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Preface

Mathematics is a central structure in our knowledge. The rigor of mathematical proof
places the subject in a very special position with enormous prestige. For the potential
user of mathematics this has both advantages as well as disadvantages. On the one
hand, one can use mathematics with confidence that in general the concepts, definitions,
procedures, and theorems have been thoroughly examined and tested, but the sheer
amount of mathematics is often very intimidating to the non-expert. Since the results
of mathematics once proved stay in the structure forever, the subject just gets larger
and larger, and we do not have the luxury of discarding older theories as obsolete.
So the quadratic formula and the Pythagorean theorem are still useful and valid even
though they are thousands of years old. Euclid’s Elements is still used as a text in some
classrooms today, and it continues to inspire readers as it did in the past although it
treats the mathematics from the time of Plato over 2300 years ago.

Despite the prestige of mathematical proof, most mathematics that we use today
arose without proof. The history of the development of calculus is a good example.
Neither Newton nor Leibniz gave definitions of limits, derivatives, or integrals that
would meet current standards. Even the real number system was not rigorously treated
until the second half of the nineteenth century. In the past, as in modern times, large
parts of mathematics were initiated and developed by scientists and engineers. The
distinction between mathematicians and scientists was often rather vague. Consider
for example, Newton, Euler, Lagrange, Gauss, Fourier, and Riemann. Although these
men did important work in mathematics, they were also deeply involved in the sciences
of their times. Toward the end of the nineteenth century a splitting occurred between
mathematics and the sciences. Some see it in the development of non-Euclidean
geometry and especially axiomatic methods reminiscent of Euclid.

At this time mathematics appeared to be taking its own path independent of the
sciences. Here are two cases that participated in this division. In the late nineteenth
century Oliver Heaviside developed the Operational Calculus to solve problems in
electrical engineering. Although this calculus gave solutions in agreement with
experiment, the mathematicians of Heaviside’s time could not justify or condone
his procedures. Physicists also found the Dirac delta function and Green’s functions
extremely useful and developed an appropriate calculus for their use, but the underlying
mathematical theory was not available. It was not until the early 1950’s that Laurent
Schwartz was able to give a rigorous mathematical foundation for these methods with

vii
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Preface

his Theory of Distributions. Also, early in the twentieth century the relatively new
subject of Group Theory was seen as being of use in applications to chemistry and
physics, but the few texts available at the time were written in a rather abstract and
rigorous mathematical style that was not easily accessible to most non-mathematicians.
The subject was quickly labeled the “Gruppenpest” and ignored by many researchers.
Needless to say, today group theory with its applications to symmetry is a fundamental
tool in science.

With the complexity of each field in science and engineering growing so rapidly, a
researcher in these fields has little time to study mathematics for its own sake. Each field
has more material than can possibly be covered in a typical undergraduate program, and
even graduate students must quickly pick a sub-area of specialization. Often, however,
there is a sense that if we just knew more mathematics of the right sort, we could
get a better grasp of the subject at hand. So, if we are still in school, we may take a
mathematics course, or if not in school, we may look at some mathematical texts. Here
some questions arise: which course should we take, do we have the correct prerequisites,
what if our mathematics instructor has no knowledge of our field or any applications
that we are interested in, are we really in the right course? Furthermore, most texts in
mathematics are intended for classroom use. They are generally very proof oriented,
and although many now include some historical remarks and have a more user friendly
tone, they may not get to the point fast enough for the reader outside of a classroom.

This book is intended to help students and researchers with this problem. The
eighteen articles included here cover a very wide range of topics in mathematics in a
compact, user oriented way. These articles originally appeared in the Encyclopedia of
Applied Physics, a magnificent twenty-three volume set edited by George L. Trigg, with
associate editors Eduardo S. Vera and Walter Greulich and managing editor Edmund H.
Immergut. The full Encyclopedia was published in the 1990’s by VCH, a subsidiary of
John Wiley & Sons, New York. Each article in this volume covers a part of mathematics
especially relevant to applications in science and engineering. The articles are designed
to give a good overview of the subject in a relatively short space with indications
of applications in applied physics. Suggestions for further reading are provided with
extensive bibliographies and glossaries. Most importantly, these articles are accessible.
Each article seeks to give a quick review of a large area within mathematics without
lapsing into vagueness or overspecialization.

Of course not all of mathematics can be covered in this volume: choices must be made
in order to keep the size of the work within bounds. We can only proceed based on those
areas that have been most useful in the past. It is certainly possible that your favorite
question is not discussed here, and certainly the future will bring new mathematics and
applications to prominence, but we sincerely expect that the articles in this volume will
be valuable to most readers.

Stuart P. Smith
CSUH - January 2005
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Introduction

The use of mathematics by physicists, and
in particular of algebra, has increased in a
remarkable degree during the last 50 years,
both in the amount of space occupied
in journal articles and in the type and
abstractness of the methods employed.

Following N. Bourbaki, it is now con-
ventional to characterize as algebraic struc-
tures those parts of mathematics that em-
ploy operations, such as addition, which
act on a finite set of objects to produce a
unique corresponding object. Such oper-
ations are contrasted with ideas like limit
in calculus or closure in topology, which
associate a number or other mathemati-
cal object to an infinite set or sequence.
Thus, whereas the passage from (2, 3)
to 24+ 3 =5 is an algebraic operation, to
go from the infinite sequence n — 1/n
(where n is any positive integer) to the
limit 0 is a topological operation. The
present section is concerned chiefly with
algebra.

In this brief article it is impossible
to describe all the many algebraic struc-
tures which occur in the literature of
applied physics. Therefore we have se-
lected those which are absolutely essential
for understanding the contemporary liter-
ature under the following rubrics: Groups;
Fields; Linear Algebra; Rings; Algebras
and Modules. As to style, we have at-
tempted to steer a course between that
which physicists would have liked 20
years ago and the austerity of contem-
porary pure mathematicians with which
all physicists will be happy 20 years

from now. This should leave all read-
ers equally unhappy! Our definitions are
seldom painstakingly detailed but rather
highlight the essential ideas leaving the
reader to use common sense to fill them
out. We shall assume that the reader is
familiar with elementary properties of vec-
tors and matrices. Recall that a square
matrix A is invertible or nonsingular if
there is a matrix B such that AB = BA = |,
where I is the identity matrix. In this
case A and B are inverses of each other
and we denote B by A~l. Although,
logically, rings should be discussed be-
fore fields, teaching experience suggests
that the reverse order is pedagogically
sounder.

NOTATION: We shall adopt the follow-
ing widely used symbolism: N: = the natu-
ralnumbers, {1, 2, 3, .. .}; Z: = the positive
and negative integers and zero; R: = the
real numbers; C: = the complex numbers;
i:= 4/—1; Q: = the rational numbers. We
shall employ Einstein’s summation con-
vention in the restricted form that in any
monomial an index which is repeated as a
subscript and as a superscript will be in-
terpreted as summed over its range unless
the contrary is explicitly stated.

1
Groups

A group is a set, G, say, together with
a binary operation which we temporarily
denote by “x”, which satisfies certain
definite rules. A binary operation is one

which combines two elements of G to



obtain an element of G. Perhaps our first
encounter with a group occurs when as
babies we push our blocks around on
the floor using the translation group in
two dimensions! Later in grade school
we learn the properties of the integers.
Under addition the integers Z exemplify
the axioms of a group:

(i) A group (G,) is a set, G, together
with an operation, %, which to any two
elements x and y of G associates an
element z = x * y of G. For example,
in (Z,4), 2+3=5, 5+(-3)=2.
This property is described by saying
that G is closed under the binary
operation .

However, for the structure (G,x) to
be dignified with the title “group,” it
must satisfy the additional properties:

The operation is associative, that is
for any x,y,z in G, (x*xy) xz=
x % (Y * 2).

(iii) There is a unique neutral or identity
element, n, suchthat x x n =nx* x =
x for all x in G.

For any element x in G there is a
unique element y in G such that
x*y=n. In this case, x and y are
said to be inverses of each other.

(iv)

Thus while (N, +) satisfies (i) and (ii) it
is not a group because (iii) and (iv) fail.
However, (Z, +) is a group when we take
n:=0.

If G has a finite number of elements, the
group is a finite group and the number of
elements is called the order of the group.
If xxy=y=xx for all x,y € G, the group
is Abelian or commutative.

The set of symmetries of any mathe-
matical or physical structure constitutes
a group under composition of symme-
tries. Such groups play a major role in
physics for analyzing the properties of
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space-time, understanding crystal struc-
ture, and classifying the energy levels of
atoms, molecules, and nuclei. Indeed, the
role of groups is so important in physics
that an article of the Encyclopedia is devoted
to them. We therefore shall not explicitly
pursue the detailed properties of groups
further, even though they will occur as
substructures in rings and fields.

2
Fields

Whereas a group consists of a set together
with a single binary operation, a field
consists of a set together with two binary
operations linked together by a distributive
law. The two operations are usually called
addition and multiplication. The familiar
fields are the real numbers, R; the complex
numbers, C; and the rational numbers, Q.
We shall use the symbol F for an arbitrary
field. Strictly speaking, we should employ
a notation such as (F, +, x) to denote a
field; however, the relevant operations are
generally obvious from context in which
case it is sufficient to use F alone.
(F, +, x) is a field if:

(i) (F,+) is a commutative or Abelian
group. That is, x +y = y+ x for any
xandyin .

(ii) The elements of F other than zero
form a group under multiplication.

(iii) Multiplication distributes over addi-
tion. That is, if a, b, ¢, belong to F
thenax (b+c)=axb+a xc,and
(b+c)xa=bxa+cxa.

These properties are, of course, familiar
for the reals, complexes, and rationals, but
there are fields, such as the quaternions,
for which multiplication is not commuta-
tive. There are also fields with only a finite
number of elements.
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A field always has at least two elements,
Oand 1.

2.1
The Characteristic of F

Since a field is closed under addition,
F contains 1+ 1, which cannot equal 1
since this would imply that 1 = 0, which
we excluded. But 1+ 1 might equal 0 in
which case (1+1)+1=1 and one can
easily check that F = {0, 1} can serve as
the set of a field of two elements. This
is the smallest possible field and is both
famous and useful since it plays a key role
in the design of electric circuits, such as
those which occur in computers.

More generally, if p is a prime number,
we can obtain a field containing p elements
in which the sums of j 1’s are numbers
which are distinct if 0 <j < p and equal
to 0 if j = p. When this occurs in any
field F we say that p is the characteristic
of F and that F has finite characteristic.
When there is no such p we say that F has
characteristic zero. A field of characteristic
zero has an infinite number of elements.
If F has only a finite number of elements it
will contain p" elements, where pis a prime
and n is a positive integer. If n > 1, F will
contain a subfield of the above type with p
elements. The fields with p" elements are
called Galois fields. They are important
in coding and communication theory. A
finite field is necessarily commutative.

2.2
Algebraically Closed Fields

We know that the square of a real number
is positive, so there is no real number
x such that ¥2 = —1. In other words,
in R there is no element x satisfying
the equation x*2 +1=0. If F has the
property that for every equation of the form

ajx) = 0,0 < j < n, where the g; belong to
I, there is an element of IF which satisfies
the equation, we say that F is algebraically
closed. Otherwise, it is not algebraically
closed. Clearly R is not algebraically closed.
If we assume that there is a “number” i
such that i2 + 1 = 0, then, as we know, the
field containing R and i is the complex
numbers, C. It was proved by Gauss that
C is algebraically closed.

Notice that if o is a 1:1 map of C
onto itself, such that o(x+iy) = x — iy
for all x,y € R, then o preserves all the
properties of a field and is therefore
an automorphism of C. Recall that an
isomorphism of two algebraic structures is
a bijective (or one-to-one) correspondence
between their sets, which preserves all
the relations among their elements, and
that an automorphism is an isomorphism
of an algebraic structure onto itself. Note
that 0 (x) = x if x € R and that 6 (i) = —i,
which is the root other than i of the
equation x> +1=0. An automorphism
of C must send 0 into 0 and thus must
either leave i fixed (and so everything in
C is fixed) or, like o, send i to —i. The
set consisting of o and the identity map
is a group of order two under composition
of mappings. It is the Galois group of C
over R. Alternatively, it is also called the
Galois group of the equation x> +1 =0
with respect to the reals. For more detail
about fields, their algebraic extensions, and
their Galois groups, the reader is referred
to Jacobson (1964) or any of the multitude
of algebra texts at the same level.

Are there fields containing R other than
C which are at most finite dimensional
over R? The answer was given by Frobe-
nius. There is one and only one, the
quaternions, but in this field multiplica-
tion is not commutative. We shall see
below that the quaternions can be realized



as linear combinations with real coefhi-
cients of the Pauli matrices and the 2 x 2
identity matrix. The significance of the
field of quaternions is dramatized by the
observation that if it did not exist there
would be no spin in physics, therefore
no sigma and pi bonds in chemistry, and
therefore no life on planet earth if, indeed,
there were any stars or planets!

2.3
Rational Functions

If we adjoin a symbol x to any field F
and form all possible sums, differences,
products, and quotients involving x and
the elements of F, the result is a set which
is closed under any finite sequence of these
operations and forms a field, denoted by
F(x), which we might describe as the field
of rational functions in x over F. There is
a subset, denoted by [F[x], of polynomials
of the form ajxj where j is summed from
0 to some n € N, where n is arbitrary and
the a; € F. If a, is not zero we say that
the polynomial has degree n. As we shall
remark below, the polynomials constitute
a ring. As usual x%: =1, by definition,
so when n = 0 the preceding polynomial
reduces to ag. Thus F is contained in
F[x]. The field F(x) consists of all possible
quotients of elements of F[x].

Suppose that the rational function
R(x) = P(x)/Q(x), where P and Q are
polynomials. Suppose further that Q(x) =
Q1(x)Q2(x), where Q7 and Q, are polyno-
mials with no common factor. Since we
could have used long division to ensure
that R is the sum of a polynomial and a
rational function, the numerator of which
has degree strictly less than the degree
of Q, we may assume that deg(P) —the
degree of P—is less than deg(Q). It is
relatively easy to show that it is then pos-
sible to find polynomials P; and P, with
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deg(P;) < deg(Q;) such that

P_P P

Q QA <
This is the fundamental theorem of the
so-called method of partial fractions, by
repeated application of which it follows
that any rational function can be expressed
as a sum of a polynomial and rational
functions whose denominators have no
nontrivial factors.

In particular, if F is algebraically closed
(e.g., F=C), then Q is a product of
factors such as (x — a)™, where a € F. A
summand in R(x) of the form g(x)/(x —
a)™ with deg(g) < m can, by Taylor’s
theorem applied to g(x), be expressed as
the sum ¢j(x — a)~J, where 1 <j<mand
G = g™ (a)/(m — j)!. Here g¥ is the kth
order derivative of g.

The method of partial fractions is quite
useful for finding integrals of rational
functions. Books on calculus explain
helpful tricks for obtaining the partial
fraction decomposition of a given rational
function.

3
Linear Spaces

The theory of linear space with its re-
lated concepts of linear transformation,
eigenvector, matrix, determinant, and Jor-
dan canonical form is certainly one of the
most important and most useful part of
mathematics. The abstract concept of lin-
ear space is frequently approached by a
long discussion of the problem of solv-
ing systems of linear equations. We take a
direct approach defining a linear space
as consisting of a field F whose ele-
ments are called scalars, a set V, called
vectors, and two operations called vector
addition and scalar multiplication together
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with a set of rules governing the relation
among these various entities. The vectors
under addition form an additive Abelian
group (V,+). Under multiplication by
scalars the set V is closed. Thus, ve V
and a € F imply that av € V. Another im-
portant property is that multiplication by
scalars distributes over addition of vectors.
Thatisa(vi +v2) = avy +avy foralla e F
andv; € V.

3.1
Independence of Vectors

This seems to be the most difficult idea
in teaching elementary courses in linear
algebra — possibly, the only difficult idea!
Two nonzero vectors v; and v, are linearly
dependent if there are scalars a! and a?,
not both zero, such that alv; + a?vy = 0,
where, of course, by 0 we mean the zero
vector. It is clear that neither a! nor a?
is zero, and thus each vector is a scalar
multiple of the other. More generally, if,
given n vectors v;, 1 <i<n, there exist
scalars a' such that aivi =0, where all
v; # 0 and not all a' = 0; then we say that
the n vectors are linearly dependent. If no
such relation holds, the vectors are linearly
independent. For example, for n € N there
are no numbers a, other than 0 such
that £,a, x cos(n®) = 0 for all ®. Thus
the functions ¢ — cos(n®) are linearly
independent.

If n vectors v; are such that any vector v
can be written as v = a'v; for some choice
of scalars a!, we say thatthe set {v;} spans V.
If the v; are also linearly independent then
the coefficients a' are unique. We then
say that B = {v;} is a basis of V, that the
linear space V has dimension n, and that
a' are the components of v with respect
to B. A basic theorem assures us that the
dimension depends only on the space V
and not on the choice of basis. If a linear

space does not have a finite basis it is
infinite dimensional.

3.2
Change of Basis

How do the components of a given vector
change if the basis is changed? This was
a key question which led to the theory
of invariants in the mid-19th century and
opened up the development of much of
contemporary algebra. It also led to the
emergence of the tensor calculus which
was essential for Einstein’s exposition of
General Relativity Theory.

Suppose V is a linear space and that
B={v;} and B = {v}} are two different
bases for V. Then there is a matrix, Pi
called the transition matrix from B to B’
such that v, = Pivi. Thus if the vector
x = ijj = ivé =x iPIiVj, it follows that
% = Pﬂx’ i, If in the usual matrix notation
we regard x/ as the Jjth component of a
column vector x, and Pi as the element in
the jth row and ith column of the transition
matrix, P, from the old base B to the new
base B, the preceding equation takes the
form

x=Px or ¥ =P7lx

There is an even more convenient
notation. Define P(B/, B):= P; then the
preceding equations imply that P~ =
P(B, B'). Subsequently we shall need the
formulas

x=P(B,B)x and x = P(B, B)x.
To understand tensor notation it will prove
important to note that, whereas P sends
the old to the new basis, it sends the
new coordinates to the old ones. This
observation underlies duality in homolog-
ical algebra and the distinction between



covariant and contravariant tensors, which
we define below.

33
Linear Maps and Their Associated Matrices

Suppose that V and U are linear spaces of
dimension n and m with bases B, = {v;}
and By, = {u;}, respectively. A transforma-
tion, function, or map from V to U sends
each vector x € V to a vector, say, y of
U, which we denote by Ax:=y. If A has
the property that for any two vectors x
and x’ € V and arbitrary scalars a and
ad elF, A(ax+ a'x') =aAx+ d Ax', we
say that A is linear. The condition that a
map be linear is very restrictive. Nonethe-
less, linear maps play a big role in the
application of mathematics to physics (as
well as statistics, economics, biology, etc.)
for the same reason that the derivative is
important in analysis. For example, if f(x)
is a real-valued function of the real variable
x, such that f(0) = 0, then f”(0)x is the lin-
ear function of x which is the best possible
linear approximation to f (x) near 0.

A linear map or transformation, A: V —
U, can be completely described by an
m X n matrix AJi, such that Av; = Ajiuj,
which we describe as the matrix associated
to the linear transformation or map A with
respect to the bases B, and B,. It has m
rows and n columns. If we denote this
matrix by A(u,v) then if the bases in V and
U are changed to B;, and B, respectively,

A/, V') = P(B,, Bu)A(u, v)P(By, B)),

where we use the notation of Sec. 3.2.
In terms of coordinates, if y = Ax, then
yj = AJixi, where, as follows from the
context, 1 <j<mandl<i<n.

In the particular case that V.= U of
dimension n, with B, = B,, A(u, u) is an
n x n matrix which we denote by A(u). We
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deduce that for a change of basis
A(W) = P(By, Bu)A(w)P(By, B,).

We thus associate to any linear transfor-
mation a matrix which is unique, once bases
are chosen for the domain and codomain of
the transformation. But conversely, if the
bases are given, then there is a unique
linear transformation associated with a
given matrix of the appropriate shape.
Thus there is a bijection (i.e., a one-to-one
correspondence) between m x n matrices
with entries in F and linear maps from a
linear space of dimension n into one of
dimension m. We have found how the bi-
jection changes when the bases are altered.
It is this bijection which gives meaning to
the familiar addition and multiplication of
matrices.

A linear map between two spaces over
the same field F has the property of
preserving the linear structure and is said
to be a homomorphism (i.e., a structure-
preserving map), so it is common to
denote by Hom(Vy, V) the set of all
linear maps between linear spaces Vi and
V, where both have the same field. If
A € Hom(Vy, V,) then Vj is the domain of
A and V; is the codomain of A. The kernel
of A, frequently denoted by ker(A), is the
set of all elements in the domain which
are mapped onto 0 by A. The range of A
consists of all elements of the codomain
of the form Ax for some x in the domain.
Of course these last four definitions are
valid for any function, not merely linear
maps. However, when A is linear it can be
easily proved that both the kernel and the
range are linear subspaces of their ambient
spaces. This is probably the secret of the
power and relative simplicity of the theory
of linear spaces. When Vi1 =V, =V, we
denote Hom(V,V) by Hom(V).

If G is a map from V;j to V; and F one
from V; to V3, we denote the composition
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of these two maps by FG and, having fixed
bases in the spaces, we define the matrix
corresponding to FG as the product of the
matrices corresponding to F and G. This
“explains” the usual rule for matrices that
(FG)]i = F{ch where i, k, and j range from
1 to the dimensions of Vi, V3, and V3,
respectively.

The composition (or product) of two
maps can be well-defined if the range of
the firstis in the domain of the second. The
sum of two maps is only meaningful if the
codomain is an additive group in order for
the sum of Fx and Gx to be meaningful. In
this case it is possible to let F + G denote
the map such that (F + G)x = Fx + Gxfor
all x in the intersection of the domains of
F and G. When the domain and codomain
are fixed linear spaces over the same
field F we can do even better and give
Hom(Vy, V3) the structure of a linear
space over F. This implies that the set
of all m x n matrices with entries from F
is a linear space of dimension mn over F.

The dimension of the range of a linear
operator is called the rank of the operator
and also the rank of any matrix associated
with the operator by a particular choice of
bases. The dimension of the kernel of a
linear transformation is called the nullity
of the transformation and of its associated
matrices. It follows from this definition
that the various matrices obtained from
one another by a change of basis all have
the same rank and nullity. The rank of a
product of operators or matrices is not
greater than the minimum rank of its
factors.

34
Determinants

If F is a commutative field, to any square
matrix, it is possible to assign a number
in F which is expressible as a polynomial

in the elements of the matrix and which
vanishes only if the matrix is not invertible.
To two square matrices which are related
as in Sec.3.3 by a change of basis, we
assign the same number, and therefore it
is meaningful to also assign this number
to the associated linear transformation
belonging to Hom(V). The function, det,
from Hom(V) into F, has the following
properties: (i) det(AB) = det(A)det(B); (ii)
det(fI) = f", where n is the dimension of
V, I is the identity map, and f is any
element of F. The usual definition of the
determinant follows from these properties
(MacDuffee, 1943). In particular since,
for a fixed basis, the equation Ax =y
is equivalent to the system of equations

Ajixi = yj , Cramér’s rule implies
det(A)x' = det(Yh),

where Y? is the matrix obtained from (Aji)
by replacing its ith column by the column
vector (yk) where i, j, k run from 1 to
n. Thus if det(A) # 0 there is a unique
x for every y so A is invertible; whereas if
det(A) = 0, there is an x only for particular
y satisfying the n conditions det(Y*) = 0.
Thus for a finite dimensional linear space
V, A € Hom(V) is invertible if and only if
det(A) #£ 0.

The theory of Hom(Vy, V3) is really
equivalent to the theory of systems of
linear equations in several variables. This
topic occurs in articles of this book
devoted to NUMERICAL METHODS and to
MATHEMATICAL MODELING and in at least
one hundred elementary textbooks; so we
shall not pursue it here.

35
Eigenvectors and Eigenvalues

If A€ Hom(V) then for any x € V, Ax €
V. In general we shall not expect Ax to



equal x or indeed, even, that Ax be parallel
to x. However, in the latter case Ax would
be a multiple of x, say, Ax. The equation
Ax = Axisequivalentto (AI — A)x = 0. By
the preceding section, if the determinant
of AI — A is different from zero, the only
possible solution of this equation is x = 0,
which is of no great interest. When there
is a nontrivial solution of this equation it
will be somewhat unusual and is called an
eigenvector of A and can occur only for
special values of A. Such a value of A is
the eigenvalue of A corresponding to the
particular eigenvector x. The eigenvalue,
A, will satisfy the nth degree algebraic
equation

f(z; A): = det(z] — A) = 0.

The nth degree polynomial f(z;A) is called
the characteristic function of A, and the
preceding equation is the characteristic
equation of A. Any eigenvalue of A satisfies
its characteristic equation. For each zero of
the characteristic equation there is at least
one nontrivial eigenvector.

There is a one-to-one correspondence
between the operators in Hom(V) and the
set of n x n matrices over IF, and this set
spans a linear space over F of dimen-
sion n?. If we interpret A° as the identity
operator, I, it follows that the operators
A for 0 < k < n? are linearly dependent.
That is, there are ¢; € I such that CjAj =0,
where not all ¢; are zero. Thus there exists
at least one polynomial, p(z), such that
p(A) = 0. From the algorithm for long
division it easily follows that there is a
unique monic polynomial (i.e., a polyno-
mial with highest coefficient 1) of minimal
degree with this property. We shall de-
note this so-called minimal polynomial
of A by m(z;A). A famous theorem of
Hamilton asserts that A satisfies its char-
acteristic equation. That is, f(A;A) = 0.
Since deg(f) = n, deg[m(z;A)] < n. Since
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m(z;A) divides any polynomial p(z) such
that p(A) = 0, it follows that m(z;A) divides
f(zA).

The form of m(z;A) provides information
about A.

(i) m(z: A) = 2P implies that AP = 0 but
that AP~! £ 0. Such an operator is
called nilpotent, with nilpotency index
p.

m(z;A) = (z — 1) implies that A — |
is nilpotent with index p. Thus in this
case A = [ + N, where N is nilpotent.
An operator of this form is called
unipotent.

Suppose the minimal polynomial of
A has no multiple zeros, which is
equivalent to saying that m and its
derivative have no common factors.
Then there is a basis of V consisting
of eigenvectors of A. Equivalently,
among the matrices associated with
A there is one which is diagonal.
In this case we say that A and its
associated matrices are diagonalizable
or semisimple.

If m(z;A) = (z — A)P, then, of course,
p<n. A basis can be chosen so
that the matrix corresponding to A
has zero entries except along the
diagonal where there are so-called
Jordan blocks, which in case n =4,
for example, would be

(1)

(i)

,-\
—
<

-

A1 0 0
0 A 1 0
0 0 A 1
0 0 0 A

That is n; x n; matrices with A on
the diagonal and 1's on the first
superdiagonal, En;=n,1<n; <p,
and for at least one value of i, n; = p.

In the preceding we have assumed
that the entries of the matrix A could
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be arbitrary. However, if they are real
and nonnegative the remarkable Perron-
Frobenius theorem (Senata, 1973) about
the eigenvalues and eigenvectors of A
gives information which is useful in
many contexts; we thus state it here.
A matrix M = (mj;) is connected or
indecomposable if for any two indices
i and j there is a sequence 1, 1<
k <s, such that the continued product
Wiy My ry My - .. My 7 0. We write M >
Oifallmij>0, andMZOifallmijZO.
Then, if M > 0 is a real connected matrix,
it has a largest simple positive eigenvalue,
r(M) = r, and an associated column vector
x > 0, such that Mx = rx where r > 0; any
other eigenvalue A of M has absolute value
less than or equal to r. Further, if N > 0 is
another real matrix of the same dimension,
such that M — N > 0, then r(N) < r(M)
with equality only if N = M. This theorem
can be used to quickly give the basic
classification of Kac-Moody algebras.

3.6
Canonical Form of Matrices

In Sec. 3.3 we noticed that distinct matri-
ces were associated with the same linear
operator, so there is a sense in which such
matrices are “equivalent.” Recall that by
an equivalence relation a set is partitioned
into distinct mutually exclusive subsets
which exhaust the given set. One method
of partitioning a set is into the orbits of
a group which acts on the set. Thus if g
belongs to a group G which is acting on
a set S and we denote by gs the element
of S into which g sends s, the orbit of s
is the set M; = {gs|g € G}. It follows that
x € My implies that M, = M;. Given an
equivalence relation on a set of matrices,
the problem considered in this section is
that of choosing a canonical or “simplest”
matrix in each equivalence class. There are

different canonical forms depending on
the types of matrices we consider and the
different group actions contemplated.

Possibly the basic and most general sit-
uation is that considered by H. J. S. Smith
in 1861. It is that of Sec. 3.3 where the
equation A(u',v") = PA(u,v)Q occurs in
slightly different notation. There P and Q
are arbitrary invertible m x m and n x n
matrices, respectively. By choosing B), so
that the last elements of the basis span
the kernel of A and the first ones span a
subspace which is complementary to the
kernel, while the first elements of B, span
the range of A, one can arrive at Smith’s
canonical matrix which has 1’s in the (i, i)
positions for 1 < i < r where r is the rank
of A, and zero everywhere else. It would be
difficult to demand anything “simpler.” It
follows that with this meaning of equiva-
lence there are p + 1 equivalence classes of
m x n matrices where p is the minimum
of {m, n}.

At first one is surprised that there are so
few classes. However, on second thought,
one notices that we have been acting on
a space of matrices of dimension mn by
the group Gl(n, F) x Gl(m, F) (= G, say),
which has n2+m? > 2mn parameters;
there is plenty of redundancy unless one
of m and nis 1 and the other is 1 or 2.

If we consider an action on the set of
n X n matrices by a smaller group we
shall expect more equivalence classes. For
(P, Q) € G, subgroups of G can be defined
by imposing restrictions on P and Q.

Recall the following definitions. If A is a
square matrix the transpose of A, denoted
by A, is obtained from A by interchanging
rows and columns or by reflecting across
the main diagonal. The operation of
taking the transpose is an involution,
that is (A = A. If A'=A, then we
say A is symmetric. If A* = —A, then
A is antisymmetric or skew-symmetric.



An important property of transposition
is (AB)" = B'AL. Tt is worth noting that
once the basis of V has been fixed,
the mapping defined by transposition
of matrices can be transferred to the
associated linear transformations, thus
defining an involution on Hom(V).

If o is an automorphism of F, we
can define an operation on the matrix
A by replacing each of its elements by
its conjugate under the automorphism,
and denote the new matrix by A°.
If the field is commutative (AB)° =
A° BY  In particular, when F = C, complex
conjugation is an automorphism of period
two. We follow a common custom and
denote the complex conjugate of A by A,
so AB=AB.

The Hermitian conjugate of A is denoted
by A* = A’ and satisfies (AB) = B*A*. A
matrix A is Hermitian if A* = A and anti-
Hermitian if A* = —A.

The approach of this section is based
on that of Turnbull and Aitken (1932),
a superb book which goes far beyond
our brief summary. They distinguish five
subgroups of G.

(i) The Collinearity Group is character-
ized by PQ = I. It arises in Sec. 3.3
when v=u and v = /. Under the
action of this group, a square matrix,
A, can be reduced to Jordan canoni-
cal form, that is to a sum of diagonal
blocks, each of which has the form
Al + N, where A is an eigenvalue of
A and N is a nilpotent matrix, all
of whose entries are zero except for
1’s along the first superdiagonal. A
particular eigenvalue occurs on the di-
agonal of the canonical form as many
times as its multiplicity in the charac-
teristic equation. For any eigenvalue
the dimension of the largest Jordan
block is equal to the multiplicity of the

(i)

(iii)
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eigenvalue in the minimal polynomial
m(z;A). Thus if the zeros of m(z;A) are
simple, A is diagonalizable.

The Congruent Subgroup is defined
by the condition P* = Q. Under this
group, symmetry or antisymmetry of
Aisinvariant. A symmetric matrix can
be diagonalized. If FF is closed under
taking square-roots, we can choose as
the canonical element of an equiva-
lence class a diagonal matrix which
has only 0’s or 1’s on the diagonal. If
F =R, the diagonal could also con-
tain —1. In the real case, Sylvester’s
Law of Inertia asserts that the num-
ber of 1's and the number of —1’s
are invariants. A nonsingular anti-
symmetric matrix has even rank r and
there is a canonical form under the
congruent group which contains ze-
ros everywhere except for r/2 blocks
of2 x 2 antisymmetric matrices down
the diagonal; each has 1 and —1 off
the diagonal and 0 on the diagonal.
The Conjunctive Subgroup is defined
by the condition P = Q*. It changes
Hermitian matrices into Hermitian
matrices. For real matrices, the con-
junctive and the congruent transfor-
mations are the same. For any T,
one may choose a diagonal matrix
as canonical. If F = C, the diagonal
can consist of 1’s and 0’s.

The Orthogonal Group is defined by
PQ =1 and P= Q" and is thus a
subgroup of the groups (i) and (ii).
It will preserve symmetry or anti-
symmetry of a matrix. A symmetric
matrix will be equivalent to a diagonal
matrix whose diagonal elements are
eigenvalues of the original matrix. An
antisymmetric matrix will be equiv-
alent to one with zeros everywhere
except for 2 x 2 blocks on the diago-
nal, the determinants of these blocks
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being equal to the negatives of the
squares of eigenvalues of the original
matrix.

(v) The Unitary Subgroup is defined
by PQ=1 and P=Q* and is
thus a subgroup of (i) and (iii). It
preserves the property of a matrix
being Hermitian or anti-Hermitian.
If F =R, groups (v) and (iv) are the
same. Under this group, a Hermitian
matrix is equivalent to a diagonal
matrix whose nonzero elements are
eigenvalues of the original matrix. An
anti-Hermitian matrix is equivalent
to one with 2-dimensional blocks
on the diagonal whose determinants
are the negatives of the squares of
eigenvalues of the original matrix.

3.7
Dual Space

We have already noted that Hom(V,U),
where V and U are linear spaces of
dimension n and m, respectively, over a
common field F, can be given a structure of
a linear space of dimension nm over F. We
can, of course consider F as a linear space
of dimension 1 over F. Thus, Hom(V, FF)
is a linear space of dimension n over F
and therefore isomorphic to " and hence
also to V. It is called the dual space of V
and usually denoted by V*. This use of
the asterisk can be distinguished from its
use to indicate Hermitian conjugation by
the context. The elements of V* are linear
functions on V with values in F. We shall
denote them by lower case Greek letters.
Recall that the Kronecker symbol 8} takes
the value 1 if i = j and 0 otherwise.

If « € V¥ and x = xjvj is an arbitrary
vector in V expressed in terms of the basis
B, thena(x) = x/a ) = ajxj, where a; =
a(v)). Tt is possible to define various bases
for V*. The basis which is said to be dual

to B,, and may be denoted by B}, is defined
as follows. Recall that a linear function on
V is completely determined by the values
it assumes for the elements of a basis of V.

Let o' be a linear function such that
ai(vj) = 8} forallj, 1 <j< n.Thena'(x) =
x'. Thus o' is the ith coordinate function.
It easily follows that o' are linearly
independent and that o = ajo/, where
aj = a(vj). Thus any element of V* is
a linear combination of the n elements
o, 1 <j<mn, so that B} = {ozj} is a basis
for V. Just as the x' are coordinates of an
arbitrary element of V with respect to B,, so
a; are coordinates of an arbitrary element
of V*. Since a; = a(v;), when the basis
of V is changed, a; changes by the same
transformation as, or cogrediently with,
the basis. As we noted at the end of Sec. 3.2,
the x' transform contragrediently to the
basis. This distinction reflects the fact that
the definition of the linear function a: x —
a(x) is independent of the coordinate
system used to describe it. A geometrical
or physical entity which is described
by a sequence of n numbers which
transform like (g;) is called a covariant
vector. Similarly, an entity described by a
sequence of n numbers which transform
like (x') when the basis is changed is called
a contravariant vector.

3.8
Tensors

Possibly it was algebraic geometers in the
middle of the nineteenth century who first
focused attention on the behavior of the
coordinates of geometrical objects when
the frame of reference is changed. But the
first time this issue really impinged on
physics was with the advent of Einstein’s
General Relativity Theory (GRT). The
basic metric of GRT, gjdx'dx/, is clearly
independent of the coordinate system but



since dx' is a contravariant vector, g;j will
have to vary covariantly in both subscripts
i and j. Then the n? symbols gjj must be
describing something (in fact, according
to Einstein, the gravitational field!) which
is a doubly covariant tensor.

The curvature of space-time, which
allegedly explains black holes and how
planets circle around the sun, is described
by the Riemann-Christoffel tensor, R}kl’
which is contravariant in the index i and
covariant in the other three.

The great advantage of the indicial
notation, as it evolved in the writings
of Eddington, Weyl, Synge, and other
mathematical physicists between 1920 and
1940, is that it immediately indicates the
behavior of the tensor when the underlying
basis, or frame of reference, is changed.
Thus if a;; is a double covariant tensor and
bi is a contravariant vector (or first order
tensor), then aijbk is a third order tensor
covariant in two indices and contravariant
in one. If we now contract on the indices j
and k, we see immediately that ¢; = a,jbf is
a covariant vector.

An algebraist would say that a;; are the
components of an element of V* ® V*, the
tensor product of the dual space of V with
itself. Similarly, aiblk are the components
of an element in the tensor product V®
V ® V*.In general, the tensor product (see
Sec. 4) of two linear spaces of dimension
n and m is a linear space of dimension
nm. In particular, V* ® U is isomorphic
to Hom(V,U) and is spanned by a basis
consisting of elements noted as dl® uj,
wherel <i<nandl <j<m.

4
Creating Algebraic Structures

What experimental apparatus is for the
physicist, the Cartesian product and
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quotient structures are for the algebraist.
These are the principal tools with which
he makes new mathematical structures.

If A and B are two sets, the Cartesian
product of A and B is denoted by A x B
and defined as the set {(x, y)|x € A,y € B}.
Thus it is a new set consisting of ordered
pairs with the first element of the pair
belonging to A and the second to B. If
A # B, A X B # B x A, since by definition
two ordered pairs (a, b) and (c, d) are equal
onlyifa =cand b =d.

Things become more interesting when A
and B have some algebraic structure which
can be used to impose structure on the
Cartesian product. For example, suppose
that A= B =Z. We define the addition
of pairs € Z x Z by (x,y) + (u,v): = (x +
u,y+v). Notice that the plus signs on
the right and left have quite different
meanings. One acts on pairs of integers;
the others on integers. If we think of +3 as
a translation by 3 units along the number
line, we can call (Z, +) a translation group
in one dimension. We could then think of
(Z x Z,+) as the translation group of a
two-dimensional lattice. Another familiar
example is the idea due to Gauss of
imposing the structure of the complex
numbers on R x R.

The direct sum of two vector spaces pro-
vides us with another important example
of this construction. Suppose X and V
are two linear spaces over the same field
[F with bases {¢;}, 1 <i<n, and {fj},1 <
j < m respectively. For x,ye X, u,veV,
and @ € F, define (i) (%, u) + (y, v): = (x +
Y, u+v); (ii) a(x, u): = (ax, eu). By these
definitions we have imposed on X x V the
structure of a linear space for which the
n+ m elements {(e;, 0), (0, f))} form a ba-
sis. This new linear space is called the
direct sum of the linear spaces X and V,
and has dimension n + m, and is denoted
byXe@ V.
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An apparently minor variation on the
preceding definition leads us to an
important but quite different object — the
tensor product of X and V which is de-
noted by X ® V. This is a linear space
which has a basis of elements belong-
ing to the Cartesian product X x V, but
addition and scalar multiplication are dif-
ferent. (i) (x1 + x2,v1 +v2) = (%1, 11) +
(x1,v2) + (x2, v1) + (%2, v2); (ii) a(x,v) =
(ax,v) = (x, av). These conditions imply
that X ® V is a vector space over [ of
dimension mn, with {(e;, f;)} as a basis.

Recall that an equivalence relation p on a
set S partitions S into mutually exhaustive
subsets which we call equivalence classes.
A Dinary relation p on a set is an
equivalence relation if it has the following
three properties: (i) reflexive, xpx for all
x € S, (ii) symmetric, xpy implies ypx,
(iii) transitive, xpy and ypz imply xpz. A
subset of the partition of S contains exactly
all the elements of S which are related by
p to any one member of the subset. For
example, the nails in a hardware store can
be partitioned by length. Thus xpy means
length(x) = length(y).

Now consider the equivalence relation p
onZ x 7 such that (a, b) p (u, v) if and only
if av = bu. We have used only properties
of the integers to partition Z x Z into
equivalence classes. But the condition we
used is identical with the equality of the
rational numbers a/b and u/v. We have
thus established a bijection, or one-to-
one correspondence, between QQ and the
equivalence classes of Z x Z under the
relation p.

For any set S with equivalence relation
p, the new set whose elements are
equivalence classes of S is denoted by
S/p and called the quotient set of S by

the relation p. Starting from Z we have
just created the rationals Q as (Z x Z)/p.
The notion of quotient structure frequently
arises in physics when we have a group G
acting on some set S.

Suppose that G acts transitively on S,
that is if Q is a fixed point, and P is any
point, there is at least one transformation
in G which sends Q to P. The set of all
transformations which leave Q fixed is a
subgroup H of G - the so-called stabilizer
of Q. For any two elements f and g of G we
shall say that they are in the relation p, that
isfpg,if fg~! € H. We easily prove that p is
an equivalence relation and that the points
of S are in one-to-one correspondence with
the elements of G/p. Thus the physics
of S can be transferred to G/p and the
symmetries of the physical situation may
become more transparent.

When the relation is defined by a
subgroup H as above, G/p is usually
denoted by G/H. Suppose we denote the
equivalence class containing g by n(g), if
g is any element of G. That is 7 is a
mapping from G to G/H, the so-called
canonical map. We could ask whether it
is possible to impose on G/H a structure
of a group in such a way that for any
f.g € G, n(fg) =n(f)m(g). The answer is
yes — if and only if H is a normal subgroup
of G. A normal subgroup is not only a
group but has the additional property that
for all g e G,gHg ! = H. Further H =
{g € G| (g) = ¢} where ¢ is the neutral
element of the new group G/H. When the
subgroup H is not normal, G/H is not a
group but is called a homogeneous space
on which G acts transitively.

We shall meet below other examples of
the use of quotienting as a method of
creating new structures.



5
Rings

A ring like a field consists of a set, R, to-
gether with two binary operations which
are usually called addition and multiplica-
tion. (R, +, x) is aring if

(i) (R,+) is a commutative additive
group with zero;
(ii) (R, x) is closed under multiplication
and may or may not have a unit;
(iii) multiplication distributes over addi-
tion, i.e., a(x+y) = ax + ay for all
a,x,and yin R.

We do notrequire that nonzero elements
of R have reciprocals in R, nor that mul-
tiplication be commutative or associative,
but we do not exclude these properties.
Thus a field is a ring but not all rings are
fields.

5.1
Examples of Rings

We now list five rings and one “almost
ring” which occur frequently in the physics
literature.

(@) The Integers Z. Perhaps it was this
example which led to the emergence
of the concept of ring. The integers
form a group under addition and are
therefore closed under addition and
subtraction. They are also closed under
multiplication, which distributes over
addition. However, the solution, x, of
the equation mx = n, where m, n € Z,
is not, in general, an element of Z. In
contrast with some other rings there
are no divisors of zero in the integers.
That is you cannot find two integers,

(c

~
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neither of which is zero, whose product
is zero.

Square Matrices. Suppose A = (a}’) B=
(bj’) and C = (c}) are n x n matrices
with entries in a field F; then we
define A+ B and AB or Ax B to
be n x n matrices whose entries in
the ith row and jth column are,
respectively, a}—i— bj’: and a};bjl.‘. (Recall
the summation convention in the
Introduction.) Here 1 <1i,j, k < n. Let
M, () = M, denote the set of all
n x n matrices with entries in the
commutative field F. Then one can
verify that (M, +, x) is an associative
ring which is noncommutative if n > 2.
The zero element of the ring is
the matrix all of whose entries are
0, whereas the unit or identity for
multiplication is the matrix (5}) which
has 1 on the diagonal and 0 elsewhere.
Notice thatif n = 2,

J— 0 0 .
[ o)

o ollo <]

thus the ring of square matrices
possesses zero divisors.

Quaternions were invented by Sir
William Rowan Hamilton in order to
give a convenient description of rota-
tions in 3-space.

In this section we shall use j, k, s, t as
indices with their ranges restricted as
follows: 1 <j, k<3, and 0 <s,t<3.
The quaternions, H, form an associa-
tive ring with multiplicative identity,
I = ¢, and contain three elements €
satisfying the conditions ejey, + ere; =
—245x€0, 50 ef = —eo. Further, ejep = em
where (j, k, m) is an even permutation
of (1, 2, 3). As a ring, H will contain

15
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eo + eo: = 2ey, etc., so that H contains
Zey. More generally if R denotes any
commutative ring, we could assume
that H contains Rep and note this ex-
plicitly by denoting the quaternions as
H(R). Hamilton considered only the
possibility that R = R, the real num-
bers, since his concern was rotations
in the 3-dimensional space of Newto-
nian physics — not some esoteric space
of super string theory! Over R we can
define H by

H = {x’¢s|x* € R}.

Then it follows that H is closed
under addition and multiplication. If
we demand that the associative and
distributive properties hold, we obtain a
noncommutative associative ring. That
itis consistent to demand the preceding
properties follows from the fact that
they are satisfied by 2 x 2 matrices with
entries in R if we represent ¢y by the
identity matrix and ¢; by —ioj, where o;
are the three Pauli matrices:

01 0 —i
o1 = 02 = i o |’

1 0
s_[1 0

3710 -1
Thus, if we set Eo:IandEj
we find that

= —LO'J‘,
3 2

—ixd —xr—ix!
—ixl KOt |

and that if x% =0, then det(X)=
8jkxjxk, which equals the square of
the Euclidean length of the vector with
components xJ.

If T is any invertible 2 x 2 matrix and
Y = TXT!, then trace of Y = tr(Y) =
tr(X) and the determinant det(Y) =
det(X). Since tr(X) =%, it follows
that x% = 0 implies y° = 0. Further,

0

(d

(e

Ny

~

Sjkxjxk = BJkyfyk, that is, Euclidean dis-
tance is preserved so the transforma-
tion from (x!, %% x3) to (yl, yz, y3)
is orthogonal. In particular if T =
exp(Po3) =cos ¥ I +sin ¥ o3, this trans-
formation is a rotation though an angle
29 about the x> axis.

If R is a finite commutative ring with
m elements, H(R) would be a noncom-
mutative ring with m* elements.
When is H(R) a field? Define X’ by
X =xT+ X andXbyX = x°T — X' It
then follows that XX = 8qx*x'I. If R =
R, this vanishes only if X = 0. Thus
X divided by 84x’x’ is the reciprocal
of X. It is not difficult to verify that
H(R) satisfies the requirements of an
anticommutative or skew field. This
is the field discovered by Hamilton to
which we alluded in Sec. 2.2.

Boolean “Ring”. In studying what
he called “The Laws of Thought”,
George Boole was led to introduce an
algebraic structure on the subsets of
any fixed set in which union, U, and
intersection, N, are analogs of addition
and multiplication, respectively. The
original set acts as the identity for
multiplication, and the empty set
serves as the zero for addition. The
reader can verify that most of the
properties of a commutative ring are
satisfied by Boole’s structure, but a
given subset does not have an additive
inverse so that 7 (S), the set of subsets
of S, is not an additive group under the
binary operation U.

Lie Rings. Let (L, +,0) be a set L to-
gether with two binary operators such
that (L, +) is an additive commuta-
tive group such that the operation o
distributes over addition, so that

x0(y + z2) = x0y 4 x0z.



However, the Lie product is neither
commutative nor associative but satis-
fies the properties:

X0y + yox = 0
and
x0(yoz) + yo(zox) + zo(xoy) = 0.

Because of the first of these conditions,
we say that the Lie product is anticom-
mutative. The second, which replaces
the associativity property of the famil-
iar rings, is referred to as the Jacobi
identity. Lie groups are discussed in
other articles of this work so we do not
go into details here. We merely remark
that the elements of a finite dimen-
sional Lie group can be parametrized
by continuous real variables and that
Sophus Lie associated to such groups
what he called an infinitesimal group
which is a particular case of a Lie ring.
Associativity of multiplication in the
group implies the validity of the Jacobi
identity in the corresponding Lie ring.
The Jacobi identity can be rewritten in
the form

zo(xoY) = (zox)oy + xO(ZOY),
which is the same as
D(xoy) = (Dx)oy + xo(Dy),

if we set Dw = zow, for fixed z and
all w € L. This last equation reminds
us of the product rule in calculus, so
we say that the linear map D:w — zow
is a derivation of L. The concept of Lie
ring, which apparently (Witt, 1937) was
first defined by Wilhelm Magnus in
1936, is a generalization of the concept
of Lie algebra introduced under the
name “infinitesimal group” by Lie and
Killing independently before 1880.
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(f) Grassmann Ring. As a final example of

the concept of ring we briefly describe
an algebraic structure invented by Her-
mann Grassmann about 1840 which is
basic to the theory of fermions as well
as the geometry of many dimensions.
Given a field, F, and a finite vec-
tor space (V,F,+) of dimension n,
it is possible to define a new vector
space, V*, of dimension 2" over F
and a binary operation, denoted by A,
called the wedge or Grassmann prod-
uct, which distributes over addition.
(VM T, +, A) will be the Grassmann
or exterior algebra. In order to define
the product A, which is the same as
that for fermion creation operators in
second quantization, we proceed by in-
duction on the grade of homogeneous
elements of the algebra. Recall that in
the ring F[x, y] of all polynomials in
x and y there are special subspaces
such as ax + by, or ax? + bxy + cy?,
or ax® + bx?y + cxy? + dy?, of homo-
geneous elements of dimension 2, 3,
4, respectively. Any polynomial can be
expressed as a sum of homogeneous
polynomials, and the summands are
unique. It turns out, analogously, that
if dim(V) = n, V" contains n + 1 sub-
spaces VP, 0 <p <n, such that any
element x of V* can be expressed in
precisely one way as x = X§x?, where
xP € VP. An element of V? is said to
be homogeneous of grade p. If x and
y are homogeneous of grades p and g,
respectively, then x Ay = (=1)Ply A x
is of grade p + q. In particular, VO = F
and V! = V by definition. It follows
that if » and y are of grade 1, that is be-
long to V,x Ay= —y A x. So if F has
characteristic other than 2 it follows
that x € V implies that x A x = 0.

If {v;} is a basis of V, the n(n — 1)/2
elements v; Av; for i <j are linearly
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independent and span the subspace V2
of V/. Similarly V3 is spanned by v; A
Vi AVgi= (Vi A V) AV = Vi A (0 A V)

with i <j < k between 1 and n. The
dim(V3) =n(n—-1) (n—2)/6. Pro-
ceeding in this way we define all the
n+ 1 homogeneous subspaces. As is
known, the sum of the coefficients
of the nth power of a binomial is
(14 1" = 2",s0 V* has dimension 2".
The preceding terse abstract definition
does not immediately suggest that
the Grassmann ring is significant
for fermion physics. However, this
becomes plausible when one realizes
that the above basis elements of grade
p correspond to the Slater determinants
for a system of p electrons which can
be formed from a basis set of n linearly
independent spin-orbitals.

5.2
Polynomial Rings

For everyday applications there is little
doubt that the integers Z constitute the
most important ring which is not also a
field. Perhaps the next most important
is the ring of polynomials involving one
or more variables. Suppose R is any
ring; then we consider all expressions of
the form P(x) = asx®, where 0 < s < n, x°
denotes the sth power of the variable x,
and a5 € R. If a, #0 we say that P(x)
is a polynomial of degree n in x. The
set of all such polynomials of arbitrary
finite degree will be denoted by R[x]. (Note
the square bracket which distinguishes
the ring from the field R(x) of rational
functions.) Assume that the powers of
x commute with the elements of R
and define addition and multiplication
in the obvious way. Then (R[x], +, x)
is a ring which is commutative if and
only if R is commutative. For example, if

R =7, R[x] is the ring of all polynomials
with integer coefficients. If R is the ring
of 2 x 2 matrices with complex entries,
R[x] consists of all 2 x 2 matrices whose
entries are polynomials in x with complex
coefficients. In this case the variable is
often called A. The theory of this particular
ring is discussed by Turnbull and Aitken
(1932), for example, under the title A-
matrices.

An obvious extension of the preceding is
to adjoin two or more variables to R. Thus
R[x, y] denotes the set of polynomials in x
and y with coefficients in R. A term such
as 3x%y°, formed by multiplication without
addition, is called a monomial. The sum
of the powers of x and y is called the
degree of the monomial. Thus the degree
of the preceding monomial is 2+5=7.
Clearly there are 8 different monomials of
degree 7 in two variables. Any sum of these
with coefficients in R is a homogeneous
polynomial in x and y of degree 7. When
R is a field we see that the homogeneous
polynomials of degree 7 form alinear space
of dimension 8.

More generally, it is of considerable
interest to determine how many distinct
monomials of degree n can be obtained
from rvariables. Itis not difficult to see that
the possible such monomials occur as the
coefficients of t* in the expansion of the r-
fold product IT(1 — x;t) !, where1 <i <r
and x; are distinct variables. Setting all
x; = 1, we see that the required number is
the binomial coefficient ("""7).

This is an opportune point at which to
explain the concept of a graded ring which
appeared in Sec.5.1(f) and has recently
entered quantum physics in connection
with super-symmetry. It is clear that any
element of R[x,y] is a unique sum of
homogeneous terms and that the product
of two homogeneous terms of degree p and



g, respectively, is homogeneous of degree
p+4q

A graded ring (R, X) is a ring together
with a set of grades, ¥, closed under
addition, such that R contains special
homogeneous elements to which a grade
from X is assigned; any element of R can
be expressed in a unique manner as a sum
of homogeneous elements; the product of
two homogeneous elements of grade o
and B is homogeneous of grade « + 8. For
polynomial rings we usually take X to be
the non-negative integers. For the so-called
Laurent polynomials C[t, t71], ¥ is the set
Z of all integers. For a Grassmann ring of
r generators, ¥ is the set of non-negative
integers. However in that case there are
no terms of grade greater than r, and for
0 < n < r the subspace of homogeneous
elements of grade n has dimension (}).

5.2.1 Binomial and Multinomial Theorem
For reZ,r>0, (x+y)" = Cx"~"",
where #n is summed from 0 to r. The
binomial coefficients Cj, satisfy the re-
currence relation C;*! = Cl, 4+ CT_,, with
which starting from CJ = 1 we can gener-
ate the famous Pascal triangle.

Definenl:=1x 2 x 3--- x n, which we
read as “n-factorial” or “factorial n”. CJ, is
often denoted by () and is given by

ry r!
(n) Toalr—mn)!

In this and most other formulas 0! is
interpreted as 1.

The binomial coefficient is also the
number of subsets of n elements in a set
of r elements, or the so-called number of
combinations of r things taken » at a time.

In the preceding, r and n are non-
negative integers but, as Newton realized,
the binomial coefficient can be defined as
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follows for any real r:

(r)_ rr—1D@F—2)---(r—n+1)
" .

1x2x3---xn
Here the numerator is a product of n
factors which begin with r and are decre-
mented successively by 1. For example
with r = —1, (;) = (—1)". Hence,

A—n)"t=14+x+x2+x>--,

which is valid when the infinite sum
exists, that is if the absolute value of x
is less than 1. This form was used in the
preceding section to obtain the number
of distinct monomials of degree n in r
variables, viz. (7).

The binomial coefficient is a particular
case of the multinomial coefficient which
arises in powers of sums of more than two
variables. Thus,

(x1 +x2+"'+xn)r = Crl,rz ..... n
X x50 L,
where 0 < r; <r and the summation is
over all r; € N such that Xr; = r. It is not
difficult to see that

o I;r!

with the product for 1 <i < n.

Like the binomial coefficient, to which it
specializes when n = 2, this number has
a combinatorial interpretation which ex-
plains its appearance in certain arguments
of statistical mechanics. Suppose a set S
of r distinct elements is partitioned into
the union of n subsets S; such that S; con-
tains exactly r; elements; then there are
Cr.1y....r,, distinct ways in which such a
partitioning can be effected.

5.2.2 Fundamental Theorem of Algebra
Since the square of any real number
is positive or zero, there is no x € R
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such that x> = —1. Suppose there is a
commutative ring R which contains R and
also an element i such that i2 = —1; then
R contains all elements of the form x + iy,
where x and y are arbitrary real numbers.
As a ring, together with i, R will contain
—i. If we require that R has no divisors of
zero, since x2 4+ 1 = (x + i)(x — i), there
are two and only two possible solutions
of x> +1 =0, namely, i and —i. Further
since (x +iy)(x — iy) = x> +y? #0, any
element of R of the form x+ iy has a
reciprocal of the same form. In particular
i~! = —i. Thus the ring R[i], generated
by the reals together with i, is in fact a
field. It is of course the complex numbers
which we are denoting by C. Thus any
commutative ring R which contains the
reals and one solution of the equation
x? 4+ 1 = 0 contains C.

We found C by starting with R and
demanding that a simple second degree
equation have a solution. If one starts with
Z and asks for solutions of equations such
as 5x + 7 = 0, one soon realizes that one
needs more numbers than the integers.
This leads us to the rationals Q. If, like
the ancient Greeks, we ask for solutions
of equations such as x> —3 =0, we are
forced beyond the rationals and are led to
define the reals, R.

The extraordinary property of the com-
plex numbers, first proved by Carl
Friedrich Gauss, is that any equation of
finite degree, ajxj =0, 0 <j <n, whose
coefficients a; belong to C has a solution
which also belongs to C. This result is
so important that it has been called the
Fundamental Theorem of Algebra. A field
F which contains the zeros of all finite-
degree polynomials which can be formed
with coefficients in F is called algebraically
closed, as we noted in Sec. 2.2.

If P(x) is a polynomial of degree n
with coefficients in a field F such that

P(a) = 0 for some « € IF, then one easily
proves that P(x) = (x — @)Q(x), where
Q(x) is a polynomial of degree n — 1. If,
like C,F is algebrically closed, nothing
prevents us from continuing this process
so that P(x) = cIl;(x —;),0 <i<mn,if P
has degree n, and ¢ is the coefficient of
x", where the product is over the zeros
of P(x). If F =R this process will not
carry through in general; however, it can
be shown that a polynomial with real
coefficients can always be expressed as a
product of factors of first or second degree
with real coefficients.

The Fundamental Theorem of Algebra
assures us of the existence of a zero for
any polynomial P(x) € C[x], butitdoes not
give us an effective procedure for finding
such a zero. Indeed, Evariste Galois
showed that it is only for polynomials
of degree less than five that an explicit
formula, analogous to that for solving
a quadratic equation, exists. It is worth
looking in detail at equations of degree
less than 5.

(i) deg[P(x)]=1. Take P(x) =ax+b,
where a, b € F and a # 0. Then there

is a unique zero, x = —b/a, which
belongs to F.
(ii) deg[P(x)] =2. Take P(x)=ax?>+

2bx+c,a#0,a,b,cel. Clearly
P(a) = 0 is equivalent to aP(«x) =0,
but

aP(x) = a*x* + 2abx + ac
= (ax + b)? + ac — b2

Thus if « is a zero of P, (ac + b)2 =
> —ac=D. To find « it will be
necessary to find the square root of
D. Since by various choices of a, b,
and ¢, D will vary over the whole of
our ground field F, it follows that
quadratic equations with coefficients



(i)

in F will always have solutions in F
if and only if F is closed under the
operation of taking square roots.

In elementary school we learn to
manipulate with square and cube
roots and come to take them quite
casually. But note that even the
world’s largest super-computer is not
able to find the square root of 2
exactly since it is a mnonrecurring
decimal. To find it requires an infinite
process. In other words, moving from
talking about square roots to actually
calculating them takes us out of
algebra as defined in the Introduction
of this essay!

For equations of degree n, if P(x) =
ajxj, 0<j<mn,a,#0, we could di-
vide P(x) by ay, so there is no loss
of generality in assuming that P(x) is
monic; that is, it has leading coeffi-
cient equal to unity. It then follows
that if we replace x by y — b, where
nb = a,_1, the resulting polynomial
in y has zero as the coefficient of y" 1.
deg[P(x)] = 3. By the preceding ar-
gument we may assume that P(x) =
%%+ px +q. It is easy to see that if
(x — a)? or a higher power of (x — «)
divides a polynomial then x — « also
divides its derivative. By seeking for
a common factor of P(x) and its first
derivative we find that two or more of
the zeros of P(x) will be equal if and
only if 4p® + 27¢4% = 0.

This conclusion is valid for p and g
belonging to any field, F. If F =R
we know from a simple graphical
argument that P(x) has at least one
real zero. If p, q € R, it is possible to
show that the roots will all be real or
that there will be one real and two
conjugate imaginary roots according
as 4p® 4+ 27¢* is, respectively, less
than or greater than 0. When it is
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zero all the roots are real and at least
two are equal.

It is interesting to note that if
pq #0, by setting x = kcos®, the
solution of x*> + px+¢q=0 can be
obtained by comparison with the iden-
tity 4cos3 ¥ — 3cos ¥ — cos(38) = 0.
With k and ¢ such that 3k + 4p =
0 and pkcos(3%) = 3gq, the three
roots are k cos ¥, k cos(¢ 4+ 27 /3), and
kcos(® + 4 /3). When pgq =0, the
solution is trivial.

deg[P(x)] = 4. In this case the solu-
tion of the equation P(x) = 0 can be
made to depend on the solution of
a so-called resolvent equation of de-
gree 3. Then four zeros are obtained
as expressions involving two square
roots of rather complicated combi-
nations of the coefficients of P(x)
and one zero of the resolvent cubic
equation. These formulas are of little
theoretical value so we do not display
them. Nowadays anyone wanting ex-
plicit values for the zeros would obtain
them by a computer-implementable
algorithm.

(iv)

There are elegant and deep arguments
connecting the solution of equations of
degree 5 and 6 with the theory of elliptic
functions.

Of course, even for arbitrarily high
degree there are particular equations
of simple form which have convenient
explicit solutions. For example, x" = a has
n solutions: rexp(¢ + 2wki/n),0 <k < n,
with r > 0 and r" exp(n?) = a.

6
Algebras

The word “algebra” is used in two distinct
senses. On the one hand it refers to the
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subject which the reader began to study
with more or less enthusiasm around
the age of 13. Recall that when Einstein
asked his uncle “What is algebra?” the
latter replied “In algebra you let x be the
unknown and then you find x.” Bourbaki
would not accept this as a satisfactory
definition but it started Einstein on the
right path. Who knows? Without that
initial encouragement we would never
have had General Relativity which contains
a good deal of algebral

But an algebra also refers to a rather
specific type of mathematical structure: a
ring, which is also a linear space over some
field. It is therefore a very rich structure.
As a linear space, an algebra has a
dimension — finite or infinite. In quantum
mechanics the observables generate an
associative algebra of operators on an
appropriate Hilbert space, which is finite
or infinite over C depending on the
physical system.

As we noted in Sec.5.1, rings differ
among themselves according to whether
the “product” is or is not associative
or commutative. Because an algebra has
linear-space structure and therefore a ba-
sis, it is possible to characterize different
types of algebras by their structure con-
stants which are defined as follows. Let
{e;} be a basis for the algebra over F and
denote the product merely by juxtaposi-
tion. Then e;e; is a linear combination of
the basis such that €igj = cfek, where the
coefficients belong to F. It then follows by
linearity that if x = x%¢; and y = yiej' are
any elements of the algebra, the product:

= iy = e,

where

2 = cljx’y’

The nature of the product is determined
by the structure constants CS For example,
if for all i and j they are antisymmetric
in i-j, then xy+yx =0, as in a Lie ring
[Sec. 5.1(e)].

In understanding and classifying groups
there is a class called simple groups with
a key role in the sense that they are the
building blocks with which other groups
are constructed. For complex Lie groups
the classification of all possible simple
groups was essentially completed by Wil-
helm Killing in 1888. The solution of the
analogous problem for finite groups was
achieved only in 1980 as a result of gigantic
efforts over decades by hundreds of math-
ematicians — undoubtedly one of the truly
outstanding intellectual achievements of
all time. A simple group is one that con-
tains no normal subgroups other than the
full group and the one-element subgroup
consisting of the identity. Another way of
defining a simple group G is to say that any
homomorphism of G into another group
either is an isomorphism or sends every el-
ement of G onto a single element. Finally,
this is the same as saying that if we denote
the homomorphism by 7 then its kernel,
K = {g|m(g) = ¢}, is either G or {e}.

The concept of homomorphism — that
is, structure-preserving maps — applies to
rings and algebras as well as groups. If R
and R arerings and 7: R — R’ isamap of
R into R’ then 7 is a homomorphism
if m(x+y)=n(x)+n(y) and w(xy) =
7w (x)7(y) for all x and y in R. These are
the conditions for a ring-homomorphism.
If R is in fact an algebra, then 7 will also
have to satisfy the condition 7 (ax + By) =
an(x) + Br(y), wherew and B areinF, if
is to qualify as an algebra-homomorphism.
If we then define K = {x € R|7w(x) = 0},
we easily see that K is a subring (or
subalgebra) of R. But more! If x € K and
z € R then both xz and zx belong to K.



A subring of R which satisfies this last
condition is called an ideal. If K is the
kernel of a homomorphism 7, and we
define an equivalence relation on R by
xpy < x —y € K, then the image 7 (R) is
isomorphic to R/p. Conversely, if K is an
ideal in R there is a homomorphism of
R onto R/p with K as kernel. A ring (or
algebra) is simple if it has no ideals other
than {0} and itself.

The famous Wedderburn theorem
which emerged between 1895 and 1905
asserts that a simple finite-dimensional
associative algebra is isomorphic to a com-
plete matrix algebra for some n — that is,
the algebra of all n x n matrices which we
considered in Sec. 5.1(b).

6.1
Examples of Algebras

The algebra of n x n matrices over some
field F to which we have just alluded is
undoubtedly one of the most important
and useful types of algebras. We mention
three other algebras which are widely
applied by physicists.

(a) Frobenius or Group Algebra. Suppose G
is a finite group of order n. We can
decree that the elements g; of G are
a basis for a linear space over some
field F. Then the set A = {xigi|xi e F}
is closed under addition and also un-
der multiplication by elements of F and
therefore is alinear space of dimension
equal to the order of G. If x = x'g; and
y = y'g; are arbitrary elements of A, we
can define xy: = xingigj = S fg. 1<
i,j, k < n, where 2k = cl_‘lx’y’ Here, cfj

is 1 if gigi = g, and 0 otherwise. With

these definitions of addition and mul-
tiplication A is an algebra over F. It
is named after the Berlin mathemati-

cian G. Frobenius who made basic

(b)
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contributions to the theory of group
characters, differential equations, and
other branches of mathematics.

There is a better way to display the
product xy. Denote x* by x(g;) so that
x = Xgx(g)g where the sum is over
all g e G. It then follows that xy =
¥gz(g)g, where z(g) = Ehx(h)y(h_lg)
for fixed g with summation on h e
G. Viewed in this way there is a
bijection between the elements of A
and functions x(g) on G. The sum
x+y is mapped onto the function
x(g) + y(g), and the product xy onto
the convolution, X,x(h)y(h~g), of the
functions x(g) and y(g).

Now suppose that G is a continuous
group on which there is a concept of
volume or measure which is invari-
ant under translation by elements of
the group — a so-called Haar measure.
Then it is possible to extend the notion
of Frobenius algebra from finite to con-
tinuous groups where the elements of
the algebra are functions on G, addi-
tion is point-wise addition of functions,
and the product of x(g) and y(g) is the
function [ x(h)y(h~'g) dh. This convo-
lution of functions occurs in the theory
of Fourier and Laplace transforms. A
rigorous treatment involves deep prob-
lems of continuity, convergence, and
measure theory which analysts love.
But the algebraic structure is apparent
and explains why the idea of convolu-
tion is so useful.

Clifford Algebras are generalizations of
quaternions. They are the E-numbers
of Sir A. S. Eddington’s Fundamental
Theory. They play a key role in
relativistic quantum mechanics as the
Dirac matrices. They are very useful in
the discussion of the orthogonal group
in n-dimensions.
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Suppose that E;, 1 <i<mn, are ele-
ments of an associative algebra over
the field F and satisfy the conditions
Eﬂ%‘ + %Ei = 2441,
where the Kronecker delta is 1 if i =
and 0 otherwise and [ is the identity of
the algebra. Since E? = I and distinct
E’s anticommute, it follows that the al-
gebra generated by the E’s has a basis
consisting of I, E, EiEj, E;EjE,...1 <
i<j<k<...<n,and therefore like
the Grassmann algebra has dimension
2", However, if X = x'E; we see that
X? = 8;x'x/I, displaying the Euclidean
metric! It follows that if T is any fixed
invertible element of the Clifford alge-
bra, the transformation X — TXT~!
gives rise to a linear transformation
of the coordinates x* under which the
metric is invariant. It is therefore an
orthogonal transformation.
In the case n =4, 2" = 16 which is
the number of entries in a 4 x4
matrix. Indeed, there is then a faithful
representation of the Clifford algebra
by 4 x 4 matrices among which the
Dirac matrices appear in a natural
manner.

Lie Algebras. A Lie algebra (L, F, +, o),
abbreviated as LA, is a Lie ring as
defined in Sec.5.1, which is also a
linear space over some field F. As
such it could have finite or infinite
dimension. The smallest subalgebra
of L which contains all the elements
of the form xoy, for x,yelL, is
an ideal in L, which we denote by
L[ol:=1I'. Defining an equivalence
relation p by xpy <& x —y e L' leads
to a quotient algebra L/p which is
Abelian; that is the product of any
two elements of L/p is 0. A Lie
algebra is said to be solvable if the

descending sequence of subalgebras
[Pt c IP where 109 =1,1' = I and
[P+l = (IP), terminates in {0} in a
finite number of steps. Every finite
dimensional Lie algebra has a maximal
solvable ideal, R, called the radical of
L, which is such that the quotient
algebra L/R is semisimple — that is, a
direct sum of simple LA’s. Recall that
a simple ring is one with only trivial
subideals. Thus simple and solvable
Lie algebras are the basic building
blocks needed for the analysis of any
LA.

The complete classification of simple fi-
nite dimensional LA’s over C was obtained
by W. Killing (1888) and expounded clearly
by Elie Cartan in his thesis (1894). The
classification of simple finite dimensional
LA’s over R was achieved by Cartan (1913).

The concept of a simple LA was given a
far-reaching extension by the Canadian R.
V. Moody (1967) and the Russian Victor
Kac (1967) quite independently of one an-
other. These infinite dimensional algebras,
which are now called Kac—Moody (K-M) al-
gebras, quickly proved to play a key role
in fundamental particle theory as does the
closely related Virasoro algebra which can
be thought of as a set of derivations of a K-
M algebra (Goddard and Olive, 1988). The
most accessible K-M algebras are the so-
called affine or Euclidean algebras which,
together with the finite-dimensional sim-
ple algebras, can be classified rather con-
veniently by means of the Coxeter-Dynkin
diagrams, which are exhibited in Table 1.
In this table the left-hand column names
the finite-dimensional simple algebras and
the right-hand column, the affine algebras.
These diagrams encode so much useful in-
formation that it is worthwhile explaining
them in some detail.

Up to isomorphism, a K-M algebra is
characterized by a square matrix (a;),
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Tab.1 Coxeter-Dynkin diagram of the finite and affine Lie algebras

o
1
]
Ae—e—e.,. .. 0—06—0 A :e—e—e o6—0o—¢
n(n+2) 1 2 3 n-1 n 1 1 1 1 1 1
en 01 ®1
1 |
D,:0e—eo—eo., . 0—0—@ D,:¢—0—e, &6—o—8
nen-1) ! 2 3 n-2 n-1 1 2 2 2 2 1
01
|
°|1 o
|
;
Ec:0—0—0—e0-—o Eg: 0—0—0—0—0
78 2 3 4 5 6 1 2 3 2 1
®7 [ ¥l
| ! l
E,;0—0—0—0—0—8 E;: 0—@--@—0—08—0—0
133 1 2 3 4 5 6 1 2 3 4 3 2 1
®3 ®3
| 1 |
Eg:0—@—0—0—0—0—0 Eg:0—@—0—0—0—0—0—0
248 1 2 3 4 5 6 7 1 2 3 4 5 6 4 2
A:e A 0==e
3 1 1 1

52 1 2 3 4 2
2
F2 o——o%:o————-o-—o
1 2 3 2 1
Q1
. 1 |
Bp:®o—eo-—o-cc0—o0=xe Bn:o——o—o........_.%z.
n@2n+1) 1 2 3 n-2 n-1 n 1 2 2 2 2 2 2

C,:0—0—eo...0—00 Cl:o%co—o———o---o-—o °
n(2n+1)1 2 3 n-2 n-1 n 1 2 2 2 2 2 1
o1
2 i
Chro—e—e...o—oe
1 2 2 2 2 1
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called a Cartan matrix even though it
was first defined by Killing, which has
the following properties: (i) a; € Z,1 <
i,j <n. (i) a; = 2. (iii) For i #j,a; <0
and if a;; =0 then a; =0. Then L is
a LA generated by 2n elements {e;, f;}
satisfying the following conditions: (a)
6i0ﬁ = hifsij; (b) hioej = ajjej; (C) hioﬁ =
—aif; (d) hiohj = 0; (e) the hj,1 <i<n,
are linearly independent; (f) 'Eil_aij =
Ff=o.

In (f) we use the notation X = ad(x)
to denote a linear map of L into L
defined by Xy = x0y. The h; span an
Abelian subalgebra, H, called the Cartan
subalgebra of L of dimension n, which
is also the rank of L. For h = tihi, define
aj(h) = aijti, so aj is a linear function on H.
Then (b) and (c) imply that hoe; = a;(h)e;
and hof; = —a;(h)f;.

The algebra L is spanned by monomials
which are products of the e’s and f’s
but (a) — (d) imply that nonzero products
involve only the e’s or only the f’s or
belong to H. The algebra is graded by
ascribing a grade «; to ¢;, 0 to h € H, and
—a; to f;. Hence the possible grades for
nonzero elements of L are 0 or o = kla;,
where the k' are all non-negative integers,
in which case « is said to be positive
and noted « > 0, or where the k' are all
non-positive integers, in which case «o
is negative or & < 0. Thus L is a direct
sum of homogeneous terms which have
positive, negative, or zero grade. That is,
L=1"@® H®L" where L™ is spanned
by products of f’s and LT by products
of e’s.

The grades form a lattice kie; with
k' € Z. This lattice is an additive Abelian
group, generated by o; for 1 < i < n, whose
elements can be pictured as the points of
a crystallographic lattice. The grades for
which there is a non-zero homogeneous

BJ—

element of L are called roots and span a
sublattice of the lattice of grades. The set of
roots other than 0 is generally denoted by
A which has the obvious partition into the
positive and negative roots A = A~ U AT,
with A= = —A*. A nonzero element x,
of L with grade « is called an a-root vector.

As mentioned above, the K-M algebras
and the simple finite LA’s are classified by
means of the Coxeter-Dynkin diagrams
(CDD) of Table 1. These were first
employed by Coxeter (1931) in his study
of finite groups generated by reflections
and applied by him to LA’s in 1934.
They were also introduced independently
by Dynkin (1946). Bourbaki named them
after Dynkin, having first learned about
them from Dynkin’s important work
concerning LA’s. It was only in 1949 that
Claude Chevalley, a founding member of
Bourbaki, learned of Coxeter’s papers from
the author of the present article.

In 1888 or earlier, Killing noticed that
the operation S;:a — a — a(hj)a; effects a
permutation of A such that Si2 =1 Then
operations S;, 1 < i < n, generate a group
which is now usually called the Weyl group
because in 1923 Hermann Weyl popu-
larized a particular representation of this
group. I prefer to call it the Killing-Weyl
group. A particular element of this group,
R = 515,S3...Sy, which is usually called
the Coxeter transformation, was used by
Killing to effect the classification of the fi-
nite simple LA’s over C. He exhibited the
orders of all the “Coxeter” transformations
some years before Coxeter was born. It is
perhaps only fair to follow B. Kostant’s
usage (1959) and call this operator the
Killing-Coxeter transformation. The order
of the R associated with a simple LA on the
LHS of Table 1 is the sum of the digits ap-
pearing on the diagram immediately to the
right. For example, the order of R(Gy) is



1+ 24 3 = 6. The Killing-Coxeter trans-
formation is discussed in Coleman (1989),
where additional references may be found.

The CDD gives the Cartan matrix
(@) and also the relations among the
generators of the Killing-Weyl group for
the corresponding LA. The nodes of the
diagram are numbered by the indices 1
to n for the finite algebras and 0 to »
for the affine algebras. A branch between
i and j indicates that a; and a; are
different from zero and, therefore, both
are negative integers. A simple branch
indicates that the product a;a;i is 1 and,
therefore, each factor is —1; a double
branch indicates that the product is 2,
so the factors are —1 and —2; a triple
branch indicates that the factors are —1
and —3. An arrow pointing from i to
Jj indicates that a; is numerically larger
than aj;. Thus in the graph Gz, a1 = -3
and a1 = —1. The symbols A,, B,, Cy, Dy
were introduced by Killing and Cartan
to denote the four infinite classes of Lie
algebras corresponding, respectively, to
SL(n+ 1), the general linear group on
n -+ 1 variables with determinant 1; the
orthogonal group on 2n + 1 variables; the
symplectic group on 2n variables; and the
orthogonal group on 2n variables. E, F,
G denote the exceptional LA’s and the
subscripts 2, 4, 6, 7, 8, n denote the rank
of the algebra. For the finite algebras their
dimension is noted in Table 1 under the
name of the algebra. The left-hand column
thus encodes the Cartan matrix for all the
finite simple LA’s.

But these diagrams also enable us to
infer the relations among n or n+1
generators, S;, of the Killing-Weyl group of
the finite simple LA’s or the affine algebras.
S? =1, and for i #j, (S;Sj)p = I, where p
equals 2, 3, 4, or 6 according as the i-
node and the j-node are joined by a 0-, 1-,
2-, or 3-fold branch. For the simple LA’s
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in the first column the determinants of
the Cartan matrix and of all its principal
subminors are strictly positive, whereas
for the matrices in the second column
the determinant of the matrix itself is
zero but those of all principal subminors,
positive. This corresponds to the fact that
can be observed from the diagrams that
if one node is removed from a diagram
in the second column we obtain one or
two diagrams of the first column. From
this we infer immediately a class of finite
semisimple LA’s which are subalgebras of
the affine algebras.

An open node is numbered 0 and
the others retain their numbers from
the diagram immediately to the left.
The numbers attached to the nodes of
the affine diagrams are the coefficients
of the canonical null-root of the affine
algebra. The affine algebras have infinite
dimension, Killing-Weyl groups of infinite
order, and an infinite number of roots.
The dimension of a root space is finite
and called the root multiplicity. Roots are
distinguished according as they are in the
orbit under the K-W group of a simple
root «; or not. The former are called real,
the latter, imaginary. The real roots all have
multiplicity 1, whereas imaginary roots can
have arbitrarily high finite multiplicity.

By the height, ht(x), of the positive
root o = k'e; we mean Tk'. A finite
dimensional simple LA has a unique root
of greatest height which can be read from
Table 1. The numbers attached to nodes 1
to nin the diagram X} give the coefficients
of a; for the root of greatest height in
the corresponding finite algebra X,. Thus
o = 201 + 30 + 4oz + 204 is the highest
root of A(Fy).

We should note that some authors use
the symbols A, D, E2, DO, A,
and A2 | for our algebras A%, G3, F2, B,
BC2, and C2, respectively.
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7
Modules

So far we have not discussed exact
sequences, commutative diagrams, or the
game called diagram chasing which have
played an increasingly important role in
algebra in recent decades. The theory of
modules provides a convenient context in
which to introduce these ideas and is also
significant in its own right.

Recall that a linear space is an additive
group (V,+), which is closed under
multiplication by elements of a field
F (usually commutative). We frequently
denote the space (V,F,+, x) by V. A
module is an additive group (M, +) which
is closed under multiplication by elements
of a ring, R (often non-commutative).
Frequently, when the context is clear,
a module (M, R,+, x) is denoted by
M. Essential conditions in the definition
of an R-module M are that for r € R,
and my, my € M, (i) rmy; € M, (ii) r(m1 +
my) = rmy + rmy.

7.1
Examples of Modules

(@) Suppose R=Z and M={3n|ne
Z} =37Z. Clearly M is an additive
group. Define the action of R on M as
multiplication of integers. Obviously, if
n,méeZ 3neMand m(3n) = 3mn €
M.

Let M =27Z/37Z:=7Z3. M has three
elements which we could denote [0],
[1], and [2]. For example [1]={.. —
5,—2,1,4,7,...}. Take R=7Z. For
n € Rand m € {0, 1, 2}, define njm] =
[nm]. For example, 7[2] =[14] =[2 +
3 x 4] = [2]. We easily check that M is
an R-module.

For the physicist perhaps the most
important example of a module occurs

when R is the Frobenius algebra of a
group G and M is a linear space over
R or C. In this case the action of R
on M is called a linear representation
of G. This example will be treated
in other articles in this book. Of
course it was via the representations
of groups that Hermann Weyl and
Eugene Wigner introduced the “group
pest” into physics around 1930. The
algebraization of physics then took a
dramatic leap forward, and we were
able to understand the periodic table,
relativistic wave equations, and the
classification of fundamental particles.

7.2
Morphisms of Modules

A mapping f: M1 — M; of one R-module
into another could merely map one set
into the other set. As such it could be (i)
injective, such that x #y < f(x) # f(y),
(ii) surjective such that for each y € M,
there is an x € My for which f(x) =y,
or (iii) bijective, that is both injective
and surjective — or, one-to-one and onto.
However, f might also have the property
that for all x,ye My, f(x+y) =f(x)+
f(y). We would then say that f is a
homomorphism, or, now more frequently,
simply, a morphism of additive groups.
Even better, f might not only be a
morphism of additive groups but also
have the property f(rm) = rf (m) for all
r € Rand m € Mj. It would then have the
distinction of being called an R-module
morphism.

The kernel K = {x € M;1|f(x) = 0} of an
R-module morphism f is an R-submodule
of Mj. The image or range of f, f(M;) C
M, is an R-submodule of M; and is
isomorphic to the quotient module M1 /K.
When f is surjective, this situation is
now frequently described by saying that



the following diagram portrays an exact
sequence of mappings:

O—>K—>M1L>M2—>0.

The preceding statement presupposes that
the reader realizes that given our context
(i) an arrow denotes a morphism of R-
modules, (ii) the sequence is exact at
K, Mj, and M;. By exact is meant that
the image of an incoming morphism is
the kernel of the outgoing morphism.
Hence, (i) the mapping from K to M;
is injective since its kernel is 0, (ii) the
mapping f is surjective since its image
must be the whole of M, because this is
the kernel of the final map. Since f is an
R-module morphism the diagram implies
that My = f(M1) = M1/K.

Though we chose to introduce the
concept of an exact sequence for modules,
it has wider application. Consider the
diagram:

1—K—>G—H—1,

where now the arrows represent homor-
phism of groups. Then if the sequence
is exact, K is injected into G and can be
identified with the normal subgroup of G
which is the kernel of the map from G
to H. We conclude that H is isomorphic
to G/K. So this particular exact sequence
encapsulates the familiar and basic First
Isomorphism Theorem of group theory.
Returning to modules or additive groups
for which the neutral element is denoted
by 0, we see that for any exact sequence:

Op—3 Op—2 Opn—1 )
. Mn_zn—>Mn_1”—>Mn—n>

Ont1 Ont2
Mn+1—>Mn+2—> ey

Op+10, My, = 0, since 3, M, is the kernel of
dn+1 and is mapped onto 0.
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A topologist will inevitably recall that
the boundary of a boundary is empty;
a physicist will recall that the curl of a
gradient is zero and that the divergence of
a curl is zero. Indeed, these observations
are the key to the algebraization of
topology and of differential forms which
led to homology and cohomology theory.
The algebraic core of these topics has
proliferated as Homological Algebra in
which exact sequences and commutative
diagrams are rampant.

Diagrams of maps can become quite
complex and frequently admit two or more
paths from object A to object B. If for all
pairs A and B the compositions of maps
along all different paths from A to B are
identical, the diagram is said to be commu-
tative. The game, art, or science of diagram
chasing is the process of verifying that a
given diagram is or is not commutative.
Here, finally, is a simple but important
example of a commutative diagram. It il-
lustrates a method now widely used by
algebraists to define universal objects.

Suppose G and G are given topological
groups and 7: G — G a given homomor-
phism of G onto G. Suppose further
that for any group H and any homomor-
phism 7 such that t(H) = G there exists
a homomorphism o which makes the ac-
companying diagram commutative:

He+——— G
\l‘n’.
G

Then G is the universal covering group
of G, the kernel K of n is the Poincaré
group of G, and the cardinality of K is
the connectivity index of G. An example
of this, which “explains” the occurrence
of spin in physics, is that if G were
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SO(3) then G would be isomorphic
to SU(2).

Glossary

This article contains so many words which
may be unfamiliar to the reader that if
we gave their definition here the glossary
would be almost as long as the article.
Therefore, we list the most important
concepts followed by the section number
in which the concept can be found.

Abelian: see Sec. 1

Affine Lie Algebra: see Sec. 6.1(c)
Algebra: see Sec. 6

Algebraically Closed: see Sec. 2.2
Anti-Hermitian: see Sec. 3.6
Antisymmetric: see Sec. 3.6
Associativity: see Sec. 1
Automorphism: see Sec. 2.2

Basis: see Sec. 3.1

Bijective: see Sec. 7.2

Binary: see Sec. 1

Binomial Coefficient: see Sec. 5.2.1
Canonical Matrix: see Sec. 3.6
Cartan Matrix: see Sec. 6.1(c)
Cartan Subalgebra: see Sec. 6.1(c)
Chasing Diagrams: see sec. 7.2
Characteristic Function: see Sec. 3.5
Characteristic of a Field: see Sec. 2.1
Clifford Algebra: see Sec. 6.1(b)
Cogredient: see Sec. 3.7
Commutative: see Sec. 1
Commutative Diagram: see Sec. 7.2
Component: see Sec. 3.1
Connected Matrix: see Sec. 3.5
Contravariant: see Sec. 3.7
Contragredient: see Sec. 3.7
Contragredient Vector: see Sec. 3.7
Convolution: see Sec. 6.1(a)
Covariant: see Sec. 3.7

Covariant Vector: see Sec. 3.7
Coxeter-Dynkin Diagram: see Sec. 6.1(c)

Degree: see Sec. 2.3

Derivation: see Sec. 5.1(e)
Determinant: see Sec. 3.4
Diagonalizable: see Sec. 3.5
Dimension: see Sec. 3.1

Direct Sum: see Sec. 5
Distributivity: see Sec. 2
Domain: see Sec. 7

Dual Space: see Sec. 3.7
Eigenvalue: see Sec. 3.5
Eigenvector: see Sec. 3.5
Equivalence Relation: see Sec. 4
Exact Sequence: see Sec. 7.2
Field: see Sec. 2

Frobenius Algebra: see Sec. 6.1(a)

Fundamental Theorem of Algebra: see

Sec.5.2.2

Galois Field: see Sec. 2.1

Galois Group: see Sec. 2.2

Graded Ring: see Sec. 5.2
Grassmann Product: see Sec. 5.1
Grassmann Ring: see Sec. 5.1(f)
Group: see Sec. 1

Height of a Root: see Sec. 6.1(c)
Hermitian: see Sec. 3.6
Homogeneous Space: see Sec. 4
Homogeneous Subspace: see Sec. 5.1(f)
Homomorphism: see Secs. 3.3 and 6
Ideal: see Sec. 6

Identity Element: see Sec. 1
Imaginary Root: see Sec. 6.1(c)
Indecomposable: see Sec. 3.5
Injective: see Sec. 7.2

Invertible: see Introduction
Isomorphism: see Sec. 2.2

Jacobi Identity: see Sec. 5.1(e)

Jordan Block: see Sec. 3.5

Jordan Canonical Form: see Sec. 3.6(i)
Kernel: see Secs. 3.3 and 7.2
Killing-Coxeter Transformation:

see Sec. 6.1(c)

Killing-Weyl Group: see Sec. 6.1(c)
Laurent Polynomials: see Sec. 5.2

Lie Algebra: see Sec. 6.1(c)

Lie Ring: see Sec. 5.1(e)



Linear Dependence and Independence: see
Sec. 3.1

Linear Map: see Sec. 3.3

Linear Space: see Sec. 3

Matrix Ring: see Sec. 5.1(b)
Minimal Polynomial: see Sec. 3.5
Module: see Sec. 7

Monic: see Sec. 3.5

Monomial: see Sec. 5.2

Morphism: see Sec. 7.2
Multinomial Coefficient: see Sec. 5.2.1
Neutral Element: see Sec. 1
Nilpotent Matrix: see Sec. 3.5
Normal Subgroup: see Sec. 4
Nullity: see Sec. 3.3

Order of a Group: see Sec. 1

Partial Fractions: see Sec. 2.3

Pauli Matrices: see Sec. 5.1(c)
Polynomial of Degree n: see Sec. 5.2
Quaternion: see Secs. 2.2 and 5.1(c)
Quotient Set: see Sec. 4

Radical: see Sec. 6.1(c)

Range: see Sec. 3.3

Rank: see Sec. 3.3

Rational Functions F(x): see Sec. 2.3
Real Roots: see Sec. 6.1(c)

Reflexive Relation: see Sec. 4

Ring: see Sec.5

Root: see Sec. 6.1(c)

Root Multiplicity: see Sec. 6.1(c)
Root Vector: see Sec. 6.1(c)

Scalar: see Sec. 3

Semisimple Lie Algebra: see Sec. 6.1(c)
Simple Group: see Sec. 6

Skew Field: see Sec. 5.1(c)

Solvable Lie Algebra: see Sec. 6.1(c)
Span: see Sec. 3.1

Stabilizer: see Sec. 4

Structure Constants: see Sec. 6
Sum of Maps: see Sec. 3.3
Surjective: see Sec. 7.2

Symmetric Matrix: see Sec. 3.6
Symmetric Relation: see Sec. 4
Tensor: see Secs. 3.5 and 3.8
Tensor Product: see Sec. 3.8 and 4
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Transition Matrix: see Sec. 3.2
Transitive Group: see Sec. 4

Transitive Relation: see Sec. 4
Transpose: see Sec. 3.6

Unipotent: see Sec. 3.5

Universal Covering Group: see Sec. 7.2
Wedderburn Theorem: see Sec. 6
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Introduction

The article on analytic methods is sub-
divided into the following five broad
and interrelated subjects: functions of
a complex variable, ordinary differential
equations, partial differential equations,
integral equations, and applied functional
analysis. Throughout the article, empha-
sis is placed on methods of application
involving physical problems and physi-
cal interpretations of solutions rather than
on a rigorous mathematical presentation.
Special cases of linear relations in one
and two Cartesian dimensions are used
to explain techniques. Extensions to more
general cases and different coordinate sys-
tems are straightforward, in principle.

Section 1 is devoted to some aspects of
complex variable theory needed in math-
ematical physics. The section begins with
a discussion of complex variables and
their representations, analytic and singular
functions of a complex variable, impor-
tant integral relations, and the Taylor and
Laurent expansions. The Cauchy residue
theorem is applied to obtain the Cauchy
principal value of an integral and disper-
sion relations. A discussion of the uses of
dispersion relations throughout physics is
also given. The section is concluded with a
brief discussion of physical applications of
conformal transformations and Riemann
surfaces.

Section 2, on ordinary differential equa-
tions, treats classes of physical problems
that lead to first- and second-order ordi-
nary linear differential equations. Proce-
dures for obtaining solutions for first- and
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second-order ordinary linear differential
equations are presented. Methods of apply-
ing initial and boundary conditions are dis-
cussed. Green’s functions are introduced
in connection with the variation of pa-
rameters method for solving second-order
nonhomogeneous differential equations
with variable coefficients. A brief intro-
duction to numerical methods for solving
first- and second-order ordinary differen-
tial equations is also presented.

In the section on partial differential
equations (Sec. 3), some important partial
differential equations involving the Lapla-
cian operator are presented and explained.
Separation of variables and Fourier trans-
form methods for solving partial differ-
ential equations are illustrated. Green’s
functions for three-dimensional problems
are discussed in this section. Extensions
to cylindrical and spherical coordinates
and to certain special functions in mathe-
matical physics are discussed. The section
is concluded with a brief presentation of
numerical methods for solving partial dif-
ferential equations.

An introduction to one-dimensional
linear integral equations is given in Sec. 4.
Discussions of classifications and methods
of solution of integral equations are
given. The essential difference between
an integral- and a differential-equation
formulation of a physical problem is
discussed. The Abel problem is presented
as an example of a physical problem that
leads directly to an integral equation.

The focus of Sec.5 is on applied
functional analysis. The method of the
calculus of variations is introduced in
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connection with finding the extremum
of the definite integral of a functional,
and techniques of variational calculus
are applied to Hamilton’s variational
principle of mechanics. The Feynman path
integral approach to quantum mechanics
is presented as an example of functional
integration.

1
Functions of a Complex Variable

1.1
Introduction

The imaginary number, i=/—1, was
introduced into mathematics during the
latter part of the sixteenth century. Imag-
inary numbers are needed since certain
equations, for example, x%2 +1 =0, have
no solutions that involve only real num-
bers. In physics, one writes the solution
of the equation of motion for the linear
harmonic oscillator, % + w?x = 0, in the
form x(t) = Aexp(iwt). Index of refraction
is written in complex (containing real and
imaginary parts) form in modern optics,
and the wave function in quantum me-
chanics is often a complex quantity. How
physical results are obtained from com-
plex numbers or functions of a complex
variable will be explained below. Complex
variables are used throughout physics, and
this section is devoted to discussions of
some properties of complex variables that
are useful in physical applications.

1.2
Complex Variables and Their
Representations

A complex variable may be written in the
general form

z:x—i—iy:reig. (D

In Eq.(1), x and y are the respective
real and imaginary parts of z and are
written as x = Rez and y = Imz; 0 is the
argument (phase) of zand is writtenas 6 =
argz =6, +2nnforn=0,1,2,...;6, is
the principal argument of z and varies
from 0 to 277; ¥ = cos@ + isin6 (Euler’s
formula); and r = |z| is the absolute value
(magnitude, modulus) of z where r=
(x? 4+ y?)1/2. The complex conjugate of zis
denoted as z* (for notational convenience,
z is sometimes used to denote complex
conjugate) and is obtained by changing the
sign of the imaginary part (or imaginary
terms) of z,z* = x —iy. It is clear, and
useful to note for physical purposes, that
z*z is a real quantity. Complex variables
are subject to the same algebraic laws as
real variables. The Argand diagram (z-
plane diagram) is a convenient geometrical
representation of a complex variable and
is illustrated in Fig. 1.

On raising Eq. (1) to the nth power, one
obtains

2" = r"(cos + isin )" = e

(n=0,£1,%2,... andz #0). (2)
y=Imz
1
z
r
76
x=Re z
-Z*
Fig. 1 Argand diagram



Equation (2) is de Moivre’s theorem and
is often written as

(cosf +isin )" = cos(nh) + isin(nd).
3)

de Moivre’s theorem may be used to
obtain relations involving sines and
cosines of multiple angles. On consid-
ering de Moivre’s theorem for n =2,
expanding the left-hand side, and equat-
ing corresponding real and imaginary
parts, the following well-known relations
are obtained: cos 20 = cos? # — sin? § and
sin20 = 2cos @ sinf. For n > 2, the bino-
mial expansion may be used to expand
the left-hand side of de Moivre’s theorem,
Eq. (3).

By use of de Moivre’s theorem, the nth
root of z may be written as

0+ 2wk
z””:r””[cos( el >

n

.. (9 + 271k>]
+ 1S1n N
n

k=0,1,2,....,n—1. (4

The quantity r'/* represents the positive
nth root of r. The square root of i, where
r=1and 6, = /2, is found to illustrate
the procedure for applying Eq. (4). Roots
for k = 0 and k = 1, respectively, are

Z = Cos (%) + isin (%) = 1\;; (5)

and

_ 37 o 37 . 141
Z—COS<T>+lSIH<T>——7.
(6)

The above two roots may be checked
for correctness. The procedure used to
calculate the square root of i can be applied
to calculate the nth root of any quantity

z(z # 0).
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1.3
Analytic Functions of a Complex Variable

A function f(z) of a complex variable is
itself a complex quantity and may be
written in terms of real and imaginary
parts in the following manner:

(@) = u(x,y) + iv(x, y). )

The Argand diagram representations of z
and f (z) are respectively called z-plane and
w-plane diagrams. The number w = f(z)
is the value of f(z) at z. A single-
valued function f(z) is analytic (regular,
holomorphic) at zp if it has a unique
derivative at zp and at every point in the
neighborhood of zy. If a function fails to be
analytic at some point 2z but is analytic at
points in the neighborhood of 2z, then z
is said to be a singular point (singularity)
of f(z). In this connection, note that
the function 1/z is analytic everywhere
except at z = 0 (singular point). Liouville’s
theorem states that a function which is
analytic for all z (including infinity) must
equal a constant.

By analogy with the case of real variables,
the derivative of a function of a complex
variable is defined as

Fo= am (letsa=o)

Az — 0 Az
Au+iAv
= lim — . 8
Az—>o(Ax+tAy) ®

The evaluation of Eq. (8) for the two paths
(@) Ax=0and Ay — 0 and (b) Ax —> 0
and Ay = 0 leads to

ou n LoV ou n v )
—ti—=—i— 4 —.
dx  0x dy 9y
The Cauchy-Riemann conditions for ana-
lytic f (z) result from equating correspond-
ing real and imaginary parts of Eq. (9); the
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results are

Bu_av

—_—andau——ﬁ.
ax 0y

— = 10
ay ox (10)
If u and v possess continuous partial
derivatives to second order, Eq. (10) leads
to

3%u N 3%u 0 and 3%y N 3%y 0
— +-— =0and — + — =0.
oxz  9y? ax2  9y?
11)
The equations in Eq.(11) are two-

dimensional Laplace equations, and func-
tions u and v (called harmonic or conjugate
functions) are, therefore, solutions of the
two-dimensional Laplace equations. The
theory of analytic functions is extremely
useful in solving problems in electro-
statics, fluid mechanics, or whenever the
two-dimensional Laplace equation occurs.
The function f(z) also satisfies the two-
dimensional Laplace equation.

1.4
Contour Integrals

The integral of a function of a complex
variable f(z) is defined in a manner
analogous to the case of real variable theory
and may be written as

/ f(2)dz
C

n
= lim .
n— 00 Zf(éj)
max |zj — zj_1| = 0 =1
X (zj — zj-1)

/z f(2) dz. (12)

The path (contour) of integration C is di-
vided into n segments by points z;j, and §;

<

Fig. 2 Path for the contour integral in Eq. (12)

is a point between z; and z;_; (see Fig. 2).
In complex variable theory, the integral in
Eq. (12) is referred to as the contour in-
tegral of f(z) along the path C from 2z
to Z/. The integral around a closed path
is denoted as ¢ f(z)dz. The sign conven-
tion for contour integrals is as follows:
When the path of integration is traversed
such that the region of interest is on the
left, the integral is considered positive. Re-
gions in the complex plane are classified as
either simply connected or multiply con-
nected. Simply connected regions possess
the following three equivalent properties:
every closed path within the region con-
tains only points that belong to the region,
every closed path within the region can be
shrunk to a point, and every scissors cut
starting at an arbitrary point on the bound-
ary and finishing at another point on the
boundary separates the region into two
unconnected pieces. Regions that are not
simply connected are said to be multiply
connected.

Two extremely important relations in-
volving integrals of a function of a complex
variable, the Cauchy integral theorem and
the Cauchy integral formula, will now be
discussed.



The Cauchy Integral Theorem: If f(z) is
analytic throughout a simply connected
region I' and C is a closed path within T,
then

7§ fdz=0. (13)
C

Cauchy’s integral theorem applies to
special cases that are important in physics
where the value of the integral of a
function depends only on end points and
is independent of the path taken between
end points. The inverse of this theorem is
also valid.

The Cauchy Integral Formula is written

as
f@ =27 if (z0).
C

Z— 20

(14)

The function f(z) in Eq. (14) is analytic
within C, zp is within C, and the integrand
is not analytic at z = 2.

By use of the definition of f’(z) and
Cauchy’s integral formula, the nth deriva-
tive of f(z) evaluated at z = zp may be

y
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written as

£ (zg) = o f
C

2 i

f(dz

ez

Equation (15) will be used below in
developing the Taylor expansion for f(z).

1.5
The Taylor and Laurent Expansions

Two important series expansions, Taylor’s
series and Laurent’s series, are valid for
a function of a complex variable. If f(z)
is analytic in a region I' and C is a circle
within ' with center at zo (see Fig. 3),
then the Taylor expansion of f(z) where
F™(20) = nla, is

f(Z) — Z wf(n) (20)

n
n=0

=D an(z—20)" (16)
n=0

The Taylor expansion of f(z) is obtained
and applied in a manner similar to that in

x|

Fig. 3 Diagram for the Taylor expansion
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1 4
V4
4° .
‘v/ Zo =
§—
C. %
c,

Fig. 4 Diagram for the Laurent expansion

real variable theory. Classification of the
zeros of f(z) is made by use of Taylor’s
expansion of f(z) as follows: (a) If f(2) = 0
at z = 2y, the point z is said to be a zero
of f(z). ) If sp=01=--=am_1=0
but a, # 0, then f(z) has a zero of order
m at z=zy. It is therefore clear that
the conditions f(zo) =0 and f'(zp) #0
indicate the existence of a zero of order
m = 1 (called simple zero) at z = zy.

The Laurent expansion of f(z) has no
real-variable counterpart and is key in the
discussion of singularities and residues. If
f(2) is analytic in the interior and on the
boundary of a circular ring between two
circles C; and C, (see Fig. 4), it may be
represented as a Laurent expansion which
has the form

f@) = Zan<z—zo>"+z Z_Zo)n

17)
In Eq. (17), the coefficients a, and a_,
have the forms

1 f()dz
2w Je (z =zt
n=0,1,2,..., (18)

and

_i _ n—1
an = fc(z 20)" () d,

n=1,2,.... (19

The first series in the Laurent expansion,
Eq. (17), is called the analytic part, and
it converges everywhere within C;. The
second series in the Laurent expansion
is the principal part which converges
everywhere outside C,. The quantity a_
is the residue of f () at z = z¢ and is given
by

1

a_1= I fcf(Z) dz. (20)
In the above three equations, Cis any circle
between C; and C; that encloses zy. Note
that 2mia_1 is the value of the integral
in Eq. (20). For cases where the residue
can be determined directly, an indirect
method of evaluating definite integrals
may be developed. First, the classification
of isolated singularities and calculations of
corresponding residues are considered.

A singularity at z is said to be isolated
if a circle of radius &, containing no



other singularities, can be drawn with zg
as its center. Singularities are classified
using the principal part of the Laurent
expansion. If the first m terms in the
principal part are different from zero but
the remaining terms equal zero, then f(2)
has a singularity (a pole) of order m at zy.
When m = 1, the pole is called a simple
pole. If m is infinite, the singularity at 2
is said to be an essential singularity. The
residue of f(z) at zp may be obtained by
use of the following three methods.

1. The Laurent expansion directly [the
coefficient of the 1/(z — zo) term]. In
the Laurent expansion

1 z 23

3z + 3 +...,
21)
there is a third-order pole at z = 0 with
residue a_; = 1/3.
2. The general formula

1
f(z)zz—3—

lim

1
z— 2 ((m_ !

a—1 =

d" ¢ (2)
dzm—l ’
(22)
where

¢ (2) = (z—20)"f(2)

for lim,_, »,[¢ (2)] analytic and nonzero.
To illustrate the procedure for applying
the general formula, let us classify the
singularities and calculate the residues
of

1
f@ =
1
=——— —— for a>0.
(z +ia)2(z — ia)?
(23)

There are singularities at z = %ia.
Note that m = 2, ¢ (ia) is nonzero and
analytic, and the residue is 1/(4ia®)
when z = ia. In a similar manner, the
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residue for the singularity at —ia is
—1/(4ia?).

3. If f(z) =g(@»/Mz) where g(z0) #
0, h(zp) = 0, but h'(z0) # 0, then

_ g(zo0)
T W)

(24)

For analytic A(z) in f(z) = A(2)/sinz,
method 3 may be used to calculate
the residue. There are singularities at
z=nm forn =0, £1, £2, .. .; here the
quantity h(nm) equals zero, but h'(nx)
is different from zero. These poles are
therefore simple poles and the residue
isa_1 = (—D"A(nn).

1.6
The Cauchy Residue Theorem

The Cauchy residue theorem and Cauchy
principal value of an integral result from
the applications of the Cauchy integral
theorem and the Cauchy integral formula.
The residue theorem and principal value
of an integral are extremely important in
physics.

Cauchy’s Residue Theorem: If f(z) is
analytic within and on a closed region
I (except at a finite number of isolated

Fig. 5 Diagram for the Cauchy residue theorem
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zplane

3 P
)

Fig. 6 Simple pole on the path

singular points z; within T'), then (see
Fig. 5)

7§ fdz
r

n
= ZniZa_lzj
J=1

n
= 2mi Z [enclosed residue of f(2)].
j=1
(25)
For a simple pole on the path of inte-
gration (see Fig. 6), the residue theorem
yields

%f(z)dz =ia_1. (26)
C

The extension of the residue theorem
to cases of simple poles on the path of
integration is important in physics, and
the residue theorem is written as

% f(@dz =2ni Z (enclosed residue)
c

j=1

i i (residue of simple

= poles on path).

(27)

The residue theorem may be used to

evaluate certain definite integrals that

occur when solving physical problems, and

the procedure for evaluating four types of
integrals will now be illustrated.

Type 1 Integrals:

2
I = f(sin6, cos 6)do.

0

It is assumed that the integrand

f(sinf, cos9) contains no singularities

other than poles. If z = ¢ (unit circle),
then

gt _ o6

sinf = - = ;
2i 2iz

and

ei6+e—i0 _ZZ+1
2 T2z

cosf =

In terms of z, the integral I; becomes

21 241\ 4d
11=—if f z ' 7z + z
unit 2iz 2z z

circle

(residue within

=2 Z the unit circle). 28)

The analysis for Type 1 integrals may be
used to evaluate the following integral:

2 de
-
o S+4cosh
2
—.(29)

) dz
- ’ﬂﬁ 2z+1)@z+2) 3
Type 2 Integrals: If (a) f(z) is analytic
in the upper-half plane except for a finite
number of enclosed singularities zj and/or
simple poles x; on the real axis, and



(b) zf () approaches zero as |z| approaches
infinity, then

I = /oof(x)dx

n m
=2mi) a1z 47y 1. (30)
j=1 k=1

By use of the analysis for Type 2 integrals,
let us evaluate

! _/OO dx
2= oo 1+ 2

. f dz
B semicirde (2 —1D(z+1)

Types 3 and 4 Integrals: If (a) f(z) is
analytic in the upper-half plane except at a
finite number of enclosed singular points
and/or simple poles on the real axis and
(b) f () approaches zeros as |z| approaches
infinity, then integrals of the form

=m. (31)

/ - f (%) exp(imx) dx

yield I3 and I4 where
o0
I = / f(x) cos mx dx

= _2r Z Im({residue[f (z) exp(imz)]}

enclosed

—m Y Imiresiduelf (z) exp(imz)]} (32)

on the
path

and

o0
Iy = / f(x) sin mx dx
—00

=27 Z Re{residue[f (z) exp(imz)]}

enclosed

+ 7Y Re{residue[f (z) exp(imz)]}. (33)

on the
path
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The application of Type 3 integrals is
similar to that for Type 4 integrals. Type 4
may be used to evaluate

 sinx dx
e [
=7 Z Re{residue[exp(iz)/z]} = 7.
(34)

1.7
The Cauchy Principal Value and Dispersion
Relations

On returning to the case of a simple pole
on the real axis, note that it is useful to
express the result in terms of the Cauchy
principal value of an integral. The integral
of a function f (x) which has a simple pole
atx = xg for xp within [a, b] may be written
as

b Xo—&
/ f(x)dx = lirr(l) {/ f(x)dx

b
+ fx dx]

Xo+¢&

b
= P/ f(x) dx. (35)
a

The symbol P in front of an integral
indicates the Cauchy principal value of the
integral and means carry out the limiting
process in Eq. (35). Note that the Cauchy
principal value may exist even if the regular
value of the integral does not exist; for
example, Pf_11 dx/x3 = 0.

Dispersion relations (also known as
spectral representations, Kronig-Kramers
relations, and Hilbert transforms) result
from the analytic properties of the complex
representation of physical quantities and
the Cauchy residue theorem. Originally,
Kronig and Kramers were concerned
with the dispersion of light and the
relation between the real (dispersive) and
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imaginary (absorptive) parts of the index
of refraction at different frequencies. The
basic idea of dispersion relations is applied
in areas ranging from electronic design
to quantum field theory. Here, general
forms for dispersion relations will be
presented. For a physical quantity x ()
which approaches zero as @ approaches
infinity and is analytic in the upper-half
plane (see Fig. 7), consider the evaluation
of the integral

% X (w)dw
rw-—w
By use of the Cauchy residue theorem
for a simple pole at wg on the contour and
the physical property that x (w) approaches

zero as  approaches infinity, Eq. (36)
yields

—x(wp) = ip/oo M
T

—co W — Wo

(36)

(37)

On equating corresponding real and imag-
inary parts in Eq. (37), the dispersion
relations are obtained:

® Imy (w)dw

1
Rex (wo) = ;P/

00 @ — o

1 * R d
Imx(wo):__p[ Rex(@)do
4 —c0o W —wo

(38)
The equations in Eq. (38) express one part
of an analytic function in terms of an
integral involving the other part and are
called dispersion relations. In electronics,

£ <

wyg—8 w=wg wy+3 +Q

-Q
Fig. 7 Contour for Eq. (36)

one has Z(w) = R(w) + iX(w) where Z
is impedance, R is resistance, and X is
reactance. Dispersion relations may be
used to express resistance in terms of
reactance. Dispersion relations for light
(complex index of refraction n=n,+
iaa) yield relations between dispersive
power and absorption. In addition, a
large number of definite integrals may
be evaluated by use of the dispersion
relations. Dispersion relations applied
to f(z) =cosx+isinx lead to values
of integrals with integrands of forms
(sinx)/x and (cosx)/x for limits of
integration from minus infinity to plus
infinity.

1.8
Conformal Transformations

An analytic function w = f(2) = u(x, y) +
iw(x, y) for z = x + iy is completely charac-
terized by two pairs of variables (x, y) and
(4, v). Riemann developed a mode of visu-
alizing the relation w = f(2) which uses
two separate complex planes, z plane for
(x,y) and w plane for the corresponding
(4, v). By use of the two-plane picture,
the equation w = f(2) defines the trans-
formation (relation, correspondence, or
mapping) between the two planes. That is
to say, w = f(z) may be used for mapping
a set of points (locus, figure) in the z plane
(or w plane) into the corresponding figure
in the w plane (or z plane). For physical
problems, the basic idea involves trans-
forming the geometry of a complicated
problem in the z plane into a simpler ge-
ometry in the w plane, solving the problem
with the simpler geometry, and inverting
the transformation to obtain the desired
solution in the z plane. The most im-
portant class of transformations used in
solving physical problems are those that
preserve the angle between two straight



lines (conformal transformations). The
angle-preserving property of conformal
transformations will now be illustrated:
Assume that two lines intersectat z = a in
the z plane and at w = f(a) in the w plane,
with elements of length along two lines
given respectively by dz; = |dz1| exp(i61)
and dz; = |dz,| exp(i6,). The correspond-
ing elements of length in the w plane
are dwy = |dz1||f"(2)| exp[i(¢ + 61)] and
dwy = |dzy| x |f'(2)| exp[i(¢ + 62)] since
dw = dz|f'(z)| x exp(ig). Finally, note that
the direction of the corresponding lines in
the w plane is rotated by ¢, but the angle
between the lines in the z plane (6, — 61)
equals the angle between the lines in the
w plane [(¢ + 02) — (¢ + 61)].

Four often used elementary transforma-
tions are the following.

1. Translation: w = z + z( for zp constant.
The transformation equations are

w = (x + x0) + i(y + o),
U =x-+ xp,

v=y+ 7. (39)

2. Magnification: w = az for constant and
real a. The transformation equations
are

w=ax +iay, u=ax, andv = ay.
(40)
3. Rotation: w = zoz. Here one may write

w = pexp(ip) = rorexp[i(6 + 6p)]-
(41)

Fig. 8 Diagram for the
transformation w = 22

Analytic Methods | 45

The angle in the w plane is ¢ = 6 + 69
where 0y is the angle of rotation and ry
corresponds to the magnification.
4. Inversion: w=1/z. In polar form, w
may be written as
. 1 .
w= pexp(ig) = P exp(—if). (42)
The transformation equations for inver-
sion are

u= X V= Y
B 2
Y Y (43)
u 14
X = s = — .
w2l T T

The following transformation is also use-
ful in physical applications: w = z? which
yields w = p exp(ip) = r? exp(i26)or p =
2 and ¢ = 20 with transformation equa-
tions given by u = x? — y? and v = 2xy.
Here one finds that a circle with radius ro
is mapped into a corresponding circle with
radius R = ré, and 6y is mapped into 26y.
In potential theory, the two-dimensional
Laplace equation is to be solved with ap-
propriate boundary conditions. Note that
the transformation w = z? maps the right
angle in the z plane into a straight line in
the w plane (see Fig. 8) where boundary
conditions may be applied more conve-
niently.

In connection with the transformation
w = 22 (and other multivalued functions),
note that the transformation is conformal
except at w = 0 which is called a branch
point, and separately maps the upper- and
lower-half planes of the z plane into the
whole wplane (points z and —z are mapped
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into the same points in the w plane). The
inverse transformation z = ,/w cannot be
unique. The quantity z may be written as

z=./pexp (l%) =./pexp (i% + ink) .

(44)
0Odd and even values of k in Eq. (44) yield
opposite signs for z. In describing values
of a unit circle about the origin in the
z plane for k=0, it is found that (a)
z=1 for ¢, =0 and (b) z= —1 when
¢p = 2. When k = 1, the values become
() z=—1 when ¢, =0 and (b) z=1
when ¢, = 2. One may avoid the double
values by assuming a cut, which may not
be crossed, from zero to infinity along the
u axis in the w plane. Riemann introduced
the scheme of two planes (sheets, surfaces)
joined edge to edge at the cut as a way
to combine cases for k=0 (all evens)
and k=1 (all odds) and to eliminate the
cut. For example, a lower sheet contains
the set of values for k = 0 and an upper

sheet contains the values for k=1 (see
Fig. 9).

The function 4/w is analytic over the
whole Riemann surface (two sheets) except
at the branch point, w = 0. In summary, it
is found that the w plane is mapped into
two sheets (Riemann surface). The concept
of Riemann surfaces has broad application
in physics.

2
Ordinary Differential Equations

2.1
Introduction

A differential equation is an equation
which contains derivative(s), and it may be
either an ordinary or a partial differential
equation. Ordinary differential equations
contain derivative(s) with respect to one
independent variable, and partial differen-
tial equations contain partial derivatives

Positive values

Negative values

Fig. 9 Riemann surface



with respect to two or more independent
variables.

The order of a differential equation
is the order of the highest derivative
appearing in the equation. The degree of
a differential equation is the power of the
highest derivative after fractional powers
of all derivatives have been removed. If the
dependent variable and all of its derivatives
are to first power without a product of the
dependent variable and a derivative, the
differential equation is said to be linear. If
a differential equation is not linear, it is
classified as nonlinear.

Applications of appropriate physical
laws to a large number of physical prob-
lems lead to differential equations. In
general, a physical process is described by
use of a differential equation with appro-
priate boundary conditions in space and/or
initial conditions in time and/or an inte-
gral equation. The boundary and/or initial
conditions determine from the many pos-
sible solutions the one that describes the
specific physical phenomenon involved.

The main purpose here concerns the
development of solutions for differential
equations which adequately describe phys-
ical processes under investigation. The
mathematical subjects of existence and
uniqueness theorems for solutions of dif-
ferential equations will not be discussed.

An elementary introduction to the sub-
ject of ordinary differential equations, as
it relates to the needs in solving physi-
cal problems, can be reduced to that of
treating linear (or reducible to the linear
form) first- and second-order differential
equations. This presentation is devoted to
the construction of solutions and physical
applications of such ordinary differential
equations.

First- and second-order linear ordinary
differential equations have the following

Analytic Methods | 47

standard forms, respectively:

d
X 4 px)y= Q) ory + px)y = Q)

dx
(45)
and
d*y dy B
F) + P(x)a +qx)y =f(x%)
or
Y +p®)Y + q(x)y = f(%). (46)

In Egs. (45) and (46), the notations y' =
dy/dx and y’ = d?y/dx* have been used.
When time ¢ is the independent variable,
one writes j = dy/dtandy = d?y/dt’. If the
right-hand side of Egs. (45) or (46) equals
zero, the equation is classified as homoge-
neous; otherwise, the equation is classified
as nonhomogeneous (inhomogeneous).

2.2
First-Order Linear Differential Equations

The formulation of many physics prob-
lems leads to first-order differential equa-
tions, and this section is devoted to solu-
tions of such problems.

2.2.1 Separable Differential Equations
Differential equations that can be put
in the form g(y)dy = f(x)dx are called
separable differential equations since the
left-hand side is a function of y only and
the right-hand side is a function of x only.
For dy = f(x) dx, the general solution is
y= /f(x)dx + C. (47)
Since the general solution of a first-order
differential equation results from one in-
tegration, it will contain one arbitrary
constant. Similarly, the general solution of
a second-order ordinary differential equa-
tion will contain two arbitrary constants.
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Values of arbitrary constants are deter-
mined by use of physical boundary or
initial conditions.

EXAMPLE 2.1: In the radioactive decay of
nuclei, the process is governed by the
following differential equation: dN/dt =
—AN with initial condition N(t = 0) = Nj.
The number of parent nuclei present at
time t is represented by N(t), and the
decay constant A is characteristic of the
particular nuclei involved. The negative
sign is used to indicate that the number of
nuclei decreases with time. Let us find N(t)
subject to the indicated initial condition.

Solution: The differential equation may
be written in the form

dN
— = —Adt
N

with general solution

In N = -t + C1 or N(t) = Cp exp(—At).
(48)

The value of the constant of integration is
determined by use of the initial condition,
N(t = 0) = Np; the initial condition leads
to N(0) = No = C;. The specific (particu-
lar) solution of the problem is the familiar
relation

N(t) = Noe ™. (49)
2.2.2 Exact Differential Equations
The general first-order differential equa-
tion, dy/dx = f(x,y), may be written in
the form

M(x, y)dx + N(x, y)dy = 0. (50)

The total (exact) differential of F(x,y) = C
(where F is continuous with continuous
derivatives) is

oF oF
4= (al”’” (a?)ﬂ’ =0

Note that the general differential equation
in Eq. (50) is exact if

M(x,y) = (?Ti) and
Y

oF
NGy = (a—y) '

Since it is assumed that F(x,y) has
continuous first derivatives, note that

aM\ _ (oN
dy ), \ox -
The condition indicated in Eq. (52) is both

necessary and sufficient for Eq. (50) to be
an exact differential equation.

(1)

(52)

EXAMPLE 2.2: Determine whether the
following differential equation is exact and
find its solution if it is exact: (4x> + Gxy +
YY) x dx/dy = —(3x% + 2xp + 2).

Solution: The standard form of this dif-
ferential equation is (4x> + Gxy + y*)dx +
(3x% + 2xy + 2)dy = 0; it is exact since the
condition in Eq. (52) is satisfied. The solu-
tion of the original differential, therefore,
has the form F(x,y) = C. The function
F(x, y) is obtained as follows:

dF 3 )
— =4x° +6xy+y

0x
or
Fix,y) =x* + 3%y +y°x +f(p)  (53)
and
ﬂj =3x% + 2xp+2
ay o Y
or
Fx,y) = 3%y +Y?x + 2y + g(x).  (54)

Functions f(y) and g(x) arise from in-
tegrating with respect to x and y, re-
spectively. For consistency, it is required



that f(y) =2y and g(x) = x*. The solu-
tion of the original differential equation is
x* + 3%y +xp? + 2y = C.

2.2.3 Solution of the General Linear
Differential Equation

A good feature of first-order linear differen-
tial equations is that the general equation
in this category can be solved. It can be
shown that the general solution of Eq. (45)
may be obtained from the formula

y(x) = exp (— /p(x) dx)
X / Q(x) exp (/ p(x) dx) dx
+ Cexp (— /p(x) dx) .

If the first-order linear differential equa-
tion is separable, the method of Sec. 2.2.1
for separable equation should be followed,
and the method of Sec.2.2.2 for exact
differential equations yields solutions for
exact differential equations. The formula
in Eq. (55) will now be applied to obtain the
general solution of the differential equa-
tion generated by applying Kirchhoff’s loop
method to the circuit in Fig. 10.

(55)

EXAMPLE 2.3: The appropriate differential
equation and initial condition for the
circuit in Fig. 10 are

a1
La + RI = E, where I(0) = 0.

On applying the formula in Eq. (55) for
p(x) = R/L and Q(x) = E/L and initial

(56)

AANAAA,-

IR
E=t%
ar

E=1 il

Fig. 10 Diagram for Example 2.3

Analytic Methods

condition, the solution of Eq.(56) re-
duces to

E —Rt

Differential equations of the form y' +
p(x)y = Q(x)y" where n > 1 (Bernoulli’s
equation) often occur in physical prob-
lems. Bernoulli’s type of nonlinear first-
order differential equation can be reduced
to the linear form by use of the trans-
formation z=7y""" 2 + (1 — n)p(x)z =
(1 —n)Q(x). The differential equation
with dependent variable z can be solved
by use of the formula in Eq. (55).

(57)

EXAMPLE 2.4: The motion of a particle in a
viscous fluid with Stokes damping, av, and
Newtonian damping, bv?, is characterized
by an equation of motion of the form
v+ av = —Bv? subject to v(0) = vo. This
equation of motion is of the Bernoulli form
where n=2,Q(t) = -8, and p(t) =«,
and the general solution is obtained from

SO + Cexp(at). (58)
o
The particular solution is
) addl (59)

" (@ +voB) explat) — vy’

A graph of Eq. (59) characterizes the speed
of the particle as a function of time. To
obtain position as a function of time,
replace v with % and solve the resulting
first-order differential equation for x(t).

23
Second-Order Linear Differential Equations

The superposition of solutions principle,
stated here in the form of two theorems,
will be assumed valid for second-order lin-
ear homogeneous differential equations.

49
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THEOREM 1: The set of all solutions of an
nth-order linear homogeneous differential
equation forms an n-dimensional vector
space (see ALGEBRAIC METHODS).

For a second-order differential equation,
Theorem 1 means that y = y; + y; is a so-
lution of y" + p(x)y' + q(x)y = 0 if y; and
y2 are two linearly independent solutions
of the original differential equation.

THEOREM 2: A necessary and sufficient
condition that solutions y; and y, of
a second-order linear differential equa-
tion be linearly independent is that the
Wronskian of these solutions be differ-
ent from zero. The Wronskian of y;
and y; is the determinant with elements
@11 = y1, 812 = y2, 821 = ¥y, and ax = y).

2.3.1 Homogeneous Differential
Equations with Constant Coefficients

The standard form for the general second-
order homogeneous differential equation
with constant coefficients is y” + poy +
goy = 0 which may be written as (D? +
poD + qo)y = 0 where D = d/dx. The pro-
cedure for solving differential equations in
this category involves treating D + poD +
qo = 0, the auxiliary or characteristic equa-
tion, algebraically and using techniques
for solving first-order differential equa-
tions. The roots of the auxiliary equation
(quadratic) may be real and unequal, real
and equal, or a complex-conjugate pair.
For real and unequal roots a and b of the
auxiliary equation, the differential equa-
tion may be written in the symbolic
form (D —a)u =0 where u = (D — b)y.
The form of the general solution becomes
y(x) = c1e™ + c2¢" when the two indi-
cated first-order differential equations are
solved. If the roots of the auxiliary equation
are a complex-conjugate pair a* = b, the
solution of the differential equation has the
same form as the case for real and unequal

roots with a* replacing b. The solution of
the differential equation for real and equal
roots of the auxiliary equation is obtained
from solving the two indicated first-order
differential equations (D — a)u = 0 where
u = (D — a)y; the form of the general so-
lution is y(x) = (c1x + ¢2)e™.

EXAMPLE 2.5: Consider the motion of a
particle of mass m initially at rest and
subject to a restoring force of —kx and a
damping force of —ax. The equation of
motion of this particle is m% = —kx — ax.
The equation of motion in standard form
is %+ 28% + w’x =0 where o?=k/m
and 28 = a/m (the factor 2 is used for
convenience). Find the solution of the
equation of motion for the following cases:

1. § = 0 (no damping);

2. § = w (critical damping);
3. § < o (light damping); and
4. § > w (heavy damping).

Case 1: The equation of motion for § = 0
reduces to ¥ + w?x = 0 with solution
iwt iwt

x(t) = c1e™ + cre”

= Acos wt + Bsin wt
= Xy cos wt for x(0) = Xp

and %(0) = 0. (60)

The motion without damping is oscillatory
and periodic (with constant amplitude Xp).

Case 2: For § # 0 and w # 0, the so-
lutions of the corresponding auxiliary
equation are —3 + A and —§ — A where
A = +/§%2 — w?. The solution of the equa-
tion of motion for critical damping § = w
is

x() = (c1t + e
= Xo(8t + 1) %
for x(0) = Xo and %(0) = 0. (61)



Here the motion is not oscillatory and
approaches equilibrium at a rapid rate.
Case 3: The solution for light damping

§ < wusing A’ = Vw? —§%is
x(t) = (Acos A"t + Bsin A't)e™%
)
=X (cos At + ~ sin A’t) et

for x(0) = Xp and x(0) =0. (62)

In this case, the motion is oscillatory with
decreasing amplitude (not periodic).

Case 4: The solution for heavy damping
8> wis

B+ A)
2A
(A —0)

x(t) = Xo exp[(—5 + A)t]

+ Xoexp[—(8 + A)t].  (63)
The motion in this case is not oscillatory
and approaches equilibrium at a rate less

rapid than for critical damping.

2.3.2  Nonhomogeneous Differential
Equations with Constant Coefficients
The standard form for second-order non-
homogeneous differential equations with
constant coefficients is y” + poy' + qoy =
f(x), and the two widely used methods
for solving differential equations in this
category are (a) y=yn+y, where y,
is the solution of the corresponding
homogeneous equation and y, is any
solution of the original nonhomogeneous
differential equation, and (b) successive
integration. The method of successive
integration involves writing the differential
equation in the factored form (D — a)u =
f(x) where u=(D—b)y, and solving
the two indicated first-order differential
equations.

Physical problems are often solved by
use of the first method since y, can often
be obtained without difficulty. Systematic
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methods for finding y, for three types
of nonhomogeneous terms (polynomial,
exponential, and sine and/or cosine) will
now be given.

1. The nonhomogeneous term f(x) is a
polynomial of degree n > 0.
(A) If zero is not a root of the
characteristic equation, then assume

Yp = Ao+ Ar1x+ - 4+ Apx”.

(B) If zero is a single root of the
characteristic equation, then assume

Yp = %(Ao+ Arx + - - + Apx").

(C) If zero is a double root of the
characteristic equation, then assume

Yp =¥ (Ag + A1+ - + Apx").

2. The nonhomogeneous term f(x) is of
the form C exp (kx).
(A) If kis not a root of the characteristic
equation, then assume

Yp = Aexp(kx).

(B) If k is a single root of the
characteristic equation, then assume

Yp = Axexp(kx).

(C) If k is a double root of the
characteristic equation, then assume

Yp= Ax? exp(kx).

3. The nonhomogeneous term f(x) is of
the form sinkx, coskx, or sinkx+
cos kx.

(A) If ik is not a root of the characteristic
equation, then assume

Yp = Acoskx + Bsinkx.
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(B) If ik is a single root of the
characteristic equation, then assume

Yp = Axcoskx + Bxsin kx.

Values for constants in the assumed
expression for y, are obtained when that
expression is substituted into the original
nonhomogeneous differential equation.

EXAMPLE 2.6: The equation of motion for a
mass attached to the end of a vertical spring
fixed at the other end is j+ w?y = —g
where g is the acceleration due to gravity.
The general solution of the homogeneous
equation, j 4+ @’y = 0, is y, = Acoswt +
Bsin wt. By use of inspection, itis clear that
Y = —g/w?* is a solution of the original
nonhomogeneous equation. The solution
of the equation of motion for y(0) = Yy
and y(0) = 0is

Y& =y +yp

= Acoswt + Bsinwt — %
w

_ £ _ &
= (YO + a)2> cos wt pvh (64)

A graph of Eq.(64) characterizes the
motion, position as a function of time,
of this particle.

2.3.3 Homogeneous Differential
Equations with Variable Coefficients

The general procedure used to solve differ-
ential equations of the form y” + p(x)y’ +
q(x)y = 0 is the power-series method. The
power-series method due to Frobenius and
Fuchs yields the following two kinds of in-
formation concerning the nature of the
solution for x # 0: form of the solution
as a result of the nature of p(x) and g(x),
and form of the solution as indicated by
the nature of the solution of the indicial
equation. As normally needed in solving

physical problems, the general form of the
power series solution is

o0
y(x) = me“k for ag # 0.
=0

(65)

EXAMPLE 2.7: Consider the differential
equation xy” + 2y’ + xy = 0. By use of the
power-series method, obtain the indicial
equation and its two solutions, recursion
formula, and general solution of the differ-
ential equation. On substituting Eq. (65)
into the differential equation to be solved,
one obtains

oo
Ym0+ k+ D0+ Rt
A=0

o0
+ Z ax* Tk = 0. (66)
r=0

The basic plan at this stage is to write the
result using a single sum. On replacing A
with A’ 4 2 in the first sum, the power of
x in the first sum becomes the same as
that in the second sum. Equation (66) now
becomes

aok(k + Dx* 2 + ag(k + 1) (k + 2)xF 1

+ ) (G20 +k+ 30+ k+2) +ay)
A=0

x Tk = 0.

(67)

Since terms in Eq. (67) are linearly inde-
pendent, it is required that

aok(k + 1) = 0 (indicial equation), (68)
ar(k+1(k+2) =0, (69)
and

B2 +k+3DA+k+2)+a,=0

(recursion formula).

(70)



The indicial equation results from equat-
ing the coefficient of the lowest power of
the variable to zero. In this case, the so-
lutions of the indicial equation are k =0
and k = —1. When k = 0, a; = 0 because
of Eq. (69). The coefficient a; is arbitrary
when k = —1, and two independent solu-
tions of the original differential equation
may be obtained by use of k = —1 since ag
is arbitrary by hypothesis. The form of the
solution becomes

pe) =D axt (71)
=0

Coefficients in Eq. (71) are obtained from
the recursion formula using k = —1. The
general expressions for even and odd
expansion coefficients, respectively, are

 (=Dao
T T
(—Dar |
azj+1=m, ]=0,1,2,....

(72)
The general solution of the original differ-
ential equation is obtained by substituting
coefficients in Eq. (72) into Eq. (71).

2.3.4 Nonhomogeneous Differential
Equations with Variable Coefficients
Variation of parameters and Green’s-
function methods are normally used to
solve nonhomogeneous linear differential
equations with variable coefficients that
occur in physics. The standard form for
these differential equations is
Y 4+ px)y +q(x)y = f(x). (73)
The method of variation of parameters
due to Lagrange will now be used to solve
Eq. (73) subject to the conditions given
below. Assume the solution has the form
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y(x) = C1y1 + Coy2

=v1(0)y1 + 2 (x)y2. (74
In Eq. (74), y1 and y; are two linearly in-
dependent solutions of the corresponding
homogeneous differential equation, and
constant parameters C; and C, are re-
placed with functions vy and v,. Functions
v1 and v, are unknown parameters to be
determined. If vjy; + 1)y, =0, and f(x)
is continuous in the region of interest,
then the solution of the original differ-
ential equation, Eq.(73), is obtained by
use of

_ f(x)y2dx
y(x) =-n Wpn 1)
fx)y1dx
—= (75
+7 Wyn ) (75)

The quantity W(y1, y2) is the Wronskian
of y1 and y;.

On using Eq. (75) to solvey” — (2y'/x) +
(2y/x*) = (Inx)/x for x # 0, it is found
that yy =x and y; =% are two lin-
early independent solutions of the cor-
responding homogeneous equation, the
Wronskian equals x?, and the solution
becomes

(In x)?
2

y(x):—x|: +Inx+ 1]

— Cix+ szz.

Equation (75) will now be put in the
form of a definite integral that is useful in
solving initial or boundary value problems.
Let x be a point in the closed interval
[a, b] such that the first term in Eq. (75)
is replaced by a definite integral from x
to b and the second term in Eq. (75) is
replaced by a definite integral from a to
x. In terms of the indicated two definite
integrals, Eq. (75) becomes
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_ [ nOnerod
wm_l 2

+/bw
x W (t)

b
_ / Glx, DF (1) dt. (76)

a
The function G(x,t) in Eq. (76) is called
the Green’s function for Eq. (73) subject to
the appropriate boundary conditions. The
Green'’s function is defined by

G(x,t) =
nOR® - <<
20 77)
neR® o<,
20

Note that the Green’s function depends
only on y1,y2, and the Wronskian. The
quantity W(t) means W(y1(t), y2(t)). The
value of the Green’s-function approach is
related to the fact that initial or bound-
ary conditions are incorporated in the
formulation of the problem in a nat-
ural manner. At t=a, Gi(x,t) satisfies
the boundary condition imposed on y(x),
and Gy(x,t) satisfies the boundary con-
dition for y(x) at t=b. On applying
the Green’s function method to solve
Yy’ = 6x subject to y(0) = y(1) =0, it is
found that yj=x and y=x—1 are
two linearly independent solutions of the
homogeneous equation, the Wronskian
equals unity, the Green’s functions be-
come Gi(x,t) =t(x — 1) for0 <t < xand
Gy(x,t) =x(t—1) for x <t <1, and the
solution of the differential equation is
yx) = [y Gx, H6tdi = x> — x.

2.4
Some Numerical Methods for Ordinary
Differential Equations

Numerical methods are treated in detail
elsewhere in this book (see NUMERICAL
METHODS), and a summary of essential
features related to solutions of ordinary
differential equations is given in this
section. In general, the numerical solution
of a differential equation consists of a table
of values of the dependent variable for
corresponding values of the independent
variable.

2.41 The Improved Euler Method for
First-Order Differential Equations
The basic idea of Euler's method for
solving first-order ordinary differential
equations is to convert the differential
equation (continuous) to a difference
equation (discrete). The general form for
a first-order ordinary differential equation
will now be written as

% = f(x,p). (78)
By use of the definition of a derivative, one
may write

d A
XY ofm 2
dx Ax—0 Ax

:1m10“+A”‘“”>

Ax—0 Ax

=f(x, -

The scheme of the finite difference method
involves writing Eq. (79) as

(79)

Y(%nt1) = y(x%n) + f (%0, yn)Ax.  (80)



Equation (80) is the Euler algorithm for
solving first-order ordinary differential
equations. The notations in Eq. (80) have
the following meanings: x,1+1 = %, + Ax,
and y(x%pt1) = yntr1. To apply Euler’s
method, select the interval size Ax,
evaluate y(x) at xo, and evaluate f(x,y)
at xp, yo; the result for y(x7) is

y(x1) = y(x0) + f (0, yo) Ax. (81)

A second iteration with inputs y(x1) from
Eq. (81) and f(x1,y1) yields y(xp); the
result is

y(x2) = yp(x1) + f (%1, y1) Ax. (82)

The iteration is continued to yield a
numerical solution of the required first-
order ordinary differential equation in the
region of interest. A systematic procedure
for calculating the error involved during
each iteration does not exist for Euler’s
method.

To improve the simple Euler method, the
class of first-order differential equations is
restricted to those whose solutions can be
expanded in a Taylor series. Neglecting
terms of order O((Ax)3), one obtains

Y(%nt1) = y(xn) + Axf (X, yn)
N (Ax)? (afocn, )

2 0x

af(xv; Yn)) . (83)

+f (%n, yn)

Equation (83) is referred to as the

improved Euler method and will be used to

obtain the solution of first-order ordinary
differential equations.

Analytic Methods

EXAMPLE 2.8: The equation of motion for
a certain particle is v + av = g where o =
0.01s57!, g =9.8ms2,andv(0) = 0. The
analytical solution of this equation of
motion is

0. (84)

vty =E@1—e
o
Find the numerical solution of this
equation of motion by use of the improved
Euler method.
Solution: The general form of the
improved Euler method for the differential
equation v = g — avis

(Ax)?

V(1) = v(tn) +f(tny vp) At +

(af(tns VVL) f(t )

f(xns Vn))
0

(85)
For arbitrary At in Eq. (85), the quantities
reduce to

f(tl’h Vn) = g

af(tns VVL) _
a

3f(tna VI’L) _
av o

—av(ty),

(86)

The essential programming statement for
calculating the numerical solution of the
original differential equation is

vin+1) =v(n) +[g — av(n)]

2
X [At— (A1) :|
2

(87)
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2.4.2 The Runge—Kutta Method for
First-Order Differential Equations

There exist many methods for finding
numerical solutions of first-order ordinary
differential equations, and the fourth-
order Runge—Kutta method is probably
the most often used method. As with the
Euler and the improved Euler methods,
the essential problem is to generate a
table of values for x and y for the
differential equation y’ = f (x, y) when y(x)
at x = xp is given. The task is to develop
a method for finding y; at xo + Ax, y2
at xp + 2Ax, and successive values for
yn throughout the range of interest. For
calculating successive values of y(x,)
in the differential equation y = f(x,y),
Runge—Kutta methods use a recurrence
formula in the form

n
Yit1 = yi + Ax Z aik;. (88)

i=1

Of the many parameters a; and k; in
Eq. (88), some are chosen arbitrarily and
others are obtained by use of the Taylor
series involving one and two variables. The
order of the Runge—Kutta approximation
is indicated by the value of n in Eq. (88).
Evaluation of the parameters in Eq. (88) for
n > 4 in the Runge—Kutta approximation
is straightforward but involves tedious
algebraic manipulations. For h = Ax, the
formula for the fourth-order Runge—Kutta
method reduces to

1
Vigl = Vi + €(k1 + 2ky + 2k3 + k4)
+ O(h). (89)

The parameters in Eq. (89) are determined
by use of

ki = hf (xi, yi).

h k
kzzhf(xi+§,yi+71>,

h k
k3:hf<xi+§,yl‘+72>,

ke = hf Gxi + b, yi + k).

EXAMPLE 2.9: Find the numerical solution
of the differential equation in Example 2.8
by use of the fourth-order Runge—Kutta
method.

Solution: The general form of the
Runge—Kutta method for the differential
equation v = g — avis

v(n+ 1) =v(n) + £ (k1 + 2kz + 2k3 + ka).

(90)

The k parameters reduce to k1 = h[g —

av(n)], ka = h{g —av(n+h/2) +k1/2]},

ks = hig — a[v(n + h/2) + kz/2]}, and ks
=h{g — av(n+ h) + k3]}.

2.43 Second-Order Differential Equations
Numerical solutions of second-order dif-
ferential equations are obtained by first
reducing them to a system of first-order
differential equations and applying the
methods for solving first-order differen-
tial equations. The general second-order
differential equation may be written as

d’y :

FP] =fp 7).
For z =dy/dx, Eq.(91) reduces to the
following pair of first-order differential

equations:

1)

dz

Ix =f(x,y,2) and

ﬂ =2z =g( 2) (92)
dx - _g x’ Y’ .

The procedure for solving Eq. (91) is to
solve the first equation in Eq. (92) with
condition y'(0) and use that result as an
input for the second equation in Eq. (92)
to obtain the solution y(x) with condition

Y(0).
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Partial Differential Equations

3.1
Introduction

Physical problems involving two or more
independent variables are often described
by use of partial differential equations. Par-
tial differential equations contain partial
derivatives with respect to two or more
independent variables. The procedures for
determining order, degree, whether linear
or nonlinear, and whether homogeneous
or nonhomogeneous for partial differen-
tial equations are the same as for ordinary
differential equations. Some methods for
solving partial differential equations are di-
rect integration, characteristics, separation
of variables, Fourier and Laplace trans-
forms, and Green'’s functions. Appropriate
boundary (space) and/or initial (time) con-
ditions must be applied to the general
solution of a partial differential equation
to obtain a suitable solution for the prob-
lem under investigation. Three common
types of boundary conditions are Dirich-
let, specification of the solution at each
point on the boundary; Neumann, spec-
ification of the normal derivative of the
solution at each point on the boundary;
and Cauchy, specification of both initial
value(s) and the Dirichlet or Neumann
condition.

The following equations are examples of
important partial differential equations in
physics involving the Laplacian operator,

3? 3% .
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Viu=0; Laplace’s equation. (93)
The function wu(x,y,z) in Eq.(93) may
represent electric potential in a charge-
free region, gravitational potential in a
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region free of matter, or steady-state (time-
independent) temperature in a region
without a heat source.

Viu=f(x,y,2);

Poisson’s equation. (94)
The function u(x,y,z) in Eq. (94) may
represent electric potential, gravitational
potential, or steady-state temperature in
regions with respective sources denoted

by f(x, v, 2).

10u .
Vig == —t; heat conduction
o

(or diffusion) equation. (95)
In Eq. (95), the function u(x,y, z, t) may
represent a time-dependent temperature
in a region without a heat source or
concentration of a diffusing substance.
The constant o is called the diffusivity.

) _182u

T2’
mechanical wave equation. (96)

The function u(x,y, z,t) in Eq. (96) may
represent the motion of a vibrating string
or membrane, and v is the speed of the
wave motion.

n_, L oW
—sz + V(x,y,2); ¥ =ik e
Schrodinger’s equation. (97)
Schrédinger’s wave equation is the basic
equation of motion of a microscopic
particle of mass m, and W(x,y, z 1) is
called the wave function. The potential
energy of the particle is represented by
V(x,y,2), and other quantities in this
equation have their usual meaning.

This section on partial differential equa-
tions is mainly devoted to the physical
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applications of linear second-order homo-
geneous partial differential equations in
two independent variables; the general
form for equations in this category is

32 32
_u + C_u
9xdy 0y?

9%u
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dx2
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+D 2 L B2 L Fu=0. (98)
ox ay

In Eq. (98), the coefficients may be func-
tions of x and y, and properties of the
solution of the differential equation de-
pend on the relative magnitudes of the
coefficients. Based on the coefficients, par-
tial differential equations are classified
as elliptic, hyperbolic, or parabolic for
AC — B? greater than zero, less than zero,
or equal to zero, respectively. This classi-
fication is related to the general equation
of a conic section (Ax? + 2Bxy + Cy? = 1)
representing an ellipse, a hyperbola, or
a parabola. According to these classifi-
cations, note that Laplace’s equation is
elliptic, the mechanical wave equation is
hyperbolic, and the heat conduction (dif-
fusion) and Schrédinger equations are
parabolic. The geometrically related clas-
sifications are not of primary importance
when solving the differential equation by
use of analytical methods but do reflect
the nature of the boundary conditions.
Solutions of elliptic equations must sat-
isfy conditions on a closed boundary. In
this section, the focus will be on separa-
tion of variables and Fourier transforms
as methods for solving the partial differ-
entials involved in physical applications.
The method of separation of variables is il-
lustrated in the following four sections.
The Fourier transform method is pre-
sented in Sec. 3.6, and Sec. 3.7 is devoted
to the Green’s-function method for three-
dimensional problems.

3.2
The Time-Independent Schrodinger Wave
Equation

The method of separation of vari-
ables will now be used to obtain
the time-independent Schrédinger wave
equation. Assuming that W(x,y, z,t) =
Y (x,y, 2)T(t) in Eq. (97) and dividing both
sides of the resulting equation by ¥ T, the
result obtained is

(¥ V2 1 Vixy.m) = 24T
v\ " 2m YA =T
=E. (99)

Since the left-hand side of Eq. (99) is
a function of space only and the right-
hand side is a function of time only
(time has been separated from the space
variables), each side must equal a constant
(separation constant) that is independent
of space and time. The separation constant
is a physical parameter when solving
physical problems and has the dimensions
of energy, denoted by E, in Eq. (99).
Equation (99) leads to

T(t) = Cexp (%) ,

2
(—h—VZ + Vi(x, y, Z)> Vv = Eyr. (101)
2m

(100)

Equation (101) is the time-independent
(steady-state) Schrodinger wave equation.
Analyses of solutions of Eq. (101) for vari-
ous potentials and use of fundamental pos-
tulates of quantum theory form the major
part of the study of quantum mechanics.

33
One-Dimensional Mechanical Wave
Equation

Here the one-dimensional mechanical
wave equation characterizing the motion
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Fig. 11 Initial configuration of the string

of a string fixed at the ends u(0,t) =
u(L, t) = 0 with initial configuration such
that u(x, 0) = 2hx/L for x in the closed
interval [0, L/2] and u(x, 0) = 2h(L — x)/L
for x in the closed interval [L/2, L]is solved.
The string is initially at rest which means
that the partial derivative of u(x, t) with
respect to ¢ evaluated at t = 0 equals zero,
ut(x, 0) = 0 (see Fig. 11). The method of
separation of variables is applied to the
equation
1 0%u

=557 (102)
Assume u(x,t) = X(x)T(t) in Eq. (102)
and divide the resulting equation by XT.
The result is

9%u
dx?

11d°T 103
VAT d (103)
Since the left-hand side of Eq. (103) is a
function of x only and the right-hand side
is a function of time only, the two sides
must equal a constant (separation con-
stant). The separation constant is denoted
by —A2. The square is used for convenience
as will be seen below. The negative sign is
selected since an oscillatory solution is an-
ticipated. Boundary conditions, however,
will determine the required sign for the
separation constant. Equation (103) leads
to the following two ordinary differential
equations:

1 d?x
X dx?
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?X
— = + 32X = 0 with solution
dx?
X(x) = AcosAx + Bsinix  (104)
and
2T
—— + A% T = 0 with solution
dt?
T(t) = CcosAvt+ Dsinivt.  (105)

The general solution of Eq. (102) is

u(x,t) = (Acos Ax + Bsin Ax)(C cos Avt

+ Dsin Avt). (106)

Boundary and initial conditions will now
be used to determine the values of
the arbitrary constants in Eq. (106). The
first end-point condition u(0,t) =0 in
Eq. (106) leads to A = 0. The second end-
point condition u(L,t) = 0 requires that
sin AL=0 for a nontrivial solution or
An = nm/L where n ranges from unity to
infinity. The solution now reduces to

u(x, t) = i B, sin (?)

n=1

nmvt . nmwvt
X |:Cn cos <T> + Dy, sin (T)] .

(107)
Condition u;(x, 0) = 0 substituted into the
partial derivative of u(x, t) with respect to
t requires that D, = 0 for all n, and the
resulting solution becomes

o0
nITx nwvt
,t——EB"(—) — )
(x,1) 2 L, SIn T cos I

B, = B,Ch. (108)

The B, coefficients in Eq. (108) are eval-
uated by use of the Fourier sine series.
A detailed discussion of the Fourier se-
ries method is given elsewhere in this
book (see FOURIER AND OTHER MATHE-
MATICAL TRANSFORMS). Here a summary
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of Fourier series concepts needed in
solving boundary valued problems is
presented.

The Fourier representation of f (x) in the
closed interval [—L, L] is

o0
o2+ 5 e ()
4y sin ”LL’C] . (109)

Coefficients in Eq. (109) are determined by
use of (Euler’s formulas)

1 L
an, = E/‘_Lf(x)cos (?) dx,
n=20,1,2,..., (110)

and

=
S
I

%/LLf(x) sin (EL’C) dx,

n=1,23,.... (111)

Equation (109) is valid in [—L, L] when
f(x) is single valued, is bounded, has at
most a finite number of maxima and
minima, and has at most a finite number of
discontinuities. If f (x) is an even function,
f(x) =f(—x), the Fourier cosine series
results, and the Fourier sine series results
when f(x) is odd, f(x) = —f (—x).

The final condition for Eq. (108), u(x, 0)
= 2hx/L for [0,L/2] and u(x, 0) = 2h(L —
x)/L for [L/2,I], leads to a Fourier sine
series from which the B, may be obtained.
The expression for the B), coefficients is

B, = %/OLf(x) sin (ﬂLx) dx
= ‘z—? |:/0L/2xsin (?) dx
+ L/L/Lz sin (nLLx> dx

—/L/szsin (ﬂ;‘) dx]

8h . /nm
= 2 sin (7) for n odd,

= 0 for n even. (112)

The particular solution of Eq. (102)
reduces to

8h o | (=1)(*=D/2
ulx. ) = — 2
b eF| n

Of

i nwx nrvt
x sin (—) cos< )]
L L
(113)
The motion of the string is such that only

odd-harmonics occur and is symmetrical
about the midpoint.

34
One-Dimensional Heat Conduction
Equation

The method of separation of variables
will now be applied to solve the one-
dimensional heat conduction equation for
the temperature distribution u(x, ) inarod
of length L such that u(0,t) = u(L,t) =0
and u(x, 0) = Ty x exp(—ax?). The one-
dimensional heat conduction equation is

u  19u
ax2 o 3t
In Eq.(114), substitute u(x,t) = X(x)
T(t) and divide the resulting equation by
XT; the resulting two ordinary differential
equations for separation constant —A? are

d’X
Iz + 12X = 0 with solution
X

X(t) = AcosAx + Bsin Ax

(114)

(115)

and

ar
N + 220 T = 0 with solution



T(t) = Cexp(—A2ot). (116)

The general solution of Eq. (114) is
u(x,t) = (Acos Ax + Bsin Ax)

x [Cexp(—A2at)].  (117)

Conditions u(0,t) = u(L,t) =0 lead to
A=0 and Ay, =nn/L for n=1,2,..,
respectively. The final condition yields

u(x,0) = Ty exp(—axz)
ad niwx
=Y B,sin (T) . (118)
n=1

Equation (118) is just a Fourier sine series,
and the B), coefficients are given by

2 L
B, = I /0 To exp(—ax?) sin (ﬂj) dx
4T,
=% fornodd , (119)
niw
=0forneven.

The particular relation for the temperature
distribution in the rod is therefore given
by

W, t):ﬂ > 1 . (nnx)

3.5
The Two-Dimensional Laplace Equation

Laplace’s equation is an example of an
elliptic differential equation, and solutions
of Laplace’s equations are called harmonic
functions. The electric potential u(x, y) at
points inside a rectangle (see Fig. 12) will
now be determined from the solution of
the two-dimensional Laplace equation with
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u(0,y)=0 u(a,y)=0

0 ux0)=uy a

Fig. 12 Boundary configuration for Eq. (121)

the indicated boundary conditions:
3u n ’u
axz  oy?
u(0,y) = u(a, y) = u(x,00) =0

and u(x, 0) = ug. (121)

Separation of variables with separation
constant —1? yields

X
— = + 32X = 0 with solution
dx?
X(x) = AcosAx + Bsinix  (122)
and
Py
— = —2Y = 0 with solution
dy?
Y(y) = Cexp(Ay) + Dexp(—Ay). (123)

The general solution of Eq. (121) is
u(x,y) = (Acos Ax + Bsin Ax)[C exp(Ay)
+ Dexp(—Ay)]. (124)

Condition u(x, 00) = 0 requires that C =
0, condition u(0, y) = 0leadsto A = 0, and
condition u(a, y) = 0 gives A, = nr/a for

n=1,2,3,.... The general solution now
reduces to
> nTx nwy
u(x, y) = B sin (—)e (——)
(x, y) ; " —)exp (-~

B, = B,Dy. (125)
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The final condition is used to determine
the values of B), as follows:

oo
n
u(x,0) = up = Z B, sin (ﬁ) .
a
n=1

(126)
Equation (126) is just a Fourier sine series,
and the B, are given by

, 2 (4 . /NTX
B,=—| upsin (—) dx
a Jo a

4
. for n odd,
ni

= 0 for n even. (127)

The particular solution, expression for
the potential at points within the rectangle
in Fig. 12, is therefore

4u 21 . /NTX
u(x,y):—T Esm( . )
odd

X exp (—?) .

The extension to more than two indepen-
dentvariables is straightforward. While the
presentation has been restricted to Carte-
sian coordinates, inclusion of other coordi-
nate systems (for example, cylindrical and
spherical) may be carried out in the usual
manner. In general, time-independent
equations involving the Laplacian operator
may be put in the form of Helmholtz’s dif-
ferential equation, V2u + k?u = 0, when
the appropriate k is used. Hence, solu-
tions of Helmholtz’s equation in various
coordinate systems apply to all problems
involving the Laplacian operator. In spher-
ical coordinates (r, 6, ¢), use of separation
of variables, the power-series method, and
the appropriate k for Helmholtz’s equa-
tion lead to the following special functions:
spherical harmonics, associated Legendre
polynomials and Legendre polynomials,

(128)

associated Laguerre polynomials and La-
guerre polynomials, and spherical Bessel
functions. Bessel functions result when
cylindrical coordinates (p, ¢, 2) are used
in Helmbholtz’s differential equation.

3.6
Fourier Transform Method

Methods of integral transforms are treated
in detail elsewhere in the Encyclopedia
(see FOURIER AND OTHER MATHEMATICAL
TRANSFORMS). This section is devoted
to the technique for solving differential
equations (ordinary and partial) by use of
the Fourier transform method. The one-
dimensional Fourier transform pairs in
symmetrical notation are given by

F(k) = \/% /_Zf(x)eik" dx,

F(k)e ** gk.

S (129)
fo=7= [
In Eq.(129), F(k) is referred to as the
Fourier transform of f(x), and f(x) is the
inverse transform of F(k). The conven-
tion for quantum-mechanical problems
involves a sign change in the exponents.
Relations in Eq. (129) may be extended to
multiple dimensions in a natural manner.
The basic idea of the Fourier transform
method for solving differential equations
(ordinary or partial) is to transform the
original equation (ordinary or partial) into
a simpler equation (algebraic or ordinary
differential) that can be easily solved. The
required solution of the original differen-
tial equation is then obtained by finding
the inverse transform of the solution of
the simpler equation which is in transform
space.

EXAMPLE 3.1: By use of the Fourier
transform method, solve the ordinary dif-
ferential equation, ¥ + 2ax +wix = f(t)



subject to conditions that x(t) and %(t) go
to zero as t goes to plus and minus infinity.

Solution: On taking the Fourier trans-
form of each term in the original differen-
tial, the result is

o .
%(t)e ' dt

7 |

+ 2 / ~ c(betdt
— x(r)e
A LT J—o0
S e
+ 2 x(H)etdt
A LT /—oo

= \/% [ Z F®eetde.  (130)

By use of partial integration and the
conditions that x(t) and %(t) approach zero
as t approaches plus and minus infinity,
Eq. (130) reduces to the algebraic equation

—*X(w) — 20iwX(w) + 0iX(w) = F(w).
(131)
On solving the algebraic equation in
Eq. (131) for X(w) and inverting the
transform, the solution x(t) is obtained:

/ F(w)e ' dw

V271 J oo 0 — @2 = 2iadw
(132)

The integral in Eq. (132) can be evaluated

by use of the methods of calculus of

residues when f(t) is known.

x(t) =

EXAMPLE 3.2: By use of the Fourier
transform method, solve the one-dimen-
sional heat conduction equation for the
temperature distribution T(x, t) such that
T(x,t) and Ty(x,t) approach zero as x
approaches plus and minus infinity and
T(x,0) =Ty exp(—axz) for constant a.
Solution: Here, one transforms out
the space variable so that the resulting
equation will be a first-order ordinary
differential equation in t. On taking the
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Fourier transform of each term in the one-

dimensional heat conduction equation,

one obtains

00 32 T
ka dx

7= Lo
1 1 90
=——— | T e dx. (133
o /o 91 / (x, t)e™” dx. (133)
By use of partial integration and the condi-
tions that T'(x, ) and Ty(x, t) approach zero
as x approaches plus and minus infinity,
Eq. (133) reduces to

aT(k ) +ok®T(k, t) = 0.

(134)
The solution of Eq. (134) is
T(k, t) = A(k)e°F"

== /_ N T(x, t)e** dx. (135)

Substituting the condition T(x, 0) = Ty x
exp(—ax?) into Eq. (135) yields
To kz)
Ak)= —exp|——|. 136
(k) T p ( v (136)

The solution in transform space (k space)
is therefore

Tk, t) = — k-.
. ) J2a exp( 4a ) a3

The solution in x space is obtained
when the k-space solution in Eq. (137) is
inverted; the result is

T(x,t) =

T() ( —a.’XJZ )
ex .
V14 4oat P 1+ 4oat
(138)

The convolution theorem,
/ flx—8&)g(&)dg

_ / ™ F ) G(k) exp(—ikx) dk,

63
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may be used to find the inverse transform
when the solution in transform space is
the product of two functions F(k)G(k).

3.7
Green'’s Functions in Potential Theory

Here the three-dimensional Fourier trans-
form method will be used to solve Pois-
son’s equation for the electric potential
¢ (r) due to a volume charge density p(r),
and the three-dimensional Green’s func-
tion will be defined. Poisson’s equation is
written as

Vip(r) = (139)

p(r)
€0
The quantity &g is the permittivity of free
space. The Fourier transform of ¢ (r) has

the form

ok = / ¢ (r) exp(ik - dr.

(140)
A shorthand notation for triple integral,
d*r = dx dy dz, is used in Eq. (140). On
taking the Fourier transform of both sides
of Eq.(139), the solution in transform
space [subject to the conditions that ¢ (r)
and d¢/dr approach zero as r approaches
plus and minus infinity] becomes

oo = P& )80.

(2 )2/3

(141)

The inverse transform of ®(k) yields the
solution ¢ (r), and the result is

1 /OO o (k)
(2m)3/% J_o K2eg

_ 1 /‘OO /m p(r/)
B @n)} ) oo )

k280

x exp[ik - (r — )] &k d>r

1 o
= m/ o(t)G(x,Y)dr .
(142)

exp(—ik - nd’r

p() =

The function G(r, r'), Green’s function for
the operator V2, is given by

o] ] — 143
G(r,r’):/ exp[—ik IS r))d k.

When spherical polar coordinates are
chosen where d*k = —k2d(cos 6)d¢dk and
r — ' is assumed to be along the polar axis,
the expression for the Green’s function
reduces to G(r, r') = 272 /|r = 1'|.
Physically, the Green’s function G(r, r')
is the electric potential at point r due to
a point charge located at r’. For a volume
charge density p(r'), the potential at r is
given by [ p(r')G(r, r')d*r. In differential
equation form, this analysis may be written
as V2G(r, 1) = —4n8(r — r') subject to ap-
propriate boundary conditions for G(r, r').
The Dirac delta function § (r — r’) means

S(x—xNs(y—yY)s(z—2)

with properties (r — ') = Oforr— 1 # 0
and (% 8(r—r1))d*’ = 1. For Dirichlet
boundary conditions, G(r,r’) = 0 on the
boundary surface enclosing the charge
distribution p(r). It can be shown that the
Neumann problem requires appropriate
nonzero values for the normal derivative
of the Green’s function on the boundary
surface. Use of the Green’s function
method simplifies the problem of applying
boundary conditions.

3.8
Numerical Methods for Partial Differential
Equations

Numerical methods in partial differential
equations form a vast subject and are
treated in detail elsewhere in this book
(see NUMERICAL METHODS). Here the focus
is on essential concepts involved in
converting a partial differential equation
to its corresponding difference equation



by use of finite difference methods.
One should consult the references for
a detailed discussion of the various
special techniques for finding numerical
solutions, convergence of solutions, and
stability of the various methods.

3.8.1 Fundamental Relations in Finite
Differences

First differences A u and Ayu for positive
h and k are defined by

u(x+h,y) —u(x,y)
. ,

Ay =

u(x,y+k) —u(x,y)

A
y¥ k

The corresponding second differences are
defined by

Ay =

u(x+h,y) — 2u(x,y) + u(x —h,y)
2
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and
Ayl =
u(x,y+k) —2u(x,y) + u(x,y—k)
k2 '
For notational convenience, Ax and Ay
are replaced with h and k, respectively, in

the above finite difference equations, and
k replaces At in Secs. 3.8.3 and 3.8.4.

3.8.2 Two-Dimensional Laplace Equation:
Elliptic Equation

The two-dimensional Laplace equation in
terms of finite differences reduces to

1
W%W=ZWW+hW+MW—hW
+ulx,y+h) +ulx,y — h)].

The computational procedure involves
replacing u(x, y), for example, a potential,
ata particular grid point (see Fig. 13) by the
average value of its four closest neighbors.
The function u(x, y) or its derivative must

(xy+h)
h
(x—hy) (o (x+hn l
(xy—h)
< h—>

Fig. 13  Grid representation for Laplace’s equation
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—— h —
k
(xt+k) l
(x—h,t) (x,t) (x4-h,t)
Fig. 14 Space-time grid for the heat equation
e— h—>

Xt+k)

k— »x—>

(x—h,t)

(xt)

(x+ht)

(X,t—k)

Fig. 15 Space-time grid for the wave equation




be specified at all points surrounding a
given region.

3.8.3 One-Dimensional Heat Conduction
Equation: Parabolic Equation

In terms of finite differences, the one-
dimensional heat conduction equation
reduces to

ok
ulx,t+k) = ﬁ[u(x +h, t) — 2u(x, t)

+ u(x — h, )] + u(x, t). (143)
The numerical solution involves determin-
ing the initial values of u(x, t) at various
x locations (see Fig. 14 for the space-time
grid) and applying Eq. (143) to obtain the
u(x, t) at other times.

3.8.4 One-Dimensional Wave Equation:
Hyperbolic Equation

The finite-difference representation of the
one-dimensional wave equation reduces to

k212
ulx, t+k) = W[u(x +h, t) — 2u(x, t)

+ u(x — h, )] + 2u(x, t) — u(x, t — k).

(144)

The starting value for u(x,t+k) is de-

termined from the initial conditions (see

Fig. 15), and remaining values are deter-
mined by use of Eq. (144).

4
Integral Equations

4.1
Introduction

This section is devoted to a discussion
of solutions and applications of one-
dimensional linear integral equations of
the first and second kinds. The formula-
tions of many problems in physics lead
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to either differential or integral equations.
Certain problems can only be represented
by integral equations of the general form

b
u(x) = f(x) + A/ k(x, s)u(s)ds. (145)

Equation (145) is an integral equation since
the unknown function u(x) appears in the
integrand. Functions f(x) and k(x, s) are
to be given, and A is a known parameter
used here for convenience. The function
f(x) is called the free term, and k(x, s)
is referred to as the kernel (nucleus).
Quantities f(x), k(x,s), and A may be
either real or complex but are considered
real in this section. Equation (145) is a
linear integral equation since u is linear.
An integral equation is singular if either
(or both) of the limits of integration is
infinite and/or if the kernel becomes
infinite in the range of integration. When
f(x) equals zero, Eq.(145) is classified
as a homogeneous integral equation. If
the kernel is continuous in the closed
region [a, b], then Eq. (145) is classified
as a Fredholm-type integral equation of
the second kind. The equation (where the
upper limit is a variable)

u(x) =f(x) + A [x k(x, s)u(s)ds (146)

is known as a Volterra-type integral
equation of the second kind. Fredholm
integral equations of the first kind have
the form

b
fx) = / k(x, s)u(s) ds. (147)

Volterra-type integral equations of the first
kind have the form

flx) = / i k(x, s)u(s) ds. (148)
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In summary, classifications are Fred-
holm type if the limits of integration are
fixed and Volterra type if one limit is
variable, and first kind if the unknown
function appears only in the integrand and
second kind if the unknown function ap-
pears both in the integrand and outside
the integrand.

Physical problems may be formulated
as differential equations with appropriate
boundary and/or initial conditions, inte-
gral equations, or either differential or
integral equations. An essential difference
in the formulation is that boundary con-
ditions are imposed on general solutions
of differential equations while boundary
conditions are incorporated within the
formulation of integral equations. While
there exist procedures of converting dif-
ferential equations to integral equations,
use of integral equations seems more ap-
propriate when formulations of problems
lead directly to integral equations, or when
solutions of the corresponding integral
equations are easier to obtain than those
for the corresponding differential equa-
tions. Laplace and Fourier transforms as
well as dispersion relations are examples
of singular integral equations of the first
kind.

It is important to note that certain prob-
lems in classical mechanics, transport and
diffusion phenomena, scattering theory,
and other areas of physics can be formu-
lated only by use of integral equations;
the number of such problems is very
small when compared to those leading
to differential equations. In general, the
theory of solution techniques needed in
solving integral equations is not as famil-
iar to physicists as techniques for solving
differential equations. Integral equations
are seldom treated in detail in introduc-
tory mathematical physics textbooks but
are, however, discussed in advanced books

in theoretical physics and mathematical
physics. See Further Reading for some ex-
cellent books on integral equations. Many
integral equations encountered in physics
are normally solved by use of intuitive
analytical methods, intuitive approxima-
tion methods and numerical techniques,
or Laplace or Fourier transform methods.

Some systematic methods for solving
nonsingular and linear integral equations
are transform theory, Neumann series,
separable kernel, Schmidt—Hilbert theory,
Wiener—Hopf theory, and numerical. The
Wiener—Hopf method is a different type
of transform method which may be ap-
plied to certain integral equations with
displacement kernels, k(x, s) = k(x — s).
Schmidt-Hilbert theory is an approach
that applies to integral equations with
Hermitian kernels, k(x, s) = k*(s, x). Fred-
holm theory involves representing the
kernel as an infinite series of degenerate
kernels (Sec. 4.2) and reducing the integral
equation to a set of algebraic equations.
Numerical solutions of Volterra equations
involve reducing the original equations to
linear algebraic equations, successive ap-
proximations and numerical evaluation of
integrals. Numerical techniques for Fred-
holm equations involve solving a system
of simultaneous equations.

4.2
Integral Equations with Degenerate Kernels

A subset of Fredholm equations of the
first and second kinds with degenerate
(separable) kernels can be solved by
reducing them to a system of algebraic
equations. In general, degenerate kernels
may be written as

N
K, ) =) g ¢ (. (149

j=1



In Eq. (149), it is assumed that gj(x) and
¢;(s) are linearly independent quantities,
respectively. Substituting Eq. (149) into
Eq. (145) yields

N
u@) =f)+1y g®C.  (150)

j=1

The coefficients C; are given by

b
G = / @ (5)u(s) ds. (151)
a
The solution of Eq. (145) has now been re-
duced to finding the C; from the indicated
algebraic equations and substituting the C;
into Eq. (150).

EXAMPLE 4.1: By use of the degenerate
kernel method, find the solution of u(x) =
X+ A fol xsu(s) ds. The integral equation
becomes

1
ulx) =x+ Ax/ su(s)ds = x + AxC.
0

(152)
The coefficient C reduces to

1 1
C= / su(s)ds = f s(s + AsC)ds
0 0
=—. (153)

The second step in Eq. (153) results when
the second step of Eq. (152) is substituted
into the first step of Eq.(153). From
Egs. (152) and (153), the solution of the
original equation is u(x) = 3x/(3 — ). It
is seen that solutions exist for values of A
different from 3.

EXAMPLE 4.2: By use of the degenerate
kernel method, find the solution of u(x) =
X+ % f_11 (s + x) ds. The equation becomes

C1 sz
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The coefficients C; and C; are

2—0C
3

and

1
C1 =/ su(s)ds =
-1

1
Cy :/ u(sds=C; or C1=C=1.
-1

(155)
On substituting the values for C; and C,
into Eq. (154), the solution of the original
equation becomes u(x) = (3x + 1)/2.

4.3
Integral Equations with Displacement
Kernels

If the kernel is of the form k(x —s), it
is referred to as a displacement kernel.
Fredholm equations of the first and sec-
ond kinds with displacement kernels and
limits from minus infinity to plus infinity
or from zero to plus infinity can normally
be solved by use of Fourier and Laplace
transform methods, respectively. Here the
Fourier transform approach for solving
integral equations with displacement ker-
nels will be illustrated. Taking the Fourier
transform of each term in Eq. (145) yields

/ - u(x) exp(ikx)dx

— / f(x) exp(ikx)dx

+A/oo (/OO K(x—s)u(s)ds)

x exp(ikx) dx. (156)

In transform space, Eq. (156) is u(k) =
F(k) + AK(k)u(k). The solution in x space
is obtained when the inverse transform of
u(k) is taken, and the result becomes

1 foo F(k) exp(—ikx)dk
Vor oo 12Kk

u(x) =

(157)
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4.4
The Neumann Series Method

Consider the set of Fredholm equations of
the second kind such that

b b
/[f(x)|2dx and /lK(x,s)|2ds

are bounded. Assume the solution may
be written as a power series, Neumann
series (also known as Liouville—Neumann
series), with form

u(x) = Z AU (). (158)
n=0

Terms in the successive approximation are
obtained by substituting the Neumann se-
ries into the Fredholm equation, Eq. (145),
and equating coefficients of like powers of
A; the results are

uo = f(%);

b
ui(x) = f K(x, s)ugds; . . .;
a

b
Un(x) :/ K(x, s)uy_1(s) ds. (159)

It can be shown that the Neumann series
converges for all values of A for Volterra
equations and converges for small values
of A for Fredholm equations; techniques
exist for improving the convergence in the
Fredholm case. Numerical techniques may
be used to evaluate terms in the Neumann
series.

4.5
The Abel Problem

The section on integral equations is
concluded with the earliest application of
integral equations to a physical problem,
Abel’s problem. The Abel problem is as
follows: Consider a bead sliding on a

smooth wire under the influence of gravity
and find the curve for which the time of
descent is a given function of the initial
position.

Let the starting position of the bead be
(%0, yo) and position of the bead at time ¢
be (x, y) such that y equals zero at the end
of the fall. The speed of the bead at (x, y)
for ds an element of arc length along the
path is determined from the conservation
of energy principle and is given by

d

d—i =280 =)

If the shape of the curve is u(y), then
ds = u(y) dy and the time of descent is
given by

7o [T __vWdy
0 /28(o—7Y)

The Abel problem is to find the curve
u(y) for which the time T of descent is a
given function f(yo) of the initial vertical
position, and the result is obtained from
the integral equation (Abel’s equation):

u(y)dy
0 V28 —y)

It can be shown that the curve in question
is a portion of a cycloid.

fo) = (160)

5
Applied Functional Analysis

5.1
Introduction

Concepts of functions (of one variable) and
operators were introduced into mathemat-
ics in connection with the development
of calculus during the latter part of the
seventeenth century. In general, an oper-
ator applied to a given function yields a



new function. The problem of finding an
extremum (maximum or minimum) of a
function is carried out in the usual manner
by use of ordinary calculus, but the general
problem of finding the stationary value (an
extremum) of certain definite integrals that
occur in mathematical physics is the sub-
ject matter of the branch of mathematics
called the calculus of variations.

In relation to the calculus of varia-
tions, the process of connecting (mapping)
each function y(x) in [a, b] with a num-
ber represented by the definite integral
I ab F(y,y, x) dx (where y = dy/dx) which
depends on y(x) was given the name func-
tional during the end of the nineteenth
century. The basic idea of functional anal-
ysis is that problems are often easier to
solve if a function is considered to be a
member of a whole space of functions,
X. The space X is assumed to carry a
metric, have a linear space structure, and
be infinite dimensional. The concept of
a metric involves topological and geomet-
rical language while linear operators on
X involve concepts of linear algebra, and
relations among these concepts constitute
linear functional analysis.

A function which depends on one or
more functions rather than on discrete
variables is referred to as a functional.
The domain of a functional is a space
of admissible functions. More precisely,
functionals are continuous linear maps,
from a normed space into itself or into
some other normed space. The basic
ingredient of the various definitions of
a functional and of functional analysis
is the existence of a linear space with a
topology.

The main topics in Secs. 1-4 (func-
tions of a complex variable and ana-
Iytic functions, ordinary and partial dif-
ferential equations, Fourier series and
Fourier transform theory, and integral
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equations) are technically topics in func-
tional analysis even though the topol-
ogy and geometry of the linear spaces
involved were not stressed. Mathemat-
ically, a valid argument can be made
that concluding this article with a discus-
sion of functional analysis is analogous
to putting the cart before the horse.
This argument, however, neglects the
applications-of-techniques approach em-
phasized throughout the article.

In mathematical physics, functional
analysis often involves discussions con-
nected with the calculus of variations;
theory of ordinary and partial differential
equations; integral equations and trans-
form theory; spectral theory involving
eigenvalues, eigenfunctions, and Fourier
series expansion theory involving orthog-
onal functions; functional calculus used
in the path integral formulation of quan-
tum mechanics, quantum field theory,
and statistical mechanics; C* algebra; and
the theory of distributions. In mathemat-
ics, functional analysis often involves the
general theory of linear normed spaces,
the topological structure of linear spaces
and continuous transformations, measure
spaces and general theories of integration,
spectral theories, C* algebra, distribution
theory, and number theory.

In this section, the original problem
of functional analysis (the calculus of
variations) and applications of functional
integration to quantum mechanics, quan-
tum field theory, and statistical mechanics
will be discussed.

5.2
Stationary Values of Certain Definite
Integrals

Consider the following definite integral
of the functional F(y,y’, x) where F is a
known function of y, y (where y’ = dy/dx),
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and x, but y(x) is unknown:

x2
]:/ F(y,y, x) dx. (161)
X1
A fundamental problem in the calculus
of variations (a problem which occurs fre-
quently in mathematical physics) is that
of finding a function y(x) such that the
functional J is stationary (an extremum;
a minimum in most cases of physical
interest). The basic procedure here is to
evaluate the integral for a slightly modi-
fied path y(x, a) = y(x, 0) + an(x) where
n(x1) = n(x2) = 0 (all paths pass through
the end points) and show that the change in
the value of the integral due to the change
in the path becomes zero. The function
1(x) is an arbitrary differentiable function,
and « is a small scale factor (see Fig. 16).
The function y(x, &) describes neighbor-
ing paths where 8§y = y(x, a) — y(x, 0) =
an(x) is the variation (hence the name
calculus of variations) of y(x,0) at some x.
The delta symbol, 8, was introduced by
Lagrange to denote a variation (a virtual
change) and means a change made in an
arbitrary manner. Both dy and Sy denote
infinitesimal changes in y, but dy means
an infinitesimal change in y(x) produced

Fig. 16
(x2, y2)

A varied path between (x1, y1) and

by dx while 8y is an infinitesimal change
which produces y+ §y. It is straightfor-
ward to show that dy/dx = édy/dx and
F) f;? F(y,Y, x)dx = f;iz 8F(y,y, x) dx. On
substituting y(x, &) = y(x, 0) + an(x) into
Eq. (161) and differentiating both sides of
the resulting equation with respect to «,
one obtains

dj(« *2 (QF doF

e =/xl <a—yn(x)+8—y/n (x)) dx.
(162)

Integrating the second term in Eq. (162)

by parts and using the fact that n(x) is

arbitrary yield

aF d <8F>

2 (=)=o

dy  dx \ 9y
Equation (163) is known as Euler’s equa-
tion and its solution yields the y(x) which
makes | an extremum (minimum). An
alternative and often used approach for
obtaining Euler’s equation makes use of
expanding the right-hand side of §F in
a Taylor’s series with two variables; the
result becomes

(163)

SF=F(y+oany +oan',x)—F@y,y,x

9F  9F ,
_a<8yn+ 8Y’”>'

Higher-order terms in the Taylor expan-
sion may be used to determine the nature
of the extremum (maximum or mini-
mum), and neglected here since o is a
small parameter. As a result of substitut-
ing Eq. (164) into the integrand for §J,
integrating the second term by parts as
before, and setting ]/ = 0, one obtains
the Euler equation in Eq. (163).

The above processes of obtaining Eu-
ler’s equation, Eq. (163), may be extended
to functionals involving several dependent
and/or independent variables; for exam-
ple, the variational process applied to

(164)



F(1, - s Yns¥ys - -+ Vi %) yields the fol-
lowing set of Euler’s equations:

dF d (9F
————|—=]=0 (k=12,...
Iy dx \ 9y,

(165)

, ).

EXAMPLE 4.3: By use of the variational
calculus method (Euler’s equation), deter-
mine the equation of the shortest path
between two points (x1, y1) and (x2, y2) in
Cartesian coordinates.

Solution: The element of distance along
the path between the two points is given
by

1.

ds = /dx? + dy?.

The expression for the distance between
the two points is therefore

X2
s = 1+ ()2 dx,
Lo

dy
——
Y_dx'

For F(y,y, x) = /1 + (y)?, the differ-
ential equation for the equation of the
shortest path between the two points,
Euler’s equation, reduces to

where

il
dx
dF Y
W1+ )

The equation of the shortest path

between the two points is therefore that
of a straight line, y(x) = Ax + B.

oF
=A since — =0 and
dy

EXAMPLE 4.4 (the Brachistochrone Prob-
lem): The brachistochrone (shortest time)
problem, first formulated and solved by

Analytic Methods | 73

Johann Bernoulli in 1696, is one of the
first variational problems. The problem is
as follows: Consider a bead of mass m
which slides, under the influence of grav-
ity, down a frictionless wire bent into the
appropriate shape. The goal is to find the
equation (shape of the wire) of the path
along which the bead travels so that the
time is a minimum.

Solution: For convenience, it is assumed
that the bead starts from rest at the
origin of a coordinate system (see Fig. 17).
Since this is a conservative system, the
following relations are valid: Ty + Vi =
T)+ V), Vo=—mgy, I =V =0, T =
%mvz, and v = ,/2gy. The expression for
the time required for the bead to travel
from the origin to point (x, y) is therefore
given by

1.
t_/,/alxz—i—dy2
V28y

0 V2gy dy

The unknown function y(x) must be
determined such that the time is a min-
imum. On applying Euler’s equation

. Y2 ’1+(x/)2dy x/_d_x

_O
o
G

A\Y

(X2, ¥2)

Fig. 17 Diagram for the brachistochrone
example
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with

N
Fe (M)
y

and independent variable y, one obtains
2.

Ay d
= D L since

/Y_AZYZ

oF

— =0and

0x

dF x/ _

ax’ /Y[1+(x/)2] B

On letting A = 1/+/2a and making the
change of variable y = a(1 — cos 6), the
above integral reduces to x = a(6 —
sin @) + const. The path that yields a
minimum time of travel is in the
form of parametric equations x =
a(f —sin®) andy = a(1 — cos 9), equa-
tions for a cycloid that passes through
the origin.

5.3
Hamilton’s Variational Principle in
Mechanics

5.3.1 Introduction
Mechanics is the study of the motions
(including rest) of physical objects. The
laws of classical mechanics are valid for
macroscopic objects (size larger than 10710
m), and the laws of quantum mechanics
are valid in the microworld (object size
smaller than 10~10 m). In this section, the
focus is on the study of classical mechan-
ics. Widely used equivalent formulations
of classical mechanics are Newtonian
mechanics (1687), Lagrangian mechan-
ics (1788), Hamiltonian mechanics (1834),
and Hamilton-Jacobi theory (1837).
Formulations of classical mechanics de-
veloped since Newtonian mechanics are

generalizations and equivalent represen-
tations of Newtonian mechanics. These
generalizations do not lead to new in-
formation but offer different ways of
approaching problems. Certain problems
can be solved by use of all four approaches
with equal amounts of ease (or difficulty).
Other problems are more amenable to so-
lution by use of one approach than by use
of the others. The specific nature of the
problem to be solved usually dictates the
approach that should be used.

Newton'’s second law is the basic equa-
tion of motion in the Newtonian picture of
mechanics. In Lagrangian mechanics, La-
grange’s equations are the required set
of equations of motion for the system
(particle or group of particles) under inves-
tigation. Hamilton’s canonical equations
are basic to Hamiltonian mechanics, and
the Hamilton-Jacobi equation is the foun-
dation of the Hamilton—Jacobi theory.

The approach in this section begins with
Hamilton’s variational principle for con-
servative systems (where the forces acting
on the system may be derived from a po-
tential function) from which Lagrange’s
equations will be developed by use of
the variational calculus method. By use of
a Legendre transformation, the Hamilto-
nian and subsequently Hamilton’s canon-
ical equations are obtained.

The variational technique used in me-
chanics was developed mainly by Euler
and Lagrange and is a mathematical for-
mulation of mechanics in which kinetic
energy and potential energy play an essen-
tial role. In Newtonian mechanics, forces
play the central role.

5.3.2  Generalized Coordinates

Linearly independent quantities {gq;} =
qi, .- ., qi that completely define the po-
sition (configuration) of a system as a



function of time are called generalized co-
ordinates. Quantities {g;} are said to be
linearly independent if } j opq = 0 im-
plies that o =0 for all k. Generalized
coordinates may be selected to match the
conditions of the problem to be solved.
The number of generalized coordinates
that must be used to define uniquely the
position of a system represents the number
of degrees of freedom for the system. The
corresponding quantities {g;} are called
generalized velocities.

The simultaneous specification of {g}
and {g;} for a system determines the me-
chanical state of the system at that time,
and subsequent motion is obtained from
the solutions gy (t) of the appropriate equa-
tions of motion. The appropriate second-
order differential equations expressing the
relations among generalized coordinates
qx, generalized velocities {g;}, and general-
ized accelerations {§;} are called equations
of motion for the system under investiga-
tion.

Although the set of generalized coordi-
nates used to solve a problem is not unique,
a proper set of generalized coordinates is
that set which leads to an equation of
motion whose solution has a straightfor-
ward physical interpretation. No general
rule exists for obtaining a proper set of
generalized coordinates.

5.3.3 Lagrange’s Equations

Hamilton’s variational principle asserts
that the actual motion of a particle or
system of particles (conservative system)
from its initial configuration at time t; to
its configuration at time t, is such that

7}
6S = 8/ L(qx, qp)dt = 0.

5]

(166)

In Eq. (166), g = q¢(t), L=T — V is de-
fined as the Lagrangian for the system
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under investigation, L dt is called the ac-
tion, and
17}
= / Ldt
4

denotes the action integral. The quantities
T and V are kinetic and potential energy,
respectively.

Among the infinite number of trajecto-
ries g(t) that connect the end points q(¢1)
and ¢(t2), the physical (actual) path yields
a stationary value for the action integral.
The action is therefore a functional of
the functions q;(t) satisfying the bound-
ary conditions that all trajectories pass
through the end points. By use of the
variational technique leading to Eq. (165),
one finds that g(t) is obtained from the
following set of differential equations:

oL d (oL
———=|=1)=0, k=1,2,...,n
oq  dt <3qk>
(167)

The equations in Eq. (167) are called La-
grange’s (or Euler—Lagrange) equations.
Lagrange’s equations, the equations of mo-
tion for the system under investigation,
are a set of n second-order differential
equations. The general solutions of these
equations contain 2n arbitrary constants
of integration. The values of these 2n ar-
bitrary constants are determined when the
initial state (initial values for the g; and
{qr} at t = 0) of the system is specified.

Quantities dL/dq; and 9L/dq; are de-
fined to be canonical momenta (also called
conjugate or generalized momenta) and
generalized forces, respectively,

oL
Pk =

= — (168)
99k

and F=—.

99k
By use of the definitions in Eq. (168), it is
observed that Lagrange’s equations may
be considered a generalized version of
Newton’s second law where generalized
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force equals the rate of change of canonical
momentum.

Basic conservation laws of mechanics re-
sult from invariance of the Lagrangian un-
der time translation—conservation of en-
ergy, coordinate translation—conservation
of canonical momentum, translation in
space—conservation of total linear momen-
tum, and rotation in space—conservation
of angular momentum. In spite of the
important role of the Lagrangian, it is
not a unique function for a system since
the equations of motion for the system,
Lagrange’s equations, are unchanged if
df (g, t)/dt is added to the Lagrangian.

5.3.4 Format for Solving Problems by Use
of Lagrange’s Equations

The following steps should be used when
applying Lagrange’s equations.

1. Draw a detailed diagram. Specify the
degrees of freedom and the level where
potential energy V equals zero.

2. Write down the appropriate expressions
for T, V, and L.

3. Write down the specific set of La-
grange’s equation(s).

4. Work out the terms in the set of
equations in Step 3.

5. Solve the resulting equation(s) of mo-
tion subject to the given initial condi-
tions.

5.4
Formulation of Hamiltonian Mechanics

It has been shown that Hamilton’s varia-
tional principle combined with techniques
of the calculus of variations transforms
the process of finding the solution of
a mechanical problem to that of obtain-
ing solutions for Lagrange’s equations.
Hamilton developed a procedure for trans-
forming Lagrange equations to a simpler

(canonical) form by replacing them (a set
of n second-order differential equations)
with a set of 2n first-order differential
equations now called Hamilton’s canon-
ical equations of motion.

5.4.1 Derivation of Hamilton’s Canonical
Equations

The Lagrangian is a function of g; and
gr; now the change of variable g, — pg
where p, =09L/d0g, will be made. By
use of a Legendre transformation [new
function equals the old function minus
(the derivative of the old function with
respect to the old variable) times the
old variable; the physical and geometrical
content of the new and old functions is the
same], one obtains

n
—H=1- Zpqu. (169)

k=1

The negative sign in Eq. (169) is by
convention. The new function H(gy, px)
contains the same geometrical and phys-
ical content as L(qg, g;) and is called the
Hamiltonian of the system. Note that the
action integral may now be written as

ty n
S= / (Z Pl — H) dt.  (170)
o \k=1

Applying the variational techniques of
Sec. 5.2 to Eq. (170) yields

. oH
Gk = 7 —

= (171)
Op

and pg ™

The equations in Eq. (171) are referred
to as Hamilton’s canonical equations of
motion (or simply Hamilton’s equations).
Hamilton’s equations can be used to
develop the specific set of equations of
motion for the system under investigation
in terms of the phase space variables g and
Pk Note that Lagrange’s equations consist



of n second-order differential equations
whereas Hamilton’s equations form a set
of 2n first-order differential equations. For
a conservative system, it can be shown that
the Hamiltonian equals the total energy of
the system (H = T 4 V).

5.4.2 Format for Solving Problems by Use
of Hamilton’s Equations

In solving problems by use of Hamiltonian
mechanics, the following five-step proce-
dure is highly recommended.

1. Write out the Lagrangian as in La-
grangian mechanics, L=T — V.

2. Solve the equation p, = dL/dg; for
gr and eliminate g, from the La-
grangian.

3. Construct the Hamiltonian for the
system, H =Y "p_; gkpi — L.

4. Obtain Hamilton’s equations, g, =
—dH/dpy, and p, = —dH/dqy.

5. Solve the 2n first-order differential
equations (equations of motion) devel-
oped in step 4.

5.4.3 Poisson’s Brackets
The total time derivative of a function

f@ pi) is

Z (3% _fpk)

—Z(;f o %) = {f. H).
g Ope 9Py Oq

(172)
Hamilton’s equations were used in
obtaining Eq. (172). The last quantity in
Eq. (172) is called a Poisson bracket. A
Poisson bracket is defined by

~(f o5 _ of dg
8= (G me)
—\oq. opr  Opi da

(173)
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Hamilton’s canonical equations in terms
of Poisson brackets are given by

. oH

G =5 - = {ax, H},
Pk

. oH

P =——={pr. H}. (174)
gk

Two variables & and ¢; are said to be
canonically conjugate if

{&, &) ={¢i, d} =0 and

(i, o1} = ik (175)

The Kronecker delta function is defined by

1;
S = { 0:

The quantities g; and p; are canonically
conjugate variables since {g;, p;} = dj and
{9, &} = {pj> e} = 0; these three Poisson
brackets are referred to as fundamental
Poisson brackets.

i =k,

i # k. (176)

5.5
Continuous Media and Fields

Thus far, only conservative systems com-
posed of discrete particles have been
considered. The Lagrangian of a system
composed of N free particles may be writ-
ten as

(177)

The extension of the above analysis to a
system with an infinite number of de-
grees of freedom (a continuous medium)
is achieved by replacing the subscript k
with a continuous variable (say x), g, with
a new function g — Q(x,t), the sum
with an integral }°; — [ d*x, and canon-
ical momenta with canonical momentum
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density given by m(x) = 3.%/0Q where
% is the Lagrangian density. The quan-
tity Q(x, t) is called a field. To denote
several fields, the notation Qy(x,t) may
be used. The parameter « distinguishes
among the different fields. From a math-
ematical point of view, a field is a set of
functions of space-time, and these func-
tions satisfy a set of partial differential
equations. The corresponding Hamilton’s
variational principle is

t) N
0—5/ ZL(‘]k o)

t
=4 %
physlcal

space

d*x = dx dy dz dt.

Qu(x, 1), Qu(x, H)}d

(178)

Assuming that fields interact only with
infinitesimal neighbors, the Lagrangian
density should be a function of Q(x, t),
Qu(x,t), and dQu(x,t)/dx; or Qpu(x™)
and 9, Q, in four-vector notation. By use
of appropriate boundary conditions, the
variation in Eq. (178) leads to the following
set of equations of motion:

— 3 ———) =0,
0Qy (8 Qu)
n=0,1,2,3. (179)

The equations in Eq. (179) are the La-
grange’s equations for classical fields.

5.6
Transitions to Quantum Mechanics

The laws of classical mechanics are not in
general valid for the microworld, and new
laws (Qquantum theory) that are appropriate
for the microworld were developed during
the period 1900-1927. In this section,
the transition from classical mechanics to

quantum mechanics in the Heisenberg
picture, in the Schrédinger picture, and by
use of the action functional (path integral)
approach due to Dirac and Feynman will
be made. For notational convenience, the
discussion is restricted to the case of one
nonrelativistic particle. The starting point
in both the Heisenberg and Schrodinger
pictures is Hamiltonian mechanics while
the Feynman (Dirac—Feynman) approach
begins with Lagrangian mechanics.

The postulates of quantum mechanics
may be stated as follows.

1. Each state of a physical system corre-
sponds to a normalized vector in Hilbert
space called the state vector, W or |W).

2. Physical quantities are represented by
linear Hermitian operators in Hilbert
space.

3. If a system is in a state |¥), then
the probability that a measurement
(consistent with quantum theory) of
the quantity corresponding to A will
yield one of the eigenvalues a; (where
A|W) = g |¥)) is given by |{ay|W)|2.
The system will change from state |¥)
to |ag) as a result of the measurement.
The quantity (a;|¥) is the amplitude.

5.6.1 The Heisenberg Picture
In the Heisenberg approach, a system is
quantized by letting g and p; be Her-
mitian operators in a Hilbert space such
that gy — q¢ and py — —ihd/dq;, and
replacing Poisson brackets with commu-
tators, {A, B} — [A B]/lh where [A B]

AB— BA.If [f g] = ih, the operators f and
g are said to be canonically conjugate. The
resulting Heisenberg equations of motion
for a quantum and mechanical system are
and ihgy =

[px, H] 9k, H].

(180)

ihpy, =



The equations in Eq. (180) are basic for
Heisenberg (matrix) mechanics.

5.6.2 The Schrodinger Picture

From a classical mechanical point of view,
the Hamiltonian of a particle subject to
conservative forces equals the total energy
of the particle, and one may write

2

H:E:P—+V(x,y,z).

om (181)

The transition to quantum mechanics in
the Schrédinger picture is achieved by
use of the replacements E — ihd/dt and
p — —ihV; by use of these replacements,
Eq. (182) is transformed into an operator
equation. Operating on some function
W (x,y, z, t) or |¥) in Hilbert space yields

L 0w n_,
ih— = ——V*V + V¥ or
ot 2m
| ~
ih% — Hw). (182)

Schrédinger’s equation, Eq. (182), is the
basic equation of motion of a particle in
quantum mechanics in the Schrodinger
picture.

5.6.3 The Feynman Path-Integral
Approach to Quantum Mechanics

The special case of one particle with one
degree of freedom is considered here to
simplify the notation and make the ex-
planations clear. Feynman’s formulation
of quantum mechanics was stimulated by
some work of Dirac (1933) and is based on
the following two postulates:

1. The amplitude (g(t")|q(*')) for a particle
to be found at g(¢”) at time ¢ if its initial
position is g(t) at time ¢’ equals a sum
of complex contributions (amplitudes)
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for each space-time path starting at q(¢)
and ending at g(t”).

2. All paths connecting q(#) and q(")
contribute equally in magnitude, but
the phase (weight) of their contribution
is exp(iS/h) where S is the classical
action integral for the corresponding
paths.

The measure on the functional space
of paths ¢q(t) is denoted by Z[gq(t)],
and appropriate normalization factors for
the amplitude are contained in Z[q(t)].
Feynman’s interpretation of the indicated
functional integration is as follows: Divide
the time interval £’ — ¢’ into N equal parts,
each with duration ¢ =t} — t; and in
the limit N — oo(e — 0), it is assumed
that the sequence of points g(tp), - . ., g(ts)
approximates the path g(). The action
functional associated with the classical
path joining q(t;) = q; and q(ty1) = Gra1
is

Bet1 .
Slk+1- ] = / L(q, q) dt.

t

Feynman’s postulates thus assert that the
amplitude {g(#")|q(t)) is a sum of all
amplitudes for all paths connecting q(¢")

q(t”)

qi

-y

9

g
q(t’)

Fig. 18 A representative sequence of paths
between q(t) and q(t")
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and ¢(t'), and it may be written as (see
Fig. 18)

(qt)g()) =

N ,
_ i dqy
181_1)101 / ) /IE) exp<%5(qk+1, qk)> A_k

N—oo

= [/ exp(% /t "Lad dt)@[q(tn.

(183)
The normalization factors A in Eq. (183)
are independent of the path from g, to gy 1
but depend on the mass of the particle
and on the time interval e. Equation
(183) is a mathematical statement that the
amplitude for a particle at g(t) at time
' to move to g(t’) at time ¢’ equals the
sum of all possible paths between the two
points times exp (iS/#); the probability is
the absolute square of the amplitude.

The path integral approach to quantum
mechanics can be extended to include
formulations of quantum field theory (a
combination of quantum mechanics and
special relativity), the partition function in
statistical mechanics, and systems obeying
Bose—Einstein and Fermi-Dirac statistics.
The path integral method is the foundation
for Feynman diagrams.

Glossary

Complex Variable: An ordered pair of real
variables (z = x + iy) with a real and an
imaginary part.

Ordinary Differential Equation: An equa-
tion containing derivative(s) with respect
to one independent variable.

Partial Differential Equation: An equation
containing partial derivatives with respect
to two or more independent variables.

Integral Equation: An equation where the
unknown function appears in an inte-
grand.

Functional: A function which depends on
one or more functions.
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Fourier and Other Mathematical Transforms

Introduction

Fourier analysis, which gained promi-
nence from the work of J. B. J. Fourier
in the early 1800s, led immediately to
applications in mechanics and heat con-
duction but also contributed to the advance
of pure mathematics as regards the basic
notions of limit, convergence, and inte-
grability; the impact on mathematics and
applied physics has continued to this day.
Applications of transform methods were
developed in connection with differential
and integral equations and became very
powerful; more recently, numerical anal-
ysis, aided by electronic computing, has
added an extra dimension to the applied
relevance of mathematical transforms and
especially of the Fourier transform. The
analytic and computational aspects will be
dealt with first; among applied examples,
heat conduction, Fourier-transform spec-
troscopy, diffraction, sampled data, and
tomography will be mentioned.

When one looks for antecedents from
which Fourier analysis might have evolved
they are not hard to find. Euler had
published trigonometric series, and the
sum to infinity, in such statements as

sinx—%sin2x+%sin3x+---= %x

€y
Gauss analyzed motion in astronomical
orbits into harmonics and indeed utilized
the fast algorithm now favored for com-
puting. Much earlier in Roman times
Claudius Ptolemy expressed motion in
planetary orbits by the geometrical equiva-
lent of trigonometric series and, according
to Neugebauer (1983), the idea of epicy-
cles has roots in Mesopotamian astronomy
where the solar motion was matched by

Much of this material was published earlier in
Science, 248, 697-704, 1990.

zigzag functions, rough approximations of
the sinusoids to come.

1
The Fourier Transform

There are many transforms, each charac-
terized by its own explicit operator, which
we may call T. The operand, or entity oper-
ated on, is a function such as f(x), where x
is a real variable ranging from —oo to oo.
The notation T{f (x)} signifies the outcome
of applying the operator T to the function
f(x). To illustrate, the operation that con-
verts a given function f(x) to its Fourier
transform, which is a different function
F(s), is as follows: “Multiply the function
f(x) by exp(—i2msx) and integrate with re-
spect to x from —oo to co.” Applying this
operation to f (x) = exp(—|x|) we find that
T{f(x)} = F(s) = 2/[1 + (27s)?], which is
the Fourier transform of exp(—|x|). The
symbolic expression of the Fourier trans-
form operation is

Hg:/wﬂ@fmww. )

It is apparent that any particular value
of F(s) [for example, F(2), which equals
0.0126] takes into account the whole range
of x; that is, the value depends on the
shape of f( ) as a whole, not on any single
point. Thus the Fourier operation is quite
unlike the operation that converts f(x) =
exp(—|x|) to sin[exp(—|x|)]; the outcome
of this latter operation is referred to as a
“function of a function,” and the resulting
values each depend on only a single value
of x. When the result depends on the shape
of f(x) over part or all of the range of x, an
entity such as F(s) is called a functional of
f()- The variable s is called the transform
variable and may have a physical meaning;
if so, its units will be cycles per unit of



Tab.1 Selected Fourier transforms. The
quantity a is a constant

fix) F(s)
e 2/[1 + (27s)?]
8(x) 1
cos(2mx/a) 175(5 +a )+
%8(5 —a

rect x sincs
e*?'[){2 e*T[S2
e—ﬂ(x/a)Z |a‘e—7r(as)Z
fx/a) la| F(as)
f(X + a) eIZTZLISF(S)
o0 2 sF(s)
Autocorrelation of f (x) [F(s)|?

O fx —uwgu) du F(s)G(s)

x. A short list of Fourier transforms for
illustration is shown in Table 1.

In this list rect x is the unit rectangle
function (equal to unity where |x| < 0.5,
else-where zero) and sinc x = (sinns)/7ws.
The last five lines are representative
theorems of the form, “If f (x) has Fourier
transform F(s), then [modification of f(x)]
has transform [modification of F(s)].”
Extensive lists of such transform pairs and
theorems are available from the reference
texts; the short list given would cover
a sizable fraction of the analytic forms
encountered in the literature.

With some transforms — the Abel trans-
form is an example — each transform value
depends on only a part of, not all of, f( );
and with other transforms the transform
variable does not necessarily have a dif-
ferent identity (as s is different from x)
but may have the same identity (Hilbert
transform). The integral from —ocoto xis a
transform with both of the above restrictive
properties.

All the transforms dealt with here are lin-
ear transforms, which are the commonest
type; they all obey the superposition rule
that T{fi (%) + 2(0)} = T{i(0)} + T{f2(x)}
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for any choice of the given functions fi (x)
and fo(x). An example of a nonlinear
transformation is provided by T{f(x)} =
a + bf (x), as may be tested by reference
to the superposition definition; clearly the
term linear in “linear transform” does not
have the same meaning as in Cartesian
geometry.

2
Continuous Versus Discrete Transforms

Before defining the main transforms
succinctly by their operations T, all of
which involve integration over some range,
it is worth commenting on a numerical
aspect. One could take the point of view, as
is customary with numerical integration,
that the desired integral is an entity in
its own right; that the integral may on
occasion be subject to precise evaluation
in analytic terms, as with F(s) =2/[1+
(2775)?]; and that if numerical methods are
required a sum will be evaluated that is
an approximation to the desired integral.
One would then discuss the desired degree
of approximation and how to reach it
Now this is quite unlike the customary
way of thinking about the discrete Fourier
transform. What we evaluate is indeed a
sum, but we regard the sum as precise and
not as an approximation to an integral.
There are excellent reasons for this.
Meanwhile, the important thing to realize
is that there are both a Fourier transform
and a discrete Fourier transform, each with
its own definition. The discrete Fourier
transform operation is

1 N-1
—i2nvt /N
F) = & ;)f(r)e NG

The word “discrete” is used in antithe-
sis to ‘“continuous,” and in the cases
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discussed here means that an indepen-
dent variable assumes integer values. In
order to understand the discrete Fourier
transform, which is exclusively what we
compute when in numerical mode, it is
best to forget the Fourier integral and
to start afresh. Instead of starting with
a complex function f(x) that depends on
the continuous real variable x, we start
with N data (complex in general, but often
real) indexed by an integer serial number
7 (like time) that runs from 0 to N — 1.
In the days when FORTRAN did not ac-
cept zero as a subscript, summation from
7 = 0 caused much schizophrenia, but the
mathematical tradition of counting from
zero prevailed and is now unanimous. In
cases where f( ) is a wave form, as it often
is, the quantity = can be thought of as time
that is counted in units starting from time
zero. Clearly, N samples can never fully
represent exp(—|x|), for two reasons: the
samples take no account of the function
where x exceeds some finite value, and no
account is taken of fine detail between the
samples. Nevertheless, one may judge that,
for a given particular purpose, 100 samples
will suffice, and the confidence to judge
may be bolstered by trying whether acqui-
sition of 200 samples significantly affects
the purpose in hand. Numerical intuition
as developed by hand calculation has al-
ways been a feature of mathematical work
but was regarded as weak compared with
physical intuition. Nowadays, however, nu-
merical intuition is so readily acquired that
it has become a matter of choice whether
to attack questions about the size of N by
traditional analytic approaches. A new mix
of tools from analysis, finite mathematics,
and numerical analysis is evolving.

The discrete transform variable v re-
minds us of frequency. If v is thought
of as time measured in integral numbers
of seconds, then v is measured in cycles

per second, and is indeed like frequency
(c/s or Hz), but not exactly. It is v/N that
gives correct frequencies in Hz, and then
only for v < N/2. Where v exceeds N/2
we encounter a domain where the discrete
approach conflicts with the continuous.
When the Fourier transform is evaluated
as an integral, it is quite ordinary to con-
template negative values of s, and a graph
of F(s) will ordinarily have the vertical s = 0
axis in the middle, giving equal weight to
positive and negative “frequencies.” (The
unit of s is always cycles per unit of x; if x
is in meters, s will be a spatial frequency in
cycles per meter; if x is in seconds, s will
be a temporal frequency in cycles per sec-
ond, or Hz.) However, the discrete Fourier
transform, as conventionally defined, ex-
plicitly requires the transform variable v to
range from 0 to N — 1, not exhibiting neg-
ative values at all. There is nothing wrong
with that, but persons coming from con-
tinuous mathematics or from physics may
like to know that, when v is in the range
from N/2 to N — 1, the quantities N —v
correspond to the negative frequencies fa-
miliar to them as residing to the left of
the origin on the frequency axis. This is
because the discrete transform is periodic
in v, with period N.
In the familiar Fourier series
oo
p(x) =ag + Z(av cos 2mvx
1

“)

for a periodic function p(x) of period 27w,
the first term ag represents the direct-
current, zero-frequency, or mean value
over one period as calculated from

+ by, sin 2w vx),

1 2
ag = — / p(x) dx.
2 0

So the first term F(0) of the discrete
Fourier transform is the average of the



N data values. This is the reason for the
factor 1/N in front of the summation
sign in Eq.(3), a factor that must be
remembered when checking. In practical
computing it is efficient to combine the
factor 1/N with other factors such as
calibration factors and graphical scale
factors that are applied later at the display
stage. The remaining Fourier coefficients,
given by

1 2
ay = — / p(x) cos 2mvx dx,
T Jo

1 2
b, = —/ p(x) sin 2 vx dx,
T Jo

are related to the discrete Fourier trans-
form by a, — ib, = F(v). The minus sign
arises from the negative exponent in
the Fourier kernel ¢ "27*. The reason
for the choice of the negative expo-
nent is to preserve the convention that
d/dt be replaceable by +iw in the solu-
tion of linear differential equations, as
when the impedance of an inductance
L to alternating voltage of angular fre-
quency o is written +iwl (more usually
Jjwl).

How to decide whether the discrete
Fourier transform is an adequate approxi-
mation to the Fourier transform is a very
interesting question. But the question it-
self is open to challenge. If I am studying
cyclicity in animal populations, perhaps
seasonal influence on bird migration, I
may start with 365 reports of how many
birds were seen each day of the year. In
such a case, and in many other cases, dis-
crete data mean that the integrals, even
though convenient, are themselves the
approximations; the discrete Fourier trans-
form, given N equispaced data, is a valid
entity in its own right. Unexpected dis-
crepancies may arise, however, over the
choice of N, which may be taken too
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large or too small. Among the bad con-
sequences are slow computing (N too
large), unwanted sensitivity to measure-
ment error (N too small), and aliasing.
Aliasing is the word for the following
phenomenon. Measurements are made
of some time-varying phenomenon at
regularly spaced time intervals — perhaps
temperature is recorded twice a day or
perhaps speech samples are taken at a
10-kHz rate. Such data can represent har-
monic components with period longer
than one day or longer than 2 x 10~*s, but
cannot faithfully follow faster harmonic
variation. The samples will not ignore the
presence of such high frequencies, be-
cause the high-frequency variations will
indeed be sampled, but the samples will
be consistent with, and indistinguishable
from, a long-period sinusoidal compo-
nent that is not actually present. The
imperfectly sampled component emerges
under the alias of a lower, counterfeit
frequency.

3
Some Common Transforms

As a convenient reference source, def-
initions of several transforms (Laplace,
Fourier, Hartley, Mellin, Hilbert, Abel,
Hankel, Radon) are presented in Table 2.
When one has the transform, there is a
way of returning to the original function
in all the cases chosen. In some cases
the inverse operation T~! is the same as
the defining operation T (e.g., Hartley and
Hilbert, which are reciprocal transforms),
but the majority differ, as shown. In ad-
dition, examples of each transform are
presented. These will be found to convey
various general properties at a glance and
may be helpful for numerical checking.
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4
The Laplace Transform

A long and diverse history (Deakin, 1985)
characterizes the Laplace transform, which
was in use long before Laplace, but be-
came known to current generations mainly
through its pertinence to the linear dif-
ferential equations of transient behavior
in electricity and heat conduction. Many
tough technological problems of electric
circuits that arose in connection with teleg-
raphy, submarine cables, and wireless,
and related industrial-process problems of
thermal diffusion, were cracked around
the turn of the century, sometimes by
novel methods such as those of Heaviside
(1970), which were to be justified subse-
quently (Nahin, 1987) to the satisfaction
of academic mathematics by systematic
application of the Laplace transform. Heav-
iside is remembered for stimulating the
application of the Laplace transform to
convergence of series and for Maxwell’s
equations, the delta function, the Heav-
iside layer, impedance, non-convergent
series that are useful for computing, frac-
tional order derivatives and integrals, and
operational calculus.

Table 2 gives, as an example, the Laplace
transform of f(x) = exp(—x — 1.5)H(x +
1.5). The Heaviside unit step function
H(x) jumps, as x increases, from 0 to
1, the jump being where x = 0; one of
its uses is as a multiplying factor to
allow algebraic expression of functions
that switch on. The transform of f(x),
which is easy to verify by integration, is
(exp 1.55)/(1 + s); the transform variable
s may be complex but must lie among
those numbers whose real parts are greater
than —1 (otherwise the integral does not
exist). It is rather cumbersome to exhibit
the complex transform graphically on the
complex plane, and so an illustration is
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omitted. To invert the transform requires
integration on the complex plane along
a semicircular contour with indentations
if necessary to circumvent points where
the integrand goes to infinity (poles). The
constant ¢ in the inversion formula is to be
chosen to the right of all poles.

To some extent Laplace transforms
were computed numerically, but more
typically, development led to compilations
of analytic transforms resembling the
tables of integrals (Erdélyi etal., 1954;
Campbell and Foster, 1948). Programs
for deriving the Laplace transform of the
impulse response from electrical networks
given diagrammatically are also available.
Consequently it is hardly ever necessary
to derive Laplace transforms analytically
today. The analytic solution of transients
in electric circuits, a subject traditionally
used for sharpening the minds of electrical
engineers, is obsolescent because impulse
responses and transfer functions have
been concisely published (McCollum and
Brown, 1965). Furthermore, the advent
of integrated circuits has meant that
inductance is seldom included in new
designs, and that circuits containing more
than two or three elements have become
less common. Mature programs are also
available for step-by-step integration of
circuit differential equations.

On the numerical side the Laplace
transform has also been largely eroded
by use of the Fourier transform. This
is because angular frequency w is a real
quantity, mathematically, and it ought to
be possible to compute the behavior of an
electrical, acoustical, or mechanical system
without reference to a complex frequency
o — io. Certainly the Laplace transform is
computable over its strip of convergence
from any single slice therein. Nevertheless
practitioners of control theory find it
convenient to think on the complex plane
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of s in terms of poles and zeros that are
off the real frequency axis, and theirs is
one tradition that keeps the complex plane
alive; the convenience stems from the fact
that the Laplace transform is analytic, and
thus specifiable by its poles and isolated
zeroes. There are problems that used to
be handled by the Laplace transform,
paying strict attention to the strip of
convergence, because the Fourier integral
did not converge; but these situations
are now universally handled by Fourier
methodology with the aid of delta-function
notation for impulses and their derivatives,
and no longer call for special treatment.
When it comes to discrete computing,
the impulse, and its associated spectrum
reaching to indefinitely large frequencies,
may in any case be forgotten. Thus, it has
been wondered (Koérner, 1988) “whether
the Laplace transform will keep its place
in the standard mathematical methods
course for very much longer,” but it will
never die out; a new balance between
curricular segments will be struck.

5
Convergence Conditions

Much attention used to be given to the
existence of the Fourier integral because
of paradoxes with such wanted entities
as f(x) =1,f(x) = cosx, or f(x) = 8(x),
where §(x) is the unit impulse at x = 0,
none of which possessed a Fourier inte-
gral. Today we reason as a physicist would,
recognizing that a voltage waveform can-
not have a value of 1 V forever, but must
have turned on at some time in the pastand
will turn off at some time in the future.
The finite-duration function does have a
Fourier transform. We then consider a se-
quence of waveforms of longer and longer
duration and the corresponding sequence

of transforms, arriving at the concept of
“transforms in the limit.” This attitude
has received mathematical respectability
under the rubric of generalized functions
(Lighthill, 1958) and is the basis for say-
ing that the Fourier transform of §(x) is
1 [while conversely the Fourier transform
of 1 is §(s)]. The elaborate conditions for
the existence of a transform when gener-
alized functions were excluded have thus
lost interest. Even 8’ (x) now has the indis-
pensable transform i27s; under the rules
of analysis §’(x) was an unthinkable en-
tity — certainly not qualifying as a function
of x; to physicists it was a commonplace
dipole, and in mechanics a local load such
as a moment applied at a point on a beam.

The fact that the Laplace integral con-
verged when the Fourier transform did
not gave the Laplace transform a certain
prestige, even though convergence was
achieved at the cost of tapering the given
function by a real, exponentially decaying
factor. In addition, the strip of convergence
had to be specified for the complex trans-
form variable s. The convenience of dealing
with the real and physically intuitive fre-
quency as the transform variable has
shifted preference in favor of the Fourier
and Hartley transforms. The only effective
condition for the existence of a Fourier or
Hartley transform today is that the given
function should have a physical interpreta-
tion, or be representable by a sequence of
physically interpretable functions whose
individual transforms approach a limit.
Consequently it is no longer necessary to
require that f(x) be absolutely integrable
(/%% [f ()| dx exists) or that any discon-
tinuities be finite; on the contrary, the
“shah function” ITI(x) = £/=°% 8(x — n),
which could be said to possess an infinite
number of infinite discontinuities, now
has a Fourier transform thanks to the the-
ory of generalized functions (Bracewell,



1956). Interestingly, the Fourier transform
of ITI(x) is III(s).

The function sin(x~1) raises a conver-
gence question as a result of possessing an
infinite number of maxima in any interval
containing x = 0; this sort of behavior is
without interest in the world of numeri-
cal computing but of considerable interest
to the theory of integration. Possession of
an infinite number of maxima does not
in itself define the convergence condition
because the Fourier integral may converge
if the amplitude of the oscillation dies
down so that the function exhibits bounded
variation. Nor does bounded variation de-
fine the convergence condition because
Lipschitz has demonstrated functions of
unbounded variation whose Fourier in-
tegrals converge. However, the Lipschitz
condition is not the ultimate convergence
condition, as has been shown by Dini
(Bracewell, 1986a). This style of analysis
has lost practitioners as activity has moved
in the direction of finite, or discrete, math-
ematics.

6
Why Transforms Are Useful

Many problems can be posed in the form
of a differential equation (or a difference
equation, or an integral equation, or an
integro-differential equation) that has to
be solved for some wanted function sub-
ject to stated boundary conditions or initial
conditions. Laplace’s equation in three
dimensions describes the potential dis-
tribution set up by an array of electric
charges, and the diffusion equation de-
scribes the heat flow distribution set up by
a given distribution of heat. By applying
a transformation such as the Laplace or
Fourier to each term of such an equa-
tion, we arrive at a new equation that
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describes the transform rather than the
original wanted function. The interesting
thing about this is that the new equation
may be simpler, sometimes solvable just
by algebra. We solve that equation for the
transform of the solution, and then invert.
Not all differential equations simplify in
this way; those that do are characterized by
linearity and coordinate invariance (such
as time invariance), and the presence of
these characteristics in nature is responsi-
ble for a good deal of the numerical activity
with transforms. Transfer functions, such
as the frequency response curves of am-
plifiers, are corresponding manifestations
of these same characteristics. The passage
of a speech waveform through an ampli-
fier is described by a differential equation
that may be hard to solve; but having
used a Fourier transform to go to the
frequency domain, we apply the transfer
function, frequency by frequency, by com-
plex multiplication to get the transform of
the output. Then retransforming gives the
output waveform.

There is also a differential equation,
describing the bending of a beam under
the influence of a load distribution, that
may be thought of as a spatial input
analogous to an input waveform, while
the curve of deflection is analogous to
the output waveform. Although Hooke’s
law, the first of the linear laws, may
apply, we do not use transform methods.
If we analyze the load distribution into
spatially sinusoidal components and find
the bending response to each component,
and linearly sum the responses, we will
get the desired shape of the bent beam,
but there is no transfer function to
facilitate getting the individual responses
by simple algebra. The reason is that we
have linearity but not space invariance — if
we shift the load, the response does
not shift correspondingly without change
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of shape; a sinusoidal load does not
produce sinusoidal deflection. If, on the
contrary, we delay the input to an amplifier
or a vibratory mechanical system, the
response is correspondingly delayed but
is unchanged as to shape; furthermore,
a sinusoidal input produces a sinusoidal
output.

7
Fields of Application

Fourier (Grattan-Guinness, 1972) origi-
nally thought of representing the tem-
perature on a heat-conducting bar as a
sum of sinusoids. To avoid a problem
of integration he considered the bar to
be bent around on itself in a large cir-
cle, a distortion that is not harmful to
the discussion of any given finite straight
bar because the arc of interest can be
made as straight as you wish by taking
the circle large enough. Since the tem-
perature distribution on the ring is of
necessity now periodic in space, only a
fundamental and harmonics need be con-
sidered, plus the constant temperature ag
representing the mean temperature. As
time elapses, the temperature distribu-
tion varies as the heat flows under the
influence of the temperature gradients, ul-
timately approaching the uniform value
ao in the limit. Fourier found that the
component sinusoids decay exponentially
with a time constant proportional to the
spatial period, or wavelength, the nodes
of each sinusoid remaining fixed. By at-
tenuating each component in accordance
with the elapsed time, and summing, one
gets the same result as if the spatially vari-
able heat flow were followed in real time.
This is an example of the duality of the
function domain (space domain in this in-
stance) and the transform domain (spatial

frequency domain) that permeates Fourier
applications.

Music can be thought of in terms of
the wave form of the wave that con-
veys the sound through the air (function
domain), or in terms of the harmonic
constituents (spectral domain) that are
separately discernible by the ear and are
treated separately by an amplifier. In crys-
tallography there is the arrangement of the
atoms in space (crystal lattice domain) and
the spatial Fourier components (reciprocal
lattice domain) which, under illumination
by x rays or neutron beams, evidence them-
selves by diffraction at defined angles.
Image formation with cameras and radio
telescopes can be conceived as operating
on the object domain, or “sky plane,” or we
can think in terms of complex coherence
measurements in the transform domain.
All these dual modes of thought, under
their respective terminologies, are fully
equivalent; it helps to be familiar with both
and to be able to translate from one domain
to the other. In addition, it is most help-
ful to be able to translate between fields,
converting a problem in one subject into
the analogous problem in another subject
where the solution may be intuitively ob-
vious. As an example, persons who know
very well that the diffraction from a pair
of side-by-side pinholes is sinusoidal in
space may not know that the spectrum of a
pair of audible clicks in succession is sinu-
soidal in frequency. How much richer this
knowledge becomes when they are able to
translate from acoustics to optics and vice
versal

As a formal illustration of the method-
ology let us calculate the response of an
electric circuit consisting of an inductance
L in series with a resistance R to which
a voltage impulse of strength A is applied
at t = —1.5. Equating the sum of the volt-
ages in the circuit to zero, as taught by



Kirchhoff, gives the differential equation

AS(t) = L@ + Ri
T

where i(t) is the current flow in response
to the applied voltage. Taking the Fourier
transforms term by term (Table 1) we find
that

A1 — DrsLI(s) + RI(s),

where I(s) is the transform of the wanted
current. Solving this algebraic equation
gives AeiZn x1.5s

R+i2nLs’

and taking the inverse Fourier transforms
of both sides gives

I(s) =

A
i(t) = Ie_R(tH'S)/LH(t—f— 1.5).

The transform involved is illustrated
in Table2 for the Fourier transform.
The method for solving the same prob-
lem by the Laplace transform is similar
but involves reference to convergence
of the integral, a complication that is
circumvented when generalized function
theory is combined with the Fourier
integral.

Newton showed how to split sunlight
into its constituent colors with a prism,
where we think in the spatial domain,
but there is another way that we learned
from Michelson that is explicable in the
time domain. We split a beam of light,
and then recombine the two beams on
a photodetector, but not before a con-
trolled delay is introduced into one of
the beams, for example, by retroreflec-
tion from a movable plane mirror. The
detector output reveals the autocorre-
lation of the light beam from which,
by using the autocorrelation theorem
(Table 1) and numerical Fourier transfor-
mation, we get the spectral distribution of
power.
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8
The Hartley Transform

Table 2 illustrates by example that the
Fourier transform in general is a complex
function of the real transform variable s;
consequently two transform curves must
be drawn, one for the real part and
one (broken) for the imaginary part. The
example f(r) for the discrete Fourier
transform is based on samples of the
previous f(x). Imaginary values of the
discrete transform F(v) are shown as
hollow circles. Three features may be
noted: no matter how closely samples are
spaced, some detail can be missed; no
outlying parts beyond a finite range are
represented; the indexing convention 0 to
N — 1 has the effect of cutting off the left
side of F(s), translating it to the right, and
reconnecting it. To convey the nature of
this third comment, the points forr > N/2
have been copied back on the left.

The Hartley transform differs from the
Fourier transform in that the kernel is
the real function cas 2msx instead of
exp(—i2msx). The cas function, which was
introduced by Hartley (1942), is defined
by casx = cosx + sinx and is simply a
sinusoid of amplitude +/2 shifted one-eight
of a period to the left. The consequences of
the change are that the Hartley transform
is real rather than complex and that
the transformation is identical to the
inverse transformation. As may be obvious
from the graphical example, the Hartley
transform contains all the information that
is in the Fourier transform and one may
move freely from one to the other using
the relations

H(s) = Re F(s) — Im F(s)
and
2F(s) = H(s) + H(N —s) — iH(s)
+ 1H(N —s).
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The convenience that arises from famil-
iarity with complex algebra when one is
thinking about transforms loses its value in
computing. What one thinks of compactly
as one complex product still means four
real multiplications to computer hardware,
which must be instructed accordingly.

The Hartley transform is fully equivalent
to the Fourier transform and can be
used for any purpose for which the
Fourier transform is used, such as spectral
analysis. To get the power spectrum from
the complex-valued Fourier transform one
forms [Re f(s)]* + [ImF(s))?; starting from
the real-valued Hartley transform one
forms [H(s)]> + [H(—s)]?>. The phase is
obtained from

Im(s)
Re(s)
H(-s)1 =
- [ H(s) ] 4

We see that for purposes of spectral
analysis by the Hartley transform it is not
necessary to work with complex quantities,
since power spectrum is an intrinsic
property independent of choice of kernel;
the phase depends on the x origin which is
locked to the peak of the cosine function in

one case and the peak of the cas function
in the other, hence the term 7 /4.

tan¢(s) =

9
The Fast Fourier Transform

Around 1805 C.F. Gauss, who was then
28, was computing orbits by a technique
of trigonometric sums equivalent to to-
day’s discrete Fourier synthesis. To get the
coefficients from a set of a dozen regu-
larly spaced data he could if he wished
explicitly implement the formula that we
recognize as the discrete Fourier trans-
form. To do this he would multiply the

N data values f(r) by the weighting fac-
tors exp(—i2wvt), sum the products, and
repeat these N multiplications N times,
once for each value of v, making a to-
tal of N? multiplications. But he found
that, in the case where N is a composite
number with factors such that N = nyny,
the number of multiplications was re-
duced when the data were partitioned
into ny sets of ny terms. Where N was
composed of three or more factors a fur-
ther advantage could be obtained. Gauss
(1876) wrote, “illam vero methodum cal-
culi mechanici taedium magis minuere,
praxis tentatem docebit.” He refers to
diminishing the tedium of mechanical cal-
culation, as practice will teach him who
tries. This factoring procedure, usually
into factors of 2, is the basis of the fast
Fourier transform (FFT) algorithm, which
is explained in many textbooks (Bracewell,
1986a; Elliott and Rao, 1982; IEEE, 1979;
Nussbaumer, 1982; Press et al., 1986; Ra-
biner and Gold, 1975) and is available
in software packages. The fast method
(Cooley and Tukey, 1965) burst on the
world of signal analysis in 1965 and was
for a time known as the Cooley-Tukey
algorithm (IEEE, 1967), but as the inter-
esting history (Heideman et al., 1985) of
prior usage in computing circles became
known the term FFT became univer-
sal.

Most FFT programs in use take advan-
tage of factors by adopting a choice of N
thatis some power Pof2,i.e., N = 2P The
user may then design the data collection
to gather, for example, 256 = 22 readings.
Alternatively, when such a choice does
not offer, a user with 365 data points can
simply append sufficient zeros to reach
512 = 2° values. This might seem waste-
ful, but an attendant feature is the closer
spacing of the resulting transform sam-
ples, which is advantageous for visual



presentation. Perhaps one could do the
job faster, say by factoring into 5 x 73.
There are fast algorithms for 5 points
and for many other small primes, but
not for 73, as far as I know; it is sim-
ply not practical to store and select from
lots of special programs for peculiar val-
ues of N. On the other hand, a significant
speed advantage is gained if one elects
more rigidity rather than more flexibility,
tailors one’s data collection to a total of
4P values, and uses what is referred to as
a radix-4 program. Since 1024 = 4°, the
radix-4 approach is applicable to N = 1024
data samples (or to 256 for example),
but not to 512 unless one appends 512
zeros. Packing with just as many zeros
as there are data is commonly practised
because twice as many transform values
result from the computation, and when
the power spectrum is presented graphi-
cally as a polygon connecting the computed
values the appearance to the eye is much
smoother.

Much practical technique is involved. If
the sound level of an aircraft passing over
a residential area is to be recorded as a
set of measurements equispaced in time,
the quantity under study begins and ends
at zero value. But in other cases, such
as a record of freeway noise, the noise is
present when measurements begin and
is still there when they cease; if the N
values recorded are then packed with ze-
ros, a discontinuity is introduced whose
effects on the transform, such as over-
shoot and negative-going oscillation, may
be undesirable. Packing with plausible (but
unobserved) data can eliminate the unde-
sired artifacts and is probably practised
in more cases than are admitted to. Au-
thors often mitigate the effects of implied
discontinuities in the data by multiply-
ing by a tapering function, such as a set
of binomial coefficients, that approaches
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zero at both the beginning and end of the
data taken; they should then explain that
they value freedom from negatives more
than accuracy of amplitude values of spec-
tral peaks or than resolution of adjacent
peaks.

The FFT is carried out in P successive
stages, each entailing N multiplications,
for a total of NP. When NP is compared
with N2 (as for direct implementation
of the defining formula) the savings
are substantial for large N and make
operations feasible, especially on large
digital images, that would otherwise be
unreasonably time consuming.

10
The Fast Hartley Algorithm

When data values are real, which is very
commonly the case, the Fourier transform
is nevertheless complex. The N transform
values are also redundant (if you have the
results for 0 <v < N/2 you can deduce
the rest). This inefficiency was originally
dealt with by the introduction of a variety
of efficient but unilateral algorithms that
transformed in half of the time of the
FFT, albeit in one direction only; now we
have the Hartley transform, which for real
data is itself real, is not redundant, and
is bidirectional. The Hartley transform is
elegant and simple and takes you to the
other domain, regardless of which one
you are in currently (Bracewell, 1986b;
Buneman, 1989).

When a Hartley transform is obtained,
there may be a further step required
to get to the more familiar complex
Fourier transform. The time taken is al-
ways negligible, but even so the step is
usually unnecessary. The reason is that
although we are accustomed to think-
ing in terms of complex quantities for
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convenience, it is never obligatory to
do so. As a common example, suppose
we want the power spectrum, which is
defined in terms of the real and imag-
inary parts of the Fourier transform
by P(v) = [ReF(v)]* + [ImF1)]?. If we al-
ready have the Hartley transform H(v),
then it is not necessary to move first
to the complex plane and then to get
the power spectrum; the desired result
is obtained directly as {{H(v)]* + [H(N —
v)]?}/2. Likewise phase ¢(v), which is
required much less often than P(v), is
defined by tan[¢ (v)] = ImF(v)/ReF(v); al-
ternatively, one can get phase directly
from tan[¢(v) + 7/4] = H(N —v)/H(v),
thus circumventing the further step
that would be necessary to go via the
well-beaten path of real and imaginary
parts.

To illustrate the application to power
spectra take as a short example the data
set {12345678}, whose discrete Hartley
transform is

H) = {45
-0.5

—1.707 —0.707
—0.293 0 0.707}.

-1

The first term, 4.5, is the mean value
of the data set. The power spectrum
for zero frequency is 452 for fre-
quency 1/8(v = 1), P(1) = (—=1.707)2 +
(0.707)2, for frequency 2/8(v = 2), P(2) =
(=1)% 4 02. Similarly P(3) = (—0.707)% +
(=0.293)2 and P®4) = (=0.5)% + (0.5)%.
The highest frequency reached is 4/8, cor-
responding to a period of 2, which is the
shortest period countenanced by data at
unit interval.

The encoding of phase by a real trans-
form has added a physical dimension to the
interest of the Hartley transform, which
has been constructed in the laboratory
with light and microwaves (Villasenor and
Bracewell, 1987, 1988, 1990; Bracewell,

1989; Bracewell and Villasenor, 1990) and
has suggested a new sort of hologram.

11
The Mellin Transform

The vast majority of transform calculations
that are done every day fall into categories
that have already been dealt with and
much of what has been said is applicable
to the special transforms that remain
to be mentioned. The Mellin transform
has the property that Fm(n+ 1) is the
nth moment of f(x) when n assumes
a finite number of integer values 1, 2,
3, ... . The special value Fy(1) is the
zeroth moment of, or area under, f(x).
But the transform variable does not have
to be integral, or even real, so one can
think of the Mellin transform as a sort of
interpolate passing through the moment
values. When the scale of x is stretched
or compressed, for example, when f (x) is
changed to f(ax), the Mellin transform
becomes a%Fp(s), a modification that
leaves the position of features on the s axis
unchanged and is useful in some pattern-
recognition problems.

If we plot f(x) on a logarithmic scale
of x, a familiar type of distortion re-
sults, and we have a new function f(e™*)
whose Laplace transform is exactly the
same as the Mellin transform of f(x).
An equally intimate relation exists with
the Fourier transform. Consequently the
FFT may be applicable in numerical situa-
tions. Because of the intimate relationship
with moments and with spectral anal-
ysis, Mellin transforms have very wide
application. A specific example is given
by the solution of the two-dimensional
Laplace equation expressed in polar co-
ordinates, namely 82V /ar? +r~19V/or +
1292V /36% = 0. Multiply each term by



r*~! and integrate with respect to r from 0

to co. We get d2Fy/d6% + s2Fy = 0. Solve
this for Fm() and invert the transform to
get the solution. In this example, a partial
differential equation is converted to a sim-
ple differential equation by the transform
technique.

12
The Hilbert Transform

As the example in Table 2 shows, the
Hilbert transform, or quadrature func-
tion, of a cosinusoidal wave packet is a
similar, but odd, waveform sharing the
same envelope. But what do we mean
by the envelope of an oscillation that
only touches the intuitively conceived en-
velope at discrete points? The Hilbert
transform provides an answer in the form

[f (3] + [fui(x)]?. Likewise, the original
wave packet reveals its phase at its zero
crossings. But what is the phase at in-
termediate points? The Hilbert transform
supplies an instantaneous phase ¢ in the
form tan ¢ = fi5i(x)/f (x). The operation T
for the Hilbert transform is simply convo-
lution with —1/7x. It is known that the
Fourier transform of —1/mx is i sgn s,
where sgn sis 1 fors > 0and —1 fors < 0.
Therefore, by the convolution theorem
(last line of Table 1), according to which
the Fourier transform of a convolution is
the product of the separate Fourier trans-
forms, it would seem that a fast Hilbert
transform of f (x) could be calculated as fol-
lows. Take the FFT of f (x), multiply by i for
0 <v < N/2 and by —i for N/2 <v < N,
set F(0) and F(N/2) equal to zero, and
invert the FFT to obtain the Hilbert trans-
form. This sounds straightforward, but the
procedure is fraught with peril, for two
reasons. We are proposing to multiply a
given function f(x) by —1/7[(x + const)]
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and to integrate from —oo to oo, but we
are only given N samples. The extrem-
ities of —1/mwx approach zero and have
opposite signs, but there is infinite area
under these tails no matter how far out
we start. Consequently we are asking two
oppositely signed large numbers to cancel
acceptably. How can we expect satisfac-
tion when the convolving function —1/7x
is not symmetrically situated about the
extremes of the data range? The second
reason is that we are asking for similar
cancellation in the vicinity of the pole of
1/x. Experience shows that satisfactory en-
velopes and phases only result when f(x)
is a rather narrow-band function. Under
other circumstances an N-point discrete
Hilbert transform can be defined and will
give valid results free from worries about
the infinities of analysis, but the outcome
may not suit expectation.

An optical wave packet exp(—mt?/T?)
sin2nvt of equivalent duration T easily
meets the narrow-band condition when
the duration T is much greater than the
wave period 1/v; it has a Hilbert trans-
form exp(—nt?/T?) cos 2rvt. The square
root of the sum of the squares yields
exp(—mt?/T?) for the envelope, in full ac-
cord with expectation.

13
Multidimensional Transforms

The two-dimensional Fourier and Hartley
transforms are defined respectively by

F(u’ V) = / / f(xv Y)

x 67i2n(ux+vy) dxdy

F(u’ V) = ‘/ / f(xv Y)

x cas[27w (ux + vy)]dxdy,
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where the transform variables u and v
mean spatial frequency components in
the x and y directions. Work with images
involves two dimensions, electrostatics
and x-ray crystallography involve three,
and fluid dynamics involves four. Multi-
dimensional transforms can be handled
numerically with a one-dimensional FFT
subprogram, or a fast Hartley, as follows.
Consider an N x N data array. Take the
1-D (one-dimensional) transform of each
row and write the N transform values
in over the data values. Now take the
1-D transform of each resulting column
(Bracewell, 1984; Bracewell etal., 1986).
In three and four dimensions the pro-
cedure is analogous (Hao and Bracewell,
1987; Buneman, 1989). Further simple
steps lead to the Hartley transform and to
the real and imaginary parts of the Fourier
transform if they are wanted, but usu-
ally they are not; more often the quadratic
content (power spectrum) suffices.

When a 2-D function has circular
symmetry, as commonly arises with the
response functions of optical instruments,
not so much work is required, as explained
below in connection with the Hankel
transform. Cylindrical symmetry in 3-D
is essentially the same, while spherical
symmetry in 3-D is also referred to below.

14
The Hankel Transform

In two dimensions, where there is cir-
cular symmetry as expressed by a given
function f (r), the two-dimensional Fourier
transform is also circularly symmetrical;
call it Fyy,(s). It can be arrived at by taking
the full 2-D transform as described earlier,
or it can be obtained from a single 1-D
Hankel transform as defined in Table 2.
The inverse transform is identical. There

is apparently no opening for the Hart-
ley transform because in the presence of
circular symmetry the 2-D Fourier trans-
form of real data contains no imaginary
part. The kernel for the Hankel trans-
form is a zero-order Bessel function, which
is a complication that hampers the FFT
factoring approach, but there is an ele-
gant sidestep around this that is explained
below in connection with the Abel trans-
form. Under spherical symmetry, the 3-D
Fourier transform reduces to a different
one-dimensional transform

47 /Oof(r)sinc(Zsr)r2 dr. (5)
0

The inverse transform is identical.

To illustrate by a well-known result
from optical diffraction we consider a
telescope aperture f(r) representable as
rect(r/D), a two-dimensional function that
is equal to unity over a circle of diameter
D. The Hankel transform is D?jincDs,
the familiar Fraunhofer diffraction field
of a circular aperture. The jinc function
[jincx = J1(wx)/2x], which is the Hankel
transform of the unit rectangle function
of unit height within a radius of 0.5, has
the property that jinc 1.22 = 0; this is the
source of the constant in the expression
1.22)/D for the angular resolution of a
telescope.

15
The Abel Transform

Most commonly, although not always, the
Abel transform arises when a 2-D function
g(x, y) has circular symmetry, as given by
f(r). The Abel transform (Table 2) then
simplifies to Fa(x) = /% g(x,y)dy. In
other words, if the given f (r) is represented
by a square matrix of suitably spaced
samples, then the Abel transform results



when the columns are summed. There
might not seem to be any future in trying
to speed up such a basic operation, apart
from the obvious step of summing only
half-way and doubling. However, when itis
remembered that for each of N2/8 matrix
elements we have to calculate /x2 + y% to
find r, and thence f(r), it gives pause.
The alternative is to proceed by equal
steps in r rather than in y; then the
oversampling near the x axis is mitigated.
But the variable radial spacing of elements
stacked in a column needs correction by
a factor r/«/r> —s2, which takes more
time to compute than /x2 + y2. This is
an excellent case for decision by using
the millisecond timer found on personal
computers. Of course, if many runs are
to be made, the factors r/+/r2 — s% can be
precomputed and the preparation time can
be amortized over the successive runs.
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Figure 1 shows a given function g(x, y)
and its one-dimensional projection (la-
beled P) which is derived by integrating
along the y axis in the (x,y) plane. In-
tegrating along the y' axis of a rotated
coordinate system gives the projection P'.
Now if g(x, y) were circularly symmetrical,
being a function f(r) of r only, then the
projections P and P’ would be identical
and equal to the Abel transform of f(r).
This is the graphical interpretation of the
Abel transform.

Applications of the Abel transform arise
wherever circular or spherical symmetry
exists. As an example of the latter consider
a photograph of a globular cluster of stars
in the outer reaches of the galaxy. The
number of stars per unit area can be
counted as a function of distance from the
center of the cluster; this is the projected
density. To find the true volume density

?
“’T% Abel %@/
\ 2-D Fourier
l transform
[ 9@ y)dye— 1.D FT — ofglz.y)
S
g

Fig. 1

lllustrating the projection-slice theorem, which states that if a

distribution g(x, y) has a projection P/, in the y’ direction, its 1-D Fourier
transform is the slice S’ through the 2-D Fourier transform of g(x, y). The set
of projections P’ for all inclination angles of the (x', y') coordinates
constitutes the Radon transform. In the presence of circular symmetry

where g(x, y)

= f(r), the projection P in any direction is the Abel transform

of f(r). The 1-D Fourier transform of P is the slice S in any direction; this
slice S is then the Hankel transform of f (r). Thus the Abel, Fourier, and
Hankel transforms form a cycle of transforms.
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as a function of radius requires taking the
inverse Abel transform (Table 2) of the
projected density.

With the Abel transform under control
we can now see a way of doing the Hankel
transform without having to call up Bessel
functions. The Abel, Fourier, and Hankel
transforms form a cycle known as the FHA
cycle (Bracewell, 1956), so that if we take
the Abel transform and then take the FFT
we get the Hankel transform; the theorem
is

/ dr]o(an-‘r)r/ dse!mrs
0 —00

 dx2xf (x)
S

The FFT required will not be complex,
exceptin the extraordinary case of complex
2-D data; consequently it will in fact be
appropriate to use the fast Hartley to get the
Hankel transform. Because of symmetry
the result will also be exactly the same as
obtained with the FFT, if after taking the
FFT we pay no attention to the imaginary
parts that have been computed, which
should all be zero or close to zero.

The FHA cycle of transforms is a spe-
cial case of the projection slice theorem,
a theorem which refers to the more gen-
eral situation where g(x, y) is not circularly
symmetrical. Circular symmetry charac-
terizes instruments, especially optical in-
struments, which are artifacts. Lack of
symmetry characterizes data; tomographic
data will be taken as the illustration for the
projection-slice theorem.

=f).

16
Tomography and the Radon Transform

Consider a set of rotated coordinates
(x',y) centered on the (x,y) plane,
but rotated through 6. The expression

X o g(x,y)dy given for the Abel trans-
form, representing a line integral in the
y direction at a given value of x, would
equal the line integral /%% g(x,y)dy in
the rotated direction y’ provided g(x, y) had
circular symmetry as specified for the Abel
transform. But when g(x, y) does not have
symmetry, then the line-integral values de-
pend both on x’ and on the angle 6 (Fig. 1).
The set of integrals with respect to dy’ is
the Radon transform of g(x, y), named after
Johann Radon (1917). Such integrals arise
in computed x-ray tomography, where a
needle-beam of x rays scans within a thin
plane section of an organ such as the brain
with a view to determining the distribu-
tion of absorption coefficient in that plane.
If there are N? pixels for which values
have to be determined, and since one scan
will give N data, at least N different di-
rections of scan spaced 180°/N apart will
be needed to acquire enough data to solve
for the N? unknowns. In practice more
than 2N directions are helpful in order to
compensate for diminished sample den-
sity at the periphery. To compute a Radon
transform is easy; the only tricky part is
summing a given matrix along inclined
directions. One approach is to rotate all
the matrix and interpolate onto a rotated
grid, for each direction of scan; but this
may be too costly. At the other extreme
one sums, without weighting, the matrix
values lying within inclined strips that, in-
dependently of inclination, preserve unit
width in the direction parallel to the nearer
coordinate direction. How coarse the incre-
ment inclination angle may be depends on
acceptability as judged by the user in the
presence of actual data.

The harder problem is to invert the line-
integral data to retrieve the wanted absorp-
tion coefficient distribution. A solution
was given by Radon (1917). Later Cormack
(1963, 1964, 1980), working in the context



of x-ray scanning of a solid object, gave
a solution in terms of sums of transcen-
dental functions. Other solutions include
the modified back-projection algorithm
(Bracewell, 1956; Bracewell and Riddle,
1967) used in CAT scanners (Deans, 1983;
Brooks and Di Chiro, 1976; Rosenfeld and
Kac, 1982). The algorithm depends on the
projection-slice theorem (see Fig. 1). Ac-
cording to this theorem (Bracewell, 1956)
the 1-D Fourier transform of the projection
P’ (or scan) of g(x, y) in any one direction
is the corresponding central cross section
or slice S’ through the 2-D Fourier trans-
form of the wanted distribution g(x, y).
The proof is as follows. Let the 2-D Fourier
transform of g(x, y) be G(u, v) as defined

by
Gu,v) = f / gty

x e~ 2T WA gy

Setting v = 0, so as to have the representa-
tion G(u, 0) for the slice S, we get

G(u, 0) = / / g(x,y)

x efiZnuxdx dY

=/ [/ g(x,y)dy}

% e*tZT[HX dx

o0
— / P(x)efiZHux dx,
—00

where P(x) is the projection of g(x, y) onto
the x axis. Thus the 1-D transform of the
projection P(x) is the slice G(u, 0) through
the 2-D transform of g(x, y). If we rotate
the coordinate axes to any other orientation
(x',y) we see that the same proof applies.

Because the density of polar coordinate
samples is inversely proportional to radius
in the Fourier transform plane, a simple
correction factor followed by an inverse 2-D
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Fourier transform will yield the solution.
Butaway was found (Bracewell and Riddle,
1967; Brooks and Di Chiro, 1976), based
on this theoretical reasoning, to avoid
numerical Fourier transforms entirely. An
equivalent correction term, arrived at by
convolving each projection P’ with a few
coefficients, can be directly applied to each
P, after which the modified projections
are accumulated on the (x,y) plane by
back projection to reconstitute g(x, y). Back
projection means assigning the projected
value at ¥’ to all points of the (x, y) plane
which, in the rotated coordinate system,
have the abscissa . Accumulation means
summing the back-projected distributions
for all inclination angles.

17
The Walsh Transform

A function defined on the interval (0,1)
can be expressed as a sum of sines and
cosines of frequency 1,2, 3, ..., but can
also be expressed as a sum of many other
sets of basis functions. Among the al-
ternatives, Walsh functions (Elliott and
Rao, 1982; Walsh, 1923; Hsu and Wu,
1987) are particularly interesting because
they oscillate between values of +1, 0,
and —1, a property that is most appropri-
ate to digital circuits, telecommunications,
and radar. Furthermore, multiplication by
a Walsh function value takes much less
time than multiplication by a trigonomet-
ric function. Walsh functions, not being
periodic, are not to be confused with the
periodic square cosine and sine functions
C(x) = sgn(cosx) and S(x) = sgn(sin x);
but on a finite support they do form a com-
plete set from which any given function
can be composed. They are also orthonor-
mal (mutually orthogonal and with fixed
quadratic content, as with Fourier compo-
nents), which leads to simple relations for
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both analysis and synthesis. The Walsh (or
Walsh—Hadamard) transform has found
use in digital signal and image process-
ing and for fast spectral analysis. Fast
algorithms are available that use only
addition and subtraction and have been
implemented in hardware. A vast, enthu-
siastic literature sprang into existence in
the 1970s, a guide to which can be found
in the text by Elliott and Rao (1982).

18
The z Transform

In control theory, in dealing with signals
of the form

fH = anst—n) (6)
and systems whose response to §(%) is
h(t) = had(t—n), )
0

the response g(t) is the convolution integral
oo
gt) = / fWhE—-tHdl. (8

This response is a series of equispaced
impulses whose strengths are given by
3a;h,—;, an expression representable in
asterisk notation for convolution by {g,} =
{an} * {hn} [in this notation the sequence
{an} sufficiently represents f ()]. For exam-
ple,asignal {1 1 1 1 1 1...} ap-
plied to a system whose impulse response
is {8 4 2 1} produces a response

(1111 1 1...}%{8 4 2 1}

={8 12 14 15 15 15...}.

This is the same rule as that which pro-
duces the coefficients of the polynomial
that is the product of the two poly-
nomials Xa,z" and Xh,z", as may be
verified by multiplying 1+ z + 2% + 23 +
24224+ by8+4+4z+222 +23. The z
transform of the sequence {8 4 2 1}
is, by one definition, just the polynomial

8 4 4z + 22% + 2°; more often one sees
8+4z7 1+ 22724 273 If conversely, we
ask what applied signal would produce the
response {8 12 14 15 15 15...}
we get the answer by long division:

(8 + 12z + 142> + 1523

+152% +152° + -+ )
(8+4z+222 +23)
Occasionally, one of the polynomials may
factor, or simplify, allowing cancellation of
factors in the numerator and denominator.
For example, the z transform of the infinite
impulse response {8 4 2 1 0.5...},
where successive elements are halved,
simplifies to 8/(1 — z/2). But with mea-
sured data, or measured system responses,
or both, this never happens and the
z notation for a polynomial quotient
is then just a waste of ink compared
with straightforward sequence notation
such as {8 12 14 15 15 15...}«%
{8 4 2 1...}7'. Whenever sampled
data are operated on by a convolution
operator (examples would be finite dif-
ferences, finite sums, weighted running
means, finite-impulse-response filters) the
z transform of the outcome is expressible
as a product of z transforms. Thus to take
the finite difference of a data sequence one
could multiply its z transform by 1—z
and the resulting polynomial would be the
z transform of the desired answer; in a
numerical environment one would simply
convolve the data with {1 — 1}. In control
theory and filter design, the complex plane
of z is valued as a tool for thinking about
the topology of the poles and zeroes of
transfer functions.

19
Convolution

Sequences to be convolved may be handled
directly with available subprograms for



convolution and inverse convolution that
operate by complex multiplication in the
Fourier transform domain. When two real
sequences are to be convolved you can do
it conveniently by calling the two Hartley
transforms, multiplying term by term,
and calling the same Hartley transform
again to get the answer. Some subtleties
are involved when the sequences are of
unequal length or in the unusual event
that neither of the factors has symmetry
(even or odd) (Bracewell, 1986b). If one
of the sequences is short, having less
than about 32 elements, depending on
the machine, then slow convolution by
direct evaluation of the convolution sum
may be faster, and a shorter program will
suffice. When the Fourier transform is
used, the multiplications are complex but
half of them may be avoided because of
Hermitian symmetry. Software packages
such as CNVLV (Press etal., 1986) are
available that handle these technicalities
by calling two unilateral transforms, each
faster than the FFT, or two equivalent
subprograms; one fast Hartley transform,
which is bilateral and, conveniently for
the computer, real valued, now replaces
such packages. Fast convolution using
prime-factor algorithms is also available
if general-purpose use is not a requisite.

As an example, suppose that {1 2 1}
is to be convolved with {1 4 6 4 1},
a simple situation where we know that the
answer is the binomial sequence

{1 6 15 20 15 6 1}

If we select N=8 for the discrete
transform calculation, the given factors
become in effect

fik)={1 2 1.0 0 0 0 O}
and

HE)={1 4 6 4 1 0 0 0},
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respectively, where the boldface empha-
sizes the zeroth elements f1(0) and £,(0).
The sequence {1 2 1} is commonly
used to apply some smoothing to a data se-
quence, but since the center of symmetry
at the element 2 is offset from the origin
at T = 0, a shift will be introduced in addi-
tion to the smoothing. Therefore it makes
sense to permute the sequence cyclically
and use

fitk)={2 1. 0 0 0 0 O 1}
To compute the convolution

fh=hxh
={2 10000 0 1}
x{1 4 6 4 10 0 0},

we take the two 8-element Hartley trans-
forms to get the values H; and Hj
tabulated in Table 3. Multiply the corre-
sponding values as shown under HiH;
and take the Hartley transform again. The
result is as expected; notice that the peak
value 20 occurs where the peak value 6 of
f2(7) occurs; this is a result of the precau-
tion of centering {1 2 1} appropriately.
The noninteger results are a consequence
of rounding to three decimals for demon-
stration purposes, and these errors will be

Tab.3 Performing convolution by multiplying
Hartley transforms

h £ H, H, HyH; f

2 1 0.5 2 1 6

1 4 0.427 1.457 0.622 15.008
0 6 0.25 —0.5 —0.125 20

0 4 0.073 —0.043 —0.003 15.008
0 1 0 0 0 6

0 0 0.073 0.043 0.003 0.992
0 0 0.25 —-0.5 —0.125 0

1 0 0.427 —1.457 —-0.622 0.992
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present, though smaller, if more decimals
are retained.

20
Summary

A great analytic tradition of mathematical
transform theory has gained far-ranging
everyday importance by virtue of new
numerical possibilities opened up by
automatic computing machines.

Glossary

Alias: A sinusoid of low frequency spuri-
ously introduced by insufficient sampling
in the presence of a sinusoidal component
of semiperiod shorter than the sampling
interval.

Convolution of Two Functions: A third
function composed by spreading each
element of one given function out into
the form of the second function and
superimposing the spread components.

Discrete Transform: One suited to func-
tions, such as those constituted by equi-
spaced data samples, where the function
values occur at discrete intervals and are
usually finite in number.

Fast Fourier Transform (FFT): An algo-
rithm for computing the discrete Fourier
transform in less time than would be re-
quired to evaluate the sum of the products
indicated in the defining formula.

Frequency, Negative: A convenient fiction
arising from the representation of real
sinusoids by complex quantities. The rep-
resentation of the real function cos2nft
in the form % exp[i2nfi] + % exp[i27 (—f)t]
involves clockwise rotation at frequency
f and counter-clockwise rotation at fre-

quency —f.

Frequency, Spatial: The reciprocal of the
period of a periodic function of space.
Values of spatial frequency are expressed
in cycles per meter, or in cycles per radian,
according as the spatial variable is distance
or angle.

Frequency, Temporal: The reciprocal of the
period of a periodic function of time.
Values are expressed in cycles per second,
or hertz.

Heaviside Unit Step Function: A function
H(x) that is equal to zero to the left of the
origin and equal to unity to the right. The
value H(0) at the origin has no effect on the
value of integrals but may conventionally
be taken as 0.5.

Inverse Transformation: An operation that,
when applied to the transform of a
function, effectively recovers the function.

Linear Transformation: A transformation
with the property that the transform of
the sum of any two functions is the sum
of the separate transforms.

Tomography: Originally a photographic
technique for obtaining an x-ray image of a
slice of tissue within the body; now applied
in many fields to a technique of combin-
ing projections in many orientations to
reconstruct an image.

Transform: A mathematical function, each
value of which is derived from a set of
values of a given function by an explicit
operation.
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Texts treating the various transforms and
computational methods are identifiable from
their titles in the list of works cited. An
indispensable source for locating recent ma-
terial on any of the special branches men-
tioned in this article is Mathematical Ab-
stracts.
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Introduction

A quantitative description of the structure
of physical objects plays an important role
in our understanding of a wide range
of phenomena. In many areas such as
spectroscopy, solid-state physics, and engi-
neering physics, the symmetry properties
associated with this geometric description
lead to important insights that would be
difficult to obtain in other ways. Until
recently structures have been described
in terms of Euclidean geometry (straight
lines, planar surfaces, spherical particles,
etc.) and the associated symmetries of in-
variance to rotation, reflection, translation,
and inversion. However, many systems of
practical importance (colloids, rough sur-
faces and interfaces, polymer molecules,
etc.) cannot be described satisfactorily in
such terms. In the decade or so follow-
ing the development and popularization
of fractal geometry by Mandelbrot (1977,
1982) it has been shown that fractal geom-
etry and the associated symmetry of scale
invariance can be used to describe a wide
variety of disorderly structures.

]
Self-Similar Fractals

1.1
The Cantor Set, A Simple Example

The first and perhaps the most simple
example of a fractal (the Cantor set) is
illustrated in Fig. 1. The Cantor set can
be constructed by first taking a line and
removing the middle third. In the next
stage of this process the middle third
from each of the remaining line segments
is removed, etc. After n generations the
number of line segments has grown to
2" but their total length has decreased to

(2)". In the limit n — oo a self-similar
fractal has been constructed. If this fractal
is dilated by a factor of 3, it can be
covered by two replicas of itself. Such
self-similar fractals can be characterized
in terms of their fractal dimensionality
D given by D = logn/logi, where n is
the number of replicas required to cover
the fractal after dilation by a factor of A.
For the Cantor set illustrated in Fig. 1 the
fractal dimensionality is log 2/log 3, or
about0.6309. This is intuitively reasonable;
the Cantor set is clearly more than a
point (D = 0), since it contains an infinite
number of them, but less than a line
(D = 1), since its total length is zero. In
many applications the fractal dimension
can be thought of as the exponent that
relates mass M to length L,
M~ LP. (1)
Here, L is a characteristic length, such as
the radius of gyration Rg or maximum
diameter, that describes the overall spatial
extent. Equation (1) is also appropriate
for Euclidean shapes where D is now the
ordinary, Euclidean, dimensionality d.
After they were first introduced, fractals
such as the Cantor set were considered to
be very unusual objects with no possible
applications in the physical sciences. In

L
(@)
L/3 L/3
(b)
L/9 L/9 L/9 L/9
(©
(d)
Fig. 1 Three stages in the construction of a

Cantor set with a fractal dimensionality of
log 2/log 3. The bottom line shows the
third-generation prefractal



some areas fractals are still referred to
by terms such as “strange sets”; this no
longer seems to be appropriate. There is
no precise definition of a fractal, but in
general terms a fractal is an object that has
the same degree of complexity on different
length scales.

In real systems the geometric scaling re-
lationships that characterize fractal objects
do not extend over an infinite range of
length scales. There are in general both
lower (¢) and upper (L) cutoff lengths
that limit the range of fractal scaling. For
example, in the case of a flexible poly-
mer molecule ¢ might correspond to the
monomer size and L to the radius of gyra-
tion. If the ratio L/e is large, then fractal
geometry can be a very important asset in
our attempts to understand complex, dis-
orderly systems. If L/e is small (say less
than one order of magnitude), then frac-
tal geometry is not likely to be of much
practical importance. However, it may still
be of considerable conceptual value if the
structure was assembled by a mechanism
that would lead to a fractal structure if it
were not perturbed by other processes.

1.2
Statistically Self-Similar Fractals

Highly organized regular fractals such as
the Cantor set (Fig. 1) that can be mapped
exactly onto themselves after a change of
length scales do not provide realistic mod-
els for describing most natural structures.
Such natural fractals have a more com-
plex disorderly structure that is self-similar
only in a statistical sense. Statistically self-
similar fractals can be described in terms
of the scaling relationships such as Eq. (1)
that describe regular, hierarchical fractals,
but these equations must now be inter-
preted statistically (for example L might be

Fractal Geometry

Diffusion—limited CI-Cl-3d
M = 10,732 \

260 diameters

Fig.2 A cluster of 10,732 particles generated
using a three-dimensional off-lattice
diffusion-limited cluster-cluster aggregation
model. In this model the cluster size distribution
is allowed to evolve in a natural way

the average radius of gyration for a large
ensemble of structures of mass M).

Figure 2 shows an example of a sta-
tistically self-similar fractal structure. It
is a projection, onto a plane, of a
cluster of spherical particles generated
by a three-dimensional model for the
diffusion-limited cluster-cluster aggrega-
tion (colloidal flocculation: Meakin, 1988;
Jullien and Botet, 1986). The fractal di-
mensionality of this structure is about
1.8. Since D <2, the projection also
has a fractal dimensionality of 1.8 (see
Sec. 1.4).

The use of correlation functions has,
for a long time, been a valuable approach
toward the quantitative characterization of
disorderly systems. For example, density
correlation functions such as C"(r1, 13,
..., 1) defined as

Cn(rlv n,..., rl’L) = <p(r0)p(r0 + rl) e

cep(to+ 1)) (2)

m
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can be used to describe both fractal and
nonfractal structure. Here p(r) is the
density at position r and the averaging
is over all possible origins (rg). For self-
similar fractals these correlation functions
have a homogeneous power-law form,

C"(Ar1, Arp, ..

AT CM (1, 10, ..

L A) =
3)

,Tp).

The exponent « (called the co-dimen-
sionality) in Eq. (3) is d — D, where d
is the Euclidean dimensionality of the
embedding space.

By far the most frequently used corre-
lation function is the two-point density-
density correlation function C(r) given by

C(r) = ({(p(o)p(ro + 1)) |r|=r- “)
Here (()) implies averaging over all origins
(ro) and orientations. In addition C(r) may
be averaged over an ensemble of samples.
For a simple self-similar fractal C(r) has
the powerlaw form

Cr)~r*, ©)
and the fractal dimensionality D,, is equal
tod —a.

1.3
The Characterization of Self-Similar Fractals

Correlation functions such as those de-
scribed above can be used to measure
the fractal dimensionality. In practice only
the two-point density-density correlation
function has been used extensively for
this purpose. Figure 3(a) shows the two-
point density-density correlation functions
for clusters of different sizes generated
using the three-dimensional diffusion-
limited cluster-cluster aggregation model
illustrated in Fig. 2. These correlation

functions have the form
’
cn=rf(z).

where L is the cutoff length. The cutoff
function f(x) has the form f(x) = const
for x « 1 and f(x) decays faster than any
power of x with increasing x for x > 1.
Figure 3(b) shows that the density-density
correlation function can be represented by
the scaling form

(6)

C(n = NO=9/0g ( )

r
wm)
where N is the number of particles in the
cluster. Since L~ NYP and « =d — D,
the scaling forms in Egs. (6) and (7)
are equivalent. [The functions f(x) and
g(x) are related by g(x) ~ x~%f(x)]. The
results shown in Fig. 3 demonstrate that
the internal structure of the clusters and
their global mass-length scaling can be
described in terms of the same fractal
dimensionality (D >~ 1.8).

Most approaches to the characterization
of self-similar fractals are based on Eq. (1).
For example, if we are concerned with
structures formed by growth processes
or systems in which a large number of
objects of different sizes are present, then
the fractal dimensionality can be obtained
from the dependence of the radius of
gyration on the mass. For an ensemble
of statistically self-similar fractals we have

(Rg) ~ MP, (8)

where (Rg) is the mean radius of gyration
for structures of mass M. The correspond-
ing fractal dimensionality Dg is then given
by Dg =1/B. In practice Dg is obtained
by fitting the dependence of log R, on log
M by a straight line and taking the slope of
the straight line as the exponent 8. If data
are available from many realizations over a
broad range of length scales, the exponent
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Fig. 3 Scaling of the two-point density-density correlation function for clusters
generated using an off-lattice diffusion-limited cluster-cluster aggregation
model illustrated in Fig. 2. (a) The correlation functions obtained from 10,000
100-particle clusters, 1000 300-particle clusters, 100 1000-particle clusters, 39
3000-particle clusters, and 13 10,000-particle clusters. (b) How these correlation
functions can be scaled onto a common curve using the scaling form given in

Eq. (7)

B can be measured over a number of mass
intervals to assess how accurately Eq. (8)
represents the dependence of R; on M.

Another popular approach to the mea-
surement of the fractal dimension of
self-similar fractals is to cover the fractal by
a series of grids with elements having sides
of length ¢. The number of elements com-
pletely or partially occupied by the fractal
is then given by

N(e) ~ &P, )

so that the fractal dimensionality (D) can
be obtained by plotting log N(e) against
log e. In practice this method appears to
be quite sensitive to corrections associated
with a limited range of accessible length
scales, and it is difficult to obtain reliable
results.

In many cases structures grow from
a unique “seed” or nucleation site. In
this case the fractal dimensionality can
be obtained by measuring the mass M())
contained within a distance | measured
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from this unique point. For a self-similar
fractal M() is given by

M(l) ~ IPr, (10)

so that D, can be obtained by fitting a
straight line to the dependence of log M(l)
on log | over a suitable range of length
scales.

In principle all of the methods described
above (and many other methods) should
lead to the same value for the fractal di-
mensionality (Dy = Dg = D, = D, = D,
where Dis the “all purpose” fractal dimen-
sionality) for simple self-similar fractals.
In practice it is a good idea to use several
approaches to measure D. This provides
an assessment of the uncertainty in D
and some indication of whether or not the
structure is indeed a self-similar fractal.
These methods can be applied equally well
to fractal structures generated by physical
phenomena or computer simulations.

1.4
Simple Rules for Self-Similar Fractals

The ability to describe complex, disorderly
structures in quantitative terms (via fractal
geometry) has stimulated scientific inter-
est in problems that only a decade or so
ago were thought to lie outside of the realm
of quantitative scientific investigation. For
a variety of model systems we now have
quantitative (frequently exact but rarely rig-
orous) results and at least the beginnings
of a sound theoretical understanding. In
attempting to apply the concepts of fractal
geometry to self-similar systems the fol-
lowing simple rules or ideas have been
found to be useful (Vicsek, 1989; Meakin,
1990).

1. Two fractals with dimensionalities D;
and D; can be placed together in
the same region of a d-dimensional

embedding space or lattice without
contacting each otherifd > Dy + D;. If
the two fractals are following a relative
trajectory with a fractal dimensionality
of Dy, then they will not contact each
other (except by accident) if d > Dy +
D; + D;. An important implication of
this rule is that fractals with D <2
will be asymptotically transparent in
three-dimensional space since they will
not be contacted by “point” objects
(D = 0) such as photons or electrons
following linear (D = 1) trajectories.
For such fractals one part is (in general)
not hidden by another, and the fractal
dimensionality of a projection onto a
plane is the same as that of the fractal
itself. If D > 2, then the structure is
asymptotically opaque and the fractal
dimensionality cannot be determined
by analyzing a projection onto a plane.
It follows from this that the projection
of a D-dimensional fractal onto a d-
dimensional space will have a fractal
dimension of D if D < d. In this event
the area (measure) of the projection will
be proportional to the mass (measure
of the fractal in the d-dimensional
space).

. A d;-dimensional cross section of a D-

dimensional fractal in a dy-dimensional
space will have a fractal dimensionality
of D+ dy — dp.

. The (set theoretical) intersection of

two fractals with dimensionalities D;
and D; in a d-dimensional space is
given by Dj + Dy —d. This rule can
be applied repeatedly to obtain the
dimensionality of the intersection of
three (D1 + Dy + D3 —2d) or more
fractals.

. The union of two fractals with dimen-

sionalities Dy and D; has a fractal
dimensionality of max (D1, D).



5. The product of two fractals with di-
mensionalities D; and D, has a di-
mensionality of D; + D;. For example,
the region swept out by a fractal of
dimensionality D following a trajec-
tory of dimensionality D; is D + Dy (if
D+ D < d).

6. Many random fractals can be described
in terms of a power-law distribution of
unoccupied “holes,”

Ny ~s77, (11)
where N; is the number of holes
of size s (s would be the number
of sites contained in the hole for a
lattice model). For such fractals the

size distribution exponent t is given
byt = (d+ D)/d.

2
Self-Affine Fractals

2.1
The Brownian Process, A Simple Example

Fractals that have different scaling struc-
tures in different directions are said to be
self-affine. Perhaps the most simple and
most important example of a self-affine
fractal is the Brownian process B(t) that
describes the distance moved by a Brow-
nian particle in time t. It is well known
that (on average) the distance moved by a
Brownian particle in time ¢ is proportional
to t1/2 so that the Brownian process can be
rescaled by simultaneously changing the
time scale by a factor of b and the distance
scale by a factor of b'/2. More formally
this symmetry property of the Brownian
process can be written as

B(t) = b~ /2B(bt). (12)

Fractal Geometry

In this equation the symbol “=" should
be interpreted as meaning “statistically
equivalent to.”

Figure 4 shows different “lengths” of
the same discretized Brownian process in
which the distance is increased randomly
by +1 or —1 each time the time is
incremented by 1. In each part of the figure
the horizontal (time) scale is proportional
to the total time T and the vertical
(distance) scale is proportional to T/2. The
observation that the four rescaled curves
in Fig. 4 look “similar” illustrates the self-
affine scaling of the Brownian process.

The Brownian process can be general-
ized to give the “fractal” Brownian process
Bp(t), for which the self-affine scaling
properties can be represented as

By(t) = b HB(bt), (13)

where the exponent H is referred to as the
Hurst exponent (roughness exponent or
wandering exponent). Values of H larger
than % correspond to persistent processes
and H < % implies antipersistent fluctu-
ations. This is illustrated in Fig. 5 where
fractal Brownian curves with Hurst expo-

nents of 0.1, 0.5, and 0.9 are shown.

2.2
The Characterization of Self-Affine Fractals

In many cases (such as the Brownian pro-
cess described above) self-affine fractals
can be represented as single-valued func-
tions z(x) of the coordinates x1, x2, ..., Xp.
For this class of self-affine fractals the scal-
ing properties can be described in terms
of the correlation functions Cy(x) defined
as

(Cq(e)? = (|z(x0) — 2(x0 + X)|T) jx|=x-
(14)
In this case it has been assumed that
all of the coordinates (xq,...,x,) are
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Fig. 4 Four sections of the same (discretized) Brownian process starting at the point
[t =0, B(t) = 0]. In each successive stage the time scale is increased by a factor of 4 and the

vertical scale by 2 (41/2)

equivalent. In general the self-affine fractal
z(x) can be characterized by taking cross
sections through the function z(x) in the
direction X, y(%), and measuring the
correlation function

(Cqloem))® = (Iy(xpy) — yCem, — Xm)19).
(15)
For self-affine fractals the correlation
functions Cy(x) or Cy(xy,) have the form
Cy(x) ~ xH (16a)
or

Cqlotm) ~ xiim. (16b)

3
Fractal Surfaces and Interfaces

3.1
Some Applications

One of the most important applications
of fractal geometry is the quantitative de-
scription of irregular surfaces and the
development of a better understanding
of their behavior. During the past few
decades the technological importance of
rough surfaces has motivated the devel-
opment of a large number of procedures
for characterizing their structure. Many of
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Fig. 5 Fractal Brownian curves generated using three different values for the
Hurst exponent [H = 0.9 (top), H = 0.5, and H = 0.1]. This figure is taken from
Feder (1988) and was provided by |. Feder

these approaches involve a large number
of parameters that are of little funda-
mental importance. In a recent review
(Nowicki, 1985) 32 parameters and/or
functions that have been used to charac-
terize rough surfaces are described. More
recently it has been shown that a wide

variety of rough surfaces generated by
processes such as fracture (Mandelbrot
etal., 1984; Charmet etal, 1989; Her-
rmann and Roux, 1990), corrosion (Op-
penheim et al., 1991; Holland-Moritz et al.,
1991), deposition (Meakin, 1987; Family
and Vicsek, 1991; Krug and Spohn, 1991),

17
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or fluid-fluid displacement (Feder, 1988)
can be described in terms of fractal geome-
try. Both self-similar and self-affine fractal
surfaces are common but most surfaces
appear to be self-affine.

3.2
The Growth of Rough Surfaces

In many processes of practical importance
rough surfaces are generated from a more
or less smooth surface. Under these cir-
cumstances the surface roughness can
often be described in terms of the cor-
relation lengths &, and & and the manner
in which they grow. The correlation length
&) describes the amplitude of the surface
roughness in a direction perpendicular to
the general direction of the surface and
&) is the distance over which fluctuations
in the surface height persist in a direction
parallel to the coarse-grained surface. The
length &, can be defined as
g1 = (W) — (W, (17)
where h(x) is the height of the surface
above (or below) position x on the initially
smooth surface.
For many simple processes the corre-
lation length &, grows algebraically with
increasing time

£ ~1t°. (18)

For self-affine surfaces the correlation
lengths &, and &) are related by

&1L~ fﬁq,

where H is the Hurst exponent. In some
cases surface properties in the x and y
directions parallel to the surface may be
quite distinct so that Eq.(17) may be
replaced by

19)

gL~ g~ g (20)

In some simple cases the amplitude of
the surface roughness (£;) may grow
indefinitely according to Eq. (18); but in
many cases & is limited by other physical
processes, and this limits the range of
length scales over which fractal scaling
can be observed.

Simple model systems that are quite
well understood are used to illustrate
how rough surfaces can be characterized
using fractal geometry and scaling ideas in
Secs. 3.3 and 3.4.

3.2.1 Self-Similar Rough Surfaces

The invasion percolation model (Lenor-
mand and Bories, 1980; Wilkinson and
Willemsen, 1983; Feder, 1988) provides a
simple description of the slow displace-
ment of a wetting fluid by a nonwetting
fluid in a porous medium. In the site-
invasion percolation model the sites on
a lattice are assigned random “thresh-
old” values at the start of a simulation.
At each step in the simulation the un-
occupied perimeter site with the lowest
threshold value is filled to represent the
fluid-fluid displacement process (unoccu-
pied perimeter sites are unoccupied sites
with one or more occupied nearest neigh-
bors). In the two-dimensional version of
this model the displacement pattern is
self-similar with a fractal dimensional-
ity of % (about 1.89), or about 1.82 if
growth is not allowed to take place in re-
gions that have been surrounded by the
growing cluster. The invasion front (outer
perimeter) has a fractal dimensionality of
% (Grossman and Aharony, 1986; Saleur
and Duplantier, 1987; Coniglio et al., 1987)
for both versions of the model (with and
without “trapping”).

If the fluid-fluid displacement processes
take place in a vertical or inclined cell and
the two fluids have different densities, the
process may be either stabilized (Birovljev



etal, 1991) or destabilized by gravity.
In this situation the invasion percolation
process can be simulated using thresholds
given by

b = x; + ghi, 2D
where t; is the threshold associated with
the ith site, x; is a random number (in the
most simple model, used here, the random
numbers are uniformly distributed over
the range 0 <wx; <1), and h; is the
height of the ith site. Figure 6 shows
the displacement fronts generated during
simulations carried out using the gravity-
stabilized invasion percolation model. In
this model the invasion front evolves
toward an asymptotic regime in which the
statistical properties become stationary.
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The fronts shown in Fig. 6 were recorded
in this asymptotic regime.

Self-similar fractal surfaces can be
described in terms of the correlation
functions defined in Egs. (2) and (4). For
structures generated by physical processes,
Egs. (3) and (5) are accurate over a limited
range of length scales (¢ € r<K §).
For the invasion percolation simulations
described in this section, the inner cutoff
length ¢ is one lattice unit and the outer
cutoff length £ is related to the stabilizing
gradient g by

E~g7, (22)
where the exponent y is given by (Wilkin-
son, 1984)

g = 0.0001

( N
g=0001"
g =0.01

g=0.1

Pyl e N S Y R S

M T AN Al M TN A OO A s P NN frorg il [y ~-r it P, ~er

512 LATTICE UNITS >

Fig. 6

Invasion fronts (unoccupied external perimeter sites) obtained

from two-dimensional gradient-stabilized invasion percolation
simulations. Fronts generated using four values of the stabilizing
gradient g (10_1, 1072,1073, and 10_4) are shown
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Y (23)

where v is the correlation length exponent
for ordinary percolation. The exponent v
has avalue of exactly % for two-dimensional
percolation (Stauffer, 1985).

Figure 7(a) shows the density-density
correlation functions C(r) for the invasion
fronts obtained from two-dimensional
invasion percolation simulations with five

values for the stabilizing gradient (g):
g=20.1, 0.01, 0.001, 0.0001, 0.00001. In
these plots a crossover from a slope of —%
on short length scales (corresponding to
a fractal dimensionality of %) to a slope
of —1 on longer length scales (D=1)
can be seen. The results shown in Figs. 6
and 7 were obtained by starting with a
flat surface and allowing the simulations
to proceed until the vertical correlation
length &, has grown to a stationary value

T T T

In[C (1]

SLOPE = -1

s SLOPE = -2 fa) ]
<~

In [g82'C(n)}

In (g4/7 r)

Fig. 7 Two-point density-density correlation functions for invasion fronts similar to
those shown in Fig. 6. Each correlation function was obtained from 20 simulations
carried out using a strip width L of 2048 lattice units. (b) How these correlation
functions can be scaled using the scaling form given in Eq. (24)



&1 (00) given by Eq. (22). In this stationary
regime the growth of the invasion front
exhibits large fluctuations, but the mean
statistical properties such as &, and C(r)
do not change.

Figure 7(b) shows how the correlation
function C(r) shown in Fig. 7(a) can be
collapsed onto a single curve. This figure
illustrates that C(r) (in the stationary
regime) can be represented by the scaling
form

C(r) =g®*Vfg"r) (24)

or

C(r) =g"f(g"n,

where the scaling function f(x) has the
form f(x) ~ x~%/3 for x < 1 and f(x) ~
x~1 for x> 1. This means that the
surface appears to be self-similar (D = %)
forx < landflat (D=1)forx > 1.

(25)

3.2.2 Self-Affine Rough Surfaces
The Brownian process described above
provides a valuable paradigm for the ge-
ometry of rough surfaces. The correlation
functions Cy(x) [Eq. (14)] can be used to
measure the Hurst exponent (by least-
squares fitting of straight lines to the
dependence of log C4(x) on log x. For
g =1 and 2 the value for the Hurst expo-
nent is well within the 1% of the expected
value (H = 1).
In many real systems the correlation
length &) may be finite because &, has
not had enough time to grow or because it
is limited by physical processes or finite
size effects. Figure 8 shows “‘surfaces”
generated using a simple modification of
the discrete Brownian process model in
which the probability of moving toward the
origin is 0.5 + k|x| and the probability of
moving away from the origin is 0.5 — kx|,
where x is the displacement from the
origin. This may be regarded as a model
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Fig. 8 Displacement curves x(t) obtained from
a simple model for Brownian motion in a
harmonic potential. (a)—(c) Results for
k=10"2,10"3,and 1074, respectively
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(a) Correlation functions C;(t), obtained from simulations carried out using the

model illustrated in Fig. 8 for eight values of k(0, 1074,3 x 107%,1073,3 x 1073, 1072,
3 x 1072, and 107"). (b) How these curves can be collapsed onto a common curve using

the scaling form given in Eq. (24)

for the motion of a Brownian particle in
a harmonic potential. Figure 9(a) shows
the height-difference correlation functions
Cy(t) [Eq. (13)] obtained from simulations
carried out using this model for six values
of the parameter k (and k = 0). Figure 9(b)
shows that these correlation functions can
be represented quite well by the scaling
form

Co(H) = k™Y 2h(ke), (26)

where the scaling function h(x) has the
form h(x) ~ x~ Y2 for x « 1 and h(x) =
const for x> 1. This means that the
surface appears to be self-affine (H = %)
for x « 1and flat for x > 1.

If a cross section is taken through
a self-affine curve or surface parallel
to the coarse-grained direction of the
surface, then the intersection between the
self-affine surface and the d-dimensional
intersecting plane is a self-similar fractal



with a dimensionality D given by

Di=d— H. 27)
Consequently, the relatively reliable meth-
ods that have been used to analyze self-
similar fractals can be used [via Eq. (27)]
to measure the Hurst exponent of self-
affine fractal surfaces. This is the basis of
the slit island method (Mandelbrot et al.,
1984) that has been applied successfully to
a variety of rough surfaces.

4
Practical Considerations

In Sec. 3 it was shown that quite accurate
values for the fractal dimensionality can
be obtained for self-similar and self-affine
surfaces using simple procedures. Very
similar approaches can be used for other
types of fractal structures. However, large
quantities of data spanning a large range
of length scales were available from the
simple models used in Sec. 3. In practice
the statistical uncertainties may be larger
and the range of length scales smaller
for experiments or more realistic models.
In most cases statistical uncertainties can
be reduced to quite tolerable levels by
averaging, but symmetric uncertainties
due to correlations to the asymptotic
scaling behavior and other finite-size
effects may be much more difficult to
detect and control. In addition, real
systems may have a much more complex
scaling structure than that of the examples
used here.

An account of the geometric proper-
ties of systems that must be described
in terms of multifractal geometry and re-
lated concepts such as multiscaling and
multiaffinity is beyond the scope of this
survey. Information on those topics may
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be found in recent books (Feder, 1988), re-
views (Paladin and Vulpiani, 1987; Stanley
and Meakin, 1988; Meakin, 1990), and con-
ference proceedings (Pietronero, 1988).
In general, there is no well-established
general procedure for characterizing the
scaling structure of these more complex
systems. In some cases it appears that the
corrections to the asymptotic scaling be-
havior are large and convergence is slow.

One of the main difficulties in the
past has been a failure to distinguish
carefully between self-similar and self-
affine fractals. This is particularly true in
the case of surfaces and interfaces. As a
consequence much of the literature in this
area is subject to reinterpretation and/or
is ambiguous.

Finally, there are no simple standards
or criteria for determining whether a
structure is fractal or not. To some
extent this depends on the application and
on theoretical considerations. However,
geometric scaling (power-law behavior)
over at least a decade of length scales
combined with some understanding of
the deviations from scaling outside of this
range is probably a minimum requirement
for fractal analysis to be a useful practical
tool. In practice, scaling over more than
two orders of magnitude of the length
scale is rare.

Glossary

Dimensionality: Dimensionality can be de-
fined in many ways, but in practical terms
it is the exponent relating mass (or mea-
sure) to length.

Embedding Space: The Euclidean space in
which a structure resides. In most practical
cases this is ordinary three-dimensional
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space (R?), but two-dimensional embed-
ding spaces are common in computer
simulations and for processes occurring
at smooth interfaces.

Fractal: A structure thatexhibits geometric
scaling. In general terms a fractal is a
structure that has similar complexity on
all length scales; it “looks the same”
on different length scales or at different
magnifications.

Percolation: The transition associated with
the formation of a continuous path
spanning an arbitrarily large (“infinite”)
range. Site percolation on a lattice is
a simple model for percolation. In this
model the sites on a lattice are selected
randomly and filled. For an infinitely large
lattice an infinite cluster will be formed
when a fraction p. (the site percolation
threshold probability) of the lattice sites
have been filled. This cluster is a self-
similar fractal. However, the entire system
(including all the smaller clusters) has a
finite density (p;) and is uniform on all
but small length scales.

Prefractal: An intermediate (nonasymp-
totic) stage in the construction of a regular
fractal.

Radius of Gyration: The root mean square
(rms) radius measured from the center of
mass.

Self-Affine Fractal: A fractal that can be
rescaled by a transformation that requires
different changes of length scale (with dif-
ferent exponents) in different directions.

Self-Similar Fractal: A fractal that can
be rescaled by an isotropic change of
length scales (by the same amount in all
directions).
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Further Reading

At the present time several dozen books con-
cerned with fractal geometry and its applications
in the physical sciences have appeared. The Man-
delbrot (1977, 1982) classics (particularly The
Fractal Geometry of Nature, Mandelbrot, 1982)
are still a primary source of information. For
those interested in the applications of fractal
geometry to physical processes the books by
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Feder (1988) and Vicsek (1989) are highly rec-
ommended. A reprint collection (with useful
commentaries) assembled by Family and Vic-
sek (1991) provides an up-to-date account of
the rapidly developing surface growth area. Sur-
veys of the applications to growth phenomena
may be found in the books by Feder and Vic-
sek and recent reviews (Meakin, 1988, 1990).
A collection of reviews concerned with applica-
tion in chemistry has been edited by Avnir [D.
Avnir (Ed.) (1989), The Fractal Approach to Het-
erogeneous Chemistry: Surfaces, Colloids, Polymers,
Chichester: Wiley]. Many conference proceed-
ings have appeared: A selection of those most
relevant to applied physics include A. Aharony
and J. Feder (Eds.) (1989), Fractals in Physics,
Essays in Honour of Benoit B. Mandelbrot, Ams-
terdam: North Holland; M. Fleischmann, D. J.
Tildesley, and R. C. Ball (Eds.), (1990), Fractals in
the Natural Sciences, Princeton: Princeton Univ.
Press; and the proceedings edited by Pietronero
(1988).
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Introduction

The word “geometry” derives from Greek,
meaning “earth measurement.” Geometry
was originally the mathematics describ-
ing the shapes of objects and their spatial
relationships. Simple geometrical notions
and ideas were known to ancient Baby-
lonians and Egyptians 4000 years ago.
Starting approximately 2500 years ago, the
ancient Greeks developed fundamental ge-
ometrical ideas, including some relatively
rigorous proofs based on logical reason-
ing. Dating from this era is Euclid’s
Elements, which introduced the basis for
the axiomatic method and summarizes the
knowledge at that time.

Prior to the sixteenth century, geometry
and algebra were treated as independent
subjects. The notion of combining the
two was introduced in 1631 by René
Descartes (1596—1650). This led to the
field of analytic geometry, which per-
mits the investigation of geometric ques-
tions using analytical methods. This area
was extensively investigated in the eigh-
teenth century, in particular by Leonhard
Euler (1707-1783) and Gaspard Monge
(1746-1818). Toward the end of the eigh-
teenth century the use of calculus resulted
in the beginnings of differential geometry,
studied by Christian Gauss (1777-1855)
and others. The introduction by Bernhard
Riemann (1826-1866) of the theory of
algebraic functions initiated the field of
algebraic geometry. In parallel with these
developments, the synthetic approach to
geometry was extended by Victor Poncelet
(1788-1867), who formulated postulates
for projective geometry. In the past cen-
tury and a half, the work of David Hilbert
(1862-1943) and others has led to an exten-
sion of the scope of geometry to include the
study of geometrical relationships between
abstract quantities.

This article presents material concern-
ing analytical, differential, projective, and
algebraic geometry. The choice of topics
and their depth of coverage were dic-
tated primarily by consideration of their
importance in applied physics and by lim-
itations of space. In particular, the reader
is warned that the weighting assigned to
the topics discussed is uncorrelated with
their present importance as mathemati-
cal fields of research. The treatment is
not mathematically rigorous, but intro-
duces sufficient mathematical terminology
to make basic textbooks in the subject ac-
cessible. Some of these are listed in the
references at the end of the article.

1
Analytic Geometry

The underlying concepts of analytic ge-
ometry are the simple geometric ele-
ments: points, lines and curves, planes
and surfaces, and extensions to higher di-
mensions. The fundamental method is
the use of coordinates to convert geo-
metrical questions into algebraic ones.
This is called the “method of coordi-
nates.”

To illustrate the basic notion, consider
a straight line I. Following the method
of coordinates, select one point O on !
as the origin. This separates | into two
halves. Call one half positive, the other
negative. Any point P on the line can
then be labeled by a real number, given
by the distance OP for the positive half
and by the negative of the distance OP for
the negative half. There is thus a unique
real number x assigned to every point P
on I, called the Cartesian coordinate of P.
Geometrical questions about the line can
now be transcribed into analytical ones
involving x.



1.1
Plane Analytic Geometry

In two dimensions, basic geometric enti-
ties include points, lines, and planes. For
a plane 7 the method of coordinates pro-
vides to each point P an assignment of two
real numbers, obtained as follows. Take
two straight lines in the plane, and at-
tribute Cartesian coordinates to each line
as described above. For simplicity, thelines
will be assumed perpendicular and inter-
secting at their origins. These lines are
called rectangular coordinate axes, and the
Cartesian coordinates of the first are called
abscissae while those of the second are
called ordinates. The lines themselves are
also referred to as the abscissa and the ordi-
nate. The location of a point P on 7 is then
specified uniquely by two real numbers,
written (x, y). The number x is defined
as the perpendicular distance to the first
coordinate axis, while y is the distance to
the second. Using these Cartesian coordi-
nates, geometrical questions about points
can be expressed in analytical terms. For
example, a formula for the distance d be-
tween two points P and Q specified by the
coordinates (x1, y1) and (xz, y2) is

d=Jen -2+ G-y @

Given an assignment of Cartesian coor-
dinates on a plane n, a curve segment s
in the plane may be analytically specified
by providing a set of paired real numbers
(x, y) assigned to all points on the curve.
In many useful cases, s can be specified
by an equation f(x, y) = 0 between x and
y that is satisfied by all points P on s
but not by any other points on 7. For ex-
ample, the equation x = 0 describes the
straight line consisting of all points hav-
ing coordinates of the form (0, y), i.e., the
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ordinate. The method of coordinates thus
permits geometrical questions about sto be
transcribed into analytical ones concerning
f(x,y). For example, the set of points lying
both on a curve f (x, y) = 0 and on another
curve g(x, y) = 0 is specified by values (x,
y) satisfying both equations, which can in
principle be found by analytical methods.
A simple example of a curve in the plane
is a straight line I. The slope m of | can be
defined in terms of the coordinates (x1, y1)
and (x3, y2) of any two distinct points on .
Provided x; # x3, the slope is given by

1— Y2
X1 — X2

(2)

The slope is zero for lines parallel to the
abscissa, and is undefined (infinite) for
lines parallel to the ordinate. A line ! with
given finite slope m is uniquely specified
by its intersection point (x, y) = (0, ¢) with
the ordinate. The equation for [ is

y=mx+c.

3)

If | is parallel to the ordinate instead, it
is determined by its intersection point
(x,y) = (a,0) with the abscissa, and its
equation is simply x = a.

The equation of a straight line I is also
determined entirely by the coordinates
(x1,y1) and (x2,y2) of any two distinct
points on L. It can be written
X —X1

= 4)

Xy — X1

Yy—n
Y2— 11

Alternatively, a straight line can be viewed
as the curve given by the most general
equation linear in the coordinates x and y:

Ax+ By+C=0, (5)

where at least one of A and B is nonzero.
Analytical solutions to geometrical prob-

lems involving straight lines and points

can be obtained using the above results.
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For example, the equation of the line [p that

is perpendicular to a given line [ with equa-

tion y = mx + ¢ and that passes through

the point P on | with abscissa x; is

1 mr+1
+

YZ—%x

x1+c.  (6)
Another example is the expression for the
perpendicular distance dp between a line !
with equation y = mx + ¢ and a point P at
(a, b), which is

b — ma — ¢

dp
m? + 1

@)

1.2
Conic Sections

An important curve is the circle, denoted
by S which can be viewed as the set of
points in the plane that are equidistant
from a specified fixed point. The fixed
point C is called the center of the circle,
and the distance r between the center and
the points on the circle is called the radius.
If the Cartesian coordinates of C are (b, k),
then the equation of the circle is

x—h2+@y-k?=r~ 8)

The circle is a special case of a set
of curves called conic sections or conics.
These curves include ellipses, parabolas,
and hyperbolas. Geometrically, the conics
can be introduced as the curves obtained
by slicing a right circular cone with a
plane. Analytically, they can be viewed
as the curves given by the most general
expression quadratic in the coordinates x
and y:

Ax? + Bxy+ Cy* + Dx + Ey+ F = 0,
©))

where atleast one of the coefficients A, B, C
is nonzero. These are called second-order

curves. From this equation it follows that
any five points lying on the conic specify
it completely. The quantity B?> —4AC is
called the discriminant of the conic. If
the discriminant is positive, the conic is
a hyperbola; if negative, an ellipse; and if
zero, a parabola.

A third definition, combining geometri-
cal and analytical notions, is often useful.
Consider a straight line [, a fixed point F
not on [, and another point P. Denote the
distance between P and F by dr and the
perpendicular distance between P and | by
dj. Then the conic sections are given by the
set of points P that obey the equation

dr = ed), (10)

where ¢ > 0 is a constant real number
called the eccentricity. The line ! is called
the directrix and the point F is called the
focus. If e > 1, the conic is a hyperbola. If
e = 1, the conic is a parabola. If 0 < e < 1,
the conic is an ellipse. The degenerate
case e = 0 gives a circle; in this case, the
directrix is at infinity.

The equation determining a conic has
a particularly simple form, called the
canonical form, if the focus F is chosen
to lie on the abscissa and the directrix
I is chosen parallel to the ordinate. The
canonical form depends on at most two
real positive parameters a and b, where
a > b is taken for convenience.

For a hyperbola, the canonical form is

52 2

(2)- ()=
The eccentricity of the hyperbola is e =
v a% +b%/a. One focus is the point (ae,
0), and the corresponding directrix is the
line x = a/e. There is a second focus at
(—ae,0) and a second directrix at x =
—a/e. The hyperbola has two branches,
each of which asymptotically approaches

(11



the lines y = £bx/a as |x| becomes large.
The distance between the points where the
hyperbola intersects the abscissa is 2a. This
is also the difference between the distances
from the two foci to any given point on the
hyperbola. If a = b, the hyperbola is called
rectangular.
For a parabola, the canonical form is

Y = 4ax. (12)

The eccentricity is e = 1, the focus is at
(@, 0), and the directrix is the line x = —a.
For an ellipse, the canonical form is

52 2

(&)
The ellipse has eccentricity e = v/a% — b2
/a. There are again two foci, at (fae, 0),
and two directrices x = +a/e. The sum of
the distances from the two foci to any given
point on the ellipse is a constant, 2a. The
line between the points of intersection of
the ellipse with the abscissa is called the
major axis of the ellipse, and it has length
2a. Similarly, the minor axis of the ellipse
is given by the intersection points with
the ordinate and has length 2b. If a =b
the equation reduces to that of a circle of
radius a centered at the origin.

(13)

1.3
Plane Trigonometry

Consider a point P with coordinates (x,
y) lying on a circle of radius r centered
at the origin O. Denote by X the point
(%, 0). Call 6 the angle XOP between the
line segments OX and OP. The choice of
a unit of measure for angles permits the
assignment of a numerical value to 6. One
widely used unit is the degree, defined by
the statement that there are 360 degrees in
a circle. The SI unit is the radian, of which
there are 27 in a circle.
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Certain functions of the angle 6, called
trigonometric or circular functions, are of
particular use in plane analytic geometry.
The ratio sin6 = y/r is called the sine of
0 while cos® = x/r is called the cosine of
0. The sine is odd in 0 while the cosine
is even, and both functions have period 7
radians. They obey the relations

sin? 6 + cos® 6 = 1 (14)
following from the Pythagorean theorem,
and

sin(@ £ ¢) = sin 6 cos ¢ + sin ¢ cos I,
(15)

cos(f £ ¢) = cosH cos ¢ F sinf sin ¢.
(16)

The latter two equations are called ad-
dition formulas. Other, related func-
tions of 6 include the tangent tan6 =
y/x = sin6/ cos 6, the cosecant csc 6 =
r/y=1/sin6, the secant secf =r/x =
1/ cos 6, and the cotangent cotf = x/y =
cosf/sinf. From these definitions and
the above equations many identities can
be obtained. Inverse trigonometric func-
tions can also be introduced; for example,
if x = sin @ then sin™' x = 6.

Consider a triangle with angles A, B,
C and sides of length a, b, ¢, where by
convention the side labeled by a is opposite
the vertex with angle A and there are
similar conventions for the other sides.
A basic problem in plane trigonometry is
to determine one of a, b, ¢, A, B, C in
terms of the others. This is called solving
a triangle. The following relations hold:
the law of sines,

sinA sinB sin C
a b ¢

(17)

131



132

Geometrical Methods
the first law of cosines,

a=Db cosC+c cos B; (18)

and the second law of cosines,

a* = b* + ¢ — 2bc cos A. (19)
1.4
Curvilinear Coordinates

For certain geometrical problems, the
analytical details of a calculation may be
simplified if a non-Cartesian coordinate
system is used. Consider two functions
u = u(x, y) and v = v(x, y) of the Cartesian
coordinates x and y on a plane 7. Take the
functions to be continuous and invertible,
except perhaps at certain special points that
require separate treatment. Any curve u =
c for some constant c is called a coordinate
curve, as is any curve v = ¢. A point Pon
is uniquely specified by two real numbers
(u1, 1) that are the values of the constants
determining the two coordinate curves
passing through P. This construction
generalizes the method of coordinates,
and the functions u and v are called
curvilinear coordinates. If the coordinate
curves meet at right angles, the curvilinear
coordinates are called orthogonal. All the
analytical geometry described above using
Cartesian coordinates can be rephrased
using orthogonal curvilinear coordinates.

An important set of orthogonal curvi-
linear coordinates is generated by the
equations

x=rcosf, y=rsinb;

r=,x2+y2, 6=tan"! (%) . (20)

where r>0 and 0<0 < 2n. In this
system, the coordinate curves consist of
circles of varying radii centered at the
origin and straight lines through the origin

at varying angles with respect to the
abscissa. The coordinates (r, ) of a point
P are called plane polar coordinates. As an
illustration of their use, consider the conic
sections expressed in polar coordinates. In
canonical form, with the origin of the polar
coordinates placed at the focus at (ae, 0),
the equation for a conic section is

l

= Arecosd)’ @1

where lis called the latus rectum. It is given
by | = b?/a for hyperbolas and ellipses and
by I = 2a for parabolas, and it represents
the distance from the focus to the curve
as measured along a straight line parallel
to the ordinate. The quantity I/e is the
distance from the focus to the associated
directrix.

The conic sections themselves can be
used to generate systems of orthogo-
nal curvilinear coordinates. For example,
parabolic coordinates can be defined by

X = %(u2 — vz), y = uv, (22)

where v > 0. The coordinate curves are
parabolas. Similarly, elliptic coordinates
can be defined by

x =acoshucosv, y=asinhusinv,

(23)
where u >0 and 0 <v < 27w. Here, the
so-called hyperbolic functions sinh u and
cosh u are defined by

sinhu = %(e” —e ",

coshu = %(e” +e7%). (24)

The coordinate curves are ellipses and

hyperbolas. Another common set is the
system of bipolar coordinates, defined by

asinhv asinu

coshv —cosu/’

coshv — cosw/
(25)



with 0 < u < 2w. The coordinate curves
are sets of intersecting circles.

1.5
Solid Analytic Geometry

Solid analytic geometry involves the study
of geometry in three dimensions rather
than two. Many of the ideas of plane ana-
lytic geometry extend to three dimensions.
For instance, the method of coordinates
now provides an assignment of three
real numbers (x,y,z) to each point P. A
three-dimensional rectangular coordinate
system can be introduced by taking three
mutually perpendicular straightlines, each
given Cartesian coordinates, to form the
coordinate axes. The axes are called the ab-
scissa, the ordinate, and the applicate. Each
of the values (x,y,z) is defined as the per-
pendicular distance to the corresponding
axis.

A two-dimensional surface o can now
be specified by providing an equation
f(x,y, z) = Othatis satisfied only by points
on the surface. The method of coordinates
thus converts geometrical questions about
o to analytical questions about f (x,y,2).
Similarly, a curve s can be viewed as the
intersection set of two surfaces. If the
surfaces are specified by the equations
f(x,y,2) =0and g(x,y,2) =0, s is given
analytically by the set of points (x,y,2)
obeying both equations simultaneously.

By definition, a surface of the first order
is given by the most general equation linear
inx,y,z

Ax+ By+ Cz+ D =0. (26)
If at least one of A, B, C is nonzero, this
equation describes a plane. A straight line
can be viewed as the intersection of two
nonparallel planes and is therefore given
analytically by two equations of this form.

Geometrical Methods

Just as in the two-dimensional case, the
analytical formulation allows solutions to
geometrical questions involving planes,
lines, and points to be obtained. For
example, the perpendicular distance dp
between a plane given by the above
equation and a point P located at (a,b,c)
can be shown to be

_ |Aa+ Bb+ Cc+ D
VA By

As another example, two planes given by

dp

(27)

A1x+ B1y+ Ciz+ D1 =0,

Ayx+ Byy+ Coaz+ D=0 (28)
are parallel if and only if
(A1, B1, C1) = (¢Az, cBy, cC2)  (29)

for some constant c.

In analogy to the two-dimensional in-
troduction of conics as curves obeying a
quadratic expression in x and y, a surface
of the second order is defined to consist of
points satisfying a quadratic expression in
x,y, and z:

Ax? + By? + C2? + Dxy + Exz + Fyz

+Gx+ Hy+1z+4+]=0. (30)

Such surfaces are also called quadrics. An
important example is the sphere, denoted
by S?, which can be viewed as the set of
points equidistant from a fixed point called
the center. The distance from the center
to any point on the sphere is called the
radius. If the Cartesian coordinates of the
center are (h,k,l), the equation of a sphere
of radius r is

x—h2+@y—-ki+@z-h=r>~
(3D
The quadrics can be classified. Among
the surfaces described are ellipsoids,
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hyperboloids, paraboloids, cylinders, and
cones. Canonical forms of these surfaces

are
) V2 22
(Z)+(5)+(5)=1 o

for an ellipsoid;

52 P 2
) (R)-(F)=r @
for a hyperboloid of one sheet;
52 P 2
(2)-(R)-(5)-1 oo
for a hyperboloid of two sheets;
X2 W
(;>+(P>:Zz (35)
for an elliptic paraboloid;
) V2
E)- () o
for a hyperbolic paraboloid;
) P
)G
for an elliptic cylinder;
X2 P
(2)-(5)=r  o®
for a hyperbolic cylinder;
52
<;>=2z (39)

for a parabolic cylinder; and

xz Y2 22
(5)=(5)-(5)=0 @

for a cone. The parameters a, b, c are called
the lengths of the principal axes of the
quadric.

The notions of plane trigonometry also
extend to three dimensions. A spherical
triangle is defined as a portion of a
spherical surface that is bounded by three
arcs of great circles. Denote by A, B,
C the angles generated by straight lines
tangent to the great circles intersecting at
the vertices, and call the lengths of the
opposite sides a, b, ¢ as for the planar case.
The angles now add up to more than n
radians, by an amount called the spherical
excess E:

A+B+C=n+E. (41)

The following relations hold for a spherical
triangle:
the law of sines,

sinA sinB sin C

(42)

sina ~ sinb  sinc’

the first law of cosines,

cosa = cosbcosc + sinbsinccos A;

43)
and the second law of cosines,
cos A = — cos Bcos C + sin Bsin C cos a.
(44)

Curvilinear coordinates can be intro-
duced via three locally continuous invert-
ible functions u(x, y, z), v(x, y, 2), w(x, y,
z), following the two-dimensional case.
A coordinate surface is specified by set-
ting any curvilinear coordinate u, v, or
w equal to a constant. The coordinate
curves are generated by the intersection
of the coordinate surfaces, and the system
is said to be orthogonal if the surfaces
intersect at right angles. Many useful
three-dimensional orthogonal curvilinear
coordinate systems can be generated from
families of quadrics. One particularly use-
ful set is the system of spherical polar



coordinates, defined by

x = rsiné cos ¢,
y=rsinfsing,

z=rcoso, (45)

where r > 0,0<60 <m,and 0 < ¢ < 2.
The coordinate surfaces are spheres cen-
tered at the origin, right circular cones with
axes along the applicate and vertices at the
origin, and half-planes with the applicate
as one edge. Other common coordinates
are the cylindrical coordinates, given by

x=rcosf, y=rsing, z=2z (40)

where r > 0 and 0 < 6 < 2x. This system
is generated from plane polar coordinates
by translation along the applicate. The
coordinate surfaces are right circular
cylinders centered at the origin, half-planes
with the applicate as one edge, and planes
parallel to the plane of the abscissa and
ordinate.

The notions of plane and solid analytic
geometry can be extended to higher dimen-
sions, too. A space can be defined in which
the method of coordinates specifies a point
by n real numbers (X, x2, ..., x™). This n-
dimensional space, called Euclidean space,
is denoted by the symbol R". Using coordi-
nates, geometrical questions in »n dimen-
sions can be converted to analytical ones
involving functions of n variables. Surfaces
of the first order are (n — 1)-dimensional
hyperplanes, and surfaces of the second
order, or quadric hypersurfaces, can be in-
troduced. An example is the hypersphere
of radius r in n dimensions, denoted by
S$"1 which when centered at the origin
satisfies the equation

G2+ D24 =T (47)
The notion of curvilinear coordinates also
extends to higher dimensions.
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A one-dimensional curve s in n dimen-
sions can be specified by n — 1 equations
among the n coordinates (x!, ..., x™). If s
is continuous, its points can be labeled by a
parameter ¢ that is a real number. Any par-
ticular point can be specified by giving the
values of the n coordinates (x1, ..., x™). As
t varies, so do the coordinates. This means
that an alternative specification of s can be
given in terms of the n expressions

=), j=1.....n, (48)

determining the n coordinates (x!, ..., x™)
as functions of t. This is called the
parametric representation of a curve.
Similarly, the points of a continuous two-
dimensional surface can be labeled by two
real numbers (£, ). The surface can be
specified either in terms of n — 2 equations
among the n coordinates (1, ..., x"orin
parametric form by the n equations

¥ = (L, 1),

j=1.....n (49

A parametric representation can also be
given for continuous surfaces of more than
two dimensions.

1.6
Example: The Kepler Problem

An example of the appearance of analytic
geometry in a physical problem occurs
in the study of the classical motion of
two bodies under a mutual inverse-square
attractive force. Consider for definiteness
two bodies of masses mq and my, each
acted on by the gravitational field of
the other and free to move in three
dimensions. This is called the Kepler
problem.

The first step is to introduce a convenient
coordinate system. For simplicity, the
origin can be placed on one mass.
The problem can then be reduced to
determining the relative position of the
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second mass and the uniform motion of
the center of mass. The latter is neglected
here for simplicity. It is natural to select
a system of spherical polar coordinates
with the applicate along the direction of
the angular momentum. Since angular
momentum is conserved, the motion of
the second mass about the origin must lie
in a plane. This means that plane polar
coordinates (r, 0) suffice to describe the
position of the second mass relative to the
first.

It can be shown that the resulting
equations governing the motion of the
second mass are precisely those obtained
for the behavior of a reduced mass m =
mimy/(m1 + my) orbiting a fixed center
of force. In polar coordinates, the kinetic
energy T of the reduced mass is

T = im(i* + 6%, (50)

where a dot over a letter signifies a
derivative with respect to time. The
potential energy is

_k

V= (51)

.
with k = Gmim;, where G is Newton’s

gravitational constant.
The equations of motion are

%(mrzé) =0 (52)

and

: k
mi — mré* + (—2> =0. (53)
r
The first of these integrates immediately
in terms of the constant magnitude L of
the angular momentum:

mr*0 = L. (54)

This equation can be used to eliminate 6
from Eq. (53) by direct substitution. Also,

since d d

Ezed_e’ (55)

the independent variable in Eq. (53) can
be converted from time ¢t to angle 6. An
additional change of dependent variable

from r to
s (L) (mk
“\r 12

converts Eq. (53) into the simple form
d%s
do?
The solution is readily found. Reconvert-

ing s to the variable r yields the equation
for the orbit as

(56)

= —S.

(57)

l
fr=—"
(14 e cos 0)
where a particular choice for the location

of the abscissa relative to the orbit has been
made for simplicity. In this equation,

1+ 2EL? l I?
e = —_—, = —,
mk? mk

and E can be identified with the energy
of the two bodies in the orbit. This
demonstrates that the motion of two
masses under gravity is described by a
conic section; cf. Eq.(21). The energy
E determines the shape of the orbit. If
E > 0,e> 1 and the orbit is a hyperbola.
If E =0, e =1 and the orbit is a parabola.
If E <0, e <1 and the orbit is an ellipse.
Finally, if E = —mk2/2L2, e =0 and the
orbit is a circle.

(58)

(59)

2
Differential Geometry

The requirement of differentiability pro-
vides a restriction on geometrical objects
that is sufficiently tight for new and useful
results to be obtained and sufficiently loose
to include plenty of interesting cases. Dif-
ferential geometry is of vital importance in
physics because many physical problems



involve variables that are both continuous
and differentiable throughout their range.

2.1
Manifolds

A manifold is an extension of the usual
notions of curves and surfaces to arbitrary
dimensions. The basic idea is to introduce
an n-dimensional manifold as a space that
is like Euclidean space R" locally, i.e.,
near each point. Globally, i.e., taken as
a whole, a manifold may be very different
from R". An example of a one-dimensional
manifold is a straight line. This is both
locally and globally like R!. Another one-
dimensional example is a circle S'. The
neighborhood of each point on a circle
looks like the neighborhood of a point in
R!, but globally the two are different. The
circle can be constructed by taking two
pieces of R!, bending them, and attaching
them smoothly at each end. Generalized to
n dimensions, this notion of taking pieces
of R" and attaching them smoothly forms
the basis for the definition of a manifold.

To define a manifold more rigorously,
first introduce the concept of a topological
space T. This is a set S and a collection ¢ of
(open) subsets of S satisfying the following
criteria:

1. Both the null set and S itself are in &.

2. The intersection of any two subsets of t
isint.

3. The union of any collection of subsets
of tisint.

Suppose in addition there is a criterion
of separability: For any two elements of S
there exist two disjoint subsets of S, each
containing one of the elements. Then T is
called a Hausdorff space. The elements of
S for a manifold are its points.

Next, define a chart C of the set S as
a subset U of S, called a neighborhood,
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together with a continuous invertible map
f+ U— R"called the coordinate function.
For a manifold, the subset U plays the
role of a region locally like R", and the
function f represents the introduction of
local coordinates in that region. Two charts
C1, C; with overlapping neighborhoods
and coordinate functions f;, f are called
compatible if the composition map f; sz_l
is differentiable. The requirement of
compatibility basically ensures that the
transition from one coordinate patch to
another is smooth. A set of compatible
charts covering S is called an atlas.

A differentiable manifold M can now be
defined as a Hausdorff topological space
with an atlas. Given that the range of the
coordinate functions is R", the dimension
of M is defined as n and M is sometimes
denoted by M". An example of an n-
dimensional manifold is the hypersphere
S". An example of an object that is not a
manifold is a figure-eight curve, since the
neighborhood of the intersection point is
not locally like R" for any n.

2.2
Vectors and One-Forms

The usual definition of a vector in a
Euclidean space as a directed straight-
line segment does not immediately extend
to a general manifold. For instance, the
circle S' does not contain any straight-line
segments. Instead, vectors at a point of
a manifold can be introduced using the
notion of the tangents to curves passing
through the point.

Consider a curve s through a point P.
In a neighborhood of P, local coordinates
(x!,...,x" can be used to specify s
in the parametric representation » =
xj(t), j=1,...,n A vector tangent to s
at P can be specified by the n quantities
dxl /dt forming its components. A familiar
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example in mechanics is the velocity
vector of a moving particle, obtained
by differentiation with respect to time
of the particle’s position vector. If the
tangent vectors to all possible curves in the
manifold through P are considered, an n-
dimensional vector space (see ALGEBRAIC
METHODS, See. 3) is generated. This is
called the tangent space TpM to M at P.

In differential geometry, it is desirable to
introduce basic concepts in a manner that
is independent of any coordinate choice.
For this reason, the differential-geometric
definition of a tangent vector is different
from the more intuitive one above. Given
a curve s, introduce an arbitrary differen-
tiable function f assigning a real number
to every point t on s. The derivative df /dt of
f along sis called the directional derivative.
In a local coordinate patch,

df
a_jzzlﬁa}f,

where 9o;f = of /8. This shows that the
operator d/dt acting on the space of real
functions on M contains all components
of the tangent vector, each associated with
the corresponding partial derivative 9;. A
tangent vector at P can therefore be defined
as the directional-derivative operator d/dt,
with a natural coordinate basis of vectors
for the vector space being the set of partial-
derivative operators {d;}. However, this
definition has the disadvantage that it still
explicitly includes the parameter .

The formal definition of a tangent vector
is therefore slightly more abstract. Given
the space F(M) of all differentiable real
functions on a manifold M, a tangent
vector at P is defined as an object v
acting on elements of F(M) to produce
real numbers,

(60)

v:F(M) - R, (61)

that satisfies two criteria:
v(af + bg) = av(f) + bf (g),
v(fog) = g(Pyv(f) + f(P)v(g).

where f,ge F(M) and a,be R. This
definition extracts the important prop-
erties of the tangent vector without ex-
plicit reference to a coordinate system or
parametrization. Note that the coordinate
realization of a tangent vector at P along
xj as 0; acting at P satisfies this defini-
tion. The set of all linearly independent
tangent vectors at P spans the tangent
space TpM to M at P, and the set {0;}
forms a basis for TpM called the coor-
dinate basis. An arbitrary vector v can be
expanded in this basisas v = %; v d;. Physi-
cists sometimes say that the components
v are the contravariant components of a
vector. Although in a coordinate basis the
intuitive physics notion of a vector and
the differential-geometric one contain the
same information about components, the
latter also contains information about the
coordinate basis itself. In the remainder of
this article except where noted, the word
vector refers to the differential-geometric
object.

Since TpM 1is a vector space, there
exists a dual vector space Hom(TpM, R)
consisting of linear maps

(62)

w:TpM — R (63)

(see ALGEBRAIC METHODS, Sec. 3.7). This
space is called the cotangent space at P and
is denoted by T3 M. Notice that duality also
implies TpM = Hom(T};M, R). Elements
of Ty M are called one-forms. An important
example of a one-form is the total
differential df of a function f € F(M),
defined as the element of T} M satisfying

df v) = v(f) (64)
forany v € TpM.



In a chart around P, the set {dx/} of total
differentials of the coordinates forms a
natural coordinate basis for the cotangent
space TpM. It is a dual basis to {9;}, since

A (3) = dd = 8. (65)

An arbitrary one-form w can be expanded
in the dual basis as w = Zjw; dxl. Note that
for an arbitrary vector v = Ejvf dj the action
of w on v is then

wv) = ok dd () = wp. (66)
In this equation and subsequent ones,
the Einstein summation convention is
introduced to simplify notation: Repeated
indices in the same term are understood
to be summed. The vector v is said to be
contracted with the one-form w. Physicists
sometimes say the components «/ form
the covariant components of a vector. As
an example, the definitions above can be
used to show that

df = 0;f dod, (67)

a standard result.

2.3
Tensors

The generalization of vectors and one-
forms to tensors is straightforward. A
tensor T of type (a, b) can be defined at a
point P of a manifold M as a multilinear
mapping of a one-forms and b vectors
giving a real number:

TTiIM® - @T)MQTpMQ - - -

® TpM — R, (68)

where there are a factors of TJM and b
factors of TpM. The space of tensors of
type (a, b) at P is denoted T;/(P). Examples
introduced above include T&(P) =TpM
and T?(P) = Tp M.
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A tensor T of type (a, b) can be expanded
using a coordinate basis. In the natural
basis introduced above,

T= T g de e di,
(69)
Almost all physicists and the older mathe-
TJL]Z"'.]u
Trkyorky
the components of an ath-rank contravari-
ant and bth-rank covariant tensor. Most
modern mathematicians by convention in-
terchange the usage of contravariant and
covariant. This article uses the physicists’
convention.

A tensor is called symmetric with re-
spect to two contravariant or two covariant
indices if its components are unaltered
when the indices are interchanged. A ten-
sor with indices of only one type is said to
be totally symmetric if it is symmetric with
respect to all pairs of indices. Similarly,
a tensor is antisymmetric with respect to
two contravariant or two covariant indices
if its components change sign when the
indices are interchanged, and a totally
antisymmetric tensor is one with pair-
wise-antisymmetric indices of only one
type. The sum and difference of two ten-
sors of the same type is another tensor of
the same type. The tensor product T1 ® T
of two tensors Ty and T of types (a1, b1)
and (a2, by), respectively, is a tensor of
type (a1 + a2, b1 + b1) with components
given by the product of components of Ty
and T, (see ALGEBRAIC METHODS, Sec. 3.8).
Various contractions of two tensors can be
introduced that generalize the contraction
of a vector with a one-form.

A useful concept in physical applications
is that of a tensor field of type (a, b) defined
as a particular choice of tensor of type
(a, b) at each point of M. The field is
called smooth if the components Tﬁjézj‘;%
of a tensor field are differentiable. Special

matics literature call the quantities
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cases are vector fields and one-form fields.
By convention, if a =b =0 the field is
called a scalar field and is just an element
of F(M), the real-valued functions on M.
An example of a tensor that plays a
crucial role in physics is the metric tensor
g. On the manifold M, it is a symmetric
tensor field of type (0,2) such that if
g(v1, 1) =0 for any v € TpM, then
vy = 0. In component form in a coordinate
basis near a point P
g = gj dod di”, (70)
where gy form the components of a
symmetric, invertible matrix. The metric
tensor g associates any two vectors with a
real number. For instance, in the usual ge-
ometry in a Euclidean space R" the matrix
gk = 3 and the real number is the scalar
or dot product of the two vectors. In other
applications different metrics may be re-
quired. For example, in special relativity
space-time is taken as a four-dimensional
manifold with a Minkowskian metric. If
the number g(v1, v;) has the same sign
for all vy, vy at all P on M, i.e, if the
eigenvalues of the matrix gy, are all of the
same sign, the metric is called Rieman-
nian. Manifolds admitting such metrics
are called Riemannian manifolds. Other
metrics are called pseudo-Riemannian.
The special case of a metric with one eigen-
value of different sign is called Lorentzian.
By diagonalization and normalization, it is
always possible to choose a basis at any
given P such that gy (P) is a diagonal ma-
trix with entries that are 1. If the entries
are all of the same sign, the metric in this
form is called Euclidean. If one entry has
a different sign, it is called Minkowskian.
Since g isa map TpM ® TpM — R, any
given vector v defines a linear map g(v)
from TpM to R. This map is evidently a
one-form, by definition. The components

v; of this one-form are given by

v = gjkvk . (71)
The map is said to lower the index of
the vector, and the result is called the
associated one-form. An inverse map can
be defined that uses the matrix inverse g*
of gj, to raise the index of a form, yielding
a vector.

A significant part of the classical litera-
ture on differential geometry is concerned
with the relationships between different
manifolds, in particular in manifolds en-
dowed with metrics. Consider two man-
ifolds M7 and M; of dimensions ny and
ny. If there exists a smooth and regular
map f : M1 — My, then M is said to be a
submanifold of M;. The map f is called an
embedding. The notion of a regular map is
readily understood in coordinate patches
{x/} onachart Uin M; and {yk} onachartV
in M;: the matrix with components dy*/dx/
must have maximal rank n; at each point.
Intuitively, the requirements for an em-
bedding can be viewed as ensuring for the
submanifold its differentiability, the ab-
sence of self-intersections, and that curves
through a pointin Mj look locally like their
images in M. The references at the end
of this article provide details of the meth-
ods and results of this subject. A simple
example of a question involving the no-
tion of embedding is the determination of
equations, called the Frenet-Serret formu-
las, for a curve in R". A more complicated
example is the description of the embed-
ding of a hypersurface M into R", which,
according to Bonnet’s theorem, is deter-
mined by the metric tensor g on M (which
in this context is called the first fundamen-
tal form), by another symmetric tensor of
type (0,2) called the second fundamental
form, and by a set of partial differential



equations called the Gauss-Codazzi equa-
tions. General results on the possibility
of embedding an m-dimensional manifold
into R" are also available. An example is
Whitney’s theorem, which may be viewed
as the statement that for compact mani-
folds such an embedding is possible for
n=2m+1.

2.4
Differential Forms

A particularly important class of tensors
is the set of totally antisymmetric tensors
of type (0,p) at a point of M". These span
a vector space denoted by APT5M or just
APT*, and they are called p-forms. The
number p < n is called the degree of the
form. Forthe casep = 0, A TjMis chosen
as F(M), the space of real smooth functions
on M. The dimension of APT* as a vector
space is given by the binomial coefficient
"Cp. Note that this implies that APT* and
AP T* have the same dimension.

Introduce the wedge product w1 A w; of
two one-forms by the definition

(72)

AW =w1 Qwy —wy Qwi.

By construction, this is an antisymmetric
tensor of type (0,2), i.e., a two-form. It
can be shown that a coordinate basis for
the two-forms is the set {d¥ A dx*}. In
general, antisymmetric tensor products of
one-forms can be used to generate p-forms,
and an element w € AP T* can be expanded
in a coordinate basis as
1 . .
wp = Ea)jl...ﬁ, dsdt Ao A dodr.

(73)

A natural induced wedge product exists
that combines a p-form w; with a g-form
wy to give a (p + q)-form. This product
obeys

w1 Awy = (—DPlwy A wr. (74)
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Alarger vector space AT* consisting of the
direct sum of all the spaces APT* can also
be considered. Its dimension is 2", and it is
called the Cartan exterior algebra of Tj M.

Analogous constructions can be intro-
duced for the case of antisymmetric ten-
sors of type (p,0), called p-vectors. The
totality of these spans a space denoted APT.
The p-forms, (n — p)-forms, p-vectors, and
(n — p)-vectors thus all form vector spaces
of dimension "C, at a point P of M". Var-
ious relations can be constructed between
these spaces. An important example is the
Hodge star map *, defined for manifolds
M that have a metric g. This is a lin-
ear map * : APT3M — AP TEM that is
most easily understood by its action on
coordinate components. Define the totally
antisymmetric symbol by

+1 if(j1---ju)is an even
permutation of
(1,....n
€, = —1 if (ji---ju) is an odd

permutation of
(1,...n

0 otherwise.

(75)
If a pform w is given in a coordinate
basis by Eq. (73), then

__JE
pl(n —p)!

dodrrt A A dodn,

gjlkl .. .gjpkpwkl...kpejl--jn
(76)

where g/ is the inverse metric matrix
introduced in Sec.2.3 and g is the
determinant of the matrix gj.

From the definition (64), the total
differential of a zero-form is a one-form.
An extension of the notion of differential
can be introduced to obtain a (p + 1)-form
via a p-form. Formally, a map d : APT* —
APTDT* called the exterior derivative can
be defined by the following requirements:
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1. d(w1 + wp) = dw1 + dw; for w1, w)
e NPT,

2. d(w1 A wy) = (dw1 A wy) + (—1)P (w1
A dw)) for w1 € APT and wy € AIT;
and

3. d(dw) = 0for w € APT.

It can be shown that the exterior derivative
is unique. In a coordinate basis, the
exterior derivative of a p-form given by
Eq. (73) is

1
da)p = <?> akwﬁ.._jp dx* A

Aot Ao A dab (77)
A p-form field with vanishing exterior
derivative is said to be closed, while one
that is obtained as the exterior derivative
of a (p— 1)form is called exact. The
definition of d implies that an exact form
is necessarily closed.

The exterior derivative combines in a
single notation valid for manifolds M"
extensions of the gradient, divergence, and
curl operations of usual three-dimensional
vector calculus. For instance, the gradient
of a function f is a covariant vector with
components J;f. These are precisely the
components of the one-form in Eq. (67).
The components of the curl make their
appearance in the exterior derivative of a
one-form o = wydx + wydy + w.dz:

do = (3ywy — dywy) dx A dy
+ (dyw, — dzwy)dy A dz
+ (0zwy — Oxwz) dz A dx. (78)
The divergence enters the expression for
the exterior derivative of a two-form w =
Wxydx A dy 4+ wpdy A dz + waxdz A dx:
dw = (xwyz + dywzy

+ dxy) dx A dy A dz. (79)

The statement dd = 0 contains the usual
identities  div(curl v) = curl(grad f) =0
for a vector v and a function f.

The existence of the Hodge star map
makes it possible to define a map from p-
forms to (p — 1)-forms by applying first *
[producing an (n — p)-form], then d [giving
an (n — p + 1)-form], and finally * again.
This map is called the adjoint exterior
derivative and denoted 8. For Riemannian
metrics it is defined as

§ = (=)™ g, (80)

while for Lorentzian metrics there is an
additional factor of —1. The adjoint exterior
derivative satisfies 88w = 0. A p-form field
with vanishing adjoint exterior derivative
is said to be coclosed, while one that is
obtained as the adjoint exterior derivative
of a (p + 1)-form is called coexact.

It is possible to express the Laplacian A
on a manifold M" in terms of the maps d
and §:

A= (d+8)> =ds +5d. (81)

For example, acting on a function f in three
dimensions, this definition reproduces the
standard expression of vector calculus,

(1Y, ¥
Af—(\/m_l>aj<\/lg7 W). (82

A pform o is said to be harmonic if
Aw = 0. This generalizes the usual notion
of harmonic functions.

2.5
Fiber Bundles

In addition to involving a manifold
of variables, many physical situations
also exhibit symmetry of some kind.
The natural geometrical framework in
which to formulate such problems is the



language of fiber bundles. Here, attention
is restricted to a special type of bundle,
appearing widely in physics, that involves
continuous symmetries. The latter are
described mathematically via the theory
of Lie groups.

This paragraph presents a few essential
definitions involving Lie groups. More
details may be found in the articles GROUP
THEORY and ALGEBRAIC METHODS. For the
present purposes, a Lie group G may
be viewed as a group that is also an r-
dimensional manifold such that for two
group elements g, h € G the map gh™! :
Gx G— G exists and is continuous.
Denote coordinates in a chart near some
point P of G by (¢4}, A=1,...,r. Then
the group composition function f : G x
G — G defined for g(a), h(b), k(c) € G by
f(h,g) =k = hg can be written in terms of
r functions ¢# acting on the coordinates
as

A = g2, a). (83)

The generators Dy of infinitesimal group
transformations on G span the tangent
space ToG at the group identity and are
given by

dpB
Da=UBdp, UB=—| .
ab* o

This space is called the Lie algebra
associated with the group. The dual basis
is spanned by the one-forms

QA =daP(U™H5.

(84)

(85)

As a simple example, consider the group
U(1). The group manifold is a circle S'; if
the coordinate is denoted by 6, the group
composition function is 63 = 6, + 1. The
generator Dy is just dp and the dual basis
is do.

A fiber bundle is basically a manifold
acted on by a symmetry. One important
type of bundle, called a principal bundle,
looks locally (but not necessarily globally)

Geometrical Methods

like a product of a continuous symmetry
group with a manifold. The action of
the symmetry provides a natural means
of moving around in each local piece
of bundle. The idea is to patch together
these local pieces in a smooth way to get
the whole principal bundle. Globally, the
patching can introduce various twists into
the overall structure, in which case the
bundle is called nontrivial. A trivial bundle
is one where no twists arise: the global and
local structure are similar.

Here is a more formal definition. Given
amanifold B and a Lie group G, a principal
fiber bundle E(B,G) is a manifold such that

1. G acts differentiably and without fixed
points on E;

2. B is the quotient space of E by
equivalence under G, and there exists a
differentiable map 7 : E — B; and

3. for each chart U; in an atlas for B,
there exists a differential and invertible
mapping ¢; : Jr’l(Uj) — U x G given
by E— (x(P),f(P)) for any point
P € E,wheref : n_l(Uj) — G satisfies
f(gP) =gf(P) forany g € G.

The group G is called the structure
group and the manifold B is called the
base manifold. The map 7 is called the
projection. The inverse image of n is the
fiber; in effect, each fiber is like a copy of
G. A (global) cross section or section s of
a bundle is defined as a smooth map s:
B — E such that 7°s is the identity on B.
Local sections, i.e., sections defined only
on 7~ (Uj), always exist. If the bundle
admits a global section, it is called trivial.

2.6
Connection and Curvature

Since {9;} is a basis for the tangent space of
the base manifold and {D4} is one for the
tangent space of the group, a basis for the
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tangent space to a point in the bundle is
the set {0;, Da}. It has dual basis {dxd, Q4.
However, linear combinations could also
be taken. The existence of this freedom
permits the definition of a natural one-
form called the connection that contains
essential information about the structure
of the bundle. The connection is basically
a separation of the tangent space of E into
two pieces, one along the group.

Formally, a connection is a choice of a
subspace TpH of TpE at each point P of E
such that

1. TpE = TpG ® TpH, where TpG is the
space of vectors tangent to the fiber at
P;

2. TpH isinvariantunder action by G; and

3. the components in TpG and TpH of
a smooth vector field in TpE are also
smooth. The spaces TpG and TpH
are called the vertical and horizontal
subspaces, respectively.

Some of the implications of this defini-
tion are most easily seen in a coordinate
basis on the bundle. Let a basis for TpH be
defined as the linear combination

D=9 — thA, (86)

and require that D; commute with Dy
(among other consequences, this implies
that th transforms under a particular
representation of the Lie algebra of G,
called the adjoint representation). Then
the coefficients h# are called connection
coefficients and the basis elements { D;} are
called the horizontal lifts or the covariant
derivatives of the basis elements {9;}. The
dual to the basis {Dj, Da} for TpE is the set
{dxj , w4}, where the w* are given by

ot =Q + hj‘ dd. (87)

They form the components of a com-
posite one-form ® = w*Dy called the
connection form.

The connection form w encodes many of
the interesting properties of the bundle in
a concise notation. Its exterior derivative
is also an important quantity in physical
applications. Introduce a two-form R called
the curvature form of the bundle by the
definition

R=dwo+owArw. (88)

The curvature is said to be a horizontal
form because its action on any vertical
vector vanishes. Its nonzero components
are given by the expressions

R=RDs, R} =RAD;, DY, (89)
and it follows that
[Dj, Dy] = R Da. (90)

Applying another exterior derivative gives
an identity

dR=RAw—wAR=0 (91)
called the Bianchi identity, with compo-
nents "

> DRy =0,

jkl

92)

where the sum is over cyclic permutations
of the indices j, k, I.

2.7
Example: Electromagnetism

An illustration of the role of some of these
ideas in physics is provided by the formu-
lation of the theory of electromagnetism
in differential-geometric language. First,
here is a summary of a few of the key equa-
tions of electromagnetism. In this section,
a boldfaced symbol denotes a vector viewed
as a collection of components. The symbol
V is the usual vector gradient operator,
while - indicates the vector dot product
and x represents the vector cross product.



The Maxwell equations in SIunits include:
Gauss’s law,

v.E="2. (93)
€0
Faraday’s law,
V xE+ 9B =0; (94)

the equation expressing the absence of
magnetic monopoles,

V.B=0; (95)
and the Ampere-Maxwell law,
V x B = o) + ¢ 23E, (96)

where ¢p is the absolute permittivity,
(o is the absolute permeability, and ¢ =
1/ /€oito is the speed of light in vacuo.
Although these equations can be solved
directly in simple cases, it is often useful to
introduce new variables, called potentials,
in terms of which the four first-order
Maxwell equations are replaced with two
second-order equations. The scalar and
vector potentials ¢ and A are defined by

E=-V¢ —0A, 97)

With these definitions, the homoge-
neous equations (94) and (95) are au-
tomatically satisfied. The two inhomoge-
neous Maxwell equations become coupled
second-order equations for the potentials:

0

B=V x A.

Vip+V-A=—-2 (98)
€0
and
VZA—c22A - V(V - A+ o)
= —Ho]. 99)

There exists a freedom in the definition
of ¢ and A. The electric field E and the
magnetic induction B are unchanged by
the replacements

¢—> ¢ =¢— A (100)
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and
A—- A =A—VA, (101)
where A is a function of x and ¢t

These replacements are called gauge
transformations. Their existence provides
sufficient freedom to decouple Egs. (98)
and (99).

It is easiest to approach the differential-
geometric formulation of electromag-
netism in stages, each incorporating more
aspects of the theory. Here, the Maxwell
equations for E and B are first expressed us-
ing the language of differential forms. The
structure of the theory as a fiber bundle
is then described, thereby incorporating
the potentials ¢ and A and the notion
of gauge transformations. To obtain con-
sistent physical dimensionalities within
expressions, it is convenient to work with
a coordinate x* = ¢t with dimensions of
length rather than with the time coordinate
t. In what follows, the spatial coordinates
(x, y, 2) are denoted (1, %%, %3).

Begin with the identification of the
space and time dimensions as a four-
dimensional smooth manifold M. The
manifold is often taken to be R* but this
is not essential. The tangent space to M at
a point P is also four-dimensional, and a
basis for this space is the set {d,}, u =
0,1,2,3, of derivatives with respect to
the four coordinates (x°, x1, x2, x3). An
arbitrary vector can be expanded with
respect to this basis. One vector, denoted
by j and called the four-vector current, has
components j* formed from the charge
and current densities p, J:

. [op
=0 = (") 90+ ol - V. (102)
c
An important tensor field on M is the

Minkowskian metric g, defined to have
components g,, in a coordinate basis
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forming a matrix given by

1 0 0 0
0 -1 0 0

8v=1o 0o -1 o (103)
0 0 0 -1

This incorporates the essential elements
of special relativity.

The Maxwell equations can be expressed
in terms of a two-form field F defined on M.
This antisymmetric tensor of type (0,2) is
called the field strength. The components
F,y of F are related to the components of
the electric field and magnetic induction,
and are given by

0 +E'/c +E?/c +E}c

B —E'%c 0 -B* +B?

W=l —E%/)c  +B3 0 —B!

—-E)c —-B> +B 0
(104)

This assignment of E and B is not a priori
mathematically unique but establishes
agreement of the resulting theory with
experiment. In terms of the two-form F, the
inhomogeneous Maxwell equations can be
rewritten as

dF =}, (105)
and the homogeneous ones become
d+F=0. (106)

The two-form «*F is called the dual
field strength. In component form in a
coordinate basis, these equations read

9P =" (107)
and

€vpo P = 0. (108)

Each of these represents four equations,
and an inspection shows they reduce to
the usual form of the Maxwell equations
upon substitution in F and j of E, B, p,
and J.

The discussion so far has excluded the
potentials ¢ and A. These can be combined
to form the components A* of a vector,
called the gauge potential:

AR), = ¢ do+A-V
w=1\7)% +A-V. (109)
The factor of ¢ is introduced to maintain
dimensional consistency. The metric g
provides the associated one-form
A= Aydet = g ,Aldx", (110)
with components obtained by lower-
ing the index. A complete description
of the differential-geometric role of the
gauge potential in electromagnetism re-
quires a framework in which to place its
nonuniqueness under gauge transforma-
tions. This freedom can be interpreted
as a symmetry of Egs. (98) and (99) ex-
pressing electromagnetism in terms of
the potentials. It can be shown that this
symmetry is a Lie group, called U(1). A
natural geometrical framework to express
this is a fiber bundle, as is discussed next.
For simplicity in what follows, the charge
and current densities are taken to vanish.
Nonzero distributions can be incorporated
consistently with the addition of some ex-
tra structure.

The bundle of interest is a principal
fiber bundle with the four-dimensional
space-time manifold taken as the base
manifold B and the symmetry group U(1)
of gauge transformations taken for the
structure group G. Since the manifold of
the group U(1) is a circle S', the principal
bundle is five-dimensional. Denote the
coordinate on S' by 6. The introduction
of a connection separates the tangent
space to a point P in the bundle into
a four-dimensional horizontal subspace
spanned by the basis {D,, = 9,,} and a one-
dimensional vertical subspace spanned by



the generator Dy = 9y of the Lie algebra of
U(1). The dual basis is the set {dx*, Q¥ =
d6}. The composite connection form w is
w=Q"Dy = dfdy.

The gauge potential A can be identified
with the value of the one-form Q7 on
a section s of the bundle. Suppose that
the surface s through the bundle E is
specified in a chart U by choosing the
group coordinate 6 as a function of the
coordinates {x"} provided by U. Then the
dual form becomes

Q¥ =do = 9,0(x)dx" = Ay (x)dxH,

(111)
where the identification of the components
of the one-form QY with the components
of the gauge-potential one-form has been
made. Under a change of cross section,
which is equivalent to the action of a group
element with a parameter A, say, the po-
tentials A, change by an amount 9, A.
This provides the geometrical interpreta-
tion for the gauge transformations (100)
and (101).

The curvature two-form dw+w A w
derived from the connection form w is
denoted by F. Evaluated on a local section,
it has components

Fup = 9,A, — 3,A,. (112)

In terms of the scalar and vector potentials,
this equation reproduces the definitions of
Eq. (97). The Bianchi identity in compo-
nent form in this case can be written
dxF=0, (113)

thereby reproducing the homogeneous
Maxwell equations. To complete the speci-
fication of the bundle, additional equations
are needed that explicitly determine in
each section the connection and the curva-
ture. These are called equations of motion.
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Requiring these to transform as usual un-
der Lorentz transformations and to be
second-order differential equations for the
connection or first-order equations for
the curvature significantly restricts the
options. An inspection of the Lorentz
representation content of the general first-
order term 9, F,, shows that the simplest
choice is 9, F,, = 0 or its form equivalent

dF = 0. (114)
This reveals the geometrical role of the
remaining two equations in Maxwell’s
theory.

In the presence of monopoles, the homo-
geneous Maxwell equations are modified
by the introduction of sources. A geometri-
cal setting for the equations describing the
fields of a monopole is provided by a non-
trivial principal bundle. It can be shown
that the essential physics is contained in
a bundle with base space S? and structure
group U(1). The bundle space E looks like
S and the projection map 7 is called the
Hopf map.

2.8
Complex Manifolds

Just as the requirement of differentiability
for manifolds introduces many useful
structures, a further restriction imposing
complex analyticity is of considerable
interest. The resulting manifolds, called
complex manifolds, look locally like the
complex plane. Some of their main
features are outlined in this section. Basic
methods of complex analysis are assumed
here. See ANALYTIC METHODS, Sec. 1, for
more details.

The formal definition of a complex mani-
fold M parallels that for a real differentiable
manifold presented in Sec. 2.1. The key dif-
ference is that the local charts now contain
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maps f taking neighborhoods U into C",
the product of n complex planes C, and that
the composition map f; sz_l is required to
be holomorphic rather than differentiable.
This ensures that the methods of complex
analysis can be used on M independently
of any choice of chart. The number n is
called the complex dimension of M; the
real dimension is 2n. An important fea-
ture is that a complex manifold may have
two or more incompatible atlases, i.e., the
union of two atlases may not satisfy the
requirements for an atlas. In this case the
atlases are said to define different complex
structures. An example is the torus T2 with
two real dimensions; it can be shown that
the complex structures on the torus are
distinguished by a complex number called
the modular parameter.

Denote the n complex coordinates on
M in a chart U by d =« +iy,j=
1,...,n, with Z =« —iy). The tangent
space TpM at a point P of M" is spanned
by a 2n-dimensional coordinate basis
{8/85, 3/8y). It is useful to define

a 1(8 .8)
8j_—‘=— — —1— ],
37~ 2\ox 9y

3 1
0z 2

.0
{)3 (aaxJ + la—yj> . (115)

The cotangent space is spanned by the dual
basis {d«/, dy’}, or equivalently by

dz = dxd — idyl}.
(116)

Define the linear map J: TpM — TpM
by

{d = dod + idy,

Jo =13, Jo = —ids. (117)
Note that Jo] = —I. This map is smooth
and globally defined on any complex
manifold M. It is called the almost
complex structure of M. The action of J
separates TpM into two separate vector

spaces, one spanned by vectors v such
that Jv = iv and the other by vectors such
that Jv = —iv. It follows that a vector
in TpM can be uniquely decomposed
into two pieces, called the holomorphic
and antiholomorphic parts. The cotangent
space TyM can be separated into two
corresponding pieces.

Complex differential forms of degree
(p, q) can also be introduced. These are
elements of a vector space denoted by
APDT, In local coordinates, APDT is
spanned by a coordinate basis containing
p factors of dz/ and q factors of dZ/. The
exterior derivative d naturally separates
into the sum of two pieces,

d=0+29, (118)

called the Dolbeault operators. They satisfy

90 =00 = 00 + 00 = 0. (119)

All complex manifolds admit a Hermi-
tian metric. A Riemannian metric g on M
is said to be Hermitian if

g(v1, Jva) = g(v1, v2) (120)

for all vectors v1, v, € TpM at all points P.
In a coordinate basis, g can be shown to
have the form

g= gjkdzj A dzF +gjkd2j AdZF. (121)
One can also define a two-form  called
the Kihler form by

Q1,v2) =g(Jv1, v2). (122)

If the Kihler form is closed, dQ = 0, the
manifold is called a Kihler manifold and
the metric g is said to be a Kihler metric.
In a chart, the components of a Kihler
metric can be written as

g = 99K, (123)



where K is a scalar function called
the Kihler potential. Compact Kihler
manifolds in one complex dimension
are called Riemann surfaces and are of
great importance in certain branches of
physics, notably string theory. Examples
of Riemann surfaces are the two-sphere S?
and the two-torus T?.

29
Global Considerations

Essentially all the differential geometry
considered above has involved local con-
cepts. It is also of interest to address the
issue of the extent to which the local prop-
erties of a manifold determine its global
ones. The study of global properties of a
manifold forms part of the branch of math-
ematics called topology (g.v.) and as such is
tangential to the scope of this article. This
section provides a sketch of some con-
nections between the two subjects. Details
may be found in the references provided
at the end of the article.

One link between the geometry and
topology of a differentiable manifold M
can be introduced by considering the
space of all closed p-forms on M. This
space can be separated into classes, each
containing closed forms differing from
one another only by exact ones. The set
of all classes is a vector space called the
pth de Rham cohomology group of M
and denoted HP(M). This vector space
contains topological information about M.
For example, the dimension of HP, called
the pth Betti number, is a topological
invariant of M that contains information
about the holes in M. The Betti numbers
also determine the number of harmonic
forms on M.

There are relationships between the
number of critical points of functions
on a manifold M and the topology of
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M. This is the subject of the calculus of
variations in the large, or Morse theory.
Among the results obtained are the Morse
inequalities, which relate the number of
certain types of critical points of a function
to combinations of the Betti numbers
on M.

The presence of a metric on M permits
other types of global information to be
obtained. An example is the Hodge de-
composition theorem. This can be viewed
as the statement that on a compact ori-
entable Riemannian manifold M without
boundary, any p-form can be uniquely de-
composed into the sum of an exact form,
a coexact form, and a harmonic form.

The issue of describing the global struc-
ture of a bundle (not necessarily principal)
provides another link between geometry
and topology. It is possible to develop
measures of the ways in which a given
bundle differs from the trivial bundle. The
relevant mathematical objects are called
characteristic classes. They are elements
of the cohomology classes of the base
manifold, and are given different names
depending on the type of bundle being
considered. Among these are Pontrjagin,
Euler, and Chern classes, corresponding
to orthogonal, special orthogonal, and uni-
tary structure groups. Elements in these
classes can be expressed in terms of the
curvature two-form of the bundle. An-
other set of characteristic classes, the
Steifel-Whitney classes, determines the
orientability of a manifold and whether
a spinor field can be consistently defined
on it.

There are also relations between certain
aspects of differential operators on bundles
and the topology of the bundles. These are
given by index theorems. An important
example is the Gauss-Bonnet theorem,
which connects the number of harmonic
forms on a manifold (this is a property
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of the exterior derivative operator) to an
integral over the Euler class (this is a
topological quantity). Another important
example is the Riemann-Roch theorem for
complex manifolds. These are special cases
of the Atiyah-Singer index theorem.

2.10
Further Examples

Many sets of smooth physical variables can
be viewed as differentiable manifolds, and
so differential-geometric concepts such as
vectors, tensors, forms, and bundles play
key roles in much of theoretical physics.
Examples can be found in every ma-
jor branch of physics. For instance, the
modern formulation of the Hamiltonian
dynamics of a system proceeds via the
investigation of a manifold M called the
phase space, with local coordinates corre-
sponding to the generalized coordinates
and momenta of the system. A closed non-
degenerate two-form called the symplectic
form is defined on M, making the phase
space a symplectic manifold. The study of
the properties of the phase space using
the methods of differential geometry pro-
vides information about the behavior of the
system. An extension of this example oc-
curs in quantum mechanics. Quantization
of a system involves the introduction of
complex structure on the symplectic man-
ifold. The study of this procedure is called
geometric quantization.

Differential geometry is particularly cru-
cial in the development of theories of
fundamental interactions and particles.
The geometrical constructions presented
above for electromagnetism can readily
be extended to other theories of funda-
mental forces. For example, the equations
believed to describe the underlying physics
of the strong interactions form a theory
called chromodynamics. This theory can

be expressed geometrically using a princi-
pal bundle over space-time but where the
structure group is the eight-dimensional
Lie group called SU(3) rather than U(1).
The presence of a multidimensional group
manifold with a nontrivial group compo-
sition law means that, unlike the elec-
trodynamic case, the horizontal lifts are
inequivalent to the basis for the tangent
space to the base manifold. As a result,
the structure of the Bianchi identities and
the equations of motion are somewhat
more complicated in detail. The essen-
tial construction, however, remains the
same.

Another important physical theory is
general relativity, which provides a good
description of the gravitational interactions
at the classical level. This theory can also
be given a geometrical interpretation as
a fiber bundle, but it is of a somewhat
different kind, called a bundle of frames.
Each point on a fiber of this bundle
consists of a choice of basis vectors for the
tangent space to the space-time manifold,
and the symmetry group that plays the
role of the structure group of a principal
bundle now acts to rotate these bases into
one another. A connection form and an
associated curvature still exist, and they are
closely related to the Christoffel symbols
and the Riemann space-time curvature
tensor of general relativity. In addition,
there exists new freedom arising from
the choice of basis vector on the base
manifold, which leads to the existence
of a second natural one-form on the
bundle called the solder form or vierbein.
This also has an associated two-form,
called the torsion. In Einstein’s general
relativity the torsion form is specified to
be zero, although other possibilities can be
envisaged.

Attempts to unify the known funda-
mental forces and particles make wide



use of geometrical constructions. Exam-
ples of such theories in four dimensions
are the grand unified theories, describ-
ing the strong, weak, and electromagnetic
forces in a single framework. The geo-
metrical structures discussed above can
be extended to more complicated sym-
metry groups large enough so that the
connection forms include all the force
fields needed for these theories. Certain el-
ementary particles play the role of sources
for these fields and can also be incorpo-
rated in bundles called associated bundles.
Many unified theories involve higher-
dimensional manifolds, in which physical
space-time is a submanifold. These in-
clude the so-called Kaluza-Klein theories.
Often, the symmetries of the extra di-
mensions permit them to play the role
of the structure group in a principal bun-
dle.

Generalizations of the geometrical
framework of gravitation are also possible.
For example, if the base manifold for
a bundle of frames is generalized in a
certain way, it is possible to specify bundles
describing extensions of general relativity
that include fundamental particles and
forces other than gravity and that
incorporate enlarged symmetries called
supersymmetries. The resulting theories
are called supergravities.

String theories are candidate unified
theories including gravity that are believed
to be consistent with quantum mechanics.
In these theories, the fundamental forces
and particles are interpreted as objects
that are extended in one dimension
(hence the name string). As a string
propagates in space-time, it sweeps out a
two-dimensional surface called the world
sheet. A description of the world sheet
involves the study of complex manifolds,
in particular Riemann surfaces, as well as
the notions of global differential geometry.
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3
Projective Geometry

In its basic form, projective geometry is
essentially the theory of perspective, i.e.,
the study of those features of geometrical
objects that remain the same when
the objects are projected from a point
onto a line or plane. The elements of
projective geometry are implicitly used
by artistic painters, designers, and other
people who represent three-dimensional
objects on a two-dimensional medium.
In its generalized form, the subject is
fundamental in axiomatic geometry. It
can be viewed as subsuming the classical
Euclidean and non-Euclidean geometries.

There are two approaches to projective
geometry. Synthetic projective geometry
seeks to develop the subject as a series of
deductions starting from certain axioms,
in the Euclidean tradition. Analytical pro-
jective geometry introduces homogeneous
coordinates and uses analytical techniques
to obtain results. The two approaches
are complementary, although projective
geometries exist for which coordinates
cannot be introduced.

A key feature of projective geometry is
that parallel lines are assumed to meetin a
single point, called the point atinfinity, and
that parallel planes meet in a single line,
called the line at infinity. One advantage
of these assumptions is that geometrical
statements do not require exceptions for
parallelism. For example, it is now true
that any two lines in the plane determine
a point, and any two planes in three
dimensions determine a line.

In a plane, the statement that two lines
determine a point is strikingly similar to
the statement that two points determine
a line. In general, projective-geometric
statements involving points and lines in
the plane remain valid when the roles of
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the points and lines are interchanged. In
the plane, points are said to be dual to
lines. In three dimensions the notion of
duality applies between points and planes,
or between lines and lines. A similar
concept exists in higher dimensions.

With these ideas, a set of axioms
for synthetic projective geometry can be
formulated in terms of three basic notions:
point, line, and incidence. The latter is
meant in the sense of intersection: for
example, a pointisincidenttoalineifitlies
on the line. The axioms can be expressed
in dual pairs, so that propositions deduced
necessarily have valid duals.

3.1
Some Theorems

There are several theorems that play a cen-
tral role both in the development of the
basic theory and in its extension to more
abstract situations. A key result is Desar-
gues’s theorem: Given six distinct points in
two sets, {A1, Az, Az} and {B1, By, B3} (ie.,
the vertices of two triangles), if the lines
A1B1, A2 B, A3 B3 meetata point, then the
three points Ci, C, C3 given respectively
by the pairwise line intersections AiB;
and Ay B1, AyBs and A3 B, A3By and A1 B3
are collinear. This theorem holds in all
projective geometries in three dimensions
or more and in certain two-dimensional
cases, including the usual plane projective
geometry. However, in two dimensions
non-Desarguesian geometries also exist.
Another important result that holds
for a large class of projective geometries
including the usual plane and solid ones is
Pappus’s theorem: Given two lines a and
b lying in a plane and two sets of three
distinct points {A1, Ay, A3} incident to a
and {Bp, B, B3} incident to b, then the
three points Ci, C, C3 given respectively
by the pairwise line intersections AiB;

and Ay B, ApB3 and A3 B;, A3B; and A1 B3
are collinear. Non-Pappian geometries also
exist.

A pencil of lines about a point P is
defined as the set of all lines lying in a
plane and incident with P. A line s in the
plane not incident with P is called a section
of the pencil, and the pencil is said to
project the section from P. Two pencils can
be projectively related through a common
section. Two distinct sections are said to
be related by a projective transformation
from the point P. The fundamental
theorem of projective geometry states that
a projective transformation is specified
when three collinear points and their
images are given. The theorem generalizes
to projective transformations of higher-
dimensional figures.

Conic sections (see Sec. 1.2) have a nat-
ural construction in projective geometry,
and their theory can be developed entirely
within this subject. Since all conics can be
generated by projection of a circle from
a point onto a plane, the projective ap-
proach gives them a unified treatment and
consequently several results of analytical
geometry can follow from a single projec-
tive theorem. Plane-projective definitions
also play an important role. For example,
the locus of intersections of corresponding
lines in two projectively related pencils is a
conic. A well-known result in this branch
of the subject is Pascal’s theorem: Given
six points {A1, Ay, Az, A4, As, Ag}incident
to a conic, then the three points By, By, B3
given respectively by the pairwise line
intersections A1A; and A4As, AyAs and
AsAg, A3A4 and AgA;p are collinear. The
dual to Pascal’s theorem is sometimes
called Brianchon’s theorem. These meth-
ods of projective geometry can also be
extended to the study of quadrics and
higher-dimensional hypersurfaces.



3.2
Homogeneous Coordinates

In analytical projective geometry, a set
of coordinates called homogeneous co-
ordinates is introduced. Consider first
homogeneous coordinates on the line. A
Cartesian coordinate system assigns a sin-
gle real number x to each point P. In
contrast, a homogeneous coordinate sys-
tem assigns two real numbers (xo, x1)
to each point, where x = x1/xp and at
least one of (xp, x1) is nonzero. Evidently,
the homogeneous coordinates (xo, x1) and
(cxp, cx1), where ¢ is a constant, both rep-
resent P. The advantage of homogeneous
coordinates is that the point (0,1) at infin-
ity is treated on the same footing as, say,
the origin (1,0). It also makes any polyno-
mial equation f(x) = 0 homogeneous in
(%0, x1) without affecting the degree of the
equation.

In the plane, the homogeneous coordi-
nates of a point P specified in Cartesian
coordinates by (x,y) are three real num-
bers (xg, %1, x2), not all zero, for which
X = x1/%0,y = x2/%x0. A line in Cartesian
coordinates is given by the linear equation
Ax + By + C = 0. In homogeneous coor-
dinates this becomes the homogeneous
linear equation

Ax1 + Bxy + Cxg = 0. (124)

The line at infinity has equation %9 =0
and is thereby treated on a similar footing
to other lines; for example, the x and
y coordinate axes have equations x; =0
and x; = 0, respectively. All these ideas
generalize to higher dimensions.

In addition to providing a framework
in which analytical calculations can be
developed, the homogeneous coordinate
system offers a simple setting for du-
ality. For example, given Eq.(124), the
three numbers (A, B, C) can be viewed
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as homogeneous coordinates for a line
in the plane. Then, coordinate statements
about a point are expressed in terms of
three numbers (xg, x1, x2), while state-
ments about a line are expressed in
terms of a dual set of three numbers
(A, B, C). A single equation thus repre-
sents a line or a point depending on
which three numbers are considered vari-
ables.

Any set of three coordinates (xp, X1, X2),
obtained from the homogeneous coordi-
nate system (xp, %1, ¥2) in the plane by an
invertible linear transformation

X = Ajx (125)
(see ALGEBRAIC METHODS, Sec. 3.3), also
leaves unchanged the degree of any poly-
nomial function of the coordinates. The
set (Xp, X1, x2) can be taken as alternative
homogeneous coordinates.

3.3
Group of Projective Transformations

Instead of being taken as a change of co-
ordinates for a fixed point P, the linear
transformation (125) can be interpreted as
a mapping from a point P at (xo, %1, X2)
to another point Pat (%, %1, %2). This pro-
vides a mapping of the projective plane
onto itself. Such mappings form a group
G called the group of projective transfor-
mations for the plane. Similarly, groups
of projective transformations can be intro-
duced for higher-dimensional cases.
According to the so-called erlangen
program, projective geometry can be
viewed as the study of properties of figures
that are invariant under the action of G.
Various other geometries can be obtained
by requiring invariance under a subgroup
of G. They include the regular Euclidean
geometry, as well as affine geometry and
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the non-Euclidean elliptic and hyperbolic
geometries.

Extensions of projective geometry to
fields other than the real numbers exist.
For example, complex projective geometry
is defined over the complex numbers. The
field may be finite or even noncommuta-
tive (see ALGEBRAIC METHODS, Sec. 2). For
example, a finite geometry in the plane
called PG(2,5) can be constructed using
31 points and 31 lines, with six points on
each line and six lines through each point.
Details of these generalized projective ge-
ometries may be found in the references
at the end of this article.

4
Algebraic Geometry

Algebraic geometry involves the study
of mathematical objects called varieties,
which are generalized curves, surfaces,
and hypersurfaces. The subject has several
levels of abstraction, in each of which the
precise meaning of the word variety is
different. For the purposes of this article
a relatively simple level of sophistication
suffices, in which a variety can roughly
be viewed as the solution to a set of
polynomial equations for variables in a
space. Note, however, that the modern
definition of variety is considerably more
abstract. It uses a branch of mathematics
called the theory of schemes, about which
more can be found in the references at the
end of this article.

This section presents a few simple
notions of algebraic geometry in the
framework of polynomial equations. The
discussion refers to several concepts (e.g.,
field, polynomial ring, rational functions)
that are defined and described in the article
ALGEBRAIC METHODS.

4.1
Affine Varieties

Here is a more precise definition of
one important type of variety. Consider
an algebraically closed field F. An n-
dimensional affine space A" over F is
defined as the set of points specified by the
coordinates (fi, ..., fu) with ]5 € F. Denote
by F[fi,...,fs] the polynomial ring in n
variables over F. An affine variety V is a
subset of A" given by the common zeros of
a set S of polynomials in F[fi, ..., fu]. If S
contains only one polynomial, V is called
an affine curve for n = 2, an affine surface
for n =3, and an affine hypersurface for
n>3.

A subset of V satisfying the definition
of a variety is called a subvariety. If V is
the union of two subvarieties, it is called
reducible; otherwise, it is irreducible. For
example, an irreducible affine curve is
one for which the defining polynomial is
irreducible (i.e., cannot be factored). An
irreducible component of V is defined
as a maximal irreducible subvariety of
V. One result in this subject is that any
variety V can be written uniquely as the
union of finitely many distinct irreducible
components.

Starting with a variety V, a sequence
of irreducible varieties can be constructed
such that each member of the sequence
is a subvariety of the preceding one.
This sequence is of finite length, and the
number of subvarieties in it is called the
dimension of V.

The unions and finite intersections of
subvarieties of V are also subvarieties.
This means that the complements of the
subvarieties of V can be used as the
collection t of subsets for a topological
space (see Sec.2.1). Therefore, A" and
hence also V can be endowed with a
topology, called the Zariski topology. This



topology is not Hausdorff but, unlike the
usual Hausdorff topology on C", it is
defined for all affine varieties over F.

4.2
Projective Varieties

Several extensions of the notion of affine
variety to more general varieties exist. One
generalization uses an approach similar to
that taken in the construction of differen-
tiable manifolds: The meaning of variety
is extended to include objects constructed
by patching together affine varieties. This
generalization then looks locally like an
affine variety but globally is different. An
important result in algebraic geometry is
that certain subsets of projective spaces
form varieties of this sort, called projective
varieties.

An n-dimensional projective space P"
over F can be introduced as the set of points
specified by the homogeneous coordinates
(fo.fi, ... fu) with fie F not all zero,
subject to the restriction that two such
sets of homogeneous coordinates related
via a single nonzero constant ¢ € F as

(fo. fi, - fo) = (fo. cfi. .o cfw)  (126)

specify the same point (cf. Sec. 3.2). De-
note by HI[f1, ..., fu] the ring of homoge-
neous polynomials in n variables over F.
A projective variety V is a subset of P"
given by the common zeros of a set S of
polynomials in H[fi, ..., fu]. If S contains
only one polynomial, V is called a projec-
tive curve for n = 2, a projective surface
for n =3, and a projective hypersurface
forn > 3.

4.3
Classification

The ultimate aims of algebraic geometry
are the classification and characterization

Geometrical Methods

of varieties. These are difficult and un-
solved problems in the generic case. To
attack the classification problem, a means
of relating varieties to one another is
needed. This is provided by the notion
of a rational map.

A rational map f:V — A" from an
affine variety to n-dimensional affine space
is basically a set of n rational functions f;.
The domain of f is by definition taken
as the union of the domains of the »
functions f;. A rational map f: V3 — V;
between two affine varieties V3 C A™ and
V, C A™ is defined to be a rational map
f:Vi— A" such that the range of f
lies in V,. If the map f also has a
rational inverse, it is called a birational
equivalence.

The classification problem is approached
by seeking a classification up to birational
equivalence. Ideally, this means provid-
ing discrete and/or continuous numerical
quantities that are invariant under bira-
tional equivalence and that characterize
inequivalent varieties. Then, given a bira-
tionally equivalent set of varieties, a stan-
dard subset with desirable features (e.g.,
no singularities) can be sought and a clas-
sification attempted. Finally, one can seek
some means of measuring the deviation
from this standard subset of the remain-
ing members of the birational-equivalence
class.

An example is provided by the special
case of the algebraic curves over F. For
these varieties, a discrete quantity called
the genus g can be introduced, which is
a nonnegative real number that is invari-
ant under birational equivalence. Curves
with g =1 are sometimes called elliptic
curves. For each nonzero g the birational-
equivalence classes can be labeled by a
one-dimensional continuous variable if
g =1 and by a (3g — 3)-dimensional set
of continuous variables otherwise. The
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continuous variables are called moduli.
They also form an irreducible variety,
called moduli space, that can in turn be
studied with the methods of algebraic ge-
ometry.

If the field F is the field C of complex
numbers, the resulting algebraic curves
are the Riemann surfaces. A curve with
g =0 is topologically a sphere, while
one with g=1 is topologically a torus.
The set of Riemann surfaces plays an
important role in string theories (see
Sec. 2.10). For example, at a particular
order in perturbation theory for a scat-
tering process the string world sheet
is topologically a Riemann surface with
punctures for the incoming and outgo-
ing strings. The methods of differential
and algebraic geometry play a signif-
icant role in the evaluation of such
contributions to the scattering ampli-
tudes.

Glossary

Considerations of space prevent an exten-
sive glossary being provided for this article.
Instead, the following is a list incorporat-
ing important concepts together with the
number of the section in which the concept
appears.

Abscissa: See Sec. 1.1.

Adjoint Exterior Derivative: See Sec. 2.4.
Affine Space: See Sec. 4.1.

Affine Variety: See Sec. 4.1.

Almost Complex Structure: See Sec. 2.8.
Antisymmetric Symbol: See Sec. 2.4.
Antisymmetric Tensor: See Sec. 2.3.
Applicate: See Sec. 1.5.

Atlas: See Sec. 2.1.

Base Manifold: See Sec. 2.5.

Betti Number: See Sec. 2.9.

Bianchi Identity: See Sec. 2.6.

Birational Equivalence: See Sec. 4.3.
Brianchon’s Theorem: See Sec. 3.1.
Bundle of Frames: See Sec. 2.10.
Cartan Exterior Algebra: See Sec. 2.4.
Cartesian Coordinates: See Sec. 1.1.
Characteristic Class: See Sec. 2.9.
Chart: See Sec. 2.1.

Circle: See Sec. 1.2.

Closed Form: See Sec. 2.4.

Coclosed Form: See Sec. 2.4.

Coexact Form: See Sec. 2.4.

Complex Manifold: See Sec. 2.8.
Complex Structure: See Sec. 2.8.

Cone: See Sec. 1.5.

Conic Section: See Sec. 1.2.
Connection: See Sec. 2.6.

Contraction: See Sec. 2.2.
Contravariant Components: See Sec. 2.2.
Coordinate Basis: See Sec. 2.2.

Cosine: See Sec. 1.3.

Cotangent Space: See Sec. 2.2.
Covariant Components: See Sec. 2.2.
Covariant Derivative: See Sec. 2.6.
Cross Section: See Sec. 2.5.

Curvature Form: See Sec. 2.6.
Curvilinear Coordinates: See Sec. 1.4.
Cylinder: See Sec. 1.5.

Cylindrical Coordinates: See Sec. 1.5.
De Rham Cohomology: See Sec. 2.9.
Desargues’s Theorem: See Sec. 3.1.
Differential Forms: See Sec. 2.4.
Directrix: See Sec. 1.2.

Discriminant: See Sec. 1.2.

Dolbeault Operator: See Sec. 2.8.

Dual Basis: See Sec. 2.2.

Dual Vector Space: See Sec. 2.2.
Duality, Projective: See Sec. 3.
Eccentricity: See Sec. 1.2.
Einstein  Summation
Sec. 2.2.

Ellipse: See Sec. 1.2.
Ellipsoid: See Sec. 1.5.
Embedding: See Sec. 2.3.
Erlangen Program: See Sec. 3.3.
Euclidean Space: See Sec. 1.5.

Convention: See



Exact Form: See Sec. 2.4.
Exterior Derivative: See Sec. 2.4.
Fiber: See Sec. 2.5.

Fiber Bundle: See Sec. 2.5.
Finite Geometry: See Sec. 3.3.
Focus: See Sec. 1.2.
Fundamental Theorem
Geometry: See Sec. 3.1.
Genus: See Sec. 4.3.
Geometric Quantization: See Sec. 2.10.
Group of Projective Transformations: See
Sec. 3.3.

Harmonic Form: See Sec. 2.4.

Hausdorff: See Sec. 2.1.

Hermitian Metric: See Sec. 2.8.

Hodge Decomposition  Theorem: See
Sec. 2.9.

Hodge Star: See Sec. 2.4.

Homogeneous Coordinates: See Sec. 3.2.
Hopf Map: See Sec. 2.7.

Horizontal Lift: See Sec. 2.6.

Horizontal Subspace: See Sec. 2.6.
Hyperbola: See Sec. 1.2.

Hyperboloid: See Sec. 1.5.

Hypersphere: See Sec. 1.5.

Hypersurface: See Sec. 1.5.

Incidence: See Sec. 3.

Index Theorem: See Sec. 2.9.

Irreducible Variety: See Sec. 4.1.

Kzhler Metric: See Sec. 2.8.

Kepler Problem: See Sec. 1.6.

Lie Algebra: See Sec. 2.5.

Lie Group: See Sec. 2.5.

Line At Infinity: See Sec. 3.

Manifold: See Sec. 2.1.

Maxwell Equations: See Sec. 2.7.

Method of Coordinates: See Sec. 1.
Metric: See Sec. 2.3.

Modular Parameter: See Sec. 2.8.

Moduli: See Sec. 4.3.

Morse Theory: See Sec. 2.9.
Neighborhood: See Sec. 2.1.

Ordinate: See Sec. 1.1.

Pappus’s Theorem: See Sec. 3.1.
Parabola: See Sec. 1.2.
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Paraboloid: See Sec. 1.5.

Parametric Representation: See Sec. 1.5.
Pascal’s Theorem: See Sec. 3.1.

Pencil: See Sec. 3.1.

Plane Analytic Geometry: See Sec. 1.5.
Plane Polar Coordinates: See Sec. 1.4.
Point at Infinity: See Sec. 3.

Potentials: See Sec. 2.7.

Principal Bundle: See Sec. 2.5.
Projective Geometry: See Sec. 3.
Projection Map: See Sec. 2.5.

Projective Transformation: See Sec. 3.1.
Projective Variety: See Sec. 4.2.
Quadric: See Sec. 1.5.

Riemann Surface: See Secs. 2.8, 2.10, 4.3.
Riemannian Manifold: See Sec. 2.3.
Scalar Field: See Sec. 2.3.

Sine: See Sec. 1.3.

Slope: See Sec. 1.1.

Solid Analytic Geometry: See Sec. 1.5.
Sphere: See Sec. 1.5.

Spherical Polar Coordinates: See Sec. 1.5.
Spherical Triangle: See Sec. 1.5.
Structure Group: See Sec. 2.5.
Submanifold: See Sec. 2.3.

Symmetric Tensor: See Sec. 2.3.
Symplectic Form: See Sec. 2.10.
Tangent: See Sec. 1.3.

Tangent Space: See Sec. 2.2.

Tensor: See Sec. 2.3.

Tensor Field: See Sec. 2.3.

Topological Space: See Sec. 2.1.
Variety: See Sec. 4.

Vector: See Sec. 2.2.

Vector Field: See Sec. 2.3.

Vertical Subspace: See Sec. 2.6.

Wedge Product: See Sec. 2.4.

Zariski Topology: See Sec. 4.1.
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Introduction explicitly referring to the boundary condi-

In mathematics the term Green’s function
is usually given to a solution of an
initial- or boundary-value problem of a
differential equation with a §-function
inhomogeneous term. Let us be more
specific. Consider an ordinary or partial
differential equation

LyG(x, %) = 8(x — x), (1)

with L, a linear differential operator with
respect to the variable x. Here, x may stand
for either the position 1, the time ¢, or the
pair (r,t). Then the solution G(x,x’) is
called the Green’s function if it satisfies
a given homogeneous boundary condi-
tion — a condition relating the value of G
to its derivative G, on the boundary of
the domain, a simple example of which is
G(x,%') =0 or Gy(x,x') = 0. In physics
and applied physics, however, the term
Green’s function is often used without

tion. For example, a fundamental solution
in mathematics is often called simply a
Green’s function. Thus it is desired to
seek an alternative and more generalized
definition that enables us to deal with a
wider class of functions encountered in
various areas of physical science. This can
be achieved by formulating the concept
of Green’s functions in terms of response
theory: The Green’s function is then a re-
sponse function that connects the output
signal O(x) of the system with the input
signal I(x) in the form of a linear integral
transform:

O(x) = / G(x, x)I(x) dx, 2)

the integral range over x’ depending upon
the problem under consideration. In the
present article the term Green’s function
is employed in this generalized sense.
When the linear response of a system is
described by a linear operator Ly, which



may be differential, integral, integro-
differential, or of any other kind, the two
signals O(x) and I(x) are related through

L,O(x) = (). 3)
Comparing this equation with Eq. (2), we
see that the Green’s function is formally
defined by L; 1 When, in particular,
Ly is a differential operator in Eq. (3)
and a homogeneous boundary condition,
u(x) =0, for example, is imposed on
the boundary T, the definition used in
mathematics is recovered. This is because
the superposition over x in Eq. (2) solves
the problem when G satisfies Eq. (1)
with the boundary condition G(x, x') =0
for x on TI'. There are, however, many
cases where it is difficult to specify the
operator L, for describing the response.
The relationship between the responses
of a black box to a §-function type and
distributed inputsignals is shown in Fig. 1.

Although the principle of superposition
and hence the validity of the form given
by Eq.(2) hold only when the solution
satisfies a homogenous boundary condi-
tion, Green’s functions are also central
when one tries to construct a solution
of a boundary-value problem with an
inhomogeneous boundary condition — for

@
X1 black
GO box | x*
e— 1
(b)

—Hback I%
{AxGoOO  pox [ 10X)
la——

/

Fig. 1 Response at x of a black box to an input
signal: (a) an input signal localized at x" with unit
strength, (b) an input signal distributed with
magnitude I(x’)
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example, a solution having a prescribed
nonzero value on the boundary. This is
one reason why Green’s functions are so
widely used.

The quantities called “resolvent”, “re-
solvent kernel”, “signal function”, “point
response function”, or “transfer func-
tion”, encountered in various fields of
mathematics, physics, applied physics, and
engineering, are nothing but the Green’s
functions in the generalized definition.
We note that in Eq. (1) the Green’s func-
tion G(x, ) describes the response to
a “point” input source and in Eq. (2) it
“transfers” the input signal into the output
response of the system in question. When
one recalls that many problems in physics
and applied physics ultimately reduce to
finding the output O(x) for a given in-
put I(x), one can understand why Green’s
functions are very popular today in many
fields — hydrodynamics, electrodynamics,
acoustics, elasticity, quantum mechan-
ics, solid-state physics, elementary-particle
physics, and so on. To imagine how widely
they are used, it is enough to remember
the diverse names given to them, listed
above. Their usefulness is still growing
progressively today, as various numerical
techniques continue to develop for calcu-
lations involving Green’s functions.

The subjects of the present article are the
definitions, significances, constructions,
utilizations, and usefulness of Green’s
functions. We try to make the description
as illustrative as possible. The Green’s
functions we deal with in this article
range from those treated in mathematical
textbooks to the ones used in many fields
of pure and applied physics.

Although, unless stated otherwise, the
concrete forms of the Green’s functions
will be given for the case of three-
dimensional space, the reader should keep
in mind that they depend intrinsically on
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the dimensionality of the space considered.
The reader can consult the monographs
quoted in the text for the case of other
dimensionalities. Also, it should be noted
that in defining a Green’s function in this
article the coefficient of a § function of
the point input signal is not always unity,
reflecting some arbitrariness existing in
the literature.

The present article is organized as
follows. We sketch in Sec.1 a brief
history of Green’s functions including
their modern development. In Sec.2
some typical methods of constructing
Green’s functions are explained for several
differential equations. The usefulness of
Green’s functions in initial- and boundary-
value problems is demonstrated in Sec. 3.
The boundary-element method, devised
to handle boundary-value problems for a
nontrivial geometry, is explained in Sec. 4,
together with the presentation of some
of its applications. Up to this point, the
description is given for the role of Green’s
functions as a convenient tool for solving
a mathematical or physical problem. In
Sec. 5, a number of Green’s functions
are given which have a direct relevance
with a physical reality. The treatments
as combined with perturbation method
are described in Sec.6. The Green’s
functions popular in many-body problems
are described in Sec.7, where, among
other things, we review their extremely
important application in linear response
theory of condensed-matter physics. A
brief sketch of their use in quantum field
theory is also given.

1
History of Green’s Functions

In the history of Green’s functions, it
will be appropriate to go back to 1828,

when N. Green put forth Green’s formula
(Kellog, 1939)

/ [u(r) Av(r) — v(r) Au(r)]dr
Q

d d
:/ (u(r)—v(r) — v(r)—u(r)) ds.
r on on
4)

It converts the volume integral within a
region Q of the left-hand side into the
surface integral on its boundary I", with A
the Laplacian and (3/9n)v(r) =1 - Vu(r),
1 being the outward normal with unit
length to the boundary I'. This formula
holds for arbitrary u(r) and v(r). When,
in particular, u(r) is a harmonic function,
Au(r) = 0, and v(r) is the Green’s function
of the Laplace equation

Av(r) = =8(r —71) (5)

or 1
0= G 1) ©

Green'’s formula yields for r within Q

1 19
= o [ (o

It shows that, as in Cauchy’s formula for
regular functions of complex argument
z =x-+1y, we can express a harmonic
function inside a region as an integral
over its boundary: we may evaluate the
value of u(r) inside Q only if we know
values of both u(r) and du(r)/an on T.
If we let the argument r approach the
boundary T', Eq. (7) becomes a Fredholm
integral equation, which allows us to
express u(r) in terms of du(r)/dn. Likewise,
differentiating Eq. (7) over r and letting r
tend to I lead to the equation for du(r)/an.
Thus u(r) and du(r)/dn cannot both be



specified freely on I'. From this fact stem
the Dirichlet and Neumann problems of
the Laplace equation, i.e., the problems
of finding a harmonic function u(r) that
has a prescribed boundary value u(r) and
outward derivative du(r)/dn, respectively,
on the boundary I'.

In the latter half of the 19th century,
Green’s functions played a fundamental
role in the discussion of the existence
and uniqueness of the solution of inter-
nal or external boundary-value problems
(Courant and Hilbert, 1937). In addition to
their significance in these basic problems,
they were also the key quantities in the
practical side of constructing the solutions
of boundary-value problems, as analyzed
fully by Lyapunov for the potential problem
(Smirnov, 1965).

Towards the end of the 19th century
and at the beginning of the 20th century,
Green’s functions were used in examining
the completeness property (closure prop-
erty) of the set of eigenfunctions of self-
adjoint operators and in proving the expan-
sion theorem for an arbitrary function in
terms of the complete set obtained from,
say, a Sturm-Liouville operator (Courant
and Hilbert, 1937). In mathematics, these
concepts opened the way to functional
analysis, which has since refined and
generalized greatly the theory of partial dif-
ferential equations (Yosida, 1965). In the
fields of pure and applied physics, not only
were they adopted in solving various prac-
tical problems, but they were also used in
clarifying many fundamental concepts un-
derlying quantum mechanics, which was
founded in 1925 and has been develop-
ing ever since. Indeed, one of the easiest
ways to recognize a marked peculiarity
of quantum mechanics contrasting with
classical mechanics is to change the ac-
tion integral for a classical motion into
the form involving the Green’s function of
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the Schrédinger equation (Sakurai, 1985).
Also, in many quantum-mechanical appli-
cations, the Green’s functions enable us to
take into account a perturbation series to
an infinite order to give a deep insight not
attainable by a finite-order treatment.

As elementary-particle physics and solid-
state physics began to develop rapidly after
World War II, the extended applications of
Green’s functions were actively pursued.
One example is seen in many-particle
physics in which the Green’s functions
are defined in terms of field operators
and used in conjunction with the graphi-
cal representation of many-body processes
(see, e.g., Feynman, 1972). In these graphs,
which have came to be called Feynman di-
agrams, each line standing for a Green’s
function describes temporal and spatial
evolution of an elementary particle or exci-
tation. The crossing or branching of the
lines represents the interaction among
particles, implying that the Green’s func-
tion carries all the information on the
“personal history” of an electron, proton,
photon, etc. Because of this character-
istic, these Green’s functions are more
often called “propagators.” Their contri-
butions in the development of quantum
electrodynamics (Bogoliubov and Shirkov,
1959) and solid-state physics (Abrikosov
etal., 1963) have been quite remarkable.
Despite the apparent difference in defini-
tion, Green’s functions defined in terms
of Feynman’s path integral in quantum
field theory constitute the second example
belonging to this category (Feynman and
Hibbs, 1965; Itzykson and Zuber, 1980).
Since the functional integral seems to be
the most powerful tool to date to quan-
tize nonlinear Lagrangians, the Green’s
functions will continue to be a useful tool
in the future development of this field.
As a last example, we refer the reader to
linear response theory applied widely in
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condensed-matter physics. In this exam-
ple. too, Green’s functions have been very
useful in that the theory of Kubo is most
powerful when it is applied in conjunction
with the temperature Green’s functions in-
troduced by Matsubara (Kubo et al., 1991).

Parallel to such generalizations in pure
physics, the Green’s functions of tradi-
tional usage have been refined in various
ways, yielding many important concepts.
Especially, many practical problems re-
lated to the Laplace, heat, wave, or
Schrodinger equation, previously left un-
touched simply because the boundaries of
the domains in question were too complex
for analytical treatment, have come to be
solved with the help of numerical tech-
niques. The boundary-element method,
one of the methods designed for just
such problems, takes full advantage of the
Green’s-function approach (Brebbia, 1978;
Brebbia and Walker, 1980). Green’s func-
tions are now so widely used everywhere
that familiarity with them is becoming
more and more important.

2
Construction of Green’s Functions

A number of typical methods of construct-
ing Green’s functions are illustrated.

2.1

One-Dimensional Equation of
Sturm-Liouville Type with Dirichlet-Type
Boundary Conditions

The Green’s function for the Sturm-
Liouville operator satisfies [p(x) > 0]

d d
L[G(x,x)] = o <P(x)EG(x, x’))
—q(x)G(x, %)

= —8(x — ),

®

where the one-dimensional region 0 <
x < lisassumed. Suppose thata Dirichlet-
type boundary condition is imposed on G:

©))

The solution of this problem is constructed
as follows:

G(x,x¥)=0 atx=0and 1.

G(x, %) =
Yu<(@us(x), 0<x<x <1, (10)
yusXu(x), 0<x <x<1.

Here u-(x) is a solution of L[u-(x)] =0
with the boundary value u.(0) =0 at
the left boundary, while u. (x) satisfies
Lu= (x)] = 0 with u- (1) =0 at the right
boundary. The constant y in Eq. (10),
independent of x and «/, is given by

1/p(x))
U (U= () — ul (P u< ()’

‘)/:

u-(x). It is deter-

dx’

with u_(x') =

mined such that

PG (T, %)= G, %) = -1,

(12)
with G (X%, %) = (d/dx)G(x, ¥) | y—yt,
which is the condition obtained by inte-
grating both sides of Eq. (8) in the in-
finitesimal interval ¥~ < x < ', where
x¥*=x'te(e > 0+4). When the left-
hand solution u-(x) happens to satisfy
simultaneously the condition u-(1) =0,
i.e., when u.(x) happens to be the true
eigenfunction of the operator L with zero
eigenvalue, the constant y diverges, mean-
ing that the system resonates with the
point external force expressed by the §
function in Eq. (8). Still, in this case,
one can redefine a generalized Green’s
function so that Eq. (2) remains valid in
taking into account the inhomogeneous
term (Smirnov, 1965). In the case of a
Neumann- or mixed-type homogeneous



boundary condition in place of Eq. (9),
Eq. (10) still provides us with the Green’s
function if u.(x) and u- (x) therein sat-
isfy the given boundary conditions. For
various types of Sturm-Liouville operators
and their generalizations, Green’s func-
tions are tabulated in many books. See,
e.g., Butkovskiy (1982).

2.2
Retarded, Advanced, and Causal Green’s
Functions of the Helmholtz Equation

The Green’s function of the Helmholtz
equation is defined by

(A + kDG, k)= -8 —71). (13)

By Fourier transform we find

Bk explik- (r —1)]

Gr,r'; k) = (2r)3 k2 — x2

(14)

As such the Green’s function is unde-

termined because the integral is divergent.

If we add a small imaginary part ie to

k(¢ — 04), one may construct the follow-
ing three types of Green’s functions:

1. By putting x equal tox + ie, one obtains

exp(ik|r — r'|)

Gr(r,1: k) =
R( ) 4nir — 1|

. (15)

which is called the retarded Green’s
function. It is regular in the upper half
of the complex « plane.

2. Byputting x equaltox — ig, one obtains
a complex conjugate of the retarded
function,

exp(—ik|r — r'|)

Ga(r, 1 k) = (16)

4|r — 1|

This Green’s function is called the
advanced Green’s function and is
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regular in the lower half of the complex
Kk plane.

3. By putting « equal to « + ie sgn «, sgn
k being «/|«|, (i.e., k2 to k2 + ig), one
obtains the causal Green’s function

Ge(r,1'; k) = Gr(r,1'; k)0 (k)

+Galr 1 0)0(—k),  (17)
the Heaviside step function 6(x) being
defined by

1, «>0,

0, «<0O. (18)

(k) = {

We see that Gr(Ga) is obtained by
analytically continuing G¢ of the range
k > 0(k < 0) to the upper (lower) half of
the complex k plane. Except in many-body
theories, G¢ is seldom used [see Eq. (88)].
The names “retarded” and ‘“‘advanced”
come from the time dependence of the
Green'’s functions of the (time-dependent)
wave equation

1 92 .
(C—zﬁ—A)G(r,t;r,t):

S —1)s(t—1t), (19)
¢ being a positive constant. Upon con-
verting from t to the Fourier space w,
we obtain the Helmholtz equation given
by Eq. (13) with x% = w?/c%. The inverse
Fourier transform back to the variables ¢
and ¢ of Eq. (14) [or Eq. (15) or (16)] shows
that Gg(r, t; ¥, t') has nonzero values only
in the case t > t/, while Gy is finite in the
opposite case, t < t'. Namely, when Gpg or
G is substituted for G in the input-output
relation (2), it turns out that

t
o1, t) = f ar

—00

X fd3r/GR(r, t v, )I{F, 1),
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o(r, t) = / ar
t

X /d3r/GA(r, t v, I, t).

(20)
That is, the retarded Green’s function
duly satisfies the causality condition in
the sense that a perturbation due to I(r’, t')
precedes its consequence observed at time
t. The advanced Green’s function describes
the time-reversed process of the physical
one. These features are also obvious in
the time-independent version G(r,r’; k),
which describes the scattering of, e.g., a
monochromatic sound wave with a fixed
frequency w (k = w/c, ¢ being the velocity
of sound). Here Gpr given by Eq. (15)
leads properly to the outgoing scattered
wave, while G4 gives rise to an incoming
scattered wave (Sommerfeld, 1949). To
summarize, the three Green’s functions
of wave equation are defined by

;o . Bk dw
GR(I',t;l',t)Zil_I)I%) W

explik - r — ') —iw( —t)]
TR (0t iR/

3

Bk do

Ga(r, t; ¥, t) =1i —
Alr, t 1, t) im @)

e—0

explik - r — 1) —iw( —1t)]
T R (w—i)2)a

)

Bk dw

Ge(r, 1, t) =1
cr,t; 1, t) im @)

e—0

8 explik - r — 1) —iw(® —1t)]
k2 —w?/c? —ie

. (21

After evaluating the integrals, we find

AN i Y
GR(r,t,r,t)_<2n>9(t )

x 8(c*t—t)2 — |t =),

Gar, b1, 1) = (i) o — 1)
x 8t —t): —|r =1,
Ge(, t; 1, 1) =
ic/(2m)?
r—r12 — 2t —t)2 +ie’

(22)
The first of the three leads to Huygens’s
principle (See Sec. 5.1).

2.3
Green’s Functions Obtained by Fourier
Transform

As shown in Sec. 2.2, the Fourier trans-
form is a convenient way to obtain Green'’s
functions. It is powerful only for obtain-
ing the Green’s function for an infinite
domain, however, i.e., a fundamental so-
lution. Nevertheless, it should be noted
that such a Green'’s function enables us
to derive a Green’s function subject to a
homogeneous boundary condition on the
boundary of a finite domain (see Sec. 2.4).
Note also that the infinite-domain Green’s
functions are used very often to solve
the problems for a finite domain [the
boundary-element method is one of the ex-
amples (see Secs. 4.2 and 4.3)]. With this
remark in mind, we will in this section
give some Green’s functions obtained by
Fourier transform.

2.3.1 Heat Equation
The Green’s function of the heat equation
is defined by

0
(— — UZA) G, v, t) =
ot

S —rYsi—t). (23)

In Fourier space, it holds that



3
G, 7, 1) = / @l do

(2m)*
explik-(r — t') —iw(t — V)]
X
o2k? —iw
[4mo?(t — )] 3/?
_|r_r/|2 . t>t/7

N ool )

0, t<t,

(24)
the second relation being obtained by
calculating the residue in the w integral.
We should note that the integral over
o is well defined in contrast to the
wave equation treated in Sec.2.2. The
finiteness of the Green’s function only in
the case t > t’ is in accord with the law of
increase of entropy or the second law of
thermodynamics.

2.3.2  Time-Dependent Schrodinger
Equation

The Green’s function for a free particle
with mass m obeying Schrédinger’s equa-
tion is defined by

'h8+h2A G, t; 1, t)
mn— — r,i,r =
ot 2m U

ihs(@ —1)s@t—1t). (25)

Fourier transform then yields

Pk do

AN
GR(I’,t,l’,t)—l/W

exp[ik-(r — 1) —iw(t — )]
® — hk?/2m + ie

i)
2mih(t — t)

imr—r'127’
X ex e rE—
Pl ona—1)
0, t<t.
(26)

t>t,
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In the w integral, we have replaced w
by @ + ie to obtain the retarded Green’s
function. The advanced Green’s function,
finite for t <, is obtained by putting
o equal to w — ie. Thus the Schrédinger
equation allows a time-reversed solution,
like what we have seen for the wave
equation [Eq. (19)].

2.3.3 Klein-Gordon Equation
The Green’s functions of the Klein-Gordon
equation are defined by

1 82 2 /o
—ZE—A—FM G(r,t;r,t):
c

Sa@—1)8¢—1t), (27)

¢ and p being two positive constants.
Replacing u? by —u? defines the Green’s
function of the telegraphic equation. By
Fourier transform we find

Bldw
@m)*

explik - r — ') —iw(® —t)]
TR 12— ()0

G, 7, t) =

. (28)

Since the integral is not well defined,
we can construct three Green’s functions,
GR, G4, and Gc, by replacing w as in
Eq. (21). They are obtained, respectively,
as (Bogoliubov and Shirkov, 1959)

Gr(x) = —0(t — ) A(x; u?),

Ga(x) = 0(t — HA(x; 1),

Ge(x) = Alx; 1) + (%) AD (x; 1.

(29)

Here G(r,t;r',t) is expressed simply
as G(x), x standing for (c(t —t),r—7r)),
and 6(t — t') is the step function defined
by Eq.(18). The other quantities are
defined by
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2 —c /
Ax; u°) = T sgn(t—t)

<[ooeroen ()5

A (e 112Y 1 / .2
Ax; u*) = —Esgn(t—t)A(x, Kno,

0
e =) )

x [0(x*)No(uux) — i (—x%)
x Ho(ip(—x*)1/2)), (30
where  sgn(t) = t/|t], x* = 2t — )% —

It — 1'%, x = (x*)V/2,]1 is the first-order
Bessel function, and Ny and Hj are the
Neumann and first-kind Hankel func-
tions of the zeroth order, respectively
(Abramowitz and Stegun, 1965). In quan-
tum field theory, the Green’s functions in
Fourier space [(k, w) representation] are
more often used than the (r,) represen-
tation given above. The Green'’s functions
treated in Sec. 2.2 are reproduced by taking
the limit 4 — 0 in the above.

2.4

Green’s Functions Matching
Homogeneous Boundary Conditions at the
Boundary of a Finite Region

As an illustration, let us consider the
Green’s function of the Laplace equation
for a region Q:

AG(r,T) = =6 — 1), (31)

with a homogeneous Dirichlet condition
imposed on the boundary I':

G(r, I'/)|r onT =0. (32)

Were it not for the restriction (32), the
Green’s function would be nothing more
than the fundamental solution of the
Laplace equation, the Coulomb potential

given by Eq. (6). It satisfies the boundary
condition G(r,r') - 0, as r — oo. To
match the boundary condition (32), the
Green’s function must have the form

G(r,r) =g(rr) + (33)

Ar|r—71|

where g(r,r') is the solution of the
homogeneous equation

Ag(r,t) =0 (34)
subject to the boundary condition
T - 35
g, 1)|ronr At —r||, ot (35)

The second term of Eq.(33) takes ac-
count of the § function of the Poisson
equation, while the first term g(r,r’) in-
corporates the boundary condition. The
problem of finding the Green'’s function
thus reduces to an orthodox Dirichlet prob-
lem of Egs.(34) and (35) of finding a
harmonic function g(r,r’) satisfying the
inhomogeneous boundary condition. Al-
though the existence and uniqueness of
the solution is well established, a concrete
expression for g(r, r') is hard to obtain ana-
lytically, unless the boundary I'" has a good
symmetry (Kellog, 1939; Smirnov, 1965).
Nevertheless, this method of obtaining the
Green'’s functions satisfying the boundary
condition has a wide applicability in many
differential equations, and is not restricted
to the Laplace equation treated here.

2.5
Spectral Representation of Green'’s
Functions

As an example of Green’s functions of
three-dimensional self-adjoint operators,
we treat here that of the Schrédinger
equation defined by

[E— H®)]G@, 1 E) = ihd(r —1). (36)



For an electron in a hydrogen atom, for
example, the Hamiltonian H is given by

2 2

h e
Hr)=——A—
2m

(37)

4reor’

the proton being taken as the origin of
coordinates. From Eq. (36) one obtains

GrriE)=) M’grjiw;(r)* (38)
with the eigenfunction v, satisfying
H@yn (1) = Enrn(r). (39)

Equation (38) can easily be verified by
applying E — H(r) to both sides and using
the completeness of {y,} for the self-
adjoint operator H(r). The set of states
n includes not only the states with discrete
energy eigenvalues but also the states
within continuous spectra, if there are any,
as in the case of a hydrogen atom. To
describe a physical process occurring in a
hydrogen atom, we must use the retarded
version of the Green’s function obtained
by changing E to E+ie in Eq. (38), in
accordance with the remark made in 2.2.
Even in a finite-domain problem subject
to a homogeneous restriction imposed on
the boundary, the expression (38) remains
valid, with the understanding that the v,,’s
are now the solutions for the eigenvalue
problem with that boundary condition.

3
Green’s Functions used in Solving Initial-
and Boundary-Value Problems

In solving an initial- or boundary-value
problem, the Green’s function is useful in
taking account of not only an inhomoge-
neous term but also an inhomogeneous
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initial or boundary condition. Some exam-
ples are given in Kellog (1939) and Morse
and Feshbach (1953).

3.1
Dirichlet and Neumann Problems of
Poisson’s Equation

The internal Dirichlet problem of the
Poisson equation is defined by

Au(r) = —f (1), (40)

with the inhomogeneous boundary condi-
tion imposed on T,

u(m)|r = g(). (41)
The solution u(r) of this problem may be
written down if we know the Green’s
function Gi(r,r') of the Laplace equa-
tion satisfying the boundary condition
G1(r,v)|r = 0 [i.e., the Green’s function
given by Eq. (33)]. It reads

u(r) = / Gi(r,t)f ()d>r
Q

9 G d Nds', (42
_/r(ﬁ 1(r,r)>g(r) s, (42)

where n defines the outward normal to
[ as in Eq. (4). The right-hand side is
being written solely in terms of the given
boundary value g(r). The reader can easily
convince himself that this formula is
correct by noting that the first term satisfies
the Poisson equation with the boundary
value u(r)|r = 0, while the second is the
solution of the Laplace equation with
u(r)|r = g(r), as can be checked by the use
of the Green’s formula (4) with u = u(r)
andv = G(r,7).

Let Gy(r,1) be the Green’s function
satisfying the homogeneous Neumann-
type condition, (3/0n)Gy(r,t') =0 for r
on I'. If we employ G, in place of G1 and
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replace —3G1/9n’ by G, the expression
given by Eq. (42) gives the solution of
the Poisson equation subject to the
inhomogeneous Neumann-type boundary
condition, (3/dn)u(r)|r = g(r), in place of
Eq. (41). The external problems are treated
analogously.

3.2
Initial- and Boundary-Value Problem for the
Heat Equation

The Green’s formula (4) is generalized
to an arbitrary second-order differential
operator L—to that of the heat equation,
L=9/dt— o?A, for example. By using it,
we can express the solution for, say, the
following problem of the heat equation for
reQandt > 0:

<% — 02A> u(r, t) = f(r, 1), (43)

with the initial temperature distribution
specified by

u(r, 0) = g(r) (44)

and the boundary condition of Dirichlet
type given by

u(r, t)|r = h(r, t). (45)

Suppose we already happen to know the
Green’s function Hi(r,t;v,t) for the
operator M(= —3/3t — o?A), the adjoint
of the operator L:

(—% — 02A> Hi@ t; 1, t) =
Sx—1)st—1t), (46)

which satisfies the homogeneous bound-
ary condition

Hi(t, 1, )t on T = 0. (47)

Then it is shown that the solution of the
problem (43)—(45) is given by

t
u(r, t) = / dt’/ BYH (T, Hf @, t)
0 Q

+f BrHi(Y, 01, g(r)
Q

! AH1(T, Y, 1t
—02/ dt// ds'il(r r?
0 r Bn/

x h(t', ). (48)

If we employ, in place of Hj, an-
other Green’s function H; satisfying the
boundary condition [dHy(r,1')/dn]lr =0
instead of Eq. (47), we obtain the solu-
tion of Egs. (43) and (44) with, in place
of Eq.(45), the Neumann-type inhomo-
geneous boundary condition, (3/9n) x
u(r)|r = h(r, t). We should note that, as
in Sec. 3.1, —dH1/dn’ in Eq. (48) must be
replaced by Hj.

The present examples given for oper-
ators that are not self-adjoint will suf-
fice to illustrate the practical value of
Green'’s functions in a rather wide class of
boundary-value problems. An important
point is that the Green’s function used in
the input-output relation (2) is not defined
by a §-function inhomogeneous term for
the operator L but by the one for its adjoint
operator M. Also, note that the reciprocity
relation of Green'’s functions is in general
established between the Green’s functions
G and H for the operator L and its adjoint
M. Namely, for the Green’s function G and
H for the operators L and M, respectively,
it holds that

Gi(r,t; 1, ) = Hi(r', t'; 1, 1), (49)

i =1 and 2 corresponding to the Dirichlet
and Neumann boundary conditions, re-
spectively. If the operator L is self-adjoint,
with the relation L= M, the Green’s
function H is automatically identical to
G, leading to the well-known reciprocity



relation:

Gir, ;1 1) = G, tsr.p).  (50)
The operator L for the Laplace, wave,
Klein-Gordon, or Schrédinger equation is
self-adjoint but that for the heat equation
is not (Courant and Hilbert, 1937).

4
Boundary-Element Method

4.1
Practical Boundary-Value Problems

In actual situations, we often encounter
a complex boundary I'. If we insist on
applying the formulas given in Sec. 3, we
will be forced to solve additional boundary-
value problems in order to find Green’s
functions Gi, Hji, etc., as the example in
Sec. 2.4 shows. Therefore these formulas
are not very helpful in such problems, and
more direct methods, taking full advantage
of numerical techniques, are more often
employed in practice. The difference
method and finite-element method are two
such popular examples. The boundary-
element method, developed and applied
widely in recent years, also belongs to
this class. In contrast to the former
two, which have nothing to do with
Green’s functions, this method is related
deeply to Green’s formula and hence
Green’s functions. Conceptually, it is a
revival of the old method of expressing
the solution of the Laplace equation
in the form of the potential caused
by a monopole or dipole layer on the
boundary I', the unknown density of which
is determined by solving the Fredholm
integral equation (Courant and Hilbert,
1937). The Green’s functions involved are
the fundamental solution (6) (in the case
of the Laplace equation), instead of the
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complicated Green’s functions Gi, etc.
Let us briefly see the characteristic points
of the boundary-element method (BEM)
through the following examples (Brebbia
and Walker, 1980).

4.2
Poisson’s Equation as Treated by the
Boundary-Element Method

We return to the Poisson equation treated
in Sec. 3.1. If the fundamental solution of
the Laplace equation [Eq. (6)]is substituted
for v(r) in Green’s formula (4), we can
express the solution for the Poisson
equation by using the boundary values
of both u(r) and du(r)/dn on I'. The result
is the extension of Eq. (7) to the Poisson
equation. Forr € Q, we find

u(r) :/ G(r,t)f ()dr
Q

+/ (G(r, ) 2ur) _ 960 1) u(f’)> s
r on' on’
(51)

with G(r,¥') = 1/4m|r —t/|. Since we
know the value of u(r) on I' through the
Dirichlet condition (41), u(r) = g(r), this
formula provides us with the solution of
the original problem, if we somehow find
the value of du(r)/dn on I' on the right-
hand side. The procedure characterizing
the BEM is that the unknown quantity
du/on is determined from Eq. (51) by let-
ting r tend to a point on I' and setting
u(r) = g(r). The result is a Fredholm in-
tegral equation of the first kind for the
unknown function du(r)/dn on I':

1g(r) - / G, v)f (r)d*r
2 Q

G, v ., .,

+/F o g(r') ds

- / Gir.r) M)
r on’

ds’. (52)
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Here the factor % takes account of

the discontinuous nature of 9G/dn in
letting r tend to the boundary. What
Eq. (52) shows is that we need to make
a numerical calculation of the unknown
quantity [du(r)/dn]|r. This can be carried
outreadily by discretizing the integralon I’
using the well-established algorithm of the
finite-element method. Following similar
steps, the internal Neumann problem
and the external problems are eventually
reduced to an integral equation on the
boundary I' as in this example.

4.3
Applications of the Boundary-Element
Method

4.3.1 Fluid Mechanics

In fluid mechanics, this method has been
known as the surface-singularity method.
For an incompressible and irrotational
fluid, it is well known that the velocity
potential satisfies the Laplace equation.
Hence Eq. (52), with the inhomogeneous
term f (r) dropped, is the key equation in
analyzing various boundary problems for
perfect fluids. In practical problems, such
as the analyses for the air flow around
an aircraft or a space shuttle flying with
relatively low velocity, a distribution of
vortices must often be taken into account.
In such cases the final integral equation
like Eq. (52) needs to be modified, but the
BEM is still quite powerful. See for details
the report by Morino et al. (1975).

4.3.2 Sound and Electromagnetic Waves

If the retarded Green’s function G for the
Helmbholtz equation [Eq. (15)] is used in
place of G, Eq. (52) turns out to be the key
equation for the wave equation [here f(r)
therein is an inhomogeneous term of the
wave equation]. Then if we let u(r) stand

for the velocity potential associated with a
sound wave, the boundary values for u(r)
and du(r)/on will be related, respectively,
to the pressure and the velocity on I'. For a
region bounded by a rigid wall, it holds that
[0u(r)/dn]lr = 0. When f(r) = 0, Eq. (52)
becomes a homogeneous integral equation
for g(r), yielding the eigen-frequencies
for the sound modes established in that
region, which can be, in an actual problem,
an auditorium or a complicated resonator
such as that of a violin. By converting
the integral equation to the linear coupled
equations, we can find the eigenvalues w
[involved in the Green’s function through
k = w/cin Eq. (15)].

An external problem may be formulated
similarly to deal with sound propagation
from a source with a complicated shape.
Needless to say, the BEM for the wave
equation is not limited to acoustics.

4.3.3 Elasticity

The final example we give on the ap-
plication of the BEM is the problem of
determining the strain tensor of an elas-
tic body caused by a body force f(r) and
a surface force p(r), both applied exter-
nally. Since the basic equation of elasticity
is rather complicated, an analytical treat-
ment is possible only for the exceptional
case of very simple f(r) and p(r), applied
to an elastic body whose shape, too, is
very simple. In the BEM, these restric-
tions may be largely relaxed. First we need
the Green’s function for an infinite elastic
body. For an isotropic and homogeneous
system the tensor of the Green’s functions
satisfies (Landau and Lifshitz, 1986)

1 3 9
AGie )+ ——3S L L G Y
”(rr)+1—202k:axiaxk yor)

~2(1+0)

=—— 8d(x—1) (53)



with Young’s modulus E, Poisson’s ratio
o, and Kronecker’s delta §;;. Here G; is the
ith component of the deformation field at
r induced by the j-directed point force at r’
with unit strength. The solution to Eq. (53)
is known as Kelvin’s solution, which reads

1+o
Gjj(r,1) = SiE1 o) (3 — 40)8; + ninj]
! (54)
lr—r|’

wheren = (r — r')/|r — r|. In terms of Gj;
one may obtain the basic integral equation
on the external surface T, involving the
body force f{r), an analog of Eq. (52) for the
strain tensor u;j(r) (Brebbia and Walker,
1980). The boundary value for X;0u;;/dx;
on I' may be related to the given surface
force p(r).

5
Green’s Functions Having a Direct
Relevance to Physical Reality

The Green’s functions treated in Secs. 3
and 4 were used mainly as a tool for solving
a partial differential equation. The reader
will recall that by definition they describe
an output signal in response to a point
input signal. This suggests that they are
also usually related to a physical reality.
That this is indeed so will be seen through
the examples presented below.

5.1
Wave Front of Radiation Emitted from a
Point Source and Huygens’s Principle

The retarded Green’s function given by
Eq. (22) for the wave equation shows
where the wave front of the radiation is
found at time t, when it is emitted at
a former time ¢ from the point source
located at r'. If we consider conversely a
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Fig.2 Huygens's principle for wave
propagation. The wave observed at the
observation point O(r,t) is the sum of the
wavelets leaving, at t = 0, the sources
distributed on the sphere with radius ct, ¢ being
the velocity of the wave

point of observation fixed at r and point
sources distributed around that point, we
can regard the radiation observed there at
time t as a composition of the propagating
wavelets that leave at t =0 the various
point sources, whose distance from point
ris ¢t (Fig. 2). In fact, this situation is well
expressed by the solution of the following
initial-value problem for the wave equation
in three-dimensional space:

1 92
292 A ) u(r, t) = h(r, ) (55)
with the initial conditions

u(r, 0) = f(r), us(r, 0) = g(r). (56)

The solution is given by Kirchhoff's

formula (Baker and Copson, 1950; Morse
and Feshbach, 1953)

u(r, t) = / a3
[r—1'|<ct

+ %[t]{‘(r)ct] + tg(l’)Ct.

hr',t—|r—1'|/c)
4r|r — 1|

(57)

Here the first term takes into account
the inhomogeneous term of Eq. (55) in the
form of a retarded potential. The quantities
£ and g are the averages of their values
on the surface of the sphere centered at r
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with radius ct: for example,

Fo® = / dQf (r + cito)

4 (58)

the integral being over the solid angle in
the direction Tp from the point r. Equation
(57) demonstrates in mathematical form
the well-known Huygens’s principle. Al-
though the detailed derivation is omitted,
the important role of the Green’s function
in this principle will be understood if the
constraint imposed by Green’s functions
in Eq. (22) is compared with those involved
in the integrals in Egs. (57) and (58). The
name “propagators” given very often to
the Green’s functions of the wave equa-
tion or its generalizations stems from the
concepts involved in Huygens'’s principle.

5.2
Retarded Green’s Function of
Schrodinger’s Equation

The inverse Fourier transform of the
retarded version of the Green’s function
given by Eq. (38) is

Grr, t; 7, 1) =
TPy ()
i , t>t,
X exp |:— <%> E,(t — t’):|
0, t<t.

(59)
This quantity provides the probability
amplitude for a particle observed at (', t')
to be found at (r,t). To see this, we note that
Eq. (59) is the solution of the Schrédinger
equation

ih%\[l(r, 1) = Hr)W(r, 1), (60)
subject to the condition that at time ¢/
U(r,t)=68x—1). (61)

This interpretation applies to an arbitrary
Hamiltonian and is not restricted to that
of an electron in a hydrogen atom, which
we had in mind in Sec. 2.5. The above
argument, when taken together with the
brief explanation to be given in Sec. 7.5
on the path-integral approach to quantum
mechanics, shows that the Green’s func-
tion of the Schrodinger equation bridges
the gap between quantum mechanics and
classical dynamics (Sakurai, 1985). Also, in
the perturbational treatment, we can fol-
low an actual process of electron scattering
in (r, t) space, by making use of the Green’s
function (see Secs. 6.2 and 6.3).

53
Dislocations

A dislocation is a line of singularities
in the deformation field of an elastic
body. Equation (53) thus describes a
dislocation if the strength and distribution
of the § functions of the right-hand side
are specified appropriately. For example,
around a straight edge dislocation on the
z axis with a y-directed Burgers vector
b (|b| = b), the elastic deformation u(p)
as a function of the two-dimensional
coordinate p = (x, y) is given by (Landau
and Lifshitz, 1986)

u(p) = up(p) +w(p). (62)
Here the vector ug(p) = (uox(p), uoy(p),
uoz(p)) takes account of the multivalued-
ness of the deformation field and is defined
by uoz(p) = 0 and

) (b .
uox (p) + tuoy(p) =i (E) In(x — iy).
(63)
It is essentially a fundamental solution of
the two-dimensional Laplace equation. On
the other hand, the vector w(p) in Eq. (62)



is obtained as
Eb © ,
wi(p) = m /700 Giy(r, ) dz', (64)

with r=(p,0),r =(0,0,2), and Gy,
Kelvin’s solution, given by Eq. (54). The
integral over 2’ takes account of the line of
3-function singularities on the z axis. From
Egs. (63) and (64), one can determine the
strain and stress fields around a straight
edge dislocation.

5.4
Magpnetic Field around a Vortex Line in a
Type-1l Superconductor

It is well known, as the Meissner effect,
that a magnetic field applied externally
cannot penetrate into a superconductor.
In a type-1I superconductor, however, su-
perconducting and nonsuperconducting
regions coexist in a phase called the mixed
phase, which is realized above a certain
threshold strength for the magnetic field:
As the field strength increases to pass the
threshold, the magnetic flux begins to pen-
etrate the sample in the form of a quantized
flux line, called a vortex. Well below the
upper critical field, above which the super-
conducting phase can no longer exist, the
density of such vortices is so low that one
may treat each of them as independent.
It is shown that around an isolated rec-
tilinear vortex, the microscopic magnetic
field configuration is determined by (in
cgs units following the convection of this
field)

(A = 2A7Hh() = —pod~*Z8(p).  (65)
¢o = hc/2e being the flux quantum and
A the penetration depth (Fetter and
Hohenberg, 1969). Here Z is the unit vector
in the z direction and the vortex line is
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assumed to be situated on the z axis p =
0, p = (x,y) being the two-dimensional
position vector. The field h(r) is thus
expressed by the Green’s function of
the two-dimensional Helmholtz equation
[note, however, that «? in Eq.(13) is
replaced by —1 2]

o= (%) 7 (5).

with Ky the modified Hankel function
of order zero. If the right-hand side of
Eq. (65) is replaced by a two-dimensional
periodic distribution of § functions, one
may determine the magnetic field set up
in a vortex lattice and calculate the gain
in the free-energy density. The discus-
sion of the equilibrium lattice structure
that minimizes the free-energy density
provides us with a basis for the more
complete analysis due to Abrikosov et al.,
based on the Ginzburg-Landau equations.
See for details Fetter and Hohenberg
(1969).

(66)

6
Perturbational Treatment to Obtain Green’s
Functions

When an operator can be divided into two
parts and the Green’s function for one of
the two is obtained straightforwardly, one
may treat the remaining part perturbatively
to obtain the full Green’s function. For
illustration, let us consider the stationary
solution of the Schrédinger equation
for the Hamiltonian of the following
form:

H=Hy+V. (67)

It is very convenient to define the Green’s
function using the operator (E — H)~!,
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which is sometimes called the Greenian,
and to examine it as a function of the
energy variable E. One may show that the
quantity (r|(E — H)~!|r), the (r, ) matrix
element of the Greenian, behaves as a
Green’s function, and one may reasonably
denote it simply as G(r,1’; E) (see, e.g.,
Schiff, 1968). [The present definition leads
to the Green’s function (ih)~! times that
defined in Eq. (38)]. Rewriting the operator
(E — H)~! asa power series with respect to
the perturbation V, we obtain the following
integral equation for G:

G(r,7'; E) = Go(r,1'; E) + / dn
x Go(r,11; E)V(r1)G(r1, 7’5 E), (68)

Go(r,1'; E) being the unperturbed Green’s
function (r|(E — Ho)~'|r'). The expres-
sion is given for a local operator V,
ie, (r]V|) = V(1)8(r — t'). Iterating the
right-hand side, we find

G=Go+ GoVGo+ GoVGoVGo + - - -
= Go + GoTGy. (69)

Here the simplified notation of GoVGy,
etc., should be interpreted as in the second
term of Eq.(68) by supplementing the
arguments and integrals. The series in
the first equality, the Born series, defines
the operator T, which is usually called the
t matrix by identifying its (r,r’) matrix
element T(r,1’; E) with the operator itself.
Itis an effective scattering potential, taking
into account the multiple scattering effect
to all orders of V through the relation

T=V+VGV+ VG VGV +---

—V 4+ VGV. (70)

Note that the Green’s function in the
second equality is G, not Go, which already
takes full account of the effect of V.

6.1
Slater-Koster Model

As shown by Egs. (38) and (39), the eigen-
values for a Hamiltonian operator H are
given by the poles of the Green’s function
(r|(E — H)~1|r’). The Slater-Koster model
is a typical model in which the series (69)
is exactly calculable. Usually, it is defined
by the model Hamiltonian which has a §-
function-type (contact-type) perturbation,
V(r) = vpd(r), vo being a constant for the
potential strength. In this case, Eq. (69)
leads to

G(x,1'; E) = Go(r,1; E) + Go(r, 0; E)

} Go(0,1'; E).
(1)

Thus, the zeros of the denominator of the
second term as a function of E provide the
eigenvalues for the full Hamiltonian:

Vo
X —_—_—
1 —v9Gp(0, 0; E)

1 —v9Go(0,0; E) = 0. (72)
Considering that G has poles at the unper-
turbed energy eigenvalues [the eigenvalues
of the Hamiltonian Hy in Eq. (67)], we
see that this equation has a form quite
adequate to see how these eigenvalues
are modified by the perturbation. Using
Eq. (72), one can discuss, for example, how
a plane-wave state k is affected by the po-
tential V(r) and whether or not a bound
state appears for an attractive potential
V(r) for a given unperturbed energy spec-
trum. In condensed-matter physics these
problems are very frequently encoun-
tered in dealing with electrons, phonons,
magnons, etc. For a detailed analysis, see,
e.g., the book by Economou (1990).

The treatment for a photon along this
line is just the perturbational treatment
of the Maxwell equations. For example,
the reflection and transmission of light



for a rough solid surface was analyzed
successfully by this approach (see, e.g.,
Maradudin et al., 1990).

6.2
Scattering Cross Section of a Plane Wave
from a Scatterer with Spherical Symmetry

In the scattering of an incident wave v
of, say, an electron with energy E by a
perturbing potential V(r), the total wave
function for the Schrédinger equation
Hy = Ey with H given by Eq. (67) may
be expressed as (Schiff, 1968)

wm=wm+f%@mﬁa
X V)Y ()
=wm+//fw%%mmm

x T(r1, 125 E)o(r2). (73)

The second equality is obtained by iterating
the first equality and using the definition
(70) for the t matrix T. For a spherically
symmetric potential V(r) = V(r), we may
go further by resolving v (r) and yo(r) into
partial waves according to the magnitudes
of angular momentum #l. The partial-wave
expansion of the incident plane wave with
wave vector k; is

Yo(r) = ¢l

=Y @+ Dijikin) Pi(cos ), (74)
1=0

where jij(k;r) is the spherical Bessel
function of order I, the scattering angle
0 is the angle between k; and r, and
Py(cos 0) is the Legendre function of order
l. Asymptotically, the solution ¥ in Eq. (73)
behaves as
ikgr
Y@ = po + 19

r

(75)
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with ks the wave number of the scattered
spherical wave. Comparing Egs. (73) and
(75) and using the form given by Eq. (15),
we find that the amplitude of the outgoing
spherical wave is given by

m

0) = — T'(ks, k;; E), 76
f© <2nh2> ( ) (76)

where

T(ks, ki; E) = f/e_ik"rT(r, r'; E)

x et By By 77)
with ks the wave vector of the scattered
wave, directed from the origin to the
observation point r (ks =k; by energy
conservation). The t matrix T(ks, k;; E)
for the two wave vectors, both related
to the incident energy E through the
relation k; = ks = @mE/h*)1/2, is called
the t matrix on the energy shell and is
known to be expressed in terms of the
phase shift §(E) of the partial wave I. In
this way, f(0) is finally expressed as

1 & .
f& = 2ik; Z(ZH‘ 1)(e¥¥ — 1) P(cos 6).
=0

(78)
The differential and total cross sections are
then obtained from [f(8)|2.

To carry out the partial-wave expansion
for the Maxwell equations, we need the
tensor of the Green’s functions (Mahan,
1990) and the vector spherical wave for
each | (Stratton, 1941). With the difference
that we now require two kinds of phase
shifts for each | because of the character of
light as a transverse vector field, the Mie
and Rayleigh scatterings of light (Born and
Wolf, 1975) may be treated compactly as
in the electron case.
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6.3
Band Structure of Electrons and Photons
and Diffraction Experiments

The band structure of electron states in
solids may be viewed as arising from
the electron scattering by atoms arrayed
periodically in a lattice. With the difference
that the perturbation V is now due to a
periodic array of scatterers, Egs. (67)—(70)
still hold here without modification. Since
the poles of the full Green’s function
are identical to those of the t matrix
[Eq. (69)], the calculation of the ¢ matrix
for arrayed scatterers is equivalent to the
band-structure calculation. If we denote
the multiple-scattering effect of the kth
scatterer by the t matrix t;, the scattering
from the array as a whole is described by
the following t matrix:

T=Y t+ ) nGoty+-,
p

kK
(kK

(79)

where Gy is the Green’s function for free
motion. The first term describes the scat-
tering from a single site. The second
exhibits the process where an electron,
once scattered by the kth scatterer, prop-
agates to another site k¥’ and undergoes a

ku

Fig.3 Scattering of an electron in a solid. The
vertical solid line at site k is the t matrix ¢, used
in Eq. (79) and the arrowed horizontal lines

show Gg. The t matrix t; is defined by the lower
graph, which shows the series given by Eq. (70)
with the dotted lines for the atomic potential V

multiple scattering there. The constraint
k # k' eliminates double counting, be-
cause the term #,Got; to be removed is
already involved in the single ¢t matrix t;
[see the series expansion of the first equal-
ity of Eq. (70)]. The higher-order terms
in Eq. (79) incorporate processes involving
three or more scatterers. These scattering
processes are exhibited in Fig. 3. If the
potentials are spherical and nonoverlap-
ping with each other, as is usually the case
to a good approximation, only the on-the-
energy-shell values are involved in each
t, (see Sec. 6.2). Since Go sandwiched be-
tween t, and tp in Eq. (79) describes the
free propagation of an electron from one
atom k to another k/, it depends solely
upon the structure of the lattice. Therefore
Eq. (79) shows that the band structure of
electron energies in solids is determined
quite generally by two quantities: the phase
shifts of the atoms and the structure fac-
tor of the periodic array they form. This
is indeed explicit in the Korringa-Kohn-
Rostoker (KKR) eigenvalue equation for
the band structure of electrons. See the
monograph by Lukes (1969) for the deriva-
tion of the KKR equation based on Eq. (79).

When we apply Eq. (73) to a periodic
array of scatterers, the solution ¥ (r)
describes how the atomic array responds to
an incident electron. When, in particular,
an incident electron from the outside
has an energy that is not very different
from the positions of the poles of the ¢
matrix, the amplitude of the scattered wave
reflects, through T(r1,12; E) of Eq. (73),
the detailed band structure as a function of
incident energy E and wave vector. This is
essentially the origin of the fine structure
observed in the usual low-energy-electron
diffraction (Tong, 1975).

Similar fine structure is expected to arise
in the diffraction of visible light, i.e., in the
light scattered from a periodic array of



scatterers with periodicity in the visible
range. X-ray diffraction is simply its high-
energy limit. For details of the diffraction
of visible light reflecting the photon band
structure, see Ohtaka (1980) and Inoue
and Ohtaka (1982) and the analysis by
Yablonovitch and Gmitter (1989).

7
Green’s Functions in Many-Body Theories

The developments of condensed-matter
physics and elementary-particle physics
owe considerably to the use of Green’s
functions in the treatment of many-
body interactions. How they are defined
and why they have been so widely
used will be shown through several
examples. For more details, see the books
by, e.g., Abrikosov etal. (1963), Fetter
and Walecka (1971), Economou (1990),
and Mahan (1990). For illustration we
have in mind a model Hamiltonian
for interacting spinless particles, either
bosons or fermions:

_#2
K= /d%p’l‘(r)[(—) A — p]¥(r)

2m
1 3.3 gt to
—|—§ FPrdrvT v @)

x v(|t — DU ()W (r)

=Ko+ K (80)

expressed in the second quantized form.
Here WT(r) and W(r) are the field
operators for creating and annihilating,
respectively, a particle at position r. The
term proportional to the chemical potential
u in the first term on the right-hand
side shows that we are considering the
grand canonical ensemble. The two-body
correlation described by the operator K’
may be treated using Green’s functions.

Green’s Functions

7.1
Single- and Two-Particle Green’s Functions

The single-particle Green’s function is
defined in many-body theories by

(P T(W¥ () WT (%)) | Po)

6w %) = (@o| Do)

(81)
Here x and x’ denote (rt) and (¥,t),
respectively, ®¢ is the exact ground state
for the Hamiltonian given by Eq. (80), and
the time-dependent operators W(x) etc. are
the operators in the Heisenberg picture
defined by

W (x) = KMy (1) KB, (82)

The symbol T in Eq.(81) is the time-
ordering operator that is defined by the
rule

TW )W (x) =

{ Ve (),
T (%)W (x),

t>t,

t<t 83)

the upper (lower) sign referring to bosons
(fermions). Aside from the presence of
the time-ordering operator T, the Green’s
function defined by Eq. (81) can be given
the physical interpretation of a probabil-
ity amplitude, analogous to that given by
Eq. (59). Indeed, when the particle inter-
action vanishes, i.e., K = Kp in Eq. (80), G
tends to the unperturbed Green’s function

Go(x, x') = —i{0| T(W (x)¥T (x))|0),
(84)
|0) being the normalized ground state for
Kp. It satisfies

iha—i—th—i— Go(x, x')
— _— X, X )=
ot " omo TH T

K8 (x — ). (85)

The inhomogeneous term comes from
the presence of the operator T, the

179



180

Green’s Functions

origin of the step function via Eq. (83),
and the commutation (anticommutation)
relation of the field operators for bosons
(fermions). Through Eq. (85), we see
obviously that iGy is the many-body analog
of the single-particle Green’s function
treated in Sec. 5.2.

The first reason why the single-particle
Green’s function is so useful is that
many important observables such as the
ground-state energy, number or current
density, etc. of the many-body system, are
expressed in terms of the Green’s function
(81). The second reason is that the effect
of K’ may be handled by applying Wick’s
theorem and interpreted visually with the
help of Feynman diagrams (see Sec. 7.2).
Third, part of the interaction process is
taken into account to all orders with respect
to K.

For example, the modification of a
single-particle energy due to the mutual
interaction K’ is taken into account by
Dyson’s equation

Gk, w) = Gok, w)
+ Gok, w)Z(k, w)G(k, w) (86)

in the Fourier space (k, ). From this, we

find
2
v [-()-(9

-1
— 2 (k, w)] , (87)
where we have used
hk? "
ator=[o=(35) (5)
-1
+ ie sgn(a))] (88)

given by Eq. (85). Note that Go has a
causal form (see Sec.2.2). The complex

quantity X (k, w) is called the self-energy
part. The form (87) provides an exact
expression for G, if the self-energy part
is exactly given. In this sense, Dyson’s
equation (86) is one of the key equations
in treating many-body interactions. The
imaginary part of ¥ (k, ) determines the
lifetime of a plane-wave state k, caused
by the many-body interaction. Although
it is generally a hopeless task to attempt
to make an exact calculation of X (k, w)
with all possible many-body processes
included, an important subset may usually
be taken into account. For a system
of electrons interacting with Coulomb
repulsion (the electron-gas model), for
example, we may now say that some of
the physical quantities have so far been
obtained almost exactly.

The two-particle Green’s function is
defined by

G(x1, x2; X, %5)
(—i)2<¢0| T(W(x1) W (x2)
WT(x)) W (7)) Do)

. (89
(G0l Do) )

It is so called because it deals with the
two particles created at x} and «). Since
a correlation function between two physi-
cal quantities is usually expressed by the
two-particle Green’s function, the latter is
an important quantity, yielding transport
coefficients, conductivity, and dielectric
constant, for example (see Sec.7.4). As
mentioned before, Wick’s theorem is a key
theorem for calculating the Green'’s func-
tion. The names “random-phase approxi-
mation”, “ladder approximation”, etc., are
each assigned to a special choice of infinite
series of Feynman diagrams considered in
two-particle Green’s functions. We give in
Fig. 4 two typical examples, which exhibit
how the two particles interact with each
other, sometimes involving other particles.
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Fig. 4 Two-particle Green’s function taking into
account the particle interaction: (a) ladder
diagram, (b) random-phase approximation. The
dotted lines show the particle interaction, v of
Eq. (80), and the arrowed solid lines show the
unperturbed Green'’s function Gy, defined by

Eq. (84). When v is an attractive short-range
interaction for an narrow energy range, the
ladder diagram for a singlet pair of electrons
leads to superconductivity. When v is a repulsive
Coulomb potential, the random-phase
approximation leads, in the low-density limit, to
the exact ground-state energy of interacting
electrons

7.2
Wick’s Theorem and Feynman Diagrams

The Green’s functions (81) and (89) are
defined in terms of the operators in the
Heisenberg picture for the full Hamil-
tonian K. In calculating them perturba-
tionally, using the relationships between
®( and |0) and between the operators in
the Heisenberg and interaction represen-
tations, we encounter the following types
of quantities:

(0] T(Wo (x1) Wo (x2) Wo (x3) - - - W (x2n_1)
x Wl (x21))10), (90)

where Wo(x) etc. are the operators in the
interaction picture defined by

Wy (x) = et/ My (p)g—iKot/ M 91)
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a !
I

N e |
H thn i | :
Fig. 5 Examples of Feynman diagrams. The
graphs a through ¢ show examples of
second-order corrections to the single-particle
Green'’s functions for the Hamiltonian given by
Eq. (80). The vertical dotted lines show the
particle interaction v. The graphs d and e are two
higher-order corrections

Quantities such as (90) are the expectation
values in the state |0) of the time-ordered
product of an equal number of operators
Wo(x) and \Ilg (x). Wick’s theorem handles
just such quantities and guarantees that
the quantity given above may be resolved
into a sum of products of n unperturbed
Green’s functions Go’s, formed by pair-
ing a Wp with a \Ifg in all possible ways.
For a rigorous proof, see, e.g., Fetter and
Walecka (1971). In this way the perturba-
tion series for a Green’s function, either
a single-particle one or a two- or many-
particle one, is expressed as a sum of
products of a number of Gg’s, and each
product is given a graphical representa-
tion called Feynman diagram (Feynman
graph), where a line represents an un-
perturbed propagator Go. Some examples
were already given for the two-particle
Green'’s functions in Fig. 4. For K given by
Eq. (80), several second- and higher-order
corrections for the single-particle Green’s
function are shown in Fig. 5.

7.3
Temperature Green’s Functions

The temperature Green’s functions are es-
sentially the Green’s functions treated in
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Sec. 7.1 with the time argument ¢ and ¢
replaced by the imaginary time —ir and
—it’/, respectively, and with the expecta-
tion value (®g|---|®Dg) for the ground
state replaced by the thermal average
(-+-). The temperature Green’s function
also goes under the name of Matsub-
ara, who first introduced them (Kubo
etal., 1991). They are convenient tools
for calculating various physical quanti-
ties in thermal equilibrium — for instance,
the single-particle energy and thermody-
namic potential. Wick’s theorem holds
here again. Because of the periodic prop-
erties with respect to the argument t — 7/,
the Fourier components of the Green’s
function G(t — /) are defined at the dis-
crete frequencies w, = 2n+ )wkgT/h
for fermions and w, = 2nwkgT/h for
bosons, n being an integer, T the tem-
perature, and kp the Boltzmann constant.
For those frequencies, the Dyson equa-
tion (86) holds and is solved algebraically.
The single-particle energy is obtained by
analytically continuing G(wy,) from the dis-
crete points iw, on the imaginary axis
to the complex w plane. For the BCS
Hamiltonian of superconductivity, for ex-
ample, all the predictions of the BCS theory
(Bardeen etal., 1957) have been repro-
duced straightforwardly in this way and
the Ginzburg-Landau equations, originally
introduced semiphenomenologically, have
been given an unambiguous microscopic
foundation. The developments of the the-
ory and experiment of superconductivity
owed much to the use of temperature
Green’s functions (see, e.g., Abrikosov
etal., 1963; Parks, 1969; Mahan, 1990).
The advantage of the two-particle tem-
perature Green’s functions can be best
appreciated in connection with the lin-
ear response theory of Kubo treated
below.

7.4
Linear Response Theory of Kubo and
Temperature Green’s Functions

How the system responds to a small
external signal is summarized by the Kubo
formula of linear response theory. Its
essence lies in that the response function is
given by a spatial and temporal correlation
function of fluctuations, calculated in
thermal equilibrium without the external
perturbation. For example, when a weak
electric field, whose v component is
E,(r', V), of frequency w is an input signal
I(r', ') in the input-output relation given
by Eq. (2), an Ohmic electric current at the
position (r,t) is the output signal O(r,t). The
response function, the Green’s function
G(x,«) in Eq. (2), is in this case the ac
conductivity tensor o, (x, x’). Here the
fluctuation in the Kubo formula is that of
the current density. Letting j,(x) be the
operator for the current density in the «
direction in the Heisenberg picture, the
fluctuation is defined by j, (%) — (ju (%)) [=
Ju (%), because (jy (x)) = 0 in equilibrium].
The response function is then expressed by

2

/ . ne /
ou(%,x) =1 P Sd(x—1)

-1 . . / /
+ (%) (U (), jp(xHDOE — 1), (92)

with n the electron density, m the mass,
and the Heaviside step function in the
second term guaranteeing causality (see
Sec. 2.2). The square bracket in the second
term is the commutator and () denotes
the thermal average. Because of the
presence of the step function, quantities
like that in the second term of Eq. (92)
are called retarded Green’s functions in
linear response theory, in analogy with
their counterpart for the wave equation in
Sec. 2.2.



The way of calculating the Fourier trans-
form of the correlation function involved
in the second term of Eq. (92) is summa-
rized by the theorem, sometimes called the
Abrikosov-Gor’kov-Dzyaloshinski-Fradkin
theorem, which relates a retarded Green’s
function to the corresponding temperature
Green’s function (Abrikosov et al., 1963).
According to this theorem, the first step is
the calculation of the two-particle temper-
ature Green’s function

Gar. ;¥ T) = (Te (ju (. (@, 7))

93)
for the Fourier component 52 (k, wy), and
the second is the analytic continuation of
the result to the real frequency w, carried
out simply by changing iw, to o+ ie.
The first step is carried out with the
help of Wick’s theorem, and the second
is a procedure analogous to that used in
obtaining a retarded Green’s function in
Sec. 2.2 (Abrikosov et al., 1963).

Since this method of calculation using
the temperature Green’s functions was
introduced, the usefulness of the Kubo
formula has increased remarkably. This
was indeed one of the key steps in the
development of condensed-matter physics.

7.5
Green’s Functions in Quantum Field
Theories

One typical way of quantizing a classical
Lagrangian is based on the functional
integral. One of the merits of this method
is that we may treat the field theory and
statistical physics on the same footing
(Amit, 1984).

The Green’s functions and the related
quantities developed in this field are
outlined here by taking an interacting
scalar Bose field ¢ (x) in four-dimensional
space as an example (Ramond, 1981). The
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Lagrangian density L(¢(x)) for the model
called the ¢* model is defined [in natural
units, where ¢ = 1 = 1 and the dimension
of the field ¢ (x) is (length)~1] by

L(¢) = Lo(¢) + Lint(e), (94)
with
Lo() = r(x)% — dpu(x)? — 2P (%)%,
A
Lint(¢) = <3) P* (%),

¢ and ¢, being 3¢ /0t and d¢/dx, respec-
tively. The functional Z(J) for generating
the Green’s functions is defined by

Z()) =
A /f/‘qb exp (i/[L(¢) +J¢]d4x) :

(96)

(95)

Here J(x) is a fictitious external field
linearly coupled to ¢ (x), the factor ./ !
normalizes Z(J) such that Z(0) =1, and
the measure & ¢ of the functional integral
is defined by

N

Cy — T

T¢ = I}gnoo}:[ld(p(xn). (97)
Here it is understood that the integral
over x in Eq.(96) is treated as a sum
over the integrand at N discrete points
{xn} in four-dimensional space, and the
limit for N is taken after the integrals
over the N independent variables {¢ (xy)}
have been carried out. Equation (96) is a
generalization of the quantization scheme
for the classical one-dimensional motion
of a particle carried out through the
quantity

F(tz,t1) =
. b
/,@qexp (%/ L(q(®), 4 () dt)’
ty

(98)
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where the classical Lagrangian L is de-
fined in terms of ¢q(t) and ¢'(¢), the particle
position and velocity at time t, respec-
tively. With the restriction g(t1) = g1 and
q(t2) = g2 imposed on the path, it may be
shown that, if the measure &q is defined
appropriately (Sakurai, 1985), Eq. (98) is
identical to the quantum-mechanical prob-
ability amplitude of a particle, just de-
scribed by the Green’s function treated
in Secs. 2.3.2 and 5.2. Thus the quantiza-
tion through the functional integral is well
established.

From Eq. (96), the Green’s function is
obtained as follows:

8*Z(])
8] (x1)8] (x2)

G(x1, %) =

J=0
= —.///"1/5’5/?‘¢T [¢(x1)¢>(xz)

X exp (1/ L(x)d4x>] , (99)

where the functional derivative §Z(J)/8]
(x1) is defined by the ratio of the in-
duced change of Z(J) to the infinitesimal
variation §J(x1) at x; of the external
field. Many-point correlation functions,
Go(x1, %2, x3, x4), etc., are defined simi-
larly. The unperturbed Green’s function is
then calculated from Zy(J), the generating
function for L = Ly. It is shown that

Zo(J) = exp (% / [J(x)g(x -y

x J(y)d*x d4y) , (100)

with g(x — y) the Green’s function for the
Klein-Gordon equation, Gg, Ga, or G¢ of
Eq. (29), according to the way of avoiding
the poles in the w integral (see Secs. 2.2
and 2.3.3). From Eq. (99), the unperturbed

Green’s function Gy is then obtained as

Go(x1, x%2) = ig(x1 — x2). (101)

In order to take into account L, the
following relation is useful:

Z(J) = /s exp [l/ d*xLint (_8jifx) )]

x Zo(]), (102)

Zo(J) being given by Eq.(100). With
Egs. (100) and (102), we can calculate
Green’s functions to any desired order.
For example, to obtain the perturbation
expansion of G with respect to the
parameter A involved in Ly, we have only
to expand the exponential of Eq. (102) in
terms of Lip;.

It is remarkable that Wick’s theorem,
Dyson’s equation, Feynman diagrams,
etc., all apply here without any modifica-
tion. The difficulty of ultraviolet divergence
is thus handled and then a number of phys-
ical quantities are defined by a procedure
that extracts the finite part of every term
in the perturbation series. This is the reg-
ularization and renormalization program.

To connect field theory with statistical
physics, we need only to change the
time t to the imaginary time —ir (called
in this field the Wick rotation), just as
in introducing the temperature Green’s
functions in Sec.7.3. The point is that
the generating function Z(J) converts itself
essentially to a partition function. In our
example this will be seen by noting that the
Lagrangian is then transformed to minus
the Hamiltonian. Taking advantage of this
remarkable connection, and combining
it with renormalization-group procedures,
the critical properties of a statistical system
near a second-order phase transition
can be discussed using field-theoretical
methods. For example, the critical index
of the specific heat of the Ising model




can be successfully obtained in this way.
See, for more detail, e.g., Amit (1984) and
Itzykson and Drouffe (1989).

Glossary

Adjoint Operator: For a second-order dif-
ferential operator L with respect to x, y,
and z, we may transform the integral in
the region €,

/ v(r) L[u(r))dr,
Q

by integrating by parts until all the
derivatives on u(r) in the volume integral
are transferred to v(r). Finally the volume
integral reduces to the form

/ u(@) Mv()|d>r,
Q

with a new differential operator M, called
the adjoint operator of L. Thus we obtain
the following relation, the generalized
Green'’s formula:

/ (vLu] — uM))dr
Q

= /(pxn + Qyn + Rzy) ds.
r

The right-hand side shows the surface
integral that remains in the integration
by parts, where x,,y,, and z, are the
directional cosines of the outward normal
n to the boundary I', and P, Q, and R
are functions of u, v, and their derivatives,
determined dependent upon the form of L
(see, e.g., Courant and Hilbert, 1937).

Dirichlet Problem: A boundary-value prob-
lem of a differential equation that seeks a
solution with a specified boundary value.
These types of boundary conditions are
called the Dirichlet condition.

Green’s Functions

Fredholm Integral Equation: For an un-
known function u(r) in the domain €, the
following integral equation is called the
Fredholm integral equation of the second
kind:

u(r) — / K@,V u)dr = f(r),
Q

f(r) being a given function and K the
integral kernel. The Fredholm integral
equation of the first kind is the one with
the first term u(r) missing on the left-hand
side.

Generalized Green’s Formula: For the
Laplacian operator the Green’s formula
is given by Eq. (4). It is generalized to an
arbitrary second-order differential opera-
tor L and its adjoint M in the form shown
in the definition of the adjoint operator.

Homogeneous Boundary Condition: The
boundary condition such as u(r)|r = 0 or
(3/0n)u(r)|r = 0 on the boundary I" of the
domain under consideration is a homo-
geneous boundary condition. In general,
homogeneous boundary conditions con-
sist of relations between the value of u(r)|r
and its derivative (3/9n)u(r)|r. If u(r) satis-
fies the homogeneous boundary condition,
so does cu(r), c being an arbitrary constant.
Boundary conditions for which this does
nothold are called inhomogeneous bound-
ary conditions. Examples are u(r)|r = f(r)
or (3/9n)u(r)|r = g(r), with given nonzero
f(r) or g(r) defined on the boundary.

Internal or External Boundary-Value Pro-
blem: When the solution of a boun-
dary-value problem is sought inside the
boundary on which a boundary condition
is imposed, it is called the internal
boundary-value problem. The problem for
the outside region is the external problem.

Neumann Problem: The boundary condi-
tion specifying du/dn, the derivative in
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the direction of the outward normal to
the boundary, is called the Neumann con-
dition. A boundary-value problem with
a Neumann condition is a Neumann
problem.

Vector Spherical Waves: Let ® be a scalar
function satisfying the scalar Helmholtz
equation

(A+KkH® =0.

From & one may construct three vec-
tor fields, L = grad®, M = rot(a®), and
N = (1/k)rotM, with a any constant vec-
tor. They all satisfy the vector Helmholtz
equation. The two vectors M and N are
solenoidal, while L is irrotational. For
® = Cy(kr)Y},, (), C; being the lth cylin-
drical function and Yj,,(n) the spherical
harmonic, the vectors L, M, and N are
called the Ith vector spherical waves.

Wick’s Theorem: The theorem transform-
ing the time-ordered product T(W¥(x)
W(x')---) of any number of field opera-
tors in the interaction picture into a sum
of products of simpler quantities (see, e.g.,
Fetter and Walecka, 1971). The expectation
value of a product of field operators in the
noninteracting state may be calculated by
use of this theorem.
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Introduction

Group theory is a mathematical technique
for dealing with problems of symmetry.
Such problems appear repeatedly in all
branches of physics. The use of formal
group theory is a very recent development,
but notions of symmetry had been used
extensively 1000 years ago. The design of
ornaments with symmetries, the observa-
tion of periodic patterns, and the regular
appearance of the Sun and other astro-
nomical objects showed that symmetry
was a useful concept. The first modern
uses of symmetry were in crystallography.
The first clear statement of the importance
of symmetry was made by Pierre Curie
around 1870. Since then group theory
has become the principal tool for dealing
with difficult problems in solid-state the-
ory, relativity theory, atomic and nuclear
spectroscopy, and the theory of elemen-
tary particles. In these problems we assert
(or assume) that the laws describing the
interactions of particles have some sym-
metry. In the simpler cases, such as the
Coulomb field, the symmetry is easy to
see. In nuclear physics the charge symme-
try between neutrons and protons required
a careful and bold extrapolation of ex-
perimental results. In elementary-particle
physics we have very little clear under-
standing of the forces that determine the
structure of the fundamental particles and
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their relations with one another. This has
required us to assume some symmetry
of the interactions, even though we know
almost nothing about the details of the
laws governing them. Once a symmetry
is assumed we can then make predictions
about the families of particles that are re-
lated to one another.

1
Elementary Definitions

1.1
Transformation Groups

We first give the definition of a transforma-
tion group, because these are the groups
of direct importance for physics. For ex-
ample, if we are considering the motion
of a particle in a central field we real-
ize that a rotation about any axis through
the center will take a given orbit into an-
other orbit with the same energy. So we
want to study rotations around the center.
Two successive rotations around the cen-
ter again give a rotation to an orbit with
the same energy. A reverse rotation would
bring the orbit back to its original posi-
tion. We see that the set of rotations of
the three-dimensional space form a set of
transformations that is closed under com-
position and contains all inverses. Now we
give the rigorous definition. We have a



linear vector space on which a set of trans-
formations act. The transformations form
a group if

1. The “product” of any two elements a
and b of the set is also a transformation
in the set: ab=c. By product we
mean the transformation ¢ that results
from the sequence of transformations
b followed by a.

2. The product is associative, i.e., ((ab)c)
= (a(bc)). The product of a whole
sequence of transformations gives the
same final result if we split the sequence
into any clumps that preserve the order.

3. The set of transformations includes the
identity transformation e, that leaves all
the coordinates unchanged.

4. If the set includes the transformation
a, it must also contain the inverse
transformation b, such that ab = ba =
e. We usually write the inverse element

ofaasalsothatasl=ala=ec.

In the example given above we note
that in general, if we reverse the order
of rotations a and b around different axes
we get different results. In general the
multiplication is not commutative, i.e.,
ab # ba. If the product of any two elements
of the set is commutative (ab = ba for all
a,b in the set), we say that the group
is Abelian (the group is a commutative
group). In general the transformations
of a group will not all commute with
one another. Then we say that the group
is non-Abelian. If we take the product
of an element a of the group with
itself, i.e., we form aa, we write the
product as a2, the “square” of a. Similarly
we write successive products of a with
itself as a3, a*, etc. — powers of a. If we
perform repeated transformations using
the inverse a~! of a, we get the negative
powers a2, 473, etc. The total number of
distinct elements in the group is called the
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order g of the group. If the order of the
group is finite we say that the group is a
finite group. An infinite discrete group is
one in which the distinct elements can be
labeled by the integers. Often the elements
of the group can only be labeled by one
or more continuous parameters. Then we
say that the group is a continuous group.
If we talk about a group of objects with
some product that satisfies our definitions
we have an abstract group. We give some
examples of groups.

The numbers 0,1,2,3 form a group if
the product is addition modulo 4 : 2+ 1 =
142=3,24+3=34+2=5-4=1,2+
2=4—4=0, etc. The inverse of 2 is 2,
the inverse of 1 is 3. This is the group Zy,
an Abelian group of order 4. Similarly the

numbers 0,1,...,n— 1 give the Abelian
group Z, of order n. If we take all the
integers ..., —2,-1,0,1,2,... we get the

infinite discrete Abelian group Z, in which
the identity element is 0 and the inverse of
sis —s.

Cyclic group. This is a group that
consists of positive powers of some
element a, for which there is a finite
positive n such that a" =e. Thus a"!
is the inverse of a. So the group consists
of a,a®,a’,...,a" = e. One example of a
cyclic group is the set of rotations about
some axis through angles 6 =2mwm/n
where n is a fixed integer and m =
1,2, ..., n. This is the cyclic crystal group
Cp. Here the product of rotations with
m =r and m = s is the rotation through
the angle (2 /n)(r + s). This group C, has
the same abstract structure as Z,. Clearly
cyclic groups are Abelian.

An example of an infinite Abelian group
is the group of translations along the x
axis given by x’ = x + n8, where § is fixed
and n is an integer, positive or negative
or zero (which is the identity translation).
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This group has the same abstract structure
as the group Z.

Permutation groups. Another important
class of groups comprises the permutation
groups on n letters. In these groups
each letter is replaced by some letter,
while no two are replaced by the same
letter. If each letter is replaced by itself,
we get the identity permutation e. We
first illustrate for the case of n=6. A
permutation of the numbers 1 to 6 replaces
each number by one of the six numbers,
and no two numbers are replaced by the
same number. A simple notation for a
permutation is

1 2 3 4 5 6
i1 iy i3 ig 05 ig )

where each number in the upper line is
replaced by the number appearing below
it. For example, the permutation
1 2 3 45 6
<6 2 45 3 1)

replaces 1 by 6(1 — 6), 2 — 2, 3 — 4,
4—5,5—>3, 6— 1. Note that 2 — 2,
so 2 is unchanged by this permutation.
There are 6! = 720 different permutations.
(If all the symbols are left unchanged we
get the identity permutation with 1 — 1,
2 — 2, etc.). This same permutation can
be written in cyclic notation: we start with
any symbol, say 1. We record 1, and note
that 1 — 6, so we write1 — 6.6 — 1, and
we have a cycle (closed loop), so we put 1
and 6 in parentheses: (1 6). The number 2
is unchanged so we write (2). Next we start
with 3 and find 3 - 4 — 5 — 3, giving
the cycle (3 4 5) [which is the same as
(45 3) or (53 4)]. Thus the original
permutation is recorded as (16) (2) (3 4 5).
The symbols inside a parenthesis are
distinct. This particular permutation has
the cycle structure [3, 2, 1]: it contains a cycle

of three symbols, a cycle of two symbols,
and a cycle of one symbol —a 3-cycle, a 2-
cycle, and a 1-cycle. Often the permutation
is written omitting its 1-cycles, so this
would be (16) (345). Other examples are
(134652) which consists of one 6-cycle,
or (142)(365), with two 3-cycles (notation
[32]), or (15)(26)(34) which contains three
2-cycles (notation [2%]), or (135), where the
three 1-cycles (unchanged symbols) are
omitted, so its cycle structure is [3 1%].
To find the inverse of a permutation
expressed in cycle notation, we read
the numbers from right to left, so the
inverse of (142)(365) is (241)(563). The
group that contains all the permutations
on six symbols is called the symmetric
group on six symbols Sg. We can form
permutations on n letters and form the
symmetric group S, whose order is n! This
group Sy, is very important in spectroscopy
and especially when we consider identical
(indistinguishable) particles, where the
physical situation is unchanged when we
make any permutation of the identical
particles.

1.1.1  Subgroups

Suppose that we have a subset H of
elements in the group G(H C G). If the
elements of H form a group under the
same product law as in G, we say that H is
a subgroup of G. For example, the group Sg
contains all the permutations on five letters
(e.g., we drop all permutations containing
the number 6, or those that omit any single
one of the six letters). Thus Sg contains six
subgroups that have the same structure
as Ss.Se also contains many differently
appearing subgroups that have the same
structure as S4. (We omit permutations
that contain some two of the numbers
1-6). Such subgroups are isomorphic to
one another. Clearly the group G is a
subgroup of G. Also the group element e,



the identity of G, is necessarily a subgroup.
These two subgroups of G are said to be
improper, while all other subgroups in G
are called proper subgroups of G.

Suppose that H is a subgroup in G. If
H does not exhaust G, take any element
a not contained in H and form the set
aH, which contains all elements of the
form ah where h runs through H. The set
aH contains no elements of H, since, if
ah = W where I is in H, applying h~! on
the right we would get a = h'h™!, which
says that a is a product of elements in H
and is therefore in H. If the elements of
G are not all included in H and aH, we
choose one of the residual elements k of
G and form kH. We continue this process
until we have obtained all the elements
of G. So G consists of the subsets of
elements H, aH, kH, ..., sH, which have
no elements in common and each contain
m elements of G. We see then that the
number m of elements in H (the order
of H) must divide the order of G. This
is called Lagrange’s theorem. Note that the
subgroups Ss in S have order 5! = 120,
which divides the order 6! = 720 of S¢.

1.1.2  Cosets

The individual pieces in this decompo-
sition of G are called the left cosets of
H in G. We write this symbolically as
G=H+aH+aH+---+a/H. If in-
stead we formed the cosets by multiplying
H from the right, giving disjoint sets Ha,
we would get the right coset decomposition
of G with respect to the subgroup H.

1.1.3 Conjugate Classes

If o and b are elements of the group G,
the elements bab~! = ¢, where b is any
element of G, are said to be conjugate to a
in G. We denote this by writing ¢ ~ a. If we
let b run through all the elements of G, we
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get the set of transforms of a, the conjugate
class of a in G. The determination of
transforms gives a decomposition of G into
conjugate classes that have no elements in
common, i.e., the conjugation operation is
an equivalence relation:

1. a~a.
2. Ifa~band b ~c thena ~c.
3. Ifa~b,thenb ~ a.

We prove 2. a~b means that a=
kbk~!, where k is in G. Similarly b ~
¢ means that b=Fkck'~1, where k' is
in G. So a=kbk! =k(kKck k! =
(kkYe(K k1) = (kk)) x c(kk))~1,s0a ~ c.

For geometrical transformations the
conjugate has a simple interpretation.
Suppose that a is a rotation through angle
6 about a direction along the unit vector n:
a=(n,0). Let b be a rotation that turns
the unit vector n into the direction of
n'. Then, since b turns n into n’, in the
conjugate bab—1, b~ ! first turns n’ into n,
then a rotates about n through 6, then
b brings n back to n’, so the net result
is a rotation through the angle 6 about
the unit vector n’. Thus the conjugate of
a rotation is always a rotation through
the same angle 6 about some other axis.
Similarly, if a were a translation through
a vector s, the conjugate bab~! would be
a translation through the vector s/, into
which b takes s.

For the permutation groups, the con-
jugate is also obtained simply. Suppose
we want to find the conjugate ¢ of
the permutation a that results from tak-
ing ¢ = bab~!, where a = (135)(24), b =
(325). Then b~!=(523), and we get
c = (325)(135)(24)(523) = (54)(123). We
note that the conjugate of a has the same
cycle structure as a; we get it by letting
the permutation b act on the cycle symbol
for a: apply (325) to a; it replaces 3 by 2,
2 by 5, and 5 by 3, so a is changed to
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(123)(54), where 4 and 1 are untouched,
since b does not contain 1 or 4. Another
example would be the transform of a =
(142)(365) by b = (16)(345)(2). Applying
the permutation b to the cycle symbol for
a replaces 1—>6—>1,3—>4—>5— 3,
giving bab~! = (652)(413).

We emphasize that the transforming
element b must be in the group G. If
the group is Abelian, then all its elements
commute, and the conjugate class of an
element a is just a itself. If an element
a commutes with all the elements of the
group G, its class consists of a alone. This
is always the case for the identity element
e for any group —the identity is a class
containing the single element e. Suppose
we consider the permutation group S3
on three letters 1, 2, 3. There are six
elements in this group: e, (12),(23),(13);
(123),(132). Only permutations with the
same structure can be in the same
conjugate class, so we have three classes: ¢;
(12),(23),(13); (123),(132); with one, three,
and two members, and cycle structures
[13],[2 1], and [3], respectively.

1.1.4 Invariant Subgroups

If H is a subgroup of G, we consider the
set aHa™ !, containing all elements aha™?,
where h runs through the members of H.
The elements of this set are all distinct, and
the product of any two, ahia"lahya™! =
ahihpa~t, is also in aHa™!, since hihy
is in H. Clearly the set aHa™' is a
subgroup that looks like H in form. It
is a conjugate subgroup of H. If all the
conjugate subgroups of H in G are the
same as H, we say that H is an invariant
subgroup in G. But if aHa™! = H for all
elements a, then multiplying on the right
by a, we get aH = Ha, i.e., the sets of right
and left cosets of H in G are identical.
We also note that the invariant subgroup
contains complete classes. Thus, in the

example of the permutations on three
letters, the group S3 contains the proper
subgroup e, (123),(132). Since it consists
of complete classes, it is an invariant
subgroup. For the permutation group on
four letters S4, the group contains 4! = 24
elements. The different classes are ¢; type
(12), type (123), type (1234), and type
(12)(34), with numbers of elements 1, 6, 8,
6, 3, respectively. The classes correspond
to the possible cycle structures given by
the partitions of 4 into sums of positive
integers. Thus e has four 1-cycles, partition
[1*]; (12) has one 2-cycle and two 1-cycles
(partition [212]), (123) has one 3-cycle and
one 1-cycle, (partition [31]), (1234) has one
4-cycle (partition [4]), and (12)(34) has two
2-cycles (partition [22]).

As another example, we consider the
group of all rotations and translations in
a space with dimension m. We denote the
elements by (R|a), where this means that
we first perform the rotation R and then
the translation a. The translations a form a
subgroup (Abelian), and we showed earlier
that the transform of any a by a rotation R
is again a translation. Thus the subgroup
of the translations is invariant in the whole

group.

1.1.5 Isomorphic Groups

Two groups G and G’ are said to be
isomorphic if their elements can be put into
a one-to-one correspondence so thatif a <
d and b < b thenab <> a'b’. For example,
consider the group consisting of the
identity e and the inversion of coordinates
i. Here i2 = ¢, so the group contains two
elements. Now look at the group consisting
of the numbers 1 and —1 with the product
being ordinary multiplication, so that
(—1)(—=1) = 1. We see that these groups
can be put into one-to-one correspondence
e < 1,i < —1, with ii = e corresponding
to (—1)(=1) = 1. There can be many



groups with the same abstract structure.
They are isomorphic to one another.

1.1.6 Homomorphic Groups

Instead of a one-to-one correspondence,
we may have two groups with a corre-
spondence of products, but where several
elements of the group G correspond to a
single element of G’. We say that there is
a homomorphism of the group G onto G'.
For example, in the cyclic group of order
4, generated by an element a with a* = ¢,
the elements a® and a* = e are a subgroup
H in G. If we take the odd powers a and
a® and map them onto the number —1,
and map the subgroup H onto 1, we have
a two-to-one correspondence between the
cyclic group and the two-element group.

1.1.7 Factor Groups

If the subgroup H is an invariant subgroup
in G, we can write G asa “sum” of cosets of
H in G:G= H+ayH+a3H+ - +a,H,
where a;H = Ha;. But then the prod-
uct of cosets (a;H)(a;H) = a;(Haj)H =
a;i(ajH)H = (a;a))H, so the cosets them-
selves form a group, for which the identity
is the coset H itself. This new group is
called the factor group F of G by the
(invariant) subgroup H. There is a ho-
momorphism of the group G onto the
subgroup H where all the elements in a
coset are mapped on the same element of
the factor group F = G/H.

1.1.8 Direct Product

If we have two groups, G and H, and
the elements of one commute with all the
elements of the other, we can form a new
group, their direct product, by taking pairs
(g, h) of elements g from G and h from H.
The product of two elements (g1, h1) and
(g2, h2) in this new group is the ordered
pair (gi1g2, hihy). This group is called the
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direct product G ® H of the two groups
G and H. If we have a number of groups
G, H, K, ..., and the elements of any one
commute with all the elements of the
others, we can form the direct product
G®H®K®..., whose elements are
obtained by taking one element from
each group: (g, h,k,...). Clearly all the
elements (g, ¢;, ¢, .. .), where the ¢;, ¢, . ...
are the identity elements for the other
factors, form a group isomorphic to G. This
group can be identified with G and is an
invariant subgroup of the direct product.
The direct product is thus a product of the
groups, G, H, K. ..,and each of them isan
invariant subgroup of the direct product.
For the crystal group that we described
earlier, with elements (R|a), the trans-
lations are an invariant subgroup, since
RaRlis again a translation, while the sub-
group of rotations is not invariant. Instead
the rotations act on the translations and
transform the translation vectors. Such a
group is called the semidirect product of
the groups R and A, where R contains all
the pure rotations and A all the pure trans-
lations, and is written as A ® R, where the
invariant subgroup is the first symbol.

1.1.9 Finite Groups

For a finite group one can describe the
group structure by recording the Cayley
table for the group. We write the elements
of the group as a matrix with each column
headed by an element of the group, and
similarly, each row. We then get a square
matrix of products by placing the product
gigj at the i, j position.

The group formed by taking all products
of r and s, where 13 = s* = (r5)2 = ¢, is a
group with six elements. Its Cayley table
is shown in Table 1. Note that each row
contains all six elements of the group,
but they are rearranged. In other words,
applying an element of the group from the
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Tab.1 A Cayley Table
e r r? s sr sr?
r r? e sr? s sr
2 2

r e r sr sr s

2 2
s sr sr e r r

2 2

sr sr s r e r
sr? s sr r r? e

left permutes the elements. We thus have
a group of permutations that is isomorphic
to the group in the table.

This is a group of permutations of
six elements, and is a subgroup of the
symmetric group S¢. In the same way,
every finite group of order » is isomorphic
to a subgroup of the symmetry group
Sy. This result is called Cayley’s theorem.
An important collection of finite groups
consists of the so-called point groups:
rotations through submultiples of 27 that
keep the origin fixed and reflections in
planes passing through the origin (or
inversion in the origin). These finite
groups describe the point symmetry of
crystals.

1.1.10 Infinite Discrete Groups

In three dimensions the translations
through a displacementr = nia; + npay +
nzas, where the n; are integers and the
vectors a; are fixed, form an infinite dis-
crete group. This is the translation group
of a crystal lattice. Similar groups can be
constructed for any space dimension. We
can also have crystal space groups, that
contain elements (R|a) that preserve the
crystal lattice. If the translations appear-
ing in (R|a) are always lattice vectors the
crystal group is said to be symmorphic.
There are some crystals in which there
are additional symmetries which involve
elements (R|a) where the translation is
some rational fraction of a lattice vector

along the direction of the rotation axis,
giving a screw motion. Or we may have
glide motions where we translate parallel
to some crystal plane through a rational
fraction of a lattice vector and then re-
flect in the crystal plane. Crystals that
have such symmetry elements are said
to be nonsymmorphic. [For further infor-
mation about space groups see Burns
1977, Chap. 11.] More detailed treatments
of Sec. 1.1 can be found in Burns (1977),
Chaps. 1, 2, and 13; Elliott and Dauber,
(1979), Chaps. 1 and 2; and Hamermesh
(1989), Chaps. 1 and 2.

1.2
Continuous Groups

When we consider continuous groups we
combine the algebraic concept of “group”
with the topological concept of “nearness.”
The law of combination of elements a, b
of G now requires the product ab to
depend continuously on its factors, and the
inverse a~! must depend continuously on
a. We shall not discuss general topological
groups but will assume that there is a
metric (a measure of distance between
group elements) on the group. So the
group itself is a metric space on which
the product and inverse are defined and
continuous. We can look upon the group
as a space in which the points are the
elements of the group. We shall deal
only with groups of transformations, so
the group elements form a space whose
points are the transformations of the
group. Multiplying the element b on the
left by some transformation a of the
group moves the point b in the group
space to the point ab. Thus the group
elements can be regarded as operators
that act on the group space itself and
rearrange the points. The changed points
also fill the space since any element of



the group space ¢ can be reached from
b by applying the element ch~! to it.
Thus the group space looks the same
everywhere. It is a homogeneous space,
and we can obtain all our information by,
e.g., working in the neighborhood of the
identity e.

A group is said to be a mixed continuous
group if the elements depend on discrete
labels as well as continuous ones. For
example, the translation group on the
line G is the set of transformation x' =
x+a, (—oo <a <o00). If we adjoin the
single transformation x' = —x we also
get the transformations x’ = —x + a. The
transformations ¥’ = x+ 4 are in one
piece and can be reached continuously
from the identity. Thus this piece forms
a group. The second piece, containing the
transformations x’ = —x + a, cannot be
reached continuously from the identity,
and is not a group. This piece is the
coset of the first piece, obtained by
multiplying elements of the first piece by
the transformation ' = —x.

A connected group is a continuous group
in which we can join any two points of the
group by a continuous arc in the group
space. Our last example showed a group
consisting of two pieces (components).
The piece that contains the identity is
called the component of the identity. If
a group is connected it consists of a single
component. One basic theorem is the
following: In a connected group G, every
neighborhood of the identity generates the
group. By taking products of elements near
the identity we keep expanding the set
of products and fill the whole connected
piece containing the identity. For example,
in the group of translations x' = x + a,
if we take some neighborhood of the
identity a = 0, say —¢ < a < ¢, and keep
applying these translations, we get the
whole line.
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1.3
Lie Groups

A Lie group is a group in which the neigh-
borhood of the identity looks like (is homo-
morphic to) a piece of an r-dimensional Eu-
clidean space (an r-parameter Lie group).
In other words, in the neighborhood of
the identity the group elements can be
parametrized using r parameters (coordi-
nates on the group manifold). Thus each
element can be labeled by r parameters
a1, a2, ..., 4. Since we want continuity,
this parametrization may not be possible
over the whole group space, but we can
use several maps that overlap to cover the
whole space without singularities. (For ex-
ample, to cover a sphere with continuous
maps requires more than one map.) Anele-
ment of the group is R(a) = R(ay, ..., ar)
where the parameters a1, ..., a, are es-
sential, i.e., all r parameters are needed
to describe the space. The product of two
elements with parameters a and b, respec-
tively, R(a)R(b), is the element R(c) with
parameters ci, .. ., ¢, that are functions of

a1,...,arand by, ..., by, ie.,
Cl = (pl(als e Or) b17 B bT’)s or,
symbolically,
c=¢(a;b). (1)

The simplest assumption is that the
functions ¢ are analytic functions of the a’s
and b’s. This was the original requirement
for a Lie group. But this requirement is too
strong. In fact, every parametric group is a
Lie group. The group structure combined
with continuity implies the analyticity of ¢
(Hilbert’s “Fifth Problem”).

For Lie groups with a finite number
of parameters, the neighborhood of any
point is bounded and contains all its limit
points (the group is locally compact). If
the parameter space is unbounded this
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may not be true as we move out to large
distances in the parameter space. For most
of the groups used in physics the group
space is compact, but we shall see some
cases of noncompact groups.

Consider transformations in n-space:

X =fi(x1, ..., %), i=1,...,n,
(2)
or, symbolically, " = f(x). Suppose that
we have a set of f’s labeled by r parameters:

x; = fi(x1, ..

 Gr), 3)

yXps A1, ...

forming a Lie group. The transformation
aisx —> %' =f(x;a),and bis ¥’ — x” =
f(x'; b). If we first apply a and then b, we
get

X" =f(x';b) = f(f(x; a); b)
= f(x; ¢(a, b)) = f(x; ¢), 4)

where ¢ = ¢(a,b) and ¢ is an analytic
function of the parameters a and b. We
give examples of Lie groups that comprise
most of the groups of interest to physics.

1. The dilation group. In one dimension
this is the group of transformations
x = ax, a # 0. The identity has a = 1.
All distances on the line are multiplied
by the number a. The transformation
with a = —1 reflects the line about
the origin. The parameter a for the
inverse is @ = 1/a, and ¢ = ¢(a,b) =
ab. The group space is the real line
with the origin cut out, R\{0}. It
consists of the two separate pieces
% 0. The group space for the dilations
in two dimensions, ¥’ =ax,y = ay,
is the real plane with the origin
removed (the punctured plane R%\{0}).
In this case the group space remains a
single connected piece. It is convenient
to assign the parameter 0 to the

identity. We write the group as x' =
(1 + a)x, witha # —1.

The group x' = ax,y = a%y, with a #
0, has only one parameter, but now
the transformations are in a space of
dimension 2. We note that the number
of parameters is not determined by the
dimension of the space on which the
transformations act.

. GL(n), the general linear group in

n dimensions, is the set of non-
singular linear transformations in
n-dimensional space. For real en-
tries we write GL(n, R), for com-
plex entries GL(n, C): ¥’ = Ax, or x, =
aijxj(i =1,...,n), where we sum over
the repeated index, and det A #0
(the nonsingular transformations). The
number of real parameters is n? for
GL(n, R), and 2n? for GL(n,C). A=
A7!,¢(A, B) = BA. The elements a;
vary over an infinite range (—oo <
a;j < 00), so the group is not compact.
The elements of GL(n, C) are the sub-
set of the n x n complex matrices with
determinant # 0.

. SL(n) is the special linear group (uni-

modular group) with det = 1. SL(n, C)
and SL(n, R) are subgroups of GL(n, C).
Thus SL(2) is the collection of 2 x 2
matrices

(a b) with ad — bc = 1.
c d

. O(n) is the orthogonal group, a sub-

group of GL(n), where we impose the
requirement that the transformations
leave scalar products of any two vectors
x, y unchanged; i.e., (Ox, Oy) = (x, y),
where the scalar product is

. p) =) %y

Then _ (x,y) = (Ox, Oy) = (x, OOy),
where O is the transpose of the matrix



O, so that

00 = 1, the unit matrix, or

0ijO = 8, = 0;i O 5)
Taking determinants, (det 02 =1, or
det O = £1. The column vectors of the
orthogonal matrix are orthogonal unit
vectors. Similarly OO = 1, so the rows
are orthogonal unit vectors. For O(n, R),
there are n conditions from the norm
and n(n — 1)/2 from the orthogonality,
so the number of parameters is r =
n(n — 1)/2. The subgroup with positive
determinant +1 is called O*(n, R) or
SO(n, R), the special orthogonal group
(or proper orthogonal group).
. U(n) is the unitary group that acts
in a complex unitary space, where
we have an inner product (x,y) =
Z;x]yi, and the asterisk denotes the
complex conjugate, so that (x,y) =
(Ux, Uy) = (x, UTUy), where UT=
U* is the adjoint of U, so UTU =1 =
UuT, iU} Ui = 8jk, and |det U2 =1,
so det U = exp(i¢). Note that for j =k
there are n conditions X Uij|2 =1,
while for j # k there are 2n(n — 1)/2 or-
thogonality conditions (real and imagi-
nary parts both equal to zero). Thus the
number of parameters is r = n?. The
sum of the absolute squares of all the
matrix entries is n, so the group space is
bounded and U(n) is a compact group.
. SU(n) is the unitary unimodular group
(special unitary group), a subgroup of
U(n) havingdet U = 1,s0r = n® — 1.
. The Euclidean group E(n) in real space,
x' = Ax + a, where A is an orthogonal
matrix and a is a translation vector,
reserves the Euclidean distance, so
AA =1, and the number of parameters
is r=n(n+1)/2. For n=3,r=6.
This group E(3) can be regarded as a
group of block matrices (A, a), where A
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is a 3 x 3 orthogonal matrix, O is the
(1 x 3) null matrix,

a1
A a

as ’
O 1

and (A, a) acts on the column vectors

x1
x2
X3

1

This group describes the rigid-body
displacements in 3-space.

In obtaining O(n, R) we required the
invariance of the scalar product (x,y). If
we had required the invariance of any
positive definite symmetric bilinear form
gijxiyj = (x, gy), with g = g, we could bring
it back to the unit form by a change of basis.
Thus the group O(n, R) is obtained for all
of these. If we extend this argument to
include all nonsingular symmetric bilinear
forms, a change of basis will bring them
(Sylvester’s law of inertia) to diagonal form
with p 1I’s and gq(—1)’s, where p+ g =n.
We get the pseudo-orthogonal groups
O(p.,q), defined over the real numbers. If
we define a matrix

1 0
sw=( 5,)

where the 1, and 1; are the unit ma-
trices for dimension p and ¢, these
groups are defined by the requirement that
(x, sy) = (Ox, sOy) = (x, OsOy) for arbi-
trary x and y, so that OsO =s. Again we
have (det 0)> =1, so by choosing those
transformations with det =1, we can de-
fine the special groups SO(n —gq, ). An
important example of this kind of group
is the Lorentz group, where we require
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the invariance of x> + y? + 22 — 72 (where
7 = ct) under the group.

What about skew-symmetric bilinear
forms? Given a nondegenerate skew-
symmetric bilinear form, with

{x,y} = gjxiy; and gj=—gi,  (6)

g=—g det g=(—1)™ det g so the
form will be nondegenerate only for
even dimension m. If we want the
transformations to preserve {x,y}, we
must have OgO =g, so (det 0)2 = 1. By
a change of basis we can bring g to the
canonical form

(0 1,
e=(50)

where O is the n x n null matrix and 1,
is the n x n unit matrix. These groups are
the symplectic groups Sp(2n). For further
details and examples, see Hamermesh
(1989), p. 283fF.

2
Linear Representations of Lie Groups

In Sec. 1 we gave an introduction to group
theory and a description of some of the
important transformation groups thathave
application to physics. Now we want to
show how groups can be used in the
solution of physical problems.

2.1
Group Theory and Quantum Mechanics

In quantum mechanics the states of a
system of n particles are described by
wave functions (state vectors) W that are
functions of the time t, the coordinate
vectors r1,r2,...,t, of the n-particle
system, and any other internal coordinates
of the particles. The changes of the system
with time (the equations of motion) are
governed by the Hamiltonian operator

H = T + V, where T is the kinetic energy
and V is the potential energy of the
system, which includes the interaction of
the particles with one another and with
any external fields. V is a function of
the coordinates, while T involves both the
coordinates and derivatives with respect to
the coordinates. The time behavior of the
system will be given by the Schrodinger
equation:

HY = _ﬁS_\II 7
ot
where h = (1/27) x (the Planck con-

stant h). For most problems we look for the
stationary states, i.e., states whose time de-
pendence is given by an exponential factor
exp(—iEt/h):

LI t) =, ..., 1)

X exp (%) . (8a)

E is the energy of this stationary state
(energy eigenstate) and Hyr = Ev. A par-
ticular problem will have many different
solutions ; with corresponding energies
E;. The set of all the eigenvalues E; gives
the spectrum of energy levels of the sys-
tem. If there are several independent state
vectors for a given energy level, we say
that the state is degenerate. The theory is
linear: we can superpose any states y; to
get a new state ¥ = ay + B, where «
and B are arbitrary complex numbers. If
we assume that the state at time ¢t = 0 is

given by "
V=Y i
i=1

then at time ¢, it will have developed into
the function

v = ;Cil//i(rl, -+, Tn) €Xp (_;Eit> .
(8b)

Y(r,..




The quantities that are measured for a
state ¢ (the observables, such as position
of the nth particle, the dipole moment of
the system, etc.) are operators that act on
the state vector, and in general change it to
anew state. If the operator Sleaves the state
¥ unchanged except for a complex factor,
so that Sy = sy, we say that the state is an
eigenstate of the operator with eigenvalue
s. If we measure S on a state ¢ = Z;b;¢;,
where the ¢; are normalized eigenstates
of the operator S, the result will be one
of the s;, with a probability |b;|?, and the
average value over many measurements
(the expectation value of S in this state)
will be

()= 1. 501> =) bil’si. )
1

In addition to observables we can in-
troduce other operators that act on the
states of the system. For example, if the
coordinates are changed by some trans-
formation, there will be a corresponding
change in the state vector v (r). The new
state vector v’ will be obtained by acting on
the state vector ¥ with an operator related
to the coordinate transformation. Some
coordinate transformations may leave the
physical situation unchanged. For exam-
ple, for a particle in a central field, a
rotation R about any axis through the cen-
ter has no apparent effect on the physics,
since the field depends only on the radius
vector to the particle. The operator Og cor-
responding to the rotation R acts on the
state vector ¢ to give anew state ' = Ogryr
that looks the same in the rotated coordi-
nates ¥’ = Rr as did the original v in terms
of the coordinates r:

OrRY (r) = ¥ (),
ORY (Rr) = ¥ (1),

or

Or¥ (r) = Y(R717). (10a)
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If the state ¢ is an eigenstate of the
Hamiltonian H with eigenvalue E, Hy =
Eyr, Opyr will also be an eigenstate of H
with the same energy E, i.e., HOrYy =
EORY, so the states ¢ and Oryr will be
degenerate (or differ by a phase). Applying
the operator OEl on the left, we get

ORx'HORY = Ey = Hy. (10b)

Since this equation holds for any eigen-
state, it holds for all states v, so the
operators on both sides coincide:
Ox'HOr = H;  HOg = OgH.
(10¢)
Thus the operator Or commutes with
the Hamiltonian H. It is a symmetry
operator for this Hamiltonian. If we
choose some other rotation S we get a
corresponding symmetry operator Og that
acts on the state vectors. The product of
the operators OsOg is the operator Osg
that corresponds to the result of successive
transformations by R and then by S. In
general, if we have a collection of symmetry
operators their products and inverses will
also be symmetry operators. The identity
operator is a symmetry operator and the
operators satisfy the associative law. Thus
the operators obtained by using Eq. (10a)
for all the symmetry transformations
will form a group of operators that is
isomorphic to the group of symmetry
transformations. The group of operators
acting on some space of functions provides
us with a representation of the symmetry

group.

2.2
Construction of Representations

As a simple example of the construction
of representations, we again consider the
problem of a particle in a central field. The
group of symmetry operators Og will take
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an eigenfunction v into an eigenfunction
Oy with the same energy E. If we apply all
the rotation operators to the same v we will
not always get a linearly independent Ogyr
as the result. For example, if our ¥ (x, y, 2)
depends only on the radius r, Opyr will
leave ¥ unchanged, since this state vector
is spherically symmetric. If ¥ (x,y,2) =
x, the rotation operators will give only
X, y, z or linear combinations of them. So
this will be a representation in a three-
dimensional carrier space, and we say that
this is a three-dimensional representation
of the rotation group. Calling these basis
functions ‘//i(l) i=1,2,13), ORwi(l) will be
a linear combination of wi(l):

3
1 1 1
ory” =) D (R,
J=1

(i=1,273), (11)

where the superscript (1) labels the
representation DU, and ngl)(R) is the
matrix representative of the rotation in
this representation. If we perform a second
rotation S, we get

050y =3~ DY (RO
J

_ 1) (e)] (€)]
=Y D (RD Ry
kj

=> | XD ®DP® |y
el

=Y D (SR (12)
k

The matrices DV thus give a three-
dimensional representation of the rotation
group. If we take any linear subspace
of this three-dimensional space, applying
the rotation operators will automatically
generate the rest of the three-dimensional

space. There is no proper subspace that is
invariant, i.e., is reproduced by the rotation
operators. We say that the representation
DW is an irreducible three-dimensional
representation of the rotation group.

If we start with quadratic expressions in
X, P, 2 Xy, yZ, 2%, X*, y*, 2%, we will obtain
a six-dimensional carrier space on which
the rotation operators will act, giving us
a six-dimensional representation D. But
this representation is reducible: we can
find a proper subspace which is invari-
ant. It is the one-dimensional subspace
of the multiples of the function 1//1((1)) =
%% +y* 4 2%, which is unchanged by ro-
tations (orthogonal transformations). The
remaining five-dimensional space with ba-
sis xy, yz, zx, x> — 2%, y* — 2%, contains no
invariant subspace, so the matrices ob-
tained by applying the rotation operators
Or to this subspace will give an irreducible
five-dimensional representation of the ro-
tation group. Thus by changing the basis
we can decompose the representation into
two independent irreducible representa-
tions.

In general, for any transformation group
G with elements R, starting with some
functions v, we can apply the corre-
sponding operators Og to the ¥’s, find
an independent basis set, and obtain an
equation just like Eq. (11):

dy
j=1

Gj=1,...,du, (13)

where 1 labels the representation D),
with dimension d,.

We mention again the two important
steps:

1. We start with some functions and find
the space of functions generated by the
operator group.



2. We make changes of basis and look
for invariant subspaces. If there are no
invariant subspaces, the representation
is irreducible. The basis functions
must be degenerate with one another.
If there are invariant subspaces, we
check these separately. We finally end
up with a collection of irreducible
representations. The basis functions
of each of these form a necessarily
degenerate set.

In describing this process, it is con-
venient in general to use a “coordinate
space” of dimension d, = m, and call the
basissetyi, ..., ym. The transformations R
of the group G are represented by operators
Og that act on the coordinates (y1, . . ., Ym)
or by their matrix representatives D (R).

An important method for constructing
representations for transformation groups
is to realize that the group supplies us with
a representation of itself: each element
R of the group is its own representative
D(R). If n is the dimension of the
coordinate space on which the group acts,
the representatives will be n x n matrices
DW(R). This is the vector representation of
the group G. Any quantity that transforms
according to this representation is called
a vector relative to the group G. The
product of representatives of R and S
is DD(RS) = DDR)DD(S). We also
sometimes refer to the basis of this
representation as a tensor of rank 1
(relative to G). We can define tensors of
higher rank relative to G as follows: If
x and y are vectors we can form the n?
products x;y;. Under the transformations
of G these will transform so that x:yj’ =

DE,:)(R) D;ll)(R)xkyl, where we always use
the convention of summing over any
repeated index. (Note that the same
transformation R is applied to each factor.)
Any set of quantities Tj; that transform like
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this product is called a second-rank tensor:
D(D(R)Dﬁll)(R) T Similarly we can
construct tensors of any rank:

(1) (1)
Ti/l ..... in Dlm (R) Dlz]z (R)

D(l) (BT, ... jm (14)
These representations will be reducible,
but can be reduced by the methods de-

scribed in Hamermesh (1989), Chap. 10.

2.2.1 Equivalent Representations

If we have a representation D(R) of the
group G and make a transformation of
basis in the space of the representation,
using some matrix P, we can form matri-
ces PD(R)P~! = D/(R), and it is easy to
verify that these also form a representation
of G with the same dimension as D. We
also see that D'(E) = 1, and D'(R)D'(S) =
D'(RS), since PD(R)P~! x PD(S)P~!
PD(R)D(S)P~! = PD(RS)P~!. We say
that the two representations D and D’
are equivalent. They are isomorphic and
represent only a change of basis. Equiv-
alent representations have the same set
of eigenvalues. The diagonal sum (trace)
is the same for D(R) and D'(R). We call
this quantity which is the same for any
two equivalent representations the char-
acter x(R) of R in the representation D:
Tr D' = D, = D;; = Tr D. If two elements
R and S of the group G are in the same
conjugate class, so that there is an element
P of the group such that S = PRP~1, then
D(S) = D(P)D(R)D(P~!) and, taking the
trace, we get x(S) = x(R). Thus all ele-
ments in the same class in G have the
same character.

2.2.2 Addition of Representations.
Reducibility and Irreducibility

Suppose that we have two representations
DW and D@ of the same group G, where
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DO has dimension n; and acts on co-
ordinates x;,i=1,...,n;, and D@ has
dimension ny and acts on some other
space with coordinates x;,i=mn;+1,
...,n1 4+ ny. Thus the matrices DV (R)
are nq x ny matrices and the D@ (R) are
ny x ny. For each R in G, we construct a
new representation D that has dimension
ni + ny,

_( DY(R) 0
o =("4" pae)

and acts on the column vectors

X1

Xny
xnﬁ-l

Xni+ny

and D(R) = DD(R) + DD (R). The two
representations act separately in the two
subspaces. If we make a change of basis
in the (n1 + ny)-dimensional space so that
the x’s mix, the equivalent representation
will no longer have this block form,
and it will not be evident that the
representation is actually a “sum” of
two independent representations. Now we
proceed in the reverse directions. Given
a representation of the group in some
space of dimension N, we ask whether
it is possible to find a simultaneous
decomposition of the matrices for all R
into invariant subspaces of dimensions
n1, vy such that ny + ny = N, so that D(R)
acting on vectors in subspace 1 gives
vectors in that subspace, and similarly
for subspace 2. If this is true for all
R in G we say that the representation
D of dimension N is reducible and
has been decomposed into the sum of
DM and D@. Next we try to find

decompositions of the subspaces 1 and
2 into invariant subspaces. This process
must end in a finite number of steps, and
we finally have a decomposition of the
original representation space into a sum
of subspaces,and D = DV + D@ 4 ... 4
D™ where none of the representations
D® has an invariant subspace. Then
we say that the original representation
D(R) has been fully reduced. If the carrier
space of D contains no proper invariant
subspace, we say that the representation
is irreducible. Note that the character of
the representation D(R) is the sum of the
characters of its irreducible component
representations: x(R) = ;x?(R). The
same irreducible representation can occur
several times in the decomposition, so
that, in general, D = EiaiD(i), and x =
Xia; X(i), where a; are positive integers.

2.2.3 Invariance of Functions and
Operators

We found earlier that Ory (x) = ¥ (R™1x),
so Ory is not the same as . If Oryr is the
same as ¥, so that ¥ (Rx) = ¥ (x), we see
that the function v is invariant under the
transformations. To test for invariance we
replace the arguments x of any function
¥ (x) by Rx and see whether we get the
same expression. If an operator T acts on a
function ¢ we get a function ¢ = Ty, and
applying the operator Og to Ty we get

OrRTY (%) = (R 'x)

= T(R 'y (R %), (@15

OrT(x)Ox' OrY (%) = T(R™'x) Opy (%)
= T'(x)OrY (%),
(16)

where T'(x) = T(R 'x). In general the
operators T and T” are different. If they



are the same, i.e., if

OrT(x)Ox' = T(x), (17)
the operator T is invariant under the trans-
formation. In other words the operator
T commutes with Og. For example, the
function x* 4+ y? is invariant under rota-
tions around the z axis, and also under
inversion. The operator 82/dx* + 8%/dy?
is also invariant under these transforma-
tions. A function describing the state of
a system of identical particles is invariant
under any permutation of the particles.

Now we can see the connection of group
theory with physics. The Hamiltonian H of
a physical problem may be invariant under
some operators T. The collection of these
operators and all possible products form
a group G -the symmetry group of the
Hamiltonian H. The basis functions for
an irreducible representation of this sym-
metry group must be transformed into
vectors in this same space by the opera-
tors DWW (R). This m-dimensional space
provides us with an m-fold degeneracy
of the particular energy level. For a re-
ducible representation of the symmetry
group G more states seem to be trans-
formed among themselves, but we can
reduce the representation by finding the
irreducible components. The basis func-
tions for an irreducible representation
must transform into one another under
the operations of the symmetry group.
It may happen that a problem gives de-
generacies that are greater than expected
from the assumed symmetry group. We
must then search for some symmetry op-
eration beyond those assumed. Often this
occurrence is labeled as “accidental” de-
generacy. Note that the basis function
1//5“ ) for the irreducible representation
DW is said to belong to the ith row of
the representation.

Group Theory

2.3
General Theorems

We now list without proof the general
theorems that enable us to reduce any
representation of a group G into its
irreducible constituents.

Schur Lemma 1. If D and D’ are two
irreducible representations of a group
G, having different dimensions, and the
matrix T satisfies D(R)T = TD'(R) for all
Rin G, then the matrix T must be the null
matrix T = 0.

Schur Lemma la. If D and D' have
the same dimensions and are irreducible
representations of G, and if D(R)T =
TD'(R) for all R, then either D and D/
are equivalent or T = 0.

Schur Lemma 2. If the matrices D(R)
are an irreducible representation of G
and if TD(R) = D(R)T for all R, then
T is a multiple of the unit matrix: T =
const 1. This lemma gives an easy test of
irreducibility.

Next we present the orthogonality re-
lations. The quantities DEJ.’L )(R) for fixed
i, i,j form a vector (whose components
are labeled by R) in a g-dimensional space
(where g is the order of G). If D¥ and DV
are two nonequivalent irreducible repre-
sentations of G, then

> D RDSRT) = L5858,
R "

(18)
where n,, is the dimension of the represen-
tation DWW, If D™ and D™ are the same
D, then

> DuR DR = S8, 19)
R

If the representations are unitary, we
replace ij(R_l) by Dj*m(R). Thus each
irreducible representation D) gives us

(0) ..
ni vectors Dij“ (R)(G,j=1,...,n,) that
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are orthogonal to one another and to all
such vectors formed from nonequivalent
representations. Since the number of
orthogonal vectors in a g-dimensional
space cannot exceed g, we must have
Tunk < g. We can obtain similar formulas
for the characters x ") by setting i = [ and
j = m and summing over i and j:

Y xP®R VR =gb.  (20)
R
or
Y P @R =gsw (1)

R

if the representation is unitary. We saw
earlier that all the group elements in the
same class have the same character. We
label the classes Kj to K;, and denote by g;
the number in the class K;. Then the last
equation becomes

.
Yo g =gbw  (22)
i=1

where x*(R) = Xi(u ) for all elements in
the class K;.

2.4
Kronecker Product of Representations

If we have two irreducible representations
DWW and D™ of the symmetry group,
we can take products of their basis
functions and get the Kronecker product
representation D***)(R) with matrices

[DU (R i = D (RID (R, (23)
The character of D*“**) can be found by
setting j = 1,1 =k, and summing over i

and k:

xR = x W R xP(R). (24)

All elements R in the same class K; will
have the same character x* *Y) The scalar
product of the basis functions is

WP, o) = / dry e, (@25)
For unitary representations this expression
is identical with (DU (R)y*, DV (R)
goj(v)) for any R. If we use Eq. (13) and

the orthogonality relation of Eq. (18) we
find

1
W, ¢ = ™ YW 0885
k

(26)
The scalar product is zero for i #j, ie.,
basis functions belonging to different rows
are orthogonal. Setting © = vand i = j, we
find that (1//5“ ) (pi(“ )) is independent of i.
This means that the scalar product of two
functions belonging to the same row of an
irreducible representation is independent
of the row. We shall see that this result
is the basis of the use of perturbation
theory and selection rules throughout the
applications of group theory.

2.5
Analysis of Representations

If we know the characters of the irreducible
representations of the group G, we can
use the above theorems to find how
a given representation decomposes into
irreducible constituents. We found (see p.
376) the equation

D(R) = a, DY (R). 27)
"

Taking the trace for an element R in the
class K;, we get

xi= Y aux. (28)
"



Next we multiply by Xi(v)* g and sum over i.
Using the orthogonality relations found
earlier, this gives

1
w= YogxMx 29
i

Thus the number of times a given
irreducible representation is contained in
D is given by this formula. In particular
this shows that if two representations
have the same set of characters, they are
equivalent. Again, if we multiply Eq. (29)
by g times its complex conjugate equation
and sum over i, we find

doglal*=g) a,. (30
i 13

If the representation is irreducible, all the
a, must be zero, except for one which
is equal to 1. So if the representation is
irreducible, its characters must satisfy the
equation.

D gilnl® =g, (31)
i

which gives a simple test for irreducibility.
Finally one can show that the number of
inequivalent irreducible representations is
precisely equal to the number of conjugate
classes in the group, and that

.
g=>y n, (32)
n=1

i.e., the sum of the squares of the dimen-
sions of all the nonequivalent irreducible
representations is equal to the order of the
group.

We give some examples of finding
characters for some groups.

1. Cyclic groups: a,...,a" =e. These
groups are Abelian, so all irreducible
representations have dimension 1. The

Group Theory

matrices are 1 x 1 and the represen-
tative is just the character, a complex
number. Since a" = ¢, the nth power
of the character D(a) must equal 1,
so D(a) = expmim/n),m=1,...,n,
and D(a") = exp(2mimr/n).

. General Abelian group. Again all

irreducible representations are one-
dimensional. We choose any element
and take its powers. This gives a cyclic
subgroup of G. We repeat this process
with some other element. We see that
the group is a direct product of cyclic
subgroups. For example, if G=C, ®
C3 ® Cs, with g = 30, we have genera-
tors a, b, ¢, with a2 = b3 = ¢®> = ¢, and
the character of any element a™b"c? is
exp[2rwi(mr/2 + ns/3 + pt/5)].

. Point groups. These are the groups of

rotations about a fixed point (the origin)
and reflections in planes through the
origin. For crystals, only the rotations
through multiples of 271(%; %; %; %) are
permitted, i.e., only cyclic subgroups
Cy, C3, Cy4, Cg. As a typical example, we
treat the octahedral (cubic) group O.
This is the group of rotations about
axes through the center of the cube that
take the cube into itself. It consists of
24 rotations in 5 classes: 6 rotations
Cy, Ci around lines joining the mid-
points of opposite faces; 3 rotations C?
around these same axes; 6 rotations
C; around lines joining the midpoints
of opposite edges; 8 rotations C3, C3
around lines joining opposite vertices
of the cube; and the identity E. There
are five nonequivalent irreducible rep-
resentations. Using Eq. (32) we find

5

which has the unique solution n, =
3,3, 2,1, 1. The character table for this
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group is
E C3,C3(8) C(3) Ca(6) Cs,C3(6)
r 1 1 1 1 1
r 1 1 1 -1 -1
r; 2 -1 2 0 0
Iy 3 0 -1 1 -1
I's 3 0 - | 1

where I'1, ..., I's label the irreducible
representations. The column vectors
are orthogonal:

1(1) +1(1) +2(-1)
+3(0) + 3(0) = 0, etc.,
and normalized to g = 24:
12412422 432 432 =24,
8[12 + 12 + (—1)%] = 24, etc.

The row vectors are also orthonormal
when we include the factors g;:

1(2) + 8(1(—1) + 3(D(2)
+ 6(—=1)(0) + 6(—1)(0) = 0,
32 4+ 8(0)(0) + 3(—1)2 + 6(1)2
+6(=1)% = 24, etc.

. The permutation groups S,. These

finite groups are important for dealing
with identical particles, construction of
irreducible tensors, and finding states
in atomic or nuclear shell models.
Earlier we described the conjugate
classes in S,. We found that there is
a class corresponding to each partition
of n. For example, for n = 3, we have
r=3and g =350 6 =Ein?, son =
2,1, 1. There are two one-dimensional
and one two-dimensional irreducible
representations. The character table is

E (12); (123);
rn 1 1 1
r, 1 -1 1
rs 2 0 -1

For large n, the simple procedure
becomes impractical. Instead we use
Young diagrams. For each partition of
n=mny+ny+---+n,withn >ny >
...>ny, we draw a diagram with ng
dots in the top row, n; in the second,
etc. For example, forn =5=3+1+1
we get the Young diagram

Each such partition gives an irreducible
representation of the group S,. Next
we enter the digits 1-5 in the boxes in
all possible ways that keep the entries
increasing to the right in rows and down
in columns. These arrangements are
the standard Young tableaux:

123 124 125 134 135 145
4 3 3 2 2 2
5 5 4 5 4 3.

There are six standard tableaux so the
dimension of this irreducible represen-
tation is 6. The use of the symmetric
group Sy, and the construction of irre-
ducible representations is discussed in
Hamermesh (1989), Chaps. 7 and 10.

. SO(3) is the group of pure rotations in

three dimensions. All rotations through
a given angle 6 about any axis n are in
the same class (see p. 368), so if we
choose the z axis for n the rotation
matrix is

cosf —sinf O
(sin9 cos o 0) ,
0 0 1

and the character for the vector rep-
resentation is xP(@) =1+ 2cosf =
¢? +¢° + ¢~ One can show that there
is a single irreducible representation for



each integer 1 =0, 1, ... with

+1
ORI

m=—1

(33)

and the dimension of the representa-
tion is x?(0) = 21 + 1. There are also
irreducible representations of SO(3) for
= %, % etc. These are double-valued
representations that can be derived
by using the group SU(2), which is
homomorphic to SO(3) with two ele-
ments corresponding to each element
of SO(3). These irreducible representa-
tions give all information needed about
states in a central field. For a detailed
treatment of group representations, see
Elliott and Dauber (1979), Chaps. 4
and 7; Hamermesh (1989), Chaps. 3,
4, and 5.

3
Applications

3.1
Atomic Structure

The application of group theory to most
physical problems requires the use of some
model. It should be evident that we cannot
consider the quantum problem exactly if
we have more than two entities interacting
with one another. We must find some
method of successive approximations that
enables us finally to get satisfactory
agreement with experimental results. In
atomic physics our procedure is first to
consider the individual electrons to be
moving in the field of the nucleus and
some spherically symmetric averaged field
of the other electrons in the atom. In
this central field the Hamiltonian for
the individual electron has the symmetry
group SO(3), so the states of a single
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electron have quantum numbers/and m =
—l,...,+l. A single-particle level with
quantum number | has degeneracy 2/ + 1.
There will be many states with a given
Im, with energies E = b/n® approximately,
where n=1,2,... giving us a triple of
labels n,l,m, with n>14+1, and I=
0,1,..., where | is the orbital angular
momentum. Often we use letters in place

of I:
I= 0 1 2 3 4
state

label $ P 4 f &

For I = 0, we have 1s, 2s, 3s, ...; For [ = 1,
we have 2p,3p,...; For =2, we have
3d, 44, ..., etc. The energy levels are given
approximately by E = b/n?, so the level
ns is nondegenerate (m = 0), the level
np has m ==+1,0, etc. In addition we
know that each electron carries an internal
angular momentum (spin) with s = % In
light atoms the spin results in there being
two states (with m = :I:%). This results in
doubling the occupancy of each level. Thus
we have a level sequence

Level 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

Degene- 2 2 6 2 6 10 2 6 10 14,
racy

etc., where the atomic shells are labeled by
n, and have a total number of electrons =
2,8,18,.... The order of the levels goes
with n, but some changes occur when the
3d and 4f levels become partly filled.

To study the spectrum of levels for
an atom with atomic number Z, we
fill the single-particle levels successively.
For example, for Z =16, the only un-
filled shell would be 3p, with two elec-
trons. This state would be described by
(15)%(25)%(2p)°(35)2(3p)?. The closed in-
ner shells have spherical symmetry, so
we consider only the two electrons in the
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3p shell. The orbital states of the two elec-
trons havel; = I) = 1, while the spin states
are s1 =s) = % For light atoms we use
Russell-Saunders coupling, in which we
first find the Kronecker product of all the
space functions, and separately of all the
spin functions, and then couple the two
resultants. To keep the Coulomb force be-
tween the electrons unchanged requires
that the same rotation R be applied to both
electrons, so that we are taking the product
representation D (R)D®")(R). The basis
functions are 1//(1) (l)w(l)(Z) giving nine
coupled wave functions. This reducible
representation can be decomposed into
L=2,1,0. The two spins will couple to
S =1,0. Finally we include the weaker
coupling of orbit and spin to give the states
of total angular momentum | = L + S, and
find states 3D,3P,>S and 'D,1 P, S. But
we must also consider that the electrons
are identical particles (fermions), and so
the Pauli principle requires that the to-
tal wave function must be antisymmetric
under the interchange of all coordinates
of the two electrons. For this simple
case of two electrons the nine functions
w(l)(l)w,%)(Z) can be split into a symmet-
ric second-rank tensor (with trace zero),
an antisymmetric second-rank tensor, and
a scalar. The orbital states with L =2,0
are symmetric while the state with L =1
is antisymmetric. The spin states with
S =1 are symmetric (triplet states) while
the S = 0 singlet states are antisymmetric.
Thus the Pauli principle allows only the
states 3P,1 D,1 S. Note that this argument
would not apply to the case of (3p)(4p) be-
cause then the states of the two electrons
are not the same, so the Pauli principle has
no effect.

This simple procedure fails if there are
more than two electrons in the same
subshell. For example, for the case of
(3p)® we would have 27 product functions

w(l)(l)w(l)(Z)w(l)G) while the spin part
would be the product of three spin-% func-
tions. The general procedure requires the
use of irreducible tensors. If we have r
electrons in a subshell with angular mo-
mentum [ our spatial wave function for
one electron is 1// , and for the r elec-
trons the productis ¥ = w(l) a...yd (r)
with m; = —I,..., +I. Thus ¥ is an rth
rank tensor in a space of dimension
21+ 1. Since all these functions are de-
generate, the transformations of the group
SURI+1) act on these v’s. We then
must classify them according to the ir-
reducible representations of SU(Q2l+ 1)
with their particular symmetries. Sim-
ilarly, for the spins we have tensors

/(Lll/ 2)(1) (1/ 2)(r) of rank r in the
space of dlmensmn 2. Again we must find
the irreducible pieces. Finally, to satisfy the
Pauli principle we must assure that the to-
tal wave function is antisymmetric. For
the detailed treatment, see Hamermesh
(1989), Chap. 11, or Elliott and Dauber
(1979), Chap. 8.

32
Nuclear Structure

In the case of atoms, we know that the
interactions are electromagnetic, and we
have just one type of identical particle,
electrons. In the case of the nucleus
we have two constituents, neutrons and
protons, which have approximately equal
masses and can transform into one
another in B-ray processes. The Coulomb
force between protons is small compared
with the specific nuclear force, so we
use a model in which we disregard the
differences between n and p, and deal
with a single type of identical particles,
nucleons, in two charge states. This looks
like the case of two possible spin states for



electrons. Both n and p have an intrinsic
angular momentum s = % but now there
is another intrinsic feature, the isospin
t= % The other important difference is
that we have little basis for choice of a
model. We start with no knowledge of the
interaction and must try various shapes for
its radial dependence and its dependence
on spin and isospin.

The most successful model requires the
use of j—j coupling. In such models we
first couple (i.e., take the product of) the
v® and v for an individual nucleon
to give a resultant ) and then couple
the ¥ s (ie., take products of 1//,5]1) for
the nucleons). Since the nuclear force is
attractive, the state with lowest j for a given
l,s will have the highest symmetry (since
the particles can get closest to one another).
The order of the levels will also depend on
the choice of the radial dependence of
the potential. One model is shown in the
following diagram of single-particle levels
and their degeneracies:

Nucleon states Occupation  Total

1g9/2 10 50
2p1/2 2

512 6
2p3)2 4

1g7/2 8 28

1d3/2 4 20
2512 2

1d5/2 6

1p1/2 2 8

1p3)2 4

1s1/2 2 2

The numbers in the right-hand column
are the magic numbers corresponding to
the closed shells.

Group Theory

As in the atomic case, we look only at the
partially filled shells. If we consider a level
(), the single-particle state has a wave
function ¥ that is a vector in a space of
dimension 2j 4 1. Since the js are halves
of odd integers, 2j + 1 is even. The wave
function for (j)3 is ¥ (DY 2)wi (3), a
third-rank tensor in a space of dimension
2j+ 1. Next we take the product of the
three isospin functions which are vectors
in a space of dimension 2. Just as in the
atomic case, we must find the irreducible
parts of each tensor. For the isospin tensor
we get T = %, %, % The completion of
the problem would be the same as in
the atomic case [see Hamermesh (1989),
Chap. 11-9].

33
Solid State and Crystal-Field Theory

In discussing atomic structure we used a
central-field model in which the Hamil-
tonian had the symmetry group SO(3). If
we study the energy levels of electrons
in a crystal, this is no longer the correct
symmetry group. Now the electron moves
in the periodic field of the crystal lattice.
In the neighborhood of a lattice point the
field is no longer spherically symmetric. It
now has the symmetry of one of the crystal
point groups. For example, the wave func-
tion of an electron in a cubic crystal will
belong to an irreducible representation of
the cubic point group O. Thus the possi-
ble degeneracy of a level will be 1, 2, or
3. (See the character table on p. 378.) If
the crystal is distorted, the point symme-
try group will be reduced from O to some
lower symmetry and the levels may split.
Or we may consider what happens to a
level in a free atom when the atom is put
at a crystal site. In the free atom the levels
correspond to irreducible representations
of the symmetry group SO(3). When the
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atom is placed in the crystal, we must
use the crystal-field symmetry. The level
with a given | may split into levels belong-
ing to the symmetry group of the crystal
(“crystal-field theory”). We illustrate this
for the octahedral group. A level belonging
to the irreducible representation DV of
SO(3) has the character

+L

Z elme.

m=—L

o _
Xy =

In the crystal this representation will
be reducible. The cubic field has only
rotations through angles 6 =0,7/2, 7,
and 277/3. In the crystal we need to record
only the x ¥ () for these values of 6. We
repeat the character table of O from p. 376
and enter below the characters for L = 0,
1, etc. Then we decompose using Eq. (29):

E G GO GO G
C(8) C3(6)

I' 1 1 1 1 1
I 1 1 1 -1 -1
I's 2 -1 2 0 0
I'4 3 0 -1 1 -1
I's 3 0 -1 -1 1
L=0 1 1 1 1 1
L= 3 0 -1 -1 1
L= 5 -1 1 1 -1
L=3 7 1 -1 -1 -1
L=4 9 0 1 1 1

For example, we see that L = 0 gives I';.
L=1 is just I's so the vector does not
split in a cubic field. For L =2 we find
'3 + 4, so the level splits into a doublet
and a triplet. L = 3 splits into I', + T4 +
I's, while L = 4 gives 't + '3 +T'4 + I's.

For details and applications to various
point groups and the construction of
wave-functions, see Hamermesh (1989),
Chap. 9; Elliott and Dauber (1979), Chap.
14; or Burns (1977), Chaps. 8, 11, and 12.

4
Summary

Group theory has developed in the last 60
years to become an essential tool in many
branches of physics and chemistry. After a
mathematical introduction to the subject,
we have given examples of its application
to atomic and nuclear structure, and to
crystal-field theory.
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Introduction Change through computer power is

A mathematical model is a set of equations
and algorithms, together with a collection
of interpretive rules, designed to repre-
sent something. Mathematical models are
invariably approximations. They include
physical laws that, like Newtonian me-
chanics, the special and general theories of
relativity, or quantum mechanics, are guid-
ing precepts at the moment, within their
specified limits. They also include expo-
nential growth models that are Band-Aids,
meant to be replaced. Mathematical mod-
els selectively magnify some parts of a sys-
tem while ignoring or severely approximat-
ing other parts. The art of modeling is to
distinguish essential from superfluous de-
tail and to be able to “consider a spherical
cow” (Harte, 1988). To learn of the goals,
philosophy, and methods of mathematical
modeling within any field of physics, one
can do nothing better than read the article
in this Encyclopedia pertaining to the field.
The purpose here is to sample the breadth
of emerging tools and techniques.

the dominant feature in the world of
mathematical modeling. During the brief
history of electronic computation, barriers
to formal mathematics eroded slowly. In
1976, the four-color problem was solved: It
was proved that only four colors are needed
for maps to assure that no two countries
sharing a common border have the same
color (Appel and Haken, 1978). This is a
combinatoric problem, solved by making
use of a computer in essential ways. Since
then, computer-assisted researchers have
won acceptance as not being children of a
lesser God.

Although analytic methods and rigor-
ous mathematics theorems continue to be
pillars, they are enhanced by modern-day
computers, sometimes through the use
of symbolic computer software. Computer
technology at present can give us com-
mercially available teraflop speeds (102
floating point operations per second), and
will perhaps give 10" flops in ten years
(