendental
functions are referred to as special func-
tions, and they arise

1. when solving, in certain curvilinear
coordinate systems, partial differential
equations that are defined by physical
problems and/or

2. when finding eigenfunctions and eigen-
values of differential operators.

The partial-differential-equations approach
to special functions involves use of the
separation-of-variables method and either
the Frobenius–Fuchs power series solu-
tions of one or more resulting ordinary dif-
ferential equations or an Infeld–Hull type
factorization procedure for finding eigen-
functions and eigenvalues of second-order
ordinary linear differential equations.

The focus is on a class of physical
problems whose differential-equation for-
mulation involves the Laplacian operator,
∇2. The resulting partial differential equa-
tions include the Laplace equation, the
heat-conduction (diffusion) equation, the
mechanical wave-motion equation, and the
Schrödinger wave equation. After applica-
tion of the separation-of-variables method,
the resulting time-independent parts of all

these partial differential equations may be
written in the form of the Helmholtz differ-
ential equation, ∇2u + k2u = 0. Problems
involving the Helmholtz differential equa-
tion in spherical coordinates lead to spher-
ical harmonics, Legendre polynomials and
associated Legendre functions, Laguerre
and associated Laguerre polynomials, and
spherical Bessel functions. Problems mod-
eled by use of Helmholtz’s differential
equation in cylindrical coordinates involve
the various types of Bessel functions. Solu-
tions of the Schrödinger wave equation for
a linear harmonic oscillator are expressed
in terms of Hermite polynomials.

Special functions such as Hermite poly-
nomials, Legendre polynomials and as-
sociated Legendre functions, spherical
harmonics, Laguerre and associated La-
guerre polynomials, and Bessel functions
are widely used in mathematical physics
and are the main focus of this article;
these special functions are special cases of
the hypergeometric function 2F1(a, b, c; z)

or confluent hypergeometric function
1F1(a, c; z). There exist other useful special
functions in mathematical physics that are
not expressible in terms of 2F1 or 1F1. The
functions 2F1 and 1F1 may be developed
from the following main view-points:

1. ordinary differential equations and
the Frobenius–Fuchs power series
method,

2. factorization of ordinary differential
equations, and
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3. representation theory of local Lie
groups.

In a lecture course, The Application of
Group Theory to the Special Functions of
Mathematical Physics (unpublished lecture
notes, Princeton University, Princeton, NJ,
1955; see Talman, 1968), Wigner pointed
out that certain classes of special functions
arise as matrix elements of the represen-
tations of local Lie groups. Since Wigner’s
work, many other group-theoretical ap-
proaches to special functions have been
developed. The purposes of these vari-
ous group-theoretical approaches are to
show unity (or demonstrate a central
foundation) among the extremely large
number of special functions and to de-
rive their various known basic properties.
It is important, however, to note that
there exist no single approach to special
functions that unites all special func-
tions and illuminates all of their various
properties.

Section 1 is devoted to a treatment of the
Sturm–Liouville theory and orthogonal
polynomials, since these concepts provide
insight into properties of solutions of the
second-order ordinary linear differential
equations in which we are interested. The
factorization method of Infeld and Hull
and its connection to a group-theoretical
foundation of certain special functions are
summarized in Secs. 1.5 and 1.6.

A discussion of the properties of the
hypergeometric differential equation and
the hypergeometric function 2F1 is given
in Sec. 2. The Legendre polynomials and
associated Legendre functions are special
examples of 2F1, and their important prop-
erties are developed in Sec. 2. Also, some
discussion of the Chebyshev polynomial,
Gegenbauer polynomial, and Jacobi poly-
nomial is given in Sec. 2.

Section 3 is devoted to special functions
that are special cases of the confluent hy-
pergeometric function, 1F1. These special
functions include the various Bessel func-
tions, Laguerre and associated Laguerre
polynomials, and the Hermite polynomi-
als. Also, discussions of some properties of
the confluent hypergeometric differential
equation and properties of confluent hy-
pergeometric function are given in Sec. 3.

In Sec. 4, a comprehensive treatment
of the Helmholtz differential equation in
cylindrical coordinates and the resulting
Bessel functions is given. A summary of
certain other special functions used in
mathematical physics is given in Sec. 5.

1
The Sturm–Liouville Theory

1.1
Introduction

Linear operators are basic to linear differ-
ential equations, and the solutions of each
of the differential equations we will con-
sider form a vector space. Hence, we begin
with the essentials of the theory of linear
operators.

A vector space (also known as a linear
space or linear manifold) V is a nonempty
set of elements {ψi}, called vectors (here
vector is used in an abstract mathematical
sense), for which the operations of addition
and multiplication by a scalar are valid.
Addition is a rule that assigns an element
for ψ1 + ψ2 in V for every pair of
elements ψ1 and ψ2 in V. The operation
of multiplication by a scalar is a rule that
assigns an element for aψ1 in V to each
complex a and each ψ1 in V. In addition,
a zero element and negative elements
exist, and the associative and commutative
properties of addition are valid.
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A function T that transforms (maps)
vectors in V into a vector space W,
T : V → W , is called a linear transforma-
tion if T(ψ1 + ψ2) = T(ψ1) + T(ψ2) and
T(aψ1) = aT(ψ1) are valid for all vec-
tors and all real scalars in V. The case
T : V → V is called a linear operator on
V. A real number λ is an eigenvalue
(characteristic value) of the linear oper-
ator T if there is a nonzero vector ψ

(called the eigenvector of T) in V for which
T(ψ) = λψ .

In mathematical physics, the linear oper-
ator is normally a differential operator, the
eigenvalue equation is a differential equa-
tion, and the eigenfunctions (solutions)
form a vector space and satisfy certain
imposed boundary conditions.

For physical problems, the three basic
types of boundary conditions are

1. Dirichlet, specification of the solution
at each point on the boundary;

2. Neumann, specification of the normal
derivative of the solution at each point
on the boundary; and

3. Cauchy, specification of both Dirichlet
and Neumann conditions.

Typically, the actual physical problem is
used as a guide for the formulation of
boundary conditions. Sometimes, how-
ever, it is difficult to formulate the appro-
priate boundary conditions for a problem.
Hence, it is important to understand what
conditions are appropriate for a particu-
lar type of differential equation (see, e.g.,
ANALYTIC METHODS).

The Laplace equation, the time-indepen-
dent heat-conduction (diffusion) equa-
tion, and the time-independent mechan-
ical wave equation may be put into the
form of the Helmholtz differential equa-
tion. The Helmholtz differential equation,
∇2u + k2u = 0 for constant k2, is an
eigenvalue equation where −k2 is the

eigenvalue, u is the eigenfunction and
is subject to boundary conditions, and
∇2 is the operator. The time-independent
Schrödinger wave equation contains the
operator ∇2 and is an eigenvalue equa-
tion of the form Ĥψ = Eψ where Ĥ =
(−h̄2/2m)∇2 + V(x, y, z).

The separation-of-variables method ap-
plied to Helmholtz’s differential equation
and to the time-independent Schrödinger’s
wave equation in various coordinate sys-
tems leads to ordinary differential equa-
tions that may be written in the following
general form:

d

dx

{
p(x)

du

dx

}
− q(x)u + λρ(x)u = 0.

(1)

The parameter λ is a separation constant
(in some cases, more than one separation
constant may appear; we will focus on the
case of one separation constant). Equation
(1) is the well-known Sturm–Liouville
equation, and it may be written in the
following operator form:

L (u) + λρ(x)u = 0. (2)

The Liouville operator, a linear operator, is
defined by

L (u) = d

dx

{
p(x)

du

dx

}
− q(x)u. (3)

For the general differential operator
M(u) = p(x)u′′ + r(x)u′ + q(x)u, the op-
erator M̄(u) = (pu)′′ − (ru)′ + qu is de-
fined as the adjoint of M(u). Note that
M(u) = M̄(u) when p′ = r, and M(u) is
said to be a self-adjoint operator in this
case. On applying the general definition
for the adjoint of an operator to Eq. (3),
we find that L (u) = L̄ (u), which means
that the Liouville operator is a self-adjoint
operator. In fact, it can be shown that
every second-order differential operator
can be transformed to the self-adjoint
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form (see Courant and Hilbert, 1953,
p. 279).

In the Sturm–Liouville equation, the
function ρ(x) [w(x) and r(x) are also used]
is called the density or weight. This name
for ρ(x) is related to the historical origin
of the Sturm–Liouville equation, which
involved finding the solution for the one-
dimensional mechanical wave equation,
[p(x)ux ]x = ρ(x)utt, representing the mo-
tion of a nonhomogeneous string. In the
mechanical wave equation, u(x,t) is the
displacement of the string from its equi-
librium position, p(x) is proportional to the
modulus of elasticity, and ρ(x) is the mass
per unit length of the string. Separation
of variables leads to the ordinary dif-
ferential equations (pX ′)′ + λρX = 0 and
T̈ + λT = 0, where λ is the separation
constant and u(x,t) is assumed to equal
the product X (x)T(t), with typical bound-
ary conditions given by X(a) = X(b) and
p(a)X ′(a) = p(b)X ′(b).

In Eq. (1), the functions p(x), q(x), and
ρ(x) are assumed to be real, contin-
uous with continuous derivatives, and
nonzero in the region of interest, [a,b].

Moreover, it is assumed that p(x) and
ρ(x) are always positive in [a,b]. The
Sturm–Liouville equation is a general-
ized form of the usual eigenvalue equation
since the eigenvalue is multiplied by the
density function ρ(x), which may be dif-
ferent from unity. The sign convention
for q(x) in Eqs. (1) and (3) conforms to
the usage of Courant and Hilbert; some
authors use a plus sign for q(x) in these
equations. The function u(x) is subject
to appropriate boundary conditions. With
appropriate substitutions, the following
differential equations are among the list of
important differential equations in math-
ematical physics that may be put in the
Sturm–Liouville form: Legendre and asso-
ciated Legendre, Laguerre and associated
Laguerre, Schrödinger equation for the
linear harmonic oscillator, and Bessel.
Hence, a study of the general proper-
ties of the Sturm–Liouville equation is
extremely useful in mathematical physics.
A summary of the relations between the
differential equations for many important
special functions and the Sturm–Liouville
equation is given in Table 1.

Tab. 1 Relation to the Sturm–Liouville equation

d
dx

{
p(x)

du
dx

}
− q(x)u + λρ(x)u = 0

Equation p(x) q(x) ρ(x) λ

Legendre, Pn(x) 1 − x2 0 1 n(n + 1)

Associated Legendre, Pm
n (x) 1 − x2 m2

1 − x2 1 n(n + 1)

Laguerre, Ln(x) xe−x 0 e−x n
Associated Laguerre, Lk

n(x) xk+1e−x 0 xke−x n − k
Bessel, Jn(x), Yn(x), H(1)

n , . . . x n2/x x 1
Hermite, Hn(x) e−x2

0 e−x2
2n

Quantum oscillator, ψn(x) 1 x2 1 λ

Jacobi, P(α,β)
n (x); α, β > −1

1 − x2

(1 − x)−α(1 + x)−β
0

(1 − x)α

(1 + x)−β
n(n + α + β + 1)

Chebyshev, Tn(x) (1 − x2)1/2 0 (1 − x2)−1/2 n2

Gegenbauer, C(α)
n (x); α > − 1

2 (1 − x2)α+1/2 0 (1 − x2)α−1/2 n(n + 2α)
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The problem of determining the depen-
dence of the eigenfunction u(x) on the
eigenvalue λ and of the eigenvalue λ on
the boundary conditions imposed on u(x)
is often referred to as the Sturm–Liouville
problem. The Sturm–Liouville problem is
important for problems in both classical
and quantum theory. Sturm–Liouville the-
ory unites properties of the solutions of
second-order ordinary linear differential
equations related to

1. Hermitian and self-adjoint operators;
2. reality of eigenvalues of Hermitian and

self-adjoint operators;
3. orthogonality and completeness of

eigenfunctions;
4. degeneracy of eigenvalues (if N lin-

early independent eigenfunctions cor-
respond to the same eigenvalue, then
the eigenvalue is said to be N-fold de-
generate); and

5. the fact that eigenvalues of the
Sturm–Liouville equation form a dis-
crete set of values such that . . . λ1 ≤
λ2 ≤ λ3. . . .

These properties are important in the
study of problems that lead to each of the
differential equations we analyze in this
article.

1.2
Hermitian Operators and Their Eigenvalues

Consider two twice-differentiable func-
tions ui and uj. By use of Eqs. (1) and
(2), we obtain

u∗
i L (uj) − [L (ui)]

∗uj

= d

dx

{
p

(
u∗

i

duj

dx
− uj

du∗
i

dx

)}
. (4)

In Eq. (4), the asterisk is used to de-
note complex conjugate of the respec-
tive functions. Integrating both sides

of Eq. (4) over the range of interest
yields∫ b

a
{u∗

i L (uj) − [L (ui)]
∗uj}dx

=
{

p

(
u∗

i

duj

dx
− uj

du∗
i

dx

)}
x=b

−
{

p

(
u∗

i

duj

dx
− uj

du∗
i

dx

)}
x=a

.

Note that the above equation results
from the fact that L is self-adjoint. The
operator L is said to be Hermitian if the
following end-point boundary conditions
are imposed on the two functions and
their derivatives.{

p

(
u∗

i

duj

dx
− uj

du∗
i

dx

)}
x=b

=
{

p

(
u∗

i

duj

dx
− uj

du∗
i

dx

)}
x=a

. (5)

By use of the boundary conditions in
Eq. (5), the Hermitian relation may be
written as∫ b

a
u∗

i L (uj)dx =
∫ b

a
[L (ui)]

∗uj dx. (6)

Thus far, the Liouville operator has been
assumed to be real. In quantum me-
chanics, operators are generally complex
(for example, the x component of the
linear momentum operator is given by
px = −ih̄∂/∂x), and it is assumed that
wave functions satisfy the boundary condi-
tions in Eq. (5). The Hermitian condition
in quantum mechanics for linear operator
Â takes the form∫

all space
ψ∗

i Âψjdτ =
∫

all space
(Âψi)

†ψjdτ.

(7)

An arbitrary linear operator may be put
in matrix form, and the notation Â†

means
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1. interchange rows with columns and
2. take the complex conjugate of each

element

(this process is called the Hermitian
conjugate); in this connection, note that
(Âψi)

† = ψ∗
i Â†. When an operator satis-

fies the condition Â = Â†, the operator
is said to be Hermitian. In the bra
and ket vector notation, Eq. (7) becomes
〈ψi|Âψj〉 = 〈Âψi|ψj〉.

For solution ui = uj = u in Eq. (6) and
use of Eq. (2), we obtain∫ b

a
[u∗L (u) − uL (u∗)]dx

= (λ − λ∗)
∫ b

a
ρ(x)u∗udx = 0. (8)

The result in Eq. (8) means that eigen-
values of Hermitian operators are real,
λ = λ∗.

1.3
Orthogonality Condition and Completeness
of Eigenfunctions

By use of Eq. (2) for distinct eigenfunctions
ui and uj with distinct eigenvalues, the
Hermitian relation in Eq. (6) may be
written as

∫ b

a
{u∗

i L (uj) − [L (ui)]
∗uj}dx

=
∫ b

a
[u∗

i (−λjρuj) + λ∗
i ρu∗

i uj]dx

= (λ∗
i − λj)

∫ b

a
u∗

i ujρ(x)dx = 0.

Since λi �= λj and λi is real, the above
equation implies that

∫ b

a
u∗

i (x)uj(x)ρ(x)dx = 0. (9)

Equation (9) shows that eigenfunctions
corresponding to distinct eigenvalues are
orthogonal in the interval [a,b] with respect
to the weight function ρ(x).

An orthonormal set of Sturm–Liouville
eigenfunctions, {uk(x)}, forms a complete
set of functions (Courant and Hilbert,
1953, Chap. 6, Sec. 3). This completeness
property means that the following equa-
tion is valid for any function f (x) that is at
least piecewise continuous in the interval
[a,b]:

lim
n→∞

∫ b

a

∣∣∣∣∣f (x) −
n∑

k=1

ckuk(x)

∣∣∣∣∣
2

ρ(x)dx = 0.

(10)

The notation | . . . |2 means the product
of the enclosed quantity and its complex
conjugate, |z|2 = z∗z. Equation (10) and
the orthogonality relation in Eq. (9) lead to

f (x) =
∞∑

k=1

ckuk(x) where ck

=
∫ b

a
f (x)u∗

k(x)ρ(x)dx (11)

and

∞∑
k=1

|ck|2 =
∫ b

a
|f (x)|2ρ(x) dx. (12)

Equation (12) is referred to as the com-
pleteness relation. By use of Eq. (11) with
the appropriate orthogonality relation and
weight, one may obtain series expansions
for f (x) in terms of any complete set
of orthogonal polynomials (or orthogonal
functions); for example, the Fourier series,
Legendre series, and Hermite series may
be written respectively as

f (x) =
∞∑

n=−∞
cnein πx/l
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where

cn = 1

2l

∫ l

−l
f (x)e−in πx/l dx, −l ≤ x ≤ l;

f (x) =
∞∑

n=0

cnPn(x)

where

cn = 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx,

− 1 ≤ x ≤ 1;
and

f (x) =
∞∑

n=0

cnHn(x)

where

cn = 1

2nn!
√

π

∫ ∞

−∞
f (x)Hn(x)e−x2

dx,

− ∞ ≤ x ≤ ∞.

1.4
Orthogonal Polynomials and Functions

The power-series solutions of many
second-order ordinary linear differential
equations in mathematical physics such
as the Legendre, Laguerre, and Hermite
differential equations may be written as
an orthogonal polynomial plus an orthog-
onal function. The set of real polynomials
{fn(x)} is said to be orthogonal with respect
to the weight function ρ(x) over the inter-
val [a,b] if the following relations are valid:∫ b

a
ρ(x)fn(x)fm(x)dx =

{
0 m �= n
h2

n m = n
(13)

If h2
n = 1 for all n, then the system

of orthogonal polynomials in Eq. (13)
is said to be orthonormal. Note that
the weight determines the system of
polynomials up to a constant factor (the
value of hn) in each polynomial; the

Tab. 2 Some orthogonality relations

∫ 1
−1 Pn(x)Pk(x)dx = 2

2n + 1
δnk

∫ 1
−1 Pm

n (x)Pm
k (x)dx = 2

2n + 1

(n + m)!

(n − m)!
δnk∫ ∞

0 e−xLn(x)Lm(x)dx = δnm∫ ∞
0 e−xxkLk

n(x)L
k
m(x)dx = (n!)3

(n − k)!
δnm∫ ∞

−∞ e−x2
Hn(x)Hm(x)dx = 2nn!

√
πδnm

specification of this constant factor for each
polynomial is referred to a standardization
(or standard convention). Summarized
in Table 2 are some frequently used
orthogonality relations.

1.4.1 Recurrence Formula for Orthogonal
Polynomials
In many cases, three consecutive orthogo-
nal polynomials fn+1, fn, and fn−1 satisfy a
recurrence formula of the form

Anfn+1(x) = (Bn + Cnx)fn(x)

− Dnfn−1(x). (14)

The recurrence relations for some of the
frequently used orthogonal polynomials
are listed in Table 3.

1.4.2 Rodrigues Formulas
Formulas involving the nth derivative
of an elementary function that can be
used to generate orthogonal polynomials

Tab. 3 Recurrence relations for some
polynomials

Anfn+1(x) = (Bn + Cnx)fn(x) − Dnfn−1(x).

fn(x) An Bn Cn Dn

Pn(x) n + 1 0 2n + 1 n
Pm

n (x) n − m + 1 0 2n + 1 n + m
Ln(x) n + 1 2n + 1 −1 n
Lk

n(x) n + 1 2n + k + 1 −1 n + k
Hn(x) 1 0 2 2n



Special Functions 483

fn are called Rodrigues formulas. It can
be shown that the Rodrigues formulas
for many orthogonal polynomials may
be combined into the following general
Rodrigues formula:

fn = 1

anρ(x)

dn{ρ(x)[g(x)]n}
dxn . (15)

The quantity g(x) is a polynomial whose
coefficients are independent of n, and the
factor an is determined by the standardiza-
tion of the orthogonal polynomial system.
The Leibnitz formula for the nth derivative
of a product should be used to evaluate the
right-hand side of Eq. (15); this formula is

dn

dxn {A(x)B(x)}

=
n∑

s=0

{
n!

(n − s)!s!

dn−s

dxn−s A(x)
ds

dxs B(x)

}
.

(16)

The Rodrigues formulas for some impor-
tant orthogonal polynomials are given in
Table 4.

1.4.3 The Generating Function
The function G (x,t) is said to be a generat-
ing function of the sequence of functions
{fn(x)} if the fn(x) are, up to a constant, the

coefficients of tn in the expansion of G (x,t)
in powers of t. Such an expansion is valid
for orthogonal polynomials and most or-
thogonal functions, and it may be written
in the form

G (x, t) =
∞∑

n=0

anfn(x)tn. (17)

In Eq. (17), the an are independent of x
and t. The generating functions for certain
orthogonal polynomials that will be used
in other parts of this article are given in
Table 5.

Tab. 5 Some generating functions

G (x, t) =
∞∑

n=0

anfn(x)tn; R =
√

1 − 2xt + t2.

fn(x) an G (x, t)

Pn(x) 1 R−1

Ln(x) 1 (1 − t)−1 exp{−xt/(1 − t)}
Lk

n(x) 1 (1 − t)−(k+1) exp[xt/(t − 1)]

Hn(x)
1

n!
exp(2xt − t2)

P(α,β)
n (x) 2−α−β R−1(1 − t + R)−α

(1 + t + R)−β

C(α)
n (x) 1 R−2α

Tn(x) 2 1 + (1 − t2)/R2

Tab. 4 Rodrigues formula for some polynomials

fn = 1

anρ(x)

dn{ρ(x)[g(x)]n}
dxn .

fn(x) an g(x) ρ(x)

Pn(x) 2nn! x2 − 1 1
Lk

n(x) n! x xke−x

Hn(x) (−1)n 1 e−x2

P(α,β)
n (x) (−1)n2nn! 1 − x2 (1 − x)α(1 + x)β

C(α)
n (x) (−1)n2nn!


(2α)
(α + n + 1
2 )


(α + 1
2 )
(n + 2α)

1 − x2 (1 − x2)α−1/2

Tn(x) (−1)n2n+1 
(n + 1
2 )√

π
1 − x2 (1 − x2)−1/2
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1.5
Factorization of the Sturm–Liouville
Equation

The factorization method for find-
ing eigenfunctions and correspond-
ing eigenvalues of a large class of
Schrödinger-type equations (forms of the
Sturm–Liouville equation) was introduced
by Schrödinginer (1940); in a clearly writ-
ten paper, Infeld and Hull (1951) further
developed the method. By use of the factor-
ization method, a second-order differential
equation is factored (transformed) into a
product of first-order differential opera-
tors, which results in a pair of first-order
differential equations that are equivalent
to the original second-order differential
equation. The form of the potential func-
tion determines if the factorization method
will be successful. In terms of the forms
of the potential function, Infeld and Hull
classified factorizations into six general
factorization types. Many examples of the
various factorization types are presented
in the paper by Infeld and Hull. We give a
brief overview of the factorization method
because it is

1. a useful and straightforward method for
finding eigenfunctions (in many cases,
involving special functions) and cor-
responding eigenvalues for important
differential equations in mathematical
physics, and

2. equivalent to a local Lie-group theoreti-
cal analysis involving differential oper-
ators that leads to a group-theoretical
approach to special functions.

In this overview of the factorization
method, we closely follow the Infeld–Hull
approach; using a plus sign for the second
term in the Sturm–Liouville equation, we
find that it may be transformed (see, e.g.,
Courant and Hilbert, 1953, p. 292) into the

following general differential equation in
standard form:

d2y

dx2 + r(x, m)y + λy = 0; m = 0, 1, 2, . . . .

(18)

In Eq. (18), the function r(x,m) contains
the dynamical information, such as the
potential energy, that characterizes the
particular problem. The basic idea of the
factorization method is that Eq. (18) can
be either factored directly as a single
differential equation or factored into a pair
of differential equations of the following
forms:

H+
m+1H−

m+1y(λ, m) = [λ − L(m + 1)]

y(λ, m) (19)

and

H−
mH+

my(λ, m) = [λ − L(m)]y(λ, m),

where H±
m = k(x, m) ± d

dx
. (20)

The condition that must be satisfied by
k(x,m) and L(m) is obtained by carrying
out the indicated operations in Eqs. (19)
and (20), comparing the result with
the original differential equation, and
eliminating r(x,m); this condition is

k2(x, m + 1) − k2(x, m) + dk(x, m + 1)

dx

+ dk(x, m)

dx
= L(m) − L(m + 1). (21)

The fundamental idea of the factorization
method is established in the five theorems
that we now summarize.

THEOREM I: If y(λ, m) is a solution of
the original differential equation, then
y(λ, m + 1) = H−

m+1y(λ, m) and y(λ, m −
1) = H+

my(λ, m) are also solutions corre-
sponding to the same λ.
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THEOREM II: (mutual adjointness of the
operators): For functions g and f satisfying
the end-point conditions,∫ b

a
g(H−

mf )dx =
∫ b

a
(H+

mg)f dx.

THEOREM III: (satisfying the boundary
conditions): If y(λ, m) is quadratically
integrable over the entire range of x and
L(m) is an increasing function of m(0 <

m), then the raising operation, y(λ, m +
1) = H−

m+1 × y(λ, m), produces a function
that is also quadratically integrable and
vanishes at the end points. If L(m)
is a decreasing function of m(0 < m),
then the lowering operation, y(λ, m − 1) =
H+

my(λ, m), produces a function that is also
quadratically integrable and vanishes at the
end points.

THEOREM IV: Class I solutions – L(m) is
an increasing function of the integer m.
If 0 < m ≤ M and λ ≤ the larger ofL(M)

and L(M + 1), then a necessary condition
for a square integrable solution is that
λ = λl = L(l + 1), where l is an integer,
and m = 0, 1, . . . , l and H−

l+1y(λ, l) ≡ 0.
Other solutions are given by

ym−1
l = [L(l + 1) − L(m)]−1/2

×
[

k(x, m) + d

dx

]
ym

l .

Class II solutions – L(m) is a decreasing
function of the integer m. If 0 ≤ m ≤ M
and λ ≤ L(0), then a necessary condition
for square integrable solutions is that
λ = λl = L(l), where l is an integer, and
m = l, l + 1, . . . and H+

l y(λ, l) ≡ 0. Other
solutions are given by

ym+1
l = [L(l) − L(m + 1)]−1/2

×
[

k(x, m + 1) − d

dx

]
ym

l .

THEOREM V: (normalization of solutions):
The H± operators preserve the normaliza-
tion of the eigenfunctions.

The basic task now is to find k(x,m)
and L(m) corresponding to a given r(x,m).
Infeld and Hull have shown that finding
k(x,m) and L(m) is accomplished by use of
one of the following six operator types.

Type A solutions are related to spherical
harmonic functions and other eigenfunc-
tions that are special cases of the hyperge-
ometric function, 2F1; we have

r(x, m) = −
a2(m + c)(m + c + 1) + d2+
2ad(m + c + 1

2 ) cos a(x + p)

sin2 a(x + p)
,

k(x, m) = a(m + c) cot a(x + p)

+ d

sin a(x + p)
,

and
L(m) = a2(m + c)2

where a, c, d, and p are constants.
Type B solutions are related to associated

Laguerre and Laguerre functions and other
eigenfunctions that are special cases of the
confluent hypergeometric function, 1F1;
here

r(x, m) = −d2e2ax + 2ad(m + c + 1
2 )eax,

k(x, m) = deax − m − c,

and
L(m) = −a2(m + c)2.

Type C solutions are related to confluent
hypergeometric functions, with

r(x, m) = − (m + c)(m + c + 1)

x2

− b2x2

4
+ b(m − c),

k(x, m) = m + c

x
+ bx

2
,
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and

L(m) = −2bm + b

2
.

Type D solutions are related to gen-
eralization of the Hermite polynomials;
here

r(x, m) = −(bx + d)2 + b(2m + 1),

k(x, m) = bx + d,

and
L(m) = −2bm.

Type E solutions are related to hypergeo-
metric functions, with

r(x, m) = − m(m + 1)a2

sin2 a(x + p)

− 2aq cot a(x + p),

k(x, m) = ma cot a(x + p) + q

m
,

and

L(m) = a2m2 − q2

m2 .

Type F solutions are related to Laguerre
polynomials, with

r(x, m) = −2q

x
− m(m + 1)

x2 ,

k(x, m) = m

x
+ q

m
,

and

L(m) = − q2

m2 .

EXAMPLE 1: Find the eigenvalues and
eigenfunctions of the associated Legendre
differential equation by use of the factor-
ization method.

Solution: By use of the transformation
u = P sin1/2 θ , the associated Legendre dif-
ferential equation [the theta equation in

spherical coordinates, Eq. (49)],

1

sin θ

d

dθ

(
sin θ

dP

dθ

)

+
[
λ − m2

sin2 θ

]
P = 0, (22)

reduces to

d2u

dθ2 − m2 − 1
4

sin2 θ
u + (λ + 1

4 )u = 0. (23)

On comparing Eq. (23) with the general
equation, Eq. (18), in standard form, we
find that it is a Type A factorization (see
Theorem IV) where the parameters are
given by a = 1, c = − 1

2 , d = 0, p = 0, x =
θ , and λ ⇒ λ + 1

4 ; the required quanti-
ties for Type A factorization reduce to
r(θ, m) = −(m2 − 1

4 )/ sin2 θ, L(m) =
(m − 1

2 ), and k(θ, m) = (m − 1
2 ) cot θ .

Since this is a Class I problem, λ + 1
4 =

L(l + 1) or λ = l(l + 1) for l = 0, 1, 2, . . . l
≥ m. The corresponding eigenfunctions
(solutions) of Eq. (23) are obtained by
use of Theorem IV for Class I solu-
tions, H+

l y(λ, l) ≡ 0; for normalization
constants Cl and Dlm, the solutions are
given by

ul
l = Cl sin(l+1/2) θ and

um−1
l = Dlm

{
(m − 1

2 ) cot θ + d

dθ

}
um

l .

EXAMPLE 2: By use of a modified factor-
ization method, find the eigenvalues and
eigenfunctions of the quantum mechani-
cal linear harmonic oscillator.

Solution: The linear harmonic oscillator
problem was used by Schrödinger in his
original work on factorization; it is a
Type D problem, but r(x,m) does not
depend on m. For the linear harmonic
oscillator, it is simpler to use the modified
version of factorization involving the idea
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of raising and lowering operators; this
modified factorization method is used
in many quantum mechanics textbooks
and is summarized here. The time-
independent Schrödinger equation for the
linear harmonic oscillator with potential
energy V(x) = kx2/2 = mω2x2/2 is given
by

− h̄2

2m

d2ψ

dx2 + mω2x2

2
ψ = Eψ. (24)

The change of variable ξ = (mω/k)1/2x
reduces Eq. (24) to the dimensionless form

d2ψ

dξ2 − ξ2ψ + λψ = 0, where λ = 2E

h̄ω
.

(25)

By use of the factorization (of differential
operators) method, Eq. (25) may be written
as

H+H−ψ = (λ + 1)ψ and

H−H+ψ = (λ − 1)ψ,

where H± = ξ ± d

dξ
. (26)

The above factored equations are equiv-
alent to Eq. (25). The basic idea of this
factorization method is that ψn and λn

can be generated from known ψ0 and λ0.
If ψ0 satisfies the original equation (fac-
tored equations) Eq. (26) with eigenvalue
λ0, then we may write(

d

dξ
− ξ

)(
d

dξ
+ ξ

)
ψ0 = (−λ0 + 1)ψ0.

(27)

By use of the identity(
d

dξ
− ξ

)(
d

dξ
+ ξ

)
ψ

= 2ψ −
(

d

dξ
+ ξ

)(
ξ − d

dξ

)
ψ,

Eq. (27) reduces to(
d

dξ
− ξ

)(
d

dξ
+ ξ

)
ψ1 = λ1ψ1. (28)

To obtain Eq. (28), we made the following
substitutions:

ψ1(ξ) =
(

ξ − d

dξ

)
ψ0 and λ1 = λ0 + 1.

(29)

In a similar manner, we obtain

ψ−1(ξ) =
(

ξ + d

dξ

)
ψ0 and

λ−1 = λ0 − 1. (30)

The operators in Eqs. (29) and (30) are
referred to as raising and lowering oper-
ators, respectively. If the above process is
repeated n times, we obtain

ψn(ξ) =
(

ξ − d

dξ

)n

ψ0 for λn = λ0 + n

(31)

and

ψ−n(ξ) =
(

ξ + d

dξ

)n

ψ0 for

λ−n = λ0 − n. (32)

As seen from Eqs. (31) and (32), the
eigenvalue (eigenenergy) is bounded from
below at λ0, but it is an arbitrarily large
negative value, as seen in Eq. (32). It
is required that the negative values of
λ−n be terminated (Theorem IV) by set-
ting ψ−1 = 0 = (ξ − d/dξ)ψ0; by use of
this termination, we find that ψ0 = N exp
(−ξ2/2) is a solution of the original
differential equation, Eq. (25). The corre-
sponding lower bound for the eigenvalue
is λ0 = 1 or E0 = h̄ω/2. Hence, we find
that the knowledge of ψ0 and λ0 allows us
to find ψn and λn; we obtain

ψn(ξ) = NnHn(ξ)e−ξ 2/2 for λn = 1 + n or

En = h̄ω(n + 1
2 ). (33)
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Equation (33) results from the fact
that (ξ − d/dξ)n exp(−ξ2/2) produces exp
(−ξ2/2) times an nth-order polynomial,
Hn(ξ); this polynomial, as is shown in
Sec. 2.2, is the Hermite polynomial.

1.6
Connection with Local Lie-Group Theory

Wigner, unpublished Princeton University
Lecture Notes in 1955, demonstrated that
large classes of special functions arise as
matrix elements of the representations of
Lie groups such as the groups of rotations
in two, three, and four dimensions or
the Euclidean groups in two and three
dimensions. Talman (1968) extended the
work of Wigner. The Wigner group-
theoretical approach to special functions
shows that

1. addition theorems for special functions
result from the group multiplication
rule and

2. differential equations giving rise to
special functions result from limits of
generators.

Other group-theoretical development of
special functions exist (see, e.g., Vilenkin,
1968).

The focus in this section is on the ap-
proach by Miller (1968), which is based on
the recognition of the equivalence between
the Infeld–Hull factorization method and
the representation theory of complex local
Lie groups with the four-dimensional Lie
algebras G (a,b) and the six-dimensional
Lie algebra F 6. Local Lie-group theory
provides a unifying approach to a large
class of special functions and their proper-
ties. A comprehensive treatment of group
theory is given in GROUP THEORY and in
the many excellent books on the sub-
ject; we simply summarize essential group
concepts needed to outline the Miller

group-theoretical approach to special func-
tions.

Local Lie-group theory was developed
in the nineteenth century; it is based on
the use of local coordinates (needed for a
discussion of special functions), and con-
cerned with groups that are analytic only
in the neighborhood of the group iden-
tity element. A global Lie group involves
coordinate-free considerations and is an
abstract group.

The Lie algebra (vector space) G of the
local Lie group G is the set of all tan-
gent vectors (generators) at the identity
element together with commutation re-
lations [α, β] ∈ G defined for all tangent
vectors α, β ∈ G . Lie’s three fundamen-
tal theorems and their converses together
with the Taylor expansion theorem pro-
vide a mechanism for constructing the
Lie algebra associated with a Lie group.
For local transformation groups, which
are important in our analysis, the com-
mutation relations involve Lie derivatives,
[Lα, Lβ ], or generalized Lie derivatives,
[Dα, Dβ ].

A four-dimensional complex Lie algebra
G (a,b) with basis J ±, J 3, and E is
defined by the commutation relations

[J +, J −] = 2aJ 3 − bE ;
[J 3, J ±] = ±J ±; and

[J ±, E ] = [J 3, E ] = 0. (34)

The parameters a and b are a pair
of arbitrary complex numbers. For the
representation ρ of G (a,b) on the complex
vector space V, we define four operators as
follows:

J+ = ρ(J +); J− = ρ(J −);
J3 = ρ(J 3); and

E = ρ(E ). (35)
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The four operators in Eq. (35) obey com-
mutation relations similar to those in
Eq. (34); they are

[ J+, J−] = 2aJ3 − bE; [ J3, J±] = ±J±; and

[ J±, E] = [ J3, E] = 0. (36)

The object at this stage is that of finding
realizations of the irreducible representa-
tions ρ(α) of G (a,b) [where α ∈ G (a, b)]
that form a Lie algebra of analytic differen-
tial operators acting on V. An extremely
large number of possible solutions of
Eq. (36) exists. By use of generalized Lie
derivatives and a classification of all such
solutions by differential operators in two
variables, Miller (1968, Chap. 8) has shown
that only generalized forms of the angu-
lar momentum operators are important in
special function theory. We therefore write

J3 = ∂

∂y
;

J± = e±y
[
± ∂

∂x
− k(x)

∂

∂y
+ j(x)

]
; and

E = µ. (37)

In Eq. (37), µ is a complex constant; the
functions k(x) and j(x) are to be deter-
mined. The equations in Eq. (37) satisfy all
the commutation conditions for the oper-
ators in Eq. (36), except [J+, J−] = 2aJ3 −
bE, which is satisfied when k(x) and j(x)
are solutions of the differential equations

dk(x)

dx
+ k(x)2 = −a2 and

dj(x)

dx
+ k(x)j(x) = −dµ

2
. (38)

The connection of the group-theoretical
analysis with the Infeld–Hull factorization
method is related to finding the various
solutions of the equations in Eq. (38); these
various solutions will now be summarized.

G (1,0) yields

Type A: k(x) = cot(x + p) and

j(x) = q

sin(x + p)
;

and

Type B: k(x) = i and j(x) = qe−ix.

G (0,1) yields

Type C’: k(x) = 1

x + p
and

j(x) = −µ(x + p)

4
+ q

x + p
;

and

Type D’: k(x) ≡ 0 and j(x) = −µx

2
+ q.

G (0,0) yields

Type C’’: k(x) = 1

x + p
and j(x) = q

x + p
;

and

Type D’’: k(x) ≡ 0 and j(x) = q.

The quantities p and q are complex con-
stants, and i = √−1. In the Infeld–Hull
notation, Types C′ and C′′ are combined
and called Type C, and Types D′ and
D′′ are combined to form Type D. The
six-dimensional complex Lie algebra F 6,
with generators P ±, P 3, J ±, and J 3, is
defined by appropriate commutation re-
lations for these generators. Because of
the difficulty involved in computing ma-
trix elements in the representation theory
of F 6, the task of obtaining all of the
special-function identities implied by F 6

is incomplete. Some results are obtained
by noting that the elements J ± and J 3

generate a subalgebra of F 6 that is iso-
morphic to sl(2), and the elements P ± and
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P 3 generate a three-dimensional abelian
subalgebra of F 6. Type A and B opera-
tors forming a realization of sl(2) can be
extended to Type E and F operators, re-
spectively, forming a realization of F 6

(Miller, 1968, Chap. 6). The connection of
these eight types of solutions of Eq. (32)
with special functions is now summa-
rized.

G (1,0): Type A solutions are related
to hypergeometric functions, and Type
B solutions are related to confluent hy-
pergeometric functions and generalized
associated Laguerre functions.

G (0,1): Type C′ solutions are closely
related to confluent hypergeometric func-
tions, Laguerre and associated Laguerre
functions. Type D′ solutions are related to
parabolic cylinder functions and Hermite
polynomials.

G (0,0): Type C′′ solutions are related
to Bessel functions, and Type D′′ solu-
tions are related to simple transcendental
functions, e±iωx.

F 6: Type E solutions are related to
hypergeometric functions. Types A and
E solutions have different recurrence
relations and the same eigenfunctions.
Type F solutions are related to confluent
hypergeometric functions. Types B and
F solutions have different recurrence
relations and the same eigenfunctions.

2
The Hypergeometric Function,
2F1(a, b, c; z)

2.1
Properties of the Hypergeometric
Differential Equation

Important members of a large subset
of special functions are related to a
class of functions called hypergeometric

functions, which are solutions of the hy-
pergeometric differential equation (also
known as Gauss’s differential equation).
The hypergeometric differential equation
has three regular singular points, and it
can be shown that any second-order ordi-
nary linear differential equation with three
regular singular points can be transformed
(reduced) to the hypergeometric differen-
tial equation form. The solutions of many
physical problems involve special func-
tions that result from solving second-order
ordinary linear differential equations with
regular singular points. It is, therefore,
natural to expect a connection among hy-
pergeometric functions and certain special
functions. The hypergeometric differential
equation has the form

z(1−z)
d2w

dz2 +[c−(a+b+1)z]
dw

dz

− abw = 0. (39)

Note that Eq. (39) has regular singular
points at z = 0, 1, ∞. In Eq. (39),
parameters a, b, and c are arbitrary complex
constants. The hypergeometric differential
equation can be solved by use of the
Frobenius–Fuchs power series method
(see, e.g., ANALYTIC METHODS),

w =
∞∑

λ=0

aλzλ+k, where a0 �= 0.

At the three regular singular points,
the respective solutions of the indicial
equations are, at z = 0 : k = 0 and 1 − c;
at z = 1 : k = 0 and c. − a − b; and at
z = ∞ : k = a and b. In general, the
solutions of Eq. (39) are the various forms
of the Gauss hypergeometric series; they
are [w(z) =2 F1(a, b, c; z) = F(a, b, c; z)]

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n

n!(c)n
zn. (40)
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The factorial function in Eq. (40) is defined
by

(λ)n =
n∏

k=1

(λ + k − 1)

= λ(λ + 1)(λ + 2) . . . (λ + n − 1)

= 
(λ + n)


(λ)
(41)

for λ = a, b, and c, respectively. This no-
tation for the factorial function is called
a Pochhammer symbol. The notation 2F1

means that there are two factorial func-
tions in the numerator of the series and
one factorial function in the denomina-
tor of the series in Eq. (40). The gamma
function 
(λ) is defined in Sec. 5.2.

For convenience, we will write F(a,b,c;z)
for 2F1(a, b, c; z) since the three param-
eters in the parentheses are sufficient to
avoid confusion with the notation for the
confluent hypergeometric function. Origi-
nally, the notation 2F1(a, b; c; z) was used
to represent the hypergeometric function.
One, however, finds a variety of combina-
tions of commas and/or semicolons used
in the literature to represent the hyperge-
ometric function. We will use a comma
to separate constants and a semicolon to
separate the variable from the constants.

The hypergeometric series F(−m, b,
−n; z) is not defined if n < m. The
hypergeometric series converges if |z| < 1
and diverges if |z| > 1. For z = 1, the
series converges if c > a + b, and it
converges for z = −1 if c > a + b − 1.
The hypergeometric series becomes a
polynomial of degree n in z when a or
b equals a negative integer.

Note that F(a, b, c; 0) = 1 and F(a, b,
c; z) = F(b, a, c; z). Also, note that many
elementary transcendental functions may
be expressed in terms of a hypergeo-
metric series; two examples are ln(1 +

z) = zF(1, 1, 2; −z) and (1 + z)a =
F(−a, b, b; −z). The geometric series is
a special case of the hypergeometric series
since

F(1, 1, 1; z) =
∞∑

n=0

zn.

The numerous properties of F(a,b,c;z)
summarized in this article as well as in
many other places were developed by Euler
and Gauss.

2.2
Properties of F(a,b,c;z)

If none of the numbers c, c − a − b, or
a − b equals an integer, then two linearly
independent solutions of the hypergeo-
metric differential equation exist, and each
of the six solutions (two at each of three sin-
gular points) may be written in four equiv-
alent forms. These 24 forms are referred
to as Kummer’s 24 solutions of the Gauss
hypergeometric differential equation. One
of these forms in each case is as follows:

w1(0) = F(a, b, c; z),

w2(0) = z1−cF(a − c + 1, b − c + 1,

2 − c; z),

w1(1) = F(a, b, a + b + 1 − c; 1 − z),

w2(1) = (1 − z)c−a−b

× F(c − b, c − a, c − a − b + 1;
1 − z),

w1(∞) = z−aF(a, a − c + 1, a − b + 1;
z−1),

and

w2(∞) = z−bF(b, b − c + 1, b − a + 1;
z−1).

The functions F(a ± 1, b, c; z), F(a, b ±
1, c; z), and F(a, b, c ± 1; z) are said
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to be contiguous to F(a,b,c;z). Numerous
relations between F(a,b,c;z) and any two
contiguous functions, of a form similar to

(c − a)F(a − 1, b, c; z)

+ (2a − c − az + bz)F(a, b, c; z)

+ a(z − 1)F(a + 1, b, c; z) = 0,

were developed by Gauss.
When |z| < 1, F(a, b, c; z) is analytic,

and F(a,b,c;z) has a branch point at
z = 1 (see Whitaker and Watson, 1947,
Sec. 14.53); if a cut is made from 1
to infinity along the real axis, F(a,b,c;z)
is analytic throughout the cut plane.
Formulas for F(a,b,c;x) for z = x + iy may
be obtained from those involving F(a,b,c;z)
by use of the following replacements
in the cut interval (−1, 1) : z − 1 by
(1 − x)e±iπ , z2 − 1 by (1 − x2)e±iπ , and
z + 1 by x + 1.

The following differentiation and inte-
gration relations are valid for 2F1.

A differentiation relation for F(a,b,c;z):

dnF(a, b, c; z)

dzn = (a)n(b)n

(c)n

× F(a + n, b + n, c + n; z).

Fundamental integral relation: The form
of the fundamental integral relation for the
hypergeometric function is

F(a, b, c; z) = 
(c)


(b)
(c − b)

×
∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt

for Re(c) > Re(b) > 0.

Solutions of the hypergeometric differ-
ential equation that are orthogonal poly-
nomials are of particular interest in this
article, and polynomial solutions occur
when a or b is a negative integer. Exam-
ples of the connections of F(a,b,c;x) with

some special polynomials of interest are as
follows:

F(−n, n, 1
2 ; x) = Tn(1 − 2x) – Chebyshev;

F(−n, n + 1, 1; x)

= Pn(1 − 2x) – Legendre;
F(−n, n + 2α, α + 1

2 ; x)

= n!

(2α)n
C(α)

n (1 − 2x) – Gegenbauer,

and

F(−n, α + 1 + β + n, α + 1; x)

= n!

(α + 1)n
P(α,β)

n (1 − 2x) – Jacobi.

The Gegenbauer (also known as ultra-
spherical), Legendre and associated Legen-
dre, and Chebyshev polynomials are spe-
cial cases of the Jacobi polynomial (some-
times called hypergeometric polynomial).
Chebyshev (Tschebyscheff, Tchebichef,
and Tchebicheff are other spellings found
in the literature) polynomials involve so-
lutions of separated equations in spher-
ical, parabolic, and prolate and oblate
spheroidal coordinates. Chebyshev poly-
nomials converge rapidly and have the
special property that MaxTn(x) = +1 and
MinTn(x) = −1; because of this property,
Chebyshev polynomials are useful in nu-
merical analysis. Gegenbauer functions
result from separated equations in circu-
lar cylinder and spherical coordinates with
two regular singular points at ±1 rather
than at 0 and 1.

We now summarize some of the basic
properties of the solutions of the Jacobi dif-
ferential equation (see Table 1 in Sec. 1.1.)
and express these solutions in terms of
2F1. The solutions of the Jacobi differential
equation may be written as

y = c1P(α,β)
n (x) + c2Q(α,β)

n (x).
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The quantity P(α,β)
n (x) is a polynomial and

is called Jacobi polynomial of the first kind.
The quantity Q(α,β)

n (x) is not a polynomial
and is called Jacobi function of the
second kind. In terms of hypergeometric
functions, we write

P(α,β)
n (x) = (α + 1)n

n!

× F

(
−n, n + α + β + 1, α + 1; 1 − x

2

)

and

Q(α,β)
n (x) = C(α, β)

(x − 1)n+α+1(x + 1)β

× F

(
n + 1, n + α + 1, 2n + α + β + 2;

2

1 − x

)
.

The symbol C(α, β) in the above equation
represents the quantity

C(α, β) =
2n+α+β × 
(n + α + 1)

×
(n + β + 1)


(2n + α + β + 2)

×(x − 1)n+α+1

.

The standardization for the Jacobi poly-
nomial is given by

P(α,β)
n (1) = (α + 1)n/n!.

Rodrigues’s formula and the generating
function for the Jacobi polynomial are
given in Tables 4 and 5, respectively. The
form of the recursion formula for the
Jacobi polynomial is

2(n + 1)(n + α + β + 1)(2n + α + β)

× P(α,β)
n+1 (x) = (2n + α + β + 1)

× [(2n + α + β)(2n + α + β)

× x + α2 − β2]

× P(α,β)
n (x) − 2(n + α)(n + β)

× (2n + α + β + 2)P(α,β)
n−1 (x).

The integral representation of the Jacobi
polynomial may be written as

P(α,β)
n (x) = 1

2π i

∮
c

1
2

(
t2 − 1

t − x

)n

×
(

1 − t

1 − x

)α (
1 + t

1 + x

)β

dt; x �= ±1.

(42)

The contour in Eq. (42) is a simple closed
contour in a positive sense around t = x;
the points t = ±1 are outside of the
contour. In Eq. (42), the quantities raised
to the α and β power are defined to be
unity when t = x. Graphical illustrations
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(1.5, −.5)
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(1.5, −.5)

P4
(1.5, −.5)

P2
(1.5, −.5)

Pn(x)
(1.5, −.5)

3

2

1

0 1

−1

−1
x

Fig. 1 Jacobi polynomials, P(1.5,−0.5)
n (x)

(Abramowitz and Stegun, 1964)
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of Jacobi, Chebyshev, and Gegenbauer
polynomials are given in Figs. 1–3.

2.3
Helmholtz’s Differential Equation in
Spherical Coordinates

The Laplacian operator in spherical coor-
dinates (r, θ, φ) has the form

∇2 = ∇2
r + 1

r2 ∇2
θ,φ.

The radial and angular parts of the
Laplacian are given respectively by

∇2
r = 1

r2

∂

∂r

(
r2 ∂

∂r

)
(43)

and

∇2
θ,φ = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2 .

(44)

The Helmholtz differential equation in
spherical coordinates has the form{

∇2
r + 1

r2 ∇2
θ,φ

}
u + k2u = 0. (45)

The solution of Eq. (45) involves
symmetry-type information in terms of
the angular parts θ and φ, which are
common to all problems with spherical
symmetry, and dynamical information
in terms of the radial part, which
characterizes the particular problem under
investigation. In this connection, the
Helmholtz differential equation reduces
to the Laplace differential equation
for k2 = 0, to the time-independent
heat-conduction (diffusion) or time-
independent mechanical wave differential
equations for k2 = constant, and to
the time-independent Schrödinger wave
equation for k2 = (2m/h̄2){E − V(r)}. On
separating the angular parts from the
radial part in Eq. (45) for u(r, θ, φ) =
R(r)Y(θ, φ), the corresponding differential
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equations for R(r) and Y(θ, φ) with
separation constant λ are

∇2
r R(r) +

{
k2 − λ

r2

}
R(r) = 0 (46)

and

∇2
φ,φY(θ, φ) + λY(θ, φ) = 0. (47)

Note that the general solutions of Eq. (47)
are independent of the specific problem
under investigation but are common to all
problems that involve the Laplacian opera-
tor in spherical coordinates. The solutions
of Eq. (47) with separation constant −m2

are called spherical harmonics (also known
as surface harmonics of the first kind),
Ym

λ (θ, φ). For square integrable solutions,
a replacement of the form λ = n(n + 1) is
required. Tesseral harmonics is the name
given to Ym

n (θ, φ) when m < n, and the
term sectoral harmonics is used when
m = n. Tesseral and sectoral harmonics
may be written as CneimφPm

n (cos θ), where
Pm

n (cos θ) are associated Legendre func-
tions of the first kind. When m = 0, the
spherical functions are called Legendre
polynomials of the first kind (also known
as zonal harmonics and Legendre coeffi-
cients).

On substituting Eqs. (43) and (44) into
Eqs. (46) and (47), respectively, and sepa-
rating the variables in Eq. (47) [Y(θ, φ) =
�(θ)�(φ) with separation constant −m2],
we obtain the following three ordinary dif-
ferential equations: radial equation,

1

r2

d

dr

(
r2 dR

dr

)
+

[
k2 − n(n + 1)

r2

]
R = 0;

(48)

theta equation,

1

sin θ

d

dθ

(
sin θ

d�

dθ

)

+
[

n(n + 1) − m2

sin2 θ

]
� = 0; (49)

and azimuthal equation,

d2�

dφ2 + m2� = 0. (50)

The general solution of the azimuthal
equation is � = c1eimφ + c2e−imφ . In solv-
ing physical problems, the requirement
that �(φ) be a single-valued function is
imposed. That is to say, we require that
�(φ) = �(φ + 2π), which leads to the
following acceptable values for m : m =
0, ±1, ±2, . . .; the solution may be written
in the form �(φ) = Aeimφ . In quantum
mechanics, the single-valued function re-
quirement is referred to as Born’s periodic
boundary condition, and m is the magnetic
quantum number.

2.4
Associated Legendre Functions and
Legendre Polynomials

Solutions of the theta equation, Eq. (49),
involve the Legendre polynomials and
associated Legendre functions. The tra-
ditional treatment of the theta equation
involves introducing a new independent
variable x by use of the transforma-
tion x = cos θ ; here x is not the usual
Cartesian coordinate. The associated Leg-
endre differential equation results from
this transformation,

(1 − x2)
d2�

dx2 − 2x
d�

dx

+
{

n(n + 1)− m2

1 − x2

}
� = 0. (51)

The Legendre differential equation is the
result when m equals zero in Eq. (51); it is
given by

(1 − x2)
d2�

dx2 − 2x
d�

dx
+ n(n + 1)� = 0.

(52)
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The Legendre and associated Legendre
differential equations can be solved by
use of the Frobenius–Fuchs power series
method, factorization method, and hy-
pergeometric functions. The two linearly
independent solutions of the associated
Legendre differential equation are

�m
n (x) = APm

n (x) + BQm
n (x).

The quantities Pm
n (x) and Qm

n (x) are
associated Legendre functions of the first
and second kind, respectively; they are
related to the hypergeometric functions
as follows:

Pm
n (z) = 1

Γ (1 − m)

(
z + 1

z − 1

)m/2

× F

(
−n, n + 1, 1 − m; 1 − z

2

)
,

|1 − z| < 2,

and

Qm
n (z) = Cnm

× F

(
1 + n

2
+ m

2
,

1

2
+ n

2

+ m

2
, n + 3

2
; 1

z2

)
; |z| > 1.

The factor Cnm in the above equation is
given by

Cnm = eimπ2−n−1π1/2

× Γ (n + m + 1)

Γ (n + 3
2 )

z−n−m−1

(z2 − 1)m/2.

Also, the associated Legendre functions
Pm

n (x) result when the Legendre polyno-
mials are differentiated m times. That is to
say,

Pm
n (x) = (1 − x2)m/2 dmPn(x)

dxm .

The orthogonality relation, recurrence re-
lation, and Rodrigues formula for the
associated Legendre functions are given
in Tables 2, 3, and 4, respectively. Graph-
ical illustrations of associated Legendre
functions are given in Fig. 4.

The Legendre polynomials of the first
kind, Pn(x), and Legendre functions of
the second kind, Qn(x), are related to the
Jacobi functions as follows:

P(0,0)
n (x) = Pn(x) and Q(0,0)

n (x) = Qn(x).

In series form, the Legendre polynomials
may be written as

�n(x) ≡ Pn(x)

=
N∑

r=0

(−1)r(2n − 2r)!xn−2r

2nr!(n − r)!(n − 2r)!
.

In the above sum, N = n/2 for n even
and N = (n − 1)/2 for n odd. The gen-
eral solution of the Legendre differential
equation has the form �n(x) = C1Pn(x) +

2.0

0
.2 .4 .6 .8 1.0
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1.0

−.5

−1.0

1.5

−1.5

Pn(x)1

P2
1

P1
1
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1

x

Fig. 4 Associated Legendre functions, P1
n(x)

(Abramowitz and Stegun, 1964)
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Fig. 5 Legendre polynomials, Pn(cos θ)

(Abramowitz and Stegun, 1964)

C2Qn(x); Legendre functions of the sec-
ond kind, Qn(x), are not polynomials.
The orthogonality relation, recurrence re-
lation, Rodrigues formula, and generating
function for the Legendre polynomials are
given in Tables 2, 3, 4, and 5, respectively.

The Legendre functions of the second
kind, Qn(x), satisfy a recursion relation of
the same form as the one for Pn(x). Graph-
ical illustrations of Legendre polynomials
are given in Figs. 5–7, and Legendre func-
tions of the second kind are illustrated in
Figs. 8 and 9.

2.5
The Radial Equation

The radial equation, Eq. (48), character-
izes the dynamical information of spe-
cific problems or classes of problems.
The Laplace equation results when k2 =
0; for this case, the solution charac-
terizes such steady-state problems as
potentials in electrostatics and temper-
atures in heat conduction. The time-
independent Schrodinger equation results
when k2 = 2µ{E − V(r)}/h̄2 for a class of
two-body central-force problems; the re-
duced mass of such a system is given by
µ = m1m2/(m1 + m2), where m1 and m2

103

102

101 P1

P0

P2

P3
Pn(x)

x
1 2 3 4 5 6 7 8 9 10

Fig. 6 Legendre polynomials, Pn(x)
(Abramowitz and Stegun, 1964)

are the masses of constituent particles one
and two, respectively.

EXAMPLE 3: Calculate the steady-state tem-
perature distribution T(r, θ) within a
sphere of radius b when the temperature
over the surface of the sphere is indepen-
dent of φ. That is to say, T(b, θ) = f (θ),
where f (θ) is a known function.

Solution: The general solution of
Laplace’s differential equation of this
problem is independent of φ (circular
symmetry) and has the form T(r, θ) =
R(r)�(θ). The radial and theta equations
for this problem reduce to

r2R′′ + 2rR′ − n(n + 1)R = 0

and

sin θ�′′+ cos θ�′ + n(n + 1) sin θ� = 0.
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Fig. 7 Legendre polynomials, Pn(x)
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Fig. 8 Legendre functions of the second kind,
Qn(x) (Abramowitz and Stegun, 1964)

The general solution of the radial equation
is

R(r) = Arn + B/rn+1.

100
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x
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Fig. 9 Legendre functions of the second kind,
Qn(x) (Abramowitz and Stegun, 1964)

Constants A and B are arbitrary, and the
general solution of the theta equation
(the Legendre differential equation) is
Pn(cos θ). We set the coefficient B equal to
zero since a solution finite at every point
within the sphere is required. The general
solution of the problem is a superposition
of products of radial and theta solutions;
we write

T(r, θ) =
∞∑

n=0

AnrnPn(cos θ).

The coefficients An are obtained by use
of the boundary condition T(b, θ) = f (θ)

and the orthogonality relations for the
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Legendre polynomials. The specific form
for f (θ) must be given if the specific values
for An are required.

3
The Confluent Hypergeometric Function,
1F1(a, c; x)

The confluent hypergeometric differential
equation (also called the Kummer differ-
ential equation) has the form

xy′′ + (c − x)y′ − ay = 0. (53)

Equation (53) is obtained from the hy-
pergeometric differential equation by sub-
stituting z = bx and letting b approach
infinity; this substitution causes a merging
or confluence of the two upper singular
points. In the confluent hypergeometric
differential equation, there is a regular
singularity at x = 0 and an irregular singu-
larity at x = ∞. By use of the power-series
method in the neighborhood of x = 0, we
find that one solution of Eq. (53) has the
form (confluent hypergeometric functions
or Kummer functions)

y(x) ≡ 1F1(a, c; x) = 1 + ax

c

+ a(a + 1)x

2!c(c + 1)
+ . . .

=
∞∑

n=0

(a)nxn

(c)n
.

The confluent hypergeometric series con-
verges for all values of x.

The Bessel functions and modified
Bessel functions in terms of 1F1 are
respectively given by

Jn(x) = e−ix

n!

(x

2

)n
1F1(n + 1

2 , 2n + 1; 2ix)

and

In(x)= e−x

n!

( x

n!

)n
1F1(n + 1

2 , 2n + 1; 2x).

The Laguerre and associated Laguerre
polynomials in terms of 1F1 are respec-
tively given by

Ln(x) = 1F1(−n, 1; x)

and

Lm
n (x) = (n + m)!

n!m! 1F1(−n, m + 1; x).

Hermite polynomials in terms of 1F1 have
the form

H2n(x) = (−1)n (2n)!

n! 1F1(−n, 1
2 ; x2).

The error function and complementary
error function are respectively defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt,

where erf (∞) = 1

and

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x
e−t2

dt.

The Hermite polynomials may be obtained
from derivatives of the error function as
follows:

dn+1erf(x)

dxn+1 = (−1)n 2√
π

Hn(x)e−x2
.

In addition, the error function is related to
the confluent hypergeometric function by
use of the following equation:

erf(x) = 2x√
π

1F1(
1
2 , 3

2 ; −x2).

3.1
More on Hermite Polynomials

The Hermite differential equation,

y′′ − 2xy′ + 2ny = 0 for n = constant,
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is a special case of the Sturm–Liouville
differential equation and a special case of
the confluent hypergeometric differential
equation. The polynomial solution Hn(x)

of the Hermite differential equation may
be obtained by use of the Frobenius–Fuchs
power-series method,

y =
∞∑

r=0

arx
k+r, where a0 �= 0.

For standardization an = 2n, the solution
has the form

yn ≡ Hn(x) =
N∑

j=0

(−1) jn!(2x)n−2j

j!(n − 2j)!
.

(54)

Equation (54) is the series form of
the Hermite polynomials. In Eq. (54),
N = n/2 for n even and N = (n − 1)/2
for n odd. The orthogonality relation,
recurrence relation, Rodrigues formula,
and generating function for Hn(x) are
respectively given in Tables 2, 3, 4, and 5.
A representative sketch of Hn(x) is given
in Fig. 10.

EXAMPLE 4: More on the quantum mechan-
ical linear harmonic oscillator.

Solution: The problem of describing the
small oscillation of a mass m attached to

−1

Hn(x)
n3

H4

64

H3

27

H2

8

H5

125

x0

2

4

6

8

1 2 3

Fig. 10 Hermite polynomials, Hn(x)/n3

(Abramowitz and Stegun, 1964)

the end of a spring with force constant k
and potential energy V(x) = kx2/2 can be
solved exactly in both classical and quan-
tum theory. This system is referred to as
a linear harmonic oscillator and is used
to represent and analyze more complex
physical systems such as vibrations of indi-
vidual atoms in molecules and in crystals,
and classical and quantum theories of radi-
ation. The solution of Schrodinger’s wave
equation for the linear harmonic oscillator
is expressed in terms of Hermite polyno-
mials Hn(x). The equation to be solved is
the one-dimensional wave equation for the
linear harmonic oscillator, which has the
form

− h̄2

2m

d2ψ

dx2 + kx2ψ

2
= Eψ. (55)

Note that Eq. (55) is just the one-
dimensional Helmholtz equation for
which k2 equals 2m(E − kx2/2)/h̄2.
Solving a problem in quantum mechanics
involves finding the wave functions ψn

and the corresponding eigenenergies En.
In dimensionless form, Eq. (55) becomes

d2ψ

dξ2 + (λ − ξ2)ψ = 0,

where ξ =
(

mω

h̄

)1/2

x, ω2 = k

m
,

and λ = 2E

h̄ω
. (56)

On substituting λ = 1 + 2n into Eq. (56),
we obtain the Weber differential equation,
and the transformation ψ = exp(−ξ2/2)

y(ξ) reduces the Weber differential equa-
tion to the Hermite differential equation.
The transformation equation leading to
Hermite’s differential equation is moti-
vated by use of the Sommerfeld (1949)
polynomial method for solving certain dif-
ferential equations. According to the Som-
merfeld method, the solution of Eq. (56)
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is the product of the physically accept-
able asymptotic solution times a polyno-
mial. The resulting asymptotic (|ξ | ap-
proaches infinity) differential equation is
ψ ′′ − ξ2ψ = 0, and the physically accept-
able solution of this differential equation
is given by exp(−ξ2/2). In this case, the
polynomial part of the solution of Eq. (56)
comes from solving Hermite’s differential
equation. The eigenfunctions and eigenen-
ergy for the linear harmonic oscillator,
Eq. (56), are respectively given by

ψn(ξ) = Ne−ξ 2/2Hn(ξ) and

λn = 1 + 2n = 2En/h̄ω or

En = h̄ω(n + 1
2 ).

The behavior of ψn(ξ) for the first six
values of n is illustrated in the sketches in
Fig. 11.

3.2
More on the Laguerre and Associated
Laguerre Polynomials

The Laguerre differential equation, xy′′ +
(1 − x2)y′ + ny = 0 for n = constant, is
a special case of the Sturm–Liouville
differential equation as well as a special
case of the confluent hypergeometric
differential equation; its solution may
be obtained by relation to 1F1 or by
use of the Frobenius–Fuchs power-series
method,

y(x) =
∞∑

λ=0

aλxk+λ for a0 �= 0.

The indicial equation in the power-series
method has a double root at k = 0, and
the power-series method yields only one
of the two linearly independent solutions

Fig. 11 Linear harmonic oscillator wave functions, ψn(ξ)
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of the Laguerre differential equation;
this solution is extremely important in
mathematical physics. The finite solutions
of the Laguerre differential equation,
Ln(x), are called Laguerre polynomials.
The solution in series form is

Ln(x) =
n∑

λ=0

(−1)λn!xλ

(n − λ)!(λ!)2 ;

a0 ≡ 1 (standardization).

The orthogonality and recurrence relations
for the Laguerre polynomials are given in
Tables 2 and 3, respectively; the generat-
ing function and Rodrigues formula are
respectively given by

exp[−xt/(1 − t)]

(1 − t)
=

∞∑
n=0

Ln(x)tn

n!

and

Ln(x) = 1

n!
ex dn

dxn
(xnex).

Note that Ln(0) = 1, L0(x) = 1, L1(x) =
1 − x, and L2(x) = 2 − 4x + x2. A sketch
of Laguerre polynomials is given in Fig. 12.

Note that the kth derivative of the La-
guerre differential equation yields the

−2

−1
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1

1 65432
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Ln(x)

x

L2

L3

L4L5

Fig. 12 Laguerre polynomials, Ln(x)
(Abramowitz and Stegun, 1964)

associated Laguerre differential equa-
tion,

x
d2Lk

n(x)

dx2 + (k + 1 − x)
dLk

n(x)

dx

+ (n − k)Lk
n(x) = 0. (57)

In obtaining Eq. (57), the Leibnitz formula,
Eq. (16), for finding the kth derivative of
a product was used, and we note that the
associated Laguerre polynomials Lk

n(x) are
related to the Laguerre polynomials by

Lk
n(x) = dkLn(x)

dxk
.

The orthogonality relation, recurrence re-
lation, Rodrigues formula, and generating
function for associated Laguerre polyno-
mials are respectively given in Tables 2, 3,
4, and 5.

EXAMPLE 5: a central-force problem in
quantum mechanics.

Solution: The time-independent Schrö-
dinger wave equation is used to study the
mechanics of two microscopic particles
moving under the influence of a central
force (that is to say, the force and potential
depend only on the distance between
the two particles). This problem provides
the basis for the quantum mechanical
treatment of a fundamental class of
problems such as the rigid rotator, which
is of considerable importance in the study
of the spectra of diatomic molecules; the
theory of the hydrogen atom; and the
nonrelativistic theory of the deuteron.
For an attractive inverse-square force
law, we substitute k2 = 2µ(E − A/r)/h̄2

into the radial equation; the quantity
A is a positive constant. Anticipating
use of the well-known solution of the
associated Laguerre differential equation,
the following substitutions are made in
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the radial equation for inverse-square force
problems:

ξ = βr, β2 ≡ 8µ|E|
h̄2 , and

γ ≡ 2µA

β h̄2 = A

h̄

(
µ

2|E|
)1/2

. (58)

By use of the substitutions in Eq. (58), the
radial equation, Eq. (48), reduces to

ξ
d2R

dξ2 + 2
dR

dξ

+
{
γ − ξ

4
− l(l + 1)

ξ

}
R = 0. (59)

The symbol l represents the angular mo-
mentum quantum number; it is used
instead of n in Eq. (48) since n denotes
principal quantum number for this prob-
lem. Equation (59) is reduced to the
associated Laguerre differential equation
by use of the transformation

Rnl(ξ) = exp(−ξ/2)ξ lL2l+1
n+1 (ξ).

The desired solution of the equation to
be solved, Eq. (59), is a normalization
constant times Rnl(ξ). A polynomial so-
lution of the associated Laguerre differen-
tial equation is obtained when γ = n =
l + k + 1 for k = 0, 1, 2, . . . , n − 1.

EXAMPLE 6: the hydrogen atom: Obtain
the eigenfunction and eigenenergy for the
hydrogen atom.

Solution: The hydrogen atom repre-
sents a two-body central-force problem
in quantum mechanics, where the elec-
tron and proton are the two particles
under investigation. The Coulomb po-
tential is the central potential for the
hydrogen atom. Here, the total energy
is negative for bound states, E < 0, and
the attractive potential energy is given by
V = −e2/4πε0r = −A/r. The eigenenergy

En is obtained from Eq. (58); we obtain the
usual Bohr result,

En = −µA2/2h̄2n2.

The corresponding steady-state wave func-
tion is the product of solution of the
radial part and the angular part, which is
Ym

l (σ, φ) times a normalization constant,
Cnl; the result is

ψ(r, θ, φ) = −CnlRnl(ξ)Ym
l (θ, φ). (60)

The eigenfunction solution, Eq. (60), is
given in most quantum mechanics books,
and the normalization constant is obtained
in the usual manner.

4
Helmholtz’s Differential Equation in
Cylindrical Coordinates

Problems in mathematical physics that in-
volve cylindrical geometry are, in general,
simpler to solve in cylindrical coordinates
(ρ, φ, z) than in Cartesian coordinates.
The Helmholtz differential equation in
cylindrical coordinates has the form

ρ
∂2u

∂ρ2 + ∂u

∂ρ
+ 1

ρ

∂2u

∂φ2

+ ρ
∂2u

∂z2 + k2ρu = 0.

By use of the separation-of-variables
method for u(ρ, φ, z) = P(ρ)Φ(φ)Z(z)

with separation constants −λ2 and −n2,
the following three ordinary differential
equations are obtained:

1

Z

d2Z

dz2 = −λ2

with solution Z(z)=A cos(λz)+B sin(λz);

1

Φ

d2Φ

dφ2 = −n2
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with solution Φ(φ) = C cos(nφ) +
D sin(nφ), and

ξ2 d2P

dξ2 + ξ
dP

dξ
+ (ξ2 − n2)P = 0

for ξ = αρ and k2 − λ2 ≡ α2. (61)

4.1
Solutions of Bessel’s Differential Equation

Equation (61) is Bessel’s differential equa-
tion, and its solutions are called Bessel
(or cylindrical) functions. Bessel’s differ-
ential equation is solved by use of the
power-series method,

P(ξ) =
∞∑

λ=0

aλξ
k+λ for a0 �= 0.

The general solutions of Bessel’s differen-
tial equation when n is an integer are

P(ξ) = AJn(ξ) + BNn(ξ); n = integer.

The functions Jn(ξ) and Nn(ξ) are ex-
plained in the following sections.

4.2
Bessel Functions of the First Kind

The functions Jn(ξ) are called Bessel func-
tions of the first kind; the series representa-
tion, generating function, and recurrence
relation for Jn(ξ) are respectively given by

Jn(ξ) =
∞∑

j=0

(−1)j(ξ/2)2j+1

j!Γ (n + j + 1)

for standardization

a0 ≡ 1

2nΓ (n + 1)
, (62)

exp

{
1
2ξ

(
t − 1

t

)}
=

∞∑
n=−∞

Jn(ξ)tn,

and

Jn−1(ξ) + Jn+1(ξ) = 2n

ξ
Jn(ξ).

Note that J−n(ξ) = (−1)nJn(ξ) results
from use of Eq. (62). The gamma function

Γ is defined in Sec. 5.2. The orthogonality
relation for the interval [0,a] may be written
in the form∫ a

0
Jn

(
βni

ξ

a

)
Jn

(
βnj

ξ

a

)
ξdξ

=
{

0, i �= j,
a2

2
[Jn+1(βnj)]2, i = j.

(63)

In Eq. (63), n > −1, the parameter βni is
the ith zero of Jn, and 0 ≤ ξ ≤ a.

The general solutions of Bessel’s differ-
ential equation when n is not an integer
are

P(ξ) = CJn(ξ) + DJ−n(ξ); n �= integer.

Sketches of several Bessel functions of the
first kind are given in Fig. 13.

4.3
Neumann Functions

The Neumann functions are defined by

Yn(ξ) = Nn(ξ)

≡ Jn(ξ) cos nπ − J−n(ξ)

sin nπ
;

n = integer.

The Neumann functions are called Bessel
functions of the second kind. L’Hospital’s
rule should be used to evaluate Nn(ξ).
Sketches of several Neumann functions
are given in Fig. 13.

4.4
Hankel Functions

Hankel functions of the first and second
kind are respectively defined by

H(1)
n (ξ) ≡ i

sin nπ
[e−nπ iJn(ξ) − J−n(ξ)]

= Jn(ξ) + iNn(ξ)
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Fig. 13 Bessel functions of the first and second kinds, Jn(x) and Yn(x) (Abramowitz and
Stegun, 1964)

and

H(2)
n (ξ) ≡ − i

sin nπ
[enπ iJn(ξ) − J−n(ξ)]

= Jn(ξ) − iNn(ξ).

The Hankel functions are independent
solutions of the Bessel differential equa-
tion, and they are useful in connec-
tion with their behavior for large val-
ues of ξ since they are infinite at ξ =
0. Hankel functions are sometimes re-
ferred to as Bessel functions of the third
kind.

4.5
Modified Bessel Functions

The modified Bessel differential equation
is obtained when ξ is replaced with it in

Eq. (61); the result is

t2
d2P

dt2
+ t

dP

dt
− (t2 + n2)P = 0. (64)

The solutions of Eq. (64) are called modi-
fied Bessel functions of the first kind and
are denoted by In(ξ); they are given by

In(ξ) = i−nJn(iξ) =
∞∑

λ=0

(ξ/2)2λ+n

λ!(λ + n)!
;

n = integer.

When n is not an integer, In(ξ) and I−n(ξ)

are linearly independent solutions of
the modified Bessel differential equation,
Eq. (64). When n is an integer, In(ξ) =
I−n(ξ). The modified Bessel functions of
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Fig. 14 Modified Bessel functions, Kn(x) and
In(x) (Abramowitz and Stegun, 1964)

the second kind, Kn(ξ), are defined by

Kn(ξ) ≡ π

2

{
In(ξ) − I−n(ξ)

sin nπ

}
.

The modified Bessel functions of the
second kind are well behaved for all values
of n. Sketches of several modified Bessel
functions are given in Fig. 14.

4.6
Spherical Bessel Functions

Solutions of the radial equation, Eq. (48),
for k2 = constant are obtained by compar-
ing the radial equation with the Bessel
differential equation; these solutions are
called spherical Bessel functions and have
the form

R(ξ) = Ajn(ξ) =
(

π

2ξ

)1/2

Jn+1/2(ξ) for

ξ = kr.

Spherical Bessel functions are often used
in quantum mechanics and in other areas
of physics. Sketches of several spheri-
cal Bessel functions, spherical Neumann
functions, and spherical modified Bessel
functions are respectively given in Figs. 15,
16, and 17.

EXAMPLE 7: vibrations of a circular mem-
brane: The displacement u(r, θ, t) of a
stretched circular membrane with mass
per unit area µ and under tension T satis-
fies the two-dimensional mechanical wave
equation in plane polar coordinates (r, θ),
which may be written in the following
form:

1

r

{
∂

∂r

(
r
∂u

∂r

)
+ ∂

∂θ

(
1

r

∂u

∂θ

)}
= 1

v2

∂2u

∂t2
.

The speed of the wave motion is defined
by v = √

T/µ. Develop the solution of this
equation for a vibrating drum head.

Solution: Separating the variables u(r, θ,

t) = R(r)�(θ)T(t) with separation con-
stants −α2 and −n2 yields the following
three ordinary differential equations:

d2T

dt2
+ ω2T = 0,

with solution T(t) = A cos ωt + B sin ωt,
where ω2 ≡ v2α2;

d2�

dθ2 + n2� = 0,

with solution �(θ) = C cos nθ + D sin nθ ;
and

ξ2 d2R

dξ2 + ξ
dR

dξ
+ (ξ2 − n2)R = 0,

where ξ ≡ αr. The solution of the last
equation is R(ξ) = EJn(ξ) + FNn(ξ) since
it is the Bessel differential equation. In
addition, it is required that the solution
be finite at ξ = 0; hence, F is set equal to
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Fig. 15 Spherical Bessel functions of the first kind, jn(x) (Abramowitz and
Stegun, 1964)

zero since Nn(ξ) approaches infinity as ξ

approaches zero. The general solution for
the motion of the drum head is therefore
given by

u = [A cos ωt + B sin ωt]

× [C cos nφ + D sin nφ]EJn(ξ).

Since the membrane is fixed (no vibration,
u = 0) around the edge where r = b (radius
of the head), the drum head vibrates
in circular modes such that EJn(ξ) =
0. The nodes are located at αr = ξk,
where ξk are the values of ξ for which

Jn(ξ) has a zero. A single term in
the solution corresponds to a standing
wave whose modes are concentric circles,
and the complete solution is obtained
by summing over all such modes of
vibration.

5
Other Special Functions used in
Mathematical Physics

As explained in the Introduction of this
article, the list of special functions is
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Fig. 16 Spherical Bessel functions of the second kind, yn(x) (Abramowitz and
Stegun, 1964)
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Fig. 17 Modified spherical Bessel functions of
the first and second kinds (Abramowitz and
Stegun, 1964)

extensive. The Handbook of Mathemati-
cal Functions (Abramowitz and Stegun,
1964) contains a fairly comprehensive list
of special functions. The focus in this ar-
ticle has been on special functions that
are widely used in mathematical physics
to solve classes of problems whose for-
mulations involve special cases of the
Helmholtz differential equation. In gen-
eral, special functions may be classified
as Type 1, those special functions that
satisfy a differential equation, or Type 2,
special functions that do not satisfy a differ-
ential equation; for example, the gamma
function is a Type 2 special function. In
Secs. 5.1 and 5.2, we summarize some
other special functions that are used in
mathematical physics.
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5.1
Some Other Special Functions – Type 1

Some other special functions that satisfy a
differential equation are the following:

1. Airy functions are solutions of the
Airy differential equation, which has
the form y′′ − xy = 0; the Airy differ-
ential equation characterizes constant-
force–type problems in quantum me-
chanical and in elementary particle
physics.

2. Mathieu functions are solutions of the
Mathieu differential equation, which
has the form y′′ + (a − 2b cos 2x)y =
0; the Mathieu differential equation
results when a cosine-type potential is
substituted into the one-dimensional
time-independent Schrödinger wave
equation.

3. Parabolic cylinder functions are con-
nected with confluent hypergeometric
functions and with Hermite polynomi-
als; they are solutions of differential
equations of the form y′′ + (ax2 + bx +
c)y = 0.

Many bound-state and collision prob-
lems in classical and quantum mechanics
as well as in other areas of physics involve
integrals of the form∫

R(x, y) dx. (65)

When R(x,y) is a rational function of x
and y and y2 = a0 + a1x + a2x2 + a3x3 +
a4x4, where a4 �= 0 or a4 = 0 and a3 �= 0,
the integral in Eq. (65) is called an elliptic
integral. Complete elliptic integrals of the
first and second kind are respectively
defined as

K(m) =
∫ π/2

0
(1 − m sin2 θ)−1/2dθ

and

E(m) =
∫ π/2

0
(1 − m sin2 θ)1/2dθ.

Analyzing the motion of a simple pen-
dulum involves an elliptic integral of the
first kind. Elliptic integrals can be evalu-
ated directly by use of series expansions
or computers. Their importance in math-
ematical physics, however, is related to
their appearance in the solution of phys-
ical problems involving certain nonlinear
differential equations. Elliptic integrals are
special cases of the hypergeometric func-
tions since

K(m) = π

2
F( 1

2 , 1
2 , 1; m) and

E(m) = π

2
F(− 1

2 , 1
2 , 1; m).

The Handbook of Mathematical Functions
(Abramowitz and Stegun, 1964) is a good
reference for additional information on
elliptic integrals.

5.2
Some Other Special Functions – Type 2

Some special functions used in mathemat-
ical physics that do not satisfy a differential
equation are Einstein and Debye functions,
which are used in representing the specific
heats of solids due to lattice vibrations; er-
ror function (defined in Sec. 3.1); gamma
function; and beta function. The last two
functions are widely used in many areas of
mathematical physics and are now sum-
marized.

The factorial, n!, is defined as

n! = n(n − 1) . . . 2 · 1 =
∫ ∞

0
e−ttn dt

for integer values of n. Note that 0! = 1, and
n! = ±∞ if n equals a negative integer. The
gamma function, Γ , is a generalization of
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the factorial to cases of noninteger values
for n. The Euler definition of the gamma
function is

Γ (z) =
∫ ∞

0
e−ttz−1dt for Re(z) > 0.

(66)

In Eq. (66), Re(z) denotes the real part
of z = x + iy. Note that Γ ( 1

2 ) = π1/2.
Evaluating the integral in Eq. (66) by
parts yields the recurrence relation for the
gamma function, Γ (z + 1) = zΓ (z). If z is
a positive integer n, then Γ (z + 1) equals
n!.

The gamma function is used to express,
in compact form, solutions of many
problems of mathematical physics. The
gamma function, however, does not satisfy
a differential equation that is related to
a physical problem; in fact, the gamma
function does not satisfy any differential
equation with rational coefficients. A
sketch of Γ (x) for some positive and
negative values is given in Fig. 18.
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Fig. 18 Gamma function: solid curve, Γ (x);
dashed curve, 1/Γ (x) (Abramowitz and Stegun,
1964)

The beta function, B(x,y), is defined
by use of an integral, and it involves a
simple and useful combination of gamma
functions; it has the form

B(p, q) ≡
∫ 1

0
tp−1(1 − t)q−1 dt

= Γ (p)Γ (q)

Γ (p + q)

for Re(p) > 0, Re(q) > 0.

Note that B(p, q) = B(q, p). The beta func-
tion is frequently used in high-energy
particle physics as well as other areas of
mathematical physics.

Glossary

Confluent Hypergeometric Function: A so-
lution of the confluent hypergeometric
differential equation, which is a second-
order ordinary differential equation with a
regular singularity at x = 0 and an irreg-
ular singularity at x = ∞. Laguerre and
associated Laguerre polynomials and Her-
mite polynomials are special cases of the
confluent hypergeometric function.

Gamma Function: A generalization, to
noninteger values of n, of the factorial
n!.

Generating Function: A function G (x,t)
that, when expanded in a power series
with respect to t, contains the functions
(set of polynomials) to be generated as
coefficients of the parameter t.

Hypergeometric Function: A generalized
geometric series that is the solution of
the hypergeometric differential equation,
which is a second-order ordinary dif-
ferential equation with regular singular
points at 0,1, and infinity. For example,
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the Legendre polynomials and associated
Legendre functions are special cases of the
hypergeometric function.

Rodrigues Formula: A formula used to
generate an orthogonal polynomial by
taking the nth derivative of an elementary
function.

Special Functions: Higher transcendental
functions used in mathematical physics.

Sturm–Liouville Theory: The theory de-
voted to determining the dependence of
eigenfunctions on eigenvalues and the
dependence of eigenvalues on boundary
conditions imposed on eigenfunction so-
lutions of the Sturm–Liouville equation.

List of Works Cited

Abramowitz, M., Stegun, I. A. (Eds.) (1964),
Handbook of Mathematical Functions, New
York: Dover Publications.

Courant, R., Hilbert, D. (1953), Methods of
Mathematical Physics, Vol. 1, New York:
Interscience Publishers.

Infeld, L., Hull, T. E. (1951), Rev. Mod. Phys. 23,
21–68.

Miller, W. (1968), Lie Theory and Special
Functions, New York: Academic.

Schrödinger, E. (1940), Proc. Roy. Irish Acad.
A46, 9.

Sommerfeld, A. (1949), Partial Differential Equa-
tions in Physics, New York: Academic.

Talman, J. D. (1968), Special Functions: A
Group Theoretic Approach, New York: W. A.
Benjamin, Inc.

Vilenkin, N. J. (1968), Special Functions and
the Theory of Group Representations, Trans-
lations of Mathematical Monographs, Vol.
22, Providence, RI: American Mathematical
Society.

Whitaker, E. T., Watson, G. N. (1947), Modern
Analysis, New York: Macmillan Company.

Further Reading

Arfken, G., Weber, H. J. (1995), Mathematical
Methods for Physicists, New York: Academic.

Beckmann, P. (1973), Orthogonal Polynomials
for Engineers and Physicists, Boulder, CO: The
Golem Press.

Erdelyi, A., Magnus, W., Oberhettinger, F.,
Tricomi, F. G. (Eds.) (1953), Higher Transcen-
dental Functions, Vols. 1, 2, and 3, New York:
McGraw-Hill.

Gilmore, R. (1974), Lie Groups, Lie Algebras, and
Some of Their Applications, New York: Wiley.

Morse, P. M., Feshbach, H. (1953), Methods of
Theoretical Physics, Vols. 1 and 2, New York:
McGraw-Hill.

Sattinger, D. H., Weaver, O. L. (1986), Lie
Groups and Algebras with Applications to Physics,
Geometry, and Mechanics, New York: Springer-
Verlag.

Wang, Z. X., Guo, D. R. (1989), Special Functions,
Singapore: World Scientific.





513

Stochastic Processes

Melvin Lax
Physics Department, City College of the City University of New York, New York, USA, and
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey, USA

Introduction 514
What Is a Stochastic Process? 514
Kinds of Dynamical Systems 515
An Approach to the Spectrum of Stationary Stochastic Processes 516

1 The Treatment of Stationary Stochastic Processes 517
1.1 Correlation Functions and the Regression Theorem 517
2 Spectral Measurements and Correlations 519
2.1 Introduction: An Approach to the Spectrum of Stochastic Processes 519
2.2 Standard Engineering Definition of Noise 519
2.3 The Wiener–Khinchin Theorem 521
2.4 Noise Measurements Using Filters 521
2.4.1 A Realizable Filter 522
3 Thermal Noise 523
3.1 Johnson Noise 523
3.2 Equipartition 524
3.3 Thermodynamic Derivation of Johnson Noise 525
3.4 Nyquist’s Theorem 525
3.5 Relation between Nyquist and Einstein 527
4 Shot Noise 528
4.1 The Poisson Process 528
4.2 Pure Shot Noise 529
4.3 Generalized Characteristic Functions 530
4.4 Rice’s Generalized Campbell Theorem 531
4.5 Campbell’s Theorems 532
4.6 Equivalence of Shot Noise to the Poisson Process 532

Mathematical Tools for Physicists. Edited by George L. Trigg
© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-40548-8



514 Stochastic Processes

4.7 Transit-Time Effects 533
4.8 Generation–Recombination Process 533
5 Resistance Modulation Fluctuations 535
5.1 Conductivity Fluctuations 535
5.2 A Thermodynamic Treatment of Total Carrier Fluctuations 536
5.3 Einstein Derivation of Carrier Fluctuations with Traps 537
5.4 The Spectrum of Resistance Modulation Fluctuations 539
6 Concentration Fluctuations in Semiconductors 540
6.1 General Theory of Concentration Fluctuations 540
6.1.1 Application to Semiconductors with Electrons, Holes, and Traps 541
6.2 The Influence of Drift and Diffusion on Resistance Modulation Noise 541
7 Langevin Processes 544
7.1 Simplicity of Langevin Processes 544
7.2 Relation to the Fokker–Planck Equation 545
7.3 An Exactly Solvable Gaussian Example 546
7.4 Stochastic Integrals: The Ito–Stratonovich Controversy 548
8 Further Contributions to Stochastic Processes 552
8.1 Overview 552
8.2 Random-Walk Problems 552
8.3 Linear with Time-Dependent Decay 552
8.4 The Nonlinear (Fokker–Planck) Case: Reaction-Rate Theory 553
8.5 Stochastic Resonance 556
8.6 Self-Sustained Oscillators 557

Glossary 559
List of Works Cited 559
Further Reading 562

Introduction
What Is a Stochastic Process?

If there are n people in a room and we ask
what is the probability that any two have the
same birthday, we have a pure probability
problem since there is no change with
time. Person j has birthday bj, which can
take any of 365 values, presumably with
equal probability. There are n random
variables, each of which has a discrete state
space of 365 points. And with a modest
effort, one can show that a coincidence of
birthdays will acquire a probability more
than 1/2 if n > 25.

If a man starts with a capital of $100
and aims to end up with $1000 by
betting a dollar once a minute on coin
tosses, we are dealing with a stochastic
process because we have a random variable
(the bettor’s current capital) that changes
(makes transitions) with time. The state
space is discrete with the integral values
from 0 to 1000, and the time variable is
also discrete. This problem can be mapped
onto a random-walk problem in which the
man’s capital is indicated by a position on
a line, with absorbing barriers at each end.

The total number of electrons in a cell,
in a semiconductor, increases by one in a
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generation process and decreases by one
in a recombination processes. In this case,
we have a stochastic process for a single,
discrete random variable N as a function
of a continuous time.

The current flowing through a resistor is
a random process involving a continuous
random variable I(t) as a function of a
continuous time.

The concept of a stochastic process
is, of course, immediately extended to
the case of several, or even an infinite
number of, random variables. Each cell in
a crystal could contain atomic-like states
whose occupancy is a random variable,
indexed by a discrete triple index. A carrier
density, n(r,t), provides a continuous index
to an infinite number of continuous-time
variables. In this case, carriers can be
generated, recombined, or modified by
drift and diffusion.

Kinds of Dynamical Systems

The simplest dynamical systems are linear.
When the noise is weak, a stable nonlinear
system will stray only slightly from a mo-
tion, possibly a time-independent state of
the nonlinear state. Many important elec-
tronic and semiconductor devices are of
this nature. We attempt to display some
techniques that are universally applicable
to fluctuations from a stable nonequilib-
rium state. We summarize briefly, here
and in Sec. 8, problems that violate the
requirements just mentioned that permit
quasilinear solutions.

We are usually concerned with physical
systems in which the noise is intrinsic to
the system and related to the dissipative
response of the system. There is also a
vast literature on the response of nonlinear
systems to external noise whose properties
are unrelated to the system. See an early
summary by Deutsch (1962), and the book

by Van Kampen (1992) that provides an
overview of stochastic processes with an
emphasis on nonlinear processes.

Aside from the distinction between
weak and strong noise, there is also a
distinction between noise that is white
(that is, possesses a flat spectrum) and
colored noise whose spectrum is frequency
dependent.

If the noise source is white, the problem,
even if nonlinear, reduces to a Markoffian
one. A Markoff process is a stochastic
process whose future depends only on
the latest information and is independent
of prior information. This absence of
memory is guaranteed by the fact that
the Fourier transform of a noise constant
in frequency is a delta function in time.
The zero width of the delta function is the
length of the memory time. If a(t) is a
random process, and tj constitute a set of
increasing times t0 < t1 < t · · · < tn, then
the probability density of a(tn) conditional
on all the values at all the earlier times
obeys

P(an|an−1, an−2, . . . a0) = P(an|an−1)

(1)

or a Markoffian process, like a person who
remembers only the last thing he was told.
Markoff processes then have the simplicity
that a general multiple-time probability
can be written

P(tn, tn−1, . . . t0) = P(tn|tn−1)P(tn−1|tn−2|)
. . . P(t1|t0)P(t0) (2)

in terms of an initial probability multi-
plied by a series of two-time transition
probabilities. The latter must obey a
self-consistency condition known as the
Chapman–Kolmogorov relation to insure
the Markoffian nature of the process (see
Sec. 7.2).

If a system is linear (or quasilinear, with
a weak noise source), analytic solutions
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are possible for the probability densities
even in the presence of colored noise
sources. If the system is nonlinear, but
with a white noise source, the probability
will obey a generalized Fokker–Planck
equation. The problem is thus reduced to
(nontrivial) analysis. If the noise sources
are also Gaussian, the problem reduces to
a standard Fokker–Planck equation (see
Sec. 7.2). Then analytic and numerical
methods are feasible if the number of
variables is small.

A system can be described as stationary
if it is stable and none of the parameters
describing the system is time dependent.
In this case, there will be a steady (time
independent) state, and all probability dis-
tributions that depend on variables at more
than one time will be a function only of
the time differences. We added the caveat
about stability to exclude such cases as
a free particle executing a Brownian mo-
tion that permits excursions that will grow
indefinitely. Another example is that of
an autonomous self-sustained oscillator.
The latter has been shown by Lax (1968a,
1968b) always to contain one mode of in-
stability that is usually related simply to an
overall phase of the system that can grow
at will. (The reason is given in Sec. 8.5.)

Quantum systems also require special
handling. By the use of ordered operators,
Lax (1968a,b) and Haken and Weidlich
(1967) showed that quantum stochastic
processes could be exactly expressed in
terms of associated c-number (‘‘classical’’)
processes.

An Approach to the Spectrum of Stationary
Stochastic Processes

Many experimental articles on semicon-
ductor devices prior to 1960 included a
systematic discussion of transport in these

devices but an ad hoc theory of the asso-
ciated noise. Lax (1960) recognized that a
large class of devices that involved weak
fluctuations from a (possibly nonequilib-
rium) steady state could be treated by
a general approach that related noise to
transport by an Einstein relation and a
regression theorem, outlined as follows:

1. The response of most nonlinear sys-
tems to noise sources is sufficiently
weak to permit a quasilinear approx-
imation. Generalization of this proce-
dure to self-sustained oscillators in-
cluding quantum lasers is reviewed
elsewhere (Lax, 1991).

2. The time decay of a correlation such
as 〈A(t)B(0)〉 is the same as the time
dependence of 〈A(t)〉, the dissipative
relaxation of an initial deviation from
the steady state. This is referred to
as Onsager’s regression hypothesis for
deviation from an equilibrium state. Lax
(1963, 1968b) proposed it as a theorem
for Markoffian systems for fluctuations
from a steady, possibly nonequilibrium,
steady state. The angular brackets
denote an average over an ensemble.
In probability, 〈something〉 is often
written E[something] and is called an
expectation.

3. To the equations of time dependence
determined from transport theory, we
must add an initial condition, namely
the value of 〈A(0)B(0)〉. For fluctua-
tions from the equilibrium state, the
second moments are known thermody-
namically (Callen, 1985):

〈A(0)B(0)〉 ≡ 〈AB〉 = −k∂〈A〉
∂FB

. (3)

When regarded as a thermodynamic
quantity, it is customary to rewrite 〈A〉
simply as A. Here, FB is the force
‘‘conjugate’’ to the variable B in the sense
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that the negative of the pressure, −P, is
conjugate to the volume V. (The negative
sign is necessary since pressure decreases
volume rather than increasing it.)

Sometimes, we must deal with quasi-
equilibrium states. For example, in a
semiconductor, the electrons come to equi-
librium with each other rapidly. So do the
holes. But the radiative and nonradiative
processes that produce recombination and
generation of electron–hole pairs are slow.
It is then customary to introduce quasi-
Fermi levels, one for the electrons and one
for the holes. In that case, Eq. (3) is useful,
even though complete equilibrium is ab-
sent. In more complicated cases, one must
make use of more detailed knowledge of
the noise processes involved.

In Sec. 1 we discuss the above-men-
tioned approach to obtaining correlation
functions for stochastic processes. In
Sec. 2 we develop the relation between
the Fourier transform of the correlation
functions, the ideal noise measurement,
and real noise measurements. In Sec. 3
we discuss the set of noise sources that
arise from thermal origins. In Sec. 4 we
discuss the ‘‘shot noise sources’’ that
arise from the discrete nature of the
charges that give rise to this noise. In
Sec. 5 we discuss examples of these noise
sources. In Sec. 6 we discuss noise in
homogeneous semiconductors. In Sec. 7
we review the Langevin noise-source ap-
proach and describe its relation to the
Fokker–Planck approach. Pitfalls in the
use of the Ito definition of a stochas-
tic integral are elucidated. In Sec. 8 we
discuss a variety of nonlinear examples in-
cluding random-walk theory, linear noise
with time-dependent decay, reaction-rate
theory, stochastic resonance, and self-
sustained oscillators.

1
The Treatment of Stationary Stochastic
Processes

1.1
Correlation Functions and the Regression
Theorem

When equilibrium statistics cannot be
utilized, the second moments can be
obtained by using a generalization of the
Einstein relation.

If a(t) is a set of random variables,
a1(t), a2(t), . . ., then Lax (1960) has derived
a generalized Einstein relation of the form

d

dt
〈aa〉 = 2〈D(a, t)〉 + 〈aA(a, t)〉

+ 〈A(a, t)a〉. (4)

Here, aa is a dyadic abbreviation for a set
of products aiaj, and aA is a corresponding
abbreviation. The ‘‘drift vector,’’ A(a,t), is
defined by

A(a, t) ≡ lim
�t→0

〈a(t + �t) − a(t)〉
�t

so that

d〈a(t)〉
dt

= 〈A(a, t)〉, (5)

and the ‘‘diffusion matrix,’’ D(a,t), is
defined by

2!D(a) ≡ lim
�t→0

〈�a(t)�a(t)〉
�t

. (6)

We understand the abbreviation

�a(t) = a(t + �t) − a(t). (7)

The 11 component

D11 = 〈[�a1(t)]2〉
2�t

(8)

reduces to the conventional diffusion con-
stant when a1 has the meaning of a
position, x. If the diffusion coefficient D11,
labeled Dxx to remind us of its nature, is
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a constant, the mean square displacement
〈[�x]2〉 grows linearly with the time in-
terval, the conventional Brownian-motion
result.

The evaluation of the averages in Eqs. (5)
and (6) will make use of the nature of the
noise process. For example, the system
may be in interaction with a thermal
reservoir. Or the noise may have shot-noise
character, that is, it may arise because
discrete particles are involved, and all the
occupancies of states must be integers.
We illustrate these mechanisms in Secs. 3
and 4.

The important point for the purposes of
this section is that two major simplifica-
tions are possible. In the quasilinear case,
there will be a set of associated stationary
variables a0 and a set of small deviations

α(t) ≡ a(t) − a0. (9)

The stationary points a0 are those at which
the drift vectors vanish:

A(a0) = 0. (10)

Expanding around the steady operating
point yields

A(a) ≈ −� · α, 〈A(a)〉 ≈ −� · 〈α〉,
d〈α(t)〉

dt
= −� · 〈α(t)〉, (11)

D(a) ≈ D(a0) ≡ D. (12)

In that case, the generalized Einstein
relation, Eq. (4), simplifies to

d〈αα〉
dt

= 2D − � · 〈αα〉 − 〈αα〉 · �†

(13)

where �† is the transpose of �. (In the
complex case, the Hermitian adjoint would
be needed, which is why we use the dagger
symbol even though we are dealing with
real variables here.)

The second major simplification is that
we are dealing with fluctuations from a
stationary state. In that case, a correlation
such as 〈αi(t)αj(t)〉 is a function only of
the time difference t − t. Hence, the time
derivative vanishes, and we arrive at the
stationary Einstein relation

2D = � · 〈αα〉 + 〈αα〉 · �†. (14)

For the case of a single variable, Eq. (14)
reduces to the original Einstein relation be-
tween the diffusion constant and mobility;
see Eq. (89).

In the presence of time reversal, the two
terms on the right-hand side in Eq. (14)
have been shown to be equal; see Onsager
(1931) and Eq. (6.18) of Lax (1960). Thus
the initial value 〈α(0)α(0)〉 is given by

〈α(0)α(0)〉 = �−1 · D. (15)

Equation (11) yields the conditional mean
motion (transport)

〈α(t)〉α(0) = exp(−�t) · α(0). (16)

By calculating the autocorrelation in two
steps – first an average conditional on the
initial condition, and second an average
over the initial condition,

〈α(t)α(0)〉 = 〈〈α(t)〉α(0)α(0)〉
= exp(−�t) · 〈α(0)α(0)〉 (17)

– we have established the regression
theorem, that the fluctuation contains the
same time dependence as the transport.
The Markoffian assumption was tacitly
made, since only in the Markoffian case
is the conditional average independent of
any earlier history that could affect the
second average.

Equation (16) is restricted to positive
times, and so necessarily is Eq. (17).
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However, stationarity permits us to write

〈α(−t)α(0)〉 = 〈α(0)α(t)〉
= 〈α(0)α(0)〉 · exp(−Λ†t). (18)

2
Spectral Measurements and Correlations

2.1
Introduction: An Approach to the Spectrum
of Stochastic Processes

In this section we compare three defini-
tions of noise: The standard engineering
(SE) definition takes a Fourier transform
over a finite time interval, squares it, di-
vides by the time, and then takes the limit
as the time approaches infinity. The sec-
ond definition is the Fourier transform of
the autocorrelation function. The equality
between these two definitions is known as
the Wiener (1930)–Khinchin (1934) theo-
rem. The third procedure, introduced by
Lax (1968a), passes the signal through a re-
alizable filter of finite bandwidth, squares
it, and averages over some large finite time.
This simulates an actual measurement of
the noise spectrum. As the bandwidth is
allowed to approach zero, the result will
(aside from a normalization factor) ap-
proach the ideal value of the two preceding
definitions.

2.2
Standard Engineering Definition of Noise

The spectrum of noise Gs(α, ω) in a single
random variable a(t) is a measure of
the fluctuation energy in the frequency
interval [ω, ω + dω] associated with the
fluctuating part α(t), where

α(t) = a(t) − 〈a(t)〉; 〈α(t)〉 = 0. (19)

The SE definition of noise, denoted by Gs,
is chosen to obey the normalization∫ ∞

0
Gs(α, ω)df = 〈|α(t)|2〉, (20)

because it is customary in engineering
to emphasize positive frequencies f =
(ω/2π) > 0 only. For this reason, we adopt
the definition

1

2
Gs(α, ω) ≡ 1

2
Gs(ω) ≡ (α2)ω

= lim
T→∞

1

2T

〈∣∣∣∣∣
∫ T

−T
α(t)e−jωtdt

∣∣∣∣∣
2〉

(21)

and verify the normalization later.
The letter j is used to denote imag-

inary unit customarily in electrical en-
gineering. The SE convention is that
exp(jωt) describes positive frequencies and
R + jωL + 1/jωC is the impedance of a se-
ries circuit of a resistance R, an inductance
L, and a capacity C. Because propagating
waves are described by exp(ikx − i ωt) in
physical problems, we regard exp(−i ωt) as
describing positive frequencies so that the
physics convention is equivalent to setting
j = −i consistently.

In this definition, Eq. (21), the interval
on t is truncated to the region −T ≤
t ≤ T , its Fourier transform is taken,
and the result is squared. Since such
a measurement would attempt to filter
out one component ω and square it,
this definition is reasonable. Since the
integral is not expected to converge, it
must be normalized by T. What is not
clear yet is why one divides by T rather
than T2. The angular brackets denote
an ensemble average. It is curious that
both the limit T → ∞ and an ensemble
average are taken. For an ergodic process,
a time average – by definition – is equal to
an ensemble average. One might guess
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that the ensemble average could have been
eliminated – that its use is primarily for
convenience of computation. The above
assumption is, however, wrong! Middleton
(1960) shows that if the ensemble average
is not performed, substantial fluctuations
occur in the value of Gs(ω).

Presumably, this sensitivity occurs be-
cause we are asking for the noise at a
precise frequency. Because of the Fourier
relation between frequency and time, a
measurement accurate to �ω requires a
time t > 1/�ω. Realistic noise measure-
ments, to be discussed below, using filters
of finite width, are presumably ergodic.

The above definition assumes that
the noise is stationary. A more general
definition of the noise at a frequency ω and
time t is given by the Fourier transform

1

2
G(α, ω, t) =

∫ ∞

−∞
ejωτ R(τ, t)dτ (22)

of the Wigner (1932)–Moyal (1949) type of
autocorrelation function,

R(τ, t) =
〈
α

(
t + τ

2

)∗
α

(
t − τ

2

)〉
, (23)

guaranteed to yield a real G(α, ω, t). For
future use, we note that the inverse of
Eq. (22) is

〈α(v)∗α(u)〉 = 1

4π

∫ ∞

−∞
e−jω(v−u)

× G

(
α, ω,

(u + v)

2

)
dω. (24)

The nonstationary case is discussed fur-
ther in Lax (1968a). In the stationary case,
to which we now restrict ourself in this
section, the autocorrelation, Eq. (23), is
invariant under a shift of time origin,
hence to a change in t. Thus both R(t, τ )

and G(α, ω, t) are independent of t. Equa-
tion (22) can then be simplified to

G(α, ω) = 2
∫ ∞

−∞
ejωt〈α∗(t)α(0)〉 dt. (25)

According to the SE definition, Eq. (21),
the noise is manifestly real. Equation (25)
can also be shown to be real by taking
its complex conjugate and introducing −t
as a new variable of integration. This
conclusion remains true even if α is
a complex variable, or a non-Hermitian
operator. In the classical case when time-
reversal invariance holds, the ensemble
average is an even function of time and

G(α, ω) = 4
∫ ∞

0
cos ωt〈α∗(t)α(0)〉 dt

= 4Re
∫ ∞

0
exp(jωt)〈α∗(t)α(0)〉 dt.

(26)

It is easy to verify from Eq. (25) that the
normalization integral∫ ∞

−∞
G(α, ω)dω

4π
= 〈|α(0)|2〉 (27)

is consistent with our original aim in
Eq. (20).

If we have a classical variable V ex-
pressed as a linear combination of vari-
ables,

V(t) =
∑

m

Cmαm(t), (28)

then the noise in V is given by

G(V, f ) =
∑
mn

C∗
mCnGmn(α, f ), (29)

where the noise matrix

Gmn(α) = 4Re
∫ ∞

0
exp(jωt)〈α∗

m(t)αn(0)〉 dt.

(30)

If the variables α have the decay matrix
� of Eq. (11), the noise correlation Gmn is
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given by

Gmn(α) = 4Re
∑

s

[(−jω1

+ �∗)−1]ms〈αsαn〉. (31)

2.3
The Wiener–Khinchin Theorem

We shall prove the Wiener–Khinchin
theorem by evaluating Gs(α, ω) in terms
of G(α, ω):

Gs(α, ω) = lim
T→∞

1

T

×
〈∫ T

−T
α(v)∗ exp(jωv)dv

×
∫ T

−T
α(u) exp(−jωu)du

〉
. (32)

In the stationary case (for which the
theorem is valid), Eq. (24) can be written

〈α(v)∗α(u)〉= 1

4π

∫ ∞

−∞
ejω(v−u)G(α, ω)dω.

(33)

If Eq. (33) is inserted into Eq. (32), with ω

replaced by ω′, we have

Gs(α, ω) = lim
T→∞

1

T

∫ ∞

−∞
G(α, ω′)dω′

× 1

4π

∣∣∣∣∣
∫ T

−T
exp[j(ω − ω′)u]du

∣∣∣∣∣
2

= lim
T→∞

∫ ∞

−∞
G(α, ω′)dω′

× sin2(ω′ − ω)T

π(ω′ − ω)2T
= G(α, ω). (34)

This completes our heuristic proof of the
Wiener–Khinchin theorem. The last step
moved the limiting procedure under the

integral sign and used

lim
T→∞

sin2(ω′ − ω)T

π(ω′ − ω)2T
= δ(ω′ − ω). (35)

The appropriateness of the limit, Eq. (35),
is based on the facts that

1. the integral of the left-hand side, for any
T, is 1;

2. the width of the function is of order 1/T,
and the maximum height, at ω′ = ω, is
of order T. This function becomes very
tall and narrow. An integration against
this function by any function G(ω′) of
bounded variation will be sensitive only
to its value at the peak ω′ = ω.

Note that Eq. (33) with u = v = t leads
to the normalization condition

〈α(t)∗α(t)〉 = 1

4π

∫ ∞

−∞
G(α, ω)dω. (36)

This normalization is equivalent to the
customary choice, Eq. (20), when G(α, ω)

is even in ω, but is generally valid even
when it is not. It follows easily from
time-reversal invariance that for classical
variables evenness follows, but this is not
true for quantum mechanical variables.
(Our definitions apply to the quantum case
if α∗ is replaced in the quantum case by
the Hermitian conjugate, α†.)

2.4
Noise Measurements Using Filters

An actual measurement of noise at a
frequency ω0 passes the signal α(t)
through a filter described in the time
domain by

αout(t) =
∫ t

−∞
K(t − t′)α(t′) dt′, (37)

where K(t) is known as the indicial
response of the filter, or its response to
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a δ(t) input pulse. In order that the filter
be realizable, hence causal, output can only
appear after input, so that

K(t) = 0 for t < 0. (38)

The upper limit in Eq. (37) can thus be
extended to infinity. In terms of Fourier
components,

α(ω) ≡
∫ ∞

−∞
exp(−jωt)α(t) dt, (39)

Eq. (37) yields the convolution-theorem
result

αout(ω) = k(ω, ω0)α(ω), (40)

where

k(ω, ω0) ≡
∫ ∞

0
exp(−jωt)K(t) dt. (41)

The ω0 is arbitrarily introduced into our
notation to be a reminder that we shall be
dealing with a filter that emphasizes the
frequency region near ω0. Thus we expect
the output spectrum to be |k(ω, ω0)|2 times
the input spectrum:

(α2
out)ω = |k(ω, ω0)|2(α2)ω. (42)

However, this argument is heuristic, since
the integral for αω does not converge in
the usual sense.

What is actually measured is

Gm(ω0) = 1

2T

∫ t0+T

t0−T
|αout(t)|2 dt, (43)

the time average of the squared signal.
For long enough T we expect ergodicity
and can replace the time average by the
ensemble average. Because of stationarity,
this result simplifies to

Gm(ω0) = 〈|αout(t)|2〉 =
∫ t

−∞
K(t − t′)∗ dt′

×
∫ t

−∞
K(t − t′′) dt′′〈α(t′)∗α(t′′)〉

=
∫ ∞

0

∫ ∞

0
K(u)∗K(v)

× 〈α(t − u)∗α(t − v)〉dudv

=
∫ ∞

0
K(u)∗du

∫ ∞

0
K(v)dv〈α(v)∗α(u)〉.

(44)

Order has been preserved in the above
steps so that they remain valid for
noncommuting operators. Using the
Wiener–Khinchin theorem in reverse,
Eq. (33), to eliminate the autocorrelation,
we obtain

Gm(ω0) = 1

4π

∫ ∞

−∞
G(α, ω)dω|k(ω, ω0)|2.

(45)

The factor 4π arises because of the
convention followed in Eq. (36).

2.4.1 A Realizable Filter
The simplest example of a realizable filter
is to regard α(t) as a voltage placed
across an R-L-C circuit, with the output
αout(t) obtained across the resistance. The
differential equations describing this filter
are

RI(t) = 1

C

dQ

dt
+ L

dI

dt
= α(t), (46)

αout(t) = I(t)R. (47)

These equations result in the Fourier
relation

αout(ω) = k(ω, ω0)α(ω) (48)

with

k(ω, ω0) = R

R + j(ωL − 1/ωC)
, (49)

where ω0 = 1/
√

LC is the resonance
frequency.

The measured spectrum Gm(ω0) contin-
ues to be given by Eq. (45). In the limit
when the Q ≡ ω0L/R of the oscillator
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becomes large, there are two sharp res-
onances at ±ω0, and we can approximate

|k(ω, ω0)|2 = [δ(ω − ω0)

+ δ(ω + ω0)]
πR

2L
, (50)

where the coefficient πR/(2L) was chosen
to yield the correct integral∫ ∞

−∞
R2dωR2 +

(
ωL − 1

ωC

)2

= πR

L
.

(51)

This integral was evaluated using formula
031.10 in Gröbner and Hofreiter (1950).
Equations (45) and (50) combine to yield

Gm(ω0) = RG(α, ω0)

4L
, (52)

a result sensitive only to the measurement
frequency with a known renormalization
factor R/(4L).

3
Thermal Noise

3.1
Johnson Noise

Johnson (1928) measured the voltage noise
in a variety of materials, as a function of
resistance. He found the results shown in
Fig. 1, namely, that 〈V2〉 is proportional
to the resistance R, independent of the
material. See also Kittel (1958). He also
found that the measured noise power in
the frequency interval df is proportional to
the temperature of the resistor from which
the noise emanates:

〈v2〉 = 4k df RT = G(v, f ) df . (53)

To within his experimental accuracy, k
is found to agree with the Boltzmann
constant. The theoretical support for this
choice is based on the equipartition

Fig. 1 The noise measured by Johnson (1928)
versus resistance in six diverse materials

theorem and Nyquist’s theorem discussed
in Secs. 3.2 and 3.4.

Moullin (1938) gives a review of the
experimental measurements of noise. He
considers two resistors in parallel at two
different temperatures and concludes that
the noise in a frequency interval df is given
by

〈v2〉 = 4kdf
R1R2

(R1 + R2)2 [T1R2 + T2R1]

≡ 4kdfReTa, (54)

where k is Boltzmann’s constant and
Re is an effective resistance that is
compared with experimental data in Fig. 2
by Williams (1937). Williams chooses Ta

to be T1, except in the limiting case
of R1 = ∞, in which there is only one
resistance, and he then takes Ta to be
room temperature.

Moullin (1938, p. 31) generalizes this
result to the case of an arbitrary number
of impedances in parallel:

Z =
[∑

n

(
1

Zn

)]−1

, (55)
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Fig. 2 Thermal noise for two resistors in parallel
versus temperature obtained by Williams (1937)
is plotted as an effective resistance defined by
Re = 〈v2〉/[4kdfTa] against T2/Ta. Williams takes
Ta to be T1, except in the one-resistor case, for
which T1 is infinite, and he then chooses Ta to be
room temperature. Both theory, in Eq. (54), and
experiment are linear functions of the abscissa.
Line B is the two-resistance case, and line A is
the one-resistance case

〈v2〉 = 4kdf |Z|2
∑

n

RnTn

|Zn|2 . (56)

If we remember that admittance Yn is
related to the impedance Zn ≡ Rn + jXn

by

Yn = 1

Zn
= Rn − jXn

R2
n + X2

n
≡ gn − jsn (57)

and write V = ZI, this result takes a sim-
pler form in terms of current fluctuations,

〈I2〉 = 4kdf
∑

n

gnTn. (58)

These alternative expressions are not
surprising in terms of Thevenin’s and
Norton’s theorems. The terms gn and
sn are referred to as conductance and
susceptance. The result, Eq. (54) or (58),
used equilibrium theory to obtain results
when true equilibrium (all temperatures
equal) is absent.

3.2
Equipartition

In this section we establish a fundamental
compatibility between Johnson noise and
thermodynamic equilibrium by demon-
strating that this noise source generates
an energy kT/2 in inductances and capaci-
tances to which it is connected.

Consider a series circuit of resistor R,
inductance L, and capacitor C, with a
Johnson noise voltage v in the resistor.
Then the resulting current and charge
fluctuations i and q are

i = v

R + j(ωL − 1/ωC)
; q = i

jω
.

(59)

The fluctuation energy in the inductance
is, from Eq. (53),

1

2
L〈i2〉 = 1

2
L

∫
G(v, f ) df

R2 + (ωL − 1/ωC)2

= 2kTRL
∫ ∞

0

df

R2 + (ωL − 1/ωC)2

= 1

2
kT. (60)

Similarly, the energy stored on the
capacitance is

1

2

1

C
〈q2〉 = 2RkT

C

×
∫ ∞

0

df

ω2[R2 + (ωL − 1/ωC)2]

= 1

2
kT. (61)

Thus, for both the inductance and the
capacitor, the energy stored because of
the noise in the resistor is precisely that
expected by the equipartition theorem
(kT/2 for each degree of freedom quadratic
in the coordinate or the velocity.) Note
that Eq. (59) is a relation between Fourier
components, so that, for example, i and q
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should be written iω and qω, whereas in
Eqs. (60) and (61), we are really dealing
with the time-dependent quantities 〈i(t)2〉
and 〈q(t)2〉, respectively.

A fundamental truth now emerges.
Fluctuations must be associated with
dissipation in order that 〈q2〉 does not decay
to zero, but maintains the appropriate
thermal equilibrium energy.

3.3
Thermodynamic Derivation of Johnson
Noise

In view of the compatibility with ther-
mal equilibrium shown in the preceding
section, it is not surprising that a sim-
ple thermodynamic argument can be used
to demonstrate that the noise emanating
from a resistor must be proportional to its
resistance.

Consider two resistors in a series circuit
shown in Fig. 3. The current i1 through
resistor 2 produced by the noise voltage v1
in the first resistor is

i1 = v1

(R1 + R2)
. (62)

The power from v1 into R2 is given by

P2←1 =
(

v1

R1 + R2

)2

R2 = i21R2. (63)

Fig. 3 The power transfer between two
resistances in parallel, where vj is the Johnson
noise voltage in resistor j

Conversely, the power from 2 into 1 is
given by

P1←2 = i22R1 = v2
2R1

(R1 + R2)2 . (64)

If both resistors are at the same temper-
ature, the second law of thermodynamics
requires that there can be no steady
net flow (in either direction). Equating
Eqs. (63) and (64), we obtain

v2
1

R1
= v2

2

R2
or

G(v1, f )

R1
= G(v2, f )

R2
= W(f ),

(65)

where W(f ) is a possibly frequency-
dependent factor that is independent of the
various resistances. In summary, the noise
spectrum associated with an arbitrary
resistance R is given by

G(v, f ) = W(f )R. (66)

If we connect a resistor R1 to an
impedance R(f ) + jX(f ), the same equality
requires

R(f )

∣∣∣∣ v1

R1 + R(f ) + jX(f )

∣∣∣∣2

=
∣∣∣∣ v2

R1 + R(f ) + jX(f )

∣∣∣∣2 R1. (67)

Thus we can conclude that the noise G(v,f)
associated with impedance Z(f ) is given by

G(v, f ) = W(f )R(f ) = W(f )ReZ(f ).

(68)

Thus the noise is proportional to R(f ) =
ReZ(f ) even when the impedance Z(f ) is
frequency dependent.

3.4
Nyquist’s Theorem

A more complete derivation of the fluc-
tuation–dissipation relation including a
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determination of the universal coefficient
W(f ) is provided by Nyquist (1927, 1928).
Nyquist’s procedure is to calculate the
power dissipated in a load connected to
the end of a transmission line in two
different ways and compare the results.
Equation (63) for the power from resistor
R1 into R2 in the frequency interval df
reduces with Eq. (66) to

P2←1 = W(f )R1R2

(R1 + R2)2 df . (69)

The maximum power is transferred when
the impedance is matched, R1 = R2:

P2←1 = 1

4
W(f )�f . (70)

A transmission line can be terminated
with its ‘‘characteristic impedance’’

R0 =
√

L1

C
, (71)

where L1 is the inductance per unit length
of the line and C is its shunt capacitance
per unit length. In this case, waves down
the line are not reflected. The line acts
as if it were infinite. Nyquist therefore
chooses as his proof vehicle a transmission
line terminated by R0 at both ends. The
line is assumed to have length L. The
transmission line can be described in
terms of harmonic-oscillator modes. If U
is the energy density per mode, then the
energy per mode is

UL = kT, (72)

where we have made use of the equiparti-
tion theorem.

If the modes are described as plane
waves exp(±ikx), then k takes the discrete
values

k = 2πn

L
, whence �k = 2π

L
(73)

is the mode spacing. With ω ≡ 2π f related
to k by the group velocity, v = ∂ω/∂k, the
number of modes propagating to the right
in a given frequency interval is

No. of modes = modes

δk
· δk

δf
�f

= L

2π

2π

v
�f = L

v
�f . (74)

Since each mode carries an energy U
with the group velocity v, the power
transmission down the line is

flux =
(

flux

mode

)
(No. of modes)

= (Uv)

(
L

v

)
�f = UL�f . (75)

Comparison with Eq. (70) yields

W(f ) = 4UL. (76)

In the limit of classical physics, Eq. (72)
applies, and

W(f ) = 4kT. (77)

This result yields Nyquist’s theorem

G(v, f )�f = 4kTR�f , (78)

a result in agreement with Johnson’s
experimental results.

The beautifully simple Nyquist proof
yields a result independent of frequency
because all the harmonic-oscillator travel-
ing modes have the same energy kT. The
normalization must, of course, agree with
that found in order to obtain the agreement
with equipartition found in Sec. 3.2.

An apparent problem with Nyquist–
Johnson noise is that the total voltage
fluctuation

〈v2〉 =
∫ ∞

0
G(v, f )df (79)
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diverges. Nyquist suggested that this
problem could be removed if the classical
energy, kT, associated with a harmonic
oscillator were replaced by the quantum
energy,

kT → h̄ωn̄(ω) = h̄ω

[
exp

(
h̄ω

kT

)
− 1

]−1

,

(80)

which approaches kT at low frequencies
and vanishes experimentally at high fre-
quencies.

Of course, the actual energy associated
with a harmonic oscillator,

E = h̄ω[n̄(ω) + 1

2
], (81)

includes the zero-point energy. If the latter
is retained, the divergence in the integrated
energy reappears.

It is appropriate to argue, however, that
the zero-point energy, while real, can
never be absorbed and hence should be
omitted in the Nyquist proof. This point,
however, requires further discussion, as
it relates to fundamental considerations
of the effects of zero-point motion of
the electromagnetic field in the area of
quantum optics.

Callen and Welton (1951) considered a
general class of systems (quantum me-
chanically) and established that Eq. (78),
and its dual form

G(I, f )�f = 4kTG�f = 4kTReY(ω)�f ,

(82)

apply to all systems near equilibrium with
the replacement of kT by Eq. (80) or (81)
when necessary. The importance of the
Callen–Welton work is the great general-
ity of potential applications. The fact that
all dissipative systems have corresponding
noises associated with them is necessary

in order that the second law of thermody-
namics not be violated when such systems
are connected.

3.5
Relation between Nyquist and Einstein

Consider a mechanical system with veloc-
ity v. Then the noise, Eq. (21), associated
with v can be written

G(v, f ) = lim
T→∞

2

T

〈∣∣∣∣∣
∫ T/2

−T/2
v(t)e−jωtdt

∣∣∣∣∣
2〉

.

(83)

The zero-frequency noise is

G(v, 0) = 2

T
〈[�x]2〉, where

�x = x

(
T

2

)
− x

(
−T

2

)
. (84)

But the usual diffusion constant, D,
is defined by 〈[�x]2〉 = 2DT , where T
is the total time traveled. Thus the
zero-frequency velocity noise is directly
determined by the diffusion constant,

G(v, 0) = 4D. (85)

Conversely, the fluctuation–dissipation
theorem, Eq. (82), for the velocity (which
is analogous to a current rather than a
voltage, since the current is proportional
to ev) is given by

G(v, f ) = 4kT Re Y(ω), (86)

where
Y(ω) = v

F
(87)

is the admittance, or velocity per unit
applied force. At zero frequency, we refer
to v/F as the mechanical mobility B and
v/E as the (electrical) mobility µ, so that

Y(0) = B = µ

e
. (88)
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The fluctuation–dissipation theorem at
zero frequency now reads

D = kTB =
(

kT

e

)
µ, (89)

which is simply the Einstein (1905)
relation between diffusion and mobility.
For a verification of this relation for
electrons and holes in semiconductors,
see Transistor Teachers’ Summer School
(1953).

By relating the mechanical mobility to
the viscosity determined by Stokes’s law,
Einstein was able to make a macroscopic
determination of Avogadro’s number in
good agreement with current values.
Although Einstein indicates that he had
not seen the article by Brown (1828)
describing microscopic observations on
tiny pollen grains in water, in his second
article Einstein (1906) refers to the work
of Gouy (1888) with the quote that the
‘‘so-called Brownian motion is caused by
the irregular thermal movements of the
molecules of the liquid.’’

4
Shot Noise

4.1
The Poisson Process

There are two physical problems describ-
able by the same random process. The first
process is the radioactive decay of a collec-
tion of nuclei. The second is the production
of photoelectrons by a steady beam of light
on a photodetector. In both cases, we can
let a discrete, positive, integer-valued vari-
able n(t) represent the number of counts
emitted in the time interval between 0 and
t. In both cases there is a constant proba-
bility per unit time ν such that νdt is the
expected number of counts in [t, t + dt] for

small dt. We use the initial condition

n(0) = 0. (90)

Then n(t) will be the number of counts
in the interval [0,t]. When we talk of
P(n,t) we can understand this to mean,
P(n, t|n = 0, 0), the conditional density
distribution. Since the state n(t) = n is
supplied by transitions from the state n − 1
with production of photoelectrons at a rate
νdt and is diminished by transitions from
state n to n + 1, we have the rate equation

∂P(n, t)

∂t
= ν[P(n − 1, t) − P(n, t)]

for n > 0. (91)

In the first term, n increases from n − 1
to n, and in the second, from n to n + 1.
Since n ≥ 0, we have no supply from the
state P(−1, t) so that

∂P(0, t)

∂t
= −νP(0, t), (92)

whose solution is

P(0, t) = P(0, 0) exp(−νt) = exp(−νt)

(93)

since P(n, 0) = δn,0 at time t = 0, corre-
sponding to the certainty that there are 0
particles at time t = 0.

The form, Eq. (93), of this solution
suggests the transformation

P(n, t) = exp(−νt)Q(n, t) (94)

with the resultant equation

∂Q(n, t)

∂t
= νQ(n − 1, t) (95)

subject to the initial condition

P(n, 0) = Q(n, 0) = δn,0. (96)

Thus any Q(n,t) may be readily obtained
if Q(n − 1) is known. But n, as described
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by Eq. (91), can only increase. The result is
the closed-form solution

P(n, t) = P(n, t|0, 0) = (νt)n

n!
e−νt (97)

for n ≥ 0 with a vanishing result for n < 0.
Distribution functions, such as Eq. (97),

are also characterized by their moments
µ′

j, and their central moments µj, defined
by

µ′
j = 〈nj〉; µj = 〈(n − 〈n〉)j〉. (98)

A third set of moments, introduced by
statisticians because they indicate clearly
the deviation of a random process from
that of a Gaussian, are called Thiele (1903)
semi-invariants or cumulants by Kendall
and Stuart (1969). The cumulants or linked
moments κj ≡ 〈nj〉L are defined in terms
of the characteristic function,

〈exp(ikn)〉 ≡
∑

n

exp(ikn)P(n, t)

= exp


 ∞∑

j=1

(ik)j

j!
κj




= exp〈exp(ikn) − 1〉L. (99)

By taking the logarithm of this equation,
expanding in powers of k, and comparing
coefficients, one can read off the cumu-
lants. The first four are particularly simple:

κ1 =〈n〉; κ2 =〈n2〉L =〈(�n)2〉; (100)

κ3 = 〈n3〉L = 〈(�n)3〉; (101)

〈n4〉L = 〈(�n)4〉 − 3〈(�n)2〉2; (102)

where �n ≡ n − 〈n〉 is the deviation from
the mean. Cumulants beyond the second
describe deviations from a Gaussian dis-
tribution.

The Poisson process is stationary. But no
limit exists as t → ∞, so that there is no
time-independent P(n). We can, however,

evaluate the characteristic function of the
conditional probability density:

〈exp(ikn)〉 ≡ φ(k, t|n = 0, t = 0)

=
∑

n

eikn (νt)n

n!
e−νt

= exp[νt(eik − 1)]. (103)

Comparison of Eq. (103) for the Poisson
process with Eq. (99) shows that for this
process all cumulants have the same value,

κj = νt. (104)

4.2
Pure Shot Noise

The Poisson process just described is, in
fact, the simplest example of shot noise.
We can picture the actual number n(t) as
a staircase function that is flat except at a
set of times, tj, at which a jump of unity
occurs. Mathematically, this is describable
as the solution of the stochastic differential
equation

dn

dt
=

∑
j

δ(t − tj) ≡ ν̂(t). (105)

We shall first show that the noise source,
ν̂(t), in Eq. (105) is indeed white noise and
demonstrate its relation to conventional
shot noise.

The average pulse rate over the large
time interval [0,T ] is

ν(t) = 〈ν̂(t)〉 = 1

T

∑
j

∫ T

0
δ(t − tj)dtj

= N

T
= ν, (106)

where N is the number of pulses in the
interval 0 < tj ≤ T . We call the ratio ν

to conform with the Poisson process in
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Sec. 3.1 and assume that this ratio is
independent of t, and of the location of
the time interval of length T.

The correlation in the fluctuation α(t) =
ν̂(t) − ν can be calculated in a similar way:

〈α(t)α(t′)〉 = 〈ν̂(t)ν̂(t′)〉 − 〈ν̂(t)〉〈ν̂(t′)〉.
(107)

The first term involves a double sum

〈ν̂(t)ν̂(t′)〉 =
∑
i,j

〈δ(t − ti)δ(t
′ − tj)〉,

(108)

but the diagonal (j = i) term involves the
simpler average

1

T

∑
i

∫ T

0
δ(t − ti)δ(t

′ − ti)dti

= N

T
δ(t − t′). (109)

The terms with j 
= i involve an uncorre-
lated average, which cancels against the
last term in Eq. (107) in the limit as T goes
to infinity, with the result

〈�ν̂(t)�ν̂(t′)〉 = νδ(t − t′). (110)

The noise, by the Wiener–Khinchin for-
mula, is

G(ν, ω) = 2
∫ ∞

−∞
〈�ν̂(t)�ν̂(t′)〉dt = 2ν,

(111)

a constant, or white noise.
If the pulses carry a charge e, the current

is
Î(t) = eν̂(t), (112)

and we arrive at the traditional shot-noise
formula

G(I, ω) = 2e2ν = 2eI, (113)

where I = 〈Î〉 is the average current.

4.3
Generalized Characteristic Functions

We must establish the equivalence of
this pulse description in Eq. (105) with
the Poisson distribution characterized by
Eq. (91), by calculating the characteristic
function by a direct method, and demon-
strate its equality with that of the Poisson
process given in Eq. (103). The character-
istic function is defined by

φ(k, t) = 〈exp[ikn(t)]〉

=
〈
exp

[
ik

∫ t

0
ν̂(s) ds

]〉
. (114)

To save duplication later, we consider an
appreciably more general problem. In this
problem, the sequence of pulses that arrive
can have a localized shape f (t − tj) that
need not be a delta function. In the original
problem considered by Campbell (1909),
the discontinuity involved the charge on
the electron, and so a factor q was added.
The model was further generalized by Rice
(1944, 1945, 1948) to permit the jumps
to contain a random factor η. Thus Rice
considered the process

Θ(t) = q
∑

ηjf (t − tj), (115)

where the ηj’s are random jumps with a
distribution independent of tj, of t, and of j.

Our procedure for dealing with the same
problem consists in writing

Θ(t) =
∫

f (t − s)S(s) ds, (116)

where the shot-noise function S(s) is now
given by

S(s) = q
∑

j

ηjδ(s − tj). (117)

Equation (116) describes Θ(t) as filtered
shot noise. We can always remove the
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filtering to obtain results appropriate to
pure shot noise.

We can now relate the ordinary charac-
teristic function of Θ to the generalized
characterized function of the shot-noise
function, S(s),

〈exp ikΘ(t)〉 =
〈
exp i

∫ ∞

−∞
y(s)S(s)ds

〉
(118)

by setting

y(s) ≡ kq f (t − s). (119)

The average in Eq. (118), for general y(s),
was evaluated in two ways in Lax (1966b).
The first made explicit use of Langevin
techniques. The second, which follows
Rice, is presented here. It makes use of
the fact that the average can be factored:

〈
exp i

∫ ∞

−∞
y(s)S(s)ds

〉
=

N∏
j=1

〈exp[iηjy(tj)〉.

(120)

Here, we have supposed that N pulses are
distributed uniformly over a time interval
T at the rate ν = N/T . All N factors
are independent of each other and have
equal averages, so that after adding and
subtracting 1 inside the brackets, the result
is

N∏
j=1

∫
g(ηj)dηj

[
1 + 1

T

∫ T/2

−T/2
{exp[iηj

× y(tj)] − 1} dtj

]

=
[

1 + 1

T

∫
g(η)dη

∫ T/2

−T/2
{exp[iη

× y(s)] − 1} ds

]N

= exp

[
ν

∫
g(η)dη

∫ ∞

−∞
{exp[iη

× y(s)] − 1} ds

]
, (121)

where g(η) is the normalized probability
density for the random variable η. In the
last step, we assumed that the integral
over s converges and replaced it by its limit
before taking a final limit in which N and
T approach infinity simultaneously with
the fixed ratio N/T = ν.

4.4
Rice’s Generalized Campbell Theorem

Campbell’s two theorems are the first and
second moments, 〈Θ〉 and 〈(�Θ)2〉, eval-
uated explicitly in Eqs. (126) and (127)
below. Rice’s generalized Campbell’s theo-
rem is obtained by setting y(s) = kq f (t − s)
in Eq. (118). The result is not just the first
two moments, but the complete character-
istic function

〈exp ikΘ(t)〉 =
〈

exp


ikq

∑
j

ηjf (t − tj)


〉

= exp
(

ν

∫
g(η)dη

∫ ∞

−∞
{exp[ikqη

× f (t − s)] − 1} ds

)
. (122)

Let us now specialize to the case of
the original Campbell process by setting
g(η) = δ(η − 1):

〈exp ikΘ(t)〉

= exp
[
ν

∫ ∞

−∞
{exp[ikqf (t − s)] − 1} ds

]
.

(123)

The probability density of the variable
Θ of Eq. (115) may then be obtained by
taking the inverse Fourier transform of
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the characteristic function in Eq. (122):

P(Θ) = 1

2π

∫ ∞

−∞
exp(−ikΘ)dk

× exp

[
ν

∫
g(η)dη

∫ ∞

−∞
{exp[ikqη

× f (s)] − 1} ds

]
. (124)

This form of generalized Campbell’s
theorem, like its antecedents, assumes that
the tj are randomly (and on the average
uniformly) distributed in time. Moreover,
there is assumed to be no correlation
between successive pulse times. Lax and
Phillips (1958) have found it convenient
to exploit Eq. (124) in studying one-
dimensional impurity bands.

The cumulants of the Rice process can be
obtained from Eq. (122) as the coefficients
of kr/r! in the exponent:

κr =
〈
q

∑
j

ηjf (t − tj)


r〉

= νqr
∫

g(η)ηrdη

∫ ∞

−∞
f (s)rds

= νqr〈ηr〉
∫ ∞

−∞
f (s)r ds. (125)

4.5
Campbell’s Theorems

The choice g(η) = δ(η − 1) reduces the
Rice process to the original Campbell pro-
cess. Campbell’s theorem itself includes
only the cases r = 1, 2. These take the
form

〈Θ〉 = νq
∫ ∞

−∞
f (s) ds, (126)

〈[�Θ ]2〉 = νq2
∫ ∞

−∞
f (s)2 ds. (127)

We close this section with an application
of Campbell’s theorem to the RC circuit

Fig. 4 The voltage fluctuation induced by shot
noise into an RC circuit

shown in Fig. 4. A charge e from a vacuum
tube generates a voltage pulse

ef (t) =
( e

C

)
exp

( −t

RC

)
, (128)

across the resistor R. Campbell’s theorems
then yield

〈V〉 = ν
( e

C

) ∫ ∞

0
e−t/RCdt = νeR = IR

(129)

and

〈(�V)2〉 = ν
e2

C2

∫ ∞

0
e−2t/(RC)dt = IeR

2C
.

(130)

The electronic charge can be determined
by comparison of 〈(�V)2〉 with 〈V〉:

e = 2C〈(�V)2〉
〈V〉 . (131)

4.6
Equivalence of Shot Noise to the Poisson
Process

If we further specialize Eq. (123) by setting

q f (t − s) = 1 for 0 ≤ s ≤ t, (132)

and zero elsewhere, then Eq. (116) reduces
to

Θ(t) =
∫ t

0
ν̂(s)ds = n(t). (133)
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The characteristic function, Eq. (132), of Θ

is then identical to that of n and is given by

〈exp ikn(t)〉 = exp
[
ν

∫ t

0
[exp(ik) − 1] ds

]
,

(134)

which reduces immediately to Eq. (103)
as desired. This completes our proof
that the shot-noise process of Eq. (105)
is equivalent to the Poisson process of
Eq. (91).

4.7
Transit-Time Effects

A set of carriers, j, leave a source (e.g.,
a cathode) at a set of times tj and move
to a destination (e.g., a plate) with a
velocity v(t − tj). All carriers travel the fixed
distance L and take the same travel time T,
such that ∫ T

0
v(t)dt = L. (135)

The current in the external circuit will be

I(t) = e

L

∑
j

v(t − tj). (136)

This intuitive result can be justified by
a detailed calculation using Maxwell’s
equations.

The current can then be written as a
convolution

I(t) = 1

L

∫ ∞

−∞
v(t − s)S(s) ds, (137)

where the shot-noise function is

S(s) = eν̂(s) = e
∑

j

δ(s − tj) (138)

as in Eq. (112) or (117) with η = 1. This
convolution translates into a product of
Fourier transforms that are squared to get

the desired noise result

G(I, ω) = G(S, ω)W(ω) = 2eIW(ω),

(139)

where we have used the pure shot-noise
result, Eq. (113), and the window factor

W(ω) =
∣∣∣∣∣1

L

∫ T

0
v(t)e(−jωt)dt

∣∣∣∣∣
2

(140)

accounts for the transit-time effects and
reduces the noise from the maximum
value of W(0) = 1 eventually to W(∞) =
0, although not necessarily monotonically.
The time dependence of the velocity will
be determined by the nature of the forces
acting on the electron.

4.8
Generation–Recombination Process

The generation–recombination process in
semiconductors is a second example of a
shot-noise process in which the diffusion
constants can be calculated from first
principles on the basis of an understanding
of the physics of the process. It is also an
example of what statisticians refer to as a
birth and death process.

Let us define the random integer variable
n as the occupancy of some state. We
assume that the particles are generated at
the rate G(n) and disappear at the rate R(n)
(recombination). Then our mean equation
of motion is

∂〈n〉
∂t

= 〈G(n)〉 − 〈R(n)〉 ≡ 〈A(n)〉,
(141)

where 〈A(n)〉 is our drift vector. Since the
occupancy of state n is increased by gen-
eration from the state n − 1 and reduced
by generation out of the state n, whereas it
is increased by recombination out of state
n + 1 and reduced by recombination out
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of state n, the probability distribution func-
tion P(n,t) obeys the following equation:

∂P(n, t)

∂t
= G(n − 1)P(n − 1, t)

− G(n)P(n, t) + R(n + 1)

× P(n + 1, t) − R(n)P(n, t). (142)

The Poisson process is a special case of
the present one with R = 0, G = ν. If the
derivative is written as a difference, and
the symbol n is replaced by n′, Eq. (142)
can be written as a master equation

P(n′, t + �t) − P(n, t)

�t

=
∑

n

P(n′, t + �t|n, t)

�tP(n, t)
(143)

with the transition rate

P(n′, t + �t|n, t)

�t

=
∑

n

{G(n)δn,n′−1 + R(n)δn,n′+1

− [G(n) + R(n)]δn,n′ }. (144)

The rth diffusion coefficient Dr , defined
by (see Secs. 7.1 and 7.2)

r!Dr = 〈(n′ − n)r〉
�t

=
∑

n′

(n′ − n)rP(n′, t + �t|n, t)

�t

(145)

takes the value

r!Dr =
∑

n′
(n′ − n)r [G(n)δn,n′−1

+ R(n)δn,n′+1] = G(n) + (−1)rR(n)

(146)

after omission of noncontributing terms
from Eq. (144).

A simpler procedure is to use Taylor’s
theorem in the operator form

exp
(

h
∂

∂n

)
F(n) = F(n + h), (147)

with h set to +1 or −1, to rewrite Eq. (142)
in the operational form

∂P

∂t
=

[
exp

(
− ∂

∂n

)
− 1

]
G(n)P(n)

+
[

exp
(

∂

∂n

)
− 1

]
R(n)P(n).

Expanding the Taylor series leads imme-
diately to

∂P

∂t
=

∞∑
r=1

(
− ∂

∂n

)r

× [G(n) + (−1)rR(n)P(n)]

r!
P(n).

(148)

The rth-order diffusion constant derivative
term read off from the coefficient of the
rth derivative, in accord with Eq. (273),
agrees with Eq. (146). [See Sec. 7.2 and
Lax (1966a) for a detailed discussion of
the generalized Fokker–Planck equation.]
Thus all the even-numbered diffusion
constants are proportional to the sum of
the rate in plus the rate out, while all
the odd-numbered diffusion constants are
proportional to the difference, i.e., the rate
in minus the rate out. In particular, the
first and second moments, D1 and D2,
obey

D1 = A(a) = G − R, (149)

2!D2 = 2D = G + R = rate in + rate out.

(150)

These results are characteristic of shot
noise. Thus, in the quasilinear approxi-
mation, the operating point n0 and decay
parameter Λ are determined by Eqs. (10)
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and (11):

A(n0) = G(n0) − R(n0) = 0, (151)

Λ ≡ −∂A

∂n

∣∣∣∣
n=n0

= R′(n0) − G′(n0),

(152)

and the diffusion coefficient is

D = 1

2
[G(n0) + R(n0)] = G(n0). (153)

Then the Einstein relation, Eq. (15), in the
case of a single variable yields the mean
square fluctuation from the average value
in terms of the diffusion constant D and
the decay constant Λ:

〈(�n)2〉 = D

Λ
= G(n0)

R′(n0) − G′(n0)
. (154)

We now want to calculate the autocorre-
lation function, 〈�n(t)�n(0)〉. Since the
transport equation and its solution are

∂〈�n(t)〉
∂t

= 〈A〉 ≈ −Λ〈�n〉,
〈�n(t)〉 = e−Λt�n(0), (155)

the regression theorem and stationarity
determine the correlations, via Eq. (18), to
be

〈�n(t)�n(0)〉 = e−Λ|t|〈[�n(0)]2〉. (156)

The noise in n is then given by Eq. (26),

G(n, ω) = 4Λ

Λ2 + ω2 〈(�n)2〉. (157)

5
Resistance Modulation Fluctuations

5.1
Conductivity Fluctuations

Information about carrier-number fluc-
tuations can be obtained by injecting

a constant current and measuring the
voltage fluctuations induced by the con-
ductivity modulation caused by carrier-
concentration fluctuations. The admit-
tance can be written

Y = A(peµp + neµn) = (Peµp + Neµn)

L
,

(158)

where µp and µn are the hole and electron
mobilities, p and n are the hole and electron
concentrations, and P and N are the
total hole and electron numbers over the
volume AL between the electrodes, of area
A and separation L. Thus the fractional
voltage fluctuations are given by

�V

V
= −�Y

Y
= −�Pµp + �Nµn

Pµp + Nµn
.

(159)

If only electrons and holes are present
(and not traps), charge neutrality will be
enforced up to the (very high) dielectric
relaxation frequency, so that to an excellent
approximation

�N(t) = �P(t). (160)

Thus the voltage autocorrelation is given
by

〈�V(t)�V(0)〉 = V2
[

(1 + b)

(P + Nb)

]2

× 〈�P(t)�P(0)〉, (161)

where b = µn/µp. It follows that the
voltage noise is given by

G(V, ω) = V2
(

1 + b

P + Nb

)2

〈(�P)2〉

×
∫ ∞

0
4 cos ωtdtΦ(t), (162)

and the total voltage fluctuation may be
obtained by replacing the integral by unity.
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The ‘‘after-effect function’’ Φ(t) is defined
by

〈�P(t)�P(0)〉 = 〈(�P)2〉Φ(t). (163)

The total noise, which only involves
Φ(0) = 1, is consistent with the normal-
ization condition, Eq. (27), in the noise
spectrum. The after-effect function will be
calculated in later sections.

5.2
A Thermodynamic Treatment of Total
Carrier Fluctuations

We first consider a set of free electrons in
the nondegenerate case when Boltzmann
(rather than Fermi) statistics are applica-
ble. Then Shockley (1950) has shown that
the total number of electrons obeys the
statistical mechanical relation

N = Nc exp
[

(µ − Ec)

kT

]
, (164)

where Ec is the energy at the bottom
of the conduction band and Nc is a
temperature-dependent effective density
of states. The conventional symbol µ is
used to represent the electron Fermi level
or chemical potential. Since it will not
appear later, there will be no confusion
with the mobility. The thermodynamic
formula, Eq. (3), then yields

〈(�N)2〉 = kT

(
∂N

∂µ

)
T

= N. (165)

This result is not entirely surprising, since
the total number of carriers is an integral

N =
∫

V

∑
j

δ(r − rj)d
3r; (166)

this is the three-dimensional analog of
Eqs. (105) and (133). Indeed, Eq. (165)
can be derived directly from Eq. (166)

using only the assumption that the rj are
uniformly distributed in space.

A less obvious case is that of a set of
Nt traps interacting with a reservoir of
chemical potential µt. We assume that
the trap occupancy is sufficiently high
that Fermi statistics are necessary. In that
case, the number of filled traps by use of
Fermi–Dirac statistics is

N̂ = Nt

1 + exp[(Et − µt)/kT ]
. (167)

In that case, the thermodynamic formula,
Eq. (165), becomes

〈(�N̂)2〉 = kT

(
∂N̂

∂µt

)
T

= N̂

[
1 − N̂

Nt

]
.

(168)

It can be seen that the fluctuations are
reduced by a factor equal to the fraction of
empty states. The reason for this result
is made clear in the next section, in
which a kinetic approach is used for
the same problem. If both N and N̂
are allowed to vary simultaneously, the
simplest distribution consistent with these
second moments is

W ∝ exp

[
− (�N)2

2〈(�N)2〉 − (�N̂)2

2〈(�N̂)2〉

]
.

(169)

The term in �N�N̂ vanishes because
N does not depend on µt and N̂ does
not depend on µ. Within the quasilinear
approximation, it is appropriate to ignore
higher cumulants than the second and
stop at the Gaussian approximation.

Suppose, now, that the electrons in traps
do not have an independent reservoir,
but are obtained from the free carriers.
Then we must impose the conservation
condition

�N̂ = −�N. (170)
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If this constraint is inserted into Eq. (169),
we obtain a Gaussian in a single variable
with the second moment

〈(�N)2〉=〈(�N̂)2〉= 〈(�N)2〉〈(�N̂)2〉
〈(�N)2〉 + 〈(�N̂)2〉

= NN̂(Nt − N̂)

NNt + N̂(Nt − N̂)
. (171)

In the next section, we show that this result
can be derived by the Einstein relation.

The situation for holes is similar to that
for electrons. If the holes have their own
reservoir, then the typical Poisson process
prevails:

〈(�P)2〉 = P. (172)

If holes, traps, and electrons are all present
and coupled to each other, then charge
neutrality imposes the constraint

�N + �N̂ = �P. (173)

In the presence of compensating centers,
Nco, there is also a neutrality condition for
the steady state:

N + N̂ = P + Nt − Nco. (174)

The influence of these constraints on
the fluctuations is developed in the next
section.

5.3
Einstein Derivation of Carrier Fluctuations
with Traps

As in the previous section, we consider
traps interacting with free electrons. This
problem is a generation–recombination
problem with a generation rate propor-
tional to the number of carriers in the traps
and a recombination rate proportional to
the product of the number of free carriers

and the number of empty traps,

g(N) = γ N̂, r(N) = ρN(Nt − N̂).

(175)

We regard g and r as functions only of
N since N̂ is a function of N given in
Eq. (174). The diffusion coefficient in the
steady state is then

D(N) = r(N) (176)

in view of Eqs. (151) and (153); and the
decay coefficient, in accord with Eq. (152),
is

Λ = r′(N) − g ′(N)

= ρ[(Nt − N̂) + N] − (−γ ), (177)

where the derivatives were taken using
�N̂ = −�N. The electron carrier fluctua-
tion 〈(�N)2〉 = D/Λ is in agreement with
Eq. (171).

We next consider carrier fluctuations
in a p-type material in the presence of
electrons and traps. We will regard N and
N̂ as the determining variables, with P
obtained from the neutrality constraint,
Eq. (174). Our discussion will follow Lax
and Mengert (1960) with the replacement
of C/Ω in that article by ρ, and of g
in that article by γ , to conform with
our notation in Eq. (175). Our nonlinear
transport equation is taken to be

d〈N〉
dt

= 〈G − R + γ N̂ − ρ(Nt − N̂)N〉,

d〈N̂〉
dt

= 〈ρ(Nt − N̂)N − γ N̂〉. (178)

The terms in G and R refer to generation
and recombination of electron–hole pairs,
and the other terms refer to generation
and recombination from the traps, as in
Eq. (175).
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The underlying transition rate per unit
time for this model is

w(N′, N̂′; N, N̂) = [Gδ(N′, N + 1)

+ Rδ(N′, N − 1)]δ(N̂′, N̂)

+ ρδ(N′, N + 1)δ(N̂′, N̂ − 1)

+ γ (Nt − N)Nδ(N′, N − 1)

× δ(N̂′, N̂ + 1). (179)

The first moments of the transition rate
are obtained by summing over the primed
variables:∑

(N′ − N)w(N′, N̂′; N, N̂) =
G − R + ρN̂ − νN,∑

(N̂′, −N̂)w(N′, N̂′; N, N̂) =
νN − ρN̂, (180)

where we use the abbreviation

ν = γ (Nt − N̂). (181)

The results agree with our phenomenolog-
ical transport equations, Eq. (178). If we
linearize these equations, we obtain the
two-by-two system

d

dt

[ 〈�N〉
〈�N〉

]
= −�

[ 〈�N〉
〈�N〉

]
(182)

with

� =
[

ν + r −g ′
−ν g ′

]
, (183)

where the parameters are now evaluated
under the steady-state conditions

γ N̂ = ρ(Nt − N̂)N = νN, R = G.

(184)

The symbol r now stands for the experi-
mental electron–hole recombination rate

r = ∂(R − G)

∂N
, (185)

and
g ′ = γ + ρN. (186)

The diffusion constants may be obtained
from the second moments of the transition
rate:

D11 =
∑ (N′ − N)2w(N′, N̂′; N, N̂)

2

D22 =
∑ (N̂′ − N̂)2w(N′, N̂′; N, N̂)

2

D12 =
∑ (N′ − N)(N̂′ − N̂)

w(N′, N̂′; N, N̂)

2
, (187)

so that

D11 = [(G + R) + (γ N̂ + νN)]

2
, (188)

where the evaluation of D11 was done at
the steady state using the conditions

G = R, νN = γ N̂. (189)

The complete matrix at the steady state is
thus found to be

D =
∣∣∣∣ R + γ N̂ −γ N̂

−γ N̂ γ N̂

]
. (190)

The population fluctuations that result
from Eq. (15) are then

�−1D =
[

R/r 0
(νR/r − γ N̂)/g ′ N̂γ /g ′

]
.

(191)

There is a coupling between the free
and bound electron populations. However,
if the hole (majority) population P is
much larger than N or N̂, it would
provide uncoupled reservoirs for these two
populations, and we would expect the 21
element of the matrix to disappear. If we
write the recombination as proportional to
the product of the number of holes and
electrons,

R = α(N + �N)(P + �P), G = NP,

(192)
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then

R − G = α[(P + N)�N + N�N̂] (193)

after use of charge neutrality, Eq. (173).
Thus Eq. (185) yields

r = α(P + N) ≈ αP = R

N
. (194)

In view of Eq. (189), the 21 elements
vanish. With the help of Eq. (181), we find

γ

g ′ = 1 −
(

N̂

Nt

)
, (195)

so that

�−1D =
[

N 0
0 N̂′

]
, (196)

where in this connection we have intro-
duced the shorthand notation

N̂′ = N̂

[
1 −

(
N̂

Nt

)]
. (197)

5.4
The Spectrum of Resistance Modulation
Fluctuations

We return to the problem of the last
section with a large number of majority
carriers, P, a smaller number of trapped
carriers, N̂, and a still smaller number
of free electrons, N. Because of the
neutrality condition, Eq. (173), the voltage
fluctuation of Eq. (159) can be written

�V = C1�N + C2�N̂, (198)

where

C2 = V

(P + bN)
, C1 = (1 + b)C2

(199)

and b = µn/µp.
In view of the total population fluctu-

ations given in Eqs. (196) and (197), the

total voltage noise is given by∫ ∞

0
G(V, f )df = 〈(�V)2〉,

= |C2|2[N̂′ + (1 + b)2N]. (200)

The spectrum of voltage fluctuations is
given by Eqs. (29) and (31):

G(V, f ) = 4C2
2Re{(i ω1 + �)−1

22 N̂′ + (1 + b)

× [(i ω1 + �)−1
12 N̂′ + (i ω1 + �)−1

21 N]

+ (1 + b)2(i ω1 + �)−1
11 N}. (201)

Here we have omitted the star, since � is
real, and replaced −j by i to avoid minus
signs. The elements of � were given in
Eq. (183). An exact evaluation by Lax and
Mengert (1960) yields a ratio of a quadratic
to a quartic in ω. Lax and Mengert re-
expressed their results by a partial-fraction
analysis into the more understandable
form

G(V, f ) = 4V2

(P + Nb)2

×
[

ASλS

ω2 + λ2
S

+ AFλF

ω2 + λ2
F

]
(202)

of a sum of two Lorentzians whose
integrated contributions are AS and AF

associated with the slow and fast modes
with eigenvalues λS and λF. The trace and
determinant of �, Eq. (183), yield the sum
and product relations

λF = ν + r + g ′ − λS, λS = rg ′
λF

. (203)

Typical parameters from the experiments
of Hornbeck and Haynes (1955) and
Haynes and Hornbeck (1955), as revised
by Lax and Mengert (1960), indicate that
the trapping rate ν = 3 × 107/s for free
electrons greatly exceeds the effective
release rate g ′ = 3/s from traps. These
would be the basic decay rates for N and
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N̂ respectively. It is then appropriate to
assume that the slow rate λS � λF. If we
iterate starting with λS = 0, we obtain a
first approximation

λF ≈ ν + r + g ′, λS ≈ g ′r
(ν + r + g ′)

(204)

Since λF ≈ ν = 3 × 107, and λS ≈ g ′r/ν ≈
3 × 10−3, Eq. (204) has a relative accuracy
of λS/λF ≈ 10−10. Lax and Mengert (1960)
use this large decay ratio to simplify the
formulas for AS and AF to

AS ≈ N̂′ + (1 + b)N, AF ≈ (b2 + b)N.

(205)

Perhaps the surprise in these numbers
is that the slow eigenvalue λS of the
combined system is 1000 times smaller
than the emission rate from traps, which
represents the decay of N̂. The reason
this is so is that the electrons rapidly
(‘‘adiabatically’’) respond to the bound trap
density and generate captures that almost
cancel the release rate. To verify this, we
note that the adiabatic procedure in lowest
order, as described in Lax (1967), is to set
the time derivative of the rapidly changing
quantity, d〈�N〉/dt = 0. This yields

�N =
[

g ′
(ν + r)

]
�N̂. (206)

When this is inserted into the second
equation (for �N̂), the effective slow
equation takes the form

d〈�N̂〉 = λS〈�N̂〉 (207)

with the reduced value

λS ≈ g ′r
(ν + r)

(208)

obtained after a near cancellation between
the two terms.

6
Concentration Fluctuations in
Semiconductors

6.1
General Theory of Concentration
Fluctuations

The thermodynamic discussion of oc-
cupancy fluctuations in Sec. 5.2 can be
generalized by noting that the average oc-
cupancy of a state of energy E is given
by

〈n〉 = 1

{exp[β(E − µ) + ε}] , (209)

where for Fermi, Boltzmann, and Bose
particles

ε =



1 for Fermi particles,
0 for Boltzmann particles,
−1 for Bose particles.

(210)

For application to a particular state a,
replace n by n(a) and E by E(a). The
fluctuation in occupancy of that state
is given by the thermodynamic formula,
Eq. (3), or the first part of Eq. (165), to be

〈�n(a)�n(c)〉 = n(a)′δ(a, c)

≡ n(a)[1 + εn(a)]δ(a, c), (211)

which includes all three statistical cases,
Fermi, Boltzmann and Bose, with the three
choices of ε above. This result is true in
equilibrium.

We have also established the truth of
Eq. (211) for the nonequilibrium steady
state in Lax (1960) by explicitly construct-
ing a model in which there are transition
probabilities for the transfer of particles
between states, by determining the diffu-
sion coefficients for this model, and then
by solving the Einstein relation, Eq. (14),
for the second moments. Since the details
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of the analysis are not particularly illu-
minating, they will not be repeated here
except to note that if there is a constraint,
such as the total number of particles in all
the states being fixed, the simple formula,
Eq. (211) above, is replaced by

〈�n(a)�n(c)〉 = n(a)δ(a, c) − n(a)′n(c)′∑
b

n(b)′
.

(212)

This result clearly obeys the constraint〈[∑
a

�n(a)

]
�n(c)

〉
= 0. (213)

Another point of interest is that the
diffusion matrix in Lax (1960), Sec. 12, was
found to have the diagonal elements

2Dbb = total jump rate out of b

+ total jump rate into b, (214)

and the nondiagonal elements are

2Dab = −[transition rate from a to b

+ rate from b to a]. (215)

We therefore regard such diffusion con-
stants as characteristic of shot noise be-
cause of particle-number quantization.

6.1.1 Application to Semiconductors with
Electrons, Holes, and Traps
Equation (212) can be readily applied to
the case in which n(1) = N = the number
of conduction electrons, n(2) = N̂ = the
number of trapped electrons, and n(3) =
number of electrons in the valence band =
Nv − P, where Nv is the number of valence-
band states and P = the number of holes.
Thus

n(1)′ = N

[
1 − N

N c

]
≈ N, (216)

n(2)′ = N̂

[
1 − N̂

Nt

]
= N̂′, (217)

n(3)′ = (Nv − P)

(
P

Nv

)
≈ P. (218)

We have assumed nondegeneracy for the
holes and the free electrons, but not for
the trapped electrons. Since �n(3) = −P,
we can write the second moments in the
form

〈(�N)2〉 = N − N2

(P + N + N̂′)
, (219)

〈(�N̂)2〉 = N̂′ − (N̂′)2

(P + N + N̂)
, (220)

〈(�P)2〉 = P − P2

(P + N + N̂)
, (221)

〈�N�N̂〉 = − NN̂

(P + N + N̂)
, (222)

〈�P�N〉 = PN

(P + N + N̂)
, (223)

〈�P�N̂〉 = PN̂

(P + N + N̂)
. (224)

These results are consistent with the
constraint �P = �N + �N̂ of charge neu-
trality. If the number of traps is zero, they
reduce to �N = �P and

〈(�N)2〉 = 〈(�P)2〉 = NP

(N + P)
. (225)

When P � N and P � N̂, these second
moments reduce to those in Eq. (196),
for the case of electrons and traps in the
presence of majority holes.

6.2
The Influence of Drift and Diffusion on
Resistance Modulation Noise

To concentrate on the influence of drift
and diffusion on density fluctuations and
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modulation noise, let us return to the
trap-free case discussed in Sec. 5.1. The
spectrum of voltage noise, already given in
Eq. (162), can be rewritten as a product

G(V, ω) = 〈(�V)2〉g(ω) (226)

of the total noise

〈(�V)2〉=V2
(

1 + b

P + Nb

)2

〈(�P)2〉 (227)

and the normalized spectrum

g(ω) =
∫ ∞

0
4 cos ωtdtΦ(t), (228)

where

1 =
∫ ∞

0
g(ω)df =

∫ ∞

−∞
g(ω)

dω

4π
. (229)

Note that this normalization is four
times that used for g(ω) in Lax and
Mengert (1960). For simplicity, we confine
ourselves to a one-dimensional geometry,
as was done by Hill and van Vliet (1958),
and calculate the total hole fluctuation as

�P(t) =
∫ L

0
�p(x, t) dx. (230)

We can now apply our techniques to
continuous-parameter systems by replac-
ing the sum

αi(t) =
∑

i

[exp(−�t)]ijαj(0) (231)

by the integral

αx(t) =
∫

[exp(−�t)]xx′ dx′αx′(0). (232)

Introducing a more convenient notation
for the Green’s function

[exp(−�t)]xx′ = K(x, x′, t), (233)

we can write

�p(x, t) =
∫

K(x, x′′, t) dx′′�p(x′′, 0),

(234)

so that the correlation at two times is, as
usual, related to the pair correlation at the
initial time:

〈�p(x, t)�p(x′, 0) =
∫

K(x, x′′, t) dx′′

× 〈�p(x′′, 0)�p(x′, 0)〉. (235)

It is customary to treat fluctuations
at the same time at two places as
uncorrelated. This is clearly the case, for
independent carriers. It is less obvious
when Coulomb attractions (say between
electrons and holes) are included. It was
shown, however, in Appendix C of Lax
and Mengert (1960) that a delta-function
correlation is valid, as long as we are
dealing with distances greater than the
screening radius. Thus we can take

〈�p(x′′, 0)�p(x′, 0)〉 =
〈(�P)2〉L−1δ(x′′ − x′), (236)

where the coefficient of the delta function
is chosen so that the fluctuation in the
total number of carriers 〈(�P)2〉 is given
correctly by Eq. (225). Here L is the
distance between the electrodes.

The definition, Eq. (163), of Φ(t) yields
the expression

Φ(t) = 1

L

∫ L

0
dx

∫ L

0
dx′K(x, x′, t). (237)

If the Green’s function is defined, appro-
priately as in Lax (1960), to vanish for t < 0,
it will obey an equation of the form(

∂

∂t
+ �

)
K(x, x′, t) =

δ(x − x′)δ(t), (238)

where, in the continuous-variable case,

� = r + v
∂

∂x
− D

∂2

∂x2 (239)

is an operator. Here, v and D are the
ambipolar drift velocity and diffusion
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constants found by Van Roosbroeck (1953)
to describe the coupled motion of elec-
trons and holes while maintaining charge
neutrality:

v = eµaE, µa = (N − P)µnµp

(Nµn + Pµp)
; (240)

Da = (N + P)DpDn

(NDn + PDp)
, (241)

where the individual diffusion constants
and mobilities are related by the Einstein
relation.

Equation (238) for the Green’s function
can be solved by a Fourier-transform
method:

K(x, x′, t) = 1

π

∫ ∞

−∞
exp[ik(x − x′)

− λ(k)t] dk, (242)

where

λ(k) = r + ivk + Dk2. (243)

Here λ(k) are the eigenvalues of the �

operator,

� exp(ikx) = λ(k) exp(ikx). (244)

With Eq. (242) for K, the after-effect
function can be calculated from Eq. (237):

Φ(t) = L

π

∫ ∞

−∞
dk

sin2(z)

z2 exp[−λ(k)t],

(245)

where z = kL/2. Thus the spectrum,
Eq. (228), is

g(ω) = 4

π

∫ ∞

−∞
dz

sin2 z

z2

1

i ω + λ(z)
,

(246)

where λ has been re-expressed as a
function of z,

λ(z) = r + 2i
( v

L

)
z + 4

(
D

L2

)
z2. (247)

Lax and Mengert (1960) provide an exact
evaluation of this integral. However, the
resulting expressions are complicated. It
is therefore worth while to treat some
limiting cases. For example, if there is
no diffusion, then

K(x, x′, t) = exp(−rt)δ(x − x′ − vt),

(248)

and the after-effect function is given by

Φ(t) = exp(−rt)

[
1 −

(
t

Ta

)]
, (249)

where Ta = L/v is the transit time and
the spectrum is governed by a windowing
factor W :

g(ω) = 4TaW, (250)

with the window factor given by

W =
∫ Ta

0
cos ωte−rt

[
1 − t

Ta

]
d

(
t

Ta

)
.

(251)

Indeed, the current noise, in this special
case, can be written in the form given by
Hill and van Vliet (1958),

G(I, ω) ≡
(

I2

V2

)
G(I, ω) = 2eIeq, (252)

which emphasizes the similarity to shot
noise. The equivalent current is defined by

Ieq = 2I
b + 2 + b−1

|P/N − N/P|W. (253)

The window factor still takes a complicated
form,

W = (τ/Ta)
2

1 + (ωτ)2

{
Ta

τ
− 1 − (ωτ)2

1 + (ωτ)2

+ exp(−Ta/τ)

1 + (ωτ)2

{
[1 − (ωτ)2]

× cos(ωTa) − 2ωτ sin(ωTa)

}}
. (254)
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Here τ = 1/r. Even this result is compli-
cated to understand. If we take the limiting
case when recombination is unimportant
over the transit time, the result simplifies
to

W = 1

2

sin2(ωTa/2)

(ωTa/2)2 , (255)

a windowing factor similar to that found
associated with the effect of transit time on
shot noise. See Sec. 4.2.

In the opposite limit, in which diffusion
is retained but drift is neglected, the exact
result for the spectrum is given by

g(ω) = 4ReJ, (256)

where

J = (r + i ω)−1

−
[

D

(r + i ω)3

]1/2 [1 − exp(−Γ L)]

L
(257)

and

Γ =
[

(r + i ω)

D

]1/2

(258)

is the reciprocal of the diffusion length.
The exponential term represents an inter-
ference term between the two boundaries
that is usually negligible since they are
separated by substantially more than a dif-
fusion length. A simple approximate form
over intermediate frequencies is

g(ω)

4
≈ r

(ω2 + r2)
+

(
1

L

) (
D

2ω3

)1/2

.

(259)

In summary, in addition to the first
term, which represents the volume noise
easily computed just by using the total
carrier, P(t), effects, we get an inverse
frequency to the three-halves power that
arises from diffusion across the boundary
at the electrodes.

7
Langevin Processes

7.1
Simplicity of Langevin Processes

Langevin treated noise by adding a random
noise source to the linear equations de-
scribing the transport. Langevin methods,
at least for a linear or quasilinear system,
have the simplicity of the circuit equa-
tion of electrical engineering. The noise
source may arise from thermal reservoirs
as in Johnson noise, or shot noise from
the discreteness of particles. But once the
noise is represented as a voltage source
with known moments, the physical nature
of the source is no longer important. We
have the analog for noise sources of cur-
rent sources and Norton’s theorem. The
sources can be thought of as a black box,
with an impedance in series with a voltage
source, or an admittance in parallel with a
current source. And the original nature of
the sources will not enter into the solution
of problem.

For the quasilinear case, we can write
our set of Langevin equations in the form

dα

dt
+ � · α = F(t), (260)

where α = a − 〈a〉 is a multicomponent
object, as is the force F(t). Equation (260)
can be regarded as the definition of F(t).
What condition must be imposed on F(t)
in order that the resulting process α(t)
be a Markoffian process? (A Markoffian
process is analogous to a student who only
remembers the last thing he was told.) It
was shown in Sec. 1 of Lax (1960) that a
necessary and sufficient condition for α(t)
to be a Markoffian set of variables is for the
Langevin forces F(t) to be delta correlated,

〈F(t)F(u)〉 = 2Dδ(t − u). (261)
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The second moments in Eq. (261) are
sufficient to calculate all second-order cor-
relation functions of the α’s for linear
processes. Since these second-order cor-
relations are insensitive to the higher
moments of the noise sources, it is then
permissible to regard the forces as Gaus-
sian random variables. Then all linked
moments beyond the second have been
set equal to zero.

Shot-noise sources, however, do have
higher linked moments than the second,
and, at the linear level, we can consider a
complete set of linked moments for any
linear Markoffian process:

〈F(t1)F(t2) . . . F(tn)〉L = n!Dnδ(t1 − t2)

. . . δ(tn−1 − tn). (262)

The delta-function nature of these correla-
tions guarantees the absence of memory
required by a Markoffian process.

Indeed, if we choose

n!Dn = 〈(�α)n〉
�t

= ν

∫
ηng(η)dη, (263)

then the Langevin process, Eq. (260), re-
duces to the generalized one-dimensional
shot-noise process of Sec. 4.2, associated
with

da

dt
=

∑
k

ηkδ(t − tk), (264)

where g(η) is the probability of jumps in a
of size η.

7.2
Relation to the Fokker–Planck Equation

To provide a bridge between the Langevin
and Fokker–Planck points of view, we
must show how the nth-order diffusion
constants just introduced, by Eq. (262),
into a Langevin description determine the
motion of a general function M(a) of the
random process a(t).

A general random process (not neces-
sarily a Markoff one) necessarily obeys the
relation on conditional probabilities

P(a′, t+�t|a0, t0)=
∫

P(a′, t+�t|a, t;
a0, t0)daP(a, t|a0, t0).

(265)

The transition probability P(a′, t + �t|a, t;
a0, t0) describes the probability of arriving
at a′ at t + �t if one starts at a at time t,
remembering that one started the entire
process at a0 at time t0. This last bit of
information may be omitted if the process
is Markoffian. In that case Eq. (265)
reduces to the Chapman–Kolmogoroff
condition.

The nth-order conditional diffusion con-
stant is defined by the relation

Dn(a, t|a0t0) = 1

n!
lim

�t→0

∫
(a′ − a)n

× P(a′, t + �t|a, t; a0, t0)
da′
�t

= 1

n!
lim

�t→0

1

�t

× 〈[a(t + �t) − a(t)]n〉| a(t)=a
a(t0)=a0

. (266)

For a Markoffian process the dependence
on a0 can be omitted everywhere. Equa-
tion (265) can then be replaced by

P(a′, t+�t)=
∫

P(a′, t+�t|a, t)daP(a, t).

(267)

The average motion of an arbitrary
function M(a) of the random process a(t)
may be obtained by integrating M(a′)
against P(a′, t + �t). On the right-hand
side of the equation, we shall replace M(a′)
by its Taylor expansion

M(a′) = M(a) +
∞∑

n=1

(a′ − a)n M(n)(a)

n!

(268)
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The integrals over (a′ − a)n give rise to the
diffusion coefficients, so that we obtain

〈M(a)〉t+�t =〈M(a)〉t + �t
∞∑

n=1

∫
Dn(a, t)

× M(n)(a)P(a, t) da. (269)

Thus

d

dt
〈M(a)〉 =

∞∑
n=1

〈
Dn(a, t)

∂n(M(a)

∂an

〉
,

(270)

where for any function g(a) the average
means

〈g(a)〉 ≡
∫

g(a)P(a, t) da. (271)

To obtain the equation of motion for
P(a,t), we write Eq. (270) in the explicit
from∫ [ ∞∑

n=1

Dn(a, t)P(a, t)
∂nM(a)

∂an

− M(a)
∂P

∂t
(a, t)

]
da = 0. (272)

After an integration by parts, we obtain∫ { ∞∑
n=1

(−1)n
(

∂

∂a

)n

[Dn(a, t)P(a, t)]

−∂P(a, t)

∂t

}
M(a)da = 0. (273)

Since this equation is to be valid for any
choice of M(a), the coefficient of M(a) in
the above equations must vanish, yielding
the generalized Fokker–Planck equation:

∂P(a, t)

∂t
=

∞∑
n=1

(−1)n
(

∂

∂a

)n

× [Dn(a, t)P(a, t)]. (274)

The ordinary Fokker–Planck equation is
the special case in which the series
terminates at n = 2.

Since Eq. (267) was true for all processes,
including non-Markoffian, the existence
of a generalized Fokker–Planck equation
does not guarantee that the associated
process is Markoffian. If we had done all
our averages retaining the initial condition
at t0, we would have obtained the equation
of motion

d

dt
〈f (a)〉a(t0)=a0 =

×
∞∑

n=1

〈
Dn(at|a0t0)

∂nf (a)

∂an

〉
a(t0)=a0

,

(275)

and the Fokker–Planck equation is

∂P(at|a0t0)

∂t
=

∞∑
n=1

(−1)n
(

∂

∂a

)n

× [Dn(a, t|a0t0)P(a, t|a0t0)]. (276)

In the Markoffian case, Eq. (276) agrees
with Eq. (274). Thus if (and only if) the
process is Markoffian, P(at|a0t0) obeys the
same equation of motion as P(a,t). Then,
we can calculate P(at|a0t0) by solving
Eq. (274) subject to the initial condition

P(a, t) = δ(a − a0) at t = t0. (277)

7.3
An Exactly Solvable Gaussian Example

We start with the simple example

dx

dt
= µ + σ f (t), (278)

where µ and σ are constants and f (t) is a
Gaussian random process with mean zero
and known autocorrelation

〈f (t)f (u)〉 = 2R(t − u). (279)

Then the simpler variable y = x − µt,
which obeys

dy

dt
= σ f (t), (280)
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represents an integral over Gaussian
variables of mean zero; hence it too is
Gaussian with mean zero and variance

H(t) = 〈[y(t)]2〉 = 2σ 2
∫ t

0

∫ t

0
drdsR(r − s).

(281)

We have used x(0) = y(0) = 0 as an initial
condition. Thus the Gaussian probability
distribution for y is given by

P(y, t) = 1

[2πH(t)]1/2 exp
[
−1

2

y2

H(t)

]
.

(282)

The special case in which

H(t) = Ct2H, (283)

in which C is an arbitrary constant and
H is a constant between zero and one,
describes ‘‘fractional Brownian motion.’’
Ordinary Brownian motion is the special
case H = 1/2.

A more interesting generalization occurs
when one sets

S

S(0)
= exp(x) = exp(y + µt). (284)

Using dx = dS/S, Eq. (278) becomes

dS

dt
= µS(t) + σS(t)f (t). (285)

The relations

y = ln
[

S

S(0)
exp(−µt)

]
, dy = dS

S
,

(286)

can be substituted into Eq. (282) to obtain
the distribution for S:

P̂(S, t|S(0), 0)dS

= P(y, t|0, 0)dy

= 1

[2πH(t)]1/2

× exp

[
− ln2[Se−µt/S(0)]

2H(t)

]
dS

S
. (287)

In the Brownian-motion limit, the noise
is white, as represented by a delta corre-
lation, R(t − u) = δ(t − u). Equation (281)
specializes to H(t) = 2Dt with D = σ 2.
Equation (287) then reduces to

P̂(S, t|S0, 0) = S(0)

S

1

(4πDt)1/2

× exp

[
− ln2[Se−µt/S(0)]

4Dt

]
. (288)

The Fokker–Planck equation obeyed by
P(x,t) follows from Eqs. (278) and (276)
in the Brownian-motion limit in which
Dn = 0 for n > 2,

∂P(x, t)

∂t
= − ∂

∂x
[µP] + ∂2

∂x2 [σ 2P]; (289)

it contains the constant diffusion term
D = σ 2, and the constant drift term A = µ.
One can obtain the equation for

P̂(S, t) = P(x, t)S(0)

S
, (290)

by starting from the previous equation for
P(x,t), introducing the relation, Eq. (284),
of x to S. The result after some labor is

∂P̂

∂t
= − ∂

∂S
[(µ + σ 2)SP̂] + ∂2

∂S2 [σ 2S2P̂].

(291)

The diffusion term [in the notation of
Eq. (8)] DSS = σ 2S2 is easy to understand.
We can write

DSS ≡ (�S)2

2�t
=

(
∂S

∂x

)2
(�x)2

2�t
. (292)
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Thus the diffusion constants are related by

DSS = S2Dxx = S2σ 2. (293)

One might think that

�S

�t
= ∂S

∂x

�x

�t
. (294)

However, this choice omits the second
term in the drift vector. There is a
correction because the diffusion coefficient
D depends on S:

�S

�t
= ∂S

∂x

�x

�t
+ 1

2

∂2S

∂x2

(�x)2

�t
(295)

or

AS = SAx + 1

2
S(2D) = S(µ + σ 2) (296)

in agreement with Eq. (291).

7.4
Stochastic Integrals: The Ito–Stratonovich
Controversy

Because mathematicians concentrate on
Brownian motion, which is rather singular
in behavior, it is not clear how to define the
integral of a product of a random variable
and a random force. In particular, how
should we convert the differential equation

da

dt
= B(a(t)) + σ(a)f (t), (297)

where f (t) is a standard white-noise source
with

〈f (t)f (u)〉 = 2δ(t − u), (298)

to an integral? The Riemann sum of
integral calculus would be

a(t) = a(0) +
∑

j

[B(a(t̄j))

+ σ(a(t̄j))f (t̄j)] × (tj+1 − tj), (299)

where
tj ≤ t̄j ≤ tj+1. (300)

The Riemann integral exists if the sum
approaches a limit independent of the
placement of t̄j in the interval in Eq. (300).
But the conditions of boundedness re-
quired for the existence of the Riemann
integral (see Jeffries and Jeffreys, 1950)
are violated. Thus the value of the sum
approaches different limits, according to
how the point t̄j is chosen. [This is not true
for the B term, but only the one involving
the white-noise source f (t).] Ito (1951), Ito
and McKean (1965), and Doob (1953) avoid
the difficulty by evaluating σ at the begin-
ning of the interval. They also convert the
integral to Stieltjes form by introducing

w(t) ≡
∫ t

0
f (s) ds; 〈[w(t)]2〉 = 2t. (301)

Some authors omit the factor of 2 in
Eqs. (298) and (301). The result is∫ t

σ(a(s))f (s)ds =
∑

σ(a(tj))

× [w(tj+1) − w(tj)]. (302)

However, even the latter does not converge
to a unique integral, and the evaluation
at the beginning is an arbitrary choice.
The effect of this choice, since f (s) is
independent of a(t) for t < s, is that the
average of the second term in Eq. (297)
vanishes, so that the Ito drift vector that
follows from Eq. (297) and the integration
rule, Eq. (302), is

Ito : A(a) = B(a) + 〈σ(t)f (t)〉 = B(a).

(303)

Stratonovich (1963) makes the fortuitous
choice of using

a(tj) = 1

2
[a(tj) + a(tj+1)], (304)
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the average of the values at the two end
points of each interval. In our notation,
Stratonovich’s choice is equivalent to
equating

A(a) = B(a) + 〈σ(a)f (t)〉
= B(a) + σ(a)

∂σ(a)

∂a
, (305)

a result in agreement with the outcome,
Eq. (311), below, of the iterative procedure
we advocate. It is intuitively clear that an
average of the end points is better than
using either one. But is the average value
always the best choice?

Our viewpoint, expressed in Lax (1966b),
Sec. 3, is that mathematicians have con-
centrated too exclusively on the Brownian-
motion white-noise process, which has
delta correlation functions. Real processes
can have a sharp correlation time of fi-
nite width. Thus their spectrum is flat,
but not up to infinite frequency. Thus,
for real processes, the Riemann sums
do converge, and no ambiguity exists.
After the integration is performed, the
correlation time can be allowed to go to
zero, that is, one can then approach the
white-noise limit. Thus the ambiguity is
removed by approaching the integration
limit and the white-noise limit in the cor-
rect order.

To obtain the drift vector A(a), the differ-
ential equation, Eq. (297), is rewritten as
an integral equation:

a(t + �t) − a(t) =
∫ t+�t

t
B(a(s))ds

+
∫ t+�t

t
σ(a(s))f (s) ds. (306)

This equation can be solved by iteration.
The lowest approximation is obtained by
replacing a(s) by a(t) under the integral.

This first approximation,

(�a)1 = B(a(t))�t + σ(a(t))
∫ t+�t

t
f (s) ds,

(307)

is equivalent to the Ito choice. The first
term is already of order �t and need not
be improved. In the second term, let us
insert the first approximation,

a(s) = a(t) + B(a(t))(s − t)

+ σ(a(t))
∫ s

t
f (u) du, (308)

into Eq. (306) to get

(�a)2 = B(a(t))�t + σ(a(t))
∫ t+�t

t
f (s)ds

+ σ(a(t))
∂σ

∂a(t)

∫ t+�t

t
ds

∫ s

t
duf (s)f (u).

(309)

We have retained only terms of order
�t, or f 2, but not �tf or higher. If we
restrict ourselves to Gaussian processes,
their linked moments of order higher than
two vanish. Thus the process terminates.
Indeed,

〈(�a)n〉L = 0 for n > 2. (310)

For n = 2 it is sufficient to use the first
approximation,

〈(�a)2〉L =σ 2
∫ t+�t

t
ds

∫ t+�t

t
du〈f (s)f (u)〉

= 2σ 2�t = 2!D2�t. (311)

In the last step, we have specialized to the
Brownian, white-noise limit. For n = 1 it is
necessary and sufficient to use the second
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approximation of Eq. (309) to get

〈�a〉 = B(a(t))�t + σ(a(t))
∂σ

∂a(t)

×
∫ t+�t

t
ds

∫ s

t
du2δ(s − u),

so that

A(a)�t = B(a)�t + σ
∂σ

∂a
�t. (312)

The factor of 2 disappears because only half
the area of the delta function contributes
at the boundary point s. This result is clear
if the correlation function R(s − u) is any
sharp symmetric function. In summary,
our Langevin process is equivalent to an or-
dinary (no derivatives higher than second)
Fokker–Planck process with coefficients

D(a) = [σ(a)]2, (313)

A(a) = B(a) + σ
∂σ

∂a

= B(a) + 1

2

∂D

∂a
. (314)

These results agree completely with those
found in the previous section for our
exactly solvable example.

We note that the Fokker–Planck can
be written in two completely equivalent
forms:

∂P(a)

∂t
=− ∂

∂a
[A(a)P(a)]+ 1

2

∂2

∂a2 [D(a)P(a)]

= − ∂

∂a
[B(a)P(a)]

+ ∂

∂a

[
σ(a)

∂

∂a
(σ (a)P(a))

]
.(315)

The Ito choice can be compensated for
by choosing the correct Fokker–Planck
equation, but his procedure is sufficiently
counterintuitive that the wrong choice is
often made. In applying Ito’s procedure
to the financial world Hull (1992) almost

always makes the correct choice. Hull uses
the equation

dx = dS

S
= µdt + σ dw, (316)

where w is the Wiener process defined
in Eq. (299), which is simply Eq. (278)
written in the notation preferred by
mathematicians. Since σ is a constant in
Hull’s application, the second term on the
right-hand side of Eq. (314) vanishes, and
there is no distinction between the Ito
and Stratonovich viewpoints. Hull (1992)
then states correctly that �S/S is normally
distributed with mean ‘‘µ�t and standard
deviation σ

√
�t. In other words,

�S

S
≈ φ(µ�t, σ

√
�t), (317)

where φ(m, s) denotes a normal distribu-
tion with mean m and standard deviation
s.’’ Equation (316) cannot be simply rewrit-
ten (Hull, 1992) as an Ito equation in the
form

dS = µSdt + σSdw (318)

because Ito’s variables do not obey the
usual rules of calculus. Equation (318) is
correct, as a Stratonovich equation, but the
second term does not average to zero but
modifies the drift term as in Eqs. (305)
and (309). To be an Ito equation, the first
term should contain A, the modified drift
term, and not B, the unmodified drift term.
Equation (291) shows that the correct Ito
equation is

dS = (µ + σ 2)Sdt + σS dw. (319)

This result could also have been ob-
tained using Ito’s lemma, which describes
how the drift vector changes under a
transformation of variables. If, however,
one makes the natural error of regard-
ing Eq. (318) as a valid Ito equation and
then makes the inverse transformation
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x = ln S/S(0) using Ito’s lemma (now
carefully), one obtains (Hull, 1992)

dx = [µ − σ 2]dt + σ dw, (320)

which disagrees with the natural starting
point, Eq. (316), as does the associated
distribution after a finite time interval
�t = T − t, which takes the form

ln ST − ln S ≈ φ(µ − σ 2�t, σ
√

�t)

(321)

that disagrees with Hull’s earlier intuitively
correct result, Eq. (317). The Ito procedure
can be done correctly by using Eq. (319)
instead of (318), but its counterintuitive
nature can be misleading even to experts.

For the record, we note that the behavior
of diffusion constants and drift vectors
under a transformation from one set of
variables aj to a new set of variables a′

i
was derived in Lax (1966b) from Langevin
considerations that are a generalization of
the above arguments to the multivariable
case. The diffusion constants transform
simply as

D′
ij = ∂a′

i

∂ak

∂a′
j

∂al
Dkl. (322)

The B drift vectors also transform simply:

B′
i = ∂a′

i

∂t
+ ∂a′

i

∂ak
Bk, (323)

where the second term is the natural
transformation of a vector, and the first
term enters only if the transformation
is time dependent. Under a nonlinear
transformation, however, there is a change
in the contribution from the nonconstancy
of the diffusion coefficient as shown by the
last term in Eqs. (309)–(314). The A drift
vectors, which enter the Fokker–Planck
equation, possess therefore the more

complicated transformation

A′
i = ∂a′

i

∂t
+ ∂a′

i

∂ak
Ak + ∂2a′

i

∂am∂an
Dmn,

(324)

which can be understood simply from the
relation

�a′
i = ∂a′

i

∂t
�t + ∂a′

i

∂ak
�ak

+ ∂2a′
i

∂am∂an

�am�an

2
. (325)

In summary, there are two kinds of
Langevin equations, those whose random
term need not average to zero [as used in
Eq. (297)] and those used by Ito in which
the average of the random term vanishes
by Ito’s definition of the stochastic integral.
Both can be used correctly, but Ito’s choice
requires more care because the usually
permissible way in which we handle
equations is no longer valid. An able
analysis of this situation, with references
to earlier discussion, is presented by Van
Kampen (1992).

Hull’s (1992) book is an extremely
well-written text on Options, Futures
and Other Derivative Securatives. The
Ito–Stratonovich controversy applies to
physics, chemistry, and other fields. We
have analyzed Hull’s treatment in detail
because his use of the Black–Scholes
(1973) work involving an application of
the Langevin Eq. (316) to the pricing of
options coincides with the one example,
in Sec. (7.3), for which we have an exact
solution.

Although the Ito choice can be danger-
ous, as shown above, we trust that by
now the Ito choice is used consistently
in practice. However, there may be more
serious problems, since real options may
have statistics based on more wildly fluc-
tuating processes than Brownian motion,
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such as Lévy and fractal processes. This has
recently been emphasized by Peters (1994)
and Bouchard and Sornette (1994). For an
excellent review of Brownian and fractal
walks. Ghashghaie et al. (1996) have also
found a parallelism between prices in for-
eign exchange markets and turbulent fluid
flow. Thus the conventional Brownian-
motion approach will be invalid in such
markets.

8
Further Contributions to Stochastic
Processes

8.1
Overview

In the following sections we review current
contributions. We start with random
walks, since the approach remains linear,
and the applications are usually stationary.
Then we discuss contributions in which
one or more of our assumptions of (1)
stationarity, (2) linearity, and (3) white
noise are eliminated.

8.2
Random-Walk Problems

Many problems can be mapped into a
random-walk problem on a lattice, or
actually is a problem on a lattice. These
problems are discussed first since the
master equation for the probability density
is linear, and simple techniques based on
discrete periodicity can be used.

Recent contributions have been made
to diffusion and reaction kinetics by
considering one or more walkers on
a lattice. Discrete-time random walks
have been generalized to continuous-time
walks. For such walks the distribution Ψ (t)
of time intervals to a hop from a given site
are not exponential. If the first or second

moment of Ψ (t) is not finite, one generates
a ‘‘Lévy’’ process. Other choices lead to
stretched-exponential processes. Analytic
solutions are often possible by taking
advantage of the regularity of the lattice, as
has been shown by Montroll, Weiss, Scher,
Shlesinger, and others. An extension was
also made to walks on fractals and to
disordered lattices. Scher and Lax (1973)
showed that a disordered lattice could be
replaced by a continuous-time random
walk that yields a conductivity varying
approximately as ω0.9, in agreement with
the experimental conductivity found in
semiconductor impurity bands.

8.3
Linear with Time-Dependent Decay

The case of homogeneous noise with linear
(time-dependent) damping [namely, �(t),
but D(t) = D] is only mentioned here since
an analytic evaluation was found for the
generalized characterized functional

M[q] =
〈
exp

[
i
∫ t

0
q(u)a(u) du

]〉
, (326)

where q(u) is an arbitrary function of
u, in Eq. (2.16) of Lax (1966b). Many
desired multiple-time averages can be de-
duced from this generalized characterized
function. For example, the multiple-time
moments are given by a functional deriva-
tive

m(t1, t2, . . . tn) = i−n δnM[q]

δq(t1) . . . δq(tn)

∣∣∣∣∣
q=0

.

(327)

as discussed by Hänggi (1989).
Lax (1966a) introduced a more general

functional involving an arbitrary nonlinear
function of q(u), and Lax and Zwanziger
(1973) evaluated it for quadratic functions



Stochastic Processes 553

to obtain the photocount distribution in
lasers near threshold.

8.4
The Nonlinear (Fokker–Planck) Case:
Reaction-Rate Theory

If we eliminate the linearity assumption,
including the case of weak noise and a
quasilinearity approximation, many possi-
bilities arise. If the variables are continu-
ous and the noise is white and Gaussian,
the problem is properly described by a
Fokker–Planck equation.

Many applications have been made of
Fokker–Planck theory, often with approx-
imations that are special to a particular
application. One example is to the the-
ory of self-sustained oscillators discussed
in Sec. 8.5. Applications have been made
to systems subject to bifurcation, and to
quantum mechanical systems. An appli-
cation of long standing is to reaction-rate
theory, which is described briefly here, and
to stochastic resonance, which is described
briefly in Sec. 8.5. Many of these appli-
cations are reviewed in the three-volume
series by Moss and McClintock (1989).
An excellent review of reaction-rate theory,
which we cannot summarize adequately
here, is the 90-page review by Hänggi et al.
(1990).

The modern surge of effort in reaction-
rate theory stems from the widely read
article by Kramers (1940), since the author
made a simple Fokker–Plank model for
the escape of a particle from a metastable
state. However, Landauer (1989), in a
review, points out many examples of
the rediscovery of previously published
ideas. In particular, he remarks on an
earlier article by Pontryagin et al. (1933)
(PAV) that contained the essential ideas in
Kramers’s article.

Kramers’s model, in the notation of Jung
(1993), is

dx

dt
= p

m
(328)

dp

dt
= −γ p − V ′(x)

+ √
mγ kBTξ(t) + E sin θ;

θ ≡ Ωt + const., (329)

where E sin θ is the periodic term needed
in the next section on stochastic resonance,
and the Brownian motion is induced by the
noise with second moment

〈ξ(t)ξ(u)〉 = 2δ(t − u). (330)

(The periodic term is not included in the
articles by Kramers or PAV.)

Kramers considered both weak and
strong damping cases. We review only
the strong-damping case here because
Kramers’s extensive mathematical treat-
ment was reviewed by Hänggi et al. (1990)
and the main ideas, contained in the
strong-damping case, are easier to explain
because they lead to a closed-form solution.

In the strong-damping case, we assume
that γ is faster than any other decay
mechanisms, or reciprocal times. Then
d/dt can be neglected compared to γ .
Thus the term in dp/dt can be omitted.
It is thus possible to solve Eq. (329)
for p and substitute the result into
Eq. (328). Discussions of the adiabatic
approximation are given by Lax (1967)
and Van Kampen (1985). The resulting
equation for x is

dx

dt
= A(x) + √

Dξ(t), (331)

where

A(x) = −V ′(x)

mγ
+

(
E

mω

)
sin θ, (332)
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D = kBT

mγ
. (333)

The Fokker–Planck equation associated
with Eqs. (332) and (333) is

∂P(x, t)

∂t
= − ∂

∂x
[A(x, t)P(x, t)]

+ ∂2

∂x2 [D(x)P(x, t)]. (334)

In the PAV article, there is no time-
dependent force, and A(x) and D(x) are
regarded as known arbitrary functions of
x [with D(x) written as b(x)/2].

The Fokker–Planck equation can be
regarded as an equation of continuity:

∂P(x, t)

∂t
+ ∂J(x, t)

∂x
= 0, (335)

where

J(x, t) = A(x, t)P(x, t) − ∂D(x)P(x, t)

∂x
.

(336)

If the periodic force is absent, there will be
a stationary solution if A(x) is a restoring
force, namely, negative for large positive x
and positive for large negative x. Such a
stationary solution obeys

dJ(x)

dx
= 0;

J(x) = AP(x) − d[D(x)P(x)]

dx
, (337)

and the current must be a constant,

J(x) = C1. (338)

Although Lax (1966b), Sec. 4, has encoun-
tered a case in which a current flow is
present, we are normally concerned with
stationary states that carry no current. If we
set C1 = 0, P(x) obeys a simple first-order
equation whose solution will be denoted

P0(x):

P0(x) = C

D(x)
exp[−U(x)]U(x)

≡ −
∫ x

xst

A(y)

D(y)
dy. (339)

Here it is customary to choose xst to be the
stationary point, which obeys

A′(xst) = 0. (340)

This is the point, Eq. (10), about which
a quasilinear expansion would be made.
PAV then introduce a probability φ(x, t)
that a particle starting at t = 0 in the
interval a < x < b will reach a boundary
in the time interval [0,t]. Instead of a direct
attack on this problem, they introduce the
modern approach of invariant embedding
made popular by Bellman (1968) and Casti
and Kalaba (1973) by writing a recursion
relation relating φ(x, t + τ) to φ(x, t) for
small τ :

φ(x, t + τ) =
∫ b

a
φ(y, t)dyP(y, t + τ |x, t),

(341)

which assumes that a limit in which τ → 0
will be taken and that ‘‘the probability of
the random point leaving the interval ab
during the short time τ is very small.’’
PAV then expand φ(y, t) about φ(x, t). The
results involve the incomplete moments

µn =
∫ b

a
(y − x)n dy. (342)

Because the conditional probability is so
narrow in y (of order

√
Dτ ), the limits of

integration can be extended to full interval
[−∞, ∞] for almost all x. Then

µ0 → 1; µ1 → A(x)τ ; µ2 → D(x)τ ;
(343)

with higher moments vanishing faster
than linearly in τ . The result is that φ
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obeys the equation adjoint to Eq. (334) for
P(x,t):

∂φ(x, t)

∂t
= ∂φ

∂x
A(x) + ∂2φ

∂x2 D(x). (344)

Equation (344) is no easier to solve an-
alytically than the original Fokker–Planck
equation (334). However, dt∂φ/∂t is the
probability of a crossing in the interval
[t, t + dt], so that

M(x) =
∫ ∞

0
t
∂φ

∂t
dt (345)

is the mean time to a crossing, starting at x.
By taking the time derivative of Eq. (344),
multiplying by t, and integrating over t,
PAV obtain∫ ∞

0
t
∂2φ

∂t2
dt=A(x)

dM(x)

dx
+D(x)

d2M(x)

dx2 .

(346)

Since φ(x, 0) = 0 and φ(x, ∞) = 1, inte-
gration by parts shows that the left-hand
side of Eq. (346) is −1. Thus dM(x)/dx
obeys a first-order ordinary differential
equation. The integral of this equation
subject to the boundary conditions

M′(a) = 0, M(b) = 0, (347)

appropriate to the case of a being a
reflecting boundary and b being an
absorbing boundary, is

M′(x)=− exp[U(x)]
∫ x

a
exp[−U(z)]

dz

D(z)
.

(348)

As pointed out by Stratonovich (1989), the
final integral can be written in terms of the
steady-state distribution itself:

M(x) =
∫ b

x

dy

D(y)P0(y)

∫ y

a
dzP0(z).

(349)

More explicit formulas are available
only after making some approximations.

Stratonovich (1989) simplifies the mean
lifetime to

T̄ = 2M(xst)

= 2π

[
D(b)

D(xst)

]1/2

[|A′(xst)|A′(b)]−1/2

× exp[U(b) − U(xst)] = 2TK, (350)

where TK is referred to as the Kramers
time. The factor of 2 was inserted on the
assumption that after reaching the point b
there is a 50% chance of escaping and a
50% chance of returning to the point xst

of stable equilibrium. If we revert to the
original definitions of A and D in Eqs. (332)
and (333), the Kramers time is given by

TK = π
γ

ωstωb
exp

{
V(b) − V(xst)

kBT

}
,

(351)

where (ωj)
2 = |V ′′(xj)|/m are the frequen-

cies associated with quadratic approxima-
tions to the local potential at the points in
question.

The results display the expected Arrhe-
nius law associated with the activation
energy. The mean rate of transition van-
ishes with γ demonstrating explicitly that
the noise associated with the damping in-
duces the transitions.

Although we have demonstrated the
result for the one-dimensional case, the
original authors all considered x to be
a one-dimensional coordinate along the
direction of the reaction embedded in a
multidimensional space. The qualitative
ideas remain the same, but the results
are, of course, sensitive to details such
as symmetry that are not present in the
one-dimensional case. Contributions by
Brinkman (1956), Landauer and Swanson
(1961), and Langer (1968) are summarized
in detail by Hänggi et al. (1990). A recent
review of the current status of Kramers’s
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reaction-rate theory is given by Talkner
and Hänggi (1995).

8.5
Stochastic Resonance

The subject of stochastic resonance is
concerned with systems such as those
discussed by Kramers, Pontryagin et al.,
Stratonovich, and others, to which has
been added an applied periodic force. Such
a term was already included in Eq. (329).
Since this field is more complex than
the original reaction-rate theory, there
are more limits and approximations to
consider. The aim of this section is to
indicate the different regions for which
approximate solutions have been found
and to explain the nature of stochastic
resonance, namely, the way in which noise-
induced transitions are enhanced by a
periodic force, and conversely the way in
which noise can enhance the response to a
periodic force. For a detailed examination
of stochastic resonance, the reader is
referred to the review of this subject by
Jung (1993) and to the NATO Conference
Proceedings (Bulsara et al., 1993).

The simplest case is the application of a
periodic force to an Uhlenbeck–Ornstein
(1930) system. Since this system is linear,
an analytical solution is possible, both
of the Fokker–Planck equations and of
the Langevin equations themselves. Since
the linear response to Gaussian forces
is Gaussian, the full time-dependent
distribution function is a Gaussian in all
its variables. The form is the same as if
there were no force applied, except that
each variable has a mean shifted by the
force. The shift is, in fact, simply calculable
by ignoring the noise. The Gaussian
distribution function is readily expressible
in terms of the second moments (taken
relative to the mean). And these are

unchanged from those in the original
Uhlenbeck–Ornstein article. For details
see Jung (1993).

The next simplest case is that in which
the frequency of the driving force is low
compared to all the other rates in the
problem. Then the adiabatic procedure
can be applied just as when no periodic
forces were present. We discuss one such
example later.

The case of a high-frequency force can
only be handled (by perturbation theory) if
the force is weak. Since the force is peri-
odic, the solution for the Fokker–Planck
probability distribution takes the Floquet
form. Perturbation theory has been applied
to obtain correlation functions and/or the
Green’s function for the Fokker–Planck
equation in terms of the corresponding so-
lutions in the absence of a force by Presilla
et al. (1989), Fox (1989), and Gang et al.
(1990). For the escape problem, an exten-
sive set of numerical results are plotted in
Jung (1993). For large driving frequencies,
the enhancement of escape rates, accord-
ing to Jung, Eq. (8.43), decrease inversely
with the square of the driving frequency.
Resonance activation appears to occur. But
the results are largely numerical, except
for one result quoted by Jung from an
unpublished thesis by Linkowitz (1989).

A simple qualitative explanation for the
fairly broad stochastic resonance is that it
occurs when the potential is modulated at
a period T that is synchronized with the
Kramers reaction time TK. In a double-well
system, the potential modulation must
complete one period in a time T just large
enough for a Kramers transition from one
well to the other and back. See Fig. 5.

Thus we require

T = 2TK,

where TK is the Kramers time given in
Eq. (350). This resonance not only appears
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Fig. 5 Bistable potential with external
modulation, shown at three times [after Jung
(1993), but recomputed]
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Fig. 6 Signal-to-noise ratio of one mode in a
bistable laser. Taken from Jung (1993), based on
experimental results of Roy and Mandel (1980)
and Lett and Mandel (1985)

in the escape rate but also appears as an
enhancement in the output spectrum at
the driving frequency. The signal-to-noise
ratio in a bistable ring laser displays this
smooth resonance in Fig. 6

8.6
Self-Sustained Oscillators

The quasilinear approximation to a nonlin-
ear system can break down because of an
instability in some coordinate. Lax (1968a)
and Hempstead and Lax (1967) have ar-
gued that all autonomous self-sustained
oscillators possess one degree of freedom

that is neutrally unstable. These are os-
cillators described by a set of ordinary
differential equations containing no coef-
ficients that depend explicitly on the time.
For this reason, if aj(t) is a solution (in
the absence of noise), then so is aj(t + τ)

for arbitrary τ . This instability against a
shift of the time origin is equivalent to an
instability in a phaselike variable.

The onset of oscillation is like a phase
transition characterized by a long time
constant. Thus most internal degrees are
relatively fast and can be adiabatically
eliminated, leaving one complex (field)
amplitude to describe the behavior near
threshold.

A self-sustained oscillator operates by
connecting an absorptive system, such
as a laser cavity containing absorbing
materials and windows for energy to
escape, to a gain system such as a set
of pumped atoms. In equivalent-circuit
terms, the absorptive system has a positive
resistance, and the pumped system has
a negative resistance. The oscillator will
stabilize at a level of operation at which
these two (nonlinear) resistances cancel.
The frequency of operation will be that
at which the reactances cancel. Lax and
Louisell (1967) found an equation for a
laser of the form

dβ

dt
= −(1 − iα)R(|β|2)β + f (t), (352)

for the complex electromagnetic field am-
plitude β after the rotating-wave approxi-
mation has been made.

The parameter α, which first appeared
as the detuning parameter in Lax (1965)
also appears in Lax (1967) as a cou-
pling parameter between amplitude and
phase fluctuations. [The parameter α of
Lax (1965) is identical to tan β of Lax
(1967). Thus in both cases, the linewidth
is enhanced by a factor 1 + α2.] It is
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this coupling between intensity and phase
fluctuations that produces the strong en-
hancement of linewidth in semiconductor
lasers found by Fleming and Mooradian
(1981) and explained by Henry (1986). The
function R describes the dependence of
the net resistance on the intensity |β|2. At
the operating point, |β|2 = p, this resis-
tance must vanish. For any well-designed
self-sustained oscillator, it was shown in
Appendix B of Hempstead and Lax (1967)
that it is adequate to expand the resistance
to the linear term |β|2 − p. The relative
importance of the first neglected term is
shown to be of the order of the ratio of
the noise in the oscillator to the signal.
For a well-designed oscillator, this ratio is
small. In Appendix A of Hempstead and
Lax, the ratio is shown to be one over the
number of photons in the cavity. Once
this expansion is made, it is possible to
rescale both amplitude and time to obtain

Fig. 7 Spectrum for phase and amplitude
fluctuations of a laser is Lorentzian to a good
approximation. The dimensionless half-width Λp

times the dimensionless mean power ρ̄ ≡ 〈|β|2〉
is plotted against laser power. The experimental
results are those of Gerhardt et al. (1972). The
theoretical curves I and II are due to Grossman
and Richter (1971), and curve III is due to Risken
and Vollmer (1967) and Hempstead and Lax
(1967)
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Fig. 8 Experimental verification of the Van der
Pol model for lasers operating near threshold.
The theoretical curves are from Hempstead and
Lax (1967). The experimental points �, �, and ◦
are from Gamo et al. (1968), Davidson and
Mandel (1967), and Arecchi et al. (1967a,
1967b), respectively. Lower-case p is the pump
parameter of the model, 〈Λ〉 is the effective
linewidth of intensity fluctuations, and n(2) is the
normalized second factorial moment
〈n(n − 1)〉/〈n〉2 of the photocount distribution
p(n,T) as T → 0. In this limit,
n(2) − 1 = 〈(�ρ)2〉/〈ρ〉2, and I/I0 is the light
intensity normalized to threshold value (p = 0);
i.e., I/I0 = 〈ρ〉/〈ρ〉th = 〈ρ〉/1.128. Here ρ is an
abbreviation for |β|2

a universal equation that we have called
the rotating-wave van der Pol with noise:

dβ

dt
= (1 − iα)(p − |β|2)β + h(t). (353)

The rescaling in amplitude was chosen
to make the coefficient of |β|2 unity.
The scaling in time was chosen to yield
the simple correlation function for the c-
number noise source:

〈h(t)h(u)〉 = 4δ(t − u), (354)
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ignoring, here, the coupling between
reactive and resistive effects, by setting
the parameter α equal to zero.

Away from threshold, Lax (1967) car-
ried out a quasilinear treatment of self-
sustained oscillators. Near threshold, fluc-
tuations of the order of 100% are possible,
and a numerical solution of the asso-
ciated Fokker–Planck equation becomes
necessary. Risken and Vollmer (1967) and
Hempstead and Lax (1967) carried out
such calculations to obtain the linewidth
associated with field-amplitude fluctua-
tions and the linewidth associated with in-
tensity fluctuations. Comparisons of these
theoretical predictions with subsequent ex-
perimental results are shown in Fig. 7 and
Fig. 8, respectively.

Glossary

Brownian Motion: The limit of a random-
walk process in which the individual
steps become negligible. The position is
continuous but not differentiable. The
mean square displacement grows linearly
with time. The particle density obeys the
diffusion equation.

Characteristic Function: The Fourier trans-
form of the probability density.

Chapman–Kolmogoroff Condition: A state-
ment that conditional probabilities must
obey if the process is to be Markoffian.

Fokker–Planck Process: A stochastic pro-
cess that generalizes the Brownian process
by having drift and diffusion coefficients
that can be position dependent.

Fokker–Planck Equation: The partial dif-
ferential equation, involving a single time
derivative and up to two space derivatives,

obeyed by a Fokker–Planck process. The
independent (position) variables can be
replaced by other variables – for example,
spin angles in the description of spin dif-
fusion.

Generalized Fokker–Planck Equation: A
Fokker–Planck equation that may contain
derivatives to all orders in the independent
(position) variables.

Langevin Equation: An equation for a
random variable in which the randomness
is generated by a random (‘‘force’’) term
added usually on the right-hand side. The
noise source is typically delta correlated in
time (white noise) but nondelta correlation
(colored noise) is permitted.

Markoff Process: A random process in
which the probability of future events
depends on present information and no
prior information.

Noise Spectrum: The power as a function
of frequency obtained by passing the
signal through a narrow filter, squaring
the output, and averaging it.

Shot Noise: The input noise assumed to
be associated with a series of Dirac delta-
function pulses arriving at random at a
uniform average rate. The term is also
used to describe the response a physical
system to such input white noise.

Wiener–Khinchin Theorem: Equality be-
tween the noise spectrum and the Fourier
transform of the autocorrelation function.

List of Works Cited

Arecchi, F. T., Giglio, M., Sona, A. (1967a),
‘‘Dynamics of the laser radiation at threshold,’’
Phys. Lett. A25, 341–342.



560 Stochastic Processes

Arecchi, F. T., Rodari, G. S., Sona, A. (1967b),
‘‘Statistics of the laser radiation at threshold,’’
Phys. Lett. A25, 59–60.

Bellman, R. (1968), Some Vistas of Modern
Mathematics; Dynamic Programming, Invariant
Imbedding, and the Mathematical Biosciences,
Univ. of Kentucky Press.

Black, F., Scholes, M. (1973), ‘‘The pricing of
options and corporate liabilities,’’ J. Polit. Econ.
81, 637–654.

Bouchard, , Jean-Philippe, , Sornette, , Didier,
(1994), ‘‘The Black-Scholes option pricing
problem in mathematical finance: general-
ization and extensions for a large class of
stochastic processes,’’ J. Phys. I (Paris) 4,
863–881.

Brinkman, H. C. (1956), ‘‘Brownian motion in
a field of force and the diffusion theory of
chemical reactions,’’ Physica 22, 149–155.

Brown, R. (1828), Philos. Mag. 4, 161; Ann. Phys.
Chem. 14, 294.

Bulsara, A., Hänggi, P., Marchesoni, F., Moss,
F., Shlesinger, M. (Eds.) (1993), Proceedings
of the NATO Advanced Research Workshop,
J. Stat. Phys. 70, 1–512.

Callen, H. B., Welton, T. A. (1951), ‘‘Irreversibil-
ity and generalized noise,’’ Phys. Rev. 83,
34–40.

Callen, Herbert B. (1985), Thermodynamics, New
York: Wiley.

Campbell, N. (1909), ‘‘The Study of discontinu-
ous phenomena,’’ Proc. Camb. Philos. Soc. 15,
117–136.

Casti, J. L., Kalaba, R. E. (1973), Imbedding
Methods in Applied Mathematics, Reading, MA:
Addison-Wesley.

Davidson, F., Mandel, L. (1967), ‘‘Correlation
measurements of laser beam fluctuations near
threshold,’’ Phys. Lett. A25, 700–701.

Deutsch, , Ralph, (1962), Nonlinear Transforma-
tions of Random Processes, Englewood Cliffs,
NJ: Prentice Hall.

Doob, J. L. (1953), Stochastic Processes, New York:
Wiley, Chap. VI, Eqs. (3.1) and (3.4), and Chap.
IX, Eq. (2.6).

Einstein, A. (1906), ‘‘On the theory of the
brownian movement,’’ Ann. Phys. (Leipzig)
19, 371–381.

Einstein, , Albert, (1905), ‘‘On the movement of
small particles suspended in a stationary liquid
demanded by the molecular-kinetic theory
of heat,’’ Ann. Phys. (Leipzig) 17, 549–560.
See the English translation of this and four
later, related articles in Einstein, A. (1956),

Investigations on the Theory of the Brownian
Movement, New York: Dover.

Fleming, M. W., Mooradian, A. (1981), ‘‘Fun-
damental line broadening of single-mode
(GaAl)As diode lasers,’’ Appl. Phys. Lett. 38,
511–513.

Fox, R. F. (1989), ‘‘Stochastic resonance in a
double well,’’ Phys. Rev. A 39, 4148–4153.

Gamo, H., Grace, R. E., Walter, T. J. (1968),
‘‘Statistical analysis of intensity fluctuations in
single mode laser radiation near the oscillation
threshold,’’ IEEE J. Quantum Electron. QE-4,
344.

Gang, H., Nicolis, G., Nicolis, C. (1990),
‘‘Periodically forced Fokker–Planck equation
and stochastic resonance,’’ Phys. Rev. A 42,
2030–2041.

Gerhardt, H., Welling, H., Güttner, A. (1972),
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Introduction

The topic of symmetry is a vast one. Books
have been written about each one of the
topics in the table of contents, and so our
treatment perforce covers only some of the
highlights.

Simple notions of symmetry are present
in many considerations, but the central

role of symmetry was not realized until the
20th century. In fact Wigner repeatedly
argued that progress in physics was
largely based on the ability to separate
a physical problem into analyses of the
laws of nature independently of the
initial conditions. The latter are arbitrary
and complicated while the former are
general. Symmetries aid in formulating
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the regularities in physical laws without
reference to the specific dynamics. To
quote Gross (1995) in his tribute to Wigner,
‘‘Wigner argued that invariance principles
provide a structure and coherence to the
laws of nature just as the laws of nature
provide a structure and coherence to a set
of events’’.

In this article we attempt to provide
a birds-eye view of the application of
symmetry considerations to problems in
atomic and molecular physics, condensed
matter physics, particle physics, and field
theory. The article is weighted to the
last because conservation laws appear
naturally as a consequence of continuous
symmetries of the Lagrangian and are
seen most clearly in this context. The
brief description of symmetry in other
phenomena is intended as an attempt at
completeness.

The central mathematical tool in a
discussion of symmetry is group theory.
This was also realized by Wigner (1959)
soon after the development of quantum
mechanics. Much of the advance of physics
has been based on the employment of
techniques it provides – point groups, Lie
groups, or more exotic creations.

1
Symmetries of Rigid Bodies

The symmetry transformations of a finite
system such as an atom or a molecule con-
sist of the set of transformations that leave
the body unchanged. All such transforma-
tions are combinations of rotations and
reflections. Rotations are through definite
angles about specified axes and reflections
are through a plane.

The usefulness of such an analysis is
considerable. Not only does the sym-
metry restrict the form of the allowed

interactions, but it also provides a sim-
ple method for finding selection rules of
transition-matrix elements.

One must specify the order in which
one performs operations since, in general,
two operations do not commute: that is,
performing a given rotation and then a
reflection generally gives a different result
from that of performing these operations
in the reverse order.

A body is said to have an axis of
symmetry of nth order if it is left unaltered
by a rotation of 2π/n about a given axis.
We denote this operation symbolically by
Rn. Repeating this operation n times gives
us back the identity transformation, which
we denote by E, and so we write

Rn
n = E. (1)

Symmetry transformations of finite bod-
ies must leave at leave at least one point
invariant. Symmetry groups having this
property are known as point groups. Lan-
dau and Lifshitz (1981) give the description
of these groups. They are classified as Cn,
S2n, Cnh, Cnv, Dn, Dnh, Dnd, the tetrahe-
dron group, the octahedron group and the
icosahedron group. The simplest example,
Cn, has already been described. Cnh and
Cnv are obtained by adding to the axes in
Cn planes of symmetry that respectively are
perpendicular to or pass through a sym-
metry axis. Dn has two symmetry axes, one
of nth order and a second one perpendic-
ular to the original axis. Dnh and Dnd are
defined by adding planes of symmetry in
addition to the axes of symmetry. S2n is a
group with 2n elements defined by symme-
try transformations about axes defined by
combinations of rotations and reflections.
Two continuous groups are also possible
symmetry groups, namely the full rotation
group and the group of rotations about a
fixed axis. It is clear that a spherically sym-
metric body’s appearance is unchanged
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by an arbitrary rotation and a cylindrically
symmetric one’s by a rotation about the
axis of symmetry.

The analysis of the matrix elements of
operators between atomic or molecular
states is enormously simplified through
the classification of the states by their
transformation properties under the ro-
tation group – e.g., for atoms the S, P, D,
etc. states. To pick a more sophisticated
example consider the ammonia molecule,
NH3, which one may picture in terms of
the plane defined by the location of the
three hydrogen atoms with the nitrogen
atom free to oscillate through the plane.
The group of transformations that leave
the molecule in its equilibrium state in-
variant is C3v. The analysis proceeds by
studying the group properties of C3v on
the space of the coordinates of the four
atoms. For an excellent pedagogical review
of this case see Lax’s book (Lax, 1974).

2
Symmetries of Crystals

The symmetries of atoms and molecules
are described by rotations and reflections.
At least one point in the body must be
left unchanged by the combination of
transformations; e.g., a single body cannot
be transformed into itself by successive
rotations about two nonintersecting axes.

For infinite crystals, there is another
type of symmetry transformation, namely
translations. This is a vast subject, of
which we can do no more than present
a few highlights. For good introductions
to the subject see the text by Ashcroft and
Mermin (1976).

As we already said, symmetry opera-
tions are combinations of rotations, re-
flections, and translations. Rotations about
a given axis combined with a translation

perpendicular to the axis do not give a
new symmetry; they are simply equivalent
to the original rotation, but now about an
axis parallel to the first one. Similarly re-
flections through a plane combined with
displacements perpendicular to the plane
do not give new symmetries.

On the other hand, if we combine a
rotation about an axis with a displacement
along the same axis we do obtain a new
type of symmetry. The axis is known as a
screw axis. In an n-fold screw, the system
repeats itself after a rotation by 2π/n and
a displacement by some distance d.

Similarly reflection through a plane
combined with a displacement parallel to
the plane leads to a so-called glide reflec-
tion plane symmetry, in which the lattice
has symmetry through the simultaneous
operations of reflection and translation.

The structure of a crystalline lattice
is described most easily making use of
the concept of the Bravais lattice, which
specifies the periodic ordering of the units
of the lattice. These units may be atoms,
molecules or other entities. All we are
interested in now is their location. The
Bravais lattice is defined as the set of all
position vectors R such that

R = n1a1 + n2a2 + n3a3 (2)

where a1, a2, a3 are three vectors not all
lying in the same plane and n1, n2, n3 are
allowed to range through all the values
of the integers. The vectors ai are called
primitive vectors and are said to span
the lattice. In general there are many
inequivalent choices of primitive vectors
for any given Bravais lattice.

The primitive unit cell is defined as that
volume of space which, when translated by
the allowed vectors of the Bravais lattice,
fills all of space without leaving any voids.
For a cubic lattice, e.g., it is simply a cube.
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Once again there is no unique choice of
the primitive cell.

The symmetries of a crystal are usually
classified by the simpler set of symmetries
of the underlying Bravais lattice. The set
of operations that take the Bravais lattice
into itself is known as the symmetry group
or space group of the Bravais lattice. The
space group can be shown to consist of

1. translations through Bravais lattice
vectors,

2. operations, i.e., rotations and reflec-
tions, that leave a particular point of
the lattice fixed, and

3. combinations of the first two.

The subset of the symmetry group that
leaves a particular point in the Bravais lat-
tice fixed is known as the point group of
the Bravais lattice. There are only seven dis-
tinct point groups and hence seven crystal
systems. Relaxing the restriction to point
groups, one finds 14 distinct symmetry
groups and hence 14 independent Bravais
lattices. The symmetry group of a crystal
structure is still larger, depending on both
the symmetry of the object and the sym-
metry of the underlying Bravais lattice. For
crystals of arbitrary shape based on arbi-
trary Bravais lattices, there are 230 possible
space groups. For a discussion of these we
refer the reader to the text by Ashcroft and
Mermin (1976).

A fundamental concept to which one is
led in the analysis of periodic structures is
that of the reciprocal lattice. In particular,
it is the key tool for systematizing discus-
sions of diffraction scattering. Consider a
plane wave eiK·R. In general the plane wave
will not have the symmetries of the Bravais
lattice; i.e., translation through a vector R
will not leave the plane wave unchanged;
but there is a set of vectors K for which the
wave is unchanged by translations through
R. They satisfy

eiK·R = 1. (3)

The vectors K form what is called the
reciprocal lattice. It is straightforward to
show that the reciprocal lattice is itself
a Bravais lattice. The primitive cell of
the reciprocal lattice is known as the
first Brillouin zone. The great usefulness
of the reciprocal lattice lies in the fact
that, because of the above equation, when
rays or neutrons are scattered from a
crystal, the scattering is coherent if the
momentum transfer is hK, with K a
reciprocal lattice vector and h equal to
Planck’s constant. The pattern of bright
spots due to the coherent scattering allows
us to reconstruct the crystal structure.

An interesting development in crystal
symmetry of the past decade is the
discovery of quasicrystals, an intermediate
between crystal structures and glassy
structures. The former, as we have already
seen, have

1. long-range translational order and
2. long-range order under rotations and

reflections.

A glassy structure, by contrast, has
none of the above. Quasicrystals have
long-range translational and rotational
order. However, the translational order
is of a subtler kind: it is quasiperiodic
rather than periodic. Quasicrystals also
may have rotational symmetries that are
not allowed for ordinary crystals. Their
group-theoretical analysis leads to some
interesting new properties (Steinhardt and
Ostlund, 1987).

3
Symmetries and the Lorentz Group

We now turn to the main subject of this
review, namely symmetries and conser-
vation laws. In quantum mechanics an
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operator A that has no explicit time de-
pendence is said to be conserved if its
commutator with the Hamiltonian of the
system, H, vanishes:

[H, A] = 0. (4)

A state is represented by a normalized
vector � in Hilbert space, where Hilbert
space is a complex vector space (Weinberg,
1995). Observables are represented by
Hermitian operators A, linear mappings
� → A� of the Hilbert space into itself.
The probability of a measurement yielding
the result that a state � is in one of a set of
states represented by mutually orthogonal
vectors �n is given by

P = (�, �n)2. (5)

A symmetry operation is one that
does not change the results of possible
experiments: i.e., if � and � ′ are two
states related to one another by a symmetry
transformation, then

(�, �n)2 = (� ′, � ′
n)

2. (6)

What we are saying is that if an observer O
makes a measurement and obtains a result
an observer O′ related to O by a symmetry
transformation will obtain the same result.

In Wigner’s (1959) pioneering work in
the 1930s, he showed that to satisfy the
above equation � had to be related to
� ′ by either a unitary or an antiunitary
transformation U. Both take the form

U† = U−1 (7)

Unitary transformations can be dis-
crete or continuous. We treat discrete
symmetry transformations in Sec. 5 and
here concentrate on continuous ones. The
transformation U = 1 is of course just the
identity. Continuous transformations that

differ infinitesimally from the identity are
represented by

U = 1 + iεt (8)

where ε is an infinitesimal real parameter
and t is an operator. The fact that U is
unitary means that t is Hermitian and
therefore a physical observable.

Symmetry transformations forming a
group are of particular interest. A group
has multiplication and an inverse defined
for each element. A set of symmetry
operations forming a group corresponds
to a set of unitary transformations U(T)
acting on the vectors � of the Hilbert
space.

Of particular interest in physics are the
connected Lie groups. They are continuous
groups; any element of the group can
be connected to the identity by a path
that lies within the group space. This
allows us to describe the group elements
by infinitesimal transformations, because
any finite transformation can be built up
by an infinite sequence of infinitesimal
transformations. We therefore write

U(T(θ)) = 1 + iθata + · · · (9)

The ta are the generators of infinitesimal
transformations, repeated indices are as-
sumed to be summed over, and we take
a = 1, 2, . . . , n. The condition of group
multiplication requires the ta to satisfy a
set of consistency conditions, which can
be expressed as commutation relations:

[ta, tb] = iCabctc (10)

with Cabc a set of numbers, the so-called
structure constants of the group. This set of
commutation relations form what is called
a Lie algebra and characterize the group. If
all the commutators vanish, or equivalently
all the structure constants are zero, we
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have what is called an Abelian Lie group.
In this case the finite transformations can
be trivially built up out of infinitesimal
ones and we obtain

U(T(θ)) = exp(iθata). (11)

In general, Lie groups are non-Abelian.
The most important symmetry opera-

tions are the rotations, the translations,
and the Lorentz boosts. To these we
append the discrete reflection transfor-
mations. These operations form the so
called Poincaré group or inhomogeneous
Lorentz group (the homogeneous Lorentz
group is the latter minus translations). The
coordinate transformation corresponding
to such an operation is

x′
v = �

µ
v xµ + av. (12)

In the above av is the four-vector
corresponding to translations and �

µ
v

the tensor corresponding to rotations and
boosts. The equivalence of inertial frames
dictates that the latter must satisfy

ηµτ �µ
σ �τ

ρ = ησρ (13)

where ηµv is the diagonal matrix

η11 = η22 = η33 = 1, η00 = −1. (14)

For the identity transformation, we
simply have �v

µ equal to the Kronecker
delta. For infinitesimal transformations we
have

�
µ
v = δ

µ
v + ω

µ
v (15)

and

U(ω, ε) = 1 + 1

2
iωµvJµv − iεµPµ. (16)

The four components of Pµ, the generator
of infinitesimal translations, are respec-
tively P0, the Hamiltonian or energy of the
system, and Pi, the three-vector momen-
tum (the latin indices take on values 1, 2,

3 as opposed to greek indices which take
values 0, 1, 2, 3). Jµv is an antisymmetric
tensor with six independent components:
J23, J31, J12 are the generators of infinites-
imal rotations, labelled as Ji = εijkJjk. The
Ji0 are the generators of Lorentz boosts, Ki.

The commutators, which specify the
algebra of the group, are

[Ji, Jj] = −[Ki, Kj] = iεijkJj, (17)

[Ji, Kj] = iεijkKk, (18)

[Ji, Pj] = iεijkPk, (19)

[Ki, Pj] = iHδij, (20)

[Ki, H] = iPi, (21)

[Ji, H] = [Pi, H] = [H, H] = 0. (22)

The above imply that J, K, P, whose
Cartesian components are Ji, Ki, Pi, are
all vectors under ordinary spatial rotations
and that Ji, Pi, H are all conserved quan-
tities, i.e., constants in time. To rephrase
these results in a more intuitive manner,
note that if H is invariant under a contin-
uous symmetry U, we have UHU−1 = H.
This implies that the generator of infinites-
imal transformations commutes with the
Hamiltonian. The last of the array of equa-
tions above simply restates then that the
Hamiltonian is invariant under rotations
and space-time translations.

4
Conservation Laws and Noether’s Theorem

Classical mechanics can be formulated by
the principle of least action. This states
that for all paths that go from a fixed q1 at
time t1 to a fixed q2 at time t2, the physical
trajectory corresponds to a stationary value
of the action

I =
∫ t2

t1
dt L(q(t), q(t)). (23)
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where L(q, q̇) is the Lagrangian of the
system. The stationarity of the action
implies in turn Lagrange’s equations

∂L

∂q
− d

dt

∂L

∂ q̇
= 0. (24)

For the simplest cases L is the difference
between the kinetic and the potential
energy of the system and is unchanged
by the addition of a total time derivative.

An alternative formulation of mechanics
makes use of the Hamiltonian, which is
simply related to the Lagrangian by

H = pq̇ − L, (25)

with p the momentum conjugate to q,
defined as

p = ∂L

∂ q̇
. (26)

Hamilton’s equations can be shown to
follow from the principle of least action
(Itzykson and Zuber, 1980). For a system
described by N independent coordinates
and hence 2N independent variables,
we extend the principle straightforwardly
and obtain N independent Lagrange’s
equations.

Let us now consider continuous in-
finitesimal changes of coordinates qi →
qi + ε
qi where ε is an infinitesimal pa-
rameter and 
qi is a deformation of qi.
Such transformations are symmetry oper-
ations if they leave the equations of motion
unchanged. This is ensured if L is invari-
ant or, more generally, only changes by
a total time derivative (in both cases the
action is unchanged):


L = ∂L

∂qi

qi + ∂L

∂qi

qi + dC

dt

= d

dt

[
∂L

∂qi

qi + C

]

+ 
qi

[
∂L

∂qi
− d

dt

∂L

∂qi

]
. (27)

Repeated indices (in this case i =
1, 2, . . . , N) are assumed to be summed
over. The second term in the above equa-
tion vanishes because of Lagrange’s equa-
tions. We see that a continuous symmetry
of L, which implies 
L = 0, leads to the
existence of a conserved quantity, namely
a quantity whose time derivative is zero,

Q = ∂L

∂qi

qi + C = pi
qi + C. (28)

This is Noether’s theorem.
For systems with an infinite number

of degrees of freedom, we introduce the
concept of a field φ(x) where x is a
continuous variable denoting time and
spatial locations. Again this is readily
generalizable to N independent fields. We
introduce a Lagrangian density L and the
action is now

I =
∫

d4xL (x). (29)

The Lagrange equations for the fields take
the form

∂L

∂φ(x)
− ∂µ

∂L

∂ [∂µ(φ(x))]
= 0. (30)

The least-action principle once again
leads to conservation laws. Consider, for
instance, the effect of translation of the
coordinates by x → x + a. The change in
the Lagrange density is

L [x + a] = L [φ(x + a), ∂µφ(x + a)].
(31)

For an infinitesimal displacement, the
variation of the action is given by

δI =
∫

d4x

[
∂νL

−∂µ

[
∂L

∂(∂µφ)
∂νφ(x)

]]
δaν = 0. (32)
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From the vanishing of δI for arbitrary δaµ

we deduce the existence of a tensor Tµν

satisfying the conservation law

∂µTµν = 0, (33)

where the tensor, known as the energy-
momentum tensor, is defined as

Tµν = ∂L

∂(∂µφ)
∂νφ − ηµνL . (34)

The ηµνL term in the above equation is
the analogue of the dC/dt term defined
earlier. From the form of the Lagrangian
density, it usually follows that the energy-
momentum tensor is explicitly symmetric
in µ and ν. If this is not the case,
one defines a modified energy-momentum
tensor, which has the desired symmetry.
Since Tµν is conserved, we can also define
four conserved charges

Pν =
∫

d3xT0ν, (35)

which are time independent if the fields
vanish sufficiently fast at spatial infinity so
that ∫

d3x∂iT
iν = 0. (36)

As before latin indices i = 1, 2, 3 refer only
to spatial components. This implies that

∂0Pν =
∫

d3x∂0T0ν =
∫

d3x∂µTµν = 0.

(37)

The conserved quantities Pν we have just
defined are of course the four components
of a four-vector and are simply the energy
and momentum of the system as described
in the previous section. They are also the
generators of infinitesimal time and space
translations.

So far we have discussed space-time
symmetries. As we shall see shortly,
Noether’s theorem is also useful for
internal symmetries.

5
Discrete Symmetries: T, C and P

Discrete symmetries play an important
role in field theory. Space reflection cor-
responds to the improper Lorentz trans-
formations, which reverse the signs of
coordinates leaving time unchanged – i.e.,
under space reflection

x′ = −x, t′ = t; (38)

and, under time reflection, t′ = −t while
spatial coordinates are unchanged. Under
a parity transformation scalars and axial
vectors are invariant while vectors change
sign. A pseudoscalar, which may be
thought of as the invariant product of a
vector and an axial vector, is of course
an invariant under rotations, but changes
sign under parity transformations.

Charge conjugation C relates particles
with equal masses and spins, but opposite
charges, i.e., it relates particles to antipar-
ticles. As an example, it changes electrons
into positrons, protons into antiprotons,
and π+ into π−. Some particles are their
own antiparticles. The photon is one such
example: charge-conjugation invariance of
the theory implies that the photon changes
under C into minus itself since electrons
change into positrons; these couple to pho-
tons as electrons do, but with the opposite
sign.

In a second-quantized formalism the
Lagrangian is written in terms of fields,
which are themselves linear combinations
of creation and annihilation operators.
For a charged scalar field a(k) and b(k)
are the annihilation operators for quanta
of opposite charges, so that, e.g., a(k)
annihilates quanta of charge +1 while
b†(k) creates quanta of charge −1. In
both cases the charge of the system is
increased by the action of the operator.
One of the types of particles associated
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with the quanta is called particle and the
other antiparticle. As mentioned, some
particles, such as the photon, may be their
own antiparticles.

There exists a unitary operator C

which takes the fields for particles into
those for antiparticles. This is the field-
theoretical version of charge conjugation.
For instance, the photon field Aµ(x)

transforms into minus itself, i.e.,

C Aµ(x)C † = −Aµ(x). (39)

For the charged scalar field

C a(k)C † = b(k). (40)

In a classic series of experiments in the
1950s, following the suggestion of Lee
and Yang (1956), conservation of parity
was found to be maximally violated. It
was believed at the time that CP, the
combined operation of parity and charge
reflection, was a good symmetry, but this
was disproved by the observation in 1964
of the long-lived kaon decaying into two
pions (Christenson et al., 1964).

It is still believed, however, that though
T, C and P are individually not conserved,
invariance under the combined operation
of TCP holds. The validity of this belief, de-
rived from the existence of local relativistic
quantum field theory (Streater and Wight-
man, 1968), ensures the equality of masses
and lifetimes of particles and antiparticles.
We discuss tests of these invariances in
the last section of the article.

6
Internal Symmetries

We have so far considered symmetries
associated with Lorentz transformations.
There are also many internal symmetries
of systems, generally associated with

new quantum numbers. An example
is isospin, the symmetry that relates
protons to neutrons. By analogy with
an ordinary spin- 1

2 field for which the
S3 = ± 1

2 components are related by spatial
rotations, we imagine the proton and
neutron to be an isospin I3 = ± 1

2 doublet.
The internal symmetries we consider

in this section are global symmetries
as distinguished from local symmetries;
in the former the transformations are
independent of space-time, i.e., all protons
in a nucleus are rotated by the same
amount when we apply an isospin rotation
to the state of a nucleus. For local or
gauge symmetries, on the other hand, the
transformation itself is a function of space-
time, i.e., protons in different locations
would be rotated by different amounts.

There is another important difference
between global and local symmetries: the
former are generally broken; in fact many
theorists believe there are no exact global
symmetries. On the other hand local
or gauge symmetries are believed to be
conserved in the absence of spontaneous
symmetry breaking (this occurs when
the Lagrangian is symmetric, but the
ground state, or vacuum, of the system
is not symmetric). Local symmetries are
discussed in Sec. 8.

Taking for granted that the symmetries
(from now on in this section we refer
to global symmetries) are broken, they
may nevertheless be very useful to study,
particularly if the breaking is small.
Isospin symmetry is a good example; the
strong interactions that bind nucleons in
a nucleus are believed to be approximately
symmetric under an isospin rotation.
Electromagnetism obviously distinguishes
between protons and neutrons since
the former have electric charge and
the latter do not. On the other hand
electromagnetism usually leads to only
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small perturbations in nuclei and, after
all, the proton and neutron masses only
differ by one part in two thousand; isospin
is a useful symmetry for nuclei.

In the early 1960s the concept of isospin
was extended by Gell-Mann and Neeman
(Cheng and Li, 1984) to unitary symmetry,
or SU(3), with spectacular success. In
SU(3) strangeness, an additional quantum
number of hadrons that is conserved in
the strong interactions was unified with
isospin. The baryons, the pseudoscalar
mesons, and vector mesons were found to
lie in octet representations, and the baryon
resonances in a decuplet representation;
and a variety of predictions regarding
masses, mixings and decays were found to
be true with remarkable precision. Once
again symmetry proved a powerful tool.

For the above reasons it is useful to begin
by treating these symmetries as if they
were exact and look at Noether’s theorem
(see Sec. 4). We also saw in Sec. 3 how
continuous Lie groups were defined. Let
us begin to apply some of these notions.

Consider a set of N real scalar fields
φ1 · · · φN , which we will label as φi with
i running from 1 to N. We assume that
the fields belong to a representation of
a group G; that is, the fields may be
thought of belonging to an N-dimensional
vector space acted on by the rotations in G.
Calling the Lagrangian density L as before
and assuming that it is a function of φi and
its derivatives, we consider variations of the
fields

δφi(x) = iεa(ta)ijφj(x) (41)

where εa is taken to be an infinitesimal
quantity assumed independent of space
and time. As before, repeated indices are
summed over.

If the Lagrangian density is invariant
under the rotation in question we have,

using Lagrange’s equations,

δL = ∂µ
δL

δ(∂µφi)
δφi + δL

δ(∂µφi)
∂µ(δφi),

(42)

which, on substituting the value for δφi,
implies

δL = εa∂µ

[
δL

δ(∂µφi)
i(ta)ijφj

]
. (43)

Since the Lagrangian is invariant and the
above vanishes for any εa, we see that
the quantity in the square brackets is a
conserved current

Jµ,a = −i
δL

δ(∂µφi)
(ta)ijφj. (44)

The charges, defined by

Qa =
∫

d3xJ0,a(x), (45)

can also be written, using the definition of
conjugate momentum,

Qa = −i
∫

d3xπi(ta)ijφj. (46)

Using the equal-time commutation re-
lations between fields and their conjugate
momenta, one can easily prove that the
charges satisfy in turn the same commu-
tation relations as the generators of the
group G, i.e.,

[Qa(t), Qb(t)] = iCabcQc(t). (47)

The charges are all evaluated at the same
time since the commutation relations of
the fields and their conjugate momenta are
specified at equal times. These relations
are called, for obvious reasons, the algebra
of charges.

Interestingly enough, since the commu-
tation relations of fields and conjugate
momenta hold in any case, these relations
hold even if the symmetry is broken. This
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observation was the starting point for the
major development of current algebra in
the 1960s (Adler and Dashen, 1968).

This subject is a broad one in itself, but
at its roots there is the important identifi-
cation of the currents associated with the
generators of the symmetry with the cur-
rents observed in the weak interactions. By
this we mean the following: the form of the
weak interactions, originally proposed by
Fermi in 1934, with suitable modifications,
was seen to be an adequate phenomenolog-
ical description of the weak interactions. It
states that the effective Hamiltonian is

Hweak = GFJµJµ. (48)

where Jµ(x) is a charged current of the
V − A form, namely with equal vector
and axial vector parts (Commins and
Bucksbaum, 1983).

The initial step was to identify the vector
part of this current with the current of the
isospin-raising generator; this has many
important physical consequences. It not
only dictates that the weak current must
connect any two particles that lie in an
isospin multiplet and differ by one unit
of charge (e.g., π+, π0), but also specifies
the relative normalization of the matrix
elements.

This hypothesis, the so called conserved
vector-current hypothesis, was confirmed
experimentally and extended to an in-
terpretation of the strangeness-changing
currents as the currents in the generators
of the strangeness operators in the algebra
of SU(3). It also became natural then to
look for a group-theoretical or symmetry
counterpart of the axial currents in the
weak interactions.

The algebra of SU(2), with charges Qa,
was extended to an algebra of SU(2) ×
SU(2) by the inclusion of pseudoscalar

charges Q5
a with commutation relations

[Q5
a , Q5

b ] = iεabcQc (49)

[Qa, Q5
b ] = iεabcQ5

c , (50)

[Qa, Qb] = iεabcQc. (51)

This of course can then be generalized to
SU(3) × SU(3). This is the historical path.
The modern point of view relies heavily on
these notions, but incorporates in a central
way the notion of spontaneous symmetry
breaking, which we turn to next.

7
Broken Symmetries and Goldstone Bosons

Symmetries of the Lagrangian may be
broken explicitly by the introduction of
non-invariant terms. More subtly, the
Lagrangian may be invariant, but not
the physical vacuum or ground state.
We distinguish the physical vacuum from
what we call the bare vacuum: the former
is the true ground state of the system
while the latter is the state with no
particles or excitations. The physical or
true vacuum and the bare vacuum may
not coincide, as is the case in, e.g.,
superconductivity, where the true vacuum
contains a superposition of Cooper pairs.

If a continuous symmetry of the La-
grangian is not a symmetry of the physical
vacuum, we say that the symmetry is spon-
taneously broken. To refer back to the case
of superconductivity, the Lagrangian has
a U(I) symmetry associated with gauge
transformations of electromagnetism. The
vacuum, on the other hand, does not
possess this symmetry since it contains
electron pairs.

In general the spontaneous breaking of
a continuous symmetry leads to the exis-
tence of massless scalar bosons, usually
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called Nambu–Goldstone bosons or sim-
ply Goldstone bosons (Weinberg, 1995).
To see how such a phenomenon arises we
can begin by observing that a global ro-
tation of the vacuum (of course here and
in what follows we mean the physical vac-
uum or ground state) costs no energy, or,
in other words, vacua differing only by a
global rotation are degenerate in energy.
Vacua differing by a local rotation differ
in energy by the shear energy associated
with the deformation of the vacuum. The
energy of the shear goes to zero as the wave
number goes to zero. In a quantum field
theory, there exist states, connected to the
physical vacuum by these local rotations,
that are degenerate in energy and are popu-
lated by quanta whose energy goes to zero
as their momentum goes to zero. They
are therefore zero-mass bosons, referred
to usually as Goldstone bosons. An im-
portant caveat, which we discuss in more
detail later, is that these massless quanta
are not observable in all cases. The num-
ber of types or species of such bosons is
related to the degree of reduction of the
symmetry, i.e., how much less symmetry
the vacuum has than the Lagrangian. An
explicit field-theoretical example may be
helpful.

Consider a theory of scalar fields invari-
ant under the three-dimensional rotation
group O(3), now, however, an internal
symmetry group. Let the scalars be in
the vector, or three-dimensional, repre-
sentation of the group. The scalars are
described by fields φa(x) with a = 1, 2, 3,
and an effective potential

V(φ) = −µ2 φ2

2
+ λ

φ4

4
, (52)

with µ a mass and λ a dimensionless
coupling constant. As shorthand we have
used φ4 equal to the square of φ2 = φaφa.

The fields φ cannot have the usual
interpretation as quantum fields since
the mass term is negative and hence
unphysical. Corresponding to this, the
minimum of the potential is not at φ2 = 0,
but rather at φ2 = µ2/λ = v2. Normally in
quantum field theory one expands about
the minimum of the potential in fields
that are described by excitations about the
minimum. In this case the minimum of
the potential corresponds to a value of
φ with modulus equal to v, and so the
quantum excitations are about this point
and not about φ = 0. We say then that in
the true vacuum φ takes on a nonzero value
and the expansion in quantum excitations
needs to be made about this value. Pick
then a direction in O(3), say the third
direction, and let

φ̃a = φa − (0, 0, v). (53)

The vacuum expectation value (vev) of the
field φ̃a is zero while the vev of φa is

〈0|φa|0〉 = (0, 0, v). (54)

The fields φ̃a have zero vev and hence may
be described in terms of the usual creation
and annihilation operators, i.e., they have
a standard quantum interpretation. Let us
now examine the potential given above as
a function of the physical fields. We find,
after some algebra, that

V(φ̃a) = µ2φ̃2
3 + 2vφ̃3φ̃

2 + λφ̃4

4
, (55)

where we have dropped an overall constant
and φ̃2 = φ̃aφ̃a.

Looking at the quantum fields, φ̃a, we see
that the first two components are massless
while the third has a positive mass. Let us
recapitulate what we have found, suitably
phrased so that we may generalize our
conclusions. We started with a Lagrangian
which was explicitly O(3) invariant, but the
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vacuum was not invariant, as we saw when
the field φ3 was shown to have a nonzero
vev. This breaking selected a preferred
direction in O(3) space which we took
to be the third direction, but which was
chosen arbitrarily. In terms of canonical
or physical fields, we found one massive
field, φ3, and two massless scalar fields,
namely the other two components of φ̃a.

The symmetry of the Lagrangian, which
was O(3), was reduced to rotations about
the third axis, so that the symmetry
associated with rotations about the 1 and
2 axes was lost. At the same time we
saw the appearance of two massless scalar
fields. We studied a particular example,
but the situation is general. The massless
scalars, also known as Goldstone bosons or
Goldstone modes, are a general feature of
spontaneously broken symmetries. They
appear in particle physics, but they also
appear in a variety of condensed matter
physics problems, e.g., as spin waves in
antiferromagnets (Fradkin, 1991).

SU(2) × SU(2) and even SU(3) × SU(3)
appear to be good symmetries of the strong
interactions. Why is this so? In a simple
model of a free proton and neutron, the
breaking of vector SU(2) is proportional to
the proton-neutron mass difference:

[Qa, H] = i
∫

d3x∂0J0
a

=
∫

d3x∂µJµ
a ∼ (Mp − Mn); (56)

but the breaking of the axial SU(2) is
proportional to the sum of the neutron
and proton masses and hence is apparently
not small (Cheng and Li, 1984); however,
the symmetry may be spontaneously
broken. This requires a triplet of massless
pseudoscalars (pseudoscalars rather than
scalars since the symmetry is an axial
symmetry); they are the Goldstone bosons
of the theory. In this case we identify them

with the pions. A theory with nucleons
and pions can have SU(2) axial symmetry
if either nucleons or pions are massless.

One way to understand the smallness
of the symmetry breaking is to begin a
discussion of the quark model as proposed
by Gell-Mann and Zweig (Cheng and Li,
1984). Just as the constituents of nuclei
are taken to be protons and neutrons, a
doublet or two-component representation
of SU(2), so we take the fundamental
constituents of neutrons, protons, and
other elementary particles to be quarks, the
triplet or three-dimensional representation
of SU(3).

The three species of quarks are known as
the up, the down and the strange quarks
or the u, d and s quarks, often written
as qi with i = 1, 2, 3. Mesons are bound
states of a quark and an antiquark, while
baryons are bound states of three quarks.
The strong interaction that binds these
quarks is taken to be invariant under
SU(3) × SU(3) (more about this in the next
section) as is the kinetic energy term, so
that the only breaking of the symmetry
in the Lagrangian, or equivalently the
Hamiltonian, is due to the quark masses:

L = L symm + L mass = L symm + miqiqi.

(57)

The success of the quark model has been
amply confirmed with the caveat that a free
quark has never been seen (more about
this in the next section). The values of the
quark masses have been found to be

mu ∼ 4 MeV, md ∼ 7 MeV,

ms ∼ 130 MeV; (58)

so one sees why SU(2) × SU(2) is such
a good symmetry [and even why SU(3)
and SU(3) × SU(3) are relatively good
symmetries]. In the limit of mu = md =
0, SU(2) × SU(2) is an exact symmetry
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of the Lagrangian, broken spontaneously
by the vacuum with the appearance of
a massless triplet of Goldstone bosons,
the pions. In reality the pions have small
masses, proportional to mu, md. It is the
smallness of the pion mass which is the
true measure of the symmetry breaking.

Of course another puzzle then rears
its head, namely how does one build a
940 MeV object out of three objects with
masses in the 5–10 MeV range? There is
no simple answer to this: quark dynamics
create so-called constituent quarks of
approximately 300 MeV, while the current-
algebra quarks, as described by L , have
much smaller values of mass. A major
effort to unravel these questions has been
embarked on by studies of quarks on
lattices (Creutz, 1983).

8
Gauge Symmetries

So far we have considered rotations of
fields by parameters θa that are indepen-
dent of space-time. Can we generalize this
notion? The problem is seen immediately
by looking at the free Lagrangian of a
spin- 1

2 particle,

L = ψ(x)[iγ µ∂µ − m]ψ(x), (59)

which is invariant under the transforma-
tion ψ(x) → ei0(x)ψ(x) only for constant
θ . If the rotation is space-time dependent,
the derivative in L will introduce extra
terms. If we consider not a free theory,
but one with minimal coupling to a spin-1
gauge boson, the Lagrangian is invariant
under space-time dependent transforma-
tions. Minimal coupling means that

∂µ → ∂µ + igAµ(x), (60)

where g is a dimensionless coupling
constant. The Lagrangian is invariant
under a rotation of ψ by θ(x) if at the
same time we shift

Aµ(x) → Aµ(x) − θ(x)

g
. (61)

Having introduced the gauge field (pho-
ton), we must now include in L a term
for the kinetic energy: this must also be
invariant under the gauge transformation
and takes the form

L A = −1

4
FµνFµν (62)

with the so called field strength defined as

Fµν = ∂µAν − ∂νAµ. (63)

A further requirement for local gauge
invariance is that the photon be massless
because a mass term in L for the photon
would have to be of the form M2AµAµ and
hence would not be invariant under the
translation of Aµ(x) given in Eq. (61).

Invariance under local symmetry trans-
formations requires the existence of mini-
mally coupled massless gauge bosons.

The example we treated above corre-
sponds to a U(1) gauge transformation,
namely the fields were only rotated by a
phase θ(x). Suppose now that we want
the more general transformations, as illus-
trated in Eqs. (9) and (11), to be dependent
on space-time, i.e., θa → θa(x). The solu-
tion to this problem was given by Yang and
Mills (1954), who showed how to main-
tain invariance of the Lagrangian when the
gauge fields themselves form a multiplet
of the group G.

The prescription for invariance under an
infinitesimal transformation δθa = εa(x)

whereby

ψi(x) → [1 + itaεa(x)]ijψj(x), (64)
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is that ordinary derivatives be replaced by
covariant derivatives

∂µ → Dµ = ∂µ + igtaAµ
a (65)

where g is the dimensionless coupling con-
stant, and that the gauge fields transform
as

Aµ
a (x) → Aµ

a (x) − ∂µ εa(x)

g

− Cabcεb(x)Aµ
c (x). (66)

For continuous groups it is sufficient
to specify the transformations under in-
finitesimal transformations. From the
above we see that the number of gauge
bosons must equal the number of gener-
ators of the group G, or equivalently the
gauge bosons must belong to the adjoint
representation of G. For instance, if G is
the unitary group SU(N), there have to be
N2 − 1 gauge bosons, i.e., three for SU(2)
and eight for SU(3).

As is the case for electromagnetism, the
gauge bosons must be massless. The field
strength needs to be of the form

Fµν
a = ∂µAν

a − ∂νAµ
a − gCabcAµ

b Aν
c (67)

in order for the Lagrangian to be invariant.
The prototype of a gauge theory is the

theory of the strong interactions known
as quantum chromodynamics. It assumes
that each type of quark comes in three
species known as colors and that there
is a gauged SU(3) symmetry group that
acts on them. There is a red, a white, and
a blue up type quark and similarly three
down quarks and three strange quarks.
Since the gauge group is SU(3), there
must be eight massless spin-1 particles,
the gauge bosons. These are commonly
called gluons.

The field strength has terms propor-
tional to the square of the field Aµ

a , and

therefore the so-called kinetic term, pro-
portional to the field strength squared, has
terms proportional to the third and fourth
powers of the field Aµ. This means that
L has nonlinear interactions of the gauge
field. This is only true when we have a so
called non-Abelian symmetry group, i.e.,
one for which Cabc �= 0. For electromag-
netism such terms are not present.

The nonlinear interactions of the gluons
cause the effective quark–gluon coupling
constant (coupling constant as modified
by radiative corrections) to have a very dif-
ferent behavior than the electromagnetic
coupling constant. In fact the quark–gluon
coupling becomes smaller as one increases
the momentum transferred to the gluon;
for electromagnetism the electron’s cou-
pling to the photon becomes smaller as
one decreases the momentum transferred
to the photon. These changes in the ef-
fective coupling constants are quantum
effects due to the dielectric behavior of
the vacuum. They are not present in the
corresponding classical field theories.

Conversely, quark interactions at small
momentum transfer are very strong, lead-
ing to quark confinement: only SU(3) color
singlet states are observable. For instance,
the quark–antiquark potential grows with
separation while the electron–positron po-
tential decreases. Since quark interactions
become weaker at large momentum trans-
fer, the quarks become almost free, a
property known as asymptotic freedom.
Both aspects have been confirmed experi-
mentally (Aitchison and Hey, 1989).

As of now the evidence indicates that
both the U(1) symmetry of electromag-
netism and SU(3) of color are unbroken, or
equivalently, unbroken local SU(3) × U(1)
is a symmetry of nature.

Gravity is also an unbroken gauge sym-
metry of sorts. The unbroken symmetry
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is general covariance, the conserved quan-
tity is the energy-momentum tensor, and
the gauge boson is the graviton, a quantum
fluctuation of the metric tensor (Weinberg,
1972). Intuitively it is not surprising that
if the quantum field that couples to a con-
served current has spin 1, the quantum
field that couples to a conserved second
rank tensor should have spin 2.

The notion that gravity and electromag-
netism might be reunited was of course
Einstein’s dream. This concept is presently
being pursued by theorists exploring string
theory (Gross, 1995), but that is outside the
scope of this article.

We have seen that three of the four fun-
damental forces (electromagnetic strong,
and gravity) seem to be described by gauge
theories with massless gauge bosons as
mediators. What about the fourth known
force, the weak force that describes beta
decay, neutrino interactions, etc. Is it like
the other three? The answer is that it is
indeed similar to the other three forces in
that there is a gauge invariance associated
with the weak interactions, but there is also
an important difference in that, although
the Lagrangian is invariant under the cor-
responding transformations, the physical
vacuum is not. This implies, as we shall see
in the next section, that the corresponding
gauge bosons are massive. In turn, this
leads to the conclusion that the force gen-
erated by the weak interactions is short
range, as opposed to the electromagnetic
or gravitational forces.

Equation (48) gives an effective Hamilto-
nian describing the weak interactions, but
we now understand that this is only valid
to second order in perturbation theory for
an underlying theory with interaction

L weak = gJaµAaµ (68)

where a = 1, 2, 3 is the label for a set of
three currents associated with the three

gauge bosons of the weak interactions.
The g and Aµ in the above equation are
not meant to be confused with those we
wrote for the strong interactions.

The breakthrough in understanding the
connection of such a model with gauge the-
ories came about with the development of
the so-called Glashow–Weinberg–Salam
model (Weinberg, 1995). It was realized
that the underlying theory was a gauge
theory with SU(2) invariance and hence
three massless spin-1 gauge bosons and
three associated conserved currents.

The quarks and leptons, which con-
stitute the fermionic components of the
theory, are placed in doublets and singlets
of SU(2), and, of course, the Lagrangian is
invariant under SU(2) symmetry transfor-
mations. Having the currents conserved
is only possible if all fermion masses are
zero, since the divergences of the weak cur-
rents are, as we have seen, proportional to
sums and differences of fermion masses.
This is achieved by putting all left chi-
ral fermions in doublets and right chiral
fermions in singlets (mass terms connect
left to right chiral fields) and of course,
SU(2) invariance forbids direct coupling
of doublets to singlets.

The resulting model is elegant, but far
from describing nature since neither the
mediators of the weak interactions nor the
fermions are massless. On the other hand,
introducing mass terms in the Lagrangian
would break the local symmetry and
destroy the renormalizability and hence
the finiteness of the theory.

The resolution of this problem using
the technique of spontaneous symmetry
breaking is explained in the next section.
It succeeds in giving masses to the three
gauge bosons of the weak interactions:
two of them, called W±, are charged and
the remaining one, the Z0, is neutral.
In summary, we say that the so-called
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‘‘standard model’’ of the strong, weak and
electromagnetic interactions is described
by a SU(3) × SU(2) × U(1) gauge theory,
spontaneously broken to SU(3) × U(1). At
present the ‘‘standard model’’ includes as
fermionic building blocks three negatively
charged leptons, e−, µ−, τ−, each with
its associated neutrino, three charge- 2

3
quarks, the u, c, and t quarks, and three
charge-

(− 1
3

)
quarks, the d, s, and b quarks.

In addition each and every quark comes
in three so-called colors, corresponding to
the triplet representation of the unbroken
color SU(3) group.

An active field of research is the
study of whether there exists some much
larger gauge group, e.g., SU(5), which
spontaneously breaks to the standard-
model invariance group (Aitchison and
Hey, 1989).

9
The Higgs Mechanism

There is one very important exception
to the rule that spontaneously broken
symmetries lead to Goldstone modes.
This is the so-called Higgs mechanism,
anticipated and discussed in the context
of condensed matter physics by Y. Nambu
and by P. W. Anderson (Weinberg, 1995).
If the theory includes minimally coupled
massless gauge bosons, they necessarily
interact with the scalar bosons because the
latter’s kinetic energy terms need to have
ordinary derivatives replaced by covariant
derivatives. For instance, for O(3), we find

∂µφa∂µφa → DµφaDµφa

= (∂µφa + igεabcAµ,bφc)

×(∂µφa+igεadeA
µ

d φe). (69)

If we now introduce into the above
equation the vacuum expectation value of

φa, namely the O(3) vector (0, 0, v), we
find an effective mass term for the gauge
bosons

g2v2εab3εad3Aµ,bAµ

d . (70)

From this, we see that the third component
field Aµ

3 has no mass term since ε33a = 0
while the other two fields have acquired a
mass proportional to gv. This acquisition
of mass is puzzling since a massless
gauge boson like the photon has only
two polarization degrees of freedom while
a massive gauge boson can have a
longitudinal polarization as well as the two
transverse polarizations.

The resolution of the puzzle lies in
the Higgs mechanism. We apparently
acquired two new degrees of freedom
corresponding to the longitudinal modes
of the gauge bosons. If we study the
problem somewhat more carefully, we find
that two massless scalar bosons can be
removed from the Lagrangian by a gauge
transformation and hence disappear from
the spectrum. The colloquial expression is
that they have been eaten by the gauge
bosons.

Recapitulating, we see that spontaneous
symmetry breaking leads to massless
scalar bosons: if the scalar bosons are
coupled minimally to massless gauge
bosons, some or all of the massless
scalars may disappear from the spectrum,
replaced by the longitudinal modes of
the now massive gauge bosons. Gauge
bosons coupled to currents associated with
unbroken symmetries remain massless. In
the O(3) case rotational symmetry about
the third axis is unbroken and Aµ

3 remains
massless.

For the theory of electroweak interac-
tions our starting gauge theory is SU(2) ×
U(1) with four massless gauge bosons. In
addition we have a complex SU(2) scalar
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doublet, which transforms nontrivially un-
der U(1) as well, so that there are four
independent scalar fields (read and imag-
inary parts of the doublet). The fermions
are left-handed chiral SU(2) doublets and
right-handed chiral SU(2) singlets.

To begin with, the gauge bosons are
massless, the fermions are massless [left-
right couplings are forbidden by SU(2)
invariance], and the scalars have a negative
squared mass. The symmetry is spon-
taneously broken from SU(2) × U(1) to
simply a U(1) symmetry. This leads to one
massive scalar and three massless scalars.
The latter are eaten by the four gauge
bosons, three of which become massive,
and one, the photon, stays massless. The
three massive gauge bosons are the W±
and the Z0, the mediators of the charged
and neutral weak interactions.

The fermions also acquire a mass, since
Lagrangian interaction terms of the form

f qL,aφaqR (71)

are allowed, and, once φa acquires a vac-
uum expectation value equal to v, fermions
get masses proportional to fv. The pre-
dictions of what has come to be known
as the standard model are extraordinarily
successful. The W±, Z0 have been dis-
covered at exactly the predicted masses,
decay modes agree, etc. The one remain-
ing unconfirmed piece of the puzzle is
the detection of the single massive scalar,
commonly called the Higgs boson.

The Higgs phenomenon has its coun-
terpart in condensed matter physics as
well. Let us illustrate this again with the
example of super-conductivity. The gauge
symmetry is U(1), with the photon as the
gauge boson. The scalar field is the order
parameter, the complex scalar electron-
pair wave function, which also transforms
nontrivially under U(1) since it has charge
−2. The order parameter has a nonzero

vev, signaling a phase transition, and the
phase of the order parameter is a massless
excitation, corresponding to a Goldstone
mode. The latter disappears from the spec-
trum, being eaten by the photon. Inside
a superconducting medium, the photon is
essentially massive: this is known as the
Meissner effect (Weinberg, 1995).

10
Experimental Limits on Symmetry Breaking

We have discussed at some length the
notion of symmetry. Let us now consider,
at least briefly, some of the experimental
limits on conservation laws. Begin with
discrete symmetries; TCP follows, as
we stated, from general principles of
relativistic quantum field theory. The best
limits on TCP invariance come from the
equality of the K0 and the K̄0 masses. The
experimental limits on the mass difference
∆ are that

∆

mK0
≤ 10−18 (72)

at a 90% confidence level. Unless other-
wise indicated the experimental results
cited in this section are all obtained
from the Particle Data Group’s compila-
tion (Particle Data Group, 1994). TCP also
predicts the equality of lifetimes etc. for
particles and antiparticles. Tests have been
performed to compare lifetimes for elec-
trons and positrons, µ± mesons, and so
forth. As an example, the lifetimes of the
latter are given by

τ+
µ

τ−
µ

= 1.00002 ± 0.00008. (73)

Another example is the equality of
the anomalous magnetic moments of
the electron and the positron. If TCP
invariance holds, T and CP symmetries
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are presumably equal, but again it is
worth testing them separately. Experi-
ments in atomic, molecular, nuclear, and
particle physics are being conducted to
test these symmetries. At present the
most sensitive test of time-reversal invari-
ance is probably the limit on the electric
dipole moment (edm) of the neutron. The
present limit for the neutron is that its
edm < 1.1 × 10−25 e cm. The bound on
the electron edm is comparable to that of
the neutron and is a more stringent test of
unification theories. It is worth mention-
ing that a neutron nonzero edm requires
violation of both T and P. Nuclear physics
searches for T nonconservation are also
being pursued (Haxton et al., 1994).

CP symmetry is a vast topic (Jarlskog,
1988). At present the best limits on CP-
invariance violation come from the analy-
ses of K decay. In the neutral kaon system
the strength of CP-invariance violation rel-
ative to the standard weak interactions is
characterized by a dimensionless small pa-
rameter ε � 10−3. It is crucial to determine
if ε is so small because CP-invariance viola-
tions are very weak or because they involve
mixing with heavier quarks, which are only
minor constituents of the kaons.

Large experimental facilities in Japan
(KEK) and the USA (SLAC) are presently
under construction that will provide fur-
ther tests of CP nonconservation and begin
to address these questions. An example is
the so called BABAR facility at the Stan-
ford Linear Accelerator which will study
the B0 − B̄0 system (B0 is a bound state
of a b quark and either a d or an s anti-
quark).

Baryon-number conservation is pre-
sumed to be violated at some level if a
grand unified theory that incorporates all
known gauge theories exists. The present
best limit on baryon-number conservation
comes from the stability of the proton,

which is known to have a lifetime greater
than 1031 years.

Baryon-number nonconservation is one
of the three key ingredients to the gener-
ation of a baryon asymmetry in the early
universe, as was pointed out by Andrei
Sakharov in a prescient 1967 paper (Kolb
and Turner, 1990). The other two are CP-
invariance violation and a departure from
thermal equilibrium. Baryon asymmetry
is, of course, present since our known uni-
verse is preponderantly made of matter,
not of antimatter, but a wholly successful
explanation of the asymmetry has not yet
been advanced.

Lepton number is tested in neutrinoless
double beta decay, particularly in iso-
topically enriched germanium (Avignone,
1995). The limits state the ratio of neutri-
noless decays to neutrino decays to be less
than one in a thousand.

The separateness of muon number
and electron number is tested by the
nonobservation of µ → e + γ , which has a
branching ratio of < 5 × 10−11 to the total
decay rate of the muon. The dominant
muon decay is into a state of an electron, a
neutrino, and an anti-neutrino. Though
it is not obvious, lepton numbers are
automatically conserved if neutrinos are
massless (technically it would be sufficient
if all neutrinos were mass degenerate).
There are numerous ongoing searches
for evidence of nonzero neutrino mass.
Lepton mixing and nonzero neutrino
masses may first be observed in so-called
neutrino oscillation experiments. In these
one species of neutrino, say an electron
neutrino, is produced but it then oscillates
between that and a second species, e.g., a
muon neutrino, while travelling from the
source to the observer.

Local gauge invariance requires massless
gauge bosons. One obvious verification is
the masslessness of the photon. Present
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limits are

mγ < 3 × 10−27 eV. (74)

Trying to set limits on gluon (the pre-
sumed mediator of the strong interactions)
masses, on the other hand, is very difficult,
since gluons are not directly observable. In
fact, observation of a free gluon or a free
quark would represent a departure from
the presently held view that these particles
are only observable when combined with
other like such particles to form color sin-
glets. Incidentally, all recent searches for
free quarks have yielded null results.

Conservation of electric charge is pre-
sumed to hold. If it were not, we could
imagine an electron decaying into a neu-
trino and a photon. Present limits on the
electron lifetime are τe > 2.7 × 1023 years.

One prominent symmetry we have not
mentioned in the text so far is super-
symmetry, the unique allowed extension
of space-time translation symmetry to
a group that includes particle transfor-
mations. The symmetry requires paired
multiplets, necessarily degenerate in mass,
of fermions and bosons. Thus, if super-
symmetry exists in nature, it must be
spontaneously broken. Some current theo-
ries suggest that the partners of the known
elementary particles, differing in spin by
one half unit, should lie in the mass range
of a few hundred GeV. It is therefore an
interesting question for the next round of
accelerator experiments whether this ex-
tended symmetry could be a reality (Wess
and Bagger, 1983).

Glossary

Baryon: A strongly interacting particle
obeying Fermi statistics, such as the proton
or the neutron.

Bravais Lattice: The elementary specifica-
tion of the location of the units in an
infinite crystalline lattice, making manifest
the periodic ordering and the translational
symmetry.

Charge Conjugation: An operation that
transforms a particle into its antiparticle.
A theory which incorporates particles and
antiparticles in a symmetric manner may
then be invariant under the operation of
charge conjugation or said to have charge-
conjugation symmetry. Similar statements
can be made about time-reversal and parity
symmetries.

Gauge Boson: A particle of spin 1 that
couples to matter in such a way as to
maintain gauge invariance, the invariance
under continuous space-time dependent
transformations. The photon is an example
of a gauge boson.

Goldstone Boson: A massless particle of
spin 0 that arises when a continuous
symmetry is broken spontaneously.

Group: A set of elements and a rule
for combining them, commonly called
group multiplication. The product of any
two group elements must itself be a
group element, multiplication must be
associative, a unique identity element
must exist, and every element must have a
unique inverse such that the product of an
element and its inverse yields the identity
element. Groups may be continuous, such
as the full rotation group, or discrete, such
as the group of rotations about the z axis
by 90◦, which has only four elements:
rotations through 90, 180, 270 and 360◦.

Lepton: The name given to fermionic
elementary particles with no strong
interactions, as for example the electron
and its neutrino.
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Quantum Field: The generalization of the
concept of a particle satisfying a quantum
mechanical equation of motion. Particles
are the quantum excitations of the appro-
priate field, e.g., the photon is an excitation
of the electromagnetic field. Quantum
field theory allows naturally antiparticle as
well as particle creation and annihilation.

Quark: The presumed structureless, i.e.,
pointlike, elementary fermionic consti-
tuents of strongly interacting particles
such as the neutron and the proton.
Quarks are believed to be bound together
by the mediators of the strong force,
conventionally called gluons.

Spontaneous Symmetry Breaking: A situa-
tion that arises when the Lagrangian and
hence the equations of motion of a system
are invariant under a continuous symme-
try, but the vacuum is not. This comes
about because the minimum of the poten-
tial and hence the stable point corresponds
to a nonzero expectation value of a scalar
field.

Standard Model: The term commonly
used for the model of matter described
as consisting of pointlike fermionic con-
stituents (quarks and leptons) interacting
by means of gauge bosons, which in turn
are self interacting. The model features an
invariance under a set of specified symme-
try transformations, corresponding to the
group SU(3) × SU(2) × U(1).
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Introduction

Topology is the study of properties that are
invariant under continuous deformation.
If an object A can be continuously
deformed into an object B, and B can be
continuously deformed into A, then A and
B are considered topologically equivalent.
For example, a two-dimensional circular
disk A is equivalent to a square B
since each may be continuously deformed
into each other. Such a disk is not,
however, equivalent to the circle that is its
boundary, since there is no way to deform
a disk to a circle without introducing
a discontinuity, i.e., a hole or tear, in
the disk. Topology is sometimes called
‘‘rubber sheet geometry.’’ It ignores metric
aspects of a space such as distance, angle,
and area, and concentrates on the aspects
associated with the relative position of its
points. The word ‘‘topology’’ comes from
the Greek words ‘‘topos’’ and ‘‘logos’’ and
means ‘‘analysis of place’’; in some older
literature, topology is called analysis situs.

‘‘Cut-and-paste’’ techniques are com-
mon methods used to construct spaces in
topology. For example, imagine a square
sheet of completely flexible and stretchable
material sitting in the plane with the cor-
ner points labeled A, B, C, and D starting
with the upper left-hand corner and mov-
ing clockwise as in Fig. 1. Stretching the
square out lengthwise and gluing the top
edge AB to the bottom edge DC, with A
attaching to D and B attaching to C, gives
an orientable space that is a portion of a
cylinder; it has two sides, and its boundary
is equivalent to two circles. In Fig. 1 sets
of arrows are placed on identified sides to
indicate the orientation used in gluing. If
the edge AB is given a 180◦ twist before
the gluing so that A attaches to C and B
attaches to D, then the resulting surface is
the Möbius strip, which is nonorientable:

it has only one side, and its boundary is
equivalent to a single circle. Walking once
around the central circle of a Möbius strip,
a traveler returns to the same point but
in an upside-down position. In the same
way, the usual torus T is obtained from
the above square by gluing the side AB to
the side DC and the side BC to the side
AD. The first gluing produces the cylin-
der as before, which is then stretched out
and bent around for the second gluing.
The torus is equivalent to the surface of
a doughnut or the surface of a ball with
a single hole drilled through it. The Klein
bottle K is obtained by gluing AB to DC as
before, but giving BC a 180◦ twist before
gluing it to AD so that B attaches to D, and
C attaches to A. The real projective plane
RP2 results from twisting both AB and BC
180◦ before gluing, so that AB glues to CD
and CB glues to AD with A attaching to
C and B attaching to D. Of course, after
the gluings for the torus and the Klein
bottle, the points A, B, C, and D become a
single point. The Klein bottle and real pro-
jective plane are nonorientable surfaces,
and also both of these surfaces have self
intersections when considered as subsets
of R3 = {(x1, x2, x3)|x1, x2, x3 ∈ R}. The
above construction of RP2 can be viewed as
taking a two-dimensional disk and gluing
each point of its boundary to its antipodal
point on the boundary. RP2 is the set of
lines through the origin in R3. In general,
n-dimensional real projective space RPn is
the set of all one-dimensional subspaces
(i.e., lines through the origin) in Rn+1, and
the n-dimensional complex projective space
CPn is the set of all one-dimensional sub-
spaces in Cn+1. The dimensions in these
projective spaces are taken with respect to
the underlying scalars; thus C3 is three-
dimensional as a complex manifold but
six-dimensional as a real manifold. The or-
dinary sphere S2 can also be obtained from
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Fig. 1 Cut-and-paste methods for standard two-dimensional spaces

the square ABCD by simply collapsing the
boundary of the square to a point. If the
sides of a regular octagon are identified as
in Fig. 2, the result is a two-holed torus.

After the spaces Rn, the spheres are
the most commonly encountered spaces
in topology and are best considered
simply as the set of points in Rn+1 that
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Fig. 2 Gluing the indicated sides produces the
two-holed torus

are at unit distance from the origin;
i.e., the n-dimensional sphere is Sn = {x ∈
Rn+1| ‖x‖ = 1}. Each n-sphere Sn is the
boundary of the unit (n + 1)-dimensional
ball Bn+1 = {x ∈ Rn+1| ‖x‖ ≤ 1}. Notice
that the 0-sphere S0 consists of two points
and is therefore the only sphere that is
not connected. The g-holed torus Tg is the
two-dimensional space equivalent to the
surface of a three-dimensional ball with g
non-intersecting holes drilled through it.
Using the above spaces, large numbers
of examples can be constructed using
additional operations such as Cartesian
products and connected sums. Given
spaces M and N, the Cartesian product
M × N is defined to be {(p, q)|p ∈ M & q ∈
N}. If M and N have the same dimension
n, the connected sum M # N is constructed
by removing an n-dimensional ball from
each of M and N, and then gluing
the resulting spaces together along the
boundaries of the removed balls. Thus, the
Cartesian product of two circles S1 × S1

is the two-dimensional torus T, and the
connected sum Tg # Tk of a g holed
torus and a k-holed torus is a (g + k)-holed
torus.

Important isolated problems of a topo-
logical nature were treated by Descartes
and Euler (the Descartes–Euler charac-
teristic for polyhedra and the Königsberg
bridge problem), and Riemann empha-
sized the importance of topological prop-
erties in his studies of complex analysis
and algebraic functions. The key property
of a Riemann surface is its genus, which

counts the number of ‘‘holes’’ associated
to the surface. Thus a two-dimensional
sphere has genus 0, and a two-dimensional
torus such as the surface of a doughnut
has genus 1. With Cantor’s development
of set theory, mathematics entered a new
era. More attention was paid to founda-
tional questions, and a higher level of
rigor was demanded. The real-number
system had been carefully developed by
Dedekind and Cantor in a constructive
way, and mathematicians saw an oppor-
tunity to place all of mathematics on an
axiomatic foundation similar to Euclid’s
Elements. The central areas in this new
development were topology and abstract
algebra. A very large part of twentieth cen-
tury mathematics is associated with this
program.

This development seems at first to be
very remote from physics and the sciences.
It is more like mathematical houseclean-
ing: making more precise definitions,
giving clearer statements and proofs of
theorems, finding the weakest hypotheses
that give a result, determining whether a
property is metric or topological in na-
ture, etc. However, it is important to note
that most of the key questions arose from
analysis of tools used in physical applica-
tions. Cantor’s set theory came from his
study of the convergence of Fourier series;
Sophus Lie developed the theory of con-
tinuous groups to make the connection
between symmetries and methods of so-
lution of differential equations; Poincaré’s
deep study of the question of the ‘‘stability
of the solar system’’ led him to realize that
complicated systems were very difficult to
treat quantitatively and that chaotic be-
havior was possible. In studying periodic
orbits in celestial mechanics, Poincaré for-
mulated a key difficulty as a topological
conjecture, Poincaré’s last geometric theo-
rem, which was proved by G. D. Birkhoff.
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It was clear at this point that topology
was essential to the qualitative analysis of
dynamical systems. This was one of the
major motivating forces behind the ini-
tial development of topology and remains
so. Further, the development of general
relativity and the associated area of differ-
ential geometry brought into focus the key
relation between local and global aspects
of spaces. To illustrate: Suppose that the
given space is a two-dimensional sphere in
three-space. Locally – for example, in the
Northern hemisphere – there exist an in-
finite number of harmonic functions, i.e.,
solutions of the Laplace equation �f = 0,
even if the value of f is prescribed at the
North Pole. However, globally only one
such harmonic function exists; it must
be a constant function. The topology of
the sphere forces each function that is
harmonic on the entire sphere to be a
constant function. Similarly, it is possible
to construct a unit-length tangent-vector
field on the Northern hemisphere, but
globally such a vector field is impossible.
However, the two-dimensional torus does
admit such a global unit-length tangent-
vector field, and this torus is the only
orientable surface without boundary with
this property. This result follows from
the famous Poincaré–Hopf index theo-
rem discussed in Sec. 3.2. Topology plays
an essential role in quantifying these
global aspects of spaces and is therefore
essential in global analysis and boundary-
value problems. It is important to note
that in applications, topology is usually
combined with other areas of mathe-
matics such as algebra and differential
geometry.

This article discusses the three most
prominent branches of topology: point-set
topology, algebraic topology, and differen-
tial topology. These areas are considered
to be closest to applications in physics.

1
Point-Set Topology

Point-set topology, also called general
topology, provides the basic foundation
for mathematical analysis, the portion
of mathematics most directly connected
with the calculus and the theory of dif-
ferential and integral equations. The key
concepts are continuity and convergence.
The subject assumes only basic set theory.
Point-set topology begins with topological
spaces and continuous functions between
such spaces. The basic properties of such
spaces and functions are studied, and then
gradually new concepts such as connect-
edness and compactness are added and
examined. This step-by-step development
leads to a clearer understanding of the
role each hypothesis plays in a given re-
sult and often points the way to important
extensions and generalizations. For exam-
ple, the extreme-value theorem may be
stated in a simple case as follows: A real-
valued function that is continuous on a
closed bounded interval [a, b] ⊂ R attains
its maximum and minimum values at
some points of the interval. Further anal-
ysis of this theorem shows that two basic
ideas, continuity and compactness, are es-
sential hypotheses for this theorem. The
more general theorem is then this: a real-
valued function that is continuous on a
compact topological space attains its maxi-
mum and minimum values at some points
of that space.

A very concise summary of essential
definitions and results follows. This list
is not comprehensive; it contains only the
most commonly encountered definitions
and results of point-set topology. These
are particularly important for a clear
understanding of functional analysis as
used in physics. For example, point-set
topology is basic to the theory of Fourier
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transforms, Sobolev spaces, finite-element
methods, and the theory of distributions
such as the Dirac delta function. The theory
of distributions was a major motivation
for the development of the theory of
topological vector spaces.

Throughout this article, ‘‘iff’’ means ‘‘if
and only if’’ and frequently indicates that
a definition is being given.

1.1
Basic Concepts

A collection T of subsets of a set X is a
topology on X iff

1. the empty set ∅ and the set X are in T ;
2. T is closed under arbitrary unions; i.e.,

given any collection of subsets of X that
are in T, their union is in T ;

3. T is closed under finite intersections;
i.e., given any finite collection of subsets
of X that are in T, their intersection is
in T.

A topological space (X,T) is a set X with
a topology T on X. It is common to
abbreviate (X,T) to X and topological space
to space. If several topological spaces are
involved, T may be replaced by TX or
another symbol such as S for clarity.

To illustrate, let X = {a, b, c} be a set
with three elements; then T1 = {∅, X} and
T2 = {∅, {a}, {b}, {a, b}, X} are topologies
on X, but T3 = {∅, {a}, {b}, X} is not since
condition 2 is not satisfied. In general, for
any set X, there are two standard topologies
that can always be defined on X : the discrete
topology consisting of the collection of all
subsets of X, and the indiscrete or trivial
topology that consists of only ∅ and X itself.

If (X,T) is a topological space, then the
elements of T are called the open sets of
the space. A subset A of a topological
space (X,T) is closed iff its complement
X − A is open. In the above example

(X, T2), {c} is a closed set since its
complement {a, b} is open. Notice that
open and closed are not opposites; a set
can be both open and closed (e.g., X in T1)
or neither open nor closed (e.g., {a} in T1).
The above topological spaces illustrate the
definition clearly but are too artificial to
be of much use in physics. A much more
interesting example is given by X = Rn,
the n-dimensional vector space of all n-
tuples of real numbers, with the metric
topology. This is one of the most important
topological spaces, and it is worth studying
carefully. To define this topology some
preliminary ideas are needed. For each
pair of points a and b in Rn, let d(a, b)
be the usual Euclidean distance from a
to b. The open ball Br(p) centered at p
and of radius r > 0 in Rn is defined to
be {x ∈ Rn|d(x, p) < r}, i.e., the set of all
points strictly within distance r of p. Using
these open balls the metric topology on
Rn is defined as follows: A subset A is
open in Rn iff for each p ∈ A, Br(p) ⊂ A for
some r > 0. Intuitively, a subset A is open
iff there is ‘‘space in all directions’’ in A
around each of its points. This ‘‘space in all
directions’’ is essential for the definition
of key analytic concepts such as continuity
and differentiation that require that the
value of a function at a point be compared
with values at all nearby points. Applying
the definition is usually simple on an
intuitive level. Thus, in the real line R
the ‘‘open’’ interval (0,1) is an open set,
the ‘‘closed’’ interval [−1, 2] is a closed set
since its complement, (−∞, −1) ∪ (2, ∞),
is an open set, and the half-open interval
(−3, 5] is neither open nor closed.

In general, a metric topology may be
defined on any set that has an appropriate
notion of distance, i.e., a metric, defined
on it. Often the metric is given by a more
elaborate structure on the set such as an
inner product or a norm. Inner products,



Topology 593

norms, and metrics are formally defined
as follows: Let V be a vector space over F
where F is either the real or the complex
number field, and let M be a set. Then
〈, 〉: V × V → F is an inner product on V iff

〈A, B〉 = 〈B, A〉 for all A, B, ∈ V,

〈A, bB + cC〉 = b〈A, B〉 + c〈A, C〉
for all A, B, C ∈ V and b, c ∈ F, and

A ∈ V and A �= 0 imply that 〈A, A〉 > 0.

An inner product space (V, 〈, 〉) is a vector
space V together with an inner product 〈, 〉
defined on it.

Next, ‖ · ‖: V → R is a norm on V iff

‖aA‖ = |a|‖A‖ for all A ∈ V and a ∈ F,

‖A + B‖ ≤ ‖A‖ + ‖B‖
for all A, B ∈ V, and

A ∈ V and A �= 0 imply that ‖A‖ > 0.

A normed space (V, ‖ · ‖) is a vector space
V together with a norm ‖ · ‖ defined on it.

Lastly, d: M × M → R is a metric on M
iff

d(x, y) = d(y, x) for all x, y ∈ M,

d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z ∈ M, and

d(x, y) ≥ 0 for all x, y ∈ M

and d(x, y) = 0 iff x = y.

A metric space (M,d) is a set M together
with a metric d defined on it. Each of
these structures gives the vector space V
a natural metric topology since each inner
product 〈, 〉 induces a norm ‖ · ‖, which
in turn induces a metric via the rules
‖A‖ = √〈A, A〉 and d(A, B) = ‖A − B‖.

If (X,T) is a topological space, and A is
a subset of X, then A inherits a topology
S from X as follows: B is open in A iff

B = A ∩ U for some open set U in X.
Briefly, this is written B ∈ S iff B = A ∩ U
for some U ∈ T . This topology is called
the relative topology on A. It is also called
the induced or subspace topology on A. Thus
in the metric topology on X = R above,
the interval (1,2] is not open in X, but it
is open in A = [0, 2] since (1, 2] = A ∩ U,
with U = (1, 3) for example. A subset
N ⊂ X is a neighborhood of a point p ∈ X
iff p ∈ U ⊂ N for some open set U ∈ T .
If, in addition, N is an open set, then N is
called an open neighborhood of p.

Let A be a subset of a topological space
(X,T). p ∈ X is an interior point of A iff
p ∈ U ⊂ A for some U ∈ T , i.e., A is a
neighborhood of p. p ∈ X is an exterior
point of A iff p is an interior point of
X − A. p ∈ X is a closure or limit point of A
iff each neighborhood of p contains at least
one point of A. p ∈ X is a boundary point
of A iff p is a closure point of both A and
X − A. p ∈ X is an accumulation point of A
iff each neighborhood of p contains at least
one point of A other than p. p ∈ A is an iso-
lated point of A iff p is not an accumulation
point of A. The interior of A is the set of all
interior points of A and is denoted intA. It
is also the union of all the open subsets of
A and is the largest open set contained in
A. The closure of A is the set of all closure
points of A and is denoted clA. It is also
the intersection of all the closed subsets
that contain A and is the smallest closed
set containing A. The boundary of A is
the set of all boundary points of A and is
denoted bdA. It is equal to clA − intA. In
many cases these concepts behave as the
names indicate. Thus, for the metric topol-
ogy on R, the set A = [0, 1) has the open
interval (0,1) as its interior, the closed in-
terval [0,1] as its closure, and the set {0, 1}
consisting of the two ‘‘boundary points’’
as its boundary. However, these simple
definitions contain some subtleties. For
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example, the subset of all rational num-
bers in [0,1] has interior equal to the empty
set, and both the closure and the bound-
ary are equal to the closed interval [0,1].
The notations A◦

, Ā, and ∂A are frequently
used for intA, clA, and bdA, respectively. A
is dense in B iff B ⊂ clA. For example, the
set Q of rational numbers is dense in the
set R of real numbers, and the set of poly-
nomials with rational coefficients is dense
in the space C0([0, 1], R) of all continuous
real-valued functions on [0,1] with the sup
norm ‖f ‖ = max{|f (x)| |x ∈ [0, 1]}. This
notion of denseness is essential in approx-
imation theory.

A topological space (X,T ) is Hausdorff iff
for each pair of points a and b there exist
disjoint open sets U and V such that a ∈ U
and b ∈ V . Hausdorff spaces are also called
T2 spaces. Hausdorff is the most common
of the several separation conditions that
may be imposed on a topological space.
All metric spaces are Hausdorff spaces.

The above definitions give the flavor of
point-set topology. It is abstract and very
set theoretic. It is important to keep in
mind some of the primary examples that
are discussed in the following such as
surfaces in R3 with the induced metric
topologies, topological and differentiable
manifolds, and especially function spaces
such as Hilbert and Banach spaces.

1.2
Continuity

The δ-ε definition for continuity given
in calculus is as follows: a function
f : R → R is continuous at the point p
iff for each ε > 0 there exists a δε >

0 such that |x − p| < δε implies that
|f (x) − f (p)| < ε. The function is said
to be continuous on A ⊂ R iff f is
continuous at each point of A. Intuitively,
continuous functions are allowed to stretch

or contract portions of their domains,
but no breaks or tears are permitted.
The above definition is easily generalized
to functions between metric spaces by
simply replacing the absolute values by
the appropriate distances, but it does not
apply to more general topological spaces
in which no such distance is given. The
following definition generalizes the notion
of continuity to topological spaces and is
equivalent to the δ-ε definition above in the
metric-space case. A function f : (X, TX ) →
(Y, TY ) is continuous on X iff f −1(U)

is open for each U ⊂ Y ; i.e., inverse
images of open sets are open. Here the
inverse image f −1(U) is defined to be {x ∈
X |f (x) ∈ U}; inverse images are defined
for all functions, invertible or otherwise.
The above function f is continuous on
A ⊂ X iff f restricted to A with the
relative topology is continuous on A. It is
common to abbreviate continuous function
to map. Two topological spaces (X, TX ) and
(Y, TY ) are considered to be topologically
equivalent or homeomorphic iff there exists
a bijective function f : (X, TX ) → (Y, TY )

that is continuous on X and that has an
inverse f −1 that is continuous on Y. Such a
function f is called a homeomorphism. For
the purposes of topology, homeomorphic
spaces are considered to be the same and
must have identical topological properties.

1.3
Connectedness and Compactness

Compactness, connectedness, and path
connectedness are among the most impor-
tant topological properties and occur very
frequently in topological analysis. Let A be
a subset of a topological space (X, TX ). A
collection of open subsets of X is an open
cover of A iff A is contained in their union.
A finite subcover of such an open cover is
any finite subcollection that also contains
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A in its union. A ⊂ X is compact iff each
open cover of A has a finite subcover. For
example, the open cover of the real line
R given by {(n − 1, n + 1)|n is an integer}
has no finite subcover; so R is not compact.
Open covers are often denoted {Ui}i∈I,
where each Ui is an open set in the
cover and I is an index set. A ⊂ X is
connected iff there do not exist open sets
U and V in X with A ⊂ U ∪ V, A ∩ U �=
∅, A ∩ V �= ∅, and A ∩ U ∩ V = ∅. Equiv-
alently, A ⊂ X is connected iff the only
subsets of A that are both open and
closed in the relative topology of A are
∅ and A. A ⊂ X is path connected iff for
each pair of points p and q in A there is
a continuous function γ : [0, 1] → A such
that γ (0) = p and γ (1) = q. Such a con-
tinuous γ is called a path in A from
p to q. Path-connected spaces are nec-
essarily connected, but not vice versa. If
f : (X, TX ) → (Y, TY) is a function contin-
uous on X and A ⊂ X is compact, then the
image f (A) is also compact; similarly, if A
is connected (resp. path connected), then
f (A) is also connected (resp. path con-
nected). Two important theorems result
from these concepts. Continuity plus com-
pactness gives the extreme-value theorem:
If f : X → R is continuous on X, and X is
compact, then f must attain its maximum
and minimum values at some points of X.
Continuity plus connectedness gives the
intermediate-value theorem: If f : X → R
is continuous on X, and X is connected,
and f (a) < z < f (b) for some a and b in
X and some real number z, then there is
a c ∈ X with f (c) = z. Two simple conse-
quences of the intermediate-value theorem
are the simple fixed-point theorem: Each
continuous function f : [0, 1] → [0, 1] must
have a fixed point, i.e., there is an x ∈ [0, 1]
such that f (x) = x; and the heated-ring
theorem: Given any continuous function
f : S1 → R, there exists at least one pair

of antipodal points x, x′ = −x such that
f (x) = f (x′). If S1 is considered as the
unit circle in the complex plane, and f
is taken to be the temperature at each
point, then this means that f (x) = f (−x)

for some x ∈ S1; i.e., there are always at
least two opposite points with the same
temperature.

Continuity and compactness also com-
bine to produce uniform continuity. A
function f : X → R is uniformly continuous
on a metric space (X,d) iff for each ε > 0
there is a δε > 0 such that x, y ∈ X and
d(x, y) < δε imply |f (x) − f (y)| < ε. The
key point here is that δε depends on ε but
not on the points x and y involved. The
important result is then that if f : X → R is
continuous on X, and X is compact, then f
is uniformly continuous on X.

Compactness has several equivalent
formulations, each appropriate to various
applications. The Heine–Borel theorem
says that A ⊂ Rn is compact iff A is
closed and bounded. Here A is bounded
iff A is contained in some sufficiently
large open ball Br(p). This criterion
is extremely easy to use, but it fails
for most function spaces, which are
usually infinite dimensional. For these
more general cases, further conditions
are usually required. As an illustration,
consider the space C0([0, 1], R) given in
Sec. 1.1. The Arzela–Ascoli theorem says:
A ⊂ C0([0, 1], R) is compact iff A is closed,
bounded, and equicontinuous. Here A is
equicontinuous iff for each ε > 0 there is a
δε > 0 such that x, y ∈ [0, 1] and |x − y| <

δε imply |f (x) − f (y)| < ε for all f ∈ A. The
essential part of this definition is that the
same δε works for all f ∈ A. Equicontinuity
extends the notion of uniform continuity
and is therefore sometimes called uniform
uniform continuity.

A sequence x1, x2, x3, . . . of points in a
topological space X converges to p ∈ X iff
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for each neighborhood U of p there exists
an integer NU such that xk ∈ U for all
k ≥ NU . To make this definition useful,
it is necessary to require that the space
X be Hausdorff; otherwise a sequence
may converge to two distinct points. For
example, in the space X = {a, b} with the
indiscrete topology {∅, X}, the sequence
a, b, a, b, a, b, a, . . . converges to both a
and b. This pathological behavior does not
occur in Hausdorff spaces. A sequence
x1, x2, x3, . . . in a metric space M is a
Cauchy sequence iff for each ε > 0 there
exists an integer Nε such that d(xm, xn) <

ε for all m, n ≥ Nε . A metric space M is
complete iff each Cauchy sequence in M
converges to a point of M. A metric space
M is totally bounded iff for each ε > 0 there
exists a finite collection of open balls of
radius ε that contains M in their union;
i.e., they form a finite open cover of M. A
complete normed space is called a Banach
space. A complete inner-product space is
called a Hilbert space.

Four equivalent criteria for compactness
are given as follows: A is compact iff

1. each open cover of A has a finite
subcover (topological version);

2. each sequence in A has a subsequence
that converges to a point of A (sequential
compactness version);

3. A is complete and totally bounded
(metric-space version); or

4. each infinite subset of A has an accumu-
lation point in A (Bolzano–Weierstrass
property).

The following properties are used fre-
quently. Each closed subset of a compact
topological space is compact. Each com-
pact subset of a Hausdorff topological
space is closed. The Tychonoff theorem
states that the Cartesian product of an
arbitrary number of compact topological
spaces is compact.

An essential tool in the piecing together
of local objects to form a global object is
a partition of unity. Some definitions are
needed first. A topological space X is para-
compact iff X is Hausdorff and each open
cover of X has a locally finite refinement.
A locally finite refinement of an open cover
{Ui}i∈I is an open cover {Vj}j∈J such that
each Vj is contained in some Uij and each
point of X is in at most a finite number of
the Vj’s. Given an open cover {Ui}i∈I of the
space X, a family of continuous functions
ϕi: X → [0, 1] is a partition of unity subordi-
nate to the cover {Ui}i∈I iff supp(ϕi) ⊂ Ui

for each i ∈ I, and for each p ∈ X, ϕi(p) = 0
for all but a finite number of indices i and
�i∈Iϕi(p) = 1. Here supp(ϕ) denotes the
support of ϕ: X → R and is defined to be
the closure of the subset of X on which
ϕ is nonzero, i.e., cl{p ∈ X |ϕ(p) �= 0}. The
basic theorem in this regard is this: Each
paracompact topological space admits a
partition of unity. This result is important
for the theory of manifolds (see Sec. 3.1).
It implies that each paracompact manifold
can be given a Riemannian metric (see GE-

OMETRICAL METHODS, Sec. 2.3). Essentially,
the coordinate charts on the manifold give
induced metrics on parts of the manifold,
which are then pieced together via an as-
sociated partition of unity.

2
Algebraic Topology

The key idea in algebraic topology is to
assign algebraic invariants to topological
spaces in such a way that homeomorphic
spaces have the same algebraic invariants.
It is hoped that the algebraic information
given by groups, rings, vector spaces, and
homomorphisms is then easier to analyze.
For example, if two spaces have different
invariants, then they cannot be equivalent.
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This gives a method for distinguishing
many spaces.

Physically, the most direct motivation for
algebraic topology comes from potential
theory. The fundamental problem of
electrostatics is to find the equilibrium
charge-density distribution on the surface
of a charged conductor. This difficult
problem is replaced by the simpler and
in many cases more relevant problem of
the determination of the electric field E
produced by such a charge distribution.
This field problem is in turn reduced to a
function problem via the introduction of a
potential function ϕ. The equation divE =
0 then becomes the Laplace equation,
�ϕ = 0, with solution given by the line
integral ϕ(X) = ∫

γ
E · dl, where γ is any

smooth path from a fixed point A to the
variable point X. The path γ is also required
to lie inside the region exterior to the
conductor. The point A is usually taken
to be a point at infinity or some point
assumed to have zero potential. If the field
E is given by E = (P, Q, R), and the line
element dl is denoted by (dx,dy,dz), then
ϕ(X) = ∫

γ
Pdx + Qdy + Rdz expresses the

potential as the integral of the differential
one-form α = Pdx + Qdy + Rdz over a
path from A to X. Further, the condition
curl E = 0 implies that the one-form
α is closed (i.e., dα = 0), and therefore
the Stokes theorem implies that the line
integral above will give the same value
on any smooth path γ ′ connecting A
to X that can be continuously deformed
into γ without crossing the surface of
the conductor. In such a case the paths
γ and γ ′ are said to be homotopic to
each other within the region exterior to
the conductor. Two examples are useful
here. If the conductor is a solid ball, then
each pair of paths from arbitrary points
A and X and lying in the region exterior
to the ball are homotopic to each other

in that region. Such a region is called
simply connected. An equivalent form of
this condition is that each closed path (loop)
beginning and ending at a given point A
should be continuously deformable within
the region to the point A. For a nonsimply
connected example, consider a solid torus
(doughnut-shaped) conductor; then a loop
at A that passes once through the hole in
the torus is not deformable to the point
A. This results, in general, in multivalued
potential functions.

2.1
Some Basic Tools

Helmholtz’s theorem also requires sim-
ply connected regions. A vector field V
with curl V = 0 in a simply connected
region can be expressed as a gradient
of appropriate potential functions, and a
vector field V with divV = 0 in a sim-
ply connected region can be expressed
as a curl of appropriate vector poten-
tials. These basic results are simplified
and generalized by the theory of differ-
ential forms. For simplicity consider the
case of R3 with the usual Cartesian co-
ordinate system. A 0-form f is simply a
smooth real-valued function on R3, such
as f (x, y, z) = x2y + sin(xyz2). A 1-form α

has the form α = Pdx + Qdy + Rdz, and
a 2-form β has the form β = Pdy ∧ dz +
Qdz ∧ dx + Rdx ∧ dy, where P, Q, and R
are 0-forms. Finally, a 3-form γ has the
form γ = fdx ∧ dy ∧ dz, where f is a 0-
form. The wedge product symbol ∧ is
used to emphasize that this multiplica-
tion is skew commutative; i.e., dy ∧ dx =
−dx ∧ dy and, in particular, dx ∧ dx =
0; dy ∧ dz ∧ dy = 0, etc. As a consequence,
all differential forms of degree higher than
the dimension of the underlying space are
zero. The properties of these forms are
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based on those of determinants where in-
terchanging any two distinct rows reverses
the sign of the determinant. Determinants
measure signed lengths, areas, volumes,
and hypervolumes; differential forms mea-
sure infinitesimal signed lengths, areas,
volumes, and hypervolumes and, there-
fore, appear as integrands in integrals
giving such quantities. The wedge prod-
uct generalizes the cross product to spaces
of arbitrary dimension. The key operator in
differential forms is the exterior derivative
d. Letting Ep denote the real vector space of
all p-forms on R3, this derivative maps each
p-form α to a (p + 1)-form dα, i.e., d: Ep →
Ep+1. Thus, for each 0-form f, df =
fxdx + fydy + fzdz, where the subscripts
denote partial derivatives; for each 1-
form α = Pdx + Qdy + Rdz, dα = (Ry −
Qz)dy ∧ dz + (Pz− Rx)dz ∧ dx+(Qx−Py)

dx ∧ dy; for each 2-form β = Pdy ∧ dz +
Qdz ∧ dx + Rdx ∧ dy, dβ = (Px+Qy+Rz)

dx ∧ dy ∧ dz; and dγ = 0 for each 3-form
γ . A key property of this derivative is
d2 = 0; i.e., d(dα) = 0 for each p-form α.
A p-form α is closed iff dα = 0, and α is
exact iff α = dϕ for some (p − 1)-form ϕ.
The d2 = 0 property implies that each exact
form is also a closed form. If a vector field
X = (P, Q, R) is identified with the 1-form
α above, then curl X corresponds to dα; and
if X is identified with the 2-form β above,
then div X corresponds to dβ. The basic
vector analysis identities curl ∇X = 0 and
div curl X = 0 are special cases of d2 = 0.
In physics, the vector fields corresponding
to 1-forms are called ‘‘polar’’ vector fields,
and the vector fields corresponding to 2-
forms are called ‘‘axial’’ vector fields. Using
this formalism, classic formulas such as
the fundamental theorem of calculus:

∫ b

a
f ′(x)dx = f (b) − f (a),

Green’s theorem:∫ ∫
G
(Qx − Py)dx ∧ dy =

∫
∂G

Pdx + Qdy,

the Stokes theorem:∫ ∫
S
(curl X · ndS) =

∫
∂S

X · ds,

and the divergence theorem:

∫ ∫ ∫
D

div XdV =
∫ ∫

∂D
X · ndS

are special cases of the ‘‘generalized Stokes
theorem,’’ which has the form∫ ∫

· · ·
∫

M
dα =

∫
· · ·

∫
∂M

α

for each n-dimensional orientable mani-
fold M with boundary ∂M and (n − 1)-
form α on M. Thus, integration of the
right sort of n-form, namely, an exterior
derivative, over a given region reduces to
an integral over the boundary of the region.
In a sense this results from the fact that
whatever enters or leaves a region must
cross the boundary. The differential-forms
formalism and the above theorems are very
directly connected to basic techniques of
potential theory and are therefore relevant
to electromagnetism and in particular to
Maxwell’s equations.

The constructions in algebraic topology
are designed to measure the topological
complexity of a given space relative to
the above considerations. For example,
if T is a cylindrical tube with boundary
∂T given by two circles C1 and C2 with
proper orientations, and α is a given
closed 1-form on M, then

∫
C1

α = ∫
C2

α.
Thus, C2 is equivalent to C1 in these
circumstances. Two such spaces that form
the boundary of a third space of one
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higher dimension are said to be homologous
and are considered to be equivalent in
homology. For example, any two disjoint
circles on the two-dimensional sphere S2

form the boundary of an annular region
on S2, and so the homology group (as
defined in Sec. 2.3) H1(S2) of S2 is 0. The
de Rham cohomology of M (see Sec. 3.3) is
defined directly in terms of the differential-
forms structure as the quotient of the
vector space of closed p-forms on M
by the vector space of exact p-forms on
M for each p and therefore measures
the extent to which each closed form
can be represented as an exact form.
In the more general case, cohomology
is defined by taking the appropriate
notion of a dual of the homology of the
space.

Some of the most famous theorems
provable via algebraic topological methods
are the following (let n be a positive integer,
Bn be the unit ball in Rn, and Sn be the
unit sphere in Rn+1):

Jordan-Brouwer separation theorem:
Each compact connected hypersurface X
in Rn divides Rn into two open sets: the
‘‘inside’’ of X and the ‘‘outside’’ of X. The
special case with X a simple closed curve in
R2 is called the Jordan curve theorem. A hy-
persurface in Rn is an (n − 1)-dimensional
submanifold of Rn.

No-retraction theorem: There is no
continuous map from Bn to its boundary
Sn−1.

Brouwer fixed-point theorem: If f : Bn →
Bn is continuous, then f has a fixed point;
i.e., there exists a point p ∈ Bn such that
f (p) = p.

Borsuk–Ulam theorem: If f : Sn → Rn is
continuous, then f (x) = f (−x) for some
x ∈ Sn; i.e., f takes the same value on at
least one pair of antipodal points.

Ham-sandwich theorem: Let A, B, C
be three bounded subsets of R3 each of

which has a volume; then there exists a
plane that bisects each of the three sets.
(This theorem generalizes to the case of
n bounded sets with hypervolume and
guarantees the existence of a hyperplane
in Rn that bisects each of them.)

To illustrate via a physical example:
Imagine a fluid flowing inside a torus-
shaped container in such a way that each
point of the fluid is moving counterclock-
wise around the torus as in Fig. 3; then
the Brouwer fixed-point theorem implies
that this flow must have a closed (peri-
odic) orbit. Here the Bn involved is a disk
placed perpendicular to the central circle of
the torus, and the map f associates to each
point on this disk the return point obtained
by flowing once around the torus. This ap-
plication is close to one of Poincaré’s orig-
inal motivations for topology. He wanted
to prove the existence of periodic orbits
in phase-space flows associated with celes-
tial mechanics. The intercepting space is
called a Poincaré section.

2.2
Homotopy

Intuitively, two paths from point P to point
Q and lying in a region R are homotopic

A Poincaré Section

Fig. 3 Placing a Poincaré section in a fluid flow
in a torus
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iff each can be continuously deformed
into the other without leaving the region.
This notion clearly depends on the region
involved. For example, consider the paths
γ1 = the upper semicircle and γ2 = the
lower semicircle connecting the points
P = (−1, 0) and Q = (1, 0) in the plane
R2. These are homotopic in the region
R2, but they are not homotopic in the
punctured plane, R2 − {(0, 0)}. Thus, if
the one-form α has no singularities on or
inside the unit circle, then

∫
γ1

α = ∫
γ2

α;
but for the one-form

α = −ydx + xdy

x2 + y2 ,

which has a singular point at the origin,
these two line integrals have distinct
values. The fundamental group measures
the complexity of a space in this regard.
In Fig. 4 the underlying space is a torus,
and the paths γ1 and γ2 are homotopic, but
neither path is homotopic to the path γ3.

Let I be the unit interval [0,1]. A path
from P to Q in a topological space M
is a continuous function f : I → M with
f (0) = P and f (1) = Q . Two paths f and
g from P to Q in M are homotopic iff
there exists a continuous function F: I ×
I → M such that F(0, t) = P, F(1, t) =
Q, F(s, 0) = f (s), and F(s, 1) = g(s) for all
s and t in I. Thus F maps the unit square

Q
P

g3

g1
g2

Fig. 4 Path γ1 is homotopic to γ2, but not to γ3

I × I into M so that all points on the left
edge go to P, all points on the right edge
go to Q, the bottom edge is mapped to
the path f, and the top edge is mapped
to the path g. This is illustrated in Fig. 5.
This definition makes precise the notion of
‘‘continuous deformation’’ of f to g in M.
Notice that all paths are reparametrized
if necessary so as to have domain I. To
define the fundamental group of M, a
single point x0 in M is fixed, and only
loops, i.e., paths with initial and terminal
points at x0, are considered. Two loops
are considered equivalent iff each can be
deformed into the other within M. In
particular, a loop is trivial iff it can be
deformed to the basepoint x0; i.e., it is
homotopic to the constant path at x0. The
fundamental group of M with basepoint x0

is defined to be the set of equivalence
classes of such loops at x0. If M is path
connected, then the fundamental group is
independent of the choice of basepoint.
The group product operation ∗ in the
fundamental group is defined as follows:
Given two equivalence classes [f ] and [g]
of loops at x0, pick representative loops, f
and g, from each class; reparametrize f to
have domain [0,1/2] and g to have domain
[1/2,1], and define a new loop, denoted
f · g, which is just f followed by g; then the
product is defined by [ f ] ∗ [g] = [f · g]. This
operation is independent of the choices
made and gives the set of equivalence
classes a group structure. If M is path
connected and the fundamental group of
M is 0, i.e., the group has only one element,
then M is said to be simply connected. The
fundamental group of M is also called the
Poincaré group or first homotopy group of M
and is denoted π1(M, x0) or just π1(M) if
M is path connected. Simple examples are
π1(Rn) = 0 for all n, π1(S1) = Z for the
circle S1, and π1(Sn) = 0 for all spheres Sn

with n ≥ 2. The real projective plane has
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t

g

g

f

f

P
P

Q

Q

0

1

1 s

F

M

Fig. 5 A homotopy F between paths f and g

fundamental group Z2 as does the rotation
group R(3) = SO(3). To see this, consider
R(3) as a solid ball of radius π in R3 with
each point on its boundary identified to
its antipodal point; i.e., each rotation in
R3 with an axis corresponds to a point
in the ball along that axis at a distance
given by the angle of rotation about that
axis. The identity rotation corresponds to
the center of the ball, and each point
on the boundary is a rotation through
π radians and corresponds to a rotation
through −π radians, which is the antipodal
point. The loop starting at the origin,
going upward to the North pole, which
is identified with the South pole, and then
continuing upward to the origin is not
homotopic to a point; yet the same loop
traversed twice is deformable to a point.
This is the topological property of R(3)
that is associated to ‘‘spin’’ and ‘‘spinor’’
representations in quantum mechanics.

Each loop with basepoint x0 can be
considered as a map of the unit circle
S1 ⊂ R2 into M that sends (1,0) to the point
x0. π1(M) is then the set of equivalence
classes of such maps. In an analogous
fashion, higher homotopy groups πn(M)

are defined to be the sets of equivalence
classes of maps of n-spheres Sn into M,
which map a chosen fixed point of Sn to the
basepoint x0. These groups detect higher-
dimensional ‘‘holes’’ in the given space M.

For example, let M be a solid ball of radius
3 with a concentric inner ball of radius
1 removed. M is simply connected, and
so π1(M) = 0. However, π2(M) �= 0 since
no two-sphere that encloses the inner hole
can be collapsed to a point inside of M.
In general, π1(M) is non-Abelian. How-
ever, the higher-dimensional counterparts
πn(M) are Abelian groups for n ≥ 2.

One of the most important unsolved
problems in topology is the Poincaré
conjecture. Poincaré asked if a compact
three-dimensional space with trivial funda-
mental group had to be homeomorphic to
the three-sphere. Higher-dimensional ver-
sions of this conjecture have been proved
to be true by Smale for all dimensions
greater than 4 and by Freedman in di-
mension 4, yet the original case remains
unresolved. This problem continues to
play a very important role in the devel-
opment of topology.

2.3
Homology

There are several ways to define homol-
ogy groups for a given topological space
M. Examples include combinatorial, sim-
plicial, cellular, and singular homology.
Each method has some advantages, and
for the majority of cases the resulting
groups are identical. Simplicial homology
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was very popular in the early development
of algebraic topology in part because it
is easy to visualize spaces as constructed
step by step with standard pieces such
as points, line segments, triangles, and
tetrahedra that are called simplices and
are more precisely defined later. Thus,
any triangulated surface could be approxi-
mated by its associated simplicial complex.
For example, a two-sphere is homeomor-
phic to a (hollow) tetrahedron. Using such
simplicial approximations, the homology
groups can be computed via linear alge-
bra. Unfortunately, the computations are
unwieldy for complexes with large num-
bers of simplices. Singular homology is
more frequently encountered and is the
only case treated here. Let Z be the inte-
gers, R be the real numbers, and C be the
complex numbers.

The standard p-simplex �p is defined by

�p = {(t0, t1, . . . , tp) ∈ Rp+1|t0
+ t1 + · · · + tp

= 1 and each ti ≥ 0}.

See Fig. 6. The vertices of �p are e0 =
(1, 0, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . ,

ep = (0, 0, 0, . . . , 1), which form the stan-
dard orthonormal basis in Rp+1. Thus
�1 is the one-dimensional line segment
from (1,0) to (0,1) in R2, and �2 is

the two-dimensional triangle with ver-
tices at (1,0,0), (0,1,0), and (0,0,1) in
R3. [e0, e1, . . . , ep] is a convenient nota-
tion for �p. A p-simplex with its vertices
listed in such an order is called an ori-
ented p-simplex. Two oriented p-simplices
are equivalent iff one can be obtained
from the other by an even permuta-
tion of the vertices, e.g., [e2, e0, e1] and
[e0, e1, e2] are equivalent oriented standard
2-simplices.

A singular p-simplex in a topological
space X is simply a continuous function
f : �p → X . Thus the points of X may be
thought of as the images of singular 0-
simplices, and paths in X correspond to
the images of singular 1-simplices. The
word singular is used to indicate that the
dimension of the image may be less than
the dimension p of the domain �p. So
points can in fact be the images of 1-
simplices, 2-simplices, etc., and the image
of any p-simplex can be regarded as the
image of a q-simplex if q is larger than p.
The boundary elements of each p-simplex
break up into lower-dimensional simplices
called faces, e.g., the triangle �2 has three
one-dimensional faces given by its edges
and three zero-dimensional faces given by
its vertices. For each 0 ≤ i ≤ p, the ith
face of the singular p-simplex f is the
singular (p − 1)-simplex Fi(f ): �p−1 →
X defined by Fi(f )(t0, t1, . . . , tp−1) =

0
0

1
1 0 1

1

11

Standard 0-Simplex

Standard
2-Simplex

Standard
1-Simplex

Fig. 6 Standard zero-, one-, and two-dimensional simplices
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f (t0, t1, . . . , ti−1, 0, ti, . . . , tp−1). The bou-
ndary operator ∂p is defined on each singu-
lar p-simplex f by ∂pf = F0(f ) − F1(f ) +
· · · + (−1)pFp(f ). This agrees with the
notion of boundary used in the Stokes the-
orem. To illustrate, let f : �2 → X be a sin-
gular 2-simplex, so that f maps the triangle
[e0, e1, e2] in R3 to X. The boundary ∂2f is
then given by the combination of three
1-simplices: ∂2f = F0(f ) − F1(f ) + F2(f ),
where F0(f ) corresponds to the map f re-
stricted to side [e1, e2], F1(f ) corresponds
to the map f restricted to side [e0, e2], and
F2(f ) corresponds to the map f restricted
to side [e0, e1]. The negative sign attached
to F1(f ) indicates that the orientation is
reversed, so that ∂2f simply traverses the
boundary of f in the expected manner. See
Fig. 7.

As seen above, the boundary operators
give sums of simplices. The notion of a p-
chain is introduced to define these correctly
as well as to discuss more complicated
subsets of X and to develop the algebraic
structure of the theory. The pth singular
chain group Cp(X) of X is defined to
be the free Abelian group generated by
the set of all singular p-simplices in X ;
i.e., c is a singular p-chain in X iff c =
n1f1 + n2f2 + · · · + nkfk for some integers
n1, n2, . . . , nk and singular p-simplices

f1, f2, . . . , fk. So a singular p-chain is simply
a finite integer-weighted sum of singular p-
simplices. Intuitively, imagine such a sum
as a collection of parametrized regions
over which an integration is performed.
An integer weight k indicates that the value
of the integral over that region is counted
k times; a negative weight indicates that
the integral is taken with the opposite
orientation, and therefore the sign of the
value is reversed. The boundary operator
extends to such singular p-chains by
∂pc = n1∂pf1 + n2∂pf2 + · · · + nk∂pfk. This
gives a sequence of boundary operators
∂p: Cp(X) → Cp−1(X) defined for each
p ≥ 1. ∂0 is defined by ∂0c = 0 for each
singular 0-chain c. These operators satisfy
∂p ◦ ∂p+1 = 0 for all p ≥ 0; i.e., the
boundary of a boundary is always 0 where
by convention 0 represents the special
degenerate singular chain whose image
is the empty set. This important condition
is usually abbreviated to ∂2 = 0.

A singular p-chain z ∈ Cp(X) is called
a p-cycle in X iff ∂pz = 0. b ∈ Cp(X)

is called a p-boundary in X iff b = ∂pc
for some c ∈ Cp−1(X). The group of p-
cycles in X is denoted by Zp(X), and the
group of p-boundaries in X is denoted
by Bp(X). By convention, Z0(X) is equal
to C0(X). The condition ∂2 = 0 implies

e2 = (0, 0, 1)

e0 = (1, 0, 0)

e1 = (0, 1, 0)

[e2, e0]

[e0, e1]

[e1, e2] f

∆2

M

�f

Fig. 7 A singular 2-simplex f and its boundary ∂ f
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that each p-boundary is also a p-cycle,
and so Bp(X) ⊂ Zp(X) for each p. For
each p ≥ 0 the pth singular homology group
with integer coefficients of the topological
space X is defined to be the factor
group Hp(X, Z) = Zp(X)/Bp(X). Thus a
sequence of Abelian groups is assigned to
each space X. ‘‘Integer coefficients’’ refers
to the integer weights in the chain groups;
other coefficient groups may also be used.

Here are a few famous examples.
Assume n ≥ 1.

For n-dimensional real spaces Rn,

Hp(Rn, Z) = Z if p = 0, and 0 otherwise.

For the n-dimensional spheres Sn,

Hp(S
n, Z) = Z if p = 0 or n,

and 0 otherwise.

For the real projective plane, RP2:

Hp(RP2, Z) = Z if p = 0, Z2 if p = 1,

and 0 otherwise.

Here Z2 is the Abelian group with exactly
two elements. In general, Zn denotes the
cyclic group with exactly n elements. For
the two-dimensional Klein bottle K :

Hp(K, Z) = Z if p = 0, Z ⊕ Z2 if p = 1,

and 0 otherwise.

For the two-dimensional torus T = S1 ×
S1:

Hp(T, Z) = Z if p = 0 or 2, Z2 = Z ⊕ Z

if p = 1, and 0 otherwise.

For the two-dimensional g-holed torus Tg :

Hp(Tg , Z) = Z if p = 0 or 2, Z2g

if p = 1, and 0 otherwise.

Here Z2g denotes the direct sum of 2g
copies of Z. The nonnegative integer g
is called the genus of Tg . For the n-
dimensional tori Tn = S1 × · · · × S1:

Hp(T
n, Z) = ZC(n,p) for all 0 ≤ p ≤ n,

and 0 otherwise,

where C(n, p) is the binomial coefficient.

For the n-dimensional real projective
spaces, RPn:

Hp(RPn, Z) = Z if p = 0 or n with n
odd, Z2 if p is odd and 0 < p < n,

and 0 otherwise.

For the 2n-dimensional complex projective
spaces, CPn:

Hp(CPn, Z) = Z if p = 0, 2, 4, . . . , 2n,

and 0 otherwise.

In most cases of interest such as compact
manifolds, the above homology groups are
finitely generated Abelian groups; i.e., they
can be put into the cyclic normal form

Zm ⊕ Zt1 ⊕ Zt2 ⊕ · · · ⊕ Ztk

for some integer m ≥ 0 and integers
t1, t2, . . . , tk such that each ti > 1 and ti
divides ti+1 for each 1 ≤ i < k. Here Zm

denotes the direct sum of m copies of Z,
and Zn denotes the cyclic group of order n.

For Hp(X, Z) in the above form, the
integer m is called the pth Betti number,
βp, of X, and t1, t2, . . . , tk are called the pth
torsion coefficients of X, and the number k
of such torsion coefficients is denoted τp.
The Euler – Poincaré characteristic χ(X) is
given by the alternating sum of the Betti
numbers of X :

χ(M) =
∑
p≥0

(−1)pβp.
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The homology groups, Betti numbers,
torsion coefficients, and Euler–Poincaré
characteristic are topological invariants
of the space X ; i.e., these invariants
are the same for homeomorphic spaces.
However, these invariants may also be
the same for some nonhomeomorphic
spaces such as R and R2. So these
invariants are generally more useful in
proving spaces are not homeomorphic
than in proving them homeomorphic.
If M and N are compact manifolds of
dimension m and n, respectively, then
χ(M × N) = χ(M) × χ(N), and if m = n,
then χ(M # N) = χ(M) + χ(N) − [1 +
(−1)n], where M × N is the Cartesian
product and M # N is the connected sum
of M and N.

In the 1920s Lefschetz defined the rel-
ative homology groups of a pair (X,A) of
topological spaces with A ⊂ X . Intuitively,
this corresponds to the homology of the
space obtained from X by collapsing A
to a point. Formally, the group of rel-
ative p-cycles mod A is Zp(X, A) = {c ∈
Cp(X)|∂pc ∈ Cp−1(A)}, and the group of
relative p-boundaries mod A is Bp(X, A) =
{c ∈ Cp(X)|c − c′ ∈ Bp(X) for some c′ ∈
Cp(A)}. The pth relative singular homol-
ogy group of the pair (X,A) is then de-
fined to be the factor group Hp(X, A) =
Zp(X, A)/Bp(X, A) for each p ≥ 0. One
very important consequence of relative
homology is the long exact sequence in
homology. For each pair (X,A) two inclu-
sion maps of pairs are naturally defined:
i: (A, ∅) → (X, ∅) and j: (X, ∅) → (X, A).
These induce natural maps i∗ and j∗ in
homology, and combining these with ap-
propriate induced boundary operators ∂∗
yields the long exact homology sequence:

· · · −→ Hp+1(X, A)
∂∗−→Hp(A)

i∗−→Hp(X)

j∗−→Hp(X, A)
∂∗−→Hp−1(A) −→ · · ·

Such a sequence · · · → G
f→H

g→K → · · ·
of groups connected by group homomor-
phisms is exact at the group H iff the
image of f equals the kernel of g; i.e.,
f (G) = {a ∈ H|g(a) = eK}, where eK is the
identity element in the group K. Thus, the
long exact sequence in homology is exact
at each group in the sequence. Further,
each continuous map f : (X, A) → (Y, B)

between pairs induces natural homomor-
phisms between their associated long exact
sequences. This structure is very important
in the theoretical development and appli-
cation of algebraic topology in general.
Similar long exact sequences also exist for
homotopy and cohomology. To illustrate
briefly a typical use of the structure of
exact sequences, consider such a sequence

· · · −→ F
f−→G

g−→H
h−→K −→ · · · .

If the group F is the zero group, then the
map g must be injective; if the group K is
the zero group, then the map g must be
surjective; thus if both F and K are zero
groups, then the map g is an isomorphism,
and the groups G and H are isomorphic.

2.4
Cohomology

Cohomology groups are additional alge-
braic structures associated to a given space.
Like homology, there are various methods
for defining and computing cohomol-
ogy such as simplicial, cellular, singular,
Čech, and de Rham. Singular cohomol-
ogy proceeds by constructing dual objects
called cochain groups and their associ-
ated coboundary operators and performing
quotient group operation as in homology.
As usual, for the spaces typically found
in physics, such as manifolds, all of these
methods produce essentially the same re-
sults. The cohomology groups of a space
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are dual to the homology groups in a
sense similar to that of the duality between
Dirac’s bra and ket vectors, or between
contravariant and covariant tensors. The
most commonly encountered cohomology
in physics is the de Rham cohomology as-
sociated with the differential forms on a
manifold, and this is discussed in Sec. 3.

3
Differential Topology

Differential topology is the area of topol-
ogy most directly associated with physics.
The basic objects are smooth manifolds,
and the functions of interest are smooth
maps between such manifolds. Vector
fields, differential forms, differential op-
erators, and integration are naturally the
key tools. The subject is very closely tied
to differential geometry and global anal-
ysis, and these subjects usually appear
together in applications. This section has
much in common with the article GE-

OMETRICAL METHODS. This section treats
manifolds, bundles, vector fields and dif-
ferential forms, de Rham cohomology, and
Morse theory. Manifolds are the natural
answer to the question: What sort of spaces
should be the domains and ranges of func-
tions? It is clear that higher-dimensional
spaces are needed for problems involv-
ing several variables such as dynamical
systems. Also spaces with curvature are
necessary to treat surfaces in Euclidean
spaces as well as general relativity. Coor-
dinate systems are required in order to
apply the techniques of calculus and anal-
ysis. These allow problems in the space to
be transferred to subsets of Rn, analyzed,
and then mapped back to the original
space. Manifolds are spaces designed with
these objectives in mind. Bundles, more

precisely called fiber bundles, are struc-
tures built on manifolds. They answer the
question: Where are objects such as vec-
tor fields, differential forms, and general
tensor fields located? Perhaps the most fa-
miliar example in physics is phase space.
Here the underlying ‘‘base’’ manifold is
configuration space: the set of allowable
positions or generalized positions for the
system. A simple planar pendulum, for
example, has the circle S1 as its configu-
ration space and phase space given by an
infinite cylinder. This infinite cylinder is
the ‘‘cotangent’’ bundle of S1. The double
planar pendulum has configuration space
given by a two-dimensional torus T, and
its phase space is the cotangent bundle of
T, which is four-dimensional. Two of these
dimensions give the position of the pendu-
lum bobs, and the remaining two give their
momenta. If the generalized momenta are
replaced by generalized velocities, then the
appropriate bundle is the tangent bundle
of the configuration space M. Velocities
are given by vector fields on M and are
therefore located in the tangent bundle,
whereas momenta are given by 1-forms
on M and so are located in the cotangent
bundle.

The topology of a manifold M places re-
strictions on the behavior of the functions,
vector fields, and differential forms defined
on M. For example, each smooth tangent
vector field on a 2-sphere must be zero
at some point. Intuitively, at each point in
time there must be some point on the Earth
at which the (horizontal component of the)
wind velocity is zero. The Poincaré – Hopf
index theorem makes this relation pre-
cise. Similarly, the theorems of de Rham
and Hodge use de Rham cohomology to
quantify the topological restrictions on the
differential forms on manifolds. One of
most beautiful areas of differential topol-
ogy is Morse theory, which Marston Morse
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developed in connection with his study of
geodesics on manifolds. The original moti-
vation for this work came from the work of
Poincaré and Birkhoff in dynamical sys-
tems where the motion of the system
is described by geodesics. Morse theory
quantifies the topological restrictions on
the critical points of smooth nondegen-
erate functions. For example, the theory
guarantees that each smooth nondegener-
ate function on a g-holed torus must have
at least 2g + 2 critical points.

Characteristic classes are specific coho-
mology classes assigned to bundles. They
were designed to answer two questions:
(1) When is a bundle trivial, i.e., a simple
Cartesian product of the base manifold and
the fiber? and (2) When are two bundles
equivalent? An important area of applica-
tion is the Atiyah – Singer index theorem
that quantifies the number of solutions of
certain operators on manifolds. Although
mentioned briefly in this article, these top-
ics require more extensive machinery than
is reasonable in this discussion. See Sec. 4
for appropriate references.

3.1
Manifolds and Bundles

The notion of a manifold is a generaliza-
tion of that of a surface in R3 such as a
two-dimensional sphere. It is not possible
to cover the sphere with a single coordinate
system; at least two are needed. If each co-
ordinate system is viewed as an observer,
then in the regions in which their coordi-
nate systems overlap, they should be able
to compare data, i.e., effectively transform
each coordinate system into that of any
overlapping system. Since not only posi-
tions but also velocities and accelerations
should be transformable, the changes of
coordinates are required to be smooth; i.e.,
the functions and all their derivatives of all

orders are required to be continuous. Typ-
ical examples are the configuration and
phase spaces used in classical mechan-
ics. These are usually higher-dimensional
manifolds.

An n-dimensional differentiable manifold
M is a locally Euclidean topological space.
More precisely, M has a covering by coor-
dinate charts, which are homeomorphisms
ϕi: Ui → ϕi(U) ⊂ Rn for each i ∈ I such
that each Ui is an open subset of M,
M ⊂ Ui∈IUi, and on the overlap between
the images of each pair of charts, the func-
tion ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is
a smooth function. See Fig. 8. Coordinate
charts are also called coordinate systems,
local charts, or just charts. On a manifold,
calculus is done by transferring the pro-
cess back to Rn via the coordinate charts,
performing the appropriate calculus op-
erations, and then transferring the result
back to the manifold. For example, a func-
tion f : M → N between manifolds M of
dimension m and N of dimension n is
smooth iff ψ ◦ f ◦ ϕ−1 is smooth as a map
from an open set of Rm to an open set
of Rn for each pair of charts ϕ on M and
ψ on N. A smooth function ϕ: M → N

M Ui

ji

ji (Ui) jj (Uj)

jj o ji
−1

jj

Uj

Rn Rn

Fig. 8 Manifold charts φi and φj must have
smooth transition functions φj ◦ φ−1

i on
overlaps φi(Ui ∩ Uj)
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with a smooth inverse is called a diffeo-
morphism. A manifold M is orientable iff a
covering by coordinate charts {ϕi}i∈I can
be chosen for M in such a way that the
determinants of the Jacobian matrices of
the overlap maps ϕj ◦ ϕ−1

i are positive for
each i, j ∈ I. Manifolds for which such a
covering does not exist are called nonori-
entable. Among two-dimensional surfaces,
the sphere and g-holed tori are orientable,
whereas the Klein bottle and real projective
plane are nonorientable. Very frequently,
manifolds are assumed to be Hausdorff or
even paracompact topological spaces, and
this is the case for almost all cases typically
encountered. If, in the above definition of
differentiable manifold, Rn is replaced by
Cn and the overlap maps ϕj ◦ ϕ−1

i are
required to be complex analytic, then the
space M is called an n-dimensional complex
manifold, and the tools of complex analysis
are appropriate. Manifolds with boundary
are defined by allowing two kinds of coordi-
nate charts: the usual manifold style charts
as given originally, plus special charts
adapted for boundary points as follows.
Let Rn+ = {(x1, x2, . . . , xn)|xn ≥ 0} be the
standard upper half-space in Rn with the
induced topology. Then each point of a
manifold with boundary is required to be
homeomorphic to an open subset of ei-
ther Rn or Rn+, and where charts overlap,
their transition functions must be smooth.
In Fig. 9 the manifold with boundary is
a torus with a disk removed at the top.
Each point such as P on the boundary re-
quires a half-space chart as illustrated by
ψ . The points such as Q in the interior of
M have usual manifold-style charts. The
boundary of M is denoted ∂M. Typical ex-
amples are the Möbius strip and the upper
hemisphere of the 2-sphere, each of which
has boundary homeomorphic to the circle
S1, and the closed ball in Rn with bound-
ary given by the (n − 1)-sphere Sn−1. In

�M

M

y

j

P

Q

R2
+

R2

Fig. 9 Manifolds with boundary require
‘‘half-space charts’’ ψ for boundary points such
as P

discussions involving manifolds both with
and without boundary, manifolds without
boundary are often called closed manifolds.

Although the initial motivation for
manifolds came from spaces such as
surfaces sitting in Euclidean spaces, the
definition of a manifold does not assume
this, and so it is an interesting question
whether such abstractly given manifolds
can be considered as embedded in Rn

for n sufficiently large. The Whitney
embedding theorem guarantees that this is
the case, i.e., each paracompact manifold
of dimension n ≥ 1 has an embedding into
R2n. Thus the Klein bottle always intersects
itself when considered as a subset of R3,
but it can be placed in R4 without such a
self intersection.

Manifolds are the natural choice for the
complicated geometrical structures that
occur in physics. In addition to the con-
figuration and phase spaces mentioned
above, Minkowski spacetime, the universe
of general relativity if singularities are ig-
nored, and all Lie groups such as the
rotation groups, Lorentz groups, unitary
groups, and Poincaré groups are mani-
folds. However, structures such as vector
fields, differential forms, and other tensors
defined on such spaces require more gen-
eral constructions, namely, bundles built
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on such manifolds. Bundles (see GEOMET-

RICAL METHODS) are special manifolds that
are generalizations of Cartesian products.
R2 is the Cartesian product of R and R
and so has a global product structure. In a
bundle only a local product structure is re-
quired. The most commonly used bundles
on a manifold M are the tangent bun-
dle TM, the cotangent bundle T∗M, the
exterior product bundles ΛpM, and more
generally the tensor bundles Tr

s M. These
are vector bundles; i.e., the fibers are vector
spaces and the sections of these bundles
give the vector fields, differential forms,
and tensors on M. A section of a bundle is
simply a smooth map that assigns to each
point of the base manifold an element of
the fiber over that point. Thus, a section
of the tangent bundle of M is a (tangent)
vector field on M. The two basic formu-
lations of classical mechanics, Lagrangian
and Hamiltonian, are associated to the
bundles TM and T∗M, respectively. For
example, if M is the configuration space
of the system, then the phase space is the
cotangent bundle T∗M, and the Hamil-
tonian is a map H: T∗M → R. In gauge
theories vector bundles are replaced by
the more general principal fiber bundles
in which each fiber is a Lie group ap-
propriate to the symmetries of the fields
involved. Characteristic classes are special
cohomology classes giving topological in-
formation about bundles. These can be
used, for example, to determine whether
a given bundle has a global product struc-
ture, or to distinguish various bundles
since bundles with different characteris-
tic classes must be different. The Euler
class, Stiefel–Whitney classes, Pontryagin
classes, and Chern classes are standard
characteristic classes. Secondary charac-
teristic classes such as the Chern–Simons
classes also play a role in gauge theories
and mechanics.

3.2
Vector Fields and the Poincaré–Hopf Index
Theorem

Viewed in terms of the above considera-
tions, a (tangent) vector field on a manifold
M is a section of the tangent bundle of M.
Each point of M at which a vector field
X is zero is called a zero of X, and the
set of such zeros is denoted ZX . If a zero
p of X is isolated, i.e., p is the only zero
of X in some neighborhood of p, then
an integer index iX (p) can be assigned to
p. Consider first the vector field X in R2

defined by X(x, y) = (x2 − y2, 2xy). X has
the origin, p = (0, 0), as its only zero. Let C
be the circle of radius 1 centered at p, and
consider the normalized unit vector field
U = X/‖X‖ restricted to C. As C is tra-
versed once counterclockwise, the tip of U
performs exactly two counterclockwise ro-
tations about its origin; therefore the index
of X is 2. This X is not the field of a dipole,
but it does have the same flow lines. Simi-
larly, X(x, y) = (x3 − 3xy2, 3x2y − y3) has
the same flow lines as a quadrupole and
index 3. The vector field X(x, y) = (x, −y)
has the flow lines of a saddle and index
−1. For the case of a general planar vec-
tor field X(x, y) = (P(x, y), Q(x, y)) with
an isolated zero at the origin p, the index
may be computed by the formula

iX (p) = 1

2π

∫
C

PdQ − QdP

P2 + Q2 ,

where C is a circle centered at p with
radius small enough so that p is the only
zero of X inside C, and C is traversed
counterclockwise. In the n-dimensional
case, the index is defined to be the degree
of the map of a small (n − 1)-dimensional
sphere Sn−1, centered at p and containing
no other zero of X, to itself produced by
appropriately normalizing X restricted to
this Sn−1. This index is always an integer



610 Topology

and is independent of the choice of radius
of the sphere provided p is the only zero of
X interior to that sphere.

The Poincaré–Hopf index theorem
states that if X is a vector field having
only isolated zeros on a compact orientable
manifold M of dimension n, then∑

p∈Zx

iX (p) = χ(M).

Thus, among the orientable surfaces, the
sum of the indices of the zeros of such a
vector field must be 2 for the sphere and
2 − 2g for the g-holed torus. In particular,
only the usual torus can admit a nonzero
(tangent) vector field.

3.3
Differential Forms and de Rham
Cohomology

It is hard to overemphasize the impor-
tance of differential forms in differential
geometry and topology. Although they are
just completely alternating covariant ten-
sor fields on manifolds and are therefore
part of the general theory of tensors, the
simplicity of their structure and operations
plus the direct connection with the under-
lying geometry of the space have given
them a very special place in these subjects.
Examples of forms in R3 were given in
Sec. 2.1 above. See GEOMETRICAL METHODS

for the more general case as well as defini-
tions of the exterior derivative operator d,
the Hodge star operator ∗, and the codiffer-
ential operator δ, which is the adjoint of d
with respect to the inner product (,) defined
by (α, β) = ∫

M α ∧∗ β for each pair of p-
forms α and β on M. Here EpM denotes
the vector space of all p-forms on M. A Rie-
mannian or pseudo-Riemannian metric is
required for the definition of both ∗ and
δ. If M has dimension n, then d: EpM →
Ep+1M,∗ : EpM → En−pM, and δ: EpM →

Ep−1M for each p. The d2 = 0 condition
again holds, i.e., d(dα) = 0 for all α ∈ EpM,
as well as δ2 = 0. The Laplace–Beltrami
operator �: EpM → EpM is then defined
by � = dδ + δd. This generalizes the usual
Laplace operator � = ∇2, which is the di-
vergence of the gradient on functions. The
Laplace operator certainly has a claim to
being the most important and the most
studied operator in mathematical physics.
It occurs in the Laplace equation, Poisson
equation, heat equation, wave equation,
wave-equation forms of Maxwell equa-
tions, and Schrödinger equation among
others. The underlying reason is that it
measures the deviation from equilibrium.
So it is very natural to seek a generalization
of this operator. However, it is important
to be careful about the sign of the opera-
tor. The usual conventions for the Hodge
star operator give the negative of the di-
vergence of the gradient. This agrees with
Maxwell’s convention; he called this �f
the concentration of f. As a result of this
convention the spectrum (set of eigen-
values) of � on a compact manifold is
nonnegative. � is then a nonnegative, el-
liptic, self-adjoint, second-order operator
on each EpM. Also, � acting on one-forms
corresponds to the negative of the usual
Laplacian, ∇divX − curl curl X, on vector
fields X as used in vector analysis. It is
important to notice that since a metric is
needed to define the Hodge star opera-
tor ∗, and therefore also the codifferential
operator δ, the Laplace–Beltrami operator
involves the geometry of the manifold as
well as its topology.

Again, α ∈ EpM is closed iff dα = 0, and
α ∈ EpM is exact iff α = dϕ for some
ϕ ∈ Ep−1M. Setting Zp(M) equal to the
set of closed p-forms, and Bp(M) equal to
the set of exact p-forms, d2 = 0 implies
that Bp(M) ⊂ Zp(M), and the de Rham
cohomology vector spaces are defined by
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H
p
dR(M, R) = Zp(M)/Bp(M) for each p.

The Poincaré lemma says that each p-form
that is closed in a neighborhood equivalent
to an open ball is exact in that neighbor-
hood; the de Rham cohomology measures
the extent to which this holds globally on
the manifold M. The de Rham theorem
says that this cohomology agrees with that
derived via the more topological methods
such as singular and Ĉech. Further, on
each compact orientable manifold M of
dimension n, the Hodge star operator in-
duces an isomorphism called Poincaré du-
ality between H

p
dR(M, R) and H

n−p
dR (M, R)

for each p. The Hodge theorem gives an or-
thogonal decomposition EpM = H pM ⊕
dEp−1M ⊕ δEp+1M, where H pM denotes
the set {α ∈ EpM|�α = 0} of harmonic p-
forms, dEp−1M is the set of exact p-forms,
and δEp+1M is the set of coexact p-forms
on M. Further, the dimension of the space
of harmonic p-forms is βp(M), the pth
Betti number of M. The Hodge theorem
is a generalization of Helmholtz’s theo-
rem that represents vector fields in R3

as sums of curls and gradients. More
sophisticated global theorems such as
the Hirzebruch–Riemann–Roch theorem
and the general Atiyah–Singer index the-
orem utilize the theory of characteristic
classes.

3.4
Morse Theory

Morse theory relates the critical-point
structure of a smooth function on a
manifold to the topology of the manifold.
Given a smooth function f : A → R where
A is an open subset of Rn, a point p ∈ A is
a critical point of f iff

∂ f

∂xi
(p) = 0

for each i = 1, 2, . . . n; i.e., the gradient
of f is 0 at p. Such a critical point of
f is nondegenerate iff the determinant of
the Hessian matrix Hf (p) is nonzero. The
Hessian Hf (p) is the symmetric matrix of
second derivatives of f evaluated at p; i.e.

(Hf (p))ij = ∂2f

∂xi∂xj
(p).

The index k of a critical point p is the
number of negative eigenvalues of Hf (p).
For example, f (x) = 3x5 − 5x3 + 1 has a
degenerate critical point at 0, and nonde-
generate critical points at −1 and 1 with
indices 1 and 0, respectively. The Rosen-
holtz function f (x, y) = 4x2ey − 2x4 − e4y

has exactly two critical points, located at
(−1, 0) and (1,0), both nondegenerate and
of index 2. This remarkable function has
two local maxima and no other critical
points; its graph has two mountains but
no saddle points. Index-0 critical points
correspond to local minima, and critical
points of maximal index (equal to the di-
mension of the domain of the function)
correspond to local maxima; the critical
points of intermediate index behave like
saddle points.

The Morse lemma states that for each
nondegenerate critical point p of index
k of f there is a neighborhood U of p
and a set of coordinates {t1, t2, . . . , tn}
in U such that f can be expressed
as f (t1, t2, . . . , tn) = f (p) − t21 − t22 − · · · −
t2k + t2k+1 + · · · + t2n in U. So f has a normal
form in some neighborhood of each of its
nondegenerate critical points. This implies
that each nondegenerate critical point is
isolated. These local notions easily extend
to smooth real-valued maps on manifolds,
although it is worth noting that in general a
Riemannian metric is needed to define the
Hessian at noncritical points. A standard
example is the height function f defined
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on a two-dimensional torus M placed on
end on the x-y plane in R3 as in Fig. 10.
The value f (p) is just the height (the z
coordinate) of the point p above the z = 0
plane. This function has four critical points
located at a, b, c, and d, all nondegenerate:
the bottom point a with index 0, the two
saddle points b and c each of index 1,
and the top point d with index 2. For the
torus laid flat on the plane, the height
function has two circles of critical points at
top and bottom, and each of these critical
points is degenerate; however, the slightest
tilting of the torus from this position
is sufficient to give a height function
with all nondegenerate critical points. A
smooth function f : M → R is a Morse
function on M iff each critical point of f is
nondegenerate. The Morse functions are
dense in the set of smooth functions on M
in the following sense: Given any smooth
function f : M → R, there exist arbitrarily
nearby Morse functions.

Morse, following the lead of his advisor
G. D. Birkhoff, found a sequence of
inequalities giving topological restrictions

z = 0 plane in R3

Real line R

0

c

d

b

a

M f

Fig. 10 The height function f has critical points
at a, b, c, and d. The minimum at a has index 0,
the saddle points at b and c have index 1, and the
maximum at d has index 2

on the number ck of critical points of
index k for a general Morse function f
on a compact manifold M of dimension n.
Letting βp denote the pth Betti number of
M, the Morse inequalities are

c0 ≥ β0

c1 − c0 ≥ β1 − β0

c2 − c1 + c0 ≥ β2 − β1 + β0

...∑
0≤i≤p

(−1)p−ici ≥
∑

0≤i≤p

(−1)p−iβi

...∑
0≤i≤n

(−1)n−ici =
∑

0≤i≤n

(−1)n−iβi.

Notice that the last relation is in fact
always an equality. Thus the alternating
sum of the critical numbers cp of f
equals the Euler–Poincaré characteristic
χ(M). These relations immediately imply
cp ≥ βp for each p. These inequalities
were extended by Pitcher to include the
influence of the torsion coefficients of M
as follows: For each p,

cp ≥ βp + τp + τp−1,

where τp denotes the number of torsion
coefficients in the cyclic normal form
of the pth homology group Hp(M, Z),
as discussed in Sec. 2.3. As a simple
application, consider a surface M sitting
in R3. For almost all points p not on M,
the distance function from p to each of the
points of M is a Morse function on M (the
other points are called focal points), and the
critical points of this function correspond
to lines from p to M that are perpendicular
to M. Thus the Morse inequalities imply
that the number of normals to M from any
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nonfocal point p is greater than or equal to
the sum of the Betti numbers of M.

4
A Brief Guide to Further Reading

Topology has a vast literature with texts
ranging from very elementary to very
specialized. This section is designed to
select a relatively small number of read-
ily available books in each of the areas
covered in this article. These books are
usually intended to be used in courses
and therefore are rather condensed. More
physics-oriented texts such as Felsager
(1983), Nash and Sen (1983), von West-
enholz (1981), Eguchi et al. (1980), Nash
(1991), Göckeler and Schücker (1987), and
Nakahara (1990) are demanding texts, but
they usually keep physical applications in
the forefront. Browsing through these texts
for an initial orientation is strongly recom-
mended.

4.1
Point-Set Topology

Many of the classic texts on point-set
topology were designed to provide a
foundation for analysis. Good examples
are Simmons (1963), Wilansky (1970), and
Kelley (1955). Texts by Munkres (1975),
Sieradski (1992), Jänich (1984), Dugundji
(1966), and Hocking and Young (1961) also
include discussion of algebraic-topological
topics such as homotopy and homology.
Most algebraic-topology texts include brief
discussions of point-set topology topics.
Armstrong (1983) and Kinsey (1993) are
good examples at an undergraduate level.
Most functional-analysis texts also contain
relevant material; see, for example, Naylor
and Sell (1982), Kreyszig (1978), Reed and
Simon (1980), and Lang (1993).

4.2
Algebraic Topology

Seifert and Threlfall (1980), Veblen (1931),
Cairns (1961), and Wallace (1968) are
older texts that treat simplicial homology.
Armstrong (1983), Kinsey (1993), and
Jänich (1984) are good undergraduate-level
introductions. Munkres (1984), Greenberg
and Harper (1981), Rotman (1988), Massey
(1991), Dold (1980), and Spanier (1981)
are popular graduate-level texts. Hilton
and Wiley (1960), Mac Lane (1963), and
Vick (1994) treat homology theory, and
Hu (1959) is a basic early reference for
homotopy theory.

4.3
Differential Topology

Guillemin and Pollack (1974), Milnor
(1965), Dodson and Poston (1991), and
Wallace (1968) are good introductions.
Bröcker and Jänich (1982), Hirsch (1976),
Kosinski (1993), Lang (1995), and Warner
(1983) are popular graduate-level texts.
Springer (1981) and Weyl (1955) are
classic introductions to Riemann surface
theory. Steenrod (1951), Chern (1979),
Kobayashi and Nomizu (1963, 1969),
Gilkey (1995), Bott and Tu (1982), Milnor
and Stasheff (1974), Hirzebruch (1966),
and Husemoller (1994) are standard ref-
erences for bundles and characteristic
classes. Milnor (1963), Hirsch (1976), Bott
(1994), and Kosinski (1993) discuss Morse
theory. Eguchi et al. (1980), Gilkey (1995),
Nash (1991), and Nakahara (1990) are
good references for the Atiyah–Singer in-
dex theorem. Choquet-Bruhat et al. (1982,
1989) is a good general reference that
covers a wide range of topics in differ-
ential topology and geometry particularly
relevant for physics. Chern (1979), Wells



614 Topology

(1980), and Hübsch (1992) treat complex
manifolds.

4.4
Physical Applications

Flanders (1963) is the classic reference
for differential forms. Schutz (1980) and
von Westenholz (1981) are recommended
for more advanced applications. Felsager
(1983), Nash and Sen (1983), Eguchi
et al. (1980), Nash (1991), Göckeler and
Schücker (1987), and Nakahara (1990)
are highly recommended for physicists.
Birkhoff (1927) is a classic text in dynam-
ical systems; more recent mathematically
oriented texts are Arnol’d (1989), Abraham
and Marsden (1978), and Abraham et al.
(1988) for classical mechanics and dynami-
cal systems, and Atiyah (1990), Green et al.
(1987), and Hübsch (1992) for relations to
string theories.

Glossary

Accumulation Point: (see Sec. 1.1)
Balls: (see Introduction)
Banach Space: (see Sec. 1.3)
Basepoint: (see Sec. 2.2)
Betti Numbers: (see Sec. 2.3)
Bolzano–Weierstrass Property:
(see Sec. 1.3)
Boundary: (see Sec. 1.1)
Boundary Operator: (see Sec. 2.3)
Boundary Point: (see Sec. 1.1)
Bounded Subset: (see Sec. 1.3)
Bundle: (see Sec. 3.1)
Cartesian Product: (see Introduction)
Cauchy Sequence: (see Sec. 1.3)
Chain: (see Sec. 2.3)
Chain Group: (see Sec. 2.3)
Charts: (see Sec. 3.1)
Closed Differential Form: (see Secs. 2.2 and
3.3)

Closed Manifold: (see Sec. 3.1)
Closed Set: (see Sec. 1.1)
Closure: (see Sec. 1.1)
Closure Point: (see Sec. 1.1)
Coexact Differential Form: (see Sec. 3.3)
Compact Space: (see Sec. 1.3)
Complete Metric Space: (see Sec. 1.3)
Complex Manifold: (see Sec. 3.1)
Complex Projective Spaces: (see Introduc-
tion)
Connected Space: (see Sec. 1.3)
Connected Sum: (see Introduction)
Continuity: (see Sec. 1.2)
Convergent Sequence: (see Sec. 1.3)
Coordinate Charts: (see Sec. 3.1)
Critical Numbers of a Map: (see Sec. 3.4)
Critical Point: (see Sec. 3.4)
Cyclic Normal Form: (see Sec. 2.3)
De Rham Cohomology: (see Sec. 3.3)
Dense: (see Sec. 1.1)
Diffeomorphism: (see Sec. 3.1)
Differential Form: (see Secs. 2.1 and 3.3)
Equicontinuity: (see Sec. 1.3)
Euler–Poincaré Characteristic:
(see Sec. 2.3)
Exact Differential Form: (see Secs. 2.1 and
3.3)
Exact Sequence: (see Sec. 2.3)
Exterior Point: (see Sec. 1.1)
Finite Subcover: (see Sec. 1.3)
Finitely Generated Abelian Group: (see
Sec. 2.3)
First Homotopy Group: (see Sec. 2.2)
Focal Points: (see Sec. 3.4)
Fundamental Group: (see Sec. 2.2)
g-Holed Torus: (see Introduction)
Harmonic Differential Form: (see Sec. 3.3)
Hausdorff Space: (see Sec. 1.1)
Hessian: (see Sec. 3.4)
Hilbert Space: (see Sec. 1.3)
Homeomorphic: (see Sec. 1.2)
Homeomorphism: (see Sec. 1.2)
Homologous: (see Sec. 2.1)
Homology Group: (see Sec. 2.3)
Homotopic Paths: (see Secs. 2.1 and 2.2)
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Hypersurface: (see Sec. 2.1)
Index of a Zero of a Vector Field: (see
Sec. 3.2)
Inner Product: (see Sec. 1.1)
Inner Product Space: (see Sec. 1.1)
Interior: (see Sec. 1.1)
Interior Point: (see Sec. 1.1)
Isolated Point: (see Sec. 1.1)
Klein Bottle: (see Introduction)
Laplace–Beltrami Operator: (see Sec. 3.3)
Limit Point: (see Sec. 1.1)
Locally Finite Refinement: (see Sec. 1.3)
Long Exact Sequence: (see Sec. 2.3)
Loop: (see Sec. 2.2)
Manifold: (see Sec. 3.1)
Map: (see Sec. 1.2)
Metric Space: (see Sec. 1.1)
Metric Topology: (see Sec. 1.1)
M

..
obius Strip: (see Introduction)

Morse Function: (see Sec. 3.4)
Neighborhood: (see Sec. 1.1)
Nondegenerate Critical Point: (see Sec. 3.4)
Nonorientable Manifold: (see Sec. 3.1)
Norm: (see Sec. 1.1)
Normed Space: (see Sec. 1.1)
Open Ball: (see Sec. 1.1)
Open Cover: (see Sec. 1.3)
Open Neighborhood: (see Sec. 1.1)
Open Set: (see Sec. 1.1)
Orientable Manifold: (see Sec. 3.1)
Oriented Simplex: (see Sec. 2.3)
Pair of Topological Spaces: (see Sec. 2.3)
Paracompact: (see Sec. 1.3)
Partition of Unity: (see Sec. 1.3)
Path: (see Sec. 1.3)
Path Connected Space: (see Sec. 1.3)
Poincaré Duality: (see Sec. 3.3)
Poincaré Group: (see Sec. 2.2)
Poincaré Section: (see Sec. 2.1)
Real Projective Spaces: (see Introduction)
Relative Homology: (see Sec. 2.3)
Relative: p-Boundary (see Sec. 2.3)
Relative: p-Cycle (see Sec. 2.3)
Relative Topology: (see Sec. 1.1)
Separation Conditions: (see Sec. 1.1)

Sequential Compactness: (see Sec. 1.3)
Simplex: (see Sec. 2.3)
Simply Connected: (see Secs. 2 and 2.2)
Singular Homology: (see Sec. 2.3)
Singular Simplex: (see Sec. 2.3)
Smooth Map: (see Sec. 3.1)
Space: (see Sec. 1.1)
Spheres: (see Introduction)
Subspace Topology: (see Sec. 1.1)
Sup Norm: (see Sec. 1.1)
Support: (see Sec. 1.3)
Topological Space: (see Sec. 1.1)
Topologically Equivalent: (see Sec. 1.2)
Topology: (see Sec. 1.1)
Torsion Coefficients: (see Sec. 2.3)
Torus: (see Introduction)
Totally Bounded Metric Space:
(see Sec. 1.3)
Trivial Loop: (see Sec. 2.2)
Vector Field: (see Sec. 3.2)
Zero of a Vector Field: (see Sec. 3.2)
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Introduction

Variational principles derive from a cer-
tain aesthetic and metaphysical ideal of
simplicity in the search for the principles
underlying physical phenomena. The ori-
gins date back to the earliest Greek philoso-
phers Thales (c. 600 B.C.) and Pythagoras
(c. 550 B.C.). Aristotle (384–322 B.C.) clearly
makes use of a variational principle to jus-
tify circular orbits for the planets when he
says in de Caelo II

Now of lines which return upon themselves,
the line which bounds the circle is the
shortest, and that movement is the swiftest
which follows the shortest line.

This marks the first use of a ‘‘minimum’’
postulate, and the conclusion held sway
until the time of Kepler (1571–1630).
Hero of Alexandria (c. 125 B.C.) made
the first rigorous use of a variational
principle when he proved that when the
angle of incidence equals the angle of
reflection, the path taken by a ray of
light from the object to the observer is
shorter than any other possible path with
fixed end points (see Catoptrics by Hero
in Cohen and Drabkin, 1958). This later

became Fermat’s principle of least time in
geometrical optics.

The belief that nature is in some
sense ‘‘simple’’ and can be explained
by some economically small number of
postulates pervades the works of Galileo
(1564–1642), Newton (1642–1727), and
Leibniz (1646–1716). Although some of
the early conclusions turned out to be sci-
entifically unfounded, the philosophical
basis for variational principles has great
antiquity. They continue to guide the de-
velopment of new physical theories at the
most fundamental level and to provide
powerful methods of practical computa-
tion. Perhaps most importantly, they bring
out the structural analogies between su-
perficially different phenomena and allow
techniques developed in one field to be
readily applied in another. At a fundamen-
tal level, practically all physical phenomena
can be expressed in terms of variational
principles that have a striking similarity.

The calculus of variations provides the
basic mathematical tool for formulating
and analyzing variational principles. The
purposes of this article are first to give
an overview of the calculus of variations,
and then to discuss its application to a
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variety of physical phenomena. There is a
vast literature on both aspects, and only a
few of the most important points can be
covered in the space available. Only a few
principal references are given, with further
general references in the reading list at the
end. The main emphasis is on applications
to classical mechanics and bound-state
problems in quantum mechanics. Except
for a brief discussion of the Feynman
path integral, applications to scattering
problems are not covered. An informal
and instructive introduction to variational
methods can be found in Hildebrand and
Tromba (1985).

1
Techniques of the Calculus of Variations

In its simplest form, the calculus of varia-
tions addresses the problem of finding the
function y(x) for which the integral

J =
∫ x2

x1

f (x, y, yx) dx (1)

is an extremum. The integrand f (x, y, yx)

is some prescribed function of the in-
dicated variables, where yx = dy/dx, and
x1, x2 are fixed end points. J is termed
a functional of y(x). As originally formu-
lated by Euler, the problem is solved by
considering infinitesimal variations δy(x)

about a particular path y(x) connecting x1
and x2 (see Fig. 1) and demanding that

Fig. 1 Illustration of the actual path y(x) and the
varied path connecting fixed end points

the variation δJ induced in J vanish. For
example, one might choose the variations
to be δy(x) = εη(x), where η(x) is an arbi-
trary function such that η(x1) = η(x2) = 0
(to make the variation vanish at the end
points), and ε is a small parameter con-
trolling the size of the variation. Then
δyx(x) = εdη(x)/dx, and from a Taylor se-
ries expansion of f (x, y, yx) about ε = 0 in
Eq. (1), the induced variation in J is

δJ = ε

∫ x2

x1

[
∂ f

∂y
η(x) + ∂ f

∂yx

dη(x)

dx

]
dx

(2)

up to terms of first order in ε. An
integration of the second term by parts
yields

δJ = ε
∂ f

∂yx
η(x)

∣∣∣∣x2

x1

+ ε

∫ x2

x1

[
∂ f

∂y
− d

dx

∂ f

∂yx

]

× η(x) dx. (3)

The first term vanishes by the assumption
that η(x) = 0 at the end points. Since
η(x) is otherwise an arbitrary function,
the condition δJ = 0 can be fulfilled only if
the integrand of the second term vanishes
identically for x1 < x < x2; i.e.,

∂ f

∂y
− d

dx

∂ f

∂yx
= 0. (4)

This is the basic Euler–Lagrange equa-
tion. For purposes of compactness, the
functional dependence of f on its vari-
ous arguments is usually suppressed, as is
done here.

Any solution to Eq. (4) satisfies the
variational condition δJ = 0. However, J
itself could be a minimum, a maximum,
or a point of inflection. One often
knows from the geometrical nature of the
problem being solved which case applies.
Otherwise, it is necessary to extend the
Taylor series expansion of f (x, y, yx) to
terms of order ε2 and determine the sign of
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the second-order variation δ(2)J (see, e.g.,
Courant and Hilbert, 1966). If δ(2)J < 0,
then J is a maximum; if δ(2)J > 0, then J
is a minimum; if δ(2)J = 0, then J lies at a
point of inflection.

If the end points are not fixed, then η(x)

does not vanish there. In this case, Eq. (4)
still applies, subject to the condition that
∂ f /∂yx = 0 at the end points (see Jeffreys
and Jeffreys, 1972).

An important special case of Eq. (4)
occurs if f (x, y, yx) does not depend
explicitly on x because then the integrating
factor is simply yx. After multiplying
Eq. (4) through by yx and using

df

dx
= ∂ f

∂y
yx + ∂ f

∂yx

dyx

dx
(5)

(since ∂ f /∂x = 0 by assumption), the
Euler–Lagrange equation becomes

d

dx

(
yx

∂ f

∂yx
− f

)
= 0, (6)

and so

yx
∂ f

∂yx
− f = const. (7)

A classic example is provided by the
brachistochrone (shortest time) problem
first propounded by John Bernoulli in
1696. It was solved by both him and his
brother James, as well as by Newton and
Leibnitz. Consider a bead sliding without
friction on a wire of arbitrary length
connecting two fixed points (x1, y1) and
(x2, y2) in a vertical plane, as shown in
Fig. 2. The problem is to find the shape
that minimizes the travel time as the bead
slides from rest under the force of gravity;
i.e., to find the function y = y(x) such that
the integral

τ =
∫ x2

x1

ds

v
(8)

Fig. 2 The brachistochrone problem of a bead
sliding without friction on a wire of arbitrary
length in a vertical plane

for the travel time is a minimum. Here
ds = [(dy/dx)2 + 1]1/2dx is the element
of arc length and v is the velocity.
By conservation of energy, the velocity
after falling a distance y (measured
downward) is v = √

2gy (independent of
x), where g is the acceleration due to
gravity. The integral to be minimized is
then

τ =
∫ x2

x1

(y2
x + 1)

1
2

(2gy)
1
2

dx. (9)

With f (x, y, yx) defined by the above in-
tegrand, the Euler–Lagrange equation (7)
then gives

y2
x

(y2
x + 1)

1
2 y

1
2

− (y2
x + 1)

1
2

y
1
2

= c
1
2 , (10)

and hence

y−1
x ≡ dx

dy
=

(
cy

1 − cy

) 1
2

, (11)

where c is a constant of integra-
tion that determines the distance scale.
Assuming that the bead starts from
the origin, integration of this equation
yields

cx = sin−1(cy)
1
2 − (cy − c2y2)

1
2 . (12)

This is the equation of a cycloid symmetric
about the minimum at cy = 1. The scale
factor c is determined by the condition
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that the curve pass through the second
terminus (x2, y2). If y2 = 0 (as in Fig. 2),
then c = π/x2.

1.1
Variations with Constraints

There are many classes of problems
where the functional J must be made
an extremum subject to a subsidiary
condition of the form∫ x2

x1

f1(x, y, yx)dx = const. (13)

The example of a hanging chain of
fixed length is discussed in the following
paragraph. Such problems can be handled
by applying the variational procedure to
the functional

g(x, y, yx) = f (x, y, yx) + λ1f1(x, y, xy),

(14)

where λ1 is called a Lagrange undetermined
multiplier. The resulting Euler – Lagrange
equation is

∂ f

∂y
− d

dx

∂ f

∂yx
= −λ1

(
∂ f1
∂y

− d

dx

∂ f1
∂yx

)
,

(15)

or, if f and f1 are independent of x, the
first integral is [cf. Eq. (7)]

yx
∂ f

∂yx
− f + λ1

(
yx

∂ f1
∂yx

− f1

)
= const.

(16)

The idea is to solve Eq. (15) or Eq. (16)
for a fixed but arbitrary value of
λ1. The equation of constraint pro-
vides the additional condition to de-
termine λ1 at the end of the prob-
lem, together with the two constants of
integration.

As an example, consider the problem of
finding the shape of a uniform hanging
chain with both ends fixed. The shape
is such that the potential energy due to

gravity is a minimum, and so the quantity
to be minimized is

J =
∫ x2

x1

µgy(y2
x + 1)

1
2 dx, (17)

subject to the constraint∫ L

0
ds ≡

∫ x2

x1

(y2
x + 1)

1
2 dx = L, (18)

where µ is the mass per unit length
and L the length. Thus f = µgy(y2

x +
1)1/2 and f1 = (y2

x + 1)1/2. After dividing
by µg and defining λ = λ1/µg, Eq. (16)
gives

(y + λ)


 y2

x

(y2
x + 1)

1
2

− (y2
x + 1)

1
2


 = −1

c
.

(19)

As for the brachistochrone problem, this
equation can be solved for y−1

x ≡ dx/dy
and the result integrated to obtain

cy = −cλ + cosh[c(x − a)], (20)

where a is the second constant of integra-
tion. The three parameters a, c, and λ are
determined by the three conditions that the
curve pass through the points (x1, y1) and
(x2, y2) at the ends of the chain, together
with the equation of constraint. For exam-
ple, if the two points are (0,0) and (x2, 0),
then a = x2/2, cλ = cosh(cx2/2), and the
equation of constraint becomes

L =
∫ x2

0
{sinh2[c(x − 1

2 x2)] + 1} 1
2 dx

= 2

c
sinh

( cx2

2

)
. (21)

Solving this transcendental equation de-
termines the remaining constant c. The
quantity T0 = µg/c is the force of tension
in the chain at the lowest point, where
yx = 0.



624 Variational Methods

1.2
Generalizations

In applications to mechanics (see Sec. 2.1),
the time t plays the role of the independent
variable x marking the evolution of the
system, but there are typically several
dependent generalized coordinates qi and
q̇i ≡ dqi/dt, i = 1, . . . , N, in place of y
and yx, respectively. With this change in
notation, f becomes a function of all the
qi’s, q̇i’s, and t, and the generalization of
Eq. (4) is

∂ f

∂qi
− d

dt

∂ f

∂ q̇i
= 0, i = 1, . . . , N. (22)

There are thus N coupled Euler–Lagrange
equations, one for each degree of freedom
of the system.

If in addition there are several indepen-
dent variables t1, t2, . . . , tr , then Eq. (22) is
further generalized to read

∂ f

∂qi
−

r∑
j=1

∂

∂tj

∂ f

∂(∂qi/∂tj)
= 0,

i = 1, . . . , N. (23)

There can also be several equations
of constraint of the form of Eq. (13)
with integrands fk(tj, qi, q̇i), k = 1, . . . , m.
In this case, m Lagrange undetermined
multipliers λk are introduced, and the
function f in Eq. (22) or (23) is replaced by

g(tj, qi, q̇i) = f (tj, qi, q̇i)

+
m∑

k=0

λkfk(tj, qi, q̇i). (24)

Constraints that can be expressed in
integrated form, such as Eq. (13), are
said to be holonomic (wholly named
or specified). However, problems often
arise in mechanics involving nonholonomic

constraints that can only be expressed
in differential form, such as a relation
between velocities. An example is the
problem of a vertical disk of radius
R rolling without slipping on a plane.
Four coordinates are required – the (x,y)
Cartesian coordinates of the point of
contact between the disk and the plane,
a spinning angle of rotation θ about a
vertical axis, and a rolling angle φ about an
axis perpendicular to the disk. If the plane
of the disk is initially perpendicular to the x
axis (i.e., θ = 0), then the constraint of ‘‘not
slipping’’ corresponds to the differential
relations

dx = R sin θdφ, (25)

dy = −R cos θdφ. (26)

These equations cannot be integrated
without knowing in advance θ and φ as
a function of t. However, the method of
Lagrange undetermined multipliers can
still be applied. If the general form of the
differential constraints is written as

N∑
i=1

ak,i dqi + ak,tdt = 0, k = 1, . . . , s,

(27)

where the coefficients ak,i are, in general,
functions of the qi’s and q̇i’s, then the gen-
eralization of Eq. (22) for nonholonomic
systems is

∂ f

∂qi
− d

dt

∂ f

∂ q̇i
+

s∑
k=1

λkak,i = 0,

i = 1, . . . , N. (28)

This equation can still be used even if
the constraints are in fact holonomic. The
term 
s

k=1λkak,i can be identified with
the generalized forces of constraint. In
general, the λk are now functions of the
qi’s and q̇i’s. The term ak,tdt in Eq. (27)
does not contribute to Eq. (28) because
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the variations δqi from the actual path are
considered to occur at a particular instant
of time (see Sec. 2.1).

As a simple illustration of the versatility
of the method, consider the problem of
finding the function u(x,y,z) such that the
square of its gradient is a minimum in
a given volume of space. The problem is
then to minimize

J =
∫ ∫ ∫

f dx dy dz, (29)

with

f = (∇u)2 =
(

∂u

∂x

)2

+
(

∂u

∂y

)2

+
(

∂u

∂z

)2

.

(30)

This can be regarded as an application
of Eq. (23) with the three independent
variables t1 = x, t2 = y, and t3 = z, and
a single degree of freedom (N = 1) with
q1 = u. Equation (23) then immediately
gives

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 = 0, (31)

which is Laplace’s equation. The term
∂ f /∂q1 ≡ ∂ f /∂u does not contribute be-
cause f does not depend explicitly
on u, only on the partial derivatives
∂u/∂x, ∂u/∂y, and ∂u/∂z. This problem
clearly illustrates the way in which func-
tional derivatives are to be interpreted and
should be carefully studied.

2
Applications to Classical Mechanics

This section draws together the connec-
tions of elements and techniques of classi-
cal mechanics with variational principles.

2.1
Introductory Concepts

Consider a classical system of n inter-
acting particles having masses ms lo-
cated at positions rs = (xs,1, xs,2, xs,3), and
acted on by forces Fs = (Fs,1, Fs,2, Fs,3)

due to the other particles and any exter-
nal forces, including forces of constraint.
The evolution of the system is obtained
by solving Newton’s equations of mo-
tion

msẍs,j = Fs,j, s = 1, . . . , n; j = 1, 2, 3.

(32)

These equations are completely general.
However, it is often more convenient to
replace the 3n Cartesian coordinates xs,j by
generalized coordinates qi defined through
a system of connection equations of the
form

xs,j = xs,j(q1, q2, . . . , q3n). (33)

The use of generalized coordinates is
particularly effective in problems involving
constraints. If the generalized coordinates
are chosen such that their variations δqi

do no virtual work against the forces of
constraint (i.e., δqi is perpendicular to the
instantaneous forces of constraint), then
the number of independent qi needed is
reduced from 3n to 3n − m, where m is the
number of constraints.

To make these ideas concrete, consider
the example of a bead sliding on a
vertical wire hoop of radius R that is
itself constrained to rotate about the z axis
with angular velocity ω. In terms of the
polar angles θ and φ = ωt, the connection
equations are

x = sin θ cos ωt,

y = sin θ sin ωt,

z = cos θ. (34)
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The constraint of sliding on the hoop
has reduced the number of independent
coordinates from three to a single az-
imuthal angle θ . A variation δθ generates
a displacement of the bead consistent with
the instantaneous orientation of the hoop,
but not consistent with the actual time evo-
lution of the system, which includes the
rotation of the hoop. Such variations are
said to do no virtual work, and are called
virtual displacements. From the connection
equations (34), the kinetic energy of the
bead is

T = 1
2 m(ẋ2 + ẏ2 + ż2)

= 1
2 m[(Rθ̇ )2 + (ωR sin θ)2]. (35)

If the system is conservative with a
potential-energy function V(x,y,z), then V
can similarly be expressed in terms of θ .

2.2
Hamilton’s Principle

In the absence of constraints, a direct
transformation of Newton’s equations
of motion (32) from the 3n Cartesian
coordinates xs,j to the 3n generalized
coordinates qi yields Lagrange’s equations
of motion

d

dt

∂T

∂ q̇i
− ∂T

∂qi
= Qi, (36)

where the Qi are the generalized forces
defined by

Qi =
n∑

s=1

Fs · ∂rs

∂qi
. (37)

A comparison with Eqs. (3) and (22) shows
immediately that with the identification
f = −T , Lagrange’s equations correspond

to the variational condition

∫ t2

t1

(
δT +

3n∑
i=1

Qiδqi

)
dt = 0. (38)

This is the most general form of Hamil-
ton’s principle in classical dynamics. The
advantage gained is that 3n equations
of motion have been consolidated into
a single scalar variational condition that
is invariant under coordinate transfor-
mation. In the absence of constraints,
all the qi can be varied independently
so that each coefficient of δqi must
vanish separately, and Lagrange’s equa-
tions are recovered. If m constraints are
present, one need keep only 3n − m of
the qi whose virtual displacements δqi

are consistent with the instantaneous
constraints, as in the rotating-hoop ex-
ample of Sec. 2.1 where only a single
parameter θ is required. One can still
consider variations in the remaining qi,
even though they would violate the con-
straints. The only difference is that the
corresponding Qi are reinterpreted as the
generalized forces required to maintain
the constraints. They can be calculated
by the method of Lagrange undeter-
mined multipliers, as described in Sec. 1.2
[see especially Eq. (28)]. In this way, La-
grange’s equations apply to the entire set,
whether or not constraints are present.
The invariance of Lagrange’s equations
and Hamilton’s principle under coordi-
nate transformation guarantees that if
they are correct in Cartesian coordinates
(as can easily be checked), they are cor-
rect in any other system of generalized
coordinates.

2.2.1 Conservative Systems and First
Integrals
If the system is conservative, then the Qi

are derivable from a potential function
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V(qi) according to Qi = −∂V/∂qi, and
Lagrange’s equations reduce to

d

dt

∂L

∂ q̇i
− ∂L

∂qi
= 0, (39)

where L = T − V is the Lagrangian. It is
then immediately evident from Eq. (4) that
Hamilton’s principle becomes

δ

∫ t2

t1
Ldt = 0. (40)

This is the most useful form of Hamilton’s
principle for theoretical discussion.

If T and V do not involve time explicitly,
then the first integral corresponding to
Eq. (6) is

∑
i

q̇i
∂T

∂ q̇i
− T + V = const. (41)

If, further, T is a homogeneous quadratic
function of the q̇i, then the above be-
comes

T + V = const., (42)

where the constant can now be identified
with the conserved energy E of the
system.

For the example of a bead on a rotating
hoop discussed in Sec. 2.1, the first integral
gives

1
2 m[(Rθ̇ )2 − (ωR sin θ)2] + V(θ)

= T + V − m(ωR sin θ)2 = const.

(43)

The constant of the motion here dif-
fers from E = T + V because the time-
dependent forces of constraint do work on
the system. Overall conservation of energy
is recovered only when the work required
to keep the hoop rotating at a constant rate
is included. If Nz is the required torque,
then, with the use of Eq. (43), the rate at

which it does work is

Nzω = d

dt
(T + V) = d

dt
m(ωR sin θ)2

= ω
dlz
dt

, (44)

where lz = mω(R sin θ)2 is the angular
momentum of the bead about the z axis.
Thus Nz = dlz/dt as expected.

2.3
The Hamilton–Jacobi Equation

The variations considered thus far are
taken between fixed end points t1 and t2
and, therefore, necessarily do not corre-
spond to a possible dynamical evolution of
the system. The actual evolution between
fixed end points is uniquely defined, at
least with respect to local variations, and
so the varied path is unphysical. (But it is
not necessarily so for nonlocal variations.
For example, two points on a Kepler orbit
are connected by two paths, depending on
which way around the particle goes.)

The Hamilton–Jacobi equation comes
from consideration of a different kind of
variation ∆qi along a possible dynamical
path between points allowed to vary in both
space and time. In this case, it is necessary
to keep the integrated term in Eq. (3) (or
its generalizations). Suppose that t1 and t2
are replaced by t1 + δt1 and t2 + δt2. There
is then a corresponding variation δt in the
arrival time at each point along the path,
so that ∆qi(t) ≡ δqi(t + δt) is the variation
in path evaluated at the modified arrival
time.

For definiteness, suppose that the paths
are parameterized according to

qi(ε, t) = qi(0, t) + εηi(t), (45)

where qi(0, t) is the actual path and ηi(t)
is an arbitrary differentiable function not
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assumed to vanish at the end points. Then
δqi(t) = εηi(t) and

δqi(t + δt) = qi(ε, t + δt) − qi(0, t)

� qi(0, t + δt) − qi(0, t) + εηi(t)

= q̇iδt + δqi(t) (46)

up to terms of first order in ε and
δt. Application of the ∆ variation to
the integral in Hamilton’s principle then
yields

∆

∫ t2

t1
L dt

=
∫ t2+δt2

t1+δt1
L dt −

∫ t2

t1
L dt +

∫ t2

t1
δL dt

= Lδt
∣∣t2+δt2
t1+δt1

+
∑

i

∂L

∂ q̇i
δqi

∣∣∣∣∣
t2

t1

+
∫ t2

t1

∑
i

(
∂L

∂qi
− d

dt

∂L

∂ q̇i

)
δqi dt.

(47)

The last term vanishes by the assumption
that the varied path is a possible dynamical
path, and so Lagrange’s equations of
motion are satisfied. Interest therefore
centers on the integrated terms. The first
term is simply L(δt2 − δt1). Using Eq. (46)
to replace δqi(t) by δqi(t + δt) in the second
term, these terms become

∆

∫ t2

t1
L dt =

[(
L −

∑
i

q̇i
∂L

∂ q̇i

)
δt

+
∑

i

∂L

∂ q̇i
δqi

]t2+δt2

t1+δt1

. (48)

With the definitions

pi = ∂L

∂ q̇i
, (49)

H =
∑

i

q̇i
∂L

∂ q̇i
− L, (50)

S =
∫ t2

t1
L dt, (51)

where the integral for S is taken along any
dynamical path, Eq. (48) can be written in
the form

∆S =
[
−Hδt +

∑
i

piδqi

]t2+δt2

t1+δt1

. (52)

H is called the Hamiltonian for the system,
pi is the canonical momentum, and S is
called Hamilton’s principal function. For an
ordinary conservative system, H = T + V
is the total energy.

Equation (52) may be interpreted as
follows. Since by assumption the system
evolves along a possible dynamical path
from an initial configuration (qi)1 at time
t1 to a final configuration (qi)2 at time
t2, there will in general be only a single
set of initial velocities (q̇i)1 that satisfy
these requirements (at least with respect
to small variations). The same applies to
the initial momenta (pi)1 since they are
connected to the (q̇i)1 through Eq. (49),
and hence the (q̇i)1 can be eliminated from
the problem. The pi’s as well as the qi’s are
therefore uniquely determined from the
initial conditions at time t1. Since Eq. (52)
remains true as t2 is varied, it follows that

∂S

∂qi
= pi, (53)

∂S

∂t
= −H(qi, pi, t)

= −H

(
qi,

∂S

∂qi
, t

)
. (54)

Equation (54) is called the Hamil-
ton–Jacobi equation. It is a first-order
partial differential equation in N + 1 vari-
ables and does not involve S explicitly. As
it stands, a complete solution involving
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N + 1 constants of integration is deter-
mined from the initial conditions

(
∂S

∂t

)
t1

= (H)t1 ,

(
∂S

∂qi

)
t1

= −(pi)t1 .

(55)

The real significance of the Hamil-
ton–Jacobi equation comes not from its
practical utility in solving mechanical prob-
lems, but for the insight it gives into the
structure of mechanics, and for applica-
tions involving the use of perturbation
theory. The significance is further elab-
orated after a brief discussion of the
principle of least action, Hamilton’s equa-
tions of motion, and the theory of canonical
transformations.

2.3.1 The Principle of Least Action
Assume that the system is conservative
and holonomic so that H is a constant.
The Maupertuis principle of least action
follows by considering a restricted class
of variations ∆t that are identical to
the ∆ variations of Sec. 2.3, except that
∆tqi = δqi(t + δt) is assumed to vanish at
the end points; i.e., the system arrives at
the same end point, but at the varied time
t + δt, and H has the same constant value
on the varied path. The varied path could
be the same as the actual path except that it
is traversed at a different rate. Under these
conditions, Eq. (52) reduces immediately
to

∆tS = −H(δt2 − δt)1. (56)

However, with the use of Eq. (50) to replace
L by H, a direct evaluation of ∆tS from
Eq. (51) yields

∆tS = ∆t

∫ t2

t2

∑
i

piq̇i dt − H(δt2 − δt1),

(57)

from which it follows that

∆t

∫ t2

t1

∑
i

piq̇i dt = 0. (58)

The quantity

W =
∫ t2

t1

∑
i

piq̇i dt (59)

defines the classical action.
This is one of many possible ways of

expressing the principle of least action.
A purely geometrical form in which t is
eliminated can be obtained as follows.
If V is velocity-independent and T is a
homogeneous quadratic function of the q̇i,
then∑

i

piq̇i = 2T =
∑
j,k

Mj,k(q)q̇jq̇k, (60)

where the Mj,k(q) are the coefficients ap-
pearing in the kinetic-energy expression.
The Mj,k(q) can be regarded as the ele-
ments of a metric tensor in a curvilinear
coordinate space such that the element of
path length is

(dρ)2 =
∑
j,k

Mj,k(q)dqjdqk. (61)

The principle of least action can then be
written in the form

∆t

∫ t2

t1
T dt = 0 = ∆

∫ ρ2

ρ1

√
Tdρ, (62)

or equivalently,

∆

∫ ρ2

ρ1

√
H − Vdρ = 0. (63)

For a single particle moving in a potential
V, dρ is simply the element of arc
length ds along the trajectory. In this
form, the principle of least action is
formally identical to Fermat’s principle
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of geometrical optics. One need merely
identify

√
H − V with a variable index

of refraction n(s) = cvac/c(s), which is
inversely proportional to the velocity of
light in the medium. The path taken by a
beam of light is then such that the travel
time given by

τ = 1

cvac

∫ s2

s1

n(s)ds (64)

is a minimum (or, more strictly, an ex-
tremum). This justifies the solution to the
brachistochrone problem in Sec. 1, and it
demonstrates the formal equivalence be-
tween geometrical optics and the dynamics
of conservative systems.

In a recent article, Gray et al. (1996) show
that the Maupertuis principle of least ac-
tion can be generalized to a form in which
W is stationary with respect to varied paths
on which H is held constant only in the
mean and that there exists a reciprocal prin-
ciple in which the mean value H̄ is made
stationary with respect to varied paths of
constant W. They also show that the recip-
rocal principle can be derived directly from
the classical limit of the Schrödinger vari-
ational principle of quantum mechanics
(see Sec. 3.2). A similar reciprocity theo-
rem for Hamilton’s principle provides a
set of four variational principles analo-
gous to the four equilibrium principles of
thermodynamics.

2.3.2 Hamilton’s Equations of Motion
The basic approach in Lagrangian mechan-
ics is to regard the N generalized coordi-
nates qi(t) as the independent variables
whose time dependence is determined
by the N second-order Lagrangian equa-
tions of motion expressed by Eq. (39). The
velocities q̇i(t) enter only as derived quan-
tities whose initial values, together with
the initial qi(t), determine the required 2N

constants of integration. The Hamiltonian
approach differs in that the q̇i(t) are elim-
inated in favor of the canonical momenta
pi(t) defined by Eq. (49). The pi(t) are then
elevated to an equal footing with the qi(t)
so that the set {qi, pi|i = 1, . . . , N} forms a
set of 2N independent variables satisfying
a set of 2N coupled first-order differential
equations called Hamilton’s equations of
motion. In what follows, we adopt the con-
vention that a summation over repeated
subscripts is implied, and q or p without a
subscript stands for the entire set.

Hamilton’s equations of motion can be
derived from Hamilton’s principle if Eqs.
(49) and (50) are first used to rewrite
Eq. (51) in the form

S =
∫

[piq̇i − H(q, p, t)] dt. (65)

With fixed end points t1 and t2, indepen-
dent variations δpi and δqi then induce the
variation

δS =
∫ t2

t1

(
ṗiδqi + q̇iδpi

+ ∂H

∂qi
δqi + ∂H

∂pi
δpi

)
dt

= piδqi
∣∣t2
t1

+
∫ t2

t1

(
− ṗiδqi + q̇iδpi

+ ∂H

∂qi
δqi + ∂H

∂pi
δpi

)
dt. (66)

The integrated term vanishes by assump-
tion. Equating to zero the coefficients of
δpi and δqi then yields the set of equations

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
, (67)

which are Hamilton’s equations of motion.
Thus, both Lagrangian and Hamiltonian
mechanics are implied by Hamilton’s prin-
ciple, provided that the variations δpi and
δqi can be regarded as independent. The
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latter assumption is important because it
underlies the entire approach of Hamil-
tonian mechanics. It is justified by the
fact that the Hamiltonian form can be
obtained by a direct transformation of vari-
ables from the Lagrangian form.

2.3.3
Canonical Transformations

Transformations of the type (33) are called
point transformations because they involve
only the coordinates qi. An advantage
of Hamiltonian mechanics is that, with
the q’s and p’s regarded as independent
variables, more general types of trans-
formation can be constructed that map
the set {q, p} to a new set {Q, P} de-
fined by connection equations of the
form

Qi = Qi(q, p, t), Pi = Pi(q, p, t). (68)

Such a contact transformation is said to
be canonical if the form of Hamilton’s
equations is left invariant; i.e., there
exists a transformed Hamiltonian function
K(Q,P,t) such that

Q̇i = ∂K

∂Pi
, Ṗi = − ∂K

∂Qi
(69)

are the correct equations of motion for the
transformed variables. This will be true
if both sets of coordinates and momenta
satisfy their respective variational princi-
ples

δ

∫
[piq̇i − H(q, p, t)] dt = 0, (70)

δ

∫
[PiQ̇i − K(Q, P, t)] dt = 0. (71)

The integrands need not be equal, but they
can differ by at most the total time deriva-
tive of a function F, called the generating

function for the transformation. We can
thus write

piq̇i − H(q, p, t)

= λ

[
PiQ̇i − K(Q, P, t) + dF

dt

]
. (72)

Values of the constant λ �= 1 just corre-
spond to a scale transformation, and so
without loss of generality, we can take
λ = 1. With the choice F = F1(q, Q, t),
the set {q, Q} is regarded as the 2N
separately independent variables, and the
quantity dF/dt in Eq. (72) can be replaced
by

dF1

dt
= ∂F1

∂qi
q̇i + ∂F1

∂Qi
Q̇i + ∂F1

∂t
. (73)

Equating to zero the coefficients of q̇i and
Q̇i then yields

pi = ∂F1

∂qi
, Pi = −∂F1

∂Qi
, (74)

K = H + ∂F1

∂t
. (75)

For example, the choice F1 = qiQi in-
terchanges the roles of the q’s and p’s
(except for a sign change), with the
result

pi = Qi, Pi = −qi, K = H. (76)

This demonstrates explicitly that the q’s
and p’s stand on an equal footing as
independent variables in Hamiltonian me-
chanics – their roles can be interchanged
by a canonical transformation.

Other choices for the 2N independent
variables can be achieved by application
of one or more Legendre transformations
(as is done in thermodynamics to change
independent variables). Of particular rel-
evance to the Hamilton–Jacobi equation
is the choice {q, P}. One need merely



632 Variational Methods

replace F1(q, Q) by F2(q, P) = F1 + QiPi.
Then Eq. (72) becomes

piq̇i − H(q, p, t) = −QiṖi − K(Q, P, t)

+ dF2

dt
, (77)

with

dF2

dt
= ∂F2

∂qi
q̇i + ∂F2

∂Pi
Ṗi + ∂F2

∂t
, (78)

and so

Pi = ∂F2

∂qi
, Qi = ∂F2

∂Pi
, (79)

K = H + ∂F2

∂t
. (80)

For example, the choice F2 = qiPi gen-
erates the identity transformation with
Qi = qi and Pi = pi.

2.3.4 Interpretation of the
Hamilton–Jacobi Equation
A comparison of Eq. (80) with Eq. (54)
shows that the Hamilton–Jacobi equation
can be regarded as a canonical transfor-
mation with F2 = S(q, P, t) such that the
transformed Hamiltonian is K = 0. The
transformed equations of motion are then

∂K

∂Pi
= Q̇i = 0,

∂K

∂Qi
= −Ṗi = 0. (81)

Thus the transformed momenta Pi = αi

and the transformed coordinates Qi = βi

are all constants of the motion. The nature
of the solution is now clear. Writing
S = S(q, α, t), then the set of equations

pi = ∂S(q, α, t)

∂qi
, βi = ∂S(q, α, t)

∂αi
(82)

evaluated at t = t1 provides a set of 2N
equations to determine 2N unknowns αi

and βi in terms of the initial (qi)1 and (pi)1.
For conservative systems, the remaining

(N + 1)th constant of integration is the
energy E of the system. For this case, the
time variable is separable, and S can be
written in the form

S(q, α, t) = W(q, α) − Et, (83)

where W(q, α) is called Hamilton’s charac-
teristic function. The crucial point is that any
complete integral to the Hamilton–Jacobi
equation generates a possible dynami-
cal motion of the system since it is the
generating function for a canonical trans-
formation. This result is called Jacobi’s
theorem.

As a consequence of Jacobi’s theorem,
any complete integral S contains within
it all possible trajectories of the system
as a function of the initial conditions,
rather than one particular trajectory. In
fact, surfaces of constant S move through
configuration space like wave fronts of
constant phase such that the particle
trajectories follow the orthogonal set of
curves. To see this, consider the example
of a particle moving in a potential
V, expressed in Cartesian coordinates.
Equations (53) for {q1, q2, q3} = {x, y, z}
can then be written as the single equation

∇S = ∇W = p, (84)

which shows that the momentum p = mv
is everywhere perpendicular to surfaces of
constant W, and the particle velocity is v =
|∇W|/m. The Hamilton–Jacobi equation
for W in this case is(

1

2m

)
(∇W)2 + V = E, (85)

so that

|∇W| = √
2m(E − V). (86)

For the case of a freely falling particle,
surfaces of constant W are just horizontal
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planes with the particle trajectories in the
perpendicular direction. As time goes on,
surfaces of constant S sweep through
surfaces of constant W with a phase
velocity given by

u = ds

dt
= E

|∇W| , (87)

where ds is a displacement in the direction
normal to a surface of constant W.
The above follows from the facts that
the stationary phase condition dS = 0
corresponds to dW = E dt, and dW =
|∇W|ds is the change in W due to a
displacement in the direction normal to the
surface. Thus the phase velocity decreases
as the particle velocity increases, just as is
the case for the wave and particle pictures
of light.

The above considerations in fact provide
a wave picture of classical dynamics
in the ‘‘geometrical optics’’ limit where
the wavelength is infinitesimally small
compared with the dimensions of the
apparatus. The wave nature can then be
ignored, and the trajectories determined
by the principle of least action (or Fermat’s
principle in the case of geometrical
optics).

2.4
Relativistic Generalization

For the case of a single particle acted
on by forces derivable from a potential
V, Hamilton’s principle can be simply
modified to incorporate the effects of
special relativity. One need simply de-
fine

L = −mc2γ − V, (88)

where γ = √
1 − v2/c2, and v is the ve-

locity |ṙ| in a particularly chosen Lorentz
frame. With this choice of L, Hamil-
ton’s principle and the Euler – Lagrange

equations give the correct equations of
motion

d

dt

(
mẋi

γ

)
= − ∂V

∂xi
. (89)

The canonical momenta pi and Hamilto-
nian H are given by

pi = ∂L

∂ ẋi
= mẋi

γ
, (90)

H = piẋi − L = T + V = E, (91)

where T = mc2/γ is a relativistic gen-
eralization of the kinetic energy, in-
cluding the rest-mass energy mc2. Af-
ter substituting for ẋi, H assumes the
form

H =
√

c2p2 + m2c4 + V . (92)

2.4.1 Inclusion of Electromagnetic Fields
In general, an electromagnetic field is
derivable from a scalar potential φ(r, t)
and a vector potential A(r,t) according
to

E = −∇φ − 1

c

∂A
∂t

, (93)

B = ∇ × A, (94)

where E and B are the electric and
magnetic fields. The equation of motion
for a particle of charge q is then

d

dt

(
mẋi

γ

)
= qEi + q

c
(v × B)i, (95)

which now contains a velocity-dependent
force term. This equation follows from the
Lagrangian

L = −mc2γ − qφ + q

c
A · v, (96)

or its nonrelativistic counterpart with the
term −mc2γ replaced by T. The canonical
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momenta are then

pi = ∂L

∂ ẋi
= mẋi

γ
+ q

c
Ai. (97)

A direct calculation shows that the Hamil-
tonian becomes [cf. Eq. (92)]

H =
√

c2[p −
(q

c

)
A]2 + m2c4 + V .

(98)

The same substitution p → p − (q/c)A
applies also in the nonrelativistic case. This
simple prescription, together with V = qφ,
allows electromagnetic fields to be easily
incorporated into the Lagrangian and
Hamiltonian formulations of mechanics.

3
Applications to Quantum Mechanics

3.1
Variational Derivation of the Schr

..
odinger

Equation

The considerations of Sec. 2.3.4 suggest
that the Hamilton–Jacobi equation of
classical dynamics expresses the short-
wavelength limit of an underlying wave
equation, with surfaces of constant S
identified as surfaces of constant phase.
In fact, Eq. (85) already bears a superfi-
cial resemblance to the time-independent
Schrödinger equation, but it does not yet
have the form of a wave equation. Follow-
ing Schrödinger, a suitable wave equation
can be obtained by first making the substi-
tution

W = iC ln � ⇒ � = e
iW
C (99)

into the Hamilton–Jacobi equation(
1

2m

)
(∇W∗ · ∇W) + V = E, (100)

generalized for complex W, to obtain

(
C2

2m

)
(∇�∗ · ∇�) + (V − E)�∗� = 0.

(101)

The left-hand side can be integrated over
all space, provided that

∫
�∗�d3r remains

finite. Application of the Euler–Lagrange
equations to make the integral stationary
with respect to arbitrary independent
variations of � and �∗ then yields the
Schrödinger equation

−
(

C2

2m

)
(∇2�) + (V − E)� = 0,

(102)

together with a similar equation for �∗.
The derivation is a simple extension of
the one used to obtain Laplace’s equa-
tion (31) in Sec. 1.2. The solution to
Eq. (102) then determines the wave func-
tion �(r) for the system, subject to the
constraint that

∫
�∗�d3r remain finite

for bound systems; i.e., that � is nor-
malizable. Comparison with experiment
shows that one should set C = h̄ = h/2π ,
where h is Planck’s constant. Equa-
tion (102) can then be written in the
form

H(q, p)� = E�, (103)

where H(q, p) is the Hamiltonian with the
quantum-mechanical replacement p →
(h̄/i)∇. The constraint on

∫
�∗�d3r

makes this an eigenvalue problem that
determines the possible energies E of the
system.

If there are n interacting particles,
then the term ∇2� is to be replaced by

i∇2

i �, and V includes all the interaction
potentials. Also, the various integrals over
dr are replaced by multiple integrals over
d3r1d3r2 · · · d3rn.
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3.2
The Rayleigh–Schr

..
odinger Variational

Principle

Consider a bound system, or one that is
contained in a finite box. Under these
conditions, Eq. (101) can be integrated
over all space and the term ∇�∗ · ∇�

integrated by parts to obtain∫
�∗(H − E)�d3r = 0. (104)

The integrated term does not contribute
under the assumed conditions because
�(r) → 0 sufficiently rapidly as |r| → ∞.
The variational derivation of Sec. 3.1 guar-
antees that this integral is stationary with
respect to arbitrary variations δ� if � sat-
isfies the Schrödinger equation. However,
the same variational condition can now be
reinterpreted as the problem of making the
integral

∫
�∗H�d3r stationary, subject to

the constraint that∫
�∗�d3r = const., (105)

with E playing the role of a Lagrange
undetermined multiplier. In this guise,
one can say that E obtained from the
Rayleigh quotient

E =
∫

�∗H�d3r∫
�∗�d3r

(106)

is stationary. In fact, as discussed in the
following section, E is a minimum under
many circumstances.

3.3
The Rayleigh–Ritz Variational Method

The Schrödinger equation is a partial-
differential equation that can be solved
exactly only for certain special cases
such as the Coulomb potential or the

harmonic-oscillator potential. For arbitrary
potentials, or for problems containing
more than two bodies, the quantum-
mechanical problem is no easier to solve
than the corresponding classical one. In
these cases, the Rayleigh–Schrödinger
variational principle provides one of the
most powerful methods for obtaining
approximate eigenvalues E and wave
functions �.

Suppose one guesses by some means
an approximate trial wave function �tr

that conforms with the constraint of
normalizability and approximates one of
the exact solutions to

H�i = Ei�i, i = 1, 2, . . . . (107)

The index i labels the spectrum of
exact solutions. In general, the eigenvalue
spectrum will have both discrete and
continuous parts. In the latter case,
summations over i include integrations
over the continuous part. The crucial point
is that even though the �i are not known,
they form a complete basis set of functions
in terms of which the trial function �tr

can be expanded. In analogy with Fourier
series, one can therefore write

�tr =
∞∑

i=1

ci�i, (108)

where the ci are the expansion coefficients.
Let the eigenvalue spectrum be ordered
so that E1 < E2 < E3 < · · ·, and assume
that all the �i and �tr are normalized to
unity; i.e., using Dirac bra-ket notation for
integrals,

〈�tr|H|�tr〉 ≡
∫

�∗H�d3r = Etr,

〈�i|�j〉 = δi,j,

〈�i|H|�j〉 = Eiδi,j. (109)
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Substituting Eq. (108) into (106), and using
Eqs. (109), one then obtains

Etr = |c1|2E1 + |c2|2E2 + |c3|2E3 + · · ·
(110)

for the corresponding trial energy. Since,
by assumption, 〈�tr|�tr〉 = 1, it follows
that

∞∑
i=1

|ci|2 = 1, (111)

and so Eq. (110) can be rewritten in the
form

Etr = E1 + |c2|2(E2 − E1)

+ |c3|2(E3 − E1) + · · ·
≥ E1. (112)

Thus Etr is an upper bound on the lowest
eigenvalue E1 for any normalizable �tr.

The basic idea of variational calculations
then is to write �tr in some arbitrarily cho-
sen mathematical form with variational
parameters (subject to normalizability and
boundary conditions at the origin and in-
finity), and then adjust the parameters
to obtain the minimum value of Etr.
A lower Etr is guaranteed to be closer
to E1. The power of the method stems
both from this and the fact that, by the
Rayleigh–Schrödinger variational princi-
ple, the error term linear in δ� = �tr − �1

vanishes.

3.3.1 Algebraic Solution for Linear
Variational Parameters
Suppose that �tr depends in some arbitrar-
ily chosen way on a set of N variational pa-
rameters a1, a2, . . . , aN . [For example, in
a one-dimensional case, one might choose
�(r) = ra1 e−a2r with a1 and a2 regarded
as nonlinear variational parameters.] Then
the variational condition corresponds to

the system of equations

∂Etr

∂ap
= 0, p = 1, . . . , N. (113)

In general, this is a set of transcendental
algebraic equations that cannot be solved
exactly.

However, the minimization problem for
the case of linear variational coefficients
can be solved exactly by matrix diagonal-
ization. For example, let {χp|p = 1, . . . , N}
be a finite basis set of N arbitrarily chosen
functions (subject to the boundary condi-
tions and normalizability) that need have
nothing to do with the exact �i, and write
�tr in the form

�tr =
N∑

p=1

apχp. (114)

Now the variational parameters ap enter
linearly, and the set of variational condi-
tions (113) becomes exactly equivalent to
the N-dimensional generalized eigenvalue
problem

Ha = λOa, (115)

where a is a column vector of co-
efficients ap, and H and O have
matrix elements Hpq = 〈χp|H|χq〉 and
Opq = 〈χp|χq〉. There are N eigenvalues
λ1, λ2, . . . , λN , of which the lowest is an
upper bound to E1.

Equation (115) is equivalent to the origi-
nal Schrödinger equation (103) only if the
basis set {χp} is complete, and in gen-
eral this requires taking the limit N → ∞.
The significance of Eq. (115) is that it pro-
vides a computationally useful means of
obtaining approximate solutions, even if
the complete basis set of functions {χp}
is truncated at some finite number N,
and the lowest eigenvalue provides an up-
per bound that systematically decreases
toward the exact E1 as N is increased.
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As discussed in the following section, the
bounds apply not just to the ground state
but also to the lower-lying excited states.

3.3.2 Extension to Excited States
By the Hylleraas – Undheim – MacDonald
(HUM) theorem (see Hylleraas and Und-
heim, 1930; MacDonald, 1933), the re-
maining eigenvalues λ2, λ3, . . . are also
upper bounds to the exact energies
E2, E3, . . ., provided that the spectrum is
bounded from below. The HUM theorem
is a consequence of the matrix eigenvalue
interleaving theorem, which states that as
the dimensions of H and O are progres-
sively increased by adding an extra row and
column, the N old eigenvalues λp fall be-
tween the N + 1 new ones. Consequently,
as illustrated in Fig. 3, all eigenvalues num-
bered from the bottom up must move
inexorably downward as N is increased.
Since the exact spectrum of bound states
is obtained in the limit N → ∞, no λp can
cross the corresponding exact Ep on its way
down. Thus λp ≥ Ep for every finite N.

If the exact �i can be formed from
a linear combination of the χp included
in the finite basis set, then the result

Fig. 3 Diagram illustrating the HUM theorem.
The λp, p = 1, . . . , N, are the variational
eigenvalues for an N-dimensional basis set, and
the Ei are the exact eigenvalues of H. The highest
λp lie in the continuous spectrum of H

of the variational calculation is the exact
�i and Ei. Otherwise, one obtains the
best variational approximation provided by
the particular χp chosen. If the χp basis
set becomes asymptotically complete as
p → ∞, then convergence to the correct
answer is assured.

The HUM theorem no longer applies
directly to the relativistic Dirac equation or
similar problems because the spectrum is
not bounded from below. However, finite
basis-set methods can still be applied,
provided that sufficient care is taken
in their construction (see Drake and
Goldman, 1988; Grant, 1996).

3.3.3 Variational Lower Bound
If the Rayleigh – Ritz method is applied to
the integral

∫
�∗(H − E)(H − E<

2 )d3r, (116)

then the quantity

E< = 〈�tr|H(H − E<
2 )|�tr〉

〈�tr|(H − E<
2 )|�tr〉 (117)

is made stationary. If the quantity E<
2

is chosen to be a lower bound on the
energy E2 of the first excited state, then
by an argument similar to that leading
to Eq. (112), E< is a lower bound on the
ground-state energy E1, called the Temple
lower bound (Temple, 1928) and denoted
by E<

1 . In fact, if �tr is expanded as in
Eq. (108), then after some algebra, E< from
Eq. (117) becomes

E<
1 = E1 +

∞∑
i=2

|ci|2(Ei − E1)(Ei − E<
2 )

E1 − E<
2 + D

,

(118)
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where

D =
∞∑

i=2

|ci|2(Ei − E1) = E>
1 − E1,

(119)

and E>
1 is the variational upper bound

on E1. The numerator of the fraction in
Eq. (118) is positive and the denominator
is negative, provided that E>

1 < E<
2 , thus

proving the bound. However, generally
speaking, E<

1 is much less accurate than
E>

1 .

3.3.4 Illustrative Results for Helium
Application of the variational method to
helium by Hylleraas (1928, 1929) played
an important role in the early history of
quantum mechanics because it provided
the first test of the Schrödinger equation in
a system more complicated than hydrogen.
With its two electrons orbiting the nucleus,
helium is the simplest atomic system
that cannot be adequately described by
the older Bohr – Sommerfeld quantum
theory.

The Hamiltonian for helium (in the limit
of infinite nuclear mass) is

H = −
2∑

i=1

(
h̄2

2me
∇2

i + e2

ri

)
+ e2

r12
,

(120)

where r12 = |r1 − r2| is the electron – elec-
tron separation and Ze is the nuclear
charge. The e2/r12 term represents the
Coulomb repulsion between the two elec-
trons. Without this term, the Schrödinger
equation would be separable, and the exact
solution (including permutational symme-
try) would be of the form

�(r1, r2) = ψ1(r1)ψ2(r2) ± ψ1(r2)ψ2(r1),

(121)

where ψ1(r) and ψ2(r) are exactly known
hydrogenic wave functions, depending on
the state in question. The Hartree – Fock

approximation corresponds to the best
variational representation that can be
written in the form of a separable product
with ψ1(r) and ψ2(r) regarded as arbitrary
functions of r. However, even this is
in error for the ground-state energy of
−2.903724 a.u. [the atomic unit (a.u.) of
energy is e2/a0 = 27.211 396 eV, where a0

is the Bohr radius] by 0.0247 a.u., or 0.673
eV. This difference, called the correlation
energy, is much larger than typical chemical
energies.

To obtain a better representation, Hyller-
aas suggested constructing a trial solution
of the form

�tr =
∑
i,j,k

aijkri
1r

j
2rk

12 exp(−αr1 − βr2),

(122)

which is of the form of a hydrogenic prod-
uct ψ1(r1)ψ2(r2), except that it contains
explicit powers of r12 and is therefore
not separable. The aijk are the linear
variational parameters, and α and β are
additional nonlinear parameters that can
be separately varied to optimize the en-
ergy. Detailed formulas for the necessary
matrix elements are given by Drake (1996).
This basis set is provably complete in the
limit of large imax, jmax, and kmax (Klahn
and Bingel, 1977). Typically, all combina-
tions of powers are included in the basis
set such that, for electrons with angular
momenta l1 and l2,

i + j + k − l1 − l2 ≤ �, (123)

where � is an integer that is progressively
increased until adequate convergence is
obtained. Without further truncation, the
number of terms obtained in this way is

N = 1
6 (� + 1)(� + 2)(� + 3). (124)

The effect of including powers of
r12 is dramatic and immediate. The
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Tab. 1 Energies for the ground state of
helium obtained with various powers of r12 in
the basis set

r12 Terms Energy (a.u.) Error (eV)

No r12 −2.879 029 0.672
r2
12 −2.900 503 0.087 6

r2
12, r4

12 −2.902 752 0.026 4
r12 −2.903 496 0.006 20
r12, r3

12 −2.903 700 0.000 65
All r12 −2.903 724 0.000 00

Hartree – Fock approximation corre-
sponds to the limit of large imax and jmax
with kmax = 0. As shown in Table 1, an
increase of kmax to 1 reduces the error in E
to only 0.006 20 eV, thereby accounting for
99% of the correlation energy. The results
in Table 1 also demonstrate that the odd
powers of r12 are much more effective than
the even powers. This can be understood
from the fact that r2

12 can be written in the
form

r2
12 = r2

1 + r2
2 − 2r1r2 cos θ12, (125)

where θ12 is the angle between the
vectors r1 and r2. Thus r2

12 is only linear
in cos θ12, while an expansion of r12 =
(r2

12)
1/2 contains all powers of cos θ12.

Calculations of this type have been
performed by many authors (see Drake,
1993a, for a review), and they have reached
a high degree of sophistication. Problems
typical of all variational calculations are
a dramatic and progressive loss of accu-
racy for the more highly excited states,
and numerical linear dependence in the
basis set as it is enlarged. These prob-
lems can be avoided by doubling the basis
set so that it contains a second set of
terms with the same powers but different
scale factors α and β. A complete opti-
mization with respect to the α’s and β’s
then leads to a natural partition of the

Tab. 2 Nonrelativistic energies for several
states of helium in the limit of infinite nuclear
mass

State Energy (a.u.)

1s2 1S −2.903 724 377 034 119 60(2)
1s2s 1S −2.145 974 046 054 419(2)
1s2s 3S −2.175 229 378 236 791 307(6)
1s2p 1P −2.123 843 086 498 101 35(5)
1s2p 3P −2.133 164 190 779 283 17(3)
1s3s 1S −2.061 271 989 740 911(5)
1s3s 3S −2.068 689 067 472 457 192(1)
1s3p 1P −2.055 146 362 091 943 33(7)
1s3p 3P −2.058 081 084 274 275 3(2)
1s3d 1D −2.055 620 732 852 246 51(8)
1s3d 3D −2.055 636 309 453 261 34(4)

basis set into two sectors with one repre-
senting the asymptotic form of the wave
function and the other representing com-
plex inner correlation effects. The results
obtained by this method are essentially
exact for all practical purposes. The non-
relativistic energies are known to better
than one part in 1016 for the entire singly
excited spectrum. A sample of results for
the low-lying states is given in Table 2.
The indicated convergence was obtained
by progressively increasing � up to 17,
corresponding to about 1700 terms in the
doubled basis set. Table 3 shows an ex-
ample of the convergence for the ground
state. [For the case of S states, the basis-
set sizes are smaller than indicated by
Eq. (124) because terms with i > j can be
omitted by symmetry.] The ratios of succes-
sive differences in the last column provide
a convenient method to monitor the con-
vergence of the eigen-value. They show
that the differences themselves decrease
in a fairly smooth and uniform fashion
with increasing �. These high-precision
results provide a benchmark for compar-
ison with other less accurate methods of
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Tab. 3 Convergence study for the ground-state energy of helium
(in atomic units). The numbers in the last column give the ratios
of successive differences

Ω Ntot(Ω) E(Ω) R(Ω)a

4 44 −2.903 724 131 001 531 810
5 67 −2.903 724 351 566 477 006
6 98 −2.903 724 373 891 109 909 9.88
7 135 −2.903 724 376 548 959 510 8.40
8 182 −2.903 724 376 960 412 587 6.46
9 236 −2.903 724 377 018 168 462 7.12
10 302 −2.903 724 377 030 786 217 4.58
11 376 −2.903 724 377 033 426 037 4.78
12 464 −2.903 724 377 033 966 492 4.88
13 561 −2.903 724 377 034 076 500 4.91
14 674 −2.903 724 377 034 107 875 3.51
15 797 −2.903 724 377 034 116 019 3.85
16 938 −2.903 724 377 034 118 518 3.26
17 1090 −2.903 724 377 034 119 239 3.47
18 1262 −2.903 724 377 034 119 479 3.01
Extrapolation −2.903 724 377 034 119 597(15)

aR(�) = [E(� − 1) − E(� − 2)]/[E(�) − E(� − 1)].

calculation such as Hartree–Fock and con-
figuration interaction. Results for many
other states are given by Drake (1993b,
1994).

A comparison of the results in Table 2
with experiment is meaningful only after
corrections for finite nuclear mass, special
relativity, and quantum-electrodynamic
(QED) effects (such as electron self-
energy and vacuum polarization) are taken
into account. A detailed discussion of
these corrections can be found in Drake
(1993b, 1994). When they are included, the
calculated transition frequencies agree to
within the estimated accuracy of the QED
shift. If the measurements are expressed in
terms of ionization energies for the various
states, then their accuracies range from
±30 MHz (±5 × 10−9 a.u.) for the ground
state to ±0.1 MHz (±1.5 × 10−11 a.u.) for
the higher-lying P and D states. Since
the nonrelativistic energies in Table 2

are much more accurate than this, the
comparison with experiment is primarily
a test of higher-order contributions to the
QED shift (two-electron Lamb shift), which
is the dominant source of uncertainty in
the calculations.

As one example, the calculated ioniza-
tion energy of the 1s2s1S state is (Drake
et al., 1993)

960 332 039.4 ± 1 MHz.

Of this total, −2808.5 ± 1 MHz comes
from the calculated QED shift. For com-
parison, the two experimental values are

960 332 041.52 ± 0.21 MHz,

960 332 040.87 ± 0.15 MHz.

The first is obtained from an extrapola-
tion of the 1s2s 1S–1snp 1P transition
frequencies to the series limit (Sansonetti
and Gillaspy, 1992), and the second from
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the 1s2s 1S–1snd 1D two-photon transition
frequencies (Lichten et al., 1991). Al-
though the measurements do not quite
agree with each other, taken together they
determine the QED shift of the 1s2s1S state
to an accuracy of about 100 parts per mil-
lion and verify the calculated value to better
than 0.1%. For the ground state, the cal-
culated QED shift in the ionization energy
has the much larger value −(41 233 ± 35)

MHz. This has recently been verified to an
accuracy of ±45 MHz (±0.1%) from the
total 1s2 1S–1s2p 1P transition frequency
(Eikema et al., 1996).

In summary, the results in Table 2 pro-
vide a firm foundation of nonrelativistic
energies upon which higher-order correc-
tions can be built and compared with
experiment. Further improvements in the
QED part of the theory remain an impor-
tant challenge for the future.

3.3.5
Extensions to More Complex Systems

Fully correlated variational calculations of
the type described in the previous section
are difficult to extend to systems more
complex than helium because of the rapid
increase in the number of terms required.
For an atom containing K electrons, there
are K single-particle radial distances rs and
K(K − 1)/2 interparticle distances rst for a
total of P = K(K + 1)/2 radial coordinates.
If all combinations of powers of the rs and
rst are included in the basis set such that
the sum of powers is ≤ � [cf. Eq. (123)],
then the generalization of Eq. (124) for the
number of terms is

N = (� + 1)(� + 2) · · · (� + P)

P!
. (126)

Since the time required to calculate a single
eigenvector increases in proportion to N3,
the overall complexity of the calculation

increases roughly in proportion to

[
6(� + P)!

P!(� + 3)!

]3

(127)

relative to helium with the same �.
As an example, from Table 3, an accu-

racy of 10−10 a.u. for the ground state of
helium requires � = 8. A similar accuracy
for lithium with K = 3 and P = 6 therefore
requires about 6000 times the computer re-
sources, and for beryllium with K = 4 and
P = 10, the factor from expression (127)
becomes 1.4 × 1013.

Because of this rapid increase of com-
plexity with the number of electrons, fully
correlated calculations of spectroscopic ac-
curacy have only been extended as far as
lithium (see Yan and Drake, 1995; Yan
et al., 1996; and earlier references therein).
The pattern of convergence for the ground
state is similar to that shown in Table 3.
The results up to � = 8 yield the extrapo-
lated nonrelativistic eigenvalue

E(1s22s2 S) = −7.478 060 323 10(31) a.u.
(128)

The uncertainty of ±3 × 10−10 is about
what one would expect from Table 3 for
� = 8.

For systems more complex than lithium,
one must resort to other methods of
calculation that can be extended to ar-
bitrarily complex systems, but typically
having much lower accuracy (±10−6 a.u.
or more). These methods include mul-
ticonfiguration Hartree–Fock (MCHF),
configuration-interaction (CI), many-body
perturbation-theory, finite-element, diffu-
sion Monte Carlo (DMC), and varia-
tional Monte Carlo (VMC) techniques.
The MCHF and CI methods are similar
in concept to the fully correlated vari-
ational method described in Sec. 3.3.4,
except that the members of the basis
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set χp are constructed from antisym-
metrized products of one-electron orbitals
corresponding to definite electronic con-
figurations. The effect is analogous to
including only the even powers of r12

as shown in Table 1, and so conver-
gence with increasing angular momentum
of the individual electrons is slow. Re-
cently, Goldman (1994) has devised a
modified CI method involving extrapola-
tion procedures to overcome this problem,
at least for simple systems. For recent
work on finite-element and many-body
perturbation-theory methods, see Acker-
mann (1995) and Plante et al. (1994),
respectively.

The DMC and VMC Monte Carlo
methods attempt to reduce the complexity
problem for more complex systems by
the use of random-sampling techniques.
The DMC method takes advantage of the
fact that the time-dependent Schrödinger
equation is formally identical to the
diffusion equation in imaginary time, and
for large imaginary time, an arbitrary
starting solution quickly decays to the
ground state (see, e.g., Moskowitz et al.,
1982; Barnett et al., 1995; and earlier
references therein). A random sampling
of initial configurations is then propagated
forward in time to construct the wave
function. The VMC method is more
closely related to the standard variational
techniques discussed in Sec. 3.3.4. The
idea is to define a trial wave function �tr

in terms of variational parameters, as in
Sec. 3.3.4, and then to optimize them over
a statistical distribution of sample points
ri by minimizing an expression for the
variance such as

∑
i
(H �i − Eref �i)

2/wi∑
i

�2
i /wi

, (129)

or the energy variance given by∑
i
(H �i − Eref �i)

2�2
i /w2

i[∑
i

�2
i /wi

]2 . (130)

Here, �i = �tr(ri) is the trial wave func-
tion evaluated at some particular set of
values for the electronic coordinates col-
lectively denoted by ri, and the weight
function wi = w(ri) is the probability of
choosing ri if the sampling is nonuniform.
The optimum strategy is to bias the sam-
pling according to the value of a guiding
function g(ri) that resembles the actual �2

as closely as possible and to choose the
reference energy Eref as close as possible
to the desired eigenvalue. Although the
method could be applied to a direct opti-
mization of 〈H〉, the advantage gained by
optimizing the variance is that the sam-
ple space required for a given accuracy is
much smaller. Several sample problems
and illustrative examples are discussed by
Alexander et al. (1991).

3.4
Variation–Perturbation Methods

For many problems, it is advantageous
to split the Hamiltonian into two parts
according to

H = H(0) + gV, (131)

where the eigenvalue problem for H(0)

can be solved exactly (or to high precision),
and V is a perturbation whose strength
is controlled by the parameter g. If the
wave functions and energies are similarly
expanded,

� = �(0) + g�(1) + g2�(2) + · · · , (132)

E = E(0) + gE(1) + g2E(2) + · · · , (133)
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and substituted into the Rayleigh–Ritz
quotient (106), then the terms linear in
g give

E(1) = 1

〈�(0)|�(0)〉 [〈�(0)|V |�(0)〉

+ 2〈�(0)|H(0) − E(0)|�(1)〉]. (134)

This is stationary with respect to variations
δ�(0) if �(1) satisfies the first-order
perturbation equation

(H(0) − E(0))|�(1)〉
+ (V − E(1))|�(0)〉 = 0. (135)

Since by assumption

H(0)|�(0)〉 = E(0)|�(0)〉, (136)

it follows from Eq. (134) that

E(1) = 〈�(0)|V |�(0)〉
〈�(0)|�(0)〉 . (137)

The entire series of perturbation equations
to all orders can be similarly generated
from the Rayleigh–Ritz variational prin-
ciple. Computational methods based on
these results were first developed by Slater
and Kirkwood (1931), and by Dalgarno
and Lewis (1955, 1956) (see also Dal-
garno and Stewart, 1956; Sternheimer,
1951, 1954, 1957; Schwartz, 1959). They
have since been employed by numer-
ous other authors for a wide variety of
problems.

3.4.1
Variational Bounds

A particular advantage of the varia-
tional derivation of the perturbation equa-
tions is its use in establishing bounds
(see, e.g., Glover and Weinhold, 1976).
For example, consider the second-order

energy

E(2) = 1

〈�(0)|�(0)〉
[
2〈�(0)|V |�(1)〉

+ 2〈�(0)|H(0) − E(0)|�(2)〉
+〈�(1)|H(0) − E(0)|�(1)〉

]
, (138)

from terms quadratic in g. E(2) is stable
with respect to variations δ�(0) if �(2)

satisfies the second-order perturbation
equation

(H(0) − E(0))|�(2)〉 + (V − E(1))|�(1)〉
= E(2)|�(0)〉, (139)

from which it follows that

E(2) = 〈�(0)|V − E(1)|�(1)〉
〈�(0)|�(0)〉 . (140)

However, �(1) is typically not known
exactly and must be approximated in some
way. From Eq. (138), E(2) is stable with
respect to variations δ�(1) if �(1) satisfies
the first-order equation (135). Since the
total E = E(0) + gE(1) + g2E(2) + · · · is an
upper bound for sufficiently small g,
and E(0) and E(1) are known exactly (by
assumption), it follows that the value of
E(2) calculated from Eq. (138) with some
approximate �

(1)
tr must be an upper bound.

In particular, if �
(1)
tr is expanded in

a finite basis set of functions χp, as in
Eq. (114), then the variational condition
∂E(2)/∂bp = 0 for the expansion coeffi-
cients bp yields the set of N linear algebraic
equations [cf. Eq. (115)]

(H(0) − E(0)O)b + VE = 0, (141)

where VE is a column vector with elements
VE

p = 〈χp|V − E(1)|�(0)〉. [This works cor-
rectly if 〈χp|�(0)〉 = 0 by symmetry. How-
ever, if �(0) can be expressed as a linear
combination of the χp, then these equa-
tions are singular. In that case, it is
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sufficient just to delete one of the equa-
tions to obtain a nonsingular set.] It then
follows that

〈�(1)|(H(0) − E(0))|�(1)〉
= −〈�(1)|(V − E(1))|�(0)〉 (142)

within the finite basis set, and Eq. (138) for
E(2) reduces to Eq. (140).

3.4.2
Spectral Representations and Pseudostates

Although computationally less efficient,
it is instructive and sometimes useful to
transform the χp basis set to a new basis χ̃p

that diagonalizes H. The matrix elements
in the transformed basis are then

〈χ̃p|H|χ̃q〉 = Ẽpδp,q, (143)

〈χ̃p|χ̃q〉 = δp,q. (144)

The eigenvectors χ̃p with eigenvalues
Ẽp are called pseudostates that form a
discrete variational representation of the
actual spectrum of the system (including
the continuous spectrum of H(0); see
Fig. 3). Although the diagonalization step
is computationally slow, the advantage
gained is that the system of equations
(141) is brought into diagonal form with
the immediate solutions

b̃p = 〈χ̃p|V − E(1)|�(0)〉
E(0) − Ẽp

, p = 1, 2, . . . , N.

(145)

A term with Ẽp = E(0), if present, is simply
omitted. Without loss of generality, one
can then assume that 〈χ̃p|�(0)〉 = 0 for
the remaining χ̃p. Equation (140) then
becomes

E(2) =
N∑

p=1

′ |〈χ̃p|V − E(1)|�(0)〉|2
E(0) − Ẽp

, (146)

where the prime denotes that terms
with Ẽp = E(0) are to be omitted. This
expression for E(2) is formally identical
to the standard second-order perturbation
expression, except that the summation
over the actual spectrum of H(0) (including
an integration over the continuum) is
replaced by a summation over the discrete
variational pseudostates. The results are
completely equivalent to those obtained by
solving Eqs. (141) directly. A similar formal
identity can be extended to all orders of
perturbation theory.

From a more general point of view,
the above results correspond to a discrete
variational representation for the Green’s
function of complex variable z, defined by

(H(0) − z)G(0)(r, r′) = δ(r − r′). (147)

Then

G(0)(r, r′) �
N∑

p=1

|χ̃(r)〉〈χ̃ (r′)|
Ẽp − z

. (148)

The great advantage is that often a small
number of appropriately chosen pseu-
dostates can replace the infinite summa-
tion over bound states plus an integration
over the continuous spectrum of H(0).

The pseudostate method has important
applications in scattering theory as an al-
ternative way to represent the scattering
continuum. For example, the convergent
close-coupling method of Bray and Stel-
bovics (1992) has yielded essentially exact
solutions to the electron–hydrogen scat-
tering problem.

3.4.3
Example: The Polarizability of Hydrogen

Consider the problem of a hydrogen atom
in its 1s ground state subjected to a static
electric field of strength F pointing in the
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z direction. The total Hamiltonian in polar
coordinates is then

H = H(0) + eFr cos θ. (149)

With V = eFr cos θ as the perturbation,
the first-order equation (135) can be solved
analytically with the result

�(1) = −
(

1√
3

)
(2r + r2)e−rY0

1 (r̂).

(150)

Since V is of odd parity, E(1) = 0, and, from
Eq. (140), E(2) = − 9

4 a3
0, where E(2) is the

coefficient of F2 in the energy expansion.
By definition, the dipole polarizability is

αd ≡ −2E(2) = 9
2 a3

0. (151)

If E(2) is written in the form of Eq. (146),
summed over the actual spectrum of
hydrogen, then nearly half of αd comes
from virtual transitions to the continuum.

Suppose now that a variational solution
is constructed of the form

�
(1)
tr = −

(
1√
3

)
(b1r + b2r2)e−λrY0

1 (r̂),

(152)

where b1 and b2 are linear variational
parameters, and λ is an additional non-
linear variational parameter. This provides
a two-dimensional basis set, with the ex-
act solution being recovered for the case
λ = 1. For λ �= 1, the basis set provides
the best variational representation of �(1).
After solving Eq. (141) for b1 and b2, the
expression for αd as a function of λ be-
comes

αd(λ) = 6λ5
(

2

λ + 1

)12

× 9λ4 − 12λ3 + 14λ2 − 10λ + 5

5λ4 − 10λ3 + 18λ2 − 10λ + 5
.

(153)

Fig. 4 Variational polarizability αd of hydrogen,
in units of a3

0. The exact value at λ = 1 is
αd = 4.5a3

0

A graph of this function near its peak is
displayed in Fig. 4. Since E(2) is an up-
per bound, αd is a lower bound for any
λ. It is clear that the exact value of 4.5a3

0
is recovered at λ = 1, where there is an
absolute maximum. But what is also sig-
nificant is the broad region of stability for
0.6 ≤ λ ≤ 1.1, with a second local maxi-
mum near λ = 0.657. For any λ in this
region, αd is in error by no more than
0.6%, even with a basis set containing
only two terms. In other words, the entire
spectrum of hydrogen is being well rep-
resented by just two pseudostates, neither
of which corresponds to a physical state
of hydrogen. In fact, the accuracy is con-
siderably worse at λ = 1

2 , corresponding
to the physical 2p state. As higher powers
of r are added to the basis set, the region
of stability rapidly becomes broader and
flatter.

3.4.4
Time-Dependent Perturbations

Similar methods can be used to treat
the case where the perturbation V is
time dependent. For example, with the
replacement E(0) → ih̄∂/∂t, the variational
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condition

δ

[
〈�(1)(t)

∣∣∣∣H(0) − ih̄
∂

∂t

∣∣∣∣�(1)(t)〉

+2〈�(1)(t)|V(t)|�(0)(t)〉
]

= 0 (154)

with respect to �(1)(t) leads to the
first-order time-dependent perturbation
equation

(
H(0) − ih̄

∂

∂t

)
|�(1)(t)〉

+ V(t)|�(0)(t)〉 = 0. (155)

This can be solved by Dirac’s method
of variation of constants. Many other
techniques have been developed, but these
will not be further pursued here. See, for
example, Dalgarno (1966).

4
The General Sturm–Liouville Problem

Many of the variational techniques dis-
cussed in Sec. 3 were developed long be-
fore the invention of quantum mechanics,
in connection with boundary-value prob-
lems in classical physics such as vibrating
membranes. Any linear second-order dif-
ferential equation (of which the radial
Schrödinger equation is just one exam-
ple) can be written in the Sturm – Liouville
form

d

dx

[
K(x)

dy

dx

]
− G(x)y = 0, (156)

defined over some closed interval [a,b], to-
gether with suitable boundary conditions.
By application of the Euler – Lagrange
equation with fixed end points, this
equation follows from the variational

condition

δ

∫ b

a

[
K(x)

(
dy

dx

)2

+ G(x)y2

]
dx,

(157)

and so all the techniques discussed thus
far can be applied. With the choice

G(x) = −λg(x) + l(x), (158)

the Sturm – Liouville problem becomes an
eigenvalue problem with λ adjusted to
satisfy the boundary conditions.

4.1
The Oscillation Theorem

A great many theorems have been proven
concerning the solutions to Sturm – Liou-
ville problems (see, e.g., Ince, 1956).
Of particular importance for physical
applications is the oscillation theorem.
Suppose that K(x), g(x), and l(x) are
all continuous, real, positive, monotonic
decreasing functions of x in the interval
[a,b]. It can then be proved that the two-
point eigenvalue problem

d

dx

[
K(x)

dy

dx

]
+ [λg(x) − l(x)]y = 0

(159)

has an infinite sequence of increasing
eigenvalues λ1, λ2, . . ., with correspond-
ing eigenvectors y1(x), y2(x), . . . such that
ym(x) has exactly m − 1 zeros in the open
interval [a,b]. The eigenvalues are entirely
discrete. If g(x) changes sign in the in-
terval, then the sequence of eigenvalues
becomes doubly infinite with both an in-
creasing (λ

(+)
m ) and a decreasing (λ

(−)
m ) set.

In either case, the solutions are orthogonal
with respect to the weight function g(x).

The importance of this theorem (and its
extensions) is that the ym(x) form the basis
for a generalized Fourier series in terms
of which an arbitrary function f (x) can be
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expanded in the form

f (x) =
∞∑

m=1

cmym(x) (160)

with

cm =
∫ b

a
f (x)g(x) dx. (161)

Since the eigenvalues are entirely discrete,
there is no integration over a continuum in
Eq. (160). Such a basis is called a Sturmian
basis set. Most of the mathematical
apparatus developed for Fourier analysis
can be carried over directly. In fact, a
Fourier series just corresponds to the
choices K(x) = 1, g(x) = 1, l(x) = 0.

4.2
Example: The Coulomb Problem

Consider the radial Schrödinger equation[
− 1

2r2

d

dr
r2 d

dr
+ l(l + 1)

2r2 − Z

r

]
× R(r) = ER(r) (162)

for an electron moving in the field of
a nucleus with charge Z. The quantum-
mechanical eigenvalue problem is solved
on the interval [0, ∞] by holding Z fixed
and varying E such that the boundary
conditions

lim
r→0

rR(r) = 0, lim
r→∞ R(r) = 0, (163)

are satisfied for the infinity of bound
states with E < 0. There is in addition
a continuum of scattering solutions with
E > 0.

The Sturmian eigenvalue problem dif-
fers in that E is held fixed at some negative
value −ε with ε > 0, and Z is varied so as
to satisfy the boundary conditions. Since
the eigenvalues to the Coulomb problem

are

En(Z) = − Z2

2n2 , (164)

it is clear that the Sturmian eigenvalue
condition En(Z) = −ε can be satisfied
infinitely many times by progressively
increasing both n and Z. As Z increases,
one eigenvalue after another from the
original problem is pulled down through
the value −ε. The Sturmian eigenvalues
are thus Zn = n

√
ε and the corresponding

eigenfunctions are

Rnl(r) = 1

(2l + 1)!

(
(n + l)!

(n − l − 1)!2n

) 1
2

× (2α)
3
2 (2αr)le−αr

× F(−n + l + 1, 2l + 2; 2αr),

(165)

where α = √
2ε and F(a, b; z) is a conflu-

ent hypergeometric function. The Rnl(r)
form a complete set of finite Sturmian
polynomials for n ≥ l + 1 that are orthog-
onal with respect to the potential 1/r; i.e.

∫ ∞

0
Rn′l(r)

1

r
Rnl(r)r

2dr = εδn′,n. (166)

The Sturmian functions Rnl(r) closely
resemble the bound-state Coulomb wave
functions. The main distinguishing fea-
ture is that α is a constant in the exponen-
tial factor instead of decreasing as 1/n. The
first N of them differ only by a transfor-
mation of the basis set from the functions
used to construct a finite variational repre-
sentation of �

(1)
tr in Sec. 3.4.3. The theory

of Sturmian functions therefore provides
a rigorous foundation for the choice of
basis functions in variational calculations,
and their property of completeness en-
sures convergence to the correct answer as
N increases.
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5
Applications to Electrodynamics

Consider an electromagnetic field propa-
gating through a medium with a charge
density ρ(r) moving with velocity v(r). It
follows from Maxwell’s equations that the
scalar and vector potentials introduced in
Sec. 2.4.1 satisfy the equations

∇2A − 1

c2

∂2A
∂t2

= −4πρ
v
c
, (167a)

∇2φ − 1

c2

∂2φ

∂t2
= −4πρ, (167b)

provided that the Lorentz gauge condition

∇ · A + 1

c

∂φ

∂t
= 0 (168)

is imposed. Many other gauge choices can
be made that leave the physical fields E
and B invariant, but this one is simplest
for the present discussion.

Unlike problems involving point par-
ticles, we are now dealing with fields
that vary continuously in space. Equations
(167a) and (167b) can be derived from a
variational principle if a Lagrangian den-
sity L is first defined such that

L =
∫

L dxdydz. (169)

The action integral in Hamilton’s principle
then assumes the four-dimensional form

J =
∫

L dxdydzdt. (170)

The condition δJ = 0 is obtained in
a manner similar to that leading to
Laplace’s equation (31). The present case
is an application of Eq. (23) with f =
L and four independent variables t1 =
x, t2 = y, t3 = z, t4 = t. There will be four
equations corresponding to q1 = A1, q2 =
A2, q3 = A3, and q4 = φ. The choice of L

is severely restricted for fields in vacuo
by the requirement that it be quadratic
in the field components (since the field
equations are linear), and relativistically
invariant. The only quantity satisfying both
requirements is a term proportional to
E2 − B2. The inhomogeneous interaction
terms on the right-hand sides of Eqs. (167a)
are also included with the definition

L = 1

8π

[(
−∇φ − 1

c

∂A
∂t

)2

− (∇ × A)2

−
(

∇ · A + 1

c

∂φ

∂t

)2
]

+ ρ
(

A · v
c

− φ
)

, (171)

where the first two squared terms corre-
spond to E2 and −B2, respectively, and the
third term generates the Lorentz gauge
condition (168). The last term is the inter-
action term. A straightforward application
of Eq. (23) with the terms identified as de-
scribed following Eq. (170) then yields Eqs.
(167a) and (167b).

The Lagrangian density L gives the
equations of motion for the fields in
the presence of a predefined matter
distribution ρ(r, t). For comparison, the
Lagrangian L defined by Eq. (96) gives the
converse equations of motion for particles
in the presence of predefined fields A and
φ. The remarkable point emerging from a
comparison of L and L is that the matter-
field interaction term ρ(A · v/c − φ) in L

is very similar in form to the second and
third terms in L. In fact, the terms become
identical with the choice ρ(r) = qδ(r − r′),
corresponding to a point particle of charge
q at position r′. This suggests that the two
Lagrangians can be combined into a single
Lagrangian

Ltot = L0 +
∫

L 0dxdydz + Lint, (172)



Variational Methods 649

where L0 and L 0 are the Lagrangians for
free particles and free fields, respectively,
and Lint is the remaining interaction term
common to both L and

∫
L dr. Hamilton’s

principle and the Euler–Lagrange equa-
tions then give the equations of motion
for the combined system of interacting
particles and fields.

The above is of course not a proof that the
resulting equations of motion provide an
exact description of nature. The derivation
is based on the supposition that something
like Hamilton’s principle remains valid for
the combined system of interacting parti-
cles and fields, and it ignores the quantum
nature of both matter and fields. However,
Eq. (172) provides a basis for combining a
quantized description of matter fields and
electromagnetic fields into a single the-
ory called quantum electrodynamics, whose
predictions have been verified to an ex-
tremely high degree of precision (see, e.g.,
Kinoshita and Yennie, 1990). It can safely
be described as the most successful theory
ever invented. However, further discus-
sion of this topic would take us beyond the
scope of this article (see Further Reading).

6
Feynman’s Path Integral

This article would not be complete without
at least a passing reference to Feynman’s
path integral because of the way in
which it provides an underlying coherent
formalism unifying classical mechanics,
quantum mechanics, and optics.

Consider for simplicity the x coordinate
of a particle moving in a potential. The aim
is to construct a path integral giving the
quantum-mechanical transition amplitude
for the particle to move from position x0

at time t0 to position xf at time tf . Let
the state vector corresponding to a particle

at position x be denoted by |x〉. In the
coordinate representation

〈x′|x〉 = δ(x − x′), (173)

and by closure,∫
|x〉〈x| = 1, (174)

where 1 is the identity operator. In the
momentum representation,

〈p|x〉 = (2π h̄)
− 1

2 e− px
h̄ = 〈x|p〉∗. (175)

The remaining ingredient is the time-
evolution operator e−iHt/h̄. Its inverse
defines states |x, t〉 in the Heisenberg
representation such that

|x, t〉 = e
iHt
h̄ |x〉. (176)

With these preliminaries, an initial ex-
pression for the desired transition ampli-
tude is

K(xf , tf ; x0, t0) = 〈xf , tf |x0, t0〉

= 〈xf | exp
[
−iH

(tf − t0)

h̄

]
|x0〉. (177)

The key idea in constructing a path
integral is to suppose that the system
passes through a large number N of
intermediate states |xk, tk〉 in making the
above transition from |x0, t0〉 to |xf , tf 〉
such that tk+1 = tk + ε, with ε = (tf −
t0)/(N + 1). This can be formally achieved
by making repeated use of the closure
relation (174) to write

K(xf , tf ; x0, t0)

=
∫

dx1 · · · dxN〈xf , tf |xN , tN〉
× 〈xN , tN |xN−1, tN−1〉 · · · 〈x1, t1|x0, t0〉.

(178)
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Then for each intermediate step, the inner
product is

〈xk, tk|xk−1, tk−1〉

= 〈xk| exp
[
−i(tk − tk−1)

H

h̄

]
|xk−1〉

= 〈xk|e−i εH
h̄ |xk−1〉. (179)

Using Eq. (175), this can be evaluated in
the momentum representation to obtain
(with symmetric or Weyl operator order-
ing)

〈xk, tk|xk−1, tk−1〉 =
∫

dpk

2π h̄

× exp
{

i
[pk�xk − iεH(x̄k, pk)]

h̄

}
,(180)

where �xk = xk − xk−1 and x̄k = (xk +
xk−1)/2. Substitution of this form into
Eq. (178) then yields

K(xf , tf ; x0, t0)

=
∫

dx1 · · · dxN
dp1

2π h̄
· · · dpN+1

2π h̄
eiSN ,

(181)

where

SN = ε

h̄

N+1∑
k=1

[
pk�xk

ε
− H(x̄k, pk)

]
.

(182)

Consider now the limit N → ∞, ε → 0.
Although each xk separately ranges over
all possible values due to the integrations
in Eq. (181) (see Fig. 5), the quantity
�xk/ε ≡ (xk − xk−1)/ε contributes a large
and rapidly varying phase that averages to
zero unless xk ≈ xk−1. We can therefore
identify �xk/ε with ẋ in the limit ε → 0
and write

lim
ε→0

SN = 1

h̄

∫ tf

t0
[pẋ − H(x, p)]dt

Fig. 5 A possible path for the Feynman integral
with six intermediate states. Each of x1 through
x6 varies independently over all possible values

= 1

h̄

∫ tf

t0
L dt. (183)

This result provides a version of the
Feynman path integral with the path in-
tegrated over all possibilities (including
discontinuous ones) in phase space. How-
ever, the result can be carried a step further
by performing the momentum integra-
tions in Eq. (181). For example, if H has
the form

H(x, p) = p2

2m
+ V(x), (184)

then a typical momentum integral has the
Gaussian form∫ ∞

−∞
dpk

2π h̄
exp

{
− iε

h̄

[
p2

k

2m
− pk�xk

ε

]}

=
(

m

2π h̄iε

) 1
2

exp

[
imε

2h̄

(
�xk

ε

)2
]

.

(185)

Using this in Eq. (181) gives

K(xf , tf ; x0, t0)

=
(

m

2π h̄iε

) (N+1)
2

∫
dx1 · · · dxNeiSN ,

(186)
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where now

SN = ε

h̄

N+1∑
k=1

[
m�xk

2ε
− V(x̄k)

]
. (187)

Taking the limit N → ∞, ε → 0 as in
Eq. (183) leads to the final result

K(xf , tf ; x0, t0)

= A
∫

D x exp
(

i

h̄

∫ tf

t0
L dt

)
, (188)

where A is a constant independent of the
path, and D x is a shorthand notation for
the infinitely nested integrals in Eq. (186).
Since this structure is mathematically not
well defined, any practical calculation must
be done with a finite subdivision and the
limit ε → 0 taken at the end.

An explicit calculation of K is possible
only for certain special cases such as the
free particle or harmonic oscillator. In the
free-particle case (V = 0), K becomes

K(xf , tf ; x0, t0) =
(

m

2π ih̄�t

) 1
2

× exp
[
−m(�x)2

2ih̄�t

]
, (189)

where �t = tf − t0 and �x = xf − x0.
This is the known nonrelativistic kernel
or Green’s-function propagator for a free
particle (see, e.g., Merzbacher, 1970). It
controls the time evolution of the wave
function according to

�(xf , tf ) =
∫ ∞

−∞
K(xf , tf ; x, t0)�(x, t0) dx.

(190)

6.1
Relation to Classical Dynamics

As it stands, the Feynman path integral
is not strictly a variational principle. How-
ever, in the limit h̄ → 0, the exponential

term
i

h̄

∫ tf

t0
L dt (191)

in general gives a large phase that varies
rapidly with slight variations in the path,
except very near the particular path where
the integral is stationary; i.e., by Hamil-
ton’s principle, the classical trajectory. For
any other path, the rapid phase variations
cause the contributions to the integral to
cancel. All possible paths contribute with
equal weight, but the phase cancellation
singles out the classical path. It simi-
larly singles out the path of a light ray
in geometrical optics by Fermat’s princi-
ple. The connection between variational
principles in classical and quantum me-
chanics is discussed from a different point
of view by Gray et al. (1996), who show
that the reciprocal form of the Maupertuis
principle of least action (see Sec. 2.3.1)
can be obtained from the classical limit
of the Schrödinger variational principle
without the use of the Feynman path
integral.

On the other hand, the path integral em-
bodies quantum mechanics, and, with the
use of the Lagrangian density, electrody-
namics. It therefore provides a powerful
underlying formalism that unifies all of
these diverse branches of physics. It pro-
vides a general starting point for the
construction of quantum field theories
and the description of new phenomena.
These topics may be further pursued
through some of the books in the reading
list.
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Glossary

Brachistochrone Problem: The problem of
finding the curve giving the shortest travel
time for a bead constrained to slide on a
wire of arbitrary shape.

Calculus of Variations: A mathematical
technique for finding the extrema (max-
ima, minima, or stationary points) with
respect to variations in the function defin-
ing the path for an integration.

Canonical Momentum: The momentum pi

conjugate to a generalized coordinate qi,
defined by pi = ∂L/∂ q̇i, where q̇i = dq/dt
and L is the Lagrangian.

Canonical Transformation: A transforma-
tion from one set of generalized coordi-
nates and momenta to another such that
the form of Hamilton’s equations of mo-
tion is preserved.

Conservative System: A mechanical sys-
tem for which the Hamiltonian is a
constant of the motion.

Constraint: An equation that must be
satisfied by the solution to a variational
problem.

Correlation Energy: The difference be-
tween the exact and Hartree–Fock en-
ergies of a many-particle quantum-
mechanical system.

Electrodynamics: The study of electromag-
netic fields and their interactions with
charged particles, treated as a single dy-
namical system.

Euler–Lagrange Equation: A second-order
differential equation whose solutions
determine the function that makes a path
integral an extremum.

Fermat’s Principle: A principle from geo-
metrical optics stating that the path of a
light beam through a medium of varying
index of refraction is such that the travel
time is a minimum.

Feynman Path Integral: An integral over
all possible paths (both continuous and
discontinuous ones) connecting the initial
and final states of a system, with each
path weighted by a phase factor of the
form exp(iS/h̄), where S is the path
integral over the Lagrangian appearing in
Hamilton’s principle, and h̄ is Planck’s
constant.

Functional: A function F[y(x)] that de-
pends on the functional form chosen for
y(x). For example, y(x) might determine
the path of an integration between fixed
end points in a plane.

Generalized Coordinate: Any function of
the Cartesian coordinates used to describe
the evolution of a mechanical system, or its
dynamical analogues involving continuous
fields.

Generalized Force: The component of the
work done by the actual force acting on a
particle due to a change of a generalized
coordinate.

Generalized Momentum: The momentum
conjugate to a generalized coordinate – see
Canonical Momentum.

Hamiltonian: A constant of the motion
for time-independent systems, which for
ordinary conservative systems becomes
the sum T + V of the kinetic energy T
and the potential energy V.
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Hamilton’s Characteristic Function: The
time-independent part of Hamilton’s prin-
cipal function.

Hamilton’s Equations of Motion: A set of
2N first-order differential equations link-
ing directly the N generalized coordinates
and N generalized momenta through their
time derivatives.

Hamilton’s Principal Function: The func-
tion represented formally by the indefinite
integral of the Lagrangian with respect
to time. It corresponds to the general
solution to the Hamilton–Jacobi equa-
tion.

Hamilton’s Principle: A variational con-
dition, involving a path integral over
the Lagrangian with respect to time,
that determines the equations of mo-
tion for the system under considera-
tion.

Hartree–Fock Approximation: The best
possible approximation to the wave
function for a many-particle quantum-
mechanical system that can be written
in the form of a separable product of
independent functions, with a separate
function for each particle. The coupled
differential equations to be solved fol-
low from the Rayleigh–Schrödinger varia-
tional principle.

Holonomic Constraint: An equation of con-
straint involving the generalized coordi-
nates that can be expressed in integrated
form, as opposed to a relation among dif-
ferential quantities.

Hylleraas–Undheim–MacDonald Theorem:
A theorem establishing variational up-
per bounds for the energies of ex-
cited states of a quantum-mechanical
system as well as for the ground
state.

Lagrange Undetermined Multiplier: A
mathematical technique for the introduc-
tion of constraints into variational prob-
lems.

Lagrange’s Equations of Motion: A system
of N second-order partial differential
equations that determine the equations
of motion for the generalized coordinates
qi = qi(t).

Lagrangian: For ordinary conservative sys-
tems, the Lagrangian L is the quantity
T − V , expressed as a function of the N
generalized coordinates qi and their time
derivatives q̇i.

Lagrangian Density: A generalization of
the Lagrangian to continuous systems and
fields in which the continuous system is
first conceived as consisting of discrete
elements.

Oscillation Theorem: A theorem applica-
ble to two-point boundary-value problems
of the Sturm–Liouville type. The theo-
rem establishes that there is an infinite
sequence of eigenvalues whose eigen-
functions have progressively more zeros
between the boundary points, and hence
progressively more oscillations.

Path Integral: The integral of a function
f (y(x)) between given points in an xy plane
(or its higher-dimensional generalizations)
along a path specified by the function y(x).

Perturbation Theory: A technique for the
progressive approximation of more diffi-
cult problems involving the solution of
differential equations (for example), start-
ing from an exactly soluble simpler one.
The difference between the two equations
is called the perturbation term.

Principle of Least Action: A variational prin-
ciple in classical dynamics, closely related
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to Hamilton’s principle, which establishes
a direct connection with Fermat’s principle
in geometrical optics.

Pseudostate: A member of a set of states
obtained by diagonalization of the Hamil-
tonian matrix in a discrete variational basis
set.

Quantum Electrodynamics: A quantized
field theory describing the dynamical
interactions of charged particles with
electromagnetic fields.

Rayleigh–Ritz Variational Method: A meth-
od for the construction of an approxi-
mate wave function � by expansion in
a finite basis set of functions with ex-
pansion coefficients determined by the
Rayleigh–Schrödinger variational princi-
ple.

Rayleigh–Schr
..
odinger Variational Principle:

A principle stating that the ratio 〈�|H|�〉/
〈�|�〉 is an upper bound to the lowest
eigenvalue of H for any arbitrary (but nor-
malizable) choice for the wave function
�.

Schr
..
odinger Equation: A second-order par-

tial differential wave equation that forms
the basis of nonrelativistic quantum me-
chanics.

Sturmian Basis Set: The set of discrete
eigenvalues and corresponding eigenfunc-
tions obtained by solving a two-point eigen-
value problem of the Sturm–Liouville type.

Sturm–Liouville Problem: A class of sec-
ond-order differential equations of the
form (d/dx)[K(x)dy/dx] − G(x)y = 0, to-
gether with suitable boundary conditions.

Spectral Representation: A representation
of the Green’s function, or the terms in

a perturbation series, in terms of explicit
summations over the eigenvalue spectrum
of the unperturbed problem.

Temple Bound: A method for constructing
variational lower bounds to the energy
based on the square of the Hamiltonian.

Variational Bound: An upper or lower
bound on the energy or some other
quantity obtained by means of a trial
solution to the underlying differential
equation, typically with parameters in the
trial solution that can be adjusted to obtain
the best possible solution.
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Further Reading

Techniques of the calculus of variations are
covered in great detail by Courant and Hilbert
(1966), and by Morse, P. M., and Feshbach,
H. (1953), Methods of Theoretical Physics, New
York: McGraw-Hill, along with most other books
on the techniques of theoretical physics. The
book by Yourgrau, W., and Mandelstam, S.
(1968), Variational Principles in Dynamics and
Quantum Theory, 3rd ed., Philadelphia: Saunders
(Dover reprint 1979) provides an interesting and
informative historical perspective.
Applications of variational principles to classical
mechanics are covered in a very thorough,
detailed, and readable manner by Goldstein, H.
(1980), Classical Mechanics, 2nd ed., Reading,
MA: Addison-Wesley. This book also contains
a good pedagogical introduction to variational
principles for continuous systems and fields.
See also Lanczos, C. (1970), The Variational
Principles of Mechanics, Toronto: University of
Toronto Press (Dover reprint 1986).
The development of field theory from variational
principles is covered in many recent books such
as Ramond, P. (1981), Field Theory, a Modern
Primer, Menlo Park, CA: Benjamin/Cummings;
and Itzykson, C., and Zuber, J.-B. (1980),
Quantum Field Theory, New York: McGraw-Hill.
A good introduction to the Feynman path integral
approach is given by Das, A. (1993), Field Theory,
a Path Integral Approach, Singapore: World
Scientific, and more detailed developments are
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contained in Rivers, R. J. (1987), Path Integral
Methods in Quantum Field Theory, Cambridge,
U.K.: Cambridge Univ. Press. The original
development in Feynman, R. P., and Hibbs,
A. R. (1965), Quantum Mechanics and Path
Integrals, New York: McGraw-Hill, remains an
authoritative source.
A wide variety of applications of variational
principles in quantum-mechanical calculations
can be found in numerous articles throughout

Drake, G. W. F. (Ed.) (1996), Atomic, Molecular,
and Optical Physics Handbook, New York:
American Institute of Physics. In addition, the
Kohn and Schwinger variational methods for
scattering problems are covered in most books
on scattering theory, such as Taylor, J. R.
(1972), Scattering Theory: The Quantum Theory
on Nonrelativistic Collisions, New York: Wiley. All
of the above contain numerous other references
to the literature and are intended only as a guide.
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- perturbation methods 397 ff 
- stochastic processes 525 ff 
- transformations 94,106 
Frobenius algebra 4,23 f 
Frobenius-Fuchs power series 476 f, 490 f, 

496,501f 
Frobenius-Perron theorem 10 
function domain 94 
functionals 
- analytical methods 35, 70 ff, 80 
- transformations 84 f 
- variational methods 621,652 
functions, analytic 37 
fundamental theorem of calculus 598 
fundamental theorem of algebra 19 ff 
fuzzy complement 456 f, 462 

Galerkin methods 366 
Galois groups 4,20 
Gamma function 491, 510 
GAMS, numerical software 378 
gates 420 f, 425 
gauges 
- differential geometry 145 f 
- Monte Carlo methods 271 f, 277 
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- perturbation methods 389,412 
- symmetries 578 ff, 583 
- topology 609 
Gauss-Bonnet theorem 149 
Gauss-Codazzi equations 141 
Gauss differential equations 490 ff 

see also: hypergeometric functions 
Gauss distribution 256, 529 
Gauss elimination 290,299 
Gauss ensemble 265 
Gauss law 20 ff, 144 
Gauss-Legendre quadrature rules 338 ff 
Gauss model 536,546 
Gauss-Seidel iteration 305 ff, 323 
Gear formulas 353 
Gegenbauer polynomials 477 f, 492 f 
general boundary conditions 359 
general circulation models (GCMs) 

215,229, 245 
general quantum logic 448 
general relativity theory (GRT) 12,150 
generalized Hamilton mechanics 74 
generalized series 389,413 
generating function 483, 510, 631 
generation-recombination processes 

515,533 ff, 537 
genus 604 
geometric scaling 111 
geometric singular perturbation 

methods 407 
geometrical methods 127-158 
Gibbs ensemble 265 
Ginzburg-Landau equation 182 
Glashow-Weinberg-Salam model 580 
glide reflection plane symmetries 567 
gluons 584 
golden section-search method 325 
Goldstone bosons 575,584 
gradients 142 ff, 325 ff 
Gram-Schmid orthogonalization 314, 337 
grand canonical ensemble 263 
Grassmann algebra 17,24 
gravity stabilized invasion percolation 

119 
Green' theorem 598 
Green's functions 159-188 
- analytical methods 35,53 ff, 57 ff 
- potential theory 64 
- stochastic processes 543 
Green's operator 175 
grid representation 
- fractal geometry 113 

- Laplace equation 65 
- partial differential equations 362,374 
group theory 189-212 
- algebraic 2 ff, 23 
- symmetries 566,584 
- topology 600 
Grover's data-base-searching algorithm 

434 
growth factor 302 
growth fractals 219 
gyration radius 110 ff, 124 

Haar measure 23 
Hadamard transform 103 
hadrons 272 
Hamilton formalism 
- algebraic methods 9 
- mechanics 36, 74 f 
- quaternions 15 
- variational methods 626 ff, 630 ff, 653 
Hamiltonian operator 
- atomic structure 209 
- Green's functions 175 ff 
- group theory 200 
- Monte Carlo methods 258,268 
- quantum logic 448 
- symmetries 580 
Hamilton-Jacobi theory 74, 627, 632 f 
Hankel functions 175, 504 
Hankel transforms 87 ff, 100 
hardware, digital computing 217 
harmonic functions 38 
harmonic oscillators 486 
- analytical methods 36 
- perturbation methods 396 
- stochastic processes 526 
Hartley transforms 87 ff, 95 ff 
Hartree—Fock configuration 640. 653 
Hausdorff space 
- chaotic systems 228 
- differential geometry 137 
- fractals 219 
- topology 155,594 
heat-bath method 260,277 
heat dissipation 419 
heat transport 
- chaotic 242 
- Green's functions 166 f, 170 f 
- ordinary differential equations 57 ff, 67 
- topology 610 
- transforms 94 
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Heaviside step-function 106,165,182 
Heisenberg model 
- Green's functions 178,182 f 
- quantum logic 447 
- quantum mechanics 78 
helium 638 
Helmholtz equation 476 f, 494 ff, 500 ff 
- analytical methods 62 
- boundary-element method 172 
- Green's functions 165,175 
- numerical methods 359 
- topology 597 
Henon maps 222 
Hermitian conjugate 272 
Hermitian interpolation 331 
Hermitian kernels 68 
Hermitian matrices 297, 300 f, 305 f, 379 
Hermitian metrics 148 
Hermitian operator 480,518, 569 ff 
Hermitian polynomials 334 ff, 476 f, 499 ff 
Hermitian symmetry 105 
Hermitian tensor 11 
Hessenberg matrices 316 ff, 379 
Hessian operator 325,328,611 
Higgs mechanism 581 
Hilbert space 

- algebraic methods 22 
- quantum computation 423 f, 432 f 
- quantum logic 441,444,463 f 
- quantum mechanics 78 
- symmetries 569 ff 
- topology 596 
Hilbert transform 43, 85 ff, 99 ff 
Hilbert's fifth problem 197 
Hilbert-Bernays style 459 
Hilbertian quantum logic 458 
histogram method 265 
Hodge decomposition theorem 149 
Hodge-star map 141,610 
holes 115,541 
holonomic constraints 624 
homeomorphic spaces 594 
homogeneous boundary conditions 168 
homogeneous coordinates 152 
homogeneous differential equations 50 
homogeneous space 14 
homogeneous systems 172 
homology 601 
homomorphism 7, 22,195 
homotopy 599 

Hopfield type neural networks 235 
Horner's rule 324 

Householder transformations 313 
Hurst exponent 117,121 
Huygen's principle 166,173 
hydrogen polarizability 644 
Hylleraas-Undheim-MacDonald (HUM) 

theorem 637,653 
hyperbolas 130 f, 136 
hyperbolic differential equations 58, 67 
hyperbolic functions 132 
hyperbolic partial differential equations 

358,371 
hyperboloids 134 
hypergeometric functions 476 f, 490 ff, 

499 ff, 510 
hyperplanes 135,252 
hypersurfaces 135,599 
hypervolumes 598 

identity element 3,191 
identity transformations 566 
IEEE standard floating points 284 f 
Ikeda maps 222 
imaginary number i 36 
impedance 44,526 
imperfect bifurcations 389 
implicit ordinary differential 

equations 347 f 
importance sampling 245, 253,258 f, 277 
IMSL, numerical software 378 
incomplete factorization 308 
independent vectors 6 
indetermined truth value 462 
indicial equation 52 
induced rounding 265 
inertia law 11 
Infeld-Hull factorization 

476 ff, 484 ff, 489 ff 
infinite groups 191 
infinite integrals 254, 344 
infinitesimal groups 17 
information theory 233 f, 239 
initial value problems (IVPs) 
- analytical methods 47 
- Green's functions 160,169 ff 
- ordinary differential equations 346 ff 
- partial differential equations 

358 ff, 369 ff 
- perturbation methods 404,413 
inner product 336,593 
inner solutions 404,413 
integers 2,15 
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integrals 
- analytical methods 38,67 ff, 80 
- Monte Carlo methods 254 
- quadrature 340 
- stochastic processes 548 
- variational methods 621,626,649 f, 652 
interfaces 116 f, 266 
interference pattern 418 
intermediate truth value 462 
intermediate variable 406 
internal symmetries 573 
interpartition smoothing criteria 227 
interpolation 329 ff, 334 ff, 338 
invariance 

- differential geometry 144 
- fractals 220 
- group theory 194,199, 204 
- projective geometry 153 
invasion percolation model 119 
inverse iteration 319 
inverse models 216,245 
inverse scattering theory (1ST) 244 f 
inverse transformation 45,106,191 
inversely restricted sampling 256 
involution 10,444,449,468 ff 
irreducibility 202 ff, 206 
irregular grids 362 
irregular surfaces 116 
Ising model 184, 266,274 
island method 123 
isolated point 593 
isomorphic groups 194 
isospins 211,573 
isothermal-isobaric ensemble 2634 
isotropic systems 172 
iteration 
- mapping 245 
- numerical methods 290,303 ff 
- ordinary differential equations 55 
Ito definitions 517 
Ito-Stratonovic controversy 548,555 

Jacobi identity 17 
Jacobi iteration 305,319 
Jacobi polynomials 477 f, 492 f 
Jacobi-Hamilton theory 74, 627, 632 f 
j- j coupling 211 
Johnson noise 523 ff 
joins 443,468 
Jordan blocks 9 ff, 386 
Jordan-Brouwer separation 599 

jump rate 541 
Jung notation 553 

Kac-Moody algebras 10,24 
Kahler metrics 148 
Kalman filters 230 f 
Kaluza-Klein theories 151 
Kelvin's solution 173 ff 
Kepler's law 135,386,400 
kernels 
- algebraic methods 7 ff, 10 f, 22,28 
- Green's functions 161 
- integral equations 67 
Killing groups 22 ff 
Killing-Coxeter transformation 26 
Killing-Weyl groups 26 
kinetic energy 136,200 
Kirchhoff loop 49,95,173 
Klein bottle 588,608 
Klein-Gordon equation 167 f, 171,184 f 
Kolmogoroff-Arnold-Moser (KAM) 

theorem 386,399 f 
Kolmogoroff-Sinai entropy 228,239 
Konigsberg bridge problem 590 
Korringa-Kohn-Rostoker eigenvalues 

177 
Kortweg-de Vries equation 244 
Kramer's model 553,556 
Kripkean semantics 455,468 
Kronecker delta 
- algebraic methods 24 
- boundary-element method 173 
- group theory 206, 210 
- Hamilton mechanics 77 
- symmetries 570 
Kronig-Kramers relation 43 
Krylov-Bogoliubov-Mitropolski (KEM) 

method 397 
Kubo theory 164,182 
Kummer functions 499 

La Nina 245 
ladder approximation 179 
Lagrange theorem 
- analytical methods 53 
- functional analysis 74 ff 
- group theory 193 
- numerical methods 330 f 
Lagrange undetermined multiplier 

623,653 
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Lagrangian operator 
- Green's functions 163,183 
- symmetries 566 ff, 571ff,578 ff 
- variational methods 630,653 
lags p,q 253 
Laguerre polynomials 476 f, 486 ff, 499 ff 
lambda matrices 18 
Lanczos method 320 
Landau-Lifshitz description 566 f 
Langevin processes 531,544 ff, 559 
LAPACK, numerical software 378 
Laplace equation 476 f, 497 f 

- analytical methods 38,57 ff, 61 ff, 65 f 
- conformal transformations 45 
- Green's functions 162,168 ff 
- Mellin transform 98 
- numerical methods 358 
- topology 591,597,610 
- variational methods 625 
Laplace transforms 87 f, 91 ff 
- algebraic methods 23 
- integral equations 68 
Laplace-Beltrami operator 610 
Laplacian operator 
- analytical methods 35,62 f 
- differential geometry 142 
- Green's functions 162 
- Helmholtz equation 494 
- topology 610 
lattices 
- Bravais 567 
- gauge theory 271 f, 276 f 
- group theory 211 
- Monte Carlo methods 254 ff 
- orthocomplemented 441,469 
- quantum logic 446 
latus rectum 132 
Laurent polynomials 19, 35, 39 
LDL factorization 297 f 
least action principle 629,653 
least square fitting 121,336 
Legendre polynomials 476 f, 486 ff, 492 f, 

495 f 
Legendre transformations 631 
Leibnitz formula 483,502 
leptons 580 f, 583 f 
letter totality (alphabet) 227 
Liapunov exponent 227 f 
Lie groups 197,477 ff, 484 ff 
- algebraic methods 16,22 ff 
- differential geometry 143,146 
- digital computing 219 

- linear representation 200 
- perturbation methods 400,413 
- symmetries 566 ff, 569 ff, 584 
- topology 590 f 
limit point 593 
Lindenbaum property 460,468 
Lindstedt's method 394 ff, 413 
linear differential equations 35 ff 
linear groups 198 
linear multiplicate algorithm 252 
linear multistep formulas 352 f 
linear operators 478 
linear spaces 5 ff 
linear splines 333 ff, 366 
linear stationary method (1st degree) 304 
linear systems 312 
linear transformations 106 
- algebraic methods 11 
- perturbation methods 386 
linear variation parameters 636 
linear vector space 191 
lines method 372 
LINPACK, numerical software 378 
Liouville operator 478 f 
Liouville theorem 37 
Lipschitz condition 93 
logic gates 420 f, 425 f 
logical reversibility 419 
logician's approach 454 
Lorentz boosts 147,570 ff 
Lorentz equation 227 
Lorentz groups 199, 568 ff 
Lorentzian metrics 142,147 
LU factorization 292,296 f 

machine epsilon (macheps) 286 
Mackey's formulation 443 
MacNeille completion 463,368 
MACSYMA software 218 
magnetization, spontaneous 265 
magnification 45 
manifolds 
- differential geometry 137 
- perturbation methods 403 
- topology 607 f 
mantissa 285 
manual space 454 
many-body processes 163,178 
many-valued possible-word semantics 

456 
MAPLE software 218,229 
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mapping 245 
- algebraic methods 28 
- canonical 14 
- functional analysis 71 
- projective geometry 152 
- quantum logic 453 
- tensors 139 f 
Marchenko equation 244 
Markov processes 221,245 
- Monte Carlo methods 261 
- stochastic 515 f, 544 ff, 559 
mass-length scaling 112 
matching 405,413 
material science 273 
MATHEMATICA software 218 
mathematical modeling 213-248 
Mathieu functions 509 
MATLAB, numerical software 218, 378 
matrices 
- perturbation methods 386,410 
- properties 2 
- transposition 222 
matrix-vector products 316 
Maupertius least action principle 629,653 
maxima 71 
maximization 324 
Maxwell equations 
- differential geometry 144 
- Green's functions 176 
- topology 598,610 
mechanical wave equation 57,476 ff 
mechanics 
- classical 625 
- Hamilton principle 74 
- Monte Carlo methods 273 
mechanistic models 215,245 
meet 443,468 
Meissner effect 175 
Mellin transforms 87 ff, 98 ff 
Melnikov function 403 
memory complexity 361 
mesons 273,574 
metallurgy 273 
metrics 140 ff, 592 
Metropolis importance sampling 258 f 
Metropolis-Hastins procedure 225 
Michelson interferometer 95 
midpoint quadrature rule 338,350 
minima 71 
minimal polynomials 9 
minimization 324 
minimum curvature 335 

minimum functional theorem 358 
Minkowskian metric 140,145 
minus-sign problem 271 
mixed boundary conditions 243, 359 
Mobius strip 588 
modal logics 440 
model quantum computer 426 
model-theoretic consequence 455 
modular law 442 
moduli 28,156 
Moivre's theorem 37 
molecular dynamics 217,278 
momentum 
- conjugate 571,574 
- fluid 4He 269 
- variational methods 632 
monomials 18, 330 f 
Monte Carlo methods 217,224, 249-280, 

345 
Moody-Kac algebras 10,24 
morphisms 28 
Morse theory 149, 611 ff 
motion equations 476 ff 
- analytical methods 50 ff 
- differential geometry 147 
- group theory 190 
- variational methods 630 ff, 653 

see also: Hamilton-, Newton- etc. 
multicanonical ensemble 265 
multiconfigurations 641 
multidimensional transforms 99 ff 
multifractals 219 
multifrequencies systems 399 
multigrid method 373 f 
multinomial theorem 19 
multiple instruction, multiple data machine 

(MIMD) 375 
multiple-scale method 400,404,413 
multiple scattering effect 177 
multiple shooting 355 
multiplication 3,324 
multiplier 623,653 
multivalued logics 440 
multivariate time series 235 
mutual information 239 

n factorial 19 
NAG, numerical software 378 
Nambu-Goldstone bosons 576 
natural boundary conditions 359 
natural curvature 335 
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natural numbers 2 
negative frequency 106 
neighborhood 593 
Nekhoroshev theorem 386,399 f 
nested dissection ordering 301 
nested multiplication 324 
netlib, numerical software 378 
Neumann condition 478 f 

- Green's functions 163 ff, 185 
- ordinary differential equations 57 
- partial differential equations 359 
- quantum logic 441 
Neumann functions 504 
Neumann integrals 70 
neural networks 235,245 
neurons 235 
neutral element 3 
neutrinos 581 
neutrons 577 
Newton equations 625 
Newton gravitation law 386,399 
Newton iteration matrix 350,356 
Newton mechanics 74 
Newton method 320 ff, 328 ff 
Newton physics 16 
Newton-Cotes quadrature rules 338 ff 
nilpotency index 9 ff 
nodes 235,338 
Noether's theorem 570 
noise 216,236 
- quantum computation 433 
- shot 528 ff, 533 ff, 545 f 
- stochastic processes 515-559 
- thermal 523 ff 
nonhomogeneous differential 

equations 51 f 
nonlinear algebraic equations 320 
nonlinear dynamics 221 
nonlinear oscillator 388,392, 396 
nonstiffness 346 f 
normal form 312,389,402 
normalized numbers 285 
normed space 593 
norms 336 

North Atlantic Ocean circulation 216 
Norton's theorem 524 
NOT operations 420 
not-a-number (NaNs) 285 
notation 
- Einstein 13 
- general 2 
- group theory 192 

- quantum computation 422 
- stochastic processes 553 
NP complete problem 434 
NTV ensemble 263 
nuclear structure 210 
nucleation sites 113 
nucleon states 211 
nucleus see: kernels 
nullity 8 

null-root, canonical 27 
numerical algorithms group (NAG) 

218 
numerical methods 281-384 
- integration 338 
- modeling 226 
- ordinary differential equations 54 
- partial differential equations 64 f 
- software 377 
Nyquist's theorem 523 ff, 527 ff 

observables 445 
occupation 
- atomic shells 211 
- lattice sites 254 
ocean heat transport 242 
odd-even reduction 376 
Ohmic current 182 
one-bit gate 423 
one-forms 137,140 f 
one-step methods 356 
Onsager's regression 516 
open loop control 232 
operations 3 f 
operators 478 ff 

- Green's functions 161 ff, 178 ff, 185 
- partial differential equations 358 
- quantum logic 441,444 
- ranks 8,11 
- symmetries 566 ff 
- topology 610 
optical character recognition (OCR) 235 
optical field phase experiment 425 
optimization methods 324 
OR operations 420 
ordered series 391 
orders 
- group theory 191 
- matrices 301 
- ordinary differential equations 350 
- partial differential equations 358,362 
- quantum logic 462 
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ordinary differential equations 
(ODEs) 476 ff 

- analytical methods 35 ff, 46 ff, 80 
- numerical methods 346 
- perturbation methods 386 
ordinates 129,133 
orthoalgebras 441,448 f, 469 
orthoarguesian law 458 
orthocomplementation 441,449,469 
orthodox quantum logic 457,469 
orthogonal eigenfunctions 480 
orthogonal groups 11,198 
orthogonal matrix 379 
orthogonal polynomials 482 ff 
orthogonal transformations 313 
orthogonalization 337 
orthomodular law 442,469 
orthopair models 462 
oscillation theorem 646,653 
oscillators 

- harmonic 486,526 
- perturbation methods 388,413 
- quantum 479 
- self-sustained 557 
- stochastic processes 516 
oscillatory interpolation 331 
outer solutions 405,413 
overall efficiency 361 
overdetermined linear systems 312 ff 
overlap domain matching 406 

p forms 141 
Pade approximation 224, 245 
paleoclimatology 245 
Pappus' theorem 151 
parabolas 130,136 
parabolic cylinder functions 509 
parabolic differential equations 58,67, 

358,370 
paraboloids 134 
paraconsistent quantum logic 460,469 
parallel computation 375 ff 
parallel processors 218 
parallel shooting 355 
parallelism 427 
parametrization 135,216, 245 
- perturbation methods 387,413 
parity transformation 572 
partial differential equations (PDEs) 

476 ff 
- analytical methods 35,57 ff, 80 

- cellular automation 223 
- Green's functions 160 
- numerical methods 304 f, 357 ff 
- parabolic 358,370 
- perturbation methods 386 
partial quantum logic 464 
particle path 257 
partition 
- algebraic methods 10 
- Monte Carlo methods 271 
- statistical interference 238 
- topology 596 
Pascal's theorem 151 
path integrals 
- Feynman 79 
- Monte Carlo methods (PIMC) 268 
- variational methods 621, 649 f, 652 
paths topology 595,600 
Paul trap 425 
Pauli matrices 5,16 
Pauli principle 210 
Peaceman-Rachford method 309 
penetration depth 175 
perceptrons 235 
percolation model 119,124 
periodic functions 85 
periodic standard form 397 
permutation groups 192, 208 
permutation matrix 296, 379 
permutations 141 
Perron-Frobenius theorem 10 
perturbation theory 385^18 

- Green's functions 163,175 
- numerical methods 301 
- variational methods 641 ff, 654 
phase factor 447 
phase shift 425 
phase space 221 
- differential geometry 150 
- Monte Carlo methods 262 
- quantum logic 440 
phase transitions 265 
physical reversibility 419 
physical systems, quantum logic 451 
piecewise polynomials 332 ff, 360,365 
pivoting 291 f 
Planck constant 200,568 
plane analytic geometry 129 f 
plane trigonometry 131 ff 
plane waves 176 
PLU factorization 296 f 
Pochhammer symbol 491 
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Poincare groups 
- algebraic methods 29 
- perturbation methods 389,394,413 
- symmetries 570 
- topology 590,607 
Poincare lemma 611 
Poincare section 599 
Poincare-Hopf index 591 f, 606,609 f 
point groups 206, 566 
point response functions 161 
point-set topology 591 f, 613 
point sources 173 
point transformations 631 
Poisson brackets 77 
Poisson equation 
- Green's functions 169 f 
- numerical methods 359 
- ordinary differential equations 57 
- stochastic processes 528 ff 
- topology 610 
Poisson ratio 173 
polar coordinates 132,397 
polarizability, hydrogen 644 
pole-zero approach 237 
polygonal grids 362 
polymer science 274 
polynomials 

- algebraic methods 5,18 f 
- interpolations 329 
- numerical methods 321,379 
polyspectra 237 
Pontryagin bundles 609 
Pontryagin classes 149 
Pontryagin-Andronov-Vitt (PAV) 

model 553 
population fluctuations 538 f 
PORT, numerical software 378 
posets, orthomodular 444,449,468 
position vectors 138 
positive definite matrices 297,380 
positive definite operators 358 
possible-word semantics 455 
potential energy 136 
potential theory 64 
Powell's method 327 
power law distribution 115 
power series 476 ff 

- numerical methods 316 
- perturbation methods 389,410 
power spectra 98,245 
practical fractal geometry 123 
preconditioning 374 

predicate calculi 440 
prefractals 123 
preserved foliations 403 
primitive unit cell 567 
principal arguments 36 
principal attribute 454 
principal components analysis (PCA) 233 
probabilities 236 
- Monte Carlo methods 253 f, 277 
- quantum logic 450,469 
- stochastic processes 534 ff 
products 191,593 
projection operators 441 444,469 
projection-slice problem 101 
projective geometry 151 
projective transformations 152 
projective varieties 155 
proof-theoretic consequence 455,459 
propagation 235 

propagators 163,174 f, 177 
protons 210,577 
pseudorandom numbers 224,246 
- Monte Carlo methods 250 f 
- quantum computation 430 
pseudostates 644,653 
public-key cryptography 418,435,430 
Pythagorean theorem 131 

QR factorization 313,317 f 
quadratic piecewise polynomials 333 ff 
quadratic splines 298,333 ff 
quadrature 338 
quadrics 133 
quadrilateral grids 362 
quantization 183 
quantum bits (qubits) 425,435 
quantum chromodynamics 226 
quantum code 426 
quantum computation 417-438 
quantum field theory 183,528, 576,585 
quantum Fourier transform 427,436 
quantum logic 439^74 
quantum mechanics 
- group theory 200 
- Hamilton principle 74, 78 
- variational methods 634 
quantum Monte Carlo methods 268 
quantum numbers 209, 573 
quantum oscillator 479 
quantum-chromodynamics (QCD) 271 
quantum-electrodynamics (QED) 640, 654 
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quark model 272,577 ff, 585 
quasibiennal oscillation (QBO) 240 
quasicrystals 568 
quasi-equilibrium states 517 
quasi-Newtonian method 323, 

328 
quaternions 3 ff, 15 ff, 23 ff 
quenched Monte Carlo approximation 272 

radial Laplace equation 497 
radiation 173,257 
radii 130 ff 
radioactive decay 48 
radiofrequency ion map 425 
Radon transform 87 ff 
random behavior 216 
random numbers 250 ff, 278 
random phase approximation 179 
random walk problems 255,514,552 f 
ranks 

- group theory 203 
- numerical methods 379 
- operators 8,11 
- tensors 139 
rational functions 5 ff, 223,246 
rational numbers 2 
Rayleigh-Benard convection 227 
Rayleigh-Ritz variational method 

635 f, 654 
Rayleigh-Schrodinger variational 

principle 635 f, 654 
reaction rate theory 553 
real parts, complex variables 36 
real projective plane/space 588 
reciprocal lattice 94,568 
reciprocal transforms 87 
reciprocally adequate relations 455 
recombination processes 515,533,537 
rectangle quadrature rule 338 
rectangular coordinates 129 
rectangular grids 362 
recurrence formula 482 
recursion 52,252 
reduced states 448 
reducibility 203 
redundancy 10 
reflection 567 
refraction index 44 
regression theorem 517 f 
regula falsi method 321 
regular involution 470 

regular perturbation method 393,398,413 
regularity condition 461 
relative roundoff error 287, 302 
relativistic generalization 633 
relativistic quantum-field theory 582 
relaxation 

- Monte Carlo methods 267 
- numerical 267,306 
- perturbation methods 407,413 
replicas 110 
representations 
- complex numbers 36 
- Green's functions 168 ff 
- Lie group 200 
rescaled variables 388,413 
residuals 302,366,374 
residues 41 
resistance 44 
resistance modulation fluctuations 

535 f, 539 ff 
resolvent kernels 161 
resonance 399,413,556 f 
response functions 161,182 
rest points 393 
retarded Green's functions 165,174 
reversibility 419 ff, 436 
Rham cohomology 149,599,606,610 f 
Rice model 530 ff 
Richadson's method 305 
Riemann integrals 548 
Riemann metrics 140,148 
Riemann transformations 44,156 
Riemann-Christoffel tensor 13 
rigid bodies 566 f 
rings 15 

Rodriguez formula 482 ff, 493 f, 497 f, 511 
Romberg integration 343 
root multiplicity 27 
rotation 
- conformal transformations 45 
- group theory 190,202,208 
- symmetries 566 
rough surfaces 116 ff 
rounding errors 284 ff, 301 ff 
Rouse diffusion 275 
RSA public-key cryptography 430,436 
rubber sheet geometry 588 
Ruelle-Takens-Newhouse route, El 

Nino 241 
Runge-Kutta method 56,350 ff, 356 
Russel-Saunders coupling 210 



salinity, ocean heat transport 242 
sampling 245,251 ff, 277 
Sanchez-Palencia theorem 398 
SAS, numerical software 378 
Sasaki hook 457 
scalar field 140 
scalar product 5,199,206 
scalars 5 
scaling 
- fractal geometry 111 
- fractals 219 
- Monte Carlo methods 265,276 f 
- numerical methods 293 
- perturbation methods 409 
scattering 176 f, 245 
Schlesinger nomenclature 232 
Schmidt-Hilbert integrals 68 
Schrodinger equation 57,476 ff, 486 ff, 

494 ff 
- Green's functions 163 f, 167 ff, 174 ff 
- group theory 200 ff 
- Monte Carlo methods 225,270 
- quantum mechanics 78 
- variational methods 634, 654 
Schrodinger model 441,447, 610 
Schur lemma 205 
sea surface temperature 240 
secant method 321 
second-order curves 130 
second-order differential equations 

35,49 f, 56 f 
security, quantum computation 430 
seed sites 113,252 
self-adjoint operators 358,441,466,478 f 
self-affine fractals 115 ff, 124 
self-avoiding walk (SAW) 255 ff 
self-organization 233,246 
self-similar fractals 110,124 
self-sustained oscillators 557 
semantics, quantum logic 455 ff, 464 ff 
semiconductors 540 
semigrand canonical ensemble 263 
semitransparent effect 463 
sensitivity-to-initial-conditions (SIC) 216 
separable differential equations 47 
separable differential geometry 137 
separation conditions 594 
separation of variables method 476 ff 
sequence periods 427 
Shah function 92 
Shannon's information theory 430 

shared memory machines 375 
Sharkovsky theorem 227 
shielding problem 257 
shift register generators 253 
shifting 265,318 
Shockley relation 536 
shooting methods 354 
Shor algorithm 418 ff, 426,431 
shortest time problem 

see: brachistochrone problem 
shot noise 528 ff, 533 ff, 545 f, 559 
signal functions 161 
signal processing 237 
significands 285 
similarity transformation 316 
simple groups 22 
simple sampling 251 ff, 278 
simple shooting 355 
simplex 602 

Simpson's quadrature rule 338 
simulation models 215 f 
simultaneously testing 443 
sines law 131,134 
single-instruction, multiple data machine 

(SIMD) 375 
single-frequency systems 
single-qubit gate 434 
singular p-simplex 602 
singular spectral analysis 241 
singular value decomposition (SVD) 

230,234 
singularities 
- analytical methods 37 
- Green's functions 174 
- quadrature 344 
skew symmetries 10 
SLATEC, numerical software 378 
Slater determinants 18,225 
Slater-Koster model 176 
slit island method 123 
slow-fast perturbation methods 407 
Smale's horseshoe map 228 
Smith's canonical matrix 10 
smoothing, numerical 226 
software 218,377 
solid analytic geometry 133 f 
solid states group theory 211 
solitons 243,246 
sound waves 172 
soundness 455,459,465,470 
source terms 357 
southern oscillation index (SOI) 216, 240 
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space 592 
space group 568 
space-time curvature 13 
space-time grid 66 
sparse matrix 380 
spatial domain 94 
spatial frequency 106 
special functions 475-512 
spectra 410 
spectral analysis 237 
spectral domain 94 
spectral measurements 519 
spectral models 226 
spectral radius 305,380 
spectral representations 43,168 
spectral theorem 445,470 
spheres 590 
spherical Bessel functions 476 ff, 506 ff 
spherical excess 134 
spherical harmonics 229 
spherical Helmholtz equation 494 
spinless particles 178 
spins 
- group theory 209 ff 
- Monte Carlo methods 276 
- quantum computation 422 
- symmetries 573,578 
splines 
- interpolation 298 
- numerical methods 227,332 ff 
- partial differential equations 366 
splitting matrix 304 
spontaneous magnetization 265 
spontaneous symmetry breaking 

577,585 
square matrices rings 15 
stability, boundary conditions 360 
stabilizers 14 
stable manifolds 403 
standard engineering definitions 519 
standard p-simplex 602 
standard quantum logic 444,455,470 
standard symmetry model 580,585 
standardization (standard 

convention) 482 f, 493 f, 500 ff 
STARPAC, numerical software 378 
states, quantum logic 446,452,470 
stationary stochastic processes 516 ff 
stationary values 71 
statistical ensembles 263 f 
statistical errors 267 
statistical interference 238 

statistical mechanics 273 
statistical Pade approximation (SPA) 

224 
statistical thermodynamics 258 
statistically self-similar fractals 111 
steepest descent method 327 
Steifel-Whitney classes 149,609 
step sizes 362 
Stieltjes integral 548 
stiffness 346 f 

stochastic dynamical system 246 
stochastic modeling 216,221 
stochastic processes 513-564 
stochastic supports 451 
stochastic trajectories 262 
Stokes theorem 598 
Stokes damping 49 
stopping criterion 320 
straightforward expansion 394 
Stratonovic-Ito controversy 548 
string theory 16,151 
structures 13 ff, 22 
Sturmian basis set 647,654 
Sturm-Liouville operator 163 ff 
Sturm-Liouville problem 646, 654 
Sturm-Liouville theory 477-511 
SU(2) /SU(3) algebras 150,575 f 
subgroups 192 ff 

successive overrelaxation (SOR) 306 
sum, direct 13 
sum rule 288 
supercomputers 217 
superconductors 175 
superposition 
- Green's functions 161 
- ordinary differential equations 356 
- quantum computation 418,428 
- quantum logic 447,452,470 
superselection rule 448 
support 451,470 
surface 116,266 
surface physics 276 
susceptibility 425 
Susuki-Trotter formula 269 
Sylvester's inertia law 11 
symbolisms see: notation 
symmetric pivoting 298 
symmetric positive definite (SPD) 

matrix 327 
symmetric successive overrelaxation 

(SSOR) 306 
symmetries 565-586 
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- algebraic methods 3,10 
- group theory 190 ff, 201, 209 ff 
- operators 201,139 
symmorphic groups 196 
symplectic manifolds 150 
symplectic transformations 400 
synergetics 231,246 
synthetic division 324 
system analysis 231 

tangent space 138 
Taylor series 488 
- analytical methods 35,39 
- functional analysis 72 
- numerical methods 332 
- ordinary differential equations 55,353 
- partial differential equations 362 
- perturbation methods 394 
- stochastic processes 534 f, 545 f 
- variational methods 621 
teleconnections 240 
telegraphic equation 167 
temperature distribution 60 
temperature Green's functions 181 f 
temporal frequency 106 
tensors 
- algebraic methods 6,12 f 
- differential geometry 139 f 
- group theory 203 
- products 451,470 
- symmetries 572 ff 
tertium non datur principle 460 
test space, quantum logic 454 
thermal noise 523 ff 
thermodynamics 258, 516 ff, 525, 536 
thermohaline circulation (THC) 242 
theta function 495 
Thevenin's theorem 524 
Thiele semi-invariants 529 
time average 263 
time complexity 360 
time delay embedding 222,239,246 
time dependence 

- Schrodinger equations 167 
- stochastic processes 516 f, 552 f 
- variational methods 645 
time series analysis 235 
Toffoli gate 421 f, 433,436 
tomography 102,106 
topologies 587-618 
- algebraic geometry 155 

- differential geometry 137,149 
torus 588 
traces 203,446,470 
trajectories 114,262 
transcendental functions 475-512, 623 
transfer Green's functions 161 
transformations 190 ff 
- canonical 631 ff, 652 
- conformal 44 
- mathematical 83-108 
- numerical methods 313 ff 
- perturbation methods 400 
- quantum computation 423 
- symmetries 566 ff, 569 ff 
transistors 419 
transit time effects 533 
transition matrix 6 
transition probability 260,278 
translations 13,45 
transport process 257 
transpose matrix 380 
transposition 10 
trapezoidal quadrature rule 338,343,350 
trapping 537,541 ff 
traveling length 257 
trial move 260 
triangular grids 362 
triangular matrices 379 
tridiagonal matrices 318,375 
trigonometric functions 131 f 
triplet states 210 ff 
trivial topology 592 
truncation error 288 
truth values 420,462,455 
tuples 252 
turing machines 418,436 
turning point problem 409 
two slit experiment 418 
Tychonoff theorem 596 

uncertainty 641 
uncertainty interval 326 
unconstrained optimization 324 
underdetermined linear systems 312 ff 
underflow, floating points 285 
unfolding 389,412 f 
unforced conservative oscillator 396 
uniformity 390 f 
unit cell 567 
unitary groups 12 
unitary transformations 423,569 f 
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unity partition 596 
univariate time series 235 
universal machined quantum 

computation 420 
universal unfolding 389 
unsharp quantum logic 460,470 
upper-triangular system 290 
upwelling, El Nino 241 

Vallis description 240 
van der Pol equation 396,558 
van Dyke matching rule 406 
Vandermonde matrix 330 
variance 236 
variational methods 619-656 
variational principle 
- Hamiltonian 74 
- partial differential equations 358 
varieties 154 f 
vector addition 5 
vector fields 609 
vector space 477 ff, 488 f 
- analytical methods 50 
- differential geometry 138 
- group theory 191 
vector spherical waves 186 
vector states 447,470 
vectors 2,5,137 
verification, quantum logic 456 
Vernam cypher 430 
vertex 131 
Volterra series 237 
Volterra type integral equations 67 f 
vortex lines 175 

w plane diagrams 37 
Walsh transforms 103 
water droplet freezing 265 
wave equations 476 ff 
- analytical methods 36 

- Green's functions 173 
- numerical methods 358 
- ordinary differential equations 57 
- topology 610 
wavelets 230 
Weber differential equations 500 
Wedderburn theorem 23 
wedge product 
- differential geometry 141 
- Grassmann ring 17 
- topology 597 
Weierstrass theorem 329 
weight functions 336 f 
Weinberg model 580 
Weyl-Killing groups 26 
white noise 236,515 ff, 549 
Whitney embedding 608 
Whitney's theorem 141 
Wick's theorem 179 ff, 184 f 
Wiener-Hopf theory 68 
Wiener-Khinchin theorem 519 ff, 530 f, 

550,559 
Wigner group-theoretical approach 

488 
Wigner symmetry model 565 ff, 569 ff 
Wigner-Moyal correlations 520 
window factor 543 
WKBJ method 408 
Wronskian determinant 50, 53 

Xnetlib, numerical software 378 
XOR operations 420 ff 

Young diagram 207 
Young modulus 173 

z-plane diagrams 37 
z-transform 104 
Zariski topology 155 
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