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book i s  that Topology really is the universal language of modern mathematics. 

We assume that the reader has a good grasp of the fundamentals of Logic and Set 
Theory, even though a rather succinct review appears in  the introductory chapter 0. 
The reader should also be very familiar with elementary analysis. Some familiarity 
with Group Theory is required for chapters 5 , G  and 8. 

The problems which appear at the end of each chapter not only provide ample 
opportunity for applying the concepts and techniques just learned but also are used to 
introduce additional concepts and techniques which complement the text and point to 
further study elsewhere. 
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Chapter 0 

Sets and Numbers 

Set Theory 

The main purpose of this section is to collect those precious gems of Set Theory - 
Relations, Functions and Inverse Functions - which will frequently be used throughout 
the text. The few extra comments are designed, either to bring out a convenient 
viewpoint, or to point out some pitfalls. 

We prove none of the set-theoretical formulas that we mention, inasmuch that, 
whoever is ready for what lies ahead, can prove these quite easily. 

0.1 Rudiments of Logic 

In order that we may appreciate the subtleties of mathematical thought, we need to 
have at our disposal uniform and precise rules of mathematical reasoning. For example, 
the implication 

If John weighs less than Joe and Joe weighs less 
than John, then John and Joe have the same weight 

might provoke some to argue that i t  is nonsense, because i t  is impossible that 

John weighs less than Joe and Joe weighs less than John, 

while others might argue that it is exactly this impossibility that makes the implication 
valid, inasmuch that what is intended by 

If A then B 

is simply that 

A is false or B is true. 

This forces us to establish a universal understanding of our basic means of 
communication: We assume that all expressions that we consider are true orfalse, but 
not both. 
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Variables. 
alphabet, with subscripts, i f  necessary: 

We designate arbitrary expressions by capital letters of the English 

A,  B, C, . . . , A , ,  B,,  C,, . . . ,A , ,  B?, C,, . . . . 
Connectives. We use the following connectives to form new expressions from any 
two expressions at our disposal. (For convenience, we let = stand for means that or is 
the same as): 

or v 

and 3 A 

i f . .  . then . .  . 3 ... implies.. . * 
if and only if 3 iff tj 

- negation of not - 

Truth Values. 
the need for at least one inore value-indeterminate.): 

We use only two truth values (More elaborate logical systems see 

T true 

F false 

Quantifiers. The following symbols specify quantity: 

'd I forevery = for each 

3 for some = there exists 

_ -  _ -  - is equal to 

Primitive Symbols. 
of information: 

These symbols help us avoid confusion in the communication 

( = left parenthesis 

) = right parenthesis 

Truth Tables. 
specify exactly what is our understanding of the connectives V, A, 3, e, - in 

We now give the truth tables of the connectives. In this manner, we 
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T F  F 
F T  F 
F F  F 

mathematical reasoning; some of these do have vague and ambiguous interpretations 
in their quotidian use. 

A B - A  - B  A * B  -B*-A 

T T  F F T T 
T F  F T F F 
F T  T F T T 
F F  T T T T 

The truth tables of the following expressions will guide us into some important 
rules of logical reasoning: 

( A * B )  ( I S a - 4  

T 
T 
T 
T 

T T 

A B  - A  A a B  - A  V B  

T T  F T T 
T F  F F F 
F T  T T T 
F F  T T T 

jjy T 

fA * B )  W ( - A v B  

T 
T 
T 
T 

We therefore conclude that the expressions ( i )  - (iv) are always true regardless of the 
truth values attributed to their variables (such expressions are called tautologies). In 

i )  (A  * B )  @ ( - B  j - A )  
ii) ( A  B )  @ ( - A  v B )  

i i i )  - ( A  v B )  ( - A )  A ( - B )  
iv )  - ( A  A B )  @ ( - A )  v ( - B )  
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B - A  - 8  A v B  

T F F T  
F F T T  
T T F T  
F T T  F 

A 

T 
T 
F 
F 

- - ( A v B )  ( - A ) A ( - B )  - ( A v B )  (j ( - A ) * ( - - )  

F F T 
F F T 
F F T 
T T T 

accordance with the truth table for 
B the corresponding truth values of 

, this means that for any truth values for A and 

are, respectively, the same. Thus ( i i )  justifies the truth table we have adopted for +, 
since, when we say that “A 3 B is true” we are really interested that B be true or A be 

A - B  and - B * - A  
A * B  and - A  v B  
( - A  v B )  and ( - A )  A (- B )  
- (A A B )  and ( - A )  v ( -B)  

false. Also, ( i )  justifies the method ofproofby the contrapositive by which we prove 
that A j B is true by showing that - BJ -A is true, instead. 

Next, we establish the truth table ofA A ( - A )  in order to explain another method of 
proof. 

We see that, whatever truth values are given to A ,  A A ( -A )  is always false (such 
expressions are called contradictions). 

We can justify the tnerhod qfproqf by contradiction by which we prove that an 
expression A is true by exhibiting an expression B such that 

is true. Given that B A ( - B )  is false, we get from the truth table for a , that -A is false; 
therefore, A is true, because of the truth table for -. 
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We have thus completed our task of presenting the rudiments ofa universal language 
that precisely states the elementary rules of mathematical reasoning. With these rules 
and an axiom system that tells us how to derive conclusions from given information, 
we could then proceed to the study of logical reasoning. 

0.2 Fundamentals of Set Description 

The concept of set is undefined; it is simply taken for granted that all (?) human beings, 
through the experiences of their daily lives, become aware of sets or collections or 
groups of objects---certainly, at one time or another we have all become painfully 
aware of crowds (large sets or groups of people). Do not be shocked by this; remember 
that, in Euclidean geometry, the concepts of line and point are undefined. 

One specifies a set by specifying its elements. A standard notation is 

{ x I s (x) }={ x: s (x) } 

which is read the set of all elements x such that x satisfies the sentence S ( x ) .  Examples 

of the sentence S ( x )  might be: “x is a dog”, “x is a real number greater than zero” or “x 
is a blonde mathematician with green eyes”. 

The difficulties in the development and understanding of set theory come mostly 
from the simple fact that not all sentences that one utters make sense. Obviously, the 
sentence “x is a blonde with black hair” does not make sense. But there are nonsensical 
sentences that, at first sight, may appear perfectly acceptable: Let S (x) be the sentence 
x P  x . Let A=(xl xpx). Then A E A implies that A 6E A , a contradiction; AE A 
implies that AE A , a contradiction. Since we follow a logical system that roughly says 
that something either is or is not, but not both, we then must consider the sentence 
x E x unacceptable. Equally, we cannot accept sentences such as 

S (x) = for some x,  x is a dog, 

S (x )  1 for all x ,  x is not a real number, 

inasmuch that, for example, the set of all x such that for some x ,  x is a dog is an 
ambiguous statement. Therefore, un acceptable sentence S ( x )  must contain the variable 

x ,  completely free ofthe quantifiers Q and 3, at least once. 

0.3 Set Inclusion and Equality 

Given the sets A and 8, we say that 

(i) A is contained in 8, provided that x E A implies that x E B .  

(We let A is contained in B E  A c B =  A is a subset of B . )  
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( i i )  A contains B = B is contained in A = A 3 B. 

( i i i )  A is identical to B provided that XE A i f fxe  B; equivalently, A c  B 
and BC A .  

(We let A is identical to B =  A = B . )  

0.4 

Presently, there are various axiom systems for set theory. Fortunately, their differences 
are rather minute. We like, what might be called, the Godel-Bernays system of six 
axioms. We state the first five now, leaving the sixth to be stated after we realize that 
there is a need for it. (This helps to make it  more self-evident.) 

An Axiom System for Set Theory 

I. (Axiom @Extension.) If the sets A and B have the same elements then 
they are identical. 

11. (Axiom ofthe Empty Set.) There exists a set 0 with no elements. 

111. (Axiom qf Uizions.) Let u be a set whose elements are sets. There exists 
il set S such that x E S iff x E A for some A E u . 

IV. (Axiom qf’ Power Sets.) For every set X there exists a set p ( X )  which 
consists exactly of all the subsets of the set X. p ( X  ) is called the power set 
of x. 
V. (Axiom of Infinity.) There exists a set S satisfying the conditions: Each 
element ofS is a set; 0~ S ; m E S implies that there is rz E S which has only 
m and the elements of m. 

The axiom of infinity allows one to define the natural members and to establish 
the principle qfirzductiorz, as we shall soon see. 

0.5 Unions and Intersections 

Given a collection C of sets, 

ue ={.I X E  x for x c}, 

The following notation i s  also commonly used: 

UC=u{x(xEe}=uXtLvx, ne=n{xIxEe}=n,,,x, 

If C = 0 t h e n  U0=0, n 0 = 0  
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Observation. An apparently insignificant alteration in the definition of intersec- 
tion that we have adopted, produces dramatic effects: Let us suppose that, for each 

collection L? of sets, we define 

nc = {+E c - X E  a} 

It follows that, if C # 0 then 

that is, the two definitions of intersection are identical, whenever 6 # 0 . However, if 
X E  C becomes the true implication 

CE 0 3  X E  C (because “ C E  0 ”  is false). Consequently 

{ ~ ( C E  L‘+ X E  C } = { X I C E  0*  X E  C}isaset. Thisimpliesthat {xlxex}is 

a set, by the Axiom of Power sets. (Clearly {xi x g  x }  is a subset of {XI CE 0 XE C } ,  
since the implication C E 0 3 x E C is true for all x ,  including those x such that x e  x .) 

But we already know that { X I  xe x }  cannot be a set. If L? = { A }  (i.e. the collection L? 
consists of a single set) then 

=0, then the implication CE L? 

U {A}= UL? = A and {A}= = A 

0.6 Set Difference 

For any sets A and B, 

A - B = { x €  AlxP B ) = ( x l n ~  A a n d x P  B}  

(The Axiom of Power Sets easily assures us that A - B is indeed a set.) 

0.7 Integers and Induction 

For any set S, let S’ = S u {S} (the set S+ is called the successor of S )  and, for the 
sake of familiarity, let 0 = 0 , in this context. The axiom of infinity implies the following: 

1. Proposition. There exists exactly one collection w of sets such that 

(ii) n E  w j ti+ E w 

(iii) if K satisfies (i)  and ( i i )  then w c  K. (The set w is called the set of 
natural numbers.) 
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Proof. 
Y = ( S  I S c 5' and S satisfies (i) and (ii)], It is easy to see that w = n Y (note 
that Y' z 8 1. 

By the axiom of infinity, there exists a family 3 satisfying (i) and (ii). Let 

Note that part (iii) of the preceding Proposition is the Principle offduction. 
Indeed it is customary to call a set K an inductive sef provided that K satisfies (i) and 
(ii) above. 

By induction, it is easy to prove that 

(iv) m~ n implies m+ c n; m~ n implies m+ E n' 

(Show K = ( n  I m E n implies mc c n ) 

and K =  [ n I mE n implies rn'e n' ) are inductive.). 

(v) nP n, for each n~ w . 

(vi) For m, n E w one and only one of the following holds: 
t n ~  n or n~ m or m = n . (Show K = ( m I n E 0 implies one and only one  

of m e  n or nEm or m=n)  is an inductive set, by the use of (iv) and (v).) 

(vi i i )  nf # 0 ,  for every n E w 

+ 
(Show K = (O}U {nl  n #O]  is an inductive set.) 

(ix) IZE w, n # 0 implies that there exists k E w such that k t  = n . 
( k  is said to be the predecessor of n; it is immediate that k is unique, by 

(vii); it is customary to denote the predecessor of n by n- or n - 1 ), 

(Show K=( m E w I m = ( n  E w I n E m )  ) is inductive. This property of 
w is very important and is related to the sixth axiom.) 
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and there exists t E w such that u E t , then u E w 

u E O  whenever u c m  and u=nEcoI m u )  

Sets and Numbers 

(xi) If u= { n ~ w l  n ~ u )  

(Show K = { m e  W 

is inductive.) 

(xii) Any nonempty S c o contains a minimal elements (i.e. for each 

t E S -{s}, S E  t ). 

Proof. 
s= (nee I nE s }  . It is also easy to see that s E S . (Suppose s tZ S . Then, for each 
t E S,  we get that t f s because s c t for every t E S . Therefore, s+ c t for each 
t E S,  which implies that S+ C ns = s , a contradiction.) Obviously s is the unique 
minimal element of S. 

It suffices to show that s = n S satisfies all our requirements: Clearly 

The arithmetic of the natural numbers can be entirely based on (i), (iii), (vi) and (vii). 
These imply the Peano Axioms of Arithmetic, which are 

(a) zero is a natural number, 

(b) every natural number has a successor, 

(c) zero is not a successor of any natural number, 

(d) natural numbers having the same successor are equal, 

(e) a set, which contains zero and also the successor of every number in it, 
contains all natural numbers. 

A sketch of Arithmetic in 13. We define the operation of addition in o by the 
following inductive procedure: 

( 1 )  o+o=o.  

(2) Suppose we have already defined j + k for j ,  k E n with n # 0.  Then we 

i e t t + n = ( t + i ) + ,  n + t = ( n + t )  forany t E n .  
-t 

By induction, it is easy to verify that 

(3) Forevery j , k E w , j + k E O .  

(4) Forevery j ,  k E W ,  j + k  = k + j . 
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( 5 )  For every i, j ,  k E W ,  (i i j ) i  k = i + ( j  i k). 

(6) For every j E W ,  j + 0 = 0 + j = j . 

The multiplication operation in 0 is treated in a similar fashion: 

(8) Suppose we have already defined j x k for j ,  k E n with 

n x t =  ( n - x t  ) + t  for any. 

By induction, it is easy to verify that 

(9) For every j ,  k E w ,  .j X k E w 

( 1 0) For every j ,  k E W ,  j x k = k x j , 

( 1 1 )  Forevery i, j , k E & , ( j X k ) x i =  j x ( k x i ) .  

(12) Forevery j E ~ , j x I = I x j =  j 

(13) For every i, j ,  k E w,i x ( j  + k ) =  i x  j + i x  k . 

As the reader well knows, it is customary to let 

o+= I (o+=ou(o}=(o)), 

1+=2 ( I+={O)u{ {0)}={0,{0}}), 

2+= 3 (2+={0, {O), (0, {Oil)), 

3 + = 4 , 4 + = 5  ,..., n + = n + I , a n d s o o n .  

The reader has certainly seen definitions by induction (namely, definitions of 
sequences s : w  4 X , for some set X ,  with s (n+)  depending on s(n) in some 

prescribed manner (for example, uo = 1 and u,,+, = u,* + 2 , for every n E w (and also 
definitions of special restrictions of given functions f: X X (for example, starting 

with a point a E X I  letv,, = u,v, = f ( a )  ,... ,v,+\ = f ( u , )  for all n E W .  The principle 

2 
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of induction does guarantee, easily, that there can be at most one such sequence {q, } 
or { v, } satisfying the stated conditions, but it does not guarantee their existence. The 
existence of {u, ) really depends on a better understanding of the “structure” of the 
set W .  (We will sketch the existence of (u, } in section 10.) Similarly, the existence of 
(v ,  } depends on our exact understanding of the notion of a function and the so-called 
Recursion Theorem, which we will state and prove later in section 9. 

It is common practice to let N = w - {0} and to call N the set of natural numbers. 
One can live with this! 

0.8 Simple Cartesian Products 

For any two elements a,  b of any set C we let 

(a,  0 )  = {{a}, {a, b}} 

(note that(a,b) is a well-defined set, since (u,b)E p(p(C) ) ) ;  (a ,b )  is called the 
ordered pair of a and h, with a the.first element and b the second element of (a ,b)  - 
(this terminology makes sense, since 

a f b implies (a ,b)= {{a},{a,b}}# {{b},{a,b}}= (b ,a ) ) .  

It follows that, for any sets A and B 

AxB={(a,b) ~ U E  A , ~ E  B}  

is a well-defined set, since, by the definition of ordered pair and the Axiom of Power 
Sets, A x B c p(p  ( A  u B)). The set A x B is called the Cartesian product of the 
sets A and B. 

0.9 Relations 

For any sets X and X any R c X x Y is called a relation between X and Y or from 
X to Y. For convenience, we let ( x ,  y )  E R = xRy . We also let 

d o m R = { x E X I ( x , y ) E R f o r s o m e y E Y ) ,  

If A c X , we let 

R l A = ( ( a , y ) ~ R l  a ~ A } = ( ( a , y ) l  U E A ,  a R y ) .  

(Then RIA is a relation between A and Y and is called the restriction of R to A.) If 
X = Y = dom R, one simply says that R is a relation on X .  A relation R on X is said to be 
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(i) reflexive, if XRX for each x E X , 

(ii) symmetric, if xRy implies y R x  , 

( i i i )  antisymmetric, if xRy and yRx imply x = y , 

( i v )  Irunsitive, if xRy and YRz imply xRz 

An order 5 on a set X is a reflexive, antisymmetric and transitive relation on X. A 
total order I on a set X is an order on X such that, for every x ,  y E X , either x 5 y or 
y l x .  

We say that ( X  , S )  is an ordered set (resp. totally ordered set) provided that X is a 
set and I is an order (resp. a total order) on X. 

An equivalence relution R on a set X is a relation which is reflexive, symmetric 
and transitive. (Equivalence relations are extremely important!) 

0.10 Functions 

For any sets X and Y,  afunctionf between X and Y is a relation between X and Y which 
satisfies 

( i )  d o m f  = X ,  

(ii) xfr ,  xfi y = z . 

It is customary to denote a functionfbetween X and Y by 

~ : x + Y  or X ~ Y  

and to let 

xfy = y = f ( x )  , 

Given a function f : X + Y , we call X the domain off and k ( x ) l  XE X} the 
range off: 

If , f  : X + Y and A c X , wedenoteby f’lA thefunction(!) f’IA:A+Y,defined 

by (f I A)(a)=f(u),  for each a E A .  
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A function f :  X + Y is said to be 

13 

(i) onto or surjective if for each y E Y there exists x E X such that 

Y=f (XI 

( i i )  one-to-one, 1-1 or injective if y = f ( x )  and y =f( w )  imply x = w ,  

( i i i )  bijective or a one-to-one correspondence iffis 1-1 and onto. 

We will let 
f : X  -+ Y is onto = f : X -++ Y . 

Each function f : X  -+ Y produces a function f : p ( x )  + p ( Y )  (one should 
use a different symbol for this new function, but it is fun not to) defined by 

f(A)= {f(x) I X E  A 1 9  

for each A c X . 

Given functions X .f, Y , Y 4 2  , we let g 0 f :  X + Z be the function, 
defined by g 0 f ( x )  = g ( f ( x ) )  for each X E  X (!) and we call g o f the composite 

function offand g. Note that 

g o f = {  (x,z)l ( x , y ) ~ f a n d  ( y , z ) ~ g , f o r s o m e  ~ E Y ] .  

To keep a promise, we now state and prove the very useful Recursion Theorem. 

Recursion Theorem. If X is a set, f :  X + X a function and a E X , then there 
exists a function v :  o + X such that v (O)= a and v (n') = f ( v ( n ) )  for all n E a. 

Proof. We limit ourselves to a sketch, leaving the easy details for the reader. Let 

Clearly C # 8, since o x x E 6 . Let v = ne . It follows that v E C . Therefore, 
it remains to show that v is a function: Let 

K=(nl (n,  X ) E V ,  for at most one x }  

To show that v is a function, simply show that K is inductive. (For example, to show 

that O E  K:Suppose (O,U)EV and (O,C)EV with c#u .Le t  B=U XX-{(Qc)).It  
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is immediate that BE L? and therefore that v c B , which implies that (0, c) E v, a 
contradiction.) 

0.11 Sequences 

A sequence in the set A is a function from the set N of positive integers (or from 
o ) to the set A . It is customary to denote a sequence f : N + A by enumerating its 

range: f ( 1 ), f ( 2 ), . . . . To emphasize the attachment of each n E N to some element 

f ( n )  of A ,  it is customary to denote f ( n )  by a,, thus indicating that the integer n is 

attached to the element a, of A .  In this fashion, one simply says that a,,a2, ... is a 

sequence in the set A ,  For convenience, we let 

A subsequence of the sequence {a, } is any sequence {b, } such that 

( i )  ( 6 ,  I k = l ,2 , . , .}  c {(I,, I n=1,2, . . . I  , 

( i i )  There exists a function t :  { k l k  E N]+  ( n l n  E N )  such that k, < k, 

implies t ( k , )  < t ( k 2 )  and for every n there exists k ,  such that t ( k , )  > n ,  

(Lee,  t is increasing and ( t ( k ) l k  E N) is cofinal in N ). 

(Note that, letting t ( k )  = nk , we then get that 

r4 )k = r q k ) )  = (41, h , 

the last notation being very popular.) 

A sequence 4, is.finite provided there exists n E N such that a,, = a,,,, = an+2.. . . 
Otherwise, {a, , }  is said to be infinite. (Note that if {a,} is a finite sequence then its 
range i s  finite. But a sequence may have finite range and not be a finite sequence; for 
example, the sequence 1,2, I ,2,1.. . has range {1,2 ] but is not finite.) 

To keep another promise, let us show that it is valid to define sequences with 

domain w recursively. (In particular, there exists a unique function u:O + 0 such 

that uo = I and u,,+, = u,, + 2 , for each n E o .) 2 
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2. Proposition. Let X be a set which satisfies the following conditions: 

(ii) u,,+, = R( u,, ) E X for n = 1,2,. , . (i.e., each u,+, is chosen depending 

on u,, by some explicit rule R ). 

Then there exists a unique function f .. o + X such that f ( O ) =  uo and 
f ( n ) = u , ,  for n = I , 2  ,..., 

Proof. Let us call a subset A of O X  X a string if it has the property 

(*) (0, u o )  E A and ((n + l), I?(.)) E A whenever (n ,x )  E A . 

Let C be the collection of all strings. Note that 6 # 0 ,  since OXX E 6. Finally, let 
f = n C  . It is easy to see that f is a function (simply show that K={ n I (n, X)Ef for 
at most one x )  is inductive). It is also easy to see that f = 6 ,  from which it follows 
thatfis the unique required function. 

0.12 Indexing Sets 

Sometimes it is very convenient to attach a “name” to each element of a collection 6 
of sets. This is easily done by picking a set and a function f : 9 + C (certainly this 
can always be done-for example, let 9 = 6 and f : 9 + C be the identity function). 
Indeed, we cannot require that the function f be injective, because we may not be free 
to choose the indexing set. Then, for each i E y , the set f ( i ) ~  C has the name f(i)  . 
Since it is clear that the function is not important but only the knowledge of which set 
c E 6 corresponds to i E 3, it is customary to let 

thus indicating that the set Ci came from the collection 6 and has been given the 

name i . We then say that 
c={ci I i E y} = {ci l i d ,  

and ,!I’ is called an indexing set for 6 . With this new language, if u = {UaLEA, 
U t Y = U ( U  I c i e A )  = u ci as A uw 

A )  = naEAua. nu = ncuai 

For indexing sets which are subsets of the integers, the notations 
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are acceptable, their meaning being clearly understood (for example, 

uT=,, Ai U{A,,In is an integer and n 5 j < m}). 

0.13 Important Formulas 

Let X be a set, {AI ,. . ., A,,} any finite family of sets and {Au}oeA any nonempty 
family of sets. Then 

(i i i )  X - uy=,A, = X - A, - A, -. . . - A,, , it being understood that 

x - A, - , . . - Ak+/ I ( x  - A, -. . . - Ak)- 4+/ (definition by 
induction !) 

(vi) x - ( A  , - A  (X - A  I ) -  A 2 ,  

X - ( A  , - A  * ) #  (X - A  l ) - A 2 ,  generally. (Contrast this with (iii). 
Sometimes, parentheses do make a difference!) 

0.14 Inverse Functions 

Given a function .f: X + Y , we define a function f-' : p ( Y  ) + p(X  ) by 

foreach BcY.Notethat i f  B c Y  and B n ( f ( x ) l x E  X}=0,then f - ' ( B ) = 0 .  
Also note that f -' 1 { { y }  : y E Y} can be thought of as a function from Y to X if and 

only if f is bijective (in this case, we define f - I  : Y + X by letting 
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for each y E Y ; of course, we should use another symbol for the new function 

f -' : Y 3 X , but that would not make things any clearer). 

0.15 More Important Formulas 

For any function f : X + Y , the following are valid: 

(i) fs-' ( B )  c B ,  for each B c Y (we should write f(f-'(B)) instead of 

fl-' ( B )  , but we tend to get confused with too many parentheses while 
others get upset by too few; these and other discordances certainly give life 
to the politics of mathematics), 

(ii) If f is onto then fl-'(B) = B , for each B C Y , 

( 5 )  A c f - ' f ( A ) ,  for each A c X , 

(iv) For any family {B, }aEh of subsets of Y , 

(v) f - ' ( Y - B ) =  x - f - ' ( B ) ,  

f - ' ( B )  = X - f - ' ( Y  - B) , for each B c Y , 
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0.16 Partitions 

Elementary Topology and Applications 

A partition of a set X is a collection P of subsets of X such that u p  = X and 

P is pairwise disjoint (i.e., for each A,  B E P , with A # B,  A n  B = 0). If A c X , 

it is convenient to denote the partition ( A )  u { { x ) I X E  X-A ) of X by x /A . 
Whenever convenient, we make no distinction between the singleton { x }  and the 

element x E X . For example, we let 

0.17 Equivalence Relations, Partitions and Functions 

These concepts are, undoubtedly, the essence of Mathematics. It is therefore crucial 

that the reader have no second thoughts about the following (except for the bad English): 

“Equivalence Relations” generate “Partitions” generate “Functions” generate 

“Equivalence Relations.” 
Here is how it happens: 

(i) Let R be an equivalence relation on X . For each x E X , let 

[ x ]  = {y E X IyRx}. ([XI is called the R-equivalence class of x .) Then, 

{ [ x ]  1 E X }  is a partition of X . For convenience, let XIR={ [x] : xE X }. 

( i i )  Let P be a partition of X . Define a relation f from X to p by 

xfs i f f x E s .  

Then f is a function (i.e., f : x + P and f ( x ) =  the P E p 
which contains x ) .  

(iii) Let f : X + Y be a function. Define a relation R on X by 

xI Rx2 if and only if f ( x I )  = f ( x , )  . 

Then R is an equivalence relation on X , such that [ x ]  = f - ’ f (x) ,  for 

each x E X . 
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0.18 General Cartesian Products 

Let a = {&}aEA be a family of sets. The cartesian product of the family {Aa},6n is 
the set 

G f . : A - f u a , , A a l f ( p ) ~  Apforeach P E A }  

and is denoted by n a s A A a  . (Note that, to be precise, we should emphasize that 

n , , , & c p ( A X U , , ~ ) . >  If a is f in i te ,  i t  is easy to  prove, from the 

aforementioned axioms of set theory, that n a e A A a  is nonempty. Ifit is notfinite, it has 
been proved that, from the aforementioned axioms of set theory, one can neither deduce 
that ll aE A A, is empty nor that it is nonempg. (We need more axioms!) 

Given the sets A, ,.. , , A,, , with n a positive integer, and letting S ={I, 2 ,..., n} ,  it 
is customary to let 

Also, extending the notion of an ordered pair to the notion of an “ordered n-tuple” 
(a,, . . . ,a, ,) ,  i n  some convenient way, it is customary to let 

l’-I~=, A,. = {(a, ,... ,a,,)I  a ,  E A, ,... ,a, ,  E A , }  

it being clearly understood that (a, ,. ..,a,, ) corresponds, in a one-to-one fashion, to the 

function f : S + u A,  such that f ( i ) = a j  E A i ,  for i = l ,  ..., n .  The reader is well- 

advised to think in terms of functions rather than n-tuples, since functions impose no 
limitations on the size of the index set A ; on the other hand, to think of tuples which 
have more elements than the integers may cause headaches. 

In some instances, it is very convenient to replace f : A+ UaEA 4 by its image 
f (A) and to give it a more familiar appearance; namely, we let 

n 

i=l  

f E f ( A ) z ( f ( a ) ) a  =(‘a>,? 

it being understood that (aa)a  represents the function f : A +u,,,& such that 
f(a) = a , ,  for each a E A , By no means, under any circumstances, try to attach 
some order to ( u ~ ) ~  since none is implied. Of course, in case A = w , we can experience 
the sensation of order, by letting 
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For each family { A a } ( x E A  of sets and p E A ,  we define the p -projection 

np : naE,,4 + AD by letting np(f) = f(p) E A p ,  foreach f E llaE,,&. (Clearly, 

each np is a function (!).) 

0.19 The Sixth Axiom 

Here is that fascinating axiom you've waited for so patiently. 

VI. (Axiom of Choice). Let be a non-empty family of non-empty sets. 
Then I IaE,,Aa is non-empty. (Essentially, this says that, given a non-empty collection 
of non-empty sets, one may form a new set by picking one element from each set.) 

It seems quite safe to say that this axiom has generated more research in the 
Foundations of Mathematics than any other axiom of any mathematical discipline. 
Roughly, it can be said that its significance was tested in three different ways. 

(i) Equivalent Axioms: Today there are various equivalent forms of the axiom of 
choice. Some of these are far from being obviously equivalent to the axiom of choice 
and some have attained great significance in mathematics - especially, the Well- 
Ordering Theorem and ZortzS Lemma (neither is a theorem, of course; further ahead, 
we will state these axioms without proving their equivalence to the Axiom of Choice). 

( i i )  Consistency. It is relatively easy to prove that, from the first five axioms of set 
theory one cannot obtain a contradiction or a false statement by logical reasoning. In 
the late I93Os, Godel proved that from the six axioms of set theory one cannot obtain a 
contradiction or a false statement by logical reasoning (i.e.,  the Godel-Bernays axiom 
system is consistent). 

( i i i )  Independence. Answering the question of consistency led to another question: 
Is the axiom of choice a consequence of the other five axioms of Godel-Bernays by 
logical reasoning? (i.e., is the axiom of choice a theorem?) Recently - 1964 - P. J. 
Cohen proved that the answer is no. Essentially, he did this by constructing a collection 
K of sets which satisfies the first five axioms of Godel-Bernays and also the negation 
of the axiom of choice (i .e. ,  these statements are true in K). K is called a model for 
these axioms. 

The reader should not overlook the obvious: While the independence results of 
Cohen are, by any means, tremendously impressive, they do not constitute the last 
word on these matters; after all, is the model acceptable as the best and only description 
ofthe world around us? (Is it even a good imitation of it? - Playing with models does 
pose some challenges!) 
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0.20 Well-Orders and Zorn 

We will now present two axioms which are equivalent to the Axiom of Choice. 
Traditionally, the first is known as the Well-Ordering Theorem and the second is known 
as Zorn’s Lemma. Clearly, neither is a theorem -this only indicates the confusion that 
has surrounded these matters. 

Before stating these axioms we need a few preliminaries: A total order 5 on a set 
E is said to be a well-order on E provided that, for each A c E , there exists m E A 
such that m I b , for each b E A . The element m js said to be a minimal element of A 
(on E with respect to I ). 

For every set b( and any order I on b(( 5 can be total or not) we say that 

(i) Jv E K is a I -nest if 5 1 fl x fl is a total order i n 8  (i.e., for every 

x, ,x2 E 8, either xI I x, or x2 I x I  ), 

(ii) q E K is said to be a I -maximal element of K if 

{ XE KI q # x , q l x } = 0  (Lea, there exists no x E K - ( q }  such that 

q I x ). Analogously, we define I -minimal elements. 

(iii) Given S c K , we say that 4 E K is a I -upper bound of S provided 
that s I 4 ,  for each s E S . Analogously, we define I -lower bound. 

Well-Odering Axiom. Given any set A, there exists a well-order in A. 

Zorn’s (Lemma) Axiom. If I is an order (total or not) on a set A such that every 
5 -nest in  A has an I -upper bound in A, then A has at least one I -maximal element. 

Please pay attention to what the Well-Ordering Axiom really says: Undoubtedly, it 
does not say that any order on a set A is a well-ordex It simply says that there exists a 
well-order on any given set; it does not even say if there exists only one or if we can 
construct one. For example, note that, if A = {- n 1 n E N } with the usual order (i.e., 
-m 5 -n if and only if n I m ), then I is not a well-order on the set A, even though the 
usual order on  w is a well-order. Finally, even though the Well-Ordering Axiom 
guarantees the existence of a Well-Order on the set p(w ) , no one has ever constructed 
one on p @ ) ,  and no one ever will with these axioms. 
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0.21 Yet More Important Formulas 

0.22 Cardinality 

The axiom of infinity poses some interesting questions: Given two infinite sets A 
and B, can we compare their sizes? Does A have mure elements than B? Anyway, what 
does one mean by the size of an infinite set? This brings us back to finite sets and a 
careful analysis of what we really mean by counting the elements ofafinite set- 
unquestionably, what we do when we count the apples in a basket-full of apples is to 
establish a one-to-one correspondence between the apples and other objects (generally, 
the natural numbers starting with I ) .  It is thus clear that the concept of one-to-one 
correspondence is really the key to success, when it  comes to sizes of sets: 

Cardinals. Given two sets A and B. we let 

denote that there exists an injective function from A to B. We also let 

A + B = A 5  B,butnot B + A .  ~ 

Two sets A and B are said to be equipollent provided that there exists a one-to-one 
correspondence between A and B.  (It is commonly said that A and B have the same 
cardinal number; we avoid this language because we do not really have enough 
ammunition to convince the reader that it makes sense to talk about the “same” cardinal 
number-this certainly presupposes that one already knows what a “cardinal number” 
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is, and an honest treatment of this concept would lead us too far astray.) For convenience, 
we let 

A is equipollent with B EZ A = B ,  

It is obvious that 

I .  ForanysetA, A = = A ,  

2. If A-B,then B = A ,  

3. A = B, B = C implies that A = C (the composition of two bijections is a 
bijection!). 

Therefore, = is an equivalence relation on any given family of sets. Therefore, if we 
could really talk about the “collection U of all sets” one could then define the cardinal 
number of any set A as the family of all sets which are equipollent with A ( i e . ,  the 
equivalence class of A in U ). How appealing! And how deceiving! 

3. Proposition. 
is no universe). 

There is no set U such that any set is an element of U (i.e., there 

Proof. Suppose there exists a set El of all sets. Then, by the Axiom of Extension, 
U is unique. Either U E U or U 6~ U . The assertion that U E U leads to an immedi- 
ate contradiction. Therefore, we must have that U E U . Now, let B = {xlx E U, x E x }  
and note that B f 0 .  since U 6~ U . We have two cases to consider. 

Case 1. B = U : Then the set 0 g  u ,  since 0 E 0 . 

Case 2. B # U :  Let A = U - B .  Then A is a nonempty set and 

A={xl XE U , x E x }  = { X I  x e x } .  But we already know, from Section 3, that the 

assumption that {x I xe x} is a set leads to a contradiction. This completes the proof. 

The following result states the obvious. The proof we give here, which is neither 
ours nor the original proof of Schroder or Bernstein, is remarkably simple. 

Schriider-Bernstein Theorem. X 3 Y ,  Y 1: X + X L- Y 

Proof. Let f : X -+ Y and g : Y -+ X be injections. Observe that we could 
immediately finish the proof if we knew that there exists some A c X such that 

B=f(A), g(Y - B)= X - A ,  
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for then we would simply define h : X + Y by 

it being obvious that h is a bijection from X to Y.  

such that 
Therefore, to complete the proof, we will show that actually there exists A c X 

B = f ( A ) ,  g ( Y  - B ) =  X - A .  

First, let M = X - g(Y- f ( X ) )  and let us show that f ( Y  - f ( M ) )  2 X - M : Simply 

note that, becausefand g are 1-1, 

Now, let a = {S c X i g ( Y  - f(S)) 3 X - S }  and note that a # 8 , since M G a .  So, 

let A = U a  and B = f ( A )  . It remains for us to show that g(Y - B )  = X - A .  This 

will be done in two parts. 

g ( Y -  B )  3 X - A : Note that g(Y - E )  =I g(Y - , f (S) )  3 X - S  for each S E a .  

Therefore, g (Y - R) 3 u { X  - SIS E a}= X - n a  = X - A . 

g(Y - B )  c X - A : Suppose not. Then there exists z E g(Y - B )  such that z e X - A .  

Letting A, = A - { z } ,  we get that 

(i) A ,  c A  and A, # A ,  since z E A ,  
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Since (i) and (ii) contradict the definition of A, our supposition is false. Hence 
g(Y - B) c X - A ,  which completes the proof. 

The next result is a masterpiece and a shocker. 

Cantor’s Theorem. If X is a non-empty set then X 4 p (X). 

Proof. Clearly f : X + {{x}I X E  X }, defined by f ( x )  = { x }  for every x E X , is 
a bijective function between X and a subset of p( X )  . 

Suppose there exists a bijective map h : X + p (X ). Let 
A = { x  E X ( x  z h(x)). Since A E p ( X )  and h is onto, there exists U E  X such that 
h(a) = A . Either a E A or a e A . But n E A implies that a G h (u ) = A , a contradiction. 
And a e A implies that a E h(a)= A ,  another contradiction. So, our assumption that 
there exists a bijective map h : X + p (X ) has led us to an impossibility; therefore, 
x 4 Ax). 

Let us say that a set S is countable provided that S is equipollent to some subset of 
w (possibly w itself). A set Tis said to be uncountable provided that Tis not countable. 
(By Cantor’s Theorem, there exist uncountable sets.) Naturally, we say that a set F is 
finite provided that F is equipollent with some natural number n. A set K is infinite 
provided that K is not finite. 

The following elementary, but quite useful, results are stated without proof. 

(i) If the natural numbers m and n are equipollent then m = n. 

(Note that it suffices to show that K ={nl n is not equipollent to any 

m E n )  is inductive.) 

( i i )  If T c w is infinite then T = 0 

(iii) If A c B then either A 4 B or A = B 

(iv) There exists a surjective function f : Co ++ X iff X is nonempty 
and countable. 

(The “if” part is really obvious. For the “only if’ part, simply pick a function 
g E n,,,f-’ ( x ) ,  by the Axiom of Choice. It follows that g is an injection from X to 
w ,  which implies that X is countable. We could disguise our use of the Axiom of 
Choice by simply defining a function g: X + w , with g ( x )  = some n E f-’(x), for 
each - note that f - ’  ( x ) #  0 ,  becausefis onto - but this is really just a disguise.) 
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4. Proposition. There exists a sequence {A,,}  of infinite subsets of w such that 

(a) A,, n A,,, = 0 whenever rn + n , 

Proof. 
result. The one we use here fits the preceding development.) 
Let 

(First of all, let us emphasize that there are many ways of proving this 

A(,= {O)U{2j+I~j=O,I ,... }, 

and 
A,, =[2"(2j+1)1 j = O , l  ,... },for n = l , 2  ,.... 

It is easy to see that o = UK,, A, (clearly we only need to show that each even number 

is in some A,, ; but i t  is easy to show that each even number k has the form k = 2Jrn 

with m odd; since, for mE A,) -{O}, 2 ' m ~  A j ,  this does the trick). 

To show that A, n A,,, = 0 whenever n # m ,  note that, assuming m < n , 

2"(2j+ I )  = 2'"(2k + I )  implies 2"+'j  + 2" = 2'"+'k + 2'" 

implies 2,1+'(2n-mj - k) = 2"-m - 1 

implies 2(2fl-m j - k) = 2"-m - 1 , 

which implies that an even number equals an odd number, a contradiction. Therefore, 

2"(2 j  + I )  = 2'"(2k + 1) implies m = n , which implies that 

A,, n A,, = 0 whenever n f m . 

This result immediately gives us an extremely useful result, which we will call the 
"Cbl-Cbl Theorem", "Cbl" standing for "Countable". 

CBL-CBL Theorem. 
countable. 

The union of a countable collection of countable sets is 

Proof. Let C be a countable collection of countable sets. Using 22(iv), let 
1 : W 3 8 be a surjection. Say t(n)= C,,, foreach n~ w . Making use of the sets 
A,, of Proposition 4, the hypothesis that each C E C is countable and of 22(ii), let 
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be a surjection. Finally, define f : u) + u 8, by letting 

f ( i )  = y,,(i) for each n E w 

It follows that f is surjective and, therefore, that u 8 is countable. 

5. Proposition. For any finite family A,, . . ., An of countable sets, llY=,Ai is 
countable. 

Proof. 
A x B is countable: Simply observe that 

Because of induction, it suffices to prove that, if A and B are countable then 

A X  B = u, , (Ax{~} ) .  

and therefore that A X B is a countable union of countable sets. 

The Cbl-Cbl Theorem and Proposition 4 strongly support the conjecture that any 
Cartesian product of countably many countable sets is countable. After all, from the 
viewpoint of equipollence, what difference can there be between countable products 
and countable unions? Surprise! Surprise! 

6. Theorem. For any sequence {An};=, of infinite sets, I IE ,Ai  is uncountable. 

Proof. 
Theorem, we already know that p ( w )  is uncountable, it suffices to show that there 
exists an onto function f : IIL,U + ~ ( 0 ) .  (Simply let 
f ( ( x , ,  x 2 ,  ...))= v ( x i ) l  i = I ,  2, ...I, for each ( x , , x 2 , .  . .)E n;,o, and use Axiom of 
Choice to show thatfis onto.) 

Without loss of generality, we assume that each Ai = w . Since, by Cantor’s 





Chapter 1 

Metric and Topological Spaces 

The definition of continuity of a real-valued function of a real variable is certainly well 
known to the reader, and yet there are subtleties about it that may have passed your 
scrutiny. 

Let us therefore look at its many equivalent forms as a prelude for the reasons 
behind the definitions of metric and topological spaces. 

So, let E' be the real line and f : E' + E' be a function. By definition, f is 

continuous at p provided that 

for each E > O  there exists 6 > 0 such that 

I x -  p (<S implies I f ( x ) - f ( p )  ( < E  , 

equivalently, 

for each E > O  there exists 6 > O  such that 

equivalently, 

for each E > O  there exists 6 > O  such that 

equivalently, 

for each E > O  there exists S > O  such that 

equivalently, 

29 
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for each ] a ,  fi  [ containinsf@) there exists 

] y , o  containingpsuch that J ’ ( ] r ,o  [ ) c Ia ,p [ .  

No doubt, only the last equivalence may require some thought. However, the 
observations that 

for each ] a,P [ conta in ingfb)  there exists 

E > O  suchthat ] f ’ ( p ) - ~ , f ( p ) + ~ [ ~ ] a , f i [  

and 

foreach ]y ,o  [ containingp thereexists S > O  such that ]p-6,p+6 [ c ] y , o  [ 

should make it all clear. 
We have therefore gone from the definition of continuity which requires the notion 

of absolute value to an equivalent definition which requires that the image underfof 
“small” sets containing p be “small” sets containingf( p). 

The reader must also be aware that in the proofs of the key theorems on continuous 
real-valued functions (namely, if f’ : El + El and g : E ’  + El are functions which 

f are continuous at p,  then .f’ + g ,  f’ 0 g and -(assuming g ( p )  # 0 )  are continuous at 
p )  the only properties of the absolute value which were used were the ones which we 
now summarize (we use the traditional, even though imprecise, notation). 

The absolute value in E‘  is a function, whose domain is E’ x E‘ and whose range 
is contained in  El , which satisfies the following: 

g 

(iii) I x -  y1  =I  y - x i ,  

The reader can also easily check that the proofs of these same theorems, in terms 
of the last equivalent forms of the definition of continuity of the functions 6 g at p ,  
require only the following fact about open intervals of the real line: 
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Given any point q E  E' and any two open intervals N , ,  N ,  , with q E  N ,  r) N, , 
there exists some open interval N, such that 

It is now clear that there is too much about the real line that has nothing to do with 
the continuity of functions. Therefore, the need to eliminate all that superfluous structure 
from the context of continuity is clear. 

1.1 Metrics and Topologies 

1. Deflnition. 
p : M x M  -+ E' such that for all x, y ,  z E M, 

A metric space (M , p )  is a set M together with a function 

(iv) p ( X , Z ) S  p (x ,  y )+  p ( y ~ )  (triangle inequality). 

2. Definition. 
(called, a topology) of subsets of X such that 

A topological space ( X  ,z) is a set X together with a family 2 

(i) a c z implies U ~ E  z , 

(ii) 3 c z and 3 is finite implies n 3 E  z , 

(iii) 0~ z and X E z ,  

The reader should immediately observe that a topology z is closed with respect to 
unions (Le., a union of elements of z is an element of z ) and also closed with respect 
tofinite intersections. The apparent absurdity of requiring that z be closed with respect 
to unions but only with respect to finite intersections can easily be explained by the 
observation that infinite intersections of open intervals may not be open intervals (for 
example, nT=, ] - _1 1 [ = (0) ) and by the observation that to allow degenerate intervals 
[p -0, p +O] = { p }  in the definition of continuity of a function f : El + E' would 
yield that all functions h : El + El are continuous, thus rendering the all-too-important 
concept of continuity of real-valued functions completely useless. 

n ' n  
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From Definition 2 (i)  it follows immediately that the collection of open intervals 
of El is not a topology for El (cf. ] 0, I [ U ] 3, 4 [ is not an open interval). But the 
collection 

(ix., the collection of unions of open intervals; note that 0~ p , because 0 c H and 
U 0 = 0 ) is indeed a topology (!) for El . Henceforth, we will call the topology p the 
Euclidean topology. This technique of producing the topology ,u from the much simpler 
subfamily 8 (note that kf c j i  ) is far too important to be dismissed. 

3. Definition. Let ( X , z )  be a topological space. A subfamily W of z is called a 
base for (the topology) z iff each UE 7 is a union of elements of H ( i e . ,  U =UU, 
for some U c l? ). 

4. Theorem. 
iff for each pair N ,  , N ,  of elements of 8 , and for each p E  N ,  fI N ,  , there exists 
some N, E W such that p E N ,  c N ,  n N ,  ; furthermore, z = {U U I U c 8 ) .  

A collection l? of sets is a base for some topology 2 on x = U f l  

Proof. 
0, X E z , and W c z ( B E  8 implies { B }  c H , and therefore that B = u { B } E  z ). 
Therefore, we only need to show that z is closed with respect to finite intersections, 
for which it clearly suffices to show that if u a,, u U2 E 7 then 
( U U ,  ) n ( U a, ) E z . Without loss of generality, since 0 E z , we assume that 

( U a,) ( U a,) + 0 .  Then, for each x E (ua,)n( Ua,) there exist A ,  E U I C B 
and A ,  E a, c 8 such that XE A ,  n A ,  ; therefore, there exists A, E 8 such that 
x ~ A , c A , n A , c ( U a , > n ( u U , > ; t h i s s h o w s t h a t  ( U U , ) n < u U 2 >  isaunion 
of elements of W (the A, 's) and therefore ( U a, )  n ( U a,) E z . 

The only if part: Suppose 8 c z is a base for the topology z . Clearly 
z = { U U I a c # } .  Furthermore, i f  P E N ,  n N ,  with  N , , N , ~ z c z ,  then 
PE N ,  N ,  E z ; consequently, since N ,  fl N ,  E z is a union of elements of 8, there 
exists N ,  E W such that p E  N ,  c N ,  n N ,  . 

The ifpart: Clearly z = { U U I U c 8} is closed with respect to unions; 

5. Corollary. 
intersections of elements of S is a base for a topology z on U S  ; furthermore, 

If S is an arbitrary family of sets, then the family 8 of all finite 

z ={Ua la c 8) 3 83 s * 
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Proof. 
B, E lf such that ZE B, c B, n B, : Say ZE n? ,nn& with q,& being finite 
subcollections of S . Then 4 = 3 U & is a finite subcollections of S such that 

We only need to show that if z E B, n B, with B,, B, E l? , then there exists 

ZE nscc nz) nc ng). 
Corollary 5 provides a very simple way of manufacturing a topology for the union 

of any collection S of sets. This technique is underlined by the following definition. 

6. Definition. Let (X ,Z)  be a topological space. A subfamily S of z is a 
subbase for (the topology) z iff the family H = { n 7 I 7 c S and 3 is finite} is a base 
for z . The topology 7 is said to be generated by S . 

The reader should check that 

is a subbase for the Euclidean topology of E l .  

1.2 Time out for Notation 

To facilitate the shop-talk concerning the study of metric and topological spaces we 
need a shorthand language. So, here it is. 

A. Let (M, d ) be a metric space. 

(i) For each X E  M and E > O ,  B ( x , ~ )  = {YE M I d  ( x , y )  <&) 

( S ( x , ~ )  = { y E M I d ( x ,  y )  = E )  ) is called an ( x , ~ )  -ball 
(an ( X , E  )-sphere) . 

(ii) The metric d o n  M is called bounded if there exists s > O  such 
that d ( x ,  y) I s for all x ,  Y E  M . 

(iii) The set A c M is said to be bounded with respect to d if there 
exists s> 0 such that d ( x ,  y) I s for all x ,  Y E  A , 

(iv) Foreach A c  M and B c M  , 

p ( A , E ) = i ~ f { d ( a , b ) ( a ~ A , b ~  B }  

is called the distance between A and B. For p E M , we let 
P (1 P } , A )  = p ( P , A ) .  

(v) For each A c M , sup { d ( x ,  y )  I x ,  y E A }  is called the diameter of 
A and is denoted by diam A. 
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B. Let ( X , z )  be a topological space. 

(i) The elements of z are called z -open sets or just open sets, 
when no confusion is possible. 

(ii) A set N c X is a z -neighborhood, or just neighborhood, of 
P E  X(or P c X )  provided that there exists U E z such that 
p~ U c N(or P c U  c N ) .  

(i i i)  The complement of an open set is called a closed set (A closed 
iff (X - A)E z ). 

(iv) For every A c X , the set A- = n { B  c X I A c B and B is closed) is 

called the closure of A.  (Whenever convenient, A- = .) 

(v) Forevery A c X ,the set A' =U{ U c A ( U E T }  iscalledthe 
interior of A.  

(vi) For every A c X , the set aA = A- - A' is called the boundary 
of A.  

C. Euclidean Spaces: For each nE N , we let E" denote n-Euclidean space 
( i , e . ,  E' is the space of real numbers and, for n 2 2 ,  
E" = { ( x ,  ,..., x , ~ )  I x ,,..., x,, E E ' }  1. We also let 

and 

B" is called the (Euclidean) n-ball and S" is called the (Euclidean) n- 
sphere. Clearly, sn = , It is customary to let 1 = ( x e  E' I o s x~ 1 1 .  
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For convenience, we let X = ( x ,  , . . . , x, ) and I X I = ,/= , whenever the 
number of coordinates is clear from the context. 

The following very elementary facts are given without proof. 

7. Proposition. Let (X  ,z) be a topological space. Then 

(i) Finite unions and arbitrary intersections of families of closed 
subsets of X are again'closed subsets of X. 

(ii) For each A c x ,A-  is closed, A- I> A and (A:) -= A- . If A 
is closed then A- = A .  

(iii) For each A c X,A" is open (Ao E z) ,A0 c A and 
(Ao) O= A O .  If A is open then A' = A . 

(iv) A c B implies A- c B-  and A' c Bo 

(v) For each A c X ,  dA is closed, 
dA = A- n (X -A) - =d(X -A) and A- = A" U dA.  

(vi) Foreach A C X , A ' = X - ( X - A ) -  and 
A - = X - ( X - A ) o .  

(vii) The set A c X is closed iff A 3 dA ; A is open iff 
A n d A = 0 .  

(viii) For each A c X,  a( dA) = dA . 

(ix) For each A, B c X, ( A  u B )  -= A- U B- (see ex. 21). 

1.3 Metrics Generate Topologies 

Below, we demonstrate that each metric space (M, d ) generates a topological space 
(M,z,) in a very precise manner. The converse (given a topological space ( X , z )  , is 
there a metric d on X such that Zd = Z ?) appears to be a never-ending problem, even 
though many outstanding results are known. 

8. Definition. For every metric space (M, d ), let 2, be the topology generated by 
the collection S of all (x,E)-balls B(x,E)  , with X E  M and & > 0 .  The topology 
Z, is called the topology generated by (the metric) d. 

9. Lemma. Let (M, d ) be any metric space. The family 
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s = ( B (x, E )  I x E M, & > 0) 

is actually a base for the topology z , ~  

Proof. 
then there exists B ( z , E ~ )  such that PE B ( z , E ~ )  c B ( x , q )  n B ( y , ~ , )  : Since 

d ( x ,  p )  < 
6, > 0 and 6, > 0 ,  Let 6 = min (S,, 6,). By the triangle inequality, we get that 

Because of Theorem 4, we only need to show that if P E  B ( & E l )  n B (YlE2> 

and d ( y ,  p )  < E ,  , then d ( x ,  p )  = -6, and d ( y ,  p )  = zz2 - 6, with 

The fact that each metric space generates a unique (!) topological space is the main 
reason why the study of topological spaces is far more intensive than the study of 
metric spaces. After all, whatever is valid for topological spaces must be valid for the 
topological spaces generated by metric spaces. 

10. Definition. 
a metric d on X such that z = zd . 

A topological space ( X , z )  is metrizable provided that there exists 

In general, topological spaces are not metrizable, even when these appear to be 
very simple (see ex:27). 

11. Proposition. Let ( M ,  d ) be a metric space. Then 

(i)  ( B ( x , E ) )  - c { Y E  M I d ( x ,  y )  I E }  . (Equality may not hold.) 

( i i )  U { B  ( y , 6 )  I Y E  B ( x , E ) )  c B ( X , E  +a) .  (Equality may not 
hold.) 

(iii) a [ B(x,&)  ] c S ( x , ~ ) .  (Equality may not hold.) 

(iv) A c M is closed iff d ( p , A )  = 0 implies that p~ A .  

(vi) A c M is bounded iff there exists s > 0 such that A c B ( a ,  s), 
for each U E  A . 

1.4 Continuous Functions 

Since all this is the result of our preoccupation with continuous real-valued functions, 
it is about time to see how far we have come. 
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12. Definition. Let (X , r )  and (Y ,a) be topological spaces and 
f : X +Y (orf : (X ,z )  + ( Y , o ) )  be a function. The functionfis said to be continu- 
ous at PE X (with respect to z and a , of course) provided that for each 
o -neighborhood V off@) there exists a z -neighborhood U of p such that 
f ( U )  c V . The functionfis said to be continuous on X provided that it is continu- 
ous at each point of X. 

The following result should convince and assure the reader that we have not 
modified the “usual” concept of continuity of a real-valued function in the minutest 
detail. 

13. Lemma. Let ( X , d )  and ( Y , p )  be metric spaces. A function 
f : ( X , Z d )  + (Y,z,,) is continuous at PE X if and only if 

(a) For each E > 0 there exists 6 > 0 such that d ( x ,  p)< 6 implies 

P ( f ( x ) * f ( P N  

Proof. This follows immediately from the definition of the subbase for a topology 
generated by a metric and from Lemma 9. 

14. Continuity Theorem. Let ( X , z )  and (Y,a) be topological spaces and 
f : X + Y be a function. Then the following statements are equivalent (see ex. 13): 

(i) f is continuous, 

(ii) ~ - ’ ( U ) E  z for each U E a ,  

(iii) f - ’ ( B )  is z -closed for each o -closed set B, 

(iv) f(A-) c f(A)- for each A c X , 

(v) f - ’ ( B ) -  c f - ’ ( B - )  for each B c Y . 

(vi) If S is a subbase for a ,  then ~ - ‘ ( S ) E  r for each S E S . 

Proof. 
implies (v) implies (i) and (ii) iff (vi). 

The scheme of the proof will be (i) implies (ii) implies (iii) implies (iv) 

(i) implies (ii): Let U E a .  Then, for each XE F - ’ ( U )  there exists some 
N, E z such that X E  N, and f ( N , )  c U , which implies that 
N, c f - ’ ( U )  , Therefore f - l  ( U )  =u { N, I XE f - ’ ( U ) ]  E z . (It is 
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important to note that f - ' ( U )  = f - ' ( U  n f ( X ) )  !). 

(ii) implies ( i i i ) :  Let B be cr -closed. Then X - f - l ( B )  = f - ' ( Y  - B )  . 
Since ( Y  - B ) E  CT we then get that f - ' ( B )  is z -closed. 

( i i i )  implies (iv): Let A c x . Then, by (iii), f - ' [ f ( A ) - 1  is z -closed and 
contains A.  Therefore A- c f-' [ f ( A ) - ]  which implies that 

f ( A - 1  c fs-' [f ( 4 - 1  c f (4- * 

(iv) implies (v): Let B c Y and let A = f - l ( B )  . Then, by (iv), 
f I f - ' ( B ) -  1 c [ f f - ' ( B )  1- C B- which implies that 
f-' ( B )  - c f-' (f [ f-' (B) -  I ) c f-' ( B - ) .  

(v) implies (i): Let /'E X and let f ( p ) ~  U E 0. Then, by (v), 
,f-' ( Y  -U)-  c f- '  ( Y - U )  which implies that 
f - '  (Y -U)- = f' (Y - U )  . Therefore, p E [ X - f - I  (Y  - U )  ] E z and 
f ( X  - f - '  ( Y  - U ) ) = U .  

(ii) implies (vi): Obvious. 
(vi) implies (ii): Straightforward, since the topology CT consists of unions of 
finite intersections of elements of z and f -' commutes with unions and 
intersections. 

IS. Corollary. ~f x ' : Y > Z and f and g are continuous, then g o f is 
continuous. 

Proof. Immediate from Theorem 14 (ii),  because 

16. Corollary. 
continuous then z = { f - '  ( V )  I V E p }  and p = { f ( U )  I U E z} . 

Let f ( X , z )  + (Y ,p )  be one-to-one and onto. Iffand f - I  are 

Proof. Note thatfcontinuous implies z =I { f - '  ( V )  I V E p }  , and f - '  continuous 
implies p =I { , f ( U )  1 U E z) . But p I> { f ( U )  I U E z) implies z c { f - l ( V )  I V E  p }  , 
and z 2 { f - '  ( V )  1 V E p} implies ,U c { f ( U )  I U E z} . 

What Corollary 16 really says, is that, given its hypothesis, the only difference 
between ( X , z )  and (Y ,p )  is one of color-each X E  X is coloredf(x) and put into Y 
and each y e  Y is colored f - l ( y )  and put into X .  

17. Definition. Two spaces ( X  , z) and ( Y ,  p )  are said to be homeomorphic 
(symbolically, X Y ) if there exists a one-to-one and onto function f : X + Y 
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which is bicontinuous (i.e.,fand f -' are continuous). The functionfis called a 
homeomorphism. 

From the proof of Corollary 16, the reader can easily conclude that homeomorphisms 
have the properties of sending open sets to open sets and closed sets to closed sets. 
Functions with these properties play an important role in various topological 
constructions. 

18. Definition. An onto function f : (X  ,z) + (Y, p) is 

(a) open iff f ( U ) e  p , for each U E z 

(b) closed i f f  f ( A )  is closed for each closed A c X . 

1.5 Subspaces 

The proof that (i) implies (ii) in Theorem 14 shows that, in discussing the continuity of 
a function f : ( X , z )  +(Y,a), one only cares about the image f(X) of X 
(Y  - f ( X )  = 0 iff f is onto) and the collection 

which is easily seen to be a topology (!) on f ( X )  . Indeed, it is always the case that, for 
any topological space ( X , z )  and subset A of X, 

is a topology for A (obvious!). This leads to the following definition. 

19. Definition. 
topology (13 A I U E z} is denoted by z I A and is called the relative topology on A. 
The space (A,z l  A)  is called a (topological) subspace of the space ( X , z )  . 

Of course, metric spaces also have (metric) subspaces, in an obvious fashion: For 
any metric space ( X ,  d )  and A c X we assign to A the metric d ,  = d I A x  A (remember 
d is a function!). Then (A ,d , )  is called a metric subspace of ( X ,  d ). 

Let ( X , z )  be any topological space and A c X . Then the 

1.6 Comparable Topologies 

Any set X with more than one element has at least two distinct topologies: The indiscrete 
topology f: = (0, X} and the discrete topology 2, = { A  I A c X} . Corollary 5 implies 
that X has many other topologies. 
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Given two topologies Z,(T on a set X ,  P is said to befiner than 0 (and d is said 
to be coarser than P ) whenever (T c Z . It follows that 2, is the finest topology for X 
and i7 is the coarsest topology for X .  

The following result, even though trivial, is extremely useful. 

20. Lemma. 
of zI ,z2,  respectively, such that 

Two topologies zI ,z2 on a set X are equal iff there exist bases 4, B2 

(a) each element of P, is a union of elements of &’* (this shows that 
z, c z, ), and 

(b) each element of z2 is a union of elements of 6 (this shows that 

z2 C P ,  ). 

Chapter 1. Exercises. 

1. Let 8 be a collection of sets. Show that, for each family {Ha he,, of subcollections 
of B ,  

2. Let $={La, +..[I U E  E l )  U { ] - ~ ,  b 11 b~ 15’). Then S is a subbase for the so- 
called discrete topology z ( D )  on E’  . Describe a base for z ( D ) .  

3. Let S = { [ a ,  + 00 [ I L I E  E l }  U (1 - m, b [ I b~ E l }  . Then the collection S is a 
subbase for the so-called “half-open interval topology” Ph on E L .  Show that 
d = { [a, b [ I a, be  E’ and a < b} is a base for z h .  ( ( E 1 , z h )  is called the Sorgenfrey 
line.) 

4. Let f : E’ -+ E’ be a function and p a point of E’ , Prove that the following 
statements are equivalent: 

(a) For every E > 0 there exists S > 0 such that I x - p 1 < S implies 
I f(.x) - f(p) < E I. 
(b) For every ]a, 8 [ containing f ( p )  there exists I p, y E containing p 
such that .f ( ] p, y [ ) c ] a ,  W [  . 

5.  Let A and B be subspaces of ( X  ,z) with A c B . Then A is a subspace of B. 
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6. Show that the intersection of any collection of topologies for a set X is a topology 
for X. Is the union of two topologies for X a topology for X? (see ex. 8). 

7. Show that 

(a) l? = { [a,b[ x [ c , d [  I a , b , c , d ~  E l }  is a base for a topology y on E2, 
which is different from the Euclidean topology for E 2 .  (Note that 
[a,b [ x[c,d [ is a rectangle with the left and lower edges included, and the 
upper and right edges excluded.) 

(b) A = { ( x ,  Y ) E  E 2  I y = - x }  , with the topology y I A , is a discrete space. 
( ( E 2 , y )  is called the Sorgenfrey plane.) 

8. Let X be a partially ordered set. Let U , ( x )  = {y I y I x }  and U , ( x )  = { y  I x S y )  . 
Show that 

(a) {u, ( x )  I X E  X} and {u,.(x) I X E  X }  are bases for topologies Yt ,  Yr on 
X, respectively. 

(b) The discrete topology is the only topology on X larger than gp and g,. . 

9. Let G be a subset of a topological space ( X , z )  . Show that G E z iff 
G n A - c G n A ,  foreach A c X .  

10. For any linearly ordered set X, let z o ( X )  be the topology with subbasis consisting 
of all subsets of X of the form { x  I x > a }  or { x  I x < a } .  Show that 

(a) z o ( E ' )  is the Euclidean topology. 

(b) If A = { O } U ( x :  Ixl>l) , then zo(El)IA#zo(A).  
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11, Let X be the set of all (n x n) -matrices of real numbers. For each (ai i )€  X and 
E > 0 ,  let B ( (a,,), E )  = { (b , / )  E X I 1 u,/ - b,, I < E ,  for all i ,  j }  . Show that 

(a) l? = { B  ( (u,! ), E )  I (uV )E X ,  E > 0) is a base for a topology z on X. 

(b) ( X , z )  is homeomorphic to the Euclidean space Ef12 , 

12. A function f : ( X , z ) + +  (Y,a) is closed iff, for each B c  Y and open U 
containing f- '  ( B )  , there exists open V =I B such that f - I  ( V )  c U . 

13. Let f : ( X , z ) + ( Y , o )  be a continuous function and A c  X , Show that 
f I A : (A,z  I A )  + (Y,o) and f I A : ( A , z  I A )  + ( f ( A ) ,  (T I f ( A )  ) are continuous 
functions. 

14. Let (El ,z , , )  be the Sorgenfrey line (see ex. 3 )  and define 
f : ( E ' , r , , ) + ( E ' , z h )  byf(x)=-x. Is f continuous? 

15. Let f : E 2  + E 2  be the function defined by f ( x )  = x if I x I2 1 and f ( x )  = 0 if 
I X I  < 1 . Show thatfis a closed function which is not continuous. 

16. Suppose ( X , z )  is the union of two closed (open) subspaces A and B,  
f , : ( A , z I A ) + ( Y , o )  and f 2 : ( B , ~ l B ) - + ( Y , o )  arecontinuousand fl ( c ) = f 2  (c) 

for each C E  A n B .  Define f : ( X , z ) + ( Y , o )  by f ( x ) = f , ( x )  i f  X E  A and 
f ( x )  = f 2 ( x )  if X E  B .  Show thatfis continuous. 

17. Show that f : ( X , z )  + ( Y , o )  is open iff f - l ( a B )  c 3 f - l  ( B ) ,  for each B c Y . 

18. Let {A, I a E A} be any family of subsets of a space ( X , z )  . Show that, if u& is 
closed then u& = ( u%) - . a 

a a 

19. Let A be a subset of a space ( X , z )  . Show that dA = 0 iff A is an open and closed 
subset of X .  

20. Let ( M ,  p )  be a metric space, p ,  q E M and A c M . Show that 
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(c) Let h : M + E' be defined by h ( x )  = p ( x ,  A) . Show that h is 
continuous. (Note that, for every x ,  y E M and E > 0, p (x ,  y) c E implies 

that 1 p (x ,A) -  p ( Y , A ) I I  p ( x , Y ) < &  .) 

2 1. Let (X ,z) be a topological space and A, ,  . . . , A,, be subsets of X, and n a positive 
integer. Show that 

(a) A;Uj.-UA;=(A,U...UA,,)-.(Hint:StartwithtwosetsA andB(see 
Prop. 7 (ix)) and then use induction.) 

(b) A: n - n ~ , "  = ( A ,  n - . n ~ , ~ ) O .  (Hint: Fortwo sub sets^ and B O ~ X ,  
A' n Bo =, ( A  0 B)o ,  by Prop. 7(iv). Also, if XE A" fI B" then there exists 
an open neighborhood U of x such that U c A and U c B and thus 
ff c A n  B ; that is, XE A" n B" implies XE ( A n  B )  O. Now apply 
induction !) 

22. In ( E ' , p )  (k., the real line with the Euclidean topology), let A be the set of 
rational numbers in I and B be the set of irrational numbers in  I. Show that 

(b) ( A U B ) * = ] O , l [  and A O U B O = O .  

Let (X,Z) be a topological space. We say that 

(a) D c X is dense in X iff D- = X . 

(b) ( X , z )  is second countable iff there exists a countable base for f . 

(c) (X,z)  is separable iff there exists a countable subset D of X such that 
D is dense in X. 

(d) (X ,z) satisfies the countable chain condition (or has CCC) iff every 
pair-wise disjoint family U (Le., for every U , V  E U,U n V  = 0) of open 
subsets of X is countable. 

(e) ( X , z )  is Lindeliififf every open cover U of X (i.e., U c z and 
U U = X )  contains a countable subcover L? ( ie . ,  C c U, C is countable and 
uc=x) .  
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Two metrics p , d for a set X are said to be equivalent iff the topologies z,, =zd . 

23. Let X be any uncountable set and z = (0) U { U c X I X -U is countable). Show 
that 

(a) ( X , z )  is a topological space. 

(b) ( X , z )  hasCCC. 

(c) ( X , z )  is not separable. 

24. Let ( X ,  d ) be a metric space. Prove that 

(a) ( X , z ,  ) is a separable implies (X , r d )  is second countable. (Hint: Let 
D = (x, ,x2,. . .) such that D- = X . Showthat { B ( x j ,  -) I i, n = 1, 2,a.a) isabasefor 1 

n 
7d )- 

(b) ( X , z , )  is second countable implies that (X,Z,) is Lindelof. This is 
valid for any topological space! 

(c) ( X , z , )  is Lindelof implies ( X , z , )  is separable. (Hint: For each n, let 
D,, be the set of centers of countably many balls with radius I/n, which 
cover X .  Let D = U D,, and show D- = X .) 

(d) ( X , z , )  is separable implies (X ,z , )  has CCC. 

II 

(e) ( X , z , , )  has CCC implies ( X , z , )  is separable. (Hint: For each I Z E  N 
let D,, be the set of centers of a maximal pair-wise disjoint collection of 
balls with radius I/n. Let D = U Dn and show D = X .) 

25. IfA is a dense subset of ( X , z )  and U E z show that U c ( A n U ) - .  

n 

26. Show that any Euclidean space E ” ,  with the topology generated by 
{17y=l ] a i ,  bi [ I a i ,  bi E El ,  for i = 1,2,. , .,n} is separable. (Hint: Use induction in a 
rational manner. S is actually a base for this topology.) 

27. Let X be any uncountable set and choose a point p g  X . Let 
that 

= X u { p }  . Show 

(a) k? = { { x )  I X E  X )  U {i - F I F is finite) is a base for a topology z on 
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(b) ( i , ~ )  is not separable, 

(c) ( i , z )  is not second countable, 

(d) ( i , z )  does not have CCC, 

(e) ( 2 , ~ )  is Lindelof (therefore, not metrizable, by ex. 24). 

28. Let (E1 , z , )  be the Sorgenfrey line (see ex.3). Show that 

(a) ( E ' , T , ~ )  is separable (consider the set of rational numbers). 

(b) (E' ,T,)  is not second countable, (Any base for zh must contain some 
[ a, a + 6 [ , for each a~ El .) 

(c) (E ' , zh )  is not metrizable. 

I x - Y I  
I +  I x -  Y I 

29. (a) Define d : E' x E' 4 El by d ( x ,  y )  = 

Show that d is a metric. (Hint: The easiest way to show that d satisfies the triangle 
inequality is by writing down what is wanted and simplifying it-it becomes obvious.) 

(b) Let r : El x El + El be defined by r ( x ,  y) = 1 x - y I. Show that r is a 
metric which is equivalent to d. (Hint: Recall Lemma 16.) 

30. Show that, for metric spaces (X, d), (Y, p )  and function f : X + Y , the following 
are equivalent: 

(a) f i s  continuous at the point PE X , 

(b) For each sequence { x , )  in X, with lim d (x,,, p )  = 0 
n 





Chapter 2 

From Old to New Spaces 

The reader is already familiar with various techniques of obtaining new structures 
from old familiar ones: For example, the complex numbers are obtained by forming all 
pairs (a&) of real numbers, and even the addition and multiplication of complex numbers 
is based on the same operations for real numbers. Also, factor groups are obtained 
from two given groups G,H and a homomorphism h from G onto H (one then gets the 
factor group G/Kerh which is isomorphic to H). 

This snail’s approach to scientific discovery is timeiess and common to all research 
endeavors: Man, with his very limited widsom has managed only to move from one 
structure to another a bit more complicated. 

The reader should study what follows with this viewpoint in mind. 

2.1 Product Spaces 

Given a finite family ( X j , z i ) ,  i = I, 2, ..., n ,  of topological spaces, our starting 
preoccupation is to give the set 17y=I X i  a “nice” topology z with respect to which all 
projections (cf. 0.18) l7, ,. . , n,, are continuous. Certainly, if z is the discrete topology, 
then all projections are continuous, but this is a useless topology, since with respect to 

it all functions with domain n:=, X i  are continuous. Therefore, our real preoccupation 
must be tofind the coarsest topologyfor l7:=, Xi with respect to which all projections 
II, ,. , .,iI, are continuous. This topology certainly must contain the collection 

because of Theorem 1.14 (ii). 

47 
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A useful way of visualizing an element of l3S is to string a11 the spaces X i  
side-by-side 

and to observe that x,r ' (Uj)  consists of all functions in the product (tuples, if you 

wish) which assign to each k # i any point of X ,  but must assign a point of 

Ui to i. Then a basis element ?C,rl(UiI ) n * * *  n ?Ct?(uj ) 
I I  

consists of all functions (tuples, if you wish) which assign to k # i,, -.a, i,, any 

point of X , ,  but must assign a point of Ui 

1, * 

to i ,  , and a point of uj to 

1. Definition. Given the family ( X i ,  ri), i = 1,2,. . . , n ,  of topological spaces, the 
product topofogy, denoted by nx,, is the one which has FIS for a subbase. 
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The following is then obvious. 

49 

2. Lemma. The product topology nzi on ny=l X i  is the coarsest topology with 
respect to which all projections are continuous. 

3. Theorem. 
f : (X,z) + ( l l y = ,  X i ,  nzi) ) is continuous iff each n,i 0 f is continuous for 
j = l , 2  ,..., 1 2 .  

A function f : X -+ H;=, X i  (precisely, 

Proof. The “only if’ part is immediate from Corollary 1.15. 
The “if” part: Note that, for each uj E z, , 

f ’  n;’ (Ui)=(ni of)-’ ( U i ) E Z  

Since n S = {n;’ ( U , j )  I E z J ,  j = 1,2, .  . . ,n) is a subbase for Ilzi  , by Theorem 

The following two results, while trivial, seem to catch many by surprise. May 

1.14 (vi) we get thatf is continuous. 

they never surprise .the reader again! 

4. Lemma. For any spaces XI ,. . . , X, and bijection b : {I, 2,. , . ,n}+ {I, 2 , .  . . , n}, 

( i e . ,  the order of the factors X i  in a product space is immaterial). 

Proof. Simply define v/ : (n:,, X i )  + n:=, X , ( i ) ,  by letting 

y : (X, I . .  . , X,) = (X,(I), . . . *  X,,,)) 

for each (xI ,. . . , x , , )  E n:!, X, . Then observe that 

w cn;’ (U/))=n;;,) W h ( J  y-’ mi;/)  (uh(,)))=n;’ W,)? 

for subbase elements of n:=, X, and n:=lx,,(,, , respectively. Therefore V and V-’ 
are continuous, by Theorem 1.14 (vi), which completes the proof. 

5. Lemma. For any finite collection { X, hsF of spaces and partition 
P = (A,  I t €  A )  of E 
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' a r F  ' a  nreh (nasA,  ' a )  

( i , e , ,  introducing parenthesis at will i n  a product A, X A ,  x . . . X A , , ,  yields a 
homeomorphic product space). 

Proof. 
ample, 

Before proceeding with the proof, note that we are saying that, for ex- 

( X ,  x X , ) X  x, E X ,  x x ,  x x ,  = ( X I  x X , ) X  x , .  

for each a E F (this may look horrible, but all it says is that cpsends each tuple in 
naGF X a  to the tuple of tuples in naeA X ,  , t E A with the same elements). The 
remainder of the proof is essentially the same as the proof of Lemma 4. 

I 

An Application. 
f: E k  + Em as an m-tuple f = (f,,  ...,fm) of real-valued functions such that 

In Calculus, it is customary and convenient to think of a function 

for each i~ E k  . It is generally hinted that indeed the f ,  arefunctions and that indeed 
f is continuous iff each f, , i = 1,2,. . . , m , is continuous. The riddle can be easily 
solved: Given f : Ek +En' define f; : Ek + E' by f ,  = ni 0 f , with l l i  being the 
i f h  -projection map. Then, by Theorem 3, f is continuous iff each f i  = lli 0 f is 
continuous. 

The preceding application suggests the following constructions, which will find 
extensive use later on. 

6. Definition. 
spaces and functions f i  : X + y,, gi  : 6 4 Zi , i = 1 , .  . . , II , let the functions (!) 

Given a space X, finite families { q  I i = 1,. . . , n } ,  {Z i  I i = 1 ,... ,n }  of 



From Old to New Spaces 51 

Because of Theorem 3, the following result is immediate. 

At this stage, the reader may wonder: But it seems that the definition of the product 
topology could be applied to infinite products verbatim. Can it? Of course, it can! 
Furthermore, it is easy to see that all results of this section are valid for infinite products. 
Indeed, with the possible exception of Lemma 5 ,  the proofs of the other results apply to 
infinite products verbatim. We set off this fact by the following proposition. 

8. Proposition. 
spaces. 

Lemmas 2 , 4  and 7 and Theorem 3 remain valid for any product 

2.2 Product Metrics and Topologies 

Let ( X i ,  d i ) ,  i = I ,  2,  ..., n ,  be a finite family of metric spaces. By analogy with the 
standard definition of distance i n  the Cartesian plane ( i . e . ,  
d ( ( x , ,  xz), ( y , ,  y 2 ) ) =  J(x, - Y , ) ~  + ( x ,  - y2)2  ), we define a function 

d :  ( 1 7 ~ = , X i ) x ( 1 7 ~ = , X i )  + El by 

This function d will always be referred to as the product-metric. 

9. Proposition. The product-metric d is actually a metric on I-Iy=, X i .  

Proof. Certainly, we only need to verify the triangle inequality. But note that 

I 2 %  (Cl‘=, di ( X i ,  Yi  4 5 (Cl‘=, (4 ( X i  9 zi l 2  + di ( Z i  1 Y i )  1) 

the last inequality being a consequence of Minkowski’s Inequality (see proof in Appendix 
A). This proves the triangle inequality ford. 

Remark. The metric r : El x El + El , defined by r ( x ,  y)  = I x - y I, and the 
resultant product-metrics on E” , for n = 2,3 , .  . , , will be referred to as the Euclidean 
metrics. (Note that, in E”, d (X, L) =I X - j I .> 
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10. Proposition. 
equals the product of the topologies generated by the metrics d, on X, , That is, 

The topology generated by the product-metric don ni”,, Xi 

Z d  = nr,, , 

Proof. Keeping Lemma 1.20 in mind, we only need to observe that 

(a) For each ( x I  ,..., A, , )€  Il;=, Xi and E > 0, 

(b) For each ( x l  ,..., X,)E Il:=, X i ,  and E~ > 0 for i = 1 ,..., n, 

where E = rninfe, ,...,&,, ) .  

Note that when we apply Proposition 10 to Euclidean spaces E” , we then get that 
the topology generated by the collection of n-Euclidean balls 

equals the topology generated by the collection of open n-Euclidean cubes 

n ] a;,  b, [= n:=, B ((a,  + bi) I 2, (b, - a, ) I 2) I 

If we did not have the benefit of Euclidean Geometry and of Pythagora’s Theorem, 
it is only too possible that we would have chosen to distinguish another of the many 
metrics on Cartesian products which are much easier to handle. For example, given the 
metric spaces ( X , , d i ) ,  i = I ,  ..., fi , i t  is trivial to check that the function 
p : (FI:=, X i )  x (FIy,l X i )  + E’ , defined by 

is a metric on rIy=, X i .  It is easy to see that ZCf = T p .  Yet p offers many sobering 
surprises, when applied to the plane E 2  : 

(a) Using the standard techniques of calculus to measure the length of an arc 
we see that, with respect to p , the length of the hypotenuse of the triangle 
with vertices (0, 0), ( 1 ,  O), and (1 ,  1) equals the sum of the lengths of the 
legs of the triangle (therefore, it is ambiguous to say that the shortest 
distance between two points is a straight fine-it depends on the metric 
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used). 

(b) The ball B ((0, 0), l), with respect to p is not a “round” disc but a 
“square” one. Indeed, B ((0, 0), l), is the square with comers (1, 0), (0, l), 
(- 1,O) and (0, - 1). Furthermore, using the standard horizontal-vertical 
grating techniques of calculus to find areas of surfaces, we would get that 
the area of the “square” disc B ((0, 0), I )  is 2. 

2.3. Quotient Spaces 

Given a topological space ( X , z )  , a set Y and an onto function f : X --t) Y one is 
naturally (?) compelled to ask: Is there a “nice” topology ci for Y with respect to 
whichfis continuous? Certainly fis continuous with respect to the indiscrete topology 
on Y; this can only tempt one to ask a more interesting question: Is there afinest 
topologyfor Y with respect to whichfis continuous? If one exists, it certainly must be 
contained in 

But rf is a topology for Y,  because of 0. I5 (iv). 

respect to any topology on Y which is strictly finer than zf ). 
Therefore, 7.f is the topology we are looking for (sincefis not continuous with 

11. Definition. 
function. The topology T , f  is called the quotient topatogy on I! and Y is called a . 

quotient space of X (with respect to z and f ). To say that f : X t) Y is a quotient 
function means that the topology of Y is the quotient topology (with respect tofand 
the topology of X). 

ways, it is a dual of Theorem 3). 

Let ( X , z )  be a topological space, Y a set and f : X t) Y a 

One of the most useful results of Topology is undoubtedly the following (in some 

12. Theorem. Let f : X t) Y be a quotient function. Then a function 
g : Y + 2 is continuous iff g 0 f is continuous. 

Proof. The “only if” part is obvious. 
The “if’ part: For each open U c 2, ( g  o f )-’ ( U )  = f -’ (g-’ ( U ) )  is open in X. 

Sincefis a quotient function, we then get that, for each open U c 2, g-’ ( U )  is open 
in Y,  which shows that g is continuous. 

One of the major tasks in the applications of topological spaces is the construction 
of quotient spaces. It is therefore. imperative that we consider the technique of 
constructing quotient spaces in its many guises: 
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The Partition Technique (really, the only way to go): Let ( X , z )  be a topological 
space and X = {A, be,, a partition of X .  Let f : X + X be wefined by “ f ( x )  = the 
A, which contains x”. Then 

is the quotient topology for x . 
The Equivalence Relation Technique: Let ( X ,  z) be a topological space and R an 

equivalence relation on X .  Let WR be the set of R-equivalence classes of X (therefore, 
WR is a partition of X )  and let f :  X + WR be defined by f ( x )  = the R-equivalence 
class of x. Then 

is the quotient topology for X / R  . (This technique is very useful whenever X is rich in 

natural equivalence relations-for example, whenever X supports group or ring 
operations.) 

The Adjunction (or “Gluing”) Technique: Let ( X , z )  , ( Y , p )  be disjoint ( lx. ,  

X n Y = 0 ) topological spaces, A a closed subset of X and p : A + p ( A )  c Y a 
continuous function. Let 

Clearly X is a partition of X U Y ; X is generally denoted by X U p  Y , Now that we 

are back to t h e  partition technique, we proceed with the definition of 

f : X u Y + X u ,, Y and the quotient topology 7 f in the expected manner. (Note that 

the restriction that X n Y = 0 is somewhat artificial inasmuch that we can always give 

X and Y different colors; say X G X x{O} and Y G Y x{1} .) 

The Identification Technique: Let f : ( X  ,z) + ( Y ,  p )  be an onto function. Then 
X / f = { f - ’  ( y ) l y ~  Y }  is a partition of X .  Define f : X + X / f  by 
f ( x )  = f-’ f (x) ( j is well defined!). Then 

( u c X / f  I f -’ (U) E z} = z. = { u c X/f I u u E 7) 
f 

is the quotient topology for X /  f 

13. Theorem. Let j : ( X , z )  + ( Y , p )  be a quotient function. Then X / f  2 Y .  
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Proof. Define h : Y --f X/f by h ( y )  = f - ’  ( y )  . It is straightforward that h is a 

X b Y  X + Y  

well-defined one-to-one and onto function, and that the diagrams 

are commutative (Lee,  h o f = f ,  ... ). Therefore, by Theorem 12, both h and h-’ are 
continuous. 

It is clear from Corollary 1.16 that all homeomorphisms are quotient functions. 
Indeed, we have the much stronger result. 

14. Lemma. 
a quotient function. 

If f : ( X  ,z) ++ ( Y , p )  is continuous and open (or closed) thenf is 

Proof. Without loss of generality, let us assume thatfis closed. Note that, if 
f ’ ( u  ) E Z then u = Y - f ( X - f - ’  ( U ) ) € y ,  sincefis closed. Therefore, 

Tf C P . Sincef is continuous, we clearly have that p =Tf . Therefore, p =TI 

and f is a quotient function. 

2.4. Applications 

Cones. For any space X ,  let N = {(x,l) I X E  X }  and let 

cx = {N} u { (X , f ) IXE  x, O I t <  I } .  

CX, with the quotient toplogy with respect to the function f : X X I  + CX (defined by 
f ( ( ~ ~ 1 ) )  = N and f ((X,T)> = for z < 1 ), where X x I has the product topology, 

is called the cone of X .  (Note that, if X = S’  , then S’ x I is an “ordinary” cylinder 

and CS’ is really obtained from S’ x I by “pinching” the top to a point-that is, CS’ 
is really (homeomorphic to) a cone, which is really a closed disc.) 

15. Proposition. CS” E B”” , for n = 0, I , . . .  . 

Proof. Let us consider the diagram 
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9 
S " X l  ___) CS" 

with q the natural quotient function, p defined by 

p ( ( X , ,  , . . . , x, ), t )  = ((1 - t )  x,,, . . * , (1 - t )  X,  ) E F+') 

and h defined by 

h ( N )  = (0, 0,. . . ,O)E  B"" , 

(Are p and h well defined? Is h one-to-one?) At this stage, the reader may have 
considerable difficulty in proving that p is a quotient function; nonetheless, this is 
immediate from Theorem 3.7 and Lemma 14. From Theorem 12, we then get that h 

and h-I are continuous. 

Suspensions. For any space X ,  let N = ((x,l) I XE X )  and S = { ( x ,  - 1) I XE X}. Then 
let 

sx = ( N , S } U  ( ( X , l ) I X E  x, - 1  < t <  1 ) .  

SX, with the quotient topology, is called the suspension of X .  (Note that, if X = S ' , 
then X x[- 1, I] is a cylinder and SS' is really obtained from X x[-1, 11 by "pinching" 
the top rim to a point and pinching the bottom rim to another point-that is, SS' is 
really S 2 .  N becomes the north pole and S becomes the south pole of S2 .) 

16. Proposition. SS" = S"" for n =0, l;.. 

b SS" 4 S" x [- 1,1] 
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Proof. Let us consider the diagram on p. 56 

57 

with q the natural quotient map, p defined by 

and h defined by 

h ( N ) = ( O  ,..., O,I) ,h(S)=(O ,..., 0,-1) and 

((1 -t>xo,, . , (1-t) x , ,/a), for t 10 

((1+t)xo,. . , (l+r) xn, {=),for t 20. 

n i wo,. * ,xJt) = 

Again the reader may find it difficult to prove that p is a quotient function; it is nonetheless 
immediate from Theorem 3.7 and Lemma 14. From Theorem 12, we then get that h 

and h-’ are continuous. 

Boundary Identifications. The following result justifies the old-fashioned technique of 
making circles-one simply “glues “ or “identifies” the endpoints of a line segment. 

17. Proposition. B”/S‘”-’  z S ”  , for n= 1, 2;’- . (See 0.16.) 

+ Bn / S ” - ’  4 B“ 
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Proof. Let us consider the diagram on p. 57 

where q is the natural quotient map and p is defined by (recall that X = ( x ,  , . . . , x, ) and 

( 4 ( l - l f l ) x , , ,  

(4 I x I x ,  ,... ,4 I I., (X) = 

, ,4 ( 1  - I  X I )  x, , ,  J 1 - 16 (I- I X I')), for I E I2 1/2, 

x I x,, , - JZ), 

(p is well defined!) and h is defined by h ( s f ' - ' )  = (0,. . .,O, 1) , and h ([ I XI I) = p (X) 
whenever I i I < 1 (h  is well defined and 1-1 !). 

Again, we get that p is a quotient map, because of Lemma 14 and Theorem 3.7. By 

Theorem 12, we then get that h and h-l are continuous. 
By now the reader must be discouraged by the annoying fact that the precise 

construction of even the elementary quotient spaces just described presents painful 
details. Fortunately, topologists have devised descriptive techniques of construction of 
quotient spaces--commonly called the Scissors-and-Paste Techniques. The following 
three examples illustrate these techniques. 

The Mobius Band. The Miibius Band is obtained from the square I x I by gluing each 
(0, t )  with each ( 1 ,  I - c), for 0 I t 5 I . Descriptively, 

which successfully yields the graphic representations 

The Torus. The Torus is obtained from the square I X I  by gluing each (0, t )  with 
each ( I ,  t )  and also gluing each (t ,  0) with each ( t ,  I), for 0 I t  51, Descriptively, 
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which successfully yields the graphic representations 

The Klein Bottle. Descriptively, the Klein Bottle is 

No one has ever really seen a graphic representation of a Klein Bottle. Certainly the 
first step of identifying the upper and lower edges of the square produces a cylinder 

i 
\ 

a3 

One can immediately see that a 180" -twist in the middle of the cylinder will simply not 

match the points a , ,  a 2 ,  a3 of the left-rim with a,,  a2,  a3 of the right-rim, respectively. 

Indeed, in E 3  nothing works (this is quite difficult to prove!). Nonetheless, the following 
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erroneous graphic representation of the Klein Bottle in  E 3  helps one visualize what it 

looks like in  E" with n 2 4 , 

The trouble is that one cannot cur through 
the side of the cylinder-that is really an 
identification which is not called for. 

indeed, the reader should note that the preceding picture is the graphic representation 
of 

The Projective Plane. Descriptively, the Projective Plane is 171 - - _ - - - _ -  - or 0 
_ _ _ _ - _ _ -  - 

a, 

and, therefore, it is obtained from a closed disc by gluing antipodal points (Lea, 

diametrically opposed points) of its boundary. i t  is difficult to give a graphic 
representation of the projective plane. Nonetheless, if we cut the projective plane 
along the dotted lines, we get the 
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But, by successive gluings, we see that 

Therefore, the projective plane is obtained from the Mobius Band and a closed disc by 
gluing their edges together. 

Chapter 2. Exercises. 

1. Show that the function f : X -W Y is a quotient function iff the following condition 

holds: B c Y is closed iff f - '  (B) is closed in  X. 

2. Show that open (or closed) continuous functions are quotient functions. 

3. Let p :  X --t) Y be a quotient function and f :  X + Z be a continuous function 

such that f o p - '  : Y + Z  is a function (note that f o p - l  is a function iff each 

f - I  ( z )  c some p-l (y) ). Show f 0 p-l is continuous. 

4. Show that the function f .. ( X , z )  ++ ( Y , , u )  is an open function iff the following 

condition holds: There exists a base H for z such that ~ ( B ) E  ,u for each BE d . 
(Hint: use 0.15(vi)). 

5 .  Show that all projections of the product space (ny=, X i ,  n z i )  are open functions. 

(Hint: see ex. 4.) 

6. Show that the torus is (homeomorphic to) S1 xS' . (Indeed, it is not uncommon to 

define the torus as the product space S' xS '  .) 
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7 .  Show that the torus IS  really a 2-sphere S 2  with LI tubular handle 

by cutting along the dotted lines. 
I 
I 

8. Show that the torus is a quotient space of E 2 .  (Hint: Grate E2 into squares of base 

and height equal to I .  Then describe the quotient function from E~ to the torus in 
descriptive form.) 

9. Try to figure out a graphic representation of the quotient space, descriptively 

of a triangle by cutting the triangle along the dotted line. This quotient space is known 
as the Dunce Hat. 

10. Show that the quotient space of the square, descriptively 

\ \ 

I 
I 

/ 

1’ / I 
\ / \ 

b2 a2 

is a 2-sphere with two handles, by cutting along the dotted lines of the square on the 
left. However, by cutting along the dotted line of the square on the right, show that the 
same quotient space of the square really is a double-torus (two torii glued along the 
edges of a hole on each of them). 
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I 1 .  Show that a 2-sphere with two handles and a double-torus are homeophoric (see 
ex. 10). 

12. Let X : > Y fi  : > Z such thatfand g are continuous and g 0 f is a 
quotient function. Show that g is a quotient function. 

13. Let f : X ++ Y be a quotient function. Show that i f f  is 1-1, then f is a 

homeomorphism. 

14. For each a E A , let pa : X ,  + Y, be a continuous open onto map. Show that 

l l p ,  : n,X, + n,Y, is a quotient map. 

15. Show that the composition of two quotient maps is a quotient map. 

16. Let R, and R,  be two equivalence relations in a space X such that x R, y implies 

x R, y , for all x ,  y E X . Show that X / R, is a quotient space of X / R, . 

17. Let ( X , z )  be a space and A c X a subspace. Assume there exists a continuous 

r : X -+ A such that r (a)  = a ,  for each n E A ( r  is called a retraction). Show that r is 

a quotient map. 

18. Let {(X, ,ra 1) be any family of spaces; also let X = n,, X, , 7 = nz, and 

n, : X + X, be the a -projection for each a E A (cf. 0.18). Also, for each f E X 
and T c A , l e t  

S cfm = {g E X I g (a)= f (a) ,  for allaE A - r } .  

The subspace S (f,r) of X will be referred to as the (f,r)- slice ofX.  

(a) Prove that S (f,r) = naer X,. (Hint: Define h :  S (f,r) + n,, X, 
by [h (g)] (a) = g (a), for every a E r . Show h is 1-1 and onto. Think 

of h-' : TIasr X ,  j nus,, X, . Use Theorem 3 and Remark 4 to show that 

h and h-' are continuous.) 
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19. Let X be a set and U = { ( A a , z a )  

UA,  = X . Assume that 
a 

(i) z a I A , n A p = ~ p l % I n A ,  
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a E  A) be a family of spaces such that 

for all a, E A 

(ii) each 4, n Ag is closed in A, and in A~ , 

L e t z ( U ) = ( U c X I U n A  E Z  ] .Showthat a a  

(a) z (a)  is a topology for X (called, the weak topology over a ) 

(b) z (a)  I Aa = z a ,  for every a E A 

20. Given a set X ,  a space ( Y , z )  and a function f : X ++ Y , show that 

(a) z’ = { f - ’  (I/) I u E z} is a topology on X .  

(b) ,f : (X,Z’  ) + ( Y , z )  is a quotient map. 

21. Given a set X ,  a collection { (Y ,  , za )  1 a E A of spaces and functions f a  : X + Y, , 

for each A E  A ,  let z be the topology generated by S = {&’ ( V )  I U E ‘ta, OIE A ). 

Show that 

(a) If j :  X + IIaE,, Y, is defined by ( j  (x)) (a)  = f a  (x) , for each 

a E A ,  then z = Z ’ (see preceding problem). 

(b) If x + w implies that there exists (YE A such that f, (x) # f a ( w ) ,  

show that j  is a homeomorphism (between X and j ( X ) ) .  

22. Let Q be the space of rational numbers, R the identity relation on Q, S the relation 

on Q which identifies all the intergers. Show that (Qx Q )  / (Rx  S )  is not homeomorphic 

to (Q / R )  X (Q / S )  . In particular, note that even though the natural maps p : Q + Q / R 

and q : Q - + Q / S  are quotient maps, their product p x q : Q x Q + Q / R x Q / S  is 

not a quotient map. 



Chapter 3 

Very Special Spaces 

While studying calculus, the reader must have become well aware of the importance of 
the compact (i.e. closed and bounded) subsets of the real line, because of the results: 
The continuous image of a compact subset of E' is compact. The continuous image 
of a closed interval is a closed interval (equivalently, for each continuous function 
f : [a ,b]  + E' and f ( a )  I d I f (b )  there exists a 5 e I b such that f ( e )  = d (the 
Intermediate-Value Theorem!)). Every continuous real-valued function on a closed 
interval of E' attains a maximum and a minimum value. Every Cauchy sequence 
{ x , ~ }  (ix., for every E > 0 there exists integer n(&) such that m, n > n ( E )  implies 
I x,, - x,, I < E ) of real numbers converges to some real number. Every sequence in a 
compact subset A of E'  has a subsequence which converges in A. 

Many more equally important results are easily obtained once one truly understands 
the concepts just mentioned (more precisely, the mathematical concepts just alluded 
to). We are now ready for  those very special spaces: Compact spaces, complete metric 
spaces, connected spaces and arcwise connected spaces. 

But first we need more terminology, including a tiny bit of the hierarchy of 
topological spaces. 

A. T, , T2,  T3 : Given that topological spaces are not always metrizable (cf. ex 
1.28) it is only natural to classify topological spaces in accordance with how similarly 
they behave like metric spaces. For this reason, topological spaces have been divided 
into many classes (dozens), there being no universal agreement on these divisions. 
Let (X,Z) be a topological space. Then 

(i) (X,Z) is a 7; -space provided that X - { p ) ~  z for each P E  X 
(equivalently, for any x ,  Y E  X with x # y , there exists neighborhoods 
N, ofx and N,. o f y  such that ye  N, and x SE N,,). 

(ii) (X ,z) is a T, -space or a Hausdogspace provided that for any 
x ,  Y E  X , with x # y , there exists neighborhoods N, of x and N, of y 
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such that N ,  (7 N ,  = 0. 

(iii) ( X  ,z) is a regular space or a T ,  -space provided that ( x , Z )  is TI 
and, for any x E X and closed set B C X - { x }  , there exist 
neighborhoods N ,  of x and N ,  of B such that N, n NB=O; equivalently, 
for any x E X and neighborhood U of x there exists a neighborhood Vof 
x such that V -  c U , 

(Some mathematicians do not require that X be T, in the definition of a regular space 
and then they let 

T ,  -space = regular space which is also T, . 

This story has two morals-the first is that whenever one reads a scientific book one 
should make sure of the terminology used in that book; the second is that intellectuals 
sometimes assert their intellectual .freedom in the most childish way.) 

The following proposition should be obvious. 

1. Proposition. X is metrizable implies X is 'I; implies X is implies X is T, . 

Proof. 
a straightforward consequence of Theorem 1.8 (iv). 

Only the first implication may not be absolutely trivial, but even that one is 

B. Accumulation, Clustering, Converging. Let ( X  ,Z) be a topological space. Then 

(i) For A c X , a point p E X is said to be an accumulation point of A or 
cluster point of A ,  provided that, for each neighborhood N ,  of 
p,N, ,  n ( A - { p ) > + 0 .  

(ii) A sequence {x,,} in X is said to cluster at the point p E X ( o r p  is a 
clusterpoint oj' {x , , }  ) provided that either {x,,} is infinite andp is a 
cluster point of the set { x,, I n E N 1 or { x , ~ }  is finite and 
p = x i  = xi+,  = . . *  for somej. (Be assured that this unusual definition 
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has its merits.) 

(iii) A sequence {x,,} in  X is said to converge to the point p E X , 
provided that, for each neighborhood N ,  of p ,  there exists some integer 
n ( N , , )  such that { x , ~  I j 2 n ( N , , ) }  c N , , ;  we let 

lim x ,  = p = { x , }  converges to p .  n 

2. Proposition. The following statements are valid in any space X :  

(a) if limx,, = x and { w , ~ }  is a subsequence of {x,} then lim w,, = x .  
n n 

(b) A point p E X is a cluster point of A c X iff p~ ( A  - { P I ) - .  

Proof. We only prove part (b), since the proof of (a) is too trivial. 
The “if’ part: Assume there exists some open neighborhood N , o f p  such that 

N , n A = 0 .  Then X - N , l  is closed, p e X - N , ,  and  A - { p } c X - N , ,  
contradicting the hypothesis that p E (A - { P I ) - .  

The “only if’ part: Assume p P ( A  - { p } ) - .  Then there exists a closed set B 
such that A - { p )  c B and p e B .  Then X - B is a neighborhood of p such that 
(X - B )  n (A - { p } )  = 0 ,  a contradiction. 

3. Lemma. 
limx, = w then z = w .  

Proof. 
respectively. Then there exist integers IZ ( N , )  and n ( N , )  such that 

Let X be Hausdorff and {x,,} a sequence in X .  If limx,, = z and 
n 

n 

Suppose w f z . Pick disjoint open neighborhoods N , ,  N ,  of w and z, 

j > n ( N , )  implies x i  E N ,  and k > n ( N , )  implies xk E N , .  

Pick t > max{n(N,),n(N,)}. Then x, E N ,  n N ,  , a contradiction. 

3.1 Compact Spaces 

Certainly it is ridiculous to expect that we define a compact space A as a bounded and 
closed subset of a topological space (X ,Z), since the notion of “bounded set” makes 
little sense in a space without a notion of distance. The surprise is that this same 
definition would be equally ridiculous in a metric space (X,d)-for example, let 
X = E ’  - {o} and d be the Euclidean metric on X ; then A =[-1, I ]  n X is a 

closed and bounded subset of X and yet not every sequence in A has a subsequence 



*13edw03 s! aseds isedmos e JO a8ew! snonquos aqA (3) 

psop s! aseds JpopsnaH c JO awdsqns 13eduros v (9) 

*isedruos s! aseds isaduros a JO iasqns pasop v (e) 



Very Special Spaces 69 

open cover of Y, then U' = ( f -' (U ) I U E u )  is an open cover of X. If 
{f-' ( U ; )  I i = I ,..., n} is a finite subcover of U' then {Ui I i = 1 ,..., n}  is a 
finite subcover of U .  

7. Theorem. 
Then, f is a closed function and, therefore, a quotient function. 

Let f : X -t) Y be continuous, with X compact and Y Hausdorff. 

Proof. Let A be a closed subset of X. Then, from Lemma 6(a), (c), (b) we get that 

f(A) is closed. Therefore, by Lemma 2.7, f is a quotient map. 

8. Theorem. 
Then (fly=, X i ,  n z,) i s  compact. 

For any n E N , let (XI  I 7, ), . (x, r,,) be compact spaces. 

Proof. (By induction.) Clearly ( X , ,  z,) is compact. Assume (IIyl: Xi, nz;) is 
compact and let us show that (ny=, Xi, n z;) is compact: Because of Lemma 5 we 
consider only open covers u of 
with U i ~ r i , i = 1 , 2  ,..., n.Since,foreach X=(xI ,... ,~,,-~)Enyi=;' X i ,  
{ X } x  X, z X,, and (U n ( { X ) x  X , )  I U E  u} is an open cover of { X } X X , ,  we 

can find l l y = l  U,!,..., rIy=, UF E U which cover { X ) x  X,. Let C,  = (n$, ZZ;:: U / >  

x (U:=, U i )  = J ,  x K, ,  for each X E l7:=;' X i .  Here is a visual description of the 
preceding. 

Xi whose elements have the form lib, U i  

xnn {XI x x, n;il=;' u'i 

- 
X ny:' x; 

Since {Jr I X E  ny=;' Xi}  is an open cover of the compact space IIyL; X i ,  we can 
find J,,  , . . . , J , , ,  which cover II;:' X i  . Therefore { C,, , . . , , C ,  ) covers ny=, X i ,  
which implies that there is afinite number of elements of U which cover ny!, X i ,  
since each c,, is covered by finitely many elements of U ,  for r = 1,2, ..., m . 

9. Theorem. 
(c) implies (d). If ( X , d )  =(E", Euclidean metric) then (a) iff (b) iff (c) iff (d). 

For any metric space (X , d )  and C c X , we get that (a) iff (b) iff 

(a) C is compact, 
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(b) Every infinite subset A of C has a cluster point in C, 

(c ) Every sequence {x,,} in C has a subsequence which converges in C, 

(d) C is a closed and bounded subset of ( X , d )  . 

Proof. 
sequence {x,,} of distinct points of A. Then the set B = {x,, I n E N} has no cluster 
point which implies that 

First, (a) implies (b): Suppose A c C is infinite with no cluster point. Pick 

( i )  B is closed: If not, any point in B- - B would be a cluster point of 
B (cf. Prop. 2), 

( i i )  For each n, there exists an open neighborhood U ,  of x, such that 
U,, n ( B  - {x, ,  }) = 8 : If not, x,, would be a cluster point of B. Then 
( c - ,!I] U (u, ,  I E N )  is an open cover of C with no finite subcover (each 
U,, covers no x i ,  with j # n ,  and C - B covers no x i  at all), a 
contradict ion. 

(b) implies (c). Let {x,,} be a sequence in C. Without loss of generality, we 
assume the range of {x,,} is infinite. Then there exists a cluster point p for the set 
A = [ x , ~  I ti E N J  . Inductively, it is easy to pick x,, E A such that d ( x ~ ,  , p )  <; and 
nk < nk+, for k E N . It follows that {x,,~ } is a subsequence of {x,} such that 

lirn x,,~ = p . 
k 

(c) implies (a). First observe that, for each E > 0 ,  there exists a finite subset F, 
of X such that X = U {B ( u , ~ )  I u E F,}  (F, is called an €-net): Suppose this is not 
true for some &,, > 0 .  Then, by induction, one can immediately pick a sequence {x,,} 
i n  X such that d ( x , , ,  x , , + , )  2 E , ,  for II E N . Clearly, {x,,} has no convergent 
subsequence, a contradiction. 

Now let U be any open cover of X .  We will show that U has a countable subcover: 
Let D =U;==, Fk such that Fk is a -net and let 

D = { B ( d , L ) c  some U E U J  j E  Nand  ED) . 
I 

Clearly, is countable. Furthermore, 2> covers X .  (Let P E  X . Then there exists 

some positive integer j such that B ( p ,  1 )  c some U p  E u . Pick any u,, E F’, such 

that p E  B (U,,. I;). We then get that P E  B (u,,, &) c B ( p ,  i) c some U p  E u , 
which implies that PE B (u,,, %)E 2> .) Since 2, is a countable cover of X, by the 
definition of 2, one immediately gets that has acountable subcover [ U ,  I n E N) . 

I 

I 
I 
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Finally, we show that the countable cover { U I n E N ) of X has a finite subcover: 

Suppose not. Pick x,, E X -Ug, U j  for n E N . By hypothesis, { x , ~ )  has a 

convergent subsequence { x , ~ ~ ) ;  say limxflk = q  and q E U , , , .  Then U,,, is a 
k 

neighborhood of q which misses {xfl I n 2 m) , which shows that {xnk}  does not 
converge to q, a contradiction. This does the trick. 

We have, thus far, proved that (a) iff (b) iff (c). Much has been said in the proof 
of (c) implies (a). (See ex. 18.) 

(c) implies (d). Suppose C is not closed in ( X  ,d)  : Pick any pc C -  - C . For 
each n, pick x,' E C n  B ( p ,  i;). Then IFX,, = P . Therefore, for any subsequence 

{X, ,k  } of { X , }  , lim x , , ~  = p ,  contradicting (c). 

Suppose C is not bounded in (X,  d )  : Then it is easily seen that, for any c E C , 
k 

( B ( c , n ) f l C l n E  N) 

is an open cover of C with no finite subcover (say B(c ,n , )  n c,. . . ,B(c,n,)  n c 
cover C, with nl < . . . < nk . Then C c B (c ,  nk ) , implying that C is bounded). 

Finally, we prove that, for Euclidean spaces, (d) implies (a). (Clearly, this yields 
(a) iff (b) iff (c) iff (d) in Euclidean spaces. First (d) implies (a) in E' : Without loss of 
generality, we let C be some closed interval [m, M I  (because of Lemma 6(a)) and 
consider only open covers 0 of [m, MI whose elements are "open intervals intersected 
with [m, MI " (because of Lemma 5 and the definition of the subspace topology). 
Indeed, note that, because of the definition of the subspace topology we can, just as 
well, let 6 be acoverof [m, MI by open intervals of El , for then (0 r) [m, MI I OE O} 
is a cover of [m, MI of the required form. 

So let 0 be a cover of [m, M I  by open intervals in E'  . Let us say that "x can be 
reached f rom m by 0'' provided that there exist Ol,02,...,0,t E 0 such that 
[ m ,  x ]  t 0, U O2 U ... U O,, . Then, let A = {XE [m, M]I x can be reached from 

m by 0) and let t = sup A ( A  # 0 since mE A) . Since 0 covers [m, MI, there exists 
0, E 0 such that t E 0, . Therefore there are points f', f"e 0, such that t' < t < tR. 
Since t'E A ,  there exist open intervals 01,. . . ,o, E 0 such that [m,  t'l c 0, U U 0, . 
Then, [m, t"]co ,  U...uO, UO, which forces M €t"  and yieldsthat {ol, ..., o,,or} 
is a finite subcover of 0. This does the trick for E' . 

Finally, (d) implies (a) in E" : Let C be any closed and bounded subset of E" . 
Then, there exists r > 0 such that C c B (a, r )  , for some ii = (al, a2 ,. . ., a,,)€ C. 
Therefore, C c ny=, [(I, - r ,  u1 + r ]  , which implies that C is not compact, because of 
Theorem 8 and Lemma 6(a). 
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As immediate consequences of the preceding results, we get some of the classical 
and invaluable results of analysis: 

10. Theorem. Let C be a compact subset of E” and f : C -+ E m  a continuous 
function. Then K = f (C) is compact and, for each b~ aK , there exists b’E C 
such that f (6’) = b. (If m = I , this says that every continuous real-valued function 
f : C + E’ attains a maximum and a minimum value.) 

Proof. 
therefore, there exists h‘E C such that f (b’) = b . 

Since K is closed in E”’ , by Theorem 9(d), bE dK implies that b~ K ; 

11. Definition. Let ( X , d )  and ( Y ,  p )  be metric spaces. We say that 

(a) A function f : X + Y is uniformly continuous (with respect to the 
metrics d and p , of course) provided that, for each E > 0, there exists 
6 > 0 (6 depends only on E ) such that p (f (x), f (w)) < E whenever 
d ( x ,  w )  < 6 . (See ex. 4.) 

(b) For any 6 > 0, the 6 -modulus of continuity of f , denoted by 
t v ( f ’ , 6 ) ,  is w ( J ’ , 6 ) = s u p ( p ( f ( x ) , f ( w ) ) I d ( ~ , w ) ~ 6 } .  (Of course, it 
can happen that w (f,6) = + 00 .) 

12. Lemma. A function f : (X, d ) + ( Y ,  p )  is uniformly continuous ifs 
lim w ( f  ,6) = 0. 
d -0 

Proof. Straightforward. 

13. Theorem. Let ( X , d )  be a compact metric space, ( Y ,  p )  any metric space, 
and J’ : X -+ Y a continuous function. Then f is uniformly continuous. 

Proof. Let E > O  . For each x E X ,  pick a neighborhood B ( x , 6 , )  of x such that 

Since { B  ( x ,  6,) I X E  X }  is an open cover of the compact space X, let us say that 

{ B  ( x , ,  6,, ),. . ., B (x,,, , fiAn, )I also covers X. Let 6 = min{ 6,, ,. . . ,6x. }. It follows 

that, for each X E  X, B ( x , 6 )  c some B ( x i ,  26,  ) : indeed, X E  B (x , ,  6,) implies 

B (x,6) C B ( x i ,  26, ). Therefore, for each X E  X ,  
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which completes the proof. 
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3.2 Compactification 

In proposition 2.14, we proved that, for n = 1,2;.. , 

B" / S"-' E S" . 

Let us interpret this result in the light of the knowledge we have acquired since 
then: From the proof of Theorem 2.14, it is immediate that 

S" -(north pole}E(B")" = B ( O ,  1). 

Since S" is compact, it is accurate to say that S" is the smallest compact space which 
contains the space (B")' as a subspace. 

A close analysis and general description of this situation will follow. 

14. Definition. 

(a) A subspace x of a space Y is said to be dense in Y provided that 

x- =Y.  

(b) The space Y is a compactifcation of the space X provided that Y is 
compact and x is homeomorphic to a dense subspace of Y . 

For any space ( X , z )  pick a point not in  X , generally denoted by 0 0 .  Let 
X = X U { = }  and 

8 = z U {U U (i - K )  I U E z, K c X ,  K is closed and compact}. 

15. 
subspace of (i,?). ( X , Z )  is dense in(-?,?) iff ( x , Z )  is not compact. 

Lemma. For any space (X ,Z) ,  (-?,a) is a topological space and ( X , z )  is a 

Proof. To prove that 4 is a topology, it is clearly sufficient to verify that 

(the first equality is very easily proved by contradiction; otherwise it can be difficult); 
the second equality is obvious; note that K - U is compact whenever K is compact 
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and U is open, because of Lemma 6. (Clearly, the finite union of compact spaces is 
compact and any intersection of compact spaces is also compact.) 

Clearly z = ẑ  I X (note that ẑ  I X c z , because in  each U u i - K ,  K is 
closed). 

A 

16. Theorem. 
of ( X , Z ) .  (It is called the one-point compactification ofX, inasmuch that it is 
immediate that any two one-point compactifications of the same space are homeo- 
morphic.) 

For any non-compact space ( X , Z ) ,  (X ,z^ )  is a compactification 

Proof. 
be an open cover of X . Pick some V E u with oo E v . Clearly 

By Lemma IS, we only need to show that (?,f) is compact: Let i?l C? 

since no I/ E z contains m . Since {U n X I I/ E 24) c z and K is a compact subspace 
of X , there exists a finite subcollection {U,, .  . .,U,,} of u such that 

and thus { U ,  ,. . .,U,,} u { V )  is a finite subcollection of u which covers 2 . This 
completes the proof. 

17. Corollary. 
ball or of E ” . 

For n E N , S” is the one-point compactification of the open n - 

Proof. It is easy to see that in  E ”  , 

and we already know that S” is the one-point compactification of B (6,l) c E” . (Of 
course, S” c E”+’ .) 

The reader should not conclude from this corollary that the one-point 
compactification of a space, even a Hausdorff one, is Hausdorff. Such a conclusion is 
incorrect. The correct conclusion requires that we localize the notion of compactness. 

18. Definition. 
X E  X has a compact neighborhood. 

A space ( X , Z )  is said to be locally compact provided that each 
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19. Lemma. Let ( X , Z )  be Hausdorff. Then ( X , Z )  is locally compact if and 
only if, for each XE X and neighborhood U of x , there exists a neighborhood 
V of x such that v c U and v is compact. 

Proof. Immediate from Lemma 6. 

20. Theorem. 
( i , z ^ )  is compact Hausdorff. 

The space ( X , Z )  is locally compact Hausdorff if and only if 

Proof. Straightforward. 

3.3 Complete Metric Spaces 

In elementary calculus one becomes very aware of the usefulness of the result: Every 
Cauchy sequence of real >umbers converges to some real number. This impressive 
result on Cauchy sequences is but a drop of water in a sea. Let us swim a little. 

21. Deanition. 
sequence provided that, for each E > 0, there exists an integer N(E)  such that 
m, n > N ( E )  implies d ( x , ~ ,  xJ, )  < E .  A metric space ( X , d )  is complete provided 
that each Cauchy sequence in X converges in X , 

A sequence { x J l }  in a metric space ( X , d )  is called a Cauchy 

22. Lemma. Let ( X ,  , d ; )  be complete metric spaces for i = 1,2,. . . , n. Then 
X i ,  with the product-metric, is a complete metric space. 

Proof. Let { ( x , " ,  x ; ,  . . . ,x: ) ) k  be a Cauchy sequence in ny=l xi . Then it is easy to 
see that {$ Ik  is a Cauchy sequence in X i  for i = l ,  2, ..., n. Since each ( X i , d , )  is 

complete, there exists zi E Xi  , i = 1,2,. . .,n, such that limx; = 2; , from which it 

easily follows that lirn($,x~, ..., x,)=(zi, ..., z,). This shows that n;=l Xj ,  with 

the product metric, is complete. 

k 

k 
k 

k 

23. Lemma. The real line E l ,  with the Euclidean metric, is a complete metric 
space. 

Proof. This follows easily from the local compactness of E' (see ex. 20). Intrinsic 
properties of the Euclidean metric are crucial (see ex. 21). 

24. Corollary. 
space. 

For each n , E" with the Euclidean metric, is a complete metric 
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25. Lemma. 
and only if S is closed in X . 

A subspace s of a complete metric space ( X , d )  is complete if 

Proof. 
Then there exists a sequence {,x} c S such that d (x,], p ) I  1, for  n E N . Then 
{x , , }  is a Cauchy sequence in  ,y which converges in S . Since limxfl=P, from 
Lemma 4, we get that p E S. This shows that S is closed. 

Undoubtedly, the most applicable results of complete metric spaces are the Baire 
Category Theorem (cf. ex. 19) and Banach's Contraction Theorem, which we will 
now describe together with some elementary applications. Later on, there will be more 
to come (cf. Theorems 4.6 and 4.8). 

The " i f '  part is obvious. Let us look at the "only if' part: Let PE S-. 

n 

26. Definition. 

(a) Let .f' : X -+ X be any function. Then p E X is called afiredpoint 
o f f  provided that f ( p )  = p .  

(b) Let ( X , d )  be a metric space and 0 I a < 1.  If f : X -+ X satisfies 
the inequality 

for all x ,  y E X ,  then .f is called an a -contraction. If d (f ( x ) ,  f (y)) > p d (x, y ) ,  
for all x , y ~ X ,  and if p > I ,  then the functionf is called a p -expansion. If 
d (f (x), .f' ( y))  = d ( x ,  y), for all x ,  y E X , then f is called a d-isornerry, or just an 
isometry (when no confusion appears possible). 

(c) For any function f : X + X , inductively, we let 

f l  = f, f 2  = f o f',. . ., f "  = f o f " - ' , .  . .. The function f "  : X + X is 

called the n"' -iterate o f f  . 

27. Theorem. (Banach j. contraction principle). Let ( X ,  d )  be a complete metric 
space and .f' : X + X be an a -contraction, 0 I a < 1 . Then there exists a unique 
q E  X such that ,f ( 4 )  = q . Furthermore, for each X E  X , 

Proof. By induction, it is straightforward that 



for any x E X and n E N . Therefore, for each n c m , a generalization of the triangle 
inequality yields 

<a" ( I+a+***+am + * * * ) d  ( ~ , f  (x)) 
I 

d (4 f (X)). = a" . - 
I -a 

Since lim d' =O and d (f" (x), f'" (XI> < 01" d (x, f (x)) ,  it  is easily seen that 

{f" (x)} is a Cauchy sequence. So let q = l imf"  ( x ) .  

First, note that ,f (q)= q : 4 = lim f" ( x )  implies f ( 9 )  = lim f (f" ( x ) )  = 

Iim f'"' ( x )  = 4, since any contraction is clearly a continuous function. 

n 1 -ff 

/? 

n 
Finally, q is unique: Suppose p = f ( p )  and p + q .  Then 

d ( p ,  q )  = d  (f (PI,  f (q))sa d ( p , q ) ,  implying that d ( p l d  < d  ( p l q ) ,  a 
contradiction. It is illuminating to observe that regardless ofwhich W E  x one starts 
with, 

lim f" ( w )  = 4 (the only fixed point of f ). 
I 8  

Finally, let us observe that, for each X E  X and n < j , 

Since lip f ' (X) = , we then get that 
I 

At this time we will treat the following two useful applications of the preceding 

Roots of y = h ( x )  . Let S = [a, b] and h : S + E' be a differentiable function 
result. 

such that 
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(i) h ( a )  h (b)  < 0 ,  
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(ii) there exists m, M E E'  , such that O<m I I h' ( x )  I I M, for each 
X E  s .  

Then there exists a unique a I q I b such that h ( q )  = 0 : Let 

f ( x ) = x - A h ( x )  such that I - A M  > O .  

Then f : S + S is a (1  - A  m )  - contraction ( 0  < f' ( x )  implies that f is strictly 
increasing; therefore, f (s) C s, because a < f (a)  and f (6) < b ; I f' (n) I c 1 - A m 
implies that f is a ( I  -1.) -contraction by the Theorem of the Mean (if 
a I x < y I b then 1 ("L;; ( y f  1 = I f '  ( t )  I ,  for some x I t I y )). Therefore, for each 
X E  s 

lim f" ( x )  = q such that f (y) = q; hence h ( q )  = 0. 
I1 

Observe that this tells us exactly how to find the point q to any desired degree of 
accuracy, since we know the rate of convergence of {f" ( x ) }  to q. 

Systems of Linear Equations. Let A = ( a i i )  be a real n x n  -matrix and define 
f : E" + E" by f ( x )  = Ax + b, with x and b thought of as column vectors and b 
fixed. When does f have a unique fixed point? Certainly it suffices that f be a 
contraction with respect to some complete metric on E" . We will consider only three 
commonly used metrics. 

( i )  The Euclidean Metric: Note that 

5 x i  ( X i  a ; )  (Xi ( X i  - y $ )  

= x i  (c,i a;)  I x - y l 2  

by Cauchy-Schwarz inequality; therefore 

and f' is a contraction with respect to the Euclidean metric whenever 

( i i )  The metric d ,  ( x ,  y )  = sup (I x, - y ,  I ,...,I x, - yn I ) : It is easy to see 
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that ( E “ ,  d , )  is a complete metric space, and that f is a contraction with 
respect to d ,  whenever 

(iii) The metric d 2  (x ,  y )  = X i  I xi - yi  I : It is easy to see that ( E ” ,  d 2 )  is 
a complete metric space, and that f is a contraction with respect to d2 
whenever 

X i  laii I < l ,  for j = 1 , 2  ,..., n .  

We will conclude our introductory study of complete spaces with a beautiful and 
very useful characterization of compact metric spaces: We will call a metric space 
( X , d )  torally boundedprovided that, for each E> 0 , there exists afinite set FE c X 
such that X = l.J { B  (u, E )  I u E F,}  . The set FE is called an &-net for X . 

28. Theorem. 
totally bounded. 

A metric space ( X , d )  is compact iff ( X , d )  is complete and 

Proof. The “only if’ part is straightforward. Because of Theorem 9, the “if’ part 
becomes obvious once.one proves that every infinite sequence {x, ,}  of X has a 
Cauchy subsequence: For k = l ,  2,..., let Fk be a 

X = U { B  (u, ,  1) 1 uI E Fl} , there exists a subsequence {xf,} of {x,, } which is 
contained in some B (u,, 1). Similarly, there exists a subsequence {x, } of {x,, } 
which is contained in some B (u2 ,  1/2) with u2 E F, . Inductively, we pick se- 
quences {xi} for j~ N such that 

-net of X . Since 

2 I 

(i) {x,:}  is a subsequence of { x l , }  

(ii) {x,:”} is a subsequence of {x;:}  for j = 1, 2;. 

(iii) {x;l}c some B ( u j , f )  with u i e  F i .  

It follows that {xly} is a Cauchy subsequence of {x,~}, since 
1 1 ’  d (x,::;,’, x i )  I d (x,::::, u,,) + d  (u,,, x,“)  < ~ + p  =-I 2 

for every n ,  p . 

29. Corollary. Every compact metric space X is separable (i.e.,  there exists 
countable D c X such that D- = X ). 
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Proof. Because of Theorem 29, let el be a \ -  net for n E N . Let D = U;=, 
It follows easily that D is a countable dense (it?., D = X ) subset of X . This 
does it. 

3.4 Connected and Arcwise Connected Spaces 

It is in this context that the Intermediate-Value Theorem of Calculus finds its true 
meaning. For convenience, we call a subsetA of ( X , Z )  clopen wheneverA is both an 
open and a closed subset of ( X  , Z) . 

30. Definition. A space ( x , Z )  is called 

(i) connected provided that the only clopen subsets of ( X  ,Z) are X and 

0. 

(ii) arcwise connected provided that, for all x, y E X , there exists a 
continuous function y : I + X such that y (0) = x and y (1) = y . The 
function y is called an arc starting at x and ending at y. If x = y then y is 
called a loop with base point x . 

1 

I I 
1 
0 

While these two notions appear to be the same for open subsets of Euclidean 
spaces-and they are indeed-they are, in general, quite different (see ex. 1). 

31. Lemma. 
function. Then Y is (arcwise) connected. 

Let X be (arcwise) connected and J' : X ++ Y is a continuous 

Proof. Assume Y is not connected. Then there exists a clopen B c Y such that 
0 # B # Y . Then f - '  ( B )  is clopen in X ,  with Q) f f - l  ( B )  # X , a contradiction. 

Now, take any two points y , ,  y ,  E Y and pick X ~ , X ~ E  X such that 
f ( X I )  = Y i  1 f ( X z )  = Y z  . Let y be any arc starting at x ,  and ending at xq . Then f 0 y 
is an arc starting at y i  and ending at y ,  . 

32. Definition. 
for all U , V E  n ,  there exists a finite set [Ul , . , . ,U, l ]  CU such that 

A cover Uof a space ( X , Z )  is called chainable provided that, 
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U = U , , V = U , ?  and U j n U i + , # O  for i = l ,  ..., n-l(i.e.,{U ,,..., U, , ]  isachain 
linking U to V). 

33. Theorem. 
subspaces of X such that &‘ is a chainable cover of Y = u8 .  Then Y is con- 
nected. 

Let ( X , Z )  be any space and 8 be any family of connected 

Proof. Let 0 be a nonempty clopen subset of Y. We will show that 0 = Y . First 
observe that if B E  8 and B n 0 # 0 then B c 0 (otherwise, B n 0 # B would 
be a nonempty clopen subset of B, a contradiction). Next observe that if 
{ B  ,,..., B,,) is a chain in 8 and B, c 0 then B, c 0,. ..,B,, c 0 (B, c 0 
because B2 n 0 =I B, 
Finally since 8 is chainable and 0 is nonempty, it  follows that 0 3 u 

B, f 0 ); similarly and inductively, B3 c 0,. . , , B,, c 0 . 
= Y . 

34. Theorem. 
chainable. 

A space ( X , Z )  is connected iff every open cover of X is 

Proof. 
such that 8 # U # X . Then { U ,  X - U }  is an open cover of X which is not 
chainable, a contradiction. 

The “only if’ part: Let U be any open cover of X and define a relation R on U , by 
letting URVprovided that there exists a chain in u linking U to V. It is straightforward 
that R is an equivalence relation on u ,  For each U E 

The “if’ part: Suppose X is not connected. Pick a clopen subset U of X 

let 

It is clear that U ,  fl V, z0 iff U ,  = V, , for all U , V  E U , Therefore, for each 
U E 24, U ,  = X (otherwise X -U is a union of sets V, with V E U , implying that 
X -U is open or, equivalently, that U, is clopen and 0 # U ,  # X , which contradicts 
the connectedness of X ) .  This shows that 

This most useful characterization of connectedness is generally mentioned as an 
after-thought. Among its many applications, the following is quite interesting. 

is chainable. 
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35. Lemma. 
nected. 

If an open subset W of E" is connected then W is arcwise con- 

Proof. 
points x, y E W . By Theorem 34, there exists a chain { U ,  , . . . ,U nl ) with 
XE U ,  and Y E  U,,, , Geometrically, the remainder of the proof is trivial: 

Let H be a cover of W consisting of open balls contained in W. Pick any 

Indeed, not only can we construct an arc starting at x and ending at y, but we can even 
construct one consisting of rn linear segments (such arcs are generally calledpolygonal 
arcs). Since the lengthy technical details are not commensurate with the triviality of 
this situation, we will omit them. 

36. Lemma. 
<ny=, x; I n T; 1 is connected. 

Let ( X I ,  r , ) , .  . . , ( X , , ,  T,!) be connected spaces. Then 

Proof. 
it suffices to show that, for any two connected spaces X and Y ,  X X Y is con- 
nected: Simply observe that, for some fixed u E y ,  

Note that (nyi' x;) X x,, fly=, x; , for each n . Therefore, by induction, 

is a chainable (note that { x }  x Y fl X x { u }  = { (x, u ) }  ) cover of X X Y by connected 
subspaces (cf. ex. 2. I8 (b)). Therefore, by Theorem 33, x X Y is connected. 

The preceding result can be easily generalized to state that any Cartesian product 
of connected spaces is connected. The scheme of proof, which we present in ex. 14 
is quite elucidative of a fruitful approach to the study of infinite products. 

37. Lemma. Let {(X, 
(nnE,, X,,  n z, ) is arcwise connected. 

be any family of arcwise connected spaces. Then 

Proof. 
tya : I + X, such that y(l (0) = f (a)  and v(l ( I )  = g ( a ) .  Define 

Pick any f ,  g E Hat,, X, . For each a E A ,  there exists an arc 
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y : I + l-I,ze, X, by [y (s)] ( a )  = y, (s) , for each a! E A .  Then 
y (0) = f, ip (1) = g and y is continuous, because of Theorem 2.3 and Proposition 
2.8. Therefore, W is an arc starting atfand ending at g. 

38. Theorem. For every a, bc E l ,  with a < b, la&] is connected. 

Proof. 
Without loss of generality, let us assume that 6 E  U (if b f  U , then be U' 
= [a,  b] -U and U' is also clopen, 0 # U' # [a, b] ). Now, let s = sup U . Since U 
is open in [a, b [ ,  s p  U . Since U is closed in [a, b],  s E U . We have a contradiction, 
which completes the proof. 

Suppose not. Let U be a clopen subset of [a, b] such that 0 # U # [a, b] . 

39. Corollary. The following are valid: 

(a) X is arcwise connected implies that X is connected, 

(b) each En is connected, 

(c) each S" is connected. 

Proof. 

(a) Suppose X is not connected. Pick clopen U c X such that 
0 f U # X . Pick x E U and y E X - U . Suppose that there exists an 
arc y : I +- X such that y (0) = x and y (1) = y . Then 
y-' (U n y (I)) = y-' ( U )  is a clopen subset of I, with 0 # y-' (V)# 1, a 
contradiction. 

(b) Because of Lemma 36, it suffices to prove that E' is connected. Since 
E' = U;=, I-n, n]  , it follows, from Theorems 37 and 38, that E' is 
connected. 

(c) First define r : 
well-defined, onto and continuous function. Furthermore, it is easy to see 
that E"" - (0) is arcwise connected (to join the points x and 
y=  -x in E'*+' - { O }  use a semi-circle with center at 0, radius I x 1,  starting 
at x and ending at y; that is, the secret is to go around O), and therefore En+* 
is connected. By Lemma 31, S" is connected for fz E N . 

- (0) j S" by r(x)= & . It is clear that r is a 
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40. Theorem (Generalized Intermediate-Value). Let C be a compact connected 
subset of E" and f : C + E '  a continuous function. Then f (C) = [ a ,  d ]  with 
a = i M f  {f ( x )  I X E  C} and d =sup {f ( x )  I XE: C )  . 

Proof. 
a < s < d such that s P .f (C) . Then, letting 

From Theorem 10, we get that Q, d E f (C) . Suppose that there exists 

we get that C/ is a clopen subset of f (C) , with 0 # U # f (C) , which contradicts 
Lemma 3 I .  

Chapter 3. Exercises. 

1, Let S be the subspace of EZ which is the union of A = ((0, y )  1-1 I y S 1) and 

B = { (x ,  y )  I y = s h  4 , O  < x In}. 

Show that S is connected but not arcwise connected. Indeed show that any arc which 
starts in  A stays in A .  (Hint: Assume, for example, that there exists an arc y starting at 

(0,O) andending at (p,sin$).  Let t=inf{sEIIy(s)EB).  Show that y ( t ) e B ,  

because of continuity of y .  Similarly, show y (f)e A, because y ( t )E A implies that 
there exists 6 > 0 such that y ( I t ,  f + a ] )  c B ( y  ( t ) ,  1)- A ,  and therefore that 
y ( I f ,  t +6[)  is not arcwise connected. We have a contradiction.) 

2. Let T be the subspace of E2 which is the union of {(O,O)} with  
{(x, y )  I y = x sin 4, o <  x sz} . 

Show that T is connected and arcwise connected. 

3. Let A be any connected subspace of ( X , z )  . Then A- is a connected subspace of 
( X , z )  . (Hint: See ex. 1 S . )  

4. Define f : ]  0, 1 [+ E' by f ( x )  = 1. Show that f is not uniformly continuous. 
Indeed, show that lim w ( f ,  6 )  = + 0 0 ,  

6 4 )  

5. A metric space ( X , d )  is compact iff every continuous real-valued function on X 
is bounded. (Hint: Assume X is not compact. Show that there exists a sequence 
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{ x , )  i n X  and En >o  such that B ( x , , , ~ , ~ ) f l U , , , + , ~  B ( x , , , , & , ) = 0 ,  for each 
n~ N . Next, define f : X + E '  byf(x,,)=n, f(X-U,, B(x, ,&, , ) )=O and 
f ( x )  = (1 - J(xsxt i ) )n,  E,i for each X E  B (x,,, E , , ) .  Show that f is an unbounded 
continuous function.) 

6. Let X be a compact space and z E X . Show that the connected component of 
x containing z is the intersection of all open and closed subsets of X which 
contain t . 

7. Show that any compact metric space is complete. 

8. Show that I is not homeomorphic to S '  . 

9. Show that S" (n > 1) and S' are not homeomorphic. 

10. Letting J = ]0,1[ , show that 

(a) J is homeomorphic to a subspace of I and I is homeomorphic to a 
subspace of J . 

(b) J and I are not homeomorphic. (Compare this with the Schroeder- 
Bernstein Theorem on cardinality.) 

11. Let ( X , d )  be compact metric and f : X + X a function such that 
d (f ( x ) ,  f ( y ) )  = d ( x ,  y ) ,  for all x ,  y E X . Show that f is onto. 

12. A family U of subsets of a set X is said to have thefinite intersection property 
(i.e., fip) provided that, for every finite ? C a, n 3 f 0. For any space ( X , z )  
prove that the following are equivalent: 

(i) X is compact, 

(ii) For every family a of closed subsets of X with fip, n a # 0 , 

(iii) For every family a of closed subsets of X with fl U = 0,  there 
exists a finite 3 c U such that n 3 = 0. 

13. Lebesgue Number. Let u be an open cover of a metric space (X, p )  . Any 6 > 0 
such that, for each X E  X , 

B ( x , 6 ) c  some U E U  9 
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is called a Lebesgue number for u . 

(i) Let U = ( ]  n-&,n+&[In=l,Z!...}U(E'-N}.Showthat u i san  
open cover of E '  with no Lebesgue number. 

( i i )  Show that every open cover u of a compact metric space ( X , p )  
does have Lebesgue numbers. (Hint: Let 
k?= ( B  (x, E (x))l B (x, 2~ ( x ) ) c  some LIE 24) . Let 

(5  (XI 9 E (XI )) I .  '. 9 B (Jm1 9 E (xrtl )) 1 be a finite subcover of # and let 
6 = min { E  ( x ,  ) , . . , , E (x,)} . Show that 6 is a Lebesgue number for 
and, therefore, for U . 

14. Let {(xa, Z u ) ) a c ~  be a family of connected spaces. Let X = nu,, Xu and 
r = n t, . Pick any P E X and let (see ex. 2.18) 

P (P) = U { S  ( Y ,  r) I c A, r is finite) 

( i )  Show that P (l) is dense in X (see ex. 1. I5), 

( i i )  Show that each S ( e ,  r) , such that r c ,j and r is finite, is 
connected (see ex. I .  I5 and Lemma 24), 

(iii) Show that {S (!, r) I r c A, 
(Hint: Y G  each S ( t ,  r)), 

is finite) is a chainable cover of P(!) .  

( iv)  Show that P (1) is connected (cf. Theorem 21), 

(v)  Show that X i s  connected (see ex. 3 ) .  

15. Let X = Z X Z  ordered by the lexicographic order ( i . e . ,  ( a , b ) < ( c , d )  iff 
a < c or a = c and b < Cl ). Let X have the order topology zo (see ex. 1.10) and 
show that 

(a) (X, to) is compact Hausdorff. 

(b) (X,Z,,) is connected. 

(c) (X, T,,) i s  not arcwise connected. 

(d) If y = I X { x) then to I Y is the discrete topology (see ex. 1.2). 

(e) If Z = I X { I } ,  then Z,, I z is the half-open interval topology on Z 
(see ex. 1.3). 
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(t) If W = { t ) x I ,  tE 1 , then 7, I W is the Euclidean topology on W . 

16. Generulization qf Theorem 27. Let ( X , d )  be a complete metric space and 
f : X -+ X a function such that f'" is an a -contraction. Show that f has a unique 
fixed point. (Hint: Consider the sequence {fk'" ( x ) }  k ,  for any XE X . Note that 
d ( f k ' "  f ( x ) ,  f k m  ( x ) )  I ak d (f ( x ) ,  x ) .  Let q = Iim f k "  0). Show f (4) = q and 
that q is unique.) 

k 

17. Localized Contraction Principle. Let ( X , d )  be a complete metric space and 
f : X -+ X be a function such that f is an a -contraction on B (x,, r,) , where 

ir;; I d ( x 0 ,  f (xo 1) = r~ , Then f has a unique fixed point yo on B (x, ,  r,) ; furthermore, 

letting xI = .f (x , )  ,..., x,,+~ = f (xfl) ,..., we get that (x, , ,  ~ , ) ~ a R '  r ~ .  (Hint: Note 

that d (x l ,  x,)  = (I -a)r ,  < r, . Assume that x,, x ,,..., x,  E B (x, ,  r,) such that 

d ( x , l , x o ) ~ ( l - a " )  r, < r o .  Then show that d ( x , + l , x o ) s d  ( ~ , + I , ~ , ) + d ( ~ , , x ~ )  
<af* d (xItx0)+(l-a") r, I d'(l-a)()+(l-a'')q, = (l-a"+l)ro<ro. By 
induction, this shows that the sequence { x , ~ }  is contained in the complete metric 

space S ( x o , r o )  ...). 

A topological space, (X, z) . is said to be 

(i) sequentiully compact if every sequence {x,,} in X has a convergent 
subsequence, 

(ii) countably compact if every countable open cover V of X has a finite 
subcover. 

18. Prove the following 

(a) Every sequentially compact space ( X , z )  is countably compact. 

(b) A metric space is compact iff it is sequentially compact iff it is 
countably compact. 

19. Baire Category Theorem. Let ( X ,  d )  be a complete metric space and UI, I/, , - m e  

be a sequence of open dense subsets of X . Then D = nyz, I/,, is a dense subset of 
X . (Hint: Pick x E X and a neighborhood U of x .  We need to show that U n D # 0 .  
We construct a Cauchy sequence {x,l } i n  X such that z = lim x, and z E U n D : 
Pick B (x, E,)  c B ( x ,  E , )  c I/ , such that I 1 , and choose x1 E B ( x ,  E ~ )  n U, . 
Pick B ( ~ , , E ~ ) C B ( X ~ , E ~ ) C B ( ~ , E , ) ~ ~ ~ ,  such tha t  E l  I and choose 

n 
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X, E B (xI ,  E ~ ) ~ U ~ .  Pick B (x,, E , )  c B (x,, E , )  c B (x1, e l )  nu, such that E, 

and choose x3 E B ( x ? ,  - -  E , )  n U ,  , In this fashion, inductively choose x4, xjr. . .  . Check 
that the sequence {x,,} is Cauchy and its limit is in  U D. 

20. ( E l  , Euclidean metric) is a complete metric space. (Hint: Let { x , }  be a Cauchy 
sequence in  El , Note that ( x ,  I n E N) c some [a ,  b] since there exists t E N 
such that m, n 2 t implies I x, -x, , ,  I < 1; hence, let a = min { x  ,,..., x , )  -1, 
b = max ( x ,  ,. . , , x, ] + I . Therefore {x,,} has a convergent subsequence { x  } ; say 
lim X,,k = C . Because {x,,} is Cauchy, show that lim X,* = c .) 

21. Prove that 

"k 

k n 

(a) the function tm-' : E' -H ] - ;, 5 [ is a homeomorphism; 

(b) i f  d(x ,  y) = 1 /tM1 x - t a d  y 1, then d is a metric for E' such that 

( E l ,  r) z ( E l ,  d )  (recall is the Euclidean metric); 

(c) ( 1 2 )  is d-Cauchy but does not converge; therefore, ( E l ,  d )  is not 
complete. 



Chapter 4 

Function Spaces 

Many a colorful comment can be uttered about the importance of function spaces. Let 
us simply say that, after prospecting for so long, we will finally be rewarded with some 
of the most fabulous results of mathematics. And let there be no misunderstandings - 
much more lies elsewhere. 

4.1 Function Space Topologies 

For any spaces (X,Z)  and ( Y , p ) ,  we let C(X,Y)aYX= 
{f : X + Y I f is continuous} , Generally, the set Y is called afunction space. It is 

clear that Y c n,, Y,, with each Y, = Y ; therefore, it can always be given the 
subspace topology with respect to any topology on n,, Y, . But what we really want 
is to topologize Y x  in such a way that we can generalize the various notions of 
“nearness” of functions ,f, g : E’ + E’  which are generally studied in calculus. In one 
form or another, given I > 0, it is understood that 

X 

(i) f and g are ‘unijiormly E -near’ provided that I f ( x )  - g ( x )  I c E , 
for every X E  E l .  (Wherever convenient, for f E C (X, Y )  , we let graph 
of f’ = gr (f ) = ( ( x ,  f ( x ) )  I x E X ) .) 

graph of g 

(ii) f and g are E -near on the interval [a ,  b]  provided that 
I f ( x ) - g ( x ) l < & ,  for a < x < b .  
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a b 

( i i i )  J’ and g are E -near at the point p provided that 
I f ( P > - R ( P ) l < E .  

P 

Various results are then proved, including the mainstay of Fourier Analysis: A 
unijormly Cauchy sequence {f,,} of continuous functions f, :El  + El (i.e. for 
every E > 0 ,  there exists n ( & ) E  N such that n,m >n(&)  implies 
I f, (x) - f,,{ (x) I < E , for all XE El ( i e .  .f,, and f , n  are uniformly E -near) uniformly 
converges to a continuous function f : El + El (i.e. for every E > 0 there exists 
m ( ~ )  E N and integer M ( E )  such that n > m ( ~ )  implies f,, is uniformly &-near 
f ). Later (cf. Lemma 2) we shall prove this result in a general setting. 

There should remain no doubt that we need to talk about some metrics and topologies 
for function spaces Y : 

(i) Let (X ,T) be any space and ( Y ,  d )  be a bounded metric space, or 
else let ( X  ,T) be a compact Hausdorff space and ( Y , d )  any metric 
space. Define 

d , : Y x  x Y X  + E l ,  
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by letting d,$ (f, g) = SUP d (f ( x ) ,  g (XI) - clearly the “sup” is a well-defined real 

number, in either case. It is straightforward to check that d,v is a metric for Y x  , 
which is generally called the sup-metric. The topology generated by d,v is generally 
called the uniform-convergence topology (abrev. uc). 

XE X 

Such is the utility of the sup metric, that it is customary to let 
{ x , }  is uniformly Cauchy = {f,> is a Cauchy sequence with respect to the sup 

{it} converges uniformly to f = lim d,v ( f , ,  , f >  = 0 .  
metric, 

n 

(ii) Let ( X  ,z) and ( Y ,  p) be any topological spaces. For each C c X 
and U c Y let 

(c, u ) = ( f E Y * I f (c )c u ) . 

Then S , ,  = { (C, U ) I C is compact, 
which is called the compact-open topology (abrev. co). 

The collection S,,L. = ((1 x ) ,  U }  I x E X I  U open ) is a subbase for a topology on Y 
which is called the pointwise-convergence topology (abrev. pc) .  

It should be rather obvious that the uc topology is closely related to the notion of 
“uniformly & -near”, the co topology is closely related to the notion of “ E  -near on an 
interval [a,b]”. and the pc  topology is closely related to the notion of “&-near at a 
point X ”. The following facts are also not hard to prove. 

U is open ) is a subbase for a topology on Y 

1. Lemma. The following are valid: 

(a) For any spaces X and Y , pc c co on Y x  , 

(b) For any spaces X and Y , ( Y X ,  pc) is a subspace of nXEx Y, with 
the product topology (where each Y, = Y ), 

(c) For any space X and bounded metric space (Y,d), pc c co c uc . 

(d) For any compact Hausdorff space X and metric space (Y, p ) ,  co = uc . 

Proof. Part (a) is obvious, since S,,. c q.,, , 

(b) Note that (( n) ,  U )  = l7 ;’ (U ) n Y . This does the trick. 

(c) Clearly pc c co. To show that co C uc it suffices to show that each 
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(C , U ) E S 1 , ,  is an element of uc: So let .f' E (C , U ) . Then 
d (.f (C) ,  Y - U )  = E > 0 .  Therefore f E H ( . f ,  E ) c ( C ,  I/ ) (suppose that 

there exists g E B (. f ,  E )  such that g ( C )  Q U , Pick C E  C such that 
g (c) E X -I/ , Then d,y ( f ,  g) 2 E , a contradiction). This shows that each 
(C , U ) is.a union of elements of uc, and therefore that co c uc. 

(d) Because of (c), we only need to show that uc c co, for which it 
suffices to show that any B ( f ,  e ) E  co: Geometrically, if one thinks of 
B ( , f ,  E )  as a highway with center line, the graph of f , and thinks of 
< C ,  U > E  S,.,, as a rectangle with compact base and open height, then all 
one wants it to trap any trajectory g on the highway B ( f ,  E )  with a finite 

Y 

o f f  

chain of rectangles. 

Analytically, let g E B ( f ,  E )  . Say d ,  ( f ,  g)  = E -6 with 6 > 0 .  Then, for each 
XE X ,  B (g ( x ) ,  6 )  c B (f ( x ) ,  E )  and, since g is continuous and X compact 
Hausdorff,  there exists a compact neighborhood C ,  of x such that 

g ( ~ , ) c ~ ( g ( x ) , 6 ) .  Since {(c,)'IxE X }  is an open cover of X ,  let 
{ ( C ~ , ) " , . . , , ( C ~ , , ) " }  be a finite subcover of X . Then, it is easily seen that 

E n:=, ( c~ ,  , B ( g  (x,), 6 ) )  c B ( A  E )  

which shows that B (f, E )  is a union of elements of a base for CQ, and therefore that 
B ( f ,  E ) E  co, which completes the proof. 

4.2 Completeness and Compactness 

2. Lemma. 
space (or X a compact space and ( Y , d )  any complete metric space). Then 
(Yx , p )  is complete whenever p is 

Let X be any space and ( Y ,  d )  a bounded and complete metric 
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(i) the sup-metric d,$,  

( i i )  the weighted-metric d ,  defined by 

d ,  ( f ,  g) =sup e-6'x-K,, '  d (f (XI, g (X)) ' 
X 

where no is a fixed point of X and 6 > 0 ,  

(iii) the integral-metric di defined by 

whenever this makes sense (for example, whenever X is a closed interval of E' and 
Y = E  ). I 

Proof. We will deal only with the metric d, , since the other cases are quite similar 
(the reader should check that d, and di are actually metrics-the fact that Y x  
consists of continuous functions is crucial in showing that di is a metric). So let 
{A,}  be a Cauchy sequence in (Y" ,d ,v ) .  Then, for each XE X,  (f, (x)] is obvi- 
ously a Cauchy sequence. This enables us to define a function f : X + Y by 

f (XI = lim f,, (XI ,  

for each X E  X , We will show that f is continuous and that limf, =f . First, we 
show that 

I1 

n 

(i) for every E > 0, there exists n ( E )  E N such that II > n(E)  implies 
d (f,, (x). f (x)) < € 1 3 .  for all X E  X (note that it is incorrect to deduce 
from this that d ,  (f,,, f )  s € 1 3  until we have shown that f is 
continuous): Pick n(&) such that n,m > a(&) implies 

d ( f , , ( ~ ) , f , , , ( ~ ) ) < ~ / 3 , f o r a l l  X E  x (i.e. d,, ( f , , , fm)<&/3) .Then  

d (f , ,  ( x ) ,  f ( x ) )  I dff,(X),~~fj,x))+dVI,,(x),f(x)) for m > f i ( E ) -  

Therefore, for every 

X E  X , limd (f,, (x) , f (XI) Iim d (f,, (XI, f," (x)) + lim d (f, (XI 9 f (XI) 9 

m m m 

which implies that 

Next, we show that f is continuous at each qf X : Simply observe that 
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for every n E N . Using ( i )  and the continuity of fn , we immediately get that f is 
continuous. 

Finally we show that lim f;, = .f : Immediate from (i) and the continuity of f . 

Even if X = Y = I , we still cannot claim that (Y ' , d,<) is compact. (Let f : I + I 
be defined by f (x) = x 2 .  Then the sequence {f") has no convergent subsequence: 
Simply, note that, for any subsequence { f ' " }  of {f"} we have that 

n 

which shows that { . f ' I k  } does not converge in ( I '  , cl,v) .) Therefore, given the many 
uses of uniformly convergent sequences of continuous functions, some of which will 
appear shortly, i t  becomes imperative to determine which subsets of (YX, d , )  are 
compact. 

3. Definition. is said to be equicontinuous at the point 
q E X provided that, for every E > 0 ,  there exists a neighborhood N, of q in X 
such that 

A family 9 of ( U x  , 

for each .f E 9 (roughly speaking, all f E 3 are equally continuous). The family 
i' is said to be equicontinuous (on X ) if Y is equicontinuous at each point q E X . 

- 
4. Lemma. 
equicontinuous. 

If 9 is an equicontinuous subspace of (Y' ,  d,v )  then so is ,? 

Proof. 
f ( N 1 )  c B (.f ( x ) ,  ~ / 3 ) ,  for each ,f E 7 .  We will show that 

Pick any X E  X and E > 0 ,  and let N ,  be a neighborhood of x such that 

Note that, for any h~ 7- and g E 3 ,  
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Pick any function g e  7 such that d ,  ( h ,  g ) < & / 3 .  It follows that 
h (N,) c B (h  ( x ) ,  E )  . Since this is true for any h E , the proof is complete. 

5. Theorem (Ascoli-Arzela). Let X be a compact metric space, (Y,d)  any 
metric space and ,? a subset of (Y I d,$)  . Then 
two conditions are valid: 

is compact iff the following 

(i) 9 is equicontinuous, 

(ii) For each X E  X ,  2, = {f ( x )  I f E 3)  - is a compact subspace of Y 

Proof. 
2, = {.f ( x )  I f E F }  - , we assume, without loss of generality, that 9 is closed and 
infinite. Let I f . }  be a sequence in 7 and let D = { x i }  be a dense subset of X , 
by Corollary 3.20. 

The "if' part: Because of Lemma 4 and the obvious fact that 

We will first show that there exists a subsequence {g,} of { J ; }  such that 
exists for each x : Since each ZXA is compact, by induction, it is easy to lim g ( x  

pihk sequences { f }  for k E N such that 

(i) { A ' }  is a subsequence of { . A } ,  
* k  

(ii) { f ' ' )  is a subsequence of {f; 1 ,  
k ( i i i )  { , f ,  ( x i ) )  converges for each x j  with j I k . 

Now, letting gj  = A' ,  for i E N , it is easy to see that ( gi ( x i ) ) ; ,  converges, for 
each x j  (note that fj' contains a subsequence of each f i  k , and apply Proposition 

3.2( a)). 

Next we show that {Si ( X I ) ;  converges for each X E  X : Pick sequence 
(2,) c D such that Iim z,, = x and note that 

II 

with each of the summands tending to zero as i, j , n  become large. Therefore {gi  ( x ) )  
is a Cauchy sequence in the compact space Z ,  which implies that {gi ( x ) )  converges. 

Now define f : X + Y by letting 
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f ( x )  = lim gi ( x )  

for each X E  X , First, we prove that f is continuous: Pick q E  X and& > 0 ,  By 
equicontinuity of 3 ,  there exists a neighborhood N ,  of q such that 

g i  ( N , ) c B ( g ,  ( q ) ,  ~ / 2 ) ,  for i E N . Since 

i 

with Iim g i  (4 )  = f (q)  and lim g j  ( z )  = f ( z ) ,  one immediately gets that 
i i 

Finally, we prove that lim d,y (f, g , )  = O  (i.e. lim gi = f in (Yx, d,) ): Suppose not. 

Then there exists E > O  and  subsequknce such that 
d ,  ( f , hi ) 2 E ,  for i E N . Therefore, for every i E N there exists xi  E X such that 
d (f ( x i ) ,  h, ( x , ) )  1 E / Z  . Let x be a cluster point of the sequence { x i }  (note that 
{ x i }  may be finite). By equicontinuity of 3, there exists a neighborhood N, of x 

such that hi ( N I )  c B (h, ( x ) ,  E /8). Since 

I 

{hi} of {g,} 

with lim ,f ( x , )  = f ( x )  (because f’ is continuous) and lim h , ( x )  = f ( x >  (because 

{ h i )  i s  a subsequence of { g , )  ), we immediately get that, for some sufficiently large 

m E N ,  

i 

It follows that 

a contradiction. The proof of the “it” part is complete. 

The proof of the “only if’ part is left as an exercise (see ex. 10). 

In many aspects, Theorem 5 can be easily generalized to metric spaces X for 
which there exists a sequence {C,) of compact subspaces with X =UL, C, (this 
includes all Euclidean Spaces E” ). See ex. I3 for details. 

We end this section with three applications of Banach’s Contraction Theorem, 
Theorem 5 and the Baire Category Theorem. 
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6. Theorem (A Picard's Theorem). Let J = [xo - E ,  xo + E ]  and S = J x E' . Let 
f : S + E'  be continuous and suppose that f satisfies the Lipschitz condition 

for all y , ,  y 2  E El and some fixed r E El . Then the differential equation 

has a unique solution (xo, yo)  over J . 

Proof. Define F :  C (1, E ' )  + C ( J ,  E l ) ,  by letting 

F (h )  (4  = f ( x ,  yo + I" h ( t )  dt)  , 
4 1  

for every X E  J . Then, letting S > r , 

d, ( F  (h) ,  F (8)) = sup e-61X-Xo1 I f ( x ,  yo +Î  h ( t )  d t )  - f ( x ,  yo + g ( t )  d t )  I 
X 4 1  

Since S > r , we get that F is a 6 - contraction. By Theorem 3.1 8, F has a unique 

fixed point u : J + El ; that is, u ( x )  = f ( x ,  yo + 51 u ( I )  dt )  , for every X E  J , or 

letting v ( x )  = yo + 
Note that the solution u : J + El is obtained by starting with any guess of it, 

XI1 

u ( t )  dt, v ' ( x )  = f ( x ,  v ( x ) )  for every X E  J . L 
inasmuch that u = lim F" ( h )  for any h~ C (J, E l )  ; furthermore, Theorem 3.18 

gives us the rate of chvergence of F' (h), F 2  (h), ... to u . 
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7. Theorem (Peano's Theorem). Let J = [xo - E ,  x, + E ] ,  S = J x E' and 
f : S + E'  be a continuous and bounded function over S . Then the differential 
equation 

Y' = .f ( x ,  Y) 

has a (not necessarily unique) solution through ( x o ,  y o )  over J . 

Proof. 
integers 1 5  r I n . For each n , define a function y, : J ,  + E l  by 

Let ~ , = [ x , , x ~ + + ~ ]  and I , . = [ X , , + ( T - ~ ) E / ~ Z , X ~ , + T E / ~ ]  for n~ N and 

Yo, X,) I x l x o + & / n ,  

y,,+jX::f (t ,  y,, (t)>dt, x , , + ( r - 1 ) & / n < x 1 x , , + r & / n , f o r r = 2 ,  3 ,..., n. 1 Y ,  (x )=  

Note that each y,, (x) is (inductively) well-defined and continuous, inasmuch that, 
for every X E  I , ,  y,, ( x )  is defined in terms of y ,  ( 2 )  for t E  I ,  U... U l r - , .  

Say I f (x, y )  I <  M , for every ( x ,  y )  E S . If x > xIl + ~ / n  then 

d t s 4 I x - € / n - x o I < M € .  

= O .  So, each ( Y , ~  (x)l  n~ NJ- If x ~ ,  I x I x, )  + ~ / n  then I y, ( x ) -  yo 

c [--ME, M E ]  is compact. Likewise, 

I y,, ( x )  - y ,  ( w )  I I M I x - w I, for all x, W E  J , .  

So, { y ,  I n E N} is equicontinuous. Therefore, by Theorem 5,  there exist u E C ( lo ,  E l )  

and a subsequence { Y , , ~ }  of {y,,} such that lim Y , ~ ~  = u . 
k 

Finally, we will show that u is a solution of y' = f (x, y )  : Rewrite 

and note that 

It follows that, for every X E  J ,  , 
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Since the preceding argument applies equally well to [xo - E ,  xo] , we get another 
solution U E C ( [ X ~ - E , X ~ ] , E ’ )  of y ’ = f ( x , y )  with v ( x o ) = y o .  The fact that 
u (x,) = yo = v (xo) and u’ (xo)  = f (xo, yo) = v ’ (xo)  allows us to ‘‘glue” the functions 
v and u , thus obtaining a solution y : J + E‘ of y’= f (x, y )  with y (x,,) = y o .  

There is really no hope for uniqueness in Peano’s Theorem: The equation y‘  = 3 y V 3  

has the solutions y (x) = 0 and y (x) = x3 passing through the point (0,O) over any 
interval [-a, a ] ,  

8. Theorem. 
f : [a, b] + E’ which are nowhere differentiable (i.e. f does not have a deriva- 
tive at any point of [a, 61). Indeed, 

For any closed interval [a, b] there exist continuous functions 

Klrh = {f E C ( [ a ,  b ] ,  E l )  I f is nowhere differentiable) 

is dense in C ( [ a ,  bl, E’ ) , 

Proof. For m =  I, 2, -1.. consider the condition 

f ( X ~ + h ) - f ( X O ) I < m ,  for some a 5 x 0 5 b  and ~ < l h l i A  such that S ( m ) : I  
h 

a 5 xo + h I b and let 

A , ~  = { f  E c ( [a ,  b ] ,  E ’ )  I f satisfies s ( m ) )  , 

x,,, = C ( [ a ,  61, E l )  - A,, . 

Clearly, we only need to show that each A,,, is a dense open subset of C ( [a ,  b], E l )  
and apply the Baire Category Theorem (see ex. 3.19) (note that Klrh = n;=, A,,, , since 
a S xo I b and I f ’  (xo) I I m easily imply that f is contained in some Aj  , for 
sufficiently large j ). 

First, TI,, is open: Suppose not. Then, there exists f E T,, and Cf}c A, such 

that ]im f i  = f . For i E N , let a I xi I b such that I I 5 m , for every 

0 c I h I < -! . Pick subsequence {x jk  } of { x , }  and u I xo I b such that limxi, = xo 

(compactness!). It follows that 

u 

- 

ti ( X i  + h )  - f i  ( X i )  

i 

k 111 

for every 0 5 I h I I 1 , That is, it follows that f E A,, a contradiction. 
I ,  

Finally, is dense: Let f E A,, and E > 0. We wish to show that there exists 
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g~ n B (f, E )  . Clearly it suffices to show that there exists g E B(f,&) such 
that whenever g has a derivative g’ (x) at x then I g’ (x) I > m . This is really quite 
easy to do, even though the details are tedious. Descriptively, from the proof of Lemma 
I(d), we get that the center f of the ball B ( f , ~ )  is covered by rectangular subsets 
R, ,  ..., Rl, with compact base and open height such that R j n  Ri+, #0 for  

i = 1, 2 ,..., n - 1 . Choose y, E Rj n R;,, for i = 1,2 ,..., n , and let 
yo = f (a), y,, = f’ (h)  , In each rectangle Ri construct a saw-tooth function si with 
teeth slim enough that Is: ( x )  I > tn .whenever it exists. Glue the functions sl, ..., s,, 

thus obtaining a function g E n B ( . f ,  E )  . 

4.3 Approximation 

Certainly, after studying either Taylor Series or Fourier Series, the reader is fully aware 
of the great usefulness of “approximating” certain difficult, but valuable, functions by 
simpler ones-generally, polynomials (for Fourier or Taylor Series, the polynomials 
are, of course, the partial sums). It is therefore imperative that one have a good 
understanding of “approximation”. For this, we give two theorems: The first is a 
constructive result and the second is an existence result. (There are many other 
constructive results.) 

9. Lemma. 
cients, which converges uniformly on [0, I] to the function cp ( x )  = & . 

There exists a sequence (4, ( x ) }  of polynomials, with real coeffi- 

Proof. 

& = 1 + (Oi5) (x  - I )  + (0;) (x  - \ ) 2  + (0 .5 )  (x  - 

Note that the Maclaurin series for 

+ ... , where 
3 

(r) - r ( r - l ) .  , , r (r-n + I) - __--- ~, for any real number r , converges for 0 I x 5 I (this is easily 
I I !  

seen by using integral remainders). So, letting q, ( x )  be the nfh -partial sum of this 

series, we then get that {y, ( x ) }  converges uniformly on [0,11 to cp (x) =& . 
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10. Corollary. For any real numbers a < b , there exists a sequence {p ,  (x)} of 
polynomials, with real coefficients, which converges uniformly on [a ,  b] to the func- 
tion v/ (x )= lx l .  

Proof. Note that the polynomials p,, ( x )  = b q "I2 converge uniformly on [a,b] "7 

For any space X and Euclidean space E" , call a subset A of C (X ,  E") an 
algebra provided that f , g e  A and A €  El imply that 
f + g €  A, f g E  A and A E  A ,  where, for each X E  X , 

An algebra A i n  C ( X ,  E " )  is said to distinguish points of X , provided that, for 
every x ,  Y E  X with x f y , there exists fm E A such that fly ( x )  f f x y  (y) . 

cA ( x ) = A ,  for every X E  X .  
For each de E" , let Ca : X + E" denote the constant function defined by 

11. Theorem. (Stone- Weierstrass Approximation.) Let X be a compact metric 
space and A an algebra in C (X, E l )  such that (the constant function) cI E A and 
A distinguishes points of X . Then A- = C ( X ,  E ' )  . 

Proof. Without loss of generality, we assume that A is closed (since it  is trivial to 
check that the closure A-of an algebra A ,  is also an algebra-see ex. 3) and we 
proceed to show that A = C (X , E l )  , 

First, f E A implies I f IE A : Say f (X) c [ a ,  b], since X is compact. Let E > 0 
and choose a polynomial p (t) =ao + a, t +. . - + a,, t" such that 

I l t  I -  p ( t ) I < E ,  for every t~ [a, b] . 

(This can be done, by Corollary 10.) Then, letting p ( f )  = uo + al f + . . a +  a,  (f)" , 
with ( f ) & + l  (x)= (f ( x ) ) ~ "  for k E N and X E  X , it follows that 

with p ( f ) ~  A . Therefore, since E is arbitrary, f E A implies I f 16 A- = A  . 
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Next, f ;  , f2,. . . , f,, E A implies min (f, , . . . , f,, ) E A and max ( f , ,  . . ., f,, E A : 

(note that min ( f '~ , . . . , . f ,~)  (x) = min (fl ( x )  ,...,f, ( x ) ) ,  max ( f l ,  ..., f,,) ( x )  
= max ( f ' ,  (x),. . . , j , ,  (x))) . Since, for example, min ( fl ,..., f,) = min (min 

(f, , . . . , f,l-l ), f,, ) , it  suffices to verify our claim for two functions f, g E A . Therefore 
it suffices to check that (see ex. 4) 

and note that I f - g IE A- = A .  
We are now ready for the final assault, which will be done in two stages. 

( i )  L I E  X ,  , f ' ~  C ( X ,  E l )  and E > 0 implies that there exists f, E A such 

that ,fLl ( a )  = .f' (u )  and f,, ( x )  < f ( x )  + E for every x E X : Since A is 
an algebra, for every b E X , there exists far, E A such that 

fCrh  ( a )  = f ( a )  and fcrh (6 )  = f (6) (for example, let h~ A such that 

h ( a )  f h (b)  and let fuh ( x )  = f ( a )  

X E  X ). By continuity of the functions f and fUb, there exists a 

neighborhood N ,  of b such that 

f '  ( N , )  U f i l l ,  ( N , )  c 1 f (6) - ~ / 2 ,  f (6) + ~ / 2 [ ,  from which it follows 
that 

h ( x )  - h ( h )  h (1) - h (a )  
h ( h ) - h ( u )  ' for every 

h ( h )  - h (u) + f 

By compactness of X , let N,, , . . ., N,,, cover X . Then it is easily seen that the 
function 

satisfies all requirements. 

( i i )  f E C ( X ,  E l ) ,  E > 0 implies that there exists 7 E A such that 

d ,  ( f ,  7) < E : For each a E X , choose a function f, satisfying (i) 
above. Then, there exists a neighborhood V,  of a such that 
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By compactness of X ,  let Nu,,...,Nt,k cover X . It follows that, letting 

7 = max (fu, ,... JL,,,) 9 

Z E  x implies j ( z > - - ~ < 7 ( z ) < j ( ~ ) + ~ ;  

that is, d,  ( f ,  7) < E . Since & is arbitrary, and 7 E A ,  we get that f E A .  This 
shows that A = A- = C (X, E' ) . 

Theorem I 1 can be generalized to other Euclidean spaces, but one must be careful 
(see ex. 17). Theorem I I ,  even though non-constructive, has a great virtue: It alerts us 
to various possible collections of functions which suffice to approximate any given 
f E C ( X ,  E l ) .  Indeed, for every S c C (X,  E') , let 

A ( S )  = 17 { K  I K is a closed subalgebra of C (XI E l ) ,  S c K }  ; 

it is straightforward that A (S) is a closed algebra; A (S) is called the closed algebra 
generated by S (in C (X, El), of course). It then follows that, for example, 

(iii) A ({I, x 2 } )  # C ([-1,1], E l ) ,  because it does not distinguish -1 from 
I ,  

(iv) A( (1 ,  cos X ) ) = C ( [ O , K ] , E ' ) ,  

(v) A({I, l+cos a ) ) = C ( [ 0 , 2 ~ ] , E ' ) .  

4.4 Function-Space Functions 

By now, we are certain that the reader will agree that function spaces are extremely 
important and very difficult to handle; that the pc topology is rather useless, while the 
uc topology is very useful; and finally, that the uc and co topologies are closely related 
(cf. Lemma l(d) and ex. 18). The following three constructions and subsequent results 
not only simplify the co and uc topologies but also provide us with crucial tools for 
some of the work ahead. 

x Z Y  + Z x , by Composite Function. For any spaces X ,  Y,  2 define T : Y 
letting 

T ( j ,  g )  = g 0 j , for every ( j ,  g)E Y x 2' 
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(The function T is called the composition function.) 
Evaluation Function. For any spaces X , Y define c : Y x X + Y by letting 

e ( j ' ,  x )  = f ( x )  , for every (f, X)E Y' xx I 

(The function c is called the evaluation function.) 
Associated Functions. For any spaces X ,  Y ,  Z note that any function 

f : X x Y 3 2 generates a function j : X + Z y  defined by 

for every ( x ,  y ) ~  X x Y ; conversely, any f generates an f , by the same equation 
above. The functions f and f are called associatedfunctions. 

x ' , Y " - - r Z  

K .f ( K )  

I'u TU I'u 
U 

12. Lemma. The composition function T : Y x Z Y  + Z x  is continuous with 
respect to the co topology on all spaces, whenever Y is locally compact Hausdorff. 

Proof. 
each ( K , U ) E  S,,, .Butobservethat,foreach ( f ,  g ) E  R - ' ( K , u ) ,  wegetthat 
with f ( K )  compact. Since g is continuous, g ( f  ( K ) )  c U and Y is locally 
compact Hausdorff, there exists open cover h' of f ( K )  such that V -  is compact 
and g ( V - ) c U ,  forevery V E  Y (seeLemma3.19). Let {F ,...,y, 1 beafinite 
subcollection of b' which covers (the compact space) f ( K ) .  Then W =uy=, Vi is 
open in Y ,  W 3 f ( K ) ,  W -  = Uy=, V,- is compact and g (W-) c I/ . It follows that 

By Theorem I ,  14(vi), i t  suffices to prove that T - . I  ( K  , U ) is open, for 

( K . W ) x ( W  - , u ) c  T - '  ( ( K J ) )  

is a neighborhood of ( f ,  g )  , which shows that T - I  ( K  , U ) is open. This completes 
the proof. 

13. Corollary. 
respect to co topology, whenever X is locally compact. 

The evaluation function e : X x Y + Y is continuous with 

Proof. 
maps 

First note that, with 1 = (01, X' E X , Since c is the composition of the 
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Y X X X 1 & X 1 X Y X  L Y ’ G Y ,  

with j (f, x) = (x, f )  , for every ( f ,  X)E y x  x X 1  it follows from Lemma 12 that e 
is continuous (obviously, j is continuous). 

14. Theorem. 
f : X X Y + Z is continuous iff its associated function j : X + Zy  is continuous. 

For spaces X ,  Y ,  2 ,  with Y locally compact Hausdorff, 

Proof. First, the “if” part: Let j : X + Z y  be continuous and note that 

f = e <f x i , ) ,  

x x y  f x i ,  , Z Y X Y + Z ,  

with i, : Y + Y being the identity function. Since all these functions are continuous 
(see Lemma 2.7), it follows that f is continuous. 

Now, the “only i f”  part: Let f : X X X -) Z be continuous. To show that 
f : X 3 Z y  is continuous, we pick ( K ,  v )E s, , ,  for Z y and show that 
f - ’  ( ( K ,  v ) )  is open: 

Let XE f-’ ( ( K ,  V ) )  . Then for every Y E  K , 

Since f continuous, for every y E K , there exists an open neighborhood Nxy x N ,  
of (x,y) in X X X  such that 

Since K is compact, let N y ,  ,..., N , ,  cover K . Then, letting N ,  =n:.’=, N q ,  and 
N ,  =fl?=, N ! ,  , it follows that 

Therefore N, is a neighborhood of x such that 

which completes the proof. 
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Chapter 4. Exercises. 

1.  A sequence {til} of functions f,, : X + El is said to be decreasing (increasing) 

provided that f,, (x) 2 .f,,+, (x) Cf,, (x) 2 f,,,, (x)),  for every X E  X and n E N . 

( i )  If X is a space, each f,, is continuous, If,,} is decreasing (or 
increasing) and, for some PE X ,  Iim f,, ( p )  = 0 ,  show that 

II 

for every E > 0 ,  there exist n ( E )  and neighborhood N ,  of p such that 
(x) < E , for every n > n ( ~ )  and x E N,,  . 

( i i )  Theorem ofDini. Let ( X ,  p )  be a compact metric space and { f,} a 
decreasing sequence of functions such that if,, } converges pointwise to 
the continuous function f' : X 
uniformly. 

E' .  Then {L,} converges to f 

2. Let Y x  and Z y  be function spaces, such that the sup metric makes sense in Z y  

(for example, Y compact and (2, p )  metric). Prove that, for every hE Y x  and 

f * g E  z y ,  

3. For any compact space X , let A be an algebra in C (X, E " )  with the sup metric. 
Show that A-  is also an algebra. (Hint: Given f, g E A- and A E E' , let {f,> C A 

and {g,,} c A such that lim d,v (f,,, f )  = 0 and lim d,v ( g , ,  g) = 0. NOW, show that 
11 n 

in mind that the metric rf is the Euclideun metric.) 

4. Let X be compact Hausdorff and f ,  g E C ( X ,  E " ) .  Show that 

I I ( i )  min ( f ,  g )  =1 (.f + g) - I f - g 1, 

( i i )  max ( f ,  g) = ( f  + g) + I f  - g  I. I I 

(Hint: For example, for (i) consider the two cases: Case I .  min ( f ,  g) ( x )  = f (x) ; 
Case 2. min ( , f ,  g )  ( x )  = ,q (x) . Check that the formula (i) works in either case.) 
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5 .  Let C" be the set of all infinite sequences {x , )  of complex numbers 

such that C,, I x,, I* < 03 . Let p ,  (i, y) = sup ( I x ,  - y, II mE N} and pz (X, j )  = 

(a) PI is a metric on C". 

(b) (C", p 2 )  is a complete metric space (this space is known as the 
Hilbert space). 

6 .  For i = 1,2,. .., n, let J i  be a closed interval and let C,, = l-Ir=, C ( J i ,  EL), with the 
metric d ( ( A ) ,  (gi)) = max d, ( A ) ,  (g i )  (cf. Lemma 2(ii)). Show that (Cn, d )  is a 
complete metric space. ' 

7. Let f ( X I  = x + 1 , for every x E E I  . IS j r l  I n E N 1 an equicontinuous family? 

8. Let (X,  d )  be a metric space and f : X + X an a -contraction. Show that 

(a) A ( f )  = {f" I n = 1,2,. . .} is equicontinuous. 

(b) (f) = A (f)- c (X x ,  d , v )  is equicontinuous. 

(c) If X is compact, r ( . f )  is compact. 

9. Let f ( x ) = x 2 ,  for X E  I .  Show that {f" In=l,2, . . .}  is not equicontinuous. 

10. Let (Y, d) be a metric space and 7 be a compact subset of ( Y  ', d , )  . Showxhat 
y is equicontinuous. (Hint: Suppose not. Then there exists p E X and & > 0 such 

that, for each E (p, $) , there exists f, E ,? such that f,, ( B  (p ,  i)) Q B (f,, ( p ) ,  &) . 
Therefore, there exists { X , }  C x such that limx, = p and d ( f n  ( x n ) ,  f n  ( p ) )  2 E . 
Since 7 is compact the sequence {f"} has 1 cluster point f E 9 .  Observing that 

complete the proof.) 
Also show that 7 is closed in ( Y x  , d , v )  and that 2, = {f ( x )  I f E 3} is compact. 

(Note that ,? is compact. Is w, : Y * + X , defined by w, ( f )  = f ( x ) ,  a continuous 
function?) 
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1 1. Linear Integral Equations. In physics, equations of the form 

( 1 )  x (s) = A juh K (s, t )  x ( t )  d t  + f (s) 

appear frequently. This particular one is a simple Fredholm's equation of the second 
kind and appears in the study of small oscillations of elastic systems. Prove that if K 
is defined and continuous on the rectangle R = {(s, t )  I a I s, t I b)  , f is defined and 

continuous on the interval J = [ a , b ]  and IAIC-  with M =sup 

{ K ( s , t )  I (s , t )E R )  , then the above equation has a unique solution. (Hint: Consider the 
space C ( J ,  J )  and define F : C ( J ,  J )  + ( J ,  J )  by letting 

I 

F (g) (s) = A p K (s, t )  g ( t )  d t  + f (s) , 

for every .YE J .) Show that F is a contraction. (Why must we have that f is 
continuous?) Show that ( 1 )  has a unique solution x = x ( t )  . 

12. Nonlinear Integral Equations. In physics, one also encounters equations of the 
form 

with K defined and continuous on a parallelepiped P = { ( s , t , z )  
I a I s, r I b, - H I z I H }  and the function x ( t )  defined on J = [a, b] . Prove that if 
the function K satisfies the Lipschitz condition 

I K ( s ,  t ,  x , )  - K (s, t ,  ~ 2 )  I I L I x1 - x2 I 

for all x, , x2 E [ - H ,  HI and I A I < mLT , then the above equation has a unique solution. 

(Hint: Consider the space C ( J ,  [-H, H I )  and define F in C ( J ,  [-H, H I )  by letting 

F ( g )  (s) = a f K (s, f ,  g ( t ) )  d t  + P (s) 

for every s E J .) Show that F is a contraction. Show that (2) has a unique solution 
u = x ( t )  . 



(b) P , ~  (q"' ( g ) ,  cp"' ( h ) )  I ? (A M (b-a))"'lm ! (Use induction!) 

(d) cp" is a contraction. 

(e) cp has a unique fixed point (cf. ex. 3.16). 

14. Infinite Systems of Linear Equations. Let 

( 1 )  y,,, =En an', x,, +c,,, for rn=l,2;.. . 

This can be put  i n  vector notation j = A X + C ,  where 
X = ( X , , X ~  ,... ) , 3 = ( y r , y 2 ,  ...), C=(c,,c,,...) and A = ( a i , )  is an infinite matrix. 
Show that 

(a) If sup, Z I amn I < 1, then we can define a function f : (C 

+ (C Olr, p , )  , by letting f (X) = A? + C ; furthermore, this function is a 
contraction. (This implies that f has a unique fixed point, because of ex. 
5(a), and (1) has a unique solution.) 

p, )  

(b) If C I a,, l 2  < 1 , then we can define a function f : (C Olr, p 2 )  
+ (C Do, p 2 > ,  by letting ,f (2 )  = AX + C ; furthermore this function is a 
contraction. (This implies that f has a unique fixed point, because of ex. 
5(b) and (1) has a unique solution.) 

15. Finite Systems of O.D.E. 's of First Order. Let 

(3) y i  (x) = rp ( x ,  y, ( x ) ,  ..., y, ( x ) ) ,  i = I ,  2, ." , be a system of differential 
equations with initial conditions x = X, and yi ( x , , )  = y i o ,  i = 1,2, ... . 
Assume the functions cpi are continuous in  some cube 
B ( x ~ ,  E ) X  ll:=, B ( y i ,  E )  c En" and satisfy the Lipschitz condition 

(4) I qpi (x, y)  - qi (x, Z) I 5  M max I y i  - zi  I, i = I, 2, , 
i 

where W = ( w ,  ,..., w , , ) ~  E " .  Show that 
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(a) To solve ( 3 )  and (4) is equivalent to solving (4) and 

( 5 )  y ;  ( x )  = yio + I:, ‘p; 0,  YI ( t )  ,..., Y,, ( I ) )  d t ,  i = 1 9  2 , . . * .  

(b) The function A : (C,, d )  -+ (C,, , d )  (cf. ex. 6), defined by the n -tuple 

A ( B ~ , . . . , K , ) ( ~ ) = ( Y ~ ~ + ~ ~ ~ ~  rp, ( t , g l  ( t h . . . , g ,  ( t ) ) d t ) ; ,  

is a contraction. Hint: Note that, taking S > M and the proof of Theorem 
6, 

d ( A  (g l * . . . . gn ) *  A (h~*...vh,~))s 

M M 
6 I-~ maxd,, ( g i , h j ) = -  d (( g l , . . . , g f , ) , ( ~ ~ , . . . , ~ f l ) )  

1 

(c) ( 3 )  and (4) have a unique solution. 

16. O.D.E. S oforder n .  Consider the differential equation 

(6) y‘”) = F ( y ,  y ’ , .  . ., y‘“-”, X) 

and show that 

(a) Solving (6) is equivalent to solving the finite system of o.d.e.’s of first 
order 

‘ , , - I )  - y =  YI, y’= Y 2 , . . . 3 Y  - Y , ,  
y;  = yk+, , k = I , . .  ., n - I 

y:, = F ( ~ 1 ,  . Y ~ ~ . . . . Y , , > x )  
( 7 )  
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(b) Use ex. 15, to obtain conditions that guarantee existence and 
uniqueness of solutions for (7) and the initial conditions 
y i  (x,) = yio, i = I ,  ..., n ; equivalently for (6) and the initial conditions 

( i )  y (xo )=y , , , i= l  ,..., n .  

17. Show that Theorem I I becomes false if we replace E’ and E 2  in its statement. 
(Hint: Let x = [ B  ((O,O), 1) I - and A be the algebra of all polynomials in z = x + iy , 
with real coefficients. Show that the (constant function) ci P A- , even though c,  E A 
and A distinguishes points by p (z) = z .) 

Now, show that Theorem I 1  becomes valid with El replaced by E 2  if we add 

the condition that f E A implies the conjugate function f~ A (i.e. i f  
f (z) = f~ (z) + $2 (z) then .? ( z )  = f ,  ( 2 )  - if2 (z) 1. 

18. Broadening the Ascoli-Arzela Theorem. Let X be a metric space for which there 
exists a sequence {C,*} of compact subspaces with X =Uy=, C, (i.e. X is d - 
compact) and let ( Y ,  d )  be any metric space. For each n E N and f, g E Y x  , let 

and let 

(i) Show that d, is a metric on Y x  , 

( i i )  Letting K,, = { f  I C,, : f E Y x  } , for each n ,  show that 

(K,,, d, I K,, x K , , )  i s  a metric subspace of ( C  (C,, Y ) ,  d,). (Be careful! 
These two spaces are generally not identical, since there may exist a 

continuous function g : C, + Y such that no continuous 

satisfies S 1 c,, = g .) 

: X + Y 

(iii) Show that a family 3 c ( Y X  , d,) is compact iff each 

;7, = { f  I C,, : f E ?} is compact. Also show that each 3 is compact iff 

is equicontinuous and Z,,, = { f  (x) I f E 3}- is compact, for each 

X E  C,, . (Hint: Immediate from ( i i )  and Theorem 5. )  





Chapter 5 

Topological Groups 

When dealing with integrals, areas and volumes, and continuous functions we use the 
following principles with no second thoughts: 

(i) If f, g : E” + Em are continuous then so are f + g , f - g and fg . 

(ii) In E” we can rotate and translate geometric figures without changing 
their volume, area or length. 

And yet we should have many second thoughts about this. After all, letting 

it is easy to see that 8 is a base for a topology z h  on E’ (See ex. 1.3). It is equally 
easy to see that 

(iii) The identity function j : ( E l ,  z,,) + ( E l ,  z,) and the constant 

functions c,, : ( E l ,  z/,) + ( E l ,  z~,), defined by c, (x) = a , are continuous. 

However the functions co - j = - j  and k , defined by 

k (x) = j ( x )  j (x) = x 2 ,  are not continuous. 

At the end of section 3.2 we pointed out that, with respect to the metric 

d ((x,, X 2 ) , ( Y , r  y 2 ) ) = 1  XI - Y ,  I + (  x 2  - Y *  I on E ’, the length of the segment from 

(0,O) to (1,l) is 2 .  However, it is immediate that the length of, its rotation, the segment 

from (o,o) to (0, A) is Jz . 
At this point, the reader may feel cheated and dejected, or else may ask: Why is it 

that, with respect to the Euclidean topology the sum, subtraction, product and quotient 

(whenever the denominator is + 0 ) of continuous functions f ,  g : E” + Em are 

113 
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continuous‘? Why is it that, with respect to the Euclidean metric on E n ,  rotation and 
translation do not affect length, area or volume of geometric figures? 

We will now devote our attention to the first question. We will deal with the second 
question in the exercises (cf. ex. 12). 

5.1 Elementary Structures 

1. Definition. 
group, (G, z )  is a topological space and 

A rtipolo~icul group is a triple (G,O,z) such that ( G , O )  is a 

( i )  the group operation 0 : G x G -+ G is continuous, 

( i i )  the inversion function i : G + G , defined by i ( x )  = x-l or i ( x )  = -n , 
is continuous, 

( i i i )  letting e be the u n i t  element of G , { e }  is a closed subset of (G, Z) . 

(There exist mathematicians that do  not require the last condition in the definition 
of a topological group.) 

Throughout, we will use either the multiplicative or the additive notion for groups, 
depending on which seems most convenient. As customary, the juxtaposition a b of 

two elements u E G, h E G means the product of a and b in the group G , The unit 

element of a multiplicative group will generally be denoted by 1 and the identityelement 
of an additive group will be denoted by 0 .  

2. Lemma. 
addition (resp. multiplication) and the Euclidean topology, is a topological group. 

For I I  E N, E “ (resp. E ”  - ( 0 )  ), with the usual coordinatewise 

Proof. 
need only prove that the addition and inversion functions are continuous, since the 
remaining details should be well known to the reader. 

We will only do the additive case since the other is similar. Clearly, we 

To show that + : E” x E” -+ E” is continuous, it suffices to check that for every 

( ( a ,  ,..., u, , ) , (h ,  ,..., h , , ) ) ~  E ” x E “  and B ( ( a ,  +b ,,..., a,, + b , , ) , ~ ) ,  
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(To be precise, we should say 

115 

+ BNa, ,. . ., a, ) , E  / 2 n  ) + B ((h,, . . ., bn) ,  E / 2 n  ) c B ((a, +h,, .  . . ,a, +b,), E )  , 

but controlled imprecision sometimes has its unjust rewards-simplicity, familiarity 

and convenience.) Simply note that, whenever I (xI,. . . , x,) - (al ,. . . ,u, ) I < E l 2 n  

and I (wI  ,..., w n > -  ( b  ,,.,., b , ) l < ~  / 2n, then I x, - ui 1 < & / 2 n ,  I w i  - b j  I < & / 2 n  

for i = 1, 2,. . ., n; therefore, 

I ( x ,  + w, I . .  . , x ,  + w , )  - (a ,  + h, ,. . .) a, + 6,) I = (C I xi  + wi -ui -bi  12,; 

E L  I 

=(n7)'  = & .  

It is obvious that the inversion function is continuous, since 

i ( B  ((x,,. . . , x , ~  ), E ) )  = B ( ( - x , , .  . . ,-x,, ), E 1, 

for every (q,. . . , x,,) E E" and E > 0 . 
It is now obvious that sums, products, differences and well-defined quotients of 

continuous functions f, g : E" + Em are continuous: for example, 

f + g : E" + E n  

with (f, g) (x) = (f (XI, g (XI), for every x E E n I  

If h : En + Em - (0) then : EN + Ern - {O}  is the composite of 
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Let us recall that, for any group G and C E  G , the functions 

L,, : G --i, G, R,. : G -+ G, 

defined by L, (x) = c x, R,. (x) = x c, for every x E G , are called left translations and 

right translations, respectively. Note that if G is abelian ( i .e . ,  commutative) then L, 

and R,. are actually one-to-one and onto functions whose inverses are L,-, and RL-, , 

respectively. (Note that the geometric translations in En are the additive translations. 

The multiplicative translations in EN really do no more than “expand” or “contract” 
the geometric figures.) 

Let us also recall that, for any group G and subgroup H of G , the collection 

G/H = ( a  H I a E G )  , with the operation 

( a H ) ( b H ) = a b H ,  

is a group iff H is normal ( i . e . ,  g H g- ’  c H , for every ,g E G ) and, in this case, we 

let 

GIH = ( U H ~ U E G ) = [ H  U I U E  G) 

because each a H = H a . We will let : G -+ G / H  be the natural homomorphism. 

3. Lemma. The following are valid: 

(a) If (G,  0 ,t) is a topological group and H is a subgroup of G I  then 
(H,U , T I  H )  is a topological group. 

(b) In a topological group (G, m, T) , the inversion function i and the 
translations are homeomorphisms. 

(c) In a topological group (G, m, z) , the product of any subset A by any 

open subset U (AU = { a u  I U E  A,u E U } )  is open. In particular, the 

multiplication m is an open function. 
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(d) If (G, m, z) is a topological group and H is a normal subgroup of G , 

then A :  G + ( G / H ,  quotient topology z,) is open. The singleton { H } , 

consisting of the unit  element H of G /  H , is closed with respect to zL iff 
H is a closed subset of G . 

(e) If (G, m, z) is a topological group and H is a closed normal subgroup 

of G then GIH with the quotient topology zk is a topological group. 

Proof. 
continuous, with respect to the subspace topology. 

Part (a) is obvious, since restrictions of continuous functions remain 

Part (b). Note that the inversion function equals its own inverse function. With 

respect to translations, it suffices to note that, for every CE G (including c-' E G!),  

L,. = m l { c ) x G ,  I?,. = m l G x { c ) .  

Part (c). It suffices to note that 

and apply part (b) as well as Corollary 1.16. 

Part (d). To show that the quotient map A : G -) G/H is open, pick any open 

U c G and note that 

I-' (A ( U ) )  = H u 

is open in G . Therefore, L ( U )  is open because L is a quotient map. 

To show that I H } is closed in GI H iff H is closed in G , simply observe that 

a-l (GIH - H 1) = G - H 

Therefore, G - H is open in  G iff G / H - ( H ] is open in G/ H, or equivalently, 

H is closed in  G iff { H 1 is closed in G /  H. 
Part (e). Because of part (d), we only need to show that the multiplication and 

inversion induced by A on G/H are continuous with respect to zl. For this, it suffices 

to check that, the diagrams below are commutative (i.e. A 0 m = m' 0 ( A x  A),...) 
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with A and k x A  quotient maps (to show that A x A  is quotient use part (d) and 
Lemma 2.7 to get that Ax  A is open and continuous; then use Lemma 2.14 to get that 
A x  A is a quotient function). 

Let us now recall, for any subset S of a group (G,  rn), 

with x - '  denoting the inverse of x in G . Furthermore, S c G is said to besymmetric 
provided that 

4. Lemma. 

there exists an open symmetric neighborhood V of e such that v v =v v-' C u . 
Furthermore, V -  c U . 

If U is a neighborhood of e in a topological group (G, m, 2) , then 

Proof. 

that N M c U . Let K = N n M . By lemma 3(b), K - '  is also a neighborhood of 
e . Finally, let 

By continuity of m , there exist open neighborhoods N and k! of e such 

It follows that v is a symmetric neighborhood of e with 

v v -I = v v c K K c N M c u . 

Now, we show that V -  c U : Take any p g U . Then, by Lemma 3(b), p V is a 
neighborhood of p which misses v . (Say q E  V n p V . Then q E V and 4 = p v , 

for some v E V . Then p = q Y - '  E V V- '  c I/ , a contradiction.) 
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5. Corollary. Every topological group (G, m, z) is a regular space. 

Proof. From Definition I(iii) and Lemma 3(b), we immediately get that G is T I .  

Let p E G and I/ be any neighborhood of p . Then L/,-, (U) is a neighborhood of 

e . Therefore, by Lemma 4, there exists a neighborhood V of e such that 

V -  C LP-, (U) . Then, letting w = L,, (v) , we get that W is a neighborhood of P I  

with 

w -  = L/, (v-) c U . 

While the product of open subsets of a topological group is open, the product of 

closed sets may not be closed. For example, in E 2  let 

A = ( ( x , y ) l x > O  and y l l l x } ,  

B = ((0, y )  I YE E l ) .  

Thinking of the points A and B as vectors, it is easy to see that A + B is the open 

right half-plane { ( x ,  y) I Y E  E' and x > 0). However, not all is lost. 

6. Lemma. 
compact subsets of G . Then 

Let G be a topological group, B a closed subset of G , C and H 

(i) CH is compact, 

(ii) BC is closed, 

(iii) If H is also a normal subgroup of G , then the natural quotient map 

A.:G+GIH is also a closed function. 
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Proof. Part ( i )  is immediate from Theorem 3.8 and Lemma 3.6(c). 

Part (i i)  Let p g BC . Then, for every CE c, eP p-' Bc and p-' Bc is closed 

(since p - l  BC = R~ L ., ( B )  ). Therefore, by Lemma 4, there exists a symmetric 

open neighborhood y. of e such that 

p)v, v,. n p-i B~ =0 

Since {C V, 1 C E  C} is an open cover of C ,  let 

subcover, and let 

Vc.l ,..., c, Vc,,, be a finite 

We show that p V n B C = S  (of course, this will complete the proof): Say pv = bc , 

for some v E V ,  bE B and CE C. Since C E  ull c, , let C=C, V, , for some j and 

v, E V, . Then pv = bc, V ,  o r  v v;' = p-lbc, E p-' Bc , contradicting (*). 
Part ( i i i ) .  All we need to show is that, for each closed BCG, h(B) is closed. But 

is closed by (ii). Therefore, (B) is closed, since is a quotient map. 

The following is a very useful result in  the study of continuous homomorphisms 
between topological groups. 

7. Theorem. 

phism. If J' is continuous at one point p of G then f' is continuous. 

Let G and H be topological groups and f : G+H a homomor- 

Proof. 

neighborhood of f ( q ) ,  For convenience, let 4 = f ( q )  and 

LI,y-I ( U )  is a neighborhood of 

such that f ( V )  c L1,4-, ( U ) .  It follows that L .I ( V )  is a neighborhood of 4 such 

that 

Pick any q E G and let us show that f is continuous at q : Let U be a 

= f ( p ) .  Then 

. Therefore, there exists a neighborhood v of p 

ql) 
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8. Theorem. 

you wish), Then nasF G, , with the coordinatewise multiplication rn and the 

product topology Il z, , is a topological group. 

Let {(G, , ma, 7,)) be a family of topological groups (finite, if 

Proof. 
following commutative diagram 

It suffices to apply oldfriends-Lemma 2.7, Theorem 2.12-to the 

5.2 Topological Isomorphism Theorems 

Let us recall that, for any homomorphism W : G + H between two groups, the kernel 

of W is Ker y = {g  E G l y (g) = e) , where e is the unit element of H. For 

convenience, let G GH= there exists a topological isomorphism (i .e. ,  an isomorphism 
and a homeomorphism) between G and H . 

9. Lemma. Let G and H be topological groups and w : G + H a quotient 

homomorphism. Then 

Proof. 
j ( g  K e r y ) = v ( g ) , f o r e v e r y  g E G .  

Immediate from Lemma 2.14 and the commutative diagram with 
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\_I 1; 
10. Theorem. Let c p :  G ++ G' be a quotient homomorphism and H a closed 

normal subgroup of G with H c K e r  q . Then 

G GIH 
Kerq  KercplH' 
__ -- 

Proof. Immediate from Lemma 2.14 and the commutative diagram 

C/ K e r  cp A G 

with V ( g H ) = g  K e r  cp, A - " ( g H ) = g H ( K e r  q l H ) = g ( K e r  q l H ) = g  K e r  v / ,  

h ( g  K e r  q ) = g ( K e r  q l H ) = g  Ker  y / ;  J. and A' need no comment .  It is 

straightforward that h is an isomorphism. Since A and A' are quotient maps, it 

follows that h and h-' are continuous, respectively-the diagrams 

G/ Kerq G------+ 
a 

G/ Kercp 

Kercp/ H 

may help. 

11. Theorem. 
with K normal, HK closed, and H or K compact. Then 

Let H and K be closed subgroups of a topological group G , 

H - H K  
H n K  K .  

- --- 
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Proof. Naturally, one first checks that H 
that H n K is a normal subgroup of H . Next one constructs an appropriate 

K and HK are subgroups of G and 

diagram, that befits the situation at hand, and draws the appropriate conclusions: 

h K + h K  
- H K  

K 

Note that ly is continuous whenever H (or K )  is compact. No further comments 
seem necessary. We leave the details to the reader, 

5.3 Quotient Group Recognition 

The usefulness of any mathematical structure is directly proportional to one's geometrical 
understanding of it. The applications of Chapter 3 offer overwhelming support for this 
statement. Fortunately, many a quotient group can also be identified with elementary 
groups. Let us treat two examples in order to illustrate the general techniques. The next 
chapter will have many more examples. 

12. Lemma. The quotient group E' lZ  , with 

integers of E'  , is topologically isomorphic with the multiplicative group S' (h., 
ip i ( e + P )  S ' = { e i e I O - < 8 S 2 ~ }  and e i B X  e = e  

being the additive group of the 

). 

Proof. 
each 0 5 t I I and integer k , we get that the cosets 

First, recall that eie = e i (e+2d)  , for every integer k . Also recall that, for 

( k + t ) + Z = t + Z .  

Then the diagrams 
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with ~ ( r ) = e ~ * ~ ~ ,  q ( r + ~ ) = e ' * ~ " , f o r e a c h  r e  E l ,  suffice tocompletetheproof. 

(Clearly 4 is an isomorphism; also p is open and continuous-therefore p is quotient. 

Now, the first diagram says that 4 is continuous and the second says that q-' is 

continuous.) 

13. Lemma. 

Gaussian integers) is topologically isomorphic with the torus group S '  x S 1 .  

The quotient group E' X E ' / Z  X Z ( Z  X Z  is called the group of 

Proof. Essentially the same as the proof of Lemma 12. The only concern is to 

check that S '  x S '  is (homeomorphic to) a torus: Simply define I : / 3 S' , by 

letting ! ( t )  = e' , for every t E I , and observe that 

produces exactly the same identifications of the boundary a ( / x f )  of 1 x 1  as the 

ones to construct the torus in Chapter 3 .  

5.4 Morphism Groups 

By a morphism ,f : X tj Y we mean a function with one or more of the following 

attributes: homeomorphism, isometry, topological isomorphism. 

A topological transformatiorz group (abbrev. ttg) is a pair (G, X )  such that X is 

a topological space, G is a topological group of morphisms X --tj X with respect to 

composition of functions, and the evaluation function Gx x 3 x is continuous. 
Unless otherwise stated, all ttgs wil l  be ussumed to have the co topology. 

j 

f' 
14. Theorem. For any space X , let K ( X )  be a group of morphisms X --t) X 

with respect to composition of functions. If x is compact Hausdorff, then u(x) 
is a ttg. 

Proof. 
Lemma 4.13, and the group multiplication is continuous, because of Lemma 4.12. 

The inversion function i : U ( X )  +U ( X )  is also continuous. (Let f - l  E (K, V )  . 

Then . ~ ' E ( X - V , X - K )  and i ( ( X - V ,  X - K ) ) c ( K , V ) . )  

Clearly, the evaluation map e : G X X + X is continuous, because of 
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In the preceding result, we definitely used the compactness of X to show that the 
inversion function is continuous. But do we really need compactness? If X has some 
good connectivity properties then we don't need that X be compact. Let us substantiate 
our vague statement with the Euclidean spaces. 

f 
15. Theorem. 

u ( E " )  is a ttg. 

For each n ,  if ,?l (E") is a group of morphisms E" t) E" then 

Proof. Because of the proof of Theorem 14, we only need to show that the inversion 
function is continuous. But, first we need to check that 

&.(, = { ( K ,  V )  I K is compact connected , V is open} 

is also a subbase for the co topology: Clearly &(, C$.,, . Now, let f E (c, v) E s,, . 
Since f ( C ) c V  and C is compact, there exists finitely many balls 

B (c,, a,),. . . , B  (c,, , 6 , ) ,  with centers in  C , which cover C and such that 

This shows that 

S,,, c The topology generated by K,,, . 

It follows that A$, is a subbase for the co topology. 

Now we show that the inversion function is continuous: let f-' E ( K ,  v) E K,, , 
Using the local compactness of E",  the connectedness of balls in En, and Lemma 

3.32 and Theorem 3.34, one can easily pick compact connected sets K, and V, such 

that 

KcG, f-' (K*>CC cv, cv, 

which implies that 

f ' € (K* ,Y :O)  c ( K , V )  , 
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Now let V, c B(p ,y )  , for some p E E" and y > 0 (cf. Theorem 3.9). and let 

K'= B (p ,  r)- - v," . The following diagram should help in the ensuing argument. 

It i s  clear that f E N = ( K ' ,  X - K )  n (f-' ( K ) ,  K I ' )  ; furthermore i (N) C 

( K . , V , " ) c ( K , V )  : Suppose that there exists gE N such that g-' (K,)(ZxO. 

Then, for every q E  K ,  such that g-' (q)eV,", we get that g-' (4)e S ( p , y ) - ,  

because gg-' = identity function. Therefore, 

which implies that g-' ( K )  is not connected, a contradiction to Lemma 3.32. 

Chapter 5. Exercises. 

1. A topological space X is said to be homogeneous if, for all x ,  YE X , there exists a 
homeomorphism h : X ++ X such that h ( x )  = y . Show that 

I 
2 (a) 1 is not homogeneous (Hint: Let x = I, y = - ). 

(b) The subspace of E 2  which consists of the x-axis and y-axis is not 
homogeneous (Hint: Let x = (0, 0), y = (1,O) ). 

(c) Every topological group is homogeneous. 
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(d) f is not a topological group. 

2. Let G be a topological group, n E N , and U a neighborhood of e E C . Show that 
there exists a symmetric neighborhood V of e such that W c U , where W = W 
and W" =W''-' W ,  for n=2,3,  ... . 

3. Show that an open subgroup of a topological group is also closed. If a topological 
group is connected what are its open subgroups? 

4. Let (G, m) be an algebraic group and r a T ,  -topology on G . Show that (G, m, 2) 
is a topological group iff the operation e : G x G + G I  defined by Z (x,  y )  = x y-' , is 
continuous. 

5 .  Let (G, m, z) be a topological group and H a subgroup of G (not necessarily 
normal or closed). Show that GIH is homogeneous (cf. ex. 1). 

6. Let X be any space and consider the operation 

A : C ( X , F )  xC(X,E")+C(X,E"),  defined by A C f , g ) ( x ) = f ( x ) + g ( x ) .  Show 
that (C (X, E") ,  A, co.) and (C ( X ,  E" ), A, pc.) are topological groups. 

7. Let (G, m, .t) be a topological group and H a subgroup of G . Show that 

(a) H -  is a (closed) subgroup of G . 

(b) If H is a normal subgroup of G then so is H -  

8. Show that the logarithm function is a topological isomorphism between the additive 
group of real numbers ( E l ,  +) and the multiplicative group of positive reals ( E i ,  X) . 

9. Let A ( E 1 ) = { f : E ' ~ E ' I f ( x ) = r x + s ; r , s € E ' , r # O } .  Show that, with the 

co. topology and the operation of composition, A ( E l )  is a topological group. (This 

group is called the group of ajrfine transformations of E L  .) 

10. Let G and H be groups and A : G t) H be an epimorphism. Suppose that 

there exists a function s : H + G such that s (h)  = h (the function s is called a 

cross-section o r  a selection for A ) .  Let tp:HxKer A+G be defined by 

tp (h, k )  = s (h)  k . Show that 
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(a) is a bijection. 

(b) tp is a homomorphism if either s is a homomorphism or g hg-*  = h , 
for every g E G and he Ker ;1 (hence, 'p i s  an onto isomorphism, in 
either case). 

(c) If G and H are topological groups, then 0 is continuous. (Hint: 
Consider the diagram 

and check that cp= h 0 ( s x i d )  , with both these functions continuous.) 

11. Let (G, m, z) be a topological group and h : C tj H a bijection. Show that H 
can be given a topological group structure. (Hint: For all a ,bE H , let  

ab  = (/I-' ( a )  h-' (b).) 

12. Prove that the Euclidean metric in En satisfies the following. 

(b) 1 (2 + Z )  - (?, + 2) I = I  2- ?, I ( i . e .  the Euclidean metric is translation 
invariant). 

(c) Let S be a subset of the plane EZ such that (0,O) E S ; pick any 
058 5 2z. Show that eie S is S rotated through and angle 8 about the 
origin ( 0 , O ) .  (Hint: Think of the points s of S as being vectors starting 
at (0,O) and ending at s' . Recall that we can let E 2  = { r  eie I r ,  8 E E'}  
and that q eiol r, eie2 = r I 2  r ei (ei+82) .> 

(d) Now show that (a) implies that the Euclidean metric in the plane is 
rotation invariant. 

(e) Show that (b) implies that 

13. Let (C, m) be an algebraic group and 77 a family of subsets of G such that 

(i) nq = { e )  , where e is the unit element of G , 
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(ii) M , N e q  implies M n N E q ,  

(iii) M c N c G ,  M E q implies N E 77, 
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(iv) for each N E 77 there exists A4 E 77 such that MM -' C N , 

(v) N E  77, g e  G implies g N g-I E q . 

Prove that there exists a unique topology z (77) for G such that (G, m, Z (77)) is a 
topological group and 77 is the family of neighborhoods of e with respect z (q). 
(Hint: Let 

z (q) = {U c GI X E  I/ implies that there exists N, E 77 with x N ,  c U) . 

To show that the multiplication is continuous: Say x Y E  x y U ,  U E q . Pick 

V E q such that V V-l  c U and let W = y V y-' n V-l  ; note that (iv) implies that 

M c N - '  . Then show that ( x  W )  ( y  W )  c x y U .) 

14. Quarernions. Consider Q = E 2  x E 2  and the following operations on Q (let Z 

denote the conjugate of z ) 

where we use the ordinary multiplication of complex numbers. For simplicity, we 

identify CE E 2  with (c, (O,O))E Q . Show that 

(i) Q is a topological group with respect to addition, and Q - { 0} is a 
non-abelian topological group with respect to multiplication. (Show 
(0, I )  (i, 0)  # (i. 0) (0,l). The unit element is ( L O ) .  The multiplicative 

inverse of (a, b ) ~  Q is [(a, b) / (a ,  b )  (a, - 6 )  I (5, - 6 )  .) 

(ii) E '  - ( 0 )  is a closed, normal multiplicative subgroup of Q - (0) . 
(iii) E * - (0) is a closed, non-normal multiplicative subgroup of 
Q - I O ) .  

(iv) The conjugation function (a, b) = (5, - b) in Q is a continuous 
- 
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function. 

(v )  The norm function 17 : Q - (0) + E: , defined by 77 (q)  = q 4 , is an 

open epimorphism such that Ker q z S” (This gives S3 a non-abelian 
grou p structure. ) 

(vi)  Q - (0) G s3 x E : .  (Hint: Use ex. 10.) 

15. Let N ( 1 0, I [ ) be the set of all homeomorphisms of ] 0, I [ onto 1 0, 1 [ , with the 

co. topology. Show that 

(a) H 10,1[ , with respect to composition of functions, is a ttg. 

(b) For each 0 < x < I ,  y = el H ( ] 0, I ] ) x { x) , where e is the evaluation 
function (cf. section 4.4), is an open continuous function. 

(c) For each 0 i x < I ,  y - ’ ( x )  = H ,  is a subgroup of H ( ] 0 , l  [ )  , (This 
group is called the isotropy subgroup of H ( ] 0, I [ ) at x . )  

(d) H ( 10, I [ ) E H , x 10, 1 [ , for each 0 < x < I (cf. ex, 10). 

16. Let (G, m, z) be a topological group and H (G) be the group (with respect to 

composition) o f  homeomorphisms of G with the co. topology. Let L : G 3 H (G) be 

defined by L ( g )  = L, . Show that: 

(a) L is continuous; 

(b) G is topologically isomorphic to a ttg (on G ) which has the co. topology. 

17. Let (G, m, 2) be a topological group and U a neighborhood of e E G . Show that 

the group generated by U (i .e. ,  the smallest subgroup of G which contains U ) is 
G .  
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Special Groups 

Certain topological transformation groups have proved to be extremely important in 
the study of Quantum Mechanics, Relativity Theory and Crystallography. We will 
study a few of these. We try to follow a precise but very geometric approach, 

6.1 Preliminaries 

We will limit ourselves to n X n -matrices over El . However, much of what will be 

done remains valid for n X n -matrices over E2 . 
Throughout, we will let 

and  w e  will  t h ink  o f  M as a func t ion  M :  E" + E n ,  def ined  b y  

M ((x, ,  . . . , x , , ) )  = (c , m,, x ,  , . . ., c , m,,, x ,  1, or in matrix-product form, 

m, . , m,, 

m,, , . . . , m,, 
M = (mi j ) "  = (m,) = 

From Theorem 2.3 and the basic properties of matrix multiplication, it follows easily 

that M is a continuous linear (i.e., A4 (t  X + s r) = t M (X) + s M (y) ,  for all s, t E E' 

and X, YE E" ) function. Note that the identity n X n  -matrix I,, (h., I, = (6,) with 

f i i i  = 0 whenever i # . j  and aij = I ) is the identity isomorphism from E" to E" . 

W e  will also think of E" as a vector space over El with base {e,, ..., e ,$) ,  where e, 

is the rt -tuple of E" , whose only nonzero coordinate is the ith -coordinate, which 

131 
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equals 1 . Generally, we will not distinguish the point ii = ( a , ,  ... , a , ) €  E" from the 

line segment u = (1, r ,  a, I Ct, = 1, 0 5 t )  which joins the origin (0, .. . ,0) of E" to 

(u,,.  . . ,a,,) , inasmuch that this correspondence (a , , .  . . ,a,,) t) li is a bijection, and 

we will refer to as an n -vector. Recall that the length of the n -vector ii is denoted 

by I ii I = ,/= . We will say that the two n -vectors V and W are orthogonal 

(abbrev. 1 @ ) if the  angle between them is 90 " . A simple way of determining the 

angle between two n -vectors ~7 and b is to use the law-of-cosines of trigonometry 

U 

c2 =la2 +El2 -2taiibi cos e .  

With I a 1 2 =  C j  a,? and I h I * =  bf , the preceding equation immediately yields that 

1; u; b; =lZllbl cos 0 .  

As customary, we call C j  ui b; the dot product of the vectors ii and b and let 

a . b = C ;  a; b; .  

We then get the elementary, but crucial, result: 

1. Proposition. For any n -vectors ii and 6 ,  the following is true: 

(i) a .b=l i i l lbl  cos $ ,where 8 istheanglebetween ii and 6 .  
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For  any nXn -matrix M =(ad), and u k l e  M , we let  Mkl be t h e  

(n - 1) x (n - 1) - matrix obtained from M by removing the k* -row and !* -column 

and we let 

(C,,  is called the ( k ,  a )  -cofactor of M ). Also, for any n x  n -matrix M = ( u ~ ) , ,  , 

we let M T  = (a, ),, such that ai, = aji . ( M T  is called the transpose of M . )We will 

also denote the determinant of a matrix M by I M I and think of I M I inductively 
defined by cofactors; that is, 

T T 

and 

I(a..) I=Z j  a I j  IC,j I, for n 2 3 .  
!I 11 

The following elementary results will be useful: 

2. Proposition. The following is valid: 

(i) For any n x n  -matrices M and N , 

whenever M-' and N - l  exist, 

(ii) An n X n  -matrix M = (a,) has an inverse M-' iff I M I # 0 ; indeed 

M - I  = I_ (c;),, (Le., (C,;) is the transpose of the matrix of cofactors of IMI 

M 1. 

For computational purposes, it is also very convenient to think of an nX n -matrix 

(rn,), as an element of E"' , by letting 
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(m,,),, = ~ ~ l l ~ . ~ . ~ m l l , ,  m 2 1 r . . . r  n 2 r l , . . . .  ml , l , . . . ,  mll , l ) .  

Then, letting 

Euclidean metric d ((alf ), (b,/ )) = [x i ,  (a,/ - bl, l2 1 

be the set of all n x n  -matrices over El , we get that M;, has the 

. 

3. Proposition. In y l ,  the Euclidean metric topology equals the co topology. 

Proof. Let ( ~ , ) E ( K , v )  .Then,let d ( ( m I i ) ( K ) , X - V ) =  some S > O .  

(Indeed, in any metric space ( X ,  p )  , A compact, B closed and A n B = 8 imply 

that P ( A ,  B) > 0 : Suppose not. Then there exists {x,, } c A and { Y , ~ }  C B such 

that d (x , , ,  y l l )  < I for all n .  Pick a subsequence { x , , ~  } of {x, ,}  and XE A such 

that lirnx,,* = x . Then lim d (y,,, , x )  = 0 ,  which implies that XE B , a contradic- 

tion.) Also choose M such that (qi) (K)  c 5 (8, M )  . It follows that 

k 11 

Conversely, consider any B ( (a j j ) ,  E ) ,  It follows that 

4. Proposition. The determinant function det : m,, -+ E' , defined by 

det : [M) = I  M I ,  is open and continuous. 

Proof. Because of Proposition 3 and Lemma 2.5, simply think of 4, as a subspace 

of J& E 2 .  Since addition and multiplication of real numbers are open and continu- 

ous functions, and det M is a sum of products of real numbers, it follows immedi- 
ately that det is an open and continuous function. 

6.2 Groups of Matrices 

For u = I , 2 ,  ..., let 

GLfn, El)  = {M E q, :I M I # O J ,  
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S p i n ( n , E ' ) = ( M E I N , : I M i = f l } ,  
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o,, = ( M E  m,, I M ~  = M - ' ] ,  

SO,,=(MEm,, ( M T = M - '  and IMI=IJ  

It is quite easy to see that these are algebraic groups (see Proposition 2). They are 
generally called the General Linear group, the Spin group, the Special Linear group, 
the Orthogonal group and the Special Orthogonal group, respectively. 

5. Theorem. The following are valid: 

(i) The topological groups G L (n, E l ) ,  Spin (n, E l ) ,  S L (n, E l ) ,  0, and 

SO,, are ttgs. 

(ii) G L (n, El ) 3 Spin (n, E' ) 3 0,, 3 SO,, . 

Proof. 

need show that M 

Part (i) follows immediately from Theorem 5.15. To prove (ii), we only 

= M - I  implies I M I = f I : Note that 

I=IM M - ' I = I M M T I = I M I I M T I = l M l 2 ,  

since it is clear that 1 M I = I M I .  To prove (iii) first check that SL ,, is a closed 

normal subgroup of G L (n,  E l ) .  Then note that det : G L (n ,  E l )  + El - { O )  is a 
quotient homomorphism, because of Propositions 4 and 2(i). Then apply Lemma 5.9. 

6.3 Groups of Isometries 

The following elementary observation has profound consequences. Rarely, does so 

little mean so much: The isometries of the n - sphere S" are in one-to-one 

correspondence with the isometries of E fixed (Let 

h : S" ++ S" be an isometry. Let (0) = 0 and 

which leave the origin of E 

: En" -H En" be defined by 
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h (x)=lX I h ( & ) ,  for each XE E"" - { G I ,  Then h is an isometry of En" which 

leaves the origin 0 fixed. Conversely, let : E"" ++ E"+' be an isometry with 

g (6) = 0.  Then, for each i~ S" , I g (.)I = I g (X) - g (6) I= I2 -6 I =  1 ,  whichimplies 

that g = 

- - 

IS" is an isometry of S" ). 

For convenience, for n = I, 2 ,..., let 

GI, ,  = { h  : E" -H E" I h is an isometry} , 

SZ,, = ( h ~ G Z " l h ( O ) = 0 ) ~ ( g : S " - ' ~  S"-'Ig is an isometry }. 

It is clear that, with the co topology, GI,, and SI,, are ttgs. 

6. Theorem. O,, SZ,, 

Proof. 

der of the proof will become clear. 

Once we show that 0,, and S I , ,  are algebraically isomorphic, the remain- 

Let /z : s"-' -H s"-' be an isometry and h" : E n  ++ E n  its corresponding 

isometry of E" which leaves 0 fixed. Let f ,  = h (e,) , for i = 1,2,. . . , n  (recall that 

the ej are the elements of the usual base for E " ) .  Using the law-of-cosines and the 

fact that the cosine function is one-to-one, for 0 5  a -5 n ,  we immediately get that 

- 

( I )  f ,  I f , ,  whenever i # j ;  each I f ,  I =  I ,  

which implies that { f , ,  . . . , A , }  is an orthonormal vector basis for E n .  Next, note 

that, for each CIE E'  , and i = I ,  2,. . . ,n ,  

d - 
h ( u l ; ) = a h  ( ! , > = a f ; .  

Next, observing that, for each 2 E S" - '  , X = ( x ,  ,. . .,x,,) = x ,  el + .. . + x,  e n ,  we show 

that h ( X ) = x ,  f l  +...+ x, f , , :  Suppose h ( X ) = z ,  f ,  +...+ z ,  f,. Since is an 

isometry with h ( O ) = g ,  we get that 
- -  
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for i = 1,2,. . . .n  . Therefore, we get the dot product equality 

which yields xi = zi , for i = I, 2,. , . , n . This shows that h is a linear map. Therefore, 

letting 

for i = 1,2,.. . , n ,  and M = (ai,) ,  , we immediately get that 

h (2) = M (2) , 

for each i~ S". We already know that the matrix of h-' is M-'. To show that 

M-' = M T ,  first observe that 

for i = I ,  2,. . . ,n  , because of ( I ) ,  (2) and Proposition 1. Therefore, 

- - (C j aij al ;,. ..,C,i aij ai;,.. ,, C,j aij anj) 

= e , ,  for i = l , 2  ,..., n .  

It follows that h-' (X) = M T  (X), for each X E S" . Since the inverse of a matrix is 

unique, we get that M - l  = M T .  

Certainly the reader must be anxious to learn the real difference between the groups 
0,1 and SO, ( we already know that 



138 Elementaly Topology and Applications 

from Theorem 5 (ii)). The proper gleaning of the proof of Theorem 6 will give us the 
answer. 

7. Theorem. 

Proof. 

bounded subset of E'" . The same applies to SO,,. 

The groups 0, and SO, are compact. 

Because of Proposition 3, we only need to show that O,, is a closed and 

O,, is closed i n  E"' : Say (MkJk Con such that lipMk = M  . Since each 

I M, I = f 1 ,  there exists a subsequence {Mk, 1, of { M k )  such that either all 

IMk, I = l  or  aII I M k ,  I = - l .  It follows that, either I=l imlMk,  I=IMI o r  

- I  = lim IM, I=I M 1 ,  because of Proposition 4. Since the inversion function in 

G L (n, E l )  is continuous, it follows that 

J 

/ 

But i t  is easily seen that MT = lim ( M k ) T  whenever kf = lirn(Mk) , Therefore, 

MT = M-l and M =f I , which shows that 0,, is closed in E 

k k 

n2 . 

O,, is bounded in Ell2 : Indeed from part (3) of the proof of Theorem 6,  we 

immediately get that 

2 c,, a;  =c, c, a,, = n ,  

for each (uii),, E O,, , which implies not only that o,, is bounded but also that 0, is 

contained in the sphere of Eft' with center 0 and radius n . 
To simplify and clarify matters, let 

AO, ,= (MEO, ,  : IMI=-l) 

and J,, . . . k,, , 1 I k,  I n , be the n x n - matrix which has the same entries as I,, 
except that the ( k ,  , k ,  ) -, . . , , ( k ,  , k ,  ) - entries equal - 1 , It is clear that 
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(ii) M E SO,, , m odd implies Jkl,,kn, M E AO,, , 

(iii) M E SO,, , m even implies J k , , , , k n ,  M E SO,, 

(iv) J k l , , ,  k , ,  changes the vectors ekl ,..., ekn, to the vectors -f?k ,,..., -ek,", 

leaving the remaining vectors fixed, 

(v) For each ME AO,, and I I k I n , there exists M, E so,, such that 

Jk M , = M  

(indeed, M ,  has the same entries of M except that the k -column of M, has the 

negatives of the k - column of M ). 
The preceding trivial facts make the following result quite obvious. 

8. Theorem. The following are valid: 

(a) O,,=SO,UAO,, SO,nAO,,=S and,for l l m  odd I n ,  

= { ' k ,  ... k,,, I ' 'On) . 

(b) For n = 3 ,  AO, consists of those elements of 0, which transform 

ieht-h- d 

right-handed systems into left-handed systems and vice versa. 

It is customary to say that a linear transformation L : E 3  4 E 3  does nor 
interchange past (down) with future (up) if the relative position of the z-axis with 
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respect to the plane oj  the x-axis and y-axis i s  not changed by L ; that is, L is of the 
form 

L=R,  0 R,. 0 J ,  

where R, ( R v )  denotes a rotation about the x-axis (y-axis), and J denotes a reversal 

of direction of the x-axis or of the y-axis or both, i.e., J is one of the matrices below 

Similarly, we can speak of linear transformations which do not interchange right with 
left ( i e . ,  do not reverse the direction of the y-axis relative to the plane of the x-axis and 
z-axis); obviously, these concepts can be appropriately extended to higher dimensions. 

6.4 Relativity and Lorentz Transformations 

Our intention is to explain the why and how of Lorentz transformations in Relativity 
Theory. 

Let us take two observers 0 and 0' whose measurements are done with respect 
to  the space-time coordinate systems (xl ,  x2, x 7 ,  x4) and ( X , ,  X,, X,, X , ) ,  

respectively, with the same origin (0, 0, Q, 0) = 6 ,  where the first three coordinates are 

space-coordinates and the fourth is the time-coordinate. Furthermore, let us assume 
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that 0 and 0’ are moving on a common straight line with constant speed relative to 

each other. Graphically, we may display the coordinate axis of 0 and 0’ as follows: 

The apparent mislabeling of the axis reflects the fact that the space-time of 0 is 
represented as seen by 0’ and vice versa. (A simple analogy is the following: Take two 

\ 
\ 
\ 
\ 

of bui Idi ng B as seen by 0’ 

corner of building B’ as seen by 0 

observers 0 and 0’ on the corners of the buildings B and B’, respectively. 0 sees 
the corner of building B making a right angle while he sees the corner of B’ not 
making a right angle; the same for 0’. Indeed, in  relative terms, 

if 0 is “standing up” while 0’ is “lying down”’; various other relative positions can be 
obtained. Another example is the corner of a cube seen from different positions or by 

different observers.) Certainly the square of the distance of any point P from the 
origin remains invariant for both observers; that is 

x; +x;  +.x( +xi  =x; + x; + x: + xf 

from which we get that 

Our purpose is to identify the space-time linear transformations-i.e., 

4x4- matricies A = (aij)-with respect to which the form 

2 s (2) = x: - x;=, xi 

remains invariant, for any X = ( x ,  , x 2 ,  x3, x4) . First, let us observe that, letting 
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0 0 0  

=(p,J 0 0 - 1  0 
I=:: 0 0 0 1  - I  O OI 

the invariance of S can be described by 

Next, let us observe that, if A ( x , , x 2 , x , , x 4 ) = ( X , ,  X , ,  X , ,  X , )  then (of course, 

(x , ,  ..., x4)  is really a column-vector) 

(2) X,, ,  = C,, a,,,,, x,, , for m = I ,..., 4 .  

Therefore, substituting ( 2 )  in ( I )  yields 

(3) 1,. / /’I/ (L a,,, X I , )  (C, a/k Xk 1 = C,. p Pup xa xp , 

from which we get that 

(4) Ca, p L C,. / a,,  / ’ I ,  “ , P  - Pap 1 xu X B  = 0 3 

because of the values that pi, takes. But (4) is true for all X iff 

( 5 )  X I ,  % alp = Pap , for each a, P ; 

that is. iff 

(6) A” P A = P  

Then det (A‘ P A )  =det P with det P = 1 . Therefore, 

( 7 )  (det A)’ = I ,  

since det A’ = det A .  
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Also, letting a = p = 4 ,  we get that ( 5 )  becomes a& - cb, a:, = 1 , which implies 

that 

2 (8) a44 21. 

We have therefore determined that 

,C = { (a i j )4x4  = A I A satisfies (6), (7) and (8)) 

is the set of all 4x4- matrices which leave the form S invariant. It is obvious that if 

the linear transformations A, B leave the form S invariant, so do AB and A-' . 
Therefore, is a subgroup of Spin (n, E l )  . 

The group is called the full Lorenfz group. It splits into four subsets 

L', = { A E , C I  detA=l,a,21} 

.C; = { A E  XI det A = 1, uU 2-1) 

, C , = { A E , C I  detA=-1,a4,21) 

X4 = ( A  E L I det A = - I ,  a,, 2 -1) . 

If A E  4 u 4 ,  A is called a proper Lorentz transformation; otherwise, A is an 

improper Lorentz transformation. If a,, 2 1 , A does not interchange past with future; 

If a,,< -1, A does interchange past with future. Finally, noting that 

P ( A T  P A ) = P 2 = I  

it is easy to compute the Lorentz matrix L, = (liii) which satisfies the following 

natural physical constraints: 
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(i) It is required that the velocity of one coordinate system with respect to 
the other lies along the space-axis (say, the XI  - axis) and that the 

remaining orthogonal space-axis not be interchanged by L, , thus 

precluding rotations about the XI  -axis; that is, 

(ii) The relative velocity of observer 0' as seen by 0 is a constant V . 
The velocity of light is taken to be one unit. 

It follows that X I  = v X , ,  X ,  = X ,  = 0 : furthermore, 

= L" 

from which we get that 

(a) t?,, = vC,, : 1,, x4 = X ,  = v X ,  = vC4, x, , 

(b) c ,, = p ,, = o : o = x2 = I,, x4, 0 = x, = e 34 x, . 

Substitution into P LL P L, = I yields 

e& -t:4 = 1 with e,4 = V C , ~ .  
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Therefore e;, (1 - v ) = I ,  or 2 

145 

1 
(c) ed4=f------ J1-vz-ky 

the minus sign signifying time reversal. Eliminating the time reversal situation, as 

unrealistic, by using (i) and (7), we can compute all other entries of L, , finally getting 

as the Lorentz transformation satisfying (i), (ii) and not reversing time. It is now clear 
that the most general Lorentz transformation has the form 

where R and R' are rotations and 

is the time-reversing matrix. 





Chapter 7 

Normality and Paracompactness 

Some of the properties of metric spaces have proved so useful that they have been 
specially labeled and extensively studied. Among the dozens of significant properties 
of metric spaces, normality and paracompactness really stand out, and paracompactness 
outranks all others, by far. Let us discover these properties and some of their usefulness. 

1. Theorem. 

Then there exist open disjoint subsets U and V of ( X ,  p )  such that A C U and 

Let A and B be closed disjoint subsets of a metric space ( X ,  p )  . 

B c V .  

Proof. Define functions f A  : X + El and fB : X + El by fA ( x )  = p ( {X I ,  A) 

and fs ( x )  = p ( { x ) ,  B)  . Recall that f, and f, are continuous. (See ex. 1.20.) Next 

t A  ( X I  
define f : X + El by f ( x )  = ,, ,, 
of continuous functions and the denominator is never zero-see Proposition 
1.8(iv)). It is also clear that f (A) = 0 and that f ( B )  = 1 . To complete the proof, let 

U = f - l  ( 

. Clearly f is continuous (it is the ratio 

I I  I 
[ ) and V = f - l  ( I ? ,  2 [ 1 .  

This result leads us to the definition of normal spaces. 

7.1 Normal Spaces 

2. Definition. 
closed subsets A and B of X there exist disjoint open subsets U and V of X with 

A c U and B c V (that is, disjoint closed subsets of X can be separated by 
disjoint open subsets). Equivalently, for any closed subset A of X and open subset U 

of X with A c U , there exists open V c X such that A c V c V -  c U . 

A TI - space X is a normal space provided that for any disjoint 

147 
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3. Corollary. 
regular. (The converses are false - see exs. 4 and 7(c,e).) 

X is metrizable implies that X is normal. X is normal implies that X is 

Recall that in the proof that the metric space is a normal space we constructed a 

continuous function f’ : X -+ E I which mapped A to 0 and B to 1 .  Can we find such 

a function f if X is normal? This is indeed a deep question and the only known proof 
of it  is truly ingenious. It was first discovered by Urysohn. 

4. Theorem (Urysohn’s Lemma). 

any disjoint closed subsets A and B of X one can find a continuous map f : X + I 
such that f ( A )  = O  and f ( B )  = 1 .  

A TI - space X is normal if and only if for 

Proof. The if part is contained in the proof of Theorem 1 .  The only i f  part: Let 

D = U  D,,, where D,,={O, l}, D,=(O, i, l ) ,  D, =(O,  :, i, :, I},... . D is 

known as the set of dyadic rationals (note that these are obtained by dividing [0, 11 

into half, then the subintervals into half, and so on). It is easily seen that D- = I 

since any point of / is less than 2; away from some point of D,, . 

I1 

I 

To each p E D we will (inductively on D,, ) associate an open subset U of X in 
I’ 

such a way that 

p < q  implies UF c U , ,  

D,, : Let U ,  = X . Pick open U,, c X such that A c U,, and IJ; n B = 0 .  

D, : Pick open U c X such that 
2 

U ; c U ,  and u y n B = 0 .  ~ 

~ 

2 2 

Dz : Pick open U ,  , U , c X such that 
~~ 

4 4  

U,; cU, cU; C U ,  cU; c U ,  and U ; n B = S .  - 
4 4 2 2 4 4 

The inductive procedure should now be clear. We may visualize the next step, on 03, 
as follows: 

~ ~ ~ - - 
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x =u, 

Now, we define f : X + [0, I ] ,  by letting 

f ( x ) =  inf ( p ~  DI X E  U / , ) .  

Clearly, f is a well-defined function, and f (A) = O  and f ( B )  = 1 (note that 

f-' (0) = U ,  # A ; generally, one cannot expect that f - l  (0) = A ; see exs. 16 and 17). 

The easiest way to prove thatf is continuous is to use Theorem 1,14(vi). Note that 

( i )  f-'([O,t[>=U(U,,Ip<t},foreach t e Z : I f  x E U ,  and p < t  

then f ( x )  5 p < t which means that X E  f-] ( [0, t [ ) ; that is, 

U {U,, I p < t )  c f - I  ( [O, t [ ) , Also, if 0 I f ( x )  < t then there exists 

q E D such that f ( x )  < q < t , which implies that XE U, ; that is, 

f - ' ( [ o , t [  > c U { U , , I p < t ) .  

(ii) f-'([O,t])=cn{U~Ip<t},foreach t E Z : I f  O s f ( x ) < t  and 

p > t  then ~ ~ U , ~ U ; ; t h a t i s ,  f - ' ( [ O ,  t I > c n { ~ ~ I P > t ) . I f  

X E  Up, for all p > t ,  then X E  U,, , for all p > t (because, for p >t  

with p E D , there exists q E D such that p > q > t ; hence, 

XE U, c U y  c U ,  ), which implies that f ( x )  S t ; that is, 

n { u ; i p > t } c f - ' ( [ o , t i  1 .  
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(iii) f-' ( I t ,  I 1 = X - n {rl ,  I p > t )  : Immediate from (ii), since 

. f - ' ( l L  11>=x- . f - ' ( [o ,  I l l .  

Since the sets [0, t [  and ] t ,  1 1 ,  for each t E I , form a subbasis for the topology of I 
and the inverse images, underf, of these sets are open (recall that any intersection of 
closed sets is closed), we then get thatfis continuous, which completes the proof. 

Another very significant characterization of normality appears in exs. 24 and 25. 
One may wonder if a similar result can be proved for regular spaces, with one of 

the sets replaced by a singleton. A look at the preceding proof shows that one cannot 
even get past the second induction step, for it may already require the separation of 

two non-degenerate closed sets. This suggests another definition: A T ,  -space X is 

completely regular or Tychonoff provided that, for each closed A C X and 

p E X - A ,  there exists a continuous function f : X + I such that f ( p )  = 0 and 

f ( A )  = 1 . Clearly, X is normal implies that X is Tychonoff, which implies that X is 

regular. It turns out that neither implication is reversible, but we shall not pursue this 
matter. 

Let us now turn our attention to paracompactness. Be forewarned that the usefulness 
of this property of metrizable spaces is certainly matched by the difficulty in showing 
that metrizable spaces are indeed paracompact. All known proofs of this fact depend 
on the well-ordering Axiom (see 0.20). 

5. Definition. In any space X ,  

(a) A cover v of X (see Definition 3.4) is a refinement of  a cover 

each V E v is contained in some U E u . v is an open (closed) 

refinement of J'4 if V is an open (closed) cover of X and a refinement of 

of X if 

u .  

(b) A collection U of subsets of X is locallyfinite if each p E x has a 

neighborhood which intersects only finitely many elements of u . 
(c) A collection fl of subsets of X is discrete if u is locally finite and 

pairwise disjoint (ix., for any distinct U ,  VE U ,  U n V =  0 ) .  

(d) A collection u of subsets of X is (-J -discrete ( 0 -locally finite) if 
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= u, and each 4 is discrete (locally finite). 
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Clearly finite collections of subsets of X are locally finite and countable collections 
are @-discrete. Pairwise disjoint collections may not be discrete. (The collection of 

intervals ] =, [ , for n = 1,2,. . ., is not locally finite at the point 0). One immediately 

gets that each compact Hausdorff space is paracompact. The converse is false (see 

Theorem 9 and ex. 10). Furthermore, if U is a locally finite collection of subsets of X 
then U- = (U- I U E  U] is also locally finite (note that if N is an open neighborhood of 

a point PE X then N W # 0  iff NnU- # 0 ) .  Also, afinite union oflocallyfinite 

covers is clearly a locallyjinite cover. 

I I  

6. Lemma. The following are valid in any space X. 

(a) If U = {V, I a E A} is a locally finite collection of subsets of X and, 

V, C U, , for each a E A , then V = {V, I a E A) is also locally finite. 

(b) If 

u {A- I A A }  = (u *A)- (i.e., the union of closures is the closure of the 

union). 

is a locally finite collection of subsets of X then 

Proof. 
intersects no more elements of V than elements of i!d ). 

Part (a) is obvious since I/ U I/, = 0 implies that I/ 0 V, = 0 (that is, U 

(b) We always have that U {A- I A E  A }  c (UA)-. So let PE (u *A>- . Pick 

neighborhood N of p which intersects only finitely many A E /f ; say A,,. . ., 4 . 
Then x e ( A ,  U . . . U A , ) = A ; U . . . U A ;  ~ ~ { A - I A E J }  (recall ex. 1.21), which 

shows that ( U * A ) - C U { A - I A E * A } ) .  
1 Note that 1 0,1] = U,, [ I+I, i] f (u ] &, i[ 1- = [O, 13, which shows the necessity 

of local finiteness in Lemma 6(b). 

7.2 Paracompact Spaces 
7. Definitlon. 
open cover of X has an open locally finite refinement. 

A Hausdorff space X is a paracompact space provided that each 
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8. Theorem. The following properties of a regular space are equivalent: 

(a) X is paracompact. 

(b) Each open cover of X has a CT -locally finite open refinement. 

(c) Each open cover of X has a locally finite refinement. 

(d) Each open cover of X has a closed locally finite refinement. 

Proof. 
locally finite. 

Clearly (a) implies (b), since a locally finite cover is automatically a - 

(b) implies (c): Let M be an open cover of X. By (b), there exists an open refinement 

v of u such that V = U, V, and each is locally finite. For each n, let 0, = U V,. 

Clearly, D={D,, In€ N )  covers X .  Next, let A,, =D, ,  -U::: Di , Then 

~4 = {A, I n E N) is a locally finite refinement of 2,. (Note that even p E X belongs 

to some D, and, consequently, there exists a smallest integer k such that p E Dk ; that 

is, PE D, - uf:; D, = A, . This shows that A is a refinement of 2). Note that we have 

also proved that Dk is a neighborhood of p which can intersect only A*,. . . ,A ; that 

is, A is locally finite.) We now get that W = U,, {V n A,, I V E V , }  is a locally finite 

refinement of v . (Note that each PE X belongs to some 4, and therefore 

automatically to IJ V, , which forces p E V n A,, , for some v E . This shows that w 
is a refinement of v . Also, if you pick a neighborhood N of p which intersects only 
finitely many elements of u . . . u V, , then N n D,, intersects only finitely many elements 

of w- it certainly cannot intersect any V n A, E W , with k > n .) 
(c) implies (d): (This is where we need regularity of X . )  Let fl be an open cover of 

X. For each X E  X , pick U ,  E such that X E  U ,  and, by regularity of X, pick an 

open neighborhood V, of x such that x E V,- c U ,  . Then V = {V, I x E X} is an open 

refinement of u such that V -  is also a closed refinement of By (c), let # be a 

locally finite refinement of v . Then ,?&’- is a closed locally finite refinement of v-  
and hence of g. 

(d) implies (a): Let be an open cover of X and v a closed locally finite refinement 

of u . For each x E X , let 0, be a neighborhood of x which intersects only finitely 
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many V E v . Then, let be a closed locally finite refinement of (0, I XE X} . For 

each V E V , let V’= X -u {AE A I A n  V = 0) . Then each V’ is an open set, by 

Lemma 6, and V’ZI V . Also A E  J intersects V’ iff A intersects V; that is, 

V ‘ =  {V’I v E V )  is locally finite. Consequently V’ is an open locally finite cover ofX 

(not necessarily a refinement of U !) 
Now, for each V E V ,  pick U , E U  such that VcU,. Then 

W = (U, nV’I VE V )  is an open locally finite refinement of (one can only question 

if U w = X ,  but each X E  some V c V’ and V c I / ,  which implies that 

X E  some U, n V’E W).  
Other characterizations of paracompactness are described in exs. 22 and 23. 

9. Theorem. Every metric space (XI d )  is paracompact. 

Proof. Let U be an open cover of ( X , d )  . For each U E U and n E N let 

U l ,  = {XE U I p ( { x } ,  X - U )  2 Z-”} (note that U, U ,  = U  , because of Proposition 

1.8(v); also, for small sets U ,  Ul l  may be empty for small n). By the triangle inequal- 

ity, we get that p (Ul l ,  X - IY,~+,) 2 2-“ - 2-”-’ = 2-”-’ (note that, for any 4 E U,  , 

p E  x -Ulr+l and ZE X - U ,  we get that d (q,  p ) 2 d  ( q , z ) - d  (z, p) with 

d (4, z) 2 2-” and d (2 ,  p )  < 2-”-’ ). 

Let 5 be a well-order on U (see 0.19). For each U E U and n E  N , let 

UL = I/, - U {V,,+, I V E U and V < U } . Note that, for each I/, V E U and each n, either 

U: c X -V,,+, or v,: c x -uII+/ (for example, ~5 v implies V,: c X -U,,+, 1. 

In either case, p (UL, V,:) 2 2-”-’ (for example, U 5  V implies 

p (UL, V,’) 2 p ( U , ,  X -UlltI)  2 2-“-’ ). Finally, for each U E U and for each 

n E N , let U,: = { x  I p ( { x } ,  UL) < 2-”-’} ; it follows that p (Ul:, V,,?) 2 2-”-2 (note 

that, for any q E  U , : ,  p E V,: , z E U,: and w E v,’, we get that 

d ( q , p ) > d ( z ,  w ) - d ( z , q ) - d ( p , w )  >_2-”-’-2-”-3 - 2-11-3 - - 2-“-2 , by the triangle 

inequality). Then each U,: = (U,: I U E ,?l} is an open discrete collection (indeed any 

ball of radius < 2-“-2 can intersect at most one element of %* ). Clearly each q* c U 

(indeed U,: c {XE U I p ( { x } ,  X - U )  > 2-” -2-rr-3 > 2-rr-3} ). Also, for each X E  X , 
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if we let U be the first (with respect to the well-order 5 ) element of a that contains 

x ,  then XE some U,: (indeed, XE some U,, and therefore X E  UL cUn*) .  

Consequently, II' = U,, 24,; is an open CT -discrete (hence, o -locally finite) refinement 

of g. By Theorem 8, X is paracompact. 

spaces (see ex. 21). 
The preceding proof contains the very hard half of a characterization of metrizable 

10. Theorem. Every paracompact space X is a normal space. 

Proof. First, we show that X is regular: Let A be a closed subset of X and 

p E X - A .  Since X is Hausdorff, for each a E A , pick an open neighborhood Na 
of a such that p p Na. Then, 77 = {Nu I a E A )  u { X  - A )  is an open cover of X. So 

let v be an open locally finite refinement of 7 l  and Jf = {V E I/ I V c some 

N, E 7 7 ) .  Clearly A c u d (i.e., J covers A ) ,  A is open (union of open sets!) and 

p p A- , by Lemma 6(b). This shows that X is regular. 

Finally, we show that X is normal: Let A be a closed subset of X and U an open 

subset of X such that A c U . For each U E  A pick an open neighborhood Na of a 

such that N ;  c U (regularity!) and mimick the preceding scheme to complete the proof. 

11. Lemma. Every open cover 

open refinement v = {V,},E,, such that each 0 # V,- c U, . 

= {Ua}asA of a paracompact space X has an 

Proof. 

W -  = { W -  I W E  W }  also refines g. Then let 0 be an open locally finite refine- 

ment of w . For each a E A ,  let 0, = {OE 0 I O c  U , }  . 

Since X is regular, let W be an open refinement of such that 

Finally, we define the V, : If 0, # 0 , let V, = U 0, . If 0, = 0, let v, be any 

open subset of X such that 0 # V, c V,- c U ,  . From Lemma 6(b), one easily sees 

that v = {V,},,, satisfies all requirements. 

Lemma 1 1  remains valid for every open locallyfinite cover u =  {U,}aeA of a 

normal space, but the proof of this fact is quite complicated (see ex. 11). 
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12. Definition. A partition of unity on a space X is a collection 4? of continuous 

functions from X to E l  (the non-negative reals) such that C p E e  P (XI = 1, for each 

n E X (here, we automatically assume that, for each x E X , p ( x )  # 0 for only 

finitely many p E Q ). e is called locallyfinite if each XE X has a neighborhood 

N ,  such that p ( N , )  = 0, for all but finitely many p E &? . &? is subordinated to a 

cover f l  of X if for each P E  Q there exists U E f l  such that p (X  - U )  = O  (i.e., 

p vanishes outside U ). 

For example, let (X, d) be a metric space and u = {U,},,, be an open locally 

finite cover of X. For each a E h ,  let f a  : X  + Ef be defined by 

f a  ( x )  = d ( x ,  X - U,) . From ex. 1.20 we get that each fa is continuous. Clearly, 

"b (1) {fahA is subordinated to f l .  Finally let pp ( x ) = ~ , b ~ ( x )  , for each p E A and 

XE x . It is easily seen that each pp is continuous (note that, locally, Cash fa (XI  is 

subordinated to {U,} . Therefore { p a )  is a partition of unity subordinated to {u,}. 
This very important result for metric spaces provides another characterization of 

paracompactness. 

13. Theorem. For a T, - space X, the following are equivalent: 

(a) X is paracompact. 

(b) Every open cover of X has a locally finite partition of unity subordinated 
to it. 

(c) Every open cover of X has a partition of unity subordinated to it. 

Proof. 

locally finite refinement of w . By lemma 11, let {VaLEA be a cover of X such that 

each 0 # V,- c I/, . For each a E A ,  pick a continuous function fa : x-+ I such 

that fa (v;) = 1 and fa ( X  -U,) = 0 .  Now, let pa : x + I be defined by 

(a) implies (b): let w be an open cover of X and U = ( fJa ]aeh  be an open 
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t, (1) 
Pa ( x )  = +* f p  ( A )  ' for each X E  X . (Clearly, pa ( x )  is continuous because, 

locally, cp fp (XI is a finite sum.) It follows that 42 = { pa } a E h  is a locally finite 

partition of unity subordinated to u ; therefore e is also subordinated to W . 
(b) implies (c): This is obvious. 
(c) implies (a): We are going to use Theorem 8; hence, we must first check that X 

is regular. (Let U be an open subset of X and let u E U . Then, { U ,  X - { u } }  is an 

open cover of X ;  hence, there exists a partition of unity { p , ,  p 2 )  subordinated to it; 

say p I  ( X - U ) = O  and p 2 ( u ) = 0 .  Then, p I  ( u ) = l ,  because p ,  ( u ) + p z ( u ) = l .  

Then 0 = p;' (I;, 11.) is an open neighborhood of u whose closure is contained in U; 

indeed, 0- c p,' ( [i, 11) cU .> 
Let f l  be an open cover of X and &? a partition of unity subordinated to U. For 

each i E N , let 2;' be the collection of all sets of the form S ( p ,  i )  = {XE X I p (n) > :} , 

with p E Q . Let V = U:=, . Clearly v is an open refinement of u . (Certainly, each 

S ( p ,  i )  = p- '  ( ] f , I ] ) is open. Also, for each X E  X I there exists some PE such 

that p ( x ) # O  andthispvanishesoutsideofsome UE fl.Then X E  S ( p , j ) c V ~ U . )  

Also, each 2;' is locally finite: Let x,, E X . Pick p ,,..., p, E Q such that 

pl (h) +. . .+ p,, (%) > 1 - 2i (recall that C,EQ p ( x , , )  = I and p ( x " )  # 0 for only 

finitely many P E  8 )  and then pick a neighborhood N of xg such that 

p, ( x )  + ...+ p,, ( x )  > I - f , for all X E  N (note that pI + ... + p I I  is a continuous 

function). It follows that N intersects only the elements S ( p , ,  i ) ,  ..., S ( p , ,  i) of 

(suppose t h a t  N intersects some S ( p , i )  with  p + p I ,  . . . , p ,  ; then 

( p I  (x) + . . . + p,, ( x ) )  + p (x) > (1 - f)  + f = 1 , a contradiction) and, therefore, that 

is locally finite. 

I 

Consequently, V is an open o-locally finite refinement of u . This implies that X 
is paracompact, by Theorem 8(b). 

Partitions of unity are extremely useful in many areas of mathematics. They are 

crucial i n  the theory o.f continuous (differentiable) extensions of continuous 

(differentiable) ,functions. (A bit of this theory, but a very important one, is Tietze's 

Extension Theorem, which appears in exs. 24 and 25.) They are also very useful in 
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embeddings but, unfortunately, these and other applications of partitions of unity are 

extremely technical. We content ourselves with an interesting, but weak, application. 

14. Definition. A Hausdorff space X is called an m -manifold if each X E  X has 

an open neighborhood that is homemorphic to the rn -Euclidean space Em (or, 

equivalently, to the open m -ball B" ). 

The projective plane, the Klein bottle and the 2-sphere S2 are examples of 2- 

manifolds (of course, E2 is another example). The Mobius band is not a 2-manifold, 
because it has boundary or edge points. It is known as a 2-manifold with boundary. 

15. Theorem. 
some n. 

If X is a compact m-manifold then X can be embedded in E" , for 

Proof. 

morphic to Em ; say g, : Ui --t) En' is a homeomorphism. Since X is 

paracompact, by Theorem 13, let P I ,  ,.. , P,, 

to ( U , ,  ..., U , , )  ; without loss of generality let us assume that each pI (X - U i )  

= 6 = (0, 0,. ..,O)E E"' . For each i, let hi : X -+ En' be defined by 

Let (U I , . . . , U ) be a finite open cover of X such that each Ui is homeo- 

be a partition of unity subordinated 

p i  (x> g, (XI, for X E  Ui, 
0, for XE X - U i .  

(note that hi (x) is a product of a real number pi (x) and an rn-tuple gi 

Clearly each hi is a continuous function. 

E m  ). 

Finally, let v/  : X + (n~!, E l ) x  (ny!, En')  be defined by 

Clearly W is continuous (see Theorem 2.3). Next we show that W is one-to-one: 

Suppose y (x) = y (y) . Then p i  (x) = p i  (y) and hi (x) = hi (y ) ,  for i = 1 ,. ..,n . 
Since C pi  ( x )  = 1 , there exist some j such that p i  ( y )  = P, (x) > 0 ,  which implies 

that x, y e  U , i  . Then 
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which implies that 8 , (x) = g , ( y )  . Since g , is a homeomorphism, we get that x = y ; 

that is, If is one-to-one. 

that 11/ is a homeomorphism (see ex. 2.13). 
Clearly, W is a quotient function (see Theorem 3.7). Therefore one easily sees 

This result is indeed a weak one. It is known that any compact m-manifold can be 

embedded in E2”l+l . It is easily seen that, in Theorem 15, n > 2m + 1 . For example, 

the 2-sphere 5’’ is the union of two open sets U ,  and U ,  which are homomorphic to 

E2 (for example, let c l ,  = S - {north pole)). Then, 

by Theorem 15, s‘ is embedded in . Of course, S 2  is naturally embedded in E 3 .  
Also note that the proof of Theorem 15, with obvious changes, also proves that 

every compuct Hausdorflocally Euclidean space X ( i , e . ,  each point of X has an open 
neighborhood which is homeomorphic to some Euclidean space - not necessarily the 

same one for all points) is (homeomorphic to) a subspace of some Euclidean space. 

- [south pole) and U 2  = S 

Chapter 7. Exercises. 

I .  Show that a 

refinement v such that V -  = { V -  I V E V )  also refines f l .  (Hint: Use induction.) 

- space is normal iff each finite open cover u of X has a finite open 

2. Show that a closed subspace of a normal space is normal. (False for open subspaces 
- see ex. 7(c).) 

3. Show that a closed subspace of a paracompact space is paracompact. (False for 
open subspaces - see ex. 7(c).) 

4. Let X be the space of ex. 1.27. We already know that X is not metrizable. Show that 
X is normal. (Hint: Let A and B be disjoint closed subsets of X .  There are two cases to 

consider. Case 1 ,  p P A U B : Then A and B are also open sets. Case 2. p E A (hence 

p P B ). Then B is finite and open and X - B is also open . . . .) 

5 .  Let X be a regular Lindelof space. Show that X is paracompact. (Hint: Theorem 

8(b).) 

6. Show that a paracompact separable space is Lindelof. (Hint: Let D be a countable 
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dense subset of X .  Let n be any open cover of X and v an open locally finite 

refinement of . Show that V is countable: In how many V E v can an element of 

D be? Then find a countable subcover of V : For each V E V pick U ,  E U such that 

v c u, .) 

7, Let (15' 
(Hint: See ex. I .28 and 5.) 

be the Sorgenfrey line (see ex. 1.3). Show that ( E l ,  g,,) is paracompact. 

8. Again, let X be the space of ex. I .27 

(a) Show that X is compact Hausdorff; hence paracompact and normal. 

(b) X X X is compact Hausdorff; hence paracompact and normal. 

(c) The subspace Y = X x X - { ( p ,  p ) }  of X X X is not normal. (Hint: 

let A = (X - { p ) )  x { p }  and B = { p }  x ( X  - { p ) ) .  Note 

that a neighborhood U of B consists of all points of Y - A ,  except for 
finitely many points of each horizontal fine X X {u }  with u E X - { p )  . 

A 

Pick a countably infinite subset s = { v ,  , . . . , v,, , . . .) of X - { p }  and let 

V; = { v i }  X X - {finitely many points of X x X }  , for i E N . Then 

V = U,, V,, = S x X - (countably many points of X X X ). Now, show 

that U (7 V f 0 .  Therefore, each neighborhood of A intersects each 

neighborhood of B.  

(d) Y is open in X X X . (Therefore open subsets of normal or 
paracompact spaces are not always normal or paracompact!) 

(e) Y is regular (see ex. 3.18(c)). 
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9. (Variations on Urysohn’s Lemma.) Show that Urysohn’s Lemma remains valid if 

(a) I is replaced by any closed interval [a ,  b ] .  (Hint: Use the 

homeomorphism h:  I [a ,  b ]  , defined by h ( t )  = t a + ( I  - t )  6 ,) 

(b) I is replaced by any open interval ] u, h [ , 0 and f are replaced by 

some points p ,  q E  ] a, h [ ,  respectively. 

10. Show that the real line E ’  , with the usual topology is not compact (try the cover 

( ] - n,  n [ I n E N) ), but i t  is paracompact. 

1 1 .  Prove that, for a - space X ,  the following are equivalent: 

(a) Xis normal. 

(b) Every locally finite open cover 24 = {u, LEA of X has an open 

refinement V = {V, kc,, such that each Q) # V; c I/, . 

Sketch ofProqf. It is easily seen that (a) implies (b) since, for disjoint 
closed subsets A and B of X ,  {X - A, X - B)  is an open locally finite cover 

of x. 
(b) implies (a). Let 5 be a well-order for A and let 0 denote the 

first element of A (with respect to 5 ). We will use the Transfinite 

Induction Theorem (see 0.20). Let L,, = X - u { U ,  I a E A ,  a # 0). 4, is a 

closed (maybe L,, = 0 ) subset of U , ,  . Pick nonempty open set H,, c X 

suchthat & c H , , C H , y  CU, , .Then  ( H , , ) U { U , l a ~ A , a ; t 0 )  i san  

open cover of X. Assume that we have defined nonempty open sets 
H ,  C X , for all a < some p , such that 

Let Lp = X -( u H, u u U , ) .  Lp is a closed subset of U ,  (why?). 
0 5  P P j a  
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Pick a nonempty open set H, such that L, c H ,  c H i  c Up. 

By Transfinite induction, we can then find nonempty open H ,  , 

VE I\ , which satisfy ( i )  and (ii) above. It remains to prove that { H v } v e , ,  

covers X .  Say x E X is an element of Ua, ,. . .,U,,, , only. (Why can we 

say this? Have we used local finiteness or something weaker?). Let 
a , , = m a x ( a  ,,,.., a , ] . T h e n x ~ X -  U U,;hence X E  U H a  (why?). 

CH all a% 

12. Let Y = ( E 2 ,  y )  be the Sorgenfrey plane (see ex. 1.7). Show that 

(a) Y is separable (see ex. 3.19), 

(b) Y is not Lindelof. (Hint: Clearly the set A = { ( x ,  y ) ~  Y I y = -XI is 

closed in Y. Let U = {Y -A)  U { [ x ,  x +  1 [ x [  y ,  y +  11 I y =-x) . 24 has 

no countable subcover!) 

(c) The product of Lindelof spaces may fail to be Lindelof. (Hint: Note 
that Y = X x X , where X is the Sorgenfrey line.) 

(d) Y is not paracompact (see ex. 6). Therefore, the product of 
paracompact spaces may fail to be paracompact (see ex. 7). As a matter of 
fact, Y is not normal but this is much harder to see. 

13. Let X be Hausdorff. Suppose there exists a countable open cover {U,z I n E N) of 

X such that each U,; is compact and U,; c U,,+] . Show that X is paracompact. (Hint: 

Use Theorem 8(b).) 

14. Let X be a paracompact space and Y a compact Hausdorff space. Show that X X Y 
is paracompact. (Hint: The key idea and picture appear in the proof of Theorem 3.8.) 

15. Is every locally compact Hausdorff space paracompact (see ex. 8)? 

16. A normal space X is called perfectly normal if each closed subset A of X is the 
intersection of a countably many open subsets o fX  (Le., A is a C, - set); equivalently, 

each open subset U of X is the union of countably many closed subsets of X (Le., U is 

an F, -set). Prove that if U is an open F, -subset of X then there exists a continuous 

function f : X + I such that f-' (0) = X -U  . (Hint: Say U = UT=, A,, with each 



I62 Elementary Topology and Applications 

4 closed. By Urysohn's Lemma, pick continuous functions f ,  : X + I such that 

f, (A, )= I  and f,l (X-U)=O.Finallylet  f ( x ) = C r = ,  2-"f , , (x) , foreachxE X .  
Then 

( i )  O l f ( x ) < I , f o r e a c h  X E X ,  

( i i )  f i s  continuous, 

( i i i )  f l  (0) = X -U , since X E  U implies XE some A,, and, hence, 

,f,l ( X I  = 1 . 

17. Show that the space of ex. I .27 is not perfectly normal. Indeed, show that the set 

{ p )  is not a G, -set. 

18. Show that every metric space ( X ,  d )  has a 0-discrete base ( i e . ,  a base which is 
a 0-discrete cover of X). (Hint: For each n, let U,, = { B  ( x ,  i) I X E  X} and let rj', be a 
0-discrete open refinement of q, ; see the proof of Theorem 9. Then 8 = U;==, 8, is 
a o-discrete base for X . )  

19. Show that a regular space X is metrizable iff X has a 0- discrete base. 

Sketch o j u  Proof: The only ifpart that follows from ex. 18. 
For the if part there are many steps. Let W = U,, 4, be a d -discrete base for X .  

( I )  X is paracompact (hence normal): Every open cover f l  of X has a 

refinement W ' =  U,, h',,', with 8' c 8. Now use Theorem 8(b). 

(2) X is perfectly normal. Let U open in X. For each n ,  let 
A,, = U {B-  I B E  4, and B- c V }  . Then each A,, is closed, by Lemma 

6(b), and U = U;zl A,, ( X  is regular!). 

(3) For each B E  h', and n~ N ,  let .f,,, : x -+ I be a continuous 

function such that ,f;l (0) = X - B (see ex. 16). Then, for all x, Y E  X , let 

and 
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p ( X ,  Y >  = c, 2-” p, ( X ,  Y )  

163 

(Note that, for each x, y e  X and n E N , there exists at most two 

elements B , ,  B,. E 4, to which x and y may belong. Then, p, (x, y )  = 

sup ( I f, ( x )  - f, (y) I ,I f B  (x) - f, (y)  I ) .) It is easily checked that p 

is a metric. (Indeed each p,, satisfies all properties of a metric, except that 

p,,  (x. y )  = 0 does not necessarily imply x = y ; furthermore, each 

pn I I .) 

(4) Each ball B (x, E )  is the union of elements of 

Say p (x, y )  = p and 0 < 6 = E - p . Since 

Cy==, 2-” p ( w ,  z )  5 ’& 2-” = 2-“+’ , for all w, ZE X , there exists integer 

m such that CL,,, 2-” p,, ( w ,  z )  < 

j = I , .  . . , m - 1 . pick elements B, ,. . . , B,,-, of 8 ( Bj not necessarily in 

f l )  such that p i  (y, z )  < ?,  for all Z E  B i ,  j = I , .  .., rn- I (use the 

continuity of the functions f B i  and the discreteness of each 4 ; note that y 

is in at most one B- such that BE Bi ). 

: Let YE B (x, E )  . 

6 , for all w, ZE X . For 

6 

( 5 )  Each B E  8 is a union of p-balls: Let B E  rj’k and pick X E  B . 
Then, , f B k  ( x )  = E  > 0 . Show that B ( x ,  2 - k ~ )  c B (observe that 

p k  ( x ,  y )  < E implies that Y E  B and p ( x .  J?) < T k &  implies that 

PA ( x ,  Y )  < E 1. 

To complete the proof, apply Lemma I .20. 

20. Show that a regular space X is metrizable iff X has a 0-locallyfinite base. (Hint: 
Follow the method of proof of ex. 19, exercising a bit more care for the if part.) 
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2 1 .  Show that, for u regular space X ,  the following are equivalent: 

(a) X is metrizable. 

(b) X has a d -discrete base. 

(c) X has a d -1ocallyfinite base. 

(Hint: See ex. 19 and 20,) 

22. A cover II of a space X is called closure-preserving if, for each v C f l ,  
U ( V -  I V E V )  . Show that X is paracompact implies that every open cover of X has an 

open closure-preserving refinement. (The converse is true but the proof is horrendous.) 

23. Let U and V be covers of a space X. U is a A -refinement of v if, for each 

X E  X ,  U { L / E U I X E U ) C  some V E V  ( U { I ! / E U I X E U )  isgenerallydenotedby 

st ( x ,  U) and called the sfur o f x  with respect to u). Show that X is paracompact 

implies that every open cover of X has an open A -refinement. (The converse is true 

but the proof i s  quite difficult.) (Sketch ? f a  proof. Let f l  be an open cover of X, f.f 

an open locally finite refinement of U, v’ a closed cover of X such that v‘ C v , for 

each V E  v (see Lemma I I ) .  For each finite subcollection 3 = {v,. . .,Vn} of V ,  let 

Let W = (~(3) I3 is a finite subcollection of V )  . Then 

( i )  W is an open cover of X ,  

( i i )  xE v,; c c V, implies st (x ,  W )  c v,, 

( i i i )  W is locally finite.) 

24. (Tietze’s Extension Theorem.) A space X is normal iff, whenever A i s  a closed 

subset of X and .f : A + I is continuous, there exists a continuous f : X + I  such 

that f 1 A = .f ( i t . ,  f is a continuous extension offto all of X). (Hint: The ifpart is 

obvious since, given disjoint closed subsets C and 5 of X ,  the function f : C u  B + I 
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such that f (C)=O and .f (B )=  I is continuous. Therefore, ... . The proof of the 

only ifpart is hard: Let A, = { X E  A I .f ( x )  I i} and B, = { x e  A I f ( x )  I 3, . Applying 

Urysohn's Lemma (see ex. 4.9), there exists a continuous f, : X + [f ,4 ]  such that 

f, (A , )  = si and fl ( B , )  = . Clearly, for each a E A , I f (a)  - f, (a)  I I and, hence, 

g, = f - f, maps A to [0, f ]  . Repeating the process of removing middle thirds, with 

g, instead of f and [0, i] instead of [O,1] ,  let A, ={XE A l g ,  ( x ) < ~ } ,  

B, = {XE A I g, ( x )  I :} and find f 2  : X + [,, :I such that f 2  ( A 2 )  = t ,  f2  ( B 2 )  = . 

Clearly I ( f - f , ) - f 2  I = l f - ( f ,  + f 2 ) l < ( f ) '  onA. 

I 2 I 

I 

2 

Inductively, one then obtains continuous functions fi : X + [O, -1_] c [O, 11 such 

that I f (a )  - I,;=, fk ( a )  I I (f)" , for all a E A (ix., {Xi=, f k } , l  converges uniformly 

tofon A).  

3" 

Define 7: X + E' by 7 ( x )  = Z;, ( x ) ,  and show that 

(a) 0 5  7 ( x )  I I ,  for each X E  X (geometric series!), 

(b) f ( a ) = f ( a ) ,  foreach ~ E A ,  

(c) 7 is continuous. (For x E X and & > 0 ,  pick integer m such that 

C;=p=,+, (i)" < f . Pick neighborhoods U, of x ,  for i = 1 y . .  , rn, such that 

y E U ,  implies I j ;  ( x )  - f j  ( y )  I < 6 . Let U = U ,  0.. . fl U,,, and show 

that ~ E U  = = > I , f ( x ) - - f ( y ) l < ~ . )  
- 

25. (Variations on Tietze's Extension Theorem.) Show that Tietze's Extension Theorem 
remains valid if 

(a) I is replaced by any closed interval [a, b]  . (Hint: Use the 

homeomorphism h : I + [a, b ]  , defined by h (t) = t a + ( I  - t )  b .) 
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(b) 1 i s  replaced by any open interval I ( I ,  h(  . (Hint: Suffices to consider 

. f ' : A - + l - l , I I c [ - l , I ]  (why?). From (a)extendfto f : X + [ - I , l ] .  

Let A,, = ( x ~  X I .f' ( x )  = - I  or I )  . Clearly A and A, are disjoint closed 

subsets of X .  Pick continuous ,q : X --;r I such that g ( A , )  =7 and 

g ( A )  = I (why?). Define 7 : X + I by 7 ( x )  = g ( x )  f ( x )  . Show that 

,f' : x + 1 - I ,  I , ,f continuous and .f' I A = ,f' .) 

- 

I 

I - - 



Chapter 8 

The Fundamental Group 

It is intuitively obvious that no amount of stretching, shrinking and deforming, without 
tearirzg or gluing, will transform a closed disc into an annulus; that is, the annulus 

and the closed disc are not homeomorphic. The same comments apply to the 2-sphere 
and the torus. Yet, these highly intuitive facts are equally difficult to prove; both pairs 
of spaces are compact metrizable, connected, locally connected and arcwise connected; 
both pairs are even locally homeomorphic. 

In the search for. a proof that these pairs of spaces, and many other pairs, are not 
homeomorphic, i t  is interesting to observe that any two rubber bands laid out on the 
surface of the closed disc or the sphere can be continuously deformed into each other 
by stretching, shrinking, bending and gluing, without tearing. The same cannot be said 
about the annulus or the torus: Consider a rubber band laid on the inner rim of the 
annulus and one that does not surround this rim; also consider a rubber band around 
the outer hole of the torus and one around the inner hole of the torus. 

Let us give this simple observation precise mathematical form and reap some of its 
many powerful benefits. 

8.1 Description of n, ( X ,  b )  

1. Definition. Let X be a topological space and let b, c, d E X 

(a) A loop bused at b is a path a : 1 + X such that a (0) = b = a (1) I 

(Here is the rubber band!) 
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(b) Two paths a and p from c to d are homotopic (i.e.,  01 - p ) 

provided that there exists a continuous map h : I x 1 + X such that 

h ( t ,  0) = a ( t ) ;  h ( f ,  1) = p ( t ) ,  h (0, t )  = c, h (1, t )  = d , for t E I . (There is 
the continuous d&v-mation!).  The map h is called a homotopy from a to 

P . I f c = d , a  I /J becomesa p .  

1 d 

l d  

(c) Let a be a path from x, to X ,  and p be a path from x ,  to x 2 .  Then 

the product of a and p i s  the path a * p from x, to x 2 ,  defined by 

a ( 2 t ) ,  0 I t 2 1/2, i p ( 2 t - 1 ) ,  1 / 2 < t 5 l .  
G1 f p ( t )  = 

(Clearly, a * p is well-defined and continuous!) 

(d) The reverse of the path a is the path a',  defined by a' ( t )  =a (1 - t )  . 

(e) s2 ( X  , h) denotes the set of all loops on X based at 6.  

Note that the product of two paths amounts to no more than travelling through 
both with Twice the originul velocity, while the reverse ofa path is no more than travelling 
on the sume puth in  the opposite direction. Definitely, the reverse of a path is not 
related to the concept of the inverse function. 

Also, note that if C,, is the arcwise connected component of X which contains the 

point b, then s2 ( X ,  6) = R (C,, , 6) ; furthermore, a, /J E fi (X, b) are homotopic ifand 

only ifthere exists a path in R ( X ,  b ) ,  with respect to the co topology, from a! to 
(see ex. I ) .  

2. Lemma. - is an equivalence relation on !2 ( X ,  0). 
h 

Proof. 

from a to p . Letting h' (s, t )  = h ( s ,  1 - t )  , for each (s, t )  E I X I , we immediately 

get that h' is a homotopy from p to a . Therefore, a 

Clearly, a I; a ,  for each af SZ ( X ,  b)  . Say a p . Let h be a homotopy 

p iff p a .  Finally, 
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suppose a p and p y .  Say hl is a homotopy from a to p and h, is a 

homotopy from p to y . Define h : I x I + X by 

169 

h, (s, 2 t ) ,  0 I t I 1/2, 

h, (s ,  2t - I), 1/2 I t I I. 
h (s, t )  = 

It is clear that h is a homotopy from a to y ; therefore a P , p y implies p y . 
Let n, ( Y ,  b) denote the set of -equivalence classes of s2 (Y,  b) and define an 

operation on this set by 

( [ y ]  denotes the equivalence class of the loop y ) .  
We will now show that the operation 0 on n, (Y, b) is well-defined and makes 

n, (Y, b) into an algebraic group. 

3. Lemma. 

[GI =[g] then [f * gl= [ F  *GI 1. 

The operation 0 on n,  ( Y ,  b )  is well-defined ( i e . ,  if [F] = [f] and 

Proof. Suffices to show that if F f and G g then F * G f * g . So, let h, ,  h, 

be homotopies such that h, ( x ,  0) = F (x), h , ( x ,  I )  = f (x) h, (0, t )  = b  =hi (1, t )  

h, ( x , 0 ) = G ( x ) , h 2  ( x , l ) = g ( x )  h,(O,t)=b=h*(l , t ) ,anddefine h : l x Z = Y  by 

h, (2n, t ) ,  
4 ( 2 x - I , t ) ,  1 / 2 I x S I *  

0 I x 5 1/2 
h (x, t )  = 

F G 

It is easily seen that h is a homotopy between F * G and f * g . Hence “ 0 ”  is 

well-defined and single-valued. 
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4. Lemma. The operation ' ' 0 "  on n, ( Y ,  6) is associative. 

Elementary Topology and Applications 

Proof. 

f, g ,  he R (Y, 6 ) .  Note that 

Clearly, it suffices to prove that ( f  * g) * h f * (g * h) for any 

.f ( 4 x ) ,  0 5 x I U 4 ,  
K ( 4 ~  - I ) ,  I /4 I x 5 I / 2 ,  
I? ( 2 x  - I ) ,  I / 2  2 x 5 1 , 

f ( 2 X ) ,  0 s x I1/2,  
g ( 4 ~  - 2) ,  1/2 I x I 3 / 4 ,  
h ( 4 ~ - 3 ) ,  3 / 4 2 ~ < 1 .  

Now, we define H : / X Z  4 Y by 

44 f ( X ) ?  t I 4 ~ -  1, 

H ( ~ , t ) =  g(4X-t-1),  4 ~ - 1 L t 2 4 ~ - 2 ,  
4x-1-2 h ( F ) ,  4 x - 2 2 t .  I 

Note that H is constant along any segment of line in the middle strip which is parallel 
to the line t = 4 x - 1 . 

I t - axis 

It is then easily (but tediously) seen that H is a homotopy between (f * g )  * h and 

f * (8  * h ) .  
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5. Lemma. If c,, is the constant map from I to b then [c,)] is the identity element 

of n, ( Y ,  6 )  

Proof. 

H : l x l + Y  by 

It suffices to prove that for each ,f E !2 (Y, O), .f * c,, I; f . SO, define 

I t -axis 
I 

I 

I 
I f 

6. Lemma. 

n, ( Y ,  b )  has an inverse in n, ( Y ,  b) with respect to the operation “ 0 ” ) .  

If [ f ] ~  n, (Y, b )  then [ f ]  0 [f‘] = [c,] ( i e . ,  each element of 

Proof. It suffices to show that f * , f r i  c,, , where 

.f (2x1, 0 I x I 1 /2, { f ”  (2x-I)=f ( 2 - 2 4 ,  1125x51. 
f * f”’ ( x )  = 

Simply define H : I x I + Y by 
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I t -axis 

7. Theorem. For any space Y and b E Y , ( rI I ( Y ,  h ) ,  ) is a group. 

Proof. Immediate from Lemmas 3 through 6. 

The group n ,  ( Y ,  h)  is called the,fi:rst homoropy group (or thefundamentalgroup) 

of Y with base point  h. Fortunately, for  a very large class of spaces, different base 
points yield isomorphic fundamental groups. Later on (see ex. 2) we will see that the 
next result is best possible. 

8. Lemma. Let b, C E  X and y be an arc from b to c. Then 

n, (X, b )  n, ( X ,  c ) .  
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which shows that y# is a homomorphism. Clearly y# is one-to-one and onto (indeed, 

('y#)-' = (f)# ); hence ')'# is an isomorphism. 
Lemma 8 tells us that each arcwise connected space has one and only one (up to 

isomorphism) fundamental group and that to study the fundamental groups of any space 
it suffices to study the fundamental groups of each arcwise connected components of 

that space. For arcwise connected spaces X ,  it is customary to let n, (X, b) = n, ( x ) ,  
since the fundamental group does not depend on the base point. 

8.2 Elementary Facts about nl (X, b) 

The justification for the following definition will soon become apparent. 

9. Definition. Let X and Y be spaces and pick b E X . 

(a) Two continuous mapsf; g : X 3 Y are homotopic (i.e.,  f - g ) 

provided that there exists a continuous map h : X x I + Y such that 

h I X x (0) = f and h I X x (1) = g . The map h is called a honzotopyfromf 

to g (ie., h : f - g ). 

(b) If f : X + Y is a continuous map, let f, : n, ( X ,  b )  + n, ( Y ,  f (b)) 

be defined by f* ( [a] ) = [ f  0 a]. 

(c) X and Y are of the same homotopy type if there exist continuous maps 

f : X + Y ,  g : Y + X  suchthat g o f - i ,  and f o g - i i , .  

(d) X is contractible if i, - c,, , for some b E X 

It is obvious that ( i ~  )* = in, ( x ,  h)  . Also, a contractible space is arcwise connected 

(let h : i, - c, and c, d E X ; define a : 1 + X by 

t 5112, {; z;; - t ) ) ,  12 1/2. 
a ( t )  = 

10. Lemma. The function f* : n, (X, 6 )  + n, ( Y ,  f (b) )  of Definition 9(b) is a 

homomorphism. 
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Proof. Note that, for [ ~ ] , [ P ] E  n, ( X , b ) ,  

f* ([aIoLPl) = f* ( [ a  * PI 1 = [f * P )  1 = [ (f 

[.f o a I o [ f o  P I =  f*([aI ) f*( [PI  1 .  

* (f O P )  1 = 

11. Theorem. 
g : X -+ Y and h : Y + Z be continuous maps. Then 

Let X ,  Y ,  Z be arcwise connected spaces and pick b E  X ; letJ 

(a) ( h o f ) ,  =h* o f * .  

(b) If h : J ' - g  then g ,  = U O  f , ,where O = h l { b ) x I  isthepathfrom 

,f (b) to g (b) . (See proof of Lemma 8.) 

(c) If X and Yare of the same homotopy type then n, (X) G n, (Y) . 
Part (a). Let [a]€  n, ( X , b )  . Then Proof. 

( h  0 ,I.)* ( [a I ) = [h  0 f 0 a1 = h* ( r f 0 a1 1 = h* 0 f* ( [a1 1. 

Part (b) .  Let [a]€ n, ( X , b ) .  Note that g ,  ( [ a ] ) = [ g o a ]  and 

0, of* ( [a] ) =[or * f oa* 01; therefore, we must show that 0 '* f oa: *O  - g oa: 

First, define h, : I x I + Y by h, (s, t )  = h (a (s), t )  , and note that h, : f o a  - g 0 a 
such that h, (0) X I = 0 = h, I (1) X I , From the diagram 

R(h) 
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it is easy to obtain an analytic expression for a homotopy 

(see ex. 3). 

:a" * f oa * d - g 0 a 
g(b)  

Part (c). Let f : X + Y and g : Y -+ X be continuous maps such that i, - g 0 f 

and also i, - f 0 g . It follows that f, : n, (X, b) + n, (Y, f (b)) and 

g,  : fl, (Y, f (b)) -+ fl, ( X ,  g f (b) )  and also, from (b), g ,  0 f, = (g of), = 

o, 0 (ix ), = o,,, f* 0 g ,  = (f 0 g), = y, 0 (i,,)* = y, , where 6, and ')'# are 

isomorphisms; therefore, g, o fi = cr, implies that g, is onto and f, is 1 - 1, while 

f, o g, = y# implies that g, is 1 - 1 and f, is onto, which shows that ft and g, are 

isomorphisms. From Lemma 8 we get that n, ( X )  s n, ( Y )  . 

12. Corollary. The following is true. 

(a) If X is contractible then n, ( X )  = 1 (i.e., the trivial group consisting of 
the unit  element only, the double meaning of I will be clear from the 
context). 

Proof. 

any singleton {b) . Part (b) follows immediately from (a), since E" is contractible 

(note that h : E" x f -+ E" , defined by h ( x ,  t )  = t x , is a homotopy from the identity 

map i, to the constant map c0) .  

Part (a) follows immediately from Theorem 1 l(c), since n, ({b},  b) = 1 , for 

8.3 Simplicia1 Complexes 

While it is easy to define the fundamental group of a space it is extremely difficult 
to determine the structure of that group, unless that space is a nice union of nice 
subspaces. Fortunately, most common spaces are in this category which we are about 
to study. 

13. Definition. 

(a) A set { vo,  v,  , . , . , vk } c E" is said to be convex-independent if 
{ v ,  - v g , . . . , v k  - v o }  is linearly independent. 

(b) Suppose { v o , v l ,  ..., v k }  c E" is linearly independent. Then the set 
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is called the open k - s implex ,  with vertices vo, ..., v k ,  and is denoted by 

< vo ,..., vk > . The closed k-s implex,  with vertices vo ,..., v k ,  consists of 

< vo ,..., vk > with its boundary in En and is denoted by < vo ,..., vk >-. Unless 

otherwise stated, we will let s"; ,g ' I , .  , . denote a closed n -simplex. 

Remark. It is obvious that k 5 n + 1 and easily seen that < vO,. , . , vk >- = 

<C:=, vi I &=o A; = 1, 0 I A; 5 I, for i = 0,. . . , k }  ; furthermore, for each 

C;=, Ai vi , C,",,, pi vi E < v 0 , .  , . , vt > and t E I , t x:=o A; vi +(I - t )  x:=o pi vi = 

Eft,, [ t A; + ( I  - t >  pi 1 vi E < v( ,,..., vk  > ; that is, < vo , .  . . , vk > is a convex subset of 

E n .  Similarly, < v 0 , .  . . , vk  Y is a convex subset of E n ,  Also Z:+ Ai vi = 

c:=, pi vi iff A; = p i , .  . . , Ak = p,, . (The if part is obvious and the only ifpart goes 
as follows: Note that 

k 

Since { v ,  -vn,...,vk - v n )  is linearly independent, we then get that 

A, - P I  = O  ,..., A, -Pk = O ,  which does the trick.) Finally, note that, for 

V E  E" -(O}, < v >=< v >-. 

14. Definition. 
following: 

A simplicia1 complex (or polytope) K is a space which satisfies the 

(i) K = U a s h  s, such that each s, is a closed simplex, 

( i i )  For every a, p E A, s, n sB is a closed simplex. 
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Remark. Let {vP lEr be the vertices of the polytope K. Then, from the preceding 

remark, XE K implies x = c x p  v p  , uniquely, with only finitely many x,, # 0 . 
( X P ) p e , -  are called the burycentric coordinates of x i n  K. 

P 

Remark. 
the topology that K can have. One possibte and extremely useful topology is the 

weak topology which is defined as follows: A set U c K is open provided that 

U fI s, is open in Sa for each (YE A .  (It is easy to check that this, indeed, defines a 

topology on K such that each sa is a subspace of K, because of (ii) of Definition 14; 

without it we would have nonsense. See ex. 4.) 

Condition (i) of the preceding definition imposes severe restrictions on 

15. Definition. A simplicia1 complex K with the weak topology is called a 
CW-polytope. Henceforth, polytopes will be assumed to have the c w  -topology 
whenever a topology is required. 

16. Definition. 

(a) A polytope K with only finitely many simplexes will be called a finite 
polytope. 

(b) K’ is called a subpolytope of K if K’ is a polytope and K’ is a 
subspace of K. 

17. Definition. 

(a) Let K be a polytope. For each I I  E N , let K ( n )  be the subpolytope of K 
which consists of all j -simplexes of K for j = 0,. . . , n . K ( n )  is called 
the n -skeleton ofK.  

(b) A polytope K is said to be y1 -dimensional if K (n) + 0 and 
K ( n + i ) = K ( n ) , f o r  i~ N .  

18. Definition. A space X is said to be triangulated if X is homeomorphic to a 
polytope. 
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Clearly, all n -spheres and all n -balls are triangulated, since (the boundary sm-1 
of> an n -ball is homeomorphic to (the boundary polytope of) an n -simplex (see 
ex. 5).  

19. Definition. Let K be a polytope and v a vertex of K. The star ofv is the union 
of all open simplexes of K having v as a vertex, and it  is denoted by St v. Recall that 

St v denotes the closure of St v in K .  
- 

20. Lemma. Let v be a vertex of a polytope K. Then 

(a) St  v is an open subset of K, 

(b) is a subpolytope of K, 

(c) St v = {XE K I the barycentric v-coordinate of x is not zero}, 

(d) < vo, .  . ., v,, > c K n (n;.'=, st v;) it' and only if ~t V ;  # 0 

Proof. 

(a) For any closed simplex g c K, ( K  - St v) n g either equals g or a closed 
face of g or the empty set. Therefore K - St v is a closed subset of K. 
(Indeed we have even shown that K - St v is a subpolytope of K. )  

(b) Obvious. Indeed % is the union of all closed simplexes of K having v 
as a vertex. 

(c) Straightforward, by the definitions of St v and of open simplex. 

(d) The only if part is obvious. Let us therefore prove the ifpart: Clearly, 

because of part (c) 
< v ~ , .  . . , V, > c K because St vi # 0 and v,,, . , . , V ,  > c I-ys Sr vi 

Observation. 
polytope K is a polytope. 

The union of any collection of closed simplexes contained in a 

21. Theorem. Let K be a polytope. A subset C of K is compact iff C is a closed 
subset of a finite subpolytope of K. 
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Proof. The ifpart is obvious. Let us therefore prove the only ifpart. 
Let Cbe a compact subset of K and suppose Cis not contained in a finite subpolytope 

of K .  Then there exist finite subpolytopes K ,  c K ,  c... of K with some 

xI1 E ( K ,  n C )  - K,,-, , for n = 2,3, .  . . . Then (every subset of) B = {xi I i = 1,2,. . .} is a 

closed subset of K ,  because K has the weak topology over its finite subpolytopes(!). 

Therefore, the sequence {xi):=, has no cluster point, contradicting the fact that C is 

compact. This completes the proof. 

22. Corollary. A polytope is compact if and only if it is a finite polytope. 

8.4 Barycentric Subdivision 

23. Definition. The point of an n -simplex g" all of whose barycentric coordi- 

nates equal n+l is called the barycenter of g" (the barycenter of a 0 -simplex 

< q > is 4). 

I 

We will write g i  c g" if and only if g' is a proper face of g" (Le., g' c g" and 

g' # g" ). 

24. Lemma. 

and xi E si for i = 1 ,..., j .  Then {x,,. . . , x i }  is linearly independent. 

Let s ,,..., s, be proper faces of an open simplex g" . Pick X, E g" 

Proof. S ttaig htforward. 

25. Definition. 

given closed simplex g"' . The union of all simplexes < xi(, ,.. .,xi,$ > such that 

sit, < .. . < si,, (see Lemma 24) forms a finite polytope which is called thefirst 

barycenteric subdivision of g "' Inductively, the n-fold barycentric subdivision of 

g"' is the first barycentric subdivision of the ( n  - 1) -fold barycentric subdivision 

of g" . The n -fold baryceiztric subdivision of any polytope K is the polytope K'"' 
which is obtained from K by replacing each closed simplex of K with its n -fold 

barycentric subdivision. 

Let x ,  , , . , , xk  be the barycenters of all the faces s, ,. . .,sk of a 
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26. Lemma. Let K be any polytope. Then K is homeomorphic to K ( " )  , for each n. 

Proof. 

closed simplex g c K is homeomorphic to g"' . Therefore, since K and K(') have 

the weak topology, one easily sees that K is homeomorphic to K ( ' )  (see ex. 6) .  

Clearly, it suffices to prove that K is homeomorphic to K(') . Clearly, each 

27. Definition. 
simplexes of K. (The mesh may be infinite!) 

The mesh of a polytope K is the supremum of the diameters of all 

28. Proposition. 
diameter of the convex hull  of A (i .e. ,  diam A = diam conv A) .  

Let A be a subset of E" . Then the diameter of A equals the 

Proof. 

Thenforany a~ A and ~ > O , c o n v  A c ( y e  E " : l a - y l < S + ~ ) =  B ( a , 6 + & ) ,  

because A c B (a ,  6 + E )  and B (a ,  6 + E )  is convex. Therefore, conv A 
c 
Therefore diam conv A = 6 , 

Clearly, diam A 5 diam conv A ,  because A c conv A. Let diam A = 6 .  

{ B (a ,  6 + E )  I a E A,  E > 0) . This easily implies that diam conv A I 6  . 

29. Corollary. 
face. 

The diameter of a geometric simplex is the length of its longest 1- 

Proof. 
hul l  of the set of its vertices (by its very definition). 

Immediate from Proposition 28 since a geometric simplex is the convex 

30. Lemma. Let g be a closed p -simplex with diameter d.  Then mesh 

Proof. 
valid for ( n -  I )  -simplexes, with n 2 I , and let us show that it is valid for any n - 

simplex (T = < xo,.  . . , x ,  > . By Corollary 29, the induction hypothesis and the fact 

that Tk-;T 5 , for k I n , we need only show that the length of any 1-face of u ( I )  

(By induction). For p = 0 we have a valid result. Assume the result is 

k 

which starts at the barycenter Cy!, & xi of CT and ends at the barycenter 
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Xyz0 & xi of a k -face of d (this may involve a renumbering of the vertices of 

0 !) is no larger than -$ : Note that 

( n - k )  (k  + 1) d - ( n - k )  d n d 
( n + l ) ( k + l )  n + l  n + l  

I - ,  for k = O .  Z I n - k )  , j ( k  + I )  1 k 2 1 I xi -.xi IS -- 

(Note that we proved more than we claimed - namely, a relationship between the 

lengths of the I -faces of g and the 1 -faces of g( ' )  .) 

31. Theorem. Let K be an n -dimensional polytope with mesh K = A c 0 0 .  Then 

mesh K(') I ;;;T . n.4 

Proof. Immediate from Lemma 30. 

32. Theorem. Let K be an II -dimensional polytope. For any 6 > 0 ,  there exists 

m such that mesh K(m' < 6 .  

Proof. Let mesh K = A .  By Theorem 31 and induction, we get that the mesh of 

5 (&)" A and lim (&)" = 0 .  This completes the proof. K (m) 

rn 

8.5 Simplicia1 Approximation 

33. Definition. 
provided that 

Let K and L be polytopes. A map v : K + L is a simplicial map 

(Le,, ly is linear on each simplex of K and v (K) is subcomplex of L). 
Clearly, each simplicial map is continuous. 
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34. Definition. Let K and L be polytopes, and f : K + L a continuous function. 

A simplicial map I,Y : K -+ L is a simplicial approximation to f if 

f (St v )  c St y ( v ) ,  for each V E  K (0). 

35. Lemma. 

each p~ K , f ( p )  and y ( p )  lie in  a common closed simplex of L. 

If y~ : K + L is a simplicial approximation to f : K + L then, for 

Proof. Pick V E  K (0) such that the barycentric v-coordinate of p is not zero. Then, 

p E St v , which implies that f ( p ) ~  f (S t  v )  c St y (v) . Therefore, f ( p )  lies in 

some open simplex of L for which y (v) is a vertex, which does the trick. 

36. Corollary. 

d ,  (f, y) 5 mesh L .  

If y~ : K -+ L is a simplicial approximation to f : K + L then 

37. Lemma. 

approximation offthen w = f . 
If f : K -+ L is a simplicial map and V : K -+ L is a simplicial 

Proof. y I K (0)  = f I K ( 0 ) .  

38. Theorem. 

subcomplex of K such that f 1 I(‘ is a simplicial map, then there exists a homotopy 

h : f - y (fix K ’ )  (k,,  h ( x ,  t )  = f ( x )  = y ( x ) ,  for all X E  K ’ ) .  

Let W be a simplicial approximation to f : K -+ L . If K’ is a 

Proof. 
is a well-defined map into L. Clearly, h is a homotopy betweenfand W .  Also, h is 

stationary on K’ because of Lemma 37. 

Define h : K x I -+ L by h ( x ,  t )  = t y ( x )  + (1 - t )  f ( x )  . By Lemma 35, h 

39. Lemma. 
vertex map. Then v/ can be extended to a simplicial approximation tofif  and only if 
f (St  v )  c St y ( v ) ,  for each V E  K (0). 

Let f : K 3 L be a continuous map and iy : K (0) -+ L (0) be a 

Proof. Since the only ifpart is obvious, let us prove the ifpart. We must show that 

V satisfies Definition 33(b): Pick <vo,. . .,vn > c K .  Then, by Lemma 20(d) and the 

hypothesis, 0 # f (< v 0 , .  .., v,, >) c f (fly=, st v i )  c rl;Io f (st v ; )  

c St iy ( v i )  . Therefore, by Lemma 20(d), <y ( v 0 ) ,  ...,y (v , )  >- c L .  
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40. Theorem. Let K be a finite polytope, L any polytope and f : K 4 L a con- 

tinuous map. Then there exists a subdivision K' of K (not necessarily a barycentric 

subdivision) and a simplicial map t,u : K' + L such that ly is a simplicial approxi- 

mation tof. 

Proof. 

open cover of K. Since K is a compact metric space (see Corollary 22) V has a 

Lebesgue number 6 > 0 (see ex. 3.13). Choose K *  so that mesh K * c 6 / 2 (see 

Theorem 32). Then diam CT 5 6 / 2 , for each open simplex CT c K' ; hence, 

St w c B (w, 6 ) ,  for each WE K" (0). Therefore, for each WE K *  (0) , there exists 

V(W)E L ( 0 )  suchthat Sf w c B ( w , 6 ) c f - ' ( S t  v(w)).Define v / :  K* (O)+ L ( 0 )  

by y ( w )  = v (w) , Then f (St w )  c S t y  (w) , for each WE K' (0) , and we can 

therefore extend W to a simplicial approximation off, by Lemma 39, which 
completes the proof. 

By Lemma 20(a) and the continuity off, V = {f-' (St v) I V E  L (0) )  is an 

41. Corollary. Let f : K + L be continuous with K finite and L a finite dimen- 

sional polytope. Then, for each & > 0 ,  there exists (barycentric) subdivisions K ( " )  

of K and L'"' of L and a simplicial approximation y : K'") 4 drn) tofsuch that 

d,y (f. v/) < E . 

Proof. 

continuous, by Lemma 26. Therefore, by Theorem 40, there exists K'") and a 

simplicial approximation w : K(") + drn) tof. By Corollary 36, 

d,$ (f, ty) I mesh L'"' < E . 

By Theorem 32, pick En') such that mesh L'"' < E . Then f : K + Lfml is 

8.6 The Fundamental Group of Polytopes 

Theorem 40 shows that one may study the homotopy groups of a polytope by 
considering only simplicial maps and their homotopy properties. This simple observation 
enables one to effectively compute the fundamental homotopy group of many spaces. 

42. Definition. 

v/ and p are contiguous if, for each < v ,,,..., vk > c K , 

Let K and L be polytopes and y ,  1 : K + L be simplicial maps. 



The maps l/l and p are contiguous equivalent (i.e.,  W /l if there exists a 

finite sequence w0,...lyk : K + L of simplicial maps such that v/ =Yo, P = 1 v k  and 

l,Ui-, contiguous to ly, , for i = 1 ,..., k . 

43. Lemma. 

yf, p : K --+ L are simplicial approximations offthen \y and /L are contiguous. 

Let K and L be polytopes and f : K + L a continuous map. If 

Proof. This is an easy consequence of Lemma 20(d). 

44. Lemma. 

A={xE KIw(x)=p(x)}.Then - p ( f ixA) .  

Suppose w ,  p : K + L are contiguous simplicial maps and let 

Proof. 

Define h :  K x l  + L by 

Note that, for each p E K , y ( p )  and ,u ( p )  lie in a common simplex of L. 

h ( x ,  t )  = (1 - t )  y ( x )  + t p ( x )  . 

It is easily seen that h is the desired homotopy. 

45. Corollary. Contiguous equivalent simplicial maps are homotopic. 

46. Theorem. 

be continuous maps and A = { x ~  K I f,, ( x )  = f, ( x ) )  . Suppose that there exists a 

homotopy h : ,fo - f ,  (fix A ) .  Then, for some n, there exist simplicial maps 

yo, yI : K(") + L such that 

Let K be a finite polytope and L any polytope. Let fo, f l  : K -+ L 

(a) y j  is a simplicial approximation of fj , for j = 0,1 ,  

Proof. 

cover of K x I . Since K X I is a compact metric space there exists 6 > 0 such that 

By Lemma 20(a) and continuity of h, {h-' (St w)  I W E  L (0)) is an open 
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each B ( x ,  6) c h-l (St w) , for some W E  L (0). Choose barycentric subdivisions 

I of K and I ( k )  of I fine enough that St v x [ j - - , j + i] is contained in a ball 

of radius 6 and, therefore, it is contained in some h-' (St w )  , (note that the vertices 

of I'k' are 0, -, , . , , *, 1 ). Since K'") x is clearly homeomorphic to a 

CW - polytope with vertices (v,  -i) , for V E  K'") (0) and i = 0,. . . ,2 , and 

K ( a )  

2k 2 k  

I 

2k 2 L  

k 

2k 

there exists, by Lemma 39, a simplicial approximation p : K(") x I ( k )  + L of h. Note 

that, by Lemma 39, 

i-l i + l  
St v x [- --] c h-' (St p (v, ')) . 

2k 2k 2 k  

Let yfi = P I  K'") x(%], for i = O  ,..., Zk. Then, letting @"=ly,, , $J,= p 2 & ,  is a 
2 

simplicia1 approximation of fj , for j =0,1. Furthermore, @o c #, because Yi is 

contiguous to Vi + I, for j = 0, , . . , 2 - 1 : Pick any simplex < vo,.  , ., v, >E K'"' .Then 

47. Definition. Let K be a polytope. 

(a) An ordered pair I v ,  v2 I of vertices of K is called an edge of K with 

origin v1 and end v 2 .  If e = I  vi v2 I then e-' = I  u2 vt I .  
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(b) A route in K is a finite sequence o = e ,  e 2 . ,  .en of edges of K such that 

the origin of ei + I is the end of e, , for i = 1,. . , , n - I . The origin of e, is 

the origin of w and the end of e,, is the end of W . 

(c) Given two routes w =el e 2 . .  .ek and z = d, d ,  . . .d,, , with the end of w 

equal to the origin of z, we define the product 0 z by 

m r = e ,  e 2 . . . e k  d ,  d , . . . d ,  

- I  -I  (d) The inverse of a route o = e, e2 .. .ek is 6' = ek-, . . .e, . 

(e) For any three vertices v I ,  v 2 ,  v3 of a simplex of K ,  we say that 

1 vI v2 I I v2 v3 I is edge equivafeiat to I v I  v3 I .  Two routes o and z are edge 

equivalent ( i -e . ,  o - Z ) if z can be obtained from w by a sequence of 
elementary edge equivalences. 

E 

48. Theorem. Let K be a polytope and v0 a vertex of K .  Let E ( K ,  v o )  be the set 

of edge equivalence classes of routes of K with origin and end at vo . Then E (K, vo) 

is a group, with identity I vg vI I ,  under the operation of multiplication and inverse 

defined above. ( E ( K ,  v o )  is called the edge path group of ( K ,  vo )  .) 

Proof, Straightforward 
By its very definition, the edge path group of ( K ,  vo)  depends only on the simplexes 

of K and not on the topology of K .  

49. Theorem. 

n, ( K ,  vo> are isomorphic groups. 

Let K be a polytope and vo a vertex of K .  Then E (K, vo) and 

Proof. We define homomorphisms h : E ( K ,  v o )  + nl ( K ,  v o )  and 

g:H, ( K , v O ) - - + E ( K , v , )  suchthat g ~ h = I ~ ( ~ , ~ , , ~  and h o g  = 1% ( K , V , , ) *  This 
will show that both g and h are isomorphisms. 

The construction of h :  Let [ W I G  E ( K ,  v 0 ) .  Then o = l v ,  vI I I v ,  v2 I 

I v , , -~  v,  I , with v, = vo , for some {v0 , .  . . , v n )  C K . Regard I as a complex I v2 v3 I 
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with vertices (0, ;,. . . , T ,  1 1 and consider the vertex map lij : I (0) + K (0) defined 

by ($k)  = v j  , for j = 0,. . . , n  . Since o is a route, extend a to a simplicia1 map 

I n-I 

6j : I + K (we use the same symbol!). Let h ( [#I )=[a I .  Since w 57 implies that 

q) f (by Corollary 45), we get that h is well-defined. It is also easily seen that h is a 

homomorphism (If o = e,  . . .ek and z = d ,  . , . d, are routes with origin and end vo , 
we define a homotopy between &7Z and iDT by changing the travelling time of the 

ei and di from I I I to and %, respectively, in the homotopy square). 

The construction of g :  Pick [a]€ n, (K,  vo) and some simplicial approximation 

ya : Zfn)  -$ K of a, for some subdivision (0, i,...,T, 1) of I. Then I , U a ~  and 

Wa defines an edge path WL starting and ending at v, . Let g [a] =[I&]. Note that, 

I i t 4  

by Theorem 46, a 0 implies that la la , which in turn implies that !Y: tp; . 
Therefore, g is well-defined. Even though g is a homomorphism we will not need this 
information. Clearly, 

and, therefore, one easily sees that h is one-to-one and onto. Consequently 

E (K, ~ 0 )  III (K, vo)  * 
Henceforth, we let H = G  denote that the graphs H and G are (algebraically) 

isomorphic. 

50. Corollary. 

injection map. Then i induces in isomorphism i ,  : E ( K  (2), v,)  

Therefore i, : ll, ( K  (21, v 0 )  = ll, ( K ,  v , , ) .  

Let K be a polytope and v, E K (0). Let i : K (2) + K be the 

E (K, vo) . 

8.7 Graphs and Tkees 

51. Definition. 
arcwise connected graph such that T-s is not connected, for each open I-simplex 

s c T . An end of a graph is a vertex which is a vertex of at most one 1-simplex. 

A graph is a polytope of dimension less than 2. A tree T is an 

52. Lemma. Let K be a connected polytope. Then K contains a maximal (with 
respect to inclusion) tree and any maximal tree contains all vertices of K. 
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Proof. Partially order the collection of all trees contained in K by inclusion. Pick a 

nest {T, } of trees and let T = U, T, . Clearly T is arcwise connected. Let < v,, vI > 
be any open 1 -simplex contained in T. If T- < vo, v, > is connected, then there exists 

an edge path w starting at v, and ending at v I  which does not use the edge Iv, vI I .  

Then I v I  va I w is a closed circuit which is contained in some T, (therefore 

T, - < va, vI > is connected), a contradiction. This shows that T is a tree. By Zorn's 

Lemma, we get that K contains a maximal tree. 

contains all vertices of K ,  
Because of the connectedness of K, one easily sees that any maximal tree in K 

53. Definition. 
E ( K  - T) be the group generated by the edges I v u I of K with the relations. 

Let T be a maximal tree of the connected polytope K. Let 

(a) If l v u l  isanedgeofTthen I v u l = l .  

(b) If vo, v l ,  v2 are vertices of a simplex of K then I v, vl II v1 v2 I = l v o  v 2  I ,  

54. Theorem. E (K,  v,) c E ( K  -T) 

Proof. 

edge path I-, , with origin v0 and end v ,  which is contained in T. Note that, for each 

edge I v u I of K, the edge path r, I v u I r';' starts and ends at v. 

Since T i s  connected and T c K (0) , for each V E  K (0) , there exists an 

Define h :  E (K, va) + E ( K  -T) by 

Note that h is well-defined, because of Definition 53(b) and the definition of edge 

equivalence. Clearly, h is a homomorphism (note that h( [ I vo vo I ] )  = I  vo v, I = 1 

because of Definition %(a)). Let us also observe that 
( I )  h i s  onto: Let I ~ , v ~ I I v ~ v ~ I ~ ~ ~ \ v , v , + ~ \ E E ( K - T )  and let w be the 

equivalence class of 

Then h ( I w I ) = I vI v2 I I vg v4 I ... I v, v,,, I because of Definition 53(a) and the fact that 

rV, C T , for i = 1,. . .,n + I . This shows that h is onto. 
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(2) h is one-to-one: let [ W ] E  E (K, v o )  with w = I  vtl vI  I - . +  I v, , -~ v( ]  I ,  and suppose 

that h ( [ w ]  ) = 1 . If I vo vI I,. . . , I  u , , - ~  vo I E T then one immediately gets that a- I v,, vo I 

(k, [ w ]  =[  I vo vo I ] ) .  If not all I vo vI I ,..., I v , - ~  vo IE T then, from Definition 53(b) 

and the fact that I v o  v I  I I  v I  v 2  I ... I v , , . - ~  v g  I = I , we get that 

I vo V I  1 1  "I v2 I ... 1 ",-I vo I - I vo vo 1 .  Therefore, we have proved that Ker h = [ I vo,  vo I ] 

(i.e.,  h is one-to-one), which completes the proof. 

E 

E 

55. Corollary. If K is a connected graph then E (K, v o )  is a free group. If T is a 

maximal tree in K then the generators of E (K, v o )  are in one-to-one correspondence 

with the I-simplexes of K - T . 

Proof. It suffices to show that E ( K  -T) is a free group generated by the 1 - 

simplexes of K - T  . Because of Definition 53(a), E ( K  -T) is generated by the 1- 

simplexes of K - T (note that if e = I  v u I is an edge in K - T then its inverse in 

E (K - T) is e-' = I  u v I ). Also, there are no relations of the form described in 

Definition 53(b) between any two edges I v u I and I u w I of K - T with v, u and w 

vertices of some simplex of K (since K is one-dimensional, either u = v or v = w or 
u = w ;  if u = v or v = w ,  then I u v II v W I  = I v W I  or I u v I1 v wI = I  u vI ; if u = w ,  
then I u v I I v w I = I  u v I I v u I = e-l = 1 ). Therefore, E ( K  - T) is freely generated by 

the I-simplexes of K - T , which completes the proof. 
The following result is an immediate consequence of Corollary 55.  

56. Theorem. The following is true: 

(a) n, (S')  = 2 (the group of integers). 

(b) n ,  (Figure Eight) = F,  (where F,, denotes a free group with n 

generations). 

Chapter 8. Exercises. 

1.Let R(X)=X'.Provethat 

( a ) I f cx ,pER(X)  and h : a -p , then themap  ty:/+Q(X),definedby 
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(w (s)) ( t )  = h (I, s) , is an arc in Q ( X )  from a to 0 . 

(b) I f  y : I + Q ( X )  i s ana rc f rom a to p , t h e n t h e m a p  h : I x f  - + X ,  
defined by h (s,  t )  = ( y  ( t ) )  (s) , is a homotopy from a to p . 

(c) Parts (b) and (c) remain valid for Q ( X ,  6) and i; . 

2. Let X be the disjoint union of a copy of S’ and a copy of B 2 .  Let P E  S’ and 

q~ B 2 . S h o w t h a t  n, ( X , p ) = Z  and n, ( X , q ) = l .  

3. Check that h, : I x I -+ Y defined by 

I -I 
2 s I --, 

, t ) ,  - < s < - - ,  
1-1 1 + 3  
2 4 

t+3 C(4S-3), s2--, 4 

is a homotopy satisfying the requirements i n  the proof of Theorem Il(b).  

4. Let X = U, E ,, X ,  and 7, be a topology for x, , for each 01 E A .  Let Z be the 

family of all U c X such that U X ,  E z, , for each a E A .  

(a) Show that z is a topology for X .  

(b) Show that, in general, (Xa, za) may not be a subspace of ( x ,  t ) .  (Hint: 

Let X = XI  U X ,  and let z, and z, be topologies on  X I  and X , ,  

respectively, such that TI 1 (x, nx,) C T 2  I (XI nxd .> 

( 1 )  h is onto (solve a system of n equations with n + 1 unknowns). 

(2) h is not 1 - I .  
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(3) h (S)"-' = < x,)  ,... . x , - ~  > . 

191 

(4) IS h I s"-' a I - I function? 

6. Let K be a simplicia1 complex with the weak topology and let f : K + Y be a 

function to a topological space Y. Show that, if f I s is continuous, for each closed 

simplex s of K, thenfis continuous. Show that the identity functions K + and 

K"' + K are continuous. 

7. Show that, by Theorem 49, 

(a) fl, (Torus) = 2 X 2 

(b) n, (Mobius Band) = 2 

(c) fl, (Klein Bottle) = A group generated by two elements a, b with 

a b = I ,  2 2  

8. Show that the following triangulation is not a triangulation of a torus; 
indeed, by eliminating repeated triangles, i t  is a triangulation of a 
cylinder. (Hint: Note that the triangles labeled A and B have the same 
vertices.) 

lO.In E",let xo = (1,0 ,... ,0) = e l ,  xI  = (O, l ,O ,... ,0) = e2 ,... , x,-~ = e ,  and 

X , , = ( - ~ , - ~ , * * . , - ~ > .  Alsoforeach j = ( y ,  ,,..., Y , , - ~ ) E  S " - ' c B " , l e t  1 1  I 
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I t ,  = s u p ( s I s ~  E and xo, ..., x , > - } .  

Define a function h : B" 3 E n  by 

h ( s j q  = s t ,  7 ,  

for each 7 E S n - '  and 0 5 S 2 I . Prove that 

(a) (x,), x, , . , . , x n  ) is a convex-independent subset of B" . 

(b) <x0, .  . .,x,, >-CB" and 6 E<X, ),..., x, >. 

(e) h : B" -+< x,, , . . ., x,, > is a homeomorphism. 

11, Show that T ,  ( S  " 1 = I . (Hint: Use Theorem 49 and part (f) of the preceding 
exercise.) 

12.Showthat x , ( ( S " ) = l , f o r  n 2 2 .  (Hint:Seeex. 1 1 . )  



Appendix A 

Some Inequalities 

We limit ourselves to those inequalities crucial to various proofs in topology. 

Cauchy-Schwartz inequality: If U ,  , . . . , a,, and b,, . . . , b, are real numbers then 

Proof. Clearly C (ak x + bk ) 10 , for every x E E l .  Therefore, 

0 5 C (ak X 4- bk )’ = A X 2  + 2 B x + C , with A = c a k  2 ,  B = c a k  b k ,  c = bi . If 
k k k k 

2 B A=O,clearly B 2 A C . I f  A>O,let  x=-,.Then 0 5 A x 2 + 2 B x + C =  

- - + C , which implies that B 2  - A  C 5 0 .  This completes the proof. B2 
A 

Minkowski inequality. If a,, . ..,a, and b,, . . . ,b,, are real numbers, then 

the proof. 
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Binomial Equalities 

We limit ourselves to the consequences of the Binomial Expansion which we need. The 
techniques clearly indicate that the binomial identities are endless. 

Proposition 1. (Binomial Expansion). 
n E  N ,  

Given any real numbers x and y and 

( x +  y)"  = cq,, ( 7 )  x.1 y " - /  

Proof. Elementary induction. 

For n E N , define a function B,, : E j E' , by letting B, ( x ,  y) = ( x  + y)" . 
Then, we get 

Proof. Differentiating B,, with respect to x and using Proposition 1, we get that 

38, = ( x +  y)"-l = 5; a (q0 (7) x i  y"-')  
ax 

=ZT=, ( 7 )  j XI-' y " - / ,  

from which the result immediately follows. 

.2 , 

Proposition 3. 

( x ,  y ) ~  E 2  and ntz N . 

(I  - $) x 2  ( x  + y)'b2 = ~1 Id (L n 2  - _I_) n 2  (1) J xJ  yn-J  , for every 

I95 
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Proof. 

a”,, l a x 2 .  

Essentially the same as the proof of Proposition 2, except that we compute 

Proposition 4. c:=,, ( y )  x ’  ( I  - x)’’-’ = I , for each x E E ’  . 

Proof. Apply Proposition 1 to 1 = ( x  + ( 1  - x) )”  . 

Proposition 5. x = c:=, ( y )  x ’  (1 - x)”-’  , for each X E  E‘ , 

Proof. Apply Proposition 2 to x = x ( x  + (1 - x))“ . 

7 1  I 1  / *  I 1  ; ( I  - ! ) x- + - x = C i=m -? ( i )  x ( I  - x)”-,’ , for each x E E’ . Proposition 6. 
I 1  

/ 2 I 1  I Proposition 7. c’;, (x - ,) (,) x ’  (1 - x)’l-’ I - , for each X E  E’ . 
411 

Proof. Note that 

( x - ; )  / 2 (/)d I1 (l-x)tJ-f =y=, ( x  2 - , + ‘ > ( ’ f ) x ’ ( l - x ) n - j  211 

2 1 2 1  2 X(1-x) < 1 = x  + [ ( I - - ) x  + - x ] - 2 x  =---- 
11 411 ’ 

because supx ( I  - X) = ], (the function f ( x )  = x (I - x )  has a maximum value at 
,I€ E‘ 

x =  1/2 1 
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