ELEMENTARY TOPOLOGY
AND APPLICATIONS

CARLOS R. BORGES

World Scientific f






ELEMENTARY TOPOLOGY
AND APPLICATIONS






ELEMENTARY TOPOLOGY
AND APPLICATIONS

CARLOS R. BORGES

Department of Mathematics
University of California, Davis
USA

\\g World Scientific

Singapore * New Jersey »London*Hong Kong



Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Farrer Road, Singapore 912805

USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Library of Congress Cataloging-in-Publication Data
Borges, Carlos R., 1939~
Elementary topology and applications / Carlos R, Borges.
p. om.
Includes bibliographical references and index.
ISBN 9810242409 (alk. paper)
1. Topology. 1. Title.

QA611.B652 2000
514--dc21 00-024152

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2000 by World Scientific Publishing Co. Pte. Ltd.

Al rights reserved. This book, or parts thereaf, may not be reproduced in any form or by any means, electronic or
mechanical, including photocopying, recording or any information storage and retrieval system now known or to
be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from
the publisher.

Printed in Singapore by Uto-Print



Dedicated to

my mother and Becky (basset)






Contents

CHAPTER 0. SETS AND NUMBERS

0.1 Rudiments of LOZIC .ovevrvvririiiiiriiiiireei i sveanes 1
0.2 Fundamentals of Set Description ... e 5
0.3 Set Inclusion and EQUALItY ........ccoceoeiiiiviiiiniiii e 5
0.4 An Axiom System for Set Theory ...t 6
0.5 Unions and INLErseCtionS ........cccovmviirinnniiiinssse e sesenssions 6
0.6 Set DITErence .......cccoiviiiiiiirieiiinrrire e st 7
0.7 Integers and INAUCLION ........ccovvrviviniiiiiini s 7
0.8 Simple Cartesian Products ..............ccoeivninniiniiiinnnenssecnne 11
0.9 RelalioNS ..vovei ittt i1
0.10 FUNCLIONS oveevririenenieiie ettt eie e saesiaess st rn st sbn e b s b sn e s s rae b e naaasas 12
0.11 SEQUENCES vevviveireeiiiieraiisiesie ettt sb s e ta e e e easatssrensanraas 14
0,12 INAeXING SEIS covieeiiiiircrreecr ettt s 15
0.13 Important FOrmulas. ... s 16
0.14 INVerse FUNCUHONS ..ooiviiieeiiie e s srn e 16
0.15 More Important FOrmulas ..o 17
.16 PATTITIONS .1oovviirrie e cierie e rieeste e srre e resieermeenesmessenessteesnesatsasssrneesnssonaians 18
0.17 Equivalence Relations, Partitions and Functions ... 18
0.18 General Cartesian Products .........coovviiiinicinnineneeseininnes 19
0.19 The Sixth Axiom (AXiom 0f ChOICE) ..coooviimvciiiivreecieein 20
0.20 Well- Orders and ZOIm .......ccocccvoviieinriiiiinniniines s ssisnsiss s snseasses 21
0.21 Yet More Important FOrmulas.........ccocoeiiiiniininninonie i 22
0.22 Cardinality ....c..ccvvvviiiiieesieriene i e s e s 22
CHAPTER |. METRIC AND TOPOLOGICAL SPACES

F.1 Metrics and TOPOIOZIES .o.ovviviiiiiiiiei it e 31
1.2 Time out fOr NOLAtION ..oocvevereiirireeeiiiiin i rr e vares e v esnsseesseas 33
1.3 Metrics Generate TOPOIOZIES .....occvvviirviiiiiiininiiiii et 35
1.4 ContinUOUS FURCHOMS c..vveeieieiiinirnie et siinsns enerosiessrsnsssssessnasses 36
1.5 SUDBSPACES  .ooiviiiiicririiiinree e e 39
1.6 Comparable TOPOIOZIES ......coviriiiieiniiii e 39
CHAPTER 2. FROM OLD TO NEW SPACES

2.1 Product SPACES ....cocooivrmirercrenrine sttt st 47
2.2 Product Metrics and TOPOIOZIES ........ccoviiiiniiiiiiiiiie e 51



viii Elementary Topology and Applications

2.3 QUOLIENT SPACES «.eereeriirrreeirieiitit ettt sis e b e tssar s asnass 53
2.4 Applications (Mobius Band, Klein Bottle, Torus, Projective Plane, etc.) .... 55

CHAPTER 3. VERY SPECIAL SPACES

3.1 COMPACE SPACES coovviriiiiiii ittt 67
3.2 Compactification (One-Point Only) ... 73
3.3 Complete Metric Spaces (Baire-Category, Banach Contraction Theorem and
Applications of Roots of y = h(x) to Systems of Linear Equations.......... 75
3.4 Connected and Arcwise Connected SPaces .........cccoivnvinviiriniienicininienn, 80

CHAPTER 4. FUNCTION SPACES

4.1 Function Space TOPOIOZIES ...ooveiiiiiiiiiiiiii e sre s 89
4.2 Completness and Compactness (Ascoli-Arzela Theorem, Picard’s

Theorem, Peano’s ThEOTEM) .....ccvviiirivviiireeeriiniieeciiereneesosneersens i 92
4.3 Approximation (Bernstein’s polynomials, Stone-Weierstrass

ADPPrOXIMALION) Lot s st ettt s 100
4.4 Function-Space FUnctions ... e 103

CHAPTER 5. TOPOLOGICAL GROUPS

5.1 Elementary StUCIUIES ....c.coveirviiiiiiiiie it s sas b st san e rsssnesas 114
5.2 Topological Isomorphism Theorems ... 121
5.3 Quotient Group RECOZNILION .......cccccovviieriiiiiiiiiiiii e e 123
5.4 Morphism Groups (Topological and Transformation Groups) ........c.ccevevee 124

CHAPTER 6. SPECIAL GROUPS

0.1 Preliminaries oo s 131
6.2 Groups Of MAtriCes ..o e e e 134
6.3 Groups Of ISOMELTIES ...occviviiiiiiiiie s 135
6.4 Relativity and Lorentz Transformations ... 140

CHAPTER 7. NORMALITY AND PARACOMPACTNESS

7.1 Normal Spaces (Urysohn’s Lemma) ... 147
7.2 Paracompact Spaces (Partitions of Unity with and Application to
Embedding of Manifolds in Euclidean Spaces)............cccocvivnieniinncnncanes 151



Contents ix

CHAPTER 8. THE FUNDAMENTAL GROUP

8.1 Description of IL (X,D) .cocovvvviriiiiiiii 167
8.2 Elementary Facts about I (X,0) ....coooiiiiiiiiii 173
8.3 Simplicial COMPIEXES ...vvviviriiiiiiniiiiiii 175
8.4 Barycentric SUbdiViSiOn .......ccoeieeiiiiiiiiiinie 179
8.5 The Simplicial ApProXimation ..........cccoviiiiniiiiiniiec 181
8.6 The Fundamental Group of POIytOpes ..o 183
8.7 Graphs and TIEES .....coocviiiiiiriiiirii e 187
APPENDIX A. SOME INEQUALITIES ........ccoooiiiiininininssiennsniesnnns 193
APPENDIX B. BINOMIAL EQUALITIES ...........cccooovininiininnnniiaineeninnes 195
LISTOF SYMBOLS ..ottt e st resae 197






Preface

I view this book as an introduction to Topology with major emphasis on applications;
it will adequately prepare students for further work in many mathematical disciplines.

The material is organized so that one gets to significant applications quickly, with
emphasis on the geometric understanding and use of new concepts. The theme of this
book is that Topology really is the universal language of modern mathematics.

We assume that the reader has a good grasp of the fundamentals of Logic and Set
Theory, even though a rather succinct review appears in the introductory chapter 0.
The reader should also be very familiar with elementary analysis. Some familiarity
with Group Theory is required for chapters 5, 6 and 8.

The problems which appear at the end of each chapter not only provide ample
opportunity for applying the concepts and techniques just learned but aiso are used to
introduce additional concepts and techniques which complement the text and point to
further study elsewhere.

I am indebted to many students who, over many years, have made very useful
suggestions on the presentation that follows. I am also indebted to Ida Orahood, Lori
Carranza and Josh Walters who typed the first drafts of this book, and I am especially
indebted to John Gehrmann who did the final revision of the text. 1 am also very
indebted to Dr. Sunil Nair who encouraged me and helped me publish this book

Carlos R. Borges
December 1999

Xt






Chapter 0

Sets and Numbers

Set Theory

The main purpose of this section is to collect those precious gems of Set Theory —
Relations, Functions and Inverse Functions — which will frequently be used throughout
the text. The few extra comments are designed, either to bring out a convenient
viewpoint, or to point out some pitfalls.

We prove none of the set-theoretical formulas that we mention, inasmuch that,
whoever is ready for what lies ahead, can prove these quite easily.

0.1 Rudiments of Logic

In order that we may appreciate the subtleties of mathematical thought, we need to
have at our disposal uniform and precise rules of mathematical reasoning. For example,
the implication

If John weighs less than Joe and Joe weighs less
than John, then John and Joe have the same weight

might provoke some to argue that it is nonsense, because it is impossible that
John weighs less than Joe and Joe weighs less than John,

while others might argue that it is exactly this impossibility that makes the implication
valid, inasmuch that what is intended by

If A then B
is simply that
A is false or B is true.
This forces us to establish a universal understanding of our basic means of

communication; We assume that all expressions that we consider are true or false, but
not both.
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Variables. We designate arbitrary expressions by capital letters of the English
alphabet, with subscripts, if necessary:

A,B,C,...,A,B,C,...,A,B,C,.

S S 2

Connectives. We use the following connectives to form new expressions from any
two expressions at our disposal. (For convenience, we let = stand for means that or is
the same as):

or =v
and = A
if...then... =... implies... ==

ifandonly if = iff =&
~ = negation of = not -

Truth Values. We use only two truth values (More elaborate logical systems see
the need for at jeast one more value—indeterminate.):

T = true
F = false
Quantifiers. The following symbols specity quantity:
V = forevery = foreach
3 = forsome = there exists

= = isequal to

Primitive Symbols. These symbols help us avoid confusion in the communication
of information:

( = left parenthesis
) = right parenthesis

Truth Tables. We now give the truth tables of the connectives. In this manner, we
specify exactly what is our understanding of the connectives V, A, =, &, ~ in



Sets and Numbers

3

mathematical reasoning; some of these do have vague and ambiguous interpretations

in their quotidian use.

The truth tables of the following expressions will guide us into some important
rules of logical reasoning:

-3 |='>

Al B AVB Al B AAB
T| T T T T T
T! F T T| F F
F| T T F| T F
F| F F F| F F
Al B  A=8B A| B |A&B
T| T T T| T T
T| F F T| F F
F| T T F| T F
F| F T Fl F T

We therefore conclude that the expressions (i) — (iv) are always true regardless of the
truth values attributed to their variables (such expressions are called tautologies). In

(A=B) & (~B= ~A)
A=B) © (~AvB
iiiy) ~(AvB) < (~A)A(~B)
iv) ~(AAB) & (~A)v(~B)
Al B | -a [ ~B ‘ A= ~Bo=~A (A=>B & ("B=-4
T| T F F T T T
T| F F T F F T
F| T T F T T T
F| F T T T T T
A B‘ ~A A= ~AVE A=B8 & (~AvH
T| T F T T T
T| F F F F T
F| T T T T T
E| F T T T T
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A| B | ~A|~B|{AVvB [~AVE (~A)Y A(~B) ~(AvB) & (~AACB
T T F F T F F T
T| F F T T F F T
FiI T T F T F F T
F| F T T F T T T
Al B | ~A|~B|AAB |~(AAB) (~Ayv(~B) ~(AAB) o (AVED
T| T F F T F F T
T| F F T F F T T
F| T T F E T T T
F| F T T F T T T

accordance with the truth table for < , this means that for any truth values for A and
B the corresponding truth values of

are, respectively, the same. Thus (ii) justifies the truth table we have adopted for = ,
since, when we say that “A = B is true” we are really interested that B be true or A be

A=B and ~B=~A
A=B8B and ~AvBHB
(~AvB) and (~A) A(~B
~(AAB) and (~A)v(~B)

false. Also, (i) justifies the method of proof by the contrapositive by which we prove
that A = B is true by showing that ~ B = ~A is true, instead.

Next, we establish the truth table of A A (~A) in order to explain another method of
proof.

A | ~A | A A (~A)

F

T
F F

F
T

We see that, whatever truth values are given to A, A A (~A) is always false (such
expressions are called contradictions).

We can justify the method of proof by contradiction by which we prove that an
expression A is true by exhibiting an expression B such that

~A = (BA(~B))

is true. Given that B A(~B) is false, we get from the truth table for = , that ~A is false;
therefore, A is true, because of the truth table for ~.
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We have thus completed our task of presenting the rudiments of a universal language
that precisely states the elementary rules of mathematical reasoning. With these rules
and an axiom system that tells us how to derive conclusions from given information,
we could then proceed to the study of logical reasoning.

0.2 Fundamentals of Set Description

The concept of set is undefined; it is simply taken for granted that all (?) human beings,
through the experiences of their daily lives, become aware of sets or coflections or
groups of objects—certainly, at one time or another we have all become painfully
aware of crowds (large sets or groups of people). Do not be shocked by this; remember
that, in Euclidean geometry, the concepts of line and point are undefined.

One specities a set by specifying its elements, A standard notation is

{xls () }={x:s(0)}

which is read the set of all elements x such that x satisfies the sentence § (x) . Examples

LRINYY

of the sentence §(x) might be: “x is a dog”, “x is a real number greater than zero” or “x

is a blonde mathematician with green eyes”.

The difficulties in the development and understanding of set theory come mostly
from the simple fact that not all sentences that one utters make sense. Obviously, the
sentence “x is a blonde with black hair” does not make sense. But there are nonsensical
sentences that, at first sight, may appear perfectly acceptable: Let §(x) be the sentence

x¢& x. Let A={xl x¢x}. Then Ae A implies that A€ A, a contradiction; A¢ A

implies that Ae A, a contradiction. Since we follow a logical system that roughly says
that something either is or is not, but not both, we then must consider the sentence
Xx € x unacceptable. Equally, we cannot accept sentences such as

$(x) = for some x, x is a dog,
S(x) = for all x, x is not a real number,

inasmuch that, for example, the set of all x such that for some x, x is a dog is an
ambiguous statement. Therefore, an acceptable sentence § (x) must contain the variable

x, completely free of the quantifiers ¥ and 3, at least once.

0.3 Set Inclusion and Equality

Given the sets A and B, we say that
(i) A is contained in B, provided that x € A implies that x€ B.

(We let A is contained in B= Ac B= A is a subset of B.)
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(ii) A contains B = Bis containedinA= AD B.

(iiil) A is identical to B provided that xe A iff xe B; equivalently, Ac B
and BC A.

(We let A is identical to B= A= B.)

0.4 An Axiom System for Set Theory

Presently, there are various axiom systems for set theory. Fortunately, their differences
are rather minute. We like, what might be called, the Gédel-Bernays system of six
axioms. We state the first five now, leaving the sixth to be stated after we realize that
there is a need for it. (This helps to make it more self-evident.)

I. (Axiom of Extension.) If the sets A and B have the same elements then
they are identical.

II. (Axiom of the Empty Set.) There exists a set () with no elements.

. (Axiom of Unions.) Let ¢ be a set whose elements are sets. There exists
asetSsuchthat xe S iff xe A forsome A€ a.

IV. (Axiom of Power Sets.) For every set X there exists a set p(X) which
consists exactly of all the subsets of the set X. ,v(X ) is called the power set
of X.

V. (Axiom of Infinity.) There exists a set S satisfying the conditions: Each
elementof Sisaset; Oe S; me S implies that there is n € § which has only

m and the elements of m.

The axiom of infinity allows one to define the natural members and to establish
the principle of induction, as we shall soon see.

0.5 Unions and Intersections
Given a collection @ of sets,
U€ ={x|xe X for some X € £},
NE¢={x|xeU€and Ce ¢ = xe C}.
The following notation is also commonly used:
Ue=U{x|xect=U,.x.Ne¢=N{x|xell=n . X .

fZ=0then UO=0, N0=0.
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Observation. An apparently insignificant alteration in the definition of intersec-
tion that we have adopted, produces dramatic effects: Let us suppose that, for each

collection € of sets, we define
Ne={x|¢e¢=xec}
It follows that, if € #0 then
Ne={x|xele, Ceé= xe cl={x|jce¢=xec}

that is, the two definitions of intersection are identical, whenever € # 0 . However, if
C =0, then the implication Ce € = xe& C becomes the true implication
Ced=>xeC (because “Cel” is false). Consequently
{x|ce ¢ = xe C}={x|Ce 0= xe C}isaset. Thisimplies that {x|xe x}is
a set, by the Axiom of Power sets. (Clearly {x| P 3 x} is a subset of {x| Celd=xe C},
since the implication C € 0 = xe€ C is true for all x, including those x such that x¢ x .)
But we already know that {x| xe x} cannot be a set. If ¢ = {A} (i.e. the collection €

consists of a single set) then
U{a}=Ucé=AaandN{A}=NC=A.

0.6 Set Difference

For any sets A and B,
A-B={xe Alxe¢ B}={xlxe Aandxe B}
(The Axiom of Power Sets easily assures us that A~ B is indeed a set.)

0.7 Integers and Induction

Forany set S, let S*=SU{S} (the set $* is called the successor of S) and, for the
sake of familiarity, let @ =0, in this context. The axiom of infinity implies the following:

1. Proposition. There exists exactly one collection @ of sets such that

(i) 0ew

(i) new=>n"ew

(i) if K satisfies (i) and (ii) then wc K. (The set @ is called the set of
natural numbers.)
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Proof. By the axiom of infinity, there exists a family 7 satisfying (i) and (ii). Let
Y =(S | S c 7 and S satisfies (i) and (ii)}. It is easy to see that @ ={1¥ (note
that W 20 ).

Note that part (iii) of the preceding Proposition is the Principle of Induction.
Indeed it is customary to call a set K an inductive set provided that K satisfies (i) and
(ii) above.

By induction, it is easy to prove that
(iv) me n implies m* Cn; me n implies m' € n*

(Show K = {nIme n implies m" c n )
and K= {nimen implies me n'} areinductive.).

(v) nen,foreachne o.

(vi) For m,ne w one and only one of the following holds:
menornemorm=n.{(Show K= {m | n e ® implies one and only one

of me n or nem or m=n} is an inductive set, by the use of (iv) and (v).)
(Vi) m* =nt=m=n

(viii) n* #0,forevery ne @

+ . .
(Show K = {O}U {n! n #£0} is an inductive set.)
(ix) new, n#0 implies that there exists k € @ such that k™ =n.

{k is said to be the predecessor of n; it is immediate that & is unique, by

(vii); it is customary to denote the predecessor of nby n~ or n—1).
(x) Foreach mew, {newlnem}=m.

(Show K={me w |m={ne wlne m}} isinductive. This property of
® is very important and is related to the sixth axiom.)
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(xi) If u= {new!|neu} and there exists t € ® suchthat u€t, then uew

(Show K = {me w | u€ ® whenever u cm and u=ne ol ne u}
is inductive.)

(xii) Any nonempty S c @ contains a minimal element s (i.e. for each
teS—{shser).

Proof. It suffices to show that s =() S satisfies all our requirements: Clearly
s={newlnes}.Itis also easy to see that s€ S . (Suppose s & S . Then, for each
te S, wegetthat t #5 because sct forevery t €S . Therefore, s* 1t for each
te S, which implies that s <NS =5, a contradiction.) Obviously s is the unique
minimal element of S.

The arithmetic of the natural numbers can be entirely based on (i), (iii), (vi) and (vii).
These imply the Peano Axioms of Arithmetic, which are

(a) zero is a natural number,

(b) every natural number has a successor,

(c) zero is not a successor of any natural number,

(d) natural numbers having the same successor are equal,

(e) a set, which contains zero and also the successor of every number in it,
contains all natural numbers.

A sketch of Arithmetic in . We define the operation of addition in @ by the
following inductive procedure:

(1) 0+0=0.

(2) Suppose we have already defined j + k for j,k en with n#0. Then we
- NP O

lett+n=(t+n ), n+tt=(n+t) forany ten.

By induction, it is easy to verify that

(3) Forevery jkew, j+kew.

(4) Forevery j,kew, j+k=k+j.
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(5) Forevery i, j, k ew,(i+j)+k =i+(j+k).
(6) Forevery jew, j+0=0+j=j.

The multiplication operation in @ is treated in a similar fashion:

(7 0x0=0
(8) Suppose we have already defined jxk for j, k en with
nxt=(n xt)+t forany.
By induction, it is easy to verify that
(9) Forevery j.kew, jXkew.
(10) Forevery j,kew, jxk=kXj.
(11) Forevery i, j,ke o,(jxk)xi= jx{kxi).
(12) Forevery jew,jxI=1Ixj=j.

(13) Forevery i, j ke w,ix(j+k)=ix j+ixk.
As the reader well knows, it is customary to let

0'=1 (0 =000} ={0)),

l+

=2 (I'={0}U({0}}={0, {0} ),
2"'=3 (2'={0,{0}, {0, {O}))),

3*=4,4"=5,...,n" =n+1,and soon.

The reader has certainly seen definitions by induction (namely, definitions of
sequences s:@ — X , for some set X, with s(n”) depending on s(n) in some
prescribed manner (for example, u#, =1 and «,,, :uz +2,forevery new (andalso
definitions of special restrictions of given functions f:X — X (for example, starting

with a point ae X, letv, =ay, = fla)...v,, = f(u,) forall ne . The principle
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of induction does guarantee, easily, that there can be at most one such sequence {4, }
or {v,} satisfying the stated conditions, but it does not guarantee their existence. The
existence of {u } really depends on a better understanding of the “structure” of the
set @ . (We will sketch the existence of {4, } in section 10.) Similarly, the existence of
{v,} depends on our exact understanding of the notion of a function and the so-called
Recursion Theorem, which we will state and prove later in section 9.

It is common practicetolet N =@ —{0} andtocall N the set of natural numbers.
One can live with this!

0.8 Simple Cartesian Products

For any two elements a, b of any set C we let

(a.0)={la}, {a.0}}

(note that(a,b) is a well-defined set, since (a,b)e p(#(C))); (a,b) is called the
ordered pair of a and b, with a the first element and b the second element of (a,b) —
(this terminology makes sense, since

a#b implies (a,b)={{a}{a.b}}= {{p}a.b}}= b,a)).
It follows that, for any sets A and B
AxB={a,b)|ac A, be B}

is a well-defined set, since, by the definition of ordered pair and the Axiom of Power
Sets, AxB c p(p (AU B)). The set Ax B is called the cartesian product of the
sets A and B.

0.9 Relations

For any sets X and ¥, any R X x VY is called a relation between X and Y or from
X to Y. For convenience, we let (x, y)e R = xRy . We also let

dom R={xe X | (x,y) € R for some ye Y},
mg R={y €Y (x, y) € R for some xe X}.
If Ac X, welet

RIA={(a,y)eRl ae A}={(a,y)l ae A, aRy}.

(Then RIA is a relation between A and Y and is called the restriction of R to A.) If
X =Y=dom R, one simply says that R is a relation on X. A relation R on X is said to be
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(1) reflexive, it xRx foreach x€ X ,
(i1} symmetric, if xRy implies yRx,
(iii) antisymmetric, if xRy and yRx imply x=y,
(iv) transitive, it xRy and yRz imply xRz .
An order < on a set X is a reflexive, antisymmetric and transitive relation on X. A
total order < on a set X is an order on X such that, forevery x,y € X ,either x<y or

y<x.

We say that (X ,<) is an ordered set (resp. totally ordered set) provided that X is a
set and < is an order (resp. a total order) on X.

An equivalence relation R on a set X is a relation which is reflexive, symmetric
and transitive. (Equivalence relations are extremely important!)

0.10 Functions

For any sets X and Y, a function f between X and Y is a relation between X and Y which
satisfies

(i) domf=X,
m) xfy,xfz=y=z.
It is customary to denote a function f between X and Y by

f:XoYor X Ly

and to let
xfy=y=f(x).

Given a function f:X —Y, we call X the domain of f and {f(x)l X€ X} the
range of f.

If f:X >Y and Ac X ,wedenoteby f|A the function (!) f1A:A—Y,defined
by (f1A)(a)=f(a), foreach ac A.
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A function f: X — Y is said to be

(i) onto or surjective if for each y €Y there exists x € X such that
y=f(x),
(ii) one-to-one, |-1 or injective if y=f(x) and y=f(w) imply x=w,

(ii1) bijective or a one-to-one correspondence if fis 1--1 and onto.

We will let
fiX—>Yisonto=f:X 5> Y.

Each function f:X — Y produces a function f: p(x) — p(Y) (one should
use a different symbol for this new function, but it is fun not to) defined by

flA)={f(x)1xe A},

foreach Ac X .

Given functions X —L—Y, Y—£57 , we let go f:X — Z be the function,
defined by go f(x)=g(f(x)) for each xe X (1) and we call go f the composite
Sunction of fand g. Note that

gof={x,2) 1 x,y)€f and (y.z)e g, for some yeY }.
To keep a promise, we now state and prove the very useful Recursion Theorem,

Recursion Theorem. If Xisaset, f:X —> X a functi+on and a € X, then there
exists a function v:w — X suchthat v(0)=a and v(n') = f(v(n)) forall new.

Proof. We limit ourselves to a sketch, leaving the easy details for the reader, Let

¢={AcwxX|(0,a)e A and (n,f(x)) € A if (n,x)e A}.

Clearly € # 0 ,since ox X € ¢ .Let y =€ . It follows that v € € . Therefore,
it remains to show that v is a function: Let

K={nl(n,x)ev, for at most one x}.

To show that Vv is a function, simply show that K is inductive. (For example, to show
that Oe K : Suppose (O,a)e v and (O,C)G v with c#a.Let B=w xX—{(0c)}.It
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is immediate that Be € and therefore that v c B, which implies that (0,c)¢ v, a
contradiction.)

0.11 Sequences

A sequence in the set A is a function from the set N of positive integers (or from
w)totheset A.Itiscustomary to denote a sequence f: N — A by enumerating its
range: f (1), f(2), ... . Toemphasize the attachmentof each ne N to some element
f(n) of A, itis customary to denote f(n) by a, thus indicating that the integer n is
attached to the element g, of A.In this fashion, one simply says that g,,a,,... isa

sequence in the set A. For convenience, we let
ay,4ay,... = {an }n=| = {an }E {an }n .

A subsequence of the sequence {an} is any sequence {bk } such that

(i) {b, lk=12.}c{a,ln=12..},

(ii) There exists a function t: {klk € N}—> {nln € N} such that k, <k,
implies #(k,)<1(k,) and for every n there exists &, such that t(k,)>n,

(i.e., t is increasing and {t(k)tk € N} 1is cofinalin N ).

(Note that, letting #(k)=n, , we then get that

{h( }k = {ap(k)} = {a,,k }k ’

the last notation being very popular.)

A sequence ¢, is finite provided there exists n € N suchthat @, =a,,,=a,,....
Otherwise, {a”} is said to be infinite. (Note that if {a,l} is a finite sequence then its
range is finite. But a sequence may have finite range and not be a finite sequence; for
example, the sequence 1,2,1,2,1... has range {1,2 } but is not finite:)

To keep another promise, let us show that it is valid to define sequences with
domain @ recursively. (In particular, there exists a unique function w:@0 — @ such

that u, =1 and u,,, =u’ +2,foreach new.)
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2. Proposition. Let X be a set which satisfies the following conditions:

() upe X,

(i) u,=R(u)e X for n=1.2,... (ie., each u,,, is chosen depending

on u, by some explicit rule R ).

Then there exists a unique function f :@ — X such that f(0)=u, and
f(n)=u, for n=1,2,....

Proof. Let us call a subset A of @ X X a string if it has the property

(*) (0,up)€ A and ((n +1), R(x))e A whenever (n,x)e A.

Let C be the collection of all strings. Note that € # 0, since WX X € C . Finally, let
f=NC .ltiseasytoseethat f is afunction (simply show that K={n | (n, )€ f for
at most one x} is inductive). It is also easy to see that f = € , from which it follows
that fis the unique required function.

0.12 Indexing Sets

Sometimes it is very convenient to attach a “name” to each element of a collection ¢
of sets. This is easily done by picking a set and a function f :J — € (certainly this
can always be done—for example, let / =C and f : J — C be the identity function).
Indeed, we cannot require that the function f be injective, because we may not be free
to choose the indexing set. Then, for each i€ y , the set f (i )e C hasthe name f (l)
Since it is clear that the function is not important but only the knowledge of which set
Ce € corresponds to i € J, it is customary to let

thus indicating that the set C, came from the collection ¢ and has been given the

name i . We then say that

c=(C,lie }={(C},.

and J is called an indexing set for € . With this new language, if }{ = {U a}a

e’
UH=UU taeAy =U _ Uy

ﬂllEﬂ{Ual aeA} =) Uq.

For indexing sets which are subsets of the integers, the notations
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Ud,=U. 4. U4 =U,A4, ..

nzj nzl
are acceptable, their meaning being clearly understood (for example,

Uj;,, A,i = U{A,,In is aninteger and n < j < oo} ).

0.13 Important Formulas

Let X be a set, {A,..., A, } any finite family of sets and {4, }
family of sets. Then

wep 8Ny nonempty

(l) X —nae/\Aﬂ( =UaeA(X _An)’
(ii) X _UrxeAAa :naeA(X —Aor)’

iy X -U_,A=X-A,—A,—...—A,, it being understood that
X-A-.-A,=(X-4 -—...—Ak)-AH, (definition by
induction!)

(iv) X ﬂ(U(xeA Au)=Uae/\(XnAa)’

v X U(aer 4)=N,ea (X U 4,),

vi) X—(A,-4,)0(X-A,)-A4,,
X-(A~A,)2(X~A )-A,, generally. (Contrast this with (iii).

Sometimes, parentheses do make a difference!)

0.14 Inverse Functions

Given a function f:X — Y, we define a function f™: p(Y) = p(X) by
£ (B)={xe x| f(x)e B},

for each B Y. Note thatif B ¥ and BN{f(x)l xe X}=0, then f7(B)=0.
Alsonote that f ™ ’ {{y}: yeY} canbe thoughtof as afunction from Y to X if and
only if f is bijective (in this case, we define f~':Y — X by letting

£ =iy ye?) Wy
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for each y €Y ; of course, we should use another symbol for the new function

f':Y — X, but that would not make things any clearer).

0.15 More Important Formulas

For any function f : X — Y, the following are valid:

(i) g (B) c B,foreach BCY (we should write f(f~'(B)) instead of

7 (B) ,but we tend to get confused with too many parentheses while

others get upset by too few; these and other discordances certainly give life
to the politics of mathematics),

(ii) If f isontothen ff'(B)=B,foreach BCY,
(iii) Ac f~'f(A), foreach AC X,
(iv) For any family {B, } ., of subsets of ¥,
f " (Ugea Ba)=Uaer 7' (Ba):
£ (Naen Ba)=Naea f ™ (Ba):
W f(r-B)=x-f7(8),
f7'(B)= X~ f'(Y-B),foreach BCY,
(vi) For any family {A,}_, of subsets of X ,
FUaeo A)=Uaes (4,),
Floco A) S Nacg £ (A2),

F oo Ay)# Noeo f(A, ). generally.
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0.16 Partitions

A partition of a set X is a collection ¥ of subsets of X such that [J# =X and
P is pairwise disjoint (i.e., foreach A,Be P ,with Az B, A(1B=0).If Ac X,
it is convenient to denote the partition {A}U{{x}Ixe X-A} of X by X /A .

Whenever convenient, we make no distinction between the singleton {x} and the

element x € X . For example, we let
xiA ={aAYU{x|x e X -A}.
0.17 Equivalence Relations, Partitions and Functions

These concepts are, undoubtedly, the essence of Mathematics. It is therefore crucial
that the reader have no second thoughts about the following (except for the bad English):
“Equivalence Relations” generate “Partitions” generate “Functions” generate

“Equivalence Relations.”
Here is how it happens:

(i) Let R be an equivalence relation on X . Foreach x € X, let

[x]= {y € X| ny}. ([x] is called the R-equivalence class of x.) Then,

{[x” xeX} is a partition of X . For convenience, let X/R={[x] cxeX }

(ii) Let 2 be a partition of X . Define a relation f from X to £ by
xfs iff xes.

Then f isafunction (ie., f : X — P and f(x)= the Pe P

which contains x).
(iii) Let f:X — Y be a function. Define a relation R on X by

x,Rx, if and only if f(x, ) = f(xz) .

Then R is an equivalence relation on X , such that [x] = f_]f(x) , for

each xe X .
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0.18 General Cartesian Products

Let a= {Aa }ae  be a family of sets. The cartesian product of the family {Aa}
the set

aeA 18

{/‘:A—)U“AAQU([})E A, foreach Be A}

and is denoted by IT,_,A, . (Note that, to be precise, we should emphasize that
M A, cp(AXU,,A) ) If a is finite, it is easy to prove, from the
aforementioned axioms of set theory, that I1,., A, is nonempty. If it is not finite, it has
been proved that, from the aforementioned axioms of set theory, one can neither deduce
that T, , A, is empty nor that it is nonempty. (We need more axioms!)

Given the sets A,...,A,, with n a positive integer, and letting § = {l, 2,...,n}, it
is customary to let

M, A=II

i iesS

A,

Also, extending the notion of an ordered pair to the notion of an “ordered n-tuple”
a,,...,d, ), in some convenient way, it is customary to let

n _
IN; A = {(a,,... ,a")l a,€A,..,a€ An}
it being clearly understood that (a,,...,a, ) corresponds, in a one-to-one fashion, to the

n
function f:8 — U A; such that f(i)=a, e A, for i=1,...,n. The reader is well-
i=|
advised to think in terms of functions rather than n-tuples, since functions impose no
limitations on the size of the index set A ; on the other hand, to think of tuples which
have more elements than the integers may cause headaches.
In some instances, it is very convenient to replace f : A—> U, A, by its image
f(A) and to give it a more familiar appearance; namely, we let

f=r0)=(f@)), =(a,),.

it being understood that (a, ) represents the function f:A —U,,A, such that
f(a) =a,, for each oo € A. By no means, under any circumstances, try to attach
some order 1o (aa )a since none is implied. Of course, in case A = w , we can experience
the sensation of order, by letting

(a”)nz(ao,a,,...).
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For each family {A, }aeA of sets and B e A, we define the B -projection

Iy T, A > Ay by letting Mg(f)=f(B)e Ap.foreach fe I, 4A,.(Clearly,

each I_IB 1s a function (!).)

0.19 The Sixth Axiom

Here is that fascinating axiom you’ve waited for so patiently.

VL. (Axiom of Choice). Let {Aa }ae A be a non-empty family of non-empty sets.
Then IT, ., A, is non-empty. (Essentially, this says that, given a non-empty collection
of non-empty sets, one may form a new set by picking one element from each set.)

It seems quite safe to say that this axiom has generated more research in the
Foundations of Mathematics than any other axiom of any mathematical discipline.
Roughly, it can be said that its significance was tested in three different ways.

(i) Equivalent Axioms: Today there are various equivalent forms of the axiom of
choice. Some of these are far from being obviously equivalent to the axiom of choice
and some have attained great significance in mathematics — especially, the Well-
Ordering Theorem and Zorn's Lemma (neither is a theorem, of course; further ahead,
we will state these axioms without proving their equivalence to the Axiom of Choice).

(i) Consistency. It is relatively easy to prove that, from the first five axioms of set
theory one cannot obtain a contradiction or a false statement by logical reasoning. In
the late 1930s, Godel proved that from the six axioms of set theory one cannot obtain a
contradiction or a false statement by logical reasoning (i.e., the Godel-Bernays axiom
system is consistent).

(iii) Independence. Answering the question of consistency led to another question:
Is the axiom of choice a consequence of the other five axioms of Godel-Bernays by
logical reasoning? (i.e., is the axiom of choice a theorem?) Recently — 1964 —P. J.
Cohen proved that the answer is no. Essentially, he did this by constructing a collection
K of sets which satisfies the first five axioms of Godel-Bernays and also the negation
of the axiom of choice (i.e., these statements are true in K). X is called a model for
these axioms.

The reader should not overlook the obvious: While the independence results of
Cohen are, by any means, tremendously impressive, they do not constitute the last
word on these matters; after all, is the model acceptable as the best and only description
of the world around us? (Is it even a good imitation of it? — Playing with models does
pose some challenges!)
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0.20 Well-Orders and Zorn

We will now present two axioms which are equivalent to the Axiom of Choice.
Traditionally, the first is known as the Well-Ordering Theorem and the second is known
as Zorn's Lemma. Clearly, neither is a theorem — this only indicates the confusion that
has surrounded these matters.

Before stating these axioms we need a few preliminaries: A total order < on a set
E is said to be a well-order on E provided that, for each A < E, there exists me A

such that m< b, for each b € A. The element m is said to be a minimal element of A
{on E with respect to <).

For every set K" and any order < on K(< can be total or not) we say that

(i N e Kisa < -nestif <| N x N is atotal order inV (i.e., for every

X, %, € N, either x, S x, or x, < x,),

(ii) g €K is said to be a < -maximal element of X if

{xeKlg#x,g<x}=0 (ie, there exists no x € X—{q} such that

g < x). Analogously, we define < -minimal elements.

(iii) Given § c K, we say that ¢ € X' is a < -upper bound of S provided
that s< ¢, foreach s€ S . Analogously, we define < -lower bound.

Well-Ordering Axiom. Given any set A, there exists a well-order in A.

Zorn’s (Lemma) Axiom. If < is an order (total or not) on a set A such that every
< -nest in A has an < -upper bound in A, then A has at least one < -maximal element,

Please pay attention to what the Well-Ordering Axiom really says: Undoubtedly, it
does not say that any order on a set A is a well-order. It simply says that there exists a
well-order on any given set; it does not even say if there exists only one or if we can
construct one. For example, note that, if A= {— n { ne N } with the usual order (i.e.,
—m< —n ifand only if n < m), then < is not a well-order on the set A, even though the
usual order on @ is a well-order. Finally, even though the Well-Ordering Axiom
guarantees the existence of a Well-Order on the set (@ ), no one has ever constructed

one on ,a(w ) , and no one ever will with these axioms.
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0.21 Yet More Important Formulas

Let {A, }0[E A {Ba }ae , and { Cﬂ}g 0 be non-empty families of sets. Then
(]) U{Aa xcﬁ ’a € A’ ﬁ € 9}: (leeA Aa )X (UBEB Cﬂ )v

(i) U {Au XB,|lxe A} (Ugen A, )X (Uger B, ), (For example, let

A ={1} A, ={2} B ={3}, B, ={4}. Then

A, x B,UA,x B, ={(1,3), (2,4)}, while

(A UA,)x(B,UB,)={1,3).(1,4), (2.3), (2.4)}- Do contrast (ii) with (i).)

(i) M{A, X Blore AY=(Noen A)X(Noen Bo),

(iV) n{Aa xcﬂ!‘ae A’ :B € 9}: (ﬂae/\ Aa )x(nﬁea CB)

0.22 Cardinality

The axiom of infinity poses some interesting questions: Given two infinite sets A
and B, can we compare their sizes? Does A have more elements than B? Anyway, what
does one mean by the size of an infinite set? This brings us back to finite sets and a
careful analysis of what we really mean by counting the elements of a finite set—
unquestionably, what we do when we count the apples in a basket-full of apples is to
establish a one-to-one correspondence between the apples and other objects (generally,
the natural numbers starting with 1). It is thus clear that the concept of one-to-one
correspondence is really the key to success, when it comes to sizes of sets:

Cardinals. Given two sets A and B, we let
A<B
denote that there exists an injective function from A to B. We also let
A<B=A< B,butnot B < A.

Two sets A and B are said to be equipollent provided that there exists a one-to-one
correspondence between A and B. (It is commonly said that A and B have the same
cardinal number;, we avoid this language because we do not really have enough
ammunition to convince the reader that it makes sense to talk about the “same” cardinal
number—this certainly presupposes that one already knows what a “cardinal number”
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is, and an honest treatment of this concept would lead us too far astray.) For convenience,
we let

A is equipollent with B=A=B,
It is obvious that
1. ForanysetA, A=A,
2. If A=B,then B= A,

3, A=B,B=C implies that A = C (the composition of two bijections is a
bijection!).

Therefore, =~ is an equivalence relation on any given family of sets. Therefore, if we
could really talk about the “collection Y of all sets” one could then define the cardinal
number of any set A as the family of all sets which are equipoilent with A (i.e., the
equivalence class of A in X ). How appealing! And how deceiving!

3. Proposition. There is no set 4 such that any set is an element of X (i.e., there
18 no universe).

Proof. Suppose there exists a set 4 of all sets. Then, by the Axiom of Extension,
U is unique. Either X € i or U & i . The assertion that J ¢ X leads to an immedi-
ate contradiction. Therefore, we must have that i € X . Now, let B= {x|xe U xex
and note that B # 0, since X ¢ i/ . We have two cases to consider.

Case l. B=H : Thentheset @¢ i ,since 0 ¢ @ .

Case 2. B#MH: Let A=H-B. Then A is a nonempty set and
A={x|xe U, x¢ x}= {xlxe x}. But we already know, from Section 3, that the

assumption that {x| X€& x} is a set leads to a contradiction. This completes the proof.

The following result states the obvious. The proof we give here, which is neither
ours nor the original proof of Schrider or Bernstein, is remarkably simple.

Schréder-Bernstein Theorem. X< VY, V< X=X=Y

Proof. Let f:X —Y and g:Y — X be injections. Observe that we could
immediately finish the proof if we knew that there exists some A < X such that

B=f(A) g(Yy-B)=X-A,
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for then we would simply define h: X —Y by

- {hre

g"'(x),xe X -A,

it being obvious that 4 is a bijection from X to Y.
Therefore, to complete the proof, we will show that actually there exists A c X
such that

B=f(A)g(r-B)=X - A.

First, let M = X — g(Y - (X)) and let us show that f(Y—f(M)):) X — M : Simply

note that, because fand g are 1-1,

gY—fM)=g(Y-f[X-g(Y-F(XN])
=g(¥)-gf [ X—g(Y-f (X))

> g(¥)-gf(X)=f(r-£(x))
=X-[X-g(Y-f(X))] =X-M.

Now, let a={S c X‘g(Y—f(S)):) X—S} and note that @ # 0, since M € 4. So,
let A=Ug and B= f(A). It remains for us to show that g(Y— B) = X - A. This

will be done in two parts.
g(Y—B)> X — A: Note that g(¥ - B) > g(Y—f(S))D X -8 foreach Se 4.
Therefore, g(¥ —B)>U{X - S|Seaj=X -Na=X-A.
g(Y—B)< X — A: Suppose not. Then there exists z € g(¥ — B) suchthat z¢ X — A.
Letting A, = A—{z}, we get that
(i) A,cA and A #A,since ZEA,

(i) g(v¥-rf(A))> X —A,.since X — A =(x -A)U{}
Zeg(Y—B)Cg(Y—f(A*» and g(Y-B)o> X - A,
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Since (i) and (ii) contradict the definition of A, our supposition is false. Hence
g(Y— B)c X — A, which completes the proof.

The next result is a masterpiece and a shocker.

Cantor’s Theorem. If X is a non-empty set then X < p (X )

Proof. Clearly f: X — {{x}| xe X } defined by f(x)={x} forevery xe X, is
a bijective function between X and a subset of p(X).

Suppose there exists a bijective map h:X — p (x ) Let

= {x € X lx ¢ h(x)}. Since Ae p(X) and h is onto, there exists a€ X such that

h(a)= A .Either ac A or a& A.But ae A impliesthat a ¢ h(a)= A ,acontradiction.

And a¢ A implies that a&€ h(a)=A, another contradiction. So, our assumption that

there exists a bijectivemap h : X — #(X ) hasledustoan impossibility; therefore,
X < p(X).

Let us say that a set S is countable provided that S is equipollent to some subset of
@ (possibly @ itself). A set T'is said to be uncountable provided that T is not countable.
(By Cantor’s Theorem, there exist uncountable sets.) Naturally, we say that a set F is
finite provided that F is equipollent with some natural number n. A set K is infinite
provided that K is not finite.

The following elementary, but quite useful, results are stated without proof.

(i) If the natural numbers m and n are equipollent then m = n.

(Note that it suffices to show that K ={nln is not equipollent to any

m e n}isinductive.)
(ii) If T c @ is infinite then T = @.

(iii) If Ac B theneither A< Bor A=B.

(iv) There exists a surjective function f :@ —— X iff X is nonempty
and countable.

(The “if” part is really obvious. For the “only if” part, simply pick a function
gell ., f™" (x) by the Axiom of Choice. It follows that g is an injection from X to
@, which implies that X is countable. We could disguise our use of the Axiom of
Choice by simply defining a function g: X — @, with g(x)= some ne f~'(x}, for
each ~ note that f~'(x)= 0, because fis onto — but this is really just a disguise.)
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4. Proposition. There exists a sequence {A,,} of infinite subsets of @ such that

(@) A,NA, =0 whenever m#n,

(b) = U::O An *

Proof. (First of all, let us emphasize that there are many ways of proving this
result. The one we use here fits the preceding development.)
Let

A= PlURi+j=01,..},
and

A =R 2j+1)| j=01..} for n=1,2,....

It is easy to see that @ =UJ’_, A, (clearly we only need to show that each even number
is in some A, ; but it is easy to show that each even number & has the form k =2/m
with m odd,; since, for me A, —{0}, 2'me A_/. , this does the trick).
To show that A, [ A, = @0 whenever n# m, note that, assuming m<n,
2"(2j+1)=2"(2k +1) implies 2"*' j+2" =2"" g +2"
implies 2"*'(2"" j - k) =2mm |
implies 2(2"_'"]— k) =2"" -1,

which implies that an even number equals an odd number, a contradiction. Therefore,

2"(2j+1)=2"(2k +1) implies m = n, which implies that
A,NA, =0 whenever n#m.

This result immediately gives us an extremely useful result, which we will call the
“Cbl-Cbl Theorem”, “Cbl” standing for “Countable”.

CBL-CBL Theorem. The union of a countable collection of countable sets is
countable,

Proof. Let ¢ be acountable collection of countable sets. Using 22(iv), let

£ :@=>C be asurjection. Say #(n)=C,, foreach ne @. Making use of the sets

A, of Proposition 4, the hypothesis that each C € C is countable and of 22(ii), let
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V. A, —C,
be a surjection. Finally, define f: @ — U ¢, by letting
f(f)=7,() foreach new.
It follows that f is surjective and, therefore, that lJ € is countable.

5. Proposition. For any finite family A,,..., A, of countable sets, IT_ A, is
countable.

Proof. Because of induction, it suffices to prove that, if A and B are countable then
A X B is countable: Simply observe that

AxB=U,_(Ax{p})

and therefore that A X B is a countable union of countable sets.

The Cbl-Cbl Theorem and Proposition 4 strongly support the conjecture that any
cartesian product of countably many countable sets is countable. After all, from the
viewpoint of equipollence, what difference can there be between countable products
and countable unions? Surprise! Surprise!

6. Theorem. For any sequence {A,} _ of infinite sets, IT7,4; is uncountable.

Proof. Without loss of generality, we assume that each A; = @. Since, by Cantor’s
Theorem, we already know that (@) is uncountable, it suffices to show that there
exists an onto function f : 17,0 — p(@). (Simply let

F((xxy - N={f ()] i=1,2,...}, for each (x,,x,,...)e [1720 , and use Axiom of
Choice to show that fis onto.)






Chapter 1

Metric and Topological Spaces

The definition of continuity of a real-valued function of a real variable is certainly well
known to the reader, and yet there are subtleties about it that may have passed your
scrutiny.

Let us therefore look at its many equivalent forms as a prelude for the reasons
behind the definitions of metric and topological spaces.

So, let E' be the real line and f:E' — E' be a function. By definition, f is

continuous at p provided that

for each £ >0 there exists 6 >0 such that

[x—pl<d implies | f(x)- f(p)|<€,

equivalently,

for each £ >0 there exists & >0 such that

p-8<x<p+8 implies f(p)—€< f(x)< f(p)+e,

equivalently,

for each € >0 there exists & >0 such that

xelp-06,p+8[ implies f(x) elf(p)-& f(p)+el,

equivalently,

for each € >0 there exists d >0 such that

fQp-6,p+d)c) f(p)—& f(p)+el,

equivalently,

29
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for each o, B[ containing f (p) there exists

17,0 [ containing p such that f(]y,o [)c]o, BI.

No doubt, only the last equivalence may require some thought. However, the
observations that

for each ], B[ containing f (p) there exists
£>0 suchthat | f(p)~¢, f(p)+elc]a, B
and
for each ]y,0 | containing p there exists § >0 such that | p-38,p+6é [c]y,0 [

should make it all clear.

We have therefore gone from the definition of continuity which requires the notion
of absolute value to an equivalent definition which requires that the image under f of
“small” sets containing p be “small” sets containing f( p).

The reader must also be aware that in the proofs of the key theorems on continuous
real-valued functions (namely, it f:E' > E' and g:E' — E' are functions which
are continuous at p, then f +g, f o g and L} (assuming g(p)#0) are continuous at
p) the only properties of the absolute value which were used were the ones which we
now summarize (we use the traditional, even though imprecise, notation).

The absolute value in E' is a function, whose domain is E "% E' and whose range

is contained in E', which satisfies the following:
() |x=-ylz0,
(i) [x—y|=0iffx=y,
(iif) |x-yl=ly-x|,
(iv) |x=y|<lx-z|+|z-y]|

The reader can also easily check that the proofs of these same theorems, in terms
of the last equivalent forms of the definition of continuity of the functions f, g at p,
require only the following fact about open intervals of the real line:
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. : | . .
Given any point q€ E' and any two open intervals N,,N,, with qe N,[1N,,
there exists some open interval N, such that

qge Ny c N NN,.

It is now clear that there is too much about the real line that has nothing to do with
the continuity of functions. Therefore, the need to eliminate all that superfluous structure
from the context of continuity is clear.

1.1 Metrics and Topologies

1. Definition. A metric space (M ) p) is a set M together with a function
p:MxM — E' suchthat forall x, y, z € M,

@) pxy)z0,

(i) p(x,y)=0iff x=y,

(i) p (x,y)=p (v,x) (symmetry),

(iv) p (x,2)< p (x, y)+ p (y,2) (triangle inequality).

2. Definition. A ropological space (X,T) is a set X together with a family
(called, a topology) of subsets of X such that

(i) act implies UdeT,
(i) 77 and 7 is finite implies N Fe T,
(iii) 0et and Xer.

The reader should immediately observe that a topology 7 is closed with respect to
unions (i.e., a union of elements of 7 is an element of 7 ) and also closed with respect
to finite intersections. The apparent absurdity of requiring that T be closed with respect
fo unions but only with respect to finite intersections can easily be explained by the
observation that infinite intersections of open intervals may not be open intervals (for
example, N_ 1~ % ,% ={0} ) and by the observation that to allow degenerate intervals
[p—0,p+0]={p} in the definition of continuity of a function f:E'— E' would
yield that all functions 4: E ! - E' are continuous, thus rendering the all-too-important

concept of continuity of real-valued functions completely useless.



32 Elementary Topology and Applications

From Definition 2 (i) it follows immediately that the collection 4 of open intervals
of E! is not a topology for E' (cf.]10,11U)3, 4[isnotan open interval). But the
collection

u={Ualack}

(i.e., the collection of unions of open intervals; note that ®€ u, because @ < ¥ and
U0=0)is indeed a topology (!) for E ! Henceforth, we will call the topology U the
Euclidean topology. This technique of producing the topology u from the much simpler
subfamily # (note that # c 1t ) is far too important to be dismissed.

3. Definition. Let (X,7) be a topological space. A subfamily ¥ of 7 is called a
base for (the topology) 7 iff each U €T is a union of elements of § (ie., U=UH,
forsome Y c K4).

4. Theorem. A collection 4 of sets is a base for some topology T on X =¥
iff for each pair N,,N, of elements of ¥, and for each pe N,[1N,, there exists
some N, € K suchthat pe N, < N,\N,; furthermore, T ={Uald c ¥}.

Proof. The if part: Clearly T={U ala < K} is closed with respect to unions;
0,Xet,and ¥ c1 (Be ¥ implies {B} c ¥, and therefore that B=J{B}e 7).
Therefore, we only need to show that 7 is closed with respect to finite intersections,
for which it clearly sutfices to show that if Ud,,Ud, € T then

(Ua)ncJa,)e t. Without loss of generality, since € T, we assume that
(UapnNa,)=o. Then, for each x € (Ual)ﬂ(Ua2) there exist A, e, c ¥
and A, e , c K suchthat xe A, A, ; therefore, there exists A, € ¥ such that
xe A, c ANA,c(Ua)nua,); this shows that (UA)N(UQ,) is a union
of elements of & (the A, ’s) and therefore (Ua,)N(Ua,)e7.

The only if part: Suppose K crt is a base for the topology 7. Clearly
t={UalackK}. Furthermore, if pe NN, with N ,N,e ¥ct, then
pe N, NN, e 7 ;consequently, since N, NN, €T isaunion of elements of ¥, there
exists N, € # suchthat pe Ny N (N,

5. Corollary, If S is an arbitrary family of sets, then the family & of all finite
intersections of elements of § is a base for a topology T on UJ§ ; furthermore,

t={UdlacHh}oK>S.
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Proof. We only need to show that if Te B, (1B, with B,,B, € ¥, then there exists
B,e K suchthat 7€ B, c BB, :Say e N7 (1N 3 with J,3 being finite
subcollections of § . Then & =3 U7, is a finite subcollections of § such that
teNF<(NHNNZ).

Corollary 5 provides a very simple way of manufacturing a topology for the union
of any collection S of sets. This technique is underlined by the following definition.

6. Definition. Let (X,T) be a topological space. A subfamily § of 7 isa
subbase for (the topology) 7 iff the family #={N7 |7 < § and 7 is finite} is a base
for T . The topology 7 is said to be generated by § .

The reader should check that

§={1a,+=[|ac E'YU{]-=b[|be E'}
is a subbase for the Euclidean topology of E'.

1.2 Time out for Notation

To facilitate the shop-talk concerning the study of metric and topological spaces we

need a shorthand language. So, here it is.
A. Let (M, d ) be a metric space.

(i) Foreach xe M and £€>0,B (x,e)={ye M |d (x,y) <€}
(S (x,e)={ye M|d(x,y)=¢}) is called an (x,£)-ball
(an (x,€)-sphere).

(ii) The metric d on M is called bounded if there exists s >0 such
that d(x,y)<s forall x,ye M .

(iii) The set Ac M is said to be bounded with respect to d if there
exists s>0 such that 4 (x,y)<s forall x,ye A.

(iv) Foreach Ac M and Bc M,
p(A,B)=inf {d (a,b)|lae A, be B}

is called the distance between A and B. For pe M , we let
pUp}, A =p (p,A).

(v) Foreach Ac M, sup {d(x,y)| x,ye A} is called the diameter of
A and is denoted by diam A.
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B. Let (X,7) be atopological space.

(i) The elements of 7 are called T -open sets or just open sets,
when no confusion is possible.

(i) Aset N < X isa 1 -neighborhood, or just neighborhood, of
pe X(or Pc X) provided that there exists U € T such that
peUcN(rPcUcN).

(iii) The compliement of an open set is called a closed set (A closed
iff (X-A)e1).

(iv) Forevery Ac X ,thesetA” =N {Bc X |Ac Band Bisclosed} is

called the closure of A. (Whenever convenient, A~ = A )

(v) Forevery Ac X ,theset A =U{U c A|U e} is called the
interior of A.

(vi) Forevery Ac X ,theset JA=A — AY is called the boundary
of A.

A closed

C. Euclidean Spaces: For each ne N , we let E" denote n-Euclidean space
(ie., E! is the space of real numbers and, for n2>2,
E"={(x,,....x,)| X,,...,x, € E'}). We also let

B" ={(x,...,x,)€ E"|x} +-+x; <1},for ne N
and
" ={(xg,...x, )€ E™' | x3 +--+x2 =1}, for new.

B" is called the (Euclidean) n-ball and §" is called the (Euclidean) n-
sphere. Clearly, S" =aB™ 1tis customary to let / ={xe E'l 0sx<1}.
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For convenience, we let x = (x;,...,x,) and I)"c|=,/ ¥., % , whenever the
number of coordinates is clear from the context.

The following very elementary facts are given without proof.

7. Proposition. Let (X,7) be a topological space. Then

(i) Finite unions and arbitrary intersections of families of closed
subsets of X are again closed subsets of X.

(ii) Foreach Ac X,A" isclosed, A" DA and (A7) =A".IfA
is closed then A" =A.

(iii) Foreach Ac X,A" isopen (A°e7),A’ c A and
(A%)°=A° IfAisopenthen A°=A.

(iv) Ac B implies A" c B~ and A° c B°.

(v) Foreach Ac X, 0A is closed,
A=A N(X-A) " =0(X—-A)and A" =A"UoA.

(vi) Foreach Ac X,A°=X -(X - A) ~ and
A =X-(X-A)o.

(vii) Theset Ac X is closed iff A © 0A; A is open iff
ANJA=0.

(viii) Foreach Ac X,0(dA)=0A.
(ix) Foreach A,Bc X,(AlUB) =A"UB™ (seeex.21).
1.3 Metrics Generate Topologies

Below, we demonstrate that each metric space (M, d ) generates a topological space
(M,7,) in a very precise manner. The converse (given a topological space (X,7), is
there a metric d on X such that 7, =7 ?) appears to be a never-ending problem, even

though many outstanding results are known.

8. Definition. For every metric space (M, d ), let T, be the topology generated by
the collection § of all (x,€)-balls B(x,€), with xe M and € >0. The topology
7, is called the topology generated by (the metric) d.

9. Lemma. Let(M,d ) be any metric space. The family
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S={B(x,e)lxe M,e >0}

is actually a base for the topology 7, .

Proof. Because of Theorem 4, we only need to show that if P€ B(x,)NB(y,&,;)
then there exists B (z,£;) suchthat pe B (z,&;) < B (x,€) B (,€,): Since
d(x,p)<g, and d(y, p)<&,, then d(x,p)=¢, -6, and d(y, p)=¢€, -8, with
8,>0 and 8, >0. Let § =min (§,,8,). By the triangle inequality, we get that

pe B(p,6)c B(x,e)N\B(y.£,).

The fact that each metric space generates a unique (!) topological space is the main
reason why the study of topological spaces is far more intensive than the study of
metric spaces. After all, whatever is valid for topological spaces must be valid for the
topological spaces generated by metric spaces.

10. Definition. A topological space (X,7) is metrizable provided that there exists
a metric d on X such that 7 =7, .

In general, topological spaces are not metrizable, even when these appear to be
very simple (see ex. 27).

11. Proposition. Let (M, d ) be a metric space. Then
(i) (Bx,e))-c{yeM l d(x,y) < e}. (Equality may not hold.)

@ity U{B(y,6)| ye B(x,€)} < B (x,€+9). (Equality may not
hold.)

(iii) 9[ B(x,g)]1< S (x,€). (Equality may not hold.)
(tv) Ac M isclosed iff d(p,A)=0 implies that pe A.
(v) pe A" iff d(p,A)=0.

(vi) Ac M isbounded iff there exists s > 0 suchthat A c B(a,s),
for each ae A.

14 Continuous Functions

Since all this is the result of our preoccupation with continuous real-valued functions,

it is about time to see how far we have come.
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12. Deflnition. Let (X,7) and (Y,0) be topological spaces and

f:X =Y (orf:(X,7) > (Y,0)) be a function. The function fis said to be continu-
ous at pe X (with respectto T and o, of course) provided that for each

o -neighborhood V of f (p) there exists a t -neighborhood U of p such that

f(U) V. The function fis said to be continuous on X provided that it is continu-
ous at each point of X.

The following result should convince and assure the reader that we have not
modified the “usual” concept of continuity of a real-valued function in the minutest
detail.

13. Lemma. Let (X,d) and (Y, p) be metric spaces. A function
fi(X1)> (Y,‘tp) is continuous at pe X if and only if

(a) Foreach € >0 there exists § >0 such that d(x, p)< 8 implies
p(f(x),f(p)<e.

Proof. This follows immediately from the definition of the subbase for a topology

generated by a metric and from Lemma 9.

14. Continuity Theorem. Let (X,7) and (Y,0) be topological spaces and
f X —Y be afunction. Then the following statements are equivalent (see ex. 13):

(i) f is continuous,

(i) f'(W)ert foreach Ve o,

(iii) f~'(B) is 7 -closed for each o -closed set B,

(iv) f(A")c f(A) foreach Ac X,

v) fY(B)Y cf'(B") foreach BcY.

(vi) If § is a subbase for o , then f™'(S)et foreach Se§.

Proof. The scheme of the proof will be (i) implies (ii) implies (iii) implies (iv)
implies (v) implies (i) and (ii) iff (vi).

(i) implies (ii): Let U € o . Then, for each xe F~'(U) there exists some
N, e suchthat xe N, and f(N,)c U, which implies that
N, c f'U) . Therefore ™ (U)=U{N,|xe f'(U)}eT.(tis
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important to note that f~'(U)= £ (U N fF(X) .

(ii) implies (iii): Let B be o -closed. Then X — f(B)= f (Y - B).
Since (Y —B)e ¢ we then getthat f~'(B) is 7 -closed.

(iii) implies (iv): Let A X . Then, by (iii), /' [f(A)"1 is 7 -closed and
contains A. Therefore A~ < f'l [ f(A)™] which implies that

FAD) I (AT I f (A

(iv) implies (v): Let B Y andlet A= f~'(B). Then, by (iv),
fUF B 1cl f£7(B)1 € B™ which implies that
B cf (LB haf ! (B).

(v) implies (i): Let pe X andlet f(p)e Ue o . Then, by (v),
f(Y-U) < f (Y -U) which implies that

f'I Y-U) =f" (Y -U). Therefore, pe[X -f ' (r-u)let and
fX-fwy-vy=u.

(i) implies (vi): Obvious.
(vi) implies (ii): Straightforward, since the topology o consists of unions of
finite intersections of elements of 7 and f =" commutes with unions and

intersections.

15. Corollary. If X — Y —%Z and fand g are continuous, then go f is

continuous,
Proof. Immediate from Theorem 14 (ii), because
(gof) ' W)=f" (g7 W), forevery UCZ.

16. Corollary. Let f(X,7) > (Y,u) be one-to-one and onto. If fand f'l are
continuous then t={f"' (V)| Ve u} and u={fU)|Uet}.

Proof. Note that f continuous implies 7> {f ™' (V)|Ve u},and f~' continuous
implies y > {fU)|Uet}.But u>{f(U)|Uer} implies rc{f'(V)|Ve pu},
and 1o {f'(V)|Ve u} implies uc{fU)|Uer}.

What Corollary 16 really says, is that, given its hypothesis, the only difference
between (X,7) and (Y, ) is one of color—each xe€ X is colored f(x) and put into Y
and each ye Y is colored £7'(y) and put into X.

17. Definition. Two spaces (X,7) and (Y,u) are said to be homeomorphic
(symbolically, X =Y ) if there exists a one-to-one and onto function f: X —Y
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which is bicontinuous (i.e., fand f ! are continuous). The function fis called a
homeomorphism.

From the proof of Corollary 16, the reader can easily conclude that homeomorphisms
have the properties of sending open sets to open sets and closed sets to closed sets.
Functions with these properties play an important role in various topological

constructions.
18. Definition. An onto function f:(X,7)— (Y,u) is
(a) openiff f(U)e u,foreach Uet
(b) closed iff f(A) is closed for each closed Ac X .

1.5 Subspaces

The proof that (i) implies (ii) in Theorem 14 shows that, in discussing the continuity of
a function f:(X,7)—>(Y,0), one only cares about the image f(X) of X
(Y - f(X)=0iff fisonto) and the collection

o, ={UNf(X)|U e o}

which is easily seen to be a topology (') on f(X).Indeed, it is always the case that, for
any topological space (X,T) and subset A of X,

{UNA|UeT}
is a topology for A (obvious!). This leads to the following definition.

19. Definition. Let (X,7) be any topological space and A — X . Then the
topology {U N AU e 7} is denoted by 7| A and is called the relative topology on A.
The space (A,7| A) is called a (topological) subspace of the space (X,7).

Of course, metric spaces also have (metric) subspaces, in an obvious fashion: For
any metric space (X,d)and A c X weassigntoA the metric 4, =d [ Ax A (remember
d is a function!). Then (A,d,) is called a metric subspace of (X, d ).

1.6 Comparable Topologies

Any set X with more than one element has at least two distinct topologies: The indiscrete
topology € = {0, X} and the discrete topology D ={A| Ac X} . Corollary 5 implies
that X has many other topologies.
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Given two topologies 7,0 onasetX, T is said to be finer than ¢ (and o is said
to be coarser than 7 ) whenever o 7 . It follows that D is the finest topology for X
and ¢ is the coarsest topology for X.

The following result, even though trivial, is extremely useful.

20. Lemma. Two topologies 7,,7, on a set X are equal iff there exist bases 4, ¥,
of 7,,7,, respectively, such that

(a) each element of 7, is a union of elements of X, (this shows that
7,C1T,), and

(b) each element of 7, is a union of elements of 4 (this shows that
T, CT)).

Chapter 1. Exercises.

1. Let # be a collection of sets. Show that, for each family {#,},.» of subcollections

of ¥,
U{UH#, |ae AY=U{U |U € U, for some axe A}.

2. Let §={la,+o|[|ae E'}U{1~co,b]|be E'} . Then § is a subbase for the so-
called discrete topology T(D) on E ' Describe a base # for T(D).

3. Let §={[a,+oo[lac E'}U{]—oo,b[|be E'}. Then the collection § is a
subbase for the so-called “half-open interval topology” 7, on E'. Show that
B={la,b[|a be E'and a<b} is a base for 7,. ((E‘,z'h) is called the Sorgenfrey
line.)

4. Let f:E'— E' be a function and p a point of E'. Prove that the following

statements are equivalent:

(a) Forevery g >0 thereexists § >0 such that | x— p|<& implies

[ f(x) - f(py<el.

(b) For every }a, #[ containing f(p) there exists 14, ¥ [ containing p
suchthat f (Ju,yhcla, K.

5. Let A and B be subspaces of (X,7) with Ac B. Then A is a subspace of B.
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6. Show that the intersection of any collection of topologies for a set X is a topology
for X. Is the union of two topologies for X a topology for X? (see ex. 8).

7. Show that

(a) ¥ ={la,b{x[c.d[|a,b,c,de E'} is a base for a topology ¥ on E?,
which is different from the Euclidean topology for E?. (Note that
[a,b[x[c,d [ is a rectangle with the left and lower edges included, and the

upper and right edges excluded.)

(b)) A={(x,y)e E? | y =—x}, with the topology Y| A, is a discrete space.
(E 2,}') is called the Sorgenfrey plane.)

AN
AN
N

\\“

N [ablxled]

(a,c)

8. Let X be a partially ordered set. Let U,(x)={y|y<x} and U,(x)={y|x<y}.
Show that

(@) {U, (x)|xe X} and {U,(x)| xe X} are bases for topologies J,, J, on
X, respectively.

(b) The discrete topology is the only topology on X larger than J, and J..

9. Let G be a subset of a topological space (X,7).Show that Ge 7 iff
GNA cGNA, foreach Ac X .

10. For any linearly ordered set X, let 7,(X) be the topology with subbasis consisting
of all subsets of X of the form {x|x>a} or {x|x<a}. Show that

(a) 1,(E'") is the Euclidean topology.

(b) If A={0}U{x: I xI>1}, then 7,(E")| A=, (A).
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11. Let X be the set of all (nXxn)-matrices of real numbers. For each (a;)e X and
£>0,let B((a;),e)={(b;)e X||a; —b;|<e,forall i, }.Show that

(a) K={B ((a;),€) | (a;)e X, e> 0} is a base for a topology 7 on X.
(b) (X,t) is homeomorphic to the Euclidean space E"2 .

12. A function f:(X,7)—>> (Y,0) is closed iff, for each BcY and open U
containing f~' (B), there exists open V 5 B such that f~' (V)cU .

13. Let f:(X,t)—> (Y,0) be a continuous function and Ac X . Show that
flA:(AT|A)> (Y,0) and f|A:(A,T|A) > (f(A), 0| f(A)) are continuous
functions.

14. Let (E'.t,) be the Sorgenfrey line (see ex. 3) and define
fi(E'\t,)—>(E'1,) by f(x)=—x.1s f continuous?

15. Let f: E? — E’ be the function defined by f(x)=xif lxI21 and f(x)=0if
| x| <1. Show that fis a closed function which is not continuous.

16. Suppose (X,T) is the union of two closed (open) subspaces A and B,
fi:(A,z1A) > (Y,0) and f, :(B,71B) = (Y,0) are continuous and f, (c) = f, (¢)
for each ¢€ AN B Define f:(X,7)y>Y,0) by f(x)=fi(x) if xe A and
f(x)=f,(x) if xe B. Show that fis continuous.

17. Show that f:(X,7)— (Y,0) isopeniff f'(@B)cdf ' (B), foreach BcY.

18. Let {4, | e A} be any family of subsets of a space (X,7) . Show that, if U4, is
[21
closed then UA, =(UA,) -
o o

19. Let A be a subset of a space (X,T).Show that dA =0 iff A is an open and closed
subset of X.

20. Let (M, p) be a metric space, p, g€ M and Ac M . Show that

(@) p(g.A<p(p,A+p(q,p)p(p,ASp(q.A)+p(p,g) (note that
p(g,a)<pla,p)+p(q,p),foreach ae A....).

(®) |p(p,A)-p(q.A)|<p(p.q),sinceeither p(p,A)< p(g,A) or
p(q.A)<p(p.A).
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(c) Let A:M — E' be defined by & (x) = p (x, A) . Show that # is
continuous. (Note that, forevery x, ye M and £ >0, p (x, y} <€ implies
that | p (x,A)~p (y,A)|<p(x,y)<E.)

21. Let (X,7) be atopological space and A,..., A, be subsets of X, and n a positive
integer. Show that

@ A U---UA, =(A U---UA,) . (Hint: Start with two sets A and B (see
Prop. 7 (ix)) and then use induction.)

by A’N---NA%=(A N---NA,)°. (Hint: For two subsets A and B of X,
AN B® 5 (AN B)®, by Prop. 7(iv). Also, if x& A’ B then there exists
an open neighborhood U of x such that U ¢ A and U < B and thus

U< ANB;thatis, xe A’ N B" implies xe (A B) . Now apply
induction!)

22. In (E',u) (i.e., the real line with the Euclidean topology), let A be the set of
rational numbers in f and B be the set of irrational numbers in /. Show that

(@) A"NB™ =1 and ANB) =0
(b) (AUB)®=10,1[ and A°UB°=0 .
Let (X,7) be atopological space. We say that
(@) Dc X isdenseinXiff D" =X.
(b) (X,T) is second countable iff there exists a countable base for 7 .

{¢) (X,T) is separable iff there exists a countable subset D of X such that
Dis dense in X,

(d) (X,1) satisfies the countable chain condition (or has CCC) iff every
pair-wise disjoint family X (i.e., forevery U,V e ¥,U(1V = 0) of open
subsets of X is countable.

(&) (X,t) is Lindelofiff every open cover # of X (i.e., ¥ 7 and
U # =X) contains a countable subcover € (i.e., € ¥, is countable and

Ue=X).
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Two metrics p , d for a set X are said to be equivalent iff the topologies 7, =7, .

23. Let X be any uncountable set and 7 = {0} U{U < X | X —U is countable}. Show
that

(a) (X,7) is atopological space.
(b) (X,7) has CCC.
(c) (X,t) is not separable.

24. Let (X, d ) be a metric space. Prove that

(a) (X,7,) is aseparable implies (X,7,) is second countable. (Hint: Let
D=(x),xy,"} suchthat D~ = X .Showthat {B(x;, %)| i,n=1,2,.-} isabase for

T, )

(b) (X,t,) is second countable implies that (X,t,) is Lindelof. This is
valid for any topological space!

(c) (X.t,) is Lindelof implies (X,7,) is separable. (Hint: For each n, let
D, be the set of centers of countably many balls with radius //n, which
cover X. Let D= D, and show D™ =X )

n

(d) (X,t,) is separable implies (X,7,) has CCC.

(e) (X,7,) has CCC implies (X,7,) is separable. (Hint: For each ne N
let D, be the set of centers of a maximal pair-wise disjoint collection of
balls with radius //n. Let D=U D, and show D = X .)

25. If A is a dense subset of (X,7)and U et showthat U c(ANU)~.

26. Show that any Euclidean space E", with the topology generated by
{11", 1 a;,b,[ |a;, b€ E', for i=1,2,...,n} is separable. (Hint: Use induction in a

rational manner. § is actually a base for this topology.)

27. Let X be any uncountable set and choose a point pe X . Let X=xU {p}. Show
that

(@) B={{x}|xe X}U{X-F | F is finite} is a base for a topology 7 on
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X,

(b) ()2,r) is not separable,

(©) ()2 ,T) is not second countable,

(d) ()?,‘r) does not have CCC,

(e) ()2 ,7) is Lindelof (therefore, not metrizable, by ex. 24).
28. Let (E',7,) be the Sorgenfrey line (see ex.3). Show that

(a) (E' ,T,,) is separable (consider the set of rational numbers).

(b) (E ',r,,) is not second countable. (Any base for T, must contain some
[a,a+8[, foreach ae E')
(¢) (E',t,) is not metrizable.

|x-yl

29. (a) Define d:E'xE' 5 E' by d(x,y)= .
I+]x—y|

Show that d is a metric. (Hint: The easiest way to show that d satisfies the triangle
inequality is by writing down what is wanted and simplifying it—it becomes obvious.)

(b) Let T:E'xXE' — E' be defined by ' (x,y)=|x— y|. Show that I is a
metric which is equivalent to d. (Hint: Recall Lemma 16.)

30. Show that, for metric spaces (X, d), (Y, p) and function f:X —Y , the following

are equivalent:

(a) fis continuous at the point pe X ,

(b) For each sequence {x,} in X, with lim d (x,,p)=0
lilgnp(f(x,,), fp) =0.






Chapter 2

From Old to New Spaces

The reader is already familiar with various techniques of obtaining new structures
from old familiar ones: For example, the complex numbers are obtained by forming all
pairs (a,b) of real numbers, and even the addition and multiplication of complex numbers
is based on the same operations for real numbers. Also, factor groups are obtained
from two given groups G,H and a homomorphism 4 from G onto H (one then gets the
factor group G/Kerh which is isomorphic to H).

This snail’s approach to scientific discovery is timeless and common to all research
endeavors: Man, with his very limited widsom has managed only to move from one
structure to another a bit more complicated.

The reader should study what follows with this viewpoint in mind.

2.1 Product Spaces

Given a finite family (X,,7;), i=12,...,n, of topological spaces, our starting
preoccupation is to give the set TT, X, a “nice” topology T with respect to which all
projections (cf. 0.18) IT,,...,I1, are continuous. Certainly, if 7 is the discrete topology,
then all projections are continuous, but this is a useless topology, since with respect to
it all functions with domain IT7, X, are continuous. Therefore, our real preoccupation
must be to find the coarsest topology for TI'| X, with respect to which all projections
I1,,...,I1, are continuous. This topology certainly must contain the collection

ns={I;' Wyiv,er, i=1,2,...,n},

because of Theorem 1.14 (ii).

47
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A useful way of visualizing an element of I18 is to string all the spaces X,

side-by-side

X 1 X 2 X 1 X 4 X i
and to observe that 77;'(U,) consists of all functions in the product (tuples, if you
wish) which assign to each % #{ any pointof X, but must assign a point of

U, to j. Then a basis element zz;'(Uh) ﬂ-'-ﬁﬂi_;(U,})

Ust
U.
A~ 4
UI\
e :
[
T Un Ui..
X, X X Xi: X, X,4

consists of all functions (tuples, if you wish) which assign to k #1i;,---,,, any
point of X, but must assign a pointof U, to § ,.--, andapointof U, to

i

n

1. Definition. Given the family {X,,7,), i=1,2,...,n, of topological spaces, the
product topology, denoted by Iz, is the one which has I18 for a subbase.
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The following is then obvious.

2. Lemma. The product topology I17;0on IT:_, X, is the coarsest topology with
respect to which all projections are continuous.

3. Theorem. A function f:X — I1_, X, (precisely,
f:X7r)> L, X;,I11;)) is continuous iff each I1; o f is continuous for
Jj=12,...,n.

Proof. The “only if” part is immediate from Corollary 1.15.
The “if” part: Note that, for each U; €7,

W)=, ) Wet,

Since 1S ={IT;' (U,)IU,€et,, j=1,2,...,n} isasubbase for ITz;, by Theorem
1.14 (vi) we get that f s continuous.

The following two results, while trivial, seem to catch many by surprise. May
they never surprise the reader again!

4. Lemma. For any spaces X|,..., X, and bijection b:{1,2,...,n}—=1{,2,...,n},
ML, X, =0, Xy
(i.e., the order of the factors X; in a product space is immaterial).
Proof. Simply define y : (I, X,) =TI, X, , by letting
VX X)) =X 0 Xpwm)
for each (xy,...,x,)e IT_, X,;. Then observe that
y (05 WU ) =T5, W) W™ (G0 Wep ) =115 U ),

-1
for subbase elements of I1°., X, and ITi.; X, , respectively. Therefore ¥ and ¥/
are continuous, by Theorem [.14 (vi), which completes the proof.

5. Lemma. For any finite collection {X,},.r of spaces and partition
P={Alte A} of F,
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HaEF Xa Enre/\ (naeA, Xa)

(i.e., introducing parenthesis at will in a product A XA, X--+X A, yields a
homeomorphic product space).

Proof, Before proceeding with the proof, note that we are saying that, for ex-
ample,

(X, X X)X Xy = X, X Xy X Xy = (X, X X3)X X, .

For the proof, simply let ¢ : Ilyer Xy =1y (Haey Xo) be defined by letting
@ (¢) be the element of T, (IT,cs X,) such that

I, (1, @ (f) = f(a),

for each o € F (this may look horrible, but all it says is that ¢ sends each tuple in
I

remainder of the proof is essentially the same as the proof of Lemma 4.

acr Xq 10 the tuple of tuples in IT,., X, 1€ A with the same elements). The

An Application. In Calculus, it is customary and convenient to think of a function
f: E*¥ - E™ as an m-tuple f =(f;,..., f,,) of real-valued functions such that

S =(f, .oy fu (X))

for each x& E* . It is generally hinted that indeed the f, are functions and that indeed
[ is continuous iff each f,, i=1,2,...,m, is continuous. The riddle can be easily
solved: Given f:E* — E" define f,: E* - E' by f, =11, f , with TI; being the
i -projection map. Then, by Theorem 3, f is continuous iff each f, =TI, o f is
continuous.

The preceding application suggests the following constructions, which will find

extensive use later on.

6. Definition. Given a space X, finite families {Y; |i=1,...,n}, {Z;|i=1,...,n} of
spaces and functions f,: X =V, g,:Y, 5 Z,, i=1,...,n, let the functions (!)

frron ) X oI Y, gy % xg, =TI Z,
be defined by

(frse s L) O)=(f 0)yeees [ (X)), g1 XX 8y (Vsevs Yo ) = (81 (s s 80 (34)
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Because of Theorem 3, the following result is immediate.

7. Lemma. The functions (f),...,f,) and g, x---x g, of Definition 6 are
continuous if the functions f,,..., f, and g,,...,g, are continuous. The function

g, X+--x g, is open if the functions g,,...,g, are open.

At this stage, the reader may wonder: But it seems that the definition of the product
topology could be applied to infinite products verbatim. Can it? Of course, it can!
Furthermore, it is easy to see that all results of this section are valid for infinite products.
Indeed, with the possible exception of Lemma 5, the proofs of the other results apply to
infinite products verbatim. We set off this fact by the following proposition.

8. Proposition. Lemmas 2, 4 and 7 and Theorem 3 remain valid for any product

spaces.

2.2 Product Metrics and Topologies

Let (X,,d;), i=1,2,...,n, be a finite family of metric spaces. By analogy with the
standard definition of distance in the cartesian plane (i.e,,
d (X, %) (91, ¥2))= \/(x, -y)2+(x;-y,)* ), we define a function

d: ([T, X)x (T, X,) = E' by
d (550X ) oo YD) =V ELy i Oy 90

This function d will always be referred to as the product-metric.

9. Proposition. The product-metric d is actually a metric on T, X;.
Proof. Certainly, we only need to verify the triangle inequality. But note that
] }
(S d, (0 90D R G (A, (520" 4 (2 3P0
g !
S d; (x, Zi)z)/2 +(ZL 4, (7, )’i)z)A’

the last inequality being a consequence of Minkowski’s Inequality (see proof in Appendix
A). This proves the triangle inequality for d.

Remark. The metric I"': E' x E' — E', defined by T (x,y)=|x—y|, and the
resultant product-metrics on E", for n=2,3,..., will be referred to as the Euclidean
metrics. (Note that, in E", d (x,y)=|x-y]|.)
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10. Proposition. The topology generated by the product-metric  on JI7

"X,
i=l i
equals the product of the topologies generated by the metrics d; on X . Thatis,
7, =Mt

Proof. Keeping Lemma 1.20 in mind, we only need to observe that
(a) For each (x;,...,x,)e I, X; and £€>0,
B((x,,....,x,), €) DI, B(x,,e/n).
(b) For each (x,...,x,)eIl, X;,and g, >0 for i=1,...,n,
I, B(x;,€) DB((x,....%,), ),

where € = min{g,,....£,}.

tn

Note that when we apply Proposition 10 to Euclidean spaces £”, we then get that
the topology generated by the collection of n-Euclidean balls

B{(x)se %, ), €)=A(ypse ey, )€ E" | (B, | %, — v, )2 <€D
equals the topology generated by the collection of open n-Euclidean cubes
e, la, b, (=117, B(a,+5,)/ 2, (b,—a,)12).

If we did not have the benefit of Euclidean Geometry and of Pythagora’s Theorem,
it is only too possible that we would have chosen to distinguish another of the many
metrics on cartesian products which are much easier to handle. For example, given the
metric spaces (X,.d,), i=1,...,n, it is trivial to check that the function
p (1, X,)x(M, X,) > E', defined by

P, s (Yoo, ¥ =20 d, (X, ¥1)»

is a metric on [I?, X, . Itis easy to see that 7, =7,. Yet p offers many sobering
surprises, when applied to the plane E?:

{a) Using the standard techniques of calculus to measure the length of an arc
we see that, with respect to p, the length of the hypotenuse of the triangle
with vertices (0, 0), (1, 0), and (1, 1) equals the sum of the lengths of the
legs of the triangle (therefore, it is ambiguous to say that the shortest

distance between two points is a straight line—it depends on the metric
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used).

(b) The ball B ((0,0),1), with respectto p is not a “round” disc but a
“square” one. Indeed, B ({0, 0),1), is the square with corners (1, 0), (0, 1),
(~1, 0) and (0, —1). Furthermore, using the standard horizontal-vertical
grating techniques of calculus to find areas of surfaces, we would get that
the area of the “square” disc B ({0, 0),1) is 2.

2.3. Quotient Spaces

Given a topological space (X,7), a set Y and an onto function f:X —> Y oneis
naturally (?) compelled to ask: Is there a “nice” topology o for Y with respect to
which fis continuous? Certainly fis continuous with respect to the indiscrete topology
on Y; this can only tempt one to ask a more interesting question: Is there a finest
topology for Y with respect to which f is continuous? If one exists, it certainly must be
contained in

t,={UcY|f Wertt.

But T, is a topology for Y, because of 0.15 (iv).
Therefore, T; is the topology we are looking for (since f is not continuous with
respect to any topology on Y which is strictly finer than 7, ).

11. Definition. Let (X,7)be a topological space, Yasetand f: X = Y a
function. The topology 7, is called the quotient topology on ¥, and Y is called a .
guotient space of X (with respectto 7 andf). Tosay that f: X —— Y is a quotient
function means that the topology of Y is the quotient topology (with respect to f and
the topology of X).

One of the most useful results of Topology is undoubtedly the following (in some
ways, it is a dual of Theorem 3).

12. Theorem. Let f:X —— Y be a quotient function. Then a function
g:Y = Z is continuous iff go f is continuous.

Proof. The “only if” part is obvious.
The “if” part: For each open U c Z,(g~° f)'I )= f'l (g_l (UV)) is openin X.
Since £ is a quotient function, we then get that, for each open U c Z, g~' (U) is open

in ¥, which shows that g is continuous.
One of the major tasks in the applications of topological spaces is the construction

of quotient spaces. It is therefore imperative that we consider the technique of
constructing quotient spaces in its many guises:
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The FPartition Technique (really, the only way to go): Let (X,7) be a topological
space and X ={A,},., a partition of X. Let f:X — X beflefined by “ f(x) = the
A, which contains x”. Then

UcX| T Wery=1,={HcX|VUeT}

is the quotient topology for Y .

The Equivalence Relation Technique: Let (X,T) be a topological space and R an
equivalence relation on X. Let X/R be the set of R-equivalence classes of X (therefore,
X/R is a partition of X) and let f: X — X/R be defined by f(x)= the R-equivalence
class of x. Then

U Xx/R|fWety=1,={UcX/RIUHe1}

is the quotient topology for X/R . (This technique is very useful whenever X is rich in
natural equivalence relations—for example, whenever X supports group or ring
operations.)

The Adjunction (or “Gluing”) Technique: Let (X,t), (Y,1t) be disjoint (i.e.,
X NY =0) topological spaces, A a closed subset of X and p:A— p(A)cY a
continuous function. Let

x={x|xe X -AAU{{»Up" Wiye p(AIU{y|yeY-p(A).

Clearly ¥ is a partition of X UY; X is generally denoted by X U, ¥ . Now that we
are back to the partition technique, we proceed with the definition of
f:xur-xu » Y and the quotient topology 7, in the expected manner. (Note that

the restriction that X (Y = @ is somewhat artificial inasmuch that we can always give
X and Y different colors; say X = X x{0} and Y =¥ x{1}.)

The Identification Technique: Let f:(X,7) — (¥Y,1) be an onto function. Then
X/f:{f‘I (y)lyeY} is a partition of X. Define f:X —>X/f by
f(x)=f"" f(x) (fis well defined!). Then

(UcX/fIf'(Wert=r.={Uc X/fIUUer)
;
is the quotient topology for X/f .

13. Theorem. Let f:(X,7)——> (Y¥,u)be a quotient function. Then X/f =Y.
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Proof. Define h:Y — X/f by h(y)=f' (y). Itis straightforward that h is a

f

X —>Y X —— v
f l ., fl ol
X/f X/f

well-defined one-to-one and onto function, and that the diagrams

are commutative (i.e., ho f = f, ). Therefore, by Theorem 12, both & and h™' are
continuous.

It is clear from Corollary 1.16 that all homeomorphisms are quotient functions.
Indeed, we have the much stronger result.

14. Lemma. If f:(X,7)—> (Y,u) is continuous and open (or closed) then fis
a quotient function.

Proof. Without loss of generality, let us assume that fis closed. Note that, if
F(U)e Tthen U=Y—f(X—f" (U))e u, since f is closed. Therefore,
T, C M. Since f is continuous, we clearly have that 4 =7, . Therefore, U =17,

and f is a quotient function.
2.4. Applications
Cones. For any space X, let N ={(x,1)l xe X }and let
cX ={N}U{(x.nlxe X, 0<r<1}.

CX, with the quotient toplogy with respect to the function f: X xI —CX (defined by
f ((x1))=N and f ((x,7))=(x7) for T <1),where X x [ has the product topology,

is called the cone of X. (Note that, if X =S', then S' x/ is an “ordinary” cylinder

and CS' is really obtained from §' x I by “pinching” the top to a point—that is, cs'
is really (homeomorphic to) a cone, which is really a closed disc.)

15. Proposition. CS" = B"', for n=0,1,---.

Proof. Let us consider the diagram
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S"x1 —q~—> cs"
h

P
Bn+l

with g the natural quotient function, p defined by
p(x,,...x),0)=((1~1) x,,....,(1-1t) x,)€ B™)
and A defined by
h(N)=(0,0,...,0)e B"*',
h{((x,,...x,), D D=(1-) x,,....(A=1) x,).

(Are p and h well defined? Is h one-to-one?) At this stage, the reader may have
considerable difficulty in proving that p is a quotient function; nonetheless, this is
immediate from Theorem 3.7 and Lemma 4. From Theorem 12, we then get that A

and A~! are continuous.

Suspensions. For any space X, let N ={(x,1}|xe X} and S={(x,—1)lxe X}. Then
let

SX ={N,S}U[(x,))I xe X,—1<t<1}.

SX, with the quotient topology, is called the suspension of X. (Note that, if X = §',
then X x[-1,1] is a cylinder and SS' is really obtained from X x [-1,1] by “pinching”
the top rim to a point and pinching the bottom rim to another point—that is, SS' is
really S*. N becomes the north pole and S becomes the south pole of S%.)
16. Proposition. SS” =5"" for n=0,1, .

S X[—l, 1] _q__> K

h

Sn+|
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Proof. Let us consider the diagram on p. 56

with g the natural quotient map, p defined by

A= ,...(-1)x , 1-(1=1)%), fort20
p(xy,.. %), 0=

@+Dx ... (+0)x - 1-(1+£2), fort<0

and 4 defined by
h(N)=(,...,0,1),h($)=(0,...,0,—1) and
((1—:)x0,..,(1-z)xn,,/1-(1-c)2 ), fort=0

H(x,,. . %), 0)=
@+Dx .., (DX, ,/1-(1+t)2),fortso.

Again the reader may find it difficult to prove that p is a quotient function; it is nonetheless
immediate from Theorem 3.7 and Lemma 14. From Theorem 12, we then get that A

and A~ are continuous.

Boundary Identifications. The following result justifies the old-fashioned technique of

making circles—one simply “glues “ or “identifies” the endpoints of a line segment.

17. Proposition. B"/$"'=$", for n=1,2,-:-. (See 0.16.)

Bn 9 3 Bn /Srh—l

S

Sll
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Proof. Let us consider the diagram on p. 57

where ¢ is the natural quotient map and p is defined by (recall that x = (xl yeees Xy ) and

1Zl=qx’++x")
(A4Q-1x) x,,....4(1=1%D) x,,{ 1-16 (1= X *)), for 1%121/2,
(4171 x,,... A% x,, - 1-16x*), forlx1<1/2,

p(x)=

(p is well defined!) and h is defined by A (s""')=(0,...,0,1), and A([|X]|])=p (X)
whenever | x| <1 (his well defined and 1-1!).

Again, we get that p is a quotient map, because of Lemma 14 and Theorem 3.7. By
Theorem |2, we then get that £ and ™' are continuous.

By now the reader must be discouraged by the annoying fact that the precise
construction of even the elementary quotient spaces just described presents painful
details. Fortunately, topologists have devised descriptive techniques of construction of
quotient spaces—commonly called the Scissors-and-Paste Techniques. The following
three examples illustrate these techniques.

The Mobius Band. The Mobius Band is obtained from the square I X | by gluing each
(0, 1) with each (1, 1 — 1), for 0<t < 1. Descriptively,

which successfully yields the graphic representations

The Torus. The Torus is obtained from the square I X[ by gluing each (0, ¢) with
each (1, t) and also gluing each (¢, 0) with each (¢, 1), for 0<r<1. Descriptively,
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q

which successfully yields the graphic representations

&)

The Klein Bottle. Descriptively, the Klein Bottle is

AN
Vd al a2

a, a,

No one has ever really seen a graphic representation of a Klein Bottle. Certainly the
first step of identifying the upper and lower edges of the square produces a cylinder

One can immediately see that a 180° -twist in the middle of the cylinder will simply not
match the points a,,a,,a; of the left-rim with a;,d,,a; of the right-rim, respectively.

Indeed, in E* nothing works (this is quite difficult to prove!). Nonetheless, the following
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erroneous graphic representation of the Klein Bottle in E? helps one visualize what it

looks like in E" with n>4.

The trouble is that one cannot cut through
the side of the cylinder—that is really an
identification which is not called for.

Indeed, the reader should note that the preceding picture is the graphic representation
of

V

N
N

- - <6

2

N
N

The Projective Plane. Descriptively, the Projective Plane is

a4,

or

4
and, therefore, it is obtained from a closed disc by gluing antipodal points (i.e.,
diametrically opposed points) of its boundary. It is difficult to give a graphic
representation of the projective plane. Nonetheless, if we cut the projective plane

along the dotted lines, we get the
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MobiusBand @ F---------- e
—————————— and e i

N
77
But, by successive gluings, we see that

/T\ //’1-\\
x/ 1 \I // k \‘
A ] t

AN
|I | 1 : +
02612 Sl

Therefore, the projective plane is obtained from the Mobius Band and a closed disc by
gluing their edges together.

Chapter 2. Exercises.

1. Show that the function f: X —- Y isaquotient function iff the following condition

holds: Bc Y is closed iff f_I (B) is closed in X.
2. Show that open (or closed) continuous functions are quotient functions.

3.Let p: X —> Y be a quotient function and f: X — Z be a continuous function
such that fop™:Y — Z is a function (note that fop~ is a function iff each

F (z)c some p~' (y)). Show fop™" is continuous.

4. Show that the function f . (X,7) —> (Y,u) is an open function iff the following
condition holds: There exists a base # for 7 such that f(B)e u for each Be X.
(Hint: use 0.15(vi)).

5. Show that all projections of the product space (I1}, X,,I17,) are open functions.

(Hint: see ex. 4.)

6. Show that the torus is (homeomorphic to) S'xS'. (Indeed, it is not uncommon to

define the torus as the product space S'xS'.)



62 Elementary Topology and Applications

7. Show that the torus is really a 2-sphere S* with a tubular handle

{
i ]

\\/// e

8. Show that the torus is a quotient space of E2. (Hint: Grate E? into squares of base

N
along the dotted lines.

and height equal to . Then describe the quotient function from E2 to the torus in

descriptive form.)

9. Try to figure out a graphic representation of the quotient space, descriptively

of a triangle by cutting the triangle along the dotted line. This quotient space is known
as the Dunce Hat.

10. Show that the quotient space of the square, descriptively

a b, q b,
7 \/ 7 >
~ ] e N
N 4 ~N
~ | / N
~ — 4 ~
b2/ \\ \\// al b2 \\ /al
/ \\
! ~
— — — - —_— - ~
r 1
Il ‘1 bl \\ bl
/ \\
N
a, PRGN AN a, N AN
I _I ~ N
é ~ N
s 1 ~ ~
' y | N ( ~
b2 a, b2 a

is a 2-sphere with two handles, by cutting along the dotted lines of the square on the
left. However, by cutting along the dotted line of the square on the right, show that the
same quotient space of the square really is a double-torus (two torii glued along the
edges of a hole on each of them).
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I1. Show that a 2-sphere with two handles and a double-torus are homeophoric (see

ex. 10).

12. Let X —L>» Y —£>3 Z such that fand g are continuous and go f is a
quotient function. Show that g is a quotient function.

13. Let f:X —» Y be a quotient function. Show that if f is 1-1, then f is a

homeomorphism.

14. Foreach oxe A, let p,: X, =Y, be a continuous open onto map. Show that

Ip, : 1, X, = I1,Y, is a quotient map.
15. Show that the composition of two quotient maps is a quotient map.

16. Let R, and R, be two equivalence relations in a space X such that x R, y implies

xR, y, forall x,ye X .Show that X /R, is a quotient space of X /R, .

17. Let (X ,T) be a space and A — X a subspace. Assume there exists a continuous
r:X — A suchthat r (¢)=a,foreach ae A (ris called a retraction). Show that r is

a quotient map.

18. Let {(X4,74)} ea be any family of spaces; also let X =T1,., X, , T =111, and
II,: X — X, be the a -projection for each e A (cf. 0.18). Also, for each fe X
and Tc A, let

S(f.N={ge X|g(a)=f () forallac A-T}.

The subspace S (f,I') of X will be referred to as the (f,I")- slice of X.

(a) Prove that S (f,) =M, X,. (Hint: Define h:S (f,I) > X,
by [h(g)](a) =g (cx), for every are I'". Show h is 1—1 and onto. Think

of "M, X, =My X, - Use Theorem 3 and Remark 4 to show that

hand A~ are continuous.)

(b) Prove that, for each g€ X and {f,,...,0,} CA,
S(g,{ﬂ|,--~,ﬂn})5n;;| XA.-
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19. Let X be a set and a={(Aa,ra)|ae A} be a family of spaces such that
UA, = X . Assume that
’ (i) Ta | A4g N Ag =Ty | Ay N Ay, forall o, Be A

(ii) each A, N Ag is closed in A, and in Ag -
Lett(Q)={Uc XU ﬂAaera}.Showthat

(a) T (Q) is atopology for X (called, the weak topology over Q)
(b) T(a)IAa =Ty, forevery oce A

20. Given a set X, a space (Y,7) and a function f:X —- Y, show that

(@ t/ ={f"(U)| Uer} is a topology on X.
(b) f:(X,7/)—>> (¥,7) is a quotient map.

21. Given a set X, a collection {(¥,,7,)|ae A of spaces and functions f,: X —=Y,,

for each Ae A, let 7 be the topology generated by § = {fa" W|Uert,, aeA}.
Show that

(@) If j: X oI, , Y, is defined by (j(x)) ()= f, (x), for each

ae A, then T=1' (see preceding problem).

(b) If x=w implies that there exists ¢ e A such that f, (x) # f,(w),

show that j is a homeomorphism (between X and j (X)).

22. Let Q be the space of rational numbers, R the identity relation on Q, S the relation
on @ which identifies all the intergers. Show that (Q X Q) / (RX.S) is not homeomorphic
to (Q/ R)x(Q/ S).In particular, note that even though the natural maps p:Q - Q/R
and g:Q — Q/S are quotient maps, their product pxqg:Q0xQ—>Q/RxQ/S is

not a quotient map.



Chapter 3

Very Special Spaces

While studying calculus, the reader must have become well aware of the importance of
the compact (i.e. closed and bounded) subsets of the real line, because of the results:
The continuous image of a compact subset of E' is compact. The continuous image
of a closed interval is a closed interval (equivalently, for each continuous function
f:la,bl > E' and f (a)<d < f (b) there exists a<e<b suchthat f (e)=d (the
Intermediate-Value Theorem!)). Every continuous real-valued function on a closed
interval of E' attains a maximum and a minimum value. Every Cauchy sequence
{x,} (i.e., for every &> 0 there exists integer 7(€) such that m, n>n (€) implies
| x,, — x, | < & ) of real numbers converges to some real number. Every sequence in a
compact subset A of E' has a subsequence which converges in A.

Many more equally important results are easily obtained once one truly understands
the concepts just mentioned (more precisely, the mathematical concepts just alluded
to). We are now ready for those very special spaces: Compact spaces, complete metric
spaces, connected spaces and arcwise connected spaces.

But first we need more terminology, including a tiny bit of the hierarchy of
topological spaces.

A. T,, T,, T;: Given that topological spaces are not always metrizable (cf. ex
1.28) it is only natural to classify topological spaces in accordance with how similarly
they behave like metric spaces. For this reason, topological spaces have been divided
into many classes (dozens), there being no universal agreement on these divisions.
Let (X,T) be a topological space. Then

(i) (X,7)isa T, -space provided that X —{p}e 7 foreach pe X
(equivalently, for any x, ye X with x # y, there exists neighborhoods
N,ofxand N, ofysuchthat ye N, and xg N ).

(i) (X,7) isa T,-space or a Hausdorff space provided that for any
x,y€ X , with x # y, there exists neighborhoods N, of xand N, of y

65
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such that N, NN, =0,

(iii) (X,7) is a regular space or a T, -space provided that (X,T) is T,
and, for any x € X and closed set B < X —{x}, there exist
neighborhoods N, of x and N of B such that N, | N;=0; equivalently,
for any x € X and neighborhood U of x there exists a neighborhood V of
xsuchthat V- c U .

(Some mathematicians do not require that X be 7, in the definition of a regular space
and then they let

T, -space = regular space which is also T; .

This story has two morals—the first is that whenever one reads a scientific book one
should make sure of the terminology used in that book; the second is that intellectuals
sometimes assert their intellectual freedom in the most childish way.)

7 T,

The following proposition should be obvious.
1. Proposition. X is metrizable implies X is T, implies X is 7, implies Xis 7} .

Proof. Only the first implication may not be absolutely trivial, but even that one is

a straightforward consequence of Theorem 1.8 (iv).

B. Accumulation, Clustering, Converging. Let (X ,7) be a topological space. Then

(i) For Ac X ,apoint p€ X is said to be an accumulation point of A or
cluster point of A, provided that, for each neighborhood N, of

p.N, N(A={p}) #0.

(ii) A sequence {x,} in X is said to cluster at the point pe X (orpisa
cluster point of {x,} ) provided that either {xn} is infinite and p is a
cluster point of the set {x, lne N} or {x } is finite and
p=x;=x;,= - for some j. (Be assured that this unusual definition
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has its merits.)

(iii) A sequence {xn} in X is said to converge to the point pe X ,
provided that, for each neighborhood N , of p, there exists some integer
n(N,) suchthat {x,| j2n(N )} C N, ; welet
li’r1n x, = p = {x,} converges to p.
2. Proposition. The following statements are valid in any space X:
@) if lilgnxn =x and {w,} is a subsequence of {x,} then limw, = x.
n

(b) A point p e X is acluster pointof Ac X iff pe (A—{p})".

Proof. We only prove part (b), since the proof of (a) is too trivial.

The “if”" part: Assume there exists some open neighborhood N, of p such that
N,NA=0. Then X-N, is closed, pg X-N, and A—{p}cX-N,,
contradicting the hypothesis that pe (A—{p})".

The “only if” part: Assume p& (A—{p})”. Then there exists a closed set B
such that A—{p} c B and pe B. Then X — B is a neighborhood of p such that
(X -BYN(A—{p}) =0, a contradiction.

3. Lemma. Let X be Hausdorff and {x,} a sequence in X. If limx, = z and
n
li’?lxn =w then z=w.

Proof. Suppose w# z. Pick disjoint opén neighborhoods N, N, of w and z,
respectively. Then there exist integers n(N,) and n(N,) such that

J>n(N,) implies x;€ N, and k >n(N ) implies x, € N,.
Pick > max{n(N,),n(N,)}. Then x,€ N, (1 N,, a contradiction.

3.1 Compact Spaces

Certainly it is ridiculous to expect that we define a compact space A as a bounded and
closed subset of a topological space (X ,7T), since the notion of “bounded set” makes
little sense in a space without a notion of distance. The surprise is that this same
definition would be equally ridiculous in a metric space (X ,d)—for example, let
X = E' - {0} and d be the Euclidean metric on X ; then A=[-1,11 N X isa
closed and bounded subset of X and yet not every sequence in A has a subsequence
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which converges in A (try {%}). There should be no doubt that the definition of

| . , . .
compact subsets of £ depends on a very peculiar combination of circumstances.

4. Definition. A topological space (X ,T) is compact provided that each open
cover i of X (i.e., U # = X and ¥ c 1) contains a finite subcover V of X (i.e.,
UV =X,V is finite). A metric space (X,d) is compact if (X,T,) is compact.

5. Lemma. Let (X,7) be a topological space and # any base for the topology
T . If each open cover # — ¥ of X has a finite subcover then (X ,T) is compact.

Proof. Let /{ be any open cover of X. By the definition of a base for a topology,
there exists another open cover ¥/ c ¥ such that, foreach V eV, V < some

U € Y . By hypothesis, there exists a finite subcover {V,,...,V,} of V. Pick any
UV)el suchthat V,c U (V) for i=1,...,n. Then {U (V}),...,U (V,)} isa

finite subcover of X .

6. Lemma. The following are valid:
(a) A closed subset of a compact space is compact.
(b) A compact subspace of a Hausdorff space is closed.
{c) The continuous image of a compact space is compact.

Proof.
(a) Let (X,T) compact and A a closed subspace of X. If X is an open
cover of A then ' ={U U (X —A)|U € U} is an open (!) cover of X.
Pick finite subcover {U, U (X — A),...,U, U (X — A)} of 4’ . Then
{U,,...,U,} 1s a finite subcover of Jf.

(b) Suppose (X ,7) Hausdorff, A a compact subspace of X which is not
closed. Let pe A” — A. Then, for each a € A, there exist open
neighborhoods N, of p and N, of a such that N,, (1N, =0. Then
U ={N,lae A} is an open cover of A with no finite subcover. (Suppose
{N,,....N, } is a finite subcover of . Then N{_, N, isa
neighborhood of p which misses A - (N, N, )NUL N, )=0 - a
contradiction.)

{c) let f:X —— Y be continuous and let X be compact. If ¥ is an
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open cover of Y, then ¥’ = {f"l(U)IU € U} is an open cover of X. If
{fW)li=1,...,n} is a finite subcover of W then {U,|i=1,...,n} isa
finite subcover of 4 .

7. Theorem. Let f:X —> Y be continuous, with X compact and ¥ Hausdorff.
Then, fis a closed function and, therefore, a quotient function.

Proof. Let A be a closed subset of X. Then, from Lemma 6(a), (c), (b) we get that
f(A) is closed. Therefore, by Lemma 2.7, f is a quotient map.

8. Theorem. Forany ne N, let (X, 7))..-..(X,,T,) be compact spaces.
Then (17, X,,T17,) is compact.

Proof. (By induction.) Clearly (X,, t,) is compact. Assume @y x,, 1t,) is
compact and let us show that (IT_, X,,[T7;) is compact: Because of Lemma 5 we
consider only open covers J of TI., X, whose elements have the form IT;; U;
with U, e 1,,i=1,2,...,n. Since, for each X =(x,..., X, )€ ns' x,,

{x}x X, =X, and {UN({x}x X,)|U € #} is an open cover of {x}x X, , we
can find 12, U},...,TI", U¥ € 4 which cover {x}x X,.Let C; = ("}, I3 U{)
X (U’_‘/.=I UN=J;xK;, for each Xe I X, Here is a visual description of the

preceding.

n {xkx X, ne' vl

=|

5 X,

Since {J;|xe /] X;} is an open cover of the compact space [T}

find Jz »---»J5, which cover IT;7 X, . Therefore {C ,..., C; } covers TII; X,,
which implies that there is a finite number of elements of }f which cover TIi X,

i=l i

7 X, we can

since each Ci, is covered by finitely many elements of ¥, for r=12,....m.

9. Theorem. For any metric space (X,d) and C c X, we get that (a) iff (b) iff
(c) implies (d). If (X,d)=(E", Euclidean metric) then (a) iff (b) iff (c) iff (d).

(a) C is compact,
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(b) Every infinite subset A of C has a cluster point in C,
(c ) Every sequence {x”} in C has a subsequence which converges in C,
(d) Cis a closed and bounded subset of (X,d).

Proof. First, (a) implies (b): Suppose A c C is infinite with no cluster point. Pick
sequence 1X,} of distinct points of A. Then the set B={x, | ne N} has no cluster
point which implies that

(i) Bis closed: If not, any pointin B~ — B would be a cluster point of
B (cf. Prop. 2),

(it) For each n, there exists an open neighborhood U, of x, such that
U,N(B-{x,})=0: If not, x, would be a cluster point of B. Then
{C-BYU (U, ne N} is an open cover of C with no finite subcover (each
U, coversno x,, with j#n,and C—B coversno x; atall), a
contradiction.

(b) implies (c). Let {xn} be a sequence in C. Without loss of generality, we
assume the range of {x,} is infinite. Then there exists a cluster point p for the set
A ={x, | ne N} . Inductively, it is easy to pick x, € A such that d (x,,k, p)<% and
n, <n,,, for k€ N . It follows that {xnk} is a subsequence of {x"} such that
lilzn X, =P

{(c) implies (a). First observe that, for each € >0, there exists a finite subset F,
of X such that X =U{B (u,e)|ue F,} (F, is called an e-net): Suppose this is not
true for some €, > 0. Then, by induction, one can immediately pick a sequence {x,}
in X such that d (x,,x,,)2¢€, for ne N. Clearly, {x,} has no convergent
subsequence, a contradiction.

Now let #{ be any open cover of X. We will show that # has a countable subcover:
Let D=7, F, suchthat F isa 7]( -net and let

Ds{B(d,l’,)c: some Ue | je Nand de D} .

Clearly, D is countable. Furthermore, D covers X. (Let pe X . Then there exists
some positive integer j such that B (p, —";) c some U, e i . Pick any u,€ sz such

that p€ B(M,,,yl/f). We then get that pe B (u %)C:B(p, %)C some U,el,

n

which implies that pe B (u 217)6 D ) Since D is a countable cover of X, by the

»’
definition of ) one immediately gets that /{ has a countable subcover {U,, In€ N} .
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Finally, we show that the countable cover {U , | n € N} of X has a finite subcover:
Suppose not. Pick x,e X —-U’, U, for ne N. By hypothesis, {x,} has a
convergent subsequence {x,,‘}; say ]ilinx”" =g and geU, . Then U, is a
neighborhood of ¢ which misses {x, |n2m}, which shows that {x, } does not
converge to g, a contradiction. This does the trick.

We have, thus far, proved that (a) iff (b) iff (c). Much has been said in the proof
of (c) implies (a). (See ex. 18.) .

(c) implies (d). Suppose C is not closed in (X,d): Pick any pe C™—-C. For
each n, pick x, e C(B(p, ;';). Then lirrlnx,, = p . Therefore, for any subsequence

{x,,k} of {x,,}, “km X, =P, contradicting (c).
Suppose C is not bounded in (X ,d): Then it is easily seen that, for any ce C,

{B(c,n)NClne N}

is an open cover of C with no finite subcover (say B(c,n,)NC,...,B(c,n,)C
cover C, with n; <...<n, . Then C < B (c, n,), implying that C is bounded).

Finally, we prove that, for Euclidean spaces, (d) implies (a). (Clearly, this yields
(a) iff (b) iff (c) iff (d) in Euclidean spaces. First (d) implies (a) in E': Without loss of
generality, we let C be some closed interval [m, M} (because of Lemma 6(a)) and
consider only open covers O of [m, M ] whose elements are “open intervals intersected
with [m, M]” (because of Lemma 5 and the definition of the subspace topology).
Indeed, note that, because of the definition of the subspace topology we can, just as
well, let () be acoverof [m, M] by open intervals of E' forthen {ON[m, M110e€ O}
is a cover of [m, M ] of the required form.

So let O be a cover of [m, M] by open intervalsin E'. Let us say that “x can be
reached from m by O provided that there exist 0,,0,,...,0,& O such that
[m, x}c0,U0,U---UQ,. Then, let A={xe[m,M]ixcan be reached from
m by O} andlet r=sup A (A #0 since me A). Since O covers [m, M], there exists
0, € O such that t€ O,. Therefore there are points t',¢"€ 0, such that r<t<r’.
Since t"€ A, there exist open intervals 0y,...,0, € O such that [m, 1< 0,U---U0, .
Then, [m,t"} <0, U---U0, UO, which forces M <t” and yields that {0,,...,0;,0,}
is a finite subcover of . This does the trick for E'.

Finally, (d) implies (a) in E": Let C be any closed and bounded subset of E".
Then, there exists r >0 such that Cc B(a,r), for some a =(q;,a,,...,a,)e C.
Therefore, C cI1Y, [a, ~r, a4, + r], which implies that C is not compact, because of
Theorem 8 and Lemma 6(a).
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As immediate consequences of the preceding results, we get some of the classical

and invaluable results of analysis:

10. Theorem. Let C be a compact subset of E” and f:C — E™ a continuous
function. Then K = f (C)is compact and, for each be 9K , there exists b'e C
such that f (b))=b. (If m=1, this says that every continuous real-valued function
f: € — E" attains a maximum and a minimum value.)

Proof. Since K is closed in E™, by Theorem 9(d), b€ 9K implies that be K ;
therefore, there exists A’ C such that f (b')=b.

11. Definition. Let (X,d) and (Y, p) be metric spaces. We say that

(a) A function f:X — Y is uniformly continuous (with respect to the

metrics d and p, of course) provided that, for each € > 0, there exists
& > 0 (8 depends only on €) such that p (f (x), f (w))< € whenever
d{x,w)< § .(Seeex.4.)

(b) Forany & > 0, the & -modulus of continuity of f , denoted by
w(f,8),is w(f,0)=sup{p (f (x), f (W)ld (x,w) <8}. (Of course, it
can happen that w(f,0)=+o0.)

12. Lemma. A function f:(X,d)— (Y, p) is uniformly continuous iff
limw (f,8)=0.

o0

Proof. Straightforward.

13. Theorem. Let (X,d) be a compact metric space, (Y, p) any metric space,
and f: X — Y acontinuous function. Then f is uniformly continuous.

Proof. Let £>0.Foreach xe X, pick a neighborhood B (x,8,) of x such that
f(B(x,28,))cB(f(x), %)'

Since {B(x,8,)xe X}is an open cover of the compact space X, let us say that
{B(x,6,).....B(x,.6, )} also covers X. Let 6 =min{5,,...,6, }. It follows
that, for each xe X, B{x,6) ¢ some B (x;, 25&»)’ indeed, xe B(xl,5x,,) implies
B(x,6)c B(x; 25)(’ ). Therefore, for each xe X,

f(Bx)cB(f(x)e),
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which completes the proof.

3.2 Compactification

In proposition 2.14, we proved that, for n=1,2,---,
B"/S""'=§".

Let us interpret this result in the light of the knowledge we have acquired since
then: From the proof of Theorem 2.14, it is immediate that

S" —{north pole}=(B")" =B(0,1).

Since S” is compact, it is accurate to say that S” is the smallest compact space which
contains the space (B")° as a subspace.
A close analysis and general description of this situation will follow.

14. Definition.

(a) A subspace X of aspace Y is said to be dense in Y provided that
X =Y.

(b) The space Y is a compactification of the space X provided that Y is
compact and X is homeomorphic to a dense subspace of Y .

For any space (X,T) pick a point not in X , generally denoted by oo, Let
X =X Ufee} and

f=tU{UUX-K)IUet,KcX,K is closed and compact}.

15. Lemma. For any space (X,T), (f,f) is a topological space and (X,7) isa
subspace of ()2,1"‘). (X,71) is dense in ()Z',f) iff (X,7) is not compact.

Proof. To prove that T is a topology, it is clearly sufficient to verify that
ﬂ?:l W; U (/?‘Ki))=)?‘u?=l K;-U),
Uses W UK =K )= gen U UK —Mes Ko)

(the first equality is very easily proved by contradiction; otherwise it can be difficult);
the second equality is obvious; note that K —U is compact whenever K is compact
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and U is open, because of Lemma 6. (Clearly, the finite union of compact spaces is
compact and any intersection of compact spaces is also compact.)

Clearly 7 =7 | X (note that | X 7, because in each UUX~K, K is
closed).

16. Theorem. For any non-compact space (X,7), ( X ,T) is a compactification
of (X,T). (It is called the one-point compactification of X, inasmuch that it is
immediate that any two one-point compactifications of the same space are homeo-
morphic.)

Proof. By Lemma 15, we only need to show that (/\A’,f) is compact: Let T
be an open cover of X . Pick some Ve ¥ with wey . Clearly

V=UUX-K),

sinceno U e T contains e . Since {U N X |Ue ¥} 7 and K isacompact subspace
of X , there exists a finite subcollection {U,,...,U,,} of I such that

KcUL U,

and thus {U,,....U,} U{V} is a finite subcollection of # which covers X . This
completes the proof.

17. Corollary. For ne N, S” is the one-point compactification of the open 7 -
ball or of E".

Proof. It is easy to see thatin E”,
B(O,)=E"

and we already know that S” is the one-point compactification of B (0,1) c E". (Of
course, " c E")

The reader should not conclude from this corollary that the one-point
compactification of a space, even a Hausdorff one, is Hausdorft. Such a conclusion is
incorrect. The correct conclusion requires that we localize the notion of compactness.

18. Definition. A space (X,T) is said to be locally compact provided that each
x€ X has a compact neighborhood.
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19. Lemma. Let (X,7) be Hausdorff. Then (X,7) is locally compact if and
only if, for each xe X and neighborhood UJ of x, there exists a neighborhood
V of x suchthat V c U and V is compact.

Proof. Immediate from Lemma 6.

20. Theorem. The space (X,7) is locally compact Hausdorff if and only if

A

(X,%) is compact Hausdorff.
Proof, Straightforward.

3.3 Complete Metric Spaces

In elementary calculus one becomes very aware of the usefulness of the result: Every
L) . . .
Cauchy sequence of real numbers converges to some real number. This impressive

result on Cauchy sequences is but a drop of water in a sea. Let us swim a little,

21. Definition. A sequence {x, } in a metric space (X,d) is called a Cauchy
sequence provided that, for each €> 0, there exists an integer N(€) such that
m,n> N (€) implies d (x,, x,,) <€ . A metric space (X,d) is complete provided
that each Cauchy sequence in X convergesin X .

22. Lemma. Let (X,,d;) be complete metric spaces for i =1,2,...,n. Then
©, X;, with the product-metric, is a complete metric space.

Proof. Let {(x{,x5,....x*)}, be a Cauchy sequence in 1, X;. Then it is easy to
see that {x,k }k is a Cauchy sequence in X‘. for i=1,2,...,n. Since each (X,.d) is
complete, there exists z;, € X;, i=1,2,...,n, such that li{nx:‘ =z, from which it

easily follows that likm (x,", x§,...,x,',‘)=(z,,...,z”). This shows that TT; X;, with

the product metric, is complete.

23. Lemma. The real line E', with the Euclidean metric, is a complete metric

space.

Proof. This follows easily from the local compactness of E' (see ex. 20). Intrinsic
properties of the Euclidean metric are crucial (see ex. 21).

24. Corollary. For each n, E" with the Euclidean metric, is a complete metric
space.
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25. Lemma. A subspace S of a complete metric space (X,d) is complete if
and only if § isclosedin X .

Proof. The “if” part is obvious. Let us look at the “only if” part: Let pE S”.
Then there exists a sequence {x,} < S such that d (x,, p)< %,for ne N . Then
{x,} is a Cauchy sequence in § which converges in S. Since limX,=p, from
Lemma 4, we get that p € S. This shows that S is closed. 4
Undoubtedly, the most applicable results of complete metric spaces are the Baire
Category Theorem (cf. ex. 19) and Banach’s Contraction Theorem, which we will
now describe together with some elementary applications. Later on, there will be more

to come (cf. Theorems 4.6 and 4.8).
26. Definition.

(a) Let f:X — X be any function. Then pe X is called a fixed point
of f provided that f (p)=p.

(b) Let (X,d) be a metric space and 0<a< 1. If f: X — X satisfies
the inequality

d(f(x), f(y) <o d(x,y)

for all x, ye X, then f is called an o -contraction. If d (f (x), f (yN>Bd (x,y),
for all x,ye X, and if §>1, then the function f is called a f -expansion. If
d(f (x), f(y)=d(x,y), forall x, ye X, then f is called a d-isometry, or just an
isometry (when no confusion appears possible).

(¢) For any function f : X — X, inductively, we let
fl=ffi=fofl e, f"=fo f"' ... Thefunction f": X — X is

called the n” -iterate of f .

27. Theorem. (Banach's contraction principle). Let (X,d) be a complete metric
space and f : X — X be an o -contraction, 0 <« <1. Then there exists a unique
g€ X such that f (gq) = ¢q . Furthermore, for each xe X,

d(f" (x),q) < ]3‘_7; d (x, f (x).

Proof. By induction, it is straightforward that
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d(f" (), f™ (%) < o' d(x f (%)

forany x€ X and n e N . Therefore, foreach n<m, a generalization of the triangle
inequality yields

d(f" (), " )<d (F" ), f* )+ +d (F77 (), f" (%)
<a"d(x, f)++a™" d (x, f (X))
=a" (1+-+a™™" ™"y d (x, f (x))
<" (l+a+--+a™+--)d (x, f (x)

=0 d(x f ).
[-o

d(x f(x), it is easily seen that

Since Ilmd =0 and d (f" (x), f" (x)) <lot
" (x)} is a Cauchy sequence. Solet ¢ = hmf (x).
First, note that f (q) q: q—h'x1n f" (x) implies f (q)=li'rln fFf" )=
lim £"*' (x) =q, since any contraction is clearly a continuous function.
" Finally, ¢q is unique: Suppose p=f(p) and p#q. Then

d(p,@)=d(f(p) f(@)sad(p,q), implying that d(p,q)<d(p.q), a
contradiction. It is illuminating to observe that regardless of which we X one starts
with,

lim f” (w)=gq (the only fixed point of f ).
Finally, let us observe that, for each xe X and n<j,

d(f" ), Q<d (f" ), £/ N +d (f (). 9)
& d (5, f () +d (F (1,9),

Since lij'.“ f7 (x)=4q, we then get that

d(f" (0, @) s 2 d (x, £ ().
-

At this time we will treat the following two useful applications of the preceding
result.

Roots of y=h(x). Let S=[a,b] and h:S — E' be a differentiable function
such that
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(i) h(@h()< 0,

(ii) there exists m, M € E', such that 0<m < 1K (x)| <M, for each
xeS.

Then there exists a unique a < g < b suchthat h(g)=0: Let
f(x)=x-Ah(x) such that 1-A M >0.

Then f:§ — Sis a (1-Am)- contraction (0< f’(x)implies that f is strictly
increasing; therefore, f (S)C S, because a < f(a) and f (b)<b;| f'(x)|<1-Am
implies that f is a (1— A m) -contraction by the Theorem of the Mean (if
a Sx<y<bthen |LLSW)_| ¢ (|, forsome x<t< y)). Therefore, for each
xe S

limf" (x)=¢g such that f (g)=gq; hence h(g)=0.

Observe that this tells us exactly how to find the point ¢ to any desired degree of
accuracy, since we know the rate of convergence of {f” (x)} togq.

Systems of Linear Equations. Let 4=(a;)be a real nxXn-matrix and define
fiE" > E" by f(x)=Ax+b, with x and b thought of as column vectors and b
fixed. When does f have a unique fixed point? Certainly it suffices that f be a
contraction with respect to some complete metric on E”. We will consider only three

commonly used metrics.
(i) The Euclidean Metric: Note that
| f )= F P =2, a5 (x;, - y))’
SEE;a)(E) (x-y)%)
=%, (T, a)lx—yP
by Cauchy-Schwarz inequality; therefore
| f )= fFODISIE ;a1 [x=y]

and f is a contraction with respect to the Euclidean metric whenever

(ii) The metric d, (x, y)=sup {|x, —y, |,....| x, — y, |}: It is easy to see
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that (E", d,) is a complete metric space, and that f is a contraction with
respect to d; whenever

E(,’ Ia,:,' |<1 . for i=],2,...,n .

(iii) The metric d, (x, y)=Z,|x, —y,|: It is easy to see that (E",d,) is
a complete metric space, and that f is a contraction with respect to d,
whenever

L la;l<1, for j=1,2,....n.

We will conclude our introductory study of complete spaces with a beautiful and
very useful characterization of compact metric spaces: We will call a metric space
(X,d) totally bounded provided that, for each £> O , there exists a finite set F, < X
such that X =U{B (u,€)lue F,}. The set F,is called an € -net for X .

28. Theorem. A metric space (X,d) is compact iff (X,d) is complete and
totally bounded.

Proof. The “only if” part is straightforward. Because of Theorem 9, the *“if” part
becomes obvious once.one proves that every infinite sequence {X,} of X hasa
Cauchy subsequence: For k=1,2,---, let F, bea }?-net of X . Since

X =UA{B (u;,1)|u, € F}, there exists a subsequence {x,'l} of {x,,} which is
contained in some B (u;, 1). Similarly, there exists a subsequence {x: } of {x,',}
which is contained in some B (u,,1/2) with u, € F,. Inductively, we pick se-

quences {x/} for je N such that
(i) {x} is a subsequence of {x,}
(ii) {x,-,"*'} is a subsequence of {x/}for j=1,2,--
Gii) {x/} < some B (u;,) with u; e F;.

It follows that {x"} is a Cauchy subsequence of {x,}, since

+ J I Hpn
d (xpih, x ) Sd (xih u,) +d (u,, xy) <g7+ 38 = n

for every n, p.

29. Corollary. Every compact metric space X is separable (i.e., there exists
countable Dc X suchthat D™ = X ).



80 Elementary Topology and Applications

Proof. Because of Theorem 29, let F, be a :-,— netfor ne N.Let D=U_ F,.
It follows easily that D is a countable dense (i.e., D = X ) subset of X . This
does it.

3.4 Connected and Arcwise Connected Spaces

It is in this context that the Intermediate-Value Theorem of Calculus finds its true
meaning. For convenience, we call a subset A of (X,T) clopen whenever A is both an
open and a closed subset of (X,T).

30. Definition. A space (X,7) is called

(i) connected provided that the only clopen subsets of (X,7) are X and
0.

(ii) arcwise connected provided that, for all x, ye X, there exists a
continuous function y:I — X such that ¥y (0)=x and y (1)=y. The
function Y is called an arc starting at x and ending at y. If x=y then ¥ is
called a loop with base point x.

S
D

While these two notions appear to be the same for open subsets of Euclidean

<

spaces—and they are indeed—they are, in general, quite different (see ex. 1).

31. Lemma. Let X be (arcwise) connected and f: X —» Y is a continuous
function. Then Y is (arcwise) connected.

Proof. Assume Y is not connected. Then there exists a clopen B — Y such that
O@#B#Y . Then f ' (B) is clopen in X, with @ f~' (B) # X, a contradiction.

Now, take any two points y,,y,€Y and pick x,x,€ X such that
F(x) =y, f (%)=, Let ¥ beany arc starting at x, andending at x, . Then foy
is an arc starting at y, and ending at y,.

32. Definition. A cover }f of a space (X ,T) is called chainable provided that,
forall U,V € U , there exists a finite set {U,,...,U,} c# such that
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U=U,,V=U, and U;NU;, 20 for i=1l,...,n—1 (ie,{U,,...,U,} is a chain
linking U to V).

33. Theorem. Let (X,7)be any space and 4 be any family of connected
subspaces of X such that & is a chainable cover of ¥ =|J# . Then Y is con-
nected.

Proof. Let O be a nonempty clopen subset of Y. We will show that O =Y . First
observe that if Be # and B[O # 0 then B c O (otherwise, B(10 # B would
be a nonempty clopen subset of B, a contradiction). Next observe that if
{B,,...,Bn} isachainin # and B,c O then B, cO,...,B, cO(B,cO
because B, N0 > B, N B, #0); similarly and inductively, B, cO,...,B, cO.
Finally since & is chainable and O is nonempty, it follows that 0D UK =Y .

34. Theorem. A space (X,7) is connected iff every open cover of X is
chainable.

Proof. The “if” part: Suppose X is not connected. Pick a clopen subset U of X
such that @2 U # X . Then {U, X -U} is an open cover of X which is not
chainable, a contradiction.

The “only if” part: Let J{ be any open cover of X and define arelation Ron } , by
letting URV provided that there exists a chain in /{ linking U to V. It is straightforward
that R is an equivalence relation on /. Foreach U € X let

U.,=U{VeUIURV}.

It is clear that U, NV, 20 iff U, =V,, for all U,V e }{ . Therefore, for each
Ue M, U, =X (otherwise X —U is a union of sets V, with V e X, implying that
X —U isopen or, equivalently, that U, isclopenand @ # U. # X , which contradicts
the connectedness of X). This shows that /{ is chainable.

This most useful characterization of connectedness is generally mentioned as an
after-thought. Among its many applications, the following is quite interesting.
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35. Lemma. If an open subset W of E" is connected then W is arcwise con-
nected.

Proof. Let J{ be a cover of W consisting of open balls contained in W, Pick any
points x, ye W . By Theorem 34, there exists a chain{U,,... .U, } with

? m

xe U, and ye U, . Geometrically, the remainder of the proof is trivial:

n

—— -

Indeed, not only can we construct an arc starting at x and ending at y, but we can even
construct one consisting of m linear segments (such arcs are generally called polygonal
arcs). Since the lengthy technical details are not commensurate with the triviality of
this situation, we will omit them.

36. Lemma. Let (X,,1,),....,(X,.7,) be connected spaces. Then
(T X, 7)) is connected.

Proof. Note that (IT5' X;)x X, =[1/, X,, for each n. Therefore, by induction,
it suffices to show that, for any two connected spaces X andY, X X Y is con-
nected: Simply observe that, for some fixed ue Y,

{Xx{u}tU{{x}xYIxe X}

is a chainable (note that {x}xY ) X x{u} ={(x, u)}) cover of X XY by connected
subspaces (cf. ex. 2.18 (b)). Therefore, by Theorem 33, X XY is connected.

The preceding result can be easily generalized to state that any cartesian product
of connected spaces is connected. The scheme of proof, which we present in ex. 14
is quite elucidative of a fruitful approach to the study of infinite products.

37. Lemma. Let {(X, 7,)}., be any family of arcwise connected spaces. Then
(Mpes XooMz,) is arcwise connected.

Proof. Pick any f,gell,., X,.Foreach ae A, there exists an arc
Wo 1 — X, suchthat v, (0)=f (@) and y, (1) =g (a). Define
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w:l =T, X, by ¥ (s)](a)=y, (s), for each € A. Then
v (0)= f,¥ (1)=g and Wy is continuous, because of Theorem 2.3 and Proposition
2.8. Therefore, ¥ is an arc starting at f and ending at g.

38. Theorem. For every a,be E', with a<b, [a,b] is connected.

Proof. Suppose not. Let U be a clopen subset of [a, b] such that 8=U #[a,b].
Without loss of generality, let us assume that b U (it b€ U , then bg U’
=[a,b]-U and U’ is also clopen, 0% U’#[a,b] ). Now, let s=sup U . Since U
is open in [a, b[,se U . Since U is closed in [4, b], s€ U . We have a contradiction,
which completes the proof.

39. Corollary. The following are valid:
(a) X is arcwise connected implies that X is connected,
(b) each E” is connected,
(c) each 8" is connected.

Proof.

(a) Suppose X is not connected. Pick clopen I/ € X such that

0% U=X .Pick xe U and ye X —U . Suppose that there exists an
arc ¥:1 — X suchthat y (0)=x and y (I)=y. Then

y L WNy )=y U) isaclopen subset of 1, with @y~ U)=1,a

contradiction.

{b) Because of Lemma 36, it suffices to prove that E' is connected. Since
E' =\U=_, [~n, n], it follows, from Theorems 37 and 38, that E' is

connected.

(c) First define r: E™! —{0} - S" by r(x)= % It is clear that ris a
well-defined, onto and continuous function. Furthermore, it is easy to see
that E"*' —{0} is arcwise connected (to join the points x and

y=—x in E™' ~{0} use a semi-circle with center at 0, radius | x|, starting
at x and ending at y; that is, the secret is to go around 0), and therefore E n+l
is connected. By Lemma 31, S§" is connected for 1€ N,
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40. Theorem (Generalized Intermediate-Value). Let C be a compact connected
subset of E" and f:C — E' a continuous function. Then f(C)=la,d], with
a=inf {f (x)|xeC} and d=sup {f (x)I xe C}.

Proof. From Theorem 10, we get that @, d € f (C). Suppose that there exists
a<s<d such that s¢ f (C). Then, letting

U=]-co,s[Nf(O),

we get that U is a clopen subset of f (C), with 08U # f (C), which contradicts
Lemma 31.

Chapter 3. Exercises.

1. Let S be the subspace of E’ which is the union of A={(0, y)I-1<y<1} and
B={(x,y)|y=sim{,0<x<m}.

Show that § is connected but not arcwise connected. Indeed show that any arc which
starts in A stays in A. (Hint: Assume, for example, that there exists an arc ¥ starting at

(0, 0) and ending at (p,sin %). Let t=/f {seI|y(s)e B}. Show that Y ()¢ B,

because of continuity of Y. Similarly, show ¥ (¢)¢ A, because ¥ (t)& A implies that
there exists J >0 such that y (Jt,t+6])c B(y (¢),1)- A, and therefore that
Y (¢, ¢+ () is not arcwise connected. We have a contradiction.)

2. Let T be the subspace of E’ which is the union of {(0,0)} with
{(x, y)ly=xsinl,0<x<n}.

Show that T is connected and arcwise connected.

3. Let A be any connected subspace of (X,7). Then 4" is a connected subspace of
(X,T). (Hint: See ex. 1.5))

4. Define f:10,1[— E' by f (x)=£. Show that f is not uniformly continuous.
Indeed, show that }sm(} w(f,0)=40o.

5. A metric space (X,d) is compact iff every continuous real-valued function on X
is bounded. (Hint: Assume X is not compact. Show that there exists a sequence
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{x,} inX and €,>0 such that B(x,,&,)NU,,, B(x,.€,)=0, for each
ne N. Next, define f:X—E'byf(x)=n, f(X-U,B(x,g,))=0 and
f(x)=(]—“_(’;i‘nl)n, for each xe B(x,,¢,). Show that f is an unbounded

continuous function.)

6. Let X be a compact space and z€ X . Show that the connected component of
X containing z is the intersection of all open and closed subsets of X which

contain z.

7. Show that any compact metric space is complete.

8. Show that / is not homeomorphic to §'.
9. Show that §” (n>1) and S' are not homeomorphic.

10. Letting J =]0,1[, show that

(a) J is homeomorphic to a subspace of I and I is homeomorphic to a
subspace of J .

(b) J and I are not homeomorphic. (Compare this with the Schroeder-
Bernstein Theorem on cardinality.)

11. Let (X,d) be compact metric and f:X — X a function such that
d(f (x), f (Y)=d (x, y), forall x,ye X.Show that f is onto.

12. A family @ of subsets of a set X is said to have the finite intersection property
(i.e., fip) provided that, for every finite 7§ ca,NF #0. For any space (X,T)

prove that the following are equivalent:
(i) X is compact,
(ii) For every family @ of closed subsets of X with fip, (YA # 0,

(iii) For every family @ of closed subsets of X with {1Q =@, there
exists a finite 7 — @ such that F =0.

13. Lebesgue Number. Let }{ be an open cover of a metric space (X, p).Any § >0

such that, for each xe X,

B(x,0)c some Uell ,
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is called a Lebesgue number for Y .

(i) Let U={]n—1,n+_[In=12--}U{E'—~N}. Show that } is an

open cover of E' with no Lebesgue number.

(ii) Show that every open cover /{ of a compact metric space (X, p)
does have Lebesgue numbers. (Hint: Let
B={(B(x,e(x))IB(x,2€(x))c someUel{}. Let
{B(x;,€(x)),.... B (x,,& (x,,)} be a finite subcover of ¥ and let

8 =min{e (x)),..., £ (x,,)} . Show that § is a Lebesgue number for 4
and, therefore, for }{ .

14. Let {(X,.Ty) oen be a family of connected spaces. Let X =[]
t=[lr,.Pickany /e X and let (see ex. 2.18)

X, and

acA

PO =U{S U, D)ITcA,T is finite} .
(i) Show that P (¥4) is dense in X (see ex. 1.15),

(i) Show that each S (¢,T"), such that | — 4 and [ is finite, is
connected (see ex. 1.15 and Lemma 24),

(iii) Show that {S (¢/,I")ICc A, T is finite} is a chainable cover of P({).
(Hint: /e each S (¢, 1)),

(1v) Show that P (ﬁ) 1s connected (ct. Theorem 21),

(v) Show that X is connected (see ex. 3).

15. Let X =1Xx1I ordered by the lexicographic order (i.e., (a,b)<{c,d) iff
a<cora=candb<d) Let X have the order topology 7, (see ex. 1.10) and
show that

(a) (X, 1,) is compact Hausdorff.
(b) (X,7,) is connected.

(¢) (X,ty) is not arcwise connected.

(d) ¥ Y = Ix {4} then 7,|Y is the discrete topology (see ex. 1.2).

(e) If Z=1x{1},then 7,|Z is the half-open interval topology on Z
(see ex. 1.3).
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() If W={r}xI,tel,then T,|W is the Buclidean topology on W .

16. Generalization of Theorem 27. Let (X,d) be a complete metric space and
f X — X afunctionsuchthat £ isan ¢ -contraction. Show that f has a unique
fixed point, (Hint: Consider the sequence {f""” (x)},, for any xe X . Note that
d(f £ (), F () <ak d (f (x), x). Let q=li]€nfk'" (x). Show f{(g)=q and
that g is unique.)

17. Localized Contraction Principle. Let (X,d) be a complete metric space and
f X — X be afunction such that f is an o -contraction on B (x,, r) » Where

r:la d (xy, f (xg))=ry. Then f hasaunique fixed point X, on B (x,, r,); furthermore,
letting x, = f (xg)s. sy = f (X,)1..., we get that d (x,,, X )Sa” ry. (Hint: Note
that d (x,,%,)=(-a)r,<r,. Assume that Xgs Xy X, € m such that
d(x,, %) <(-a") ry<ry,. Then show that d (x,,,x)Sd (x,,, x,)+d (x,, x;)
<a"d(x,x)+(1-a"Yr, < o (-0)n+(1-a"Yy, = (-a™)r,<r. By
induction, this shows that the sequence {x,} is contained in the complete metric

space B (x,,1r)...)-
A topological space, (X,7), is said to be

(i) sequentially compact if every sequence {x"} in X has a convergent
subsequence,

(i) countably compact if every countable open cover [/ of X has a finite
subcover.

18. Prove the following
(a) Every sequentially compact space (X,7) is countably compact.

(b) A metric space is compact iff it is sequentially compact iff it is
countably compact.

19. Baire Category Theorem. Let (X ,d) be a complete metric space and Uy, U,,-
be a sequence of open dense subsets of X . Then D=(_ U, is a dense subset of
X . (Hint: Pick x€ X and a neighborhood U of x. We need to show that U (1D # 0.
We construct a Cauchy sequence {x,} in X such that Z = li’l;n x, and ze UND:
Pick B (x, eo)cB_(;,To)cU , such that g, <1, and choose x, € B(x,&,)NU,.

Pick B(x,,&)cB(x,g)cB(x,6)NU,, such that € <)% and choose
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x,€ B(x,.,6)NU, . Pick B(x,,6,)C B (x;,8,) C B (x,,6) U, such that & <7
and choose x, € B (x,,¢,) U, . In this fashion, inductively choose x4, xs,--+. Check

that the sequence {x,} is Cauchy and its limitisin U (D .

20. (E', Euclidean metric) is a complete metric space. (Hint: Let {xn} be a Cauchy
sequence in E'. Note that {x, ne N} c some [a,b] since there exists £t € N

such that m,n2r implies |x, —x, 1<1; hence, let a=min {x,...,x)-1,

n

b=max {x,...,x,} +1. Therefore {x, } has a convergent subsequence {x"k} ; say
likm X, =C.Because {x,} is Cauchy, show that lim x, = c )

21. Prove that

(a) the function far™': E' —» ]—%, 12’_[ is a homeomorphism;

(b) if d(x, y)=|tan”" x—tan™" y|, then d is a metric for E' such that
(E', N= (E',d) (recall I is the Euclidean metric);

(¢) {n} is d-Cauchy but does not converge; therefore, (El, d) is not
complete.



Chapter 4

Function Spaces

Many a colorful comment can be uttered about the importance of function spaces. Let
us simply say that, after prospecting for so long, we will finally be rewarded with some
of the most fabulous results of mathematics. And let there be no misunderstandings —
much more lies elsewhere.

4.1 Function Space Tapologies

For any spaces (X,7) and (Y,u), we let cx,n)=r*=
{f:X >Y]|f is continuous} . Generally, the set Y ¥ is called a function space. It is

clear that Y* c M,y Y., with each Y, =Y ; therefore, it can always be given the
subspace topology with respect to any topology on I1 _, Y, . But what we really want
is to topologize ¥* in such a way that we can generalize the various notions of
“nearness” of functions f, g : E' = E' which are generally studied in calculus. In one
form or another, given € >0, it is understood that

(i) f and g are ‘uniformly €-near’ provided that | f (x)—g (x)I<€,

for every x€ E'. (Wherever convenient, for f € C (X,Y), we let graph

of f=gr(fH)={(x f(x)Ixe X})

graph of f +¢€

- ——

/ = _ graphof g
graph of f —¢ -

(ii) f and g are €-near on the interval {a,b] provided that
lf(x)—g(x)l<e, for a<x<h.

89
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gy»\\ - (F+e

(iii) f and g are €-near at the point p provided that
1 f(p)-g(p)<e.

graph of &~

4

graph of {

Various results are then proved, including the mainstay of Fourier Analysis: A
uniformly Cauchy sequence {f,} of continuous functions f, ‘E' S E' (ie. for
every & >0, there exists n(g)e N such that n,m>n(€) implies
Lf, (XY= f, (0)l<e , forall xe E' (ie. fy and f,, are uniformly € -near) uniformly
converges to a continuous function f:E' — E' (i.e. for every &€ >0 there exists
m(€)€ N and integer M (&) such that n > m(¢€) implies f, is uniformly €-near
J ). Later (cf. Lemma 2) we shall prove this result in a general setting.

There should remain no doubt that we need to talk about some metrics and topologies
for function spaces Y ¥ :

(i) Let (X,T) be any space and (Y,d) be a bounded metric space, or

else let (X,T) be a compact Hausdorff space and (¥ ,d) any metric
space. Define

d Y¥xy*¥ S5 E',
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by letting d, (f, &) =;Eur;( d (f (x), g (x)) — clearly the “sup” is a well-defined real
number, in either case. It is straightforward to check that d is a metric for ¥*X,
which is generally called the sup-metric. The topology generated by d is generally
called the uniform-convergence topology (abrev. uc).

Such is the utility of the sup metric, that it is customary to let

{f,} is uniformly Cauchy ={f,} is a Cauchy sequence with respect to the sup
metric,

{f,} converges uniformly to f =limd, (f,, f)=0.

(ii) Let (X,T) and (Y, i) be any topological spaces. For each C c X
and U Y let

(C.UY={feY*1f(C)cU}.

Then S, ={(C.U)ICis compact, U is open } is a subbase for a topology on y¥
which is called the compact-open topology (abrev. co).

The collection S, = {({x}, U) lxe X,U open} isasubbase for a topology on yX

which is called the pointwise-convergence topology (abrev. pc).

It should be rather obvious that the uc topology is closely related to the notion of
“uniformly € -near”, the co topology is closely related to the notion of “ € -near on an
interval [a,b)”, and the pc topology is closely related to the notion of “€-near at a
point X . The following facts are also not hard to prove.

1. Lemma. The following are valid:
(a) For any spaces X and Y, pccCco on ¥ X

(b) For any spaces X and Y, ", pc) is a subspace of Il,., Y, with
the product topology (where each Y, =Y ),

(c) For any space X and bounded metric space (Y,d), pc CcocCuc.

(d) For any compact Hausdorff space X and metric space (Y,p), co=uc.
Proof. Part (a) is obvious, since &, C§,,,.

(b) Note that ({x},U)=TI ' (U)N Y * . This does the trick.

(¢) Clearly pc C co. To show that co < uc it suffices to show that each
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(C,U)Ye S, isanelementof uc: Solet f e (C,U ). Then
d(f(C),Y-U)=€>0.Therefore fe B (f,e)c {C,U) (suppose that
there exists ge B(f,€) such that g (C)c U . Pick ce C suchthat
g(c)e X -U . Then d_ (f, g)=¢€, acontradiction). This shows that each
(C, U is.a union of elements of uc, and therefore that co C uc.

(d) Because of (c), we only need to show that uc < co, for which it

suffices to show that any B (f, ¢)€ co: Geometrically, if one thinks of
B (f.,€) as a highway with center line, the graph of f , and thinks of
<C,U>€8,

o

as a rectangle with compact base and open height, then all
one wants it to trap any trajectory g on the highway B (f, €) with a finite

—

\ / graph of f
—— ”’
- - -~

graph of g

chain of rectangles.

Analytically, let ge B(f,€).Say d, (f,g)=€—-6 with 6 > 0.Then, foreach
x€ X,B(g (x),0)c B(f (x),e) and, since g is continuous and X compact
Hausdorff, there exists a compact neighborhood C, of x such that
g(C,)cB(g(x),8). Since {(C,)’Ixe X} is an open cover of X, let
{(c, )“,...,(Cx” )"} be a finite subcover of X . Then, it is easily seen that

g€ N {(C,. B (g (x), ) B(Sf,8),

which shows that B (f, £) is a union of elements of a base for co, and therefore that

B (f, €)€e co, which completes the proof.

4.2 Completeness and Compactness

2. Lemma. Let X be any space and (Y,d) a bounded and complete metric
space (or X a compact space and (Y,d)any complete metric space). Then

(Y*, p) is complete whenever p is
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(i) the sup-metric d_,

(ii) the weighted-metric d,, defined by

d, (f,g)=supe ™l d(f(x),8 )

where xg is a fixed point of X and 6 >0,
(iii) the integral-metric d, defined by
d ()= | fn-gw]dx.

whenever this makes sense (for example, whenever X is a closed interval of E' and
Yy=E").

Proof. We will deal only with the metric d, since the other cases are quite similar
(the reader should check that d,, and d; are actually metrics—the fact that y*
consists of continuous functions is crucial in showing that d; is a metric). So let
{f.} bea Cauchy sequence in (Y*,d,) . Then, for each xe X, {f, (x)} is obvi-
ously a Cauchy sequence. This enables us to define a function f:X —Y by

f @ =limf, x),

for each xe X . We will show that f is continuous and that imf, =f . First, we
n
show that

(i) forevery € >0, there exists n(g)e N such that n > n(€) implies
d (f, (x) f(x))<g/3, for all xe X (note that it is incorrect to deduce
from this that d, (f,. f) < &/3 until we have shown that f is

continuous): Pick #(€) such that n,m > n(€) implies
d(f,(x), fn(xN<g/3,forall xe X (ie d,(f,, f,)<€/3). Then
d(f, (x), f (NS df, 0. f£,N+d (L, (0. f () for m>n(€).

Therefore, for every

xe X, limd (f, (x), f (D) <limd (f, (X}, f,, (D) +lim d (f,, (x), f (%)),
m m m

which implies that
d (f, (x), f(x))S€e/3, for every xe X .

Next, we show that f is continuous at each g€ X : Simply observe that
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d(f (@, fONSdf (@, [, (@) +d(f, (@), f, ODN+d (f, (¥), f(y)

for every ne€ N . Using (i) and the continuity of f,, we immediately get that f is

continuous.
Finally we show that lim f, = f : Inmediate from (i) and the continuity of f .

Evenif X =Y =1, we still cannot claim that (YX,d“.) iscompact. (Let f:1 — 1
be defined by f (x)=x’. Then the sequence {f"} has no convergent subsequence:
Simply, note that, for any subsequence {f"*} of {f"} we have that

0, for 0<x<1,

fim f™ (X)=lim x°™ =1
& & I, for x=1,

which shows that {f"} does not converge in (1!, d_).) Therefore, given the many
uses of uniformly convergent sequences of continuous functions, some of which will
appear shortly, it becomes imperative to determine which subsets of (Y'¥, d,) are
compact.

3. Definition. A family 7 of (Y*,d,) is said to be equicontinuous at the point
g€ X provided that, for every £ >0, there exists a neighborhood N, of g in X
such that

fNJCSB(f(g).¢€),

for each fe 7 (roughly speaking, all f € 7 are equally continuous). The family
7 is said to be equicontinuous (on X ) if 7 is equicontinuous at each point g€ X .

4. Lemma. If 7 is an equicontinuous subspace of (Y*,d_) then so is 7

equicontinuous.

Proof. Pick any x€ X and £ >0, and let N, be a neighborhood of x such that
F(N)YcB(f(x),&/3), toreach fe .7 .We will show that

h(N,)c B(h(x),€), for every he 7.
Note that, for any he 7 and ge 7,

dh(x),h(yN<dh(x),gx)+d(gx),g(yN+d(g(y),h(y).
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Pick any function ge 7 such that d (h,g)<e/3. It follows that
h(N,)c B(h(x),&). Since this is true for any he 7 , the proof is complete.

5. Theorem (Ascoli-Arzela). Let X be a compact metric space, (¥,d) any
metric space and 7 a subset of (Y* 4 ). Then 7 is compact iff the following
two conditions are valid:

(i) 7 is equicontinuous,
(ii) For each xe X,Z, ={f (x)| fe 7}~ is a compact subspace of Y .

Proof. The “if” part: Because of Lemma 4 and the obvious fact that

Z ={f(x)fe 7}, we assume, without loss of generality, that 7 is closed and
infinite. Let {f;} be a sequence in .7 and let D = {x,} be a dense subset of X ,
by Corollary 3.20. '

We will first show that there exists a subsequence {gl.} of {f,} such that
lim g;(x;) exists for each x j  Since each Z, is compact, by induction, it is easy to
pick sequences {f‘} for k € N such that

i
i) {f, }isa subsequence of {f,-} ,
.. kY Lk
(i) {f, }isa subsequence of {f, }

(iii) {f,-k (x;)} converges for each x; with j<k.
i J

Now, letting g; = f}, for ie N, itis easy to see that {g, (x,)};,, converges, for
each x; (note that fii contains a subsequence of each fik, and apply Proposition
3.2(a)).

Next we show that {g; (X)}; converges for each xe X : Pick sequence
{z,} © D such that lim z, = x and note that

d(g;(x),g; (x))<d(g; (x),8 (z,)+d (g (z,),8,(z,))+d (g;(z,) g; (X)),

with each of the summands tending to zero as i, j,n become large. Therefore {g; (x)}
is a Cauchy sequence in the compact space Z, which implies that {g; (x)} converges.

Now define f: X — Y by letting
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f(x)=limg; (x),

for each xe€ X . First, we prove that f is continuous: Pick g€ X ande >0. By
equicontinuity of 7, there exists a neighborhood N, of g such that
g8 (N)CB(g (q), £/2), for ie N . Since

d(f(q), f(@)<d(f(q),8 (@)+d (g (q),g (2)+d (g; (2), f (2)),
with lim &; (@)= f (¢g) and lim &; (2) = f (2), one immediately gets that
f(NH)CB(f(g),el2)cB(f(g)¢€).

Finally, we prove that llmd (f,8)=0 (ie lxm g;=f in (Y*,d,)): Suppose not.
Then there exists &3>0 and subsequence {h} of {g} such that
d, (f,h)2¢, for ie N . Therefore, for every i € N there exists x;€ X such that
d(f (x).h(x))2z€/2. Let x be a cluster point of the sequence {x.} (note that
{x;} may be finite). By equicontinuity of .7, there exists a neighborhood N, of x
such that h, (N,) < B (k, (x),€/8). Since

ef25d (f (), b (xNSd (f (), f N +d (f (x), b (x))+d (B (x), b (%)),

with hm f(x;)=f (x) (because f is continuous) and 11m h(x) = f(x) (because

{h;} 1s a subsequence of {g,} ), we immediately get that, for some sufficiently large
me N,

X%, € Nowd (f (x,), f (0)<5,d (f (), b, (0))<g .
It follows that
£ 3 € £ £ I3
CSd(f Fphhy (KNS +E+2<E,
a contradiction. The proof of the “if” part is complete.

The proof of the “only if” part is left as an exercise (see ex. 10).

In many aspects, Theorem 5 can be easily generalized to metric spaces X for
which there exists a sequence {C,} of compact subspaces with X =UJ_, C, (this
includes all Euclidean Spaces E"). See ex. 13 for details.

We end this section with three applications of Banach’s Contraction Theorem,
Theorem 5 and the Baire Category Theorem.
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6. Theorem (A Picard’s Theorem). Let J =[x, —&,x,+¢] and S =J X E'. Let
f:S = E' be continuous and suppose that f satisfies the Lipschitz condition

fy)=f Oyl Sriy =y,

forall y,y,€ E ! and some fixed re E'. Then the differential equation

y=Ff(xy

has a unique solution (x,, y,) over J .
Proof. Define F:C(J,E')>C (J,E'), by letting
F =1 (nyo+| hwdn,

for every x€ J . Then, letting 6 > r,

d,, (F (h), F (g))=supe ™| f (x, y0+J': h(tyde) - f (x, y0+r g (1) dn)l

X0
<sup ed1xl rlr (h (1) - g (1)) dt !
x X0

Ssuprr eIl p () - g (1) dt

A

=r sup j e 0 (e B (1) — g (0)) dt
<r sup f e d (h,g)dt
=rd,, (h, g) supf e Ol gy
=rd, (h, g)% slip J:; o011l gy

Since § >r,we getthat F isa %- contraction. By Theorem 3.18, F has a unique
fixed point u:J — E'; thatis, u (x)=f (x, yo + jx u (1) dt), for every xe J, or
letting v (x) =y, + r u(tydt, vV(x)=f (x,v(x) fxo“r every xe J .

Note that the soﬁxtion u:J — E' is obtained by starting with any guess of it,
inasmuch that u =iy, F" (k) for any he C (J, E'); furthermore, Theorem 3.18

gives us the rate of clé)nvergence of F'(h), F? (h),... to u.
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7. Theorem (Peano’s Theorem). Let J =[x, —£,x,+£], S=JxE' and
f:8 = E' be a continuous and bounded function over S . Then the differential
equation

v=f(xy)

has a (not necessarily unique) solution through (x,, y,) over J .

Proof. Let J, =[xq,x,+€] and I, =[x, +(r~1)&/n, x,+ re/n] for ne N and
integers /< r < n . For each n, define a function y, :J, — E' by

Yo, x, $x<x,+€/n,
Y, ()=
y()+'r_b/"f , y, ®)dt, x,+(r=Den<x<x,+re/n,forr=2 3,.. n
X0

Note that each y, (x) is (inductively) well-defined and continuous, inasmuch that,
forevery xe I,,y, (x) is defined in terms of y, (¢) for re 1,U...UI,.

Say | f (x, y)ISM , forevery (x,y)e § . If x> x,+¢&/n then

1, =y <[ 1 4y, )1 di<M I x—g/n—x, 1< Me

If x,<x<x,+&/n then 1y, (x)~y,1=0. So, each {y, (x)|neN}"

< [-Me, Mg] is compact. Likewise,
Iy, @)=y, WI<sMix—wl for all x,we J,.

So, {y, |ne N} is equicontinuous. Therefore, by Theorem 5, there exist ue C (J,, EY
and a subsequence {ynk} of {y,} such that im y, =u.
k

Finally, we will show that u is a solution of y" = f(x, y): Rewrite
Yo @=yo [ f 0y, Odi=| fy, ©)di

and note that
lim [, f @3, @)di= f€u@)dr

X X

0< lim| £y, (z))dzlsj
k

x—€lng

M dt =1im Me/n, =0.
k

x—€/ny

It follows that, for every x€ Jg,



Function Spaces 99
u(x)=y, +J:r f @ u@)de or u' (x)=f (x,u(x)) with u(x)=y,.

Since the preceding argument applies equally well to [x, —€, x,] , we get another
solution ve C ([x, - €, x,], E') of ¥'=f (x,y) with v(x,)=y,. The fact that
U (xg) =Yg =v(xg) and u’ (xy) = f (x4, yo) =V (x,) allows us to “glue” the functions
v and u, thus obtaining a solution y:J — E'of y' =1 (xy) with ¥(x))=y,.

There is really no hope for uniqueness in Peano’s Theorem: The equation y' =3 st
has the solutions y (x)=0 and y (x)= x” passing through the point (0, 0) over any
interval [-a, a].

8. Theorem. For any closed interval [a, b] there exist continuous functions
f :[a,b] = E' which are nowhere differentiable (i.e. f does not have a deriva-
tive at any point of [a, b]). Indeed,

K, ={feC(labl,E"I f is nowhere differentiable}

is dense in C ([a.b], E").
Proof. For m=1,2, -+, consider the condition

S(m);llﬂh)__f(ﬂﬁ|sm, for some a<x,<b and 0<lhl<Ll such that
m

asxy+h<bandlet

A, ={feC(la,b], E"Y f satisfies S (m)},
Km =C([avb]’ El)_Am'

Clearly, we only need to show that each Zn is a dense open subset of C ([a, b), E h
and apply the Baire Category Theorem (see ex. 3.19) (note that K, =M, Km , since
a<xy<b and | f'(xy)I<m easily imply that f is contained in some A;, for
sufficiently large /).

First, Xm is open: Suppose not. Then, there exists f € Km and {f,}c A,, such
that lim f; = f . For i€ N ,let a < x; <b such that lmhli"(i)ISm,forevery
0<| /1|< % . Pick subsequence {xik} of {x,} and a < xy < b such that li/:nxi" =x,
(compactness!). It follows that
By, iy #0015

I=fim! =%
k

for every 0<lhi< ! . That is, it follows that f e A,,, a contradiction.

! (XO +hy-f ()-'0)

! h

| < m,

h

Finally, ;\'m is dense: Let f e A,, and € > (0. We wish to show that there exists
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ge Zm N B (f,€). Clearly it suffices to show that there exists g & B(f,€) such
that whenever £ has a derivative g’ (x) at x then Vg' (x)1>m. This is really quite
easy to do, even though the details are tedious. Descriptively, from the proof of Lemma
1(d), we get that the center f of the ball B(f,€) is covered by rectangular subsets
R;,...,R, with compact base and open height such that R, (1R, #0 for

i+l

i=1,2,..,n—1. Choose y;eRNR, for i=12,..,n, and Ilet
yo = f (a), y, = f (b). In each rectangle R; construct a saw-tooth function s; with
teeth slim enough that Is; (x)|>m ‘whenever it exists. Glue the functions §;,...,s,
thus obtaining a function ge Zm NB(f,€).

4.3 Approximation

Certainly, after studying either Taylor Series or Fourier Series, the reader is fully aware
of the great usefulness of “approximating” certain difficult, but valuable, functions by
simpler ones—generally, polynomials (for Fourier or Taylor Series, the polynomials
are, of course, the partial sums). It is therefore imperative that one have a good
understanding of “approximation”. For this, we give two theorems: The first is a
constructive result and the second is an existence result. (There are many other
constructive results.)

9. Lemma. There exists a sequence {g, (x)} of polynomials, with real coeffi-
cients, which converges uniformly on [0, 1] to the function ¢ (x)= \/; .

Proof. Note that the Maclaurin series for

Vi =14 @) (=D + ) (x =17 + (09 (x =1 +---, where

(r)= 207 1%D) for any real number , converges for 0< x < 1 (this is easily

n

seen by using integral remainders). So, letting ¢, (x) be the n' -partial sum of this

series, we then get that {g, (x)} converges uniformly on [0,1] to ¢ (x)= Jx.
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10. Corollary. For any real numbers a <b , there exists a sequence {p, (x)} of
polynomials, with real coefficients, which converges uniformly on [a, b] to the func-
tion y (x)=IxI.

in?

Proof. _Note that the polynomials p (x)=bgq, T

converge uniformly on [a,b]
to b J'%'—:_ =[xi.

For any space X and Euclidean space E", call a subset A of C (X,E") an
algebra provided that f, geA and AeE' imply that
f+ge A fge A and Ae A, where, foreach xe X ,

(f+te)(x)=Ffx)+gx),
fe(x)=f(x)g ),
(af ) (x)=af (x).

An algebra A in C(X,E") is said to distinguish points of X , provided that, for
every X, y& X with x # y, there exists f,, € A such that Jo )2 £ ).

For each A€ E”, let ¢; : X — E" denote the constant function defined by
¢, (x)=A4, for every xe X .

11. Theorem. (Stone-Weierstrass Approximation.) Let X be a compact metric
space and A an algebrain C (X, E') such that (the constant function) ¢; € A and
A distinguishes points of X . Then A” =C (X, E").

Proof. Without loss of generality, we assume that A is closed (since it is trivial to
check that the closure A” of an algebra A, is also an algebra—see ex. 3) and we
proceed to show that A=C (X, E").

First, f € A implies | fle A:Say f (X)cla,b],since X iscompact.Let £ >0
and choose a polynomial p (t)=a, +a,t+:--+a,t" such that

ltl—p@)I<e, for every te(a,b].

(This can be done, by Corollary 10.) Then, letting p (f)=qay +a, f +:--+a, ()",
with (f)**' (x)=(f (x)**! for ke N and xe X , it follows that

d, (0 fl,p(f)<e,

with p (f)e A. Therefore, since € is arbitrary, f€ A implies | fle A" =A.
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Next, f,, fs,..., f, € A implies min(f,,..., f,)€ A and max (f,..., f,)€ A:
(note that min (fi,..., £,) (x) = min (f, (x),-.., £, (x)), max (f,,..., f,) (X)

=max (f; (x),....f, (x))). Since, for example, min(f,...,f,)=min (min

(fis--s fuu)s £o) s itsuffices to verify our claim for two functions f, g€ A.Therefore
it suffices to check that (see ex. 4)

min (f,g)= (f+&)—31f~-gl,
max (f, g) = (f+e)+51f-gl

and note that | f —gle A" =A,

We are now ready for the final assault, which will be done in two stages.

(i) ae X, fe C(X,E") and € >0 implies that there exists f, € A such
that f, (a)=f (a) and f, (X)< f (x)+€ forevery x€ X : Since A is
an algebra, for every be X , there exists f,, € A such that

fu (@=f(a) and f,, (b)= f (b) (for example, let he A such that
h(a)#h(b) and let £, (x)=f (a ):E,j; ro A+ f () e, for every
x€ X ). By continuity of the functions f and f,, , there exists a
neighborhood N, of b such that

FWNDU £, (NYCS]f(b)- €/2, f (b)+¢€/2[, from which it follows
that

ze N, implies f,, (2)< f (2)+E.

By compactness of X, let N, ,...,N, cover X . Then itis easily seen that the
function

fll = min (fah,""’fah")

satisfies all requirements.

(i) feC(X,E"),e>0 implies that there exists f € A such that
d, (f, 7) <¢: Foreach ae X, choose a function f, satisfying 6)

above. Then, there exists a neighborhood V,, of a such that

ze V, implies f, (z)> f (2)—¢ (better yet, £> f (z) - f, (2))-
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By compactness of X, let N,,...,N, cover X . It follows that, letting
f=max(f,....f,),

n

ze X implies f (2)—€<f (2)< f (2)+€:

that is, d, (f, f)<£. Since € is arbitrary, and ?e A, we get that fe A. This
shows that A=A~ =C(X,E").

Theorem 11 can be generalized to other Euclidean spaces, but one must be careful
(see ex. 17). Theorem 11, even though non-constructive, has a great virtue: It alerts us
to various possible collections of functions which suffice to approximate any given
feC(X,E"). Indeed, forevery S C (X, E"), let

A(S)=N{K|K is a closed subalgebra of C(X,E'),ScK};

it is straightforward that A (S) is a closed algebra; A (S) is called the closed algebra
generated by § (in C(X,E 1y, of course). It then follows that, for example,

(i) A({1,x})=C(la,b], E"),
() A({1, x2})=C ([0, 1), E"),

(iii) A{l,x*})=C ([-1,1], E"), because it does not distinguish —1 from
l’

(iv) A, cos x})=C([0,x],E"),
(v) A({l, 1+cos a})=C([0,2x), E").
4.4 Function-Space Functions

By now, we are certain that the reader will agree that function spaces are extremely
important and very difficult to handle; that the pc topology is rather useless, while the
uc topology is very useful; and finally, that the uc and co topologies are closely related
(cf. Lemma 1(d) and ex. 18). The following three constructions and subsequent results
not only simplify the co and uc topologies but also provide us with crucial tools for
some of the work ahead.

Composite Function. For any spaces X,Y,Z define T:Y* xZ" — 2% | by
letting

T(f,g)=gof,forevery (f,g)eY* xZ".
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(The function T is called the composition function.)
Evaluation Function. For any spaces X,Y define ¢: Y¥xx ov by letting

¢ (f,x)=f (x), forevery (f,x)e Y*'xX.

(The function # is called the evaluation function.)
Associated Functions. For any spaces X,Y,Z note that any function
f 1 X XY — Z generates a tunction f : X — Z" defined by

F ) =f(xy)

for every (x, y)e X XY ; conversely, any f generates an f , by the same equation
above. The functions f and f are called associated functions.

X—L5 vy £, 7
Tu Tu Tu

K fF(K) U

12. Lemma. The composition function T : Y*¥ xz¥ — 2% is continuous with

respect to the co topology on all spaces, whenever Y is locally compact Hausdorff.

Proof. By Theorem 1.14(vi), it suffices to prove that T "' (K, U ) is open, for
each (K ,U Ye S, . But observe that, for each (f, g)e R™'(K,U), we get that
with f (K) compact. Since g is continuous, g (f (K))c U and Y is locally
compact Hausdorff, there exists open cover /' of f (K) such that V™ is compact
and g (V') U, forevery Ve /' (see Lemma 3.19). Let {V,,...,V,} be a finite
subcollection of # which covers (the compact space) f (K). Then W =Uj_ V, is

i

openin Y, W f(K),W =U", V" is compact and g (W)U . It follows that
(K, WHyx(W-,U)cT™ (K,U))

is a neighborhood of (f, g), which shows that 7 ' <K , U > is open. This completes
the proof.

13. Corollary. The evaluation function #: X X Y¥ S Y is continuous with

respect to co topology, whenever X is locally compact.

Proof. First note that, with 1={0}, X' = X . Since ¢ is the composition of the
maps
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Y¥xx'—sx'xy* ZIsy'zy,
with j(f,x)=(x, f), forevery (f,x)e yx x X! it follows from Lemma 12 that ¢

is continuous (obviously, jis continuous).

14. Theorem. For spaces X,Y,Z, with Y locally compact Hausdorff,
f: X xY — Z is continuous iff its associated function f: X — Z¥ is continuous.

Proof. First, the “if " part: Let f X — Z" be continuous and note that
f=e(fxiy),

Xxy—{% 7" xy—< 57
with iy : ¥ — Y being the identity function. Since all these functions are continuous
(see Lemma 2.7), it follows that f is continuous.

Now, the “only if” part: Let f: XXX — Z be continuous. To show that
f:X = Z' is continuous, we pick (k,v)es,  for Z¥ and show that
£ (K., V) is open:

Let x€ f™' ((K.V)) . Then forevery ye K,

fFxy)=(f x)(MeV.

Since f continuous, for every y€ K, there exists an open neighborhood N, XN,
of (x,y) in X XX such that

f(N,XN)CV.

Since K is compact, let N ,....N
N, =Nis Ny, , it follows that

y, cover K. Then, letting N, = izt Ny, and

{x}xK < N,xNy,N,xN, is open,
(fF N KV (fF (N) (V)= f (N XN)CV .
Therefore N, is a neighborhood of x such that
N, c f UK, VY,

which completes the proof.
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Chapter 4. Exercises.

I. A sequence {f,} of functions f,: X — E' is said to be decreasing (increasing)
provided that f, (x)2 f,, (x) (f, (x)<f,, (x)), forevery xe X and ne N .

(i) If X is a space, each f, is continuous, {f,} is decreasing (or
increasing) and, for some pe X, lim f, (p) =0, show that

for every € > 0, there exist n (¢) and neighborhood Np of p such that
f, (x)<e . forevery n>n(€) and xe N,

(ii) Theorem of Dini. Let (X, p) be a compact metric space and {f,} a
decreasing sequence of functions such that {f,} converges pointwise to
the continuous function f: X — E'. Then { f,} converges to f
uniformly.

2.Let Y and Z" be function spaces, such that the sup metric makes sense in Z*

(for example, Y compact and (Z, p) metric). Prove that, for every he Y* and
P p y

f.gez’,

Py (/v g)Zp‘ (f"h,goh).

3. For any compact space X , let A be an algebrain C (X, E") with the sup metric.
Show that A~ is also an algebra. (Hint: Given f, g€ A” and Ae E', let {flcA

and {g,} C A such that limd, (f,, f)=0 and limd, (g,.g)=0. Now, show that
limd, (f, + &, f+8 =0.limd, (f, &, f £)=0 and lim d, (4, 4) =0, keeping

in mind that the metric ¢ is the Euclidean metric.)

4. Let X be compact Hausdorff and f, ge C (X, E"). Show that
() min(f,g)=1 (f+8) -1 f~-gl
(i) max (f,g)=5(f+g)+,1f-gl

(Hint: For example, for (i) consider the two cases: Case 1. min (f, g) (x)=f (x);
Case 2. min (f, g) (x) = g (x) . Check that the formula (i) works in either case.)
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5. Let C™ be the set of all infinite sequences {xn} of complex numbers

such that ¥ Ix, I2<oo. Let p, (X, y)=sup{lx, -y, llme N} and p, (X, 7)=

\/zm_l lx,~y,I*, forevery ¥, ye C™. Show that
(@) p;isametricon C~.

(b) (C~, p,) is a complete metric space (this space is known as the
Hilbert space).

6.For i=1,2,...,n, let J; be aclosed interval and let C, =117, C (J,, E"), with the
metric d ((f;), (g;) = max d,, (f:),(g;) (cf. Lemma 2(ii)). Show that (C,,d) is a
complete metric space. '

7.Let f (x)=x+1, forevery xe E'.Is {f" Ine N} an equicontinuous family?

8. Let (X, d) be a metric space and f: X — X an ¢ -contraction. Show that
(@) A(f)={f"In=1,2,--} is equicontinuous.
() T(f)=A(f) c(X*,d,) is equicontinuous.
(c) If X is compact, I"(f) is compact.

9.Let f (x)=x2, for xe [ .Show that {f"|n=1,2,---} is not equicontinuous.

10. Let (Y, d) be a metric space and / be a compact subset of X, d,) . Show that
7 is equicontinuous. (Hint: Suppose not. Then there exists p€ X and € >0 such
that, for each B (p, Tll) , there exists f, € 7 such that f, (B (p, %)) @B (f, (p)eE).
Therefore, there exists {xn} < X such that limx, = p and d (f, (x,), f. (P))2€.
Since J is compact the sequence {f"} has a cluster point f e 7 . Observing that

e<d(f, (x,) 1, (pNSA(f, () f e, N +d (f (x,), f(pN+d (f (p). [, (P)),
Sd, ([ H+d(f (%), f(p)+d, (f. 1)

complete the proof.)

Also show that 7 isclosedin (Y*,d,) andthat Z, = {f (x)| f € 7} is compact.
(Note that 7 is compact. Is w,: YX — X, defined by w, (f)=f (x), a continuous
function?)
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11. Linear Integral Equations. In physics, equations of the form
h
Wx@=A[ Ks0xOdt+f (5)

appear frequently. This particular one is a simple Fredholm’s equation of the second
kind and appears in the study of small oscillations of elastic systems. Prove that if K
is defined and continuous on the rectangle R={(s,t)la<s,t<b}, f is defined and
continuous on the interval J=[ag,b] and I4I< (T—:)—M with M =sup
{K(s,2)|(s,2)€ R}, then the above equation has a unique solution. (Hint: Consider the
space C (J,J) and define F:C(J,J)— (J,J) by letting

F@Mm=lfkwaogann+fux

for every s€ J .) Show that F is a contraction. (Why must we have that f is
continuous?) Show that (1) has a unique solution x=x (¢).

12. Nonlinear Integral Equations. In physics, one also encounters equations of the
form

(2)x(s)=lf K(s,t,x(®)dt+ B (s)

with K defined and continuous on a parallelepiped P={(s,1,2)
la<s, t<b,—H < z<H} and the function x (¢) defined on J =[a, b]. Prove that if
the function K satisties the Lipschitz condition

LK (s, t, x)) =K (s, 8, x) SLIx; —x, |

forall x,, x, e{~H,H]and |A1I< Z?:T—T) , then the above equation has a unique solution.
(Hint: Consider the space C (J,[-H, H]) anddefine F in C (J,[-H, H]) by letting

b
F@HQ=ZLK@JJU»w+ﬁG)

for every s€ J .) Show that F is a contraction. Show that (2) has a unique solution
u=x().

13. Volterra Equations. Let J=[a,b]cE',a20,A>0 and ¢:C(J,EY
— C (J,E") be defined by

(P(f)(x)=/1'[jK(x,)’)f()’)d)’+u(X),forevery xeJ.
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For g, he CWJ,E"Y, let M =sup, 1K (x, y)| and r=sup, g (x)-h(x)|. Show
that

(@ p,(@(8)PW)SAM, (b-a).
(b) p, (@" (g),0" (h)<t(AM (b—a))"/m! (Use induction!)
(c) There exists n such that (AM (b—a))"/n!<1/t,
(d) ¢" is a contraction.
(e) @ has a unique fixed point (cf. ex. 3.16).
14. Infinite Systems of Linear Equations. Let

(1) )’n,:Z" A x"+C for m=l,2’-~-‘

m?

This can be put in vector notation y=AXx+c, where
X=(x, X3, Y =(¥ys Y2 ) €= (¢, €5,+7) and A=(q;) is an infinite matrix.
Show that

(a) If sup,, Zla,, |<!1, then we can define a function f:(C~, p;)
—(C~, p,), by letting f (x)=AXx +c ; furthermore, this function is a

contraction. (This implies that f has a unique fixed point, because of ex.
5(a), and (1) has a unique solution.)

(b) If Zla,, I <1, then we can define a function f:(C~, P2)

—(C7, py), by letting f (¥)=AX +¢ ; furthermore this function is a
contraction. (This implies that f has a unique fixed point, because of ex.
5(b) and (1) has a unique solution.)

15. Finite Systems of O.D.E.’s of First Order. Let
3) y (=0 (x y (X),...,y, (X)), i=1,2,-, be a system of differential
equations with initial conditions x = x, and y, (x,)=y,.,i=1,2,---.

Assume the functions ¢; are continuous in some cube

B (xy,&)xIT B(y;,€)c E™' and satisfy the Lipschitz condition
(4) |(P, (X, y)‘% (X, 2)|SM m;txU’,- =% |,i=l,2,~-~’

where w=(w,,...,w,)€ E". Show that
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(a) To solve (3) and (4) is equivalent to solving (4) and
(5) ¥ (0=yo+ j 0, (6, %1 (Do yy (O)dEi=1,2,00.
(b) The function A:(C,,d)—(C,,d) (cf. ex. 6), defined by the n-tuple

A(g.,---.gn)(x)=(y,-o+f:' @; (1,8 (1., 8, 1N 1),

is a contraction. Hint: Note that, taking 8 > M and the proof of Theorem
6,

d(A(gLrr o) Al )<

max sup ¢! j:up, gy (Dserergn () =@, (8 (B, (ED N1

1 X

< max sup e Ol rM max g, (t)—h (t)dt
i x o i

¥ .
< max supj M e max e ¥ 10l g () = ()1dt
iox T i

< max supJ.X M e maxd, (g, h)dt
iox T i

= max %’— d, (g h) supJ. T Sdi
i x X

<

SRS

max d,, (8, h) =5 d (811 8): (s s h)
!

(¢) (3) and (4) have a unique solution.

16. O.D.E.’s of Order n. Consider the differential equation
6) Yy =F(y,y,....y" ", x)

and show that

(a) Solving (6) is equivalent to solving the finite system of o.d.e.’s of first

order
Y=Y y’: yz,...,y‘"'” =y,
yl,< =Y k =1,...,n-1

17
y” =F ())l’ y2,...,y,,, x)
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(b) Use ex. 15, to obtain conditions that guarantee existence and
uniqueness of solutions for (7) and the initial conditions

¥; (Xg) = Y0 i =1,...,n ; equivalently for (6) and the initial conditions

y(i) (x0)=yi0,i=1,...,n.

17. Show that Theorem 1 becomes false if we replace E' and E 2 in its statement.
(Hint: Let X =[B ((0,0),1)]” and A be the algebra of all polynomials in z = x+1iy,
with real coefficients. Show that the (constant function) ¢; A, eventhough ¢, € A
and A distinguishes points by p (z)=2z.)

Now, show that Theorem 11 becomes valid with E' replaced by E?* if we add
the condition that fe A implies the conjugate function fe A (ie if

f @ =f(D+if, (2) then f(2)=f, (2)—if, (2)).

18. Broadening the Ascoli-Arzela Theorem. Let X be a metric space for which there
exists a sequence {C,} of compact subspaces with X =U7_, C, (ie. X is O -
compact) and let (Y, d) be any metric space. For each ne€ N and f,ge Y¥ | let

d, (f,g)=supld (f (x)), g ()xeC,}

and let

e 1 4R
dz(f,g)—):,.zl?;m.

(i) Show that dy is a metric on ¥,

(i) Letting K, ={f1C, : fe Y*}, for each n, show that

(K,,dy | K, xK,) is a metric subspace of (C(C,,Y),d,). (Be careful!
These two spaces are generally not identical, since there may exist a
continuous function g :C, = Y such that no continuous g : X -Y

satisfies g1C,=g.)

(iii) Show that a family 7 < (¥Y*,dy) is compact iff each
7, ={f1C,: fe 7} is compact. Also show that each J is compact iff
4, is equicontinuous and Z,, ={f (x)| fe J}  is compact, for each

xe C, . (Hint: Immediate from (ii) and Theorem 5.)






Chapter 5

Topological Groups

When dealing with integrals, areas and volumes, and continuous functions we use the
following principles with no second thoughts:

() If f,g:E" - E™ are continuous thensoare f+g, f—g and fg.

(ii) In E” we can rotate and translate geometric figures without changing
their volume, area or length.

And yet we should have many second thoughts about this. After all, letting

B’={[a,b[|a,be E',a<b}

it is easy to see that # is a base for a topology T, on E' (see ex. 1.3). It is equally
easy to see that

(iii) The identity function j:(E',7,)— (E',7,) and the constant
functions ¢, : (E',7,) ~>(E', 1,), defined by ¢, (x)=a, are continuous.
However the functions ¢, — j =—j and k , defined by

k (x)=j (x) j (x)=x", are not continuous.

At the end of section 3.2 we pointed out that, with respect to the metric
d (%, %) (9, v ) =| % -y, |+]| .-y, | on EZ, the length of the segment from
(0,0) to (I, 1) is 2. However, it is immediate that the length of, its rotation, the segment
from (0,0) to (0,v2) is V2.

At this point, the reader may feel cheated and dejected, or else may ask: Why is it
that, with respect to the Euclidean topology the sum, subtraction, product and quotient

(whenever the denominator is # Q) of continuous functions f,g:E" — E™ are

113
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continuous? Why is it that, with respect to the Euclidean metric on E", rotation and
translation do not aftect length, area or volume of geometric figures?
We will now devote our attention to the first question. We will deal with the second

question in the exercises (cf. ex. 12).

5.1 Elementary Structures

1. Definition. A topological group is a triple (G,[],7) such that (G,[]) isa
group, (G, T) 1s a topological space and

(1) the group operation [J: GxG — G is continuous,

(ii) the inversion function i : G — G, defined by i (x) = x!or i(x)=-x,
1s continuous,

(iii) letting e be the unit element of G, {e} is a closed subset of (G, T).

(There exist mathematicians that do not require the last condition in the definition
of a topological group.)

Throughout, we will use either the multiplicative or the additive notion for groups,
depending on which seems most convenient. As customary, the juxtaposition a b of
two elements a€ G,be G means the product of a and b in the group G . The unit
element of a multiplicative group will generally be denoted by / and the identity element

of an additive group will be denoted by 0.

2. Lemma. For ne N, E" (resp. E" —{0} ), with the usual coordinatewise

addition (resp. multiplication) and the Euclidean topology, is a topological group.

Proof. We will only do the additive case since the other is similar. Clearly, we
need only prove that the addition and inversion functions are continuous, since the
remaining details should be well known to the reader.

To show that +: E” X E" — E" is continuous, it suffices to check that for every

((ay,...,a,), (b,....b,Ne E"xE" and B (4, +b,,...,a, +b,),€),

B((a,,....a,), €/2n)+ B((b,,....b,),e/2n)c B ((a,+b,,...,a,+b,),€):
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(To be precise, we should say
+B((ay,...,a,),/2n)+B((b,....b,),e/2n)c B ((a, +b,,...,a,+b,),€),

but controlled imprecision sometimes has its unjust rewards—simplicity, familiarity
and convenience.) Simply note that, whenever 1(x;,...,x,) —(a;,...,a,) 1< €/2n
and 1(w,....w,)~(b,,....b,)I<e/2n, then | x,—a,I<e/2n, 1w, -b, 1< €/2n

for i=1,2,...,n;therefore,

|
| (X + Wyyeen X, +w,) = (a, +by,...a, +b )=l x; +w, —a, —b, 1*)?

<(S(1x,~a 1+lw, —b 1))}

<E(EH L= O

o l—

=E£.

)

= tn
il Mo

= (n
It is obvious that the inversion function is continuous, since
i(B((x,...,x,),€)=B((~x,,....—x,), € ),

for every (x,,...,x,)€ E" and € >0.
It is now obvious that sums, products, differences and well-defined quotients of

continuous functions f, g: £” — E™ are continuous; for example,
f+g:E" > E"
is the composite of
EN 8, EmM X ET 2 E”,
with (f, 8) (x)=(f (x), g (x)), for every xe€ E".

If h: E" — E™ —{0} then %:E" — E™ —{0} is the composite of
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E" h Em { Em )
Let us recall that, for any group G and c e G, the functions

L:G—>G,R.:G—-G,

definedby L, (x)=cx, R. (x)=xc, forevery x€ G, are called left translations and
right translations, respectively. Note that if G is abelian (i.e., commutative) then L,
and R, are actually one-to-one and onto functions whose inverses are L and R ..,
respectively. (Note that the geometric translations in E” are the additive translations.

The multiplicative translations in E” really do no more than “expand” or “contract”
the geometric figures.)

Let us also recall that, for any group G and subgroup H of G, the collection
G/H ={a H lae G}, with the operation

(aHY(bHY=abH ,

is a group ift H is normal (i.e., g H g7 € H ,forevery g € G )and, in this case, we

let
G/H ={a Hlae G}={H alae G}

because each a H = H a . We will let A:G — G/H be the natural homomorphism.
3. Lemma. The following are valid:

(a) If (G,,7) is a topological group and H is a subgroup of G, then
(H,d,7| H) is a topological group.

(b) In a topological group (G, m, 1), the inversion function { and the

translations are homeomorphisms.

(c) In a topological group (G, m,7), the product of any subset A by any
open subset U (AU ={aulae A,ue U}) is open. In particular, the

multiplication m is an open function.
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(d) If (G, m,7) is a topological group and H is a normal subgroup of G,
then 4:G — (G/H, quotient topology t,) is open. The singleton {H },

consisting of the unit element F of G/H , is closed with respect to 7, iff
H is a closed subset of G .

(e) If (G, m,7) is a topological group and g is a closed normal subgroup

of G then G/H with the quotient topology T, is a topological group.

Proof. Part (a) is obvious, since restrictions of continuous functions remain
continuous, with respect to the subspace topology.

Part (b). Note that the inversion function equals its own inverse function. With

respect to translations, it suffices to note that, for every ce G (including cle o )
L. =mHc}xG, R, =mIGx{c}.
Part (c). It suffices to note that
AU=U{L, U)lae A}

and apply part (b) as well as Corollary 1.16.
Part (d). To show that the quotient map A:G — G/H is open, pick any open
U/ — G and note that

ATAW)=HU

is open in G . Therefore, A (U) is open because A is a quotient map.

To show that {H } isclosed in G/ H iff H isclosed in G, simply observe that
A'(G/IH-{H})=G-H .

Therefore, G- H isopenin G iff G/H —{H} is openin G/H, or equivalently,

H isclosedin G iff {H} isclosedin G/H.
Part (e). Because of part (d), we only need to show that the multiplication and

inversion induced by A on G/H are continuous with respect to T, . For this, it suffices

to check that, the diagrams below are commutative (i.e. Aom=m"o(AXA),--+)
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GxG —" 3 G c —' » ¢
AxA A A A
G/HXG/H—""_ 3 G/H G/H—+—» G

with A and Ax A quotient maps (to show that A x A is quotient use part (d) and
Lemma 2.7 to get that Ax A is open and continuous; then use Lemma 2.14 to get that

Ax A is a quotient function).

Let us now recall, for any subset § of a group (G, m),
S'={x"1xe S},

with x~' denoting the inverse of x in G . Furthermore, S ¢ G is said to be symmetric
provided that

s=s".

4. Lemma. If U is a neighborhood of ¢ in a topological group (G, m, T), then

there exists an open symmetric neighborhood vV of ¢ such that VV =V v'lcUu.

Furthermore, V™ c U .

Proof. By continuity of m , there exist open neighborhoods N and M of e such

that NM cU .Let K=NM .Bylemma3(b), K™' is also a neighborhood of
e . Finally, let

V=kNK™.
It follows that V is a symmetric neighborhood of ¢ with

VV' '=VVcKKcNMcU.

Now, we show that V™ c U : Take any p & U . Then, by Lemma 3(b), pV isa
neighborhood of p which misses v . (Say qe V1 pV .Then geV and g=pvV,

for some ve V. Then p=gv_'eV V™ cU, a contradiction.)
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5. Corollary. Every topological group (G, m, ) is a regular space.

Proof. From Definition 1(iii) and Lemma 3(b), we immediately get that G is T;.
Let pe G and [/ be any neighborhood of p . Then Lp_. (U) is a neighborhood of

e . Therefore, by Lemma 4, there exists a neighborhood V of e such that

Vo cL . (U). Then, letting W =L, (V), we get that W is a neighborhood of 7,
with

W =L,(V)cU.

While the product of open subsets of a topological group is open, the product of

closed sets may not be closed. For example, in E? let

A={(x, y)!x>0 and y2l/x},

B

B={(0, y)) ye E'}.

Thinking of the points A and B as vectors, it is easy to see that A+ B is the open
right half-plane {(x, y)| ye E' and x> 0}. However, not all is lost.

6. Lemma. Let G be atopological group, B aclosed subsetof G, C and g
compact subsets of G . Then

(i) CH is compact,
(i1) BC is closed,

(iii) If H is also a normal subgroup of G , then the natural quotient map

A:G—G/H is also a closed function.
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Proof. Part (i) is immediate from Theorem 3.8 and Lemma 3.6(c).

Part (ii) Let pg BC . Then, for every ce C, e¢ p” Bc and P Bc is closed

(since p~' Be = R, L .(B) ). Therefore, by Lemma 4, there exists a symmetric

open neighborhood V. of e such that
(V. V.Np™ Be=0

Since {c Vice C} is an open cover of C, let {c, Ve seenc, V, } be a finite

subcover, and let

V=,V

i=l "¢

We show that pV(YBC =0 (of course, this will complete the proof): Say pv =bc,
for some veV, be B and ce C. Since ce U, ¢, V;, let c=c;V;, forsome j and
v,eV . Then pv=>bc, v, or v v/T' = p"bcl. € p~' Bc, contradicting (*)

Part (iii). All we need to show is that, for each closed B G, /l(B) is closed. But
A'[A (B)]=BH

is closed by (ii). Therefore, A (B) is closed, since A is a quotient map.

The following is a very useful result in the study of continuous homomorphisms
between topological groups.

7. Theorem. Let G and H be topological groups and f:G—H ahomomor-

phism. If f is continuous at one point p of G then f is continuous.

Proof. Pick any ge G and let us show that f is continuous at ¢ : Let U be a
neighborhood of f(q) . For convenience, let ¢ = f(g) and p = f(p). Then

qu" (U) is a neighborhood of p . Therefore, there exists a neighborhood V' of p
such that f(V)C qu" (U). It follows that Lq,,~' (V) is a neighborhood of ¢ such

that

fL, (V) cU.
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8. Theorem. Let {(G,,m,,7,)} o be afamily of topological groups (finite, if
you wish). Then I1,_r G, , with the coordinatewise multiplication m and the

product topology TI 7, , is a topological group.

Proof. It suffices to apply old friends—Lemma 2.7, Theorem 2.12—to the
following commutative diagram
H(ZGF (Ga X GG’)
IIm

(naeF Ga)x(naeF Ga) _m—“) naeF Ga9

with s ((@g. by) o) =((ag) ar (By) o) »
m((ag) o (bg) o) =(ag bg) o
m, (ag:by) o) =(ag by) 4 -
Clearly, the inversion map i :I1,.r G, = Ty r Gy, With i ((a5) o) =(45') o, is also

continuous, because of Lemma 2.7.
5.2 Topological Isomorphism Theorems

Let us recall that, for any homomorphism ¥ : G — H between two groups, the kernel
of ¥ is Kery={ge Gly (g)=¢e}, where e is the unit element of H. For

convenience, let G = H = there exists a topological isomorphism (i.e., an isomorphism

and a homeomorphism) between G and H .

9. Lemma. Let G and H be topological groups and y : G — H a quotient

homomorphism. Then

G/Kery =H .

Proof. Immediate from Lemma 2.14 and the commutative diagram with
j(g Kery)=wy (g),forevery ge G.
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G » G/ Kery

H
10. Theorem. Let ¢:G —> G bea quotient homomorphism and H a closed
normal subgroup of G with H < Ker ¢ . Then
G - G/H

-——

Kerp - Kerp/H"

Proof. Immediate from Lemma 2.14 and the commutative diagram

G—2 »G/Kerg
A v h
G/H
G H . > ___Z_
/ A Kero/H

with W (g H)=g Ker ¢, A" (g HY=g H (Ker ¢/H)=g (Ker ¢/H)=g Ker y,
h(g Ker ¢)=g (Ker @/ Hy=g Ker w; A and A’ need no comment. It is
straightforward that 4 is an isomorphism. Since A and A’ are quotient maps, it

follows that 4 and A~ are continuous, respectively—the diagrams

A

G —> G/Kerp G/Kerg
7 h 14 h—l
0{‘
G/H G/H
-—_— >
Kerop/H G/H A Kerp/H
may help.

11. Theorem. Let H and K be closed subgroups of a topological group G,
with ¥ normal, HK closed, and H or K compact. Then
H — HK

HNK K -
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Proof. Naturally, one first checks that H VK and HK are subgroups of G and
that H (K is a normal subgroup of H . Next one constructs an appropriate

diagram, that befits the situation at hand, and draws the appropriate conclusions:

h—m[qu H
h 0“ K h[HﬂK]
LN \‘\
h

HK
HKZGxShE ® K

Note that ¥ is continuous whenever H (or K ) is compact. No further comments
seem necessary. We leave the details to the reader.

5.3 Quotient Group Recognition

The usefulness of any mathematical structure is directly proportional to one’s geometrical
understanding of it. The applications of Chapter 3 offer overwhelming support for this
statement. Fortunately, many a quotient group can also be identified with elementary
groups. Let us treat two examples in order to illustrate the general techniques. The next

chapter will have many more examples.

12. Lemma. The quotient group E'/Z , with Z being the additive group of the
integers of E', is topologically isomorphic with the multiplicative group $' (i.e.,

S'={e®)0<0<2n} and €’ x ¥ =¢' ),

Proof. First, recall that ¢'® = ¢’ ®+276) | for every integer k . Also recall that, for
each 0 <t < | and integer k , we get that the cosets

k+t)+Z=t+27.

Then the diagrams
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i2rr a(r+z)=e"?"" foreach re E', suffice to complete the proof.

with p(r)=e
(Clearly ¢ isanisomorphism; also p is open and continuous—therefore P is quotient.
Now, the first diagram says that ¢ is continuous and the second says that g~' is

continuous.)

13. Lemma. The quotient group E'XE'/ZxZ (ZXZ is called the group of

Gaussian integers) is topologically isomorphic with the torus group S'x §'.

Proof. Essentially the same as the proof of Lemma 12. The only concern is to
check that $'x S' is (homeomorphic to) a torus: Simply define ¢:7 — S', by

letting ¢ (1) =¢'2™', forevery t€ I, and observe that

IxlIxI—8'%xS'

produces exactly the same identifications of the boundary d(Ix/) of IXI as the

ones to construct the torus in Chapter 3.
5.4 Morphism Groups

By a morphism f:X —— Y we mean a function with one or more of the following
attributes: homeomorphism, isometry, topological isomorphism.

A topological transformation group (abbrev. ttg) is a pair (G, X) such that X is

s
a topological space, G is a topological group of morphisms X —- X with respect to
composition of functions, and the evaluation function GX X — X s continuous.
Unless otherwise stated, all ttgs will be assumed to have the co topology.

p
14. Theorem. For any space X , let //(X) be a group of morphisms X - X

with respect to composition of functions. If X is compact Hausdorff, then U(X)

is a ttg.

Proof. Clearly, the evaluation map e: GX X — X is continuous, because of
Lemma 4.13, and the group multiplication is continuous, because of Lemma 4.12.

The inversion function i: 4 (X)— X (X) is also continuous. (Let f™'€ (K, V).
Then fe (X -V, X ~K) and i (X -V, X = K))c (K. V) )
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In the preceding result, we definitely used the compactness of X to show that the
inversion function is continuous, But do we really need compactness? If X has some
good connectivity properties then we don’t need that X be compact. Let us substantiate
our vague statement with the Euclidean spaces.

;
15. Theorem. For each n, if }{ (E") is a group of morphisms E” —-> E” then
U (E") isattg.

Proof. Because of the proof of Theorem 14, we only need to show that the inversion
function is continuous. But, first we need to check that

4

o

={(K ,V)IK is compact connected, V is open}

is also a subbase for the co topology: Clearly X, cS§,,. Now, let fe (C, V) € 8,.
Since f(C)cV and C is compact, there exists finitely many balls

B (¢, 6,),....B(c,,8,) , with centers in C, which cover C and such that

f(B(c,6)")cV.
Then, each <B (¢;,9,)7, V) e K,,, and

feMiu(B(c,8).V) = (C.V).
This shows that

S,

o

c The topology generated by X, .

It follows that £

7, 18 a subbase for the co topology.
T . -1 .
Now we show that the inversion function is continuous: let f~ & (K, V) € K.

Using the local compactness of E", the connectedness of balls in E", and Lemma
3.32 and Theorem 3.34, one can easily pick compact connected sets K, and V, such

that
KcKk?, ff(K)cV)cV,cV,

which implies that

Fe(k, V) c(K.V)
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Now let V, < B(p,y). for some pe E" and y >0 (cf. Theorem 3.9), and let
K’'=B(p,y) -V,. The following diagram should help in the ensuing argument.

It is clear that fe N =(K', X —K)ﬂ(f" (k). Kf') . furthermore {(N)c

<K,,, V,“>C <K, V> : Suppose that there exists ge N such that g_I (K,)(ZV,O.

Then, for every ge K, such that g7 (g)e V', we get that ¢~' (g)e B(p, 7)™,

because gg~' = identity function. Therefore,

g (KcV'ULE" -B(p, V)]

g (KONV 0= g (KYNIE"-B(p, )]

which implies that g~' (K) is not connected, a contradiction to Lemma 3.32.

Chapter 5. Exercises.

1. A topological space X is said to be homogeneous if, for all x, ye X , there exists a
homeomorphism #: X —-» X suchthat 4 (x)=y.Show that

(a) [ is not homogeneous (Hint: Let x=1, y= % ).

(b) The subspace of E? which consists of the x-axis and Y -axis is not
homogeneous (Hint: Let x =(0,0),y=(1,0)).

(c) Every topological group is homogeneous.
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(d) f is not a topological group.

2. Let G be atopological group, 7€ N, and U a neighborhood of e€ G . Show that
there exists a symmetric neighborhood V of ¢ such that W" c U, where W/ =W -
and W"=W""'W, for n=2,3,....

3. Show that an open subgroup of a topological group is also closed. If a topological
group is connected what are its open subgroups?

4.Let (G, m) be an algebraic group and 7 a T, -topology on G . Show that (G, m, T)
is a topological group iff the operation ¢:GxG — G, defined by ¢ (x, y)=x y~', is
continuous.

5. Let (G, m, ) be a topological group and H a subgroup of G (not necessarily
normal or closed). Show that G/ H is homogeneous {(cf. ex. 1).

6. Let X be any space and consider the operation
A:C(X,E") xC(X,E"Y>C(X,E"), defined by A(f, g)(x)=f (x)+g(x). Show
that (C (X, E™), A, co.) and (C (X, E"), A, pc.) are topological groups.

7. Let (G, m, T) be a topological group and A a subgroup of G . Show that
(a) H™ is a (closed) subgroup of G.
(b) If H is a normal subgroup of G thensois H™.

8. Show that the logarithm function is a topological isomorphism between the additive
group of real numbers (E',+) and the multiplicative group of positive reals (El, X).

9. Let A(ENY={f:E'S5E"Nf(x)=rx+s;r,5€ E',r#0}. Show that, with the
co. topology and the operation of composition, A (E') is a topological group. (This

group is called the group of affine transformations of E'.)

10. Let G and H be groups and A:G —— H be an epimorphism. Suppose that
there exists a function s: H — G such that A s(B)=h (the function s is called a
cross-section or a selection for A). Let ¢:H xKer A—>G be defined by
@ (h,k)y=s(h) k. Show that
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(a) @ is abijection.
{b) ¢ is a homomorphism if either s is a homomorphism or ghg'l =h,
forevery ge G and he Ker A (hence, @ is an onto isomorphism, in

either case).

(¢)If G and H are topological groups, then @ is continuous. (Hint:
Consider the diagram

HxKer A L >» G
sxid %z,k)%gk
GxKer A

and check that ¢@=ho(sxid), with both these functions continuous.)

11. Let (G, m, ) be a topological group and #:G = H abijection. Show that H
can be given a topological group structure. (Hint: For all a,be H | let

ab=h(h"

"a)n (b))

12. Prove that the Buclidean metric in E” satisfies the following.

@ ltx—ty i=1t1x=71, forevery te E'.

(b) (X +2)—(y+2)I=1X—=¥I (i.e. the Euclidean metric is translation
invariant).

(c) Let S be a subset of the plane E? such that (0,0)e S pick any
0<@<2x. Show that € S is § rotated through and angle 6 about the
origin (0, 0). (Hint: Think of the points s of § as being vectors starting
at (0,0) and ending at s . Recall that we can let E2 ={r e®ir,0eEY}
and that r, &'® r, % =1, r, & @*9) )

(d) Now show that (a) implies that the Euclidean metric in the plane is
rotation invarniant.

(e) Show that {b) implies that

fw f(x)dx=fwf(x+r)dx=fmf (~0)dx.

13. Let (G, m) be an algebraic group and 17 a family of subsets of G such that

(i) N1 ={e}, where e is the unit element of G,
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(ii) M, Nen implies M(N\Nen,

(iiiy Mc NcG,Men implies Nen,
(iv) for each N e 1) there exists M € 1] such that MM enN,
(v) Nen,ge G implies g N glen.

Prove that there exists a unique topology 7 (1) for G such that (G, m,T(@)) is a
topological group and 77 is the family of neighborhoods of e with respect 7 ().
(Hint: Let

T(M)={U cGlixe U implies that there exists N, e with x N, cU}.

To show that the multiplication is continuous: Say x yex yU,Uen . Pick
Ven such that V Vv!icU andlet W=yV y" NV~ note that (iv) implies that
M < N~'. Then show that (x W) (y W)cx yU .)

14. Quaternions. Consider Q = E*xE? and the following operations on Q (let 7
denote the conjugate of z)

x5, ) +w, ) =(x+w, y+2),
)W, 2)=(xw-yYz,yw+X 2),
where we use the ordinary multiplication of complex numbers. For simplicity, we

identify ce E° with (c, (0,0))e Q. Show that

(i) @ is a topological group with respect to addition, and @ — {0} isa
non-abelian topological group with respect to multiplication. (Show
0, 1) (i, 0) # (i, 0) (0, 1) . The unit element is (1, 0). The multiplicative

inverse of (a,b)e Q is [(a,b)/(a,b) (@,-b)1(a@,-b).)
(ii) E' - {0} is a closed, normal multiplicative subgroup of Q — {0} .

(iii) E* - {0} is a closed, non-normal multiplicative subgroup of

Q-{0}-

(iv) The conjugation function (a, b)=(a,-b) in Q is a continuous
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function.

(v) The norm function n:Q—-{0} > E| , defined by 11(q)=q g, is an

open epimorphism such that Kern=S*. (This gives S* a non-abelian
group structure.)

(vi) 9~ {0} = $*x E! . (Hint: Use ex. 10.)

15.Let H(]0,1]) be the set of all homeomorphisms of }0, 1[ onto ]0,1[, with the
co. topology. Show that

(a) H10,1[ . with respect to composition of functions, is a ttg.

(b) Foreach O0<x<1,y=¢|H(]10,1])x{x}, where ¢ is the evaluation
function (cf. section 4.4), is an open continuous function.

(c) For each 0< x <1,y7'(x)=H, is a subgroup of H (]0,1[). (This
group is called the isotropy subgroupof H (10,1[) at x.)

(d)y H(10,1{)y=H _x]0,1[, foreach O0<x <! (cf. ex. 10).
€) H(O0,1[)=zH(]0,1]).

16. Let (G, m,7) be a topological group and H (G) be the group (with respect to
composition) of homeomorphisms of G with the co. topology. Let L:G — H (G) be
defined by L (g)=L,. Show that:

(a) L is continuous;
(b) G is topologically isomorphic to a ttg (on G ) which has the co. topology.

17. Let (G, m, T) be a topological group and U a neighborhood of ¢ € G . Show that

the group generated by U (i.e., the smallest subgroup of G which contains U ) is
G.



Chapter 6

Special Groups

Certain topological transformation groups have proved to be extremely important in
the study of Quantum Mechanics, Relativity Theory and Crystallography. We will
study a few of these. We try to follow a precise but very geometric approach.

6.1 Preliminaries

We will limit ourselves to nX 7 -matrices over E'. However, much of what will be

done remains valid for 71X n -matrices over EZ.
Throughout, we will let

A
M| D =@ myx,. 0 Zmy x;).

and we will think of M as a function M:E" — E", defined by

M ((X),...,x,) = (X; my x;,....5; m, x;), or in matrix-product form,

My see

Mz(mij)n=(mij)=[ n]
m,,....m,

From Theorem 2.3 and the basic properties of matrix multiplication, it follows easily

that M is a continuous linear (i.e., M (¢(X+sy)=t M (X)+sM (y),forall s,te E'
and X, ye E" ) function. Note that the identity X n -matrix I, (i.e., I, = (8,) with
0, =0 whenever i # j and §, = 1) is the identity isomorphism from E" to E".
We will also think of E" as a vector space over £' with base {e,,...,e,}, where ¢

is the n—tuple of E", whose only nonzero coordinate is the i"™ -coordinate, which

131
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equals | . Generally, we will not distinguish the point a =(a,,...,a,)€ E" from the
line segment a ={X, 1, a; 1 Xt, =1, 0<t} which joins the origin (0,...,0) of E" to
(a,,...,a,) , inasmuch that this correspondence (a,,...,a,) <> @ is a bijection, and
we will refer to a as an 7 -vector. Recall that the length of the 7 -vector @ is denoted
by la \=\/—2i*ai2 . We will say that the two n-vectors ¥ and w are orthogonal
(abbrev. V L W) if the angle between them is 90 . A simple way of determining the
angle between two A -vectors @ and b is to use the law-of-cosines of trigonometry

(by,....b,)=b

(ay,...,a

ct=lal +n§a|2 ~2lalb| cos 6.
With a1*=Z, a,z and |b I*= py b,.2 , the preceding equation immediately yields that
Y, a;b,=lallblcos 6.
As customary, we call ¥, @, b; the dot product of the vectors @ and b and let
ab=X,ab,.
We then get the elementary, but crucial, result:
1. Proposition. For any n-vectors a and b , the following is true:

(i) a-b=\a\lb\ cos 8, where 8 is the angle between @ and b .

Gi) aLlb iff 7-b=0.
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For any nXn-matrix M =(a,), and a,€ M, we let M, be the

(n—1)x(n~1) - matrix obtained from M by removing the k™ -row and ¢ -column

and we let
Cu= (“])kH My,

(C,, is called the (k, ¢)-cofactor of M ). Also, for any nXn-matrix M = (a,.j),l ,

welet M7 = (a;) , such that a; =a;. (M T is called the transpose of M .) We will

also denote the determinant of a matrix M by IM | and think of | M | inductively
defined by cofactors; that is,

a Gy | _
=04y Ay —ady Ay

ay ayp
and
(@) I=Zj a; 1Cy; |, for n23,
The following elementary results will be useful:
2. Proposition. The following is valid:

(i) For any nXn-matrices M and N,
IMNI=IMUNLM NY =N" M7, (M NY'=N"M"!
whenever M ™' and N' exist,

(ii) An nXn-matrix M =(a;) has an inverse M~ iffIM 1#0; indeed
M~ = Tnlﬂ (C;)n (ie., (CUT. ) is the transpose of the matrix of cofactors of
M)

For computational purposes, it is also very convenient to think of an 72X 7 -matrix

(m;), as an element of E" , by letting
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(M), =My My My e Ry My M)

*ian s

Then, letting #, be the set of all nX n -matrices over E', we get that M, has the

Euclidean metric ¢ ((ag; ) (b;,' ) =[Zg,’ (a;,' _b,jj)z ] /2 .
3. Proposition. In s, the Euclidean metric topology equals the co topology.

Proof. Let (m,)e ([(, v) . Then, let d ((m;;) (K), X =V)= some § >0.
(Indeed, in any metric space (X, p), A compact, B closed and A1 B =0 imply
that P (A, B) >0: Suppose not. Then there exists {x,} = A and {y,} © B such

that d (x,, y,) < l’  for all n. Pick a subsequence {x, } of {x,} and x& A such

that li:n x, = x.Then limd (y, ,x)=0, which implies that x€ B, a contradic-

tion.) Also choose M such that (m;)(K)c B (0, M). It follows that

B((m;),6/M)c (K.V) .

Conversely, consider any B ((a;),€). It follows that
N., {lay} Blay,e/m)c B () e).

4. Proposition. The determinant function det:m, — E', defined by

det:(M)=1M, is open and continuous.

Proof. Because of Proposition 3 and Lemma 2.5, simply think of #, as a subspace

of IT2, E?. Since addition and multiplication of real numbers are open and continu-

ous functions, and det M is a sum of products of real numbers, it follows immedi-
ately that det is an open and continuous function.

6.2 Groups of Matrices

For n=1,2,..., let

GL(n,EY={Mem,  \M\z0},
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Spin(n,EY={Mem :IM|=%1},
SL(n,EY={Mem:IMI=1},
0n={M€mnlMT=M—]}’

50,={Mem, [M"=M" and IM =1},

It is quite easy to see that these are algebraic groups (see Proposition 2). They are
generally called the General Linear group, the Spin group, the Special Linear group,
the Orthogonal group and the Special Orthogonal group, respectively.

5. Theorem. The following are valid:

(i) The topological groups G L (n, E'), Spin (n, EY, S L(n,E"Y, 0,l and
S0, are ttgs.

(iiy GL(n, E'Y>Spin(n, E')>0, 550,.

(iii) GL(n,E"Y/SL(n, E"Y=E -{0}.

Proof. Part (i) follows immediately from Theorem 5.15. To prove (ii), we only

need show that M7 = M ™' implies | M | =% 1: Note that
I=iMM 7 I=IMMTI=IMUMT 1=IM 12,

since it is clear that | pf |=1M 7 |. To prove (iii) first check that SL  is a closed
normal subgroup of GL (n, E'). Then note that det:GL (n, E') — E' —{0} is a

quotient homomorphism, because of Propositions 4 and 2(i). Then apply Lemma 5.9.

6.3 Groups of Isometries

The following elementary observation has profound consequences. Rarely, does so
little mean so much: The isometries of the n—sphere S” are in one-to-one
correspondence with the isometries of E™' which leave the origin of E™' fixed (Let

h:S" —> S" beanisometry. Let 4: E™' —> E"*' be defined by / (0)=0 and
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E(x)zl)‘clh(%), for each xe E"*' —(0}. Then & is an isometry of E™*' which
leaves the origin O fixed. Conversely, let §:E"' —> E™' be an isometry with
g (0)=0.Then, foreach xes", g (¥)I=1g (X)-g (0)|=1X~01=1, whichimplies

that g =g |S" is an isometry of S").
For convenience, for n=1,2,..., let

Gl,={h:E" —> E"lh is an isometry},
SI,={heGI"Ih(0)=0}=(g:S"" —> §""Ig is an isometry }.
It is clear that, with the co topology, GI, and SI, are ttgs.
6. Theorem. 0,=S51,.

Proof. Once we show that  and §/, are algebraically isomorphic, the remain-

der of the proot will become clear.

Let £:8""' 5 $"7' be an isometry and h:E"—>> E"its corresponding
isometry of E" which leaves 0 fixed. Let fi=h(e), for i=1,2,...,n (recall that
the e, are the elements of the usual base for E£"). Using the law-of-cosines and the

fact that the cosine function is one-to-one, for 0 < <I1 | we immediately get that
(1y f; L f;, whenever i # jieach | fI=1,
which implies that {f,,,f”} is an orthonormal vector basis for E”. Next, note
that, for each qe E', and i=1,2,...,n,
h(at)=ah (¢)=af .

Next, observing that, foreach e $"™', ¥ =(x,,...,x,)=x, ¢, +...+ x, e, , we show
that h(X)==x, f,+...+x, f,: Suppose h(X)=z, f,+...+2, f,. Since h is an

isometry with h(0)=0, we get that
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X
|
(0,...,0) . O,...

t

for i=1,2,...,n. Therefore, we get the dot product equality
x-e,=h(x) f;,

which yields x; = z;, for i=1,2,...,n. This shows that h is a linear map. Therefore,

letting
Q) fi=2, a;¢; =(ay,....a;,),
for i=1,2,...,n,and M =(a,),, we immediately get that
hx)=M (x),

for each x€ S". We already know that the matrix of A~ is M . To show that
M~ =MT. first observe that

(3) Z,a,;:;=1,zl,~ a; ak/=0,f0r k#l,

for i=1,2,...,n, because of (1), (2) and Proposition 1. Therefore,

a;

M" (fi)'_'(a,j,')

=X ay . X @y Qo s X Gy )

=g, for i=12,...,n.

It follows that h~' (x)=M" (%), for each X S". Since the inverse of a matrix is

unique, we get that Mt=MT,
Certainly the reader must be anxious to learn the real difference between the groups
0, and SO, ( we already know that



138 Elementary Topology and Applications
0,=80,UiMem, IM" =M"" and IM|=-1},

from Theorem 5 (ii)). The proper gleaning of the proof of Theorem 6 will give us the
answer.

7. Theorem. The groups 0, and S0, are compact.

Proof. Because of Proposition 3, we only need to show that 0, is a closed and
bounded subset of E" . The same applies to SO, .

0. is closed in E" : Say {M,}, <0, such that li,fn M, =M . Since each

n

IM, I=%1, there exists a subsequence {M, }; of {M,} such that either all

IM, 1=1 or all IM; |==1.1Tt follows that, either 1=limlM, I=IM| or
/ j

=1 =li5n IM, 1=1M 1, because of Proposition 4. Since the inversion function in

GL(n, E') is continuous, it follows that

lim M) =lim M)'=M",

But it is easily seen that M= li{n M, )" whenever M = li;fn (M) . Therefore,

MT =M~ and M =+1, which shows that 0, is closed in E”.

0. is bounded in E” : Indeed from part (3) of the proof of Theorem 6, we

n

immediately get that
2 2
Xja; =% 2;a;=n,

for each (a;), € 0, , which implies not only that 0, is bounded but also that 0, is

2 —_—
contained in the sphere of E” with center 0 and radius n.
To simplify and clarify matters, let

A0, ={M &0, :IMI|=-1)

and ‘]k,‘ k,, 1<k <n, be the nxn—matrix which has the same entries as I,

LR A

except that the (k,, k,)—,...,(k,, k, ) —entries equal —1 . It is clear that
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(i) Each i, = I,

(i) MeS0,, moddimplies J, , M e AO,,
(iii) M e SO,, m evenimplies J, , M€ S0,

(iv) J, ., changes the vectors e, ,...,¢  to the vectors —¢,..., ¢,

leaving the remaining vectors fixed,

(v) For each M€ A0, and 1<k <n, there exists M, € S0, such that
I M,=M

(indeed, M, has the same entries of M except that the k —column of M, has the

negatives of the k —column of M ).
The preceding trivial facts make the following result quite obvious.

8. Theorem. The following are valid:

(@) 0,=50,UA0,, 50,NAO, =0 and, for 1<m odd <n,
A0, ={J, . M|MeS50,},

(b) For n=3, A0, consists of those elements of 0; which transform

(1,0,0)

(0.1.0)  left-handed

right-handed systems into left-handed systems and vice versa.

It is customary to say that a linear transformation L:E> — E* does not
interchange past (down) with future (up) if the relative position of the z-axis with



140 Elementary Topology and Applications

respect to the plane of the x-axis and y-axis is not changed by L ; that is, L is of the
form

L=R,oR o/,

where R, (R_‘.) denotes a rotation about the x-axis (y-axis), and J denotes a reversal

of direction of the x-axis or of the y-axis or both, i.e., J is one of the matrices below

-1 00 1 00 -1 00
0O 10| 0-10[[ O0-1 0]
0 01 0 01 0 01

Similarly, we can speak of linear transformations which do not interchange right with
left (i.e., do not reverse the direction of the y-axis relative to the plane of the x-axis and
z-axis); obviously, these concepts can be appropriately extended to higher dimensions.

6.4 Relativity and Lorentz Transformations

Qur intention is to explain the why and how of Lorentz transformations in Relativity
Theory.
Let us take two observers 0 and 0° whose measurements are done with respect

to the space-time coordinate systems (x;,x,, x4, x4) and (X,, X,, X3, X,),

respectively, with the same origin (0, 0, 0, 0) = 0, where the first three coordinates are

space-coordinates and the fourth is the time-coordinate. Furthermore, let us assume

x, X,

~
~

““““““““““ \—‘—‘;P=(x,,xz,xg,x‘t)=(X,,X2,X3,X4)

!

g |

s |

/ |

/ |
! |
|

1

i
/
/
!

X =(X|,X2,X3)

T~

x=(xy,%5,X3)
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that 0 and 0" are moving on a common straight line with constant speed relative to

each other. Graphically, we may display the coordinate axis of 0 and 0" as follows:

The apparent mislabeling of the axis reflects the fact that the space-time of 0 is

represented as seen by 0" and vice versa. (A simple analogy is the following: Take two

corner of building B as seen by 0’

corner of building B’ as seen by 0

observers 0 and 0° on the corners of the buildings B and B, respectively. 0 sees
the corner of building B making a right angle while he sees the corner of B’ not

making a right angle; the same for 0’. Indeed, in relative terms,

if 0 is “standing up” while 0" is “lying down™’; various other relative positions can be
obtained. Another example is the corner of a cube seen from different positions or by
different observers.) Certainly the square of the distance of any point P from the
origin remains invariant for both observers; that is

LA+l +xl =X+ X+ X2+ X
from which we get that
2 3 22§32
Xg = imy X; =x5— Zigy X;

Our purpose is to identify the space-time linear transformations—i.e.,

4x 4 —matricies A= (aU)—with respect to which the form

SX)=x;-Xo x7

remains invariant, for any X = (x,, X, x,, x,) . First, let us observe that, letting
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-1 0 0 0O
p=| OO0,
0 0-1 0 "

0O 0 0 1

the invariance of § can be described by
(]) Z:./ /7i/' Xi X/‘ :201./1 /7(1[3 Xoy xﬁ-

Next, let us observe that, it A (x, x,, xy, x)=(X,, X;, X5, X,) then (of course,

(x,,...,x,) is really a column-vector)
(2) X, =X, a,, X%, for m=1,...,4.
Therefore, substituting (2) in (1) yields
(3) i Py Xy aiy %) Ey ay % )=2Zq g Pop *a X,
from which we get that
@) Zop L2 i Py ajp = Pop ) Xg X5 =0,
because of the values that p; takes. But (4) 1s true for all x iff
(5) i Qg Pij @i = Pag , for each a, B ;
that is, iff
©) A" PA=P.
Then det (A7 PA)=det P with det P = | . Therefore,
(7) (det A)* =1,

since det A" =detA.
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Also, letting o = B = 4, we get that (5) becomes a}, ~ PR a,a =1, which implies

that
(8) aj, 21.
We have therefore determined that

L =1{(a;)axq = Al A satisfies (6), (7) and (8)}

is the set of all 4x 4 — matrices which leave the form S invariant. It is obvious that if
the linear transformations A, B leave the form § invariant, so do AB and A™'.
Therefore, £ is a subgroup of Spin (n, EY.

The group . is called the full Lorentz group. It splits into four subsets
L={Ae LldetA=1,a, 21}
L ={Ae LidetA=1ay 2-1}
L={Ae Lldet A=~1,a, 21}
L,={AeLldet A=-1,q, 2-1}.

If Ae UL, A is called a proper Lorentz transformation; otherwise, A is an

improper Lorentz transformation.If a,, 21, A does not interchange past with future;

If gq,<-1, A does interchange past with future. Finally, noting that
PAT PA=P =1

it is easy to compute the Lorentz matrix L, =(£,) which satisfies the following

natural physical constraints:
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X, X,
A A
>— X, —A 5 >—
Xy X,
A J\
A A L
Lol Xl > > x,

(i) It is required that the velocity of one coordinate system with respect to
the other lies along the space-axis (say, the X, — axis) and that the

remaining orthogonal space-axis not be interchanged by L , thus

precluding rotations about the X, — axis; that is,

(i1) The relative velocity of observer 0 as seen by O is a constant V.
The velocity of light is taken to be one unit.

It follows that X, =v X,, X, = X; =0 furthermore,

X 0 X L4 X4

x2 0 ’ x2 €24 X4
=L, implies =

X3 0 X3 €34 X4

X4 Xy Xy L44 X4

from which we get that

@) Lyy=vlgy il x, =X =vX,=viyx,,

(b) £y =03 =0:0=0x, =0y x4,0=X3 =034 x,.

Substitution into PL! PL, =1 yields

=0 =1 with £,,=vl,,.
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Therefore ¢3, (1-v*)=1, or

]
(©) ‘444= ‘/]—2
-V

the minus sign signifying time reversal. Eliminating the time reversal situation, as

='{_"J/

unrealistic, by using (i) and (7), we can compute all other entries of L, finally getting

1 0 0 w
01 0 0
L o=y
v =Y v 0 1 0
v 0 0 v

as the Lorentz transformation satisfying (i), (ii) and not reversing time. It is now clear
that the most general Lorentz transformation has the form

ToRoL, oR,
PoRoL,oR,

where R and R’ are rotations and

is the time-reversing matrix.






Chapter 7

Normality and Paracompactness

Some of the properties of metric spaces have proved so useful that they have been
specially labeled and extensively studied. Among the dozens of significant properties
of metric spaces, normality and paracompactness really stand out, and paracompactness
outranks all others, by far. Let us discover these properties and some of their usefulness.

1. Theorem. LetA and B be closed disjoint subsets of a metric space (X, p).

Then there exist open disjoint subsets U and V of (X, p) such that AcU and
BcV.

Proof. Define functions f, : X — E' and f,: X — E' by f, (x)=p ({x}, A)
and fp (x)=p ({x}, B). Recall that f, and f, are continuous. (See ex.l.20.) Next

fA (x)

. . ] —
define f: X — E by f(x)—m

. Clearly fis continuous (it is the ratio

of continuous functions and the denominator is never zero—see Proposition
1.8(iv)). It is also clear that f (A)=0 and that f (B)=1. To complete the proof, let
U=f"(1-5.3 D and V=£" (15, 20).

This result leads us to the definition of normal spaces.

7.1 Normal Spaces
2. Definition. A T, —space X is a normal space provided that for any disjoint
closed subsets A and B of X there exist disjoint open subsets U and V of X with

AcU and BcV (thatis, disjoint closed subsets of X can be separated by
disjoint open subsets). Equivalently, for any closed subset A of X and open subset U

of X with Ac U , there existsopen V < X suchthat AcVcV cU.

147
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3. Corollary. X is metrizable implies that X is normal. X is normal implies that X is
regular. (The converses are false — see exs. 4 and 7(c.e).)

Recall that in the proof that the metric space is a normal space we constructed a

continuous function f : X —» E' which mapped A to 0 and B to 1. Can we find such
a function f if X 1s normal? This is indeed a deep question and the only known proof
of it is truly ingenious. It was first discovered by Urysohn.

4. Theorem (Urysohn’s Lemma). A T, — space X is normal if and only if for

any disjoint closed subsets A and B of X one can find a continuous map f: X — [
such that f (A)=0 and f (B)=1.

Proof. The if part is contained in the proof of Theorem 1. The only if part: Let
D=U D,, where Dy={0. 1}, D=0, 5,1}, D, ={0, g, 5, g, oo D is
known as the set of dyadic rationals (note that these are obtained by dividing [0, 1]
into half, then the subintervals into half, and so on). It is easily seen that D™ =1
since any point of / is less than '2!,; away from some point of D, .

Toeach pe D we will (inductively on D ) associate an open subset U,, of Xin
such a way that

p<gq implies U, cU,.
D,:Let U, =X .Pickopen U;c X suchthat AcU, and U7 NB=0.

D, : Pick open U, < X such that
2
UycU, and U NB=0.

2 2
D, : Pick open U, Uy © X such that
4 4
U,cU,cU, cU, cU cU, and U;NB=0.
4 4 2 2 4 P

The inductive procedure should now be clear. We may visualize the next step, on Dy,

as follows:
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Now, we define f:X —[0, 1], by letting
f(x)=inf {peDixeU,}.

Clearly, f is a well-defined function, and f (A)=0 and f (8)=1 (note that
f'I (0)y=U, # A generally, one cannot expect that f'l (0)=A;seeexs. 16 and 17).

The easiest way to prove that f is continuous is to use Theorem 1.14(vi). Note that

() £ (0,t1)=U{U,Ip<t}, foreach te I:If xeU, and p <t
then f (x)< p <t which means that xe f~' ([0, [ ); thatis,
U{U/,lp<t}(_‘f'l ([0,¢ [ ). Also, if 0< f (x)<t then there exists
g€ D suchthat f (x)<g<t, whichimplies that xe U _; that s,

faoycU{u, tp<s.

Gi) £ ([0,¢])=cN{U;Ip<t}.foreach te I:1f 0< f (x)St and
p>tthen xeU, cUj;thatis, f7 ([0, t])cN{U, I p>1} I
xeU, forall p>t, then xe U, forall p>¢ (because, for p >t
with pe D, there exists g€ D such that p > g >t hence,

xeU, cU, c U ), which implies that f (x) <t that is,

N{U;p>tyc f7 (10,2]).
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(i) 7' (1, 11)=X-N{U, | p>1}: Immediate from (ii), since

A 1)=X-77(0,1]),

Since the sets [0,¢[ and |1, 1], for each t € I, form a subbasis for the topology of /
and the inverse images, under f, of these sets are open (recall that any intersection of
closed sets is closed), we then get that £ is continuous, which completes the proof.

Another very significant characterization of normality appears in exs. 24 and 25.

One may wonder if a similar result can be proved for regular spaces, with one of
the sets replaced by a singleton. A look at the preceding proof shows that one cannot
even get past the second induction step, for it may already require the separation of
two non-degenerate closed sets. This suggests another definition: A T, -space X is
completely regular or Tychonoff provided that, for each closed A< X and
pe X — A, there exists a continuous function f: X — I such that f (p)=0 and
f (A)=1. Clearly, X is normal implies that X is Tychonoff, which implies that X is
regular. It turns out that neither implication is reversible, but we shall not pursue this
matter.

Letus now turn our attention to paracompactness. Be forewarned that the usefulness
of this property of metrizable spaces is certainly matched by the difficulty in showing
that metrizable spaces are indeed paracompact. All known proofs of this fact depend
on the well-ordering Axiom (see 0.20).

5. Definition. In any space X,

(@) A cover V of X (see Definition 3.4) is a refinement of a cover Y of X if
each V€V is contained in some U € i{ . I/ is an open (closed)

refinement of J{ if }/ is an open (closed) cover of X and a refinement of

U.

(b) A collection X of subsets of X is locally finite if each p€ X has a

neighborhood which intersects only finitely many elements of /.

(c) A collection }{ of subsets of X is discrete if }{ is locally finite and
pairwise disjoint (i.e., for any distinct U, Ve Y, UNV = 0).

(d) A collection X of subsets of X is ¢ -discrete ( G -locally finite) if
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H =U, U andeach X, is discrete (locally finite).

Clearly finite collections of subsets of X are locally finite and countable collections
are 0—discrete. Pairwise disjoint collections may not be discrete. (The collection of
intervals ] n%l, % [,for n=1,2,..., is not locally finite at the point 0). One immediately
gets that each compact Hausdorff space is paracompact. The converse is false (see

Theorem 9 and ex. 10). Furthermore, if # is a locally finite collection of subsets of X
then X}~ ={U~ 1Ue& }} is also locally finite (note that if N is an open neighborhood of
apoint pe X then NNU=#0 iff NO\U™ #0). Also, a finite union of locally finite

covers is clearly a locally finite cover.

6. Lemma. The following are valid in any space X.

(a) If # ={U, lae A} is a locally finite collection of subsets of X and,

V,cU, . foreach ace A, then V={V, lae A} is also locally finite.

(b) If A is a locally finite collection of subsets of X then

U{A 1Ae A}=UA)" (i.e., the union of closures is the closure of the

union).

Proof. Part (a) is obvious since U UU, =0 implies that y NV, =0 (that is, U
intersects no more elements of I/ than elements of /).

(b) We always have that U{A" 1Ae A} c(UA)". So let pe (UA)". Pick
neighborhood N of p which intersects only finitely many A€ A; say A,,...,A,.

Then xe (A U...UA)=A7U...UA; cU{A"1Ae A} (recall ex. 1.21), which
shows that (UA)" cU{A 1 Ae A},

Note that 10,11=U, [—]— l] #=(U) L [)” =[0,1], which shows the necessity

n+l’ n n+t’ n

of local finiteness in Lemma 6(b).

7.2 Paracompact Spaces

7. Definition. A Hausdorff space X is a paracompact space provided that each
open cover of X has an open locally finite refinement.
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8. Theorem. The following properties of a regular space are equivalent:
(a) X is paracompact.
(b) Each open cover of X has a ¢ -locally finite open refinement.
(c) Each open cover of X has a locally finite refinement.
(d) Each open cover of X has a closed locally finite refinement.

Proof. Clearly (a) implies (b), since a locally finite cover is automatically o -
locally finite.

(b) implies (c): Let /{ be an open cover of X. By (b), there exists an open refinement

V of Y suchthat ¥=U, ¥ and each I/ is locally finite. For each n, let D, =U¥,.

Clearly, D={D,lne N} covers X. Next, let A, =D,-U"!D,. Then
A={A, Ine N} is a locally finite refinement of 2. (Note that even pe X belongs

to some Dj and, consequently, there exists a smallest integer k such that p & D, ; that
is, pe D, —U'' D, = A, . This shows that 4 is a refinement of . Note that we have
also proved that D, is a neighborhood of p which can intersect only A,,..., A, ; that
is, A is locally finite.) We now get that W=U, {VN A, Ve l,} is a locally finite
refinement of V. (Note that each pe X belongs to some A, and therefore
automatically to {J 1/, . which forces pe V (] A, , for some Ve Vn . This shows that 1}/
is a refinement of /. Also, if you pick a neighborhood N of p which intersects only
finitely many elementsof f U...UJ 1/, then N ( D, intersects only finitely many elements
of W—it certainly cannot intersect any V (A, € W , with k >n.)

(c) implies (d): (This is where we need regularity of X.) Let 4 be an open cover of

X. Foreach xe X , pick U, € i such that xe U and, by regularity of X, pick an
open neighborhood V_of xsuchthat xe V. c U, . Then V={V, Ixe X} is an open

refinement of {J such that ¥~ is also a closed refinement of /{ . By (c), let Y be a
locally finite refinement of /. Then W~ is a closed locally finite refinement of I/~
and hence of X .

(d) implies (a): Let /{ be an open cover of Xand V aclosed locally finite refinement

of Y .Foreach xe X |, let O, be a neighborhood of x which intersects only finitely
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many V €V . Then, let 4 be a closed locally finite refinement of {0, |xe X}. For
each Vel , let V'=X-U{Ae AIANV =0}. Then each V' is an open set, by
Lemma 6, and V'OV . Also Ae A intersects V' iff A intersects V; that is,
V' ={V’'IV eV} is locally finite. Consequently ¥ is an open locally finite cover of X
(not necessarily a refinement of J{!)

Now, for each Vel, pick U,ed such that V cU,. Then
W={U, NV’IV eV} is an open locally finite refinement of }{ (one can only question
if UW=X, but each x&€ some VcV’ and V cU, which implies that
xe some U, N V'e W).

Other characterizations of paracompactness are described in exs. 22 and 23.
9. Theorem. Every metric space (X,d) is paracompact.

Proof. Let /{ be an open cover of (X,d).Foreach Ue { and ne N let
U,={xeUlp{x},X —U)=27"} (note that J, U, =U , because of Proposition
1.8(v); also, for small sets U, U, may be empty for small n). By the triangle inequal-
ity, we getthat p (U, X -U,,,) 22" —2""" =27 (note that, forany ge U,
pe X-U
d(q,2)22™" and d (z, p)<2™"7").

Let < be a well-order on X (see 0.19). For each Ue { and ne N, let
U,=U,~U{V,, |Vel and V <U}.Notethat, foreach U,V € ¥ and each n, either

U, cX-V,, or V.cX-U,, (forexample, U<V implies VeX-U,.).

n’

;and z€ X ~U, we get that d (¢, p)2d (g, 2) —d (z, p) with

n+

In either case, pU.,V))22™"" (for example, U<V implies
pW.VYy2p U, X-U,,)=22""). Finally, for each U€ X and for each
ne N, let Ul ={xlp({x},U,)<2™"};itfollows that p (U,,V,)22™"% (note

*
n

that, for any qeU’, peVS',ze€U,and weV,, we get that
d(g, p)2d(z,W)—d (z.q)~d (p,w) > 27" —27 3 _27"3 =27""2 by the triangle
inequality). Then each # ={U, |U € ¥} is an open discrete collection (indeed any
ball of radius < 27"~ can intersect at most one element of /). Clearly each Y c U

(indeed ¥ c{xeUlp ({x}, X =U)>27"-27"2>27"7}). Also, for each x€ X ,
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if we let U be the first (with respect to the well-order <) element of X that contains
x, then xe some U, (indeed, x& some U, and therefore xe U, c#)).
Consequently, ¥* =\, /{ isanopen o -discrete (hence, o -locally finite) refinement

of }{ . By Theorem 8, X is paracompact.
The preceding proof contains the very hard half of a characterization of metrizable
spaces (see ex. 21).

10. Theorem. Every paracompact space X is a normal space.

Proof. First, we show that X is regular: Let A be a closed subset of X and

pe€ X —A. Since X is Hausdorff, for each a€ A, pick an open neighborhood N,
of a such that pg N . Then, n={N,lae A}U{X — A} is an open cover of X. So

let I/ be an open locally finite refinement of 7 and A ={Ve VIV < some
N,en}.Clearly AcUA (ie., A covers A), A is open (union of open sets!) and
p& A, by Lemma 6(b). This shows that X is regular.

Finally, we show that X is normal; Let A be a closed subset of X and U an open

subset of X such that A c U . For each ae A pick an open neighborhood N, of a

suchthat N, U (regularity!) and mimick the preceding scheme to complete the proof.

11. Lemma. Every open cover { ={U} , of a paracompact space X has an

open refinement ¥ ={V,} . suchthateach 0 =V cU,.

Proof. Since X is regular, let I}/ be an open refinement of / such that
W ={W IWe W} alsorefines { . Then let O be an open locally finite refine-
ment of }}/ . Foreach ae A, let 0, ={0e 010cU,}.

Finally, we define the V,, :If O, # 0, let V, =U0, . 1f O, =0, let V,, be any
open subset of X such that @ #V, cV < U, . From Lemma 6(b), one easily sees
that V ={V,} ., satisfies all requirements.

Lemma 11 remains valid for every open locally finite cover Y ={U,} ., of a

normal space, but the proof of this fact is quite complicated (see ex. 11).
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12. Definition. A partition of unity on a space X is a collection € of continuous
functions from X to E! (the non-negative reals) such that X o p (x) =1, for each
x € X (here, we automatically assume that, for each x € X, p (x) # 0 for only
finitely many pe Q). @ is called locally finite if each xe X has a neighborhood
N, suchthat p(N,)=0, for all but finitely many pe @. & is subordinated to a
cover Y of X if for each pe @ there exists U € / such that p (X -U)=0 (i.e.,

p vanishes outside U ).

For example, let (X, d) be a metric space and Y ={U o }ae 4 be an open locally

finite cover of X. For each aeA, let f,:X — E! be defined by

f, (x)=d (x, X —U,). From ex. 1.20 we get that each f, is continuous. Clearly,

fp (%)

{f,hen is subordinated to 4 . Finally let pp (x) =y T

foreach fe A and

xe X . Itis easily seen that each Pg is continuous (note that, locally, Yoer fo (¥) is

g Ipep fp o

a finite sum), Zpea Pp (D=2pep ¥ =1 and {p,} is

aeh fa 0 Zoep o (O
subordinated to {U,} . Therefore {p,} is a partition of unity subordinated to {U,}.

This very important result for metric spaces provides another characterization of
paracompactness.

13. Theorem. Fora 7, - space X, the following are equivalent:
(a) X is paracompact.

(b) Every open cover of X has a locally finite partition of unity subordinated
to it.

(c) Every open cover of X has a partition of unity subordinated to it.

Proof. (a) implies (b): let W be an open cover of X and ¥ ={U,,},., be an open
locally finite refinement of ¥/ . By lemma 11, let {Va }E  be acover of X such that
each @#V_ cU, . Foreach ae A, pick a continuous function Sfoyi X—1 such

that f, (V;)=1 and f, (X —U,)=0.Now, let p,: X — I be defined by
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Fo )

pa (‘x)= zﬂe/\fﬁ (x)°

for each xe X . (Clearly, p, (x) is continuous because,

locally, X5 fg (x) is a finite sum.) It follows that @ ={p_},., is a locally finite
partition of unity subordinated to }{ ; therefore € is also subordinated to I/ .

(b) implies (c): This is obvious.

(c) implies (a): We are going to use Theorem 8; hence, we must first check that X
is regular. (Let U be an open subset of X and let u€ U . Then, {U, X —{u}} is an
open cover of X; hence, there exists a partition of unity {p,, p,} subordinated to it;

say p, (X -U)=0 and p, (u)=0. Then, p, (u)=1, because p, (u)+ p, (u)=1.

Then 0= p;" (]%, 1[) is an open neighborhood of u whose closure is contained in U;

indeed, 0" cp;" ([3,1]) €U )
Let }{ be an open cover of X and € a partition of unity subordinated to }{ . For

each i€ N ,let I/ be the collection of all sets of the form § (p, i) ={xe X | p (x) > %} ,
with pe @ . Let ¥ =7, ¥/ . Clearly ¥ isan open refinement of X . (Certainly, each
S(p.i)= p"' ( ]%, 1]) is open. Also, foreach x€ X , there exists some pe £ such

that p (x) #0 and this p vanishes outside of some UU € /{ . Then xe S (p, )c Vel .)
Also, each U is locally finite: Let x,€ X . Pick p,,...,p, € @ such that

p () +..+p, (x0)>l—2li (recall that Zl,egp(x(,)=l and p(x,)#0 for only -
finitely many pe @) and then pick a neighborhood N of x, such that

p()+...+p, (x)>1] -! forall xe N (note that p, +...+ p, is a continuous

function). It follows that N intersects only the elements S (p,,i),...,S (p,,i) of 1{
(suppose that N intersects some S (p,i) with p#p,....p,: then
() +...+p, N+ px)>( —;) + ; =1, a contradiction) and, therefore, that 1,/
is locally finite.

Consequently, V is an open 0 —locally finite refinement of /{ . This implies that X
is paracompact, by Theorem 8(b).

Partitions of unity are extremely useful in many areas of mathematics. They are
crucial in the theory of continuous (differentiable) extensions of continuous
(differentiable) functions. (A bit of this theory, but a very important one, is Tietze's

Extension Theorem, which appears in exs. 24 and 25.) They are also very useful in
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embeddings but, unfortunately, these and other applications of partitions of unity are

extremely technical. We content ourselves with an interesting, but weak, application.

14. Definition. A Hausdorff space X is called an m -manifold if each x€ X has
an open neighborhood that is homemorphic to the m -Euclidean space E™ (or,
equivalently, to the open m -ball B™).

The projective plane, the Klein bottle and the 2-sphere S° are examples of 2-

manifolds (of course, E? is another example). The MObius band is not a 2-manifold,
because it has boundary or edge points. It is known as a 2-manifold with boundary.

15. Theorem. If X is a compact m-manifold then X can be embedded in E", for

some n.

Proof. Let {U,,...,U,} be afinite open cover of X such that each U, is homeo-
morphic to E™ ;say g, :U, —> E™ is a homeomorphism. Since X is
paracompact, by Theorem 13, let {py,...,P,} be a partition of unity subordinated
to {U,,...,U,}; without loss of generality let us assume that each p, (X ~U,)

=0=(0,0,...,0) E” . For each i, let h,: X — E" be defined by

p; (x) g; (x), for xeU,,

h (x)=4_
0, for xe X -U,.

(note that A, (x) is a product of a real number p, (x) and an m-tuple 8; (x)€ £ ™.

Clearly each A, is a continuous function.

Finally, let w: X — (I1%, E')x(IT%, E™) be defined by

W ()= (P (Dreens Py (XD, 1y (KB, (X))

Clearly ¥ is continuous (see Theorem 2.3). Next we show that ¥ is one-to-one:
Suppose ¥ (x)=y (). Then p; (x)=p, (y) and h (x)=h, (y), for i=1,...,n.
Since X p; (x)=1, there exist some j such that p; (y)=p; (x)>0, which implies

that x, ye U . Then
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pi) g, )=h (Xy=h; (y)=p;(y) g; (¥)

which implies that g, (x) =g, (y) . Since 8; is a homeomorphism, we getthat x = y ;

that is, ¥ is one-to-one.
Clearly, ¥ is a quotient function (see Theorem 3.7). Therefore one easily sees
that ¥ is a homeomorphism (see ex. 2.13).

This result is indeed a weak one. It is known that any compact m-manifold can be
embedded in E*”*' It is easily seen that, in Theorem 15, n > 2m + 1 . For example,
the 2-sphere S ? is the union of two open sets U, and U, which are homomorphic to
E? (for example, let U, = $* — {south pole} and U, =S?* — {north pole}). Then,
by Theorem 15, S? is embedded in E°. Of course, S? is naturally embedded in E’.

Also note that the proof of Theorem 15, with obvious changes, also proves that

every compact Hausdorff locally Euclidean space X (i.e., each point of X has an open

neighborhood which is homeomorphic to some Euclidean space — not necessarily the

same one for all points) is (homeomorphic to) a subspace of some Euclidean space.

Chapter 7. Exercises.

1. Show that a 7; — space is normal iff each finite open cover J{ of X has a finite open

refinement V such that V™ ={V "IV eV} also refines X . (Hint: Use induction.)

2. Show that a closed subspace of a normal space is normal. (False for open subspaces
— see ex. 7(¢).)

3. Show that a closed subspace of a paracompact space is paracompact. (False for

open subspaces — see ex. 7(c).)

4. Let X be the space of ex. 1.27. We already know that X is not metrizable. Show that
X is normal. (Hint: Let A and B be disjoint closed subsets of X. There are two cases to

consider, Case |. pg AU B: Then A and B are also open sets. Case 2. p€ A (hence
p& B). Then B is finite and open and X — B is also open ... .)

5. Let X be a regular Lindelof space. Show that X is paracompact. (Hint: Theorem
8(b).)

6. Show that a paracompact separable space is Lindel6f. (Hint: Let D be a countable
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dense subset of X. Let /{ be any open cover of X and V' an open locally finite
refinement of /{ . Show that }/ is countable: In how many V € V/ can an element of

D be? Then find a countable subcover of }/: Foreach V e I/ pick U € U such that
VcU,.)

7.Let (E',J,) be the Sorgenfrey line (see ex. 1.3). Show that (E', g,) is paracompact.
(Hint: See ex. 1.28 and 5.)
8. Again, let X be the space of ex. 1.27.

(a) Show that X is compact Hausdorff; hence paracompact and normal.

(b) X x X is compact Hausdortf; hence paracompact and normal.

(c) The subspace ¥ =X XX —{(p, p)} of X XX is not normal. (Hint:
let A=(X ~{phx{p} and B={p}x(X —{p}). Note

that a neighborhood U of B consists of all points of ¥ — A, except for
finitely many points of each horizontal line X x{u} with ue X —{p}.

ey — = p(p,u)

B

L

Pick a countably infinite subset S ={v,,...,v,,...} of X —{p} and let
V, ={v,} x X — {finitely many points of X X X}, for i€ N . Then

vV =U,V, =8xX - {countably many points of X XX }. Now, show
that U (1V #0. Therefore, each neighborhood of A intersects each
neighborhood of B.

(d) Yisopenin X X X . (Therefore open subsets of normal or
paracompact spaces are not always normal or paracompact!)

(e) Y is regular (see ex. 3.18(c)).
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9. (Variations on Urysohn’s Lemma.) Show that Urysohn’s Lemma remains valid if

(a) 11is replaced by any closed interval {a, b]. (Hint: Use the
homeomorphism A: /! —|a,b], defined by A(t)=ta+(-1)b.)

(b) 1is replaced by any open interval Ja,b|[, 0 and / are replaced by

some points p, g€ | a, b[, respectively.

10. Show that the real line E', with the usual topology is not compact (try the cover

{1-n,n{ine N}), but it is paracompact.
11. Prove that, for a 7, — space X, the following are equivalent:

(a) X is normal.

(b) Every locally finite open cover ¥ ={U },., of X has an open

refinement V ={V,} _, such that each ¢ » vV, cU,-

Sketch of Proof. It is easily seen that (a) implies (b) since, for disjoint
closed subsets A and B of X, {X — A, X — B} is an open locally finite cover

of X.

(b) implies (a). Let < be a well-order for A and let O denote the
first element of A (with respect to =<). We will use the Transfinite
Induction Theorem (see 0.20). Let L, = X ~U{U,lae A,a#0}. L, isa
closed (maybe L, = 0) subset of U, . Pick nonempty open set H, c X
such that Ly c H,c H; cU,. Then (H,}U{U,lae A, 20} is an

open cover of X. Assume that we have defined nonempty open sets
H, < X, forall @< some 3, such that

@ UHUUU,=X,

o =xa axo
(i) Hy,cH,cU,-

Let Ly=X-(U H,U U U,). L; is a closed subset of U, (why?).
o<f B=a



Normality and Paracompactness 161

Pick a nonempty open set H, such that Ly c Hy Cc Hy < Up.

By Transfinite induction, we can then find nonempty open H
ve€ A |, which satisfy (i) and (ii) above. It remains to prove that {H )},

covers X. Say x&€ X isanelementof U, ,...,U,

s only. (Why can we
say this? Have we used local finiteness or something weaker?), Let

o, =max{c,,...,c0,}. Then xe X - U U, ;hence xe U H, (why?).

=< o, asa,
12. Let ¥ =(E?, y) be the Sorgentfrey plane (see ex. 1.7). Show that

(a) Yis separable (see ex. 3.19),

(b) Y is not Lindelof. (Hint: Clearly the set A={(x, y)eYly=—x} is
closedin Y. Let  ={Y — A} U{[x, x+1[x[y, y+1[ly==x}. i has

no countable subcover!)

(c) The product of Lindel6f spaces may fail to be Lindelof. (Hint: Note
that ¥ = X x X , where X is the Sorgenfrey line.)

(d) Y is not paracompact (see ex. 6). Therefore, the product of
paracompact spaces may fail to be paracompact (see ex. 7). As a matter of
fact, Y is not normal but this is much harder to see.

13. Let X be Hausdorff. Suppose there exists a countable open cover {U, | n€ N} of

X such thateach U is compactand U, c U
Use Theorem 8(b).)

a+1 - Show that X is paracompact. (Hint:

14. Let X be a paracompact space and Y a compact Hausdorff space. Show that X XY
is paracompact. (Hint: The key idea and picture appear in the proof of Theorem 3.8.)

15. Is every locally compact Hausdorff space paracompact (see ex. 8)?

16. A normal space X is called perfectly normal if each closed subset A of X is the
intersection of a countably many open subsets of X (i.e., A is a G; — set); equivalently,
each open subset U of X is the union of countably many closed subsets of X (i.e., U is

an F, ~set). Prove that if U is an open F, —subset of X then there exists a continuous

function f:X — /7 such that f™' (0)=X —U . (Hint: Say U =U7_, A, with each
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A, closed. By Urysohn’s Lemma, pick continuous functions f, : X — I such that
fu(Ap=1and f, (X -U)=0.Finallylet f (x)=27_,27" f, (x),foreach x€ X .
Then

() 0<f (x)<1, foreach xe X ,

(i1) fis continuous,
(iit) f*' (0)=X~U ,since xe U implies x€ some A, and, hence,
Jo (xy=1.

7. Show that the space of ex. 1.27 is not perfectly normal. Indeed, show that the set

{p} is nota Gz — set.

18. Show that every metric space (X, d) has a G—discrete base (i.e., a base which is
a o—discrete cover of X). (Hint: For each n, let #, ={B (x, %) Ixe X} and let /5” be a
O—discrete open refinement of l{n , see the proof of Theorem 9. Then ¥ =UJ5,_ 4, is

a g—discrete base for X.)
19. Show that a regular space X is metrizable iff X has a 0— discrete base.

Sketch of a Proof. The only if part that follows from ex. 18,
For the if part there are many steps. Let ¥ =lJ, &, be a 0 —discrete base for X.

(1) X is paracompact (hence normal): Every open cover Jf of X has a
refinement #'=U, K/, with §” c & . Now use Theorem 8(b).

(2) X is perfectly normal. Let U open in X. For each n, let
A,=U{B"IBe K, and B~ cU}. Theneach A is closed, by Lemma

6(b), and U =, A, (X is regular!).

n=l

(3) Foreach Be K, and ne N, let f, : X — I be a continuous

function such that f;! (0)= X — B (see ex. 16). Then, for all x, ye X , let
£y (X, y):SupBeIJ’" IfB (x)_fB (Y)'

and
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pxy)=X,27" p, (xy)
(Note that, for each x, ye X and ne N, there exists at most two
elements B,, B, € K, to which x and y may belong. Then, p, (x, y)=
sup {1 fp ()~ fy (DL fy (X)= f5 (¥)1}.) It is easily checked that p
is a metric. (Indeed each P, satisfies all properties of a metric, except that

P, (x, y)=0 does not necessarily imply x = y ; furthermore, each

p,<1)

(4) Each ball B (x,€) is the union of elements of & :Let ye B (x,€).

Say p(x,y)=4 and 0< b =€ - pu . Since

Sr L 2 pw, )<, 27 =27 forall w,ze X, there exists integer

msuch that 2, 27" p, (w, 2) <§ ,forall w, ze X . For
j=1,...,m~1, pick elements B,,...,B, | of § (B, not necessarily in
K ) such that p; (y,2)< g, forall ze B;, j=1,...,m—1 (use the

continuity of the functions f g and the discreteness of each Ié’j ; note that y

is in at most one B™ such that Be ¥,).

Then, letting B=8,(1...NB we get that, foreach ze B,

m-=1>

PSP LN+ IZIL 27 p, (e 2+ T, 27" p, (x,2) <€ that
is, xe Bc B(x,€) with Be K.

(5) Each Be A is a union of p—balls: Let Be B’k and pick x€ B.
Then, fo (X)=£€>0. Show that B (x, 2"‘8) c B (observe that
p; (x, y)<e€ implies that ye B and p (x. y)<2*e implies that

P (X, y)<e).

To complete the proof, apply Lemma 1.20.

20. Show that a regular space X is metrizable iff X has a ¢ ~locally finite base. (Hint:
Follow the method of proof of ex. 19, exercising a bit more care for the if part.)
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21. Show that, for a regular space X, the following are equivalent:

(a) X is metrizable.

{b) X has a ¢ -discrete base.

(c) X has a O -locally finite base.

(Hint: See ex. 19 and 20.)

22. A cover }{ of a space X is called closure-preserving if, for each V c i,
U{V™ IV e ¥}. Show that X is paracompact implies that every open cover of X has an

open closure-preserving refinement. (The converse is true but the proof is horrendous.)

23. Let J{ and ¥ be covers of a space X. }{ isa A -refinement of V if, for each
xe X, U{UeHixeU}c some Vel (U{Ue Hixe U} is generally denoted by
st (x, ) and called the star of x with respect to /). Show that X is paracompact
implies that every open cover of X has an open A -refinement. (The converse is true

but the proof is quite difficult.) (Sketch of a proof. Let i be an open cover of X, V

an open locally finite refinement of X, 1/ a closed cover of X such that VeV for

each V€V (see Lemma I1). For each finite subcollection 7 ={V,,...,V.} of ¥, let
w@ =V, N..NV,)-U{V'Ive7}.
Let W ={w(7)17 is a finite subcollection of V}. Then

(i) W is an open cover of X,
(iiy xeV, cf/(_; cV, implies st (x, W)V,

(iii) W/ is locally finite.)

24. (Tietze’s Extension Theorem.) A space X is normal iff, whenever A is a closed
subset of X and f:A — I is continuous, there exists a continuous f:X =1 such
that f 1A= f (ie., f is a continuous extension of fto all of X). (Hint: The if part is

obvious since, given disjoint closed subsets C and B of X, the function f:CUB — I
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such that f(C)=0 and f (8)=1 is continuous. Therefore,.... The proof of the
only if partis hard: Let A, ={xe Al f (x)< %} and B, ={xe Al f (x)< %} . Applying
Urysohn’s Lemma (see ex. 4.9), there exists a continuous f,: X —)[;, %] such that
£ (A,)=% and f (B,)=§ . Clearly, foreach ae A, | f (a)- f (a)IS% and, hence,
g, =f—f mapsAto [0, %]. Repeating the process of removing middle thirds, with
g, instead of f and [0,4] instead of [0,1], let A,={xreAlg (<1},
B, ={xe Alg, ()<} andfind f,: X -1y, 2] suchthat f, (A))=1, f, (B))=1.
Clearly |(f = )= fo =1 f = (fi + £)1<(3)* on A,

Inductively, one then obtains continuous functions f;: X — [0, %] c[0,1] such

that | f (@)— 2o [ (a)IS(%)",for all ae A (i.e., {Z}- fi}, converges uniformly
to fon A).

Define f:X — E' by f (x)=27, f; (x), and show that
(a) 0 f (x)<1, for each x€ X (geometric series!),
(b) ?(a)=f {a), for each a€ A,

(c) 7 is continuous. (For x€ X and € >0, pick integer m such that
Tma (3)" <% Pick neighborhoods U, of x, for i =1,...,m, such that
ye U, implies | f; (x)—- f; (y)l<%".Let U=U,N...NU,, and show
that ye U ==>1f (x)— f (y)I<€.)

25. (Variations on Tietze’s Extension Theorem.) Show that Tietze’s Extension Theorem
remains valid if

(a) 1 is replaced by any closed interval [a, b]. (Hint: Use the
homeomorphism A:l —{a, b], defined by h(t)=ta+(1-1)b.)
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(b) [ is replaced by any open interval ¢, b| . (Hint: Suffices to consider
fiA= =111, 1] (why?). From (a) extend fto f:X —[~1,1].
Let Ay={xe X| fxy==lorl}. Clearly A and A, are disjoint closed

subsets of X. Pick continuous g: X — [ such that g (A0)=_% and

¢ (A)=1 (why?). Define f:X — 1 by f (x)=g (x) f (x). Show that

?:X —]-L11, 7 continuous and _')‘v'lAzf J



Chapter 8

The Fundamental Group

It is intuitively obvious that no amount of stretching, shrinking and deforming, without

tearing or gluing, will transform a closed disc into an annulus; that is, the annulus

and the closed disc are not homeomorphic. The same comments apply to the 2-sphere
and the torus. Yet, these highly intuitive facts are equally difficult to prove; both pairs
of spaces are compact metrizable, connected, locally connected and arcwise connected;
both pairs are even locally homeomorphic.

In the search for a proof that these pairs of spaces, and many other pairs, are not
homeomorphic, it is interesting to observe that any two rubber bands laid out on the
surface of the closed disc or the sphere can be continuously deformed into each other
by stretching, shrinking, bending and gluing, without tearing. The same cannot be said
about the annulus or the torus: Consider a rubber band laid on the inner rim of the
annulus and one that does not surround this rim; also consider a rubber band around
the outer hole of the torus and one around the inner hole of the torus.

Let us give this simple observation precise mathematical form and reap some of its

many powerful benefits.

8.1 Description of [], (X, b)
1. Definition. Let X be a topological space and let b,c,de X .

(a) A loop basedatbisapath a:1 — X suchthat a (O)=b=a (1).
(Here is the rubber band!)

167
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(b) Two paths ¢¢ and B from c to d are homotopic (i.e., & - B)

provided that there exists a continuous map h:{x ] — X such that
A, =), ht,h=p@), h(O.1)=c,h(l,t)=d , for te [ . (There is
the continuous deformation!). The map h is called a homotopy from ¢ to
B.Mfc=d.a - B becomesa ; .

cd
(c) Let o be a path from x, to x, and B be a path from x, to x,.Then

the product of ¢ and f3 is the path @ * 8 from x, to x,, defined by

o (21), 0<t <1,

a*ﬂ(t)z{ﬂ(zt_]), 1/2<r<l.

(Clearly, a * 8 is well-defined and continuous!)

(d) The reverse of the path ¢ is the path ", defined by o’ (1) = (1-1).
(e) (X, b) denotes the set of all loops on X based at b.

Note that the product of two paths amounts to no more than travelling through
both with twice the original velocity, while the reverse of a path is no more than travelling
on the same path in the opposite direction. Definitely, the reverse of a path is not

related to the concept of the inverse function.
Also, note that if C, is the arcwise connected component of X which contains the
point b, then Q (X, b) = Q (C,, b) ; furthermore, &, B € Q (X, b) are homotopic if and

only if there exists a path in Q (X, b), with respect to the co topology, from & to 3
(see ex. I).

2. Lemma. i 1s an equivalence relation on (X, b).
/]
Proof. Clearly, o ; &, foreach ae Q(X,b). Say ¢ ; . Let h be a homotopy

from o to B . Letting &’ (s,t)=h(s,1—1), for each (s,1)€ I XI, we immediately

get that A’ is a homotopy from 8 to & . Therefore, ; B iff B ; a. Finally,
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suppose ¢ - B and B . y.Say h, is a homotopy from & to B and b, isa

homotopy from B to Y. Define h:I/xI— X by

Y
h,

By (s, 2 <i< B
hipno 620 0sisi2 .
Ty (s, 2t =1), 1/2<e<1. ‘

o

It is clear that & is a homotopy from & to ¥ ; therefore a ; B, B; ¥ implies B 7.
Let [1, (Y, b) denote the set of ; -equivalence classes of Q (Y, b) and define an
operation ® on this set by

la] » [B] = [a*B]

([y] denotes the equivalence class of the loop ¥ ).

We will now show that the operation e on [1; (¥, b) is well-defined and makes

[1, (¥, b) into an algebraic group.

3. Lemma. The operation e on [I, (Y, b) is well-defined (i.e., if [F]=[f] and
[Gl=[g] then [f * g]=[F *G])).

Proof. Suffices to show that if F ; f and G ; g then F*G ; f*g.So,let h, h,

be homotopies such that &, (x,0) = F (x), iy(x,1) = f (x) b (0,1)=b=h (1,1)
hy (x,0)=G (x), by (x,1)=g (x) h, (0,£)=b=h, (1,¢t), and define h:IxI =Y by

f 8
h (2x,1), 0<x<1/2
h(x,t)=
h, 2x=1,1), 12 x<1. h hy
F G

It is easily seen that / is a homotopy between F*G and f *g . Hence “e” is

well-defined and single-valued.
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4. Lemma. The operation “®” on [], (Y, b) is associative.

Proof. Clearly, it suffices to prove that (f*g)*h ; f*(g*h) for any
f.8.he Q(Y,b). Note that

f(4x), 0Lx<1/,
(f*g)*rh(x)=qg dx=-1), V4<x<1/2,
hQ2x-1), 1122x<1,

f (2x), 0<x<1/2,
J*r(g*h)(x)={g (4x-2), 1122 x<3/4,
h(4x-3), 3/4=2x<1.

Now, we define H : IxXI —Y by

fy, 1<4x-1,

t+1

Hx,t)=<g@x-t~-1), 4x-12t>4x-12,

h(iz‘_’,;%), 4x—22>1.

Note that H is constant along any segment of line in the middle strip which is parallel
to the line t =4 x—1.

t ~ axis

f
AR N
i
|

f /] & &
t24xf1
t<4x-
ANAE

fr(g*h)

354

It is then easily (but tediously) seen that H is a homotopy between (f * g)*h and
F*(g*h).
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5. Lemma. If ¢, is the constant map from / to b then [c,] is the identity element
of [T, (¥,b).

Proof. It suffices to prove that for each fe Q(Y,b), f*c, ; f . So, define
H:IxI—Y by

2x
22, 12 2x—1,
Hxnll G 122
b, t<2x-1.

It —axis

t22x—1

f Ch

6. Lemma. If [f]e[l, (Y,b) then [f]e[f"]=[c,] (ie., each element of

[T, (¥, b) has an inverse in [, (Y,b) with respect to the operation “® ™).

Proof. It suffices to show that f* ' c,, where

J (@2x), 0<x<1/2,

1 (x)={f" 2x-D=f(2-2x), I2sx<l

Simply define H:IxI =Y by
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f(2x), t<1-2xand 0L x <172,
H)={f(-=g ), t21-2x and 0<x<1/2,

f2-2x), t<2x—-1and 1/2<x <.

I't —axis

§

i

I

1

' (.h

t22x41 fH22x—1

———————— ; . - - ------ x-—axis

7. Theorem. For any space Yand be Y, (I, (Y, b), @) is a group.
Proof. Immediate from Lemmas 3 through 6.

The group I1, (Y, b) is called the first homotopy group (or the fundamental group)
of Y with base point b. Fortunately, for a very large class of spaces, different base
points yield isomorphic fundamental groups. Later on (see ex. 2) we will see that the
next result is best possible.

8. Lemma. Let b,ce X and ¥ be an arc from b to ¢. Then

n, (X,b)EH, (X,0).
Proof. Define 7, :1I1, (X,b) > 11, (X,¢) by 4 [(@)I=[y" *o*¥]. Note that
Ve (la*xB) =y xaxBry]=|y saxy*ry «B*ry]=

[y =axyle[y" * Bxyl=y,([a]) ey, ([B]).
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which shows that ¥, is a homomorphism. Clearly ¥, is one-to-one and onto (indeed,

(¥#)" =" ) ); hence ¥, is an isomorphism.

Lemma 8 tells us that each arcwise connected space has one and only one (up to
isomorphism) fundamental group and that to study the fundamental groups of any space
it suffices to study the fundamental groups of each arcwise connected components of
that space. For arcwise connected spaces X, it is customary to let [, (X, ) =11, (x),

since the fundamental group does not depend on the base point.

8.2 Elementary Facts about I, (X, b)

The justification for the following definition will soon become apparent.
9. Definition. Let X and Y be spaces and pick be X .

(a) Two continuous maps f, g: X — Y are homotopic (i.e., f~8)
provided that there exists a continuous map #: X x/ — Y such that
h1 X x{0}= f and h! X x{1} =g . The map 4 is called a homotopy from f

tog(ie, h:f~g).

(b) If £:X —Y isa continuous map, let f,:I1, (X,b)>II, (Y, f (b))
be defined by f, ([a])=[f-a].

(¢) X and Y are of the same homotopy type if there exist continuous maps

f:X—>Y,g:¥Y—> X suchthat go f ~iy and fog~iy,.
(d) Xis contractible if iy ~c,, forsome be X .

It is obvious that (ix ). =ify, (x.s . Also, a contractible space is arcwise connected

(let h:i, ~c, andc, de X ;define a:/ — X by

{h (c, 21), t<12,
a(t)=
h(d,2(1-0), 12172,

10. Lemma. The function f, :I1, (X,5) >[I, (¥, f (b)) of Definition 9(b) is a

homomorphism.
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Proof. Note that, for [o],[B]e [], (X, b),
folade[Bl)=fi ([axB)=[fo(a*B)I=[(fea)*x(foB)]=
[foalelfoB)=fi(laD)f(IB]).

11. Theorem. LetX, Y, Zbe arcwise connected spaces and pick be X ; let f,

g:X =Y and h:Y — Z be continuous maps. Then
@) (o fli=hoof.

(b) If h: f ~ g then g, =0 o f,, where 0 =h|{b}xI is the path from
f(b) to g (b). (See proof of Lemma 8.)

(c) If X and Y are of the same homotopy type then [1, (X) =11, (¥).
Proof. Part (a). Let (a]e [1, (X,b). Then
(ho ). (la])=lho foal=h, (If cal)=h, o f, (la]).

Part (b). Let [a]ell, (X,b). Note that g, ([a])=[gea] and

0,0 f. (la])=[0" * f o0 ]; therefore, we must show that 0 "* f o *C ;;)goa:
g

First, define h, :IxXI —>Y by h (s,t)=h(a(s),t), and note that A, : foo~gort

such that &, {0} x/ =0 =h 1{l} x/ . From the diagram

8ol
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it is easy to obtain an analytic expression for a homotopy #, : 0" * foot*G g'(-;)g ox
(see ex. 3).

Part(c).Let f: X =Y and g:Y — X be continuous maps such that iy ~go f
and also i, ~fog. It follows that f,:[I,(X,p)>II, (¥, f () and
g I (Y, f ) —II (X, g f (b)) and also, from (b), g °fi=(g°f)=
G,0(iy). =0, foog.=(fog).=%,0(,). =7,, Where o, and 7y, are
isomorphisms; therefore, g, o f, =o, implies that g, is onto and f, is 1 —1, while
Jf.° 8. =V, impliesthat g, is 1 —1and f, is onto, which shows that f, and g, are
isomorphisms. From Lemma 8 we get that [, (X) =], (Y).

12. Corollary. The following is true.

(a) If X is contractible then [, (X)=1 (i.e., the trivial group consisting of

the unit element only, the double meaning of ! will be clear from the
context).

() I, (E*,0)=1.

Proof. Part (a) follows immediately from Theorem 11(c), since I, ({6},b)=1, for

any singleton {b} . Part (b) follows immediately from (a), since E” is contractible
(note that h: E"x1 — E", defined by h (x,¢) =t x, is a homotopy from the identity

map i, to the constant map C,).

8.3 Simplicial Complexes

While it is easy to define the fundamental group of a space it is extremely difficult
to determine the structure of that group, unless that space is a nice union of nice
subspaces. Fortunately, most common spaces are in this category which we are about
to study.

13. Definition.

(a) A set {vy,v,,...,v,} € E" is said to be convex-independent if
{v, —vg,...,v, — vy} is linearly independent.

(b) Suppose {v,,v,,...,v,} € E" is linearly independent. Then the set
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{Xr o A vI i A =1, 0< A <t for i=0,...,k}

is called the open k—simplex, with vertices vj,...,v,, and is denoted by
<Vgy,...,V, >. The closed k—simplex, with vertices vg,...,v,, consists of
<Vg,...,V; > Wwith its boundary in E” and is denoted by < VoserrsVg >+ Unless

otherwise stated, we will let 5", g",... denote a closed n -simplex.

Remark. Itis obvious that k <n+1 and easily seen that < v,...,v, >™=
{Z,’;O A v, I):f;o A, =1,0< 4 <1, for i=0,...,k}; furthermore, for each

o A vi ko Bivie<vy v >and 1€ 1, 1 500 A v+ (-0 Ziy B v =
TEoLtA +(=0) B, 1v, € <v,,...,v, > thatis, <vy,...,v, > is a convex subset of
E" . Similarly, < v,,...,v, > is aconvex subset of E". Also oAy =

ko Biv; iff 4, = B,,...,A, = B, . (The if part is obvious and the only if part goes
as follows: Note that

0= Z:{;o A~ B) v = Z:I'(=0 ('1:' - ﬁi) Vi — (E,l;o )'i - Z.l“=0 Bi) Vo

= 2:/';0 (A = B;) (v =v) -

Since {v, —vy,...,v, —Vo} is linearly independent, we then get that
A -B,=0,..,4 -B, =0, which does the trick.) Finally, note that, for

ve E"—{0)},<v>=<v>".

14. Definition. A simplicial complex (or polytope) K is a space which satisfies the
following:

(i) K =Ugep 5o such that each s, is a closed simplex,

(ii) Forevery a, Be A, s, (sp is a closed simplex.
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Remark. Let {v# }yer be the vertices of the polytope K. Then, from the preceding

remafk, xe K implies x =X x, v, , uniquely, with only finitely many x, #0.
7

(x# ) uer are called the barycentric coordinates of x in K.

Remark. Condition (i) of the preceding definition imposes severe restrictions on
the topology that K can have. One possible and extremely useful topology is the
weak topology which is defined as follows: A set U < K is open provided that

U s, isopenin s, foreach ae A. (It is easy to check that this, indeed, defines a
topology on K such that each s, is a subspace of K, because of (ii) of Definition 14;

without it we would have nonsense. See ex. 4.)

15. Definition. A simplicial complex K with the weak topology is called a
CW-polytope. Henceforth, polytopes will be assumed to have the CW -topology
whenever a topology is required.

16. Definition.

(a) A polytope K with only finitely many simplexes will be called a finite
polytope.

(b) K’ is called a subpolytope of K if K’ is a polytope and K is a
subspace of K.

17. Definition.

(a) Let K be a polytope. Foreach ne N | let K (n) be the subpolytope of K
which consists of all j -simplexes of K for j=0,...,n. K (n) is called
the n -skeieton of K.

(b) A polytope K is said to be # -dimensional if K (n)#0 and
Kn+i)=K(n),forie N.

18. Definition. A space X is said to be triangulated if X is homeomorphic to a
polytope.
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Clearly, all n -spheresand all n -balls are triangulated, since (the boundary g7-!

of) an n -ball is homeomorphic to (the boundary polytope of) an n -simplex (see
ex. 5).

19. Definition. Let K be a polytope and v a vertex of K. The star of v is the union
of all open simplexes of K having v as a vertex, and it is denoted by St v. Recall that

St v denotes the closure of St v in K.

20. Lemma. Letv be a vertex of a polytope K. Then

(a) St v is an open subset of X,
(b) St v is a subpolytope of K,
(¢) Stv={xe K| the barycentric v-coordinate of x is not zero},

(d) <vg,...,v, >c KN}, Stv,) if and only if N, Stv, 0.
Proof.

(a) For any closed simplex g c K, (K ~Stv)[] g either equals g or a closed
face of g or the empty set. Therefore K — St v is a closed subset of K.
(Indeed we have even shown that K — St v is a subpolytope of K.)

(b) Obvious. Indeed St v is the union of all closed simplexes of K having v

as a vertex.
(c) Straightforward, by the definitions of St v and of open simplex.

(d) The only if part is obvious. Let us therefore prove the if part: Clearly,
<Vg,..sV, >C K because (V7 Stv; #0 and <v,...,v, > (Vi St
because of part (c)

Observation. The union of any collection of closed simplexes contained in a
polytope K is a polytope.

21. Theorem. Let K be a polytope. A subset C of K is compact iff C is a closed
subset of a finite subpolytope of K.
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Proof. The if part is obvious. Let us therefore prove the only if part.
Let Cbe a compact subset of K and suppose C is not contained in a finite subpolytope
of K. Then there exist finite subpolytopes K, c K, c... of K with some

x,€(K,NC)-K,_,,for n=2,3,.... Then (every subsetof) B={x;1i=1,2,...} isa

closed subset of K, because K has the weak topology over its finite subpolytopes(!).

Therefore, the sequence {x;}%., has no cluster point, contradicting the fact that C is

compact. This completes the proof.
22, Corollary. A polytope is compact if and only if it is a finite polytope.
8.4 Barycentric Subdivision

23. Definition. The point of an n -simplex g" all of whose barycentric coordi-

nates equal ﬁ is called the barycenter of g" (the barycenter of a O -simplex
<g>isg).
We will write g < g” ifandonly if g’ is a proper face of g" (i.e., g' < g" and

gi ¢8" )

24. Lemma. Let s,,...,s; be proper faces of an open simplex g".Pick x, € g"

and x,€ S, for i=1,..., j. Then {x,,...,x,} is linearly independent.
Proof. Straightforward.

25. Definition. Let x,...,x, be the barycenters of all the faces s,,...,5, ofa
given closed simplex g” . The union of all simplexes<x; ,...,x; > such that

8;, <...<s; (see Lemma 24) forms a finite polytope which is called the first
barycenteric subdivision of g™ . Inductively, the n-fold barycentric subdivision of
g" is the first barycentric subdivision of the (n — 1) -fold barycentric subdivision
of g™.The n -fold barycentric subdivision of any polytope K is the polytope K®
which is obtained from K by replacing each closed simplex of K with its n -fold

barycentric subdivision.
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26. Lemma. Let K be any polytope. Then K is homeomorphic to K, for each n.

Proof. Clearly, it suffices to prove that K is homeomorphic to K . Clearly, each

closed simplex g — K is homeomorphic to g'" . Therefore, since K and K have

the weak topology, one easily sees that K is homeomorphic to K (see ex. 6).

27. Definition. The mesh of a polytope K is the supremum of the diameters of all
simplexes of K. (The mesh may be infinite!)

28. Proposition. Let A be a subset of E”. Then the diameter of A equals the
diameter of the convex hull of A (i.e., diam A = diam conv A).

Proof. Clearly, diam A < diam conv A, because A C conv A. Let diam A=§.

Then forany a€ A and € >0,conv Ac{ye E":la—yl<d+€})= B(a,d+€),
because Ac B(a,d +¢&) and B (a, d +¢€) is convex. Therefore, conv A
cN{B(a,8 +€&)lae A, € >0)}. This easily implies that diam conv A< § .

Therefore diam conv A = & .

29. Corollary. The diameter of a geometric simplex is the length of its longest 1-
face.

Proof. Immediate from Proposition 28 since a geometric simplex is the convex
hull of the set of its vertices (by its very definition).

30. Lemma. Letgbeaclosed p -simplex with diameter d. Then mesh

(l)< m
Top+l

8

Proof. (By induction). For p =0 we have a valid result. Assume the result is

valid for (n— 1) ~simplexes, with n 21, and let us show that it is valid for any n -

simplex 0 =< X,,...,x, >. By Corollary 29, the induction hypothesis and the fact

that % <L, for k <n, we need only show that the length of any 1-face of ¢ m

which starts at the barycenter L, -~ x; of o and ends at the barycenter
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n

=0 M x; ofa k -face of O (this may involve a renumbering of the vertices of

o 1) is no larger than 7':% : Note that

kK n k
[Zio 57 %~ Zizo kal—lZ,O(

] n 1 -
r'eal k+l)xi+zi="+ln+l xil—

n+l

ISk k=m) x5, + 30, (k+D) % 1=

(n+l)(k+l) (n+l)(k+l)

(k) o kD) S g s _ (k) (k+1d _ (1=k)d . nd
> >k2tx-x; 1< ZID T T S for k=0,

(Note that we proved more than we claimed — namely, a relationship between the

lengths of the I-faces of g and the 1-faces of gV .)

31. Theorem. Let K bean n -dimensional polytope with mesh K = A < oo, Then

(1))
mesh KV €= pral

Proof. Immediate from Lemma 30.

32. Theorem. Let X be an n -dimensional polytope. For any & > 0, there exists

m such that mesh K™ <§.

Proof. Let mesh K = A. By Theorem 31 and induction, we get that the mesh of

K™ <(:59)" A and lim (%)™ =0. This completes the proof,
m

8.5 Simplicial Approximation

33. Definition. Let K and L be polytopes. A map y : K — L is a simplicial map
provided that

(M y (K O)c L),

(2) Foreach pe K ,if p=3 4 v, then ¥ (P)=Z A ¥ ()

(i.e., W is linear on each simplex of K and ¥ (K) is subcomplex of L).

Clearly, each simplicial map is continuous,
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34. Definition. Let K and L be polytopes, and f: K — L a continuous function,
A simplicial map y : K — L is a simplicial approximation to fif
f(Stvyc Sty (v), foreach ve K (0).

35, Lemma. If y:K — L is a simplicial approximation to f : K — L then, for

each pe K, f (p) and y (p) lie in a common closed simplex of L.

Proof. Pick ve K (0) such that the barycentric v—coordinate of p is not zero. Then,
pe St v, which implies that f (p)e f (Stv) c Sty (v). Therefore, f (p) lies in

some open simplex of L for which y (v) is a vertex, which does the trick.

36. Corollary. If y:K — L is a simplicial approximation to f: K — L then
d,(f,w)< mesh L.

37. Lemma. If f:K — L is asimplicial map and ¥ : K — L is a simplicial

approximation of fthen ¥ = f .
Proof. wIK (0)=f1K(0).

38. Theorem. Let ¥ be a simplicial approximationto f:K — L. If K’ isa
subcomplex of K such that f 1K’ is a simplicial map, then there exists a homotopy

h: f~y (fix K') (ie., h(x,t)= f (x)=y (x), forall xe K').

Proof. Define h: K xXI — L by h(x,t)=ty (x)+(1—1) f (x). By Lemma 35, h
is a well-defined map into L. Clearly, 4 is a homotopy between fand ¥ . Also, h is

stationary on K’ because of Lemma 37.

39. Lemma. Let f:K — L be acontinuous map and ¥ : K (0) - L (0) bea
vertex map. Then ¥ can be extended to a simplicial approximation to fif and only if
f(Stv)c Sty (v), foreach ve K (0).

Proof. Since the only if part is obvious, let us prove the if part. We must show that

Y satisfies Definition 33(b): Pick <vj,...,v, > K. Then, by Lemma 20(d) and the
hypothesis, 0 f (<vg,...,v, >) < f (Vg Stv,))c Nig f (Stv;)
<Ny Sty (v;) . Therefore, by Lemma 20(d), <y (vy),....y (v,)>" < L.
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40. Theorem. Let K be a finite polytope, L any polytope and f: K — L acon-

tinuous map. Then there exists a subdivision K~ of K (not necessarily a barycentric

subdivision) and a simplicial map y: K" — L such that ¥ is a simplicial approxi-

mation to f.

Proof. By Lemma 20(a) and the continuity of f, V ={f ™' (St v)Ive L(0)} is an

open cover of K. Since K is a compact metric space (see Corollary 22) 7/ has a
Lebesgue number & >0 (see ex. 3.13). Choose K™ so that mesh K* <8 /2 (see
Theorem 32). Then diam ¢ <6 / 2, for each open simplex ¢ < K hence,

St wc B (w, 8), for each we K~ (0) . Therefore, for each we K (0), there exists
v (w)e L (0) such that St wc B (w,8)c £~ (St v(w)). Define v:K"(0)— L(0)
by ¥ (w)=v (w).Then f (Stw)c Sty (w), foreach we K* (0), and we can

therefore extend ¥ to a simplicial approximation ¥ of f, by Lemma 39, which
completes the proof.

41. Corollary. Let f:K — L be continuous with K finite and L a finite dimen-
sional polytope. Then, for each € >0, there exists (barycentric) subdivisions K ™

of Kand I'™ of L and a simplicial approximation y : K — L™ to fsuch that
d, (f.y)<e.

Proof. By Theorem 32, pick '™ such that mesh 'V <g . Then f:K — L™ is

continuous, by Lemma 26. Therefore, by Theorem 40, there exists K and a

simplicial approximation y : K — [™ to f. By Corollary 36,

d, (f,¥)< mesh '™ <¢.

8.6 The Fundamental Group of Polytopes

Theorem 40 shows that one may study the homotopy groups of a polytope by
considering only simplicial maps and their homotopy properties. This simple observation
enables one to effectively compute the fundamental homotopy group of many spaces.

42. Definition. Let K and L be polytopes and y, p: K — L be simplicial maps.

¥ and U are contiguous if, for each <v;,...,v, > K,
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<W (VO)"--’W(vk)’#(VO)’---nu' (vk)>CL-

The maps ¥ and U are contiguous equivalent (i.e., ¥ ~ U if there exists a

finite sequence y,,...y, : K — L of simplicial maps such that ¥ =W, L=V, and

V,_, contiguousto ¥, , for i=1,... k.

43. Lemma. Let K and L be polytopes and f: K — L a continuous map. If

W, i K — L are simplicial approximations of fthen ¥ and l are contiguous.
Proof. This is an easy consequence of Lemma 20(d).

44. Lemma. Suppose y, i: K — L are contiguous simplicial maps and let
A={xe Kly (x)=p (x)}. Then ¥ ~ U (fix A).

Proof. Note that, for each pe K, v (p) and u (p) lie in a common simplex of L.
Define h: K xI! — L by

h(x,) ==y () +1t 1 (x).
It is easily seen that 4 is the desired homotopy.
45. Corollary. Contiguous equivalent simplicial maps are homotopic.

46. Theorem. Let K be a finite polytope and L any polytope. Let f,, f,: K = L
be continuous maps and A ={xe K| f, (x) = f, (x)}. Suppose that there exists a

homotopy h: f, ~ f, (tix A). Then, for some n, there exist simplicial maps

Yo, 7, : K™ — L such that
(a) 7; is a simplicial approximation of f, for j=0,1,
®) vy L7

Proof. By Lemma 20(a) and continuity of 4, {1~ (St w)|we L (0)} is an open

coverof K x [ .Since K xI isacompact metric space there exists § >0 such that
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each B (x,8)c h™ (St w), for some we L (0). Choose barycentric subdivisions

K™ of Kand I'® of I fine enough that St vXx[j~ Lk, j+ ]—k] is contained in a ball
2 2
of radius & and, therefore, it is contained in some h~' (St w), (note that the vertices

k. . . .
of I'® are 0, lT’ 2_1:-‘ 1). Since K™ xI™® is clearly homeomorphic to a
2 2

CW - polytope with vertices (v, -iT), for ve K™ (0) and i =0,...,2*, and
2

i+]

St v,y Stvx[ZL, e some A7 (St w)
2k PLINPL ’

there exists, by Lemma 39, a simplicial approximation g : K™ x 1%’ — L of h. Note

that, by Lemma 39,

Stvx [T e h™ (Stp (v, ).
2" 2 2

Let w; =puiK™ X{Lk}, for i =0,...,2*. Then, letting P=V, ¢,= Moo ¢, isa
2
simplicial approximation of f ;, for j=0,1. Furthermore, ¢, ¢ ¢, because V¥, is

contiguous to ¥, (,for j = 0,..., 2¥ — 1 : Pick any simplex < v,,...,v, >e K™ .Then

i+

Moo St v, ‘;T) NN Stp v, ~27(—) )

o i (St vjx[iz‘;‘,gk—'l)nn_";o h(Stv; XLy %f;])nh(& v X[zik,;i,:])ﬂ,

and this shows that <¥; (Vo)s--.s¥W; (), Wi (Vo)se- W4y (v,) > < L therefore Y,
is contiguous to ¥; .
47. Definition. Let K be a polytope.

(a) An ordered pair | v, v, | of vertices of K is called an edge of K with

origin v, andend v,.If e=lv, v, | then e”' =lv, v, 1.
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(b) A route in K is a finite sequence w=e, e, ...e, of edges of K such that
the origin of €;,, istheend of ¢, ,for i =1,...,n—1. The origin of e, is

the origin of @ and the end of e is the end of @ .

(c) Giventworoutes w=e, e,...¢, and T=d, d,...d,, with the end of w

n

equal to the origin of 7, we define the product @7 by
wT=e¢e,..edd,. . .d,.

(d) The inverse of atoute w=v¢, e,...e, is @™ =¢;',...¢7".

(e) For any three vertices v,,v,, v, of a simplex of K, we say that

bv; vy Hvy vo 1 is edge equivalent to v, vy | Two routes @ and T are edge

equivalent (i.e., ® £t ) if T can be obtained from @ by a sequence of
elementary edge equivalences.

48. Theorem. Let K be a polytope and y, a vertex of K. Let E (K, v,) be the set
of edge equivalence classes of routes of K with origin and end at y,. Then E (K, v,)

is a group, with identity | v, v, I, under the operation of multiplication and inverse

defined above. (E (K, v,) is called the edge path group of (K, v;) )

Proof. Straightforward.
By its very definition, the edge path group of (K, v,) depends only on the simplexes
of K and not on the topology of K.

49. Theorem. Let K be a polytope and v, a vertex of K. Then E (K, v,) and

I1, (K, v,) are isomorphic groups.

Proof. We define homomorphisms #: E (K, vy) - 1, (K, v,) and
g:I1, (K, vg) = E(K,vy) suchthat goh=1gx , ,and hog =1y (g y,,- This

will show that both g and A are isomorphisms.

The construction of h: Let [w]le E(K,v,). Then @=lvyv v v,|

vy vyle-lv, v, |, with v, =v,, for some {vp,...,v,} © K . Regard I as a complex
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n~l

with vertices {0, %’T 1} and consider the vertex map @ : I (0) = K (0) defined

by @ (jlk)=v;, for j=0,...,n.Since @ is a route, extend @ to a simplicial map

@ : I — K (we use the same symbol!). Let A ([@])=[®@ ]. Since wit implies that
@ 5 7 (by Corollary 45), we get that & is well-defined. It is also easily seen that 4 is a
homomorphism (If w =¢,...¢, and T=d,...d, are routes with origin and end v,
we define a homotopy between @7 and @WT by changing the travelling time of the

e, and d, from - to

1 . .
7+ 10 5p and -, respectively, in the homotopy square).

The construction of g: Pick [a]e I1, (K, v,) and some simplicial approximation
Wo 1" — K of &, for some subdivision {0, .,...,"~,1} of /. Then ¥, 5 @ and

¥, defines an edge path 1,1/,'1 starting and ending at v,. Let g [o] =[y, ]. Note that,

by Theorem 46, @ ; o implies that Vo ~¥, , which in turn implies that w;fw; .
Therefore, g is well-defined. Even though g is a homomorphism we will not need this
information. Clearly,

goh= 1£<K.v0) and hog = ln,(K,vO)

and, therefore, one easily sees that A is one-to-one and onto. Consequently
E (K,vy)=II, (K, vg).
Henceforth, we let H =G denote that the graphs H and G are (algebraically)

isomorphic.

50. Corollary. Let K be a polytope and v, e K (0). Let i: K (2) - K be the
injection map. Then { induces in isomorphism i, : E (K (2),v,) = E (K, vy) -

Therefore i, : 11, (K (2), vy) =TI, (K, vy).

8.7 Graphs and Trees

51. Definition. A graph is a polytope of dimension less than 2. A tree T is an
arcwise connected graph such that 7—s is not connected, for each open 1-simplex

s T . An end of a graph is a vertex which is a vertex of at most one 1-simplex.

52. Lemma. Let K be a connected polytope. Then K contains a maximal {with
respect to inclusion) tree and any maximal tree contains all vertices of K.
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Proof. Partially order the collection of all trees contained in K by inclusion. Pick a
nest {T,} of trees and let T =U,, T, . Clearly T is arcwise connected. Let < vg, v, >
be any open 1-simplex contained in T. If T—< v, v, > is connected, then there exists
an edge path @ starting at v, and ending at v, which does not use the edge v, v, 1.
Then | v, v, l@ is a closed circuit which is contained in some T, (therefore

T, —<vg, v, > is connected), a contradiction. This shows that T is a tree. By Zorn’s

Lemma, we get that K contains a maximal tree.
Because of the connectedness of K, one easily sees that any maximal tree in K
contains all vertices of K.

53. Definition. Let 7 be a maximal tree of the connected polytope K. Let
E (K -T) be the group generated by the edges | v ui of K with the relations.

(a) If lvul is an edge of Tthen lvul=1.
(b) If vy, v,, v, are vertices of a simplex of K then (v v; llv, vy I=lvy v, |,
54. Theorem. E (K,vy)=E(K-T).

Proof. Since T is connected and T < K (0), for each ve K (0), there exists an
edge path [, with origin V, and end v, which is contained in T. Note that, for each

edge lvul of K, the edge path T, |vu|T," starts and ends at v.
Define h: E(K,vy) > E(K-T) by

hR{({lvgwy v vy by v 1D =1y vl vy vy ey v

Note that 4 is well-defined, because of Definition 53(b) and the definition of edge
equivalence. Clearly, A is a homomorphism (note that A([lvy vy 1])=lvy vy l=1
because of Definition 53(a)). Let us also observe that

(1) h is onto: Let tvyvyllvavyleocly, v, 1€ E(K-T) and let w be the
equivalence class of

-1 -1 ST
L, v vy IT T, bvy v, 1T, T v, v, 1T, in E(K, ).

v,

Then h (Iwl)=1v, v, vy vy l---lv, v,,, | because of Definition 53(a) and the fact that

rv.- T  for i=1,...,n+1. This shows that A is onto.
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(2) h is one-to-one: let [wle E (K, vy) with w=iv, v/ 1---1v _ vy I, and suppose

that A ([w])=1.1f vy v, |,...,lv,_, vy |€ T then one immediately gets that 0= Vo Vo |
(i.e., [Wl=[lvyvyl]). If not all vy v, 1,....lv,_, vy le T then, from Definition 53(b)

and the fact that vy v, v vyl lv, ;vyl=1, we get that

E
lvg vi vy vy by, vo l~1vg v I Therefore, we have proved that Ker £ =[1vy,vy 1]

(i.e., h is one-to-one), which completes the proof.

55. Corollary. If K is a connected graph then E (K, v,) is a free group. If T isa
maximal tree in K then the generators of E (K, v,) are in one-to-one correspondence

with the 1-simplexes of K —T .

Proof. It suffices to show that E (K —T) is a free group generated by the 1-
simplexes of K —T . Because of Definition 53(a), £ (K —~T) is generated by the 1-

simplexes of K —T (note that if e=Iv u| is an edgein K ~T then its inverse in

E(K-T) is ¢! =luvl). Also, there are no relations of the form described in

Definition 53(b) between any two edges [vul and lu wl of K —T withv, uand w
vertices of some simplex of K (since K is one-dimensional, either u=v or v=w or

u=w: ifu=voryv=w,then luvilvwi=lvwlorluvilvwl=luvl;if u=w,
then lu vilvwi=luvllvul=e" =1). Therefore, E (K —=T) is freely generated by

the 1-simplexes of K —T , which completes the proof.
The following result is an immediate consequence of Corollary 55.

56. Theorem. The following is true:
(@) TI, (') = Z (the group of integers).

(b) IT, (Figure Eight) = F, (where F, denotes a free group with n
generations).

Chapter 8. Exercises.

1.Let Q(X)=X"'.Prove that

(@If ¢, BeQ(X) and h:ax~ B, then the map y : 1 > £ (X), defined by
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W () (@)=h(t,s),isanarcin Q(X) from a to .

(bYIf y:1 = Q(X) is an arc from o to B ,thenthe map h:Ix! —= X,
defined by £ (s, 1) =(y (1)) (s), is a homotopy from & to .

(c) Parts (b) and (c) remain valid for Q(X,b) and 3 .

2. Let X be the disjoint union of a copy of S' and a copy of B?. Let pe s! and
ge B?. Show that [T, (X, p)=Z and [1, (X,q)=1.

3. Check that &, : 1 x1 —Y defined by

o' (2s), s< I

45+24-2 i-t 1+3

= it g M N i

hz (S’t) hl( ETIN ,t), 3 >5s 4’
o(4s=3), 522,

is a homotopy satisfying the requirements in the proof of Theorem 11(b).

4.Let X =U, e, X, and T, be atopology for X, for each e A.Let T be the
family of all & < X suchthat U X, e7,,foreach axe A.

(a) Show that 7 is a topology for X.
~ (b) Show that, in general, (X,,7,) may not be a subspace of (x, ). (Hint:

Let X =X;UX, andlet 7, and 7, be topologieson X, and X,,
respectively, such that 7,1(X,NX,) 7, (X, NX;) )

5. Take a simplex <x...x, > and let B" ={(yg,....y,_;) € E"\yj +...+ yo <1}.

Defineamap h:B" —><x,...x, > by h(y)= ::ol y,.2 x; +(1-1 y'lz)xn. Prove that
(1) h is onto (solve a system of n equations with n+1 unknowns).

() hisnot 1-1.
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B h(S)" " =< xy,in X,y > -
(4)Is h1S"" a 1—1 function?

6. Let K be a simplicial complex with the weak topology and let f:K —Y be a
function to a topological space Y. Show that, if fls is continuous, for each closed
simplex s of K, then f is continuous. Show that the identity functions K — K ® and

K" = K are continuous.

7. Show that, by Theorem 49,
(@) 1, (Torus)=ZxZ
(b) IT, (M0bius Band) = Z

(¢) I1, (Klein Bottle) = A group generated by two elements a, b with

a2b2=]_

8. Show that the following triangulation is not a triangulation of a torus;

indeed, by eliminating repeated triangles, it is a triangulation of a

>

cylinder. (Hint: Note that the triangles labeled A and B have the same | B
vertices.)

9. Show that the following is a triangulation of a torus; all triangles

are distinct.

10.In E",let x, = (1,0,...,0)=¢,, x,=(0,1,0,...,0)=¢,,..., X, =¢,and

X, =(—W’—ﬁs"‘7_ﬁ)- Also for each y =(y,..., y,) € §" c B, let
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t.=sup{slse E' and sye< x,,...,x, >},
Define a function A:B" — E" by
h(sy)=st; y,
foreach ye S"' and 0S5 <1, Prove that
(@) {x,,%,,...,X,} isa convex-independent subset of B".

(b) <Xy...%, > CB" and 0 €<x,...,x, >.

(c) h(B") = (x',,...,x">f.
d h is1—1.
(e) h:B" —<x,,...,x, > is a homeomorphism.

@ RIS :$"" -50<x,....X, >, where d<x,,..,%, > is the polytope

of all proper faces of <Xy,...X, > .

11. Show that 7, (S") =1. (Hint: Use Theorem 49 and part (f) of the preceding

exercise.)

12. Show that r,(§") =1, for p > 2. (Hint: See ex. 11.)



Appendix A

Some Inequalities

We limit ourselves to those inequalities crucial to various proofs in topology.

Cauchy-Schwartz inequality: If @,,...,a, and b,,...,b, are real numbers then
2 2 2
(%ak by) 5(%“1‘ )(%bk )
Proof. Clearly Z(ak x+b; )20, forevery xe E'. Therefore,
0< Y (a, x+b,) =Ax*+2 B x+C, with A=§ak2,B=)k:ak bk,C=‘),;b3 If
k
A=0, clearly B*<AC.If A>0, let x=—§.Then 0SAx*+2Bx+C=

- B% +C, which implies that B> — A C <0. This completes the proof.

Minkowski inequality. If a,,...,a, and b,,...,b, are real numbers, then
(§ (ak bk)2)l/2 < (%“ akZ)]/Z +(% bk2)1/2 .
Proof. Note that (X (4, +b)H"” = b (@,° +2a, b +b,")"* =& a’ +2
(Ea, b)) +T 5" < a’ +2Ea,’)? +Tb,>)"” (by Cauchy-Schwartz
k k k k k

inequality) ([ a,” )" +(Z b )" 1H)"? = ()k: a )" +(§, b,%)"” . This completes
P K

the proof.
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Appendix B

Binomial Equalities

We limit ourselves to the consequences of the Binomial Expansion which we need. The
techniques clearly indicate that the binomial identities are endless.

Proposition 1. (Binomial Expansion). Given any real numbers x and y and
ne N,

()" =Ty (! Y
with (j) = ‘r(,,—,)'

Proof. Elementary induction.

For n€ N, define a function B, : E? — E', by letting B, (x, y)=(x+y)".
Then, we get

Proposition 2. x (x+ )" =X, L ())x/ y"/, for each (x, y)e E? and

ne N.

Proof. Differentiating B, with respect to x and using Proposition 1, we get that

‘)B n— n n j . n—j
Sr=ny) ™ =2 (i () x y)
=X, (jx Yy

]

from which the result immediately follows.

Proposition 3. (1 —%) 2 (x+y)t= P (% —'#"2) @) x! y"/, for every
(x,y)e E? and ne N .
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Proof. Essentially the same as the proof of Proposition 2, except that we compute
d°B, /ox’ .

Proposition 4. 3, () x/ (1~x)""/ =1, foreach xe E'.
Proof. Apply Proposition 1 to 1=(x+(1-x))".

Proposition 5. x= 2.’;=0 Tl. '/') x! (1=x)""/ | for each xe E'.

Proof. Apply Proposition 2t0 x=x{(x+(1—x))".

2
n I

Proposition 6. (- ,";) x? +% x=2hy % ) x' (1-x)""/ foreach xe E'.
Proof. Apply Proposition 3 to (1 —:7) X+ -0,

Proposition 7. Y, (x—‘,—f)z (Hx'a -x)" < %" , foreach xe E'.
Proof. Note that

St =D O x (=0 =2, (F =2 Dy ey x/ (-
; ; i? ; : ; : _
=x" L O x/ =0+ L0 L (Da (1-0"7 = 2x 5 2 (D2’ (=0

=x2+[(l~%)x2+% x]—2,\c2=~’5ﬂ_i):<_~l

n 4n

because supx(l—x)z.}{ (the function f (x)=x(l—x) has a maximum value at
k'

x=12 ).
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first homotopy group 172 morphism (group) 124
fixed point 76 n X n-matrices 131
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