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Preface

Perhaps no arca of mathematics has changed as dramatically s matrices over
the last 25 years, This is due to both the advent of the computer as well as the
introduction and acceptance of matrix methods into other applied disciplines.
Computers provide an efficient mechanism for doing iterative computations. This,
in turn, has revolutionized the methods wsed for locating eigenvalues and
cigenvectors and has altercd the usefulness of many classical technigues, such as
those for obtaining inverses and solving simultancous equations. Relatively new
fickds, such as operations research, lean heavily on matrx algebra, while estab-
lished fields, such as economics, probability, and differential equations, continue
to expand their relisnce on matnces for clanfying and simplifying complex
CONCEPIS.

This book 15 an algorithmic approach o matnx operations. The maore
complicated procedures are given as a series of steps which may be coded in a
straightforward manner for computer implementaton. The emphasgis throughout
i5 on computationally efficient methods. These should be of value to anyone who
needs 1o apply matnx methods to his or her own work.

The material in this book is self-contained; all concepts and procedures are
stated directly in terms of matrix operations. There are no prerequisites for using
most of this book other than a working knowledge of high school algebra. Some
of the applications, however, do require additional expertise, but these are
self-evident and are limited to short portions of the book. For example, clemen-
tary calculus is needed for the matenial on differential equations.

Each chapter of this book is divided into three sections. The first introduces
concepls and methodology. The second section consists of completely worked-out
problems which clarify the material presented in the first section and which, on
occasion, also expand on that development. Finally, there is & section of problems
with answers with which the reader can test his or her mastery of the subject
mitter.

I wish to thank the many individuals who helped make this book a reality. |
warmly acknowiedge the contributions of William Anderson, whose comments on
coverage and content were particularly valuable. T am also grateful to Howard
Karp and Martha Kingsley for their suggestions and assistance. Particular thanks
are due Edward Miilman for his splendid editing and support, David Beckwith of
the Schaum staff for oversesing the entire project, and Marthe Grice for technical
editing.

Hicuarn Bronson
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Chapter 1

Basic Operations

MATRICES

A matric is a reclangular array of elements arranged in horizontal rows and vertical columns, and
usually enclosed in brackets. In this book, the elements of a matrix will almost always be numbers or
functions of the vanable ¢ A matrix 15 realvalued (or, simply, real) if all us clements are real
numbers of real-valued functions; it is comiplex-valued if at least one clement i a complex number or
a complex-valued function. If all its elements are numbers, then a matrix s called a constanr matrix.

Example 1.1

12 0.5 simy e+ _ e

[3 ,‘] -6 0 ocost and [—1.7. 2406, =3 0
are all matrices, The first two on the left are real-valued, whereas the third is complex-valueed (with { = vV=T);
the first and thérd are comstant matrices, but the second is not constant,

Matrices are designated by boldface uppercase letters. A general matrix A having r rows and ¢
columns may be written

where the elements of the matrix are double subseripled 1o denote location, By convention, the row
index precedes the column index, thus, a,, represents the element of A appeaning in the second row
and fifth column, while a,, represents the element appearing in the third row and first column. A
matrix A may also be denoted as |e, ], where 4, denotes the general element of A appearing in the

ith row and jth column.
A matrix having r rows and ¢ eolumns has order (or size) “r by " usually written r x ¢, The

matrices in Example 1.1 have order 2% 2, 2% 3, and 134, respectively from left o right. Two
matrices are egual if they have the same order and their corresponding elements are equal.

The o of a matrix A, denoted as A", is obtained by converting the rows of A into the
columns of A” one at a time in sequence. If A has order m * n, then A” has order n % m.

Example 1.2 I

1 2
u-lz. -tl thin n’c[i i :]
5 6

VECTORS AND DOT PRODUCTS

A véctor 1s & matrix having either one row or one column. A matrix consisting of a single row is
called a row vertor; & matrix having a single column 15 called a colwmn vecior. The dot prodeucr A-B
of two wvectors of the same order is obtained by muliiplying together corresponding elements of A
amd B and then summing the results, The dot product is a scalar, by which we mean it is of the same
general type as the elements themselves, (See Problem 1.1.)

1



2 BASIC OPERATIONS [CHAPR 1

MATRIX ADDITION AND MATRIX SURTRACTION

The sum A+ B of two matrices A=[a,| and B =[b,] having the same order is the matrix
obtained by adding corresponding elements of A and B, That is,

Matrix addition is both associative and commutative, Thus,
A+{B+C)=(A+B)+C and A+B=B+A

(See Problem 1.2.)

The matrix subtraction A = B is defined similarly: A and B must have the same order, and the
subtractions must be performed on corresponding elements to yield the matrix [a, — & |. (See
Problem 1.3.)

SCALAR MULTIPLICATION AND MATRIX MULTIPLICATION

For any scalar k [in this book, usually a number or & fupction of ¢}, the mairix kA (or,
equivalently, Ak} & obtained by multiplying every clement of A by ihe scalar k. That is,
kA= kfa ]=[ka,]. (See Problem 1.3}

Let A={a,] and B=[b ] have orders r % p and p ¥ ¢, respectively. so that the number of
columns of A equals the number of rows of B. Then the product AB is defined 1o be the matrix
C=[c,] of order r ¢ whose elements are given by

= iu,.btl fi=L2...,rij=L2Z...,6)

B = 02

Each element ¢, of AB is a dot product; it is obtained by forming the transpose of the ith row of A
and then taking its dot product with the fth column of B. (5ee Problems 1.4 through 1.7.)

Matrix multiplication is associative and distributes over addition and subtraction; in general, it is
nat commutative. Thus,

A(BC)=({AB)C A{(B+C)=AB+AC (B-C)A=BA-CA
b, in general, AB = BA. Also,
{AB})" =B"A

ROW-ECHELON FORM

A zero row in a matnx s a row whose elements are all zero, and a nonzero row is one that
comtains at least one nonzero element. A matr® s a sere materz, denoted 0, of it contains only zeéro
FOWS,

A matrix is in rew-echielon form if it satisfies four conditions:

(BRI All nonzero rows precede (that is, appear above) zero rows when both iypes are contained in
the matrix.

(R2): The first (leftmost) nonzero element of each nonzero row s unity

(R3): When the first nonzero element of a row appears in column ¢, then all elements in column ¢
in succeeding rows are zeqo.

(Rd):  The first nonzero element of any nonzero row appears in a later column (further to the nght)
than the first nonzero element of any preceding row.
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Example 1.3 The matrix

I o3 2 3
no 1 o2
b oo nn

satisfies all fouwr conditions and =0 is i row-echebon form. {See Problems 1,10 1o 115 and 1.18.)

ELEMENTARY ROW AND COLUMN OPERATIONS

There are three elementary row operafions which may be used to transform a matrix into
row-echelon form. The origing of these operations are discussed in Chapter 2D the operations
themselves are:

(Elj: [Interchange any e rows.
(EX): Multiply the elements of any row by a nonzero scalar.
{E3): Add to any row, clement by element, a scalar times the corresponding clements of another

TOW,

Three elementary column operations are defined analogously.
An algorthm for using elementary row operations o transform a matrix into row-echelon form is

as follows:

STEP 1.1:

STEP 1.2:

STEF I3

STEFP 1.4:

STEFP 1.5

STEF 1.6:

STEP 1.7:
STEP 1.8:

Let R denote the work row, and initialize K = 1 (so that the top row is the firsi work
row).

Find the first column containing a nonzero element in either row B or any succeeding
row. If no such column exists, stop; the transformation is complete. Otherwise, let O
denote this column.

Beginning with row R and continuing through successive rows, locate the first row
having a nonzero element in column C. If this row is not row B, interchange it with row
B (glementary row operation E1). Row 8 will now have a nonzero element in column
C. This element is called the mvor, let P denote its value.

If Piz not 1, multiply the elements of row & by 1/ F (elementary row operation E2);
atherwise continue.

Search all rows following row R for onc having a nonzero element in column O, If mo
such row exists, go to Step 1.8; otherwise designate that row as row N, and the value of
the nonzero element in row N and eolumn C as V.

Aidd to the elements of row N the scalar —V times the corresponding clements of row £
[elementary row operation E3).

Return to Step 1.5

Increase B by 1. If this new value of R is larger than the number of rows in the matrix,
slop; the transformation is complete. Otherwise, returm 1o Step 1.2,

(See Problems 1.12 through 1.15.)

RANK

The rank (of row rank) of a matnx 5 the npumber of nonzero rows in the matrix after it has been
transformed to row-echelon form via clementary row operations, [See Problems 1.16 and 1,17.)
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Solved Problems

1.1 Find A-B and B-C’ for

) ol e

AdB=2(5)+36)+ 4 -Th=10,

5 K
BT .[ .i,,]. [ _3]=5{T} = hl—B) + (—TH-%) = 50

-7 e

1.2  Show that A+B=B+ A for

_fo I'| [4 it
'[z i) A Belg oo
01 4 5 0h+4 1+5]_4ﬁ

a+s=[3 3]+ [§ - ]'[Hﬁ s+ on =13 -4]

4 5 0 1 440  5+1 4 B
“"*-[.-, - ]‘[1 3]'[ﬁ+1 val=ls -d)
Since the resulting matrices have the same order and all corresponding elements are egual, A + B =

B+a

1.3 Find 3A — (058 for the matrices of Problem §.2.

01 4 5 Oy Iy A4y DL5ES)
e HE R M Hsm 3131]'[&5{&} 0.5(-1)

[ - I-15% [ 2
h-3 9=(- JSJ] |15
1.4 Find AR and BA for the matrices of Problem 1.2,
[ a4 s O{d) + 1(6) O5)+ W=T)] _[ & =7
‘“"[2 ?-][5 --1]"[1{-"!+3[ﬁl 2[5}+3{—7}]"[ —||]
4 SI0 1)_[ 4M+52)  #H1)+5(3) ]
M'[& - Hz 3]‘[ﬂu]+f—mzl 8(1) + (~7)(3) [—14 Ry
Mote that, for these matnices, AB = BA.

1.5  Find AB and BA for -
_Jjr 2 3 |7 &
“_[n -5 6 und '_lﬂ —]
Since A has three columns while B has only two rows, the malris product AB is not defined. But
[ B}[ ]_[ 1y +B4) NDHB-F T3+ BE)
—5 B OL1p + -9 4y 20 + (-9 -5 DXy & (—9W6)

_[ W o~ 69
- 36 45 54



CHAP 1] BASIC OPERATIONS 5

L&

1.7

Verify that (BA)” = A"B” for the matrices of Problem 1.5,

14, W)+ 4(8) 1) + &(=9) B -
.t’n'{z -5 [H ~ ]- AT+ (=5)B) 200)+(-5H-F)|=|-26 45
i 6 3(T) = GiA) iy + 6i-%) 69 —54

which is the iramipose of the product BA found in Problem 1.5,

Find AB and AC if

4 20 2 3 | 31 =3
A= 2 1 0 B=| 2 -2 -1 C=] 0 2 &
-2 -1 1 =1 2 1 -1 2 |

42)+ 22y +W~1) H{3I)+ 2{-2)+D2) H1p+H-23+0[1)
AR = 2020+ W2y + -1} I+ 1-2p+ 2] 2013+ W=-2)+001)
—HI}H{-IH2y+ U1 =23+ (-DH -2+ 1(2) -0+ (—0-2) + {1}

12 8 0
= & 40
=7 -2 1

)+ 200+ {—1) 41y + W)+ 1) (=3} + 2(6) + 0(1) 12 B0
AC=|  23)=10)+0{-1) 21} + 1{2) +0{2) 2(-3)+ 1{6) + 1) =[ & 4 0
=23 (=10 1W-1) —2(1p={=132) + WZy -3+ (—1}HE}+ 1{1) =T =21

Mode that, for these matrices, AB = AC and yel B # C. This shows that the cancellation low is ned valid
for matrix multiplication.

A matrix is partitioned if it 15 divided into smaller matrices by horizontal or vertical lines
drawn berween entire rows and columns, Determine three partitiomngs of the matrix

2 3 4
A=I0 0 5 6
T 8 =1 =2

There are 2° - | = 31 different ways in which A can be panitioned with at least one partitioning line,
By placing a line between each 190 rows and sach two colomns, we divade A in1o twelve 1 % 1 matrices,
o/bitaining

By placing one line between the first and second rows and another line between the second and third
columns, we conatruct the partithoning

e B=[1,2] C=[3.4] E-[E; ﬂ] F--[_:i g]

A, third partitioning can be constructed by placing a singhs line between the third and founh columns
af A. Then A = |G, H], where
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13 3 4
G=|0 o 5§ and H=|
T 8 -1 =1

A pamitioned matrix can be viewed a5 a matnx whose elements are themselves matrices.

[CHAP. 1

The arithmetic operations defined above for matrices having scalar elements apply as well 1o
partitioned matrices. Determine AB and A — B if

c D F G
""[E c|] "[FE

where =[5 3] o=[0 0] e=[7 5] =[5 V] e[ 71
AB= [ CF T CE Ba s CE)
B R R et 1 o 3 9
[HH R T iR i B
Jlealele sl Slele ol
o 8l*ls ]1-.. +[l§§§_
L5 ik .,.!.i-._i_é_] S
A R 3'5 o

AR Sﬁ_—lﬂl[ll_[i bl
T K z o1l 4 ) f

2 1]5[ 2 3 21 2 3

LML AE - S 3 -1 -

[ﬁ [} :I|-—4 -4 6 6 -4 —d

5 THL-4 -4 57 -4 -4

Partitioning can be used to check matrix multiplication. Suppose the product AB is to be
found and checked. Then A and B are replaced by two larger partitioned matrices, such that
AR AC

their product is
A
[n][“q' RE RC

where R is a new row consisting of the column sums of A, and © is a new column consisting of
the row sums of B. The resulting matrix has the original product AB in the wpper lefi
partition. If no errors have been made, AC consists of the row sums of AB; RB consists of the

column sums of AR; and RC 15 the sum of the elements of AT as well as the sum of the
elements of RB. Use this procedure o obiain the product

ER
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.11

112

1.13

We form the partitioned matrices and find their product:

[; _3[']3 i _[' Ik —ﬂ

R e N P L o T it
3773 l’ -1 [
13 2] 2 213 21

12 ] T:ld

=3 -4 0 -1

I I

The product AB is the upper beft part of the resulting matrix. Since the row sums of this product, the
colutin sumg, and their sums are correctly given in the matrix, the multiplication checks.

Dretermine which of the following matrices are in row-echelon form;:

1 2 -1 0
0 2 4
a=l00 1 4] B= C-
[ﬂﬂﬂﬂ] [llﬂ-] o o1
o1 i 4
n-[nn13} E-u[],ﬁi
o o o 1

Only A and IV afe in row-echelon form. B B not, becawe the st (lefimos) nonzers element in the
socond row (s furtber left than the fisse ponzero element in the top mow, vielating condition R4,
Conditien B2 is violated in the first row of C. Matrix E vielates condition B3, because the first nonzerm
element in the lower row appears in the same column as the first nonzero element of the wpper row.

Use elementary row operations 1o transform matrices B, C, and E of
Problem 1.11 into row-echelon form.

We follow Steps 1.1 through LLE in each case, but for simplicity st only those steps that result in a
matrix manipulation. For B, with B=1 (Step 1.1) and O =1 [Step 1.2), we apply Step 1.3 and
imerchange rows | and 2, obtaining,

|-l 2 ]J
no1 4

which is in row-echelon form, For matnix C, with B =1 (Swep 1.1), C =2 (Sep 1,23, and P =2 |Step
1.3}, we apply Step 1.4 and multiply all clements in the first row by 172, obtaining

012
n o1

which is in row-cchebon form, For matrix E, wath B = | (Step 113, C =1 (Step 1.2), and N = 2 and V=4
(Step 1.5). we apply Step 1.6 by adding, 10 each element in row 2, -4 limes the corresponding element
in row 1; the resull 15

1 2 3 1 2 3
[4*E—4}(|} 9+ (=4)2) 7+{—4Jiﬂ-i]'[n 1 - ]

which is in row-echelon form.,

Transform the following matrix into row-echelon form:
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1 2 -1 &

I B 9 10
2 -1 L —&

Here {and in later problems) we shall use an arrow o indicate the row that resuls from each

elemenlary row np:rali.nn.

B 2 =1 31 Sr:p lfwith BR=1, =1, N=2,
—-(0 2 12 —ﬂ] and V=3 Add -3 times the first

L 2 -1 : -2 row 1o the secomnd row.

B T -] & Siep Lwth R=1, O=1, ¥=3,

0 12 =& and V=2 Add -2 times the first
—|L 0 -5 4 -4 ro'w b the third row,

P=2 Multiply the second row
by 112,

-1 ﬁ] Step Lbwith R=2, C=2, N=13,

12 i 6] Step 1.4 with R=2, C=2_ and

L
— el

h - and W= -5 Add 5 times the
[0 0 ¥ - second row 1o The third row.

I 2 -1 6] SepidwithR=3 C=3 and
1T 6 -4 F=3: Multiply the third row by
im0 1 - 1134,

1.14  Transform the following matrix into row-cchelon form:

2105
a1 1
5718

—[1 12 0 552 Sepldwith R=1, C=1, apd
[ | L P=3 Mul.hph.' thie Firsl row b,

5 7T 1 & 1l

1 12 0 52 7] SwepléwthR=1,C=1.N=2,
— |0 W 1 -1372 and ¥=3: Add -1 times the frs

5 7T 1 E row (o the second row,

(1 172 0 52 ] SeepibwithRe=1, =1, N=3,

0 @2 1 -j2 and V=5 Add —35 times the first
== l0 w2 1 —-9/2 ] rove Lo Bhe third row,

(1 112 0 52 ] SepldawithR=2 C=2 and
{0 1 2" -13/9 Fe9i2: Multiply the second row

LI P | —4i2 | by 249,

112 0 5/2 ] SwepléwithR=2 C=2 N=3,
1 2 =139 and V=09/7 Add —9/2 times the
] )] ] second row o the third row

1 2 1359 P =2 Mualtply the third row by
] 0 I 12,

1
0
0
112 0 82 ] steplawith R=3, C=4, and
0
0
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.15  Transform the following matrix into row-echelon form:

1.16

LI7

3 21 -4 1
230 -1 1
I -4 % -8 7

2 3 0 =1 = by 173,

=1 2% /3 —-4/3 I."El-l Step 1.4: Mulliply the firsl row
1 =& 3 -8 7

—|D 5/3 3y 513 513 row 1o Ehe second row,

[1 2/ 143 —413 l.'H] Step L6 Add -3 times the firse
1 -6 3 -8 7

n 53 =23 513 -5/} row 1o Ehe third row.
==|0 =203 B3 -HWY N3

1 23 I3 -4 153 ] Seep L6 Add -1 times the frst

1 23 173 =43 113 Step L4:  Muliply the second row
—-|0 1 25 1 —I.] by 3/5,
| 0 -20/3  BS} O B3 203
(1 2/3 153 —403 103 Seep L6 Add 2003 times the
o | 25 1 I] secomd row to the thind row.
—L0 0 ] ] L[]

Determine the rank of the matrix of Problem 114

Becawse the row-echelon form of this matnx has three nonzero rows, the rank of the original mairix
i 3

Determine the rank of the matrix of Problem 1.15.

Because the row-echelon form of this matrix has two soneero rows, the rank of the onginal mairiz
i 2,

Shovw that row-echelon form s not unique if a matrix has rank 2 or greater.

Such a mairix has ot least two ponkero rows after it s transformed into row-schelon form. By
adding the second row 1o the first row, a different row-echelon-form matris s produced. As an example,
if we add the second row to the first row of the row-echelon-form matrix obtained in Problem 1.14, we
ofiain

o 1 e -1

[1 i e ]9-’13]
(VI R 1

which s also in row-gchelon form,
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Supplementary Problems
[n Prablems 119 throwgh 1.32 let
a=|y 3l w- [‘: i[ c=|-2 3 111] b i ;-| E-F] F=[1, 2. 3]
1 21 & 6 3 3

1.19  Find (@} A+ B; (b} 3A; (c) 24 = 38; () C~ Dy and (¢) & +F.

L2 Designate the columns of A as &, and A, and the columns of C a5 C, C,, and C,, from left wo rgh.
Then calcwdate (a) &, - A, (b)) C -0 and () C 40,

L21  Find {a) AB; () BA; (c) (AB)"; (d} B'A"; and (¢) A'B".

1.3 Find (a) CDv and (b} D,

123 Find A{A +B).

1.24 Find (g} CE and (b} EC,

1.25  Find {a) CF and (&) FC.

1.26 Find (a) EF and {b) FE.

1.27  Trarsform A o row-echelon form.,

1.28  Transform B v row-cchelon form.

1.2%  Transform © w row-echelon form,

L.  Transtorm D w row-cchelon form,

131 Transform E to row-echelon form.

1.32  Firdd the rank of (a} A; (&) B; () C; (d) D and (¢) E,

1.3%3 Find w0 matrices, neither of which is a 2ero matrix, whose prodost s 2 2ens matnx.

1M The price schedule for a Mew York to Miami fight is given by the veclor P [240, 180, 53], where the
elements denote the costs of frst class, business class, and 10ourist class tekets, respectively. The number
of wekers of gach elass purchased for a particular Might is given by the vector M = [&, 21, 115]. Whan is the
significance of P+ N7

1.35  The inventory of compuiers a1 each outlet af a theee-spere chain is given by the matns

i
M=13 4
T 0

where the rows pertain 1o the different storss and the columas depote the number of brand X and brand
¥ computers, respectively, in each store, The wholesale costs of these computers are given by the vector
D = 700, 1200]". Calculate NI and state its significance.



Chapter 2

Simultaneous Linear Equations

COMSISTENCY

A system of simultancous Inear equations 15 a set of equations of the form

LIPS PR PR R R ' Ly -
By Xy + Xy + @iy 4t X = b,

By Xy + Xy * @K+ ta, X, =b (2.1
The coefficients a, (i=1.2,....m; j=1.2.....n) and the quantities b, {i=1,2,..,,m]) are
known constants. The x, (j=1.2..._, n) are the unknowns whose values are sought,

A solution for system (2.1 15 a set of values, one for each unknown, that, when substituted in
the system, renders all its equations valid. (See Problem 2.1.) A system of simultaneous linear
equations may possess no solutions, exactly one solution, or more than one solution.

Example 21 The sysiem
X tua,= 1
x +x,=0

has no solutions, becawse there are no values for x, and x; that sum 0 | and O smularecwsly. The system
A A

¥ otln =1

has the single solution x, =10, Ky = I; and

T '-I?-"

1
2z, —2x, =0

has a solution, x, = 1, for every value of x,.

A set of simultancous equations is consiztens 1if it possesses at least one solution; otherwise it is
inconsisieni,

MATRIX NOTATION
System (2.1) is algebraically equivalent to the matrx equation

AX =B (2.2)
#II 'uli ﬂ|'| ’ ﬂ-'ln L bl
A, a gyt " iy, X b
where ] ! X=|." B=|
ﬂ.lul ﬂn;‘ ﬂln] T ﬂlhl Iﬂ &ﬂ
The matrix A is called the coefficient matrix, because it contains the coefficients of the unknowns.
The ith row of A (i=1,2,..., m) corresponds to the ith equation in system (2.1), while the jth
column of A (j=1,2,..., n) contains all the coefficients of x,, one coefficient for each equation.

The augmented marrix corresponding o system (2.1) s the partitioned matrix [A|B]. (Sec
Problems 2.2 through 2.4.)
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THEORY OF SOLUTIONS
Theorem 2.1t The system AX = B is consistent if and only if the rank of A equals the rank of [A | B].

Theorem 2.2:  Denote the rank of A as k, and the number of unknowns as n, If the system AX =B is
consistent, then the solution contains n ~ & arbitrary scalars.

[Gee Problems 2.5 1o 2.7.)

System (2.1 is said to be homogeneows if B=0; thatis, if by = b, =+-=5b_ =0 If B=0[i.e.
if at least one b, (i=1.2,. .,m) s not zero], the system s ronhomogeneous. Homogeneous
systems are consistent and admit the solution x, = x,- -+ = x, =0, which is called the frivial solurion

A movrrrivial solution is one that contains at least one nonzero vajue.

Theorem 2.3: Denote the rank of A as k, and the number of unknowns as n. The homogeneous
system AX =@ has a nontrivial solution if and only of #n = &, (See Problem 2.7.)

SIMPLIFYING OPERATIONS

Three operations thar alter the form of a system of simultaneous linear equations but do not alter
its solution sef are:

(01):  Interchanging the sequence of two eqguations.
(D2):  Multiplying an eguation by a nonzero scalar.
(03): Adding to one equation a scalar times another eguarion,

Applying operations 01, 02, and O3 to system (2.1) is equivalent to applying the elementary
row operations E1, E2, and EX (see Chapier 1) 1o the augmented matrix associated with that system.
Craussian elimination is an algorithm for applying these operations systematically, to obtain a set of
equations that s easy 0 anslyze for consistency and easy to solve if it is consistent,

GAUSSIAN ELIMINATION ALGORITHM

STEF 2.1: Form the augmented matrix |A | B] associmed with the given system of equations.

ETEP 22 Use clementary row operations to transform [A | B] into row-echelon form (see Chapter
11, Denote the resubt as [C| D).

STEP 2.3 Determine the ranks of C and [C | D). If these ranks are equal, comtinue; the system is
consistent (by Theorem 2.1}, If mod, stop; the orginal system has no solution,

STEP 24: Consider the system of equations corresponding to |C| D, discarding any identically
zero equations, (If the rank of C is & and the number of unknowns is n, there will be
n — k such equations.] Solve each egquation for s first (lowest indexed ) vanable having
a monzero coefficient.

STEP 2.5: Any variable not appearing on the left side of any eguation is arbitrary. All other

variables can be determined uniquely in terms of the arbatrary variables by back
sulbstitution,

(Sce Problems 2.5 through 2.8.) Ocher solution procedures are discussed in Chapaers 2, 4, 5, and 21.

PIVOTING STRATEGIES

Errors dug o rounding can become a problem in Gaussian elimination. To minimize the effect of
roundofl errors, a variety of pivonng strategies have been proposed, each modifying Step 1.3 of the
algorithm given in Chapter 1. Pivoting strategics are merely criteria for choosing the pivot clement.
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Parsial pivoting involves searching the work column of the augmented matnx for the largest
element in absolute value appearing in the current work row or a succeeding row. That elemen
becomes the new pivot. To use partial pivoting, replace Step 1.3 of the algorithm for transforming a
matrix to row-echelon form with the following:

STEP 1.3: Beginning with row R and continuing through successive rows, locate the largest
element in absolute value appearing in work codumn O, Denote the first row in which
this element appears as row [ If £ is different from R, interchange rows 7 and R
{clementary row operation E1). Row R will now have, in column O, the largest
ponzero element in absolute walue appearing in codumn © of row R or any row
succeeding it. This element in row R and column C is called the piver; let F denote its
value.

(See Problems 2.9 and 2.10.)

Two other pivoting strategies are described in Problems 2.11 and 2.12; they are successively
more powerful but require additional computations, Since the goal is to avoid significant roundoff
error, it is not necessary to find the best pivot element at each stage, but rather to avoid bad ones.
Thus, partial pivoting is the strategy most often implemented.

Solved Problems

2.1  Determine whether x, =2, x, =1, and x, = — 11 is a solution set for the system
2x, + X, =3
Iz, 4 bxy 4+ 3, =1
Sy + T, +x,=8
Substituting the proposed values for the upknowns into the left side of each equation gives

{2y + (1) -4

Hy+o(ly+ li-11)=1

B2+ Iy + W-10) =4

The last rquali:]ﬂ dows i :f!:m B as requsred; hence the proposed valoes do not constitute 2 soletion
BELL

2.2 Write the system of equations given in Problem 2.1 a5 a matrix equation, and then determune
its associated augmented matrix,

2.1 0 T, ]
A=3 6 1 X=|%; B=|1
5 71 Ty B

The original system can be written 25 AX = B; its aupmented matrix is

21 0:5
MII]-{E & 1§1]

5 7 1.k
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13} Write the following system of equations in matrix form, and then determine its augmenied
matrix:

3z, Fda, 4+ x,—dx,= 1
i:l:I ‘l'.1-:|:_z =iy
I|_MI+JIJ_EE4= f)

This system is eguivalent 1o the matrix equation

)
3 2 1 -4 T, |
2 30 -1 n{~ =1
1 -6 3 -8 7

The assoaated augmented matms s

10201 -4 1
[AlB]={2z 3 0 =1i=
1 -6 3 —-8: 7

- -]

Observe that in both A and [A | B], the zero in the seoond row and third column corresponds to the
rerc coefficient of r, in the second egquation of the original system,

2.4 Write the set of simuhaneous equations that corresponds 1o the augmented matrix

1 2/3 13 —-4/3 1173
[A|B]=|00 1 —2i5 1 -1
0o 0 o
The corresponding set of equations is

.l-'|+i.-|':+1:5_;'l-"|-
K= i, + x,=-1

The third equation reduces to the tautology 0= 0 and i not written. Mor do we write any variable
having a zero coefficient.

L5  Solve the set of equations given in Froblem 2.1 by Gavssian elimination,

The sugmented matnx for this system was determined in Problem 2.2 1o ba
21 D:5
[AlBI=13 & 1:1
5 7 18

Using the results of Problem 1.14, we transform this matrix into the row-echelon form

1 12 0 52
[CID]=]0 1 2i9:=13/9
(VI I I

It follows from Problem 1,06 that the rank of [C | D] is 3. Submatis © s also in row-echelon form
and has rank 2. Since the rank of C does nod equal the rank of [C | D), the onginal set of eguations s
mconsstent, The problem is the last equaton associated with [C | D], which s

Or, # U, +0r; =1

and which clearly has no solution,
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26  Solve the set of equations given in Problem 2.3 by Gaussian elimination.

.7

The augmented matrix for this system was determined in Problem 2.2 to be

3 X1 -4
[AlBl={2 3 0 =1:i-1
I -6 3 -8: 7
Lsing the resulis of Problem 1,15, we transform this matrix inte the row-echelon form
1 273 /3 473 1/3
[C|Dj=[0 1 =28 1 =1
oo a (¢
It follows from Problem 1.17 that the rank of [C | D] is 2. Submatnix € is ako in row-echelon form, and it

alto has rank 2. Thus, the origmal 21 ol equations is consistent
Now, using the resulis of Problem 2.4, we write

-'|:|+'E:l'?+ !'_h_i11=!
K- ix+ x,=-1

25 the set of equations associated with [C] D). Solving the first equation for &, and the second for &, we
EE

I, = 5_ i‘z_iI1+;I|

K= =1 % ix, =1,

Since x, and x, do not appenr on the left side of any equation, they are arhitrary. The uwnknown 5, is
completely determined in terms of the arbitrary unknowns, Substiuting it into the Arst equation, we
calcalsse

Iy = i - i'._l"" iF'._Il]'_ i'.'l"' :‘l'tl
=1— gk, +2x,

The complete solation e the original ser of eguations i
Ey=1-ax + 2,
=-1+ix, -,

with 1, and x, arhitrary,

Salve the following set of homogeneous equations by Gaussian elimination:
Te, +0x,=10
x4+ x,— xy=1
Sy, +6x, +25,=0

By converiing ihis system 10 augmented-mairix form and then ransformang the matrix inio
row-echelon form (Steps 1.1 through 1.8), we get

07 90
[A|B]=12 1 -1:0
£ 8 2:D

I 172 -1.'2:1.1]

[l:pnl-[n -TE T
LI} L] ol
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2.3

2.9

SIMULTANECOUS LINEAR EQUATIONS [CHAP 2

The rank of the coefficient matrix A s thus 1, and becanse there are three unknowns in the original set
ol :quaﬁnm. the system has nonlrvial wolutioms. The set of nq'u.al!il:ma. associated with the augmented
matrix [C| D] =

xg* jay = b, =0
gt fx, =0
0=
Salving [or the first varable in each cquation with o noneero ooefficient, we oblain
X, == i.l:r +* IFJ.'-,
x,=—1x,
Therefore, x, it arhitrary. Solving for 8, and x, in terms of &, by back substitution. we find

£, ==K

- _JE.-‘;-"-_I:IIF !*'1: :Iu

Solve the following set of equations:

X, +2x,— x,= @
3-,|:|_+3,|:2+94'_,,- (L1]
2, - x,+Ix,=-1

The augmented matnz associated with ths system s

I 3 =1 i
|AIBj=)3 & 9:10
2 =1 2:=2
which. in Peoblem 1.13, was rransformed into the row-gchebon form

12 -1;: @
[c]n]-[n I -ﬁ-E—-I]
00 1=l

Bath € and [C | D] have rank three, so the system is consistent, The set of equations associated with this
augmented matrix is

£, v2r,- ,= &
xz-rlﬁ,x,:—-l
=1

Sobving cach equation for the firsy variable with a ponzero coefficsent, we obtain the system

= h-1Ir,+uxr,

Ky = =4 - b,
1, =1

which can be solved easily by back substitution beginning with the kst equation. The solulion to this
system and o the LI'iIiTI.I.I se1 aof e ualiong s =l,x= 2, and Ky == 1.

Solve the following set of equations by (a) standard Gaussian elimination and (b) Gaussian
climmation with partial pivoting, rounding all compurations to four sigrificant figures:

DN %, + x, = 1IN

I, Fy,=3
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210

(o)  We write the system in matrix form, rounding 100001 to 1000, Then we transform the sugmented
matrix into row-echelon form using the algorithm of Chaprer 1, in the following steps:

LR L] | H IRELI]

i 1L 2
— [] II.I.IE“:IE NELEDL il
i P2 |
1 10000 | 100000
—=1 0 —100000 | - 100000
1 0000 | 100000 |

-l 0 1o

(Mote that we round to — 1KY fwice in the mext-to-last step) The resulting augmented
muatrix shows that the system s consistent, The equatons associated with thes matrix are
ary 4 OO0, = TOHCKND
=1

which have the solution x, =0 and x, = 1. However, substitution info the original cquations
shows that this is oot (he Solution to the ongmal sysrem.
(b)) Transforming the augmented matrix inte row-echelon form using partial piveting yields

RLE L] IEI.{HII]
1 2

1
1 1: 2 ] Rows | and 2 are interchamged
i

— | 000001 i) because row 2 has the largest
element m colemn 1. the current
wiork column.

i 1y o2 ] Rounding to four significant
=L 0o i figures

The system of equations associated with the last augmented matris is consistent and
X ;=1

=1

[tz solution is x, = x, = 1, which & also the solulon o the original set of equ.ali.-lms.
All computers round to @ mumber of significant fgares & that depends on the machine being used.
Then an eguation of the form

I[.-I:alpll I |l':|.=| " I{.-u-u

will generate results like that of part o unless some piveting strategy is used, (We had & = 410 part a.) as
a rule, daviding by wery small numbers can lead to significant moundolf ereor and showld be avoided when

pivssible,

Solve the following set of equations using partial pivoting:

¥ +2x,+ 3x,= 1B
2, + x,= dxy,= =30
~5x; By + 172, = W
The augmented matnz lor (s System is

I 2 3: 1’
2001 =4} -3
-5 B 17, @
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In transforming this matrix, we need to use Step 1.3 immediately, with B =1 and C = 1. The larges:
element in ahsolute value in column [ is =3, appearing in row ). We interchangs the first and third cows,
and then continue the ransformaiion (o row-echelon form:

—[=5 & 17! &
21 -41-3
=L 1 2 3}: 18
=1 =LA =34} -1927
2 1 -4 -3
L1 2 i 18
(1 =16 -34:-192]
—|0 42 8! &4
1 2 3 : 18
1 —-16 -34:-1927
0 42 28 84
=0 36 H4; 2]

We next apply Step 1.3 with 8 =T and O =2, Considering only rows 2 and 3, we find than largest
glement in absolule value im column 2 48 4.2, so § = 2 and no row iul:-:n:lurlgr. i% rEquir:d l:-uminu.ing
with the Gaussian elimination, we caloulare

.

b1 =34 0 -19.2]
=10 1 0666667 2

0 s B4 372

1 -16 =34 -191

01 0666667 2
—lo 0 i o

I =16 -34 1193

LU 0666667 @ I
==L U 1 ¢ T8 |

The system of eguateons associated with the last augmented marnis is consistent and ®

x, - Lbx, - ldr,=-192
§, +LobETY, =2
=715

Using back substitution { begmning with :J]. we Oblain, as the solution o this el nt':qu.u:i.nn: an well as
the oniginal system, r, =15 r, = -3, and x, = 7.5

To use scaled pivosing, we first define, as the scale factor for each row of the coefficient matrix
A, the largest clement in absolute value appeaning in that row, The scale factors are computed
once and only once and, for easy reference, are added onto the augmented matrix [A | B] as
another partitioned column. Then Step 1.3 of Chapter 1 i replaced with the following:
Divide the absolutz value of each nonzero element that is in the work column and on or
below the work row by the scale factor for its row, The clement yielding the largest quotient is
the new pivol; denate its row as row [ If row I & different from the current work row (row
K, then interchange rows [ and K. Row interchanges are the only elementary row operations

thai are performed on the scale factors; all other steps in the Gaossian elimination are himited
o A and B.

Solve Problem 210 using scaled pivoting.

The scale factors for the system of Problem 210 are
1, =maxfl,2, 3}=3
:*-mutl, I.|—4|j =4
i, = max[|-5], 817} =17
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We pdd a column consisting of these scale factors to the augmented matrix for the system. and then
iransforming it to row-echelon form as Toflows:

1 2 37 18] 3 The scale-factor guotiends for the
21 -4:-30 | 4 clements in column | are 173 =
-5 B 170 W [I7 0,333, 2/4 = (50, and 5007 =
.,
—[ 2 1 =-4'=30] 4 The largest quotient is (.500, so
1 2 k] 1% | 3 the pived is 2, which appears in
-5 B 17 ®& |17 fow I Sinee {=2 and B =1, the
first and second rows are
interchanged,
—=I 1 05 -2 1 =15 4]
12 3¢ |8] 3
| =5 E 17, &) I17]
[ 1 08 -25-1% T
-=| O 1§ 5: 33| 3
-5 & 170 %4 l17)
1 s -2 :--I:ﬂu 4 Mow work row is 2, and the work
o 15 5 3|7 cofumn is 2. The guotienss are
=L ws 7 7 1.5/3 = 0500 and 10.5/17 = 0.618.
[1 0.5 =2 =15 | 4] The lnrgest quotient 15 0618, so
¢ w5 7oA v the pavol is 105, which appears in
—+ 0 1.5 I row 3. The secomd and fhind rows
are |rIL-El|:I1|Tg=d.
(1 0.5 -2 =15 4
=0 1 066667 2 |47
L0 1.5 5 R . B
(1 05 =2 [(=15)] 4
01 0eseaTi 2|17
—= L0 0 i 1 3
[1 05 -2 =18 a
a1 066667 1 i?
— L0 0 1 O - B |

Writing the set of equations associnted with this augmented mainx (ignoring the columa of scale faciors)
and sobving them by back substitution, we oblain the solution x, = 1.5, x, = =%, 5, =75,

To use complete pivoting, we replace Step 1.3 of Chapter | with the following steps. which
involve both row and column mterchanges: Let the current work row be R, and the current
work column C. Scan all the elements of submatrix A of the augmented matrix that are on or
below row R and on or to the right of column C, to determine which is largest in absolute
value. Denote the row and column in which this element appears as row [ and column J, If
{# R, interchange rows [ and R; if J# C, interchange rows J and C. Because column
interchanges change the order of the unknowns, s bookkeeping mechanism for associating
columns with unknowns must be implemented. To do so, add a new partitioned row, row 0,
above the usual agumented matrix. lis elements, which are initially in the arder 1,2, .. ., nto
denote the subscripts on the unknowns, will designate which unknown is associated with each
colwmmn.
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Solve the system of Problem 210 using complete pivoting. We add the bookkeeping row 0 1o the
sugmented matris of Problem 2,00, Then, beginning with row 1. we transform the remaining rows inno
fow-echelon form,

- R=1and =1 The largest
I T S R 1 element in absolute value in the
21 -4:!:-% lvwer Lefl submatriz is 17, in fow
-5 B 17 9 3 and column 3. We firss

interchings rows | and 3, amd
them codumins 1 and 3.

LALd =
17 8 =% 495
e 2w
L z 1 18
Y I S - FT— Lol
| LATDSEE -0 P18 a4
-4 [ b |
] 2 I S
I S b idines T ]
TTNATUSEE S0 294118 ¢ 5.6ET06
— |0 2 HEHIES 0LE23528 .« - 741176
|3 i I : L1
(32 =]
1 04T0EEs -0 294018 - 564706
1 2 EAIES (LAZISIR | 741076
— | i1 (.58E236 | BHZEE | (5882
.:T...-.-'g-.--1-.-.-1‘------15---.T-.-.: The work row and work column
e DA7n5EE  —0L 294008 ¢ 564706 are mow B =2 and & =2 The
0 1 0265714 ; ~2.57143 largest clement in absolute value
Ll DSREZAG 1 RR23S 1 1.05HAZ | of the four under consideration is
2 BAXAS, for whick f =2 and J = 2.
Since f= K and J=C. o
‘il'lltn:'luuj_: % reguired.
R 2. s J N N
| 0470588 -0.204118 | 564708
0 i (0285714 =2 57143
=10 ] 171428 | 2.57143
32 ] o]
I 0470508 0794018 ¢ 564706
la 1 LZRSTI4 ¢ ~2.57143
K il 1 EolLS00n |

The Hrst column of the resulting row-echelon matrix corresponds o ¢, and the third column te @, o
the associated sel of eguations &
r, + (ANEHRr, — (L1940 1By, =~ 564706
-+ 0L2R5T714x, = - 257143
x, = 150001
Sulving vach eguation for the first variable with a nonzero cosfficient, we obtain
K= 568706 — 0 AHERET, + 02941 18,
Ky = —A.57143 — (L2857 14x,
x,= |5
which, when solved by hack substitution. yields the solution x, = L5001, x, = —3.00000. and x, =
T.SLKMIT.



CHAP 2| SIMULTAMEOUS LINEAR EQUATIONS 21

13

2.14

Gauss-Jordan elimination adds a step between Steps 2.3 and 2.4 of the algorithm for Gaussian
elimination. Once the augmented matrix has been reduced to row-echelon form, it is then

reduced still further. Beginning with the last pivot element and continuing sequentially
backward to the first. each pivol element 15 wsed to transform all other elements in its column
to ZeT0,

Lise Gauss-Jordan elimination to splve Problem 2.8

The first two steps of the Gaussian elimination algorithm are used o reduce the aupmented maing
1 row-echelon form a5 in Problems 1003 and 2.8

I 2 —-1: &
I f.-4
LN 1.=1

Then the matrix 5 reduced Terther, as follows:

1 2 1 ] Add —6 times the third row 10 the
- |l | ne: 2 secomd row.

L0l I -1
— |1 2 0 3 Audd the third row o the frst row.

o1 a: 2

oo §:-1
—=[1 0 0: 1 Add =2 times the second row 1o

a 1 s 2 the first row,

a0 1=

Thee wet of :quau'n:-ru asstecialed with this augmented matriz is x, = 1, ;= 2, and Xy== 1. which & the
solufion sed for the omginal system (no back substitution s reguired ).

Use Gauss-Jordan ehimination to solve the system of Problem 2.7.

The first 1w steps of the Gaussian elimination algorithm provide the augmented row-echebon-foom
matrix

[C|D]=|0 1 T )

oo LR

as i Problem 2.7, This mateix is reduced further by asing the pivot in the {2,2) position to place a zero
in the (1.2} position

I 12 =i -I,Il

a1 ?J?E L1 the first row.
oo 0
The sel of equatisms associated with this augmented matrs is

—-[1 il —m'.':nJ Add —1/2 nmes the second row

%, = bz, =0
5,4 iz, =0
=1l

Solving for the first vamable in each equation with a nonfero coefficient, we obtain x, = Y1, and
xy = =hxy, which i the solutien (oo back substitution & required | with x, aribitcary,
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Supplementary Problems

Which of

(a) &, =a,=x,=1 b 5, =R x,=-1,x,=0

(c) x, =12 p,=-3x,=2 (d)yx, =2 x,=-2,1,=0

are solutkons 1o the system
K, 3a,+ x,= 1§
2r, + xy—3r, =15
r,# e, + 8, = 1

Wiite the augmented matnix for the system given m Problem 215,

Write the augmented matois for system
dp, g, +Tx, by, — dx, =107
6x, =3z, 4x, - Sz,= 2
2x, t8Br,+ x,— 2k, — ldx, =10

Sobve the setl of equations asociated with each of the lollowing sugmented matrices:

I -2 3:17 132 1:3
(@ [0 1 2:-3 () (OO 1 273
00 o1i-4 000 iin

Solve the system given in Profdem 2,15,

Solve the system given in Problem 2.07.

In Profdems 221 thiough 227, solve for the unknowns in the given system.

B+ i - g=0 1.1 I, +2r,# 31, = 4
.E.tl - 11.'?1-3;,-“ dg,+ S, v hx, = 16
Jg, 4 ox, e 2k, =0 Tw, +Bry +9x, =18

p, - ok, tdAx,= & .24 ryv dE, 4 dx, Ak, = B
x, +3r,#3p, = -7 2x, =2k, = x,+ K, =-1
-k, +1x, = -~} r, —3dy, +dn, -4, = B

dr, +3n, —3x, +4x,= -1

ba 4+ Loy # Jay + dx, =10
Lo, + be,+ dx, 4+ Jr, =11
o+ |.:_.1" e, + h:_,‘-]!

L, b+ b, =13

[CHAF. 2
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1,16

.17

L8

.19

.3

) |

p 1.

Ll e, 2 0000, + 3 000, + 400008, =5
.00, + 2, 0000 5, + 30000, + £.0000x, =6
D000, + 2,000, + 30000, + 400K, =7
1.0000:x, + 200005, + 3.0000x, + 4 00011, = &

What would be the result of solving this system by working with only Four significant ligures?

0000 x, +  x, + (L0000, = 0K
X, 41, + =1
0.00001x, + x, - 0.00001x, = 0.0000]

Use Gamssian elimination to determing values of & for which solutions exist io the following systems, and
then find the soluiems:

(@) x +lx;— x,=4 by x, —3x,= -4
2x,— x, +3x,=3 25, + x,= A
Ix, + x+ix,=k g, =2r,= k

A manafacturer produces three types of desks: custom, deluxe, apd regular, Each custom desk ¢
requhu 12 worker houwrs to cul and assemble, and % worker howrs o fmish. Each deluxe desk & requires
10 howrs 1o cul and assemble, and 3 howrs 1o finish; each regular desk ¢ requires & hours 1o cut and
assemble, and 1 howr @0 fnish, On 2 daily basis, the manufacturer has available 240 worker howrs for
cutting and dssembling, and 120 worker hours for Anishing. Show that the problem of determining how
many desks of each type 1w produce so that all workpower 5 wsed s equivalent Lo solving [wo equations
i the thiee unknowns ¢, o, and r. How many solutions are there?

The end-of-the-year employee bomus b is 3 percent of taxable income @ alter city and state taxes are
deduceed. The city fax ¢ is | percent of tazable income, while the state tax 5 B 4 percent of taxable
imcome with credit allowed for the city 1ax a5 3 pretax deduction, Show that the problem of determining
the bonus is eguivalent o solving thiee equations in the Four unknowns b, i@, ¢, and 5,

Prove that if ¥ and & are two solations of the Hoear system AX =B, then ¥ - & & a solution of Lhe
homogensous sysiem AX = 8,

Prove that if Y and 2 are 1w sohubons of the Hanear system AX =B, then ¥ =2+ H, where H is a
salution of the homogeneous system AX =8,



Chapter 3

Square Matrices

MAGONALS
Aomatris 55 sgware if it has the same number of rows and columns. Iis general form 15 then

gy @y o T Yy,

@y iy Hyy 0 g,
A= dy dyn dyy oy,

A, d, a

nl ad Al

The clements a,,, @5, Ty, - . -, 8, lie on and form the diagonal, also called the main diagonal or
principal diggonal. The elements a;, a4y, . .., g, , immediately above the diagonal elements form
the superdiogonal. and the elements a,,, a,,. ... .4, , immediately below the diagonal elements
constituie the subdiggonral.

A diggonal mairix is o sguare matox in which all elements not on the main diagonal are eqgual o
zero; the dimgonal elements may have any values. An fdennry matric 113 a diagonal matnix in which
gll of the diagonal elements are equal 1o unity. The 2= 2 and 4 % 4 identity matrices are

1
“r EI] amd g
]

[dentity matnces play the same role i mairix arithmetic as the number 1 plays in real-number
arithmetic. In particular, for any matris &, Al = & and 1A = A provided, in each case, that T is of the
spproprate order for the indicatled multiplication,

e
=T ==
==~

ELEMENTARY MATRICES

An eleweniary marrix E 05 o sguare matris that generates an elementary row operation on a given
matriz A under the multiplication EA, The order of E 15 dictated by the order of A, such that the
multiplication is defined. There are three general kinds of elementary matrices. corresponding 1o the
three different clementary row operations (see Chapter 1). A specific elementary matris is obtained
by applyving the desired clemeniary row operation o an identity matrix of the appropriate order.
[Se¢ Problems 3.1 and 3.2.)

LU DECOMPOSITION

A square matrix is upper rigngular if all elements below the maim diagonal are Zero; it is lower
trigngutar il all clements above the main diagonal are zero. The elements on or above the diagonal in
an upper triangular matrix (and on or below the diagonal in a lower inangular matrix) may have any
walues, including zere.

In most cases, a square matrix A can be written as the product of a lower triangular matrix L and
an upper tnangular matrix U, where L and U have the same order as A. This factorization, when it
cxists. is unigque if the elements on the main dagonal of U are all 15, That is.

A=LL (31
24
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L, 0 0 - 0 1w, u, 7
L, by 0 0 0 1 My
where L=l I Iy 0 and  U=10 0 1 - uy,
Iﬂl ;HE 'r.-]. ‘ll! 1] L ] - 1
2 [ 4 { 0 1 13 12
Example 3.1 [? =1 |]=lz -z 0 o1 ]
g 1) le -1 =1 Moo

Crowut's reduction is an algorithm for calculating the elements of L and U. In this procedure, the
first column of L is determined first, then the first row af U, the second column of L, the second row
of U, the third column of L, the third row of U, and s0 on until all elements have been found. The

order of L and U is the same as that of A, which we here assume is 8 X A,

STEP 3.1; [Initalization: If a,, =0, stop; factorization is not possible. Otherwise, the first column
of L is the first column of A; remaining elements of the first row of L are zero. The first
row of U is the first row of A divided by [, = a,,; remaining clements of the first column
of U are zero. Set a counter at & =2,

STEP 3.2; Fori= N, N41,... .0, se1 L equal to that portion of the ith row of L that has
already been determined. That is, L] consists of the first 5N — 1 elements of the ith row
of L.

STEP 3.3 Forf=N N+1,. ... n, set U equal to that portion of the jth column of U that has
already becn determined. That is, U] consists of the first & — 1 clements of the jth
column of L.

STEP 3.4; Compute the ¥ih column of L. For each element of that eolumn on or below the main
diagonal, compute

;1H=EJ|'|_I:I-':]?-U:|' {‘.='\r|~+1'ﬁ"'|‘“}

If any I, =0 when N # n, stop; the factorization is not possible. Otherwise, set the
remaining elements of the Nth row of L equal to zero.

STEP 3.5 Setwy,= 1. If N=n, stop; the factorization is complete. Otherwise, set the remaining
clements of the Nth column of U equal to 2ero and compute the Mih row of U. For each
element of that row to the right of the main diagonal, compute

AT
-f.-l'r..__{f'_"i]'_._.['i “',.Hq-]_‘_ll.'r.plnl_ﬂj

hr I.\'F.I

STEFP 3.6: [Increase N by 1, and return to Siep 3.2,

{5ee Problems 3.4 through 3.6.)

Partial pivoting (see Chapter 2) is recommended when exact arithmetic is not used and roundoff
crror is possible, Prior to Steps 3.1 and 3.2 (for N=2,3,. .., 1), scan the Nth column of A for the
largest element in absolute value appearing in that eolumn and on or below the main diagonal. If this
element is in row p, with p # &, then interchange the pth and Nth rows of A, as well as the pth and
Nih rows Loup to the Nth column (which represents the parts of those two rows m L that have
already been determined).

SIMULTANEQUS LINEAR EQUATIONS

LU decompositions are useful for solving systems of simultancous linear equations when the
number of unknowns is equal 10 the number of equations, The matrix form of such a system is
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AX =B, which, in lght of Eq. (3.1}, may be rewritten as LIUX)}=B. To obtain X, we first
decompose A and then solve the system associated with

LY=Hh (3.
for ¥. Then, once ¥ is known, we solve the system associated with
UX=Y (35

for X. Both (3.2 and (3.3) are easy 1o solve—the first by forward substitution, and the second by
backward substitution. {See¢ Problem 3.7.)

When A is a square matrix, LU factorization and Gaussian elimination are egually efficient for
solving a single s21 of equations, LU factorization is superior when the system AX = B must be solved
repeatedly with different right sides, because the same LU factorization of A is used for all B. (See
Problem 3.8.) A drawback with LU factorization is that the factorization does not exist when a pivot
element is zero. However, this rarely ocours in practice, and the problem can usually be eliminated
by reordering the equations. Gaussian climination is applicable 1o all systems, and for that reason is
often the preferred algorithm,

FOWERS OF A MATRIX
If n i% a positive integer and A 15 a square matrix, then

.'l." _— !i- " !
1 Times
In particular, A° = AA and A" = AAA. By definition A" = L. (See Problems 3.10 and 3.11.)

Solved Problems

3.1  Find clementary matmices that when mulnplied on the nghe by any 3 < 3 matrix A will {a)
interchange the first and third rows of A; (b) multiply the second row of A by 1/2; and () add
—4 times the second row of A to the third row of A,

Since an elementary matnx is constructed by performing the desired elementary row operation on
an identity mairix of the appropriate size. in this case the 3 = 1 identity, we have

001 1 o0 0 1 00
fay E=|0 1 O ) E=|0 L2 0 (c}y E=f0 1 0
1 0 0 a4 o 1 b -4 1

3.2 Find clementary matrices that when muliiplicd on the right by any 4 = 4 matrix A will {a)
interchange the second and fourth rows of A; (&) muktiply the third row of A by —6; and (¢)
add 8 nmes the first row of A 1o the fourth row of A.

R 10 00 L 000
0001 o1 oo o100
@ E=1g o0 ol ™ E=lg 5 60| © E=ly a1 0
g1 0 0 o0 01 8 0 0 1
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33 Find a matrixk P such that PA s 0 row-echelon form when

1 2 -1
A=|3 8 9§
2 -1 12

The matrix A consists af the firsl three columns of the matrix corsidered in Problem 1,13, so the
same sequence of clementary row operations wutilized im that problem will conwert this matrix o

rvw-echelon farm. The elementary matrices corresponding to thoss operations are, sequentially,

1 00 1 ] i 0
EL=[—_’I 1 'Ill E1=[ 01 ﬂ] m:[n 12 u]

LI LI | -2 0 1 LI | |
1 00 1 4 0
E.,=i0 1 0 E.=|d0 1 0
LI T | 0 0 1/3
i 0 0
Then P=EEEEE =| <32 112 0
—19/68 5068 2068
1 (1] i 1 2 -1 1 2 -1
and PA =] -3/2 1/2 o 3 8 9)|=|0 1 &
~19/68 3/68 2/6R012 -1 2 L T |

3.4 Factor the following matrix into an upper triangular matrix and a lower mangular matrix:

1 2 =2 3
=11 0 2

A=l s -3 4 g
2 1 1 -2
Using Crout's reduction, we have
STEP 1.1:
1 0 iy D P 2 -2 3
T e B T !
- - = e - -
2 = = = ff =

STEP 3.2: Li=[-1}, Ly =13}, and L} =[2].
STEP 3.3 Up=[2], Uj =[=2], and U =|3].

STEF 3.4;
Lp=ay _{L}:}r'ulz =1=|=1]*[2]=1=({=2)=3
by = gy = (L3 +Uy= -3 -[3]+[2}=-3-6=—-9
la=a,= (L) - U;=1-[22]=1-4=-1
STEP 3.5

Tt O M L | e
- 1 3
_o =L, 2-[-1)-[3) _ 5
b 3 3
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STEP 1a: To this point we have

| & 0 0 1 2 -2 3

_| -t 00 _ ¢ § 243 5/%
L={ 1 ¢ . . ad U=y - -
b 3 - - o 0 - -

Simce N =2 and n =4, we increass N by 1w & =3,
STEP 12 Ly=[3 -9 and L] ={2, -3].

STEP IR
{ _33) ”1=[5?3]
STEP L&
b=y - L) =4-| o] ] 3F|=4-0=4
ly=an - u=1-| 3] S5 1-a-3
STEP L5

ﬂ]

by
o= - [ ] )) -

1k

-p-h-l

ATEPRP 16:  To this point we have

oo L2 -2 3
-1 3 a0 oo -3 5
L= % 4 0 and ‘J_l}ﬂ i -

2 -3 3 - 00 0 -

Sance & =3 and i = 4, we increase N by 1o N =4
STEF 32 L;=|2,-3.3)
[5-‘!]

STEPRP 3.12:
5 1
o= @~ (L) U = -2 [ HMJ 2-2- 2
3 Tid

ETEP 35 w,, =1 Since N =4 = n, the factorization is dome. 'We have A = LU, with

STEP 3.4:

1 00 0 12 -2 3

-1 10 0 o -2 s

L=l 3 g4 g wd U=y 0 1 e
7 -3 31 =334 00 0 1

Factor the following matrix into an upper trigngular matrix and & lower triangular mairix;

1 2 -2 3
1 -2 0 2
A=l 3 3 g |
2 1 1 -2

The first three steps of Grout's reduction here wre identical to those in Problem 3.4, Then:

STEF 3.4
e = = (L) U5 = =2~ [~ 1]+ [2) = -2~ (-2) =

Simce [, =0 bur & = #, the original matng cannot be factored as an LU prodwct,
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Factor the following matrix into an uwpper triangular matrix and a

Lising Crout’s redwection, we have

STEP 3.1
A
| ¥ -

L=] g

1

0

=

SOUARE MATRICES

™ R

1 a
-1 1
5
oo

0

112

(== =
I
I
!

STEP 3.2 L, =[3].L;=[0], and L, =[~1].

STEP 3.3 UL =[1}, 15 =[1/2], and U}
STEP 3.4 L, =a,, - (LT

ly = ay; — (Ly)

{

=[O}

Uy=0-[3][1]=0-(3y=-3
= -t =1-0=1
a0 = (L) == [=1) [l =1 —(-1)=2

i
=113

STEF 1.5
by, =1
'\-1_[L |=_I-_!_3I i‘_‘_._l
i3 ||
n
i L4 A S 110 B
ElY !“ _3 3_
STEP L& To this poin we have
2 0 0 o It 1iZ
i -3 00 _y0r siE
L=0 4 1 - . and LU= D0 -
-1 1 - - oo
Since & =2 and n =4, we increase Wby 1o W =1
STEP 32 Ly=[0,1] and L =[-1,2].
STEF i3
P o142
Uis[gg] wma wi=[ J,
STEFR 3.4:
a ; o] It 5
"J"""""*}T'”f'“'[1]'[51§]=U_E'"
. . =1 i 7 7
Ju'cﬂj1_{l-u|]r'l]_l-ﬂ'[ 2]'|-:”E]-|]-'a‘—a
STEP 1%

a,— (L) U

. Ty

(s-[1 ][ |a:+] Ji-s16)=

B el 1
~5i6

29

lower triangular matrix:
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STEP 14: To this point we have

2 0 0 b
I -3 0 D

L=l o 1 -6 o/ ™ U=
12 -1e -

Sioee A =3 and A =4, we increase N by 1o N =4,

STEP 32 Li=[-1,2, -Ti6].
STEP 3.3
0
U,=| =1/3
-32/5

STEP 1.4:

-1 b
Lo = g — (LY U =0—| 2 H 113 ]= C

| —706] L-321%

STEP 1.5 w,, =\ Since W =d=n, the factorization & done, We have A = LU, with

20 i ]
-3 0 0

L=l o 1 =556 0 and U=
=1 2 =Tih =345
Solve the system of equations
Ix, + 2z, + 1, = 1}
ix, —k,+ x,=-11
X, +5x,= 3
=%, + I, = 4

|CHAP. 3

The coefficient matrix for this system is matriy A of Problem 3.6. Using L as determined in that

problem, we write the system corresponding o LY = B a

¥ =

Iy, — Iy, = -1l

¥; —alby, =
=¥, + 2y, — Tioy, — 35y, =

Solving this system sequentially from top to botiom, we obiain y, =5, ¥, =M/3, ¥, =23/5 and

¥i=—L
With these values and U as given i Problem 306, we can wilte the system cornesponding 1o UK = ¥
X, +x, + bx, = 5
% iz - dx,- ¥
- ¥z,= ¥
r,= =]

Solving this system sequentially from bowom to lop, we oblain the solution o the onginal system:

g,= =4 g,= 10 %, =-2 and x,= -1
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38  Solve the system of equations given in Problem 3.7 if the right side of the second equation is
changed from —11 to 11,

The coeffident matrix A is unchanged, so both L and U are as they were, From (3.2},

¥, =10
Iy, — 3y, =11
¥i—in =3

TR T e

Solving this system sequentially from top to boltom, we obtain y, =5, y, =4/3, y, = =22/5, and
¥o= <I8/17. With these values and U &s given in Problem 3.6, (3.7) becomes

X+ x,+ ba, =
I:""ilg_' 111.‘ i
Y PR

0n=-1

Solving this sysiem sequentially from bottom o top, we obtain the selution to the system of interest:
= =13507, 5, = 225007, &, = 2540107, and 3, = =28/17.

A% Venfy Crout's algorithm for 3 = 3 matrices.

For an arbiirary 3 = 3 marrix A, we seek a lactorization of the form

dyy dyp dgy Ly ¢ 01 U, M, I Iy Fogthyy

@y By Oy =ly T OO0 1 wy =0 Dy +iy Iy gy # dgley,

Gy Gy gy I.II ‘Jn‘ !JJ 0o o 1 JI:|I ‘JI"'H’ + :.u JI:H"‘u + 'r:-:l“'n ¥ 'Iu
By equating corresponding coefficients in the order of first column, remaining first row, remaining
second column, remaining second row, and remeining third column, and then solving successively for the

single unknown in each equation, we would obiain the formules of the Crout reduction algorithm.,

310 Find A’ and A" when

*=[: _3]
w-m=[3 50 )=
S PO PR S e

311 Show that A" = 9A + 101 = 0 when
1 =2 2
A=|0 2 1]
1 -1 =3

i -2 I|i -2 3 3 =8 -4
02 oo oz M= 0 4 0
i -1 =301 -1 -3 - -1 N

3 -8 =471 =2 2 -1 -8 18
b 4 00 T 0= 0 ] ]
=z =1 N1 -1 -3 9 -9 -3

We hawe

A=Al -

Al=AA=
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-1 -18 18 1 - 2 1 00 ¢ 00
A'-gA+im=| 0 & af-wo 2 ol+wo 1 0f=|0 0 0
9 -9 =17 1 =1 =3 o o1 0 o0
A square matrix A is said 1o be nipotent if A" = 0 for some positive integer p. If p is the least

positive integer for which A" =0, then A is said to be nilpotent of index p. Show tha
15 milpotent of index 3.

1 5 -2
A=|1 2 -1
1 6 =3
That is indeed the case, becanse

1t § =21 5 -2 03 -
Af=)1 2 11 2 -1)=|0 3 -
16 3T & =3 % -3

n 3 i1 5 -2 ?ﬂun
Al=a%=l0 3 -1[1 2 =1|=/0 0 D

Then

and

o9 -3jls & -3 loo o

Supplementary Problems

Fird clementary matrices that, when multiplied on the right by any 3= 3 matrix A (o) will inferchangs
the second and third rows of A; (b) will multply the first row of & by 7; and [c) will 384 -3 rimes the
first row of A 10 the second row of A

Fird elementary matrices that when multiplied on the nght by any 4 = 4 matrix & (g) will interchangs
the second and third rows of A: (b) will add -3 wmes the first row of A 10 the fourth row of A; and ()
will add 5 times the third row of A to the first row of A,

Fid (@) 8 mainx P such that PA 5 0 orow-echelon form and (B) & mains Q such thar i = 1 when
_f1 2
a=[3 3
Lse glementary matnices (o find a matnx P such that PA = 1 when
10 2
A=|0 1 1
LI

Prove that the product of two lower triangular matrsces of the same order = aself lower triangular.

In Prohlems 318 through 1.23, write each of the given matrices as the product of o lower iriangular matrix
amd an wpper triangular meAn.

ERE

I 2 3 AL -1 4 320
4 5 & | y 3
T8 % -1 20

(=N
=
[=1 =}
— e Bl
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A

LI3

L

116

LT

LW

L]

LR |

12

1x

im

135

P 3 4 a2 (v 2 3 4
2 4 =1 1 2 =2 = 1
1 -3 4 -4 1 -3 4 -4
2 -3 4 @ -3 4

In Problems 1.23 through 3.29, we LU factorization to solve for the unknowns,

Iz, +2x, +13, = & 14 K, +2x,— 2, 43, = 2
iz, =x+ K==l -x, + K +xp,=—4
X + 55, =-0 Jp, =dx, +dr,+ x, = 16
=K + Xy = 0 v oxt oz, lr,= B
(Hiap: See Problems 3.7 and 3.8.) { Mint: %ee Problem 3.4.)

Repeat Problem 3.24, but with B=[-1, —1,0.4,]"

i, t2dx,+ 05, =4
dx, % .'i.::* +E|:|'_I = 1f
Te, + 8z, + %, =28
{Minr: Sce Problem 3.18.)

Repeat Problem 3.26, but with B =6, =7, -12]".

Ir, — 5, +d1,= 6 il T, 42, +3x, +dx,= &
r, +3x, +3x,= =T ey =2n, = 5+ r,=-13
—x, + 1, =-12 ¥, —dx, rdg, —dz, - H
(Minr: See Problem 3.19.) Ir, + 2y — 3y, +4x, = -1

(Hini: See Problem 3.21.)

Find A7 and A" for the matnx ghven in Problem 3,15,

2 0
A=l0 1 D
oo -l

What does AT look like when A s a di.lj;r.ruu-l matnxT

Find A" for

A square matrix is said 10 be idempotenr if A' = A, Show that the following matrix is idempotent:

2 -2 -4
-1 3 4

1 =2 -3

A=

Prove that if A B adempotent, then s oo s 1 - A,

Prove that (A")" = (AT)".
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Matrix Inversion

THE IMNVERSE
Matrix B 15 the inverse of a square matrix A if
AB=BA =1 4.1
For both products to be defined simultaneously, A and B must be square matrices of the same arder.

Example 4.1

-2 1 12
32 —_m] i the inverse of [3 4]

1 X -2 | =2 1 1 2 = 1 i
because [3 1]{3;: _”1}-[3;1 -1::]{3 d} 0 1]
A square matrix is said 1o be singuler if it does not have an inverse; a matrix that has an inverse
is called nonsingular or invertible. The inverse of A, when it exists, is denoted as A™"

SIMPLE INVERSES

Elementary mairices corresponding to elementary row operations (see Chapter 3) are invertible.
An elementary matrix of the firsd kind, one that corresponds to an interchange of two rows, is ils own
inverse, The inverse of an elementary matrix of the second kind, one that corresponds to multiplying
one row of a4 matrix by a nonzero scalar k, is obtained simply by replacing the value of k in the
elementary matrix with s reciprocal 1/k. The imverse of an elementary matrix of the third kind,
which corresponds to adding to one row a constant k times another row, is obtained by replacing the
walue k in the elementary matrix with its additive inverse — k. (Sec Problem 4.2.)

The inverse of an upper tnangular matrix is itself upper mangular, while that of a lower
triangular matrix is Jower triangular (see Problem 4.13), provided none of the diagonal elements is
zero. IF at least one diagonal element & Zero, then no mverse exists, The inverses of triangular

mitrices are constructed iteratively, one column at a ome, using Eq. (4.1 ). (5ee Problems 4.3 and
4.4

CALCULATING INVERSES

Inverses may be found through the use of clementary row operations (see Chapier 1), This
procedure not only vields the imverse when il exists, but also indicates when the inverse does not
exisi. An algorithm for finding the inverse of a matrix A i as follows:

STEP 4.1: Form the partitioned matrix [A | 1], where Lis the identity matrix having the same order
as A.

STEFP 4.2-  Using elementary row operations, transform A into row-echelon form (see Chapter 1),
applying each row operation to the entire partitioned matrix formed in Step 1. Denote
the result as [C | D], where C is in row-echelon form.

ETEFP 4.3: 1fC has a zero row, stop; the original matrix A is singular and does not have an inverse,
Oherwise continue; the original matnx is invertible,

14
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STEFP 4.4: Beginning with the last column of € and progressing backward iteratively through the
second column, use elementary row operation E3 to transform all elements above the
diagonal of C to zero. Apply each operation, however, (o the entire matrix [C | D].
Denote the result as [1| B). The matrix B is the inverse of the original matrix A,

(See Problems 4.5 through 4.7.) If exact arithmetic is not wsed in Step 4.2, then a pivoting strategy
(see Chapter 2) should be employed, No pivoting strategy is used in Step 4.4; the pivot 15 always one
of the unity elements on the diagonal of C. Interchanging any rows after Step 4.2 has been completed
will undo the work of that step and, therefore, is not allowed.

SIMULTANEOUS LINEAR EQUATIONS
A set of linear equations in the matnx form
AX=B (4.2}

can be solved easily if A is invertible and its inverse s known. Multiplying each side of this matrix
equation by A”" vields A 'AX = A™'B, which simplifies to

X=A"'B (4.3)

(5ec Problems 4.8 and 4.9.) Equation (4.3) iz most uselul as & theoretical representation of the
solution to (4.2). The methods given in Chapter 2 for solving simultaneous lingar equations generally
fequire fewer computations than the method indicated in (4.3) when A™" is not known.

PROPERTIES OF THE INVERSE

Property 4.1: The inverse of a nonsingular matrix is unigue.

Property 4.2: If A is nonsingular, then (A™") '= A

Property 4.3: If A and B arc nonsingular, then (AB)™' =B 'A™",

Property 4.4: If A is nonsingular, then so too is A™. Further, (A7) = (A7")".
{See Problems 4.10 to 4.12 and 4,30,)

Solved Problems

4.1 D
termine whether G =[ 0 05 }
=025 0.15

is the inverse of any of the following matrices:

2 -4 0
4 -8 _f1r 23 2 -4 .
*""[d uI - [155 c [1 n] “[g g?]

We consider each of the given malrices in turn. Since

- 4 =K ] 05 - 2 0
AG [4 ﬂ][—n.zs ﬂ.ﬂ] 0 z]

i miol the identily matriz, G s not the inverse of A.
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B is not sguare, 50 it has no inverse. In particular, the product BG is not defined,
Far O, matrix mulliplscation grves

{’G:[i _[I“—['I-..Ei [:.Ef;]=[[: ﬂ

and 6c=| g oaslz ol=lo 1)

s GG is the inverse of C.
G oand ¥ do not have the same order, 0 they cannod be inverses of one another,

4.2 Determine the inverses of the following elementary matnices:

001 1 00
A=D1 0 B=|0 i
1 0 0 0 0

0

1
i n o 1 00 10
D=0 -2 0 E=|0 1 0 F=|-3 1
0ol o 21 00

Hoih A and B are elementary matrices of the first kind; thus, A" = A and B ' = B. Matrices C and
Id are elermentary matrices of the secord kind, Their fnverses are

a4 00 o n
cl'=p 0 10 and D=0 -1/2 @

o o1 oo 1

Marrices E and F are elementary matnices of the third kind, Their imverses ane

oo 10| s .---_-[HE]

n -2 1 oo

213
A=0 1 2
o3

Simce A is upper triangular with no zero elements on its dagomal, i has an mverse and the ifverse s
upper triangular. Furthermore, since & 'A = |, we may write

¢ B oef[2 1 3 1 0
0 & ef 1 2f=|0 1 0
o o ¥ LI

0o f
with the first matrix on the beft representing A" We perform the indicated mattix multiplication and

sguete corresponding elements on and above the disgonal. Beginming with the lefimost column and
sequentially mowving through successive columns, we determine that

4.3 Dewermine the inverse of

a2} + My +c(0}=1 o a=]}

HIp+ 8y reid=0 s b ==}

BIp+ad{i)+ei@=1 so d=1
WA+ (= I ME +c(3) =0 2] ¢ ==

03y + WI)+#{3)=0 s

{3+ 2)+ fidi=1 =0

f=A
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iz -1t -1
Thus, A=l 0 i =211
1] 0 113

4.4 eterming the inverses of

30 00D -1 0 00O
1 =2 DD |22 oo
A=lz 4 o ™ B=l 5 | 5y
1 3 -1 0 I -1 3 3

Both matrices are lower riangular. Sinoe A has a zero element on ils main dizgonal, it does not
have am inverse. In contrast, all the elements on the main diagonal of B are nonzero so b has an inverse
which isell must be lower triangular. Since BB ' = I, we may write

=1 0 0 Offa O @ @ 1 000
2 -1 Uﬂbfl]l]-_:tlflﬂ-ﬂ
I 01 =2 of||jd ¢ F O oo 1o
1 =1 3 3flg k & | oo o1

with the second matrix on the beft representing B™', We perform the indicated matrix multiplication and
equiale corresponding elements of and below the diagonal. Beginting with the lefimost column and
sequentially moving through successive columns, we determine thar

-|E+ﬂb+[|'ﬂ'+[:|5-|_ [T a=—j
A-1p+i-)b+0d +0g=0 50 b =)
H=1)+U=1p+(-2)d + Dg =1 so i = =7
W10+ (=1 -1+ 3(-2) +3g =10 & g=2
A0)+(-2pc+0e+Dh=1 0 ¢ =—12
HOY+ U =1/2p+ (-2je + D=0 s ¢ =-1/4
HO)+(=k=1/2)+ H~1/d)+3h =0 80 h =}/]2
HOp+ 0y +(-2)f +0f=1 s0 f==12
N0y = (=1)(0) + H{=1/2)+3i=0 s0 { =11}
WO) + (=100 & Oy + 3=1 50 =0
-1 0 0 0o
| -1 =12 o n
Therefore B =2 —14 —12 0
I T - T T
4.5  Determine the inverse of
_|3 3
A [2 1
We follow Steps 4.1 through 4.4, beginning with [A | 1]:
[5 i:1 [IJ
oo
—-[] oe 02 o Multiplving the first row by 15
21 0 1
[1 e 0.2 l}] Adding — 2 times the first row 1o
=10 -02-04 1 the second row
{:I 6 0.2 {:l] Mubtiplying the sccomd row by
= 1;32 - -1/0.2
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The left side of this partitioned matrix is in row-echelon form. Since it contains no 2ero rows, the oniginal
matrix has an inverse. Applying Step 4.4 10 the second column, we obiain

—'[I 0:-1 3 Adding —LG times the second
o1: 2 = row [ Bhe Frsl row

Theretore, A= 3

4.6 Dretermine the inverse of

1 2 3:1 00
[All]=]4 5 &6i0 1| 1}]
L7 8 %0 o 1
[ 1 2 3 1 00 Adding -4 times the firsl row o
=0 -3 —&6:-4 1 ﬂ-] th secomd row
| 7 E 9 o 0 1
(1 2 Ii 100 Adding —7 times the first row bo
0D -3 =Bi-4 1 n] the third row
|0 -6 -12i-7 0 1
1 2 LI | o0 Muliiplying the second row by
|0 1 Ilar =143 u] ~1/3
[0 =6 =12i-=7 0 1
[1 2 3: 1 ] EI] Adding & umes the sscomd row o
01 2:4/3 =13 0 thee third row
-« |0 0O 0: 1 -2 i

The left side of this paritioned malrix i@ in row-echelon form, Since ils thind row is Zero, the oRginal
matrix does not have an inverse.

4.7 Determine the inverse of

0 1 1:'1 00
[a|1]=[s i o100 n]
2 =3 =3;0 0 1
- I =1i0 1 D] Interchanging the firit and second
. | ]1:1. [ TS
-3 =30 0

1 i . I
-1 -1 ool
Lt =150 0f5 &'l Adding =2 times the first pow o

IS =150 0 1S l}] Multiphying the first row by 115

i R T the third row
=178 =135 0 =5 1

!
. L
=N— N - . =R

i
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LI | 1. 1 o 0 b the third pow
o0 4% T IWSs -2 1

[i /S -15: 0 LS D

[1- IS =150 0 15 D} Adding 17/% times the second row

Multiplying the third row by 504
o 1 [ | 1] 0
oo 1 0174 =24 5014

The leh side of this partinioned matrx & i row-echelon form and contaims no Zero rows; thus, the
original matnix has an inverse. Applying Step 4.4, we obtain

115 =15 0 ir's 0 ] Adding =1 times the third mow (o

I o 134 X4 -5 the second row

1
1]
0 n 1 7 174 =24 5/4
—[1 1% o 173 g 1dd Adding 115 times the third row w0
o 1 0;-13/4 24 —5¢4 thie first roow
oooo1: 174 214 574
-1 o ! &4 i 214 Huldig — 105 times the second row
o o1 05 -13s4 24 514 o the first row
oo 1. 174 =2/4 54
4 i i i & o 2
Thus A=) -134 24 %04 =q/-13 2 -5
1hd =354 5dd 17 -2 5

4.8 Solve the sysiem

Sx, +3x, =8
2,4+ x,=-1

This system can be writlen in the matrix form
HHIEE
Using the result of Problem 4.5 with Eqg. (4.3), we |1I.'I-‘v|‘.'.
-2 S]-[a

The solution i x, = =11, x, = 21,

4.9  Solve the system

X+ xy=1
o+ - 1,=3
2r, —dx; — 33, = -6

This system can he written in the matria form

¢ 4 2L

Using the result of Problem 4.7 in Eq. (4.3), we have
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o 1 & 0 2 2 1]

T -3 =13 2 =5 =] sil

X, i -2  5ll-6 b L
The solation is x, =10, 5, =52, ¥, = - /L

Prove that the nverse 15 umque when it exists.
Assume Lthat A has two inverses, B and C. Then AB = I and CA = [. [t follows that

C=0Cl=CiAB) = (CAJB=1B =B

Prove that (A™') " = A when A is nonsingular.
Ay s, by definition, the inverse of A" A also is the inverse of A", These inverses must be
egual as a consegueence of Problem 410,

Prove that (AB) ™' = B'A™" if bath A and B are invertible.
(AB)} " s, by definition, the inverse of AB. Furthermore,

(B A " AB) =B (A" 'AB=B""IB=B 'B=1
and (ABNB A" ) =ABB A = Al "= AA =

s0 B A" 5 also an inverse of AB, These inverses must be equal as a comsequence of Froblem 4.10.

Prove that the inverse of a lower imangular matrix A with nonzero diagonal elements iz itself
lower triangular.

The proof is inductive on the rows of &A™ Denote the imverse of A= [a,] 28 A™' = [a, |. Since the
product A" s the wentity mairix, the element in the ith row and jil column of this product must be
zero when § # . In particular, the element in the first row and jth column of .HL", with j = 1. 5 zero. We
may write that element as

0= E- @y, =iy on, o+ E‘ Ay on,, =, e + :E! (e, b= a, &,
aei T -

We are given a,; # 0, which implies that o, =0 for j > 1.
Mow assume that a,, = 0 for j =i and all § = p - 1; compute the pth row of AA™". Since AA™ ' is the
identity matrix, the element in its pth row and fih column, for § > p, must sabisfy

# -1

L] L]
0= LEI dﬂu_. = :E,.I dr.. o, + #P_n'n + E n'P.uh_

j-,l'l
R ]
= ,E:. (a,, K0} + a, o, + ' E . (Om,,)=a,,a,
Bince @, &0, it follows tha o, =0 when [ > p.

Prove that any square matrix that can be reduced to row-echelon form without rearranging
any rows can be factored into a lower triangular matrix L times an upper triangular matrix U,

The reduction of & matfix A o row-echelon form can be expressed as the product of a sequence of
clementary matrices, one for cach elementary row operation in the reduction process, multiplisd by A, If
U is the resulting row-echelon form of A, then U & upper triangular and

':Ei-an"'E:El]'h-l'u ':'F]
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Each E, is an clementary matrix of either the second or third kind, so each is lower triangular and

MATRIX INVERSION

imvertible, 11 follows from Problem £.12 thar if

then

In Probtems 4,15 through 4.2 find the inverse of the given matrix if it exists,

|
0

4.15 oo o
o1 o
@ g 03
I 0D
416 [qu
1 1
".l.?[-34]
3
41 100
120
1 1 0
4.25

ISE=R-™

4.17

P-Ejﬂl-l '”E?E'

P =(EE, -~ EE)" =E'E" ELE"
P s thus the product of lewer triangular matrices and is itself lower triangular {Problem 3.17}). From
(1), PA = U whereupon

A=TA=(P 'PIA=P '(PA) =P 'U

noo

I

07 00
oo 1 o
000 |

] 418

0 4.21
a
3

[
o
nd WD b Lk

0
i

=R ==

Supplementary Problems

i}
i}
i [}
i

=R =R =

In Problems 4.17 through 4,29, wse matrin inversion (o solve for the unknowns:

437 3, + 1+ dx, =
nh.',l-]q:i— I,=

R T

-3
§
2

(Hirr: See Problem 4.23))

4.19

Iz, gy # 3z, + 35, = |
o, + Jgy o dx, o+ dx, =1
50,4+ 3x, +Tr,+ 9, =1
Iz, 25, 441, +Tx, = |
(Hirt; See Problem 4.26.)

43 Prove that (A" = (A"}

4.3

4.28

o +in+x,=0
v xtE, =0
31:—I|."'l| =f

[(Hint; See Problem 4.25.)

[ =R =]

Prove that if the commutative property of multiplication hobds for nonsingular madrices & and B, then it
also hedds for the following pairs of matrices: {(u) A" and B (5) A" and B; (¢} A and B ",



Chapter 5

Determinants

EXPANSION BY COFACTORS

The determinant of a square matrix A, denoted det A or |A|, is a scalar. If the matrix is writlen
out as an array of elements, then its determinant 15 indicated by replacing the brackets with vertical
lines. For 1 = | matrices,

df"-l"zl'“ul:ﬂn

For 2 = 2 matrices,

det & =

LTI
dy iy
Determinanis for a % n matrices with o> 2 are calculated through a process of reduction and

expansion utilizing minors and cofaciors, as follows.
A miaer M, of an B % a matrix A is the determinant of the (n = 1) = (n— 1) submairix that

remains after the entire fth row and jth column bave been deleted from A,

=l = @iy

Example 5.1 For
a1 1
n‘[_‘n ‘ 5]
6 7 8
My=[3 3 =am-sm=-s
My =[g 3| =0m-16)=-6
My =]y =15 - 2= -3

A cofactor A of an nx n matnx A o defined in terms of s associated minor as

A, =(=1Y""M,
Mow foramy dor f (4, /=1, 2. .., nj,
detA= X a,A, =X a,A, (5.1}
k=i Eml

For cach i, the first sum in (5.1) represents an expansion along the ith row of A; for cach j, the
second sum represents an expansion along the jth column of A, Choosing to expand along a row or
column having many zeros, if it ewists, greatly redoces the number of calculations required 1o
compute det A. (See Problems 5.2 through 5.4.)

PROPERTIES OF DETERMINANTS

Properiy 5.1: If A and B are square matrices of the same order, then det AB = det & det B,

Property 5.1:  The determinant of an upper or lower riangular square matrix is the produoct of the
diagonal elements.

42
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Property 5.3: I B is formed from a square matrix A by interchanging two rows or two columns of
A, then det A = —detB.

Property 5.4: If B iz formed from a sguare matrix A by multiplying every element of a row or
column of A by a scalar &, then det A = (1/k) det B

Property 5.5: If B is formed from a square matrix A by adding a constant times one row (or
column] of A to another row (or column) of A, then det A = det B,

Property 5.6:  If one row or one column of a sguare matrix is zero, its determinant 15 2ero,
Property 5.7:  det A" = det A, provided A is a square matrix.
Property 5.8: If two rows of a square matrix are equal, its determinant is zero.

Property 5.9: A matrix A (not necessarily square) has rank k& if and only if it possesses at least onc
k = k submatrix with a nonzere determinant while all square submatrices of larger
order have zero determinants.

Property 5.10: If A has an inverse, then det AT =1/det A,

DETERMINANTS OF PARTITIONED MATRICES

A block matrix is one whose elements are themselves matrices. Property 5.2 can be extended to
partitioned matrices in block wpper (or lower) trisngular form, If

Aﬂll "II e :Ir
A.z:l: "
Alo o - A,

U T

where cach of the submatrices A, A, ..., A,, is square, then

dﬂlﬁ‘dﬂl”dﬂﬁudﬂi”"'dﬂ l*-r_,. {52}
(See Problem 5.8.)

PIVOTAL CONDENSATION

Properties 5.3 through 5.5 describe the effects of elementary row and column operations on a
determinant. Combined wath Property 5.2, they form the basis for the plveml condensation algorithm
for calculating the determinant of a matrix A, as follows:

STEP 5.1: Initiadize Y= 1. D is a scalar that will record changes in det A as a result of elementary
rOW OpErations.

STEP 5.2: Use clementary row operations to reduce A to row-echelon form. Each time two rows
are imterchanged, multiply O by —1; each tme a row & maltiplied by &, multiply D by
k., Do no change D when an elementary row operafion of the third kind is used.

STEP 5.3: Caleulate det A as the product of D and all the diagonal elements of the row-echelon
matrix obtained in Step 5.2.

(See Problems 5.6 and 5.7.) This algorithm is easy to program for computer implementation; it
becomes increasingly more efficient than expansion by cofactors as the order of A becomes larger. 1f
rounding is 1o be used, then the pivoting sirategies given in Chapler 2 are recommended.
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INVERSION BY DETERMINANTS

The cofactor mairix A" associated with a square matrix A is obtained by replacing each element of
A with its cofactor. If det A # 0}, then

- 1
A I= A ﬂ: T 53']
i) (
If det A is zera, then A does nol have an inverse. (See Problems 5.9 through 5.11 and Problems 5.18
through 5.20.) The method given in Chapter 4 for inversion is almost always quicker than using
(5.3}, with 2= 2 and 3 x 3 malrices being exceptions.

Solved Problems

51 Caleulate the determinants of

a=[3 i e [T ]

det A = 1{4) = 2(3) = -2
det B =25) - (~3)(4) =22

2 3 4
A=|-5 5 &
7R 9

expanding along {a) the first row, (b)) the first column, and () the second column.
{a} Expanding I.II:IﬂE the ksl row, we have
detA=a, A, +a A, +a,d,

£.2 Caleulate the determinant of

-5 5
T 8B

o otV R T T R R TR

= 2-1F(5(9) - 6(8)) + M- 1" {(-5)9) = (7)) + 4~ 11"{(-5)H8) - 5{T)}
= HIH-3)+ 33—y~ E+ HIW—-T5) = —45
(k) Adong the first column,
detd=a, 4, +a, A, +a,4,

<15 e T
=2-0'""fy gl =m0y glea-ns g

=2 -1 {5(9) - 6B} = (—5)(— 10" {39) = 4(8)} + T(=1)*[3(6) — 4(5))
=HIN-3) + (=5)=1)(=5) + HU=2) = =45
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(c) Expanding along the second column gives us
det A=, ; + il topdyg
o ) R B T Vs A S O
= 3= 1P (=50 = 6(TH) + 5= 1) [2(9) - 4T)} + B{-1)"{2(6) — 4{-5})
= 3= 1 H—8T)+ S(1 (- 10) + B[ 1W32) = —45

=3 4 0
B=|-2 T b
5 -8B 0O

by expanding along (a) the second row and (&) the third column.
fa) Expanding along the second row gives

& a2 Yl

= =2(=1)"{a(0) = Of=8)) + T~ 10" {{=3)0) = D50} + 6(— 11" ({3 ~E) - 4(5)}
= == 150} + TIWD) + 6(—1}4) = —24

53 Caleulate the dererminant of

de:.l-{—l](—]}"'|

by Along the thard eolumn,
detB=08 , + 6fi,, + 08,, = 6f,,

=617 T3 gl =610 1-300-8) - a5y - 24

Part b involves less compuiation Decause we expanded along & column that has mostly zeros

54  Calculate the determinant of

| -4 2 -2

4 T =3 5

A=l 3 p 8 0
=5 =] f Q

We expand along the third row, because it is the row or column containing the most zeros:
det A =3A, +0A,, +8BA, +04,, =3—1""M,, +8-1)"""'M,,
Mow we may write
-4 2 -1

Ma=| 7 -3 sl ol #2077 g+ ]
-1 6 9
= —4{IN—57) + 2~ 1)(68) + (=2)( 139} = 14
1 -4 -2 -
_ a4l 7T % _ . 4 5 _ T, 4 7
ma  My=| 47 sfe S I R C S e B T Tl

= WIWG8) + (~4)(=1M61) + (~2)(1)(31) = 2530

Thus, det A = 3 1){ 14) + 81} 250) = 2042
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5.5 Verify that det AB = det A det B (Property 5.1) for the matrices given in Problems 5.2 and 5.3,

From the results of those protlems, we know that dei A det B = (~45)(=24) = 1080, Now

3 4 -3 4 0 B -3 14
AB=|-5 5 &al|=2 7 6|=(3% -33 30
TE 9 i =8 0 B

12 48
To calculate det AB, we expand slong the first row, fnding thar

det AB =5(-1)"" T 38 ) e T R

= BENH0= N9 + (=35 — 1 W 144y + D8( 1 (684} = 1080

—33

L R

5.6  Use pivotal condensation to evaluate the determinant of

02 2
A=|1 0 3
211

W initiakize D=1 and use elementary row operations o reduce A o row-echelon foerm:

l
—

r
=0 == R

1
.

[I
1]
-+ |
i
|u
== |0

0
2
1

-

_——

D= ==

3
2
1

37

FA

= |

]

Interchanging the firs? and second
rows: £ =)= 1{-1)y=—1

Adkbing -2 times the first row 1o
the third sow: [ remaing — |

Multiplying the second row by 1/2:
D= D)= =1{2)= -2

Adding — 1 times the second row
1w the thied row: O remains —2

Hﬂhiﬂ}-hg the third row b:,. =16
D D{~6) = (~2)(~6) = 12

The diagonal elements of this last matrix are all ones, so det & = {1 IR 1) = 12

5.7

Use pivotal condensation b evaluate the determinant of

1 2 -3 4
2 -2 5 -6

A=

-1 I =4 ]
f 5 -3 6

We matizlize £2=1 and reduce & 1o row-echelon foom:

P2 -3 4 Adding =2 times the first row o
| 0 -6 11 -14 the second row: [ remains 1
-1 3 - ]
& 5 =3 £
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5.8

i 2 =3 4
0 =6 11 =14
—- | & -7 i
i 5 -3 i
B! I -3 4]
o -6 11 -I4
n 5 -7 i)
—+ Ll =7 15 -—]&]
[ 1 2 =3 4
-0 1 —1i'6 M6
1 . =7 1
o =7 15 -8
1 4 -3 q
o S I S 1)
=g O i¥Me -5
o -7 15 -1k
1 2 -1 4
ool =16 14546
oo 13E -5
— L0 0 1376 —553%
] 2 =3 4
o1 =11 1406
I I =10013
0 0 136 =53 |
(] 2 =3 4
01 -~ 1406
o0 1 =10/13
— |0 0 1] L I
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Addang 1 times the first fow o the
third row: £ remaing 1

Adding —6 times the first row 1o
the fourth fow: £ remains

Mulbtiplying the second row by
~ 1t e D{=6) = I{~86)
=t

Adkfing — 5 nmes the seeond row
to the third fow: [ femaing —6

Audding 7 times the second Tow o
the fourth row: O remains =6

Multiplying the third row by &/13:
D= D{1306) = —6(1306)= - 13

Audding —13/6 times the thind mow
fa the fourth row; 1) remains =13

The matnx is now i row-echelon form with di:gnnal clemenis 1, 1, 1, and O Thus, dei A=

=130 = 0.

Calculate the determinant of

o2 s
211 -6
1 21 1
o0 o3 6
o001 -1

This matnix can be panitioned into block wpper tangular form with square matnices on is main

diagonal, We introduce the partitioning

and it fplloes from Eq. (5.2) thar

-:E:A-NH Hlli' _ﬁ|-5q3:[—9}-—135

1
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Calculate the inverse of

"I[; _4]

We shall use Eq. (3.3). Sioce the determinant of a 1 % | matrix is the clement itself, we have

A =(—1)""det [4] = (1){4) =4
A= (=1)" " det[§] = (-1}5)= -5
Ay =(-17""det[-1]=(-1-1)=1
Ay ={-1)" det[3] = (143} =3

The determinant of & is H4) —{—1)(5) =17, 50

o=y 3w Al ]

.10 Caleulate the inverse of

sn

5.2

2 3 4
A=|-5 § &
T E Y

In Problem 5.2, we calculated & number of cofactors for this matrix, In particelar,

A,=-3 A= 8 Ay=-T5
A= 5 Ay=-10
Ay =1 Ap=-12

and det A = - 43, [In addition,

An==17]7 gf =15y =

R T 203 -
and An=t=17"| 5 3=t =25
-} & =74 I -3 5 -1
Thus =] & -0 5 and Al = T T -l -31
-2 -3 25 =75 5 15

Find the inverse of the matrix given in Problem 5.7.

Since the determinant of that matnx was found o be zero, the matris does not Bave an inverse.

Venfy Property 5.9 for
i 11 -4 1
A=121 3 0 =1 =1
l -6 3 -8B 7.

The mnk of A was determined in Problem 1,17 10 be 2, s0 there should be at least one 2= 2
submatrix of A having a nonzers determinant. There are many, wmcluding the one in the upper beft

cormer:

2 3=

All 3 = 3 submatrices, obinined by deleting any two columis of A, have zere determinants,
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513

5.14

5.15

5.1a

5.17

Prowve that the determinant of an clementary matrix of the first kind is = 1.

Am elementary mainix E of the first Kind is an idenary matnix with two mows interchanged. The proof
1% indisctive on the order of E. If E 15 2= 2, then

o1
e[V o
and det E= —1. Now assame the proposition is tree foc all elementary matnees of the fisse kind with

order (k — 1) % [k — 1), and consider an elementary matnis E of order k = k. Find the first row of E that
was not interchanged, and denote it as row m. Expanding by cofaciors along row m yields

detE=a_ A +o A+ -+a_A__+-wa_d = A__
because a_ =0 for all j = m, and a__ = 1. Now
A =(-1V""M__ =M,

But M__ is the determinant of an elemeniary mairix of the first kind having order (& = 1) = (k = 1}, 30
by induction it is equal f0 =1, Thus, dtE=A__ = M__= -1

Prove Property 5.3

If B is obained from A by imecchanging two tows of A, then B = EA, where E is an elementary
miatrix of the firsd kind. Using Properiy 5.1 and the result of Problem 5.13, we obrain

det B = diet EA = det E det A& = (=1} det &

Trom which Property 5.3 immedately follows,

Prove Property 5.4,

Assume that B is obtained from an & =/ matrix A by maltiplyving the ith row of A by the scalar k.
Evaluating the determinant of B by expansion of cofsctors along the ith row, we obtain

det B = ka, A, & kg A 4o+ ka A
= *':FHHIL ¥ #IEHIE oot ﬂl!"q'.h] =k dﬂ ﬂ
from which Propesty 5.4 follows.

Prove that the determinant of an elementary mairix of the third kind i= 1.

An elemeniary matris E of the thied kind i an idengity matriz that has been altered by adding &
constant iimes one row of [ oo another row of I, The proof is inductive on the order of E ITE is 2 x 2,

L0 e el

In either case, det E = 1. Now assume the proposition is true for all elementary matrioes of the third kind
with order (& — 1) = (& — 1), and consider an elementary matnx E of order & = & Find the frst row of E

that was not altered from the & = & ideptity matnix, aml denote this row as row s, The proof now
follows that in Problem 5.13 except that here M__ =1 by indduction.

Frove Property 5.3,

If B is obtained from square matrix A by sdding o one row of & a constant times another row of &,
then B = EA, where E is an elementary matrix of the thisd kind. Using Property 5.1 and the resulis of
Problem 516, we obtain

det B =det EA = det Edet A = | det A = det A
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Prove that if the determinant of a mainx A is zero, then the matnix does not have an inverse,
Assume that A does have an inverse, Then
| =det T =det (AT'A)=det A" det A =det A0} =0
which = gbsurd. Thus, A cannot have an inverse.

Prove that if each element of the ith row of an n % n matmix 15 multiphied by the cofactor of the
corresponding element of the kth row (¢, k=1,2,... 0, i# k), then the sum of these n
products is zero.

For any m = n matrix A, construct & new madrix B by replacing the kth row of A with its ith row
(6. k=1,2,... ;8 0i=k). The ith and &th rows of B are identical, for both are the ith row of A; i
follows from Property 5.8 that det B =10, Thus, evaluating det B via expangion by colactors abong its ith
oW, We may wribe

D=daB=2 b B =% aB, (1)

i=1 =i

where B, s the oofacior of b,

For each element b, ([ j= 1,2, ..., #} in the ith rew of B, compare the submalriz B, chiained from
B by deleting its ith row and jth column to the submatrix &, obtained from A by deleting its &th row and
Jjth column, They are the same except for the ordering of their rows; each submarnix contains all the rows
of A except for the kth and all the columns of A except for the jth. Exactly |i — &| - | row recrderings
are reguired 10 make B, equal to A, . so i fellows from Property 5.3 that

det B, = (15" """ der A, (2]

These determinants are minors of B and of A, respectively, so (2) may be written in cofactor potation as
{—'l :I i -.I_BJ: - {_ I]I|-J||-|-{_ I}-a-.le
8,=-A, [
Combining (1] and (F), we have

0=2X a8, = E’. g~ A )= - Eh i, A,
=1 i= =

which, when multiphied by — 1, gives the desired result.

Prove thar A(A")" = AL
Consider the (i, k) clement of the product A(AT)7; it is
% (a, }{( 4, k) element of (A') 7} = E. (8, ){(k. j) element of A"} = E i,

It follows from Problem 5,19 that this sim & 2ero when § # & When 1 = &, the som is det & Because if is
an expansion by cofactors along the &th row of & Therefore, we may wrile

la] @ -~ 0
Ay = 0 W
oo .- |4

More that if [A] =0, then AMAT)7|A] = 1, from which §5.3) follows,
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Supplementary Problems

In Problems 5.20 through 526, let

LI 8 -3
"'[a 1] B'[s s c= 1
2 01 3 1 =2 3 3
4 2 =1 E=|3 501 F= 4]
i -1 | 1] 4 2 o |
521 Find (a) det A and (b)) det B, and () show that det AR = det A det B,

832 Find (a) det C and (b)) det D, and () show that det CD = det C der D
523 Find (&) det E and (&) det F.

524 Use determinants to find (o) A~ and (b) B,

528 Use determinants to find D"

526 Use determinants to find E™',

In Problems 5.27 and 5.28, find the determinant of the given matrix.

5.7 201 3 L 21313
-1 140 2 1332

11z 1 iyTo0

-4 2 0 =3 32 47

5.1  Use determinants to find the inverse of the mairix given in Problem 3,28,

5.3  Prove Propeny 5.4

£31  Prove that if A has order n % r, then det k& = &7 det &

531 Prove that if A bas order m = n, then [&7] = |42

£33 Prove that if A and B are square matrices of the same order, then det AB = det BA,
5.3  Prove that if A is invenible, then det A™" = 1/det A.

535 Let A= LU be an LU decompasition of A (see Chapter 3), Show that det A & equal 1o the product of the
diagonal elements of L.



Chapter 6

Vectors

MMENSIOMN

A wvertor is a matrix having either one row or one codumn. The number of elements in a row
vector or @ column vector is its dimension, and the elements are called components. The transpose of
@ row wector is @ eolumn vector, and vice versa,

LINEAR DEPENDENCE AND INDEPENDENCE

A set of m-dimensional vectors {V,, ¥, ..., ¥, ] of the same type (row or colummn) is linearly
dependent if there exist constants ¢, c,.. ... ¢, not all zero such that
e ¥ eV, koo de ¥ =0 (&)

Example .1 The set of five-dimensional vectors
1.0, =20, 00" [2,0.3,0, 0}, [0.2,0,0,1]", and [5,0, 4,0,0")
i limenrly dependent because

+{-1)

|

(o

&
== %]

+
L= = = =]
=

I}
== — =]

A set of me-dimensional vestors [V,, V.. ..., V. ]} of the same type is linearly independent if the
only constants for which Eq. {&.1]) holds are ¢, =, == ¢, =1,

The following algorithm may be used to determine whether a set of row vectors is linearly
independent or dependent. The algorithm is applicable 10 column vectors too, if their transposes are
considered instead. (See Problems 6.2 and 6.3.)

STEF v [: Construct a matriz ¥V whose rows are the row vectors under consideration. That is, the
first row of ¥ is V,, the second row of ¥V is V,, and s0 on.
STEF 6.2, Determine the rank of ¥

STEFP 6.3: I the rank of ¥ is smaller than the number of vectors in the set under consideration
{1.e.. the number of rows of ¥}, then the vectors are lincady dependent; otherwise,
they are linearly independent,

LINEAR COMBINATIONS

A vector B s a linear combinaion of wvectors W W, ... ¥

' if there exist constants
dy.ds, .., d, such that
B=dV, +dV,+ - +d¥, (6.2)

For the matrix addition and equality of (6.2} to be defined, the vectors must all be of the same type
(row or column) and have the same dimension,

52
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Example 6.2 The vecior [-3,4, —1,0,2)" is a linear combination of the vectors of Example .1 because

Eguation

-3 i p L ]
4 0 0 2 (]
“1|=0 2|+t 3|+2|0[+{-1)| 4
] L] LIl i ]
2 LU L i ]

(8.2) represents a set of simultaneous linear equations in the unknowns

d,.d,, . ..,d, The algorithms given in Chapter 2 may be used to determine whether or not the d,
(i=1,2,...,n) exist and what they are. [(Sec Problems 6.4 and 6.5.)

PROPERTIES OF LINEARLY DEPENDENT VECTORS

Property 6.1:
Property 6.2:
Property 6.3:
Property 6.4:
Property 6.5:

Property 6.6:

Every set of m + 1 or more m-dimensional vectors of the same type (either row or
codumn) is linearly dependent.

An ordered set of nonzero vectors 15 hinearly dependent if and only if one vector can
be written as a lincar combination of the vectors that precede it

If & set of vectors is lineary independent, then any subset of those vectors s also
linearly independent.

If u set of vectors is linearly dependent, then any larger set containing this set is also
lingarly dependent,

Any set of vectors of the same dimension that contmns the sero vector 15 lingarly
dependent.

The set consisting of & single vector 15 linearly dependent if and only if that vector is
the zero wector.

ROW RANK AND COLUMN RANK

Consider each row of a matrix A to be a row vector, The row rank of A i5 the maximum number
of linearly independent vectors thar can be formed from these row wectors; it is the rank of A (see
Problem 6.11). Similarly. the columa rank of A is the maximum number of linearly independent
vectors that can be formed from the columns of A. It may be obtained by caleulating the rank of A",
because the rows of A" are the columns of A, The row rank of a matrix equals its column rank (see
Problem 6.10); %o the column rank of A is also the cank of A
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Solved Problems

Determine whether the set {[1,1,3], |2, =1,3], [0, 1, 1], [4,4, 3]} is linearly independent,

Since Che sl conlains more veclors (Four) than the dimension of its member veceors (three), the
wectors are linearly dependent by Property 6.1, They are thus nod lincardy independent.

Determine whether the set {[1.2, —1,6], [3,8.9,10], (2, —1.2, -2} is linearly independent.
Using Steps 6.1 theough 6.3, we Brst constrect
I 2 -1 &
¥e=13 B 9
2 -1 2 -1

Matrix ¥ was iransformed in Problem 1013 into the row-gchelon form:

1 2 =1 [
o1 & =4
LU I |

By inspection, the rank of ¥ is 3, which equals the number of vectors in the given set; hence, the given
seb of veclors 18 linearly independent.

Determine whether the set {[3,2,1, —4,1]7.[2, 3,0, =1, =17, [1, =6, 3, =8, 7|7} is linearly
independent,

Using the algorithm of this chapter, we comsiruect
3 21 -4 1
¥=121 30 =1 =]
| =& 3 =H 7
which we transformed inte row-echelon form e Problem 1.15:

1 23 iy —4/3 103
o1 =2y 1 -1
oo L] ] 1]

Simce the rank of ¥ is 1, which is less than the number of vectors in the given set, that set is linearly
dependent,

Dretermine whether [6, 10, 2]7 is a linear combination of [1, 3, 2]7, (2.8, =1]", and |-1,9, 2]"

It = a linear combination if =nd ondy if there exist comstants 4, &, and 4, such that

EISHERIRH

Solving this system is equivalent o solving the systems of Problem 28 with each x replaced by a o, In
that problem we found that this sysiem is consistend; hence [6, 10, —2]" is & Hnear combination of the
other thres vectors—in particular, for d, = 1, d, =2, and d, = 1.

Determine whether [5, 1, 8) is a linear combination of [2,3, 5}, [1.6, 7], and [0, 1, 1)
It = a linear combination i and enly if there exist constants o, #,, and &, such that
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B.6

6.8

[5.1, 8] =d,[2.3, 5] + dy[1, 6. 7] + d,[D, 1, 1]
=|2d, + d,. 34, + 64, + d,, 54, +7d, + d,]
which is equivalent 1o the system
Id, + d, =5
3d, +bd, +d, =1
5, +7d,+d, =8

This system was shown in Problem 2.5 to be inconsistent, so |5, 1, B] is not a linear combination of the
other three vecLors.

Prove that every set of m + | or more m-dimensional vectors of the same type (either row or
column} is lincarly dependent.

Consider a set of a-such vectors, with n > mi. Equatbon (6.1 ) generates m-homogencous equations
{ene lor each component of the vectors under consideration} in the r-unknowns ¢, ;.. .., €, IF we
were 10 solve those equations by Gowssian elimination (see Chapter 2], we would find that the solution
sei has i least n — e arhitrary unknowns. Since Lhess arbitrary unknownd may be chosen o be noners,
there exists a solution set for (& F ) which & mot all zere; thus the & vectors are lingarly depsndent

Frove that an elementary row operation of the first kind does not alter the row rank of a
malrix.

Let B be oblained from matriz A by interchanging two rows, Clearly the rows of & form the same
sct of row veciors as the rows of B; so A and B must have the same row rank.

Prove that if AX =0 and BX = 0 have the same solution set, then the n ® n mattices A and B
have the same column rank.

The sysiem AX =0 can be written as

A tE A F -+ A =0 (1
where A, is the firsd column of A, AI i the second column of A, and s¢ on, and X = ]:L. L :_lr.
Similarly, the system BX =0 can be wrilten as

:,I,+:,B;+---+I"l_=ﬂ (2}

Denote the colump rank of A& 88 a, and the column rank of B as b, Assume that the column rank of
A is greater than the column rank of B, so that a>= b, Mow thers musl exist @ columns of A which are
linearly independent. Without loss of gemerality, we can assume thal thess are the first a colummns of A,
(1f mot, rearcange A s0 that they are; this column rearrangement does aot change the column rank of &,
by reasoning analogous to that used in Problem 6.8.) However, the first o columns of B are lnearly
dependent, because b is assumed to be smaller than a. Thus, there exist constapis |, 4, ., ., d,, not all
zerd, such that

dB, +d,B,+ -++dB =0
From this, it follows that
dB, +d,B,+-+d B +0B,_ &+ -+0B, =0
amd that
X, =4, Xy =dy s ,=d, L. =, ==y =]

P! a3

is & solation of system (2'). Since these same valwes are given to be a solution of system (1), it follows
that
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d A+ Ayt +d A, =0

where, as noded, the constands &, o, . .., 4, are not all zerg, But this implics that A A, .. A, &5
Enearly dependent, which i a contraction. Thus the column rank of A cannot be greater than the column
rank of BH.

A similar argument. with ihe roles of & and B reversed, shows that the column rank of B cannol be
greater than the column rank of A, so the two column ranks muest be equal,

Prove that an clementary row operatiion of any kind does not alter the column rank of a
makrix.

Denote the original mairix as A, and the matrix obtained by applying an elementary row operation
to & as B, The two homogeneouws systems of equations AN = 0 and BX = 0 have the same set of solutions
[see Chapeer 2}, Thus, &5 & result of Problem 6.8, A and B have the same column rank.

Prove that the row rank and column rank of any matrix are identical.

Ascume thai the row rank of an m = n matrix & is r, and s column rank is c. We wish o show that
r=¢. Rearrange the rows of A so that the first 7 rows are linearly independent and the remainimg m - r
rows are the linear combinations of the first » rows, It follows from Problems &7 and 6.9 thar the column
rank and row rank of A remain unallered, Demnode the rows of & as A LA, ..., A_, inorder, apd define

Ay
B=|M| aa c=|Me
A

]

Then A is the partitioned marnx [ :_] Funhermmore, since every mow of C 1s a bnear combination of rows
of B there exists a matns T such that C = TB. In particular, iof

A =d A tdA + o b d A

then |4, . 4, d,] s the first row of T, Now for any n-dimensional veclor X,

BX BX
ax= | 8] | e
Hence, AX =0 if and only of BX =0, and u follows [fom Problem 6.5 that A and B have the same

oodumn rank ¢ But the columns of B are e-dimensional veciors, so the column rank of B cannot be
greates than v, That is,

o= {”l

By repeating this reasoning on A', we conclude that the column rank of A” cannot be greater than
the row rank of A", But since the columns of A" are the rows of A and vice versa, this means that the row
rank of A capnot be greater than the column rank of A that s,

r=r (2]
W conclude from (1) and (2) that r = c.

Prove that both the row rank and the column rank of 8 matrix equals its rank.

Let 1) be o matrix in row-echelon form obtained from & by elementary row operabons. Then i
fulloas (rom Problem 6.9, that A snd U have the same column rank. Mow denote the rank of A a5 r
From the defininon of rank, » 5 the number of nonzere rows in U, Since the first nonzero elemend in
each of the first r rows of U appears in a different column, it is simple to show that the Grst r rows of U
are linearly independent and, therefore, that the row rank of U is r, The result of Problem &, 10 tells w
that the column rank of U s ako r. And, sinee U and A have the same column rank, the column and
row-ranks of A are equal 1o its rank r.
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6.12

613

614

Problem 6.8 suggests the following algorithm for choosing a maximal subset of lincarly
independent vectors from any given set: Construct a matrixs A whose columins are the given set
of vecters, and transform the matrix into row-echelon form U using elementary row
operations. Then AX = @ has the same solution set as UX = 0. which implies that any sabset of
the columns of A are lincarly independent vectors if and only if the same subset of columns of
U are linearly independent. Mow the columns of U containing the first nonzero element in
each of the nonzero rows of U are a maximal set of linearly independent column vectors for U,
50 those same columns in A arc a maximal set of hinearly independent column vectors for A.

Use this algorithm to choose a maximal set of linearly independent vectors from [3, 2, 1),
[2, 3 —a], 11,0,3], [-4, -1, —E], and [1, -1, 7].

We form the manix

2 30 -1 -1
I -6 3 -& 7

3 21 =4 1
A=

which, as shown in Problem 1,15, has the row-echelon form

I 2/ 173 -4/3 143
¢ 1 -5 1 -1
0 L n a

U=

The first and second columns of U contain the first nonzero clement in each nonzero row of U
Therefore, the first and second columing of A constilule a maximal set of lingarly independent vectons for
the colamns of A, That is, |3, 2, 1] and [2, 3, —8&) are hincarly independent, and all the other vectors in
the original set are lincar combinations of those two, In pariiculas,

[4,0,3]= §[3,2,1]= §[2.3, =6]
[—4, =1, =8] = (=2)[3, 2, 1] + (1}2. 3, =4]
|11 _ll:'] =|;1:|[3'|2|. ]I+ l:_ 1"2-], —ﬁl

Choose @ maximal subset of linearly independent vectors from the following set:

HEHE RNt

We [orm the matrix

which has the row-echelon form

0o oo o 0

The first, third, and sixth columns of U contain the first nonzero element in each of its nonzero rows,
Therefore, the first, third, and sixth columns of A constitute a maximal set of linearly independent
vecions for the original set of vectoss.

214 1 1
=10 0 1 1 172 172

Prove that an ordercd set of nonzero vectors {V,.¥.,....V.) is lincarly dependent if and
only if one of its vectors can be written as a lincar combination of the vectors that precede it.
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Suppose the set is linearly dependent, and ket © be the first mleger between 2 and a for which
[V,.V,.... ¥ forms & inearly dependent set. Such an integer muwst exise, and an the véry worst [ = n.
Then there cxiss a ser of constanes &, d,, ..., a4, not all zero, such that

d¥V +dN¥, +- - +d_¥_ +dV =0

Furthermaore, d =0, for coheraise the s2t (¥, %, . ...V, _, | would be linearly dependent, contradicting
the defining property of 1. Hence,

ey _dy A
\I‘__E"l': dl. ‘Tz ﬂll_ ‘:-1
That is, ¥, can be written as 8 leead combnation of v, ..V _,.

On the other hand, suppose that for some § (=2, 35,. .., m)

¥o=d¥, +d¥, +-o4d _V_
Then d¥, +dN, = - +d _V_ (-1 +0W  +---+0% =0

ﬂm.lg[ﬁ._r]u.li,ﬂ}fl:—]:lﬂ_r.-—d_{.l:r'l... LE=1handc, =0 [k=i+ 1.+ 2. ..., 8] 50the st
of weciors is linearly dzp-und:nl:.

Supplementary Problems

In Problems 6.15 through 620, determine whether the given set of veciors B inearly independent.

(2" [2.4]"}

2. [2.2.2). 22,10}

(.o, 1. [t20) [0,1.2])

o207 (2,000 0, -6, -1}

([2.0, 1.0 10, 1, 2. =), [1, =1~ 1 0] 10,0, 1. 2]}

dnz gt e’ o, =15 (21,37

B [1,3]" a linear combination of the veotors given in Problem 6.157

(@) Determinge whether [0, 0, 1] can be writien as a linear combination of the veciors given in Problem
& 06, (b} Repeat part a for the vector |1, 2, 0],

ta) Deetermime whether [2, 1,2, 1] can be writlen s a linear combanation of the vectors given in Problem
619, (b)) Repeat part a for the vector [0, 0,0, 1],

Show that any 3-dimensional row vector can be expressed as a lingar combination of the vecons given in
Froblem 6.17,

Choose a maximal subset of inearly independent vectors from those given in Problem 6.15,
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626

6,17

6.8

2%

.30

6.31

631

&M

Choose g maximal subser of hnearly independent vectors from those given in Problem 6. 14,

Choose a maximal se1 of linsarly independent vectors from the following: [1.2,1, =1], [1,0,-1,2],
[2,2,0,1], 13,2, = 1.3]. [0, 1. 1,0, [3,3.0,3].

An m-dimensional vecior ¥ is a canver combination of the m-dimensional vectors ¥, %, . .., ¥, of the
same [ype (row or columin] if there exst nonnegative constants d, . d,, . . ., d, whoss sum is 1, such that
v=d W, +d,¥, +- -+ d NV, Show that [5/3, 5/6] I & convex combination of the veciors [1. 1], [3. 0],
and [1,2].

Determine whether [, 7|7 can be written as a convex combination of the veciors
3 —f F] -1
[EI] [ ?] [ll [ I}

Prose that il {V,, ¥, . ... %] is linearly independent and ¥ capnod be writien as a lingad combination of
this set, then {V,, ¥, . ... ¥, ¥] is also linearly independent.

Prove Property 6.5.

The sull space of a matrix A is the set of all vectors which are solutions of AX = 0. Dewrmine the mall
space of

rJd
- —

11
A= [.‘1 4
Dietermine the null space of the matrix

1
“[2

[- L)
—i

Dretermine the null space of the matrix

b 2 Pl e
e
=R =]
d = s P



Chapter 7

Eigenvalues and Eigenvectors

CHARACTERISTIC EQUATION

A nonzero column vector X is an eigenvector (or right eigenvector or right characteristic vector) of
a square matrix A if there exisis a scalar A such that-

AX = AX (7.1

Then A is an eigenvalue (or characterisnic value) of A, Eigenvalues may be zero, an eigenvector may
not be the zero vector.

Example 7.1 [1. —1]" is an cigenvector corresponding 1o the cigenvalue & = -2 for the matrix
3 s
A [ 3 -4
i 5 1 -2 -1
pecaus [—1 - H— }'I 1]"2[ 1
The characierisiic eguaiion of an n = n matrix A is the nth-degree polynomial eguation

det (A = Al) =10 (7.2)

Solving the characteristic eguation for A gives the sigenvalues of A, which may be real, complex, or
multiples of each ather, Once an eigenvalue s determined, 11 may be substituted inte (7.7 ), and then
that eguation may be solved for the corresponding eigenvectors, (See Problems 7.1 through 7.3.) The
polynomial der (A — Al) is called the characterise polvromial of A,

PROPERTIES OF EIGENVALUES AND EIGENVECTORS

Property 7.1:  The sum of the eigenvalues of a marrix is equal to its trace, which is the sum of the
elements on s main diagonal.

Properiy 7.2:  Figenveciors corresponding to different eigenvalues are linearly independent.
Property 7.3: A matrix 15 singular if and only if it has a zero cigenvalue,

Property T.4:  If X is an eigenvector of A corresponding 1o the eigenvalue A and A is invertible, then
X is an eigenvector of A ' corresponding 1o its eigenvalue 1/,

Property 7.5:  If X is an eigenvector of a matrix, then so too is kX for any nongero constant k, and
both X and &X correspond to the same eigenvalue,

Property T.6: A matrix and its transpose have the same eigenvalues.

Property 7.7:  The eigenvalues of an wpper or lower triangular matrix are the elements on its main
diagonal

Property 7.8: The product of the eigenvalues (counting multiplicities) of a matrix equals the
determinant of the matrix,

Property 7.9 If X is an eigenvector of A corresponding 1o eigenvalue A, then X |s an an eigenvecior
of A — cl corresponding 1o the eigenvalue A - ¢ for any scalar c.

L]
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LINEARLY INDEPENDENT EIGENVECTORS

The eigenvectors corresponding to a particular eigenvalue cofitain one of more arbitrary scalars,
(See Problems 7.1 through 7.3) The number of arbitrary scalars is the number of linearly
independent eigenvectors associated with that eigenvalue. To obtain a maximal set of linearly
independent eigenvectors corresponding to an eigenvalue, sequentially set each of these arbitrary
scalars equal to a convenient nonzerc number (usually chosen to avoid fractions) with all other
arbitrary scalars ser equal 10 zero. It follows from Property 7.2 that when the sets corresponding to
all the eigenvalues are combined, the result is a maximal set of linearly independent eigenvectors for
the matrix. {See Problems 7.4 through 7.6.)

COMPUTATIONAL CONSIDERATIONS

There are no theoretical difficulties in determining eigenvalues, but there are practical ones.
First, evaluating the determinant in (7.2) for an o = » matfiz regquires approximately a! multiplics-
tons, which for large r is a probibtive number, Second, oblaining the roois of a general
characteristic polynomial poses an intractable algebraic problem. Consequently, numerical algor-
ithms are employed for determining the eigenvalues of large matrices (see Chapters 19 and 20).

THE CAYLEY-HAMILTON THEOREM
Thearem 7.1:  Every sguare matrix satisfies its own charactenstic equation. That is, if
det{A - Al =8 A" +b__a" "+ -4 ba+ b A+ b,
then bA"+b, A+t b A B AT BI=0
[See Problems 7.15 through 7.17.)

Solved Problems
7.1  Determine the eigenvalues and eigenvectors of
_| 3 ]
"“[—z —-t]
Far this matnx,
3 ] 3-
S B i) B Ry
hence det(A - Al =(3-A)—-4-A-%-2=a"+a-2

The characieristic equation of A& is A7 + A = 2 = 0; when selved for A, it gives the two eigenvaloes & = |
and 4 = —I, As a check, we wilize Property 7.1: The trace of & is 3 + (=4) = = 1, whach is also the sum
of the eigenvalues.

The cigenvectors comresponding 10 A = 1 are oblained by sobving Eq, (7.1) for X =[x, ;1|'wi1|1 this
walue of 4. Afier substituting and rearranging, we have

(-3 _5]-=[1 -
- 2 _’I[i:]-[gi

which i5 equivalent to the set of Hecar equations
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g, + Sk, =0
-2z, — Sk, =0

The solution Lo this system & ©, = — §x, with x, arbitrary, so the cigenvectors corresponding (o A = 1 ane
SEEEY
with x, arbitrary.
When L= -2 {71} may be written
3005)_ [t Ol R ][0
({3 ]y THE]-[8]
5 5 [II ]
S U H
which is equivalent to the sei of lingar equations
Sx, 4 5¢,=0

-2, —dx,=0

The solutesn o this system is 1, = = x, with 1, arbitrary, 50 the eigenvectons corresponding o 4 = —2 are

x=[a]=["=]-=[71]

with I, arbitrary.

Dretermine the eigenvalues and eigenvectors of

2 1
A=13 6 1
f 6 9

For thet matrix,

521 I ool [5-a4a 2 2
A—al=|3 & 3}-aD 1 0= * H-1 1
6 & 9 o1l L 6 £ Q= A
The determinant of this tast matnx may be obtamed by expansion by cofactors (see Chapter 53 o s
—AY 2047 - 93A + 126= —( A — 3P (A - 14)

The characteristic equation of A 5 =4 = 3)°[A = 14) = 0, which has as its solution the eigenvalue A =3
of multiplecaty two and the gipenvalue & = 14 of multiplicity one. As a check, we utilize Property 7.1 The
trace of A is 5+6+ %=20, which equals the sum of the three sigenvaluss

The eigenvectors corresponding 1o A = 3 are obtained by sobving (7.0 ) for X = [x,. x,, 1,]7 with this
value of A, This, we may write

(13330 3 el
. G

which is equivabznt o the set of Imear equations
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T.3

2x, 4+ 2y, w2k, =0
Jg, 4l + de, =0
fix, + b, + 6, =10

The solution to this sysem is ©, = —x; — 1, with &, and =, arbitrary; the cigenvectons commesponding 10

A =1 are thus
x o —-n. -|
X=|1|=
;1
with r, and x, arbitrary,

When A= 14, (7.1) becomes

(23 e
- ERBIEH

which s equivalent o the set of linear equations
=fx, +2x, #2x, =10
iz, =8y, =35, =0
ax, +bE, — 5x, =10

The solution 1o this sysem is x, = {r, and 1, = {x, with ©, arbitrary; the sigenvectons cormesponding to
4 =14 are thus

Xy ix, 143
A=\ % I-tj. =1, 1."!]
Xy
wiith &, arbitrary.
Determine the eigenvalues and eigenvectors of
I o4
O
For this mamix,
3 4 1 o
Rl o] B Y C R
hence det(A= Al = (3= AN=5=A)=d(=51= 4" +24+5

The characteristic equation of A is A"+ 24 + 5=0; when solved for A, it gives the two complex
eigemvaluss 4 = —1 + 42 and & = —] — £1, As a check, we note thar the race of & is —2, which is the sum
of these eigenvalues.

The cigenvectors cormesponding 10 4 = 1 ane obiained by solving Eq. (7.1 ) for X =[x, £,]" with this
villue of 4. After substituting and rearranging, we have

{3 3]-eemfg SHED=[D)
o (27 talln=[0)

which is equivalent 1o the set of linear equations
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(4= i)k, + dg, =10
—dbx, + (-4 -k, =0
The sclution (o this system & ¥, = (—4/5 = i2/5 )1, with x, arbitrary; the eigenvecions corresponding 1o
A= =1+ 52 are thus

£, [(—4/5 - [2/5)x
x=[a]=[ T

.-[ —4/5 I" il.l'ﬁ]

with x. arbifrary.
With & = =1 —i2, the corresponding eigenvectors ang found in a similar manner fo be

X - [nJ _[{—4.-5+i1.'5!|x,] "=I -4,-5: rg.rg,]

o II

with x. arbitrary,

Choose a maximal set of hinearly independent eigenvectors for the matnix given in Problem
T.2

The eipenvectors associated with & = 3 were found in Problem 7.2 to be

| M R—

There are two linearly independent eigenvecions associated with A = 3 one for each arbwirary scalar. One
of them may be obtained by sstting x; = 1, x, =10 the other, by setting x, =0, x, = |
The eigenvectors associated with & = 14 are

Bi3
x, iz x arbitrary
i

Since there is only one arbitrary corsiant bere, there i only one lincarly independent eigenvecior
associpted with A4 = 14, It may be obraired by choosing £, 1o be any nonzero scalar. A convenient chosoes,
o avoid fractions. is = fi. Combining the lirearly il‘l.d.E'P!l‘th.‘lt :ip:rw:l:lnm corresponding o the two

G

as @ meadional sel of linearty indspendent sigenveciors for the maimix,

Choose a maximal s¢t of lincarly independent cigenvectors for the matriz given in Problem
7.1

The eigenvectors corresponding to A= 1 were found in Problem 7.1 1o be
r,[ _!{"2] x, arbilrary
Since there s only one arberfary scalar, there is only one lnearly independent eige mectar associated
with this gigenvales. 1t may be ohained by choosing x, o be any nonzero scalar. A convemient choics,

1o avosd fractions, is x, =2
The sigeavector cormesponding to A= —1 are

I‘l. _jl] x, arbitrary
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1.6

7.5

There is one linearly indepencent gigenvector assoctated with this eigenvalue, and it may be obtained by
choosing 1, 1o be any monzero scalar. A convenicnt choice here is 1= 1. Collecting the lmearly
independent eigenvectors for the two sigenvalues, we have

2

a4 & magimal set of linsarly independent eigenvectors lof the malrix.

Choose a maximal set of linearly independent eigenvectors for the matrix

2.1 000
0z 000
A=|0 0 2 00
000 21
0o oo oz

Since this matrix & upper triangular its eigenvalues are the elements on its main diagonal. Thus,
A =2 is an eigenvalue of multiplicity five, The eigenvectors associated with this eigenvalue are

Xy 1 ¥ i

0 [ﬂ‘ L L

B =x O +a,) 1|+ 0

X, 1] ] 1

0 0 0 0
with 5,, ¥, amd x, arbitrary. Because there are three arbitrary scalars, there are three linearly
independent sigenvectors assoaated with A. One may be oblained by setting x, = 1, x, = x, = 0; another

by setting x, = 1, x, = 1, =0; and the third by seiting 5, = 1 and x, = r, = 0. Note thal this matrix has
only three linearly independent cigenvesiors, sven though it has order 5 = 5,

Shiow if A is an eigenvalue of 3 matnx A, then it 18 a solution fo (7.2).

If & s an eigenvalue of A, there must exist a nonzero wector X such that AX = AX. Thus,
AX = AX =0, and (& = ADX = 0. This implies that A = AL w5 sangular, for otheraise X = (& — Al "0 =0,
which is nod the case, But if A - AL s singular, then det (A — Al) =0 (see Chaper 5).

Show that eigenvectors corresponding to different cigenvalues are linearly independent.

Len &, 4,...., A_ be different cigenvalues of & matrin A, and lot X, X,. ..., X be asociated
eigenvecior. We muast show that the only salution 1o
X, re Xy b e K =0 i

By, ===, =0 Multiplying (1) on the left by A, we obtain
¢ AN, ¥ AN, e AN = AB=0

Since each vector here is an eigenvector, we usc (F1]) 10 wrile

ALK, YK oA K, =0 (2)
Multiplying (2 ) on the l&h by A and again wsing (7.1 ), we abtain
AN, e AN, F e AN =0 (1)

Equatiomns (1) through (F) are the firsl thres equations of the set
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e, X, 4eX, etk K =
X, fed K, 4o+ A X, =8
e K, Fe AN+ ALX =0
AN +oA0X, 4o AKX =0

AT TR, AT K E e A TR =0

Fnﬂil:'d by n:qu.:nrj:.'lr'g,l ml.llllplylng each equation on the lef by A. This system can e written in the
matrex farm

1 1 | 1 r:I:I [i]
Ay Ay Ao A, e, X, ]
Al Al Al al | oK =] 0 4)
.J|.|--. jl: I .‘T-I"'ﬁ.-‘-.l L;_:__ ]

The first mairix on the lefi is an m = m matrix which we shall denote a8 . lis determinant s called the
Vandermonde determinars and iz

[J'; - "i| ”:'*l - AEHAJ - 'h]".':'u. - Jl}t"l - jl;l]‘.'ll - 11]' ) -'.'ln - ';'l|]
which 1% not zero in this siluation because all the eigenvalues are different. As & resuly O fs nonsingular,

and the system (4) can be writien as
o, X, (1]
I ‘.E, 0
1] -
ﬂ

It follows that ¢ X, =0 (i = 1,2, .., m). Bu since each X s an ergenvector, il & mot 2era; o o, =0 for
each i

L=

Prove that a matrix is singular if and only if it has a zero eigenvaloe,

A matnix A has a zero eigenvalue if and only if det (A =01 =0, which = tree if and only if
det A =0, which in turn 5 trae if and only if A 5 singular (see Chaper 5).

Frove that if X is an eigenvector cormesponding 1o the gigenvalue 4 of an invertible matrix A,
then X is an eigenvector of A ' corresponding to its eigenvalue 1/4.

It follows from Problem 7.9 that A#=0. We are given AX = AX, s0 A '(AX)= A '(AX) and
X = AfAT"X). Dividing by 4, we obiain A”"X = (1/4)X, which implies the desired result.

Prove that & matrix and its transpose have the same eigenvalues,
If & s an eigenvalue of A, then
0= det (A= Al) = det [{A")" — A"} = detfA” = al)" = det (A" - al}
by Properiy 5.7. Thus, A is also an eigervalue of A'

Prove that of X,, X, ..., X, are all eigenvectors of a matrix A corresponding to the same
eigenvalue A, then any nonzgero linear combination of these veciors is also an eigenvector of A
corresponding 1o 4

Set X=d X, +d,X, + - +d, X, Then
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AX=pald X +dX 4+ -+ d X))
=d4 4K, + 48K, +---+ 4 AX
=d AX, +ad, AKX, +-+ 4 AN
= ald X, +d,X, =+ d X )= AX
Thus, X is an eigenvector of A, Note thal a Bon2ers constant imes an sigenvactor is also an sigenvector
cofresponding 1o the same eigenvalbue,

T3 A lefr eigenvector of 3 matrix A is a nonzero row vector X having the property that XA = AX
or, equivalently, that
X(A-Al)=0 i1

For o scalar A ,ﬁ,ga.i:rl A 1% an :i:!mmju! for A, and it 8 found a8 before. Once A is determined, i1 15
substituted into (1) and then that equation is solved for X, Find the eigenvalues and lefl egenvecion for

I % 3
) —4]
The eigenvalues were found in Froblem 7.1 wbe d=1and A= -2, Ser X =[x, 5, With A =1, (1)
becomes
3 5 1 0y
x5 Zl-1fo Y1) =m0
) 5
ar I.r.dr,i[_2 _5]=[ﬂ.ﬁ|
or [2x, - 2x,, 8x, - §x,] = [0, 0]
which is equivalent to the set of equations
2y, — 25, =10
Sz, — 5%, =0

The solution o thas sysiem is K, =1y, with L arbitrary. The left cig:nw:l:l.nr: cnrrl:ﬁpl;r.rﬁns_ to 4= 1 are
thus [x,, x,]=[z,, 5] = &,[1. }] with 1, arbitrary.
For &= =2, (I} reduces to

sl 3 _3]- 0.0

ar [Sx, = 2r,. §x, = 2x,] = [0, 0]
which is equivalent 1o the set of :qunliu-ns

fu'l =g, =)
sz —3x, =0

The solution to this system is x, = Lx,, with x, arbitrary, The left sigenvectons corresponding 1o A= ~2
are [&,, x,]=[ix,, 2.] = x,[275, 1] with x, arbitrary,

7.4 Prove that the transpose of a nght eigenvector of A 15 a left sigenvector of A" corresponding
o the same eigenvalue.

If X is a nght eigenvector of A cofresponding 1o the Ei?:lh'lh.lz A, then AX = AX. Taking the
transpose of both sides of this equation, we obtain XA = AX",

T8 Vernify the Cayley-Hamilton theorem for

S ]
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The characteristic equation for A was determined in Problem 7.1 to be 47 + A — 2 = 0. Substituting

A for 4, we obtain
a’+1-“=[-; -:]+[-g _ﬂ—i[,!, ?]

[0 ¢
0o

T.06  Werify the Cayley-Hamilton theorem for

52 2
A=|3 6 3
6 6 9

The characteristic equation for & was found in Problem 7.2 to be —A" 4+ 204° - 934 + 126 = 0.
Therefore, we evaluate

21 44 M 4} 34 M 5 2 1
=A" e MAT -QIA & 1Ml =—-| T41 wE ML+ 51 60 S1|-933 & 3
1,482 482 1509 mz 1z 111 BB 9

oo noa
+126|0 01 Oj=|0 b @
oo 0 oo

7.07  Prove the Cayley-Hamilion theorem.

We denote the characteristic polynomial of an & = r matng A &

A Ay=b, A"+ b, A"+ + B AT B A B, i
aned st C=A-al {2
Then di A} = det(A = Al) = de1 C 13)

Simce C is an A * & matriy having firsi-degres polynomials in 4 for its diagonal slements and scalars
elsewhzre, it follows that the cofactor matre ©° associated with © (sez Chapier 5) will have elements
that are paolyrnomeals of deégrée m= 1 Of n = 2 i A Elaménls on the imamn diagonal af L wall be
paolynomials of degree o — 1; all other clements will be podynomials of degree m— 2, The sams will be
true of the transpose of this cofactor matrix; hence (C°)" may be written as the sum of products of
disdingt powers of A and scalar matmces M -

(C ) =M A" M AT T MM, i)
where M_, M ... M__, are all n ¥ & scalar matrices,
It follows from Froblem 5.2 apd (3) that
C{C" )" = (det C)1 = o AM ¥}

Lising (21, we obtain
CHCTY = (A = AIHCT)" = K(C7)" = A0CTY
With (5], ths yislds
A AN = ALCTYT = ACY (6)
Substituting (1) and (4) into (), we obain
BoATE+ b, A" T4+ b AT+ b I =AM, A" AM, AT e AMLA 4 AM,
-, AT =M, AT e = M AT = M A

Both sides of this matrix equation are polypombals in A, Since two matris pelynomials are equal of
and only if their cormesponding cosfficients are equal, it follows that
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T.18

.2

T.24

bl=-M_,
B, D=AM__ ~-M_ _,
&.!—:Il='hul—1 - Hn ¥

Multiplving the first or these equations by A%, the second by A" ", the third by A™ 7, and 50 on {the fast
equation will be multiplied by A" =1) and then sdding, we find that terms on the nght side cancel,
leawing

bA +h, A4, AT+ b A b=
which is the Cayley-Hamilton theorem for & with charsctenstic polynomeal given by (1)

Supplementary Problems

In Problems 7.18 through 7.26, find the cipenvalues and corresponding eigenvectors for the given matnis

3o [3 3] [17]
i I B B B

R | I |
T.25 0 -1 1 T.26 21 6
o o n 1 6 6

(11
LI S |
o n 3

In Problems T.27 through 7.4, find the eigenvalues and a maximal =2t of lincarly independent cigenvectors

for the given matrix

T.27

.30

7.33

5 1 0 51 0 5 0 0

o5 1 T.2K o & o 7.19 [

0o s 00 % 00 s

ERE N 3100 4 31 0 0
'R 0310 2 -1 0 o
po3a| ™ Jgogs3 | ™ 8 0 4 3
o oo 3 000 3 6 B -3 -3
31 0 & 2 -1

1 5 1 T.. 2 R =2

(11 -2 -2 10

In Problems 7.33% through 7.40, find the cigenvalues and a maximal ser of linearly independent beft
cigenvectons for the given matnix

138

T M

.7

The matrix in Prohlem 7,18,

The matrix in Problem 7.19. h‘_

The mairix m Problem 720



1.38

7.41

T4

.43

7.4

T.45

T.46

T.47

T. 48

T.49

T.50
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i 2 -1 I 1 -1 -1 |

2 3 -1 7.8 I 1 =1 7.4 -1 5 -1

-1 -1 4 =1 =1 ¥ 1 =1 3
Verify the Cavley-Hamilton theorem for the matrix in (g} Problem 718, (b) Problem 7.24; and (o}

Froblem 7,30,

Show that if 4 is an :iFI‘.I'l'I]I.It of A with corresponding eigenvecior X, then X 15 alio an eigenvecior of
A’ corresponding to 47

Show that if A s an elgenvalue of & with corresponding eigenveator X, then for any scalar ¢, X is an
eigemvector of A — ¢l commesponding to the eigenvaluee A — ¢

Prove that if & has order m % a, then
det(A — Al = (- 11" (A" - [race AJA" " + O(A" %))
where (4 4" %) denotes a polynomial in 4 of degree m = 2 or less.

Prove that the trace of a square matrix is equal to the sum of the eigenvalues of that matrix.

Prowe that trace (A + B)=trace A + trace B f A and B are square matrices of the sams order,

Prove that trace AB = trace BA if A and B are square matrices of the same order.

Show that if 5 is an invertible matrix of the same order a5 A then frace(S'AS) = frace A,

Prove that the determinant of a square matrix exquals the product of all the eigenvalues of that matrix.

Show that the a = a matsix

Ll i 13 = LH ]
Ll 0 1 # o i}
i 0 | I

C= D 0
] L] 1] - m i
Ty T, Sy Tl@,_y T,

has as ils charscternstc equation
(=1 A" +a,_ A" " ea, A" b At A a) =D
The matriz C is called the companion matrix for this characteristic squation,



Chapter 8

Functions of Matrices

SEQUENCES AND SERIES OF MATRICES

A sequence (B, | of matrices B, = |bf:“]. all of the same order, converges 1o a matrix B =&, | if
the elements !:';:" converge to b, for every i and j. The infimite series T__, B, converges 1o B if the
sequence of partial sums {§, = :_,:,B,,] converges to B, (See Problem 8.1.)

WELL-DEFINED FUNCTIONS
If a function flz) of a complex variable z has 2 Maclaurin series expansion

fiz)=Z a,2"
n=il
which converges for |z| < R, then the matrix series L._; a,A" converges, provided A is square and
each of its eigenvalues has absolute value less than R. In suech a case, fid) is defined as

flA)= i a A"

=0

and is called a well-defined function. By convention, A" =1. {See Problems 8.2 and 8.3.)

Example 8.1

1 I = |
R R R -
1! 2" =

converges for all values of z (that is, B ==}, Since every eigenvalue & of any square mains satisfies the
condition that [A| <=,

i 1, o 1,
=04 A+ AT --EE.&

l,.i.

is well defined for all square matrices A

COMPUTING FUNCTIONS OF MATRICES

An infinite series expansion for fTA) is not generally useful for computing the elemenis of f{A). 1t
follows (with some effort) from the Cayley-Hamilion theorem that every well-defined function of an
n*p matrix A can be expressed as a polynomial of degree 5 -1 in A, Thus,

fA)=a, (A" ta ATk a A 4 aA s al (81)
where the scalars a a ... @y, @, 0, are determined as follows:

A=11Hr=F1

STEP 8.1: Let
A =a,_ A" " +a, A"+ sad adta,
which 15 the right side of (8.1) with A' replaced by A’ (j=0,1,...,n—1)
STEF 82: For each distinct eigenvalue A, of A, formulate the equation
JUA)=rA) (8.4]
|
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STEP 8.3 IF &, s an eigenvalue of multiphicity k, for &> 1, then formulate also the following
equations, involving derivatives of fi A) and r{ A) with respect to A:
FOAN s, =0,
f'f-’-”.w“r"l’ﬂﬂ..,,, (8.3}

£, = A

STEP 84: Solve the set of all equations obtained in Steps 8.2 and 83 for the unknown scalars
[V PO
Once the scalars determined in Step 8.4 are substituted into (8.1, flA) may be
calculated. (See Problems 8.4 through 8.6.)

THE FUNCTION "

For any constant square matrix A and real variable 1, the matrix function "' is computed by
setting B = Ar and then calculating e™ as described in the preceding section. [See Problems 7
through 8.10.)

The cigenvalues of B = Ar are the cigenvalues of A multiptied by 1 (see Property 7.5). Mote that
(#.3) involves derivatives with respect to A and not ¢, the correct sequence of steps is to first take the
necessary denvatives of flAY and r{ A) with respect fo A and then sobstitute A = 4. The reverse
procedure-—first substituting & = A, (a function of 1) into (8.2) and then aking dervatives with
respect [0 f—can give erroneous resulis,

DIFFERENTIATION AND INTEGRATION OF MATRICES

The dervative of A =[a.] 5 the matrix obtained by differentiating cach element of A; that 1s,
dhlde = [da, dr]. Similarly, d’u: integral of A, either definite or indefinite, s obtaimned by integrating
each element of & Thus,

[aa=[[og] i [na=[[oa]

i S3ee Problems 8.11 and 3.12.)

DIFFERENTIAL EQUATIONS
The mitial-value matnx differential equation
Xi)= AX() + Fir)  Xi1,)=C
has the solution
X(r)=e*"""C + ™ I e “Fis) dr (8.4

or, equivalently,

X(t)= 4+ |8 () d (8.5}

i

If the differential equation is homogeneous |i.e., F(i)=0)], then (&4) and (B 5) reduce 10
x':f:':f"ﬂ ||.Il-\.-.
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In (8.4) and (£5), the matrices «*" % & * and ¢*"*" are easily computed from e by
replacing the variable ¢ with r — §,, —5. and ¢ — 5, respectively. Usaally, Xi¢) is obtained more easily
from (8.5 ) than from (5.4 ), because the former nvolves one fewer matnx muliphcation, However,
the integrals arising in (8.5) are generally more difficult 1o evaluate that those in (84). (See
Problems 313 and 8 14.)

THE MATRIX EQUATION AX+XB=C

The equation AX + XB=C, where A, B, and C denote constant square matrices of the same
order, has & unique solution if and only if A and B have no eigenvalues in common. This unigue
solution is given by

X=- _L 0™ dr (8.6}

provided the integral exists (sce Problem 3.15).

Exampis 8.2 For A=1 and B =0 the mairix equation has the uniguee solutlon X =, bt the integral (8.6)
diverges.

Solved Problems
8.1 Dietermine !l_lsll B, when
_|1 2+k
3+ 2k
Bl 't i 2 3

. 0 24k 1 o i r AL
Since  fim 55 =0 lim o5 e s limS=5 and r.m{ni}-.

we have |!I-T.: B, = [2 1:,2]

B2 For which matrices A is the function cos & well defined”

The Madiunn series for oos 7 s

#DE-I:I—:—Etz—‘—I-:-.... 5 L i}-th
X4 Al aon  (2m}

which converges for all values of 7 (that is, & = =), Every eigenvalue of any square mairia satsfies the
condition that [4] < =, 5o

A A" A = [ =1)
A=F-— - a1 3 L
ca TR T .:'-:'n (2n)!

5 well defined for every square matriz A,
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Determine whether arctan & is well defined for

12 d-J
A i] 2
The Maclsurin seriés for anctan = s
:" _!." 1,' B - '_1 I|.!_:Il|'|l
arlan = - T T - S ._:":_:.. T

which converges for all values of z having absolute value less than 1. Therefore,

Al AT A AT
e o T R vy o

is well defined for any square matnx whose eigenvalues are all less than 1 in absoluze valee. The given
matrix & has eigenvalues &, =0 and 4, =4 Since the szcond of these eipenvalues has absolute value
greater than 1, arctan A is not defined for this matrix,

Find cos & for the matrix given in Problem B3,

From Problem 8.2 we know that cos A is well defined for all matrices. For this pamicular 2 = 2
matrix A&, (&.1) becomes

da, +a, 4, I ()

a 2a, +a,

opA=a A+ ﬂ.,l=[

n

Kow fi k) =cos A, r{ &)= a4 + a,, and the distinct eigenvalues of A are &, =0 and &, = 4, Subslituting
these guantities into (8.2) once for each distinct eipenvalue, we formulate the two cquations

cos = .nl[l'.'l'p +a,

cos d =g [4) +a,

Solving these equations for a, and a,, we oblain @, =cosl=1 and @, = {cos4 = [/ = —-0412411.
Substituting these values inte () and simplifving give us

0TI - I.'bSJﬁﬂI-‘I]

cos A "[ 0413411 0.1TITH

Find «* for the matrix given in Problem 8.3,

It follows from Example 8.1 that ¢* 5 defined for all matrices. For this particular 2 = 2 matrix A,
(2.1 becomes

2a, +a, da, ]

"-. -
€ ﬂ,;t#:rnl[ a, 2, + a8,

(i)

Mow fiai=¢", i) = a i+, and the disinct eigenvaluss of A are A, =0 and A&, =4, Sabstituting
these quantities into (&2) once for each eigenvalue, we formulate the bwo equations

e = a,(0) +a,

e =g 41+ 4,
Thus @, = ¢ = | and &, = (¢* = 1)/4 = 13,3995, Substituting these values into (1 ) and simplifying give us

_[27.7991 53,5082 J

com A=l 3395 27,781
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K6  Find sin A for
= 0
A= 0 =2 1
i o =2

The Maclaurin wries for sin z Conwerges for all Ande valees of 7, so %im A s well defined for all
matrices. For the given matrix 3 = 3 (8.1} becomes

4 -8 2 -2 2 0 i 09
sinA=a A’ taAd+al=al|l 4 =4|¢a) O -2 1|+al0 1 O

oo 4 00 =2 oo 1 (I
4z, —2a, +a, —8a, +la, 2,
= L] da, - 1a, +a, —da; + a,
0 0 da,—2a, + a,
Batrx A has eigenvalue & = =2 with muluplicity three, so we will have to wse Step 8.3, We determine
fMaj=xin & A= A" +a,d+a,
flA)=cosd  F(A)=2a,4+a,

A= —sin & A= 2a,
and write (8.2) and (£.3) as, respectively,
sin{-2)=a,(—2) +a,[-1) + a,
cos( =2} = 2a,(-2) + a,
—sin(=2} = 2a,
We thas obtain a, = — § sin(—2) = 0.454649; a7, = 005 (—2) — 2 gin (—2) = 140245, and g, = 2 cos [=2) =
sin = 2) = DOTHNO3E. Substituting these values into (/) and simplifying give us
—0WER2eT  —0.832298  0SHRAT
sim A =

0 0909297 —0.416147
] n =) SEET

8.7  Find & for

=[]
We se1
wene[ 4

and compute «* Since B is of order 2 % 2, (81 becomes

dy @t
¢ -u.l--ha,.]-[_ﬁ: ﬂu]

Here f{A)=¢", r{A)=a,4 + 2, and the distinct eigenvalues of B are A, =it and A, = —it. Substituting
these quantities into (8.2 separately for esch eigenvalise, we obisin the two equations

(ri

e =g+ a,
e V=a (—if)

Solving these equations for &, and a,, we oblain
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i 1
al:ﬁ'-'n_'-.r}=¥ and '“'E{'"*!-'r]"m!

Substituting these valwes into (1), we determine

cosr o sinr
.*r-.--[ ]

—sin{ cost
Find e for
_ [ I]
"‘[u -2
We el
carc |
B=Ar R —2:]

and compute ¢® Since B is of order 2% 2, {81 ) becomes

B _ 1 |y af
€ '“‘I*“J_[B‘-ﬁ,r —2a,r= ap] (r
Here flll=¢", fl &) = a, A £ a,, and the distinet eigenvalues of B are 4, = 24 and A, = —df, Subsiituting
these quantities into (8.2} once for each eigervaloe, we oblain the two equations
e =a () +a,
eV =g -4+ a,

Salving these equations for a, and a,, we obtain a, = (¢” — ¢ “)/6r and a, = (2™ + & "}/ 3. Substil-
g these valees indo (1), we get

e | [ 4™ 4267 ¢ —g™™ ]

T b lEeT ~8e Y 26T b ae

Find e* for
o 0o
,‘.[1 0 u]
1 01

We set B = Ar and compuie e® Since B is a 3 x 3 matrix, (5.7 becomes

ay ] 0
r"=.|r=l-:+dlﬂ+n'"|.- :lﬂ.‘ dy . il [
afr +af 0 abf tar+a,

Mow flA)=e" riA)=a,A" + a A+ a,, and the distinet eigenvatues of B are 4, = 0 with multaplicity two
and A, = with multiplicity one. Substituting these quantities, along with fiA)=¢" and F{A)=
Qa4 b, into (820 and (833, we formulate the three equations

¢ = a,(0) +a,(0) + a,

gl =20} + a,

l"-n:.r:I + a0 -,

This. a.=(e' —=r= 11/, a, =1, and a, = 1. Substituting these values into ([) and simplifying. we

obtain
I o o
P e f 10
=10 ¢
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.10 Establish the equations that are needed to find &' if
1 2 3 4 5 6
0123 45
0023 45
A=looo 23 4
000000
oo o0 ol

Wi sel B = Ar and compute ¢ Since B is o 6 % 6 matrix (8.1 ) becomes

e"=aB +aB +aB"+aB +aB+al (1

The distine eigenvalues of B are A, = 1 with multiplicity three. A, = 2r with multiplicity two, and A, =0
with multiphicity one. We determine
fa=e MAl=a, 4" +a,a*+a,d’ +a, A" +a,h+a,
Flay=e*  P{A) =52, A" +4a,+3a,4° + 2a,A + a,
Filar=¢" A =2a,A" + 120,47 + 6a, 4 + 2a,
and {§.2) amd (5.3) become
e =g’ +agt Fat e +arta,
' = Sa," + da,r" + 3o, + 2oyt + a,
¢ = Mag' + 12a,r" + bas + 24,
e = a2+ a2 ay(20) a4 a2 ay,
eV = Bg,(20)" + da,(20)" + Ja,(20)" + 2a,(26) + a,
= a (00 +a, (00 +a,(0)" + a,(0) +a,(0) + a,
which should be simplificd before they are solved.

B.11  Find oA 7 dr of
1 k]
i+l e
“_[ Sim I 15]

d E ¥
an @D G

i

_ | 2 2e"
a . d cos 0
& {sim £} ar (45)

812 Find [ A & for A as given in Problem B, 11.

I"-Jﬂ'- ::-{r]‘”ﬁ }rr‘ﬂ ;I:!l"'+:+¢l :;:"_‘_“]
sin 1 45 de —QE L, I+,

B.A3  Solve Xir) = AX{r} + F{r) with initial value X(0) = C when

[0 2] wo=[] e[ 1]

The solutsen is given by either (84) or (8.5). We shall use (8.4) here, and (5.5] i Problem 8,14,
For A as given. ¢ has already been caboulated in Problem 8.8, Therefore, we can compute
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vtge _ e L] deT 4 2e ™ e =T ][ ] [ ]
-E“: "’"C—l‘ [ EP BIIP_E! - Te +‘E-4I —4 —de
T ![h 4 2eM Hn [ l
e V(1) = b _ gt z: +4:" ] fe''+

[ erna- [ tte~ peras

3311[—“1': :::'Jr-ﬁﬁ
[[her+ 1oy

' bl [de™+2e™ pM g™ ][ -5 e+ 5
T L2 - - . —
et L' Bls)ds = ¢ m[s-*"—s- O 2 g | 1027 F 4 46

L[ qae™ +2e p-Se P R B [t S |l [ Pty 3
180 [ (&e” —Be M-S - " +6)+ (2T +le7 W= 107" 4 4™+ 6)

gk AR

X} =™ W0 4 ™ Jr # M Fiskds

—fe' + 5o +-r 1 [ He™+let-if
4, 33 —he' + W™ - de o TN Ll Ty

.14 Use (£.5) to solve Problem B.13.

The vector ¢ ' was found in Problem B 13 Furthermore.
I | Ig“r -|+2!-||---| f“ "o dje- g L .,|_ ll'l By iy
L = -
L FIF}_ E[ae?u-u - e Hir=ai E.,_E" ] "ﬂr d1a-i l I hl!' " 4g' dyatag |

LI ‘rﬂl-n_ r-\! hr!"}i._

! |
f”l- I“F‘_IJ dr = - .
J"" & Ltzflh 2l +h|:'il'-!lll:ll:h

(-0 - ey [t
o P L Gl —te + 25 = -

§ =i

& | =

X{r} =" 'C + L M) s

e'“]‘h!—_[t'J- e e b e+ Le¥ -
Tl -dev] o8| —pet s 26T - {7 —He "+ eV - le

as before.
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B.15 Solve the matrix equation AX + XB =T for X when

=[5 &) m=[i 3] ee[ 0]

In preparation for the use of (8.4), we calculate
rw [. . jr‘.-u-_l__l:'-. !rh_!lr-.-:[

, 1€-| $ if_lr 1ﬂ‘-l_ ir-:ll
Then Faf!n-l_!r.y_*'-w _;E ’Ii'if-'l]

S R et L L it LR TN [—mn —4s7
o ¥ Jr“' Gl = [if':"*:'ﬂr'"l; b= de™y [Tl v

8.6 Prove that ¢™e®™ = ¢ ®"if and only if the matrices A and B commute (that is, if and only if
the commutative property for multiplication holds for A and B).

If AR = BA, and only theém, we have

(A+BY =(A+BiA+B)=A +AB+BA+ B =& + JAB+ B
_El[ J‘.nl'
> R
d.,. . r|= LR l
and. in general (A +BY Eﬁ{*}h b i)

!

(k)= kiin — &)t

whene

B the binomdal coefficient (“a things taken & a1 a ume"),
MNow according o the defining equation, we have for any & and B:

o= (S Lae)(S L) § § A e

m=p M .-|-I:|'I A= &= {-_*}I

- - A" 'R - i

E [,E., im = B ]"' EJEU AB } ()
and g E — (A+B)YT = E (A+B) 3

The last series in (3 is equal 1o the last series in (2} if and only if (1) holds; that is, if and oaly i & and
B commute.

B.17 Prove that Ve " = M0

Setting f = 1 in Problem 8.16, we conclude that ¢*e® = ¢'* "™ \f A and B commute. But the matrices
Ar and = AF commule, sinte
(AN~ AT) = [AA) 5} = (AA) - 1) = (- As)[AL)

LT LERT . fﬂ.|l- [}
.

Comeguently, e =5
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#.18 Prove that & =1

From the defnition of malrix multiplication, B =0 form=], Hence,

LD - T F Y Ve P

a=g M mal

Supplementary Problems

B.19  Determine the limit of cach of the following sequences of mairices as & goes 10 =

l__I 2k =1
A= I+l B__1_[E+l k+1 Il
: 2 k- S e L .
k+1 k+1]
5 k—k-']
':*'[5‘}' ksl

8.20  The Sessed funchion of the frer tind of order zero is defined as

=1

sin=% Sl

an 2R

For which mawrices A s J, (&) well defined?

821  Deermine the conditions on matrix & that will make the following function well defined:

. 4 .
ﬂ”’.:.znr[hn A

B2 Find () Hn.ﬁ.and[bj-r*fm.l=[i H
8.23  Find [a) cos A and {b) JA™ + 2A"™ for A.:[: :i )

824  Find [a@) sin A and (b)) cos & for the 3 x 3 zero matriy
In Problems & 29 through 531, find ¢

sas [ 1§ 3] s [ 5] ww [§ )]
o 1 o 3] e

[CHAP. &
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B.A2

R.33

B

.35

B30

BT

Find sin &f for

== -
= kk =3
R

Salve Xi1)= AX(1) + F{r} when
a=g o] wo-[]

Salve K1) = AX(r) + F(r): X(0) = C when
(3 4] wa[d] e
Solve Problem .35 with € = [;]

Solve AX + XB = C when

S B B A B



Chapter 9

Canonical Bases

GENERALIZED EIGENVECTORS

A wector X is a generalized (right) eigenvector of rank m for the square matrix A and associated
cigenvecior A if

(A=AD"X, =0  but  (A-AITT'X_#0

(See Problem 9.1 through 9.4.) Right eigenvectors, as defingd in Chapter 7, are generalized
gigenvectors of rank 1.

CHAINS
A chain generated by a generalized eigenvector X, of rank m associated with the cigenvalue A is
a set of vectors (X, X, _ . X, _5... ., X} defined recursively as

X =(A-AlX,,, (j=m—-1,m-2,.. ., 1) (2.1}

[See Problems 9.5 and 9.6.) A chain is a lneady independent set of generalized eigenvectors of
descending rank. The number of vectors in the set is called the fergoh of the chain.

CANONICAL BASIS

A canonical basis for an m X mamx A 15 a sei of n lineardy independent peneralized
gigenvectors composed entirely of chains. That is, if a generalized eigenvector of rank m appears in
the basis, s0 too does the complete chain gencrated by that veetor.

The simplest cancnical bases, when they exist, are those consisting solely of chains of length one
(i.e., of lingarly independent eigenvectors), Such bases always exist when the eigenvalues of a matnx
are distinct. (See Problem 9.9.) The chains associated with an eigenvalue of multiplicity greater than
one are determined with the following algorithm, which first establishes the number of gencralized
eigenvectors of each rank that will appear in a canonical basis and then provides a means for
ohraiming them:

STEP 2.1: Denote the multiplicity of A as m, and determine the smallesy positive imeger p for
which the rank of (& = Al equalt n = m, where n denotes the number of rows (and
columns) in A,

STEFP ¢.1: For cach integer & between | and p, inclusive, compuie the eigervalue rank number N,
T

N, = rank{A - al)* "' ~ rank{A - AL)" (9.2

Each N, is the number of generahized cigenvectors of rank & that will appear in the
canonicil basis.

STEP 9.3 Determine a generalized eipenvector of rank p, and construct the chain generated by
this vector. Each of these vectors is part of the canonical basis.

STEP %.4: Reduce cach positive N, (k= 1,2, ..., p) by L. Ifall N, are zero, stop; the procedure is
completed. If not, continue to Step, 9.5,

STEF 9.5 Find the highest value of k for which N, is not zero, and determine a gencralized
cigenvector of that rank which is linearly independent of all previousty determined

2
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peneralized eigenvectors associated with A, Form the chain gencrated by this vector,
and include it in the basis, Return to Step 9.4,

(See Problems 9,10 throwgh 9.13.)

THE MINIMUM POLYNOMIAL
The minimwum polynomial m{ A) for an n % 7 matrix A 15 the monic polynomial of least degree for

which miA) = 0. Designate the distinct eigenvalues of Aas & A, ..., A (1=3=n), and for cach A,
determine a p, as in Step 9.1 above. The minimuem polynomial for A s then
m{A) = (A= A )A = R )P (A - ) (9.3)

{Sce Problems 9.14 and 9.15.)

Solved Problems

9.1  Show that X =[1.0,0]" is a generalized eigenvector of rank 2 corresponding to the eigenvalue

A =13 for the matnx
=T =25 1
A= 4 13 1

(i 2
=1 =25 17 0 & -3
A== 4 w1 avd (A =0 O 13
L] n -l 0 o 1

For X={1.0,0]", we have (A — 30X =[-10,4,0]" # @ and (A - A)'X = 0, which implies that X is a
generalized sigenvector of rank 2.

9.2 Find a generalized cigenvector of rank 3 corresponding 1o the eigenvalue A = 7 for the matrix

T 1 2

A=sD 7 1
I

We seek a three-dimensional vector X, =[¥,, 1,, 1,)" such that (A = 71X, =@ and (A = TIV'X, #
. We have
LU
(A-TI) X, =0 0 O r: -

a0 0

. S R E[ﬂ’]

The condition (A — TI)'X, =0 is automatcally satsfied; the condition (A = TI)°X, # 0 is satsfied only if
g, # . Thus, x, and x, are arbirary. wheress x, 5 constrabned 10 be nonzere. A simple chowe o
¥, = x, =0, x, =1, yielding X, =[0,0,1]".
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9.4

9.5
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Find a generalized eigenvector of rank 2 corresponding 1o the eigenvalue & = 4 for the matrix

4 o o o
i 51 0
A=l 1 -1 3 0
1] 0o 3

We seck a four-dimensional vector X, =[x, 1., x,. r,]” such that (A — 41X, =@ and (A - 41}X, =
0. We have

LU I o
600 ofxn|_|o
- i = -
A==l o o ofj=|=|0
o 00 lls] [x
0 0 0 o) 0
, . ! I I D)% | r+x,+1,
and (A - 40X, ! I -1 oll=|=| -5 -5 -1,
W =11L%s =Xy

To satisfy (A — 41)°X, =@, we must have x, = 0. Then, to satisfy (A — 41)X, = 0, we must guaramee
r,®—§, — ¥, A simple choice is ¥, =1, 5, =5, =x, =0. This gives s X, = [1,0,0,0]"

Show that there is mo generalized eigenvector of rank 3 corresponding to the eigenvalue A = 4
for the matnx given in Problem 9.3,

For such a vector X, =[x, 1, x,. r,]" 10 exist, the conditions [A = §1)'X, = @ and (A - 41)°X, = 0
musl be smisfled. For the given mariz A,

(A- Y%, =[0.0,0, —x,]"  while  (A- &)X, =[0,0.0,5,]

Tav satisfy both conditions, r, must be zero and fnonzero simultaneowsly, which is impossible. Therefore.,
A has no peneralbzed eigenvector of rank 3 corresponding 10 A = 4.

Doctermine the chain that is generated by the generalized eigenvector of rank 3 found an
Problem 9.2.

From Problem 9.2, we have X, =[0,0, 1] correaponding 10 the eigenvalue & =7, Furthermore,
onz

A-T=!0 0 1

o o0

It folboses from (20 ) that

b1 o20] [2

1==M—'J'I}H,=[EI 0 J][ﬂ']=[ll

oo ol Lo

no1 22 1

and X, = (A m:,-{n 0 1][1]-[1}]
oo i [1]

The chain 1=

s ={ S [2} 1]
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9.6

2.7

b8

5.9

Determine the chain that is generated by the generalized eigenvector of rank 2 found in
Problem 9.3,

From Problem 9.3 we have X, =[1.0,0,0}", corresponding 1o A =4, Using (9.1, we writs

o oo 0 afi] [ o
o1 affel | o1
Xe=(A-4X. =1 1 <1 aoffo]|"|1
o o o -ilef Lo

The chain is {X,.X,} = {[1.0,0,0]7, [0, 1, =1,0]"}.

Show that if X, is a generalized sigenvector of rank m for matrix A and eigenvalue A, then X,
s defined by (9.7} is a generalized eigenvector of rank j corresponding to the same matrix

and eigenvaluee.
Since X, is a generalized gigenvector of rank m,
(A=A"X_ =0 and (A-Al)7 'K, =0
It Tollows from Eq. (91 that
X, = (A= ALK, ,, = (A - AI™ X,
Therefore (A= ALY =(A—ALY(A - AN =(A-Al"X_=0
and (A - ATV ' = (A= ALY (A=A K = (A- ALY, =0
which together imply that X, 1 a generalized eigenvector of rank j for A and A

Show that a chain is a linearly independent set of vectors,

The proof is inductive on the |length of the chain. For chains of length one, the generating
generalized eigenvecior X, must be an eigenvecior, so X, # 0. Therefore, the only solution o the vecior
cquation ¢, X, =0 is ¢, =0, and the chain s independent.

Asaume that all chains comaining exactly & — 1 vectors are linearly independent, and consider a
chain consisting of the E-vector set {X,. %, .. .. X} for matrix & and sigenvalue 4. We must show
that the nn!:,l sinluticn Lo the veclor equation

Xy to, Xy, v re X =0 i
B, =, , = o=c, =0 Multiply (I} by (A= aI}* "', and observe that for each X, (j=k~ 1.k~
2. ... 1) i that eguation,
(A= AL e X = e A — AL A - ALK = o (A - Al =0
because each X, & 8 generalized cigenvector of rank f (see Problem 9.7). What remains, then, is
A= ALY TN, =0 (2}

Since X, is a generalized eigenvector of rank &, (A = ALY "X, =0, and it follows from (2 that ¢, =10,
Equation (1) thas reduces to

Cpy My ¥+, X, =0 R
But X, ... .X, is a chain of lengih & — 1, which we assumed io be linearly independent, so the
constanis ¢, ... 0, 0 (3) must all be zerm. Therefors, the onky solation o (! s, =¢,_, =---=

o, =1, froom which ot Follows that the chain of length & is linearly independent

Determine a canonical basis for

NER
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The ecigenvalues for this matris were found in Problem 7.0 to be A= 1 and 4 = -2, Since chey are
distinct, a canonecal basis for & wall consist of one eigenvector for each eigenvalue. Eigenvedios
corresponding 0 A = 1 were determined in Problem 7.1 as x,[-5/2, 1] wiih x, arbitrary. We set 1, =2
to avoid fractions, and obtain the single eigenvector [ -5, 2]™. The eigenvectors associated with & = -2
are x,[—1,1)" with 1, again arbitrary. Sebecting £, = | in this case, we obtain the single eigenvector
[=1.1]". A canomical basis for & is thus [-5,2]°, [-1. 1]

Determine the number of generalized eigenvectors of each rank corresponding to & = 4 that
will appear in a canonical basis for

-
- E-E-F R
oD e e e
===
=S
R~

For this 6= & matrix, the eigenvalus 4 has multiplicity five {while A =7 has muitiplicity one). so
n=6 m=5% and n - m =1 for 5rep 9.1, Now

a2 1 0a 0
09 -1 0a 0
doo o000
A-d4l=ly o oo o2 o0
0 m o a i
o o oo a3
has rank 4. while
00 =2 g g |7
00 00a -1
a0 00da o
(A-4ly=(0 & 0O 00 0
oo ooaa 0
oo oo a o
o0 000 9
has rank 2, and
00000 -2
00000 0
a0 00 D0 0
W= =lg g 000 o
0Oa 000 0
0Oa0 a0

has rank 1= a - m. Therefore, p = 3. Using Step 9.2, we compute

N, = rank{A — 41)° - rank(A —41}' =2 =1 =]
M, = ranki{A - 41)' — rank(A — 41}’ =4-2=2
N, = rank(A ~ 41)" - rank{A - 41)' = rank(1) — rank(A — 41} =i - 4 =2
A canonical bass will contain one generalized eigenvector of rank 3, mwo generalired eigenvectors of

rank I, and two generalized eigenvections of rank 1, all corresponding to A = 4, {1t will alse contain one
generalized eigenvecior corresponding m A =7.)
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2.11

9.12

Find a canonical basis for the matrix given in Problem 9.10.

We first find the vectors in the basis corresponding o & = 4, using the information obtained in the
sdution to Problem 9,00, There is one generalized cigervector of rank p =3, which we denote as
X,=lx,. 5,1, %, %,.1,]" We note that 1o have (A= $1)'X, =0, we must set x, = 0; and to have
(A — #1)"X, # 0, we must have x, # . A umple choice is X, =[0.0,1,0,0,0]7, which generates a the
rest of its chain

g2 100 alfo |
o0 -1 a0 alle] |-t

o0 aoaoolli| | o

X=A-4%= g 0 oa 2 olflo|7| o

a0 o0 o olo 0

g0 000 3o n

a2 1 o a aj 1 -2

a0 -1 00 af-i 0

a0 0 00a) 0 0

and Xo=A=a0X:=1 5 0 g 0 2 off o7 o
a0 0 oaal o 0

a0 0 0o 3J o 0

We pext reduce esch nonzero &, by 1, oblaimeag N, =0, &, = 1, and ¥, = 1: thas, ene generalized
cigenvecior of rank 2 and one generalized cigenvector of rank | associated with A = 4 remain o be
fourd. We frst seek another generalized eigenvector of rank 2, which we densde as ¥, =
[¥o0 ¥oo ¥oo Moo ¥so ¥l T U we are 1o bave (A - 41)°Y, =0, then both y, and p, must be zero; and if
(& — ALY, = 0, then either ¥, of p, must be nonzero, A convenient cholce thar is finearly independent of
X, X, and X, s ¥, =[0,0,0,0,1,0]", which generates, as the remaining vector of its chain,

¥, =[(A-dl)Y, =

SSo oS
==~
= .
Socoe@a
EENNE SO
LU~ — =
== T
1]
= -0 SN -

Reducing each ponzero &, by | again, we oltain N, = 0, N, =0, and &, = 0; 50 all the necessary
basis veciors correspomding to & = 4 have been found,

The eigemvector & = 7 has multiplicity one, so b contribution 1o a canonical basls is any eigenvector
associated with it. One such eigenvector is £, =[0,0.0,0,0,1]". A complete canonical basis for the
6 6 matrix A is the set of six vectors (X, X, X, ¥, ¥, Z } consisting of one chain of length three,
one chain of kength two, aml ome chain of length ope.

Find a canonical basas for

Matrix A has order 4 = 4 and zigenwalue & =13 with multiplicity four. Thus, a=4, m =4, and
a—m =0 Here

-

has rank 2. while
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(A-HY=

[~-N-N - -~
oSS
===

=N —

has rank 0, sa p = 1. Then
N, = rank(A ~31)' - rank{A - 31)’ = 2 =0=12
M, = rankiA — 300" - rank{A — M} = rank{1) - rank{A - M)} =4-2=2

A cononical basis for & will conain two generalized sigenvectors of rank 2. 'We denote ong of these
wn X, = |, xp kg, £,]". The condition (A - M)X, =0 is satnfied by all four-dimensional vectors, so it
places o constramis on X, The requirement (A = 30X, =0 & saisfied f either

¥, =0 o 1r, + x, %0 iy
A convemeent choics, therefors, i X, = [0, 0,1, IIT, which generates the remaining wector of its chain:

=

X, = (A -3IX, =

]

I

L]
=1
i

O e D o

o a0 o
aq o -
aa o

We reduce N, and N, by 1, obtaining &, = N, = 1. Another generalized eigenvector of rank 2 for 4 = 3,
linvarly independent of X, and X, but satisfying (1), is ¥, = [0, 1,0, 0]". This vector generates

|

MNow W, and N, are reduced 10 zero; a canonical basis for A s thus {X,, X, ¥, ¥,]. comprised of two
chains, both of length two,

M 2 0 1
ooo 0
Y, = (A -3, = Doaa -l
noo

[= N —]

9.13 Dxetérmine a canoniczl basis for

(===
O D S e =
Bl = 2 =

The eigenvalues for this matrix are & = 3 with mubiplicty four and & = | with multiplicity one. For
A=l m—m=5~d= 1. Also,

[ T R

- =1 1 3 L1

A-3=| 0 O 0O 0 0
ooon -l 1

i [} 1 =1

has rank 3, while

m o 2 5 z

o0 -2 -8 1

(A-3) =00 0 @0 0
nqg o 2 -2

(1 n =32 2

has rapk 2, and
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9.14

.15

00 -3 3

100 9 -9
A-y'={n oo o 0
onoa g =4 4

o oo d -4

has rank 1. Thus, p=3 and W, =2« 1 =1 M =32 =1 and W =5~3=2

A peneralized cigenvector of rank p=3 for A= 3 is X, =[0.0, 1. 0.0]", which generates

1 11 2 27eY [
=1 =1 1 30|00 1
K.=(A-X,=| 0 00 0 Oft|=[0
¢ o0 —i 1[f [}
a aa 1 -1linl Lo
i 11 F 2717 2
- =11 3 a1 -7
and X, =(A-MX,=| 0 00 0 dfo|=; 0
a0 =1 1)o q il
o oo 1 -ijlo] Lo

We now reduce the N, by | to obtain &, = &, = 0and &, = 1. Thus, a canomical basas for A will condain
generahized cigenvector of rank | for & = 5 This s an eigenvector, and it must be hnearly independent of
X, X, and X,; to find it we solve (& - H}¥, =@ 1o obtain, & one possibiliey, ¥, =[0. -1, -7,2,3]".

Simce A=1 is an eigenvalue of multiplicity one, s contnbution 0 a canonical basis s any
eigenvector corresponding to it, One choice is &, = [-3, 9.0, =4, £]", A canonical basis for the matrix &
o, then, (X, X, X, ¥, &, )., comprsed of one chain of lengih thice and two chaims of length ane.

Find the minimum polynomial for the matrix given in Problem .12,

in Prablem %02 we fownd that the matric has the sngle distinct eigenvalee & = 3, with p = 2. lis
mamimnuim polysomial is then

miA)={A=3F=a"-6BA+D

Find the mirimum polynomisl for the mainx given in Problem 9,13,

From Problem 903 we know that the matrs has two distinet elgeavalues: A4, = 3 with muluphoicy
four and @, =3 and &, = 1 with multiplicity one and thus p, = 1. Then

mi k)= (6= 3= 1) = A% = 100" + 3647 — 544 + 17
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Supplementary Problems

9.06  Determine which of the following are generalized eigemectons of rank 3 corresponding to 4 = | for the

mairix
I o1 o -1
10 o @
A=|l0 O 1 =1 2
T T R B |
a0 o £l 1

ta) [L 00,0007 (k) [0.0,0,0,2)7 (e [0.000, 0,07
() (1,020 (@ o000 (Ff) LT

9.17  Find the chain genemted by X, = [0,0,0,0, I}]", a generalized eigenvector of rank 4 corresponding to
A= | for the mandiz given in Profiem %06,

9.18 Find a generalized sigenvector of rank 2 corresponding to & = 5 for the matrix

1o
A=|D 5 1
oo %

9.19  Find the chain generated by X, =[0,0, 1]", a generalized eigemvector of rank 3 corresponding 1o A= 5
for the matnx given in Problem .08,

9.28  Devcemine the lengths of the chains associated with an cigenvalue A that are inclisded in a canonical basis

if

fay M, =N, =2 (k) Ny=1,N, =3

(e Ny=MN=1N =1 (dy My=2 N =3N =3

(o) M=l N,=2, N, =5 (f) M=} N =5

(g} M,=2 N.=1 N =1

In Problems 9. 21 shrough 931, (@) determine the number of generalized sigeavectors of each rank that will

form a canonical basis for the given matrx, and (&) Ard such a bass.

#.21 The matrix in Probbem 906 .22  The mairix in Problem 9.18.

) 221
9,23 ; H 9.24 H i] 9.28 [n 2 e]
0 o 2
212 2 011 7 1 3
s |0 4 0 917 I 2 1 .18 4 2
K i =2 =3 =] =7 =3 =3
Ca a1 s 1o S 1 204
P pale 05 -1 0 d
g, M 9.3 .3 (00 5 00
=1 1 ¥ 0 =1 1 1 i g @ 0o 3 32
A T 0113 00 01 4

8.3 Find the minimum polynomial for the matrnix in
(@) Problem 9.25 by Problem 9.26, i¢) Problem 9.27.
[d} Problem 9,28, (e} Problem %29, (f} Problem 9,30,



Chapter 10

Similarity

SIMILAR MATRICES
A matrix A is siemifar 10 a matrix B of there exisis an invertible matrix 8 such that
A=5"BS {10.1)

If A is similar to B, then B is also similar to A and both matnces must be of the same order and
square,

Property 10.1:  Similar matrices have the same characteristic equation and, therefore, the same
cigenvaloes and the same trace.

Property 10.2: If X i5 an ecigeovector of A associated with eigenvalue & and (J0.1 ) holds, then
Y = 85X 15 an eigenvector of B associated with the same eigenvalue,

{51:-: Problems 10.1 through 10.3 and 10.43.)

MODAL MATRIX

Associated with every square matrix A 15 a canonical basis (see Chapler 9). A modal mafriv M
for A is @ matrix of the same order as A having as its columns all the vectors of a canonical basis for

A. A canonical basis is a set of linearly independent vectors, so M has an inverse,
A modal mairix M is not unique. To standardize M somewhat, we shall always assume il has

heen constructed as follows:
(M1} Al chains of length one precede all longer chains [if any exist).

(M2): The vectors of each chain of length two or more are conliguous, with rank increasing from
left to right.

(See Problems 10.4 through 10.6.)

JORDAN CANONIC AL FORM

A Jordan block is a square matrix whose diagonal elements are all egual, whose superdiagonal
elements (those immediately above the main diagonal) all equal 1, and whose other elements are all
zerc. It has the form

A 1 e i 0
0 A 1 --- 00
00 A <= 0 0
o o0 - A1
I T | DRI | I 1

A Jordan block is completely determined by its order and the valwe of its diagonal elements.
A matrix i5 in Sordan canonical form if it 15 a diagonal matrix or of it has one of the following two
partitioned forms;

i1
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1] 1
5, 0 0

Jj.
U’ ”_,lt l_] J,

where IV denotes a diagonal matrix (whose diagonal clements need mot be equal) and J, (i =
1.2, .., k) represents a Jordan block. Although the diagonzl elements in any one Jordan block
must be equal, different Yordan blocks within the Jordan canonical form mayv have different
diagonals. (5ec Problem 10.7.)

SIMILARITY AND JORDAN CANONICAL FORM

Every square matrix A is similar to 2 matrix J in Jordan canonical fosm. I M 15 a modal matrix
for A, then

A=MIM [10.2)

Equation { 1002 ) has the form of (0.1} with §=M"".

The matrix J in (1i0.2) is uniguely determined by M, Each chain of length v appearing in M and
correspending (o cigenvalue A generates an F ¥ r Jordan block in J with & on the diagonal. The
chains of length one (if they exist) give rise collectively to the diagonal submatrix of J; the diagonal
clements of this submatns are the cigenvalues associated with the chains of length one, in the same
order as their corresponding eigenvectors in M, If M consists solely of [generalized) eigenvectors (of
rank 1), then J is simply a diagonal matrx; if M contains no chains of length one, then J 5 a
partittoned matrix of Jordan blocks. (Sec Problems 10.8 through 10.11.)

The Jordan cancnical form of a matrix 15 unigue as regards the individual Jordan blocks it
contains, a5 well as the diagonal clements associated with chains of length one, if they exist
However, the positions of Jordan blocks and diagonal clements are not unique. Each chain must
appear as contipuous columns in a modal matre, but there is no criterion for ordering the chains.
Differemt orderings of entire chains will produce different permutations of the associated Jordan
blocks in ). or of the diagonal elements of D

Jordan blocks are defined on occasion to have Os on the superdiagonal and Is on the
subdiagonal. Such forms are obtained easily by changing rule M2 so that rank decreases from left to
right in M.

FUNCTIONMS OF MATRICES

Functions of matrices are casily computed for matrices in Jordan camonical form. If J s the
diagonal matrix

A, D 0
T e
o0 a,
Cfia) 0 0
then fay=| 1AM 0 (10.3)
L 0 0 ) ﬂ‘.'n:.

[See Problem 10,14y 0f J is the r = r Jordan block
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A1 0 0 o
o oa 1 o o
e o oa a o
oo o - & 1
g o o .- 0 A
LA Rt N A C VRN AR €]
TR T T (r=2) (r—1)'
o O£ T
then =l TR (o oo (10.4)
fly fa
v o 1
o o0 o0 0 %

where all derivatives are taken with respect to A, (See Problem 10.15.) 1 J & a partitioned matrix of
Jordan blocks and (perhaps) a diagonal matrix such that

D
3, 0O
’:
0
I 3
- fiD)
then finy= HJL}.. ¢
0 o

where [{D) and {3 (i=1,..., k) are defined by (10.3) and {10L4), respectively, {See Problem
10165 If A is similar to the matrix J in Jofdan canonical form, then
FiA) = MfiIM’ (10.5)

(See Problems 10.17 through 10.19.) This formula is computationally efficient only when M is known
or easily found; othereise the procedure given m Chapler B & preferred. Since fiJ) i upper
triangular, (I0.5) and Property 10.1 imply:

Properiy 10.3: If & is an cigenvalue of A, the f{A) is an cigenvalue of fA).
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Solved Problems

1.1 Determne whether

n-{zﬂ Is similar 1o h[ﬁg

32
The matrices are similar if and only if there exisis a mairix 8 such that A = 8~ 'BS or, equivalently,
swch thag
5A = BS (i
i
Set 5= [ € d']

[2 806 2004 2l &)
Ta+3b 6] _[2a 2B
[I:*Hﬂ' Ed}zilr 2d

The solulion Lo this matr® equality is b = d =0, with @ and ¢ arbitrary. For (1) to be valid, § must thes
hawve the form
a 0
8= [{' u]
which is nonsingukar for any choice of o and ¢, Thus, there is mo invertible mair which satisfies (1), and

the matrices A and B are not similar, Obseroe that & and B have the same sigenvalues, 50 mafrices may
kawve the samé eipenvalives and aof be smilar
311 2 1
A=|2 2 4 is similar 1o B=}3 1
111 4 1

The trace of A is 3+ 2 + [ =&, while that of B is 2 + 0+ 1 = 3. Sinot the traces &re nof equal, A and
B must have different sets of eigenvalues and, therefore, cannot be similar.

10,2 Determine whether

Fd S o=

0.3 Prove that similar matrices have the same characteristic polynomial.
[f A& and B are similar, there exists a matrix § such that A = 5§ JIE. Therefore,
I& = a1l =[5 "BS - 457'5| = |5 (B - AL}S|

=15 IR — A1llS| = — |B — A1|lS] =B -
=88 - Anlls| 5] [B— a1[|8] =B — a1

10.4 Construct a modal matrix for

=

il
=T o Y
=R NN S
(==
= D ek
SN — N



CHAF. 10] SIMILARITY o

A canonical basis for A was found in Probdem 9,13, It consiats of one chain of lengih three,
X, =[0,0,1,00" X =[,0000" X =[2-2000"
and two chains of kength one,

Y, =[0.-1,-7.2,2] and Z,=[-3,9.0,-4.4

n -3 2 1 0

-1 % =210

Thaus, M=[Y¥,.Z,. X, X.X]=[-7 0 001
2 -4 000D

2 4 000

A secomd modal matrix may be obtained by interchanging the first two oolumes of M.

10.5 Construct a modal matrix for

L= = e e Y
[~ — - ]
(== R S ]
(=== ===
[=JF WS
=R ===

A canonical basis for this matrix was determined in Problem 9,11 1o coasist of one chain of keagih
three,

X, =[0,0,0,0,0,00" X,=[1,=1,0,0,0,00" X, =[=2,0,0,0,0,0)"
one chain of length two,
Y, =[0,0,0,0,1,00]" ¥, =[0,0,0 20,007
and one chain of length one,
Z,=[0,0,0,0,0,01]"
A modal mairix for A is either M =[Z,, ¥, Y,. X,. X,, X,] or

M=[Z,,X,.X,.X,.¥,,Y,]=

Ll — NN — ]
[= =~ = Y
[N -
=00 =o o
(== E =
(== = ]

106 Construct 8 modal matrix for

5 2 2
A=|3 6 3
6 6 9

A set of three linearly independent eigenvectons for A was determined in Problem 7.4 to consist of
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[=1 o) |- o1, and [2, 56", Since these three vectors form o full complement of peneralized
eigenveciors of rank 1. they wre o camomcal busis for A, & masdal matrix for A is then

I -1 2
M=y 1 I3
0 1 &
Any perimulation of the columps of M owill prodace another equally soceptable modal matns.

Determine which of the following matrices are in Jordan canonical form:

0o oDoo0 0D
I 000 '}:?EE 1 oo o
2 w0 _ . L
Aloorof BE[EDSUY Clooo 10
oo 2 0000 4 (I VI I | B
O O O I |
All threr matrices are in Jordan canonical form: &, because it 5 a diagonal matris: B, because ol s
in the form
I 1o
l'=[,'ﬂl ;'l" with J,-lﬂ 3 Il il J_.-|; ;1
' o o 3
and C, becawse of s in the form
Ly
1 0 ith n-{" "E wo d,=d=]) 1]
C= ' wil o1 & St Pl
0 1.

Find a matnx i Jordan canonical form that is similar to the matrix & of Problem 1006

Using the resulis of Probbem 106, we note that the columns of M are all cigeavectors (chams of
lemgih nel {:Hrexpund.ing. respectively, Lo The cigeavalocs X% and 14 (as found i Problem 7,25 Thias,
A is samilar fo the diagomnal matnx

o0
J=11 3 10

i 14
T seee thal W 15, moabe That

o | -1 203 W I:I'r' ari By =3l
MM '=| 1 0 30 3 0 —af0 -&lE 0 S0
T % | T 0 L T S 0 A 0

a2l
=3 & 1jl=aA
6 4 9

Find a matrix J in Jordan canonical form that 15 similar to the matrix A of Problem §i)4

In Problem [0.4 we found thar M = ¥ E, X, X.. X,]. The rwo generalized gigenvectors of runk
LY, and & correspond to the cigenvaloes 3 apd 1. respectively, and generate the dingomal submairia
wf J

o=[q 1l
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10,10

The chain of length three, (X, X, X,}, cormesponds to the elgenvalue A = 3, 0 i1 generates the Jordan
ock
1]
I l
3

L]
LU
I 01 i
03
i 0 3

4=

e

A 15 thus similar 1o

CSS S oS

oo =

= =

poej
JJ-.’“- JI =

-

Find a matrix J in Jordan canonical form that is similar to the matns A of Problem 1005

In Protem (0.5, we found that M=[Z, X, X, X,. ¥, .¥,] The single gencrahized engenvector of
rank 1. Z,. corresponds 10 the cigenvalue T and generates the 1= | diagonal submairix of J comprised of
this cigenvalue The chain of length three, (X, X;, X}, corfesponds 1o the eigenvalue 4 and generales

the Jordan block
4 1 o
om0 4

The chain of length two, [¥,. ¥, }. also corresphnds w the eigenvalue 4 and gescrates the Jordan block

41
Jf'[uui
Thus A is similar 1o s 00000
m 0] |P4t 000
= 1, I U T
004 00
0 1 ] o0 o4 i
0nd om0 4

Find a mainz J in Jofdan canofcal form that o amilar to o matris A whose characteriatic
equation is (& =2)(A-3)" =0, and that has eigenvalue rank numbers N, = ¥, =1 and
N, =3 associated with eigenvalue A =2, and N, =2 and N, = 3 associated with & = 3.

A mest be 100 10 mairis, amd so oo is J. A canonical basis for A will conlain one chain of length
three and two chains of length one corresponding 1o 4 = 2. Defole Cheie vecbors, respeclively, as X, (2}
X020 X 02, Y020 E02), where the integer in parenthesas denotes the assoceated eigenvalue. This
same cafemical basis must also contain 1o chains of lenpth two and ome chain of length ene
correspomding 1o A = 3, Denade these vectors, respectively, as ULOE U (300 Vo)L W05 E W03 We use
ihis capnnical hasis to consdrec the modal malr

M= ¥ (202,020 W)U, 030, U003, X, (20, X020 X, 020, V03, V03]

which determines the minrix in Jordan canemcal form

=

EY

000 0
ihgnonon
oo NN
i fnonoDn
0o non
i L0 Bom
it i iz T
i 0000 %260
il T TR T
i oo T

=

ik
]
iom
03
LU |

1]

0
1
fl
il
I=1,
1

P =

=T = == =1 =]
=D s = OO

[

—
-
- =



QO SIMILARITY [CHAFR. 10

10.12 Verify (10.2) for a modal mairix consisting solely of generalized eigenvectors of rank 1.
Denode the columns of M as E,,E,.. .. E,, where each E, (i =1, 2, .. ., ) is an eigenvector of A,

Thus, AE, = & E,. The eigenvalues 4. &;... ., A of A peed pol be distincl, Now defing
T T |
T e
o a - a
and note that

AM=A[E,.E,, ... .E|=[AE, AE....., AE.|
=|AE,, LE, ..., LE|=[E E, . E[J=M]

from which (10.2) immediately follows,

10.03 Verify (10.2) for a modal matriz consisting of a single chain of length r.

Denote the columns of M as X, X,,... . X,, where each X, (i=1,2%,.,., r} is a generaliped
eigenvector of rank i for & and all X, correspond s the same eigenvalue A, Mow

X,_, = (A= AlX, = AX, - AX,

X,= (A= M)XK, = AX, - 4X,
X, =([A- X, = AN, - X,
which may be rewrilten in reverse order as
AX, = AX, + X,
AN, = AX, + X,

In addition, since X, i an eigenvector, AX, = AX,,
Diefine J vo be the r = r Jordan Bock with & on the diagonal. Then

AM=AIX, X, X, ... X]=[AX, AX, AX,. ... AX ]
=[aX,, AR+ X, AXK, +X,,. .. AX, +X__|

and (10.2) follows immediately.

10.14 Cakulate sin J for the diagonal matnx

io o0
J=|0 3 ©
0 o 14

Here fl 4} =sin &, so il follaws from | 2003) that

sind 0 i 0.141120 0 L]
= 0 =aad O |= ] 0141020 ]
] 0 snld ] ] 0. OG0T
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10.15 Calculate sin ) for the Jordan block

2
0
I=1p

L=
Lo ]

1]
(1]
1
o0 o0 2

Here f{A) =sin 4, f{A)=cos &, f{A)=—sin A, and f{A)= —cos A, w0 f{2) =sin2, f(2)=cos2,
Fi2i=—sind, and (2} = —cos 2. It follows from {1047 thas

[sin2 o052 —sin? —cosi
1 1 2 L
p Hnl cosd -sind 09007 -0.416147 =0,454649 (LG5 TR
fi) = 1 1 . = [t} 0. WS —-0.416147 =0, 454649
0 " sin? oosl ] ] D297 —0.416147
i 1 ] ] ] 0, 909257
o 00 “‘—Iz
10,06 Caleulate cos J for - -
0o o0 000
H I L O R 1 I
oo o1 000
J=|0 00 O 0 0D O O
H I T T O
o0 00001
AT VI I VI
This matrixz is in Jordan canonical form, with afl elgenvalues equal to zers and with the Hocks
a1 o
SIS RS (R

Since fil &)= cos A, we have [0} = cosl, (0] = =sinl, and F{0) = ~cos (. Therefone,

[ o il 1 i
cosB=| o mﬂ]"[u 1]
[ oosll —sin0

i _.__[l I:I]
gas ) 1

o

cos ), =

[|]
Ccos0 —sinll —cos 0]
I
MR I SRR TC
cosd,=| o === EM%0-lp 1 o
m 1!
" Boo
_EI W] _ﬂ!_
100000 D
01 000D D
cos D 0 o011 000 O
and s ) = oos | =000 100 O
] sty | oo 001 o -142
000001 O
0 00 000 1
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10,17 Calculate sin A for the matrix given i Problem 10.6.
Using the resulis of Problems 1006, 1008, and 10014 abong with (10,2, we hawe

=1 =1 2][0.141120 0 0 -3 A -y
sinA=M{sinJM'=| 1 0 3 il 0.141120 0 -&/11 -&/11 511
0 1 & 0 0 (1. 9617 1/ v wn

023678 0372798 0.231678

[I]..BSSTE 0154452 ﬂ.]feﬂ.ﬂ]
(463357 (463357  0.60KATY

10,18 Caleulate ¢ for

210
A=ID 2 1
0 o 2

e
We el B=Ar={0 X 1
o o 2r

{sex Chapter 8) and caleulate ¢® Even though A is a Jordan block, B is not becawse it no longer has 1s
on the superdingonal. We find that modal matrix for B is

Foaon
M=(0 ¢ 0
o o1

s0 B s sdmilar (o the matrx in Jordan canonical form

& 1 0
J=M 'BM=|0 2r 1|
b o
We have flA)=[A) = fA)=¢" 50
A
fily=e'=| 0 & &~
0 0 "
1 ¢ %2
and e et B = MM =70 1
I
10.19 Find ¢ for
o1
A=l 7o)
“I'.ca-ET .:j,[: '—}; I;]

and compute ¢*. The cigenvalues for B are the complex conjugates it and ~ ir, 40 B is similar to

I‘[:; —n-:r]

A modal matrix for B, consisting of two generalized cigenvectors of rank 1, is
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=[]

R R (0 Wt

H

e i+ "

B 2 2 _:[ o ¢ a-in!]
= f:"-—-#-" E'r+|.'-" —H'nr [ L
2 2

[f‘-,:mpare with Problem ﬁ.?.}

Supplementary Problems

0.3 Determine which of the following pairs of matrkces are similar matrices:

237 '3 7
(o) [51. ad )7 3
21 20
(k) [l}i] and [nz
12 3 321
e} [lﬁﬁ and 11 2
78 9 b 2 2

In Problems 10.21 through 10025, find & modal matrix associated with the given matrix.,

-5 -3 i 3
wa | 1] 1.2 [t 3
{Hins: See Problem 9.23.) {Hini: See Probbem 9.24.)
(2 2 1 2 1 7
w3y Jo 2 0 laz4 (00 4 D
oo 2 I -31
(Hifr: See Problem 9.25) {Hint: See Problem 4926}
C I |
o300
10.25 =1 1 1
¢ 113

[ Hint; See Problem 9.20.)
Mh26  Each of the following i5 8 complete set of elgenvalue rank numbers for & matrds whose only eigenvales is

& =2 Find. in each case, a mainix in Jordan canonical form which is similar (o that matnix.

(@) N, =N, =2 (B} My=1,N, =3
() Ny=N,=1,N =2 {d) Ny=2,N,=3, N, =3
{e) Ny=1.N,=2. N, =5 (fy N,=3,N,=5

In Problems 10027 through 10,33, find & matrix in Jordan canonbeal form that is similar to the given matrix.

10.27 The mainy in Problem 1021, 10.28  The matnx in Probiem 10,22,
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10.2% The matrix in Froblem 10,23, 1.3  The matrix in Problem 10.24.

1321 The matriz in Problem 1025,

301 1 4 5 1 2 00

0 3 00 mi -1 00

w2 | 1 oo WAy (00 5 00
0 1 1 3 ¢ o 0 3 2

0o 01 4

[Hirt: See Problem 9.30.)
(Hine; See Problem 9.31.)

1234 Find cos A for the following matrices:

20 0 210

i) A=|0 2 0 by A=|0 2 1

0 0 2 00 2
200000
2 1 0o 2 0 0 0 0
o200 jooz100
€ A=lg g 29| “ A=lg o021 0
0 0 0 2 0000 20
00000 2

108,38 Find ¢ for the matrix A given in Problem 10.21.
18.36 Find ¢* for the matrix A given in Problem 10.23.
10,37 Find A" for the marriz & glven in Problem 10033
In Probiems 1038 through 10,41, determine £
038 A= i] w a=|_3 _“]
0 o

2 =1 1 0O
o4 A=|0 2 1 w41 A=| O 2 1
oo 2 oo

142 Prove that if A i similar to B, then B s similar to A,

1043 Prove that of {701 is valid for A and B ard X is an eigenvector for A corresponding to eigenvalue &,
then ¥ = 5X i an cigenvection for B alse cormssponding to 4.
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inner Products

COMPLEX COMJUGATES

The complex conjugate of a scalar z = a + db (where a and b are real) is £ = a = db; the complex
corjugate of @ mairiy A is the mairix A whose elements are ithe complex conjugates of the elements of
A. The following properties are walid for scalars x and y and matrices A and B:

(Cl: £=x; and A = A.

(C2): s real if and only if £ = x; and A is a real matrix if and only if A = A.
(C3): &+ iisarealscalar; and A + A is a real matrix.

(C4): TF = (£)( ¥); and AB = (A)B) if the latter product is defined,

(C8): (x+y)=a+y; and (A+B)= A+ B if the latter sum is defined.

(C6): xi =|x|* is abways real and positive, except that xi = 0 when x = 0.

THE INMER FRODUCT

Lzt W denote a nonsingular & % a@ matrix, The irner prodiect of n-dimensional codumn vectors X
and Y with respect 10 W, denoted by (X, Y),,, is the dot product (see Chapler 1)

(X, Y}, =(WX)-(WY) (11.1)
If W=1, then ihe subscript in (11.1) is dropped, and the inner product
(XY =X-Y (11.2)

i called the Ewchdean inmer prodict. If X and ¥ are abso real, then the Euclidean inner product
reduces 10 the dot prodect of the two vectors. (See Froblems 11.1 through 11.5.)

PROPERTIES OF INMER PRODUCTS

Property 11.1: (X, X} is real and positive if X #0.

Property 11.2: (X,X),, =0 if and only if X =0.

Property 11.3: (X, Y), ={Y.X)..

Property 11.4: {cX. YY), =c(X. Y}, and (X, cY),, = ¢(X, Y}, for any scalar ¢, real or complex.
Property 11.5: (X + Y, Z), = (X, Z), + (Y. Z}p and (X, Y+ Z)y = (X, Y}y + (X, Z} ..
Property 11.6 (Schwarz imequality): |(X, ¥} | = (X, X} o (Y, Y},

{See Problems 11.9, 11.10, 11.12, 11.28, and 11.29.)

ORTHOGONALITY

Two vectors are orhogonal if their inner produect is zero. Since different matrices W in (11.1)
generate different inner products, 1w veclors may be orthogonal under one inner product and not
orthogonal wnder another inner product. (See Problem 11.5.) Onhogonality reduces 1o the geometric

103
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et of perpendwularity under the Evclidean anner product when the vectors are real and
restfactedd o twa or three dimensions,

A st of vectors is erthogoenal if each vector in the set s orthogonal 1o every other vector in that
sl Swuch a set is lincodly mdependent when the vectors are zll nonzero, (See Problem 11.27.)

GRAM-SCHMIDT ORTHOGONALIZATION

Every finite set of linearly independent wvectors (X, X, ... X } has associated with it an
orthogonal set of nonzero vectors (. Q,.. ... Q,] with respect to a specified inner product, such
that each vector @, (f=1.2,....n) is a linear combination of X, through X _,. The following
glgorithm for producing the vectors Q, is called the Gram-Schride orthogonalization process,
STEF 11.1: 5t

I
e 1
1|l"l'l:xl ] xl }'# I
STEP I1.2: If j=n, stop; the algorithm is complete. Otherwise, mncrease § by 1 and continue,
STEP I1.3; Calculaie

Q= amd j =1

Y =X, - 2 (X, 00

STEF I1.4: 5e
1

QI = ; F':"lr.?;:l". Yr
STEPF 11.5: Return to Step [1.2.

(See Problems U11.6 throwgh 11.8) A modification of this algorithm, which 15 less susceplible to
roundoff error, is presented in Chapter 20,

Besides producing orthogonal vectors, the Gram-Schmidt process geperates vectors having the
property that the inner product of each vector with itsell is unity. This property is discussed further in
ihe next chapter.

Solved Problems

) ol

All glements are real. s the conjugalte notation in (0.1 ) can be suppressed, Thes,

I Calculate (X, ¥y if

3 i

(X.¥), —'{WEHWTFIS]-[ Ir]—-.H'a"l RO+ Bl =122
4 1]

11,2 Caleulate the Euchdean inner prodwct for the wecoors given in Problem 111,

Samoe both wevtors are real. the Bocldenn inner produst s the dast prodace sel shose veviors:
(K.Y= 1i4) + M5+ 3ihy = 32
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n.3

1.4

1.5

116

Caleulate (X, X}, if

x"[ta_jl and W=, Er]

_ T i
Here wx'[nr‘} o WX |r-53|

and (XKD, = (WX - (WX = {? :‘;3|-[1 _“.3]=; AT+ AT - i3) = 59

i 1 2 3
Y=012+: W=[4 5 &
T TR W,

W ois a singular matrix, so the inper product (X, Y}, s omd defined, even though the matrix
operations on the right side of Eg. (11, 1) con be performed. When the matriz W is singular. it is ahways
possible o find a noneero vedtor & {in this case, = [1, -2, " will b for which {2, Z1,, =1, therehy
vicdlating Property 11.2.

Caleulate (X, Y}, il

-1
X=13-42

[

Culculate the inner product {X, ¥}, for the vectors given in Problem 1.4 when (e} W =1 and
[B) W ois as given im Problem 81,1

(@) The Evuclidean inper prodec is

-i2 -i2
(X.¥)= !i-ir-lj—rz]-[z— .']-;-r'zn—.-:: FA3 =22~ fp+ (T =10
i 7

(f) With W as given in Problem 110, we have
WX =[3-/, 3-4 =i and WY =243 940 T2

] (X VD = (WX - (WY = (3 M2 - 0+ (3= W0 — i+ (—aNT - i2) = 1h— i3

Thus, X and ¥ are orthogonal umnder the Eudidean inner prodect but not orthogonal under the
ket product i part .

Use the Gram-Schoidt osthogonalization process with the Euclideun inmer product o
construct an orthogonal set of vectors associated with (X, X.} when

= 2 ] - [ i '|.
:‘-| [li i? Hl'rd x! 1 +i
These twi vectons are linearly mdependent, 3o Steps 11,1 through 115 may be wsed o find
{K,.K,:I lxl ril = g
| 2 7. 208
and O, = '1."_?] I 4 m]'[{li i:rrsl
—fu+ |":"]--=-+

Alsor, voexo- =]t - (i %_j[“ :.::41 - [*[“‘j,m

oy (Y. Y.} =Y. ¥.=150u
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1 :—ﬁ+4"-':|-"'il' =6+ T TE
and Q.= T [E+i3}-"5' {4+ rz:u.'ﬂ'ﬁ

The orthogonal set s {0, 0.

Use the Gram-Schmidi orthogonalization process with the Euclidean inmer product to
construct an orthogonal set of vectors associated with {X,. X, X,, X,} when

x|= x1= l_‘- x_‘-

o e

1 1 1
0 I 1
i ] 1
1 1 0

These veciors can be shown 1o be hisearly independent (see Chapter &), Using Steps 111 through
11,5, we find

(X, X, ) =X X, =3
and Q= 'ﬁ v, =0, 103, 1vE "
Then V=X, - (X000, =X, - 10,
=1, -2/3, 13, 7y’

20 (¥, ¥,) =Y, ¥, =159
and Q= VIII5Y, = [3VTE, 2015, 1VTE, IWVTE)T
Alsn, ¥, =X, = {X,.Q M, - (X,.9.0,

=X, - %q. - ﬁ;q;pas. 315, —4/5. 145)"
s (¥, ¥,) =¥, ¥, =18/25
and Q= vEBY, =1V IWE, VR V|
Lastly. Yoo X, = (N0 00y, = N, My, — (X 0 0,

=X~ 330 - 720 TR

=[3/7, 37, T, —|5.".'J"
L% Y. \"_} =¥, ¥, =63/49

and u‘;m'=[jfml ]I"l,"ﬁ, ]Wﬁ, —hiv & r
=T, T, 2Tl
Th'ﬂ ur:'husnrlal v B 'Iﬂll-QJl Q.hq‘I'

Use the Gram-Schmidi orthogonalization process 10 construct an orthogonal set of vectors
associated with the set (X . X., X,} from Problem 11.7 and with
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P == pd b
= bl e

Usang Steps 110 throwgh 11.5, we caloulate
WX, =[1.6,4,-3]"
Ly {xllxl}w-{wxljl[wxll-ﬁz
and u,:ghx,-ln, IVES, LWE, IVEE"

Then wQ, = [11vEL, 6neZ, 4, -3nEE"

and WX, =3, 5 5 07

50 (X Q, b = (WX, )-(WQ, ) = 5362

and Y= X, - (X QuhuQ =X = %ﬂ-
=1, -53:62, %62, 9ra2]”

Now WY, =[133/62, —B/62, 98/62, 159/62]"

50 (¥, ¥ohw = (WY, (WY,) - 52,638/(62)

‘m‘ ql-ﬁmrl- ?ﬁllmrﬂl —5.3. g. 9]1-

Lasily, wQ, = Eﬁﬁ[m. -8, 98, 159]"

and WX, =0, 4, 5, 1]

s (X, Q0w = (WX, ) (WQ,) = 41VEE

wned (X Q) = (WX, ) (WQ,) = 61715763

giving Y= X, = (X, 0,)uQ, - (%,,0;} 0,
41 al7

"‘"ﬁ“"ﬁmq!
S5ys 17,192, 25,268, ~20,181, 6,138]"

Ifl]l
Mow WY i‘ﬁ}]'}l =~ 58,435, 3307, 31,744, Hdﬂll
5.302.462.611
0 |:.‘l-ill.‘l.:l:h.'r tmr:I} {w‘l'l:'_ {m_]lg}?

and Q= mﬁﬁ [7.192, 25, 265, — 20,181, 6,134]

The orthogonal set is {0y, 9,}.

11.9  Prove Property 10.3: (X, Y}, = (Y, X}y
(K, ¥ = (WX -(WY) = (WY (WX) = (WY)- (W)= (Y. X},
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11.10 Prove Property 11.4.
(6K, Wi = (WeX) (WY ) = (cfWX)} - (WT) = o[ (WX)- (WY} = (X, V),

and (X, e¥ )= (WX (WEY) = (WX) - (c{WY )} = {WX]- {c[WT)}
= (WX - (WT)) = 60X, ¥)

ii.11 Prowe that {0, Y}, =0 for any ¥ of appropriate dimension,
(0.Y) =00, Y), =0{0.¥), =D

because the inner produet is a scalar, and zero times any scalar is zero

IL12 Prove the Schwarz inequality.

When X =4, both sides of the ineguality are zern (ses Problem 11 11), and the inequality is
satisfied. If X « 0, then (X, X}, # 0 (Property 11,2}, and for any vectors X and ¥ and any scalar ¢, we
have

0= (X -Y.eX-Y},. [Property 11.1%
= {cX, X}, — (eX, V), — {¥.eMbo + (¥, ¥}y (Property 11.5)
=ef (X Xy, el v, = SV, Kb + (Y, ¥}y (Property 10.4)

Setting © = (X, Y,/ (X, X}y and noting that (X, X}y, = (X, X}, by Froperty 11,1, we cancel the first
two terms on the night side of the kst equality and obiain

XY (Y. Xy A YK ¥y

0= X X0 + V. Y™ X.X). +i{V. Vg {Property 11.3)
X Vel
TR, VY (Property Ct)
[4X, ¥iul®

fraom which the Schwarz ineguality immediately follows,

Supplementary Problems

.03 Cakeulate (@) (X, ¥, (0} (X 23, (e) (¥, 20, () (X ¥, (o) (X8 () (X, Wiy, and (g) (X, 2},

when
[l] [ 2] 1 O | 1 o0
Xm|2 Y=| -1 !.=[—l] A.=[-I -1 1 H=[1]- 3 I:I]
i ] 1 1 21 0o 3
.04 Calculate (a) (X, ¥, (00 (¥, X0 (e) (X, 2%, (d) (¥, &), (e) (X, ¥y, and { ) (X, B}, when
i . i I +i2 1 2
x-llt ‘-I—I] I"[IHE w'[z L]

In Problems 1115 throwgh 1124, use the Gram-Schmidt nnhug«una'linﬁnn :l‘n.ri.1l1.|11 with the Euclidean
inner product 1o produce an ofthogonal set of veciors [eoem the given set.
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1is X, = :] =i e :c,=[1 x;{_ﬂ
5 2 | |

117 x,-_ll Xo=|y| 18 ::,-[ I‘-{I]
1 L 1

B X, =1 X,=[1]| X,=|0
0 [ |

mwa X, =1 x=[1

om e ol oo
|

1 1+ i
nm x, =0 X=[ 1 X,=|1-i
| ]

1 "o 1 [ 1
ns X, = El X.=| ;| %= _'I] X, = g
| 0] _ o 1] | —1
1 [ L[] 07
1] 1 (1]
2 X =0 %=zl xo=lg| x=[y
_[]_ _ﬂ 1 I

TL2S  Use the Gram-Schmidy orthogonalization algorithm to construct an orthogonal set of vectors associated
with

x,=“}] and x,-“]] for w-ii]

.26 Llse the Gram-Schmadt orihoponalization algorithm to construct an orthogonal set of vectors associated
with {X,. X, X}, where

SHRSIRS R

11.E7 Frove that an orthogonal sei of nonzers vectors is linearly independent.
1528 Prove Property 11.1,

11.2% Prove Propeeiy 102,
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Norms

VECTOR NORMS

A morm for an arbitrary finite-dimensional vector X, denoted ||X||, is a real-valued function
salisfying the following four conditions for all vectors X and ¥ of the same dimension:

NI || = 0.

(N2 X =0 if and only if X=0.

(N3 J|leX]| = [c]||X}| for any scalar c.

(N4) (Triangle inequality): [[X + Y|l = [|X} + |¥]|

A veclor nofm 1% 3 measure of the kength or magnitude of a vector, Just as there are various bases for
measuring scalar length—such as feet and meters—there are alternative norms for measuring the
magnitude of a vector, Some of the more common vector norms for X =[x, r,, ... x| are:

o The inner-product-generared norm: ||X]| o = VIX. X},
o The Euclidean (or [,) norm: |X], =V {X. X}

o The !, norm: ||X||, = |x,| + x| 4+ # |k,

o Thel norm: ||X||, =max (|x,|. |e,), ..., lx))

o Thel norm (p=1): KX|| = ([x|" + |ag]" -+ 5 73"

The Euclidean norm is the most popular, and it 1s & special case of the inner-product norm when
W =1, the Euclidean nofm and the [, norm are special cases of the [ nomm for p=2 and p =1,

respectively, (See Problems 12.1 through 12.3.) Finally, in the limit as p— =, the [ norm yields the
i, norm.

NORMALIZED YECTORS AND IM5TANCE

Al vector 15 8 vector having norm equal 10 unily, A nonzers vector is mormalized when it s
multiplied by the reciprocal of its norm; consequently, normalized vectors are unit veciors. A set of
weciors & orthonarmal if the set is orthogonal and if each vector in the set is a unit vector,

The distance between two vectors X and Y is ||X - ¥)|. Its value, as well as the designation of a
wECIOP a8 & unil vector, depends on the particular norm selected. (See Problems 12.4 and 12.5.)

MATRIX NORMS

A norm for a square matrix A, denoted |JAl[, is a real-valued function satisfying the following
conditions for all n = » matrices A and B:

M1 [|All=0

(M2): ||All = 0if and only if A=0.

(M3):  ||cAl| = |cl||Al] for any scalar .

(M4) (Triangle inequality): [[A + Bl = Ja|| + ||B]]

{M5) (Consistency condition): ||AB|| = ||A]||B]
110
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Because of the added consistency condition (M5), not all vector norms can be extended to become
matrix norms. {See Problem 12.6.) Two that can be extended are the {| norm (see Problem 12.7) and
the Euclidean norm. For the n % n matrix A =[a,], the Euclidean norm becomes

i |=:rr|?}“i

# The Frobenins (or Euclidean) norm; ||All g = (

INDUCED NORMS
Each vector norm induces (or generates) the matrix norm
Al = max (flAx]) (12.1)

on an arbitrary A ¥ n matrix A where the maximum is taken over all n-dimensional vectors X having
vector norm equal to unity. Some induced norms for A =[4, ] are:

% The L, norm (induced by the I, noarm):
T

A= pax (o)

I, ...a

which & the largest column sum of absolute value.
o The L, rorm (induced by the [, norm):
IAf = max (3 fa,]
which s the largest row sum of absolute values.
# The spectral morm (induced by the Ewclidean norm):
[|All; = max{¥'A: & is an eigenvalue of A'A)
(5ee Problems 12.8 through 12,12 and Problem 15.12.)

COMPATIBILITY
A vector norm 15 compatible with 3 matrix norm if
A = Al (12.2)

for every & = n matrix A and every s-dimensional vector Y. Induced norms are always compatible
with the vector nomms that generated them, and in those cates there always exists at ledst one vector
Y for which (1220 15 an equality, (See Problem 12.13.) Compatibility is not restricted (o induced
norms; the Frobenius norm, for example, is compatible with the Euclidean vector norm even though
the former is not induced by the latter, {See Problems 12,15 and 12.18.)

SPECTRAL RADIUS

The speciral radius of a square matrix A, denoted by o(A), is the [argest absolute value of any
eigenvalue of A, That is, o(A) = max (| A]: A is an eigenvalue of A). If A is any eigenvalue of a matrix
A, then |A] = o(A), and there is at least one eigenvalue for which this ineguality & an equality. For
any matrix norm,

aiA) = ||Af] (12.3)
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Inequabiny (123} provides bounds on the eigenvalues of a matrix, [See Problems 1217 and 1218}
An eguivalent expression for the spectral radius is

(9}

1.2

123

124

(A} = lim []A7] "™ (12.4)

Solved Problems

Determine ||X|,, and || Y]l for

i) ol vl

For the given vectors, e have
Xl = VIX. X}y = VIWE) (WX} = 303 + 5(5) + 3{4) = 50

and %] = WOV ¥ = VTWYI (WY = 300) + T1011) + 10 10) = /302

Find {a) ||X[).. (&) §X]||,. (c) |X]l.. and {d) ||X]|. for the vector X of Problem 12.]

fa) X[, = vEX-X=vT011+ 42} + A1 =vT4
by BXH, =) +(2] + 3 =6

(c) I1XE., = maxi|1], 2], 131 = 3.

Gy XN =g+ 2"« 'Y ° = (276)" " = 3.077.

Find (a) [IX]lw. (0) 1K1, (ed [IXH,. @) [IX]].. and (e} ||X[], when
=i ot

H'[ ; ] and W [2+a5 n]

{a} From Problem 113, we have X[, = Vi X}, = WA

(hy [|X), = VX-X= T =0l + 1= ia-i1= V3.

) OXf, =10 -il#[i)|=vT+1=2414

iy DX, = max (|0 - ). )iy = max (vE 1) =3

Ced IXE, =0 = )" + i) " =5 "= 1495

Find the distunce between X wnd ¥ owith respect 0 (a) the Euclidean norm. (b) lhr:
inner-product norm with respect to W and (¢) the {, norm when X, Y. and W arc as Biven in
Prohlem 12.1.

For these vectors, X = ¥ =<3, =3 -3]", s
furd X~ ¥l = YO=307 =37 + (-3 = VT,
by WX Y= -6 -6 - 6] amd
1% - ¥y = VWX - ¥ WX ¥ = T O —h) o+ (- B0 0f o [ B0 —h} = 10342
kI VI M AT ] A Tt T 4T
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1.6

12.7

-]

Normabize the vector X given in Problem 12,1 with respect o (o) the £ nomm, (8, ahe §
nares, and () the 1 aorm,

Usig the results of Problem 12,2, we obtan the sormalized veoters G |80 200714, 30/ T4) "
i ||.I'l'-|_ T, _"in'h]r'_ il () |I 3R llr. Eaich of these weotiors i o undn vector with regpedl B its
ussnciated norm.

Show that the {, norm for veclors doet not extend 1o 8 malnx aorm,

The §, norm is simply the largest component of a vedor i absolute valee, and s extefsion o
matrices would be the largest element of a marrix in absolute value, Than i,
lal|= max {la |)
(B E]
Pei -

Comsider the maifices
| 2 2
H.-—H-[I I} for whach H.H-{E 1]

We have [[Al = ||BY = 1. but ||AB|| =2 Since condition M2 is violaed, the propesed norm is o a
norm.

Extend the [, vector norm 0 a matrix norm, and use i1 10 compute the norm of

4+ 3 ~‘.r]
‘*'[ 3 i4

The {, norm is the sum of the sbsolure valwes of all the components of the veclor: its extension 1o
ithe matrix A= a_| is the sum of the absute values of all the clemens of the manx. That is,
Al =£7,E7  Ja ). This sorm awviomatically satishes conditions M1 through M4 because they are
ihentical wo conditions M1 through M4, In addition, for two o = 0 mairkces A& and B, the extended norm
RivEs us

IR+ 2 213 auby |2 X2 X la,llb, |

amd g nh

<2353 5 jwibat=(E 2 1n)(E Sim)) - 1 m,

Thus, conditen M5 B sabisfed and this extension is a matric norm, Applying it o the given mairis, we
caloulate

Hal =4+ i3+ =7+ 3] = |id]| =S54+ T+3+d= |9

Caleulate the (a) Frobenius norm, (b) L) nomm. (c) L, norm, and (d) spectral norm for the
matriz & of Problem 12,7,

(ab [|Afl, = O+ 37+ 1=717 + B+ i) = W B T 38+ 5+ Th = .45,

() [|Al, = max([4 + i3] = 3|7 + |i4]) = max{5 + 3. T+ 4) =11

ie) ANl = max(ld s 63 4 [=7, |3 + lid)) = max(5 + 7,3 +4) = 12,

{d) We compute

A.-lt_ldn-r'l 3 J[4+i] —?]=[ i —28+ 15
-7 - E] i -4 = i3] S5

which has the characteristic eguation A =904 =137 =0 and the cigenvalues &, = 9547 and
A, = 1530 Thus, JAl, = mas( V95470, v3.55) =9.771.
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Calculate the (a) Frobenius norm, (b) L, norm, (c) L, norm, and (d) spectral norm for

7T -1 0
A=]-4 -6 O
LI | I

(a) ||All, = {7 + (—4F + (0F + (=27 + (—6)" + (0F + (0 + (0" + (-9)"}""* = tam
(&) AN, = max([7] = [=2| + 0§, |=4] + | =6] + W) 0] + 0] + |=9]) = max{%, 10,9) =

ic) ||All. = max(|?| + |—4] + [0, |—2| + | -6 + |-[l1,|I]E+|EI|-r|-'?|I-mu|{'ll.ﬂ,1}]-]l.
(d) Here we have

) 6 10 0
ATh=ATA=(10 # 0O
0 0 8

which has eigenvaloes 68, 5078, 36 4922, and B1. Thus, ||A||; = enax{vEE 5078, VB 4922, VRl =0,

Prove that an induced norm generated by (12,1} is 8 matrix nomm.

Let A nand B denote arbitrary a ® n mairices, and X and ¥ arbatrary s-dimensional veciors, We are
given a veclof nomm that satisfies conditions M1 through B4, and we wish (o show that a proposed mainiz
morm defimed by (12.1) satisfies conditions M1 through M5, For clariiy we sabscript the vector momm
with ¥ and the mairix norm with M.

iMir A, is the maximum of nonnegative quantities ||AX|[, and must be nonnegative.

iM2ZE I A =0, then AX = 0 for all vectors X, and [Af,, = maxi||AX]|,. ) = max{0)= 0. If A # 0, then A
mast contwin ot keast ong penzern column, Designate the first such column a5 column (, and
construct ¥ by seiting 6% fh component equal o 1 and all other components equal io 0, NMow
[AY||, and [|¥[}, are positive, and since ¥/ |[¥|, & 3 unit vector,

Y Ay,
Al = I P el L}
(LY .L']?E.ﬂ"“"vi'z Al = g, >0

(M3} [lcAll o = maxi{fcAX), ) = max(|c|§AX]|, ) = || max(||AX]l, ) = [c||A]l o
(M4l A + B, = max{||(& + B}X[, } = max(||AX + BX]| .}

= max( ||AXY, + |[BX], )

= max{||AX],) + max{|[BX]], ) = [A]l, + [[BY.

(M8 IEB =10, then AB=10, |AB),, = [|B)|,, = I, =0, and the desired ineguality is rivially true. If
B =0, we cin resirict our attention fo those unit veciors X for which BX =0, since all others
have no influence on the norm, Then

. _ lA(BX)|,
|ABl, = mux (ABIXE, } = max ([AB)],) = mox [ EI joxy, |

fHArBX) |, _BX
= e S, s ot = e (o ) e e
= omeax ([AYE,) max (JBX],)

= max {IIM’L] max ({BXI|, )= JAl. /B,
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Show that the [, vector norm induces the L, matrix norm under Eq. (12.1).

Set ||all, = 'J-"“L':"“'!”'j' Then (|&||, 15 & matris norm as 8 result of Problem 12,10, Denote the
columns of A a8 vectors A AL A respectively, and set

H = max { | |ﬂ,.,|}= ‘_ﬂllnﬂiln'i..i'i.]'

Wi wish to show that [[Af], = H.
For any umit vector X =[x, %,.....x.]"

IAH”I = ||,:|;'|.i.I + :le-l cearx &N
=|-""-:"|I'I|H| +'I'zl'l'|H| + - +||'ﬂ'~‘a"l = |I||""| "I * |J':i'||-‘-:n| + o +|'tni"""nlll
=L|-'||H+ |_.-:|H Fron T |‘-lH=H‘.|I|[+|Ir| L '+1I-|]- H"“Ill =H

Thus, Al = IE:IIEIEIIHl'.]'-'- "l;:?glt-"f! =H (1)
Bui for wpit vectors ¥, (k=1,2...., ny having a 1 as the kih component and O a5 all oaher
COMmpCHIEnis,

TN, = e (1AXD,)= IAY ], = DA,

o IAN, = max (A= H (2)

Tagether, {1} and {2} imply the desired aguality,

Show that the |, vector norm induces the L, matrix norm under (121,
Set ||AlL = I;I;IIIELI_HHH,.}. Then ||Afl, is a maitrix norm as & result of Problem 12,10,

Mow

H= max {r-il |a:r,|,|}

f=l... ..

Wi wish vo show that [|A]l, = H. This equality obviously holds if & =0, s0 we consider only nonzero
mairices in what follows, For any wnit vector X =[x, x,. ..., %.]", we have

axt = max (|2 a5} = max (5 e

= mox (3 o, 1] ) = mox (3 Ja,)) = #
Thus, HAll. = max (JAX|[.)= max (#)=H (1)

Corresponding to the kth row of A (k=1,2,_..,n), define a vector ¥, = [ ¥, »3" o000 by
sefling

i when a, =0
LTI
¥ |ﬂjl| when a,, # 0

Then [[¥,]|. =1, and the kth component of AY, i I7., |a,,[. Abo for each k.
Il = max (1AX].) = 1AY, 1.

The last term on the right is the mazimum component in absolute value of AY, , which is al least as large
a5 dhe absolute value of the kth component of AY, . Hence, JAll, =E7,, la,,| Tor all &, and
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Bl = max (3 |a, [} = # @)
Together, (!} and {2} imply the desired equality.

Show that an induced matrix notm with its associated vector norm satisfy the compatibility
condition [JAY| = ||Al|[Y]-

The ipequality is immediate when ¥ = 0. For any nonzero vector ¥, ¥/¥ is a unit vecior, and

¥ | lAY)
Al = AX Eljl—i = S

Show that [|A|| = Ir:-ia:nl{llﬂlll=r}15_r~{llﬂllf Xl y.

Gt M = ua:_{".iﬂ":lﬂ"j We must show that ||A|] = H. First, we have

llax Jax||
11| = max (AX]) = man (N ) = manl

where the inequality lellows from taking the maximum over a larger set of wectors. Thus,
|lA] = & (1

)=n

It follows From Problem 1213 tha

1A% Al
=l ) = maa ) = il = g

50 lAll= K (2}
Together, (1) and (2] imply the desired ineguality,

Show that the Frobendus matnx norm is compatible with the Evchidean vector norm.
For any ® = r mawnix A and a-dimensional veclor X,
- - £l [Ed
PAX||? = 2 |ith component of AX|' = |E ﬂule
i=1 amj ym]

Using the subscript ¢ to designate the ith row of a matrix and employing the Schwarr inequality (see
Chapler 11}, we have

=] X" = (A X))

< (AT, AT}(K. X) —m’-iT}:Lx}a[i o) (2 o) = (2 1a, i
Thercfore. AR =( 2 2 o, = Ul I

We obiain the required inequality by taking square rols

Show that any matrix norm has a vector norm with which it is compatible.

Let JAll,, desipnate an arbifrary malrix porm on @& o matreces. It % is an arbitrary but fixed
n-dimensonal, noazere column vector, then the function [iX) = ||X¥ ||, satisfics all the properties of a
wectof nogm on the set of all n-dimensional column vectors X, Funhermaore,

fIAX) = HAXIY L = AV )|, = Al XY T H = HAl XD
s ||All,, 5 compatible with the vector norm f[X).



CHAP. 12] MNORMS 117

12.17

12.18

12.19

12.240
n

1212

1.2}

12.24

12.1%
1324

12.27

Determine bounds on the eigenvalues of

m 7T B 7
1735 6 3
A=l g 6 w 9
T 5 9 10

The raw sums and column sums are both 32, 23, 33, apd 31, so ||.'|.||I = n'ﬁ.”_ = 13, The Frobenius
porm is DA, = 30,5450, 11 follows from (12.3) that oofA) =33 amd ofA) = 30,5450, from which we
coenclude that every sigenvalue must be po greater than 305450 in absolule value. {See alsp Problem
2008, ) OFf couwrse, pther nomms not considersd here might place a still lower bound on the eigenvalues of
A

Prove that o{A) = ||Afl for any matrix norm.

Let A be an cigenvalue of A for which [A] = ai{A), and let X denote a corresponding eigenvestor,
Construct a matrix B having each of its columes equoal 10 X. Then AB = AB, apd for any matrix porm

|a[||Bf = JAB] = ||aB]| = [|A]l||B]
Since B is not & zero matrix, it follows that (A = ||AF, Bug |A] = o(A), so afA) = [A].

Supplementary Problems

Dretermine the § norm of each of the following weclors:

| i 2 1 4
(e} X=|0 (B1¥=| Z chi&=) 1 (dyUu=|E (e]¥=|4
0 =% —-d 0 4

Dretermipe the {, norms of the vectons in Problem 12,19,

Drgtermine the I norms of the vectors in Problem 12.19.
For each of the vectors in Problem 12.1%, determine the inper-product-generated norm with respect to
o 1 1
W=l -2 1
I 02

For the veciors given in Problem 12.%, determine (&) [|[Z2-¥l,: ) [2=%¥0,: i) |1Z-YH,:
U=V, (e BU-¥H: and () U=V

Determine the Euclidean norm of

= _J-5 | f1+12
(a) X [u] ey {:‘z} () Z [E} @)U {3-:'4]
Dietermine the [, norms of the vectors in Problem 1224,

Dretermine the [, norms of the vecwors in Problem 12,24,

Dretermine the §, norms of the vedlors in Problem 12,24,
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1.3

1232

12,33

12.34

135

123

L)

130

1239

1140
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Determine the Frobepius porms for the following matrices:

w3 w2 el @l 8 @ld 50

Determine the L, norms of the matrices i Problem 13 18
Determine the L, norms of the matrices in Problem 12,28,
Determine the spectral pofms of the matmces in Problem 1228,
Prove that for any induced matrix norm, ji1)] = 1.

Show that the Frobenus matrix norm satisfles oopdation &S,

Prove the Pythagorean theorem for an imner-product-gencrated wector nporm; that is, prove that if
(X, ¥}y =0, then [|X + Y5, = IX]15 = YIS

Using the L,. L., and Frobenius norms, determine an upper bound on the spectral radies for each of the
matrices in Problem 1228

Deetermine the spectral radii of matrices {@). (&), and (£] of Problam [2.38.

Dietermine the speciral radius of

Prove that o(A") = o(A).

The conditien member of a squase madrix A with respect to a mainix norm is

CTIARIAT ) if A s ponsingular
W {“"' if A 5 singular

Determine the conditien numbers of the matrices in Problem 12,38 with respect to the Frobenius norm.
Show that the condition number of an ientity matriz is wnity for all induced matrix nosms,

Show that the copdithon mumber as defined in Problem 12,39 cannol be less than 1.



Chapter 13

Hermitian Matrices

NORMAL MATRICES

The Hermifian tranipose of @ matnix A, denoted A", is the complex conjugate transpose of A;
that is, A" =A". A mamrix A is normal if

AA" = A"A (13.1)
{Sce Problem 13.1.) Mormal matrices have the following properties:
Property 13.1:  Every normal matrix 15 similar 1o a diagonal mainix.

Property 13.2:  Every normal matrix possesses a canonical basis of eigenvectors which can be
arranged o form an orthemormal set,

{See Problems 13.7 through 13.9.)

HERMITIAN MATRICES

A matrix is Hermition if it equals its own Hermitian transpose (or complex conjugate transpose);
thar is, A is Hermitian if

ABA" {IJE}

The sum of Hermitian matrices s Hermitian, as is the product of & Hermitian matrix with a real
scalar. A Hermitian matrix is also normal, because AA" = AA = A"A. Therefore, Hermitian matrices
possess Properties 13.1 and 13.2. In addition,

Property 13.3: The cigenvalues of a Hermitian matmix are real.

Property 13,4 If a Hermitian matrixn A can be redwced to opper triangular form U wsing only
elementary row operations of the third kind (E3), then the diagonal of U contains
the same number of zeros, the same number of positive values, and the same
number of negative valoes as the eigenvalues of A.

Properiy 13.5: An » x n matrix A is Hermitian if and only if {AX, X} 15 real for all {real and
complex) a-dimensional vectors X.

(See Problems 13.4, 13,11, and 13.19%

REAL SYMMETRIC MATRICES

A matrix 18 syeemeieic iF it equals its own transpose. A symmetric matrix that contains only real
elements i Hermitian and, therefore, normal, Consequently, real symmetric matrices possess
Properties 13,1 through 13,5 as well a5 the following:

Property 13.6; The cigenvectors of a real svmmetric matrix can be chosen 1o be real,
(Sce Problem 13.15)

THE ADJOINT
The adjeint of an & % m matrix A 5 an m % 8 matrix A® having the property that
119
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(X AY )y = (A'X. Y}, (113}

for all m-dimensionul vectors Y and #-dimensional vectors X, where the inner product is as defined
im Chapter 11 The adjoint slways cxists and it is

A= (WIW) AW W (13.4)

For the special case W= 1 (the Eoclidean inner product), (13.4) reduces to
A* = A" (13.5)

(5ce Problems 13,16 throogh 13,18 Adjoinis satisfy the following identities:
(AL (A*)" = A
AZl (A +B)"=A"+ B
(Ad: [(AB)" =B"A".
(Ady:  (cA} = FA" for any scalar o

SELF-ADJOINT MATRICES

A matnix A s self-adfoint if 1t equals 1ts own adjont. Such a matrix is necessarily sqoare, and it
satisfies the identity

(X.AY), = (AX.Y), (116}

for all wectors X and ¥ of appropniate dimension, A matrix i self-adjoint with respect 1 the
Euclidean mmer product if and only if it is Hermitian.

Solved Problems

13.1 Determine which of the following matrices are normal:

12 3 2 6 -3
=1y 5 o) "‘[2 : ’5] c={,2, 5 ""[ - "]
1 -5 0 : 6 31 2

A1 e sguare, s i canial be normal. B s oeeal and symmetne and, therelore, normal, © is
Hermitan and, therefore. normal. I s normal becauss

2 06 -3 23 k] J49 0 o0 23 -5 26 -3
Dot = 3 2 & ho2 s—ill-:':r =] & 2 3 12 al-D"D
-6 3 -3 & LD no4a -3 &6 Z2l-6 3 a

13.2  Show that A"A and AA" ure normal for any matrix A,

(A"A) = (AR = (A'A) = (AFIAT) = ATA = A"A
ind AA"F" = (AAT ) = {AA") = (A" VTA) = A" = An”

Hosh A"A and AA" capual their own Hermitian tramsposes., so they are Hermatian and, therefore, naemal
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Prove that the cigenvalues of A"s are fionnegatve.

If & is an eigenvalue of A"A, then there must exist a nonzero eigenvector X associated with a
satisfying the equality A"AX = AX. For the Euclidean inner product, it follows from Property 11,1 and
Eqs. (13.3) and {13.5) that

U= {AX, AX) = (A®AX, X} = {A"AX, X} = {AX. X} = A{X. X} (1}

Since X Is an cigenvecior, it is nonzero and we may miler from Propemy 11.2 that (X, X) s positive.
Dividing {7} by {X. X} yields 4 =10,

Prove that the eigenvalues of a Hermitian matrix are real.

Let A denore an cigervalue of a Hermitian matrix &, and let X densle a corresponding emgenvecion.
Then, upder the Euclidean inner produoct,

AU, XD = (AN, XD = (AN, X = {3, AK) = (X, A"X) = (X, AX) = (X, AN} = 4 ({X. X} (i}

Sipee X is #n eigenvectos, it s nonzero and so too is (X, X}. Dividing (1) by (X, X} gives us A= A,
which implics that 4 is real.

Show that if X is an cigenvector of a normal matrix A corresponding to eigenvalue A, then X is
an eigenvector of A" corresponding to A.

Using the Euclidean iner product and {131}, we oblain
(AX, AX) = (ATAN, X} = (A"AN, X) = (AA"X, X)) = {A"X, A'X) = (A"X, A"X)
It then fallows that
b= {0,0) = {AX — AX, AX - aX}
= {AX, AX} — A (AN X) — (X, AX} + {aX, AX}
= (AN, AYX) - AN, ACK) - AJATK, XD+ AN X))
= (AR AT - A (X ATXD - AATE X AKX aXD
= (AN - AN, A"X - AX)
Thus, AMX - ;I"ﬂ. which implies that X is an eigenvector of A mrn::npu:mding_ b .i.

Show that eigenvectors corresponding to distinct eigenvalues of a normal matrix are orthogon-
al with respect to the Euclidean ifiner product.

Let &, and A, be two disting eigenvalues of & normal matrix A with corresponding eigenvectors X,
and X,. Then AX, = &, X, and AX, = 4,X,. and AYX, = L,X, a5 o result of Problem 13,5, Furthermore.,

(R = A 00X, Xy = A (X N b — (X, X 0 = (4,0 - (X, 4,
= {AX,. X, - ':xu"‘"x:l}' (AX, X, ) - (X, AKX}
= (AN, X} - (AX X, }=0

Simce &, # A, ot [ollows ehay (X, X, ) =0

Show that a set of linearly independent ejgenvectors of a normal matrix can be arranged to
form an orthonormal set of cigenvectors.

Eigenvectorns coffesponding te distiset eigenvalues of a nofmal matrix are orthogonal by Problem
13.6, and they remain orthogoenal eigenveciors if each s normalized, Therefors, we need only show thar
linearly mdependent eigervectons cortesponding to the same eigenvalue can be so arranged, Bul this &
easily accomplished by the Gram-Schmidt orthogonalzatkon process, Because this process forms lisear
cominnations from a given set (in such a way as o produce ornhopormal vecioss), it follows from
Problem 7.12 that the resulting vectors will remain eigenvectons,
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Dretermine a canonical basis of orthonormal eigenvectors with respect 1o the Euclidean inner

product for
i 2 =1
A= 2 2 -2
-2 -2 @6

The matrix is real and symmetric and, therefore, normal, The eigenvalues for & are @, 7, and E, and
a corresponding sel of cigenvectors is

o wef) [

Since cach eigenvector commesponds 10 a differest eigesvalue, the vectors are guarantced 10 be
orthogosal with respect 10 the Eudlidéan inper product. Dividing each vector by s Evclidean porm, we
ahdain the orthonormal set of etgenvectons

] ecfi] o]
Q|' l.'ﬁ u:- i ﬂ:" 1
il 13 IV

Dietermine a canonical basis of orthonormal vectors with respect to the Euclidean inner
product for

3 = 0 2
i2 1 =2 0

1] -2 3 =2
-2 0 =2 1

A=

A is Hermitian and, therefore, normal. 1is eigenvalues are 5, 5, =1, and =1, with corresponding
sigenweclors

i i2 i -

| -1 BE _l2 -1
x|. = 1 x! |:| x:l- ] x“-l ﬂ
L i [l i

Since X, and X, correspond o one eigenvalue, and X, and X, 10 another, each of the first two vectors is
puaranieed to be orthogonal to the latter two. Applying the Gram-Schmidt onthogonalization process (o
the first Two vectors, we olain

i i
T (1
LTl N | B Sl BT
0 L
Applying the Gram-Schemdt orthogonalization process 1o the latier two vectors, we calculae
i ~ivE
e 0
QI = lllﬂ Qi = 1 ."H'I'E
0 26

The st [, 0, Q. O} is & canonical hasis of orthonormal eigenvectors for A



CHAP. 13]

13,10 Verify Property 13.4 for the m

HERMITIAN MATRICES 123

airix in Problem 13.E.

The eigenvalues for the matnx are 0, 2, and 8, %o it has one zero eigenvalue and (wo positive
cigenvahies. Reducing the matrix 10 upper 1riangular form using only clementary row operabions of the

third kind, =& obrain

-

2 2 =2
2 2 -2
-2 -2 6

2 1 -2 Adding — 1 times the
a o o first row to the

| =2 =1 L second row

(2 2 -2 Adding the Gt row

oo 0 10 the ghird row

3 n 4

This last matrix & m upper tfangular form, and the diagonal elements consist of one zero and two

positive numbers,

13.11

Werify Property 13.4 for the matrix in Problem 13.9.

The eigenvalpes for that matrix are 3, 5, —1, and — 1, which consist of two positive and two aegative
numberns. Redueed o upper imangulas form via elementary row operations of the thitd kind, the mairix

becomes

I =2 0 i

o -1/ =3 di3
LU 15 -0
L 0 0 -5/3

The diagonal elements of this mairix also consist of two positive and twio negative numbers.

13.12
(A=) =

Prove that a Hermitian matrix

Show that if A ® Hermiatian, then A = ¢l is also Hermitian for any real scalar ¢

A- =(A-c)" =2 -(chi =a—-cl

is similar to & diagonal matrix.

We need only show that a Hermitian matrix A does nid podsess any generalized eigervectors of rank
2. This, in turn, implies thal it possesses oo gencralized egenvectors of rank greater than 2, because
otherwise we could form & chain and obiain, as part of the chain, a generalized eipenvecior of rank 2.
Thuws, all peneralized eigeavectons have rank 1, and it follows from Chapter 10 that the Jordan canonical

form of A {5 a dizgonal matrix.

Assumse that X s a generaliced cigenvector of rank 2 cofresponding 1o the eigeovalue L. Then

and

We may infer from Probiem 13,4
Thus,

0= (X, @}

= (A — AN, (A — ADX) = ((A — ADX, (A - AT}X)

Wi conclude from (2} and Froper
peneralized elgenvestor of rank 2.
matnices. )

(A-AlPX=0
(A=Al =0 i

that A & real and from Problem 1302 thar A = Al 5 also Herminan.
= (X, (A - AI'X) = {{A - AI}*X, (A - AI)X} @

ty 11.2 ghat (A = ALYX = 0, But this contradacts (1), so X cannof be a
(See Problem 15,11 for the generalization of this result 1o 3l normal
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13.14 Show if a matnx is upper triangular and normal, then it must be a diagonal matrix.

Let A =[a,| be an & = o upper trlangular matrix that is alse sormal, Then g, = 0 for § > /. We show
sequentially, for i=1.2, ... .m— 1, that @, =0 when i <. Since

AYA = AA" i1y
it folbows from equating the (1,1} elements of the two products in (1) that

fal
LT T T T E.a#”ﬂ"
-

50 that 0= X |a,°
a=2
Thus,
a,, =0 (i=2.3....R) (2]

Mext, equating the [2.2) elements of the two products in (7 ) and wsaeg (), we obtain
Ay, = @yl + E‘qwﬁﬂ

so that 0= fﬂ%’]

for which we infer that

a, =0 {j=354,..., ]

Costinuing s this manner—working with esch successive diagonal element in lurn—we fnd that all
elemcnts above the diagonel of A must be pero. Thus, all nondiagonal elenents of A ane zero, and A s a
diagonal matrix,

13,15 Show that the eigenvectors of a real symmetric matrix can always be chosen to be real.

Let X be an eigenvector of a real symmetric matris A comesponding to the cigenvalue A (which
must be real as a result of Problem 13.4), If the components of X are all pure imagipary, then ¥ = (X is
read. and

AY = AKX} = AX]) = i AX) = A0K) = &Y

s0 Y is also an eigenvecior of A corresponding to 4, 1F the components of X are not all pure imaginary,
then ¥ = X + X is pot zero buat 15 real, and

AY=AX+X) = AN+ AN =X + AN = AN + AR =X + AN = 4(X + X) = a¥
and ¥ is a real eigenvector af .l.ﬂ.n'r:!-pnnding Tor A

13.16 Determine the adjoints of the following matrices with respect 1o the Euclidean inner product:
b2 3 445
A=|3 4 -[i8, - ' =] -
340 B [i5. -5, 2+i3] € {4—:‘5 p ]
, . -1 2 3
I'.~=-["12 '3’] E=[ 2 4 TS]
3 -5 il

In each case, the adjoint is the Hermitian transpose of the ghven matrx, as provided by (135,
hence,
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1317

13.18

1319

-is .
W[t 308 | _ 4408
=} 13 » .7 ol Pt ]
. -1 2 3
o= E‘-[ 24 —5]
31 -5 6

C and E are self-adjoint because both are Hermitian,

Determineg the adjoint of A under an inner product with respect to W, where

A= —I.'z. 33.‘4] and w-[i.l f]

Using (3.4}, we calculats
W = [-i-l -:}[JI 5] [ —JII

21

and A* = (WIW) AT WTW) = [ —i21 m"u 3—r4}[1.zl —m]

2,077 + (1,764 2,184 + 2,574
| 1428+ 1,680 2082 71,768

Drerive (13.4).
For an arbitrary inner product defimed with respect to a nonsingular mateis W, we have
(X, AY ), = (WX]-(WAY) = (WX} (WAY) = X"w' WAY
and AKX, ¥, = (WA K] (WY = [ WAX )WY = XA ) W WY

The two mner producis are equal by (133), which implses that
X'W RAY = XA ) "W WY
or XN (W WA - (A )"WWIY =0
This last equation is valid for all vectors X and ¥ if and only if W™WA — (A*) "W W = 0, from which we
infer that (W WIA{W W] ' = {A*)", and
AT = ((WIWIAIWTW) ) T = [(WTW T TATIWI W) = (W AT W WY
= (WOWATOW W) = W W AN W e

Prove that if an # % n matrix & is self-adjoint, then (AX, X) . is real for all a-dimensional
vectors X,

Using Propeny 113, we have
(X, AX) = [AX, X}, ()
Bur if A s self-adjoing, then also
(X, AKX}, = {AX, X}, (20

It foltows from (1) and (2) thar (AX, X} = (AX, X}, which implics that the inner product is real,
For the special case of the Euclidean inner product, the result reduces to Propenty 135 for Hermitian
matmices,
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Supplementary Problems

132 Determine which of the following matrices are Hermitian:

Sl FIEY B Bt B PO

-1 1=id i -1 -1 1
2 -3 _ i . . _
l}=[3 4] E—[l+|‘2 i 2 ri] F [ | 1 -I]

~i3 2+i5 0 -1 -
12 Lo
G={2 -2| ®= 0
i i =1 1 1
L1 -1

1021 Defermine which of the matrices in Problem 13,200 are narmil.
13.22 Find a canonical basis of orihonormal vectors for mamix F in Problem 13,20

13.23 Find a candnical basis of ortbonormal veetors for

3 0 o o
L] 21 1 0
J=|0 1 2 10
a -1 1 20
¢ a0 oo
13,24 Find a canonical basis of onhonormal vectors for
2 00 -
=i 3 1 i}
K=l o1 2 1
i1 3

13,15  Verify Property 13.4 for (@) matrex F of Problem [3.20; (b)) mainix J of Problem 1323 and (¢) mamnix K
of Problem 13.24.

1326 Determine the adjoint of matric I of Problem 13,20 for {2) the Euclidean inner product and (b)) the
inner pridluct with respect 19
11
W= [u |i

1527 Determine the adjoimt of matnx E of Problem 13,20 for (o) the Euchidean inner product amd (&) the
inmer product with respect ta
I o o
W=|0 211

LU

13.28  Determine the adjoints with respect 1o the Euclidean inner product for matrices A, B, and G of Problem
13,30

1529  Prove that the sum of Hermatian matrces is Hermatian,

13,30 Prove that if & and B are Hermitian and AB = BA, then AB is Hermitian. What does this imply about
powers of Hermitian matrices?
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133
ixx2
1333

L)

13,38
13.36

1337

1338

FProve that the diagonal elements of a Hermitian matrix muost b2 feal.
A matrix & is skew-Mermution if A= ~AM Show thal such a matrix s meronal .
Show that if A is skew-Hermitian, then i is Hermitian,

Show that f A i an s ®m skew-Hermitian matnix, then {AX, X} is pure imaginary for every
m-dimensional vector X.

Show that if & is skew-Hermiatan, then every eigenvalwe of A is pune imaginary.
A matrix A is skew-symmetric if A= - A" Show that a real skew-symmetric matrix is skew-Hermitian,

Show that any real matrix can be written & the sum ol a symmetre matrnix and a skew-symmetric malrix,
and show that any complex-valued matnis can be written & the sum of a Hermitian matns and a
akew-Hermitian matriz.

Prove that any well-defined function of & Hemmitlan matrix is Hermitkan,



Chapter 14

Positive Definite Matrices

DEFIMITE MATRICES
An m® n Hermitian matrix A is positive definie if
(AKX} =0 (14.1)
for all nonzero -dimenswonal vectors X, and A v positive semidefinite if
(AX.X) =0 (14.2)

If the inequalities in {(/4.1) and (J4.2) are reversed, then A is negarive definite and negative
sepiidefinite, respectively.

The sum of two definite matrices of the same type is again a definite matnx of that type, as is the
Hermitian transpose of such a matrix, Positive (or negative) definite mairices are invertible, and their
inverses are also positive (or negative) defimite,

TESTS FOR POSITIVE DEFINITENESS
Each of the following three tests stipulates necessary and sufficient conditions for an & = &

Hermitian mairix A to be positive definite, That is, a Hermitian mairix A is posiive definite if n
passes any one of these tests.

Test 14.1: A is positive definite if and only if it can be reduced to upper triangular form using only
clementary row operations B3 and the diagonal elements of the resulting matrix {ithe
pivots) are all positive.

Test 14.2: A principal minor of A is the determinant of any submatrix obtained from A by deleting
i15 hast & rows and & columns (E=10,1,. .., 8 — 1). A is positive definite if and only if all
i3 principal minors ane positive,

Test 14.3: A is positive definite if and only if all sts eigenvalues are positive,

The following tests stipulate necessary conditions for an n % n matrix A = [a,] to be positive
definite, A Hermitian matrix that fails any one of these tesis s not positive definite, but no
conclusions can be drawn abowi a Hermitian matrix that passes them.

Test 14.4; The diagonal elemenis of A must be positive,
Test 14.5: The element of A having the greatest absolute value must be on the diagonal of A.
Test M6 @ > la ' (i # ).

(5ee Problems 14.1 through 14.11.) All these tests may be changed o tesis for positive semidefinite-
ness by replacing the word positive with ronnegative and replacing > with =, They can also be used
o test & matnx A for negative defniteness or semidefiniteness if they are applied directly to — A This
is equivalent to replacing the word posiive (o1 sonnegative) with neganve [or nonposiiive] in lesis
14.1 through 14.4; Tests 14.5 and 14.6 are applied as stated.

SQUARE ROOTS OF MATRICES

The square root of a matrix A is a matrix A'* having the property that A = AAY I A and A"
are both required 1o be positive definite or positive semidefinite, then A" is unique, and the square

128
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root is a well-defined function, In such cases it may be calculaied by the methods given in Chaplers B
and 10. [See Problems 14,12 and 14.14.)

CHOLESKY DECOMPOSITION
Any positive definite matrix & may be factored into
A=LL" (14.3)

where L is a lower triangular matrix having positive values on its diagonal. Equation (14,3} defines
the Cholesky decomposition for A, which is unigue,

The following algorithm generates the Cholesky decomposition for an # % n mairix A& = |aq,| by
sequentially identifying the columns of L on and below the main diagonal. It is a simplification of the
LU decomposition given in Chapter 3.

STEF 14.1;  Imiwalization: Set all elements of L above the main diagonal cqual to zero, and et
Iy, =@, The remainder of the first column of L is the first column of A divided by
{i;- Bet a counter j =1,

STEF 14.2: W j=n+1, stop; the algorithm is complete. Otherwise, define L (i=j, j+1...., i
to b a codumn vector of dimension § = 1 whose components are, respectively, the first
{ = 1 elements in the fth row of L. These elements have already been computed.

STEP 14.3: Compute
l,=Va,={L.L}.
STEP 14.4: If j=n, skip to Step 14.5; otherwise compute the jth column of L below the main
diagonal; For each i = /+1, /+2,. .., 1, compute
At {5 Y
i ‘II‘I

STEP 14.5: Increase § by 1, and reiurn to Step 14.2, (See Problems 14.15 and 14.16.)

Solved Problems

141 Use Tests 14.1 through 14.3 to verify the positive definiteness of

A2 -2
A=) 2 & -2
-2 =1 10

[ & 2 -2 Adding —1/3 times the first row o
Text I4.0: —=| 0 163 403 the second row
L-2 -2 in
L -2 Adding 1/3 times the first row o
0163 —443 the third row
— L0 -4r3 283
(6 2 -2 Adding 1/4 fimes the second row
163 =443 ter thee Chiard row
= b 0 273

Since the pivots, &, 163, and 27/3, are all positive, the matnix is positive definite,
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Teat 14.2:  The principal mindrs of A are

6 2 b2 -2
detfsl=6 |5 Z[=36-4-32 ana 3 & -1 =288
2 -2 10

Since all three principal minors are positive, the matnx i positive definite,

Test 14.3: The sigeavalues of A are £, &, and 12, Since all three arg positive, the matrix is positive
definite,

14.2  Use all the tests to determine whether the following matrix is positive definite:

2 10 =2
A= 10 5 H
=2 # 11

[ 2 o -3 Audding —5 times the first row fo

0 —45 18 the second row
-7 ] L

Test I4.1:

Simce the second pivot, —45, B negative, A i5 neither positive definite nor positive
semidelfinite. We can albo mle out & being either negative definite or negative semddefinite,
because the first pivot, I, is positive

Tesi 14.2:  det|2] = 2. but
2|
lo 2l=-%
s A is milk |'rm.i|:i'|.'¢ de=fndte.

Test I4.5:  The eigenvalues of A are -9, 9, and 18, Since they are not all positive, the matnix is mot
pasitive defindte,

Test Id.4: The diagonal elements, 2, 5, and 11, are all postive, 50 no conclusion can be drawn from
this resr.

Test 14.5: The element of greatest absolute value is 11, which does appear on the main diagomal. Mo
comclusion can be drawn from this test

Test I4.6: Withi=1 and { =2, we have
a0y = 25) = 10< 100 =(10) = a,,|*

0 A s nob positive definine,

14.3  Dejermine whether the following mairix is positive definite:

I -3 3 -8
-3 1 -5 -8
5 -5 19 0
-85 -&H 0 148

A=

To wse Test 14,1, we reduce & to the following form, using only elementary fow opecations E3:

11 =3 3 -8
0 112411 =4yl <1121
i ] 1087 ]
I ] ] ]

Since the pivows, 11, LI2/1L, 108/7, and @, are not all positive, the matrix is not positive definite
However, these piviots are nonmegalive, &0 A is positive semidefining.
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14.4

14.5

14.6

14.7

14.8

14.9

Determine whether the following matrix s positive definite:

1 =17 7
A=) =17 -4 ]
7 1 -14
A B not positive defindie because it fails feses 14.4, 14.5, and 14.6; Tts diagonal glements are not all

positive; the largest element in absalule value, =17, is it on the main diagonal; and o, @,; = =8 is not
greater than |a,,|* = 289,

Prove that the diagonal elements of a positive definite maitrix must be positive.

If A has order m ¥ m. define X 10 be an s-dimensional veclor having one of s companents, say the
kih, equal 0 unity and all other components equal to zero. For this vector, [14.1) becomes

D (AX, X) = (AX) X =g,

Prove that if A=[a,] i§ an nxn positive definite matrix, then for any distinct § and f
{l.1 j' 1.2,... 1.H::|, .::"ﬂﬂ::- |“u|:'

Digfine X to be an p-dimensional vector having all components equal fo zerd excepl {or the ith amd
fth components, Denole these as &, and &, respectively. For thes vector, (14.1) becomes

O {AX, X} = (AX) X = a 51, + n".lrln-'. ot ﬂ".l:l.l-:l + '.-.-I.-‘-.-
Setting x, = —a, /o, and x, = 1, we find that the first two ferms on the right cancel, and we are lefl with

Ty
[

1
+ ﬂIr == I_nudu + ﬂ||ﬂ||:|

0=

The desired inequality follows, since o, s positive (see Problem 14.5) and. becouse & is Hermitian,
g,

Show that the largest element in absolute value of a positive definite matrix must e on the
main diagonal.

Assume that the bargest element in absolute value does nat lie on the main diagonal but rather in
anather location, say the (i, f) position, with i # j. Then |a,|=a, and |a, |>a, . It follows thar

o, =|o,lla,| > a.a,

whech contradicts the result of Problem 14.6. Thus, the assumplion is inoornect.

Prove that the sigenvalues of a positive definite matrix are positive.

Let A be positive definte with egenvalue & and corfespendeng eigenvector X. Then for this X, Eq.
(14.1) becomes

0 (AN, K) = {aX, X) = A(X, X} ()

Simce X 48 an sigenvector, il is not zere and (X, X} 18 positdve (Property 111} Disdding (1) by (X, X)),
wi obtain A& =0,

Prove that if all the eigenvalues of a Hermitian matrix are positive, then the matrix is positive
definite.

An n % Hermitian matrix has & canonical basis of orthonormal eigenvectors (Property 13.2).
Denote these basis vectors as X, X, ..., X_, with corresponding eigenvalues &, 4, ..., 4, Then
AX, =4 X (i=1.2,....nm} o

If X is any nonzero n-dimensional vecior, then the set (X, X, .. . X_ X} is linearly dependent
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id.10

14.11

14.12

14.13

PFOSITIVE DEFIMITE MATRICES [CHAF. 14

[Property 6.1). Bui the orthonormal elgenvectors are Enearly independent {Problem [1.27), so it follows
from Property 6.2 that there exist constants &, 45, .. ., 4, siech than

X=d X, +d,X, +- +d X,
Then AX = d AN, + AKX, +- o+ d AN, = d A X, +d A K, + b d ALK,
and (AX, X} = (d, A X, +d,d X, 4o b d A X, dX +dX, ++d X}

=l + ey, + oo+ 1d, 1A,

becanpe the sigenvectors are orthonormal. Since the eigenvalees are given (o be positive, this last
quantity 1 positive for any monzero wector X thus the matrix A satisibes {14 1]) and is positive definite,

Show that the determinant of a positive definite matrix is positive.

The determinant of a matrix i the product of its eigenvaloes (Property 7.8), and cach cigenvalue of
a positive defimite matrix iz positive [ Problem 14.8).

Show that all principal minors of a positive definite matrix must be positive.

Let A be an m = » postive definite madnx, and ket B be 5 submatrix of A ohlained by deleting from
& iis st & mows and tﬂﬂlumn:{k'—ﬂ,l... com= L) Then B has order (n — &) ¥ {r — k). Let ¥ denote
an arbatrary nonere (n = &)-dimensional veceor, and define X 1o be an a-dimenssenal vector having s
first m — k components identical 1o those of ¥ and its last & components egual 1o zere. It follows from
Eq, [14.1) that

0= (AX.X}= (BY,Y)

Since this is true for any nonzero vector Y, it follows that B s positive definite and, from Problem 14,00,
that det B is positive

Show that & positive definite matrix i invertible,

The determinant of a positive definite matrix is positive and s0 nonzere (Problem 14,100, and
therelore that matrx most have an mverse a5 glven by (5.3).

Find the sguare root of mainx A in Problem 14.1.

The eigenvalues of A are 4, 6, and 12, with corresponding eigenvectors |1, —1,0)", [1,1,1]", and
[1.1.=2]". Thus, by (102}, A=MIM "', where

o 4 0 0
H-—[—l 1 1] and j-[l} ] ﬂl

o1 -2 00 12
) 11 12 0 0 Twe -6 0
Also, A=mIM T =1 1 a1llo vE 0 | 2e e 6
o1 =20 o0 VI e e -6

23938 039385 —0L33830
=] 039385 1338 ~0.33810
-0.3380  -0033E20 RS9

Show by example that if the square rood of a matrix & not required 1o be positive definite or
positive sermidefinite, then it is not unigue,

e}

each of the matnices
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_[r -1 [t EI] p=|! ©
s=[y T e=7p - [5 9]
has the property that its square i A&, Only I is positive definite.

14.15 Determine the Cholesky decomposition for
4 2 -i
A=l =iZ 1 1
i 1 %
Simce A B oa 3 x 3 matrix, 80 o0 s Loan (14.3)
STEP 14.1: Set [, =vE=1;then [, = =i2/1= =i and i,,= /1. Set j=2, To this poim, then, we

have
200
SER
i - -

STEP 14.2: Define L) =]-i] and L; = [i/2].
STEP 14.3:  Compute

=Wy, = (L, L) =y (10-1)=3

ETEF 14.4; Computs oo
i, - Moy~ Al Bgd _ 1-(-12) 1
: 3 2

2 (I
L=|=-i 3 0
i3 1rE -

STEP 14.2: L= 2

T this pomnt, we have

STEP 4.5 Setj=1,

STEP 14.3; Compute by = Vg, = (L, L} =T -TTE = vE3S
Therefore, the complete decomposition

4 iT =i 2 L] 0 2 0 —-ir2
2 W 1 [=[-f 3 (O |V T e
i 1 9 2 12 VESJL0O 0 wER

14.16 Determine the Cholesky decompaosition for
18 =3 5 -8

-3 16 -5 -8
A=l 5 _5 24
8 -8 0 21

Since A i5 a 4% 4 matrix, s0 160 1% Loin (14.3).

STEP 14.0: Setl,, =vVI6=4 Then |, = =3/d = =0.75; !, =35/d =125, = -8/d= -1 Set j=2.
To this point we have

4 000
075 - 0 0
L=l 425 - -0

-1 - -
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STEP 14.2: Define L, =[-0.75]; L, =[1.25]; and L, =[-2].
STEP 14.3: Compuate

Iy = Wiy, — (L, L = %16 = 05625 = 1.92006
STEF 14.4: Compute

a,. — fL; Ly -5+ 009375 e =t Lyl —8-1.5
{.= = = =lid\s (= = = —2.41788
® [ R ¥ Vas 3.07006
Ta this point, we have
4 1] 0 o
L= -0.75 392 0 0
[.25 =1033% - O
=2 —241THE - -
STEP 4.5 Increjase jby 1 o j= 3,
STEP 14.2: L= [ . mgﬁ] L= l N 41753
STEFP 14.3: {yy = Wiy, — (L;, L3} = V2 = T BFI573 = 4,62260
STEF 14.4;  Compuie
] = By = ":Il'\-lnll';} - “_ﬂ _n
o= [ 4 62260
T this poing, we have
4 o n L
L= =075 397904 n L
1.25  =1.003% 462260 0O
-1 —241788 1] -
STEP 145 Increase j by 1 10 j =4
STEFP 4.2 Ly=[-2,-2.41788,0]"
STEF 14.3: . =Va, - (L, L} =vI —9.04614 = 333974
Finally, we have & = LL", where
4 1] 0 1]
=0.75 3 4G 0 0

L=l 128 -103m6 46220 0
-3 -24ITRE 0 333074



CHAP. 14]

POSITIVE DEFIMITE MATRICES

135

Supplementary Problems

14.17 Determine which of the following matricss are positive definite and which are postive sermdefinite:

4.8

14.20

14.21

14.25

1424

14,25

14,26

14.27

14. 28

14.2%

14.30

3 1
A=| 1 3 =1 B
=1 =1 5

3 2 - 4

p=| 2 2 -1| E=|-i
-1 -1 % 3

g -3 0

3 6 3

G=lp 3 9

-3 0 -3

Find the sguare root of matric A in Problem
Find the sguare rood of matrix B in Problem

Find the sguare rood of

K=

i1 -1 511
1 -1 C=|0 5 2
-1 -1 3 o o5

20 1 ¥ 1+ 3-i2
m 1-i F=|1+a T 2+
L+i 9 ] I=4i2 I+ 9
-3 F 1 o-1 2 -1
D -1 34 2
-3 W7l 43
6 1 21

1417, given that its sigenvalues are 2, 3, and 6.

14.17, given that its cigenvalses anc 0, 1, and 4.

[ e ]

Fird the Cholesky decomposition for matrix A in Problem 14,17,

Find the Cholesky decompositeen lor matnx E in Problem 14,17,

Find the Cholesky decomgpositeon for mainx G in Problem 14,17,

Prove that the sum of two positive definite matrices is positive definite.

Prove that if A & positive definite, then so too is A"

Prove that if A is positive definite, then so too is A",

Prove that if A s positive definite and C s nossingular, then B = CYAC s abio positive defimite.

Shiow that if A i Hermitian, then e s positive definite.

Show that the requirement (AX, X) >0 for all comples-valued vectors X of suitable dimension is
sufficient to guarantes that A be Hermitian (a5 well as positive definite),

Show that there exisl ponsymmetnic real matrices that satisfy {14.1) for all real-valued vectorss of suitable

dimension



Chapter 15

Unitary Transformations

UNITARY MATRICES

A matrix is wnitary if its inverse equals its Hermitan transpose; thar is, U s unitary if
uv'=u"=0" (15.1)

Unitary matrices are normal because UUY = UL ™' = I=U""U=U"L. In addition, they have the
following properties:

Property 15.1: A matrix is unitary if and only if o8 columns (or rows) form an orthonormal set of
vecliars,

Property 15.2: The product of unitary mamrices of the same order is a unitary mairix.

Property 15.3: If U is unitary, then {(UX, UY) = (X ¥} for all vecrors X and Y of appropriate
dimension.

Property 15.4: All eigenvalues of a unitary matrix have absolute value equal 1o 1.
Properiy 155 The determinant of & unitary mainx has absolute value equal to 1.

(See Problems 152, 15.5 o 157, and 15.24.) Unitary matrices are invaluable for constructing
simularity transformations (see Chapter 10, because their inverses are so easy to obiain,
An orthogomal matrix is 8 unitary matrix whose elemems are all real. If P is orthogonal, then

P'=p {15.2)

SCHUR DECOMPOSITION

Every square matrix is similar 1o g marix in upper trigngular form, and a uniiery mairx may be
chasen 10 produce the transformation, That s, for any square matnix A, therg exisls a unilary matrix
U such that

UVAU=U"AU=T {15.3)

where T is & matrix in upper triangular form. Equation (15.3) is called a Schur decomposition for A.
Such a decomposition 15 not umigue, even though the diagonal elements of T muast be the eigenvalues
of A,

The iollowing algorithm for producing a Schur decomposition for an s * 7 matrix A is ilerative;
it sequentially generaies, at each stage, matrices U, and T, (k=1,2....,n—1). Each matrix U, is
unitary, and each T, has only zeros below it main diagonal in its first & columns. T, | 15 in upper
iriangular form, and U=U U, ---U__, is the unitary mawrix that transforms A into T, . For
notational convenience we set T, = A, The kth ieration of the algorithm is:

STEP 15.1: Denote as A, the (n =k + 1) % (r ~ k + 1) submatrx in the lower right portion of
Tk 1
STEP 15.2: Determine an cigenvalue and a corresponding unit sigenvector for A,

STEFP 153  Construct a unitary matrix N, which has as its first column the eigenvector found s
Step 15.2.
STEP 154: Fork=1,set U, =M, for k=1, set

136
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where I, _, is the (& — 1) = (k — 1) identity matrix.
STEP 15.5: Calculate T, = UYT,_ U,.

(See Problems 158 and 15.9,)
If A is normal, then the Schur decomposition implies;

Theorem 15.1: Every normal matrix is ssmilar to a diagonal matrix, and the similarity iransforma-
non can be effected with 8 unitary matris.
{See Problem 15.11.)

ELEMENTARY REFLECTORS

An elementary reflecior (or Householder ransformaion) associated with a real s-dimensional
column vector ¥ is the & x & matrix

vy’
R=1-2—y 15.4
vl (12.4)

An elementary reflector is both real symmetric and ormhogonal, and its square is the identity matrix.
(See Problems 15,13, 135,14, and 15.22.)

SUMMARY OF SIMILARITY TRANSFORMATIONS

As indicated by (J0.1), a similarity ransformation requires the computation of an inverse; and
inversion is & tediows process for all but unitary matrices, whose inverses are their Hermitian
transposes. If the matrix 8 in (10.1) is unitary, then A and B are said to be wmitarily similar.

Similarty transformations are important because they preserve many basic attributes of a square
matns—in pariicular, eigeavalues [Problem 10,3 }—while yielding matrices that are simpler in form.
The simplest form is that of a diagonal matrx, and any matris possessing a canonical basis of
eigenvectars [(Chapter 9) is similar w a disgonal mawriz, Normal matrices (Chapter 13) have this
feature, and they include Hermitian and unitary matrices. The most that can be said of an arbitrary
square matrix i it is similar to a block diagonal matrix in Jordan canonical form.

If the matrix 8 an (1007 ) 15 restricted to be unitary, then the simplest general form that resulis s
no longer Jordan camonical form but wpper miangular (via Schur decomposition). Normal matrices
are special in that their Schur decompositions are diagonal matnices. Thus, normal matrices are
uritanly simalar to diagonal matrices.

In practice, 1o perform a similarity transformation requires knowledge of eigenvalues and
cigenvectars, and thal informateon is generally difficult to ebtain. Mumerical techniques for approx-
imating these quantities are given in Chapters 19 and 20
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152

15.3

15.4

UNITARY TRANSFORMATIONS [CHAP. 15

Solved Problems

Determine which of the following matnices are unitary:

1 1 1 0

o . 607 T 3T L
A=[”3 1 L2-i2) gy —er -u1|  c=awvE|[l 0L
1/2= 62 1i2+4n 27 T -6T 1 -1 0
: D -t i 1

All three are wnitary, because the product of each with s Hermitian transpose yiekds an identity
matns. Sipce the elements of B are real, that matss is also orthogonal,

Prove that & matrix is unitary if and only if its rows (or columns) form an orthonormal set of
veclors.

Desigrate the rows of U & U, Uy, ... U, Then ihe (i, /) element (i=1,2,.,.,n5; j=
1L,2,....n)of VWY is

(o™, =u,-0,= (U, U}

If U s witary, then U™ =1, and this (i, /) element {U, U} must be | when i = j and 0 otherwise.
This, in turn, implies that the set (U, U,, ..., U_}is an orthonormal sgt of vectors, (The columns of L
may be shown 10 be arthonormal by considering the product UL instead.)

Conversely, if the rows (or columns) of a matrix form an orthonormal set, then the argument given
above may be reversed to show that U is wnitary.

Show that if A is an cigenvalue of an n * n matrx A, then there exists an 7 % 7 unitary matrix
U having as its first column an eigénvector of A corresponding to A

I & is an eigenvalee of A, then there must exist an eigenvector X comesponding 1o A. Setting
¥ o= X/|IX|| gives us a wnit cigenvector of A comesponding 1o A,

Comsider the set of veciors (Y.E, E,.... .E_ }, where E, (k=12 ., ., n) has a 1 as its &th
eomponent and all other components equal 1o zero. Using the algorithem given in Problem 6,12, we can
redhice this setl 10 a mazimal set of lipearly independent vectors, Such a sef must contain A veotors,
ecause the subsel ‘E.. Ej, - ,I.q]- [£] Iirh:al'l]' irul-r.p:nd:m; amal it will contain Y, becanie Y i& the first
nonzern vector in the onginal set. [The it noazero component 5 brooght imo the (1,1 position of the
mattix gensrated by the algorithm, and it remains nonzero throwghout the algorithm. Thus, the first
vector, ¥, remains part of the maximal linearly independent set.|

Mow apply the Gram-Schmidt orthogonalization process to this maximal s=t of linearly independent
veclors, with ¥ taken as the first vecior; Y remains gnchanged. Finally, choose the columns of 1! to be
the vectors resulting from the Gram-Schmidi process. U is wnitary as a resul of Problem 152, and the
first coloma of L is the eigenvector Y.

Apply the procedure of Problem 15.3 (o consiruect & unitery marrix having as is first column
gn eigenvector corresponding to A = 2 for the matrix

3 L}
A={1 31
2 =11

An gigenvector of A corfesponding to A=2 is X = [0, =1,1]", which when normalized yields
¥ = (0. - 1T 1VE]" Applying the algorithm given in Problem 6.12 10 the set consisting of Y and

E, =[1,0.0" E,=[0,1,0" E,=[001]")

we construct the matrix
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15.5

15.7

15.8

0 I @ O
-IWE 01D
W2 001
This has the row-echelon [orm
1o -vEI o
a1 i |
aa 11

which indicates that the first, second,. and third vectors of the set form a maximal Linearly independent
st. Applying the Gram-Schmidt process 1w the set {¥,E . E,). we oblain the orthonormal set
(Q,=Y,Q,=E,Q,= [0, 1/, 1]} Then

il 1 0
U=|-1a37 0 1032
R T LT

Prove that the product of unitary matrices of the same order is also & unitary matrix.

If & and B are unitary, then
(AB) '=B A '=BYAY=B'AT = (AB)" = (AB)" = (AB)"

Show that if U is unitary, then (UX.UY) = (X, Y} for all vectors X and Y of appropriate
dimension,
Under the Euclidean inner product, the adjoint of U is its Heomitian sranspose by (13.5); hence,
(UN UV} = {X, U"UY) = (X, U"UY} = (X, U'UY) = (X, IV} = (X, ¥}

Show that if A is an cigenvalue of a unitary matrix U, then |4 = 1.
Let X be an eigenvector of U corresponding 1o A, Then using Protiem 136, we have
AR, X} = AR{X, X} = (4X, AX} = (UX, UX} = {X, X} (1

Since X i an elgenvector, It is nonzero, henoe (X, X) # 0. Dividing (1) by (X, X}, we obain |4 =1,
which implizs that |a] =1,

Firnd a Schur decomposition for

4 0 1
A= i 3 =i
-1 0 2

We follow Steps 151 through 155, beginning with k=1 and T,=A. For k=1, A, =T, = A. An
eigenvalue for A is 4 = 3, with unit eigenvector ¥ = [0, 1, 0]". Using the procedure given in Problem 15.3

with m = 3 we get
oion I 1 -l
N,=/1 0 0O|=0, and T|=U:ITI:|U|= 0 4 |

oo 1 o =1 2

HMow we apply Sieps 15.1 through 15.3 with k = 2. We begin by setting

4 1
A=l 1]
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This matrix possesses the eigenvalue & =3 with corresponding wnil eigenvector Y = |12, - 11VE]"
Using the procedure given in Problemn 153 with 7= 2, we penerate the unitary matnix

e 1W3E
”’“[—lrﬂ L-rﬁ]
which is expanded into
| T o KTt
ul:[[” 13 ifﬂ-l 0 that Ta"—‘fT.U;=[U- 3 2]
0 -13 13 0 0 3

Setting U= U U,, we have UAU = T,, o matrix in epper triangular form., In this case, all the elements
of U are real, so it is orthogonal.

159 Find a Schur decompogition for

— — N S|
(= i ]
e Bk e

3
1
A=l 2
=1

We follow Steps 151 through 155, beginning with & = | and A, =T, = A An elgenvalue for A, is
A =4, with corresponding unit eigenvector ¥ = [0.0, 1,0]". Using the procedure of Problem 15.3 with
n=d4, we gel

—_—

2
3
=y, and T, =U'T,W, - i
1

= = = -
Lo I O e

Mext we apply Steps 15.1 through 15.5 with & = 1. We first defermine

30 -1
A= 12 1
=1 0 3

This malrix possesses the eigenvalie A = 1 with corresponding unit eigeavector ¥V = [0, 1.0]". Using the
procedune of Protlem 153, now with & =3, we generate the unitary matrix

o 1D
No=[1 00
00l

This is expanded into

S 02
v,=loio 1 o soma T,=U'TU, = g i \ _}
a:1 0o P
0o 08 00 -1
We now apply Steps 15,1 through 15,5 with & = 3. We start by sefting

a-[ ]

This matrix possesses the sigenvalue A =7, with corresponding unit eigenvector ¥ = |10V 1T)"
Using the procedure of Problem 15.3 with m = 2, we generate the unitary matrix
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N _[IN"E —1n-"'E]
Tl 1wE
which we expand into
: “i ° o 4 2 I3 i
S ! 0 W30
Uy = | cosmdhmmmnmmmoo— | gothat  T,=USTU,=|. o “5° 4
[T O T S 00 0 4

0 0i1vE IV
Setting U = 1 UL, we have DAL =T, a matrix o6 upper toangulas foom.

15.00 Show that if U is unitary and A = U"BU, then B is normal if and only if A is normal.

If B 5 normal, then BB = BB, and
A"A = (U"BU(UYBL) = (UYBYU U BU) = (UYB" UL BL)}
=(UYB" UL ' WBU) = (UTB"BL) = U"(B"B)U = " (BB" U
= (UBHBU) = (UYBH UL WBYD) = (UYBH UL B
= [(UBUHUYB L) = (UYBUNUYBL)" = AA"
The reverse proposition is proved apalogously, using the identity B = DALY

1511 Prove that every normal matrix 5 unitarily similar to a disgonal matrix,

Let A be normal. Using a Schur decomposition, we can write T=U"AU, where T is upper
tmiangular and L7 ds wnitary. It follows from Problem 1500 that T & normal, and then from Problem 13,14

that T must be diagonal,

15.12 Prove that ||A]|., the matrix norm induced by the Euclidean vector norm, is the square root of
the largest cigenvalue of A'A.

For any matrix A (not necessarily square), the product A“A is normal (Problem 13.2) and has
nonnegalive eigetvaloes (Problem 13.3), which we depote 28 A A, ..., & It follows from Problem
15.11 thar there exists a unitary matrix U such that U"(A"A)JU =D or, equivalently, such that
AA = UDUY, where D is a dagonal matrix whose diagonal elements are the eigenvalues of AYA. Then if
we st A =mak(A,, A, ., A ) and ¥ = U"X, we have, for any nonzero vector X,

FAX| = (AKX, AX) = (AAX, XJ = (A"AX, X = {UDU N, X) = (DU, UKD = (DY, ¥)

SR AP AN = 'i'll}llll"' -“.al.!".alz L “---l]"..fe
=aly, P+ Al 4w aly =AY, ) = AU UYK) = a{X, vui )

= AKX, X) = allX]|;
Therefore, using the resule of Froblem 12.14, we have

o (IAX], VUKL |
iar. = (g ) = s (P, ) =3 )

Denoting 35 £ an eigenvector of A"A corresponding to A, we find that
IAZ]: = (AZ AZ) = (A"AZ,Z) = (AZ, Z) = A(Z. 2) = A2}’

_ AKXy Az, j-"il.Ill_._
o Ul = e U )= T =

Inequalities {1} and {2} imply [[All, = 75,

va (2
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15.13

15.14

1515

UNITARY TRANSFORMATIONS [CHAFP. 15

Find elementary reflectors associated with (a) ¥, =[1,2]" and (b) ¥, = |9, 3, -6]",
(@) We compute ||¥,]], = v3, so

L PO B PY (U R i B PR B I e

(&) Samilarly, ||V, |l = VT26, so

[]{Iﬂl ?[al lHJU]'[SJ 21—54]
Ro=|01 0|]-=| 3|ps-6=[o 1 0|l-=] 27 9 -8
1] 18| s o 0 5

o o 1 -5 -18 36
=T =37 67

= -7 &7 27
6T 27 3N

Prove that an elementary reflector R s both symmetric and arthogonal.
For any constant ¢,
WV = WV = (VT )V = VY7
Setting ¢ = -2/ [|W|]3, we conclude that (—2/ V]| ;WY " is symmetric, Since [ is symmetric and the sum of

real symamcinic matrices is also real and symmetric, 1t follows, that any elementary reflector is symminic,
In addition,

R'R=RR -I::l— ﬁ w’}f_l— ﬁﬂf’}l

'E L 1 T 4 L 1
R T A AR TT LA

4 4 ¥ T
e e VYT WYV
¥l I¥l:

But if ¥ is a real column wector, then VW= (V, ¥} = ||V}, Thus, the last two terms in the above
equality cancel, R"R =1, and R i orthogonal,

Let R be the elementary reflector associated with the vector V=X + ||X[|;E, where X is an
arbitrary real R-dimensional column vector, and E is an /-dimensional column vector whose
first component is | and whose other components are all Os. Show that RX = —[|X||,E.

Dienate the kst comporent of X as x,. Then
VX = (X + [|X[LE) X = XX + ||XILETX = || X7 + IX] ¥,
and VW (X + [[X[E) X+ [ XILE)=X"X + IX|,E"X + || X[[,XTE + |X||}E"E
= XIS + 1%L, + DX, + I = 201X]15 + | X002, = 2¥"X
¥y ¥V’

X=X-2
vl vy

Then RX =IX -2 x-x—z—‘;':r—:l-I“‘I'-I'-{I+'IIII;E}"-III||=E
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I5.18

1517

15.18

15.1%

15.20

15.21

15.23

15.24

15.2%

15.26

15.27

Supplementary Problems

Drerermine which of the following matrices are unitary:

11 -l (A B PO S TV [ _: ? :,.
A=l 11 1| B=[1A3F -vI 0 C=0v3I, 1 o
-2 1 b I3 0 =113 1 0 =1 =1
D_[r'.'ﬂ in2 F[nﬂ w’i}
LI and iNI 102

Apply the procedure of Problem 13.3 1o construct a unitary matrix having. as its frst column, an
eigenvector corresponding o A = 3 for:

2 00 oo
P53 tcht=[151

{u-:.t-[l ::] {h) B =
I -1 2 11 3

Find a Schur decomposition for each of the matrices in Problem 15.17.

Find elememary reflectors associated with

@] @|o Y]

Show thad if U is unitary, then ||UX]|, = X1, for any vector X of suitable dimension, Thus, 3 unitary
traniformation préserves Enclidean length.

The argle betaeen two real vectors X and Y is defined as

. (X, ¥}
# = areeos LIV,

Sheorw that if U is waitary, then the angle bevween UX and UY is the same as that between X and Y. Thus,
a uniary trarsformation preserves anghes.

Prove that R* = 1 for any clementary refleciaor R.

Dretermune the eigenvalwes of every elementary reflectar.

Prowe that the absolute value of the determinant of a unitary mairix is 1.
A sguare matnix K, (8) is a romton marric if

(10 The {p, p) and (q. q) clements of B, are equal 1o cos & for p = g, and all other diagonal elements

are wnity, and
(2} The [ p. g) element is equal 1o sin &; the (g, p) element is egual 10 =sind, and all other off-diagonal

elesents are zero. Find 5 = 5 matrices R, (#8) and R, (#).

Show that a rotafion matrix is erthagonal,

Show that @ may be chosen so thar R (§)AR, (@) has a zero in the (k, p) position. provided that A =
sguare and & & different from p and . (5ee Problem 15.25.)



Chapter 16

Quadratic Forms and Congruence

QUADRATIC FORM
A guadrarc forns in the real vanables 5., x,, ..., 1, is a polynomial of the type

i:. i L (161
imh gy
with real-valued coefficients a,;,. This expression has the matrix representation
X'Ax (16.2)
w:|h .l-[.:i ] and X=|x,, Xy, ..., z|". The quadratln: form X'AX is algebraically equivalent to

XA+ AT ]."E}I Since (A + AT 32 ks symmetric, it 15 standard to use it rather then a nn.r:s:,rmme:rn:
matnx in expression (16.2). Thus, in what follows, we shall assume that A 8 symmetne, [See

Froblems 16.1 and 16.2.)
A complex guadratic form is one that has the matrix representation

X"AX (16.3)

with A being Hermitian. Expression {16.3) reduces to (16.2) when X and A are real-valued; and
both expressions are equivalent to the Evuclidean inner product {AX, X)

The Euclidean inner product {AX, X} is real whenever A s Hermitian (Property 13.5). If the
inner product is alo positive (or nonnegative, negative, or nonpositive) for all nonzero vectors X,
then the quadratic form is classified as positive definite (or positive semidefinite. negative definite. or
negative semidefinite, respectively). All the esis listed in Chapter 14 may be applied 1o the matrix
representalion of a quadratic form to determine defimiteness. (Sec Problems 16.3 and 16.4.)

DIAGONAL FORM

A guadratic form has diggonal form if it contadns no cross-product terms; that is, if a, = 0 for all
i # . It follows from Theorem 5.1 that any guadratic form can be transformed into diagonal form
with a wniary matrix U (recall that a quadratic form is Hermitian and therefore normal), 1f
U"AU = D, then the substitution X = UY converts the quadratic form {AX, X} into the diagonal
quadratic form {DY,Y). This substitution preserves length (Problem 15.20) and angles { Problem
15.21); the diagonal elemems of IV are the eigenvalues of A. [See Problems 16.5 and 16.6.)

CONGRUENCE

A square matrix A I8 congrueend o a square matrix B of the same order if there exists &
nonsingular real matrix P such that

A = PRPT (16.4)

When P is factored into a8 product of elememtary matrices corresponding o elementary row
operations. then P is the product in reverse arder of elementary matrices corresponding to identical
elememary column operations, Thus, two matrices are congruent if a@nd only if one can be
transformed to the other by & sequence of pairs of elementary row and column operations, where
each pair consists of one elementary row operation and one elementary column operation of identical
type. It follows that congruent matrices have the same rank.

144
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A matrix A is Hermitian congruent (or conjunctive) to a matrix B if there exists a nonsingular
matrix P such that

A = PRP" ( 16.5)

Hermitian congruence reduces to congruence when P is real. Both Hermitian congruence and
congruence are reflexive, symmetnic, and transitive,
Two quadratic forms {AX, X} and {BY, Y} are congruent if and only if A and B are congruent.

INERTIA
Every n » n Hermitian matrix of rank r is congruent o a unigue matrix in the partitioned form
I, 0 i 0
B CL e (16.6)
IR

where 1, and 1 are identity matrices of order & = & and m % m, respectively. An inertia mafrix is a
matrix having form (16,4,

Property 16.1: (Splvester’s law of inertin)  Two Hermitian matrices are congruent if and only if
they are congruent to the same mertia matrix, and then they both have & positive
cigenvalues, m negative cigenvalues, and 1 — & -~ m zero eigenvalues.

The integer k defined by form (16.6) is called the index of A, and 5 = &k — m iz called its sigranere
An algorithm for obtaining the inertia marix of a given manrix A is the following:

STEP 16.]: Construct the partitioned matrix [A |1}, where T is an identity matrix having the same
order as A,

STEP 16.2: Usc elementary row operations E1 and E3 to reduce A to upper triangular form,
applving each operation to the full partitioned matrix of Step 16,1, In addition,
whenever two rows are interchanged, also interchange the corresponding columns in
the lcft partition, but make no similar column mierchange in the right partinon,
Denote the result as [R|5], where R is upper triangular,

STEP 16.3:  Set all the nondiagonal elementz of R equal 10 zefo. The result is a partitioned matnx
of the form [} 5], where IV is diagonal.

STEP 16.4: If a zero diagonal element of I appears in an eadier (higher) row than & nonzers
diagonal element of D, then interchange the positions of the wo diagonal elements;
also interchange the order of the corresponding rows of 8. Continue 1o perform these
interchanges until all nomzere disgonal elements of I¥ appear in earlier rows than 2ero
diagonal elements.

STEP 16.5: I a negative diagonal element of I} appears in an earlier row than a positive diagonal
term of I¥, interchange the positions of the two diagonal elements; also interchange the
order of the corresponding rows of 8§, Continue to perform these interchanges until all
positive diagonal elements of IV appear in earlier rows than all segative diagonal
elemenis,

STEF Io6;  1F any diagonal element of the lefl partition is not 0, 1, or — 1, denote its value by d.
Divide that clement by [d], and divide the entire corresponding row of the right
partition by W1d].

At the completion of the algorithm, the matrix in the left partition is the mertia matrix for A; the

matrix in the right partition is the matrix P that will transform A into its ineria mainx. (See

Froblems 16.7 through 16.9.)
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RAYLEIGH QUOTIENT
The Rayleigh quotieni for a Hermitian matrix A s the ratio

AN X}

RX) ="

(16.7)

Property 16.2: (Ruyleigh's principle) If the cigenvalues of A a Hermitian matrix are ordered so
that A, = &, S ---= A, then

A= R(X)= A, (16.8)

R(X) achicves its maximum when X is an eigenvector corresponding to A_; R(X)
achieves its minimum when X 15 an egenvector corresponding to A,

[See Problem 16100}

Solved Problems

16.1 Determine the symmetric-matrix representation for the real quadratic form 2] + 5x; +
11x] +20x,x, — 4x,x, + l6x,x,.

We can rewrite this polynomial as
2p .k, +5xx, + Vixxy + Wk xy + Wk x, — 2rp, — 25,4, +Br,x, + Byx,
which has the symmeiric-matris representation

(£, 4.0, 2 W —210rK,
w5 Bl ¥
=T B 10| m

16.2 Determine the symmetric-matrix representation for the real quadratic form 1y, + !II:§ +
19x] + 16x] = 6x,x, + W0x,x, — lbx ¥, — 10x.x, — lbr,x,.

We can fewrile this polynomibal as
Px,x, + lx,x, + 95,0, + Vx5, = 3,0, =3o,x, + 55,0, + 5,0, — B e, —8e,x, — 35,0, — SK,r,
- Br,x, —Hy,r + 0x,r, + 01,1,

which has the symmetric-matrix representation

[, 5. 5 50 10 -3 5 =87%
-3 i % -8 ¥

5 =5 1@ o) £

~-E -3 [T .7
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16.3

16.4

16.5

166

16.7

Determine whether the quadratic form given in Problem 16.1 is positive definite.

The results of Problems 16,0 and 14.2 indicate that the matrix representation of the quadratic form
is not positive definite. Therefore the quadratic form usell is not positive definite,

Determine whether the guadraie form given in Problem 16.2 is positive definite.

From the results of Problems 16.2 and 14,3, we determine that the gquadratic form 5 nol posilove
definite becouse ils matris representation i aot. The quadsatic form 15, bowever, positive semidefimine,

Transfiorm the quadratic form given in Problem 16.1 into a diagonal quadranic form.
Given the result of Probiem 16,1, we ser

2 W -2
A= I 5 8
-2 8 1

A has eigenvalues -9, 9, and 18 and corresponding orthonormal eigenvectors @, = [2/3, -2/3,1/3]7,
Q= [203, 13, =2/3]7, and G, = [1/3, 273, 2/3]7, respectively. We take

M3 NI L3 L
U=|-23 173 /3 whetenpon UTAU=D=| 0 9 0
Wi —23 203 00 18

Ser X =UY. Then
AN = (UY)AUY) =Y UTAUY = YTDY = —0y] + 997 4 187

Transform into diagonal form the complex guadratic form corresponding to the Hermitian
matrix
3 1+ :'3]
A {i -3 8

The eigenvalues of A are 1 and 8, with corresponding orthonormal gigenvectors U, = [(1 + i3) T4,
=21/14)7 and U, = [(1 + i) IE, SATE]T, respectively. We set

(1+iNVTE (1 +3) T8 [0
u=[C AT LR wnereupon vtau=p=[g {]

Set X =UY¥. Then the oftginal quadratc form
XA = {AX,.X) = 3r,x, + B, d, + (1 + i35, + (1 —i3x, 1,
i transformed into the diagonal quadratic form (DY, Y} = ¥, 7, + By, 0,.

LU
A=11 1 3
2 3 4

We augment the 3 = 1 identity matrnix onto & and then reduce A to upper irangular form. To do sa,
wee must first interchange the first and second rows, and we do this to the entire partitiened matrix. In

Determine the inertia matrix for
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addition. we interchange the first and second columns of A but make no corresponding change 10 the
columis in the right partition. Steps 161 through 16,6 are as Follows:

0 1 X0 0 0]
b 30 f 0
|2 % 4lo o 1
—[1 1 30 1 0
— |0 1 {1 0 oD
T3 410 0 1
(1 1 3 1 07
o X1 00
|3 2 4lo o 1)
[ 1 | 3o 1
== -1 =111 -1
|3 2 4l 0
I 11
m -1 -1 -
{0 -1 -5lo -3
1 I 310
0 -1 =] b =1
- L0 -4]=1 =2
=1 o o 0
= |0 -1 a1 -1
0 0 -4l-1 -2

0
1]
I

]

0
!

Interchanging the first and second
Fows

Interchanging the first and second
columps of the left partition only

Adding — 1 times the first row o
the second row

Addding —3 times the first row 10
Ihe thard row

L1

L1

1

|

Adding -1 times the second row
13 thie thard row

Setting akl the elements above the
diaganal ¢qual o zero im the lefi
partition

Thers are no zero diagonal elemends in the left partibon, so Step 164 i satishied, Also, the positive
diagonal element in the left partition appears i an earher row than the negative elements, so Step 16,5
o satisfied, Howewer, the third row has a diagonal element in s beft partiiion that is nol equal ta 0, 1, of
- 1; following Step 16,6, we divide thai diagonal element by 4] = 4, and the remainder of the third row

by V4 =2, This gives us

0 i
P=] 1 =1
-1 =1

o 0] 0 1 o
-1 0 1 -1 ﬂ]
0 =1l=1r2 =1 1.2
0 1 0 0
n] and r.u-’=[n -1 nl
172 0 0 -1

The index of A& is 1, and s signatwre is | -2 = —1. We may conclude from Property [6.1 that A has one
pasitive eigenvalue, two negative etgenvaluss, and no zero eigenvalues.

16.8 Dwetermine the inertia matrix for

= gl bl =
[ o - N
] e Lk
e = bl —
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16.9

Augmenting onto A the 4 « 4 identity matrix, and then reducing A to upper tnangular form. one
colump at a fime and without using elementary row operation EZ, we finally obtain

I F | I a0 0
0 -2 = 4] -2 100
o o o0 of-1 -110
a o o wmE-3 ol

The left partition is in wpper triangular form. Setling all elements above the main diagonal in that
partition equal to zere yields

Faollowing Step 6.4, we interchange the diagonal elemsents m the third and lourh rows of the el
partition while simultapeously interchanging the eatire third and fourth rows of the nght pantition. The
result i

1 LU I 1 a4 00
0 =2 0 0] =-2 100
oo 1% a0 -5 01
o 0 ool =1 =11mn

Following Step 16,5, we néxt intérchange the (2,2} diagonal element with the (1,3} diagonal element in
the beft pariition and simaltancowsly interchange the order of the second and third rows in the right
partition, That gives us the paritioned matss

I o a0 L o0 0
0 1 a of§ -3 L L |
0 o - aoj-2 100
oo o0l -1 -1 10

Following Step 16,6, we divide the (2,2} element of the lef partition by 16, and the entire second sfow of
the right partition by 4. We also divide the (3,3} element of the left partition by 2, and the entire third
row of the right partition by vE. We ger, finally,

1 a oo 1 o o 0
a1 oo —3i4 L0 1i4
00 -1 0| -23 Wi o o0
oo oo =1 =1 1 @
1 0 0 0o P o 0o
N TE T T S r_ {01 0o
sor that P- _IJ"'f"E |-|"I-"T 0o nd PAF Dol 0
=1 =] || 0o g 0

The index of A is 2, and its signature 18 2— 1= . The rank of A it 3, and we may conclude from
Property 161 thal A has two positive elgenvaloes, one negalive eigenvalve, and one 2era elgenvalue.

Discuss the rationale of the algorithm given by Steps 16,1 through 16,6 at it pertains 10 real
mairices.

Since A is symmetrie, any set of elementary fow opefattons of the frst and third kind that reduce &
v upper triangular form yields an amalogows set of column operations that will reduce A 1o Jower



150 QUADRATIC FORMS AND CONGRUENCE [CHAP 16

triangular form. Under a congreence transformation, bath sets of operations are applied to A, resulting
in a diagonal matrix. This & the rationale for Steps 1601 through 16.3,

Interchanging the position of two diagonal elements of a disgonal matrx s equivalent o
interchanging both the mows and the colamns in which the two din@mll elements appear. We
i.-rm:rl;hanF only the th.i.j,na.u':d e in P, dlnce a pmunullq]l:'n:aﬁnn by P’ wall eflect the dame type of
colamn interchange automatically. This is the rationale for Steps 16.4 and 16,5,

Finally, a nonzero diagonal element 4 is made equal fo 1 in absolute value by dividing its row and is

column by ‘l,.l!d'|. Since the divisions will be dane in tandem, we have Step 166,

16.10 Prove Rayleigh's principle.
Let U be a unitary muatrix that diagonalizes & Then

A, \ )
UYAL = [V = z

A

and we may assume that the columns of U have been ordered so that 4, s A, =--- = 4. Setting X = UY
andd wsing Property 153, we have

(AN, X} (AUY.UY)  (UMAUY.Y) (DY, Y}
R ="Xx ~onoy © vy (T

JAlnE E Ay + Ay -"--.:'.!-L:'J:'.h|}';|*+ e NI -,
Iw? # ol =+ A +|}':F+"'+||.:"'ni

The ather inequality follows from
AW+ Aglyel 4+ lplP = adpl + Al # o+ 4
Il X, is an elgenvector corresponding to A, then
(AN, X ) (X, X}

™ -LII"A"I"'!:I:L*- =
Lt e s M s s o Sl

50 the minimum of B(X) is achieved when X = X, . A similar orgument shows that the maxmmam i@
achieved when X @ an eigenwector corresponding to A,

Supplementary Problems

16,01 Determine symmetnc matmx representations for the fllowing real quadratic forms,
() 3+ dad + Saj # 2rx, - 2, - 2y,
k) lrf + 1:3 + 5.::?| + d-:,:, - 11',1'1 ~ 21:_,::‘.
(e) 9+ bl + 9 + 6r? — 6w, x, — by x, + Byx, — Gy,
(d) ¥ + 3]+ 3+ xd - 2 ony + b x, - 2ryx, + By, + ey, + 1ny,

U602 Determine which of the quadratic forms in Problem 16,11 ane positive definne.

16.13 Deetermine the ineria matrix associated with ach of the quadratic forms in Problem 146.11.
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i6.14 Using the results of Problem 16,13, determine whether quadratic forms (g} and (b} of Problem 16, L1 are
COngruent

16.15 Using the results of Problem 16,13, determine how many positive and negative eigenvalues are
pssociated with the symmetric malrix corresponding to each quadratie form in Problem 1601

16.06 Characterize the inertia matnix of a postive defimite gquadratic form

i6.17 Find a nonsingular matrix P such that PAPT it an inertia matris for

n 2 4 1 2 13 I -1 1
a 2 1 -2 by |2 4 & ) | -1 i E]
4 =2 5 I & 5 1 5 0

16,18 Determine the inertia matrix associated with
1 I =2 i
A=l1+i2 6 A+l
-i Y- 2
and find P such that PAP" is that inertia matrix.
L6 1% Show that of & 15 congruent to B and B is congruent 1o © then A 15 congruent 1o C.
16,20  Show that if & is congruent to B, then B i congruent to A,

16.21 Prove that two Hermiilian matreces A and B afe cangreent 1o each olher of and only il they are congrient
o the same inertia matns,

1622 Show that a ponsingular Hermitian matrix & 18 congrusnt fo I S NVETSE.,



Chapter 17

Nonnegative Matrices

EIGENVALUES AND EIGENVECTORS

A matrix A 15 mosregative, written A =0, if all 115 elements are real and nonnegabive; A is
positive, written A > 0, if all its elements are real and positive. A matrix & is greater than a matrix B
of identical order, denoted A= B, if A~ B is positive, Similarly, A= B if A - B is nonnegative.

The spectral radii (see Chapter 12) of nonnegative square matrices have the following properties:

Property 17.1: 11 0= A =B, then o{A) = o(B).

Property 17.2: If A =0 and if the row (or column) sums of A are a constant &, then o{A) = &,

Property 17.3:  If m is the minimum of the row [or column) sums of A, M is the maximum of the
row [of column) sums of A, and A =0, then m = aofA) = M.

Property 17.4: A nonnegative sguare matnX has an eigenvalue equal to s spectral radius, and
there exist a right eigenvector and a left eigenvector corresponding to this eigenvalue
that have only nonnegative components,

Property 17.5:  (Perron's theorem) A positive square matrix has an eigenvalue of multiplicity one
equal to its spectral radivs, and no other eigenvalue 5 as large in absolute value,
Moreover, there exigl a right eigenvector and a lefl eigenvector corresponding 1o
(A} thal have only positive components,

[See Problems 171 w 17.6.)

IRREDUCIBLE MATRICES

A permuitation mairin 15 a matox obtaimed from an identity matrix by any rearrangement of its
rows. Such a matrix is the product of elementary matrices of the first kind and is orthogonal, A
nonnegative matrix is reducible if there exists a permutation matrix P such that

Ay i Ay
PAP' =|---ribeceen (17.1)
oA,

where both Ay, and A, are square matrices having order less than that of A, If no such permutation
matrix exisis, then A is said to be frreducible. (See Problems 177 and 17.8.)

Property 17.6:  Positive matrices are irreducible,
Property 17.7:  An n % o matrix A & irreducible if and only if (1+A)" " =0

Property 17.8:  (Perron-Frobenius theorem) A nonnegative, irreducible matrix A has an eigenvalue
of multiphicity one equal to its spectral radius, and corresponding to this cigenvaloe
i a right (left) eigenvector which has only positive companents. If such a matrix has
exactly & eigenvalues with absolute value equal 1o ils speciral radius, then they are
of the form w,or{A), where w, w,, . ... w, are the & distinct roots of unity.

(See Problems 17.% w0 17.11.)
152
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PRIMITIVE MATRICES

A nonnegative matrix is primitive if it i3 irreducible and has only one eigenvalue with absolute
value equal to its spectral radius. A nonnegative matrix is regular if one of its powers is a positive
matrix. A nonnegative matrix is primitive if and only if it is regular.

Property 17.9: If A is a nonnegative primitive matrix, then the limit L =lm__. ({1/e{A}}A)"
exists and i potsitive. Furthermore, if X and Y are, respectively, left and right
positive eigenvectors of A corresponding to the eigenvalue equal to oiA) and scaled
503 that YX =1, then L=XY.

Positive matrices are primitive and have the limit deseribed in Property 17.9. (See Problem 17.12.)
Reducible matrices may oF may not have such a limit. (5ee Problem 17.13.)

STOCHASTIC MATRICES

A nonnegative matrix is stockastic if all s row sums or all its column sums equal 1. It is dowb{y
stockasde if all s row sums and all its column sums equal 1. It follows from Property 17.2 that the
spectral radius of such a matrix s unity. If the row (column) sums are all 1, then a rght (left)
cigenvector corresponding to & = 1 has all its components equal,

A stochastic matrix 15 ergodic if the only eigenvalue of absolute value 1 45 1 isell, and i the
cigenvalue A = 1 has multiplicity k. then there exist & linearly independent eigenvectors cormespoid-
ing 1o it.

Property 17.10c  I1 P is ergodic, then lim__, P = L exists.

A pomitive stochastic matrix A is ergodic with & =1 and has a simple form for the Hmiting
mitrix L. IF the row (column) sums of A are all 1, then the same is tree for the row (column) sums of
L, and all the rows (columns) of L are identical. Each of these rows (columns) is the wnigue left
(right) eigenvector corresponding to A = | and having the sum of its components equal to unity. (See
Problems 17,14 and 17.19.)

The form of the limiting matrix is not as simple for an ergodic matrix that s not primifive. A
canonical basis for such a matriz consists solely of eigenvectors. If the multiplicity of A = 1 & denoted
by &, and if the & linearly independent nght eigenvectors corresponding to this eigenvalue are placed
into the first & columns of the modal matrix M, then L =MDM ', where D is a diagonal matrix
having its first k& diagonal elements equal 1o unity and all others equal to zero. {(See Problem 17.15.)

FINITE MARKOY CHAINS

An Nomate Markov chain consists of a set of objects and a finite set of & different states (where
N is a figed positive integer), such thay (§) &t any given time cach object &5 in one of the & siates,
which may be different for different objects, and (2) the probability thar an object will move from
one state to another state (or remain in the same state) in one time perod depends only on the
beginning and ending states. The N x N matrix P=[p,], where p. denotes the probability of an
object moving from state § to state j in one ume period, is stochastic. The (f, §) element of the mth
power of P represents the probability that an object will move from state § (o state j in m time

periods,
Denote the proportion of objects in state § at the end of the mth time period a5 /™, and define
™= |.t':|", :i"], B

to be the disiribuiion vector for the end of the mth time period. Then

] i 1] [y
X = [, 40,
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resents the proportion of objects in each state at the beginning of the process. Necessarily,
'+0, and the sum of the components of X" is | for cach m=10,1,2,. ... Furthermore,

X' = xWpn (17.2}

If P is primitive, then

X = lim X' = x"'L (17.3)

which is the positive left eigenvector of P corresponding 10 A =1 and having the sum of its
components equal to unity. The ith component of X™ represents the approximate proportion of
objects in state i after 2 large number of time periods, and this limiting value is independent of the
indtial disirbution defined by X" 1f P is ergodic but not primitive, {17.3) still may be used to obtain
the limiting state distribution, but it will depend on the value of X"\ (See Problems 17.16 and
17.17.)

171

17.2

7.3

17.4

Solved Problems

Estimate the location of the largest eigenvalue of

o1 6
A=|1 8 6
1 22

A 5 noanegative, and s row sums ore 7, 16, and 5. It follows, then, from Property 17.3, that
5= olA) = 16 However, the column sums of A are 3, 11, and 14, %0 3= ofA) = 14, Together, the two
inequalities imply that the largest eigenvaloe is between 3 and 14 in absolute valwe.

T o0
A=12 0 1
i 1T oo

The eigenvalues of A are A, = 4, =1 and 4, = —1; and, since o(A)=1 by definition, there is an
eigenvalue equal to the spectral radius. A right eigenvector corresponding o A =1 is [0, 1, 1]7, which is
nonnegative. A keft eigenvector corresponding o the same eipenvaloe is [1.0.0], which 5 also
nanpegative,

Verify Property 17.4 for

Yerify Perron's theorem for

0.1 0.5 04

A =[D.? 0.2 0l

06 0.2 0.2
The row swms of A are all equal o 1, so it follows from Property 17.2 that oA} =1, The
characteristic equation of A is d{A)=—-2"+0.54% + 0,534 - 0,03, which has the roots &, =1, 4, =
~0.554138, and A, = 0,054138. Thus, the spectral radius is an eigenvalue of mulipleity one, and i is the
greatest eipenvaluz in absolute value. A nght eigenvector corresponding to this cigenvalae is [1, 1, 1,

while a left gigenvedor i [62, 48, 37]. Each of these has oaly positive components.

Prove that if 0=A =B, where A and B are square matrices of the same order, then
o(A) = o(B).
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17.5

17.6

7.7

I7.8

If 0= A =B, then A™ =B for any positive imeger m and, therefore, |[A7|], = B7(,. It follows
from (12.4) that

a(A) = lim A" = lim [B™)1;" = o(B)

Prove that if the row (of column) sums of 3 Aonnegative square matrix A are a constant k,
then a(A) = k.
Using (12.3). we may write
k)= |[All. = & (1

If we st X=[1.1,..., 1]7, it follows from the row sums being & that AX =kX, so that & is an
elgervalue of A. Simce o{A) musi be the largest cigenvalue in absolute value,

oAl =k (21
Together, (1) and {2} imply «{A) = k. The proof for column sums follows if we consider AT im place of
Al

Prove ihat if m is the minimum row (or column) sum and M s the maximum row (or columa)
sam of &n 1 X 7 nonnegative matrix A = [a, |, then m = o{A) = M.

Construct a matris B = [b, ] having the same order as A and such that

0  Hm=0
mu

By =12 im0
g

The A =B =0, and the row sums of B are all equal 1o e, 1t folkows from Problem 17.4 that o{B} = oA}
and from Problem 17.5 thay o{B) = m; thus, m = ofA). That M s the upper bound on o{A) follows from
(12.3); that is, o{A) = A, = M. The analogous result for coblumn sums is obtained through an identical

afgument apphied 1o A7

Determine whether the matrix in Problem 17.1 is irreducible.

The matrix possesses 3 single zero element, and it & on the main diagonal. An elementary row
operation of the first kind (E1)} follreced by an elementary column operation of the same kind aill
change the posiions of diagomal elements, bul pot their values. Since & permutation matriz P is a8
product of elementary matrices of the first kind, it follows that PAP" also leaves the values of dingonal
elements unchangsd. Such a transformation cannot move the zero into the (3,1} position and cannot
resuli in additsonsl zero ebements. Since there are no other zeros available 1o move into that position,

ihe mairix is irnedwcible,

Determine whether the matrix in Problem 17.2 & irreducible.

An iaterchange of the first and third rows Fellowed by an interchange of the Arst amd third columns
gives us the transformation

oo Iy o oo ol nmi3
PAP"=|0 1 offz o 1{jo 1 =1 0 2
I 0 0fL3 1 oLt 0 o oo

which has the partitioned form given in (171 ) with
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17.10

17.11

17.12

17.13
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o1
.q.,,—[] n-] and Ay, = 1]

Therefore, A is reducible.

Determine whether the following matrix is irreducible;

0200

0 0o 40

A=lo 0 0 2

1 00 0

To use Property 17.7, we calculate

1 & 24 14
s_| 8 1 02 34
Arlr=le 4 1 s
ie 8 1

Since this matnx b5 positive, A is Irreducible.

Verify the Perron-Frobenius theorem for the matnx in Problem 17.1.

The matn® s rredeable {see Prablem I':'.'u"], and its eigenvalues may be found, to four decimal
places, to be M0L180G, —1.5631, and 13825 lis spectral racius is thus 1001806, which falls within the
bounds identified in Problem 17,1, A rght eigenvector corresponding to this spectral radius, and with all
components rounded to four decimal places, i [0.2611, 1,0.2764)7. A left sigenvector, rounded
:il:ru'tal:lr, 1% [ﬂ.I-’H-Ei'l 'I..ﬂ.'.il-lf!ﬁ]. Hoth eigenvectiars have only positive componénis,

Werily the Perron-Frobenius Theorem for the matnx in Problem 179,

The characteristic equation of A is @(A) = A" = 16, so its eigenvalues are 2, —2, 2, and —i2, all of
which have absolizle value equal to the gpeciral radius of 2. Each sigenvalue is the product of the
speciral radius and one of the four fowrh roots of waity, 1, =1, 4, and =i A fght eigenvector
corresponding to A =2 is [2, 2,1, 1)7, while a left eigenvector is [1, 1,2, 2]; both are positive

Determine whether the matrices given in Problems 17.1, 17.2, 17.3, and 17.9 are primitive.

The matrdx & in Problem 17.1 & irreducible (Problem 17.7) and has only one eigenvalue with
absolute value equal to ins spectral radies (Problem 17.10), so it is primitive. Alematively, A" is
positive, 5o A is regular and, therefore, primitive,

The matrix in Protlem 17.2 is reducible (Problem 17.8) and, therefore, connot be primitive

The matrix in Problem 17.3 is positive and, therefore, prmitive.

The matrix im Problem 17.% is irreducible, but it has four cigenvalves having absolute valwe egual 1o
its speciral radius (Problem 17.01). so it is not prmitive, Alternatively, one can show that the (1,1)
element of every power of A s zero, 50 A is not regalar and, therefore, not primitive,

Show that a sguare matrix A need not be pnmitive 10 possess the limit L=
lm,, . ({1/e{A)}A)"

The matrix

a2 9]

o 2
has spectral radius ofA) = 2. For this matriz, {§1/o{A)}A)" =1 for every positive meger m, so L=1
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17.14

17.1%

17.16

Find L =lim__,. A" for the matrix in Problem 17.3.

The matrix i stochastic and primitive (Problem 17,123, and it has a left eigenvector givem by
[62, 48, 37]. If we divide each component of that eigenvector by the sum of the components, 62 4 48 +
A7 = 147, we obtain a positive left eigenvector whose components sum o unity. Then

B2ANAT 4R/ 14T ATI 4T
Lo=§ 62/047 4R/147 370147
GRI14T 4R/ 147 3TN4T

Determine whether the stochastic matrix

1 0o 0 0
po|04 0 06 0
“lo2 o 01 07

o o o0 1

is ergodic, and, if so, calculate L =lim_. P

The eigenvalues of P are 4, = 4, =1, 4, =01, and &, =0, so the matrix is not primitive. P does,
however, possess two linearly independent right eigenvectors corresponding to A =1,

[45,24, 10,007  and  [=35 -14,0,10]"
s 1t is ergodic and L oexdsts. As an easy caleulation shows, the right eigenvectors
0,610  and  [0.1,0,00
correspond, respectively, to &, and A, This,

45 =35 0 O 1/45 0 0 T
l2e -4 6 1 Sl 00w
M=lw o010 ™ M= 240 1 -79
0 W00 45 1 -6 25
45 -35 0 01 00 O 1/45 0 0 T I 00 0
wd Lol s aforoof 0o 0 0 ol lss 00 s
10 o1 0D o o O =2/9 & 1 =79 e 00 e
o wooloooolles 1 -8 s 0 00 1

Formulate the following problem as a Markov chain and solve ii: New owners of renial
apartments in Atlanta are considering as the operating agent a real estate management firm
with a reputation for improving the condition of antiquated housing under its control, Based
on initial ratings of poor, average, and excellent for the condition of rental unils, it has been
documented that 10 percent of all apartments that begin a year in poor condition remain in
poor condition at the end of the year, 50 percent are upgraded to average, and the remaining
40 percent are renovated into excellent condition, OF all apartments that begin a year in
average condition, M percend deteriorate into poor condition by year's end, 20 percent remain
in average condifion, while 10 percent are upgraded to excellent. Of all apariments that begin
a year in excellent condition, &0 percent deteriorate into poor condition by the end of the
year, 20 percent are downgraded 1o average, and 20 percent retain their excellent rating.
Agsuming that these findings will apply if the firm is hired, determine the condition that the
new owners can expect for their apartments over the long run.

We take state | to be o rating of podr, state 2 to be a rating of average, and state 3 1o be a rating of
cxcellent. With percentages converied info their decimal equivalents, the probabilities of moving from
state ¢ to state J (4, J= 1,2, 3) over a one-year penod are given by the elements of the stochastic matrix
in Problem 173, Using the results of Problem 17,14 and Eq. (I7.3], we have
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17.18

17.19
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X' = 627147, 481147, 377047} = (0,422, 0,327, 0.252)

Cwer the long run, appronimatély 42 percent of the apariments controlled by this real estate manags-
ment firm will be in poor condition, 33 percent will be in average condition, and 25 percent will be in
excellznl comdition,

Formulate the following problem as a Markov chain and solve ii: The training program for
production supervisors at a particular company consists of two phases. Phase 1, which involves
three weeks of dassroom work, is followed by phase 2, which is a three-week apprenticeship
program under the direction of working supervisors. From past experience, the company
expects only 60 percent of those beginning classroom training to be graduated into the
apprenticeship phase, with the remaining 40 percent dropped completely from the training
program. {f those who make il io the apprenticeship phase, 70 percent are graduated as
supervisors, 10 percent are asked to repeat the second phase, and 20 percent are dropped
completely from the program. How many supervisors can the company expect from its current
training program if it has 45 people in the classroom phase and 21 people in the apprenticeship
phase?

We consider one time period to be three weeks, and defing states | through 4 s the classification of
being dropped. a classroom traince, &6 Bpprentice, and a supervisor, respectively. IF we assume thar
discharged individuals néver reenber the training program and that supervisors remain supervisors, then
the probabilities of moving from one stafe fo the next are given by the stochastic matrix in Problem
1715, There are 45+ 2] = & people currently in the irgining program, 50 the mitial probability vector
for current trainees is X" = [0, 4566, 21766, 0]. It follows from Eq. (17.3) and the results of Problem
17.1% than

I 00 0
815 0 0 715

= oaelOl -

X XL [0, 45066, 21066, 0] 5 o 0 o g | = [0.4343,0,0,0.5657)
po0o0 1

Eventually, 43,43 percent of those currently in training (or about 29 people) will be dropped from the
program, and the rest (about 3T people] will move into supervisory positions,

Prove that the product of two stochastic matrices, both of which have their row (or column)
sums equal to unity. is itsell & stochastic matrix of the same type.

Let A and B demote stochastic matroes with row sums equal to undty, and st C = AB, Then the ith
row sum of C is

- -

X [E J:-.,,:I-n,., =2 a,=1

'RTT ki

Sed (§on)-

Prove that if P is a primitive stochastic matrix with row sums equal to unity, then all the rows
of L = lim__, P" are identical.

It follows directly from Problem 17,18 that if P is an & % & seechastic metrix, then so too is any
posabive ategral power of P, Therefore, L is necessanily stochastic tog, MNow

L= lim P™ = lim (P "P)=(lim P "}P=LP

which implies that every row of L is a lefi eigenvector of P corresponding w A = 1. Since P s primitive,
A=1 15 an eigenvalee of multiplicity one, and all sigenvectors corresponding to it must be scalar
multiples of each other. With L being stochastic, the row sums of L Mast all be wnity, so it folléws thal
the rows are identical.
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Supplementary Problems

In Problems 17.20 throagh 17.29, determine whether the given matrix is irfeducible, primitive, or
stochastic, and estimate ite spectral radivs. For those matrices P that are stochastic, determine lim,, . P™ if it

EXmEis.
1 2 0] "1 2 1 L
ma (2 20! wmam |10 1722 |0 01
11 2 2 21 1 o0 0
121 ;;fi (01 0F 0.1
s (11| e [y o | vas |os o ol
31 1] e e (02 02 06
1 o 0 0.5 0 0.5 100
136 lom 079 o 12 o o1 0 17,38 0 0 1
017 0.35 0.48 0.3 0 07 01D
01 06 03
1.3 |06 02 02
03 02 05

17.3 The manufacturer of Hi-Glo wothpaste currently controls &0 percent of the market in a particular city,
Data from the previous year show that 88 percent of Hi-Glo's customers remained loyal to Hi-Cio, while
12 percent switched to rival brands. In additlon, 85 percent of the competition's customers did not switch
te Hi-Glo during the vear, while the other 15 percent did. Assuming that these irends continue,
determine Hi-Glo's share of the market (g} in 5 years and [b) over the lomg run.

17.31 Grip: harvests in the Sonoma Valley are classified as either sup:l‘]nr, avETARE, OF pOOr. Ful-;nr.inl o
superior harvest, the pmha.l!-ilil:iu of having :upc-ri.m, average, amd poor harvess the pext year are [,
0.8, and 0.2, respectively. Following an average harvest, these probabiliies are 0.2, 04, and 0.2,
respectively; following a poor harvest, they are 01, 0.8, and 0,1, respectively. Determine the probability
of a superior harvest for each of the next 3 FEATE, if the most recenl harvest was average.

17.32  The geriatric ward of a hospital lists its patients as bedridden or ambulatory. Historical data indicate that
over & one-week period, 30 pereent of all ambulatory patients are decharged, 40 percent remain
ambulatory, and 30 pereent are remanded o complete bed rest. Duning the same perind, 50 percent of
all bedridden patients hecome ambulatory, 20 percent remain bedrideden, and 30 percent die. Currently
the hospatal has 100 patients in its geriatric ward, with 30 bedridden and 70 ambulstory. Determine the
expected status of thess patients () after 2 weeks, and (b} over the long run, {The status of a discharged
patient does not change if that patient later dies away from the hospital,)
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Patterned Matrices

CIRCULANT MATRICES

A circulany miris 5 a square matnx in which every row beginnimg with the second can be
obtained from the preceding row by moviog esch of its clements ong column (o the nght, with the
last element circhog to hecome the first. Circulant matrices have the geaeral form

a, a, a a, |

da, i, iy 3
A= |d, | 8, B3

a, @, da, ,

Mote that cach diagonal consists of wdentical elements. (See Problem 1[5 1.)
Propeety 18.1: 1T o cireulanl matox A has order n = m, then s sigenvalues ane
.-'l_-'u::ll+|:it.r."4?_,,r?1-' . [(F=1,2,...,#)

where [a,. 2., . . .4, ] i5 the irst row ol A& and r, s one of the o distinet solutions of
¢" = 1. The corresponding eigenvestons are X, - 1, r, .rll, .. .,r,'"]’- (Sec Prob-
lerms 18.2 and 18.3.)

Properiy 18.2: IfF A and B are circulant matrices of the same order and @ and & are any two scalars,
then aA + BB 1 also a circolan! matnx.

Property 18.3:  The product of two carculant matrecs of the same order 15 itself a corgplant matr,
and the product is commutative.

Property 18.4:  If & crculant matnx is nonsingular, then its imverse is g cmeofan! matnis

BANIY MATRICES

A square matrix A = [@;] having order # % n s a band maria of width 2K+ 1if @, = 0 when
[i =il = K for some nonncgative integer K between O and 0 — 1. In a band mairix, all nonzero
clements are positioned on the main diagonal and the first K diagonals directly above and below the
main diagonal. The gencral form of sech a matnx s

Y
'5:-3 ] :

A_}'x';%_ {
“‘3’ i

LN
A diagonal mastnz 15 a band marrix with K = [k

Property 185.5:  The sums, products, and transposes of & %k band maimces of wadth 2K + 1 are
band matrices of the same widih.

A Toephiiz marrix is a band matrix in which each diagonal consisis of identical elements, although
different diagonals may contian different elements. Every nonzero aroulant matrix is a Toepliz
mrptrin of full widih,

16h
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TRIMAGONAL MATRICES
A rridiggonal matrix is a band matrix of widih three. Nonzero elements appear only on the main
diagonal, the superdiagonal, and the subdiagonal; all other diagonals contain only zero elements.
Properly 18.6: The eigenvalues of an n = r tridiagonal Toeplitz mainx with elements @ on the man
diagonal, b on the superdiagonal, and ¢ on the subdiagonal are

km
n+l

A, =a +2Vbe cos (k=1,2.....m

{5ee Problem 18.4.)

Crout’s reduction (see Chapter 3) is an algorithm for obtaining an LU factoriza-
tion of a square matrix such that L = [{,] is lower triangular. and U = [u,] is upper
trangular with wnity elements on the main diagonal. For a tridiagonal matrix
A =a,] of order n x a, the algorithm simplifies 10 the following:

STEP 18.1;  Inidalization: If a,, = 0, stop; factorization is not possible, Otherwise, set [, = a,,; set
the subdiagonal of L equal to the subdiagonal of A; set each diagonal element of U
equal to unity; set all other elements of L and U equal 1o zero, and set a counter at
i=2.

STEP 18.2: Calculate &, =a,_, /., ;.

STEP I8.3: Calculate [, =a,—1{ ,_ \u_, . Ifi=n, siop; the algorithm is complete.

STEP 184: i, is zero, stop; factorization is not possible. Otherwise, increase § by 1 and return 1o
Step 18.2.

This factorization will produce an L matrix having nonzero elements only on its diagonal and

subdiagonal, and a U mawnx having nonzero elements only on its diagonal and superdiagonal. (See
Problems 18,5 and 18.6.)

HESSENBERG FORM

A square matrix is in Hessenberg form if all elements below the subdiagonal are zero. Every real
square matrix A is congruent (see Chapter 16) to a matrix in Hessenberg form. An iterative
algorithm for effecting this transformation successively generates, at each stage, matrices A, and P,
(k=1,2,...,r=12), where P, is orthogonal and A, has its first & columns in Hessenberg format.
Then P=PP,---PF,_, and P'AP=H, where H is in Hessenberg form. Since P is orthogonal,
A = PHP'. For notational convenience, we set A, = A. The kth iteration of the algorithm is:

STEP I8.5: Set X, equal to the &th column of A, _ |, restricted 1o those elements that are below the
main diagonal. Thus, X; contains n = & components.

STEFP 18.6: Construct ¥V, =X, + ||X,[|;E,, where E, is an (n — k)-dimensional column vector
having its first component equal to 1 and all other components equal to zero.

STEP 18.7: Determine the elementary reflector R, associated with ¥, , using {15.4),

STEF 188 Ser
p I, |0
A

where 1, denotes the k& = k identity matrix, and calculate A, = PTA, P,

If A is real symmetric, then the resulting matrix in Hessenberg form is also real symmerric and,
therefore, tridiagonal, {See Problems 18.7 and 18.3.)
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Solved Problems
18.1 Deiermine whether the following matrices are circulant, Toepliiz, band matrices, indiagonal,
and/or in Hessenberg form:
(2 =1 0 0 0D 0
1 -2 3 -4 1 2 =1 0 0 0
-4 1 =2 3 o1 2 -1 o0 o
Al s 4 1 -2 B=lo o 1 2 -1 o
-2 I -4 1 0 0 0 1 2 -1
0 o0 0 0o 1 2
12 -1 0 0 0 1 2 30 00
_ 213300
01 2 : i 0 o0 2 2 0 20
C=, 00 1 2 -1 0 D=
o0 0o 1 2 - 002332
10 0 0 1 2 0o0210
0000 2 2
12 0 00 [1 2 3 4 %
=12 =2 00 51 2 3 4
E= n 2 1 1 0 F=|0 % 1 2 3
oo 3 -1 1 oo s5 1 2
. 000 0 -3 2 L0 0o 51

Acis a eircwlant matrix and a Toeplite matrix; it is 8 bard matnx of full width which, in this case, is 7,
B is a bapd matrix of width 3, tridiagonal. and in Hessenberg form; it is also a Toeplitz matrix.,
C is a circulant matrix,

D is a band matsix of width 5; it is n Hesgeabesg form.

E is a band matax aof width 3, tridiagoral, and i Hessenberg form,

F is a Toeplitz matrix in Hessenberg form,

IR.2 Dwtermine the eigenvalues of, and a canonical basis for, matrix A in Problem 18,1,

A is a circulant matris having order 4 x4, The roots ol ¢ = larer, =1, iy =~/ =f ry = =i, 62

A= T+ {=200) + 31 + (—d)1) = -2 with X, =[1 1,11

A= L4 {=D(-1) + H- 1) +(—4}-1)" =10 with X, =[1.-1. 1. -1]"
Ay=1 & (=2 + iV + (- =-2+i2 with  X,=[1.i,-1,-i]"
A=l #(=2=ib+ =i + (=dj{=i)' = =2=i2 with X,=[l,=i ~Li]"

18.3 Dernive Property 18.1.

Denote the elements in the first row of a circulant matrix & as a,. a,, ...
let ¢ b any root of

. a,_ {rom lefi to right, and

=

oy
(2}

- 3 -3 -
Gap y=a, taFrtar voocda, "+ a

o=

Multiplying (F) successively by v, %, ¢" " gives the system of equations

yrea, d,rEdgrt ok, F
pri=a,  tartartdooea, o f

pril =g, b ardart b da !
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This system, with (2), has the matrix form yX = AX, for X =1, r, e ") Thus, y, as given by
(2], i an eigenvalwe, and X s a corresponding sigenvector for every moat .

Given (2) and the fact that r =1 is always a root of (I}, it follows that the sum of any row of &
circulam matrix i an eigenvilue of that matrix.

184 Determine the eigenvalue of matrix B in Problem 18.1.

Using Property 18.6 with g =2, b= —1, and ¢ = 1, we have 4, =2 + B{-100 1) eed (ki T), which,
for k=1,2,..,6, yiclds
A, =2+ (1801935 Ay =2 + {1, 246980 A, =2 + il 445047

A =2 H.445042 4, =2- (1286980 A, =2 - il.BDI9IR

18.5 Determine an LU decomposition for matrix B in Problem 181
We apply Steps 181 through 18.4 to B =[b, ], initiglizing to

20000 0 | T I |
1 0000 0 0 1 0o 00
L::'I]l-ll{:IEIIJ u_ﬂu1unn
0@ 1 a00n o091 0D
nooo 1 om0 oo o010
80001 0 D000 D0 1)
and ihen calculating as follows:
u=h 0L, =112
For i=1: Ly=by = byt =2 = =112} =572
. My = byl = =10{512) = =275
For i =X by = by — dygipy = 2 — 1{—2/8) = 12/5
by, = By = =1 H125) = -5/12
For i= d2 ;H=!l4_.—:l:}uH,..“3"|[—5'":|1:|"29-'|-2
— w,, = b M, = —-1/(29/12) = =13/20
For (=4 Fie = By = dyatys = 2 — 1{~12/29) = 7029
Far { = fi; g = By Mgy = — 1M 29} = —29/70
: lyg ™ by = lygiyy, = 2 = 1/{=29/70) = 168/ 70
The factorization i, then,
2 0 ] 0 iy 0 i -1if/2 1] 0 0 1]
i 52 0 i 0 0 0 1 =215 i 0 0
B= LI R e 0 0 0 o 0 1 —5i12 i 0
i o 1 2012 ] ] )] [} ] —12/H i}
0 o 1] 1 T/ 20 1] 0 0 1] (1] l =29/7i
0 o 0 L) 1 19Tl 0 L] i} |

18.6 Determine an LU decomposition for matrix E in Problem 18.1.
‘We apply Steps 18.1 through 184 o E =& |, initializing to

1 % 0 00 1 %" 00 @

-1 0 0 0 0 o1 000

L= a 2 o 0o o U=|0 0 1 0O 0
g o 3 oo 0 0 d 1 0

00 4 =30 oo @& 01

and then caleulating:
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Hyy —ttq'hI[J =2il=2

For i=2 fy =gy = b =2=(=1)2i=4
My = 8yl = —2/d=-1/2
For i=3: T3 = B3y — fyglty, =1 —2(-112) =2
. By, ":..-'f:.,- 1/2
For i =4 L=t — by, =—1-3172)= =512
For i = & By, =00, = LI(-512)=-2/5F

fog = &gy = lyubiyy = I = [=3}=2/5)=4/5
The facwonization i, then,

m

[}
=T = — T
e R
=N SR~
== — =]
[=1 = R

18.7 Transform to Hessenberg form the matrix

21 -2
Ay=|=3 1 0
4 3 1
The Frst iteration (k = 1) of Slq':: 16.% through 18.8 yislds
-3
x =[]
=1 I Z
"'"I'”lell?E"[ q]“[n]'[-:]

-1- W= 11- 23]
n| I m'ﬂ\rl a1 0 ‘_EL‘]

10 .0
Po={0: 35 -4/5
Oy ~4r% <35

e —4rs
=445 =3/5

2 175 2/5
and A, =PTA P =| =5 =11/25 48/25
0 -2725 6125

A, i5s in Hessenberg form, so F=PF, and the transformation i completed,
18.8 Transform to Hessenberg form the matnx

=6
4
1
-1

The first iteration {k = 1} of Steps 18.5 through 188 yields

HRHNE

=P O
Lo = ]
= Ea e

and “lq =l| bl "xllll '

for which we have, from Problem 15,13,
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=27 -7 87
B, =} -37 &7 217
&7 AT W7
oo . on.n
I R T A T O Y
5o Fo=loi-a7 e 29
0 &7 XT A
1 -7 0 L

_pT =7 -liaiae 15049 24D

and AcmPAR = g nisiae ~B4/40  142/49

0 ITI40 142749 227040

The second neration {k = 2} nells
=115/40 .
1,-[ 1149 for which  ||X,||, = VEEI1745 = 2.410756

~115/49 17 [ 00638173
and 'v,=x,+||x,||,£,=-[ mﬂ]r:_ums[“]-[ﬂ_mm]
for which [|V,||, = VT ST7695. Then,
_— 2 oyro| 09T -0.22657
2=k~ G3omeee Y 7| 0228567 —0.973528
1 o 0 i
POl 00
O O X g T
il ﬂ. =0 FIR56T —D.97TI5H
i . o 0
Cere | -7 —23mes3L -2.4107 0
and ArmPAR =) b 2410756 2385550 -1.273688
0 0 ~1.27388 561200

Setting P=F P, we have PTAP=A,, which i in
symmeiric, A is tridingonal,

The (right) Kronecker product (or direct product)
matnx B=[b, | is the mp x ng partitioned matrix
a;,B
EIZI

ay, B
agp=| B @b
aﬂnln ﬂnl“

Determine A S B when

"‘[43

Hessenberg form. Furthermore, since A, i

of an m @ n matrix A=[a, ] and a px g
a, . B
a, B

a, B

-4
-5
-8
10
~12
15
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18.10 Any n x m matrix X can be converted into an nm x 1 column vector x (denoted with a
lowercase boldface letter) by taking the transpose of all the rows of X and placing them
successively below one another into x. The matrix equation

AXB=C (18.1)
is then equivalent to the matriv-vector équation
ABB x=c (18.2)

where x and ¢ are the vector representations of the matrices X and C, respeciively, Equation
(18.1) may be solved for the unknown matrix X in terms of A, B, and C by solving (18.2) for
the vector x using the methods developed in Chapter 2. Equation (18.1) may possess exactly
one solution, no solutions, or infinitely many solutions.

Solve the matrix equation AXB = C for X when

[3 i] s=[2 71 1] c-[zi Iﬂ]

i -1 I -6 T35
Lt
11
x-["' "’] and  BT=|-1 0
Ey Kaz 13
Then {182} becomes
"~ 1 4 2 " 77
-1 0 -2 0 1
13 2 el i
6 3 8 4" |
-3 0 -4 o, =] 1
309 a a2l 64
wm 5 -1 -1 i 35
-5 0 1 0 =
| 5 15 -1 -3 | 75
Solving by Gaussian elimination, we find that x,, =1, 1, =5, &, = -1, and x,, = I; hence,
1 5]
:1;—[_] 2

i8.11 Solve the matnx equation AXE = C for X when

i
1

el ] vl ]

2 1

A=[1.2] n—[? _ ﬂ C=[1,2,7]

Then (#8.2) (Problem 1810} becomes

¥
oo 2
1 -1 2 =2l " =2
204 A, 7
Solving by Gaussian elimination, we find that this system has infinitely many solutions ghven by
£, =3-2x,, and x,, =1 =2x,,, with x,, and 1, arbitrary. Therefore,

3-2x,, I—1:=,'|
X [ Xz L
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Supplementary Problems

18,02 Determing whether the following matrices are circulant, Toeplilz, band matrices, iridiagonal, and/or in

Hessenberg lorm:
[ 3 1 0 00 IR 010
-1 3 1 04 01 0 1 1010
(@) =1 3 10 3] ()
10010 0Do1oo ol
0 ¢ -1 31 010 1 o1l
L0 0 0 -1 3 L :
1203 20 L2 3
W (31 2 @ |31 2 if 13 21
231 0031 21 3
Fa1 2 0 0
1101 0
B | o2 -2
Do 1 -]

i8.13 Find the sigenvalues of, and a canonical basis for, the matrix in Problem 18.12(6).
1. 14  Find the eigenvalues of, and & canonical basis for, the meiny in Problem 18, 12(d})
18.15 Deiermine the zigenvalues of the matriz in Problem 18.12(¢).

18.06 Comstruct an LU factorizavion for the mainz in Protdem 18 13e).

18.17 Construct an LU factorization for the matris in Problem 18.12) g

In Problems 1818 1o 18,20, transform A, into Hessenberg form.

2 00 311 1' : ? 'E‘.
I8 A,=|1 5 2 1819 A =[1 5 1 2 A= L
1 -1 2 11 3 40 1 0

18.21 An aliemneative procedurs for transforming 8 matnx e Hessenbsrg form is Given's method . which
utilizes rodation matrices (See Problems 1525 throagh 15.27). The method is iterative, transforming io
zero one element bedow the subdiagonal at a time. Zeros are introduced from left to right and from the
last row up 10 the thied row. For an m % 0 mairix A, with 5 = 3, Given's method is as foflows:

STEP 1: Initialize counters & and i o k=n and i = 1.

STEP 2 Sepj=i+1.

STEFP 3. Deiermine ¢ so that tand = aja,

STEFP 4; Construct the rotation matrix B (8}

STEF 5 Calewlae H:tﬂ'].l.'ﬂu[ﬁ':l and designate the product as the new matrx A. 10wl have a Zéroin
the (¥, ) position.

STEF 6 Ifi<k—2I, then increase i by | and revurm 1o Siep 2; i i= &k — 2. go w Seep 7.

ETEP 7: k=3, stop; the algorithm is completed, If & > 3. then decrease &k by 1, set i = 1, and return
b Step 2.

LUse this algorithm 1o reduce the matriz in Problem 18,7 1o Hessenberg lorm,

18.22 Use the algorithm given in Problem 1821 to reduce the matrix in Problem 1B.8 10 Hessenberg form,
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18.2%

18.24
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Constract © & D when

c=[} 3] ma 0-[F 73]

Rework Problem 18,11 with © =1, 2, 3].
Solve the matrix equatbon AXE = C for X when
=1 2 =% © T %
=33 m=[] 9] e=] ]
Sodve the matrls egustion AXB = C for X when

o 1
21 1 B=|1,1,1] Ce=
3 -3 -

1
1

i
A= |
z =2

1
i
-2

|

[CHAP 18



Chapter 19

Power Methods for Locating Real Eigenvalues

NUMERICAL METHODS

Algebraic procedures for determining eigenvalues and eigenvectors, as described in Chapter 7,
are impractical for most matrices of large order. Instead, numerical methods that are efficient and
stable when programmed on high-speed computers have been developed for this purpose. Such
methods are iterative, and, in the ideal case. converge to the eigenvalues and eigenvectors of
interest. Included with each method are termination criteria, generally a test 1o determine when a
specified precision has been achieved (if the results are converging) and an upper bound on the
number of iterations to be performed (in case convergence does not occur).

This chapter describes algorithms for locating a single real eigenvalue and its associated
eigenvector, The first method presented is the simplest; the last 15 the most powerful. Chapter 20
describes a procedure for obtaining all eigenvalues of a matrix; it is usually packaged with the shifted
inverse power method as an excellent general-purpose algorithm,

THE PFOWER METHOD

Applied 10 a matrix A, the power method consisis in choosing a vector X and forming the
SEQuence

coX, 0, AX, c,A'X, ¢, A'X, ...

where £, €,, €5, . . . are scaling constants selecited 1o avold computer overflow due 1o extremely large
vector components. The sequence will gemerally converge to an eigenvector of A, and if the scaling
constants are wisely chosen, the eigenvalue will be obvious 100, This eigenvalue is usually the
dortinani gigenvalue of A, the one having greatest absolute value, provided such an eigenvalue is

real. The usual implementation of the power method s as follows:

STEF 19.1;  Initialize X, so that its largest component in absolule value s 1, and initialize A, =0 as
the first approximation to the eigenvalue. Specify a desired precision PRE for the
eigenvalie, and the maximum dumber of ieratons 10 be performed; set an ilefation
counter & = 1.

STEF I19.2: Calculate Y, = AX, _,.

STEF 19.3: Determaine the component of ¥, that is largest in absolute value. Denote it as A,.

STEF 19.4; Set X, = [1/4,)Y,.

STEF 19.5: If |A, — A,_,| < PRE, stop; the eigenvalue and associated eigenvector are A, and X,
Otherwise, continue,

ETEP 19.6: Increase & by L. If & is greater than the maximum number of iterations to be
performed, stop. Ciheraise, return to Step 19,2,

(See Problems 19,1 through 19.4.)

The power method will not converge if the dominant eigenvalue 18 complex. (See Problem 19.5.)
Oice convergence occurs, however, the procedure may be attempted again on A = Al to determine a
second eigenvalue-eigenvector pair. (See Problem 19.3,)

Convergenee toward an emgenvalue may occur without an accompanying convergence of the
associated eigenvecior. A component tha oscillates in sign with decreasing magnitude is converging
to zero.

169
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THE INVERSE POWER METHOD

The inverse power method is the power method applied w A, provided the marrix is
nonsingular. The procedure will converge 1o the dominant eigenvalue of A™, the reciprocal of which
is the eigenvalue of A having the smallest absolute value. The associated eigenvector is the same for
both [Property 7.4). The steps are identical 1o those of the power method with the exception of the
folkowing:

STEF 19.2°:  Calculate ¥, = A™'X, _| by solving the system AY, = X, _, using LU decompasition, 1f
this system does not have a unique solution, stop; zero is an eigenvalue of A.

(See Problems 19.8 and 19.9.)

THE SHIFTED INVERSE POWER METHOD

The mverse power method may be used to find all real eigenvalues of a matrix if estimates of
their locations are available. If & is an estimate of A, then A — el will have an eigenvalue near zero,
and its reciprocal will be the dominant eigenvalue of (A — ul)™'. Therefore, if A and X are the
eigenvalue and eigenvecior oblained by applying the inverse power method 10 A = ll, then o+ 1/4
and X are approximations 10 an eigenvalue and eigenvector of A (See Problem 19.11.)

GERSCHGORIN'S THEOREM

Each row of a square matrix generates a Gerschgorin disk, which is bounded by a circle, whose
center i the diagonal element in the row and whose radius is the sum of the absolute values of all
other elements in that row.

Example 19.1 The Gerschgorin disks for

15 34 D
A= =3 132 | —§3

oM -025 2-63

are |z =15|=[3+ it + 0] =5
|z = i3] = |=3 +[1 — i} = 6162
and |z — (2 - i%)| s p0.01] + |-0.25| = 0.26

Property 19.1: (Gerschgorin's theorem) Ewery eigenvalue of a matrix (real or complex) must lie in
one of its Gerschgorin disks, Furthermaore, if the union of N of these disks is disjoint
from all the rest, then there are exactly ¥ eigenvalues in the union of those N disks.

Gerschgorin's theorem is used to estimate the locations of the eigenvalues of a matrix. (See
Problem 19.10.) Moreover, since the eigenvalues of a matnx are presérved under transposition, a
second set of estmates may be developed by applying Gerschgorin's theorem to the matrix
transpose. 5till other estimates are provided by (12.3).
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Solved Problems

19.1 Use the power method 1o locate an eigenvalue and eigenvecior for

5 -1 7
A=|-1 -1 1
T i 5

We choose X, =[1, 1, 1]". Then we have:
First iferafion:

Y, =AX,=[11,-1.13)"
A, =13

X, = % Y, = [0.846154, ~0.076923, 1.000000]"

¥, = AX, = [11.307692, 0.230767, 10.846157]
4, = 11307647
1

¥, = [L.O00000, O 0208, 0.959184]

:-A_}

X

Third iteraiion;

¥, = AN, = [11.693874, —0.061220, 11.816237]7
A, = 11816327
]
X,= &
Continuing in this manner, we generate Table 191, where all entnies are rounded to four decimal
places. The algorithm is converging 1o the eigenvector [1.0. 1]" with corresponding eigenvalue A = 12,
Mote how the second component of the eigenvector oscillates in sign as it converges 1o zero.

¥, = [(L980637, 0005181, 1.000000] 7

Table 19.1
Ineraten I:'-l],!mmlur cOmpanenils E'ig-r.nua.'lu:
AL FRLLE LI WL

(1.Rd62 —Ted 10000 (R L
10000 uing (oesg2 114177
R =(LO0EE 10000 11.B163
LRLLE] 001y 09974 119534
0.949493 =000 10000 11.9HE3
[RLLEl] 00BN 09998 115471
1. D) — (LD (KD 119545
1.0 CL0O0 10000 119948

o o=d I A R W el = D

19.2  Use the power method to determine an cigenvalue and eigenvector for
5 2 2
A=|3 6 3
b 6 9

We initialize by choosing X, = [1.1, 1] Then we have:
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First iteroliom:

Y, = AX, =[9.12,21]"

=2

X, = ;.i Y, = [0.428571, 0.571420, 1.000000]
Second deralion:

¥, = AX, = [5.285714, 7.T14286, 15.000000]"
a,=15

X,= :—w,am}smm.sm&a, 1 000000) "

Y, = AN, = [4. 700476, 7. 142857, 14. 200000] "
A= 14,2

X, = % ¥, = [0.337357, 0.503018, 1.000000]"

Contimwing in this manner, we generate Table 19,2, where all entries are rounded to foar decimal places
The algorithm is converging 1o the elgenvector [1/3, 12, 1]7 with corresponding eigenvalue & = 14,

Table §9.2
lieration Eigsnveciaor compomnsnts Eigenvalue
1] 1.0 1, 0 | CHp

04286  DETI4 (0 Lri] 2100
0,354 5143 10000 15,00
03374 05030 10000 14, 2000
0.3342 10 SN L] 14 0423
03335 {500 1. (N 14,004
0333 D500 IRLLE] 14.00119
0.333F Do S00) 1.0} 14 D0
0. 3353 0, SO0 L0000 14, 0iW01

& o=d IR L e LA kD e

19.3  Use the power method 1o determine a second eigenvalue for the matrix given in Problem 19.1.

Insecad of the matrix A glven in that problem, we consider the matrix A — 121, which has the same
eigenvecions as A but whose cigenvalues are thise of A reduced by 12, One egenvalue of A - 121 i,
thercfore, zero, corresponding to the cigenvalue found in Problem 191, Since zero most likely s mod the
dominant eigervalue of A — 121, we can use the power method on this new matriv to locate another

eigenvalue and cigenvecior. We set
=T -1 7
B=A-121=) -1 -13 1

T 1 =7

and apply the power method to B, The results are summanzed in Table 193, The algorithm s
converging to the eigenvector (1.1, =1]7 with associated eigenvalie A = —15. The corresponding
cigenvalue for the matrix A is A= =15+ 11 = -3 with the same assoclated clgenvesiorn,

Having two cigenvalues of a 3 = 3 matrix, we can produce the third easily, The trace of & equals the
surm of the cigenvaluss, 50 5 + (=1} + 5= 12+ (=31 + A, The lasi cigenvalue of A is thus & =L
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Tabie 19.3
lizration Eigenvectof components Eigsnvalus
1] I.ODO0 (00D 1.0
I 00769 L0000 —0.0TeY = 13000
2 01579 1000 -D15Te —13.1538
3 b.2411 10000 —0.2411 —13. 358
4 L3245 1, (M =0,3M45 =13 4527
5 L4061 1.0 =0.4061 = b3 691
i 07348 1L0OOD  —0,7348 —14. 3651
0 {1 9eh2 L] =0.9662 =14 D1
ki 09361 10D -D.9963 =14. 9407
40 et LDl 0599 =14 S
45 0.9 L0 -0, — 14,947

1%.4 Derive the power method.

19.5

Assume thal the matns A has order @ = n and possesses o real sigenvalues &, A,, .., 4, such that
| 0= [ag| 2oz fay

Furthermore, assume that the eigenvectors W, V,, ... ¥, comresponding to cach of these eigenvalues
form a linearly wdependent set. Then for any s-dimensional vector X there exist consiants
d . d,, .., d,, notall zero, such that

X=d¥W +dN,+ -+ d ¥
Multiplying on the left by A repeatedly, we get
AN =d AV, + d A0V, 4k d AN
AYX
e

ar =ﬂ,'4-',+d,{:—:}*¥',+---+d,{:—'l':]~\’ﬂ

Since A, is the dominant eigenvalue, the sequence converges 1o 4V, . Therefore, the power method will
converge to ihe eigenvector associaped with the dominant eigenvalue provided (1) the dominam
eigenvalee 15 real and of muliplicity one, and {2} the indtial guess X is not a linear combination of the
remaining & = 1 eigenvectors (d, #0). The rate of convergence is a function of the ratio |A,/4, |-

Apply the power method to
4 -8 0
A=|9 -8 0
4 F

and explain the result.

Applying the power method to this matnx, we generate Table 19.4, from which we conclude that
the algorithm is not converging. The reason is that the eigenvalues of A are |, =2+ i6, and -2 — i6,
with the domimani anes hlei.11‘ complex.
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Table 19.4
Ineratson Eigenwector ooamponemts Eigenvalus
1] 1.0 JRLLLL] 1. D00
1 = () 40K . 100 1.0 L0 Exial)
2 05455 1.0:0M00 00227 =4 4000
3 -0 B0TE  —0.4290 1.0 7.0045
50 0,710 10000 —0.3567 =& 0533
51 —0.6641 -0 1957 (RELL] T.AMT
51 0.2492 100000 05958 —4_ 4563
53 RLELI 0820 —0.9414 =703

19.6 A modification of the power method particularly suited to real symmetric matnces is

initialized with a unit wector (in the Euclidean norm) having all its componenis equal.

At each iteration Y, 8 determined as before, but the eigenvalue is approximated as
A, =X, ,-Y, an approximation to the Rayleigh quotient. Then X, =Y,/||¥,|[;. unless
|¥.[l; =0, in which case zero s an eigenvalue and the algorithm is terminated. Use this
modified power method to determine an eigenvalue and eigenvector for

m 7 8 7
T 5 & 5
A=l g 6 10 o
75 9 10

We initialize with X, = [0.5,0.5,0.5,0.5]", which s the vector [1, 1,1, 1] normalized. Then, with
all calculations rounded to four decimal places, we have:

First ieration:
¥, =AX, = |16, 11.5, 16.5, 15.5]7
A=X,0¥, =20.75
¥, ||, = 30.0125

Y
X, = W'."Ju_ = [0.5331, 0.3832, 0,5408, 0.5165]"
1z

Second Heralion:

¥, = AX, = [16.0267, 115285, 16,7097, 15.7601]"
=X, Y, =287
¥, 0, = 30,2879

Y
X, = i = [0.5291,0.3806, 0.5517, 0.5203)"
THEX
Third irerafion:

Y, = AX, = [16,0018, 11.5191, 167170, 15,7759
Ay=X, ¥ = ¥ g7

¥, 0, = 30,2887
Y
X,= v S = [0.5287, 03803, 0.5519, 0.5209)"
2z

Al this poant, the ei'tﬂ'rﬂ:Iﬂr is already accurate to four decimal phl;ﬁ The stapndard powEr
method would take six ferstions 1o achieve similar stouracy,
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19.7  Use the modified power method described in Problem 19.6 to determine a second eigenvalue

and associated eigenvector for the matnx in Problem 19.6.
Having determined that 30 2887 i an eigenvalue of A, we can apply the modified power method o

~20.2887 7 8 7
) |7 -mme 6 5
B=A-J0.2887=| 4 6 22887 9
7 5 o —20.2847

We initialize with X, = [0.5,0.5,0.5,0.5]". Then with all calenlations rounded to four decimal places, we
have:

First ierafion:
Y, = BX, = [(LBS57, = 3.6444, 1.3557. 0 3557)"
Ay = Koo ¥, = ~0L5387
I¥.1l: = 3-?’”
X = -"?J‘"-: = [0.2141, 09117, 0.3391, 0.0850]°
Second Ueratlon:

Y, = BX, = [~7.3891, 27.0345, -9 8380, ~1.8130)"
A=X, ¥, = 20,7275
I ll, = 29.7579
Y
X, = "——l--‘ o [ =0 2483, 0 0085, ~03306, —0.0609]"
] ‘rl |2 I l

Continuing in this manper, we geperate Tabde 19.5. Fouwr-place precision is arcained by iteration
mumber 65, although it takes quite 8 few additional herations before confidence in the resull is
established. The algorithm is converging 1o —30.2785, so a second eigenvalue of the original matrix is
— 10,2785 + 30,2887 = 0.0102.

At this point, bowever, there s no convergence 10 an egenvediar, becanse the sign of each
componsnt i changing at each iteration and none of the components has stabilized. This suggests a third
eigenvalue very close io the second one. An alternative approach o finding the desired eigenvector i
given in Problem 19.%,

Tuble 1%.5
Lieration Eigenvector components Ergenvalus
n 05000 05000 05000 0,00
| 02141 09117 i.3391 0, (RGO L5307
F] — L2483 90Es  -03306  —D.0608 =X T2
3 0.Z788  —i.5a0 L I 7 0.0357 — 23 B4R
&3 4981 —0H2M k2170 -2 - 312784
—(L 4982 (BEN -0 2168 1208 — M0, 27R4
G5 4583 —0.RZ94 L2165 =L 129G =31 2785
— (L4984 06295 —D.Z163 0. E25%4 -~ 3. 3TRS

19.8  Use the inverse power method to determine a second eigenvalue and second eigenvector for

the matrix in Problem 19,2,
For this matrix, LU decompasition yields
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[5 1] ] '| [I: 0.4 III.-I]
L=[3 48 0 and U=|D 1 0375
& 3a 515 [ 1] 1
With X, = [1, 1, 1]", the algorithm yiclds the following:
First iperagion:  Solve LE, = X, 10 oain
, = [0.200000, 0083333, 00952387

Solve UY, = &, 1o obtain

Y, = [0. 190476, 0,1 19048, =0.(Rs238] "

A, = 0.190476

X, - ;:- ¥, = [1.000000, 0652500, ~0.500000]"

Second ieration: Solve LZ, = X, o obtain
T, = [0, 200000, 0005208, -0.327381]"
Solve U, = I, w obain
¥, = [0.279762, 0.127%%, —0.327381]"
A, = =0.32738]
X = %] Y, = [-0.854545, -0 3WE09, 1.000000)"
Third iferation: Solve LE, = X, 1o obtain
Z,=[-0.170909, 0.02537%, 0. 368308
Sobve UY, = &, to obtain

¥, =|-0.273160, 0. 112771, 0,368398]"
A, = . 36RIGH

1
X, = 3 ¥y = [~ 0.741481, ~0.306110, 1.000000"

[CHAP. 19

Continuing in this manner, we generate Table 196, where all entries are rounded 1o four decimal
places. The algorithm is converging 10 an eigenvalue of 1/3 for A7, or its reciprocal 3 for A. The
associated sigenvector is the same for both A™' and A; it is converging toward [—0.7143, -0.2857,1]",

Having produced bao elgenvalues for g 3% 3 mairix, we can obain the thind ope easily, Using
Froperly 7.1 and the results of Problem 192, we have S+ 6¢ =14+ 3+ &, =0 the last cigenvaloe s

alsn 3.

Tabie 19.6

Ieeration Eigenvedar componenls Eigenvalues

FRLLLY (RLLLY 10000

L LY 06250 = 5000 0. 1%0%
-0.8545 =035 10600 —-0.3774
=0.7415  —0.3061 1.0 03684
-0 700 —0.25%M 1. (KNI 03401
07155 -0.I1866 1. (KK {3348
-0. 7145 =285 1. G 0.3536
-0.7T143 -0.28548 |.CHNI) 0.3334
-0.7143  —0.2857 1. 013333

=

O =] Th LA B e R e
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199 Use the inverse power method to obtain an eigenvalue and cigenvector for the matrix in
Problem 19.6.

For this matrix LU decomposition yields

m o o 0 1 07 08 0.7
Tlo0 0 d _ o1 4 1
g 04 2 0 an U=lg o 1 15
701 3 05 0 o0 0 1

With X, =[1.1,1,1]", the algorithm yields the following:
First igeration:  Solve LZ, = X, 10 obtain
E, = [0, 100000, 3, 000000, —0. 500000, 3.000000) "
Solve UY, =&, 12 obisin
¥, = [ =12, 000000, 20000000, -5 000000, 3 000000
A, = 20, 000000

%1’1 = [ =0, G000, | D000, —0, 2500040, 0. 150000]"

Second dermfiom:  S0lve L‘I: - ll o abtain
T, = [0 D600, 14, 200000, —2. T25000, 14.650000]
Solve UY, = &, to obtain

¥, = | - 59, 400000, 98, 350000, — 24, 00000, 14 650000]"
4, = 98, 150000
1

X, = L,

Y, = [-0.6039465, 1000000, —0.251144, 0. 148958]"

Two more iterations yield

X, = [-0.603972, 1000000, —0.251135, 0.148954)"
and X, = [-0.603972, 1000000, —0,251135, 0.148953) 7

with A, = 98.521606 and 4, = 98521698, The fifth heration is bdembcal 1o the fourth, so X, approximates
an eigenvector of A corresponding to the eigenvalue 1798 521608 = 0010150,

19.10 Use Gerschgorin's theorem 1o estimate the eigenvalues of

% -1 4
A=|-=1 =18 2
4 |

The Gerschgorn disks are
|z —29)=|-1|+ 4] =5
|z + 18 =|-1]+ 2 =3
lz—tl=[4 + 2| =6
Simcs A B 8 real symmetric mairis, i eigenvalues must be real (Property 13.3), and the Gerschgonin

disks reduce to the intervals M =r=34, - =r= =15 and -5 = z = 7. Furthermore, these intervals
(desks) are dispoint, so there must be one cigenvalue in each
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Find ihe eigenvalues and a corresponding set of eigenvectors for the matnx in Problem 19,10,

From Problem 1910, we know that one real sigenvalue is lecated in the interval 24 = z = 34, We
take & = I8 a5 an estieate of this eigenvalue and apply the inverse power method o A — 281, A better
estimate for the eigenvalue might be the cemter of the inerval, 8 =29, but an LU decomposition for
A — I is not possible because that matrix has a zero in the (1,1) position. For A = 281, we have

1 L] 1] 1 =1 4
L=|-1 -47 ) ad U={0 1 =0.12"s0
4 6 —42, 134043 oo 1

Applying the imverse power method with these mairices, we obtain, after five iterstions, X, =
0.0, ~0.015180, 0.138939]7 with A, = 0.636563. The corresponding cigenvalue for A s A=28+
1/LA3656) = 20 578,

From Protlem 19,00 we know that & second real eigenvalise lies between —15 and —21. We estimate
this eigenvalue as u = —[9, The LU decomposition for A + 191 has

1 —(L20833 (083333
U=|0 I 2 AETEED

1] L] H

]
0 and
4  LORIAIA  15.234M3

With these matdices the inverse power method  wiedds, after five  slerations, X;=
[0.030495, |, —0.100227]" with 4, =1.335023. The comesponding ecigenvalue for A s —19+
1335003 = =18 2509,

The last real ti.EEl'l'i'l'u.E s berween —3% and 7. We estimate i a8 w = 0, and upEl],- the Inverss power
method direcily o A, Afver five erations we find X, =] -0 1537203, 0104411, 1] wath 4, = 1 470566,
The corresponding cigenvalue for A is 171470566 = 0,680, As a check we note that the sum of the three
eigenvalues is 19 5709 + [ - 18.2509) + (L6800 = 12, which 5 the wrace of A,

48 L[]
L=(-1 0Lomi&?

Prove that each eigenvalue of a square matrix A lies in at least one Gerschgorin disk
generated by A,

Let & be an cigenvalue of A& = [a, | corresponding to the sigenvector X =[x, x;,. .., 1,]" Denote
the largest component of X in absolute value as 1, Then we have

AX = AX (i
and | o[ = ma( x|, |z, .. |2, [) (2)
Equating the Mth components of both sides of (1) gives

) Oy X, = RE

II'I'I
50 I:.I.—ﬂ___}:rq,: E ay, K,
e

It folksws from this Last equation and {2} that

|
3=ty = | 2 e, Sl = Z lan il lleuh= oy
dw inM P

Thus A is in the Mih Gerschgorin disk, so it is certainly in one of them.
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Supplementary Problems

Apply five terations of the power method to
405
A=|1 4 2
104

Lae the power method 1o locate a second eigenvectaor and elgemvaloe for the matnx in Problem 19.2
Crbserve that convergence occwrs even though that sigenvalue has multiplicity two,

Apply the power meibod 1o the malnx in Problem 19,11 and stop after fowr Herahions.

=3 ¥ 1
A= o1 1]
1 ¢ =3

and show that convergence to the sigenvaluee is rapid even though there is no convesgence 1o the second
companent of the eigenvectior. Deduce the valwe o which this sscomd component is converging.

Apply the power method 1o

Drztermine why the power method did nor converge 1o the dominant eigenvalue in Problem 19.16.

1 -2
A=1-3 1 0
4 3 1

Apply the power method to the matnx in Problem 19.6.

-1
A= =1 =11
T 1 5

Apply three iterations of the modified power method 1o find & second eigenvector and sigenvalue for the

malrx i Problem 19.20.
4 0 5
A=|1 4 2
0 4

Apply the inverse power methad o the mairix in Problem 190,

Apply the power method 10

Apply the maxlified paower method o

Apply the inverse power method to

Apply thres iterations of the inverse power method 1o

-1
= -
A=l
3

L=l ==L o}

=¥ N =]
- ek e G
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1925 The matrix in Problem 1993 is known to have an cigenvalee near 9, Use the shified inverse power
method 1o find it

19.26 The matnix in Problem 1918 is known e have an eigenvalue near 2.5 Use the shifled inverse power
methed 1o find il

19.27 A modificaton of the shifted inverse power method uses the Hayleigh quotient a3 an estimate for the
eigenvalue and then shifis by that amount. At the kih iteration, the shifi is A, = XJAX, /XX, . Thus, the
shift is different for cach iteration, Termination of the algorithm coours when two successive A iterates
are within the prescribed tolerance of each other. Use this wvariable shify method on the matriz in

Problem 19.20.



Chapter 20

The QR Algorithm

THE MODIFIED GRAM-SCHMIDT PROCESS

The Gram-Schmidt orthogonalization process (as presented in Chapter 11) may yield grossly
inaccurate resulis due 1o roundoff ervor under Anite-digil arithmetic (see Problems 2010 and 20.11).
A maodification of thai algorithm exisis which is more stable and which generates the same vectors in
the absence of rounding {see Problem 20.12). This modification also transforms a set of lincady
independent vectors {X,, Xy, . ... X, | into a set of orthonormal vectors {4, Q,, . .. . Q,} such that
each vector Q, (k= 1,2, ..., A) B a linear combination of X, through X, _,. The modified algorithm
is iterative, with the kth iteration given by the following sieps:

STEPZ20.1: Setry, =X, 0, and Q, = (1/r.1X,.
STEP202: Forj=k+1, k+2,..., i, set r,er{KI,.QJ.:r
STEP203: Forj=k+1. k+2,..., n. replace X by X, —r,Q,.

(See Problems 20.1 and 20.3.)

QR DECOMPOSITION

Every m xn matrix A (m=n) can be factored into the product of a matrix ©, having
orthonormal vectors for 18 columns, and an upper (right) triangular mairix K. The product

A=QR (20.1)

is the QR decomposition of A. If A is square, then Q) is unitary.

The QR decomposition follows immediately from the modified Gram-Schmidt process applied to
the columns of A, provided those columns are linearly independent. If they are, then the columns of
Q and the elements ¢, (i =) of R are the quantities generated by the modified Gram-Schmidi
process. (See Problems 2002 and 20.4.)

If the columns of A are not linearly independent, then one or more of the ry, values determined
in Step 2001 will be zero, That step must be modified to;

STEP20.1": Caleulate r,, = |X, ||, If £, #0, then Q, =X, /r,,. If r,, =0, then choose Q, to be
any normalized vector which s orthogonal o Q, Q., ..., Q,_,.

In practive, r,, = rarcly zero. Even if the columns of A are lincarly dependent, roundoff will
prodece an r,, value cose to but nol equal to zero, permitting ), to be calculated in the wsual
manner. The resull is however, an incorrect vector, (See Problem 20013.) Thus, whenever an r,,
value is sufficiently small, @, must be checked to guarantee it is orthogonal o the previously
calculated ) vectors; if it is nol, the modification given as Step 20.1° must be implemented.

THE QR ALGORITHM

The QR algorithm is a procedure for determining all eigenvalues of a real matrix A,. The
algorithm sequentially constructs matrices A, (k=1,2,3,...) by forming QR decompositions

Ay =0, R, (0.2
for A, _,, and then reversing the order of the products 1o define
Ay =R, 0, _, (203

181
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Each A, s similar to its predecessor and has the same eigenvalues (see Problem 20.9). In general,
the sequence (A, ] converges to a partitoned matnx having either of two forms:

E :F

['ﬂi:i'-'-"-'ﬁ'f'.&'_ (20.4)
G _:H

and 00---0:bc (20.5)
00---0;de

If form (20.4) occurs, then the element @ i5 an cigenvalue, and the remaining eigenvalues are
obtained by applying the QR algorithm anew to the matnx E. If form (20.5) arses, then iwo
cigenvalues can be determined from the characteristic equation of the 2 = 2 submatrix in the bower
right partition, and the remaining eigenvalues are obtained by applying the QR algonthm to the
matrix G. If E or G is already a 2 % 2 matrix, its eigenvalues are determined from its characteristic
edjuation,

ACCELERATING CONYVERGENCE

Convergence of the QR algonthm is markedly accelerated by a shift ar each iteration: If the
matrices have order n % n, then the element in the (1, A) position of A, _, is denoted as 5, _,, and a
QR decomposition is constructed for the shifted matrix A, | = 5, L. Equation (20 2) is modified 1o

Ay 5 =0 R, (208
and (20.3) is replaced with
A, =R, Q,_,+=5,_1 (207}

Equatkons (X016 and (20, 7) constitute the shifted QR algorthm. (Sec Problems 2005 through 20.8.)

For matrices of large order, significant computation time s also saved by first reducing the given
matrix to Hessenberg form and then applying the shifted QR algorithm to it

At cach stage the QR {or shifted QR) algorithm is halted once the zeros in form (2004 ) or (20.5)
are obtained 1o whatever degree of precision is specified by the user, If the cigénvalues are real, only
estimates are needed for them. These estimates are then incorporated into the shifted inverse power
method (Chapter 19) to quickly obtain better values for the eigenvalue and corresponding eigen-
vEeciar,
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Solved Problems

20.1  Use the modified Gram-Schmidt process (0 construct an orthogonal set of vectors from the
linearly independent set {X,, X,, X,} when

e

roo = ||X, 0], = V8T = 7810250

1 [ 4 3 f JT T
= — = - == 1
Q, . X, e 72 vl [-0.512148, 03584111, 0.768221]

Fa= X, 0,) = ;'.;1 - 2.43270]
r= (X, 0,) = ?ET = 0.128037

X, =X, = r 0, =[198/61, - 240/61, 252/61]7
Xye=X; = r 0, = [126/6], 18061, —6/61]"
Second ieration  (using wectors from the firss iterntion);

60,708
rax = 1%l = V198761 Y + (=240/81 F + (252/61) = o7 = 6.563686
q=-1-x-r[ 98 4 762 ]r i
Sl Y m Ve TR = (0494524, — 0599413, 0.620395]

324
Fip = 0K, Q0 = — m = —ip BMEI2

126/61 04945247 [ 2.465753
XyX, = rpfd, = | 180061 | - (—0.809222) —0.599423 | = | 2.465753
~6/61 0.629395 | | 0410950

Third ierafion (wsing the vector from the second iteration):
Py = V(2 A65TS3)F + (2.465753)° + (0.410959)° = 3 511234

Q, -rl X, = [0.702247, 0.702247, 0. 117041

3

An orihonormal set is (G, Q.. 0, ].

20.2 Construct a QR decomposition for the matrix

-4 22
A= 3 -3 3
6 6 0

From Problem 2001, we have
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TRIORD 2432700 Oun2e0ay
(1] 6. 363680 —0.B00222
(1] ] A5I2M

=0.512148 04053 0LTO224T
=] LI —0SEaIE 0703247 and R=
0. 7aE221  (LA20305 (117041

A direct calculation shows that A = QR.

Use the modified Gram-Schmidt process to construct an orthogonal set of vectors from the
lincardy independent set (X, X,, X,. X,} when

0 i
1 0

11- 1 x;"’ 1 x_-,-
1 I

"u'"r-l": -ﬂ

1
1
X,= 1
L]

— e

First ieration;

Q, "rl: X, -[ﬂ"'-.-:!_j":lﬁ' 1.—‘:3];-
o= (%00 = 5

o= (%0, = s

o= (%00 =

K+ X,—rQ, =1, -2/3,1/3,13)"

X, X, -r,Q =[1,1/3 -2/3, /3]

K=K, =r, Q. =1, 1/3, 173, -23]7
Second ieration  (using vectors from the frst teration):

L e "x:": -‘Il'r“]}*"" 23+ [|-"3-]-'=‘+I:|:|'3-:I:I - ?

1 S 1 11
o= % 7 v v vl
':s'{xrqz}'ﬁ!
= (%000 = 77

[ 1] [ 3-.:'1?3' [ 357
P O T I B Y T Y T
Xl |78 AwviE | T -ars
L 143 IvIs] L 1/5)

B [ a3 [ 350
B w2 | -enTE 35
X, ~X,-r.Q, | T VRl Vs 1/%
| 273 ] [ IR L-4/8)
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Third ireration  {using veciors Irom the second iteration):

rra = UK, = VTSI (3757 + (415 = (1157 = Yoo
1. [ 3 3 =4 1)
ﬂ=’;"=-[?§-m-?ﬁwﬁal
2
Fia {xl ':.h:' ?E
s v 1] 7
| ovs|_ 2 | wWEB|_| w7
XX nd =l 5|~ 7 | —av s 7
~4/5 14735 ~6&i7
Fourth iterativa  (using the vector from the third ileration):
oo™ N0 = V(3T) + (7Y + {37 +(-6/T) = @
B I = |
Cre ot WWERVET VB VE D T LVT VT T AT
An orthonormal set is {Q,, Q.. Q,, Q,}. (Compare with Problem 11.7.)
.4 Construct a QR decomposition for the matrix
a1 1 1
1 011
A=y 101
1 1 10
Using the resubls of Problem 20,3, we have
0 IWTE Al anT LT B TV B TV B TV
Q- VI =W AW T 4 Re| " V33 WIS 0TS
IWVT IwWTS —a B | 00 VIS oawvE
PR T Wi LIS T I T 0 ] 0 Ve
A direct calculation showss that A = QR.
0.5 Apply the shifted QR algorithm to
_13 1
A=l s]

Using (L&) and (20.7), we calulate the following:

Firnd iferafing:

a7l ok,

a.=nuu,=5r=[

2. 236064
0

~00.804427
0447214

I

~0.804427 (0447214
0447214  D.894427

J+

— 0L E9442T DM’-‘EH][E.EW — 0594427

0447214 0.H94427 L] 0447124

L of_

LU |

1

26 02
n: 54

185
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Secoad feranion:

A, -S4p=| 28 02 ~0.997459  0.071247 [z.mgm —u.!m-in

0.2 I:IJ"']'""' 0071247 0957459 0.014249

2E0T1H -0, 190402 [ —0.997450 0.071247 10
A== RQ, + 540 [ 0 u.mde D.A7T1247 11997459 "“[n |]

_[z.mm n.m‘.ums]

(001015 5.414213

Third iteration:

—21.828426 [I.mm]:-]_ 0.8 _{—I.E[l:mﬂ 0.000359 [z.mdz‘.* 0001015
0001015 ] ¥ 0,000359 1000000 o €1 D000

2428427 '-'U.I.I.III}IS]I'—I.[I'FII]'II LR R
1] RLELLET] 0000359 1 OO0

A, - S41203 - |

A, = R0, + 54142141 = [

_ [1‘.5!-5?3’& e ALLLLLE
0000000 5414213

AL this point we have gencrated form (247, I follows that one eigeavalue 15 2414213 and the
second is 2585786, (Observe the roundolf error o ), which resubls in columns that are only
approximately unil weclors. )

+ ﬂ.auzu[:} "ﬂ

0.6  Apply the shifted QR algorithm o

5 212
Ad-r 3 f 3
6 6 9
Using (20.6) and (0.7), we obtain the following:

First geration:
-4 2
l‘u -9I= 3 =3 i|=- q"B'u
[:3 6 0

O3R4101 0599423 0. T02247 1] 6563080 —0.808222
nreE2dl DUG2IASE D170 0 0 1512

& already shown in Problem 20.2. Then we have

5.032THT DABATAG T BEGE
A, =RQ, =0 =| 1890520 4.5%254 4.514615

|:—{I.511!I-1:FI 0494524 ﬂ-?ﬂﬂﬂ][?.ﬂll}éiﬂ 2432701 I.I.IEEIHT]

2687405 20052 S4Mmse
Second ierafion:

-3 378172 2484736 T DR
A, = 94109500 = | | HW520 -4.854M05 4514615 |~ Q R,
2607406 2 AWM ]
=0715428 0134590 ﬂ.ﬁﬂ-ﬁﬂﬂ“i-ﬂlﬁ? =2 AbR4h  —3340716

040240 -0.722052 05617 ] S.MITIE -2.293714
M5T1X6  06TT662  D.46d0T 1] 1] 7477730

3030498 GLISFRR ﬂ.!ﬂ]?ﬂ]

A, = RQ, + 9410959 =[u..m.w5 1994775 1983808
4271696 5067376 12873727

Continging in this manner, we generibe
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(3074780 0197407 4602283
A, = | 0IZTIST 3043844 33535510
| 0405644 0458158 13681376

[ 2995229 -0.005512 -4.152640
A,=| 0003362 2996115 -2926534
| 002647 D413 14.00RG5E

[ 2000006 - 0000004 —4. 1661807
Ay, = | 0L 20T — L HIEGY
| O0000M0 0000011 14000007
[ 00000 - 0000000 —4 166150
Ay = — LN B NN — 3 GFEGH
| OO0 0000000 1400000 |

Convergence is cslablished to the number of decimal places shown. One eigenvalue, 14, appears in the
13.3] positeen; il s obwsois thal the other two sigenvales aré 1 and 3. {fﬂmp.arﬂ wilh Problem 19.2.)

0.7 Apply the shified QR algorithm to

1 3 2 -1
o1 2 -3
"‘"‘:ill—l
2 -2 1 2

After fiftegn nerations of the algorithm, we obain

—1.942221 05619 1LIM6IED 00234
=1.27TH2Te  =1.310739 O.HTHGBGI 1. 335287
0000000 OLOD0M0 4639537 -2.951749
0000000 — 00000 0630294 3613422

Ay, =

which has form (20L5), The characteristic eguation of the lower right 2 = 2 matrx

46MIFT 2051749
LA3MIZ94 3613422

is A7 — 82520504 + 18425075 =0, which has as its roois the cigenvalue estimates 4. 126480 = /1, 263430,

The upper left 2 = 2 submairix has the characteristic equation 4” + 3. 2529604 + 3 221466 = 0, which has
&5 ils roots the sigenvalue eshimates — | G26ER0 = i0, 758565,

20.8  Apply the shifted QR algorithm 1o

'ﬁ-{l-

-1 08 -l D
LA OO LM e
—
L= ]

= = L T

Afier four iterations of the algorithm, we obtain

J0ZERG0 000230 0006981 -0, D000
A - DO40230 0021553 OuGess  (LODOOHD
N 00a%E1 000466 DEIITES  ~ 0000000
(LOO0000 = 0.000000  (.0DNK0 3, BSA057
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This matrix has form (30 4}, w0 one eigenvalue estimate 15 3858037, To determine the others, we apply
the shified QR algorithm anew 1o

MRG0 0.049230  U006%E1
E,=| Ms9230 0021553 (0096460
| 006981 096466 1LES1TEG )

Affer two ierations, we obiain

[ 3028686 0.000038 000000

E,=| D00003E 0000150 (00000
| OO0 0.000000 043107 |

s0 & second gigenvalue estimate i3 0843107, The characteristic equation of the upper lefi 2 = 2 submatrix
in E, 8 A% = 30 2988364 + 0.307430 = 0, which can be solved explicitly o obtain 30, 283686 and 0000150
as the two remaining eigenvalues, (Compare these valees with those obtained in Problems 1906 and
19.7.)

Show that the shifted QR algorithm 15 a series of similarity transformations that leave the
cigenvalues invamant,

Since the () matriy in any QR decompodiing is unilary, il has an ifverse. Therefore, (206 ) may be
rewrillen a5

R, .=0Q0 A, , —-5,D
Substifuting this equation inlo (20.7), we obtamn
A= QA — o 0 e T= 00 A Q- 0000, )
=0, A, Q.
Therefore, A, s simiar o A, . and the invariance of their eigenvalees follows from Property 1001,

Working to four significant figures, show that the unmodified Gram-Schmidt orthogonalization
process does not generate an orthogonal set of vectors when applied to

1 i 1
1.01 1 Ar
Xi=1y N=lim| %=
1 i 1.0

Using the algorithm given in Chapier 11 and rounding all siored numerical values to four significant
digits, we obiain

VX, X} = 2.005
o Q= 2_%.,5}:, = [0.4988, 0.5037, 0.4988, 0.4988]"
Then ¥, =X, — (X, Q,}Q, = X, - 20050,

= [—0.9400 % 107*, =0.9919 = 1077, 0,9906 = 10°F —0.9400 = 10 *]7

and V¥, ¥, =0.1802 = 10

i -7 -§yr
=y = [-0.6708 x 10°F, —0,7075, 0.7066, ~0.6705 = 10
®:= ez < v " |

Lastly, Y, =X, - (X,.0,)0Q, - {X,.0,}0Q; = X, - 20050, ~ {-0.1438 = 107" 1,
= | -0 1904 = 1077, —0.2009 = 107", 01007 = 10", 09810 =40 )"
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.12

and VY, ¥, ) =02452x 107"

1 -7 ¥
i 'qj m{ ‘r:, I [lTFﬁj = 1l b 'I]'.E:Iil'i. 0.4 I[I".'. I.'.I.l'IIII.]

For these vectors, {,, 0, } = 0.8672, which is not near zero a5 it should be, Similar resulis are obained
wherever the components 1.01 are of the form 1+ 107" and all numerical values are rounded 1o 2k
significant digits.

Redo Problem 20010 using the modified Gram-Schmidt process and show that the results are
heiter.
First itencbion:

rp=||X,]|; =2.005

Q, = 1'_%10_5 X, = [0.4988, 05037, 0, 4988, 0, 4988

P = 0K, O = 2008

Fin = (X;, Q) = 2.005

X, =X, - 20050, = [—0.9400 = 107°, =0.919 x 107° 09906 = 1077, <0.9400 = 107"

X, —X, - 2.005Q, = [—0.9400 = 107°, —0,9919 = 1077, —0.9400 = 107", 0.9906 = 10777

Second lteraiion:
rar = I[N ||, = 0.1402 = 107"

T T oL =\~ - - 1T
Q= i gt N = [T 0.6705 % 1077 —0.7075, 0.7066, ~0.6705 x 10°7]

Py = (X, Q) = 0.6885 x -
X, X, — 0.6885 = 1077, = [0.4784 = 10°%, —0.5048 1077, —0.4959 = 107", 0,952 107)"
Third iferafion:
= X, =0.1221 = 107

1
Q- im=

=[0.3918 = 107%, —0.41M, —0.4061, 0.E151]

For these vectors, {Q,, Q,) = 0,00003872, which is much better than the result obtained in Problem
20,10 Al other inner products formed from the vectors obtained here are at least accurale as those
formed from vectors found in Problem 20, 10,

Show that the modified Gram-S5chmidt process yields the same vectors as the unmodified
process in the absence of rownding

The proad is by induction, (), is the same for both methods becawse il is compuled in exactly the
same way in both algerithms, Assume that “the two methods provide identical resulis for
Q,.Q,,....0Q,. We need only show that they do so for ,,, as well,

I Eollows from the induction hypothesis ohae @, Q. .. ., @, are mutually orthogonal because they
are ihe veciors obvzined from the unmodified Gram-Schmidi process, Lei X' (i = j) denobe the value of
X, afier it has been altered by j iterations of the modifed process, Then, for the modified PrOCEss, we
Biave
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Ii‘.‘.=ﬁ*.|—{x.-.rﬂn:'uu {7}
XU =x -0 00, 2}
x?.lu = xl:::ll - {x:l-lu- 0,0, (3}

xEﬂI. - 11"-1--|.I . I:xi"-|-|I I'- QI :"L
Substitwting (1) inte (2) and poting that Q) and @, are orthogonal, e obtain

xtz:llq Iia-| - I:x'ld-ll Q|:IQ| - I:[xl-| - l:“x-r- U|}Q|]1ﬂ}}Qj
= ?E._q - ':Ipl-'uu}ql - {xuu-q.z:'u:-"' txhn“-“'-?l-ﬂﬂﬂ:
=xu..| _{xt-|lQ|}Q| - ':?-'...“ﬂ'z:'l'.';

Substiuning this resalt imto (F) and noting thar ), & ortbogonal w both @, and Q,, we obiain

"tll':ldli = wal {xt- |-QI :I'ul - ':Iu-l-':".:-}'ﬂa - ':{x'l vl {xtal'-ﬂl}Ql - ':'In.q--.']';-:"l:].uq:"u;
-xi'rl - |:!Jlll'ul-:l‘ll. - {I' -Jrﬂk}q.]' - I:..la PR QJ:'Q; T {!i-- |~ﬂ|]":'1|~ u:}Q_l

* {xtdlr ':':]'{Q'p QI}Ql
o TR PO FRLE NEh P o TRL I P TR o AT

[EH]

Continwing in this manner, we find that X, is identical to0 Y, ., 16 the unmodifed Gram-Schmidi
process, and, since ;| 5 obained in one method by normalizing X™' and in the other by nosmalizing
Y.t fodlows that @, is the same in both methods.

1 01
A=0 1 1
112

working to six significant digits. and show how roundoffl efror can generate an incorrect
matrix when the columns of A are linzarly dependent.

Construct o QR decomposition for

Designate the columns of A as X, X,, and X, from left 1o right, Then:

First ireranion:
ry =10 = vE = 0041820 = 100
Q- ?L X, = [0.20710%, 0, 0, 07108]°
1]
rp= 0K, Q) =0,T07108
Fop= 0K, 0 = 0,202133 = 00!
X, +X, — 0, = [0.500003, 1, 0.499997)"
X, X, =r,Q, =(-0500012, 1, 0.499988]
Seconad teraton:
= [|Xyll; = 0122474 = 10°
Q- ,i X, = [—0.508252, 0816500, 0.408247)°
x2

Fa = 4K, Q) = 0122475 = [0
X,y =Xy = ryy 0y = [=0.536300 > 1077, —0K37500 % 107°, —0,125133 = 107"
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Third iferafion:
Fop = ||, ]]; = 0o 159839 = 10°°

Q,= ..-i X, = -0.335525, —0. 523965, —'!CI.‘.’E:.1£J!I.’5'!iI]|r
[1)
Observe that r,, 18 very close o zero, and the las X, vector is very close s the zero vector; if we were
il rounding intermediabs results, they would not exist, However, because of the rounding neither is
zerey, and 0, can be caleulated with what are, in effect, emor terms. The result s 2 vector which is not

orthogonal 10 either @, or Q.

Supplementary Problems

14 Constroct QH decomposilions for (he following matrices:

[a) '—:, 4 2] (k] F; 3 —2] ic) [ﬂ -1 ﬂ]
-4 1 1 =1 =1 o -1
200 -2 -1 0 -1 0
- - - ¢y [0 -1 0 0 (fy [s80 o %W 0
(d) ﬁ _':I' _ﬁ 10 -1 W w660 330 330
—4 28 0 0 =1 i =1 il =25 440 —-I5
- 0 0 -1 D 0 -880 -8558 O

In Problems 20,15 theough 30,24, wse the shifled QR algorithm to determine estimaies for all cigenvalues of
the given matrix

(4 4 2 8 3 -2 2 -1 0
a5 (4 4 1 .16 i 5 -1 1y -1 2 -1
L2 1 B =

2 -1 4 0 -1 2
2 -1 0 0] |0 0 W 0
M 42 —131 —Hh

! B 2 =1 0 Ge0 T 3E 3
w5 H e 33 = T2 B
| 0 0 -1 2 0 -8 -K.558 110

re -2 2 1 0o 1 0 0 1 0 -1 0

2 B -1 0 ¢ o 1 0 oz o 4

e T TS N R A T T A S R S

-1 1 01 -4 =3 -5 =3 0 -7 0 -4




Chapter 21

Generalized Inverses

FROPERTIES

The {Moore-Penrose) generalized inverse (or psendoinverse) of a matrix A, not necessarily
square, is a matrix A" that satisfies the conditions:

iy AA" and A'A are Hermitian.
M3 AA A=A
(3 ATAA™ = A"

A generalized inverse exists for every matrix. If A has order m % m, then A™ has order m * n and has
the following properties:

Property 21.1: A" is unigue,

Property 21.2: A" =A™ for nonsingular A.

Property 21.3: (A"} = A.

Property 21.4:  (kA)" = (1/k)A” for k=0,

Property 21.5:  (A")" =(A")".

Property 21.6: 0" = 0.

Property 21.7: The rank of A" equals the rank of A.

Property 21.8:  If P and Q are unitary matrices of appropriate orders so that the product PAQ is
defined, then (PAQ) = Q" A" PY,

Property 21.%:  If A has order m % &, B has order k = n, and both matrices have rank k, then
(AB)" =B A"

Property 201.10:  For square matrix A, AA” = A'A if and only if A" can be expressed as a
polynomial in A

(See Problems 21.13, 21.14, 21,17, and 21.36 to 21.39.)

A FORMULA FOR GENERALIZED INVERSES

The following procedure will provide the generalized inverse for any matrix A;

STEP 21.1:  Dwetermine the rank of A, and denote it as K,
STEP 21.2: Locate a K = K submatrix of A having rank K.

STEF 21.3; Through a sequence of elementary row and column operanons of the first kind (E1),
move the submatrix identified in Step 21.2 into the upper left portion of A, That is,

determine
A, A,,}
PAQ = ['-.
Az + Ap
where P and () are each the product of elementary matrices of the first kind, and A, is

a submatrix of A that is nonsingular and of rank K. If no elementary operations were
necessary. then P and ) are identity matrices. &, A, . or A, may be empty.

STEP 21.4: Set B= [:] F=A;'A,;. and € = [I,|F]|, where I, is the K = K identity matrix.

192
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STEP 21.5: A' =QCM(cc™) (B"B) 'B"P (21.1)

(See Problems 11.1, 21.2, and 21.16.) When the columns of A form a linearly independent set of
vectors, (21, 1) reduces o

AT = (A"A) A" (21.2)
(See Problem 21.3.)

SINGULAR-VALUE DECOMPOSITION

Equations (21.1) and (21.2) are wseful formulas for calculating generalized inverses. However,
they are mot stable when roundoff error is involved, because small errors in the elements of a matrix
A can result in large errors in the computed elements of A”. (Sec Problem 21.12.) In such situtations
i better algorithm exists,

For any matrix A, not necessarily square, the product A™A is normal and has nonnegative
eigenvalues [see Problems 13.2 and 13.3). The positive square roots of these eigenvalues are the
singular values of A Moreover, there exist unitary matrices U and ¥ such that

Au[n‘:']v" 2.3
e PR (2.3

where IF is a diagonal matrix having as its main diagonal all the positive singubar values of A, The
bleck diagonal matnx
2 = |ammafure

LU
has the same order as A and, therefore, is square only when A is sguare,
Equation (21.3) is a singular-value decomposition for A. An algorithm for constructing such a
decomposition is the following:
STEP 21.6: Dtl!rﬂliﬂt the eigenvalues of A"A and a canonical basis of orthonormal eigenvectorns
for ATA.

STEP 21.7; Comtruct I as a square disgonal matrix whose diagonal elements are the positive
singular values of A

STEP 21.8:  Set V=V, |¥,], where the columns of ¥, are the cigenvectors identified in Step 21.6
that correspond to positive eigenvalues, and the columns of ¥, are the remaining
eigenvectors.

STEP 21.9: Caleulate U, = AV,D "

STEP 21.10: Augment onto U, the identity matrix having the same number of rows as U,

STEP 21,11 Identify those columns of the augmented matrix that form a maximal set of lincarly
independent column vectors, and delete the others. Orthonormalize the columns that
remain, and denote the resulting matrix as U,

If A is real, then both U and V may be chosen to be orthogonal. (See Problems 21.4 and 21.5.)

A STABLE FORMULA FOR THE GENERALIZED INVERSE
Decomposition (21.3) generates the numerically stable formula
-1
AL =1r[_!}.._-.:..?]|_|"
LI ]
which can be simplified to
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A =v,p'U’ (21.4)

where ¥, and U, are defined by Steps 21.B and 21.9, respectively. For the purpose of caloulating a
peneralized inverse, Steps 21,10 and 21.11 can be ignored. [See Problems 21.6 and 21.7.)

LEAST-SQUARES SOLUTIONS

A least-squares solution to a set of simultaneous linear equations AX = B is the vecior of smallest
Euclidean norm that minimizes JAX - B||,. That vector is

X=A"B (21.5)

When A has an inverse, (21.5) reduces to X = A 'B, which is the unique sclution. For consistent
systems (see Chapter 2) that admit infinitely many solutions, (21.5) wdentifies the solution having

minimum Euclidean norm. Equation (21.5) also identifies a solution for inconsistent systems, the
one that is best in the least-squares sense. [See Problems 21.8 through 21.11.)

Solved Problems

2 2 -2
A=l 2 1 -1
-2 =1 6

Uging Steps 20,1 through 21.5, we frst deteérmine that A has rank 2. A 2 = 2 submatrix of A having
rank I is obtained by deleting the second row and s=cond column of A This submatnis can be moved
inte the upper left position by interchanging the order of the second and third rows and then the second
amd third columns, Then, setting

21.1 Find the genéralized inwérse of

1 0 0 2 =21 2
r-q-[ﬂ i |] gives us mq-[_-_-_z__ ﬁ_:—z]

¢ 10 ITTTYTTTY
: -2 2
where '*'ll-[_z ﬁ.-| I"II=|:_I] anad "-“:[1._1!
amd A, has rank 2. Then
2 -1
= -2 fi = &t _[ﬁ-‘ﬂ 1-'8][ 2 _[I] Do
Bl ] FEAiAa={54 s -1] o] w C [n 1i0
2 -2
=t 2 0] W2 0 wgy -1 ] 12 =2077" 112 532
so (CCT) En} |l 'En |I and  (B7B) T [5;31 132
and A" =Mo"y BB 'BYP

_[['J ‘ fl{; 'Ir|1n: o)[ 1132 sz 2 -2 3][15. : 'i']

01 olly o o 1 5/32 3Rl -2 6 -2 010
G Ale LR

=|3/l6 Il6 1B

I'g8 s 14
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21.2 Find the generalized inverse of

oo o2
1 2 2 3
The matrix has rank X A& 2 = 2 submatrix of & having rank 2 (but not the oaly one) is obtained by
deletimg the second and fourth columns of A. This submatriz can be moved into the upper left position
by interchanging the order of the second and third columns, Then, setting

A

RER

f1 0 Joo1 oo

"‘[u 1] and  Q=1p § poq

1| B T

i 2 o1

we get mo=[} 3i5 3] wm a.=[] q

amd with both A, and A, empty. Then

B"‘"‘” é] ""‘:""“_'[di é][g H={; _1} c=[lll ?Hﬁ _1]
o w3 e e[ 3 22
and AT = QCMCC"y Y (BYR)BYP
1Luoool 10

I LR A i 0 1|52 En'zﬁ-H' 5 -EH:I:I 1][I i
a1 a g Iﬂ‘liiﬁﬁflﬁ—ztlzlﬂlj
0o 14—t 2
[ —Ri26 50
_ 6026 1M
- 2k 226
L 142 1026
21,3 Find the generalized inverse of ) .
-3 1
-2 1
=1 1
A= D 1
1 1
2 1
L 3 1)
Smce the columns of A ane linearly imﬁ:p:ru;l.l:nt,_ we e (2F), Then
e _[28 0 we-1  [12E 0
“‘{n?] and  (ACA) [n 117

v ai- W o [~328 -IZ8 -1/ 0 1i3B 228 3(2A
i A (ATA)Y A" = 147 iy R S W A 0 B i B W

21.4 Construct a singular-value decomposition for the matriz in Problem 21.1,
We use Steps 21.6 through 21.11.

12 12 -
STEP 2.6 A's = [ 1212 —m]
—-H -H 4
which has eigenvalues 64, 4, and 0 with corresponding orthonormal edgemvectons
-1 13 -2
X, =[ =16 X.=[1n3 x.-[ 1VI
208 13 0
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STEP 21.7: n-{""f &]'Iﬁ g}

~1vE 143 -113
STEP 218 V| -1nE 13 and  Wy=| 13 with  ¥W=[¥,|V,]
e 13 i

22 -2 -InvE I e -1vE 1T
STEP 21.9: v=avpe| 22 2fl e I 0=l ivE v
-2 = 6l 2E I3 2B IT

STEP 2110 Augmenting the 3 3 identity matrix onto U, we generaie

-IWE IV 1 00
S AT WA T I 1
e W3 o0 o0

STEP 21.11: The first theee columns of this matniz forem a masimal set of Esearly independent column
vegiors, Discarding the last two columns and applying the modified Gram-Schmidt
process o the first three columns, we obtain

-8 1T 3
U=| -1 13 1ng
2wE I3 ]
which, in this case, is identical to ¥. A direct ealculation shows that
& 00
A=¥0 2 oju®

oo0oan

Construct a singular-value decomposition for the matrix in Problem 21.3.
Using Steps 21.6 through 21.11, we first form

AYA -[?’g EI.

1.|.||:.|.:|1I has eigenvalues 28 and 7, with corresponding orthonormal eigenvectors X, = [1,0)" and X, =
[, 1]". Then

VIE 0 I 0
D'[ i v"f} and ‘r':[u 1]
¥, is empty, 50 V=¥, and
[~3 1] -3V 1T
-2 1 =2vIE 1T
-b -1IE 1T
- O T

At :[1] I][ 0 1rﬂ]' w’!g :ﬁ
F 2H AT
RN | IR 1T

We augment U, on the sight by the 7 7 identity matrix and then determine that the first seven colummns
of the augmented matrix form a maximal set of Wnearly independent colamn vectors. 'We discard the last
two columns of the augmented identity matrix and apply the modified Gram-Schmidt process to what
remaims, generating
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(A 1T 1T 0 0 0 0
-2 1T - ER 10T i i il
-InE W7 - R -V InT0 i 0
U= o IwT —anE =S TI0 -0 a0 0

138 AT =1EID -2TI0 =10 4Tl 1T

IR 1T WEH 1T 0 =1H =208
| anE T AnER 4TIl a0 2VE 1IE)

A direct calculation shows that

vl‘l

sssasjo

f.ﬂ:':?-:l:l:lé

21.6 Use (21.4) to calculate the generalized inverse of the matrix in Problem 21.1.
Using what we have already found in Problem 21,4, we compute

wevorur= [ ING NI 0 JIE g R 3 1)
e 1 ! f 1ig 118 1id4

21.7  Use (21.4) to calculate the peneralized inverse of the matrix in Problem 21.3.
Usimg what we have already found in Problem 21.3, we compute
A" =¥.D UM

_H r”[uﬂi -AnE —2vEB -IWIEE 0 Wl v AR

m"'.'-'” 1T LT T AT T T

_[—3.115 -3 -1/2H 0 1/ T/IE MM
Lo 17 [ A i A W S

21,8 Solve the following system of equations in the least-squares sense:
e, + 26, = 2K, = 1
2e, +2u, - 2a, =3
-.Itl _:Jz +6.I_|,- I

This system is inconsistent. Writing it in matrix form and then wsing (21.5] and the resubis of either
Froblem 21.1 of Problem 21,6, we obtain

Jrle Mie LR |
=36 3e 18 3[(=]1
g 18 Li4dLE I

Therefore, x, = x; = x, = | is the solaticn in the least-squares sense.

21.9  Solve the following system of equations in the least-squares sense:

B, +ix, =1
I +II; +2I1+‘3l4'2
Writing this system in matrix form and then using (27,5} and the resulis of Problem 1.2, we obiain
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-BI26 5126 113
x| 16026 10026 []I_ 213
2026 206 L2 13
12126 —1/26 513

Thiss, &, = /03, &, =2/13, 5, =303, and 5, = 5713

2110 Verify that the solution oblained in Problem 21.9 is the solution of minimum Euclidean norm

for the set of equations given in that problem.

Interchanging the order of the e equations, we oliain the system
X + 2::2 + ]r, +3x, =2
Ky dir, =1

whose coefficient matriz is in row-echelon form. Using the techmigques of Chapier 2, we determine the
solution to be

-2x;, + 1,
Iy

X=] -2p,+1 (r)

Ty

with ¥, and x, arbitrary. For tho vecior,
"!H; ==z, 4 x,F xl b =2x, 4 1 b2l = xd b bal = drx, =l 1
The minimum of this function occurs &t it eritical points. Sewing the first parial derivatives equal to
zefo, We get
1z, - 45, =0
—dg, +11x,=4

which has the unique solution =, = 2/13 and z, = 5/13. Substituting these valwes in (1) gives us the same
solidon as we oMained in Problem 21.9,

Sales data were taken over a seven-year peniod of nme and coded so that the midpoint of the
pericd coincides with time ¢ = 0. The results are given in the following table (in hundreds of
thousands of dollars):

Tim:|—3—z—|n|13

S:It-.-.l]ﬂl 15 1% 27 & 34 41

A graph of these data reveals a near linear type of growth. Find the equation of the straight
line that best fits the data in the least-sgquares senss.

A stradght line bere would satisfy the equaton
S=mrsbh (1
where % denotes sales, 1 denoves time, and o and b are constants to be determined. Substiting each
data pair into Eq. (1) yields the system:

=Ja+b=10

—da+b=15

=t b= 10

h=127

a+h=1§

lat+h=34

g+ b= 42
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Writing this system in matrix form, and then wsng (21.5) and the results of either Problem 21.3 or
Problem 21,7, we obtain

10T
15

_[a]=[3s s -z 0 1o 228 ans » [
X=Inl=l w17 wT o uT o uT 1T T = 24

34
42

The equation of the line that best fits the data in the least-squares sense is § = 40+ 25,

Working to four significant digits, show that (21.2) is numerically unstable when applied to

i

Rounding all stored (intermediate} mumerical quantities to four sigadicant digits, we caloulate:

n"a=[§'$ g‘ﬂ] o det AMA = —1.600 x 10~

) - 1 3008 —3.004 [-— LHED = [0 LHTH * m’}
g L} - =
U WAL= et L -1008 3000 1878 % 10*  —1.875 % In*
TR P et 55|.1]
and A" = (ATA)TA [ W0 X 4

This compares unfavorably with the actual generalized imverse
A _[ 125.5 1155 -150
-125 —125 250
calculated without rounding off. Simidasly poor results are obained when results are rounded to k digits
and the componeat 1004 5 replaced with the more general [+ 4 = 107"

Show that the generalized inverse i3 unigue,

We amsume that I} and E are two generalized inverses for the same matrix A and then show that
D= E. Since both I and E are assumed 1o satisly conditions 11, 12, and 13 we know that DA, AD, EA,

and AE are all Hermitian and that
Ak = 4 DAD = [y AEA = & EAE = E

Multiplying the first of these eguations on the right by E, we obain ADAE = AE, rom which we infer
thai

AE = (AE)" = [(AD)[AE)} " = (AE)"(AD)" = (AE)(AD) = (AEAJD = AD
Multiplying that same sguation on the left by E, we obtain EADA = EA, from which we deduce that
EA = (EA)" = [(EA)(DA)}" = (DA)"(EA)" = (DA)(EA) = I{AEA) = DA
Then E=EAE=(EAJE=[DAJE=IMAE)=DAD =D

Show that of P and ) are um'lii;}' matnices of appropriate order so that the product PAQ is
defined, then (PAQ)" = QYA P

Let G = PAQ. We need 1o show that G° = QA" P satisfes conditions 11, 12, and 13, given that A
and A* do,
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M: GG = (PAQWQ"A"F") = PAQQ A" P = PAIA P = PlAL" P
GG = QAT PTHPAG) = QAT [PYPIAQ = QA" TAQ = QA" AID
Both are Mermitian simce AA" and A'A are.
1 GGG = (PADINQ"A" PTHPAQ) = PADD " 1A (FTFIAQ = PALA" LAQ = PAA AN = PAQ = G
% GGG =(Q"A P HPAQHO A PY) = QUA" (PPIAIQD ™A PY = QYA TAIA TP
= AAAT P = VAP =G

Show that if A can be factored into the product BC, where both BB and CC" are invertible,
then A* = CMcCc™y (B"B) 'B".
We nesd 1o show thar A° saiisfies the three conditions required of & generalized inverse.
i: AA" =(BCH)C"(CC”) (RVE)'B" = B(CCY OOy (BYB) 'B" = B{R"B) 'B"
ACA = CToC™y Y BYB) 'BYBC) = CMOC™y (BYB) (BYBIC = CYiCC™)'C
Both are obviowsly Hermitian.
12 AA'A = (BCIC"CCY) (BYB) 'BY(BC) = BliCC ey [(BYB) {BYB))C = BIC = BC = &
1 a'aa” =c™oct) ' (eve) BT eC)c ey e e) 'Y
= cee™y '[iBYB) (BTB)|[icC)(cC”) 'iBYB) 'BY
= CMeC” ) IHBYE) BY = O ) (BYR) B = AT

Validate the algorithm given by 5teps 21.1 through 21.5

Stepn 21,1 throwgh 214 provide & procedure for factonng the matnx PAQ into the product BC,
whiere both BB and CC" are nonsingular, Observe that the last n — K columns of PAQ are linear
combinations of the first K columns, so there musl exist a matrix F such that both A, = A, F and
A, =A,F Since A isinvertible, F= &7 'A, and Ay, = &, A7 A, Now it follows from Problem 21.15
that {PAQ)" = C"CC™ " (BYB) 'BY, and then from Problem 21.14 that

Q AP =CTiCCc”y Y (BTB) B
The desired formula comes (rom multiplying both sides of this [38t eguation by §F on the left and P on
the reghil,

Although the factors B and C and the mamices P and  are not unique, the product is, as a resalt of
Prohlem 2113

Prove that (A"} ={&")"
Set o= A" We need 10 show that G* = (A" )" satisfies conditions 11, 12, and I3,
B (GG = [A"AT " =ATA = (AA)" = AMAT Y =667
GG = (A A" = AR = (A" ) = (AT A = GG
Both are Hermitian by the definition {(13.2],
I GGG = (A "AMA Y =(ATAA Y = (A" =G
I GG G=A"A A" =(AA'A) = A" = G

Thus, G° = (A" )" satisfies all the conditions for a generalized inverse for A", and since the generalized
inverse i unigue, it follows that (A")" =G" = (A")"
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Supplementary Problems

In Problems 21.18 through 21.24, find the generalized inverse of the given matrix.

I1.18

.12

HIET EHIEES IR

11 1 1 2
3o 21.13 i_: g ; _g ;] 11.24 [1 1 t]
01 123

In Problems 21.25 through 21,38, find the least-squares solution 1o the given system of equations.

.25

n.mw

2.9

1.3

11.31

11.32

11.33

21.34

21.35

2.3

X, tE, 4, =1 W x, +tu,+x,=1
X ohE e, =2 I +I,+x,=1
o+ a,+a,=3

K4 E=1 LM oy 4Dl +3x, + 5=l
ix, =1 -1, +2 2, -2x, + 3z, =1
Hy=3
Show that the lesst-squares solution of AX = B must necessarily satisfy the systzm ATAX = AYB  (the

aormn egeations for the original system).
Show that if A=0R is a QR decomposition of A, then the normal equations can be written %
R"RX = R Q"E, which reduces 1o

RX=0"B (i
when the columns of A are linearly independent,
A numerically stable procedars for determuining the least-squares solution 1o the matnix system AX =B

when the columns of A are linearly independent is 1o first determine the QR decompasition for A™A and
them solve (1) of Problem 21,20 for X. Use this procedure to sofve Problem 21.11

Use the procedure described im Problem 21.31 1o solve Problem 21.27.

The following data appear 10 be quadratic when graphed:
£ | 0 1 ! 3 4

,.-||n 14 18 32 49

Determine the normal eguations for the quadratic equation, y = ar® + bx + ¢, that bes fits these data in
the leasb-squares semse (see Problem 20.29). Solve for o, b, amd ¢ using the procedure described in
Problem 21.31.

Construct a singular-value d.:nm'npmi.iim for

*.[1 1 2

11 3
Construct a singular-value decompasition for

= ? _9

A [4 =

Prove that A" = A™" when A is noasingular,
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21.38

11.3%

21.40

Z1.41

.42

1.43

11.44

11.4%

11.44

21.47

2148

249

2150
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Prove thar @7 =@,

Prove that (A"} = A,

Prove that (KA} =(1/k}A", provided &k =0,

Prove that if A s Hesmitian, the 80 oo B A"

Proe thar if A s Hermitian and idempotent, then A" = A,
Prove that AA" and A"A are Hermitian and idempotent.

Show that if A has order m = r with m = r, then A can be factored o & = UXVY where T isann = n
diagonal matrix, ¥ is an & * A unitary matrix, and U is an m® 0 matnc with erthonormal columns.

Using the matrices identified in Problem 21.43, show that P=VEV" is positive semidefinite, and
M= UV" is 5 matrix with orthomormal columns,

Using the results of Problems 21,43 and 2144, show that amy mo g matrix A with sz g can be factoned
imo & =MP, where M has orthonormal columns and P i positive semidefinite, Such a factorization is
called a polar decomposition af A.

Find a polar decomposition for the matrix in Problem 21.1.

Find & polar decomposation for the matnix in Problem 21,5,

Show that the positive semi ite matrix PP defined in Froblem 21,44 as part of the polar decomposition
of A can be given by P="%A"A

Show that if & is invertible, then the matrix M defined in Problem 21.44 as part of the polar
decomposition of A reduces to M= [PA™" )" = (A"} 'R

Ulse the resules of Problems 2148 and 21.49 10 derermine & polar decomposition for

et 2



Answers to Supplementary Problems

CHAFTER 1

4 =2 I -6 =T =1

L9 (&) [1 4 ik} I3 & €y r2 -21 (4 1 3 =1 (¢} undefined
[ ] [3 —14" ]
-5 -4 -2

LW (s -10. (B} 1% o) -1

SR S L N B I

-

=i =10 -F i 12 & =13 W

L22 fay [ % 2% 13] (b} [.“-63] 1.3[ ] ﬂ]
6 16 & o 18 9

=3

1.4 (a) '13] (b} undefined  1.235 (o) usdefined: (b} [2. 5, 5]
L B

2 4 6 1]
L3 & %

.26 (&) [1 2 3] &y 4] L7 [l z]
1

O [3 i E‘J]

oo 0

5 T I A e L |1
oo o o
oo o (1]

LA2 {a)} I (kY X [ (dy 1 [#) I
1,3 There are many examples; one is
1 2 h =1
E
1. Total sales revenue for the flight

L3S ND = [30700, 15300, 4900)7, & vecior representing the money invested by each store in unsold computers
of bath brands

CHAFTER 2
I8 (b) and () are solulions

26 [103 11 5] 27 [2 -4 7 6 —417
21 -3 105 0 6 -3 -4 -5!12

1 7 311 2 B 1 =1 =14! 10
LB (a) x, =3 x5, =5 1, ,= -4 {b) =z,=-T- 31, x,arbitrary, x, =5, x, =0

203
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19 x =8+l x,= =1~ x,, &, srbitrary

2,20 The system is not consistent.

.21 Only the trivial solatkon x, = 1, = &, =0 exbsts,
112 1, =4 +x,, x,= -1z, x,orbitrary

LB oy =8 5=-1x=-3

LM i =a,=x,=15=-1

125 a = =56, 5, = 4860, x, = = 10%H), x, = TO0O

LM oz, = —19WE 02022, x, = 00 RN, x, = 06800113, £, = U000, TOTH0E, The system is inconsistent
when results are continually rounded to four significant figures.

227 &, = 049988, 5, = 000001, x, =05

2.8 (@) Consistent only if =7, and then 3, =2 —x,, ¥, =1+ x,, x, arhitrary. (&) consistent only if & = 2,
and then v, =x, =12,

2.2% There are infinitely many solutions (o the system

12c = 1d + G = 40
Je+ M+ F=120

2.3 b= 0003 & 003e & 0UGs =10
000 - C =0
ki — 0. (e - =10

LIl AY-Z1=AY-AZ=B-HB=0

232 Y - Zis a solution of the homogeneous system;, simply call that difference H.

CHAFTER 3
LI (@) [1 00 By [7 0 0 1 00
g a1 g1 0 =3 [ 0
[0 1 @ oo 001
L4 [a) [1 0 0 0 {b: 1 @& o0 [h I 05 0
00 10 01 00 0100
0100 0010 o010
La a0 o1 -3 0 0 1 oo a1
315 (a) [l u] t#}{—z lI e [-1 -4 2
2 =142 WE -1irn2 g-ﬁ- | 2
i 2 =1

EI17T let A and B he m = n lower triangular matrices. '|11=|1.:|*-I'l.'|il'.l:.'-‘-i. ard bhwﬂifj.':-.l:.&tﬂt.kl:.
For f =i,

6= 2 agby, = X oauby + L aub, = X a0+ X (Db, =0
k=j A=daj i=j d=mpwj
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Mg [§ o0 01 2 3 31% 2 0 0 1 =152 2
4 =3 D}l 1 2 1 Wz [} i | rrl
|7 =6 048 0 1 -1 3 NI D 1
Ax (1 00 Of1 0O 2
210 o0 0 -3
22 oo o0 3
| 3 0 WL 00 |
A2 The factorization cannad be done
ha: o0 0 i} 1 1 3 4
1 - i i ¢ 1 T Tib
1 =5 41 i ¢ 0 1 —13/4
T -2 -3 O -1S5M4L 0L 0 0 |

il yn=r=L~r,=-2 XM y~4r~=0 =1 x,~=0
Al x, =0k =k=1lx5=-1 M x, =4+ yy, By = 0¥, By S Fy S Fai ¥y arbitrary
327 Canpot be solved: LY = B is inconsstent. A x, =8 i,=-2 k==1
9 r o=y, =x, =2k, =-I
SRS I
a o -
382 Each diagonal sbement is raised to the pth power
LM (I=-AF=(-A)Nl-A) =TI -TA-Al+A =[-A-A+A=1=-A

335 By indection: The propodition is obviously true for p=1, If it is truz for p =& — I, then
u}j! =tﬁ.-1ﬂ"r-‘.ﬁ.r{ﬂ.-l:l.r _Ehfjli.irr-l -Ehr}.

CHAFTER 4

415 These are elementary malrooes: (@) the matnx is 115 oam inverse; (b)) change T o 107; () change 4 1o —4;
(d} change —3 1o 3.

IR B -’]

418 Mo jnverse 4,09 _I[
11

-1 W 0

4.20 l i 0 U] 4.2
173 0 13

1 -1 15
0 -1 35
i} i 1I/5
4.2 Mo inverse
4.3 1 -1 q T

= & 4 -4

Bl g -4 o
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1 =h =lh 17 d.1% I -3/ 1/2
Fr i 6 -=8 i =1 0
18 s —11 - M =12
-26 11 7T -1
_]_ L] 1 =1 1
2 1] 7 =3 =1
2 -1 -1 1
k, =308 x,=—H8, x, = —44/28
J:I-E-.J:,-ﬂ, X, = =1 4.29 .rl-—?.l'l. :;-]:'I..:,-E:'E, .:":L.I'I

(A")"" is the inverse of A", Now ATA™" ) =(A 'A)"=1"=1, s (A"")" is also the inverse of A,
Equality folkoas from the uniqueness of the inverse-

Each part follows from the unlqueness of the inverse: (@) A™'B™" and B 'A”" ase both inverses of AB;
(51 AT'B and BA™' are both inverses of AB ", (¢} AB™" and B 'A are both inverses of BA™".

CHAFTER 5

5.21
512

5.13
5.4

5.1%

827
S.2%

5.30
5.3
5.3
5.33
5.M

5.38

(a) -3 (b} —-X% (¢} —2916+ J015=-N-13)="53
(e 0 (&) =28. {e) O0=0
(a) —48; (k) detF i undefined becauwse F is not squars.

] _1[ 7 —-ﬁ-] by 1 [=-6 3
Il-4 3 J3L-5 8

1 [ i -4 —?] 516 1 [ I [ -1?]
—m |6 -4 14 -4| o -16 s
Blg 4 8 Bl g -6 11

L] 518 2

- 1 7 -l
1 o1 -1 1
e -7 -3 -1
I =1 =1 1

Ea

Dienote the equal rows &5 rows fand . Add -1 times row § 10 row §, and then use Properties 5.5 and 5.6.
U'se Property 5.4 n times, ance on each row of A,

det A' = det AA = det A det A

det AB = det A det B = det B det A = det BA

I=detl=det AA™" =det Adet A ;sodet A" = Iidet A

Mote that det A = det LU = det L det U, and then wie Property 5.2, In particular, det U = | since it has
only unity elements om its main dingonal,
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CHAFTER &

. 15

6107

6.19

6.21

6,22

6,13

624

B.25

6.27

6.28

6,28

6.3

6.3

552

Linearly dependent 6.16 Lincary dependemt

Linearly independent  6.18  Linearly dependent

Linearly independen 6,20 Linearly dependent

Mo

(a) Yes, [0,0,1)=001, 1, 2] + 12, 2, 2] +(-D[Z, 2,1 (&) no

{a) Yes, [2.1,2,1]=22,0,1, 1]+ (- 1[0, 1.2, = 1]+ (=2)[1, =1, —1, 1] + {0, 0,1, 2J;
(B) Yes, [0,0,0,1] = (1320, 1, 1] =+ (-2/3){0, 1,2, - 1] = (-2/3[1, -1, =1, 1] + {130, 0,1, 2]

da—2b+
¥

.21 &2 {1 1.2[22.2])

gk b+ e

la.b.c]= [1.0.1]+ ¢|I.I.E|+ '*’-Tm‘:.ﬂ

{I1,2.1, =1),]1,0, -1, 2], [0, 1, 1, 0}

[5¢3, $/6] = (1721, 1)+ (1343, 00 + (106)1, 2]

HEHHE I ACHAU I
[:r] stel 3l o) *Mal*Y
HNo vector in the set {¥,,¥,, ..., ¥, ¥} can be written a8 a lincar combination of vedors preceding it,
fol the first ¢ wectors (as a result of Property 6.2), because they are linearly independent, and not the

last vecior in the sei, because of the hypothesis. It then follows from Property 6.2 that the enatite sei is
I]nn[l:,- independent.

Consider {V,, V..., ¥ 0} Then ¢, =¢;=---=¢, =0, ,,=1is 2 set of constants mot all zero such
that ¢ ¥, + c,¥W, + o« + ¢, ¥, + (1){0) =0

-3 -
Omly [g] 6.3 [ ::} = x?l i'] with x, arbitrary
Xy — 2K, 1 =2
+x, 3 with r, and x, arbitrary
K, il |

CHAFTER 7

All &, n the solutions for this chapter demote arblirary constanis,

T.18

T.1%

T.H0

] for 4 =10 and :,“]‘ for A=4

:] for & = 1, an cigenvalue of muliplicity two

|
J
N

=3
1
4
1

_] for A = 3 and :,ﬁ] for A=9
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7.1k

.13

7.4

7.28

-

.17

T.I8

T.28

T.:0

T.M

T.32

7.3

.M

7.35
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;z{j:z] for & = 6 and :*[1[2] for &= =6

;,{"3';””1] for A =5 and :,[H"]ﬁ"'l] for & = — 5

xz[_ll_ﬂl forA=2+i2and 1, "1’"1] for A =2 i2
g 1 0

w0 fera=1. 5|1 forA=2,and x|1| fora=3
0 0 I

-1
Bor & =0 {of muluplcity twa) and :z[ ]] for A=-1
]

1 a
r | ]+x,]l
L b 1
1:3

[ -2 -3
X 1]+ :*[ UI for & = =3 (of mulbtsplecity two) and ::,[2.'!] for A= 11
0 1 I

e

-

l
ﬂ] for 4 =5 (of multiplicity three)
i)
1 L1
1] andd L] for A =5 (of muliphcity three)
L0 1
1 ] 1]
i I and 0 for & =5 (of multiplicity three)
L ] |
F 1 0
1] 1] e
0 and | for & = 3 {of muliplicity Tour)
L0 1]
-1
g for 4 =3 (of multiplicity four)
i
F 1] 0 -3
1 L] o 2
0 and I for & = 1 (of multiplicity three) and 0
L 0] 1 (]
1] I i
1] -1 and 2 for eigenvalues 2, 3, and &, tespectively
-1 1 1
[ 17 i i
1 | and -1 for sigenvaluss 12, & and 4, respeclively
| ~2 ] i ]

[=1.1] and [1, 3], cormesponding 1o cigenvalues 0 and 4, respectively

for A=2
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7.3

7.38

7.8

.40

T4z

743

T4

TAS

.46

.47

T.48

T.4%

1.50
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[—1.1], sorresponading to the eigenvalue 1 (of moluplicity o)

[1.=2] and [1, 4], corresponding o eigenvaloes 3 and %, respectively

[, =1,0, [1,1, 2], and [1.1, —1], comesponding 10 sigenvalaes 1, 3, and &, respectively
[=1.1.0), [1.0, 1}, and [1,1, <1], corresponding 10 sigemvalues 0,0, and 3, respectively
[V, 0,00, [=0,0, 1], amd [1, —1, 1], corresponding fo cigenvalees 2, 2, and 5, respectively
ATX = ATAX) = ALAX) = MAX) = AlaX) = 47X

(A- el X=AX-clX=aX-cK=(A- )X

The proof is by induction on the order of the matrices. The proposition is certainly true for 1% 1
matrices. Assume i B e for & * & matrices, and let & be an arbirary (& 1) (& + 1) mans.
Diesignate as A’ the mairix obiained from A by delecing its first row and column, Then A' has order
ko k, and the induction hypothesis can be used on it. Evaloating dei (A = AL} by expansion of the first
Fiorw, wet el

det (A — AL} = (a,, — Ajdet (A — al')+ O 4" 7)
=fay, = A= 1YY = (race A JAY "+ O0AS T+ O(AS Ty (by indection)
= (=1 AT =y, trace A+ 004N TT)
=(=1 AR — (race AJA" + 041

Dremote dhe eipenvalues of A as 4., 45, ..., &,. Then
der (A— AL = (=1 A=A 00A = &) (A= )= (=10 {A" = (4, + &+ -+ A )07 = (A7)
But from Problem 7.44,

det (A — AT = (11" {A" = (trace AJA" " + (4"}
The resabl follows from equating the coclficients of 47" in the two expressions for the characteristic
polynsmial.

trace (A + B) = (g, + b, J+ (g, + b0+ - +{a, +b,)
=l Fly bl YRy, F by ke a)
= praie A + trace B

trace AR = E {E n,,bt,}- E {

i=li CEel =0 i

b..n'..,,} = frace BA

Using the pesulis of Problem 7.47, we have
trace 57 'AS = trace (8 "(AS)) = trace [(AS)S '} = trace {A(S8 ")} = trace AL = trace A

Drenote the eipenvalues of & a5 A, &, ..., A, Then detld — Al ={-1"(A—- & A=A (A4
Seta=0, and det A =& 4, -4,

The proof js by induction on the order of the matns. When C has order (& + 1) 2 (k + 1), expand
det{ © — al) abong the first codumn, obraining the sum of wo deerminans. Use the inductbon hypothesis
on the cofacior matrix of the element —4& in the (1,1} postion. The sccond determinant is casy 1o
evaluate because the colactor matrin of =g, is lower trizngalar
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CHAPTER 8
. 1 {] . |t o ﬂ]
519 Jim A, [I:I- I Yo By [1 10
lim_C, does not exist because Jim ((k - KXYk = 1)) ==
B30 Ewery sguare matnxg A
B2 Al eigenvalues must be less than 4 in absoluie valuee,
1 dgn5+2un(=1) 2sin S - 2sin(—1) =099~ 0039151
8.2 (a) “""_E dunS—dsn(—1) Zsins4 d-:in{-l;l]'[-nmg,m — () RRDe2
(b} 4_1[-‘r*+2c" h’—lr"]' ¥0.0647 49.3-1:41
T B lae" —ae " et s de '] T L6960 49,7163
b jdcos ] =2eos(-1) —Zeosl+ Zeos{—1) 0,540302 0
.23 (a) m"‘i[#ml—qm{—n —2m1+lcm[—1j]=[ 0 n_m:m]
AT w_ 11 —in
(b 3IAY + 24" = 17 =7
B2 (o) snA=0; (b)) comA-]
.25 [,"* u] B.26 [ 3¢’ - 2e™ 3;-'-3;']
[ -2+ e -2+ 3"
BT | e* w” B8 [cosZi+Zsind { sin 2t ]
0 e" ~25in 2 cos 21 — 2 sin 2
829 1 1 2 §.30 100
P T I e*lo 1 a
o o 1 o o1
B3 [ =3+ 2 e -t 4 3™ #32 feimdr 0 0 0
| 0 g Qe 0 sinly wos2e 0
o 0 9" R
L 0 0 sin g
e+ ke
833 x[l]—{¥r.h_ir-u
B3 C=[c,,e,]" is arbitrary. The solution vector, in terms of C, is
I[l}-[‘ll—:‘ﬂ"'r':—"'-.‘rJF+{f|—1H}¢"'-"I-J"i1]
{{=9e, + 3, + A+ e, = bhe™ + |}
[ b b [re g ey o[
838 X(n-= _E'--"'ifﬂ 834 Xin= 'T].*E-‘“"'!l‘h 837 X _1 _i
CHAFTER %
916 (<) amd (d)
17 X, X, =[-1,0,2 1,0 X,=[2,0, =1,0,0]", X, =[-1L0,000
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.20

%21

$.22

824

925

.27

S.I8

.29

]

9.32

ANSWERS TO SUPPLEMENTARY PROBLEMS Z11

1o, 500"

Xy, X =[0, 100", X, =[1.0,0]"

(@) Two chains of length 2; (b} one chain of length 2 amd two chains of length 1; (¢} one chain of length 3
amndd one chain of ll'nglh 1: {d] twior chaing of Er.l'l!‘lh 3 and one chain of h'_'nj_lh 25 [} one chain of length
3, one chain of eagih 2, and thres chaios of length 1: ( £} three chans of length 2 and oo chains of
bength 1 (g) the eigenvalue rank mumbers as given are impossible.

fa) A, =M =N=1 and N, =2 for a=1; [b) the vectors found in Probiem %17, along with
Y, =[0 1,000

(af N,=M,=N =1 for A =5 (k) the veciors found in Problem 919

{a) Ny=N,=lforh==2; (b) X,=[01]", X, =[-23]

@) N,=1forboth A=0and A=4; (b) X, =[-3,1]" ¥, =[1,1)

{0} Ny=1 N =2fora=2; (&) X,=[0,0,1)7 X, =[1,0,00" ¥, =[0,-1,27

(@) N,=2fora=d4and N, =1fora=—1; (b} X,=[10,1)" ¥, =[1.1.0)7, &, =[-2.0,3]
fa) My=land N, =2for a=1; (b} X,=[0.0,1]7 X, =[1,0, -2 ¥, =[=2,1.1]7

(@) Ny=N,=1for a=2and N, =1 for A=4; (b) X, =[0, 1, 1]", X, =[4,4, 8], ¥, =[-1,0,1]"

(@) Wy,=N=lforbothi=2and A=3 (b)) X,=[0,01,0], X, =[1,0, =1,1]°,
Y,=[-5-1,201" ¥, =[0,00,1]"

(@) Ny=N,=lora=2and N, =2fora=3 (b} X,=[0,0,1,007, X =[1,0 -1,1]"
¥, =[00,01)7 % =[-3,-1.1,017

@) Ny=N,=land N, =2for k=5 N, =lfora=2; (b X,=[0.0,1,00] X,=[2, -1,0,0,0],
X, =[=1,0,0,0,00", ¥, = [0,0,0,1,1]", £, =[0,0,0,-2,1]"

(a) (A=20% (B) (A =dpa+ 1k (c) (A= 1) (d) (A —20°0A =40 (e) (&~ 2004 ~3),
(F1ia=20(a=3)

CHAFTER 10

10.20 Mone are similar. 10.21 |'—3 'I]l]

10.22

10.24

31

[ = I] 10.23 o1 o
L 11 -1 @ 0
P |

1]

[ 1 =2 10.25
]
1

1
1
o 3

LN~
1
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=
i oSS
= =
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== - oo
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13
< =i
= oo =
————y
- - i
|| r———
—r o= CcomMo oCoOwnoo
=y G - =]
e
I el Hess wosss
5 a = A
£ - = -

|

= jos 2
—%in 2
oo 2

—8in 2
cos 2
¥
] (d) {

o 2
L[]
L[]

0.4 (o) l
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B2 0
n o 2

10,37 2"'[1 fi2 31] 10.35 H* r::'}

10,39 Tt - 27" 3;'-3;"] Li. 40
~re ade”t e+ e

'S

=R
- e
[e— 1
| E—

(X}
0 g™ e
0 i} e

"gt-a —3e *"Jﬂ‘h F—I_fll +]n|lr-

10.42 Premultiply (10.1) on the left by S; then postmultiply on the right by §° and szt T=5 !

10,43 Presmultiphy (000 ) on the left by § to obtain 84 = BS, Then
BY = B{SX) = {BS)X = (SA4)K = S[AX] = 8{AX]) = A[BX] = A¥

CHAPTER 11

113 (o) O (B) 0 {c) 3 0d) 25 (e) 145 () —6; (g) 2

W4 (o) D+ (B 1 =i (e} 4— i2; (d) —1 - i () £5; (f) 50 =025
115 @, = (VL 150 = vE -1,

116 @, ={1VTIH3, 27, Q, = (10 EETT )46, -60]"

11.17 The given veclors are not linearly independent. The Gram-Schmidt process produces ¥, =0, on which
Siep 11.4 connot be performed.

108 Q, = (VI 1]. Q= (U =i 1+ 1)

Ae @, = (VI L0 Q= (IVE-1. 1,2 @, = (LR, -1, 1)7

12 g, =R, 10T g = (U -1, 13 00) @, = (T8, -7, 8T

Iz @, = (v, L)Y e = ANEL L =2, Q= (1T -1, 1,07

2 Q=00 Q= (T + 2, 2.2 -] Q= (VIR -2 - 1,4~ i3. -1 + 2"

1 @, =(VHIL L0, Q= 0nEN-1,1, -2.0)", @, = (11, 1. -1,0)", @, = [0. 0.0, ~1]"

1.2 @, =(1VE[1.4,0,0]7, O, = (I TEI[L, 1, 4,00°, Q, = (1TTT[i4, 4. -2, 9",
Q, = (1WTH|2, =2, 2]

1125 @, ={1~"TL 0", Q, = (10 -7.5]"
1.3 Q,=(1VEL L0 Q=0 -1,1.2)7 @, = (13, -1, 10)7

11.27 Consider the equation £ 0, = ¢}, + - + ¢, =0, where the ), vectors lorm &n orthogonal set, For
each i (i=1,2,..., 8}
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0= 0.0)w=(Z 0,0, = 2 6,0, Q) =60 0}
Bince Q, is nongero, w0 00 6 (0, 0,0y thus, ¢, =10

.28 Set WX=Y=|y.y.....0]" Then (X, X),=(WX)-(WX)=¥-T=E_ |xl" Therefore,
{X,X}, =0. Furthermore, if X #0, then ¥ =W 'X#0, and I}, |y,|" is positive.

10.2% If we continue on Problem 11,28, ot follows that (X, X, =0 if and only if ¥ =0 and that is the case if
and only if X=W"¥=0.

CHAFTER 12

1219 (a) 1 (b) VT () VIT; (d) VES; (¢) VAE

1228 (@) 1; (b) 6; (e} 7: (d) 9 (&) 12

1221 ia) 1; (B0 3: () 4; (d) &; (e) 4

1222 (o) VIO; (b) V8; (c) VE: (d) VER; (e) VIS4

1223 (a) 375 (b) VE; (€) 3; () (155)%; (e) 10 () 4

1234 (o) 1; (b) VI () & () VIO

1225 (a) 1; (b} 7; (c) B; (d) 5+ 45

122 (ad 1. (b} 5 {c) 8; (d) 5

12,27 da) 1; (b)) 133"%; (c) 8 (d) 5.1448

1228 (&) VI (B) VT; () VBB, (d) VIL () VTS

1229 (&) & (&) 12; {c) 9, (4] 5; (e) 85443

123 (@) T; (&) 8 (¢} 95 (d) 5 (e) 94721

1231 () 5.4650; (b) 8.6099; (c) 8.1231; (d) 4.2992; (¢) 7.1517
12.32 For any induced norm, |1} = max,,, ., ([IX]))) = max, ., (0X[))=1.

1233 Denote the ith row of A as A, and the jih column of B as B, Then

"*B":"E-- i I".a.ﬂ'i.lr‘: E-'i H"":’-E.:'F

il =1 i=ba=i

and, by the Schwarz inequality,
laBli= X X (A7, A])(B,B,)

dall pmB

b=

=332 teul 2 1ur)=(Z Z 1ot} Z 10} = 1z mi;

=i gm] Cde=]
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1336

3
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12.3%

1240
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X+ ¥ = (X + ¥, X+ Y= (X XDy = (K. YDy = (¥, X}y + (V. ¥}
= (X, X}y # (¥, ¥y = IX|5 + U¥IS

(a) VID; (b) 8 (c) VBE: () VL () VTS
(a) 5.3723; (b) 6.7958; (c) 8.1231

4, 8900

The eigenvalues of A and A" are identical,
() 15; (b) 4.158; (c) 66 (d) 2.729; {e) 2.147
1" =1 and ||1] = from Problem 12.31.

For nonsingular A, 1= ||1]] = Jan™"|| = [lalljla™"[| = c(A).

CHAFTER 13

1320

13.21

1322 Q,

1y.23

1324

13.25

1326

1327

1328

1329

13.30

13.31

C,E, and F
B.C E F, and H

=[1VTE AT O, Q, ~ [- 1R, 1VE, 2ivE]T, and Q, = [1VT, <1473 13T, comesponding
wo eigenvalues =2, =2 amd 1, respectively.

Q,=[1.0,0,0,007, Q,=[0, 1E, INWE 0,007, Q, = [0, =116 18, 26, 07, Q, = [0,0,0.0, 1],
and G, = [0, 1473, =103, 1S, 07, comesponding to eigenvalues 3, 3, 3, 0 and @, respectively.

Q, =[inE 1T A3, 0] Q= [ivE 0, TN aN u.,-[uﬁ, e, 1ve, 0], and
Q, = [=iWE 0, 18, 2VE]", comesponding 1o eigenvalues 1, 1, 4, and 4, respectively.

{a) F cannot be reduced using only E3; (b) three positive values and two zeros; {0} four positive values

fﬂ}[z_‘l Hﬂ-[il

=3 4
{a) E ieself &) 1 -1 4-j2 240l
16 S+ 016 6 =90 T2~ 145
=2=i6  fd —16+ 90

¥ 3 =i . =] =2 ‘-[1 20
a=| 3] el T el 50
A+B" = A+B) = (A-B) =A"+B =A"+B"=A+B

(AB)" = (AB)" = (BA) = (BA)" = A"B" = A"B" = AB, implying that powers of Hermitian matrices are
Hermitian, becouse & commutes with iself,

Construct the vector E, so that it has a | as s kih component and all sther components are zero. Then
{AE, . B, = a,,, which is real by Property 13.5.



216

1.n

13.33

M

13,35

133

13

13.38

ANSWERS TO SUPPLEMENTARY PROBLEMS

ALY = A[-A)=(-AJA =A"A
GAYY = (TR)T = (FA) = (=iR)T = —iAT = — (A" = j{-A") = iA
(AN, X} = (X, A"X) = (X, A"X} = (X, -AX) = = (X, AX} = - [AX, X]

Let A be an eigenvalue of A corresponding o the eigenvesion X, Then
AN X} = (AN, X) = (AN X} = (X, A"X) = (X, A"X) = (X, -AX]} = {X, -aX} = -A{X.X)}
Thus, A = =4, and A i pare imaginary.

~AM = A= AT =

JiA + A™) is Hermitian and § (A = A™) is skew-Hermitian for any matrix A. For real A, these matrices
are symmeinic and skew-symmetric, respectively.

Mccording 1o (8.1 ), fIA) can be writlen &5 an (n = 1)-degree polysomial in A, Smoe the eigeavalues of A
are real, so are the cosfficients of such a polynomial. The result then follows from Probdems 1329 and
13.30.

CHAFTER 14

14.17

14.18

14.20

14.22

14. 24

14.25

14.27

A, E and G are posilive definite; B and D are posilive sermidefimiie.

A B |
14.19 B“‘=%|: 2 2 —|]

-1 =1 3

027849 16927 023005

. [ 16527 027849 —0.23915
A=
-0.23915 -0.23915  2.2103

. 4B Vi 0 0
K" =[__.3 P 421 L=| vIl® VB3 0O
' T3 ~vTih Vi3

3 i

i
2 0 0 )
I.:[—i 3 ] 4.2} L= 1 2.2361 o
Ik

JE3

0
0 1.6
113 v 9443

-1 -0.44721 -

===

(A+B)X, X) = (AX, X} + (BX,X) >0
(AKX =0 AN = (AN X) = (AX. X) =0

The eigervalues of & 'are the reciprocais of the eigenvalves of A {Property 7.4) and are, therefore,
positive. Furthermore, (A" = (A"} ' =A7", w0 A™" is Hermitian, A Hermitian matrix with positive
eigenvalues is postive definite.

For amy X#0, st Y=CX. Then Y=0 because X=C'Y, and (BX,X)= (C"ACX. X) =
(ACK, CX} = (AY.Y) =0

B = At is Hermitian, so f{B) is Hermitian for any function (Problem 13.38); in particular, f{B) = " If &
is an eigenvalise of A, then A is an eigenvalue of B, and "' = 0 s an eigenvalue of ¢® (Property 10.3]. A
Hermitian mairix with positive eigenvalues s positive definite,

[f {AX, X} s positive for all complen-valued vectors X, then it is also real for such vectors. It follows
from Propeny 135 that A s Hermitian.
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4.3 If

1 2

2 I] and  X=[x.x]"

A=
with X real and nonzero, then (AX, X) =x] + 25 2, + 1) = (x, + £,)" =0
CHAFPFTER 15

1516 C and E

i (B 0 1 D () A B 1LY
15.17 {a) [::ﬁ _;H‘E [-JN‘E 0 l.'ﬁ} ¢ [—mﬁ 1:»’% I.."E‘T
IWE 0 13 1W3 =18 1T

1518 (a) With "'[:ﬁ _;’ﬁ we have u".qu:-[ﬁ =

0 10T 0 0 3 -vY R
(b} With u-[—lﬂ'ﬂ 0 1rﬂ-|[ﬂ -viIri VI3 we have U"BU=|0 2 W3
13 oo anifle T VIR 0 i 4

13 2 0 | 0 1] ., 00
{¢) With Us=| <13 1vE 1V [I.'.I =472 |J1] we have  UTCU={0 2 0
R T I T X R Y 0o é

415 3% oo 3 -3
1 o0

1519 M[-:rs —4.’5] by [0 0 ) l[ -1 —wﬁ]
1
1520 [JUX||; = (UX, UX) = (X, X} = ||x}
1521 {UX, UY )/ IUX]|JUY ], = ¥ X LAY )]
15.22 Since R is both real symmetric and orthogonal, R* =RR=R'R=R 'R =1

1523 The eigenvalues are nonnegative (the matrix s Hermitiany and have absolute valae 1 {the matrix is
unitary), 5o all eigenvalues must be |,

15,24 Simply combine Properties 7.8 and 15.4,

1 1] oo o i 0 o o o
0 eosd sin@ O D 0 cps® 0 -sin@ O
1525 R, =|0 -siné cosé 0 0 E.=|0 O 1 (1] (1]
0 0 o1 b 0 sin@ 0 oqos@ 0
] 0 o o1 o oo 0 0 1

15.26 Direct multiplication yields R]_(9)R,_(#) =1

15,27 The (k, p) element of the product is a,, cos 8 = a,_ sin 6. Choose # o make this quantity equal to zero.

CHAFTER 14§

16,00 (a} i1 =1 b P
[ 3 —I] 2 1 =1
-1 -1 5§ =1 =1 5
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16,02

16.13

16.14

16.15

16.17

16,1%

6. 21

16,22

ANSWERS TO SUPPFLEMENTARY PROBLEMS

€ [T 9 -3 0 -3] (@[ 1 -12 -1
-1 & 31 0 -1 14 12
0 3 9 -3 2 43 1
-1 0 -3 & -1 21 1

(@) amd () are postive definite; (k) is positive semidefinite.

{al [1 @ u] () ll i n] (e} Tt oo D fdi T1 o o o
g1 0 010 I imroo0n
luut 0o o TV ¢ o -1 0

noo oo i 0o 0 -

They are not congruent becawse they do not have the same inertia matrix,

{@) Three positive eigenvalues; (&) two positive eigenvalues and one zero eigenvalue: (c) four positive
cigenvalues, (d) two posilive and two negative sigenvalues

An wdentily marrs

[a) 0 [ 0 (&) 1 0 0 (c} 1 o 0
[znf'ﬁ 2T |.-v"ﬁl [-3-’2 ilh L:z] [—ﬂr? L |J

|72 = ik - [ =1 i |
i o 0 | i ]
Imertia mabric = 10 1 O F=| =(I+i2) 1 i
oo -1 [T+ 10015 ={5=i}1/% 1/5
Given A =P BP] and B= PEEF,' Sei P, =PFP,. Then A =P BP =P (P,CP] P =(P P, )C{P P} =

P.CP.

If A =PBP' then B = QAQ", where Q=P "

[renote a5 M an ineria matris congrucnt (o A, Then A 5 abso congruent 1o & [ Problem [6. 20, (a) [T B i
congresnt bo A and A is congruent to N, then B is congruent to N {Problem 16 19), (&) If both A and B

are congruent 1o M, then A 15 cofigruent 1o Mand N s comgruent 1o B so A % congruent Lo B.

The cigenvalues of A" are the reciprocals of the eigenvalues of A, and therefore have the same signs, [t
follows from Property 16.1 that A and A" are congruent to the same inertia matrix and to themselves.

CHAFTER 17

17.200

17.21

17.22

1T.13

im.24

Reducible. not primitive, not siochastic, 3= 5 =4
Irreducible, primitive, no stochastie, 3= r=4
Ireeducible. not primitive, not stochastic, | =0 =2
Irreducible, primitive, nol stochastic, o =4

Irreducible, primitive, not siochastic, o =7



17.25

17.18

17.17

17.28

17.19

7.
17.31

1m.az
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Irreducibde, primitive, stochastie, erpodic, = =1,

19/45 17045 9/45
L=|1%/45 [17/45 9/45
19/45 17/45 9/45

Reducible, not primitive, stechastic, ergodic, o+ =1,
1 0o
L={1 O 0
1 @& 0
Reducible, not primitive, stochasile, ergodic, o =1,
I8 O 5B
L=| 0 1 0@
j'g 0 3B
Beducible, ot primitive, stochastic, not ergodic, o =1, no limit exists.
Irreducibie, primilive, doubly stochaste, ergodie, &= =1,
/i /3 13
L=|1/3 13 173
13 13 I3
{a) 56,48 percent; (&) 5556 percent

Probabilities are 0.2, 014, 0,154, 0,151, and 0, 15162,

219

(4] Approximately 3 discharged, 31 ambulatory, 18 bedridden, amd 17 dead; {b) approximately &3

discharged and 35 dead

CHAPTER I8

18.12

1816

18,18

(&) Band matrix of widih thres, tndiagonal, Toeplitz, and Hessenberg: (B) arculant and Toeplite. ()

Hemenberg; (d) crculant and Toeplitz; (e] tridizgonal, Toeplitz, and
iridiagonal and Hessenberg

Aygmay=2, A=A =0, with eigenvectors [1,1,1,1]%, [1.-1,1,
[1, =i, =1, {]7, respectively

A,=8, A, = (=3 T8 and A = (=3+ V)L, with eigenveoions
i—1—n-’§]:1|’. and [1. (=1 =302, (=14 oWv3)2]7, respectively

446410, 1, 248410

[I 0 "I 20 l 1847 [ -1
3 -5 0 [0 1 -27% 2
[i]

]

P =]
=N~

o3 1ssjio o 1

= kLA i

=135
1

1 0 i
With l.Ia-Iﬂ =1 =12 wit have U’B[I'-[—
0 =17 1T

|
—
[2*]

= =] (=N -0

n&u
o

Hessenberg: () none; (g)

=1]", [Li, =1, =i}, and

ML L7 [1i-1+ W32,

=2 0 ]
1 15 0
g 1 =5n:
oo 1



1809 With U as in Probiem 1818, we have
u'cy=
] EI-...-'_ 0 ‘:.-'— 10
. _ o -1 20 1wzl 1
18,20 Wih U= 0 0 1 0 00
0 T 0 1wWZllo o
e 0E D
1821 Wuoh R, (0927298} = | <08 06 O
L1} o 1

AMNSWERS TO SUPPLEMENTARY PROBLEMS

18.22 First heratbon (k =4, f= 1, j=2):

R, (.982794) =

Second lteratlon (k =4, =3, j=3):

B, (1 433000 =

Third lteratlon (k =3, i= 1, j =2);

R, (—1.049953) =

s -4

4 -3

8.2 CoD=|,
4 -3

DLE54700  —0U83050
0832050  0U554700
L1 L]

Li] o
1 ] ]
0137361 0SSR
0 =0.990521 0137361
i ] ]
0457612  —0.867400
0, B6 7800 0497612
LI 1]

i 1]

15 -2
12 =4
15 -2

12

3 =T q
=7 £
L1} I3
¥ A8
e 172 -1 0
0o we have U au 0 - 11 vF
10 0 [

232 176 120
we have RLAR, =|-1.24 068 -6
LU S00 1.0

oo

o o

10 and A becomes

a1
L1534 —).230769 4060231 0
=1.23079 =1, 153846 -0 832050 7201103
4. 160251  —0.8300%0 2 1

0 T2I00 | -1

i

i}

0 and & becomes

1
2150846 —4 28087 0 adThdR 0
—4 THORTE 2 IGESM 0371544 ]
=064 THE GA71544  —) 320755 7280110

0 0 7280000 -1

Q0 0

0 o

1 0 amd A becomes

(|

~-1.530591 2170006 1] ]

LETI016 5860344 0. 7aih35 n
1] 0. 746685 -1 320055 7 280010

0 o 72800 10 =1



ANSWERS TO SUPPLEMENTARY PROBLEMS Z2]

1824 Nosolwion 1825 x| 1| w26 x=p-107

CHAFTER 1%
19.13% -
loeration Eigenvector components Eigenvalue
L1} FO000 000 [RLELH
1 1.00E  0.FITH 0.7774 .00
2 10000 07183 0,774 T EBRES
3 1000 DLABET 0. 7744 T.ET2
4 1. [XHI0 {La737? 0.774a TET
5 1000 dusshl 0.7744 18730
19.14
lzration Eigenvesior components Eigenvalue
] 1.0 10000 0N
1 =0.T143  —0UZERST 1, (0 ERLLL]
2 —0.T143 02857 10000 =11 . (dp
3 =714} —(LZRFT  [.0MN0O0K — 11, iNx]
The cigenwalue is 14+ (—11) =13,
19.15
lieration Eigenvector componenis Eigenvalues
] 1,000 10000 0, (W0
1 LLENEF (5313 0.2188 32NN
2 1.0} 02060  0.1038 30 40453
1 L0 —0.2102 D613 25,1092
4 IR 0. 140 01253 29 8532
1916 - -
lteration Eipemveclor components Eigenvalue
] 1. 000 1000 1,000
| 10000 =i 500 RCLELH — 2NN
2 1.0 02500 1.0000 =2 (M)

1907 The cigenvalues are —4, —2, and 1, with corresponding eigenvectors ¥, = [1,0, —1]", ¥, = [1.0, 1]", and
¥, = [0, 1.0]", respectively. With X, =[1,1,1]", we have X, =0V, + IV, + I¥,; thus, X, is a linear
combination of ¥, and ¥,. with no companent that is influenced by ¥, . the eigenvector corresponding to
the dominant elgenvalue.
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118 There s no convergence, implying that the dominant eigenvalue i complex,

1519
[terankon Eigenvector componenis Eigenvalue
] 10 10000 (RLLLY IRLLLL
| 096497 06870 IRLLL) 0.9294 EXAELEL
z 09501 Ooasds 1. 0N} 0.9432 30.3930
3 09578 D.46891 UL 0.9437 a0, 3011
4 0.9577 0,689 L0000 0.9438 30. 2902
5 09576 (6889 .M 0.94%8 30,2580
[ 09576 0.6880 1.0 0.9434 30,2887
19.20 ) - )
Ireradion Eigenvector components Eigenvalue
] 0.5774 05774 05TH
1 05448 —-0.0586  0L9621 76567
z 0.7218 0.0147 (Lpb22 11.E454
3 0703 —0.0037 07108 11592
4 0. TS O.MN| 070632 11954
5 0.7ed 0O 07073 12 Nl
L] 0. T2 QoD 00M 12,0000
%21 . . .
leration Eiganvector components Eigenvalus
o 0,574 .57 0.5704
i —0.07aF —0.9%1 00765 =4.3333
a 0. 1541 0976 -0, 1541 = 133158
3 02282 0. 9465 0.2282 — 136401
There is no convergenoe yel.
19.22 . . :
lteraticn Eigenvecior components Elm:nl.lnlu:_l
i 10000 1 00 1.6
1 106000 OL000E - L0 = 1.TKNN]
z | RN i, 1 3= -0, 7778 0, K]
3 (WL 01417 = 0. 7746 78459
4 1.Mx] 01418 —0. 7746 T.8732

The eigenvales is |/7.8732 =0.1270.

1928 There is no unigue solulion lo LE = X; hence 4 =10 is an eigenvalue.



19.24

19.25
192 A=25+

19.17

AMSWERS TO SUPPLEMENTARY PROBLEMS

3

Lieration Eigenvector components Esgenvalbue
Li] 100600 1. D) (RLLLE | .MM
I —LITES 1000 06353 -0 7089 —(L 1528
) 03041 0000 005 L0851 —ih 4541
3 0.1405 1O -D.0661  —000968 —0.33231

A=04+ 11308114 = 23046

17395708 = 2 5253

First iteration: shift = 7.66667; eigenvector = [1, —0,486452, 0.89935)"

Second ltersthen: shift = 10.5092; sigenvector = [(LOT6TL0, O 7597, I.]"
Third teratlon: shift = 11.969339; eigenvector = [1, - 0.000168, 0.999524)"
Fourth iterathon: shift = 12.0000; eigenvector = [1,0, 1]'

CHAFTER b
—ubshT  OLERST 0,0 L =5 =) T
WM (1) Q=| 06867 02357 07071 R=|0 2584 02357
03333 09438 i} i L1} 21213
0.7428 06442 ~0.1826 S.3ES1 L1568 -2 0426
by Q=) 05571 -0.7450 -0.3651 R= 0 LOITl 05425
—0.3714 01695 —0.912% 0 0 0, 7303

i) The third cotumn is a linsar combination of the previous two, so Step 20017 mast be employed for 0

(d) Q=

(e} Q=

(fy Q=

20,15 10,1461, 593049, ~0U055802  I0.16

0 -1VT 1T 1 o1
Q=|- 0 0 R=|0 VI n]
0 -1W7 -1ve 0 0 0
[ 09057 02950 —n.m::?] (27603 -1%W0%1  -85.0501 |
03085 08387 03712 R=| 0 171747 10,3479
L =D, 1449 04572 -0.8775 | O [1] 194301
0 -vE: 0 vl T o 1 0
-1 0 0 0 R 0 I 0 iz
0 =432 a0 -vE oo 1 o
0 0 -1 ] 0 0 0 w2
06644 —0.3332 0.6606 -0.1055
07474 02062 —0.5872  0.0938
0 -0.0354 01452 0.9591
0 —08%4E -0.4446 00423
1,324.5754 4932002 943653 26,6451
0 QEY.S089 74139901 UR.3T98
k= o 0 43REDT0 —197.4178
0 0 i 6.2313

106056, 330445, 3
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.07 341420, 2 0585TEE M0LIB
H.1% 361803, 261803, 138197, 0381966

0.2 9.9, 9,9 W22 == iI, =

20.1% The QR algorithm does not converge.

CHAPTER 21

LI [102,102] .

ANSWERS TO SUPPLEMENTARY PROBLEMS

. =17 +i24, =17 —i24

D30 0, G, 440, 330

.34 132275, TRAMOT, 63 E264, 242061

n.ue _“ ]l] 21.20 ![: i :] 2121 [“-T _Z:]

2y 5 111
1.1 1[1 4 —|I 21.23 ® -13 21,24 11 -1
9la -2 5§ | B - -2 1 1
—| B A 1 -1 @
W06 & -3
-6 37
1.3 x, =322, r,=W21,-922 .M x,=x =x,=2/3
NI 1, =203, 5,=5/3 228 x =3/206, x,=20/206, x,=44206, 1, = —14/206, r, = 31 /206
2i.2% Form [|AX - Blli, and then set the first partiol derivafives with respect 1o each component of X equal
b Eelno.
.M AAX = (QR)"IQR)X = R"{Q"Q)RX = RVIRX = R¥RX
and AYB = (QR)"B=R"Q"B
When the columes of A are linearly independent, the disgonal elements of B are all nonzero, and
(B™) exists.
[ —0, 566047 0.377964
~0_377964  0.377964
~0.188982 0. 377964
. 5505 u}
213 Solve RX = Q"B with Q= 0 03| R= ]
¢ 0188082 0, 377964 [ 0 45T
0377964 0,377964
L 0566047 0.377964
0447214 0596285
21.32 Solve RX = Q"B with Q= 0894437 —n.muz] R= z'ﬂfﬂ ?ﬁ?ﬂﬂ
i 0. 745355 !

21.33 The normal equations are

354 & 100k + 30 = 1158
10g + 30k + 10c = 342
g+ 0B+ Se= 121

and the solutisn is @ = 2,57, b= —L69, ¢ = 10.54.
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11.35

113

nm

1.3

1.3

11.40

21.41

1142

.43

.44

1145

1l.46

11.47
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W= 1'."}'.“. _Inlﬂ .’i."'-.-'r'ﬂ ]_I'ﬁ —I.'ﬂ

VLI 3:\-”;'?] -u,[lrv"i 1 E E_[vﬁnnl
LRt 1| n =25 ¢ &0

VeV = [ —0L5YTA54 u.nﬂ]wﬂ-] Umll = =0.8453435 0534078 D= [ 13,4834 i I
ST L DEDISTE 0.597354 POL-0,53078  —0.845433 0 0444592
A" satisfies Properties 11 through 13 because

(AA T =" =1=a4""
AATTA = AATA = AL- A
and ATAA ' =A==

The result then follows from Property 21.1,
A" =0 satasfies conditions 11 'ﬂ'l.'ruugh 13 when A =0.

Conditions 11 through I3 are symmetric with respect to A and A", Thus, if A" is the gencralized inverse
of A, then A is also the generalized inverse of A" That is, A = (A"}"

Show that conditions 11 thraugh 13 are satsfied.
It follows from Property 21.5 that (A" )" =(A")" = A",

Condithons 11 through 13 are satsfied because
AA=(Aa)" =a"=a=aa=0"A
ATAA= ARA = A(AA)=AL=A
and AAA" = AAA = A(AA) = AA = A = A"
AA” and ATA are Hermitian from condition 11, Also,
(AA JAA" ) = (AATAJA" = AA7 amd (A"ANATA) = (ATAATJA = ATA
Take X 1o be the n * a diagonal matrix containing all the singalar valees of A, including zeros if they

arise. Construct I, ¥, and U, exactly as described in Steps 21.8 and 21.9, and then construgt U by first
fellowing Step 21.10 but then keeping ondy the first m lincarly independent columins and orthonormaliz-

ing them.

P is Hermitian and similar 10 X, which has nonnegative eigenvalues. Since the columns of U are
orthonormal, l..l"I U=1, and, with ¥ hllci.l'lg Iﬂilll'}',

MM = [TV v ) = v UV = vy = vyt =
MP = (UVY)(WEVY) = {VHVIEV = uIVi = 4

With % and L as given in Problem 21.4 and
B a0
E=|o 2 0
ooao

With D, ¥, and U, as green in Froblem I].E,wzhlvel'?ﬂimll'.!:l.ll. Then P=%¥EV" = X = [} and
M=UV"=U=U,,

we have P=VEVY = & and M=V =L



Addition of matrices, 2

Adjoing, 119

HAngle between vectors, 143

Augmented marrix, 11

AX+XB=C, T}

AX = B (rer Simultancous linear equaiimnms)
AXE=C, 166

Band mainx, 160
Bewsel function, B
Block matnx, 43

Cangnical basis, B2

for a normal macns, 119
Cayley-Hamilton thesrem, 6]
Chain, &2
Characteristic equatson, b

of similar matrsces, 91
Characteristic polynomeal, &0
Characteristic value {see Eigenvalus)
Characteristic vector [see Eigenvector)
Cholesky decomposition, 129
Circulant matrix, 160
Coefficient matnix, 11
Caofactor, 42, 50
Caolactor matrix, 44
Column rank, 53
Column vector, |
Companion matrix, 70
Compatible norms, 111, 116
Complete preoting, 19
Complex conjugats, 103
Complex conjugale [ranspose nsatnis, 119
Complex marriz, 1, 103
Complex quadraic form, 144

(¥ee alie Quadratic lorm)
Component, 52
Condition number, |18
Congruent matricss, 144, 151
Conjunctive matrioes, 145
Consistency condition for morms, 110
Consistent simultanscus equations, |1
Constanl matnx, 1
Copvex comybimatbon, 39
Crout’s reduction, 25

for & tmdiagonal matnx, 161

Derivative of & matrix, T2
Determinant, 47
amd ziFrll.la]uzs, fwl]
of an LU decompositen, 51
of & positive definite matmx, 132
for a umitary mairix. 156

Index

227

Criagomal, 24, 127

Diiagonal matrix, 24, 127, 137
Dragonal quadratic form, 144
Differentlal eguations, 72
imension, 52

Direct product, 165

[hstance between vectors, 110
Dhstrabudion vectior, 153
Dominant eigenvalee, 100, 152, 169
it product, [

Droubly stochastic matrs, 153

& (matrix exponentisl), T2, 100

for & positive definite matrix, 135
Eigenvalue, &

hounds an, 112

of & circulant matrix, 060

dominanm, 111, 132, 14%

of an elementary reflector, 143

of fiA), 93

of a Hermitian matns, 119

of an inverse, &

of § monnegative matrix, 152

by numerical methods, 169-170, 181

of 8 positve definite matrix, 128

of & positive matrix, 152

by QR algorithm, 181

of similar matricss, 91

of a singular matiz, &0

of a transpose, &0

of a trisngular matrs, &0

for = unitary matnx, |35
Eigenvalue tank number, 82
Eigenvectar, 6

of a circulant! matriz, 160

peneralized, &2

of a Hermitian matrix, 119

maximal linearly independent set of, 61

of a nonnegative matnx, 152, 153

of a normal matrix, 119

by numerical methods, 169, 170

of n real symmetric matrix, 119
Elementary column operations, 3
Elementary matrix, 24

determinant of, 43

inverse of, 34
Elementary reflecior, 137
Elementary row operations, 3
Equality of matrices, |
Ergodic matrix, 153
Euchidean innér L 103, 120
Euclidean matrix norm, 111
Euclidean vector nonm, 100, 116, 194



Esxpansion by cofactors, 42
Exponential of a matrix, 71

Findte Markaov chain, 153

Frobeniws norm, 100, 116

Function of a matrix, 71, 2
eigenvalues of, 93
Hermdtian. 127

Ciaussian elimination, 12

Giauss-Jordan elimination, Z1

Generalized eigenvector, 82

Generaled inverse, 192

Gerschgorin’s theorem, 170

Gitvens method, 167

Gram-Schmidi orthogonalization process, 104, 121
modified, 18]

Hermatian congrsent matnces, 145
Hermitian matrix, 119

eilznvalu.:l of, 11§

lunctions of, 127

generalized nverse of, 192

positive definie, 128

for & quadratic form, 144

Rayleigh's quotient, 146
Hermitian trarspose mainx, 119

for & wnitary matax, 136
Hessenberg fopm, 160, 182
Homogeneous lirear =gquations, 12, 23, 55, 59
Householder tramsformation, 137

[dempotent matris, 33, 202
ldentity matrix, 24, 118
Imconsistent simultaneous equations, 11
Ieibex, 145
of a nilpotent matrix, 32
Ineduced nomm. 111
lneriis matrix, 143
Infinite series of matrices, 71
Inner product, 103, 136, 144
Integral of & matrix, T
Inverse. 14, 44
of @ circulam matriz, 10
and congruence, 151
determinant of, 43
eigenvalue of, &
of an clementary matriz, 34
f an n'rlhng_nnil mairix, 136
by row reductson, 34
af a unitary matrix, 136
Inverse power method, 170
moddified, |80
Invertible, 14
Irreducible marrix, 152

INDEX

Jordan bock, @1
Jowdan canomical form, 91

Kronecker product, 162

{, norm, 110

I, noem, 110

i, morm, 100

i, marm, 110

L, norm, 111

L. aodm, 110

Least squarcs, 194, 200

Left sigenvector, 6T, 134

Length, of a chain, B2
of a wector, 110, 143

Linear combinaton, 22
of eigenveciors, &6

Linear dependence, 52, 53

Linear equations (s&e Simultanecus liner

eguations)

Linear inﬂ:pﬁTﬂ:ﬂﬂ1 51, 51
of a chain, RS
of eigenvectors, &l

Lower triangular matrix, 24
determinant of, 42
elgenvalues of, &0
inverse of, 32

LU decomposition 24, 40, 51
l.'.'l'mlﬁh.r vl;l:wmpnsitinn, 129
Crout's reduction, 25, 161

Magnitwde of a vector, 110

Main diagonal, 14

Markov chain, 153

Marrix, 1

Muirix equation AX + XB=C, 73

AX = B (see Simulianeous linear equations)

AXB = C, 166
Matrix norem, 110

Maximal s=t of linearly independent vectors, 57

eigenvectors, Gl
Minimum polynomial, 83
Minor, 42

pl'inl:ip.ll, 128
Bodal matriz, %1
Modsfied Gram-Schmich process, 174
Moore-Penrose inverse, 192
Multiplication of matrices, 2, &

Megative defimte matric, 128
MNepative semidefinite mavrix, 128
Milpotent, 52
Monhomogeseous linear equations, 12
(Jee alse Simultaneous linear
equations)
Monnegative matrix, 152



Monsingular matrix, 34
Montrivial solutions, 12
Morm, 110
Mormal equations, 201
Mormal matriz, 11%, 136
similar 10 a diagonal matrix, 137
Mormalized vector. 110
Mull space, 59
Mumerical methods for cigenvalues, 169, 170, 181

Order, 1

Orthogonal matrix, 134, 137
Crrthoponal wectors, 103
Orthonormal vectors, 110, 119, 136

Partial pivoting, 13

[ See alie Fivolng strategies)
Fartitioned matrix, 3

determinant of, 43
Permutation matrix, 152
Perpendicular {see Onhogonal vectors)
Perrom’s theorem, 152
Perron-Frobenius theorem, 152
Fivor, 3
Pivotal condensation, 43
Pivoting strategics, 12, 14, 19, 25, 35
Palar decomposition, 202
Positive: definite matrix, 128
Positive matrix, 152
Positive semidefinite matrix, 128
Power method, 169

modified, 174
Powers of a matrx, 26
Primitive matrs, 153
Principal dimgornal, 24
Principal miror, 128
Peeudoinverse, 192

QR algorithm, 181
QR decomposition, 181, 301
COuadratic form, 144

Ronk, of a generalized cigenvector, B2
of a mairix, 3, 12, 43, 533, 144, 192
Hank number of an sigenvalue, B2
Baylcigh's principle, 146
Rayleigh's quotien, 144, 174, 180
Rezal matmx, |
Real symmetrc matriz, 119, 160, 174
for & qusdratic form, 144
Reducible mainx, 152
Regular marriz, 153
Right eigenvector, &
(See alio Eigenvector]
Rodation marns, 143, 167
How rank, 3, 53

29

Row vecior, |
Row-echelon form, 2
reduction 1o, 3

Scalar, |
Scalar multiplication, 2
Scaled pivoting. 18
Schur decomposition, |36
Schwarz inequality, 103
Self-adjoint matrs, 120
Sequences of matrices, 71
Series of manrices, TI
Shifted inverse power methad, 170
modified, 180
Shifted QR algorithm, 182
Signature, 145
Similar matrices, 9], 123
Similarity tramsformation, 137
QR algorithm, 1848
Simultaneous lingar equations, 11, 25, 35
homogeneous, 12, 55, 59
matrix form, 11
[ See alie Solutions of simulianeous linesr equa-
fins)
Singular matrix, 34
sgenvaluss of, 60
Sinpular value. 193
Singular value decomposition, 193
Skew-Hermitian marnix, 127
Skew-symmetric matrix, 127
Solugions of dmullaneous linear egquations, 11
by Gaussian elimination, 12
by Grauss-lordan elimination, 21
by inversion, 33
least squares, 194
by LU decomposition, 25
theory of, 12, 33, 55
iriwial, 12
Spectral norm, 101, 141
Spectral radiug, 110, 118
for nnnegative malrices, 152
Square matrix, 24
Square rowot of a matrix, |28
Stochastic matrie, 153, 158
Subdiagonal, 24
Subtraction of matruees, 2
Superdiagonal, 24
Sylvester's law of inertia, 145
Symmetnic matnx (fee Real symmetnc matnic)

Toeplitz matriz, 160, 16]
Trace, 6, 70, %1, 172
Transposs, |
of @ band matrix, 160
determinant of, 43
cigenvaluss of, &0



Transpose (continied )
inverme of, 35
of an orthogonal matrix, 136
rank of, 53
of a right eigenvecior, 67
{See ailvo Hermitian matrix)
Triangle inegquality, 110
Tridiagonal matriz, 161
Trivial solution, 12

Lindt wector, 100

Undrarily similar, 137

Linitary matriz, 136

U'natary transformsation, 136
pressrvafion of angles, 143
preservation of length, 143

INDEX

Upper triangular matrix, 24, 136
determinant of, 42
eigenvalues af, &
inverse af, 34
when normal, 124

Vandermonde determinant, 66
Yector, 1, 52

angle between, 143
Vector nonm, 110

Well-defined function, 71
{ Ser also Function of a matnix)
Work column, 3

Lero matrix, 2, 33, 192



