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Preface

Algebra is used by virtually all mathematicians, be they analysts, combinatorists, com-
puter scientists, geometers, logicians, number theorists, or topologists. Nowadays, ev-
eryone agrees that some knowledge of linear algebra, groups, and commutative rings is
necessary, and these topics are introduced in undergraduate courses. We continue their
study.

This book can be used as a text for the first year of graduate algebra, but it is much more
than that. It can also serve more advanced graduate students wishing to learn topics on
their own; while not reaching the frontiers, the book does provide a sense of the successes
and methods arising in an area. Finally, this is a reference containing many of the standard
theorems and definitions that users of algebra need to know. Thus, the book is not only an
appetizer, but a hearty meal as well.

When I was a student, Birkhoff and Mac Lane’s A Survey of Modern Algebra was the
text for my first algebra course, and van der Waerden’s Modern Algebra was the text for
my second course. Both are excellent books (I have called this book Advanced Modern
Algebra in homage to them), but times have changed since their first appearance: Birkhoff
and Mac Lane’s book first appeared in 1941, and van der Waerden’s book first appeared
in 1930. There are today major directions that either did not exist over 60 years ago, or
that were not then recognized to be so important. These new directions involve algebraic
geometry, computers, homology, and representations (A Survey of Modern Algebra has
been rewritten as Mac Lane-Birkhoff, Algebra, Macmillan, New York, 1967, and this
version introduces categorical methods; category theory emerged from algebraic topology,
but was then used by Grothendieck to revolutionize algebraic geometry).

Let me now address readers and instructors who use the book as a text for a beginning
graduate course. If I could assume that everyone had already read my book, A First Course
in Abstract Algebra, then the prerequisites for this book would be plain. But this is not a
realistic assumption; different undergraduate courses introducing abstract algebra abound,
as do texts for these courses. For many, linear algebra concentrates on matrices and vector
spaces over the real numbers, with an emphasis on computing solutions of linear systems
of equations; other courses may treat vector spaces over arbitrary fields, as well as Jordan
and rational canonical forms. Some courses discuss the Sylow theorems; some do not;
some courses classify finite fields; some do not.

To accommodate readers having different backgrounds, the first three chapters contain

iX



X Preface

many familiar results, with many proofs merely sketched. The first chapter contains the
fundamental theorem of arithmetic, congruences, De Moivre’s theorem, roots of unity,
cyclotomic polynomials, and some standard notions of set theory, such as equivalence
relations and verification of the group axioms for symmetric groups. The next two chap-
ters contain both familiar and unfamiliar material. “New” results, that is, results rarely
taught in a first course, have complete proofs, while proofs of “old” results are usually
sketched. In more detail, Chapter 2 is an introduction to group theory, reviewing permuta-
tions, Lagrange’s theorem, quotient groups, the isomorphism theorems, and groups acting
on sets. Chapter 3 is an introduction to commutative rings, reviewing domains, fraction
fields, polynomial rings in one variable, quotient rings, isomorphism theorems, irreducible
polynomials, finite fields, and some linear algebra over arbitrary fields. Readers may use
“older” portions of these chapters to refresh their memory of this material (and also to
see my notational choices); on the other hand, these chapters can also serve as a guide for
learning what may have been omitted from an earlier course (complete proofs can be found
in A First Course in Abstract Algebra). This format gives more freedom to an instructor,
for there is a variety of choices for the starting point of a course of lectures, depending
on what best fits the backgrounds of the students in a class. I expect that most instruc-
tors would begin a course somewhere in the middle of Chapter 2 and, afterwards, would
continue from some point in the middle of Chapter 3. Finally, this format is convenient
for the author, because it allows me to refer back to these earlier results in the midst of a
discussion or a proof. Proofs in subsequent chapters are complete and are not sketched.

I have tried to write clear and complete proofs, omitting only those parts that are truly
routine; thus, it is not necessary for an instructor to expound every detail in lectures, for
students should be able to read the text.

Here is a more detailed account of the later chapters of this book.

Chapter 4 discusses fields, beginning with an introduction to Galois theory, the inter-
relationship between rings and groups. We prove the insolvability of the general polyno-
mial of degree 5, the fundamental theorem of Galois theory, and applications, such as a
proof of the fundamental theorem of algebra, and Galois’s theorem that a polynomial over
a field of characteristic 0 is solvable by radicals if and only if its Galois group is a solvable
group.

Chapter 5 covers finite abelian groups (basis theorem and fundamental theorem), the
Sylow theorems, Jordan—Holder theorem, solvable groups, simplicity of the linear groups
PSL(2, k), free groups, presentations, and the Nielsen—Schreier theorem (subgroups of free
groups are free).

Chapter 6 introduces prime and maximal ideals in commutative rings; Gauss’s theorem
that R[x] is a UFD when R is a UFD; Hilbert’s basis theorem, applications of Zorn’s lemma
to commutative algebra (a proof of the equivalence of Zorn’s lemma and the axiom of
choice is in the appendix), inseparability, transcendence bases, Liiroth’s theorem, affine va-
rieties, including a proof of the Nullstellensatz for uncountable algebraically closed fields
(the full Nullstellensatz, for varieties over arbitrary algebraically closed fields, is proved
in Chapter 11); primary decomposition; Grobner bases. Chapters 5 and 6 overlap two
chapters of A First Course in Abstract Algebra, but these chapters are not covered in most
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undergraduate courses.

Chapter 7 introduces modules over commutative rings (essentially proving that all
R-modules and R-maps form an abelian category); categories and functors, including
products and coproducts, pullbacks and pushouts, Grothendieck groups, inverse and direct
limits, natural transformations; adjoint functors; free modules, projectives, and injectives.

Chapter 8 introduces noncommutative rings, proving Wedderburn’s theorem that finite
division rings are commutative, as well as the Wedderburn—Artin theorem classifying semi-
simple rings. Modules over noncommutative rings are discussed, along with tensor prod-
ucts, flat modules, and bilinear forms. We also introduce character theory, using it to prove
Burnside’s theorem that finite groups of order p™¢" are solvable. We then introduce multi-
ply transitive groups and Frobenius groups, and we prove that Frobenius kernels are normal
subgroups of Frobenius groups.

Chapter 9 considers finitely generated modules over PIDs (generalizing earlier theorems
about finite abelian groups), and then goes on to apply these results to rational, Jordan, and
Smith canonical forms for matrices over a field (the Smith normal form enables one to
compute elementary divisors of a matrix). We also classify projective, injective, and flat
modules over PIDs. A discussion of graded k-algebras, for kK a commutative ring, leads to
tensor algebras, central simple algebras and the Brauer group, exterior algebra (including
Grassmann algebras and the binomial theorem), determinants, differential forms, and an
introduction to Lie algebras.

Chapter 10 introduces homological methods, beginning with semidirect products and
the extension problem for groups. We then present Schreier’s solution of the extension
problem using factor sets, culminating in the Schur—Zassenhaus lemma. This is followed
by axioms characterizing Tor and Ext (existence of these functors is proved with derived
functors), some cohomology of groups, a bit of crossed product algebras, and an introduc-
tion to spectral sequences.

Chapter 11 returns to commutative rings, discussing localization, integral extensions,
the general Nullstellensatz (using Jacobson rings), Dedekind rings, homological dimen-
sions, the theorem of Serre characterizing regular local rings as those noetherian local
rings of finite global dimension, the theorem of Auslander and Buchsbaum that regular
local rings are UFDs.

Each generation should survey algebra to make it serve the present time.

It is a pleasure to thank the following mathematicians whose suggestions have greatly
improved my original manuscript: Ross Abraham, Michael Barr, Daniel Bump, Heng Huat
Chan, Ulrich Daepp, Boris A. Datskovsky, Keith Dennis, Vlastimil Dlab, Sankar Dutta,
David Eisenbud, E. Graham Evans, Jr., Daniel Flath, Jeremy J. Gray, Daniel Grayson,
Phillip Griffith, William Haboush, Robin Hartshorne, Craig Huneke, Gerald J. Janusz,
David Joyner, Carl Jockusch, David Leep, Marcin Mazur, Leon McCulloh, Emma Previato,
Eric Sommers, Stephen V. Ullom, Paul Vojta, William C. Waterhouse, and Richard Weiss.

Joseph Rotman



Etymology

The heading etymology in the index points the reader to derivations of certain mathematical
terms. For the origins of other mathematical terms, we refer the reader to my books Journey
into Mathematics and A First Course in Abstract Algebra, which contain etymologies of
the following terms.

Journey into Mathematics:

7, algebra, algorithm, arithmetic, completing the square, cosine, geometry, irrational
number, isoperimetric, mathematics, perimeter, polar decomposition, root, scalar, secant,
sine, tangent, trigonometry.

A First Course in Abstract Algebra:

affine, binomial, coefficient, coordinates, corollary, degree, factor, factorial, group,
induction, Latin square, lemma, matrix, modulo, orthogonal, polynomial, quasicyclic,
September, stochastic, theorem, translation.
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Things Past

This chapter reviews some familiar material of number theory, complex roots of unity, and
basic set theory, and so most proofs are merely sketched.

1.1 SOME NUMBER THEORY

Let us begin by discussing mathematical induction. Recall that the set of natural numbers
N is defined by

N = {integers n : n > 0};

that is, N is the set of all nonnegative integers. Mathematical induction is a technique of
proof based on the following property of N:

Least Integer Axiom.' There is a smallest integer in every nonempty subset C of N.

Assuming the axiom, let us see that if m is any fixed integer, possibly negative, then
there is a smallest integer in every nonempty collection C of integers greater than or equal
tom. If m > 0, this is the least integer axiom. If m < 0,thenC € {m,m+1, ..., —1}UN
and

c=(Cn{mm+1,...,-1})U(CNN).

If the finite set C N {m, m + 1,..., —1} # @, then it contains a smallest integer that is,
obviously, the smallest integer in C; if C N {m,m + 1, ..., —1} = &, then C is contained
in N, and the least integer axiom provides a smallest integer in C.

Definition. A natural number p is prime if p > 2 and there is no factorization p = ab,
where a < p and b < p are natural numbers.

I This property is usually called the well-ordering principle.

1



2 Things Past Ch. 1

Proposition 1.1. Every integer n > 2 is either a prime or a product of primes.

Proof. Let C be the subset of N consisting of all those n > 2 for which the proposition
is false; we must prove that C = &. If, on the contrary, C is nonempty, then it contains a
smallest integer, say, m. Since m € C, it is not a prime, and so there are natural numbers
a and b with m = ab, a < m, and b < m. Neither a nor b lies in C, for each of them is
smaller than m, which is the smallest integer in C, and so each of them is either prime or a
product of primes. Therefore, m = ab is a product of (at least two) primes, contradicting
the proposition being false for m. e

There are two versions of induction.

Theorem 1.2 (Mathematical Induction). Let S(n) be a family of statements, one for
each integer n > m, where m is some fixed integer. If

(i) S(m) is true, and
(ii) S(n) is true implies S(n + 1) is true,
then S(n) is true for all integers n > m.

Proof. Let C be the set of all integers n > m for which S(n) is false. If C is empty, we
are done. Otherwise, there is a smallest integer k in C. By (i), we have k > m, and so there
is a statement S(k — 1). Butk — 1 < k implies k — 1 ¢ C, for k is the smallest integer in
C. Thus, S(k — 1) is true. But now (ii) says that S(k) = S([k — 1] 4 1) is true, and this
contradicts k € C [which says that S(k) is false]. e

Theorem 1.3 (Second Form of Induction). Ler S(n) be a family of statements, one for
each integer n > m, where m is some fixed integer. If

(1) S(m) is true, and

(i) if S(k) is true for all k withm < k < n, then S(n) is itself true,
then S(n) is true for all integers n > m.
Sketch of Proof. The proof is similar to the proof of the first form. e

We now recall some elementary number theory.

Theorem 1.4 (Division Algorithm). Given integers a and b with a # 0, there exist
unique integers q and r with

b=qga+r and 0<r <]al.

Sketch of Proof. Consider all nonnegative integers of the form b — na, where n € Z.
Define r to be the smallest nonnegative integer of the form b — na, and define ¢ to be the
integer n occurring in the expression » = b — na.

If ga +r = qg'a+ 1/, where 0 < r’ < |a|, then |(g — ¢ )a| = |r' — r|. Now 0 <
|r' —r| < |a| and, if |g — q’| # O, then |(g — ¢")a| > |a|. We conclude that both sides
are 0; thatis,g =g’ andr =7r'. e



Sec. 1.1 Some Number Theory 3

Definition. If a and b are integers with a # 0, then the integers g and r occurring in the
division algorithm are called the quotient and the remainder after dividing b by a.

Warning! The division algorithm makes sense, in particular, when b is negative. A
careless person may assume that b and —b leave the same remainder after dividing by a,
and this is usually false. For example, let us divide 60 and —60 by 7.

60=7-84+4 and —60=7-(-9)+3

Thus, the remainders after dividing 60 and —60 by 7 are different.

Corollary 1.5. There are infinitely many primes.

Proof. (Euclid) Suppose, on the contrary, that there are only finitely many primes. If
P1s P2, ..., Pk is the complete list of all the primes, define M = (p;---px) + 1. By
Proposition 1.1, M is either a prime or a product of primes. But M is neither a prime
(M > p; for every i) nor does it have any prime divisor p;, for dividing M by p; gives
remainder 1 and not 0. For example, dividing M by p; gives M = p1(p2--- px) + 1, so
that the quotient and remainder are ¢ = p» - - - px and r = 1; dividing M by p> gives M =
p2(p1p3---pr) + 1,s0that g = p1p3--- pr and r = 1; and so forth. This contradiction
proves that there cannot be only finitely many primes, and so there must be an infinite
number of them. e

Definition. If ¢ and b are integers, then a is a divisor of b if there is an integer d with
b = ad. We also say that a divides b or that b is a multiple of a, and we denote this by

alb.

There is going to be a shift in viewpoint. When we first learned long division, we
emphasized the quotient ¢g; the remainder r was merely the fragment left over. Here, we
are interested in whether or not a given number b is a multiple of a number a, but we are
less interested in which multiple it may be. Hence, from now on, we will emphasize the
remainder. Thus, a | b if and only if b has remainder r = 0 after dividing by a.

Definition. A common divisor of integers a and b is an integer ¢ with ¢ | a and ¢ | b.
The greatest common divisoror ged of a and b, denoted by (a, b), is defined by

(@.b) Oifa=0=0»b
a,b) =
the largest common divisor of a and b otherwise.

Proposition 1.6. If p is a prime and b is any integer; then

p ifp|b
1  otherwise.

(p,b)={

Sketch of Proof. A positive common divisor is, in particular, a divisor of the prime p, and
henceitisporl. e
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Theorem 1.7. Ifa and b are integers, then (a, b) = d is a linear combination of a and
b; that is, there are integers s and t withd = sa + tb.

Sketch of Proof. Let
I ={sa+tb:s,tel}

(the set of all integers, positive and negative, is denoted by Z). If I # {0}, let d be the
smallest positive integer in /; as any element of 7, we have d = sa + tb for some integers
s and t. We claim that I = (d), the set of all multiples of d. Clearly, (d) € I. For the
reverse inclusion, take ¢ € I. By the division algorithm, ¢ = gd + r, where 0 < r < d.
Now r = ¢ — gd € I, so that the minimality of d is contradicted if » # 0. Hence, d | c,
c € (d),and I = (d). It follows that d is a common divisor of @ and b, and it is the largest
such. e

Proposition 1.8. Let a and b be integers. A nonnegative common divisor d is their gcd if
and only if ¢ | d for every common divisor c.

Sketch of Proof. If d is the gcd, then d = sa +1tb. Hence, if ¢ | a and c | b, then ¢ divides
sa + tb = d. Conversely, if d is a common divisor with ¢ | d for every common divisor c,
then ¢ < d for all ¢, and so d is the largest. e

Corollary 1.9. Let I be a subset of Z such that
1 0el;
(ii) ifa,b eI, thena—b e l;
(iii) ifa e l andq € Z, then qa € 1.
Then there is a natural number d € I with I consisting precisely of all the multiples of d.

Sketch of Proof. These are the only properties of the subset / in Theorem 1.7 that were
used in the proof. e

Theorem 1.10 (Euclid’s Lemma). If p is a prime and p | ab, then p | a or p | b. More
generally, if a prime p divides a product aiay - - - ay, then it must divide at least one of the
factors a;.

Sketch of Proof. If p { a, then (p,a) = 1 and 1 = sp + ta. Hence, b = spb + tab is a
multiple of p. The second statement is proved by inductiononn > 2. e

Definition. Call integers a and b relatively prime if their gcd (a, b) = 1.
Corollary 1.11. Let a, b, and c be integers. If c and a are relatively prime and if ¢ | ab,

then c | b.

Sketch of Proof. Since 1 = sc + ta, we have b = scb + tab. e
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Proposition 1.12.  If p is a prime, then p ‘ (p) for0 < j < p.
J

Sketch of Proof. By definition, the binomial coefficient (f) = p!/jl(p — !, so that

p!=j!(p—j>!(’7).
J

By Euclid’s lemma, p t j!(p — j)! implies p | (f) .

If integers a and b are not both 0, Theorem 1.7 identifies (a, b) as the smallest positive
linear combination of a and b. Usually, this is not helpful in actually finding the gcd, but
the next elementary result is an exception.

Proposition 1.13.

(1) If a and b are integers, then a and b are relatively prime if and only if there are
integers s and t with 1 = sa + tb.

(i) Ifd = (a, b), where a and b are not both O, then (a/d,b/d) = 1.

Proof. (i) Necessity is Theorem 1.7. For sufficiency, note that 1 being the smallest posi-
tive integer gives, in this case, 1 being the smallest positive linear combination of a and b,
and hence (a, b) = 1. Alternatively, if ¢ is a common divisor of a and b, then ¢ | sa + tb;
hence, ¢ | 1, and so ¢ = *1.

(i1) Note that d # 0 and a/d and b/d are integers, for d is a common divisor. The equation
d = sa+tbnow gives | = s(a/d) +1t(b/d). By part (i), (a/d,b/d) =1. e

The next result offers a practical method for finding the gcd of two integers as well as
for expressing it as a linear combination.

Theorem 1.14 (Euclidean Algorithm). Let a and b be positive integers. There is an
algorithm that finds the gcd, d = (a, b), and there is an algorithm that finds a pair of
integers s and t withd = sa + tb.

Remark. More details can be found in Theorem 3.40, where this result is proved for
polynomials.

To see how the Greeks discovered this result, see the discussion of antanairesis in
Rotman, A First Course in Abstract Algebra, page 49. <

Sketch of Proof. This algorithm iterates the division algorithm, as follows. Begin with
b=gqa+r,where 0 <r < a. The second stepisa = q'r +r’, where 0 < r’ < r; the next
stepisr = q”r' +r”, where 0 < r” < r’, and so forth. This iteration stops eventually, and
the last remainder is the gcd. Working upward from the last equation, we can write the gcd
as a linear combination of @ and b. e
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Proposition 1.15. [f b > 2 is an integer, then every positive integer m has an expression
in base b: There are integers d; with 0 < d; < b such that

m = dib* + di_ 1PN+ -+ do;
moreover, this expression is unique if di # 0.

Sketch of Proof. By the least integer axiom, there is an integer k > 0 with b < m <
bk“, and the division algorithm gives m = dkbk +r,where 0 <r < b*. The existence of
b-adic digits follows by induction on m > 1. Uniqueness can also be proved by induction
on m, but one must take care to treat all possible cases that may arise. e

The numbers dy, dx—1, . .., dy are called the b-adic digits of m.

Theorem 1.16 (Fundamental Theorem of Arithmetic). Assume that an integer a > 2
has factorizations
a=pi--pm and a=qi---q,

where the p’s and q’s are primes. Then n = m and the q’s may be reindexed so that
qi = pi for all i. Hence, there are unique distinct primes p; and unique integers e¢; > 0
with
el €n
a=p'--po.
Proof. 'We prove the theorem by induction on ¢, the larger of m and n.

If £ = 1, then the given equation is @ = p; = g, and the result is obvious. For the
inductive step, note that the equation gives p,, | g1 ---¢g,. By Euclid’s lemma, there is
some i with p,, | ¢g;. But g;, being a prime, has no positive divisors other than 1 and
itself, so that ¢; = p,,. Reindexing, we may assume that g, = p,,. Canceling, we have
Pl Pm—=1 = q1 - qn—1. By the inductive hypothesis, n — 1 = m — 1 and the ¢’s may
be reindexed so that g; = p; foralli. e

Definition. A common multiple of integers a and b is an integer ¢ witha | cand b | c.
The least common multiple or lem of a and b, denoted by [a, b], is defined by

[a. b] Oifa=0=0»b
a,b) = ... . .
the smallest positive common multiple of a and b otherwise.

Proposition 1.17.  Leta = p{'--- p" and let b = plf1 --~p',{”, where e; > 0 and f; > 0
for all i; define
m; = min{e;, fi} and M; = max{e;, fi}.

Then the gcd and the lcm of a and b are given by

n M M,
(a,b):pi"'---p::1 and [a,b]l=p|"---p,".
Jn

n

Sketch of Proof. Use the fact that p{'--- p" | p{'] e p
alli. e

if and only if ¢; < f; for
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Definition. Letm > 0 be fixed. Then integers a and b are congruent modulo m, denoted
by
a = b mod m,

it m | (a —b).

Proposition 1.18. Ifm > 0 is a fixed integer, then for all integers a, b, c,
(i) a = a mod m;
(i) ifa = b mod m, then b = a mod m;

(iii) ifa = b mod m and b = ¢ mod m, then a = ¢ mod m.

Remark. (i) says that congruence is reflexive, (ii) says it is symmetric, and (iii) says it is
transitive. <

Sketch of Proof. All the items follow easily from the definition of congruence. e

Proposition 1.19. Let m > 0 be a fixed integer.

(1) Ifa =qm +r, then a = r mod m.
(ii) If0 <r' <r < m, thenr # r' mod m; that is, r and r’ are not congruent mod m.
(iii) a = b mod m if and only if a and b leave the same remainder after dividing by m.

@iv) If m > 2, each integer a is congruent mod m to exactly one of 0, 1, ..., m — 1.

Sketch of Proof. Ttems (i) and (iii) are routine; item (ii) follows after noting that
0 <r — 1 < m, and item (iv) follows from (i) and (ii). e

The next result shows that congruence is compatible with addition and multiplication.

Proposition 1.20. Let m > 0 be a fixed integer.

(i) Ifa = a’ mod m and b = b’ mod m, then
a+b=ad +b modm.
(i1) Ifa = a’ mod m and b = b’ mod m, then
ab = a'b’ mod m.
(iii) Ifa = b mod m, then a" = b" mod m foralln > 1.

Sketch of Proof.  All the items are routine. e
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Earlier we divided 60 and —60 by 7, getting remainders 4 in the first case and 3 in the
second. It is no accident that 4 43 = 7. If a is an integer and m > 0, let a = r mod m and
—a = r’ mod m. It follows from the proposition that

0=—-a+a=r+r modm.
The next example shows how one can use congruences. In each case, the key idea is to

solve a problem by replacing numbers by their remainders.

Example 1.21.
(i) Prove that if a is in Z, then a® = 0, 1, or 4 mod 8.

If a is an integer, then a = r mod 8, where 0 < r < 7; moreover, by Proposi-
tion 1.20(iii), a? = r? mod 8, and so it suffices to look at the squares of the remainders.

r ol1[2[3] 4] 5] 6] 7
r2 0[1/4]9|16]| 25|36 49
PPmod8 |0 |1 |4]|1] 0| 1] 4] 1

Table 1.1. Squares mod 8

We see in Table 1.1 that only 0, 1, or 4 can be a remainder after dividing a perfect square
by 8.
(ii) Prove that n = 1003456789 is not a perfect square.

Since 1000 = 8 - 125, we have 1000 = 0 mod 8, and so

n = 1003456789 = 1003456 - 1000 + 789 = 789 mod 8.
Dividing 789 by 8 leaves remainder 5; that is, n = 5 mod 8. Were n a perfect square, then
n=0,1,or4 mod 8.

(iii) If m and n are positive integers, are there any perfect squares of the form 3™ + 3" + 17

Again, let us look at remainders mod 8. Now 32 = 9 = 1 mod 8, and so we can evaluate
3" mod 8 as follows: If m = 2k, then 3" = 3% = 9% = | mod 8; if m = 2k + 1, then
3m = 32k+1 — 9k . 3 = 3 mod 8. Thus,

__ |1 mod8 ifmiseven;

3" =
3mod 8 if m is odd.

Replacing numbers by their remainders after dividing by 8, we have the following possi-
bilities for the remainder of 3" 4 3" + 1, depending on the parities of m and n:

341+ 1=5mod8

3+34+1=7mod 8

1+14+1=3modS8

143+ 1=5modS8.
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In no case is the remainder O, 1, or 4, and so no number of the form 3™ + 3" + 1 can be a
perfect square, by part (i). <«

Proposition 1.22. A positive integer a is divisible by 3 (or by 9) if and only if the sum of
its (decimal) digits is divisible by 3 (or by 9).

Sketch of Proof. Observe that 10" = 1 mod 3 (and also that 10" =1 mod 9). e

Proposition 1.23. If p is a prime and a and b are integers, then
(a + b)? = a? + b? mod p.

Sketch of Proof. Use the binomial theorem and Proposition 1.12. e

Theorem 1.24 (Fermat). If p is a prime, then
a’ =amod p

for every a in Z. More generally, for every integer k > 1,
a?" = a mod p.

Sketch of Proof. 1f a > 0, use induction on a; the inductive step uses Proposition 1.23.
The second statement follows by inductiononk > 1. e

Corollary 1.25. Let p be a prime and let n be a positive integer. If m > 0 and if X is the
sum of the p-adic digits of m, then

n™ =n* mod p.

Sketch of Proof. Write m in base p, and use Fermat’s theorem. e

We compute the remainder after dividing 10'%° by 7. First, 10'% = 3100 mod 7.
Second, since 100 = 2 - 72 + 2, the corollary gives 3100 = 34 — 81 mod7. Since
81 = 11 x 7 4+ 4, we conclude that the remainder is 4.

Theorem 1.26. If (a, m) = 1, then, for every integer b, the congruence

ax = b mod m
can be solved for x; in fact, x = sb, where sa = 1 mod m is one solution. Moreover, any
two solutions are congruent mod m.

Sketch of Proof. 1If 1 = sa + tm, then b = sab + tmb. Hence, b = a(sb) mod m. If,
also, b = ax mod m, then 0 = a(x — sb) mod m, so that m | a(x — sb). Since (m, a) = 1,
we have m | (x — sb); hence, x = sb mod m, by Corollary 1.11. e
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Corollary 1.27. If p is a prime and a is not divisible by p, then the congruence
ax =bmod p

is always solvable.

Sketch of Proof. 1f a is not divisible by p, then (a, p) = 1. e

Theorem 1.28 (Chinese Remainder Theorem). [f m and m' are relatively prime, then
[/’ZE two congruences

x =bmodm

x=0b' modm’

have a common solution, and any two solutions are congruent mod mm’.

Sketch of Proof. By Theorem 1.26, any solution x to the first congruence has the form
x = sb + km for some k € Z (where 1 = sa + tm). Substitute this into the second
congruence and solve for k. Alternatively, there are integers s and s” with 1 = sm + s'm’,
and a common solution is

x =b'ms + bm's’.

To prove uniqueness, assume that y = b mod m and y = b’ mod m’. Thenx — y =
0 mod m and x — y = 0 mod m’; that is, both m and m’ divide x — y. The result now
follows from Exercise 1.19 on page 13. e

EXERCISES

1.1 Provethat 12+ 22+ ... 452 = %n(n +DQ2n+1)= %n3 + %n2 + %n
1.2 Provethat 13+ 23 + ... +n3 = %n“ + %n3 + %nz.
1.3 Prove that 14 + 2% + ... +n% = %ns + %n4 + %n3 — 3

n—l ik

Remark. There is a general formula that expresses ) i1

, for k > 1, as a polynomial in n:
n—1 k
k+1 :
D B B G It
i=1 j=1 J
the coefficients involve rational numbers B s for j > 1, called Bernoulli numbers, defined by

x B;

_ J.

ex_1_1+2jyx’
j=1

see Borevich—Shafarevich, Number Theory, page 382. <«
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1.4 Derive the formula for Z?:l i by computing the area (n + D% ofa square with sides of length
n + 1 using Figure 1.1.
Hint. The triangular areas on either side of the diagonal have equal area.

5111|111
4(1(1f(1]1 1j]1]11(1]1
31111 111111
21111 11111
11 1 111
1
Figure 1.1 Figure 1.2

1.5 (i) Derivetheformulafor )" ;i by computing thearean(n + 1) of arectangle with base
n + 1 and height n, as pictured in Figure 1.2.

(ii) (Alhazen, ca. 965-1039) For fixed k > 1, use Figure 1.3 to prove

DY ik =ik Z(sz).
i=1 i=1

i=1 (=1

Hint. Asindicated in Figure 1.3, arectangle with height n + 1 and base " _; ik can
be subdivided so that the shaded staircase has area 3", i*+1, whereas the area above
itis

@+ + @b+ 22438+ @ 2 b,

1k + 2k + 3k + 4k + 5k
1k + 2k + 3k + 4k

1+ 2" + 3

K K k+1
1+ 2 N 5
1k 3k+l 4k1

k+1

1k+1 2

lk 2k 3k 4k Sk

Figure 1.3
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1.15

1.16

1.17

Things Past Ch. 1

(iii) Giventheformulad! ; = %n(n + 1), use part (ii) to derive the formulafor Y-, i2.
Hint. In Alhazen’s formula, write 31 ; <Zle=1 Z) =1y i2+ 3y i end
then solvefor 1 i 2 interms of the rest.

(Leibniz) A function f : R — R is called a C®-function if it has an nth derivative f " for
every natural number n (f © isdefined to be f). If f and g are C>-functions, prove that

n
(g™ =3 (:‘) £ =0,

r=0

(Double Induction) Let S(m, n) be a doubly indexed family of statements, one for each
m > 1and n > 1. Suppose that

(i) S(1,1)istrue;
(i) if S(m, 1) istrue, then S(m + 1, 1) istrue;
(iii) if S(m, n) istruefor al m, then S(m, n + 1) istrue for all m.

Provethat S(m, n) istrueforal m> 1andn > 1.
Use double induction to prove that

Mm+21" > mn

foralmn> 1.

Prove that +/2 isirrational.

Hint. If /2 isrational, then v/2 = a/b, and we can assume that (a, b) = 1 (actualy, it
is enough to assume that at least one of a and b is odd). Squaring this equation leads to a
contradiction.

Prove the converse of Euclid’slemma: Aninteger p > 2, which, whenever it divides a product
necessarily divides one of the factors, must be a prime.

Let p1, p2, P3, ... bethelist of the primesin ascending order: p; =2, po =3, p3 =5, ...
Define fx = p1p2--- pk + 1 for k > 1. Find the smallest k for which fy isnot aprime.
Hint. 19| f7, but 7 isnot the smallest k.

If d and d’ are nonzero integers, each of which divides the other, prove that d’ = 4-d.

Show that every positive integer m can be written as a sum of distinct powers of 2; show,
moreover, that there is only one way in which m can so be written.
Hint. Writem in base 2.
If (r,a) =1=(r',a), provethat (rr’, a) = 1.
(i) Provethat if a positive integer n is squarefree (i.e., n is not divisible by the square of
any prime), then \/n isirrational.
(ii) Provethat an integer m > 2 is a perfect square if and only if each of its prime factors
occurs an even number of times.

Prove that /2 isirrational.
Hint. Assume that /2 can be written as afraction in lowest terms.

Find the gcd d = (12327, 2409), find integers s and t with d = 12327s + 2409t, and put the
fraction 2409/12327 in lowest terms.



Sec. 1.1 Some Number Theory 13

1.18 Assumethat d = sa + tb isalinear combination of integers a and b. Find infinitely many
pairs of integers (s, tx) with
d = ska + tkb.
Hint. If 2s+ 3t =1,then2(s+3) +3(t—2) = 1.
1.19 If a and b are relatively prime and if each divides an integer n, then their product ab also
dividesn.

1.20 If a > 0, provethat a(b, c) = (ab, ac). [We must assumethat a > 0 lest a(b, c) be negative]
Hint. Show that if k isacommon divisor of ab and ac, thenk | a(b, ¢).

Definition. A common divisor of integersay, ao, ..., an isan integer c withc | g for al i; the
largest of the common divisors, denoted by (a1, ap, . . ., an), is caled the greatest common divisor.

1.21 (i) Show thatif d isthe greatest common divisor of a1, ap, ..., an,thend = Y _tja, where
tjisinZforl<i <n.
(ii) Provethat if cisacommon divisor of a1, ay, ..., an, thenc | d.
1.22 (i) Show that (a, b, c), theged of a, b, ¢, isequal to (a, (b, ¢)).
(ii) Compute (120, 168, 328).
1.23 A Pythagorean triple is an ordered triple (a, b, ¢) of positive integers for which

a’+b%=c%
it iscalled primitive if gcd (a, b, c) = 1.
(i) If g > p are positiveintegers, prove that
@* - p% 20p, 6% + p?)

is a Pythagorean triple. [One can prove that every primitive Pythagorean triple (a, b, ¢)
isof thistype]

(ii) Show that the Pythagorean triple (9, 12, 15) (which is not primitive) is not of the type
givenin part (i).

(iif) Using acalculator that can find sguare roots but that can display only 8 digits, prove that

(19597501, 28397460, 34503301)

is a Pythagorean triple by finding g and p.

Definition. A common multiple of a;, ap, ..., an isaninteger mwith g | mfor all i. The least
common multiple, written |cm and denoted by [a1, ap, ..., an], is the smallest positive common
multipleif al g # 0O, and it is 0 otherwise.

1.24 Provethat aninteger M > Oisthelcmof ap, ap, .. ., an if and only if itisacommon multiple
of ag, a, ..., an that divides every other common multiple.

1.25 Leta /by, ..., an/bn € Q, where (g, bj) = 1forali. If M = lcm{by, ..., b}, prove that
theged of Maj/bq, ..., Man/bpisl.

1.26 (i) Provethat [a, b](a, b) = ab, where[a, b] isthe least common multiple of a and b.

Hint. If neither a nor b is0, show that ab/(a, b) isacommon multiple of a and b that
divides every common multiple c of a and b. Alternatively, use Proposition 1.17.
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1.27 (i) Findthe gcd (210, 48) using factorizationsinto primes.
(il) Find (1234, 5678).
1.28 If a and b are positive integers with (a, b) = 1, and if ab is a square, prove that both a and b
are squares.
Hint. The setsof prime divisors of a and b are digjoint.

1.29 Letn = p'm, where p isaprime not dividing an integer m > 1. Prove that

o (5)

Hint. Assume otherwise, cross multiply, and use Euclid’s lemma.

1.30 Let m be apositive integer, and let m’ be an integer obtained from m by rearranging its (dec-
imal) digits (e.g., take m = 314159 and m’ = 539114). Prove that m — m’ is a multiple
of 9.

1.31 Prove that a positive integer n is divisible by 11 if and only if the alternating sum of its
digits is divisible by 11 (if the digits of a are di ... doxd dg, then their alternating sum is
dop—dy+dp—---).

Hint. 10 = —1 mod 11.
1.32 (i) Provethat 10q + r isdivisibleby 7 if and only if g — 2r isdivisible by 7.
(if) Given aninteger a with decimal digitsdidk_1 . . . dg, define

a’ =dydg_q--- dg — 2dp.

Show that a is divisible by 7 if and only if some one of &', a”, a”,...isdivisible by 7.

(For example, if a = 65464, then &’ = 6546 — 8 = 6538, a” = 653 — 16 = 637, and
a"”" = 63 — 14 = 49; we conclude that 65464 is divisible by 7.)
1.33 (i) Show that 1000 = —1 mod 7.
(if) Show that if a = rg + 1000r1 + 10002r2 + .-+, then aisdivisible by 7 if and only if
rog—ri+rpo—--- isdivisibleby 7.

Remark. Exercises 1.32 and 1.33 combine to give an efficient way to determine whether large
numbers are divisible by 7. If a = 33456789123987, for example, thena = 0 mod 7 if and only if
987 — 123+ 789 — 456 + 33 = 1230 = 0 mod 7. By Exercise 1.32, 1230 = 123 = 6 mod 7, and so
aisnotdivisbleby 7. «

1.34 Provethat there are no integers x, y, and z such that
X2 + y? + 7% = 999

Hint. Use Example 1.21(i).

1.35 Provethat thereis no perfect square a2 whose last two digits are 35.
Hint. If thelast digit of a2 is 5, then a2 = 5 mod 10; if the last two digits of a2 are 35, then
a2 = 35 mod 100.

1.36 If x isan odd number not divisible by 3, prove that x2 = 1 mod 4.

1.37 Provethat if pisaprimeandif a2 = 1 mod p, then a = +1 mod p.
Hint. Use Euclid’slemma.
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1.38 If (a, m) = d, provethat ax = b mod m hasasolution if and only if d | b.
1.39 Solvethe congruence x2 = 1 mod 21.
Hint. UseEuclid’slemmawith21 | (a+ 1)(a—1).

1.40 Solve the simultaneous congruences:

(i) x=2mod5and 3x =1mod §;

(if) 3x=2mod5and2x =1 mod 3.
1.41 (i) Show that (a+ b)" =a" + b" mod 2 for all a and b and for al n > 1.

Hint. Consider the parity of a and of b.

(i) Show that (a + b)2 # a2 + b2 mod 3.

1.42 On adesert idand, five men and a monkey gather coconuts all day, then sleep. The first man
awakens and decides to take his share. He divides the coconuts into five equal shares, with
one coconut left over. He gives the extra one to the monkey, hides his share, and goesto sleep.
Later, the second man awakens and takes his fifth from the remaining pile; he, too, finds one
extraand givesit to the monkey. Each of the remaining three men does likewise in turn. Find
the minimum number of coconuts originally present.

Hint. Try —4 coconuts.

1.2 ROOTS OF UNITY

L et usnow say abit about the complex numbers C. We defineacomplex number z = a+ib
to be the point (a, b) in the plane; a is called thereal part of zand b is called itsimaginary
part. Themodulus |z| of z=a + ib = (a, b) isthe distance from z to the origin:

|z = Va2 + b2
Proposition 1.29 (Polar Decomposition). Every complex number z has a factorization
Z=r(cosé +ising),

wherer = |z| > 0and0 < 0 < 2.

Proof. If z= 0, then|z| = 0, and any choice of 6 works. If z=a+ib # 0, then|z| # 0,
and z/|z| = (a/|z|, b/|z|) has modulus 1, because

@/12D)? + (b/12)* = (@ + b?) /12 = 1.

Therefore, thereisan angle 6 (see Figure 1.4 on page 16) with z/|z| = cosé +i sing, and
S0z = |z|(cosh +isinf) =r(cosh +ising). e

It followsthat every complex number z of modulus 1 isapoint on the unit circle, and so
it has coordinates (cos6, sind) (6 isthe angle from the x-axis to the line joining the origin
to (a, b), because cosd = a/landsingd = b/1).

If z=a+ib=r(cosd +isinh), then (r, 0) are the polar coordinates of z, thisisthe
reason why Proposition 1.29 is called the polar decomposition of z.

The trigonometric addition formulas for cos(6 + v) and sin(® + ) have alovely trans-
lation into the language of complex numbers.
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2 (a,b)=z

(1.0)

Figure 1.4

Proposition 1.30 (Addition Theorem). If
z=cosf +isind and w =cosy +isny,

then
Zw = €oS(0 + ) + 1SN0 + ¥).

Proof.

Zw = (C0sO + i sin®)(cosy + 1 sinyr)
= (cosé cosy —sind siny) 4 i(sind cosy 4 cosé sinvy).

The trigonometric addition formulas show that

zZw =cos(@ + ) +isinO + ). e

The addition theorem gives a geometric interpretation of complex multiplication.

Corollary 1.31. If zand w are complex numberswith polar coordinates (r, 6) and (s, V),
respectively, then the polar coordinates of zw are?

(rs,0 +v),

and so
|zw| = |Z] |w].

Proof. If the polar decompositions of z and w are z = r(cosf + i sinfd) and w =
s(cosy + i sinyr), respectively, then

zw =rs[cos(@ + ) +isin@ + ¥)]. e

2This formulais correct if @ + Y < 2m; otherwise, the angle should be 6 + ¢ — 2.
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In particular, if |zl = 1 = |w|, then |zw| = 1; that is, the product of two complex
numbers on the unit circle also lies on the unit circle.
In 1707, A. De Moivre (1667-1754) proved the following elegant result.

Theorem 1.32 (De Moivre). For every real number x and every positive integer n,
cos(nx) + i sin(nx) = (cosx + i sinx)".

Proof. We prove De Moivre’s theorem by inductiononn > 1. Thebasestepn = 1is
obvioudly true. For the inductive step,

N1 — (cosx +i sinx)"(cosx + i sinx)

= (cos(nx) + i sin(nx))(cosx + i sinx)
(inductive hypothesis)

= cos(NX + X) + i sin(nx + Xx)
(addition formula)

=cos([n+ 1]x) +isin([n+ 1]x). e

(cosx +i sinx)

Corollary 1.33.
(i)  cos(2x) = cos X — sinx = 2cos’ X — 1
SiN(2X) = 2sin X COSX.
(i)  cos(3x) = cos® x — 3cosx sin® X = 4¢os® X — 3coSX

3

Sin(3x) = 3cos? X SiNX — siN® X = 3sinx — 4sin®x.

Proof. (i) cos(2x) +i sin(2x) = (CoSX + i sinx)?
= c0S> X + 2i SinX cosX + i2sin® x
= cos® X — SN’ X + i (2SiNX COSX).
Equating real and imaginary parts gives both double angle formulas.
(ii) De Moivre’s theorem gives
cos(3x) + i sin(3x) = (cosx + i sinx)3
= cos® X + 3i cos? x sinx + 3i%cosx sin® x + i sin® x
= cos® X — 3cosx sin?X + i (3cos? xsinx — sin® x).
Equality of the real parts gives cos(3x) = cos® x — 3cosx sin? x; the second formula for
cos(3x) follows by replacing sin x by 1 — cos?x. Equality of the imaginary parts gives

sin(3x) = 3cos? x sinx—sin® x = 3sinx—4sin® x; the second formulaarises by replacing
co?x by 1—sin’x. e



18 Things Past Ch. 1

Corollary 1.33 can be generalized. If f2(x) = 2x2 — 1, then
COS(2X) = 2Co X — 1 = fo(cosX),
and if f3(x) = 4x3 — 3x, then
cos(3x) = 4¢cos® X — 3cosx = f3(COSX).
Proposition 1.34. For all n > 1, there is a polynomial f,(x) having all coefficients

integers such that
cos(nx) = fh(cosx).

Proof. By De Moivre’stheorem,

cos(nx) + i sin(nx) = (cosx + i sinx)"

n
n L
= Z (r) cos™ " xi" sinf x.
r=0

Therea part of the left side, cos(nx), must be equal to the real part of the right side. Now
i" isred if and only if r iseven, and so

_ n o VY PPN
cos(nx) = Z <r>cos” xi"sn’ x.
r even
Ifr =2k, theni’ =% = (=1)k, and

_ k(N 2K\, o 2K
cos(nx) = E (-1 <2k) cos"" K x sin x,

k=0
where [3] isthe largest integer < . But sin® x = (sin? x)k = (1 — cos? x)k, whichisa
polynomial in cosx. This completesthe proof. e

It isnot difficult to show, by induction onn > 2, that f,(x) beginswith 2"~1x". A sine
version of Proposition 1.34 can be found in Exercise 1.49 on page 25.
Euler’s Theorem. For all real numbers x,
e = cosx + i sinx.

The basic idea of the proof, aside from matters of convergence, is to examine the real
and imaginary parts of the power series expansion of €*. Using the fact that the powers of
i repeatincyclesof length4: 1,i, -1, —i,1..., wehave

i o (ix? (%3
X _ AT
€ =1+ix+ o Ty T

_ 14 x2 x4 _ x3 x5
= —E‘FE“F"' +1 X—§+§+"'

= COSX 4+ i SinX.
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Itissaid that Euler was especially pleased with the equation
gl = 1.

indeed, this formulais inscribed on his tombstone.
As a consequence of Euler’s theorem, the polar decomposition can be rewritten in ex-
ponential form: Every complex number z has a factorization

z=re",

wherer > 0and 0 < 6 < 27. The addition theorem and De Moivre’s theorem can be
restated in complex exponential form. The first becomes

eixeiy — ei(x—i—y);

the second becomes
(eix)n — einx'

Definition. If n > lisan integer, then an nth root of unity is a complex number ¢ with
n=1.

The geometric interpretation of complex multiplication is particularly interesting when
z and w lie on the unit circle, so that |z] = 1 = |w|. Given a positive integer n, let
0 = 27/nandlet ¢ = €. The polar coordinates of ¢ are (1, 6), the polar coordinates of
c2are (1, 20), the polar coordinates of ¢2 are (1, 39),.. ., the polar coordinates of ;"1 are
(1, (n—1)0), and the polar coordinatesof " = 1 are (1, nf) = (1, 0). Thus, the nth roots
of unity are equally spaced around the unit circle. Figure 1.5 shows the 8th roots of unity
(here, 6 = 27/8 = 7 /4).

Figure 1.5: 8th Roots of Unity
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Corollary 1.35. Every nthroot of unity is equal to

e?"k/N = cog(ZK) 1 sin(Zk),
forsomek =0,1,2,...,n—1, and henceit has modulus 1.
Proof. Notethat €™ = cos2z +i sin27 = 1. By DeMoivre’stheorem, if ¢ = e271/" =
cos(2rr/n) + i sin(2w/n), then
g_n — (ezm/n)n — eZni =1,

so that ¢ is an nth root of unity. Since ¢" = 1, it followsthat (£¥)" = (¢Mk = 1k =1
foralk =0,1,2,...,n—1, sothat £X = e?K/" jsalso an nth root of unity. We have
exhibited n distinct nth roots of unity; there can be no others, for it will be proved in
Chapter 3 that apolynomial of degree n with rational coefficients (e.g., X" — 1) has at most
n complex roots. e

Just as there are two square roots of a number a, namely, /a and —./a, there are n
different nth roots of a, namely, e"'k/" Vafork =0,1,...,n— 1.
Every nth root of unity is, of course, aroot of the polynomial x" — 1. Therefore,

X" — 1= l_[(x—c).
=1

If ¢ isan nth root of unity, and if n is the smallest positive integer for which ¢" = 1, we
say that ¢ is aprimitive nth root of unity. Thus, i is an 8th root of unity, but it is not a
primitive 8th root of unity; however, i isaprimitive 4th root of unity.

Lemma 1.36. If an nth root of unity ¢ is a primitive dth root of unity, then d must be a
divisor of n.

Proof. The division algorithm givesn = qd + r, where g are r are integers and the
remainder r satisfiesO <r < d. But

1:§n :{qdﬂ — é,qd;r — é,r’
because £99 = (¢9)9 = 1. If r # 0, we contradict d being the smallest exponent for which

¢9=1. Hence,n = qd, asclaimed.

Definition. If d isa positive integer, then the dth cyclotomic® polynomial is defined by

q(x) = [ [x—0).
where ¢ ranges over al the primitive dth roots of unity.

The following result is almost obvious.

S3The roots of x™ — 1 are the nth roots of unity: 1,¢,¢2, ..., ¢"1 where ¢ = €1/ = cos(2r/n) +
i sin(2z/n). Now these roots divide the unit circle {¢ € C : |z = 1} into n equa arcs (see Figure 1.5 on
page 19). This explains the term cyclotomic, for its Greek origin means “circle splitting.”
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Proposition 1.37. For everyinteger n > 1,
x"—1=]]Pax.

din
where d ranges over all the divisorsd of n [in particular, ®1(x) and ®n(Xx) occur].

Proof. Inlight of Corollary 1.35, the proposition follows by collecting, for each divisor d
of n, dl termsin the equation x" — 1 = [](x — ¢) with ¢ aprimitive dth root of unity. e

For example, if pisaprime, then xP — 1 = ®1(X)Pp(x). Since P1(x) = x — 1, it
follows that
Dp(x) =xP 14 xP 24 x4 1

Definition. Define the Euler ¢-function as the degree of the nth cyclotomic polynomial:

¢ (n) = deg(Pn(x)).

We now give another description of the Euler ¢-function that does not depend on roots
of unity.

Proposition 1.38. If n > 1 is an integer, then ¢ (n) is the number of integers k with
l<k<nand(k,n) =1

Proof. It suffices to prove that €2'k/M is a primitive nth root of unity if and only if k and
n arerelatively prime.

If k and n are not relatively prime, then n = dr and k = ds, whered, r, and s are
integers, and d > 1; it followsthat r < n. Hence, K = & = 2 o that (e27V/M) =
(eZ18/")" = 1, and hence e¥'%/" is not a primitive nth root of unity.

Conversely, suppose that ¢ = e2'k/" is not a primitive nth root of unity. Lemma 1.36
saysthat ¢ must be adth root of unity for some divisor d of n withd < n; that is, thereis
1 <m=<dwith

¢ = eZnik/n — eZnim/d — e271imr/dr — e2nimr/n.

Since both k and mr are in the range between 1 and n, it follows that k = mr (if 0 <
X,y < 1and e¥7X = &Y, then x = y); that is, r isadivisor of k and of n, and so k and
n are not relatively prime. o

Corollary 1.39. For every integer n > 1, we have
n=> ¢.
din
Proof. Notethat ¢ (n) isthe degree of ®,(x), and use the fact that the degree of a product
of polynomialsisthe sum of the degrees of the factors. e

Recall that the leading coefficient of a polynomial f (x) is the coefficient of the high-
est power of x occurring in f (x); we say that a polynomial f (X) is monic if its leading
coefficient is 1.
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Proposition 1.40. For every positive integer n, the cyclotomic polynomial ®,(x) is a
monic polynomial all of whose coefficients are integers.

Proof. The proof isby induction onn > 1. The base step holds, for ®1(x) = x — 1. For
the inductive step, we assume that ®4(x) isamonic polynomia with integer coefficients.
From the equation X" — 1 = [ ®4(X), we have

X" — 1= ®n(x)f(x),

where f (x) is the product of al ®4(x), whered < n and d is a divisor of n. By the
inductive hypothesis, f (x) isamonic polynomial with integer coefficients. Because f (x)
is monic, long division (i.e., the division algorithm for polynomials) shows that al the
coefficients of ®n(x) = (X" — 1)/ (x) are also integers,* asdesired. e

The following corollary will be used in Chapter 8 to prove a theorem of Wedderburn.

Corollary 1.41. If g isapositiveinteger, and if d isa divisor of aninteger n withd < n,
then ®,(q) isadivisor of bothq" — 1and (q" — 1)/(q% — 1).

Proof. We have already seen that x" — 1 = ®,(x) f (X), where f (x) is a monic poly-
nomial with integer coefficients. Setting x = q gives an equation in integers: q" — 1 =
®n(q) f(q); thatis, ®n(q) isadivisor of " — 1.

If d isadivisor of nand d < n, consider the equation x4 — 1 = [1(x = ¢), where ¢
ranges over the dth roots of unity. Notice that each such ¢ isan nth root of unity, because
disadivisor of n. Sinced < n, collecting termsin the equation X" — 1 = [](x — ¢) gives

X" — 1= &n(x)(x¢ — 1)g(x),

where g(x) is the product of all the cyclotomic polynomials ®s(x) for al divisors § of n
with § < n and with § not a divisor of d. It follows from the proposition that g(x) is a
monic polynomial with integer coefficients. Therefore, g(q) € Z and

x"—1
W_1 = ®p(X)9(x)
givestheresult. o

Here isthe simplest way to find the reciprocal of acomplex number. If z=a+ib € C,
where a, b € R, define its complex conjugate Z = a — ib. Note that zz = a2 + b? = |z/?,
sothat z # 0if and only if zz £ 0. If z £ 0, then

z7l=1/z=2/72= (a/72) — i (b/72);

1 a i b
a+ib \a2+b? aZ+ b2/’

4|f thisis not clear, look at the proof of the division algorithm on page 131.

that is,
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If |z} = 1, then z71 = Z. In particular, if z is aroot of unity, then its reciprocal is its
complex conjugate.
Complex conjugation satisfies the following identities:

Z+w + w;
w;

3

z
w =12
Z=1z2
Z=12

if and only if zisreal.

We are regarding complex numbers as points in the plane and, as in vector calculus, a

point z is identified with the vector represented by the arrow 02 from the origin O to z
Let us define the dot product of z=a +ibandw = c+idtobe

Z-w = ac+ bd.

Thus, z- w = |z||w|cosé, where 6 is the angle between Oz and O_zZ [since cost =
cos(2r — 6), it makes no difference whether 6 is measured from Oz to Ow or from Ow

to 0Z]. Note that
2-Z2= |z|2 = ZZ

Itisclearthat z- w = w - z, and it is easy to check that
z-(w+w)=z-w+z-w
for all complex numbers z, w, and w’.
The following result will be used in Chapter 8 to prove a theorem of Burnside.

Proposition 1.42. If g1, ..., en areroots of unity, wheren > 2, then
n n
el = XYl =n.
j=1 j=1
Moreover, thereis equality if and only if all the ¢ are equal.
Proof. The proof of the inequality is by induction on n > 2. The base step follows from
the triangle inequality: for all complex numbersu and v,
lu+v| < [uf+ [v].
The proof of the inductive step is routine, for roots of unity have modulus 1.

Suppose now that al the ¢ are equal, say ¢j = ¢ for @l j, then it is clear that there
is equality |>"7_; &j| = Ine| = nle| = n. The proof of the converse is by induction on
n > 2. For the base step, suppose that |¢1 + ¢2| = 2. Using the dot product, we have

4= ey + &)
= (e1+¢€2) - (e1+€2)
= |e1|® + 261 e2 + |e2|?
=2+ 2¢1 - &2.
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Hence, 2 = 1+ &1 - €2, so that

l=¢1-62
= |e1l|e2| cose
= C0SH,

where 6 is the angle between O and Oes (for |e1] = 1 = |e2]). Therefore, & = O or
0 = m,sothat o = te1. Sinceex = —e1 gives|e1 + 2| = 0, we must have g2 = ¢1.

 For the inductive step, suppose that [Yi5ei| =n+1 1f |20 ¢j| < n, thenthe
triangle inequality gives

n n
‘(Zsj)+en+1‘ < ‘ZE]‘+1< n+1,
j=1

=1

contrary to hypothesis. Therefore, [>_7_; ¢j| = n, and so the inductive hypothesis gives
e1, ..., en al equal, say, to . Hence, >~_; ¢j = nw, and so

|na) + 8n+1| =n+1
The argument concludes as that of the base step:

(N+ 1% = (Nw + ent1) - (N + ent1)

= n2+2na)~8n+1+ 1,

sothat 1 = w - eny1 = |w|lent1] COSH, where 0 is the angle between Ow and Oeng1.
Hence, w = +epy1, andw = ept1. o

EXERCISES

1.43 Evauate (cos3° +i sin3°)%0.
144 () Find 3+ 4i)/2—i).
(i) 1fz=réd? provethatz=1 =r—1e 7.
(iii) Findthe valuesof v/i.
(iv) Provethat €%/M isan nth root of &¢.
1.45 Find ®g(x).

1.46 If « isanumber for which cos(ra) = % (where the angle 7« isin radians), prove that « is
irrational.
Hint. If o = % evaluate cosnra + i sinnza using De Moivre’s theorem.

1.47 Let f(x) = ag+ a;x + a2x2 + -+ + anx" be a polynomial with all of its coefficients real
numbers. Provethat if zisaroot of f(x),thenzisalsoaroot of f(x).
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1.48 (i) Prove that the quadratic formula holds for quadratic polynomials with complex coeffi-
cients.

(ii) Find the roots of X2+ 2+i)x+2i. Why aren’t the roots complex conjugates of one
another?

1.49 Provethat for every odd integer n > 1, thereis a polynomial gn(x) with integer coefficients,
such that

sinnx = gn(sinx).

1.50 Every Pythagorean triple (a, b, ¢) determines a right triangle having legs a and b and hy-
potenuse® c. Call two Pythagorean triples (a, b, ¢) and (&', Y, <) similar if the right triangles
they determine are similar triangles; that is, if corresponding sides are proportional.

(i) Prove that the following statements are equivalent for Pythagorean triples (a, b, ¢) and

@,n,c).
(1) (a,b,c) and (&', ', ¢) are similar.
(2) There are positive integers m and ¢ with (ma, mb, mc) = (¢a’, ¢b/, ¢c’)
@2a+ib=24ib

(if) Provethat every Pythagorean tripleis similar to a primitive Pythagorean triple.

1.51 (i) Cal acomplex number of modulus 1 rational if both its real and imaginary parts are
rational numbers. If % +i % isarational complex number with both a and b nonzero,
provethat (|al, |bl, |c|) isaPythagorean triple.

(if) Provethat the product of two rational complex numbersis also arational complex num-
ber, and use this fact to define a product of two Pythagorean triples (up to similarity).
What is the product of (3, 4, 5) with itself?

(iii) Show that the square of a Pythagorean triple (a, b, ¢) is (a2 — b?, 2ab, a2 + b?).

1.3 SOME SET THEORY

Functions are ubiquitous in algebra, asin all of mathematics, and we discuss them now.
A set X isacollection of elements (numbers, points, herring, etc.); we write

xe X
to denote x belonging to X. Two sets X and Y are defined to be equal, denoted by
X=Y,

if they are comprised of exactly the same elements; for every element x, we have x € X if
andonlyif x € Y.

A subset of aset X isaset Seach of whose elements also belongsto X: If s € S, then
s € X. We denote Sheing a subset of X by

ScX;

5Hyp0tenuse comes from the Greek word meaning “to stretch.”
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synonyms are “Sis contained in X” and “Sisincluded in X.” Notethat X C X isaways
true; we say that asubset Sof X isaproper subset of X, denoted by SC X, if SC X and
S # X. It follows from the definitions that two sets X and Y are equal if and only if each
isasubset of the other:

X=Y if and only if XCcYandY C X.

Because of this remark, many proofs showing that two sets are equal break into two parts,
each half showing that one of the setsis a subset of the other. For example, let

X={@aeR:a>0 and Y={r?:reR}.

Ifae X,thena > 0Oanda = r2, wherer = \/a; hence, a € Y and X C Y. For the
reverse inclusion, chooser? € Y. Ifr > 0, thenr? > 0; if r < 0, thenr = —s, where
s> 0,andr? = (—1)2s? = s? > 0. In either case, r? > 0andr? € X. Therefore, Y C X,
andso X =Y.

Calculusbooks defineafunction f (x) asa“rule” that assigns, to each number a, exactly
one number, namely, f (a). Thisdefinitioniscertainly in theright spirit, but it has adefect:
What is a rule? To ask this question another way, when are two rules the same? For
example, consider the functions

f)=x+12 and gx) =x>+2x+1

Is f (X) = g(x)? The evaluation procedures are certainly different: for example, f(6) =
(6+1)%2 = 72, whileg(6) = 62 +2-6+41 = 36+ 12+ 1. Since theterm rule has not been
defined, it is ambiguous, and our question has no answer. Surely the calculus description
isinadequate if we cannot decide whether these two functions are the same.

The graph of a function is a concrete thing [for example, the graph of f(x) = x2 is
a parabola], and the upcoming formal definition of a function amounts to saying that a
function isits graph. The informal calculus definition of a function as a rule remains, but
wewill have avoided the problem of saying what aruleis. In order to give the definition, we
first need an analog of the plane [for we will want to use functions f (x) whose argument
X does not vary over numbers).

Definition. If X and Y are (not necessarily distinct) sets, then their cartesian product
X x Y isthe set of all ordered pairs (X, y), wherex € Xandy € Y.
TheplaneisR x R.
The only thing we need to know about ordered pairsis that
X, y) =,y) ifandonlyif x=xandy=y

(see Exercise 1.62 on page 37).
Observethatif X and Y arefinite sets, say, | X| = mand |Y| = n (we denote the number
of elementsin afinite set X by |X]), then | X x Y| = mn.
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Definition. Let X and Y be (not necessarily distinct) sets. A function f from X toY,
denoted by®

f: X=Y,
isasubset f € X x Y suchthat, for eacha € X, thereisauniqueb € Y with (a,b) € f.

For each a € X, the unique element b € Y for which (a, b) € f iscaled the value of
f ata, and b isdenoted by f (a). Thus, f consists of al those pointsin X x Y of theform
(a, f(a)). When f : R — R, then f isthe graph of f(x).

Call X thedomain of f,call Y thetarget (or codomain) of f, and define the image (or
range) of f, denoted by im f, to be the subset of Y consisting of all the values of f.

Definition. Two functions f: X — Yandg: X' — Y areequal if X = X', Y =Y/,
andthesubsets f € X x Yandg € X’ x Y’ areequal.

For example, if X isaset, thentheidentity function 1x: X — Xisdefinedby 1x(X) =
x for al x € X; if X = R, then 1 isthe line with slope 1 that passes through the origin.
If f: X — Yisafunction, and if Sisasubset of X, then the restriction of f to Sisthe
function f|S: S— Y defined by (f|S)(s) = f(s) foral s e S. If Sisasubset of aset X,
definetheinclusion i : S — X to bethefunction defined by i (s) = sforal s € S. If Sis
a proper subset of X, then theinclusioni is not the identity function 1s because its target
is X, not S; it isnot theidentity function 1x becauseitsdomainis S, not X.

A function f: X — Y hasthree ingredients: itsdomain X, itstarget Y, and its graph,
and we are saying that two functions are equal if and only if they have the same domains,
the same targets, and the same graphs.

It is plain that the domain and the graph are essential parts of a function. Why should
we care about the target of a function when itsimage is more important?

As apractical matter, when first defining a function, we usually do not know itsimage.
For example, we say that f: R — R, given by f(x) = x? + 3x — 8, is a real-valued
function, and we then analyze f to find itsimage. But if targets have to be images, then
we could not even write down f: X — Y without having first found the image of f
(and finding the precise image is often very difficult, if not impossible); thus, targets are
convenient to use.

In linear algebra, we consider a vector space V and its dual space V* = {al linear
functionals on V} (which is also a vector space). Moreover, every linear transformation
T:V — W defines alinear transformation

T : W* - V*,
and the domain of T*, being W*, is determined by the target W of T. (In fact, if a matrix

for T is A, then amatrix for T* is Al, the transpose of A.) Thus, changing the target of T
changes the domain of T*, and so T* is changed in an essential way.

6From now on, we denote a function by f instead of by f(x). The notation f (x) isreserved for the value of
f at x; there are afew exceptions. We will continue to write sinx, €*, and x2, for example.
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Proposition 1.43. Let f: X — Yandg: X — Y befunctions. Then f = g if and only
if f(a) =g(a) for everya e X.

Remark. This proposition resolves the problem raised by the ambiguoustermrule. If f,
g:R — Raregivenby f(x) = (x + 1)% and g(x) = x% + 2x + 1, then f = g because
f(@) = g(a) for every numbera. <

Proof. Assumethat f = g. Functions are subsets of X x Y, and so f = g means that
each of f and g isasubset of the other (informally, we are saying that f and g have the
same graph). If a € X, then (a, f(a)) € f = g, and so (a, f(a)) € g. But thereis
only one ordered pair in g with first coordinate a, namely, (a, g(a)) (because the definition
of function says that g gives a unique value to a). Therefore, (a, f(a)) = (a, g(@)), and
equality of ordered pairsgives f (a) = g(a), asdesired.

Conversely, assume that f(a) = g(a) for every a € X. To seethat f = g, it suffices
to show that f € gand g € f. Each element of f has the form (a, f(a)). Since
f(a) = g(a), wehave (a, f(a)) = (a, g(a)), and hence (a, f(a)) € g. Therefore, f C g.
Thereverseinclusion g C f isproved similarly. e

We continue to regard a function f as arule sending x € X to f(x) € Y, but the
precise definition is now available whenever we need it, asin the proof of Proposition 1.43.
However, to reinforce our wanting to regard functions f: X — Y as dynamic things
sending pointsin X to pointsin 'Y, we often write

fix—y

instead of f(x) = y. For example, we may write f : x — x2 instead of f(x) = x2, and
we may describe the identity function by x +— x for al x.

Instead of saying that values of afunction f are unique, we usually say that f iswell-
defined (or single-valued). Does the formula g(a/b) = ab defineafunctiong: Q — Q2
There are many ways to write afraction; since 1 = 3, weseethat g(3) =1-2#3.6=
g (%) and so g is not a function because it is not well-defined. Had we said that the
formula g(a/b) = ab holds whenever a/b isin lowest terms, then g would be a function.

Theformula f (a/b) = 3a/b does defineafunction f: Q — Q, for it is well-defined:
If a/b=a’/b’, we show that

f(a/b) =3a/b=3a'/b = f@/b):

a/b = a'/b’ givesab’ = a’b, so that 3ab’ = 3a’b and 3a/b = 3a’/b’. Thus, f isabona
fide function; that is, f iswell-defined.

Example 1.44.

Our definitions alow us to treat a degenerate case. If X is a set, what are the functions
X — @? Note first that an element of X x @ is an ordered pair (x, y) with x € X and
y € @, sincethereisno y € @, there are no such ordered pairs, and so X x @ = &. Now
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afunction X — @ isasubset of X x & of acertaintype; but X x @ = @, sothereisonly
one subset, namely @, and hence at most one function, namely, f = @. The definition of
function X — @ saysthat, for each x € X, thereexistsauniquey € @ with (x, y) € f.
If X # o, then there exists x € X for which no such y exists (there are no elements y
a al in @), and so f isnot afunction. Thus, if X # @, there are no functions from X
to @. On the other hand, if X = @, then f = & isafunction. Otherwise, the negation
of the statement ““f is a function” begins “there exists x € &, etc” We need not go on;
since @ has no elementsin it, there is no way to complete the sentence so that it is atrue
statement. We conclude that f = @ isafunction & — @, and we declare it to be the
identity function 15. <«

The specia case when the image of afunction isthe whole target has a name.

Definition. A function f: X — Y isasurjection (or isonto) if
imf =Y.

Thus, f issurjectiveif, for each y € Y, thereis some x € X (probably depending on y)
withy = f(x).
The following definition gives another important property afunction may have.

Definition. A function f: X — Y isaninjection (or is one-to-one) if, whenever a and
a’ are distinct elements of X, then f(a) # f(a’). Equivalently (the contrapositive states
that) f isinjectiveif, for every pair a, a’ € X, we have

f(a) = f(@)impliesa=a'.

The reader should note that being injective is the converse of being well-defined: f
is well-defined if a = a’ implies f(a) = f(&); f isinjectiveif f(a) = f(a’) implies
a=a.

There are other names for these functions. Surjections are often called epimorphisms
and injections are often called monomorphisms. The notation A — B is used to denote a
surjection, and the notations A — B or A — B are used to denote injections. However,
we shall not use this terminology or these notations in this book.

Example 1.45.
Consider thefunction f: R — R, givenby f (x) = 3x —4. To seewhether f issurjective,
take y € R and ask whether thereisa € R with y = 3a — 4. We solve to obtain
a= %(y+4), and we conclude that f issurjective. Also, thefunction f isinjective, for if
3a—4=3b—4,thena=h.

As a second example, consider the functiong: R — {1} — R given by

33X -4
Xx—1"

g(x) =
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Now gisaninjection, for if (3a—4)/(a—1) = (3b—4)/(b—1), then cross multiplying
givesa = b. On the other hand, g is not surjective. Giveny € R, istherea € R with
y=@3a—-4)/(a—1)? Solving,a = (4—Yy)/(3—Y). Thissuggeststhat y = 3isnot a
value of g, and, indeed, itisnot: 3= (3a—4)/(a— 1) isnot solvable. <

Definition. If f: X — Yandg: Y — Z arefunctions (note that the target of f isequa
to the domain of g), then their composite, denoted by g o f, isthe function X — Z given

by
go f:xm g(f(x);

that is, first evaluate f on x, and then evaluate g on f (x).

The chain rulein calculusis aformulafor the derivative (g o f)’ intermsof g’ and f':
(o f) =[gof]- f".
For example,
1
(sin(lnx))’ = cos(Inx) - <

Givenaset X, let
F(X) = {dl functions X — X}.

We havejust seen that the composite of two functionsin F (X) isaways defined; moreover,
the composite is again a function in F(X). We may thus regard F(X) as being equipped
with akind of multiplication. Thismultiplication isnot commutative; thatis, f ogand go f
need not be equal. For example, if f(x) = x+1andg(x) = X2, then fog: 1+ 124+1=2
whilego f: 1+ (14 1)2 = 4; therefore, f og # go f.

Lemma 1.46.

(i) Composition isassociative: If
f:X=>Y, g:Y—>2Z, and h:Z—->W

are functions, then
ho(go f)=(hog)o f.

(i) If f: X — Y, thenlyo f = f = f o 1x.

Sketch of Proof. Use Proposition 1.43. e
Are there “reciprocals”’ in F(X); that is, are there any functions f for which there is
ge F(X)with fog=1xandgo f = 1x?

Definition. A function f: X — Y isabijection (or aone-to-one correspondence) if itis
both an injection and a surjection.



Sec. 1.3 Some Set Theory 31

Definition. A function f: X — Y hasaninverse if thereisafunctiong: Y — X with
both compositesg o f and f o g being identity functions.

Proposition 1.47.

@) Iff: X—Yandg: Y — Xarefunctionssuchthat go f = 1x, then f isinjective
and g is surjective.

(if) Afunction f: X — Y hasaninverseg: Y — Xifand onlyif f isabijection.

Proof. (i) Suppose that f(x) = f(x'); apply g to obtain g(f (x)) = g(f(x))); that is,
x = X’ [because g( f (x)) = x], and so f isinjective. If x € X, then x = g(f (x)), so that
X € img; hence g is surjective.

(i) If f has an inverse g, then part (i) shows that f is injective and surjective, for both
compositesgo f and f o g areidentities.

Assumethat f isabijection. For eachy € Y, thereisa € X with f(a) = y, since f
is surjective, and this element a is unique because f isinjective. Defining g(y) = a thus
gives a (well-defined) function whose domain is Y, and it is plain that g is the inverse of
f;thatis, f(g(y)) = f(a)=yforalyeYandg(f(a)) =g(y) =aforalac X. e

Remark. Exercise 1.59 on page 36 shows that if both f and g are injective, then so is
their composite f o g. Similarly, f o g isasurjection if both f and g are surjections. It
follows that the composite of two bijectionsisitself abijection. «

Notation. Theinverse of abijection f isdenoted by f —1 (Exercise 1.54 on page 36 says
that afunction cannot have two inverses).

Example 1.48.

Hereisan example of two functions f and g one of whose compositesgo f istheidentity

while the other composite f o g ishot the identity; thus, f and g are not inverse functions.
IfN={ne€Z:n>0}define f,g: N - Nasfollows:

fn)=n+1;

") = 0 ifn=0
IW=1n_1 ifn > 1.
The compositego f = 1y, for g(f(n)) = g(n+ 1) = n, becausen + 1 > 1. On the other
hand, f o g # 1, because f(g(0)) = f(0) =1 #0.

Notice that f isan injection but not a surjection, and that g is a surjection but not an
injection. «
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Two strategies are now available to determine whether or not a given function is a
bijection: (i) use the definitions of injection and surjection; (ii) find an inverse. For ex-
ample, if R~ denotes the positive real numbers, let us show that the exponential function
f: R — R>, defined by f(x) = € = > x"/n!, isabijection. It is simplest to use the
(natural) logarithm g(y) = Iny = 1y dt/t. Theusua formulas €™ = y and Ine* = x
say that both composites f ogand go f areidentities, and so f and g areinverse functions.
Therefore, f isabijection, for it hasaninverse. (A direct proof that f isaninjection would
require showing that if €@ = €°, then a = b; adirect proof showing that f is surjective
would involve showing that every positive real number ¢ has the form €? for some a.)

Let us summarize the results just obtained.

Theorem 1.49. If the set of all the bijectionsfroma set X to itself is denoted by Sx, then
composition of functions satisfies the following properties:

(i) if f,ge Sx,then f og € Sx;
(i) ho(go f)=(hog)o f forall f,g,he Sx;
(iii) theidentity 1x liesin Sx,and1lx o f = f = f o 1x for every f € Sx;
(iv) for every f € S, thereisge Sx withgo f =1x = f og.
Sketch of Proof. Part (i) follows from Exercise 1.59 on page 36, which shows that the

composite of two bijectionsisitself abijection. The other parts of the statement have been
proved above. e

If X and Y are sets, then afunction f: X — Y defines a “forward motion” carrying
subsets of X into subsets of Y, namely, if S C X, then

f(S={yeY:y= f(s)forsomese S},
and a “backward motion” carrying subsets of Y into subsets of X, namely, if W C Y, then
f=I(W) = {x € X : f(X) € W].

Wecall f~1(W) theinverse image of W. Formally, denote the family of all the subsets of
aset X by P(X). If f: X — Y, then there are functions

fo: P(X) = P(Y),

givenby f,.: S— (9, and
f*:PY) = P(X),

givenby f*: W — f~1(W). When f isasurjection, then these motions set up abijection
between al the subsets of Y and some of the subsets of X.
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Proposition 1.50. Let X and Y besets, and let f: X — Y beasurjection.

(i) f T C Saresubsetsof X, then f(T) C f(S),andifU C V aresubsetsof Y, then
L) c fLv).
(i) IfU C Y, then ff~1(U) =U.
(iii) The composite f, f*: P(Y) — P(Y) = 1p), andso f*: W — f~1(W) isan
injection.
(iv) 1f SC X, then Sc f~1f(S), but strict inclusion is possible.

Remark. If f isnotasurjection, then W +— f ~1(W) need not be an injection: Thereis
somey e Ywithy ¢ f(X),and f1{yh) =2 = fL(@). <

Proof. (i)Ifye f(T),theny = f(t) forsomet € T. Butt € S because T C S, and s0
f(t) € f(9). Therefore, f(T) C f(S). Theother inclusionis proved just as easily.

(i) If u € U, then f being surjective says that thereis x € X with f(x) = u; hence,
x e f~1(U),andsou = f(x) € ff~1(U). For thereverseinclusion, leta € ff-1(U);
hence, a = f(x’) for somex’ € f~1(U). Butthissaysthata = f(x’) € U, asdesired.

(iii) Pert (ii) saysthat f, f* = 1py,, and so Proposition 1.47 saysthat f* isan injection.
(iv) If se S then f(s) € f(S),andsose f-1f(s) < f-1f(9). '

To see that there may be strict inclusion, let f : R — C be given by x — e*™'X, If
S={0},then f(S ={l}and f1f{1H=Z.

In Exercise 1.68 on page 37, we will seethat if f: X — Y, then inverse image behaves
better on subsets than does forward image; for example, f ~1(SNT) = f (SN f~1(T),
where S, T C Y, butfor A, B C X, itispossiblethat f (AN B) # f(A) N f(B).

We will need cartesian products of more than two sets. One may view an element
(X1, X2) € X1 x X2 asthe function f: {1,2} — X3 U Xo with f(i) = x € X; for
i=12

Definition. Let | beasetand let {X; : i € |} be anindexed family of sets. Then the
cartesian product isthe set

[[Xi={f:1>{JXi:f@eXforaliel}.
iel iel
The elements X € []; Xi can be viewed as “vectors” x = (x;) whoseith coordinate is

xi = f(@)fordli e I.If | isfinite, say, | = {1, 2,...,n}, thenit is not difficult to see
that [T; Xi = X1 x -+ x Xn, where the latter set is defined, inductively, by

X1><~-~XXn+1=(X1X~"XXn)XXn+1-

If the index set | isinfinite and all the X; are nonempty, it is not obvious that [ [;, Xi is
nonempty. Indeed, this assertion is equivalent to the axiom of choice (see the Appendix).
The notion of relation, which generalizes that of afunction, is useful.
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Definition. [f X and Y are sets, then arelation from X to Y isasubset RC X x Y. We
usualy write
X Ry

to denote (x, y) € R. If X =Y, then we say that R isarelation on X.

Let usgiveaconcreteillustration to convince the reader that this definition isreasonable.
Oneexpectsthat < isarelationon R, and |et us seethat it does, infact, realize the definition
of relation. Let

R={(x,y) e RxR: (x,Yy) liesonor abovetheliney = x}.
The reader should recognize that x R y holdsif and only if, in the usual sense, x <'y.
Example 1.51.
(i) Every function f : X — Y isarelation.
(i) Equality isarelation on any set X; it is the diagonal
Ax ={(x,x) € X x X}.
(iii) The empty set & defines arelation on any set, but it isnot very interesting.  «

Definition. A relationx = yonaset X is

reflexive: if x =xforal x € X;
symmetric. if X =yimpliesy = xforal x,y € X;
transitive. if x=yandy=zimplyx =zforal x,y,ze X.

A relation that has all three properties—reflexivity, symmetry, and transitivity—is called
an equivalence relation.

Example 1.52.
(i) Equality is an equivalence relation on any set X. We should regard any equivalence
relation as a generalized equality.

(if) For any integer m > 0, congruence mod mis an equivalencerelationonZ. <

An equivalence relation on aset X yields afamily of subsets of X.

Definition. Let = bean equivalencerelation onaset X. If a € X, the equivalence class
of a, denoted by [a], is defined by

[a] ={xe X:x=a} < X

For example, under congruence mod m, the equivalence class [a] of an integer a is called
its congruence class.

The next lemma says that we can replace equivalence by honest equality at the cost of
replacing elements by their equivalence classes.
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Lemma 1.53. If = is an equivalence relation on a set X, then x = y if and only if

[x] = [y].

Proof. Assumethat x = y. If z € [x], then z = X, and so transitivity gives z = y; hence
[x] < [y]. By symmetry, y = X, and this gives the reverse inclusion [y] € [x]. Thus,
[x] = [yl.

Conversely, if [x] = [y], then x € [X], by reflexivity, and so x € [x] = [y]. Therefore,
X=Y. o

Definition. A family of subsets A; of aset X is caled pairwise disjoint if
ANA =0

foradl i # j. A partition of aset X is afamily of pairwise digoint nonempty subsets,
called blocks, whose unionisall of X.

Proposition 1.54. If =isan equivalencerelation on a set X, then the equivalence classes
form a partition of X. Conversely, given a partition {A; : i € |} of X, thereisan equiva-
lence relation on X whose equivalence classes are the blocks A; .

Proof. Assume that an equivalence relation = on X is given. Each x € X liesin the
equivalence class [x] because = is reflexive; it follows that the equivalence classes are
nonempty subsets whose union is X. To prove pairwise digointness, assume that a €
[x] N[y], sothat a = x and a = y. By symmetry, x = a, and so transitivity givesx = .
Therefore, [x] = [v], by the lemma, and the equivalence classes form a partition of X.

Conversely, let {A; 1 i € |} beapartition of X. If X, y € X, definex = y if thereis
i €l withbothx € Aj andy € A;. Itisplainthat = is reflexive and symmetric. To see
that = istransitive, assumethat x = yand y = z; that is, therearei, j € | withx,y € A
andy,z e Aj. Sincey € Aj N Aj, pairwise disointness gives Aj = Aj, sothati = j and
X,z € Aj; that is, X = z. We have shown that = is an equivalence relation.

It remains to show that the equivalence classes arethe A;’s. If X € X, thenx € A;, for
somei. By definition of =, if y € Aj,theny = xand y € [X]; hence, Aj C [x]. For the
reverse inclusion, let z € [x], so that z = x. Thereissome j withx € Aj andz € Aj;
thus, x € Ai N Aj. By pairwise digjointness, i = j, sothat z € Aj, and [x] € A;. Hence,
[X]=A. o

Example 1.55.

(i) We have just seen that an equivalence relation can be defined on a set from a partition.
LetI = [0, 1] bethe closed unit interval, and define a partition of I whose blocks are the 2-
point set {0, 1} and all the 1-point sets {a}, where 0 < a < 1. The family of al the blocks,
that is, of all the equivalence classes, can be viewed as a circle, for we have identified the
two endpoints of the interval.
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Here is another construction of the circle, now from R instead of from I. Define a
relationon R by a =bif a—b € Z. Itiseasy to seethat thisis an equivalence relation on
R, and the equivalence class of anumber a is

[al ={r e R:r =a+nforsomen e Z}.

Thefamily of all blocksis again the circle (we have identified the endpoints of any interval
of length 1).

(i) Definean equivalencerelation on the squareI xIinwhich theblocksare {(a, 0), (a, 1)},
one for each a € I, {(0, b), (1, b)}, one for each b € I, as well as al the singleton sets
{(a, b)} in the interior of the square. The family of al equivalence classes can be viewed
as atorus (the surface of a doughnut): Identifying the left and right sides of the square
gives a cylinder, and further identifying the top and bottom ends of the cylinder gives a
torus. <

EXERCISES

1.52 Let X and Y be sets, and let f : X — Y beafunction. If Sisasubset of X, prove that the
restriction f|Sisequal to the composite f oi, wherei : S— X istheinclusion map.
Hint. Use Proposition 1.43.

1.53 If f : X — Y hasaninverse g, show that g isahbijection.
Hint. Does g have an inverse?

1.54 Show that if f: X — Y isahijection, then it has exactly oneinverse.
1.55 Showthat f: R — R, defined by f(x) = 3x + 5, isabijection, and find itsinverse.
1.56 Determinewhether f: Q x Q — Q, given by

f(a/b,c/d) = (@a+c)/(b+d),

isafunction.

157 Let X = {X1,....,Xxm} and Y = {y1,..., yn} be finite sets. Show that there is a bijection
f: X = Yifandonlyif | X| = |Y]|; that is, m = n.
Hint. If f isabijection, there are m distinct elements f (x1), ..., f(xm)inY,andsom < n;
using the bijection f ~1 in place of f givesthe reverseinequality n < m.

1.58 If X andY arefinite setswith the same number of elements, show that the following conditions
are equivalent for afunction f: X — VY:

(i) fisinjective;
(ii) f ishijective;
(iii) f issurjective.
Hint. If AC X and |A| = n = |X], then A = X; after all, how many elementsarein X but
not in A?
159 Let f: X > Yandg: Y — Z befunctions.
(i) If both f and g areinjective, thengo f isinjective.
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(ii) If both f and g are surjective, then g o f issurjective.
(iii) If both f and g are bijective, then g o f isbijective.
(iv) If go f isabijection, provethat f isaninjection and g isasurjection.
1.60 If f: (—n/2,7/2) — Risdefined by a — tana, prove that f has an inverse function g;
indeed, g = arctan.
1.61 If Aand B are subsets of aset X, define

A—-B={ae A:a¢ B}
Provethat A— B = AN B’, where B’ = X — B isthe complement of B; that is,
B'={xeX:x¢B}.
1.62 Let Aand B besets, and leta € Aand b € B. Definetheir ordered pair as follows:
(a,b) = {a, {a, b}}.

Ifa’ e Aandb’ € B, provethat (a/,b') = (a,b) if andonly ifa’ =aand b’ = b.
Hint. One of the axioms constraining the e relation isthat the statement

aexea

isaways false.

1.63 (i) What is wrong with the following argument, which claims to prove that a symmetric
and transitive relation Ron aset X isreflexive? If x € X, thentakey € X withx R y.
By symmetry, we have y R x, and by transitivity, we have x R x.
(ii) Give an example of a symmetric and transitive relation on a set that is not reflexive.
1.64 (i) Let X beaset,andlet R C X x X. Define R= Nree R/,!vhereg isthe family of all
the equivalence relations R’ on X containing R. Provethat R is an equivalence relation
on X (Riscalled the equivalence relation generated by R).

(ii) Let R be areflexive and symmetric relation on a set X. Prove that R, the equivalence
relation generated by R, consists of al (x,y) € X x X for which there exist finitely
many (X, y) € R, say, (X1, Y1), - - -, (Xn, Yn), With X = Xq, yn = y, and y; = X1 for
ali > 1.

1.65 Let X = {(a,b) : a,b € Z and b # 0}. Provethat therelationon X, defined by (a, b) = (c, d)
if ad = bc, isan equivalence relation on X. What is the equivalence class of (1, 2)?
1.66 Definearelationon C by z = w if |z| = |w|. Prove that thisis an equivalence relation on C
whose equivalence classes are the origin and the circles with center the origin.
1.67 (i) Let f: X — Y beafunction (where X and Y are sets). Prove that the relation on X,
defined by x = x’ if f(x) = f(x), isan equivalence relation.

(ii) Define f: R — S!, where S! c C isthe unit circle, by f(x) = e¥"1X. What is the
equivalence class of 0 under the equivalence relation in part (i)?

1.68 Let f: X — Y beafunctionandletV,W C Y.

(i) Provethat

f~lvnwy = ffvynftw) ad fivuw) = vyu - Tw.
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(ii) Provethat f(V UW) = f(V)U f(W).

(iii) Give an example showingthat f(V NW) # f(V) N f(W).

(iv) Provethat f~1(W’) = (f ~1(W)’, whereW = {y € Y : y ¢ W} isthe complement of
W, and give an example of afunction f suchthat f(S) # (f(S))’ for some SC X.



Groups I

2.1 INTRODUCTION

One of the major open problems, following the discovery of the cubic and quartic formulas
in the 1500s, was to find a formula for the roots of polynomials of higher degree, and it
remained open for aimost 300 years. For about the first 100 years, mathematicians recon-
sidered what number means, for understanding the cubic formula forced such questions
as whether negative numbers are numbers and whether complex numbers are legitimate
entities as well. By 1800, P. Ruffini claimed that there is no quintic formula (which has
the same form as the quadratic, cubic, and quartic formulas; that is, it uses only arith-
metic operations and nth roots), but his contemporaries did not accept his proof (hisideas
were, in fact, correct, but his proof had gaps). In 1815, A. L. Cauchy introduced the
multiplication of permutations and proved basic properties of what we call the symmetric
group Sy; for example, he introduced the cycle notation and proved the unique factoriza-
tion of permutationsinto digoint cycles. In 1824, N. Abel (1802-1829) gave an acceptable
proof that there is no quintic formula; in his proof, Abel constructed permutations of the
roots of a quintic, using certain rational functions introduced by J. L. Lagrange in 1770.
E. Gaois (1811-1832), the young wizard who was killed before his 21st birthday, mod-
ified the rational functions but, more important, he saw that the key to understanding the
problem involved what he called groups: subsets of S, that are closed under multiplica-
tion — in our language, subgroups of S,. To each polynomia f(x), he associated such
a group, nowadays called the Galois group of f(x). He recognized conjugation, hormal
subgroups, quotient groups, and simple groups, and he proved, in our language, that a
polynomial (over a field of characteristic 0) has a formula for its roots, analogous to the
quadratic formula, if and only if its Galois group is a solvable group (solvability being a
property generalizing commutativity). A good case can be made that Galois was one of the
most important founders of modern algebra. For an excellent account of the history of this
problem we recommend the book, Galois’ Theory of Algebraic Equations, by J.-P. Tignol.

39
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Along with results usually not presented in a first course, this chapter will also review
some familiar results whose proofs will only be sketched.

2.2 PERMUTATIONS

For Galois, groups consisted of certain permutations (of the roots of a polynomial), and
groups of permutations remain important today.

Definition. A permutation of aset X isabijection from X to itself.

In high school mathematics, a permutation of aset X is defined as a rearrangement of
its elements. For example, there are six rearrangements of X = {1, 2, 3}:

123; 132, 213; 231, 312; 321

Now let X = {1,2,...,n}. A rearrangement is a list, with no repetitions, of al the
elements of X. All we can do with such lists is count them, and there are exactly n!
permutations of the n-element set X.

Now a rearrangement iq, i, ..., in Of X determines a function «: X — X, namely,
a(l) =i1,a(2) =ig,...,a(n) = ip. For example, the rearrangement 213 determines the
function o witha (1) = 2, (2) = 1, and «(3) = 3. We use atwo-rowed notation to denote
the function corresponding to arearrangement; if a(j) isthe jthitem onthelist, then

oy ( 1 2 ... j .. n )

“\a@ @ ... a(j) ... am)"
That alist contains all the elements of X says that the corresponding function « is surjec-
tive, for the bottom row isimo; that there are no repetitions on the list says that distinct
points have distinct values; that is, « isinjective. Thus, each list determines a bijection
a: X — X; that is, each rearrangement determines a permutation. Conversely, every per-
mutation « determines arearrangement, namely, thelist (1), a(2), ..., «(n) displayed as
the bottom row. Therefore, rearrangement and permutation are simply different ways of
describing the same thing. The advantage of viewing permutations as functions, however,
isthat they can now be composed and, by Exercise 1.59 on page 36, their compositeis also
a permutation.

Definition. The family of al the permutations of a set X, denoted by Sy, is caled the
symmetric group on X. When X = {1, 2, ..., n}, Sx isusualy denoted by S,, and it is
called the symmetric group on n letters.

Let us simplify notation by writing S« instead of 8 o « and (1) instead of 1x.

Noticethat composition in S isnot commutative. Aside from being cumbersome, there
isamajor problem with the two-rowed notation for permutations. It hides the answers to
elementary questions such as, Do two permutations commute? | s the square of a permuta-
tion the identity? The special permutations introduced next will remedy this defect.
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Definition. Letis,io, ..., I, bedistinctintegersin{l,2,...,n}. If « € S, fixesthe other
integers (if any) and if

a(ll) = |27a(|2) = |37 L] ,Ol(|r—1) = ir5a(ir) = Ila
then « iscalled an r-cycle. We also say that « isacycle of length r, and we denote it by

a=(1i2 ... 0r).

A 2-cycle interchanges i1 and i> and fixes everything else; 2-cycles are also caled
transpositions. A 1-cycle is the identity, for it fixes every i; thus, al 1-cycles are equal:
(i) = () fordli.

The term cycle comes from the Greek word for circle. Picturethecycle (i1 iz ... i)
as a clockwise rotation of the circle, asin Figure 2.1.

Figure 2.1

Any i can be taken as the “starting point,” and so there arer different cycle notations for
any r-cycle:

(irig ... ip)=(2i3 ... 0riD) =---=(ipirio ... ir_1).

Let usnow give an algorithm to factor a permutation into a product of cycles. For example,
take

6 4 7 2518 9 3)°

Begin by writing “(1.” Now «: 1 — 6, so write “(1 6.” Next, «: 6 — 1, and so the
parentheses close: « begins “(1 6).” The first number not having appeared is 2, and so
we write “(1 6)(2” Now «: 2 — 4, so we write “(1 6)(2 4” Sincea: 4 — 2, the
parentheses close once again, and we write “(1 6)(2 4).” The smallest remaining number
is3;now3+— 7,7+— 8,8+ 9 and 9 +— 3; this gives the 4-cycle (3 7 8 9). Finadly,
a(5) = 5; we claim that

a_(123456789)

a=(16)(24@B789(5).
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Since multiplication in S, is composition of functions, our claim is that
a@i)=[(16)(24 3789 (B)]()

for every i between 1 and 9 [after all, two functions f and g are equa if and only if
f(@i) = g(i) for every i in their domain]. The right side is the composite 8y 8, where
B=(@16),y =24),ands = (37 89) [wemay ignore the 1-cycle (5) when we are
evaluating, for it isthe identity function]. Now « (1) = 6; let us evaluate the composite on
theright wheni = 1.

Bys(L) = B(y(8(1)))
=B(y() §=(3789) fixesl
= B y = (24) fixes1
=6 B=(16).

Similarly, a(i) = Byd(i) for every i, proving the claim.

We multiply permutations from right to left, because multiplication here is composite
of functions; that is, to evaluate «8(1), we compute «(B(1)). Hereisanother example: Let
us compute the product

c=(12(13425)(2513)
in Ss. To find the two-rowed notation for o, evaluate, starting with the cycle on the right:
1> 3 41 4
2> 51— 2;
3= 255

44 2 1
5~ 1~ 3~ 3.

(123 45
9=\4 2 5 1 3)

The algorithm given earlier, when applied to this two-rowed notation for o, now gives

Q Q@ Q 9 Q

Thus,!

o= (1425 3).

In the factorization of a permutation into cycles, given by the preceding algorithm, we
note that the family of cyclesis disjoint in the following sense.

IThere are authorswho multi ply permutations differently, so that their « o 8 isour o« Thisisaconsequence
of their putting “functions on theright”: Instead of writing « (i) aswedo, they write (i )a. Consider the composite
of permutations« and B in which we first apply 8 and then apply «. Wewritei > B(i) — «(B(i)). Intheright-
sided notation, i — (i)B — ((i)B)«. Thus, the notational switch causes a switch in the order of multiplication.
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Definition. Two permutations«, 8 € S, aredisjoint if every i moved by oneis fixed by
theother: If (i) #i,then (i) =i,andif B(j) # j,thena(j) = j. Afamily B1..., Bt
of permutationsisdisjoint if each pair of them isdigjoint.

Lemma 2.1. Digoint permutations«, 8 € S, commute.
Proof. It suffices to provethat if 1 < i < n, then aB(i) = Ba(i). If B movesi, say,

B@i) = j # i, then B aso moves j [otherwise, 8(j) = j and B(i) = | contradicts
B’s being an injection]; since « and B are digoint, a(i) = i and «(j) = j. Hence
Ba(i) = j = aB(i). The same conclusion holds if « movesi. Finaly, it is clear that

af(i) = Ba(i) ifbothe and B fixi. e

Proposition 2.2. Every permutation « € S, is either a cycle or a product of digoint
cycles.

Proof. The proof is by induction on the number k of points moved by «. The base step
k = Oistrue, for now « istheidentity, whichisa 1-cycle.

If k > 0O, leti; beapoint moved by «. Defineiz = a(i1), i3 = a(i2), ..., ir+1 = a(iy),
where r is the smallest integer for which iy 11 € {i1,i2,...,ir} (Since there are only n
possible values, thelistiy,io, i3, ..., ik, ... must eventually have arepetition). We claim
that a(iy) = i1. Otherwise, a(ir) = ij for some j > 2; but «(ij_1) = ij, and this
contradicts the hypothesis that « is an injection. Let o be ther-cycle (i1 iz iz ... iy).
Ifr =n,thena = o. Ifr < n, then o fixes each point in Y, where Y consists of the
remaining n—r points, whilea(Y) = Y. Definea’ to bethe permutation with /(i) = «(i)
fori e Y that fixesall i ¢ Y, and note that

a=od.
Theinductive hypothesis givesa’ = f1 - - - Bt, where f, . .., py are digoint cycles. Since
o and o’ aredigoint, o = oB1 - - - B isaproduct of digoint cycles. e

Usually we suppress the 1-cycles in this factorization [for 1-cycles equal the identity
(1)]. However, afactorization of « in which we display one 1-cycle for each i fixed by «,
if any, will arise several times.

Definition. A complete factorization of a permutation « is afactorization of « into dis-
joint cyclesthat contains exactly one 1-cycle (i) for every i fixed by «.

For example, the complete factorization of the 3-cyclea = (1 35 inSisa =
1353 4.

There is arelation between anr-cycle 8 = (i1 i2 ... iy) and its powers ,3", where
B¥ denotes the composite of 8 with itself k times. Notethat i, = B(i1), iz = B(i2) =
B(B(i1) = B2(i1),ia = B(i3) = B(B%(i1) = p3(i1), and, more generally,

i1 = BXGin)

foralk <r.
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Theorem 2.3. Letw € S, andlet o = B1 - - - Bt be a complete factorization into digoint
cycles. Thisfactorization is unique except for the order in which the cycles occur .

Sketch of Proof.  Since every complete factorization of o has exactly one 1-cycle for each
i fixed by «, it suffices to consider (not complete) factorizations into digjoint cycles of
length > 2. Let o = y1 - - - ¥5 be asecond such factorization of « into digjoint cycles.

Thetheorem is proved by induction on ¢, thelarger of t and s. The inductive step begins
by noting that if #; movesiy, then BK(i1) = oX(i1) for al k > 1. Some y; must aso move
i1 and, since digoint cycles commute, we may assume that ys movesij. It follows that
Bt = vs; right multiplying by Bl gives 1+~ Bi_1=y1- ys-1. ®

Every permutation is abijection; how do we find itsinverse? In the pictorial representa-
tion of acycle 8 as aclockwise rotation of acircle, theinverse 1 isjust a counterclock-
wise rotation. The proof of the next proposition is straightforward.

Proposition 2.4.
(i) Theinverseof thecyclea = (i1 iz ... iy) isthecycle (iy iy—1... i1):
(iriz ... i)™= (irir—1... i1).
(i) Ify e Syandy = B1--- Bk, then
yl = ﬂk—l.“ﬂl—l_

Definition. Two permutations«, 8 € S, have the same cycle structure if their complete
factorizations have the same number of r-cyclesfor eachr.

According to Exercise 2.4 on page 50, there are
A/Oh=1)---(n—r + 1]

r-cyclesin S,. Thisformula can be used to count the number of permutations having any
given cycle structure if we are careful about factorizations having several cycles of the
same length. For example, the number of permutations in & of the form (a b)(c d) is
1[3(4 x 3)] x [3(2 x 1)] = 3, the “extra” factor 5 occurring so that we do not count
(ab)(cd) = (cd)(ab) twice.

Example 2.5.
(i) The types of permutationsin G = S are counted in Table 2.1.

Cycle Structure  Number
@) 1

12 6

123 8
(1234 6
(12)(34) 3

24

Table 2.1. Permutationsin &
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(i) The types of permutationsin G = S are counted in Table 2.2.

Cycle Structure  Number
@ 1

12 10

123 20
(1234 30
(12345) 24
(12)(345) 20
1234 15

120

Table 2.2. Permutationsin S

Hereisacomputational aid. We illustrate its statement in the following example before
stating the general result.

Example 2.6.
Ify =(13)(247)(5(®6) ande = (256)(1 4 3), then

O{J/O!_l =@41)5B371)(2) = (@lald)(@2adal)(@5)(xb). =

Lemma2.7. Ify, o € S, thenaya ! hasthe same cycle structureas y. In more detail,
if the complete factorization of y is

y=p1B2---(iri2 ...)-- B,

then ey o1 isthe permutation that is obtained from y by applying « to the symbolsin the
cyclesof y.

Proof. The idea of the proof is that yay 1 y(i1) — i1~ i2 — y(i2). Let o denote
the permutation defined in the statement.

If y fixesi, then o fixes (i), for the definition of o saysthat (i) livesinal-cyclein
the factorization of . On the other hand, vy~ aso fixes «(i):

aya Ha() = ay (i) = ali),
because y fixesi.
Assume that ¥ moves a symbol i1, say, y(i1) = i, so that one of the cycles in the
complete factorization of y is
(iriz ...).

By the definition of o, one of itscyclesis
ke ...,

where a(i1) = k and a(i2) = £; hence, o: k — €. But aya ™t k > i1 — i2 > ¢,

and so aya~ (k) = o (k). Therefore, o and aya—1 agree on al symbols of the form

k = a(i1). Sincea issurjective, every k isof thisform,andso o = aya~1. e
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Example 2.8.
In this example, weillustrate that the converse of Lemma 2.7 istrue; the next theorem will
prove it in genera. In S5, place the complete factorization of a 3-cycle g over that of a
3-cycle y, and define « to be the downward function. For example, if

B=123)(D(O)

y =0624HDO),

(123 45
“=\5 2 4 1 3)°

andsoa =(1534). Nowa € S and

then

y = (ala2al),

so that y = eBa—1, by Lemma 2.7. Note that rewriting the cycles of g, for example, as
B = (123)(5(4), givesanother choicefor . «

Theorem 2.9. Permutations y and o in S, have the same cycle structure if and only if

thereexistsa € S, witho = aya™L.

Sketch of Proof.  Sufficiency was just proved in Lemma 2.7. For the converse, place one
complete factorization over the other so that each cycle below is under a cycle above of the
same length:

y =8182---(i1i2++-) -6
aya_]‘:nlnz...(kz...)...nt’

Now define « to be the “downward” function, asin the example; hence, a(i1) =k, a(i2) =
¢, and so forth. Note that « is a permutation, for there are no repetitions of symbols in

the factorization of y (the cycles n are digoint). It now follows from the lemma that

o = ozyoc_l. .

There is another useful factorization of a permutation.

Proposition 2.10. 1fn > 2, thenevery o € S, isa product of transpositions.

Sketch of Proof.  Inlight of Proposition 2.2, it sufficesto factor anr -cycle g into aproduct
of transpositions, and thisis done as follows:

B=12...1)=@ANAr—-1---(13)(12). e
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Every permutation can thus be realized as a sequence of interchanges, but such a fac-
torization is not as nice as the factorization into digoint cycles. First, the transpositions
occurring need not commute: (1 2 3) = (1 3)(1 2) # (1 2)(1 3); second, neither the
factors themselves nor the number of factors are uniquely determined. For example, here
are some factorizations of (12 3) in &:

(123)=(13)(12)
—(23)(13)
= (13421214
—(13)(42)(12(14H(23)(23).

Is there any uniqueness at al in such a factorization? We now prove that the parity of
the number of factors is the same for all factorizations of a permutation «; that is, the
number of transpositions is always even or always odd (as suggested by the factorizations
of « = (1 2 3) displayed above).

Example 2.11.

The 15-puzzle has a starting position that isa4 x 4 array of the numbers between 1 and
15 and a symbol #, which we interpret as “blank.” For example, consider the following
starting position:

3115 4| 8
10111} 1| 9
2|5 13|12
6 | 7 |14\ #

A simple move interchanges the blank with a symbol adjacent to it; for example, there
are two beginning simple moves for this starting position: Either interchange # and 14 or
interchange # and 12. We win the game if, after a sequence of simple moves, the starting
position is transformed into the standard array 1, 2, 3, .. ., 15, #

To analyze this game, note that the given array is really a permutation « € Sy (if we
now call the blank 16 instead of #). More precisely, if the spaces are labeled 1 through 16,
then « (i) isthe symbol occupying the ith square. For example, the given starting position
is

1 2 34 5 6 7 8 9 10 11 12 13 14 15 16
3 1548 10 11 1 9 2 5 13 12 6 7 14 16)°

Each simple moveisaspecial kind of transposition, namely, one that moves 16 (remember
that the blank is now 16). Moreover, performing a simple move (corresponding to a special
transposition t) from a given position (corresponding to a permutation g) yields a new
position corresponding to the permutation 8. For example, if « isthe position above and
7 isthe transposition interchanging 14 and 16, then t«(16) = t(16) = 14 and t«(15) =
7(14) = 16, while ta(i) = i for al other i. That is, the new configuration has all the
numbers in their original positions except for 14 and 16 being interchanged. To win the
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game, we need specia transpositions 71, 2, .. ., Tm SO that
Tm - - - o1 = (1).

It turns out that there are some choices of « for which the game can be won, but there are
others for which it cannot be won, aswe shall seein Example 2.15. «

Definition. A permutation a € S, iseven if it can be factored into a product of an even
number of transpositions; otherwise, « isodd. The parity of a permutation is whether it is
even or odd.

Itiseasy to seethat (1 2 3) and (1) are even permutations, for there are factorization
123 =131 2 ad @ = (1 2)(1 2 having two transpositions. On the other
hand, we do not yet have any examples of odd permutations! If « is a product of an
odd number of transpositions, perhaps it also has some other factorization into an even
number of transpositions. The definition of odd permutation «, after all, says that there is
no factorization of « into an even number of transpositions.

Definition. If ¢ € §, and o = B1--- Bt is acomplete factorization into digoint cycles,
then signum « is defined by

sgn(a) = (=",

Theorem 2.3 shows that sgn is a (well-defined) function, for the number t is uniquely
determined by «. Notice that sgn(s) = 1 for every 1-cycle ¢ becauset = n. If r isa
transposition, then it moves two numbers, and it fixes each of the n — 2 other numbers;
therefore, t = (N—2)+1=n—1,andsosgn(r) = (="~ "D = 1,

Theorem 2.12. Forall o, 8 € &,
sgn(aB) = sgn(a) sgn(p).

Sketch of Proof.  If k, £ > O and theletters a, b, ¢;, dj are all distinct, then

(aby@cy ... cxkbdy ... dp) =(@cy ... cx)(bdy ... dp);
multiplying this equation on the left by (a b) gives

(ab)y(acy ... c)(bdy ... dp) =(@acy ... ckbdy ... dp).
These equations are used to prove that sgn(te) = — sgn(a) for every o € §,, where ©
is the transposition (a b). If « € S, has afactorization « = 71 - - - Ty, Where each 7j isa

transposition, we now prove, by induction on m, that sgn(e8) = sgn(«) sgn(g) for every
,3 €S o
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Theorem 2.13.
(i) Leta € Sy; if sgn(e) = 1, then « iseven, and if sgn(«) = —1, then « is odd.

(ii) A permutation « isodd if and only if it isa product of an odd number of transposi-
tions.

Proof. (i) If « = 71--- 7q isafactorization of « into transpositions, then Theorem 2.12
gives sgn(er) = sgn(ty) - - - SgN(tq) = (—1)9. Thus, if sgn(er) = 1, then g must always be
even, and if sgn(«) = —1, then g must always be odd.

(i) If « is odd, then « is not even, and so sgn(a) # 1; that is, sgn(e) = —1. Now
o = 11-- - 7q, Where the 7j are transpositions, so that sgn(e) = —1 = (—=1)9; hence, q is
odd (we have proved more; every factorization of « into transpositions has an odd number
of factors). Conversely, if « = 71---17q is a product of transpositions with g odd, then
sgn(a) = —1,; therefore, « isnot even and, hence, « isodd. e

Corollary 2.14. Leta, 8 € §,. If « and 8 have the same parity, then o8 iseven, whileif
a and B have distinct parity, then «f is odd.

Example 2.15.

An analysis of the 15-puzzlein Example 2.11 showsthat if « € S isthe starting position,
then the game can be won if and only if « isan even permutation that fixes 16. For a proof
of this, we refer the reader to McCoy-Janusz, Introduction to Modern Algebra, pages 229-
234. The proof in one direction isfairly clear, however. The blank 16 startsin position 16.
Each simple move takes 16 up, down, left, or right. Thus, the total number m of moves
isu+d+1+r, whereu is the number of up moves, and so on. If 16 isto return home,
each one of these must be undone: There must be the same number of up moves as down
moves (i.e., u = d) and the same number of left moves asright moves(i.e, r =1). Thus,
the total number of movesiseven: m = 2u + 2r. Thatis, if tm - - 11 = (1), thenm is
even; hence, « = 71--- Ty (because 71 = ¢ for every transposition 7), and 0 « is an
even permutation. Armed with this theorem, we see that if the starting position « is odd,
the game starting with « cannot be won. In Example 2.11,

a = (1348921514 7)(5 10)(6 11 13)(12)(16)

[(12) and (16) are 1-cycles]. Now sgn(e) = (—1)16-5 = —1, so that « is an odd permuta-
tion. Therefore, it isimpossibleto winthisgame.  «

EXERCISES

2.1 Find sgn(e) and &1, where

e
“=\o

o N
~N w
o N
oo
» o
w ~
N
Lo
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2.2
2.3

24

2.5

2.6
2.7

2.8

2.9
2.10

211

2.12
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If « € S, provethat sgn(e™1) = sgn(e).
If o € S, fixessome j, wherel < j < n[thatis, o(j) = j], define o’ € S,_1 by
o'(i) =o(i)forali # j. Provethat

sgn(e’) = sgn(o).
Hint. Use the complete factorizations of o and of o”’.
If 1 <r < n, show that there are
-1 -1+ 1]
r-cyclesin S,.
Hint. Therearer cycle notations for any r-cycle.
(i) If e isanr-cycle, show that " = (1).
Hint. If o = (ig...i;_1), show that o®(ig) = iy.
(ii) If @ isanr-cycle, show that r isthe smallest positive integer k such that ok = (1).
Hint. Use Proposition 2.2.
Show that anr-cycleis an even permutation if and only if r is odd.
Given X = {1, 2, ..., n}, let uscal apermutation ¢ of X an adjacency if it is atransposition
of theform (i i + 1) fori < n.
(i) Provethat every permutation in S, for n > 2, isaproduct of adjacencies.
(i) Ifi < j, provethat (i j)isaproduct of an odd number of adjacencies.
Hint. Useinductiononj —i.
Define f: {0,1,2,...,10} - {0,1,2,..., 10} by
f (n) = theremainder after dividing an? — 3n’ by 11.
(i) Show that f isapermutation.?
(if) Compute the parity of f.
(iii) Computetheinverseof f.
If wisanr-cycleand1 < k < r,isa” anr-cycle?
(i) Prove that if « and B are (not necessarily digoint) permutations that commute, then
(@p)k = oKpKforal k > 1.
Hint. First show that oK = o by induction on k.
(i) Givean example of two permutations « and g for which (a8)2 # a2p2.
(i) Prove, foralli,that o € S movesi if and only if 1 movesi.
(ii) Provethatif o, B € & aredigoint and if o = (1), thena = (1) and 8 = (1).
Prove that the number of even permutationsin S, is 3n!.
Hint. Lett = (1 2), and define f : A — Op, where A, isthe set of all even permutations
in S, and Op, isthe set of al odd permutations, by

k

f:o— ta.

Show that f isa bijection, sothat | An| = |On| and, hence, |An| = 3n!.

2f k is a finite field, then a polynomial f (x) with coefficients in k is called a permutation polynomial if
the evaluation function f: k — k, defined by a — f(a), is a permutation of k. A theorem of Hermite and
Dickson characterizes permutation polynomials (see Lidl-Niederreiter, Introduction to Finite Fields and Their
Applications).
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2.13 (i) How many permutationsin S5 commute with « = (1 2 3), and how many even permu-
tationsin S5 commute with «?

Hint. There are 6 permutationsin S commuting with «, only 3 of which are even.
(if) Same questionsfor (1 2)(3 4).
Hint. There are 8 permutationsin $; commuting with (1 2)(3 4), and only 4 of them
are even.
2.14 Giveanexampleof o, B, y € S5, witha # (1), such that o = o, ay = ya and By # yB.
2.15 If n > 3, show that if @ € §, commutes with every 8 € S, thena = ().

216 If & = By Bm isaproduct of digoint cycles, prove that y = 7t - - B8 commutes with
a,whereg > Oforali,and§ isdisoint from «.

2.3 GROUPS

Since Galois’s time, groups have arisen in many areas of mathematics other than the study
of roots of polynomials, for they are the way to describe the notion of symmetry, as we
shall see.

The essence of a“product” is that two things are combined to form a third thing of the
same kind. For example, ordinary multiplication, addition, and subtraction combine two
numbers to give another number, while composition combines two permutations to give
another permutation.

Definition. A binary operation on aset G isafunction
¥:6GxG— G.

In more detail, a binary operation assigns an element *(X, y) in G to each ordered
pair (x,y) of elementsin G. It is more natural to write X x y instead of *(X, y); thus,
composition of functions is the function (g, f) — g o f; multiplication, addition, and
subtraction are, respectively, the functions (x, y) — Xy, (X,¥) — X+ Yy, and (X, y) —
X — Y. The examples of composition and subtraction show why we want ordered pairs, for
X * y and y x X may be distinct. Aswith any function, a binary operation is well-defined;
when one says this explicitly, it isusually called the law of substitution:

Ifx=xandy=y, thenxxy=x"xVY.
Definition. A group isaset G equipped with a binary operation * such that
(i) theassociative law holds. for every x, y, z € G,
Xk (Y*x2) =(X*xY)*2Z

(ii) thereisan element e € G, caled theidentity, withe« x = x = x x eforal x € G;
(iii) every x € G hasaninverse; thereisx’ € G withx * X’ = e = x’ % x.
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By Theorem 1.49, the set Sx of all permutations of a set X, with composition as the
operation and 1x = (1) as the identity, is a group (the symmetric group on X). In Ex-
ercise 2.22 on page 61, the reader will see that some of the equations in the definition of
group are redundant. Thisis a useful observation, for it is more efficient, when verifying
that a set with an operation is actually a group, to check fewer equations.

We are now at the precise point when algebra becomes abstract algebra. In contrast to
the concrete group S, consisting of all the permutations of {1, 2, ..., n}, we have passed
to groups whose elements are unspecified. Moreover, products of elements are not ex-
plicitly computable but are, instead, merely subject to certain rules. It will be seen that
this approach is quite fruitful, for theorems now apply to many different groups, and it is
more efficient to prove theorems once for all instead of proving them anew for each group
encountered. In addition to this obvious economy, it is often simpler to work with the
“abstract” viewpoint even when dealing with a particular concrete group. For example,
we will see that certain properties of S, are simpler to treat without recognizing that the
elementsin question are permutations (see Example 2.26).

Definition. A group G is called abelian® if it satisfies the commutative law:
X%y =Yyx%X

holdsfor every x, y € G.

The groups S, for n > 3, are not abelian because (1 2) and (1 3) are elements of S,
that do not commute: (12)(13) =(132)and(13)(12) = (123).

Lemma 2.16. Let G bea group.

(i) Thecancellation laws hold: If either x xa=Xx=*boraxx =bx*xXx,thena=h.
(ii) Theelement eisthe uniqueelementin G withexx = x = x xefor all x € G.

(iii) Each x € G hasa uniqueinverse: Thereis only one element x’ € G with x x X’ =
e = x’ x x (henceforth, this element will be denoted by x1).

(iv) xHt=xforalxeG.
Proof. (i) Choose x” with X’ x X = e = X * x’; then

a=exa=XsxxX)xa=x%x(Xxa)
:x/*(x*b):(X/*X)*b:e*be.

A similar proof works when x ison theright.

(ii) Let e € G satisfy egx X = X = X« eg for al x € G. In particular, setting X = ein
the second equation gives e = e * ep; on the other hand, the defining property of e gives
ex ey = e, S0 that e = ep.

3The reason why commutative groups are called abelian can be found on page 236.
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(iii) Assumethat x” € G satisfies x * x” = e = x” * x. Multiply the equation e = X * X’
on the left by x” to obtain

X' =xX"se=x"+X*sX)=x"xx) X =exx =X.

(iv) By definition, x ) lsxxT=e=x1x (x )L Buxxx1=e=x"1

that (x 1=t = x, by (iii). e

* X, SO

From now on, we will usually denote the product x * y in a group by xy (we have
already abbreviated o o 8 to 8 in symmetric groups), and we will denote the identity by 1
instead of by e. When a group is abelian, however, we will often use the additive notation
X + Vy; in this case, we will denote the identity by 0, and we will denote the inverse of an
element x by —x instead of by x 1.

Example 2.17.
(i) The set Q* of al nonzero rationalsis an abelian group, where * is ordinary multiplica-
tion, the number 1 isthe identity, and the inverseof r € Q* is1/r. Similarly, R* and C*
are multiplicative abelian groups.

Note that the set Z* of al nonzero integersis not a multiplicative group, for none of its
elements (aside from +1) has a multiplicative inverse which is an integer.

(i) The set Z of all integersis an additive abelian group with a « b = a + b, with identity
e = 0, and with the inverse of an integer n being —n. Similarly, we can see that Q, R, and
C are additive abelian groups.

(iii) Thecircle group,

St={zeC:|z =1},
is the group whose operation is multiplication of complex numbers; this is an operation
because the product of complex numbers of modulus 1 also has modulus 1, by Corol-
lary 1.31. Complex multiplication is associative, the identity is 1 (which has modulus 1),

and the inverse of any complex number of modulus 1 isits complex conjugate, which also
has modulus 1. Therefore, St isagroup.

(iv) For any positive integer n, let
un={§k105k<n}
be the set of all the nth roots of unity, where
¢ = &N = cos(%) 41 sin(27).
The reader may use De Moivre’s theorem to see that ., isagroup with operation multipli-

cation of complex numbers; moreover, the inverse of any nth root of unity isits complex
conjugate, which isaso an nth root of unity.
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(v) Theplane R x R is agroup with operation vector addition; that is, if « = (x, y) and
a =X,y),thena +a = (x+x',y+Y). Theidentity isthe origin O = (0, 0), and
theinverse of (X, y) is(—X, —Yy). <«

Example 2.18.
Let X beaset. If U and V are subsets of X, define

U-V={xeU:x¢V}

The Boolean group BB (X) [named after the logician G. Boole (1815-1864)] is the family
of al the subsets of X equipped with addition given by symmetric difference A+ B, where

A+B=(A-B)UB-A);

symmetric difference is pictured in Figure 2.2.

Figure 2.2 Figure 2.3

Itisplainthat A+ B = B + A, so that symmetric difference is commutative. The
identity is @, the empty set, and the inverse of Ais A itself, for A+ A = @. The reader
may verify associativity by showing that both (A+ B) + C and A+ (B 4 C) are described
by Figure2.3. «

Example 2.19.
Ann x nmatrix Awithrea entriesis called nonsingular if it has an inverse; that is, there
isamatrix B with AB = | = BA, where | = [§j;] (§ij is the Kronecker delta) is the

n x n identity matrix. Since (AB)~1 = B~1A~1, the product of nonsingular matrices is
itself nonsingular. The set GL(n, R) of all n x n nonsingular matrices having real entries,
with binary operation matrix multiplication, is a (nonabelian) group, called the general
linear group. [The proof of associativity is routine, though tedious; a “clean” proof of
associativity can be given (Corollary 3.99) once the relation between matrices and linear
transformationsisknown.] «
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A binary operation allows us to multiply two elements at a time; how do we multiply
three elements? There is a choice. Given the expression 2 x 3 x 4, for example, we can
first multiply 2 x 3 = 6 and then multiply 6 x 4 = 24; or, we can first multiply 3 x 4 = 12
and then multiply 2 x 12 = 24; of course, the answers agree, for multiplication of numbers
is associative. Thus, if an operation is associative, the expression abc is not ambiguous.
Not all operations are associative, however. For example, subtraction is not associative: if
¢ # 0, then

a—(b-c#@—-b)—c,

and so the notation a — b — ¢ is ambiguous. The cross product of two vectors in RS is
another example of a nonassociative operation.

Definition. |f G isagroup andif a € G, define the powers* a", for n > 1, inductively:

al=a and a™!=aa"

Definea® = 1 and, if n isapositive integer, define
a"=@Mh"

The reader expectsthat (a~1)" = (@")~1; thisisaspecial case of the equation in Exer-
cise 2.17 on page 61, but thisis not so obviousto prove at this stage. For example, showing
that a—2a2 = 1 amounts to doing the cancellation in the expression (a~ta—1)(aa); but as-
sociativity is given to us only for products having three, not four, factors.

Let us return to powers. The first and second powers are fine: a! = a and a® = aa.
There are two possible cubes: We have defined a3 = aa® = a(aa), but there is another
reasonable contender: (aa)a = a2a. |f we assume associativity, then these are equal:

3 = aa’ = a(aa) = (aa)a = a’a.

a
There are several possible products of a with itself four times; assuming that the operation
is associative, isit obvious that a* = a%a = a2a?? And what about higher powers?
Define an expression aiaz - --a, to be an n-tuple in G x --- x G (n factors). An
expression yields many elements of G by the following procedure. Choose two adjacent
a’s, multiply them, and obtain an expression with n — 1 factors: The new product just
formed and n — 2 original factors. In this shorter new expression, choose two adjacent
factors (either an original pair or an original onetogether with the new product from the first
step) and multiply them. Repeat this procedure until there is an expression with only two

4The terminology x square and x cube for x2 and x3 is, of course, geometric in origin. Usage of the word
power in this context arises from a mistrandation of the Greek dunamis (from which dynamo derives) used by
Euclid. Power was the standard European rendition of dunamis; for example, the first English translation of
Euclid, in 1570, by H. Billingsley, renders a sentence of Euclid as, “The power of alineisthe square of the same
line.” However, contemporaries of Euclid (e.g., Aristotle and Plato) often used dunamis to mean amplification,
and this seems to be a more appropriate translation, for Euclid was probably thinking of a one-dimensional
line sweeping out a two-dimensional square. (I thank Donna Shalev for informing me of the classical usage of
dunamis.)
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factors; multiply them and obtain an element of G; call this an ultimate product derived
from the expression. For example, consider the expression abed. We may first multiply ab,
obtaining (ab)cd, an expression with three factors, namely, ab, ¢, d. We may now choose
either the pair ¢, d or the pair ab, c; in either case, multiply these, obtaining expressions
with two factors: (ab)(cd) having factors ab and cd or ((ab)c)d having factors (ab)c
and d. The two factors in either of these last expressions can now be multiplied to give
an ultimate product from abcd. Other ultimate products derived from the expression abcd
arise by multiplying bc or cd as the first step. It is not obvious whether the ultimate
products derived from a given expression are all equal.

Definition. An expression a;ay - - - an needs no parentheses if al the ultimate products
it yields are equal; that is, no matter what choices are made of adjacent factorsto multiply,
all the resulting productsin G are equal.

Theorem 2.20 (Generalized Associativity). If G isagroup and a;,ap, ..., ay € G,
then the expression aa; - - - an heeds no parentheses.

Remark. This result holds in greater generality, for neither the identity element nor
inverseswill beused inthe proof. <

Proof. The proof isby (the second form of) induction. The base step h = 3 follows from
associativity. For the inductive step, consider two ultimate products U and V obtained
from an expression a;a; - - - a, after two series of choices:

(@ ---a)@y1---an) and (a1---aj)(@j41---an);

the parentheses indicate the last two factors which multiply to give U and V; there are
many parentheses inside each of these shorter expressions. We may assume thati < j.
Since each of the four expressions in parentheses has fewer than n factors, the inductive
hypothesis says that each needs no parentheses. It followsthat U = V ifi = j. Ifi < |,
then the inductive hypothesis allows the first expression to be rewritten

U=(ag--a)([a+1--ajllaj1---an])
and the second to be rewritten
V= (la---allaia-jl) @41 an),

where each of the expressionsa; - - - &, 841 -- - aj, and aj41 - - - an needs no parentheses.
Thus, these expressions yield unique elements A, B, and C of G, respectively. The first
expression yields A(BC), the second yields (AB)C, and these two expressions give the
same element of G, by associativity. e
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Corollary 2.21. IfGisagroupanda, b € G, then
@)y t=plal

Proof. By Lemma2.16(iii), it suffices to prove that (ab)(b—ta=1) = 1 = (b—ta~1)(ab).
Using generalized associativity,

@@b)(b~ta™h =[abbHlat=(@hal=aa =1

A similar argument proves the other equation. e

Corollary 2.22. If Gisagroup,ifa e G,andif m, n > 1, then

m+n _ om

al ama" and @M" =a™.
Proof. Inthefirst instance, both elements arise from the expression having m + n factors
each equal to a; in the second instance, both elements arise from the expression having mn

factorseachequal toa. e
It follows that any two powers of an element a in a group commute:

man _ om+n

a’"=a4a zan+m: nm

a aa .

Proposition 2.23 (Laws of Exponents). Let G beagroup, leta, b € G, and let m and
n be (not necessarily positive) integers.

(i) If a and b commute, then (ab)" = a"b".

(i) @M =a™.

(iii) aMa" = am*n,

Sketch of Proof.  The proofs, while routine, are lengthy double inductions. e

The notation a" is the natural way to denote a x a x - - - x a, where a appears n times.
However, if the operation is +, then it is more natural to denotea + a + --- + a by na.
Let G be agroup written additively; if a, b € G and m and n are (not necessarily positive)
integers, then Proposition 2.23 is usually rewritten:

() n@a+b)=na+nb
(i) m(na) = (mn)a

(iiil) ma+na= (m+n)a
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Definition. Let G beagroupandleta e G. If ak = 1 for somek > 1, then the smallest
such exponent k > 1 is called the order of a; if no such power exists, then one saysthat a
has infinite order.

The additive group of integers, Z, is a group, and 3 is an element in it having infinite
order (because 3+ 3+ - - - 4+ 3isnever 0).

Inany group G, theidentity hasorder 1, and it isthe only element of order 1; an element
has order 2 if and only if it is egual to its own inverse.

The definition of order saysthat if x has order n and x™ = 1 for some positive integer
m, then n < m. The next theorem says that n must be a divisor of m.

Theorem 2.24. If a € G isan element of order n, thena™ = 1if and onlyif n | m.

Proof. Assume that a™ = 1. The division agorithm provides integers q and r with
m=nq+r,whee0 <r <n. Itfollowsthata” =a™ " =aMa—" = 1. If r > 0, then
we contradict n being the smallest positive integer with a" = 1. Hence,r = Oandn | m.
Conversely, if m=nk,thenam=ak = @)k =1k=1.

What isthe order of apermutationin S,?

Proposition 2.25. Leto € S,.

(i) If ¢ isanr-cycle, then o hasorder r.
(ii) fo = B1--- Bt isaproduct of digointri-cycles 8, then« hasorder Icm(rq, ..., ri}.

(iii) If pisaprime, then« hasorder pif and onlyifitisa p-cycleor a product of digjoint
p-cycles.

Proof. (i) ThisisExercise 2.5 on page 50.

(ii) Each B; has order ri, by (i). Suppose that «™ = (1). Since the g; commute, (1) =
aM = (B1---BOM = pM ... pM. By Exercise 2.11 on page 50, disjointness of the f’s
implies that ,BiM = (1) for each i, so that Theorem 2.24 givesr; | M for al i; that is, M
isacommon multiple of rq, ..., ri. Onthe other hand, if m = lem{rq, ..., r¢}, thenitis
easy to seethat «™ = (1). Therefore, o has order m.

(iii) Write « asaproduct of digoint cyclesand use (ii). o

For example, a permutation in S, has order 2 if and only if it is a transposition or a
product of disjoint transpositions.

Example 2.26.

Suppose a deck of cards is shuffled, so that the order of the cards has changed from
1,2,3,4,...,52t02,1,4,3,...,52,51. If we shuffle again in the same way, then the
cards return to their original order. But a similar thing happens for any permutation « of
the 52 cards: If one repeats « sufficiently often, the deck is eventually restored to its orig-
inal order. One way to see this uses our knowledge of permutations. Write « as a product
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of digoint cycles, say, « = B182 - - - Bt, where i isanr;-cycle. By Proposition 2.25, « has
order k, where k is the least common multiple of ther;. Therefore, ok = (1).

Here is a more general result with a simpler proof (abstract algebra can be easier than
algebra): If G isafinitegroup and a € G, then ak = 1 for some k > 1. Consider the
subset {1, a,a%,...,a",...}. Since G isfinite, there must be arepetition occurring on this
infinite list: There areintegersm > nwitha™ = a", and hence1 = aMa™" = a™". We
have shown that there is some positive power of a equal to 1. [Our original argument that
o = (1) for a permutation « of 52 cards is not worthless, because it gives an algorithm
computing k.] <

Let us state what we have just proved in Example 2.26.

Proposition 2.27. If G isa finite group, then every x € G hasfinite order.
Table 2.3 augments the table in Example 2.5(ii).

Cycle Structure Number Order Parity
(1) 1 1 Even
12 10 2  Odd
123 20 3 Even
1234 30 4  Odd
(12345 24 5 Even
(12)(345) 20 6  Odd
1234 15 2 Even

120

Table 2.3. Permutationsin &

Here are some geometric examples of groups.

Definition. A motion is a distance preserving bijection ¢ : R? — R? [it can be shown
that ¢ is alinear transformation if ¢(0) = Q]. If = is a polygon in the plane, then its
symmetry group X () consists of al the motions ¢ for which ¢(7r) = 7. The elements of
3 () are called symmetries of 7.

Example 2.28.

(i) Let 74 be a square having sides of length 1 and vertices {v1, v2, v3, va}; draw 74 in
the plane so that its center is at the origin O and its sides are parallel to the axes. It can
be shown that every ¢ € X (74) permutes the vertices, indeed, a symmetry ¢ of x4 is
determined by {¢(vj) : 1 <i < 4}, and so there are at most 24 = 4! possible symmetries.
Not every permutation in & arises from a symmetry of w4, however. If v; and vj are
adjacent, then [jvi — v || = 1, but |jvy — v3|| = V2 = |lva — val|; it follows that ¢ must
preserve adjacency (for motions preserve distance). The reader may now check that there
are only eight symmetries of 4. Aside from the identity and the three rotations about O
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by 90°, 180°, and 270°, there are four reflections, respectively, in the lines v1vs, voua, the
x-axis, and the y-axis (for a generalization to come, note that the y-axisis Omg, where m;
is the midpoint of v1vp, and the x-axis is Omy, where my is the midpoint of vov3). The
group X (14) is called the dihedral group® with 8 elements, and it is denoted by Dsg.

Vi
Vi my V2
my my
Vs o) Vo
@) m,
m m,

V4 V3 V4 m 3 V3

Figure 2.4 Figure 2.5

(if) The symmetry group X (rs) of a regular pentagon s with vertices vy, ..., vs and

center O has 10 elements. the rotations about the origin of (72j)°, where0 < j < 4, as
well as the reflections in the lines Ovg for 1 < k < 5. The symmetry group X (r5) is
called the dihedral group with 10 elements, and it isdenoted by D1p. <«

Vi m v
m,
O
A A
ms
A Vy
Figure 2.6

5F Klein wasinvesti gating those finite groups occurring as subgroups of the group of motions of R3. Some of
these occur as symmetry groups of regular polyhedra (from the Greek poly meaning “many” and hedron meaning
“two-dimensiona side”). Heinvented adegenerate polyhedron that he called adihedron, from the Greek words di
meaning “two” and hedron, which consists of two congruent regular polygons of zero thickness pasted together.
The symmetry group of adihedron isthus called adihedral group. For our purposes, it is more natural to describe
these groups asin the text.
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Definition. If 7, isaregular polygonwith n verticesvy, vo, ..., vy and center O, thenthe
symmetry group X (p) is called the dihedral group with 2n elements, and it is denoted®
by D2n.

The dihedral group D2, contains the n rotations pl about the center by (360j/n)°,
where0 < j < n — 1. Thedescription of the other n elements depends on the parity of n.
If nisodd (asin the case of the pentagon; see Figure 2.5), then the other n symmetries are
reflectionsin thedistinct lines Ovj, fori = 1,2, ..., n. If n = 2q iseven (seethesquarein
Figure 2.4 or the regular hexagon in Figure 2.6), then each line Owv; coincideswith theline
Ovg4i, giving only g such reflections; the remaining g symmetries are reflections in the
linesOm; fori =1, 2,...,q, wherem; isthe midpoint of the edge vj vj +1. For example,
the six lines of symmetry of =g are Ovy, Ovy, and Ovz, and Omg, Omy, and Oms.

EXERCISES

217 Ifag, ap,...,a_1, & areelementsin agroup G, prove that

(g2 & 120 L =a oY oyt
2.18 Assumethat G is aset with an associative binary operation. Prove that (ab)(cd) = a[(bc)d]
without using generalized associativity.
2.19 (i) Computethe order, inverse, and parity of

a=(12)(43)(13542)(15)(13)(23).

(ii) What are the respective orders of the permutationsin Exercises 2.1 on page 49 and 2.8
on page 50?
2.20 (i) How many elements of order 2 aretherein S5 and in §?
(if) How many elements of order 2 aretherein $,?
Hint. You may express your answer as a sum.
2.21 If G isagroup, provethat the only element g € G with 92 =gisl.

2.22 This exercise gives a shorter list of axioms defining a group. Let H be a set containing an
element e, and assume that there is an associative binary operation * on H satisfying the
following properties:

1. exx=xforal x € H;
2. forevery x € H, thereisx’ ¢ H withx’ x x = e.

(i) Provethatif h € H satisfiesh«h = h,thenh =e.
Hint. If h' xh = e, evaluate h’ x h x h in two ways.
(i) Foralx € H, provethat x « X' = e.
Hint. Consider (x  X')2.
(iii) Fordl x € H, provethat x x e = X.
Hint. Evaluate X * X’ * X in two ways.

6Some authors denote Doy, by Dp.
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(iv) Provethatif € € H satisfiese x x = xforal x € H,thene =e.
Hint. Show that (¢/)2 = €.

(v) Letx € H. Provethat if x” € H satisfiesx” x x = e, thenx” = x'.
Hint. Evaluate X’ * X % X" in two ways.

(vi) Provethat H isagroup.

2.23 Let y beagroup element of order m; if m = pt for some prime p, prove that y' has order p.
Hint. Clearly, (y')P = 1. Use Theorem 2.24 to show that no smaller power of y! is equal
tol.

2.24 Let G beagroupandleta € G haveorder k. If pisaprimedivisor of k, and if thereisx € G
with xP = a, prove that x has order pk.

225 Let G =GL(2,Q), and let
0 -1 0 1
S o I I

Show that A* = | = B®, but that (AB)" # | foral n > 0, where | = [19]isthe2 x 2
identity matrix. Conclude that AB can have infinite order even though both factors A and B
have finite order (this cannot happen in a finite group).

2.26 If Gisagroupinwhichx? = 1for every x € G, provethat G must be abelian. [The Boolean
groups B(X) of Example 2.18 are such groups.]

2.27 If G isagroup with an even number of elements, prove that the number of elementsin G of
order 2 isodd. In particular, G must contain an element of order 2.
Hint. Pair each element with itsinverse.

2.28 What isthe largest order of an element in §,, wheren = 1,2, ..., 10? (We remark that no
general formulais known for arbitrary n, although, in 1903, E. Landau found the asymptotic
behavior.)

2.4 LAGRANGE’S THEOREM

A subgroup H of agroup G isagroup contained in G sothat if h, h" € H, then the product
hh" in H isthe same as the product hh' in G. The formal definition of subgroup, however,
is more convenient to use.

Definition. A subset H of agroup G isasubgroup if
(i) e H;
(i) if x,y € H,thenxy € H;
(i) if x € H,thenx~1 € H.

If H isasubgroup of G, wewrite H < G; if H isaproper subgroup of G, thatis, H # G,
thenwewrite H < G.
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Observe that {1} and G are always subgroups of a group G, where {1} denotes the
subset consisting of the single element 1. More interesting examples will be given soon.
A subgroup H # G iscaled aproper subgroup.

Let us see that every subgroup H < G isitself a group. Property (ii) shows that H
is closed; that is, H has a binary operation. Associativity (xy)z = x(yz) holds for all
X, Y, Z € G, and so this equation holds, in particular, for dl X, y, z € H. Findly, (i) gives
the identity, and (iii) givesinverses.

It is easier to check that a subset H of agroup G is a subgroup (and hence that it isa
group in its own right) than to verify the group axioms for H: Associativity is inherited
from the operation on G and hence it need not be verified again.

Example 2.29.
(i) The four permutations

V={1),123@4%,(13)24,14H23)}

form a group, because V is a subgroup of & : (1) € V; «? = (1) foreach o € V,
and so =1 = « € V; the product of any two distinct permutations in V — {(1)} is the
third one. The group V is called the four-group (V abbreviates the original German term
Vierergruppe).

Consider what verifying associativity a(bc) = (ab)c would involve: Thereare4 choices
for each of a, b, and ¢, and so there are 43 = 64 equations to be checked. Plainly, the best
way to provethat V isagroup isto show that it is asubgroup of &.

(i) If R? is the plane considered as an (additive) abelian group, then any line L through
the origin is a subgroup. The easiest way to seethisisto choose apoint (a, b) # (0, 0) on
L and then note that L consists of all the scalar multiples (ra, rb). The reader may now
verify that the axioms in the definition of subgroup do hold for L. <«

We can shorten the list of items needed to verify that a subset is, in fact, a subgroup.

Proposition 2.30. A subset H of a group G is a subgroup if and only if H is nonempty
and, whenever x, y € H, thenxy~1 € H.

Proof. Necessity is clear. For sufficiency, take x € H (which exists because H # ©);
by hypothesis, 1 = xx 2 e H. If y € H,theny 1 = 1y~! € H and, if x, y € H, then
xy=x(yHhleH. o

Of course, the simplest way to check that a candidate H for a subgroup is nonempty is
to check whether 1 € H.

Note that if the operation in G is addition, then the condition in the proposition is that
H isanonempty subset suchthat x, y € H impliesx —y € H.

Proposition 2.31. A nonempty subset H of a finite group G is a subgroup if and only if
H isclosed; that is, if a,b € H, thenab € H. In particular, a nonempty subset of S, isa
subgroup if and only if it is closed.
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Sketch of Proof.  Since G isfinite, Proposition 2.27 saysthat each X € G has finite order.
Hence if X" =1, thenle Handx 1=x""1c H. o

This last proposition can be false when G is an infinite group. For example, let G be
the additive group Z; the subset H = N isclosed, but it is not a subgroup of Z.

For Galois, in 1830, agroup wasjust asubset H of S, that is closed under composition;
thatis, if o, B € H, thenaB € H. A. Cayley, in 1854, was the first to define an abstract
group, mentioning associativity, inverses, and identity explicitly. He then proved (see Cay-
ley’s theorem) that every abstract group with n elementsis, essentially, a subgroup of S,
(the notion of isomorphism, introduced in the next section, will enable usto state this more
precisely).

Example 2.32.

The subset A, of S, consisting of all the even permutations, is a subgroup because it is
closed under multiplication: even o even = even. This subgroup A, < S, iscaled the
alternating” group onn letters. <

Definition. If Gisagroupanda e G, write
(@) = {a" : n € Z} = {al powers of a};

(a) is called the cyclic subgroup of G generated by a. A group G is called cyclic if there
existsa € G with G = (a), in which case a is called agenerator of G.

It is easy to see that (a) is, in fact, asubgroup: 1 = a° € (a); a"a™ = a™™ e (a);
a~! e (a). Example 2.17(iv) shows, for every n > 1, that the multiplicative group jun of
al nth roots of unity isa cyclic group with the primitive nth root of unity ¢ = e"'/" asa
generator.

No doubt, the reader has seen the example of the integers modulo min an earlier course.
We merely recall the definition. Given m > 0 and a € Z, the congruence class [a] of a
mod m was defined on page 34:

[a] ={beZ:b=amodm}
={a+km:keZ}
={..,a—-2m,a—m,a,a+ma+2m,...}.

"The alternating group first arose in studying polynomials. If
f(X) = (X —up)(X = Uup) -+ (X = Un),

then the number D = T7; <j Ui —uj) can change sign when the roots are permuted: If « is a permutation of
{ug, up, ..., un}, thenitiseasy to seethat [; <j [a(uj) —a(uj)] = £D. Thus, the sign of the product alternates
as various permutations « are applied to its factors. The sign does not change for those « in the alternating group,
and thislast fact can be used to give another proof of Theorem 2.13(ii).
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Definition. Theintegers mod m, denoted® by I, is the family of all congruence classes
mod m.

Recall that [a] = [b] in I if and only if a = b mod m. In particular, [a] = [0] in
Im if and only if a = 0 mod m; that is, [a] = [0] in Iy, if and only if misadivisor of a.
The definition of congruence mod m makes sense for all m > 0, but the casesm = 0 and
m = 1 are not very interesting: a = bmod 0 means0 | (a — b), which saysthat a = b;
a=bmod1lmeansl | (a— b), which saysthat a and b are always congruent; that is,
thereis only one congruence class mod 1. Recall Proposition 1.19, which we now rewrite
in the bracket notation.

Proposition 1.19. Let m > 2 be a fixed integer.
(i) Ifae Z,then[a] =[r] for somer withO <r < m.
@i Ifo<r’ <r <m,then[r'] #]rl.
(iii) Iy has exactly m elements, namely, [0], [1], ..., [m — 1].
For every m > 2, I, isan (additive) cyclic group, where
[a] + [b] =[a+ b];

theidentity is[Q], the inverse of [a] is[—a], and agenerator is[1]. Part (iii) showsthat Iy,
has order m.
A cyclic group can have severa different generators. For example, (a) = (a*l).

Theorem 2.33.
(i) If G = (a) isa cyclic group of order n, then aX is a generator of G if and only if
Kk, n) =1.
(if) If Gisacyclic group of order n and gen(G) = {all generators of G}, then

lgen(G)| = ¢ (n),
where ¢ isthe Euler ¢-function.
Proof. (i) If a€ generates G, then a € (aK), sothat a = a*! for somet € Z. Hence,
akt-1 =1, by Theorem 2.24, n | (kt — 1), sothereisv € Z withnv = kt — 1. Therefore,

lisalinear combination of k and m, and so (k, n) = 1.
Conversdly, if (k,n) = 1, thennt + ku = 1fort, u € Z; hence

a— ant—&-ku — antaku — aku c <ak>.
Therefore, every power of a aso liesin (ak) and G = (ak).

(i) Proposition 1.38 saysthat ¢ (n) = |{k < n : (k, n) = 1}|. The next proposition shows
that G = {1, a, ..., a" 1}, and so this result follows from part (i). e

8\We introduce this new notation because there is no commonly agreed one; the most popular contenders are
Zm and Z/mZ. We have chosen I,y because | istheinitial letter of integers. The usual notation Z for the integers
(itistheinitial letter of the German Zahlen) is almost universally accepted, and so a change from Z to I would be
consistent but too distracting.
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Proposition 2.34. Let G be afinite group and let a € G. Then the order of ais|(a)|, the
number of elementsin (a).

Proof. Since G isfinite, thereisaninteger k > 1 with 1, a, a2, ... ak1 consisting of k
distinct elements, while 1, a, a2, ..., a has arepetition; henceak € {1,a,a2, ..., a*1};
that is, a = a' for somei with0 <i < k. Ifi > 1, thenak' = 1, contradicting the

original list having no repetitions. Therefore, ak = a® = 1, and k is the order of a (being
the smallest positive such k).

If H={1,a a2 ...,a< 1}, then |H| = k; it suffices to show that H = (a). Clearly,
H C (a). For thereverseinclusion, take a' € (a). By the division algorithm, i = gk +r,
where0 <r < k. Hencea' = a%*" = a¥a" = (a¥)%a’ = a" e H; thisgives (a) C H,
andso(a)=H. e

Definition. If G isafinite group, then the number of elementsin G, denoted by |G|, is
caled the order of G.

The word order isused in two senses: the order of an element a € G and the order |G|
of agroup G. Proposition 2.34 shows that the order of agroup element aisequal to | (a) |.

Proposition 2.35. Theintersection (1), Hi of any family of subgroups of a group G is
again a subgroup of G. In particular, if H and K are subgroups of G, then H N K isa
subgroup of G.

Sketch of Proof. Thisfollows easily from the definitions. e

Corollary 2.36. If X isa subset of a group G, then there is a subgroup (X) of G con-
taining X that is smallest in the sense that (X) < H for every subgroup H of G that
contains X.

Proof. There exist subgroups of G that contain X; for example, G itself contains X.
Define (X) = (Nxcy H, theintersection of all the subgroups H of G that contain X. By
Proposition 2.35, (X) is a subgroup of G; of course, (X) contains X because every H
contains X. Finaly, if H isany subgroup containing X, then H is one of the subgroups
whose intersection is (X); that is, (X) < H. e

Notethat thereisno restriction on the subset X inthelast corollary; in particular, X = &
isallowed. Sincethe empty set isasubset of every set, wehave o C H for every subgroup
H of G. Thus, (@) isthe intersection of all the subgroups of G; in particular, (@) < {1},
and so (@) = {1}.

Definition. If X is a subset of a group G, then (X) is called the subgroup generated
by X.

If X isanonempty subset of agroup G, define aword ® on X to be an element g € G
of theformg = x¢* - - - X, wherex; € X andg = £1forali.

9This term will be modified a bit when we discuss free groups.
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Proposition 2.37. If X isa nonempty subset of a group G, then (X) isthe set of all the
wordson X.

Proof. We claim that W(X), the set of all the words on X, isasubgroup. If x € X, then
1 = xx~1 € W(X); the product of two words on X is aso aword on X; the inverse of a
word on X isaword on X. It now followsthat (X) < W(X), for W(X) obviously contains
X (and (X) istheintersection of al the subgroups of G containing X). On the other hand,
any subgroup of G containing X must aso contain W(X), and so (X) = W(X). e

Example 2.38.
() If G = (a) isacyclic group with generator a, then G isgenerated by the subset X = {a}.

(i) The dihedral group D2y, the symmetry group of aregular n-gon, is generated by p, o,
where p isarotation by (360/n)° and o is areflection. Note that these generators satisfy
theequations p" = 1,02 =1, andopo = p~ L. <

Perhaps the most fundamental fact about subgroups H of a finite group G is that their
orders are constrained. Certainly, we have |H| < |G|, but it turns out that |H | must be a
divisor of |G|. To prove this, we introduce the notion of coset.

Definition. |f H isasubgroup of agroup G and a € G, then the coset aH is the subset
aH of G, where
aH ={ah:heH}.

The cosets defined are often called left cosets; there are also right cosets of H, namely,
subsets of the form Ha = {ha : h € H}. In general, left cosets and right cosets may be
different, as we shall soon see.

If we use the * notation for the operation in agroup G, then we denote the coset aH by
ax* H, where

axH={axh:heH}.

In particular, if the operation is addition, then the coset is denoted by
at+H={a+h:heH}

Of course, a = al € aH. Cosets are usually not subgroups. For example, if a ¢ H,
then 1 ¢ aH (otherwise 1 = ah for some h € H, and this gives the contradiction a =
h=1 e H).

Example 2.39.

(i) Consider the plane R? as an (additive) abelian group and let L be a line through the
origin O (see Figure 2.7 on page 68); as in Example 2.29(ii), the line L is a subgroup of
R2. If B € R?, then the coset B + L istheline L’ containing 8 that is parallel to L, for if
ra € L, then the parallelogram law gives 8 +ra € L.
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Figure 2.7

(i) Let Abean mx nmatrix with real entries, and let Ax = b be aconsistent linear system
of equations; that is, there is a column vector s € R" with As = b. The solution space
S = {x € R": Ax = 0} of the homogeneous system Ax = 0 is an additive subgroup of
R", and the solution set {x € R" : Ax = b} of the original inhomogeneous system is the
cosets + S.

(ii) If G = Ssand H = ((1 2)), there are exactly three left cosets of H, namely

H= {1D.12} = 12H,
(13)H ={(13),(123)} =(123)H,
(23)H ={(23), (132} =(132H,

each of which has size 2. Note that these cosets are also “parallel;” that is, distinct cosets
aredigoint.
Consider theright cosetsof H = ((1 2)) in Ss:

H {(D,(12)} = H(12),
H(13)={(13),(132)}=H(132),
H(@23)={(23),(123)} = H(123).

Again, we see that there are exactly 3 (right) cosets, each of which has size 2. Note that
these cosets are “paralel”; that is, distinct (right) cosetsare digoint. <

Lemma 2.40. Let H bea subgroup of agroup G, andleta, b € G.
(i) aH =bH ifandonlyif b~'a € H. Inparticular,aH = H ifand onlyifa € H.

(i) IfaH NbH # o, thenaH = bH.
(iii) |aH| = |H| for all a € G.
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Remark. InExercise2.29 onpage72,itisshownthat Ha = Hbifandonlyifab=! € H,
andhenceHa=H ifandonlyifae H. <«

Sketch of Proof. The first two statements follow from observing that the relation on G,
defined by a = b if b~1a € H, is an equivalence relation whose equivalence classes are
the cosets; it follows from Proposition 1.54 that the cosets of H partition G. The third
statement istrue because h — ah isabijection H — aH. e

The next theorem is named after J. L. Lagrange, who saw, in 1770, that the order of
certain subgroups of S, are divisors of n!. The notion of group was invented by Galois 60
years afterward, and it was probably Galois who first proved the theorem in full.

Theorem 2.41 (Lagrange’s Theorem). If H isa subgroup of a finite group G, then |H|
isadivisor of |G|.

Proof. Let{aiH, azH, ..., a;H} bethefamily of al thedistinct cosetsof H in G. Then
G=aHUaHU---UaH,

because each g € G liesin the coset gH, and gH = &H for some i. Moreover,
Lemma 2.40(ii) shows that the cosets partition G into pairwise digoint subsets. It follows
that

|G| = JarH| + [a2H[ + - - + |acH.

But |ajH| = |H| for al i, by Lemma 2.40(iii), so that |G| = t|H|, asdesired. e

Definition. Theindex of asubgroup H in G, denoted by [G : H], isthe number of left1®
cosetsof H in G.

Theindex [G : H] isthenumber t intheformula|G| = t|H| in the proof of Lagrange’s
theorem, so that
|G| =[G : H]IH[;

this formula shows that theindex [G : H] isalso adivisor of |G|; moreover,
[G:H]=|G|/[H]|.

Example 2.42.

Recall that the dihedral group D2, = 2 (7tp), the group of symmetries of the regular n-gon
7n, has order 2n and it contains a cyclic subgroup of order n generated by arotation p. The
subgroup (p) hasindex [D2y, : (p)] = 2. Thus, there are two cosets: (p) and o (p), where
o isany reflection outside of (p). It followsthat every element « € Dy hasafactorization
a=0c'pl, wherei =0,1and0 < j<n <

10Exercise 2.37 on page 72 shows that the number of Ieft cosets of a subgroup is equal to the number of its
right cosets.
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Corollary 2.43. If Gisafinitegroup and a € G, then the order of aisadivisor of |G]|.

Proof. Thisfollows at once from Proposition 2.34, for the order of ais| (a)|. e

Corollary 2.44. If G isafinitegroup, thenal®l = 1for all a € G.

Proof. If a has order d, then |G| = dm for some integer m, by the previous corollary,
ands0al®l=adm=@HmM=1. e

Corollary 2.45. If pisaprime, then every group G of order piscyclic.

Proof. Ifae Ganda # 1,thenahasorder d > 1, and d isadivisor of p. Since pis
prime,d = p,andso G = (a). e

We have seen that I, under addition, is a cyclic group of order m. Now multiplication
Iy x Iy — I, given by
[a][b] = [ab],

isalso abinary operation on I, (which iswell-defined, by Proposition 1.20); it is associa-
tive, commutative, and [1] is an identity element. However, Iy, is not a group under this
operation because inverses may not exist; for example, [0] has no multiplicative inverse.

Proposition 2.46. The set U (Iy,), defined by
U(m) = {[r] € Im: (r,m) =1},

isa multiplicative group of order ¢ (m), where ¢ isthe Euler ¢-function. In particular, if p
isaprime, then U (Ip) = I, the nonzero elements of I, is a multiplicative group of order
p—1

Proof. By Exercise 1.14 onpage 12, (r,m) = 1 = (r/, m) implies (rr’, m) = 1; hence
U (Tjy) is closed under multiplication. We have aready mentioned that multiplication is
associative and that [1] is the identity. If (a, m) = 1, then [a][x] = [1] can be solved for
[x] inIm. Now (x, m) = 1, for rx 4+ sm = 1 for some integer s, and so Proposition 1.13
on page 5 gives (x, m) = 1; therefore, [X] € U(In), and so each [r] € U(Iy) has an
inverse. Therefore, U (I, is a group; the definition of the Euler ¢-function shows that
U Im)| = ¢(m).
Thelast statement followsfrom ¢ (p) = p — 1when pisaprime. o

In Chapter 3, we will prove, for every prime p, that ]Ig isacyclic group.
Here is a group-theoretic proof of Theorem 1.24, Fermat’s theorem. Our earlier proof
used binomial coefficients and thefact that p | (P) for0 <r < p.

Corollary 2.47 (Fermat). If pisaprimeanda € Z, then

aP =amod p.
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Proof. It suffices to show that [aP] = [a] inI,. If [a] = [0], then[aP] = [a]P = [O]P =
[0] = [a]. If [a] # [0], then[a] € L, the multiplicative group of nonzero elementsin I,.
By Corollary 2.44 to Lagrange’stheorem, [a]P~1 = [1], because || = p—1. Multiplying
by [a] givesthe desired result [aP] = [a]P = [a]. Therefore,aP = amod p. e

We now give a generalization of Fermat’s theorem due to Euler.

Theorem 2.48 (Euler). |f (r, m) = 1, then
r®™M =1 mod m.

Proof. Since |U(Im)| = ¢(m), Corollary 2.44 (essentially Lagrange’s theorem) gives
[r]?™M = [1] for al [r] € U (Iy). In congruence notation, this saysthat if (r, m) = 1, then
reM =1modm. e

Example 2.49.
It is easy to see that

Us) = {[2].[3]. [5]. [7]}

isagroup (resembling the four-group V) in which the square of each element is[1], while

U I10) = {[21. [3]. [7]. [9]}

isacyclic group of order 4 [after we introduce isomorphisms in the next section, we will
say that U (Ig) isisomorphic to V and U (1) isisomorphicto I4]. «

Theorem 2.50 (Wilson’s Theorem). Aninteger pisaprimeif and only if
(p—1!'=—-1mod p.

Proof. Assumethat pisaprime. If aj, ap, ..., a, isalist of al the elements of afinite
abelian group G, then the product a;a; . . . a, is the same as the product of all elements
a with a® = 1, for any other element cancels against its inverse. Since p is prime, Ex-
ercise 1.37 on page 14 implies that Iij has only one element of order 2, namely, [—1]. It
follows that the product of all the elements in 15, namely, [(p — 1)!], is equal to [—1];
therefore, (p — 1)! = —1 mod p.

Conversely, assume that m is composite: there are integers a and b with m = ab and
l<a<b<mlfa<b,thenm = abisadivisor of (m—1)!, andso (m—21)! = 0 mod m.
Ifa=Dhb,thenm = a2. Ifa = 2, then (a2 — 1)! = 3! = 6 = 2 mod 4 and, of course,
2 —1mod4. If 2 < a, then 2a < a2, and so a and 2a arefactors of (a® — 1)!; therefore,
(@2 — 1)! = 0mod a2. Thus, (a2 — 1)! # —1 mod a2, and the proof iscomplete.
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Remark. We can generalize Wilson’s theorem in the same way that Euler’s theorem
generalizes Fermat’s theorem: Replace U (Ip) by U (Im). For example, for al m > 3, it
can be proved that U (Iom) has exactly 3 elements of order 2, namely, [—1], [142™1], and
[—(1+2™1)]. It now followsthat the product of all the odd numbersr, wherel <r < 2™
is congruent to 1 mod 2™, because

(D@ + 2" (-1 -2t = (14 2m1)2
=142M"4+ 2272 — 1 mod 2. <

EXERCISES

2.29 Let H beasubgroup of agroup G.
(i) Provethat right cosets Ha and Hb are equal if and only if ab=1 € H.
(i) Prove that the relation a = b if ab~1 € H is an equivalence relation on G whose
equivalence classes are the right cosets of H.

2.30 (i) Definethespecial linear group by
SL(2,R) = {A € GL(2,R) : det(A) = 1}.

Prove that SL (2, R) isasubgroup of GL(2, R).
(ii) Provethat GL(2, Q) isasubgroup of GL(2, R).
231 (i) Giveanexample of two subgroups H and K of agroup G whose union H U K isnot a
subgroup of G.
Hint. Let G bethefour-group V.
(ii) Provethat the union H U K of two subgroupsisitself asubgroup if and only if either H
isasubset of K or K isasubset of H.

2.32 Let G beafinite group with subgroups H and K. If H < K, prove that
[G:H] =[G:K][K:H].

2.33 If H and K are subgroups of agroup G and if |H| and |K| are relatively prime, prove that
HNK ={1}.
Hint. If x € H N K, then xIHI = 1 = xIKI,

2.34 Provethat every subgroup Sof acyclic group G = (a) isitself cyclic.
Hint. If S# 1, choose k to be the smallest positive integer with akes

2.35 Provethat acyclic group G of order n has a subgroup of order d for every d dividing n.
Hint. If G = (a) and n = dk, consider (aX).

2.36 Let G be a group of order 4. Prove that either G is cyclic or x2 = 1 for every x € G.
Conclude, using Exercise 2.26 on page 62, that G must be abelian.

2.37 If H isasubgroup of agroup G, prove that the number of left cosets of H in G isequal to the
number of right cosetsof H in G.
Hint. Thefunction ¢: aH +— Ha 1 isabijection from the family of all left cosets of H to
the family of al right cosets of H.
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2.38 Let pbeanoddprime andletay, ..., ap_1 beapermutationof {1,2, ..., p — 1}. Provethat
thereexisti # j withig = ja; mod p.
Hint. Use Wilson’s theorem.

2.5 HOMOMORPHISMS

An important problem is determining whether two given groups G and H are somehow
the same. For example, we have investigated S, the group of all permutations of X =
{1, 2,3}. Thegroup Sy of al the permutations of Y = {a, b, ¢} is a group different from
S3 because permutations of {1, 2, 3} are different than permutations of {a, b, c}. But even
though S3 and Sy are different, they surely bear a strong resemblance to each other (see
Example 2.51). A more interesting example is the strong resemblance between S and Dg,
the symmetries of an equilateral triangle. The notions of homomorphism and isomorphism
allow us to compare different groups, as we shall see.

Definition. If (G, %) and (H, o) are groups (we have displayed the operation in each),
then afunction f: G — H isahomomorphism™* if

f(xxy)=f(X)o f(y)

foral x,y € G. If f isasoabijection, then f is called an isomorphism. Two groups G
and H are called isomorphic, denoted by G = H, if there exists anisomorphism f : G —
H between them.

A multiplication table of agroup G displays every product ab for a, b € G.

G a1 a - aj R an
a | agaa aaz  --- a1 s aian
ay | agag agaz --- azq;j s apan
a | @ ga ---  ga; ---  aan
@ | @nd1 @@ -+ @@ -+  andpn

Definition. Letaj, ap, ..., a, bealist with no repetitions of al the elements of a group
G. A multiplication table for G isann x n array whoseij entry isa;a;.

11The word homomorphism comes from the Greek homo meaning “same” and morph meaning “shape” or
“form.” Thus, a homomorphism carries a group to another group (its image) of similar form. The word isomor-
phisminvolves the Greek iso meaning “equal,” and isomorphic groups have identical form.
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A multiplication table of agroup G of order n depends on how we list the elements of
G, and s0 G hasn! different multiplication tables. (Thus, the task of determining whether
a multiplication table of a group G is the same as some multiplication table of another
group H isadaunting one: It involves about n! comparisons, each of which involves com-
paring n? entries) If ag, ap, ..., an isalist of al the elements of G with no repetitions,
and if f: G — H isahijection, then f(ay), f(a),..., f(an) isalist of al the ele-
ments of H with no repetitions, and this latter list determines a multiplication table for
H. That f isan isomorphism says that if we superimpose the given multiplication table
for G (determined by aj, ap, ..., a,) upon the multiplication table for H [determined by
f(ay), f(ap), ..., f(ap)], thenthetables match: If aaj istheij entry in the given multi-
plication table of G, then f (&) f (aj) = f(aja)) istheij entry of the multiplication table
of H. Inthis sense, isomorphic groups have the same multiplication table. Thus, isomor-
phic groups are essentially the same, differing only in the notation for the elements and the
operations.

Example 2.51.
Let us show that G = S, the symmetric group permuting {1,2, 3}, and H = Sy, the
symmetric group of all the permutationsof Y = {a, b, ¢}, areisomorphic. First, enumerate
G:

@, 12, 13, 23, (123, 132.

We define the obvious function ¢ : S§ — Sy that replaces numbers by |etters:
(1, (@b), (ac), (bc), (abc), (ach).

Compare the multiplication table for Sz arising from this list of its elements with the mul-
tiplication table for Sy arising from the corresponding list of its elements. The reader
should write out the complete tables of each and superimpose one on the other to see that
they do match. We will check only one entry. The 4,5 position in the table for S is the
product (2 3)(1 2 3) = (1 3), while the 4,5 position in the table for Sy is the product
(bc)y(abc) =(ac).

Thisresult is generalized in Exercise 2.39 on page 80. «

Lemma 2.52. Let f: G — H beahomomorphism of groups.
) fH=1

(i) fxhH=fx1

@iii) fxMH = fx)"foralnez

Sketch of Proof. (i) 1-1= 1limplies f(1)f(1) = f(2).
(i) 1=xx"Limpliesl= f(1) = f(x) f(x~ 1.

(iii) Use induction to show that f(x™) = f(x)" for all n > 0. Then observe that x™" =
(x~H", and use part (ii). e
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Example 2.53.

If G and H arecyclic groups of the same order m, then G and H areisomorphic. (It follows
from Corollary 2.45 that any two groups of prime order p are isomorphic.) Although
this is not difficult, it requires some care. Wehave G = {1,a,a%,...,a™ 1} and H =
{1,b, b2, ..., b™ 1}, and the obvious choice for an isomorphism is the bijection f: G —
H given by f(a') = b'. To check that f is an isomorphism, that is, f(@al) = b'+i,
involvestwocases. i + ) <m—1;i + j > m— 1. We give aless computational proof in
Example2.71. «

A property of agroup G that is shared by any other group isomorphic to it is called an
invariant of G. For example, the order |G| is an invariant of G, for isomorphic groups
have the same orders. Being abelian is an invariant [if f isan isomorphism and a and b
commute, then ab = ba and

f(a)f(b) = f(ab) = f(ba) = f(b)f(a);

hence, f(a) and f (b) commute]. Thus, I and S3 are not isomorphic, for Ig is abelian and
S3isnot. In generadl, it is a challenge to decide whether two given groups are isomorphic.
See Exercise 2.42 on page 80 for more examples of invariants.

Example 2.54.
We present two nonisomorphic abelian groups of the same order.
Asin Example 2.29(i), let V be the four-group consisting of the following four permu-
tations:
V={®D), 12@B4, 1324, 1423},

and let us = (i) = {1,i, —1, —i} be the multiplicative cyclic group of fourth roots of
unity, where i? = —1. If there were an isomorphism f : V — u4, then surjectivity
of f would provide some x € V withi = f(x). But x> = (1) for al x € V, so that
i2=f(x)2= f(x3) = f((1) = 1, contradictingi2 = —1. Therefore, V and x4 are not
isomorphic.

There are other ways to prove this result. For example, w4 is cyclic and V is not; u4
has an element of order 4 and V does not; n4 has a unique element of order 2, but V
has 3 elements of order 2. At this stage, you should really believe that 4 and V are not
isomorphic! <

Definition. If f: G — H isahomomorphism, define

kernel?f = {x e G: f(x) =1}

and
image f ={he H :h= f(x)forsomex e G}.

We usually abbreviate kernel f toker f andimage f toim f.

12Kernel comes from the German word meaning “grain” or “seed” (corn comes from the same word). Its usage
here indicates an important ingredient of a homomorphism.
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Example 2.55.

(i) If w2 isthe multiplicative group 2 = {+1}, thensgn: S, — w2 is a homomorphism,
by Theorem 2.12. The kernel of sgn isthe alternating group An, the set of all even permu-
tations.

(i) Determinant is a surjective homomorphism det: GL(n, R) — R*, the multiplicative
group of nonzero real numbers, whose kernel is the special linear group SL(n, R) of all
n x n matrices of determinant 1.  «

Proposition 2.56. Let f: G — H be a homomorphism.
(i) ker f isasubgroup of G andim f isa subgroup of H.
(i) Ifx e ker f andifa e G, thenaxa™!  ker f.

(iii) f isaninjectionif and only if ker f = {1}.

Sketch of Proof. (i) Routine.
(i) faxa™) = f(a)lf(@ =1
(i) f(@) = f(b)ifandonlyif f(b~la)y=1. e

Definition. A subgroup K of agroup G iscalled anormal subgroup ifk € K andg € G
imply gkg~* € K. If K isanormal subgroup of G, wewrite K <1 G.

The proposition thus says that the kernel of a homomorphism is always a normal sub-
group. If G isan abelian group, then every subgroup K isnormal, forif k € K and g € G,
then gkg=! = kgg—! = k € K. The converse of this last statement is false: In Exam-
ple 2.63, we shall show that there is a nonabelian group (the quaternions), each of whose
subgroupsis normal.

The cyclic subgroup H = ((1 2)) of S, consisting of the two elements (1) and (1 2), is
not anormal subgroup of S: If & = (12 3), thene~! = (32 1), and

a12)a1=(123)(12321) =23 ¢H

[by Theorem 2.9, (1 2)a~! = (a1 «2) = (2 3)]. On the other hand, the cyclic subgroup
K = ((123)) of S3isanormal subgroup, as the reader should verify.

It follows from Examples 2.55(i) and 2.55(ii) that A, isanormal subgroup of S, and
SL(n, R) isanorma subgroup of GL(n, R) (however, it is also easy to prove these facts
directly).

Definition. |f G isagroup and a € G, then aconjugate of a isany element in G of the
form

gag ™,
whereg € G.

Itisclear that asubgroup K < G isanormal subgroup if and only if K contains all the
conjugates of its elements: If k € K, then gkg™! € K foral g € G.
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Example 2.57.
(i) Theorem 2.9 states that two permutations in S, are conjugate if and only if they have
the same cycle structure.

(ii) In linear algebra, two matrices A, B € GL(n, R) are called similar if they are conju-
gate; that is, if thereis anonsingular matrix P with B = PAP™L. <

Definition. |f Gisagroupand g € G, define conjugation yy: G — G by

yg(@) = gag™*
foral ae G.

Proposition 2.58.

(i) If Gisagroupand g € G, then conjugation y4: G — G isan isomorphism.

(ii) Conjugate elements have the same order.
Proof. (i) If g, h € G, then

(vg© m)(@) = yg(hah™) = g(hah~Hg™* = (ghya(gh) ™ = ygn(@);
that is,
Yg © ¥Yh = VYgh-

It follows that each yg isabijection, for yg o yg-1 = y1 = 1 = yg-1 0 yg. We now show
that y4 isanisomorphism: if a, b € G,

yg(ab) = gab)g™* = gagtg)bg ™ = yg(@yg(b).

(ii) To say that a and b are conjugate is to say that thereisg € G with b = gag™?; that is,
b = yg(@). But yg is an isomorphism, and so Exercise 2.42 on page 80 shows that a and
b = yg(a) havethe same order. o

Example 2.59.
Define the center of agroup G, denoted by Z(G), to be
Z(G)={ze G:zg=gzfordl ge G};

that is, Z(G) consists of all elements commuting with everythingin G.
It is easy to see that Z(G) is a subgroup of G; it is a normal subgroup because if
ze Z(G)and g € G, then

gzg t=zgg7 ' =z € Z(G).

A group G isabelian if and only if Z(G) = G. At the other extreme are centerless groups
G for which Z(G) = {1}; for example, Z(S3) = {1}; indeed, all large symmetric groups
are centerless, for Exercise 2.15 on page 51 showsthat Z(S,) = {1} foradln > 3. «
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Example 2.60.

If G isagroup, then an automorphism of G isanisomorphism f: G — G. For example,
every conjugation yg is an automorphism of G (it is called an inner automorphism), for
itsinverseis conjugation by g—1. The set Aut(G) of all the automorphisms of G isitself a
group, under composition, and the set of all conjugations,

InN(G) = {yg: g € GJ.

isasubgroup of Aut(G). Exercise 2.64 on page 82 saysthat thefunctionT": G — Aut(G),
given by g — yg, isahomomorphismwithimI' = Inn(G) and ker I' = Z(G); moreover,
Inn(G) < Aut(G). =

Example 2.61.
The four-group V isanormal subgroup of $. Recall that the elements of V are

V={(1),(12(34),(13)(24),14(23)}.

By Theorem 2.9, every conjugate of a product of two transpositions is another such. But
we saw, in Example 2.5(i), that only 3 permutations in & have this cycle structure, and so
Visanormal subgroup of §;. <«

Proposition 2.62.

(i) 1f H isasubgroup of index 2 in a group G, then g? € H for every g € G.
(ii) If H isasubgroup of index 2 in a group G, then H isa normal subgroup of G.

Proof. (i) Since H hasindex 2, there are exactly two cosets, namely, H and aH, where
a ¢ H. Thus, G isthedigoint union G = H UaH. Takeg € G withg ¢ H, so that
g = ah forsomeh € H. If g2 ¢ H, then g2 = ah’, whereh’ € H. Hence,

g=9g'g°=h"tatah’ = h~'h e H,

and thisis a contradiction.

(ii) 13 It suffices to prove that if h € H, then the conjugate ghg=! € H for every g € G.
Since H hasindex 2, there are exactly two cosets, namely, H and aH, wherea ¢ H. Now,
gither g € Horg € aH. If g € H, then ghg™* e H, because H is a subgroup. In
the second case, write g = ax, where x € H. Then ghg~! = a(xhx 1a=! = ah'a™?,
where h’ = xhx~t € H (for h’ is a product of three elementsin H). If ghg=t ¢ H, then
ghg™! = ah'a™! € aH; that is, ah’a—! = ay for somey € H. Canceling a, we have
ha~1 = y, which gives the contradiction a = y~'h’ € H. Therefore, if h € H, every
conjugate of h also liesin H; that is, H isanormal subgroup of G. e

13Another proof of thisis given in Exercise 2.50 on page 81.
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Definition. The group of quaternions* is the group Q of order 8 consisting of the fol-
lowing matricesin GL(2, C):

Q=1{I,A A% A3 B, BA BA? BA3},

where | isthe identity matrix,

o[8[t ]

The element A € Q has order 4, so that (A) is a subgroup of order 4 and hence of
index 2; the other coset is B (A) = {B, BA, BA?, BA3}. Thus, every elementin Q hasan
expression of theform B' Al, wherei =0,1and j =0, 1, 2, 3.

Example 2.63.

In Exercise 2.59 on page 81, the reader will check that Q is anonabelian group of order 8
having exactly one element of order 2, and hence only one subgroup of order 2, namely,
(—1). We claim that every subgroup of Q isnormal. Lagrange’s theorem says that every
subgroup of Q has order a divisor of 8, and so the only possible orders of subgroups are
1, 2, 4, or 8. Clearly, the subgroup {1} and the subgroup of order 8 (namely, Q itself) are
normal subgroups. By Proposition 2.62(ii), any subgroup of order 4 must be normal, for it
hasindex 2. Finally, the subgroup (—1) isnormal, for it isthe center, Z(Q). <«

Example 2.63 shows that Q is a nonabelian group that is like abelian groups in that
every subgroup isnormal. Thisis essentially the only such example. A nonabelian finite
group is called hamiltonian if every subgroup is normal; every hamiltonian group has the
form Q x A, where A is an abelian group with no elements of order 4 (direct products
will be introduced in the next section). A proof of this result can be found in Robinson, A
Coursein the Theory of Groups, page 139.

Lagrange’s theorem states that the order of a subgroup of a finite group G must be a
divisor of |G|. Thissuggeststhe question, given adivisor d of |G|, whether G must contain
asubgroup of order d. The next result shows that there need not be such a subgroup.

Proposition 2.64. The alternating group A4 is a group of order 12 having no subgroup
of order 6.

Proof. First, |A4] = 12, by Exercise 2.12 on page 50. If A4 contains a subgroup H of
order 6, then H hasindex 2, and so «? € H for every « € Ay, by Corollary 2.62(i). If « is
a3-cycle, however, then o has order 3, so that « = o* = (¢?)2. Thus, H contains every
3-cycle. Thisisacontradiction, for there are 8 3-cyclesin As. e

14w, R. Hamilton invented a system having two operations, addition and multiplication, that he called quater-
nions, for it was four-dimensional. The group of quaternions consists of 8 specia elements in that system; see
Exercise 2.60 on page 82.
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EXERCISES

2.39 Show that if there is a bijection f: X — Y (that is, if X and Y have the same number of
elements), then thereis an isomorphism ¢: Sy — Sy.
Hint. If o € Sy, definep(a) = f oo f 1. Inparticular, show that if | X| = 3, then ¢ takes
acycleinvolving symbols 1, 2, 3into acycleinvolving a, b, c, asin Example 2.51.
2.40 (i) Show that the composite of homomorphismsisitself a homomorphism.
(if) Show that the inverse of an isomorphism is an isomorphism.
(iif) Show that two groups that are isomorphic to athird group are isomorphic to each other.
(iv) Prove that isomorphism is an equivalence relation on any set of groups.
2.41 Provethat agroup G isabelian if and only if the function f: G — G, givenby f(a) = a1,
is a homomorphism.
2.42 This exercise gives some invariants of agroup G. Let f: G — H be an isomorphism.
(i) Provethatif a € G hasinfinite order, then so does f (a), and if a has finite order n, then
so does f (a). Conclude that if G has an e ement of some order n and H does not, then
G ZH.
(if) Prove that if G = H, then, for every divisor d of |G|, both G and H have the same
number of elements of order d.
2.43 Provethat A4 and D12 are nonisomorphic groups of order 12.
244 (i) Findasubgroup H of Sy withH #VandH = V.
(ii) Provethat the subgroup H in part (i) is not a normal subgroup.
2.45 Show that every group G with |G| < 6isabelian.
246 Let G = {f: R —- R : f(x) = ax + b,wherea # 0}. Provethat G is a group under
composition that is isomorphic to the subgroup of GL (2, R) consisting of all matrices of the

formab
0 1|

247 (i) If f: G — H isahomomorphismand x € G has order k, prove that f(x) € H has
order m, wherem | k.
(ii) If f: G — H isahomomorphism and if (|G|, |[H|) = 1, provethat f(x) = 1 for all
x € G.
248 (i) Provethat
__|[coské  —sinke

N [sin ko coske]'

cosf —s’nek
sing cosf

Hint. Useinductiononk > 1.
(if) Prove that the specia orthogonal group SO(2, R), consisting of al 2 x 2 orthogonal
matrices of determinant 1, isisomorphic to the circle group St.
Cose —Sina
Sna  Ccosa
2.49 Let G be the additive group of al polynomialsin x with coefficients in Z, and let H be the

multiplicative group of all positiverationals. Provethat G = H.
Hint. Listtheprimenumbers pg =2, p1 =3, p2 =5, ..., and define

Hint. Consider ¢ : [ ] > (COSa, Sina).

p(eg+erx +ex®+ - +enx™) = p-- p.



Sec. 25 Homomorphisms 8l

2.50

2.51

2.52

2.53

2.54

2.55

2.56

2.57

2.58

(i) Show that if H isasubgroup withbH = Hb = {hb: h € H} for every b € G, then H
must be anormal subgroup.

(if) Use part (i) to give a second proof of Proposition 2.62(ii): If H < G hasindex 2, then
H < G.
Hint. Ifa ¢ H,thenaH = H’ = Ha, where H' isthe complement of H.

(i) Provethatif o € Sh, then o and &~ are conjugate.
(i) Give an example of a group G containing an element x for which x and x~1 are not
conjugate.

Prove that the intersection of any family of normal subgroups of agroup G isitself anormal
subgroup of G.
Define W = ((1 2)(3 4)), the cyclic subgroup of $; generated by (1 2)(3 4). Show that W is
anormal subgroup of V, but that W is not anormal subgroup of S4. Conclude that normality
isnot transitive: W <1 Vand V <1 G do not imply W <1 G.

Let G be afinite abelian group written multiplicatively. Prove that if |G| is odd, then every
x € G hasaunique square root; that is, there exists exactly one g € G with 92 = X.

Hint. Show that squaring isan injective function G — G, and use Exercise 1.58 on page 36.
Give an example of agroup G, asubgroup H < G, andanelementg € G with[G: H] =3
andg3 ¢ H.

Hint. TakeG = S35, H = ((12)),and g = (2 3).

Show that the center of GL (2, R) isthe set of al scalar matrices al witha # 0.

Hint. Show that if Aisamatrix that is not a scalar matrix, then there is some nonsingular
matrix that does not commute with A. (The generalization of thisto n x n matricesistrue.)

Let¢ = g2ri/n be a primitive nth root of unity, and define

¢ o0 o 1
A A PP )

(i) Provethat A hasorder n and that B has order 2.
(ii) Provethat BAB = A1,
(i) Prove that the matrices of the form Al and BAI, for 0 < i < n, form a multiplicative
subgroup G < GL(2, ©).
Hint. Consider cases Al Al, A|BAI, BA Al, and (BA!)(BAI).
(iv) Provethat each matrix in G has a unique expression of the form B Al, wherei = 0, 1
and 0 < j < n. Concludethat |G| = 2n.
(v) Provethat G = Dop,.
Hint. Defineafunction G — Doy using the unique expression of elementsin G in the
form B' Al
(i) Provethat every subgroup of Q x Iy isnormal.
(ii) Prove that there exists a nonnormal subgroup of Q x I .

2.59 Recall that the group of quaternions Q consists of the 8 matricesin GL (2, C)

Q={I,A A2 A3 B, BA BAZ BA3},
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o[ Y- )

(i) Provethat —I isthe only element in Q of order 2, and that all other elements M # |

where

satisfy M2 = —1.
(ii) Provethat Q isanonabelian group with operation matrix multiplication.
Hint. Notethat A2 = —| = B2,

(iii) Provethat Q has a unique subgroup of order 2, and it is the center of Q.
2.60 Assumethat thereisagroup G of order 8 whose elements

+1, +i, +j, £k
satisfy

2=j2=k*=-1 ij=k  jk=i, ki=j,
ij=—ji, ik=-ki, jk=—Kj.

Provethat G = Q and, conversely, that Q is such agroup.

2.61 Provethat the quaternions Q and the dihedral group Dg are nonisomorphic groups of order 8.
Hint. Use Exercise 2.42 on page 80.
2.62 Provethat A4 isthe only subgroup of Sy of order 12.
Hint. Use Proposition 2.62(ii).
2.63 Prove that the symmetry group X (), where mp is a regular polygon with n vertices, is
isomorphic to a subgroup of S,.
Hint. Thevertices X = {vq, ..., vn} of 7 are permuted by every motion o € X (7tp).
2.64 (i) For every group G, show that thefunctionT": G — Aut(G), givenby g — yg (where
yx IS conjugation by g), isahomomorphism.
(ii) Provethat kerI' = Z(G) and imI" = Inn(G); conclude that Inn(G) is a subgroup of
Aut(G).
(iif) Provethat Inn(G) <1 Aut(G).

2.6 QUOTIENT GROUPS

The construction of the additive group of integers modulo m is the prototype of a more
genera way of building new groups from given groups, called quotient groups. The homo-
morphism r : Z — Iy, defined by 7 : a +— [a], is surjective, so that I, isequal toim 7.
Thus, every element of Iy, hastheform r (a) for somea € Z, and wr(a) +m(b) = w(a+b).
This description of the additive group I, in terms of the additive group Z can be general-
ized to arbitrary, not necessarily abelian, groups. Supposethat f: G — H isasurjective
homomorphism between groups G and H. Since f issurjective, each element of H hasthe
form f (a) for somea € G, and the operationin H isgiven by f(a) f (b) = f (ab), where
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a,b € G. Now K = ker f isanormal subgroup of G, and we are going to reconstruct
H =im f (aswell as a surjective homomorphismz: G — H) from G and K aone.
We begin by introducing an operation on the set

S(G)
of al nonempty subsets of agroup G. If X, Y € S(G), define
XY ={xy:xe Xandy € Y}.

Thismultiplication is associative: X (Y Z) isthe set of al x(yz), wherex € X,y € Y, and
ze Z,(XY)Z isthe set of all such (xy)z, and these are the same because of associativity
inG.

Aninstance of thismultiplication isthe product of aone-point subset {a} and a subgroup
K < G, whichisthecoset aK.

As a second example, we show that if H isany subgroup of G, then

HH = H.

If h, " € H, then hh' € H, because subgroups are closed under multiplication, and so
HH C H. For thereverseinclusion, if h € H, thenh = hl € HH (because 1 € H), and
so H € HH.

Itispossiblefor two subsets X and Y in S(G) to commute even though their constituent
elements do not commute. For example, let G = S3and K = ((1 2 3)). Now (1 2) does
not commute with (1 2 3) € K, but weclaim that (1 2)K = K(1 2). Infact, hereisthe
converse of Exercise 2.50 on page 81.

Lemma 2.65. A subgroup K of a group G isa normal subgroup if and only if
gK = Kg

for every g € G. Thus, every right coset of a hormal subgroup is also a left coset.

Proof. Let gk € gK. Since K isnormal, gkg~! € K, say gkg=! = k' € K, so that
gk = (gkg~Hg = k'g € Kg, and so gK < Kg. For the reverse inclusion, let kg € Kg.
Since K is normal, (g7Hk(g™) ™t = g7kg € K, say g7lkg = k” € K. Hence,
kg = g(g~1kg) = gk” € gK and Kg C gK. Therefore, gk = Kgwhen K < G.

Conversely, if gk = Kg for every g € G, thenfor each k € K, thereisk’ € K with
gk =Kg;thatis gkg 'l e K foralge G,andso K < G. e

A natural question is whether HK is a subgroup when both H and K are subgroups. In
general, HK need not be a subgroup. For example, let G = S, let H = ((1 2)), and let
K = ((13)). Then

HK ={(1),(12),(13), (132)}

is not a subgroup lest we contradict Lagrange’s theorem, for 4 1 6.
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Proposition 2.66.

(i) If H and K are subgroups of a group G, and if one of themis a normal subgroup,
then HK is a subgroup of G; moreover, HK = KH in this case.

(ii) If both H and K are normal subgroups, then HK is a normal subgroup.

Remark. Exercise 2.72 on page 95 shows that if H and K are subgroups of a group G,
then HK isasubgroupif andonly if HK = KH. <

Proof. (i) Assume first that K <« G. We claim that HK = KH. If hk € HK, then
k' = hkh~! € K, because K <1 G, and

hk = hkh~th = k'h € KH.

Hence, HK € KH. For the reverse inclusion, write kh = hh—1kh = hk” € HK. (Note that
the same argument shows that HK = KH if H < G.)

We now show that HK isasubgroup. Sincel e Hand1 € K,wehavel =1-1 € HK;
if hk € HK, then (hk)~1 = k=th=1 € KH = HK; if hk, h1k; € HK, then hkhik; €
HKHK = HHKK = HK.

(i) If g € G, then Lemma 2.65 gives gH K = HgK = HKg, and the same lemma now
gvesHK <G. o

Hereis afundamental construction of a new group from agiven group.

Theorem 2.67. Let G/K denote the family of all the left cosets of a subgroup K of G. If
K isanormal subgroup, then
aKbK = abK

for all a, b € G, and G/K isagroup under this operation.

Remark. Thegroup G/K is caled the quotient group G mod K; when G is finite, its
order |G/K | istheindex [G : K] = |G|/|K | (presumably, thisis the reason why quotient
groupsareso caled). <«

Proof. The product of two cosets (aK)(bK) can also be viewed as the product of 4 ele-
mentsin S(G). Hence, associativity in S(G) gives

(aK)(bK) = a(Kb)K = a(bK)K = abKK = abkK,

for normality of K gives Kb = bK for al b € K, by Lemma 2.65, while KK = K
because K isasubgroup. Thus, the product of two cosets of K isagain acoset of K, and
so an operation on G/K has been defined. Because multiplication in S(G) is associative,
equality X(YZ) = (XY)Z holds, in particular, when X, Y, and Z are cosets of K, so that
the operation on G/K is associative. The identity isthe coset K = 1K, for (1K)(bK) =
1bK = bK = blK = (bK)(1K), and the inverse of aK isa~1K, for (a 1K)(@K) =
a~laK = K =aa 1K = (aK)(@a 1K). Therefore, G/K isagroup. e
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It is important to remember what we have just proved: The product aKbK = abK
in G/K does not depend on the particular representatives of the cosets, and the law of
substitution holds: If aK = @’K and bK = b'K, then

aKbK = abK = ab’'K =a'Kb'K.

Example 2.68.

We show that the quotient group G/K is precisely I, when G is the additive group Z and
K = (m), the (cyclic) subgroup of all the multiples of a positive integer m. Since Z is
abelian, (m) is necessarily a normal subgroup. The sets Z/ (m) and I, coincide because
they are comprised of the same elements: The coset a + (m) isthe congruence class [a]:

a+ (my={a+km:keZ}=]a].
The operations a so coincide: AdditioninZ/ (m) is given by
@+ (m)) + (b+(m) = (@+b)+ (m);
sincea + (m) = [a], thislast equationisjust [a] + [b] = [a + b], whichisthe sumin I,.
Therefore, I, isequal to the quotient group Z/ (m). «

There is another way to regard quotient groups. After all, we saw, in the proof of
Lemma 2.40, that the relation = on G, defined by a = b if b~'a € K, is an equivalence
relation whose equivalence classes are the cosets of K. Thus, we can view the elements of
G/K as equivalence classes, with the multiplication aK bK = abK being independent of
the choice of representative.

We remind the reader of Lemma 2.40(i): If K isasubgroup of G, then two cosets akK
and bK are equal if and only if b~'a € K. In particular, if b = 1, then aK = K if and

only if a € K.
We can now prove the converse of Proposition 2.56(ii).

Corollary 2.69. Every normal subgroup K <1 G isthe kernel of some homomor phism.

Proof. Define the natural map =: G — G/K by m(a) = aK. With this notation, the
formulaaKbK = abK can be rewritten as = (a)z (b) = = (ab); thus, 7 is a (surjective)
homomorphism. Since K isthe identity element in G/K,

kerr ={aeG:n(@=K}={aeG:aK =K} =K,
by Lemma2.40(i). e
The next theorem shows that every homomorphism gives rise to an isomorphism and
that quotient groups are merely constructions of homomorphic images. E. Noether (1882-
1935) emphasized the fundamental importance of this fact.
Theorem 2.70 (First Isomorphism Theorem). If f: G — H isahomomorphism, then
ker f <G and G/kerf Zimf.

In more detail, if ker f = Kandgp: G/K — imf < H isgivenby¢: aK — f(a), then
@ isan isomorphism.
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Remark. The following diagram describes the proof of the first isomorphism theorem,
wheren: G — G/K isthenatura map 7 : a+— akK.

f
G H
~ A
G/K

Proof. We have aready seen, in Proposition 2.56(ii), that K = ker f is a normal sub-
group of G. Now ¢ iswell-defined: If aK = bK, then a = bk for somek € K, and so
f(a) = f(bk) = f(b)f(k) = f(b), because f (k) = 1.

Let us now seethat ¢ is ahomomorphism. Since f isahomomorphism and p(aK) =
f(a),

<

@(@KbK) = g(abK) = f(ab) = f(a) f () = p@K)p(bK).

It is clear that ime < im f. For the reverse inclusion, note that if y € im f, then
y= f(a) forsomea e G,andsoy = f(a) = p(aK). Thus, ¢ issurjective.

Finally, we show that ¢ isinjective. If p(aK) = ¢(bK), then f(a) = f(b). Hence,
1= f(by"1f(a = f(bla), sothat b-la € ker f = K. Therefore, aK = bK,
by Lemma 2.40(i), and so ¢ is injective. We have proved that ¢: G/K — imf isan
isomorphism. e

Given any homomorphism f: G — H, we should immediately ask for its kernel and
image; the first isomorphism theorem will then provide an isomorphism G/ ker f = imf.
Since there is no significant difference between isomorphic groups, the first isomorphism
theorem also says that there is no significant difference between quotient groups and ho-
momorphic images.

Example 2.71.
Let us revisit Example 2.53, which showed that any two cyclic groups of order m are
isomorphic. Let G = (a) be acyclic group of order m. Define afunction f: Z — G by
f(n) = a"foral n € Z. Now f iseasily seen to be a homomorphism; it is surjective
(because a is agenerator of G), whileker f = {n € Z : a" = 1} = (m), by Theorem 2.24.
The first isomorphism theorem gives an isomorphism Z/ (m) = G. We have shown that
every cyclic group of order misisomorphictoZ/ (m), and hencethat any two cyclic groups
of order m areisomorphic to each other. Of course, Example 2.68 showsthat Z/ (m) = Iy,
so that every cyclic group of order misisomorphic to Iy,.

We point out that any two infinite cyclic groups are isomorphic to Z; the reader should
have no difficulty proving this. «

Example 2.72.
What is the quotient group R/Z? Define f : R — St, where St isthe circle group, by

fixrs 71X
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Now f is a homomorphism; that is, f(x +y) = f(x)f(y), by the addition formulas
for sine and cosine. The map f is surjective, and ker f consists of al x € R for which
e2"1X = cos27X +i sin27x = 1; that is, cos27x = 1and sin27x = 0. But cos2zx = 1
forces x to be an integer; since 1 € ker f, we have ker f = Z. The first isomorphism
theorem now gives

R/Z = S

Thisis the group-theoretic version of Example 1.55(i). «
Hereisauseful counting result.
Proposition 2.73 (Product Formula). If H and K are subgroups of a finite group G,

then
[HK||H N K| = [H[|K],

whereHK = {hk : h € H andk € K}.

Remark. The subset HK need not be a subgroup of G; however, Proposition 2.66 shows
that if either H <« G or K <1 G, then HK is a subgroup (see also Exercise 2.72 on page 95).
<

Proof. Defineafunction f: HxK — HKby f : (h, k) — hk. Clearly, f isasurjection.
It sufficesto show, for every x € HK, that | f ~1(x)| = |[H N K|, where f ~1(x) = {(h, k) €
H x K : hk = x}, [because H x K isthedigoint union (Jyp f~2(X)].

We claim that if X = hk, then

f~2(x) = {(hd,d"*k) :d € H N K.

Each (hd, d~1k) € f~1(x), for f(hd,d k) = hdd—lk = hk = x. For the reverse
inclusion, let (', K') e f~1(x), sothat h’k’ = hk. Thenh=th’ = kk' " € HNK; call this
elementd. Thenh’ = hd and k' = d=1k, and so (1, k') liesin the right side. Therefore,

1f )] = |{(hd, d" k) :d e HN K}| = [H N K],
because d — (hd, d—1k) isabijection. e

The next two results are consequences of the first isomorphism theorem.

Theorem 2.74 (Second Isomorphism Theorem). [f H and K are subgroups of a group
G with H < G, then HK isa subgroup, H N K < K, and

K/(H N K) = HK/H.

Proof. Since H <1 G, Proposition 2.66 shows that HK is a subgroup. Normality of H in
HK follows from a more general fact: If H < S < G and if H isnormal in G, then H
isnormal in S (if ghg~! € H for every g € G, then, in particular, ghg~1 € H for every
geyS).
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We now show that every coset xH € HK/H has the form kH for some k € K. Of
course, XH = hkH, whereh € H and k € K. But hk = kk~hk = kh’ for some
h" € H, sothat hkH = kh'H = kH. It follows that the function f: K — HK/H, given
by f: k — kH, issurjective. Moreover, f isahomomorphism, for it is the restriction
of the natural map n: G — G/H. Since kerm = H, it follows that ker f = H N K,
and so H N K is a normal subgroup of K. The first isomorphism theorem now gives
K/(HNK)ZHK/H. e

The second isomorphism theorem gives the product formula in the specia case when
one of the subgroupsisnormal: If K/(HNK) = HK/H, then|K/(HN K)| = [HK/H|,
andso |HK||H N K| = [H|K].

Theorem 2.75 (Third Isomorphism Theorem). If H and K are normal subgroups of
agroup G withK < H,then H/K < G/K and

(G/K)/(H/K) = G/H.

Proof. Define f: G/K — G/H by f: aK — aH. Notethat f is a (well-defined)
function, forif @ € Ganda’K = aK,thena'a’ ¢ K < H,andsoaH = a'H. Itis
easy to seethat f isa surjective homomorphism.

Now ker f = H/K, foraH = H if and only if a € H, and so H/K is a normal
subgroup of G/K. Since f is surjective, the first isomorphism theorem gives

(G/K)/(H/K) = G/H.

The third isomorphism theorem is easy to remember: In the fraction (G/K)/(H/K),
the K’s can be canceled. We can better appreciate the first isomorphism theorem after
having proved the third one. The quotient group (G/K)/(H/K) consists of cosets (of
H/K) whose representatives are themselves cosets (of G/K). A direct proof of the third
isomorphism theorem could be nasty.

The next result, which can be regarded as a fourth isomorphism theorem, describes the
subgroups of a quotient group G/K.

Proposition 2.76 (Correspondence Theorem). Let G beagroup, let K < G, and let
w: G — G/K bethenatural map. Then

S (S = S/K

is a bijection between Sub(G; K), the family of all those subgroups S of G that contain K,
and Sub(G/K), the family of all the subgroups of G/K. If we denote S/K by S*, then

T<S<G ifandonlyif T* < S, inwhichcase[S: T]=[S":T"],

and
T<«S ifandonlyif T* < S, inwhichcaseS/T = S*/T*.
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Remark. Thefollowing diagram is away to remember this theorem.

G

/K =T+

{1

<

Proof. Define ®: Sub(G; K) — Sub(G/K) by ®: S+ S/K (itisroutineto check that
if Sissubgroup of G containing K, then S/K isasubgroup of G/K).

To seethat @ isinjective, we begin by showingthat if K < S< G, then7z17(S) = S.
As aways, S € 7~ 1x(S), by Proposition 1.50(iv). For the reverse inclusion, let a e
77 17(S), sothat w(a) = n(s) for somes € S. It followsthat as~! € kerm = K, so that
a=skforsomeke K.ButK < S andsoa=ske S

Assume now that 7(S) = #(S), where Sand S are subgroups of G containing K.
Then 7~ 17(S) = 77 1n(S), and s0 S = S as we have just proved in the preceding
paragraph; hence, @ isinjective.

To seethat ® is surjective, let U be a subgroup of G/K. Now 7 ~1(U) isasubgroup of
G containing K = 7~1({1}), and 7 (= ~1(U)) = U, by Proposition 1.50(ii).

Proposition 1.50(i) showsthat T < S < G impliesT/K = #(T) < n(S = S/K.
Conversely, assumethat T/K < S/K. Ift e T,thentK € T/K < S/K andsotK = sK
for somes € S. Hence, t = skforsomek € K < S andsot € S.

To provethat [S: T] = [S* : T*], it suffices to show that there is a bijection from the
family of all cosets of the form sT, where s € S, and the family of all cosets of the form
S*T*, where s* € S*, and the reader may check that ST — 7 (S)T* is such a bijection.
When G isfinite, we may prove[S: T] = [S* : T*] asfollows:

[S": T =IS1/IT"|
= |S/KI/IT/K]|
= (ISI/IKD /(TI/IKD
=[S|/IT|
—[S: TI.
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If T<S thenT/K <S/K and (S/K)/(T/K) = S/T, by the third isomorphism theorem;
thatis, S*/T* = S/T. It remainsto show that if T* < S*,then T < S; thatis,ift € T and
se S thenstst e T. Now
n(sts™) = n () rt)7(s) e w(s)T*n(s) L = T*,
sothatsts ten L (T*=T. e
When dealing with quotient groups, we usually say, without mentioning the correspon-

dence theorem explicitly, that every subgroup of G/K has the form S/K for a unique
subgroup S < G containing K.

Example 2.77.
Let G = (a) be acyclic group of order 30. If 7: Z — G isdefined by 7(n) = a", then
ker 7 = (30). The subgroups (30) < (15) < (5) < Z correspond to the subgroups

{1} = (@) < @) < (@) < (a).
Moreover, the quotient groups are

~ (15) _ (@) N @ 7z
@Z@_HZ’ (@15 @—Hs, and P

12

~

= ]IS <«

Proposition 2.78. If G isafinite abelian group and d isadivisor of |G|, then G contains
a subgroup of order d.

Proof. We prove the result by induction on n = |G| for a prime divisor p of |G|. The
base step n = 1 istrue, for there are no prime divisors of 1. For the inductive step, choose
ac Goforderk > 1. If p | k, say k = p¢, then Exercise 2.23 on page 62 says that a
has order p. If p 1 k, consider the cyclic subgroup H = (a). Now H <1 G, because G is
abelian, and so the quotient group G/H exists. Note that |G/H| = n/k isdivisible by p,
and so the inductive hypothesis gives an element bH € G/H of order p. If b hasorder m,
then Exercise 2.47(i) on page 80 gives p | m. We have returned to the first case.

Let d be any divisor of |G|, and let p be a prime divisor of d. We have just seen that
there isa subgroup S < G of order p. Now S <1 G, because G is abelian, and G/S is
a group of order n/p. By induction on |G|, G/S has a subgroup H* of order d/p. The
correspondence theorem gives H* = H/S for some subgroup H of G containing S, and
IHI =[H*|S|=d. e

Here is a construction of a new group from two given groups.
Definition. If H and K are groups, then their direct product, denoted by H x K, isthe
set of al ordered pairs (h, k) withh € H and k € K equipped with the operation
(h, (W', K) = (hh', kKK').

It is easy to check that the direct product H x K isagroup [the identity is (1, 1) and
(h, k=t = (=, kD).
We now apply the first isomorphism theorem to direct products.
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Proposition 2.79. Let G and G’ be groups, and let K <« G and K’ <« G’ be normal
subgroups. Then K x K’ <t G x G’, and thereis an isomorphism

(G x G)/(K x K') = (G/K) x (G'/K).

Proof. Let7n: G — G/K andn’: G’ — G’/K’ be the natural maps. It is routine to
check that f: G x G’ — (G/K) x (G'/K"), given by

f:(9,.9)— (7(9), 7'(g)) = (gK, g'’K")

is a surjective homomorphism with ker f = K x K’. The first isomorphism theorem now
gives the desired isomorphism. e

Proposition 2.80. [|f G isa group containing normal subgroups H and K withH N K =
{land HK = G, thenG = H x K.

Proof. We show first that if g € G, then the factorization g = hk, whereh € H and
k € K, isunique. If hk = h'k’, then W lh=kkleHNK = {1}. Therefore, h’ = h
and k' = k. We may now define a function ¢: G — H x K by ¢(g) = (h, k), where
g = hk, h € H, and k € K. To see whether ¢ is ahomomorphism, let g = h’k’, so that
g9’ = hkh’k’. Hence, ¢(gg’) = ¢(hkh’k’), which is not in the proper form for evaluation.
If we knew that if h € H and k € K, then hk = kh, then we could continue:

o(hkh'K') = @(hWKK)
= (hh', kk")
= (h, k) (N, K)
= ¢(9)¢(9).

Leth € H andk € K. Since K is anormal subgroup, (hkh~hk~—! € K; since H isa
normal subgroup, h(kh=k~1) € H. But H N K = {1}, so that hkh~1k~1 = 1 and hk =
kh. Finally, we show that the homomorphism ¢ is an isomorphism. If (h,k) € H x K,
then the element g € G defined by g = hk satisfies ¢(g) = (h, k); hence ¢ is surjective.
If () = (1,1),theng = 1, sothat ker¢p = 1 and ¢ isinjective. Therefore, ¢ is an
isomorphism. e

Remark. Wemust assumethat both subgroups H and K are normal. For example, S3 has
subgroups H = ((123)) and K = ((12)). Now H < S5, HN K = {1}, and HK = S3,
but S 2 H x K (because the direct product is abelian). Of course, K is not a normal
subgroup of 3.«

Theorem 2.81. If mand n are relatively prime, then

Hmn = ]Im X Hn.
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Proof. If a € Z, denoteits congruence classin I, by [a]m. The reader can show that the
function f: Z — Iy x I, given by a — ([a]m, [@]n), iS @ homomorphism. We claim
that ker f = (mn). Clearly, (mn) < ker f. For the reverse inclusion, if a € ker f, then
[alm = [Olm and [a]n = [O]n; that is, a = O mod m and a = 0 mod n; that is, m | a and
n | a. Sincemand n are relatively prime, mn | a, and soa € (mn), that is, ker f < (mn)
and ker f = (mn). The first isomorphism theorem now givesZ/ (mn) = im f < I, x Ip.
But Z/ (mn) = Iy, hasmn elements, asdoes Iy, x I,. We concludethat f issurjective. e

For example, it followsthat g = I, x I3. Note that there is no isomorphism if m and n
are not relatively prime. For example, 14 2 1o x I, for I has an element of order 4 and
the direct product (which isisomorphic to the four-group V) has no such element.

In light of Proposition 2.34, we may say that an element a € G hasorder n if (a) = 1.
Theorem 2.81 can now be interpreted as saying that if a and b are commuting elements
having relatively prime orders m and n, then ab has order mn. Let us give adirect proof of
this result.

Proposition 2.82. Let G beagroup, and let a, b € G be commuting elements of orders
m and n, respectively. If (m, n) = 1, then ab has order mn.

Proof. Since a and b commute, we have (ab)’ = a'b" for dl r, so that (ab)™ =
a™p™ = 1. It suffices to prove that if (@ab)® = 1, thenmn | k. If 1 = (ab)k = akbK,
then ak = b=%. Since a has order m, we have 1 = a™ = b~™k_ Since b has order n,
Theorem 2.24 givesn | mk. As (m, n) = 1, however, Corollary 1.11 givesn | k; asimilar
argument gives m | k. Finally, Exercise 1.19 on page 13 shows that mn | k. Therefore,
mn < k, and mn isthe order of ab. e

Corollary 2.83. If (m, n) = 1, then ¢ (mn) = ¢ (m)¢ (n), where ¢ isthe Euler ¢-function.

Proof. 1° Theorem 2.81 shows that the function f: Ipn — Im x In, given by [a] —
([a]m, [a]n), is an isomorphism. The result will follow if we prove that f (U (Imn)) =
U (Im) x U (I,), for then

¢ (mn) = [U (Imn)| = | F (U Imn))I
= |U(Im) x U(n)| = [UIm)| - |U Tn)| = ¢(M)¢(n).
If [a] € U(Imn), then[a][b] = [1] for some[b] € I;yn, and

f([ab]) = ([ab]m, [ab]n) = ([@]m[b]m, [aln[b]n)
= ([a]m. [a]n) ([b]m. [b]n) = ([1]m. [1]n).

Hence, [1]m = [a]m[b]m and [1]n = [a]n[b]n, so that f([a]) = ([a]m. [a]n) € UIm) x
U (), and f (U (Imn)) € UIm) x U ().

For thereverseinclusion, if f([c]) = ([C]m, [C]n) € U (I;m) x U (1), then we must show
that [c] € U (Iyn). Thereis[d]m € Iy with [¢]m[d]m = [1]m, and thereis €], € I, with

155ee Exercise 3.50 on page 150 for aless cluttered proof.



Sec. 2.6 Quotient Groups 93

[cln[€ln = [1]n. Since f issurjective, thereisb € Z with ([b]m, [b]ln) = ([d]m, [€]n), SO
that

f([1D = ([Um. [n) = ([CIm[b]m. [c]n[bln) = f({c][bD.
Since f isaninjection, [1] = [c][b] and [c] € U {lmn). e

Corollary 2.84.

(i) If pisaprime, then ¢(p®) = p® — p&1 = p® (1_ %),

(i) Ifn= pi’l e pft isthe prime factorization of n, then

¢(n)=n(1—%)...(1—%).

Sketch of Proof. Part (i) holds because (k, p€) = 1if and only if p t k, while part (ii)
follows from Corollary 2.83. e

Lemma 2.85. A cyclic group of order n has a unique subgroup of order d, for each
divisor d of n, and this subgroup is cyclic.

Proof. Let G = (a). If n = cd, we show that a® has order d (and so (a°) is a subgroup
of order d). Clearly (a9 = a® = a" = 1; we claim that d is the smallest such power.
If (%" = 1, thenn | cr [Theorem 2.24]; hence cr = ns = dcs for some integer s, and
r =ds>d.

To prove uniqueness, assume that (x) is a subgroup of order d (recall that every sub-
group of a cyclic group is cyclic, by Exercise 2.34 on page 72). Now x = a™and 1 =
x4 = a™d: hence md = nk for some integer k. Therefore, x = a™ = (a"/9)k = @)k, so
that (x) < (a%). Since both subgroups have the same order d, it followsthat (x) = (a®). e

Define an equivalence relation on agroup G by x = y if (X) = (y); thatis, x and y
are equivalent if they are generators of the same cyclic subgroup. Denote the equivalence
class containing an element x by gen(C), where C = (x); thus, gen(C) consists of all the
generators of C. As usual, equivalence classes form a partition, and so G is the digoint
union:

G = Jgen(©),
C
where C ranges over al cyclic subgroups of G. In Theorem 2.33(ii), we proved that

lgen(C)| = ¢(n),

where ¢ isthe Euler ¢-function.
The next theorem will be used later to prove that the multiplicative group Ij is cyclic.

Theorem 2.86. A group G of order n is cyclic if and only if, for each divisor d of n,
thereis at most one cyclic subgroup of order d.
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Proof. If G iscyclic, then theresult follows from Lemma 2.85. Conversely, write G asa
digoint union:
G= U gen(C).
c

Hence, n = |G| = ) |gen(C)|, where the summation is over all cyclic subgroups C of G:
n=Y lgen(C)| = Y _¢(CI).
c c

By hypothesis, for any divisor d of n, the group G has at most one cyclic subgroup of order

d. Therefore,
n=Y 1gen(C)l =) ¢(ClH <) ¢(d =n,
C C

din

the last equality being Corollary 1.39. Hence, for every divisor d of n, we must have ¢ (d)
arising as |gen(C)| for some cyclic subgroup C of G of order d. In particular, ¢ (n) arises,
there isacyclic subgroup of order n, and so G iscyclic. e

Hereisaproof of the abelian case of the preceding theorem (shown to me by D. Leep).

Theorem. If G isan abelian group of order n having at most one cyclic subgroup of
order p for each prime divisor p of n, then G iscyclic.

Proof. The proof is by induction on n = |G|, with the base step n = 1 obviously true.
For the inductive step, note first that the hypothesis is inherited by subgroups of G. We
claim that there is some element x in G whose order is a prime divisor p of |G|. Choose
y € G withy # 1; its order k is adivisor of |G|, by Lagrange’s theorem, and so k =
pm for some prime p. By Exercise 2.23 on page 62, the element x = y™ has order p.
Defined: G — G by o : g~ gP (9 isahomomorphism because G is abelian). Now
X € ker6, sothat | kerf| > p. If |[ker@| > p, then there would be more than p elements
g € G satisfying gP = 1, and this would force more than one subgroup of order p in G.
Therefore, | ker 6| = p. By the first isomorphism theorem, G/ ker6 = im0 < G. Thus,
imé is a subgroup of G of order n/p satisfying the inductive hypothesis, so there is an
element z € im6 withim6 = (z). Moreover, since z € im#@, thereisb € G with z = bP.
There are now two cases. If p t n/p, then xz has order p - n/p = n, by Proposition 2.82,
and so G = (xz). If p | n/p, then Exercise 2.24 on page 62 shows that b has order n, and
G=(b). e

EXERCISES

2.65 Provethat U (Ig) = Igand U (I15) = 4 x Ip.

2.66 (i) Let H and K begroups. Without using the first isomorphism theorem, prove that H* =
{(h,) : h e H} and K* = {(1,k) : k € K} are normal subgroups of H x K with
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2.67

2.68
2.69

2.70

2.71

2.72

2.73

2.74

2.75

2.76

H=H*adK = K* and f: H - (H x K)/K*, defined by f(h) = (h, )K*, is
an isomorphism.
(if) Usethe first isomorphism theorem to prove that K* <t H x K and that

(H x K)/K* = H.

Hint. Consider thefunction f: H x K — H defined by f: (h, k) — h.
(i) Provethat Aut(V) = Sz and that Aut(S3) = Sz. Conclude that nonisomorphic groups
can have isomorphic automorphism groups.
(ii) Provethat Aut(Z) = T,. Concludethat an infinite group can have a finite automorphism
group.
If G isagroup for which Aut(G) = {1}, provethat |G| < 2.
Prove that if G isagroup for which G/Z(G) iscyclic, where Z(G) denotes the center of G,
then G is abelian.
Hint. If G/Z(G) iscyclic, prove that a generator gives an element outside of Z(G) which
commutes with each element of G.
(i) Provethat Q/Z(Q) = V, where Q isthe group of quaternions and V is the four-group;
conclude that the quotient of a group by its center can be abelian.
(ii) Prove that Q has no subgroup isomorphic to V. Conclude that the quotient Q/Z(Q) is
not isomorphic to a subgroup of Q.
Let G be a finite group with K <1 G. If (|K|,[G : K]) = 1, prove that K is the unique
subgroup of G having order |K|.
Hint. If H < G and |H| = |K|, what happensto elementsof H in G/K?
If H and K are subgroups of a group G, prove that HK is a subgroup of G if and only if
HK = KH.
Hint. Usethefactthat H € HK and K € HK.
Let G beagroup and regard G x G asthedirect product of G withitself. If the multiplication
u: G x G — G isagroup homomorphism, prove that G must be abelian.
Generalize Theorem 2.81 as follows. Let G be a finite (additive) abelian group of order mn,
where (m, n) = 1. Define

Gm={g € G :order (g) | m} and G = {h € G : order (h) | n}.

(i) Provethat Gy and G, are subgroups with Gy N G = {0}.

(ii) Provethat G=Gm+Gn={g+h:ge Gmandh e Gp}.

(iii) Provethat G = Gm x Gp.
Let G be afinite group, let p be aprime, and let H be a normal subgroup of G. Prove that if
both |H| and |G/H | are powers of p, then |G| isa power of p.
If H and K are normal subgroups of agroup G with HK = G, prove that

G/(HNK) = (G/H) x (G/K).

Hint. If ¢: G — (G/H) x (G/K) isdefined by x — (xH, xK), thenkerp = H N K;
moreover, we have G = HK, so that

UaH :HK:UbK.
a b



96 Groups | Ch. 2

Definition. If Hq, ..., Hn are groups, then their direct product
Hi x -+ X Hp
isthe set of al n-tuples (hq, ..., hp), where h; € H; for dl i, with coordinatewise multiplication:
(h1,....hp)(h}, ... hp) = (h1h], ..., hnhp).

2.77 (i) Generaize Theorem 2.81 by proving that if the prime factorization of an integer m is
m= e .. pon hi
=P Pn', then
Hméﬂpil X oee X]Ipﬁn.

(if) Generalize Corollary 2.83 by proving that if the prime factorization of an integer mis
m= €1 e n h
Py pn', then

Udm) = U(Hpil) x o x U(lpen).

2.7 GROUP ACTIONS

Groups of permutations led us to abstract groups; the next result, due to A. Cayley, shows
that abstract groups are not so far removed from permutations.

Theorem 2.87 (Cayley). Every group G isisomorphic to a subgroup of the symmetric
group S. Inparticular, if |G| = n, then G isisomorphic to a subgroup of S,.

Proof. For eacha e G, define “trandation” 75: G — G by 13(x) = ax forevery x € G
(if a # 1, then 14 is not a homomorphism). For a, b € G, (13 o Tp)(X) = 1a(H(X)) =
7a(bx) = a(bx) = (ab)x, by associativity, so that

TaTh = Tab-
It follows that each 7, isabijection, for itsinverseis r,-1:
TaTag-1 = Tap-1 = 71 = lg = 75-15,
andso 1y € .
Defineg : G — Sg by ¢(a) = 4. Rewriting,
p(@p(b) = tath = Tab = @(ab),

so that ¢ isahomomorphism. Finally, ¢ isaninjection. If p(a) = ¢(b), then 5 = 13, and
hence t4(X) = 1p(x) for dl x € G; in particular, when x = 1, thisgivesa = b, asdesired.

The last statement follows from Exercise 2.39 on page 80, which saysthat if X isaset
with|X| =n,thenSx = S,. o

The reader may note, in the proof of Cayley’s theorem, that the permutation z is just
the ath row of the multiplication table of G.

To tell the truth, Cayley’stheoremitself isonly mildly interesting. However, the identi-
cal proof worksin alarger setting that is more interesting.
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Theorem 2.88 (Representation on Cosets). Let G beagroup, andlet H be a subgroup
of G having finiteindex n. Then there existsa homomorphisme: G — S, withkerg < H.

Proof. Even though H may not be a normal subgroup, we still denote the family of all
the cosetsof H in G by G/H.

For each a € G, define “trandation” 75: G/H — G/H by t3(xH) = axH for every
x € G.Fora,b e G,

(ta o tp) (XH) = ta(tp(XH)) = 7a(bxH) = a(bxH) = (ab)xH,

by associativity, so that

TaTh = Tab-

It follows that each 75 is abijection, for itsinverseis ty-1:
TaTa-1 = Tgp-1 = 71 = 1G/H = T4-17a,
and so 74 € Sg/H. Defineg : G — Sg/H by ¢(a) = ra. Rewriting,

p@ep) = tath = Tab = @(ab),

o that ¢ is ahomomorphism. Finaly, if a € ker ¢, then p(a) = 1g/H, SO that Ta(xH) =
xH for all x € G; in particular, when x = 1, thisgivesaH = H, anda € H, by
Lemma 2.40(i). The result follows from Exercise 2.39 on page 80, for |G/H| = n, and so
SGHES. o

When H = {1}, thisis the Cayley theorem.

We are now going to classify all groups of order up to 7. By Example 2.53, every group
of prime order p isisomorphic to I, and so, to isomorphism, there is just one group of
order p. Of the possible orders through 7, four of them, 2, 3, 5, and 7, are primes, and so
we need look only at orders 4 and 6.

Proposition 2.89. Every group G of order 4 isisomorphic to either 14 or the four-group
V. Moreover, I4 and V are not isomorphic.

Proof. By Lagrange’s theorem, every element in G, other than 1, has order either 2 or 4.
If thereis an element of order 4, then G iscyclic. Otherwise, x2 = 1 for al x € G, so that
Exercise 2.26 on page 62 showsthat G is abelian.
If distinct elementsx and y in G are chosen, neither being 1, then we quickly check that
Xy ¢ {1, x, y}; hence,
G = {1, x,y, xy}.
It is easy to see that the bijection f: G — V, defined by f(1) = 1, f(x) = (1 2)(3 4),

f(y) = (13)(24),and f(xy) = (14)(23), isanisomorphism.
We have already seen, in Example 2.54,that; 2 V. e
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Proposition 2.90. If G isa group of order 6, then G is isomorphic to either Ig or Ss.
Moreover, I and Sg are not isomor phic.16

Proof. By Lagrange’s theorem, the only possible orders of nonidentity elementsare 2, 3,
and 6. Of course, G = I if G has an element of order 6. Now Exercise 2.27 on page 62
shows that G must contain an element of order 2, say, t. We now consider the cases G
abelian and G nonabelian separately.

Case 1. G isabelian.

If there is a second element of order 2, say, a, then it iseasy to see, using at = ta, that
H = {1, a,t, at} isasubgroup of G. This contradicts Lagrange’s theorem, because 4 is
not adivisor of 6. It followsthat G must contain an element b of order 3. But tb has order
6, by Proposition 2.82. Therefore, G iscyclicif it is abelian.

Case 2. G isnot abelian.

If G has no elements of order 3, then x> = 1 for dl x € G, and G is abelian, by
Exercise 2.26 on page 62. Therefore, G contains an element s of order 3 as well as the
element t of order 2.

Now | (s)| = 3, sothat [G : (s)] = |G|/|(s)| = 6/3 = 2, and sO (s) is a hormal
subgroup of G, by Proposition 2.62(ii). Sincet = t—1, we havetst € (s); hence, tst = &
fori =0,10r2 Nowi # O, fortst = s? = 1impliess = 1. Ifi = 1, thensandt
commute, and this gives st of order 6, asin Case 1 (which forces G to be cyclic, hence
abelian, contrary to our present hypothesis). Therefore, tst = s> = s~1.

We now use Theorem 2.88 to construct an isomorphisn G — S. Let H = (t), and
consider the homomorphism¢ : G — Sg/ () given by

@(Q) 1 X (t) = gx(t).

By the theorem, ker ¢ < (t), so that either ker ¢ = {1} (and ¢ isinjective), or ker ¢ = (t).
Now G/ (t) = {(t), s(t), s? (t)}, and, in two-rowed notation,

_ () sty St
o) = (t M) ts(t) ts? (t)) :
If o(t) is the identity permutation, then ts(t) = s(t), so that s™ts e (t) = {1,t}, by
Lemma 2.40. But now s~1ts = t (it cannot be 1), hence ts = st, contradicting t and s
not commuting. Therefore, t ¢ kerg, and¢: G — Sg/¢) = S is an injective homomor-

phism. Since both G and S3 have order 6, ¢ must be abijection, andso G = ;.
Itisclear that I and Sg are not isomorphic, for oneis abelian and the other isnot. o

16Cayley states this proposition in an article he wrote in 1854. However, in 1878, in the American Journal of
Mathematics, he wrote, “The general problem isto find all groups of agiven order n; . .. if n = 6, there are three
groups; agroup

1, «, az, a3, a4, a5 (oz6 =1,
and two more groups
LB B2 aapap®  (@P=1p3=1),

viz., inthe first of these o = Ba Whilein the other of them, we have g = B2a, af2 = Ba.” Cayley’slistisI,
Iy x I3, and Sg. Of course, Ip x I3 = Ig; even Homer nods.
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One consequence of this result is another proof that Tg = I x I3 (see Theorem 2.81).

Classifying groups of order 8 is more difficult, for we have not yet developed enough
theory. It turns out that there are 5 nonisomorphic groups of order 8: Three are abelian:
Ig; I4 x I; I x I x Ip; two are nonabelian: Dg; Q.

We can continue this discussion for larger orders, but things soon get out of hand, as
Table 2.4 shows. Making atelephone directory of groups is not the way to study them.

Order of Group Number of Groups
2 1
4 2
8 5
16 14
32 51
64 267
128 2,328
256 56, 092
512 10, 494, 213
1024 49, 487, 365, 422

Table 2.4.

Groups arose by abstracting the fundamental properties enjoyed by permutations. But
thereisan important feature of permutations that the axioms do not mention: Permutations
are functions. We shall see that there are interesting consequences when this feature is
restored.

Definition. If X isaset and G isagroup, then G acts on X if thereisafunction G x X —
X, denoted by (g, X) — gx, such that

() (gh)x =g(hx) fordl g,he Gandx € X;
(if) 1x = x for al x € X, where 1 istheidentity in G.

Weaso cal X aG-set if G actson X.

If agroup G acts on a set X, then fixing the first variable, say g, gives a function
ag: X — X, namely, ag: X — gx. This function is a permutation of X, for its inverse
IS(ngli

ogug-1 =01 = 1x = og-10g.

Itiseasy toseethato: G — S, defined by «: g — ag, isahomomorphism. Conversely,
given any homomorphism ¢: G — Sk, define gx = ¢(g)(X). Thus, an action of a group
G on aset X isanother way of viewing ahomomorphism G — Sx.

Cayley’stheorem saysthat agroup G acts onitself by (Ieft) trandation, and its general -
ization, Theorem 2.88, shows that G also acts on the family of cosets of a subgroup H by
(left) trandation.
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Example 2.91.
We show that G acts on itself by conjugation: thet is, for each g € G, defineag: G — G
to be conjugation

ag(x) = gxg .

To verify axiom (i), note that for each x € G,

(ag o ) (X) = ag(an(x))
= ag(hxh™h)
= g(hxh~Hg™?
= (ghyx(gh)~*
= agh(X).

Therefore, ag o anh = agh.
To prove axiom (ii), note that for each x € G,

a1(X) = Ix17t = x,

andsoa; =1g. <«

The following two definitions are fundamental.

Definition. If G actson X and x € X, then the orbit of x, denoted by O(x), is the subset
of X
OxX) ={gx:ge G} C X;

the stabilizer of x, denoted by Gy, is the subgroup
Gx={geG:gx=x} <G.

If G actson aset X, define arelation on X by x = y in case there exists g € G with
y = gXx. Itiseasy to see that thisis an equivalence relation whose eguivalence classes are
the orbits.

Let us find some orbits and stabilizers.

Example 2.92.

(i) Cayley’stheorem saysthat G acts on itself by trandations: 7g: a — ga. If a € G, then
the orbit O(a) = G, forif b € G, thenb = (ba~Y)a = 7,,-1(a). The stabilizer G, of
ae Gis{l}, forif a = rg(a) = ga, then g = 1. We say that G acts transitively on X if
thereis only one orbit.

(i) When G acts on G/H (the family of cosets of a subgroup H) by translations g :
aH — gaH, then the orbit O(aH) = G/H, forif bH € G/H, then t,-1: aH +— bH.
Thus, G acts transitively on G/H. The stabilizer G,y of aH isaHa ™1, for gaH = aH
ifandonlyifa—lgae Hifandonlyifgc aHa™l. «



Sec. 2.7 Group Actions 101

Example 2.93.
When agroup G acts on itself by conjugation, then the orbit O(x) is

{ye G:y=axa! forsomea e G};

in this case, O(x) is called the conjugacy class of x, and it is commonly denoted by xC.
For example, Theorem 2.9 shows that if « € S,, then the conjugacy class of « consists of
al the permutations in S, having the same cycle structure as «. As a second example, an
element z liesin the center Z(G) if and only if z& = {z}; that is, no other elementsin G
are conjugate to z.

If x € G, then the stabilizer Gy of x is

Ce(x)={geG:gxg ' =x}

This subgroup of G, consisting of all g € G that commute with X, is called the centralizer
of XinG. «

Example 2.94.
Every group G actson the set X of al its subgroups, by conjugation: If a € G, then a acts
by H — aHa !, where H < G.

If H isasubgroup of agroup G, then aconjugate of H isasubgroup of G of the form

aHa ' ={aha=t:he H},

wherea € G.

Since conjugation h — aha~!isaninjection H — G with imageaHa 1, it follows
that conjugate subgroups of G are isomorphic. For example, in S, al cyclic subgroups of
order 2 are conjugate (for their generators are conjugate).

Theorbit of asubgroup H consistsof all itsconjugates; noticethat H isthe only element
initsorbitif and only if H < G; that is,aHa™ = H for al a € G. The stabilizer of H is

Ng(H) ={ge G:gHg1=H).
This subgroup of G is called the normalizer of H inG. «

Example 2.95.

Let X = the vertices {v1, v2, v3, v4} Of asquare, and let G be the dihedral group Dg
acting on X, asin Figure 2.8 on page 102 (for clarity, the vertices in the figure are labeled
1, 2, 3, 4instead of vy, v2, v3, v4).

G = {rotations: (1), (123 4),(13)(24), (143 2);
reflections: (24), (13), (12)(34), (14)(23)}.

For each vertex vj € X, thereissome g € G with gv1 = v;; therefore, O(v1) = X and
Dg actstransitively.

Whet is the stabilizer G,, of v1? Aside from the identity, there is only one g € Dg
fixing v1, namely, g = (2 4); therefore G,,, isasubgroup of order 2. (This example can be
generalized to the dihedral group D2y, acting on aregular n-gon.) <«
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1 2 4 1 3 4 2 3
4 3 3 2 2 1 1 4
1 4 3 2 2 1 4 3
\ 4 :
S 7 - - - -
N Ve !
2 3 4 1 3——4 1 2
Figure 2.8

Example 2.96.
Lt X ={1,2,...,n},leta € &, and regard the cyclic group G = («) asacting on X. If
i € X, then

OG) = (i) : k € Z}.
Let the complete factorization of o be o = B1- - - i), and leti = i1 be moved by «. If
the cycle involving iy is Bj = (i1 i2 ... ir), then the proof of Theorem 2.3 shows that
iker = aK(ip) for al k < r. Therefore,

OG) ={i1,i2,...,ir},

wherei = i1. It followsthat |O(i)| = r. The stabilizer G, of anumber ¢ is G if « fixes
¢; however, if @ moves ¢, then G, depends on the size of the orbit O(¢). For example, if
o= (123)(45)(6),then Gg = G, G1 = (), and G4 = (0¢?).

Proposition 2.97. If G actson a set X, then X isthe disjoint union of the orbits. If X is
finite, then

IX] =) 1006,
i

where one x; is chosen from each orhit.

Proof. Aswe have mentioned earlier, the relation on X, given by x = vy if there exists
g € G with y = gx, is an equivalence relation whose equivalence classes are the orbits.
Therefore, the orbits partition X.

The count given in the second statement is correct: Since the orbits are digoint, no
element in X iscounted twice. e

Here is the connection between orbits and stabilizers.
Theorem 2.98. |f G actsonaset X and x € X, then
|OX)| =[G : Gx]
the index of the stabilizer Gy in G.
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Proof. Let G/Gy denote the family of al the left cosets of Gy in G. We will exhibit
abijection ¢: G/Gx — O(x), and this will give the result, since |G/Gx| = [G : Gy].
Define ¢: gGx — gx. Now ¢ iswell-defined: If gGx = hGy, then h = gf for some
f € Gy; that is, fx = X; hence, hx = gfx = gx. Now ¢ is an injection: if gx =
0(9Gx) = ¢(hGy) = hx, then h~1gx = x; hence, h~1g € Gy, and gGyx = hGy. Lastly,
@ isasurjection: if y € O(x),theny = gx forsomeg € G,andsoy = ¢(gGx). e

In Example 2.95, Dg acting on the four corners of a square, we saw that |O(v1)| = 4,
|Gyl = 2, and [G : G;] = 8/2 = 4. In Example 296, G = (@) < & acting on
X =1{1,2,...,n}, we saw that if, in the complete factorization of « into digoint cycles
a = B1--- Piw), ther-cycle Bj moves ¢, thenr = |O(£)| for any £ occurring in g;.
Theorem 2.98 saysthat r isadivisor of the order k of . (But Theorem 2.25 tells us more:
k isthe lcm of the lengths of the cycles occurring in the factorization.)

Corollary 2.99. |If afinite group G acts on a set X, then the number of elementsin any
orbit isadivisor of |G|.

Proof. Thisfollows at once from Lagrange’stheorem. e

In Example 2.5(i), there is atable displaying the number of permutationsin & of each
cycle structure; these numbersare 1, 6, 8, 6, 3. Note that each of these numbersisadivisor
of |&4| = 24, In Example 2.5(ii), we saw that the corresponding nhumbers are 1, 10, 20, 30,
24, 20, and 15, and these are all divisors of |S5| = 120. We now recognize these subsets
as being conjugacy classes, and the next corollary explains why these numbers divide the
group order.

Corollary 2.100. If x liesin a finite group G, then the number of conjugates of x isthe
index of its centralizer:
X8 =[G : Ca(x)],

and henceitisadivisor of |G|.

Proof. Asin Example 2.93, the orbit of x isits conjugacy class x€, and the stabilizer Gy
isthecentralizer Cg(x). e

Proposition 2.101. |f H isa subgroup of a finite group G, then the number of conjugates
of HinGis[G : Ng(H)].

Proof. Asin Example 2.94, the orbit of H is the family of all its conjugates, and the
stabilizer isitsnormalizer Ng(H). o

There are some interesting applications of group actions to counting problems, which
we will give at the end of this section. Let usfirst apply group actions to group theory.

When we began classifying groups of order 6, it would have been helpful to be able to
assert that any such group has an element of order 3 (wewere ableto use an earlier exercise
to assert the existence of an element of order 2). We now prove that if p isaprime divisor
of |G|, where G isafinite group G, then G contains an element of order p.
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Theorem 2.102 (Cauchy). If G isa finite group whose order is divisible by a prime p,
then G contains an element of order p.

Proof. We prove the theorem by induction on m > 1, where |G| = pm. The base step
m = listrue, for Lagrange’s theorem shows that every nonidentity element in a group of
order p has order p.

Let us now prove the inductive step. If x € G, then the number of conjugates of x
is|x®| = [G : Cs(x)], where Cg(x) is the centralizer of x in G. As noted earlier, if
X ¢ Z(G), then x& has more than one element, and so |Cg(X)| < |G|. If p | |Ce(X)|
for some noncentral x, then the inductive hypothesis says there is an element of order p
in Cg(X) < G, and we are done. Therefore, we may assume that p t |Cg(x)| for al
noncentral x € G. Better, since pisaprimeand |G| = [G : Cg(X)]|Cs(X)|, Euclid’s
lemma gives

pl[G:Ce(X)].

After recalling that Z(G) consists of all those elements x € G with |x®| = 1, we may

use Proposition 2.97 to see

Gl =1Z(G)|+ ) [G: Cax)],
i

where one x; is selected from each conjugacy class having more than one element. Since
|G| and al [G : Cg(Xj)] aredivisible by p, it follows that | Z(G)| is divisible by p. But
Z(G) isabelian, and so Proposition 2.78 saysthat Z(G), and hence G, contains an element
of order p. e

Definition. The class equation of afinite group G is

Gl =1Z(©G)|+ ) [G: Ca(x)],
i
where one x; is selected from each conjugacy class having more than one element.

Definition. |f pisaprime, then afinitegroup G iscalled ap-group if |G| = p" for some
n > 0. (See Exercise 2.81 on page 112 for the definition of an infinite p-group.)

We have seen examples of groups whose center is trivial; for example, Z(S3) = {1}.
For p-groups, however, thisis never true.
Theorem 2.103. If pisaprimeand G isa p-group, then Z(G) # {1}.
Proof. Consider the class equation

G| =1Z(G)|+ Y _ [G : Ca(x)].
i

Each Cg(X;) isaproper subgroup of G, for x; ¢ Z(G). SinceG isa p-group, [G : Cg(X)]
isadivisor of |G|, hence is itself a power of p. Thus, p divides each of the termsin the
class equation other than | Z(G)|, and so p | |Z(G)| aswell. Therefore, Z(G) # {1}. o
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Corollary 2.104. If pisaprime, then every group G of order p? isabelian.

Proof. If G isnot abelian, then itscenter Z(G) isaproper subgroup, so that |Z(G)| = 1
or p, by Lagrange’s theorem. But Theorem 2.103 saysthat Z(G) # {1}, and s0 |Z(G)| =
p. The center is always a normal subgroup, so that the quotient G/ Z(G) is defined; it has
order p, and hence G/Z(G) iscyclic. This contradicts Exercise 2.69 on page 95. e

Example 2.105.

Who would have guessed that Cauchy’s theorem (if G isagroup whose order isamultiple
of a prime p, then G has an element of order p) and Fermat’s theorem (if p is prime,
then aP = a mod p) are special cases of some common theorem? The elementary yet
ingenious proof of Cauchy’s theorem is due to J. H. McKay in 1959 (see Montgomery
and Ralston, Selected Papers in Algebra); A. Mann showed me that McKay’s argument
also proves Fermat’s theorem. If G isafinite group and p is a prime, denote the cartesian
product of p copiesof G by GP, and define

Note that | X| = |G|P~1, for having chosen the last p — 1 entries arbitrarily, the Oth entry
must equal (aiaz - - - ap_l)*l. Introduce an action of I, on X by defining, for 0 < i <
p - 11

[I](a05 a17 ceey apfl) = (ala a|+la ceey apfl, aO’ ala ceey a|)'
The product of the entriesin the new p-tuple is aconjugate of agay - - - ap_1:

88j+1---ap-13a1---§ = (aOal‘"ai)_l(aoal"'ap—l)(aoal"'ai)-

This conjugateis 1 (for g~11g = 1), and so[i](ag, a1, - . ., ap-1) € X. By Corollary 2.99,
the size of every orbit of X isadivisor of [Ip| = p; since p is prime, these sizes are either
1 or p. Now orbits with just one element consist of a p-tuple al of whose entries g are
equal, for all cyclic permutations of the p-tuple are the same. In other words, such an orhit
correspondsto an element a € G withaP = 1. Clearly, (1,1, ..., 1) issuch an orbit; if it
were the only such, then we would have

IGIPt = |X|=1+kp

for somek > 0; that is, |G|P~! = 1mod p. If pisadivisor of |G|, then we have a
contradiction, for |G|P~1 = 0 mod p. We have thus proved Cauchy’s theorem: If aprime
p isadivisor of |G|, then G has an element of order p.

Suppose now that G is a group of order n, say, G = I,, and that p is not a divisor of
n. By Lagrange’s theorem, G has no elements of order p, so that if aP = 1, thena = 1.
Therefore, the only orbitin GP of sizelis(1,1,...,1),and s0

NPt =GPt = |X| = 1+ kp;

that is, if p isnot adivisor of n, then nP~! = 1 mod p. Multiplying both sides by n, we
have nP = n mod p, a congruence also holding when p is adivisor of n; thisis Fermat’s
theorem. «
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We have seen, in Proposition 2.64, that A4 is a group of order 12 having no subgroup
of order 6. Thus, the assertion that if d isadivisor of |G|, then G must have a subgroup of
order d, isfalse. However, this assertion is true when G isa p-group.

Proposition 2.106. If G isa group of order |G| = p®, then G has a normal subgroup of
order pX for everyk < e.

Proof. We provetheresult by induction on e > 0. The base step is obvioudly true, and so
we proceed to the inductive step. By Theorem 2.103, the center of G isanontrivial normal
subgroup: Z(G) # {1}. Let Z < Z(G) be a subgroup of order p; as any subgroup of
Z(G), the subgroup Z isanormal subgroup of G. If k < e, then pk-1 < p&1 = |G/Z|.
By induction, G/Z hasanormal subgroup H* of order p*~1. The correspondence theorem
says there is a subgroup H of G containing Z with H* = H/Z; moreover, H* < G/Z
impliesH <1 G. But |H/Z| = p*~Limplies |H| = pX, asdesired.

Abelian groups (and the quaternions) have the property that every subgroup is normal.
At the opposite pole are groups having no normal subgroups other than the two obvious
ones. {1} and G.

Definition. A group G # {1} iscaled simple if G has no normal subgroups other than
{1} and G itself.

Proposition 2.107. An abelian group G is simple if and only if it is finite and of prime
order.

Proof. If G is finite of prime order p, then G has no subgroups H other than {1} and
G, otherwise Lagrange’s theorem would show that |H| isadivisor of p. Therefore, G is
simple.

Conversely, assume that G issimple. Since G is abelian, every subgroup isnormal, and
so G has no subgroups other than {1} and G. Choose x € G with x # 1. Since (x) isa
subgroup, we have (x) = G. If x has infinite order, then all the powers of x are distinct,
and so (xz) < (x) isaforbidden subgroup of (x), acontradiction. Therefore, every x € G
has finite order. If x has (finite) order m and if m is composite, say m = k¢, then (x¥) isa
proper nontrivial subgroup of (x), acontradiction. Therefore, G = (x) hasprimeorder. e

We are now going to show that As isanonabelian simplegroup (indeed, it isthe smallest
such; there is no nonabelian simple group of order less than 60).
Suppose that an element X € G hask conjugates; that is

X%l =ligxg™:ge G} =k
If thereisasubgroup H < G withx € H < G, how many conjugates does x havein H?

Since
xH ={hxh ™ :he H}C {gxg™t:ge G} =xC,
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wehave|x™| < |xC|. Itispossiblethat thereisstrict inequality [x| < |x©|. For example,
take G = S, x = (1 2), and H = (x). We know that |[x®| = 3 (because all transpositions
are conjugate), whereas |x| = 1 (because H is abelian).

Now let us consider this question, in particular, for G = S5, x = (12 3),and H = As.

Lemma 2.108. All 3-cycles are conjugate in As.

Proof. LetG = S5, o = (12 3),and H = As. We know that |«5| = 20, for there
aretwenty 3-cyclesin S, aswe saw in Example 2.5(ii). Therefore, 20 = |S5]/|Cs ()| =
120/|Cs ()|, by Corollary 2.100, so that |[Cs(«)| = 6; that is, there are exactly six
permutationsin Ss that commute with «. Here they are:

(D, (123), (132), (495, 45(123), (45(132.
The last three of these are odd permutations, so that |Ca («)| = 3. We conclude that
8| = | As|/|Cas(e)| = 60/3 = 20;
that is, all 3-cyclesare conjugatetoa = (123) in As. o

This lemma can be generalized from As to all A, for n > 5; see Exercise 2.91 on
page 113.

Lemma 2.109. If n > 3, every elementin A, isa 3-cycle or a product of 3-cycles.
Proof. If @ € Ay, then « isaproduct of an even number of transpositions:

o =T17T2" " T2q7]_1'2q.

Of course, we may assume that adjacent t’s are distinct. As the transpositions may be
grouped in pairs T2 _172;, it suffices to consider products T/, where = and ¢’ are transpo-
sitions. If r and ¢’ are not digoint,thent = (i j), 7’ = (i k),and 7’ = (i k j); if r and
t aredigoint,thentt’ = ( k&) =@ DG KGKKE =G ]jK(kE. e

Theorem 2.110. As isasimple group.

Proof. Weshall show that if H isanormal subgroup of As and H # {(1)},then H = As.
Now if H contains a 3-cycle, then normality forces H to contain all its conjugates. By
Lemma 2.108, H contains every 3-cycle, and by Lemma 2.109, H = As. Therefore, it
suffices to prove that H contains a 3-cycle.

AsH # {(1)}, it containssome o # (1). We may assume, after a harmless relabeling,
that eithero = (12 3),0 = (12)(34),0ro = (12 345). Aswehavejust remarked, we
aredoneif o isa3-cycle.

If o = (1 2)(3 4), definet = (1 2)(3 5). Now H contains (ro7 1)o 1, because
it is a normal subgroup, and tot~1o~1 = (3 5 4), as the reader should check. If o =
(12 3465),definep = (1 32); now H contains pop 1o~1 = (1 3 4), as the reader
should also check.

We have shown, in al cases, that H contains a 3-cycle. Therefore, the only normal
subgroupsin As are {(1)} and As itself, and so As issimple. e
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Theorem 2.110 turns out to be the basic reason why the quadratic formula has no gen-
eralization giving the roots of polynomials of degree 5 or higher (see Theorem 4.27).

Without much more effort, we can prove that the alternating groups A, are simple for
all n > 5. Observethat A4 isnot simple, for the four-group V isanormal subgroup of A4.

Lemma 2.111. Ag isasimple group.

Proof. LetH # {(1)} beanormal subgroup of Ag; we must show that H = Ag. Assume
that thereissomea € H with o £ (1) that fixessomei, wherel <i < 6. Define

F={oceAs:0()=i}

Notethat « €¢ HN F, sothat H N F # {(1)}. The second isomorphism theorem gives
HNF < F.ButFissimple for F = As, and so the only normal subgroupsin F are {(1)}
and F. SnceHNF # {(1)}, wehave H N F = F; thatis, F < H. It follows that H
contains a 3-cycle, and so H = Ag, by Exercise 2.91 on page 113.

We may now assume that thereisno o € H with @ # (1) that fixes some i with
1 <i < 6. If we consider the cycle structures of permutations in Ag, however, any such
« must have cycle structure (1 2)(3 4 5 6) or (1 2 3)(4 5 6). In the first case, «? € H
isanontrivial permutation that fixes 1 (and also 2), a contradiction. In the second case, H
contains a(Ba~18~1), where 8 = (2 3 4), and it is easily checked that thisis a nontrivial
element in H which fixes 1, another contradiction. Therefore, no such normal subgroup H
can exist, and so Ag isasimplegroup. e

Theorem 2.112. A, isasimplegroup for all n > 5.

Proof. If H isanontrivial normal subgroup of A, thatis, H # {(1)}, then we must show
that H = An; by Exercise 2.91 on page 113, it sufficesto prove that H contains a 3-cycle.
If B € H isnontrivia, then there exists somei that 8 moves, say, 8(i) = j # i. Choose
a 3-cycle « that fixesi and moves j. The permutations « and 8 do not commute: Ba (i) =

B@i) = j, whileaB(i) = a(j) # j. Itfollowsthat y = («¢Ba1)B~1 is a nontrivial
element of H. But a1 1isa3-cycle, by Theorem 2.9, ands0 y = a(Ba~ 17 1) isa
product of two 3-cycles. Hence, y moves at most 6 symbols, say, i1, ..., ig (if ¥ moves

fewer than 6 symbols, just adjoin others so we have alist of 6). Define
F={oeA:ofixesdli #i1,...,ig}.
Now F = Agandy € HN F. Hence, H N F isanontrivial normal subgroup of F. But

F issimple, being isomorphicto Ag,and so H N F = F; that is, F < H. Therefore, H
contains a 3-cycle, and so H = Ap; the proof iscomplete. o

We now use groups to solve some difficult counting problems.
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Theorem 2.113 (Burnside’s Lemmal’). Let G act on afiniteset X. If N isthe number
of orbits, then

1 .
N = <] Z Fix(z),

1eG
where Fix(t) isthe number of x € X fixed by t.

Proof. List the elements of X as follows: Choose x; € X, and then list al the ele-

ments X1, Xz, ..., X inthe orbit O(x1); then choose x; 11 ¢ O(X1), and list the elements
Xr+1, Xr+2, - - - iIN O(Xr41); continue this procedure until all the elements of X are listed.
Now list the elements 71, o, . . ., Th Of G, and form the following array, where

M 1 if 5 fixes x;
"7 o if o moves x;.

X1 X2 e Xr41 Xr42
71 f1.1 f120 - fire1 firyo
(7) fo1 foo - fors1 fori2
Tj fi1 fio - firt1 firy2
Tn fn,l fn,2 te fn.,r+1 fn,r+2

Now Fix(zj), the number of x fixed by 7;, is the number of 1's in the ith row of the
array; therefore, ). ¢ Fix(7) isthe total number of 1’sin the array. Let us now look at
the columns. The number of 1’s in the first column is the number of 7 that fix x1; by
definition, these t; comprise Gy, . Thus, the number of 1’sin column 1is |Gy, |. Similarly,
the number of 1’sin column 2 is |Gy, |. By Exercise 2.99 on page 114, |Gy, | = |Gx,|. By
Theorem 2.98, the number of 1’'sinther columns labeled by the xj € O(x1) isthus

MGl = 10(x1)| - |Gx| = (IGI/IGx1) IGx | = IGI.

The same is true for any other orbit: Its columns contain exactly |G| 1’s. Therefore, if
there are N orbits, there are N|G| 1’sin the array. We conclude that

Z Fix(r) = N|G|. e

teG

We are going to use Burnside’s lemma to solve problems of the following sort. How
many striped flags are there having six stripes (of equal width) each of which can be colored
red, white, or blue? Clearly, the two flags in Figure 2.9 are the same: The bottom flag is
just the top one turned over.

17Burnside himself attributed this lemmato F. G. Frobenius. To avoid the confusion that would be caused by
changing a popular name, P. M. Neumann has suggested that it be called “not-Burnside’s lemma.” W. Burnside

was a fine mathematician, and there do exist theorems properly attributed to him. For example, Burnside proved
that if p and g are primes, then there are no simple groups of order p™q".
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L r[w b [r[wl]hb]
[ bl w | r b fwl [r]
Figure 2.9

Let X bethe set of al 6-tuples of colors; if x € X, then

X = (Cy, C2, Cg, C4, Cs, Cp),

where each ¢; denotes either red, white, or blue. Let t be the permutation that reverses al

the indices:

r:(é é i ;‘ g ?):(16)(25)(34)

(thus, T “turns over” each 6-tuple x of colored stripes). The cyclic group G = (r) acts
on X; since |G| = 2, the orbit of any 6-tuple x consists of either 1 or 2 elements: Either
7 fixes X or it does not. Since a flag is unchanged by turning it over, it is reasonable to
identify a flag with an orbit of a6-tuple. For example, the orbit consisting of the 6-tuples

(r,w,b,r,w,b) and (b, w,r,b, w,r)

describes the flag in Figure 2.9. The number of flags is thus the number N of orbits; by
Burnside’s lemma, N = %[Fix((l)) + Fix(t)]. Theidentity permutation (1) fixes every
x € X, and so Fix((1)) = 3° (there are 3 colors). Now t fixes a 6-tuple x if it is a
“palindrome,” that is, if the colorsin x read the same forward as backward. For example,

X=(,r,w,w,r,r)
isfixed by 7. Conversely, if
X = (€, C2, C3, C4, Cs, Cp)

isfixedby T = (1 6)(2 5)(3 4), thenc; = ¢, C2 = Cs5, and €3 = ¢y4; that is, x isa
palindrome. It follows that Fix(t) = 32, for there are 3 choices for each of ¢y, ¢y, and cs.
The number of flagsisthus

N = 2(3°+3% =378

L et us make the notion of coloring more precise.

Definition. If agroup G actson X = {1, ..., n},andif C isaset of q colors, then G acts
on the set C" of al n-tuples of colors by

7(C1,...,Cn) = (Cr1,...,Cn) fordlz e G.

Anorbit of (cy, ..., cn) € C"iscalled a(q, G)-coloring of X.
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1 2 3 4 13 9 5 1

5 6 7 8 14 | 10 6 2

9 10 | 11 | 12 15 | 11 7 3

13 | 14 | 15 | 16 16 | 12 8 4
Figure 2.10

Example 2.114.
Color each squarein a4 x 4 grid red or black (adjacent squares may have the same color;
indeed, one possibility isthat all the squares have the same color).

If X consists of the 16 sguares in the grid and if C consists of the two colors red and
black, then the cyclic group G = (R) of order 4 acts on X, where R is clockwise rotation
by 90°; Figure 2.10 shows how R acts: Theright squareis R’s action on the left square. In
cycle notation,

R= (1, 4, 16, 13)(2, 8, 15, 9)(3, 12, 14, 5)(6, 7, 11, 10),
RZ = (1, 16)(4, 13)(2, 15)(8, 9)(3, 14)(12, 5)(6, 11)(7, 10),
R3 = (1, 13, 16, 4)(2, 9, 15, 8)(3, 5, 14, 12)(6, 10, 11, 7).

A red-and-black chesshoard does not change when it is rotated; it is merely viewed from a
different position. Thus, we may regard a chessboard as a 2-coloring of X; the orbit of a
16-tuple corresponds to the four ways of viewing the board.

By Burnside’s lemma, the number of chessboardsis

3[Fix(@) + Fix(R) + Fix(R?) + Fix(R) .

Now Fix((1)) = 216, for every 16-tuple is fixed by the identity. To compute Fix(R), note
that squares 1, 4, 16, 13 must al have the same color in a 16-tuple fixed by R. Similarly,
sguares 2, 8, 15, 9 must have the same color, squares 3, 12, 14, 5 must have the same color,
and squares 6, 7, 11, 10 must have the same color. We conclude that Fix(R) = 2*; note
that the exponent 4 is the number of cycles in the complete factorization of R. A similar
analysis shows that Fix(R?) = 28, for the complete factorization of R? has 8 cycles, and
Fix(R3) = 24, because the cycle structure of R® is the same as that of R. Therefore, the
number N of chesshoardsis

N — %[216 L2448y 24] — 16,456. «
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We now show, asin Example 2.114, that the cycle structure of a permutation t allows
oneto calculate Fix(7).

Lemma 2.115. LetC beaset of q colors, and let G be a subgroup of S,. If 7 € G, then
Fix(r) = '™,

wheret () isthe number of cyclesin the complete factorization of .

Proof. Sincet(ci,...,Cn) = (Ci1,...,Cm) = (C1, ..., Ch), Weseethat c;j = ¢ for all
i, and so i has the same color asi. It follows, for al k, that % has the same color as
i, that is, al pointsin the orbit of i acted on by (r) have the same color. If the complete
factorization of t ist = B1--- i), and if i occursin g;, then Example 2.96 shows that
the orbit containing i isthe set of symbols occurring in gj. Thus, for an n-tuple to be fixed
by 7, al the symbolsinvolved in each of thet (t) cycles must have the same color; asthere
are q colors, there are thus q'n-tuples fixed by . o

Corollary 2.116. Let G act on afinite set X. If N is the number of (q, G)-colorings of

X, then
1
N= » 3@,
G| ;q

wheret () isthe number of cyclesin the complete factorization of .

There is a generalization of this technique, due to G. Pélya (see Biggs, Discrete Math-
ematics), giving a formula, for example, that counts the number of red, white, blue, and
green flags having 20 stripes exactly 7 of which are red and 5 of which are blue.

EXERCISES

2.78 If aand b are elementsin agroup G, prove that ab and ba have the same order.
Hint. Use a conjugation.

2.79 Provethat if G isafinite group of odd order, then no x € G, other than x = 1, is conjugate to
itsinverse.
Hint. If x isconjugate to x 1, how many elementsarein xC?

2.80 Provethat no pair of the following groups of order 8,
Ig; InxIp; I2 xIpxIp; Dg; Q,

areisomorphic.

2.81 Provethat if pisaprime and G is a finite group in which every element has order a power
of p, then G isa p-group. (A possibly infinite group G iscalled ap-group if every element in
G has order apower of p.)
Hint. Use Cauchy’s theorem.
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2.82 Definethe centralizer Cg(H) of asubgroup H < G to be

2.83
2.84

2.85

2.86

2.87

2.88
2.89

2.90

291

0]
(i)

Cg(H) ={xe G:xh=hxforadl he H}.

For every subgroup H < G, provethat Cg(H) <t Ng(H).

For every subgroup H < G, provethat Ng(H)/Cg(H) isisomorphic to a subgroup of
Aut(H).

Hint. Generalize the homomorphism I in Exercise 2.64 on page 82.

Show that $; has a subgroup isomorphic to Dg.

Provethat $4/V = Ss.
Hint. Use Proposition 2.90.

0]

(i)

0]

(i)

(iii)

Provethat A4 2 Dqo.

Hint. Recall that A4 has no element of order 6.

Provethat D1y = S3 x Ip.

Hint. Each element x € D12 has a unique factorization of the form x = b'a, where
b =1anda?=1.

If G isagroup, then anormal subgroup H <1 G is called a maximal normal subgroup
if thereisno normal subgroup K of G with H < K < G. Provethat anormal subgroup
H isamaximal normal subgroup of G if and only if G/H isasimple group.

Prove that every finite abelian group G has a subgroup of prime index.
Hint. Use Proposition 2.107.
Prove that Ag has no subgroup of primeindex.

Provethat H <<Ng (H) and that Ng (H) isthe largest subgroup of G containing H asanormal
subgroup.
Find Ng(H) if G =S and H = ((123)).

0]
(i)

(iii)

(iv)
0]
(i)
0]

If H isasubgroup of G and if X € H, prove that
CH(X) =HNCgX).

If H isasubgroup of index 2 in afinite group G and if x € H, provethat xH| = IxC|
or x| = 1/xC|, where x" is the conjugacy class of x in H.

Hint. Use the second isomorphism theorem.

Prove that there are two conjugacy classes of 5-cycles in Ag, each of which has 12
elements.

Hint. If @ = (1 2 3 4 5), then |Cg,(«)| = 5 because 24 =
Cs (@) = (). WhatisCag(x)?

Prove that the conjugacy classesin Ag havesizes 1, 12, 12, 15, and 20.

Prove that every normal subgroup H of agroup G isaunion of conjugacy classes of G,
one of whichis {1}.

Use part (i) and Exercise 2.89 to give a second proof of the simplicity of As.

For dl n > 5, provethat all 3- cyclesare conjugatein An.

Hint. Show that (12 3) and (i j k) are conjugate, in two steps: First, if they are not
disjoint (so the permutations move at most 5 letters); then, if they are digoint.

120
—: hence
ICs; ()]
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2.92

293

2.94

2.95

2.96

2.97

2.98

2.99

2.100
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(if) Provethat if anormal subgroup H <1 An containsa 3-cycle, wheren > 5,then H = Ap.
(Remark. We have proved thisin Lemma2.109 whenn = 5.)

Prove that the only normal subgroups of 4 are {(1)}, V, A4, and &.
Hint. Use Theorem 2.9, checking the various cycle structures one at atime.
Provethat Ag isagroup of order 60 that has no subgroup of order 30.
Hint. Use Proposition 2.62(ii).
(i) Prove, for all n > 5, that the only normal subgroups of S, are {(1)}, An, and S,.
(ii) Provethatif n > 3, then Ap isthe only subgroup of S, of order %n!.
Hint. If H isasecond such subgroup, then H isnormal in S, and hence H N Ay is
normal in Ap.
(iii) Provethat S5 has no subgroup of order 30.
Hint. Use the representation on the cosets of a supposed subgroup of order 30, aswell
asthe simplicity of As.
(iv) Provethat S5 contains no subgroup of order 40.
Let G be asubgroup of S.
(i) f GN Ay = {1}, provethat |G| < 2.
(ii) If G isasimple group with more than 2 elements, provethat G < An.
(i) If n > 5, prove that S, has no subgroup of index r, where2 <r < n.
(ii) Provethat if n > 5, then Ap has no subgroup of index r, where2 <r < n.
(i) Provethat if asimple group G has a subgroup of index n > 1, then G isisomorphic to
asubgroup of .
Hint. Kernelsare normal subgroups.
(ii) Prove that an infinite ssimple group (such do exist) has no subgroups of finite index
n> 1
Hint. Use part (i).
Let G be agroup with |G| = mp, where pisaprimeand 1 < m < p. Provethat G is not
simple.
Hint. Show that G has a subgroup H of order p, and use the representation of G on the
cosetsof H.

Remark. Of all the numbers smaller than 60, we can now show that al but 11 are not
orders of nonabelian simple groups (namely, 12, 18, 24, 30, 36, 40, 45, 48, 50, 54, 56).
Theorem 2.103 eliminates al prime powers (for the center is always a normal subgroup), and
this exercise eliminates all numbers of the form mp, where pisaprimeand m < p. (We
can complete the proof that there are no nonabelian simple groups of order less than 60 using
Sylow’s theorem; see Proposition 5.41.) <«

(i) Letagroup G act onaset X, and suppose that x, y € X liein the same orbit: y = gx
for someg € G. Provethat Gy = gGxg™ 2.
(if) Let G be afinite group acting on a set X; provethat if x, y € X liein the same orbit,
then |Gx| = |Gyl
How many flags are there with n stripes each of which can be colored any one of q given
colors?
Hint. The parity of nisrelevant.
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2.101 Let X bethe squaresinann x n grid, and let p be arotation by 90°. Define a chessboard
to be a (q, G)-coloring, where the cyclic group G = (p) of order 4 is acting. Show that the
number of chesshoardsis

2 2 2
%<qn + gl +0/2] 4 2qL +3)/4J>,
where | x| isthe greatest integer in the number Xx.

2.102 Let X beadisk divided into n congruent circular sectors, and let p be arotation by (360/n)°.
Define aroulette wheel t0 be a(q, G)-coloring, where the cyclic group G = (p) of order nis
acting. Prove that if n = 6, then there are £(2q + 292 + q° + %) roulette whesls having 6

sectors.
The formula for the number of roulette wheels with n sectorsis
3 g/,
din

where ¢ isthe Euler ¢-function.

2.103 Let X be the vertices of a regular n-gon, and let the dihedral group G = Dy, act (as the
usual group of symmetries[see Example 2.28]). Define abracelet to be a (q, G)-coloring of a
regular n-gon, and call each of its vertices abead. (Not only can we rotate a bracelet, we can
alsoflipit: that is, turn it upside down by rotating it in space about aline joining two beads.)

(i) How many bracelets are there having 5 beads, each of which can be colored any one of
g available colors?
Hint. Thegroup G = Djg isacting. Use Example 2.28 to assign to each symmetry a
permutation of the vertices, and then show that the number of braceletsis

(0 + 4q + 5¢3).

(ii) How many bracelets are there having 6 beads, each of which can be colored any one of
g available colors?

Hint. Thegroup G = D1y isacting. Use Example 2.28 to assign to each symmetry a
permutation of the vertices, and then show that the number of braceletsis

£ (a® +29% + 493 + 392 + 29).



Commutative Rings I

3.1 INTRODUCTION

As in Chapters 1 and 2, this chapter contains some material usually found in an earlier
course; proofs of such results are only sketched, but other theorems are proved in full.
We begin by introducing commutative rings, the most prominent examples being 7, Q,
R, and C, as well as I,;, polynomials, real-valued functions, and finite fields. We will
also give some of the first results about vector spaces (with scalarsin any field) and linear
transformations. Canonical forms, which classify similar matrices, will be discussed in
Chapter 9.

3.2 FIRST PROPERTIES

We begin with the definition of commutative ring.
Definition. A commutative ring® R is a set with two binary operations, addition and
multiplication, such that

(i) Risan abelian group under addition;

(ii) (commutativity) ab = baforal a,b e R;

(iii) (associativity) a(bc) = (ab)cforevery a, b, c e R;

1This term was probably coined by D. Hilbert, in 1897, when he wrote Zahlring. One of the meanings of the
word ring, in German asin English, is collection, as in the phrase “aring of thieves.” (It has also been suggested
that Hilbert used this term because, for aring of algebraic integers, an appropriate power of each element “cycles
back” to being alinear combination of lower powers.)

116
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(iv) thereisan element 1 € Rwith 1a = a for every a € R;?
(V) (distributivity) a(b + c) = ab+ acforeverya,b,ce R.

The element 1 in aring R has several names; it is called one, the unit of R, or the
identity in R.
Addition and multiplication in acommutative ring R are binary operations, so there are
functions
a:RxR—-R with af,ry=r+r' eR
and
#W:RxR—R with uwr,ry=rr'eR
foralr,r’ € R. Thelaw of substitution holds here, asit does for any operation: Ifr =r’
ands=¢,thenr + s=r'+s andrs=r’'s.

Example 3.1.
() Z, Q, R, and C are commutative rings with the usual addition and multiplication (the
ring axioms are verified in courses in the foundations of mathematics).

(i) Iy, the integers mod m, is a commutative ring.

(iii) Let Z[i] be the set of all complex nhumbers of the form a + bi, wherea, b € Z and
i2 = —1. Itisaboring exercise to check that Z[i] is, in fact, a commutative ring (this
exercise will be significantly shortened, in Exercise 3.8 on page 124, once the notion of
subring has been introduced). Z[i] is called the ring of Gaussian integers.

(iv) Consider the set R of all real numbers x of the form
X =a+ bw,

wherea,b € Q and w = /2. It iseasy to see that R is closed under ordinary addition.
However, if Ris closed under multiplication, then w? € R, and there are rationals a and b
with
w® = a+ bo.
Multiplying both sides by w and by b gives the equations
2 = aw + bw?

bw? = ab 4 b?w.

Hence, 2 — aw = ab + b%w, and so
2—ab=(b®+aw.

If b2 +a # 0, then w = /2 isrational; if b2 + a = 0, then this coupled with2 —ab = 0
yields 2 = (—b)3. Thus, either case forces /2 rational, and this contradiction shows that
Risnot acommutativering. «

250me authors do not demand that commutative rings have 1. For them, the set of all even integers is a
commutative ring, but we do not recognize it as such.
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Remark. There are noncommutative rings; that is, sets having an addition and a mul-
tiplication satisfying al the axioms of a commutative ring except the axiom: ab = ba.
[Actudly, the definition replaces the axiom 1a = a by 1la = a = al, and it replaces the
distributive law by two distributive laws, one on either side: a(b + ¢) = ab + ac and
(b + c)a = ba + ca.] For example, it is easy to see that the set of al n x n real matrices,
equipped with the usual addition and multiplication, satisfies all the new ring axioms. We
shall study noncommutative ringsin Chapter 8. «

Here are some elementary results.

Proposition 3.2. Let R be a commutative ring.
(i) 0-a=0foreverya € R.
(i) If 1 = 0, then R consists of the single element 0. In this case, R is called the zero
ring 3
(iii) If —a isthe additive inverse of a, then (—1)(—a) = a.
(iv) (-D)a=—aforeveryae R.
(V) fne Nandnl=0,thenna=0forallae R.
(vi) The binomial theoremholds: If a, b € R, then

n
a+b"= n>arb’”.
(@+b) E, <r
Sketch of Proof. (i))0-a=(0+0)-a=0-a+0-a.
(ila=1-a=0-a=0.
(ii) 0= (—1+ 1)(—a) = (—1)(—a) + (—a).
(iv) Since (—1)(—a) = a, wehave (—1)(—1)(—a) = (—=Da. But (-1)(-1) = L

(v) In Chapter 2, we defined the powers a" of an element in a group, wheren > 0. In an
additive group, na is a more appropriate notation than a", and the notation na, forn € Z
and a € R, hasthismeaning in R; that is, na isthe sum of a with itself n times.

If a € Randn € Z is positive, then n1 = 0 implies

na=n(la) = (nl)a=0a=0.

(vi) Induction on n > 0 using the identity (") = (,",) + (!) for0 <r < n+ 1. (We

agreethat a® = 1foralac R, evenfora=0) e

A subring S of acommutative ring R is a commutative ring contained in alarger com-
mutative ring R so that Sand R have the same addition, multiplication, and unit.

3The zero ri ng is not avery interesting ring, but it does arise occasionally.
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Definition. A subset Sof acommutativering R isasubring of R if
(i) 1e §*
(i) ifa,be S;thena—be S
(iii) ifa,be S,thenabe S.

Notation. In contrast to the usage H < G for a subgroup, the tradition in ring theory is
towrite S € R for asubring. We shall also write S C R to denote a proper subring; that
is, SC RandS# R.

Proposition 3.3. A subring S of a commutative ring R isitself a commutative ring.

Sketch of Proof. Thefirst condition saysthat Sisasubgroup of the additive group R. The
other conditions are identitiesthat hold for all elementsin R, and hence hold, in particular,
in S. For example, associativity a(bc) = (ab)c holdsfor al a, b, ¢ € R, and so it holds, in
particular, forall a,b,ce SCR. o

Of course, one advantage of the notion of subring is that fewer ring axioms need to be
checked to determine whether a subset of a commutative ring isitself acommutative ring.

Exercise 3.4 on page 124 gives a natural example of a commutative ring S contained in
a commutative ring R in which both S and R have the same addition and multiplication,
but whose units are distinct (and so Sis not asubring of R).

Example 3.4. '
If n > 3isaninteger, let £, = €¥*'/" be a primitive nth root of unity, and define

Zltnl =(z€C:z=ap+ atn+ a2+ - +an_1g0 L dl a € Z).

(When n = 4, then Z[¢4] isthe Gaussian integers Z[i].) It is easy to check that Z[¢n] isa
subring of C (to prove that Z[¢n] is closed under multiplication, note that if m > n, then
m=gn+r,where0<r <n,and{l" =¢)). <«

Definition. A domain (often caled an integral domain) is a commutative ring R that
satisfies two extra axioms: first,
1#£0;

second, the cancellation law for multiplication: For adl a, b, c € R,
if ca=cbandc # 0, thena = b.

Thefamiliar examples of commutativerings, Z, Q, R, and C, are domains; the zero ring
isnot adomain.

4The even integers do not form a subring of Z because 1 isnot even. Their special structure will be recognized
when ideals are introduced.
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Proposition 3.5. A nonzero commutativering R isa domain if and only if the product of
any two nonzero elements of R is nonzero.

Sketch of Proof. ab=acifandonlyifa(b—c)=0. e

Proposition 3.6. The commutative ring I, isa domain if and only if misa prime.

Proof. If m = ab, wherel < a,b < m, then [a] # [0] and [b] # [O] in Iy, yet
[al(b] = [m] = [0].

Conversdly, if mis prime and [a][b] = [ab] = [0], then m | ab, and Euclid’s lemma
givesm|aorm|b. e

Example 3.7.

(i) Let F(R) bethe set of al the functions R — R equipped with the operations of point-
wise addition and pointwise multiplication: Given f, g € F(R), define functions f + g
and fg by

f+g:a— f(a)+g@a and fg:ar— f(a)g(a)

(noticethat fg isnot their composite).

We claim that F(R) with these operations is a commutative ring. Verification of the
axioms is left to the reader with the following hint: The zero element in F(R) is the
constant function z with value O [that is, z(a) = O for all a € R] and the unit is the
constant function ¢ withe(a) = 1for all a € R. We now show that 7 (R) isnot adomain.

yr y1
| |
[ : g
_____ I I — — —
X ' X
f ' :
| |
| |
Figure 3.1
Define f and g asdrawnin Figure 3.1:
a ifa<o0 0 ifa<oO
f = - = -
@ 0 ifax=Q0; 9@ a ifa=0.

Clearly, neither f nor giszero(i.e.,, f # zand g # z). On the other hand, for eacha € R,
fg: a+— f(a)g(@ = O, because at least one of the factors f (a) or g(a) is the number
zero. Therefore, fg = z, by Proposition 1.43, and F(R) is not a domain.
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(i) All differentiable functions f: R — R form a subring of F(R). The identity ¢ is
a constant function, hence is differentiable, while the sum and product of differentiable
functions are also differentiable. Hence, the differentiable functions form a commutative
rng. «

Many theorems of ordinary arithmetic, that is, properties of the commutative ring Z,
hold in more generality. We now generalize some familiar definitions from Z to arbitrary
commutative rings.

Definition. Let a and b be elements of a commutative ring R. Then a divides b in R (or
aisadivisor of b or bisamultiple of a), denoted by a | b, if thereexistsan element c € R
with b = ca.

As an extreme example, if 0 | a, thena = 0- b for someb € R. Since0-b = 0,
however, we must havea = 0. Thus, 0 | aif and only if a = 0.

Notice that whether a | b depends not only on the elements a and b but on the ambient
ring R aswell. For example, 3 doesdivide 2in @, for 2= 3 x 3, and 3 € Q; onthe other
hand, 3 does not divide 2 in Z, because there is no integer ¢ with 3c = 2.

Definition. An element u in acommutativering Riscaled aunit if u | 1in R, that is,
if there exists v € R with uv = 1; the element v is called the inverse of u and v is often
denoted by u—?.

Units are of interest because we can aways divide by them: If a € Rand u isaunitin
R (sothereisv € Rwith uv = 1), then

a=u(a)

isafactorization of ain R, for va € R; thus, it is reasonable to define the quotient a/u as
va=ula.

Given elements a and b, whether a | b depends not only on these elements but also
on the ambient ring R; similarly, whether an element u € R isa unit also depends on the
ambient ring R (for it is a question whether u | 1 in R). For example, the number 2 isa
unitinQ, for % liesinQ and 2 x % =1, but 2 isnot aunit in Z, because thereis no integer
v with 2v = 1. Infact, theonly unitsin Z are 1 and —1.

Proposition 3.8. Let Rbeadomain, andleta, b € Rbenonzero. Thena | bandb | aif
and only if b = ua for someunitu € R.
Sketch of Proof. If b=uaanda = vb,thenb =ua = uvb. e

There exist examples of commutative rings in which Proposition 3.8 isfalse, and so the
hypothesisthat R be adomain is needed.
What are the unitsin I,?
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Proposition 3.9. If a is an integer, then [a] is a unit in Iy, if and only if a and m are
relatively prime. Infact, if sa +tm = 1, then [a] ! = [g].

Sketch of Proof. sa =1 mod mif and only if sa+tm = 1for someintegert. e

Corollary 3.10. If pisaprime, then every nonzero [a] in I, isa unit.
Sketchof Proof. If1l<a < p,then(a, p)=1. e

Definition. [If Risacommutative ring, then the group of units of Ris
U(R) = {al unitsin R}.

It iseasy to check that U (R) isamultiplicative group. It followsthat aunit uin R has
exactly oneinversein R, for each element in a group has a unique inverse.
There is an obvious difference between Q and Z: every nonzero element of Q isaunit.

Definition. A field® F isacommutative ring in which 1 # 0 and every nonzero element
aisaunit; that is, thereisa™! € F witha—ta = 1.

The first examples of fieldsare Q, R, and C.

The definition of field can be restated in terms of the group of units; acommutative ring
Risafieldif and only if U (R) = R*, the nonzero elements of R. To say this another way,
Risafield if and only if R* isamultiplicative group [note that U (R*) # & because we
are assuming that 1 # Q].

Proposition 3.11. Every field F isa domain.

Sketch of Proof. Ifab=acanda # 0,thenb=a"1(ab) =a1(ac) =c. e

The converse of this proposition isfalse, for Z isadomain that is not a field.

Proposition 3.12. The commutative ring I, isafield if and only if misprime.
Sketch of Proof. Corollary 3.10. e

In Theorem 3.127, we shall see that there are finite fields having exactly p" elements,
whenever pisprimeand n > 1; in Exercise 3.14 on page 125, we construct a field with
four elements.

Every subring of adomain isitself adomain. Since fields are domains, it follows that
every subring of afield is a domain. The converse of this exercise is true, and it is much
more interesting: Every domain is a subring of afield.

5The derivation of the mathematical usage of the English term field (first used by E. H. Moore in 1893 in
his article classifying the finite fields) as well as the German term Koérper and the French term corps is probably
similar to the derivation of the words group and ring: Each word denotesa“realm” or a“collection of things” The
word domain abbreviates the usual English translation integral domain of the German word | ntegretatsbereich, a
collection of integers.
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Given four elements a, b, ¢, and d in afield F withb # 0and d # 0, assume that
ab™! = cd~1. Multiply both sides by bd to obtain ad = bc. In other words, were
ab~1 written as a/b, then we have just shown that a/b = c¢/d impliesad = bc; that is,
“cross-multiplication” isvalid. Conversely, if ad = bc and both b and d are nonzero, then
multiplication by b~1d—1 givesab—! = cd 1, that is, a/b = c/d.

The proof of the next theorem is a straightforward generalization of the usual construc-
tion of the field of rational numbers Q from the domain of integers Z.

Theorem 3.13. If R is a domain, then there is a field F containing R as a subring.
Moreover, F can be chosen so that, for each f € F, therearea, b € Rwithb # 0 and
f =ab~ L.

Sketch of Proof. Let X = {(a,b) € R x R: b # 0}, and define arelation = on X by
(a,b) = (c,d) if ad = bc. We claim that = is an equivalence relation. Verifications of
reflexivity and symmetry are straightforward; here is the proof of transitivity. If (a, b) =
(c,d)and (c,d) = (e, f),thenad = bcandcf = de. Butad = bc givesadf = b(cf) =
bde. Canceling d, which isnonzero, givesaf = be; that is, (a, b) = (e, f).

Denote the equivalence class of (a, b) by [a, b], define F as the set of al equivalence
classes [a, b], and equip F with the following addition and multiplication (if we pretend
that [a, b] isthe fraction a/b, then these are just the usua formulas):

[a, b] + [c, d] = [ad + bc, bd]

and
[a, b][c, d] = [ac, bd].

First, sinceb # 0and d # O, we have bd # 0, because R is a domain, and so the
formulas make sense. Let us show that addition iswell-defined. If [a, b] = [a/, b] (that is,
ab’ = a'b)and[c, d] = [c¢/, d'] (thatis, cd’ = c¢’d), then we must show that [ad+bc, bd] =
[a’d" + b'c/, b'd’]. But thisistrue:

(ad 4+ bo)b’'d’ = ab’'dd’ + bb'cd’ = a’bdd’ + bb'c’'d = (a’d’ + b'c’)bd.

A similar argument shows that multiplication is well-defined.

The verification that F isacommutative ring is now routine: The zero element is[0, 1],
theoneis[1, 1], and the additive inverse of [a, b] is[—a, b]. It iseasy to see that the family
R = {[a, 1] : a € R} isasubring of F, and weidentify a € Rwith[a, 1] € R'.

To see that F is afield, observe that if [a, b] # [0, 1], then a £ 0O, and the inverse of
[a, b] is[b, a].

Finaly, if b # 0, then[1,b] = [b, 1] !, andso[a, b] =[a, 1][b, 1]"L.

Definition. The field F constructed from R in Theorem 3.13 is called the fraction field
of R; we denote it by Frac(R), and we denote [a, b] € Frac(R) by a/b; in particular, the
elements[a, 1] of R’ are denoted by a/1 or, more simply, by a.

Notice that the fraction field of Z isQ; that is, Frac(Z) = Q.
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A subfield of afield K isasubring k of K that isalso afield.

Itiseasy to seethat asubset k of afield K isasubfield if and only if k is a subring that
is closed under inverses; that is, if a € k anda # 0, thena~! € k. It isalso routine to see
that any intersection of subfields of K isitself asubfield of K (note that the intersection is
not equal to {0} because 1 liesin every subfield).

EXERCISES

3.1 Provethat acommutative ring R has a unique 1.

3.2

33

34

3.5
3.6
3.7

3.8

3.9

(i) Provethat subtraction in Z is not an associative operation.

(ii) Give an example of acommutative ring R in which subtraction is associative.

() If Risadomainand a € R satisfiesa? = a, provethat either a = Oora = 1.

(ii) Show that the commutative ring F (R) in Example 3.7 containsinfinitely many elements

f #£0,1with 2= f.

(i) If X is aset, prove that the Boolean group B(X) in Example 2.18 with elements the

(i)
(iii)

subsets of X and with addition given by
U+V=U-V)u(N —-U),
whereU —V = {x € U : x ¢ V}, isacommutative ring if one defines multiplication
uv=uUnV.

We cdl B(X) aBoolean ring.

Hint. You may use some standard facts of set theory: the distributive law:
UNNMUW) = UnNnV)U U nW); if V' denotes the complement of V, then
U —V =U nNV/; and the De Morgan law: (U NV) =U’UV’.

Prove that B(X) contains exactly one unit.

If Y isaproper subset of X (thatis, Y C X), show that the unitin B(Y) isdistinct from
the unit in B(X). Conclude that B(Y) isnot a subring of B(X).

Show that U (Im) = {[K] € Im : (k, m) = 1}.
Find all the unitsin the commutative ring 7 (R) defined in Example 3.7.

Generalize the construction of F(R) to arbitrary commutativerings R: Let 7 (R) be the set of
all functions from R to R, with pointwise addition, f +g:r — f(r) + g(r), and pointwise
multiplication, fg: r — f(r)g(r)forr € R.

(i)
(i)
(iii)
(i)
(i)

Show that F(R) is acommutative ring.

Show that F(R) isnot adomain.

Show that F (o) has exactly four elements, and that f + f = Ofor every f € F(Ip).
If Risadomain and Sisasubring of R, then Sisadomain.

Prove that C isadomain, and conclude that the ring of Gaussian integersis a domain.

Prove that the only subring of Z is Z itself.
Hint. Every subring R of Z contains 1.
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3.10 (i) Provethat R={a+b+/2:a,b e Z}isadomain.
(i) Provethat R={(a+bv?2): a, b € Z} isnot adomain.
(iii) Usingthefactthat o« = %(1+J——1£3) isaroot of X2 — x + 5, prove that R = {a+ b :
a, b € Z} isadomain.
3.11 Prove that the set of all C*-functions is a subring of F(R). (A function f: R — Risa

C-function if it has an nth derivative f ™ for every n > 1.)
Hint. Usethe Leibniz rule (see Exercise 1.6 on page 12).

3.12 (i) If Risacommutative ring, definethe circle operation a o b by
aob=a+b—ab.

Prove that the circle operation is associative and that 0o a = aforal a € R.
(ii) Provethat acommutativering Risafieldif andonly if {r € R: r # 1} isan abelian
group under the circle operation.
Hint. Ifa #0,thena+1#1.
3.13 Find theinverses of the nonzero elements of 11;.

3.14 (R. A. Dean) DefineF4 tobeall 2 x 2 matrices of the form

a b
b a+b|’
wherea, b € Ip.

(i) Provethat F4 is a commutative ring under the usual matrix operations of addition and
multiplication.
(ii) Provethat Fy isafield with exactly four elements.
3.15 Provethat every domain R with a finite number of elements must be a field. (Using Proposi-
tion 3.6, this gives anew proof of sufficiency in Proposition 3.12.)
Hint. |f R* denotes the set of nonzero elements of R, prove that multiplication by r is an
injection R* — R*, wherer € R*.
3.16 Showthat F = {a+b+v/2:a,b e Q}isafield.
317 (i) Showthat F ={a+bi :a,be Q}isafied.
(ii) Show that F isthefraction field of the Gaussian integers.
3.18 If Risacommutative ring, define arelation = on R by a = b if thereisaunit u € R with
b = ua. Provethat if a = b, then (a) = (b), where (a) = {ra: r € R}. Conversely, prove
that if Risadomain, then (a) = (b) impliesa = b.
3.19 (i) Forany fieldKk, provethat stochastic group (2, k), the set of al nonsingular 2 x 2 ma-
triceswith entriesin k whose column sumsare 1, isagroup under matrix multiplication.
(if) Define the affine group Aff(1, k) to be the set of all f: k — k of the form f(x) =
ax + b, wherea, b € kand a # 0. Provethat (2, k) = Aff(1, k). (See Exercise 2.46
on page 80.)
(iif) If kisafinite field with g elements, provethat | X (2, k)| = q(q — 1).
(iv) Provethat ©(2,13) = S3.
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3.3 POLYNOMIALS

Even though the reader isfamiliar with polynomials, we now introduce them carefully. The
key observation is that one should pay attention to where the coefficients of polynomials
live.

Definition. If Risacommutative ring, then asequence o in Ris

oc=(%,5,%...,S, ...);
theentriess € R, for al i > 0, are called the coefficients of o.

To determine when two sequences are equal, et us recognize that a sequence o isreally
afunctiono: N — R, whereN isthe set of natural numbers, witho (i) = 5 foralli > 0.
Thus, if T = (tp, t1,t2, ..., 1, ...) isasequence, theno = tif andonly if o (i) = (i)
fordli > O;thatis,oc = tifandonlyifs =t forali > 0.

Definition. A sequenceo = (%, S1,...,S,...) in acommutative ring R is called a
polynomial if thereis someinteger m > Owiths = Ofor al i > m; that is,

02(50,51,~--75rn,0,0,--~)~

A polynomia has only finitely many nonzero coefficients. The zero polynomial,
denoted by o = 0, isthe sequences = (0,0, 0, ...).

Definition. If o = (%, 51,...,%,0,0,...) # 0isapolynomid, then thereiss, # 0
withs = Oforali > n. Wecal s, theleading coefficient of o, we cal n the degree of
o, and we denote the degree n by deg(o).

The zero polynomial 0 does not have a degree because it has no nonzero coefficients.
Some authors define deg(0) = —oo, and this is sometimes convenient, for —oo < n for
every integer n. On the other hand, we choose not to assign adegreeto 0 because it is often
agenuinely different case that must be dealt with separately.

Notation. If Risacommutative ring, then the set of al polynomials with coefficientsin
R isdenoted by R[x].

Proposition 3.14. If R is a commutative ring, then R[x] is a commutative ring that
contains R as a subring.

Sketch of Proof. Define addition and multiplication of polynomials as follows: If o =
(S0, S1,...) and T = (tp, t1, .. .), then

c+t=(o+to,S1+1t1,....S+th,...)

and
ot = (Cp, C1, Co,...),
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where ¢ = Zi+j=k3tj = Z:‘zostk_i. Verification of the axioms in the definition of
commutative ring isroutine. Thesubset {(r, 0,0, ...) : r € R} isasubring of R[x] that we
identify with R. e

Lemma 3.15. Let R beacommutativering and let o, 7 € R[X] be nonzero polynomials.
(i) Either ot = 0or deg(ot) < deg(o) + deg(r).
(i) If Risadomain, thenot # 0and

deg(o7) = deg(o) + deg(7).

(ii)) If Risadomain, then R[x] isa domain.

Sketch of Proof. Leto = (S, S1,...) and © = (i, t1, .. .) have degrees m and n, respec-
tively.
(i) If k > m+n, theneachtermin ) ; stk—; isO (for either 5 = 0 or tx_; = 0).

(ii) Each term in }; Stmyn—i IS O, with the possible exception of syty. Since Ris a
domain, sy # Oand ty # 0imply smty, # O.

(iii) This follows from part (ii) because the product of two nonzero polynomials is now
nonzero. e

Definition. If R is a commutative ring, then R[X] is called the ring of polynomials
over R.

Here isthe link between this discussion and the usual notation.

Definition. Definethe element x € R[x] by

X =(0,1,0,0,...).

Lemma 3.16.
(i) fo =(s0,51,...),then
XG = (O’ %7319 "');
that is, multiplying by x shifts each coefficient one step to the right.

(i) 1f n > 1, then x" is the polynomial having O everywhere except for 1 in the nth
coordinate.

(iii) Ifr € R, then

(r,0,0,...)(s0,81,-..,Sj,...) =Sy, rsy,...,rsj,...).

Sketch of Proof.  Each is aroutine computation using the definition of polynomial multi-
plication. e



128 Commutative Rings | Ch. 3
If weidentify (r, 0,0, ...) withr, then Lemma 3.16(iii) reads

r¢s,ss,.--,S,...) =0, rsg,...,rs,...).

We can now recapture the usual notation.

Proposition 3.17. Ifo =(s9,S1,...,%,0,0,...), then
0 =5+ SIX+ X2+ - 4 sx",

where each element s € R isidentified with the polynomial (s, 0,0, .. .).

Proof.

Uz(%vs.l.s"'ss']sosov"')
=(50,0,0,...)+(0,5,0,...)+---+(0,0,...,%,0,...)
=%(1,0,0,...) +%(0,1,0,...) +---+%(0,0,...,1,0,...)

=04 SsX+5X%+ -4+ 5x". e

We shall use this familiar (and standard) notation from now on. Asis customary, we
shall write

f(X) = S+ S1X + X%+ - + 5"
insteadof 0 = (59, S1,...,%,0,0,...).

Here is some standard vocabulary associated with polynomials. If f(X) = sp + s1X +
X2+ - +5x", where s, # 0, then g iscalled its constant term and, aswe have already
said, s, iscaleditsleading coefficient. |f itsleading coefficient s, = 1, then f (x) iscalled
monic. Every polynomial other than the zero polynomial 0 (having al coefficients 0) has
adegree. A constant polynomial is either the zero polynomia or a polynomial of degree
0. Polynomials of degree 1, namely, a + bx with b # 0, are called linear, polynomials of
degree 2 are quadratic,® degree 3's are cubic, then quartics, quintics, and so on.

Corollary 3.18. Polynomials f(x) = Sp + SiX + X% + -+ 4+ sx" and g(x) = to +
t1X 4 t2x% + - - - + tyx™ of degrees n and m, respectively, are equal if and only if n = m
ands =t for alli.

Proof. Thisismerely arestatement of the definition of equality of sequences, rephrased
in the usual notation for polynomials. e

8Quadratic polynomials are so called because the particular quadratic x2 givesthe area of a square (quadratic
comes from the Latin word meaning “four,” which is to remind us of the four-sided figure); similarly, cubic
polynomials are so called because x3 gives the volume of a cube. Linear polynomials are so called because the
graph of alinear polynomial in R[x] isaline.
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We can now describetheusua roleof x in f (x) asavariable. If Risacommutativering,
each polynomial f(x) = So4+S1x+SX°+- - -4+5,x" € R[X] defines apolynomial function
f: R— Rbyevauation: If a € R, define f (a) = o+ s1a+a%+---+sa@" € R. The
reader should realize that polynomials and polynomial functions are distinct objects. For
example, if Risafinitering (e.g., R = I ), then thereare only finitely many functionsfrom
R to itself, and so there are only finitely many polynomial functions. On the other hand,
there areinfinitely many polynomials: for example, al thepowers1, x, x2, ..., x", ... are
distinct, by Corollary 3.18.

Definition. Letk beafield. Thefraction field of k[x], denoted by k(x), is called the field
of rational functions over K.

Proposition 3.19. If k is a field, then the elements of k(x) have the form f (x)/g(x),
where f (x), g(x) € k[x] and g(x) # 0.

Sketch of Proof. Theorem 3.13. e

Proposition 3.20. If p isa prime, then the field of rational functions I(x) is an infinite
field containing I, as a subfield.”

Proof. By Lemma 3.15(iii), I5[x] is an infinite domain, for the powers x", for n € N,
aredistinct. Thus, itsfraction field, Ip(x), isan infinite field containing I p[X] as asubring.
But Ip[x] contains I, as a subring, by Proposition 3.14.

In spite of the difference between polynomials and polynomial functions (we shall see,
in Corollary 3.28, that these objects coincide when the coefficient ring R is an infinite
field), R[x] is often called the ring of al polynomials over R in one variable. If we write
A = R[x], then the polynomial ring Aly] is called the ring of al polynomials over R
in two variables x and y, and it is denoted by R[X, y]. For example, the quadratic poly-
nomial ax? + bxy + cy? + dx 4+ ey 4+ f can be written cy? + (bx + e)y + (ax® +
dx + f), a polynomial in y with coefficients in R[x]. By induction, we can form the
commutative ring R[X1, X2, ..., Xy] of al polynomials in n variables with coefficients
in R. Lemma 3.15(iii) can now be generalized, by induction on n, to say that if R is
a domain, then so is R[X1, X2, ..., Xn]. Moreover, when Kk is a field, we can describe
Frac(K[X1, X2, ..., Xn]) asal rational functions in n variables; its el ements have the form
f (X1, X2, ..., Xn)/9(X1, X2, ..., Xn), where f and g lieink[x1, X2, ..., Xn].

EXERCISES

3.20 Show that if R isacommutative ring, then R[x] is never afield.
Hint. If x~1 exists, what isits degree?

7In the future, we will denote IIp by Fp when it isto be viewed as afield.
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3.21 (i) If Risadomain, show that if apolynomial in R[x] isaunit, then it isanonzero constant
(the converseistrueif Risafield).
Hint. Compute degrees.
(ii) Show that (2x + 12 =1in I4[x]. Conclude that the hypothesisin part (i) that R be a
domain is necessary.
3.22 Show that the polynomial function defined by f (x) = xP — x € Ip[x] isidentically zero.
Hint. Use Fermat’s theorem.
3.23 If R is a commutative ring and f(x) = Zin:oSXi € R[x] has degree n > 1, define its
derivative f'(x) € R[x] by
f/(X) = S1 + 25X + 353%2 + - - - + nspx" L

if f(x)isaconstant polynomial, defineits derivative to be the zero polynomial. Prove that the
usual rules of calculus hold:

(f+9'=f+4d"
o =r(f") ifreR;
(fg)' = fg'+ f'g;
(f"Y =nf"1f" foralin> 1.

3.24 Let R beacommutativering and let f (x) € R[x].
(i) Provethatif (x —a)2| f(x),thenx —a| f/(x) in R[x].
(i) Provethatifx —a| f(x)andx —a | f/(x), then (x — a)? | f(x).
325 (i) If f(x) =ax?P +bxP 4 c e Ip[x], provethat f'(x) = 0.
(i) Provethat apolynomia f(x) € Ip[x] has f’(x) = Oif and only if thereisapolynomial
g(x) = Y_anx" with f(x) = g(xP); that is, f(x) = Y anx"P € Ip[xP].
3.26 If Risacommutativering, define R[[x]] to bethe set of all sequences(sg, 1, ...) withsg € R
for al i (wedo not assume herethat 5 = O for largei).
(i) Show that the formulas defining addition and multiplication on R[x] make sense for
R[[x]], and prove that R[[x]] is a commutative ring under these operations (R[[x]] is
caled thering of formal power series over R.)

(ii) Provethat R[x] isasubring of R[[x]].
(iii) Provethat if Risadomain, then R[[x]] isadomain.

Hint. If 0 = (50,51,...) € R[[X]] is nonzero, define the order of o, denoted by
ord(o), to be the smallest n > 0 for which sy # 0. If Risadomainand o, T € R[[X]]
are nonzero, prove that ord(o t) = ord(o) + ord(t) # 0, and henceo t # 0.

3.27 (i) Denoteaformal power serieso = (9, S1, 52, --->Sn, ---) by
0= +SIX+X2+ .
Provethatif o = 1+ X +x2+---,theno = 1/(1—x) in R[[x]]; that is, (1—X)o = 1.
(if) Provethat if k isafield, then aformal power serieso € k[[x]] isaunit if and only if its
constant term is nonzero; that is, ord(o) = 0.
(iii) Provethat if o € k[[x]] and ord(c) = n, then
o =XU,

where u isaunitin K[[x]].
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3.4 GREATEST COMMON DIVISORS

We are now going to see that, when k is a field, virtually all the familiar theorems proved
for Z have polynomial analogsin k[x]; moreover, we shall see that the familiar proofs can
be tranglated into proofs here.

Thedivision algorithm for polynomialswith coefficientsin afield saysthat long division
ispossible.

Theorem 3.21 (Division Algorithm).  Assume that k is a field and that f (x), g(x) €
k[x] with f (x) # 0. Then there are unique polynomials q(x), r (xX) € k[x] with

g(x) =qx) f(x) +r(x)

and either r (x) = O or deg(r) < deg(f).

Proof. We first prove the existence of suchgq andr. If f | g, theng = gf for some
q; define the remainder r = 0, and we are done. If f { g, then consider all (necessarily
nonzero) polynomials of the form g — qf as g varies over k[x]. The least integer axiom
provides apolynomia r = g — qf having least degree among all such polynomials. Since
g =gf +r, it sufficesto show that deg(r) < deg(f). Write f(X) = shX"+--- +s1X+ S
andr(x) = tmX™+ - - +t1X + tg. Now s, # Oimpliesthat s, is aunit, because k isa
field, and so s; ! existsin k. If deg(r) > deg(f), define

h(x) = r(x) — tms; XXM f (x);

that is, if LT(f) = s,x", where LT abbreviates leading term, then

LT(r)
_ f:
LT(f)

notethat h = 0 or deg(h) < deg(r). If h =0, thenr = [LT(r)/LT(f)] f and

g=qf +r
LT(r)
LT(f)

. LT(r)
- [‘” LT(fJ F

contradicting f 1 g. If h # 0, then deg(h) < deg(r) and

=qf + f

LT(r)
f.
LT(f)

g—qf =r=h+

Thus, g — [g + LT(r)/LT(f)] f = h, contradicting r being a polynomial of least degree
having this form. Therefore, deg(r) < deg(f).
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To prove uniqueness of g(x) and r(x), assumethat g = q'f +r’, where deg(r’) <
deg(f). Then
g-q)f=r"—r.
If r’ # r, then each side has a degree. But deg((q — q') f) = deg(q — q') + deg(f) >
deg(f), while deg(r’ — r) < max{deg(r’), deg(r)} < deg(f), a contradiction. Hence,
r'=rand(q—qg)f =0. Ask[x] isadomainand f s 0, it followsthatq — g’ = 0 and
q=q. e

Definition. If f(x) and g(x) are polynomialsin k[x], where k is a field, then the poly-
nomials q(x) and r (x) occurring in the division algorithm are called the quotient and the
remainder after dividing g(x) by f (x).

The hypothesis that k is a field is much too strong; long division can be carried out in
R[x] for every commutative ring R as long as the leading coefficient of f(x) isaunitin
R; in particular, long division is always possible when f (x) isamonic polynomial.

Corollary 3.22. Let R be a commutativering, and let f (x) € R[x] be a monic polyno-
mial. If g(x) € R[x], thenthere exist q(x), r (x) € R[x] with

g(x) = q(x) f(x) +r(x),

where either r (x) = 0 or deg(r) < deg(f).
Sketch of Proof. The proof of the division algorithm can be repeated here, once we ob-
servethat LT(r)/LT(f) € R because f(x) ismonic. e

We now turn our attention to roots of polynomials.

Definition. If f(X) € K[x], where k is a field, then aroot of f(X) in k is an element
a € kwith f(a) = 0.

Remark. The polynomia f(x) = x? — 2 hasiits coefficients in Q, but we usually say
that ~/2 isaroot of f(x) eventhough +/2isirrational; that is, v/2 ¢ Q. We shall see later,
in Theorem 3.123, that for every polynomia f(x) € k[x], where k is any field, thereis
alarger field E that contains k as a subfield and that contains all the roots of f (x). For
example, x? — 2 € I3[x] hasno root in I3, but we shall see that a version of +/2 does exist
in some (finite) field containing I3. «

We will use the following elementary exercise in the proof of the next lemma. If
f(x), g(x) € R[x], where R isacommutative ring, write

ax) = f(x)+g(x) and m(x) = f(xX)g(x);

evaluating at u € Rgivesa(u) = f(u) + g(u) and m(u) = f (u)g(u).
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Lemma 3.23. Let f(X) € k[x], wherekisafield, andletu € k. Thenthereisq(x) € Kk[x]
with
f(X) =q0)x—u + f(u).

Proof. Thedivision agorithm gives
fOO) =X —u) +r;

the remainder r is a constant because X — u has degree 1. Now evaluate:
f(w=aqgWu-uw+r,

andsor = f(u). e

There is a connection between roots and factoring.
Proposition 3.24. If f(x) € k[x], wherek isafield, thenaisaroot of f(x) ink if and
only if x — a divides f (x) inKk[X].

Proof. Ifaisarootof f(x)ink,then f(a) = Oandthelemmagives f (x) = q(x)(x—a).
Conversely, if f(X) = g(X)(x—a), thenevaluatingat agives f(a) = g(a)(@a—a) =0. o

Theorem 3.25. Letk beafieldandlet f(x) € K[x]. If f(x) hasdegreen, then f (x) has
at most n rootsin k.

Proof. We prove the statement by inductiononn > 0. If n = 0, then f (X) isanonzero
constant, and so the number of itsrootsin k is zero. Now let n > 0. If f(x) has no roots
in k, then we are done, for 0 < n. Otherwise, we may assume that thereisa € k witha a
root of f(x); hence, by Proposition 3.24,

f(x) =aqx)(x—a);
moreover, q(x) € K[x] hasdegreen — 1. If thereisaroot b € k with b # a, then
0= f(b)=q)(b-a.

Sinceb — a # 0, we have q(b) = 0 (because k isafield, henceisadomain), sothat bisa
root of q(x). Now deg(q) = n — 1, so that the inductive hypothesis says that q(x) has at
most n — 1rootsin k. Therefore, f(x) hasat most nrootsink. e

Example 3.26.

Theorem 3.25 is not true for polynomials with coefficients in an arbitrary commutative
ring R. For example, if R = I, then the quadratic polynomial x% — 1 € Ig[x] has 4 roots:
[1]. [3]. [3], and [7]. <
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Corollary 3.27. Everynthroot of unity in C isequal to
e?mikin — cos(z”Tk) +isn (Z”Tk) :
wherek=0,1,2,...,n—1.

Proof. We have seen, in Corollary 1.35, that each of the n different complex numbers
e?"1k/M js an nth root of unity; that is, each isaroot of X" — 1. By Theorem 3.25, there can
be no other complex roots. e

Recall that every polynomia f(x) € k[x] determines the polynomia function k — k
that sendsa into f (a) for al a € k. In Exercise 3.22 on page 130, however, we saw that a
nonzero polynomial inIp[x] (e.g., xP — x) can determine the constant function zero. This
pathology vanishes when the field k is infinite.

Corollary 3.28. Letk beaninfinitefieldandlet f (x) and g(x) be polynomialsink[x]. If
f (x) and g(x) determine the same polynomial function [i.e., if f(a) = g(a) for all a € K],
then f (x) = g(x).

Proof. If f(x) # g(x), then the polynomia h(x) = f(x) — g(x) is nonzero, so that it
has some degree, say, n. Now every element of k isaroot of h(x); sincek isinfinite, h(x)
has more than n roots, and this contradicts the theorem. o

This proof yields a more genera result.

Corollary 3.29. Let k be any field, perhaps finite. If f(x), g(x) € k[x], if deg(f) <
deg(g) < n,andif f(a) = g(a) for n + 1 elementsa € k, then f (x) = g(x).

Sketch of Proof. If f #£ g, thendeg(f — g) isdefinedand deg(f —g) <n. e
Here is another nice application of Theorem 3.25.

Theorem 3.30. If kisafield and G is a finite subgroup of the multiplicative group k*,
then G iscyclic. In particular, if k itself isfinite (e.g., k = 1), then k> iscyclic.

Proof. Letd beadivisor of |G|. If there are two subgroups of G of order d, say, S and
T,then |SUT| > d. Buteacha € SU T satisfiesad = 1, by Lagrange’s theorem, and
hence it isaroot of x4 — 1. This contradicts Theorem 3.25, for this polynomial now has
too many rootsin k. Thus, G iscyclic, by Theorem 2.86. e

Definition. If k is a finite field, a generator of the cyclic group k* is called a primitive
element of k.

Although the multiplicative groups I 5 are cyclic, no explicit formulagiving a primitive
element of each of them isknown. For example, finding a primitive element of Fo57 essen-
tially involves checking the powers of each [i], where 1 < i < 257, until oneisfound for
whichi™ % 1 mod 257 for all positive integers m < 256.

The definition of a greatest common divisor of polynomials is essentialy the same as
the corresponding definition for integers.
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Definition. [If f(Xx) and g(x) are polynomiasin k[x], wherek is afield, then acommon
divisor isapolynomial ¢(x) € k[x] withc(x) | f(x) and c(x) | g(x). If f(x) and g(x) in
k[x] are not both O, define their greatest common divisor, abbreviated gcd, to be the monic
common divisor having largest degree. If f(x) = 0 = g(x), define their gcd = 0. The
ged of f(x) and g(x) [which is uniquely determined by f (x) and g(x)] is often denoted

by (f, 9).

Theorem 3.31. If k isa field and f(x), g(x) € K[x], then their gcdd(x) is a linear
combination of f (x) and g(x); that is, there are s(x), t(x) € k[x] with

d(x) = s(x) f (x) + t(X)g(x).

Sketch of Proof.  This proof isvery similar to the corresponding result in Z; indeed, once
we introduce principal ideal domains, we will prove this theorem and its analog in Z si-
multaneously (see Theorem 3.57). e

Corollary 3.32. Let k be a field and let f(x), g(x) € k[x]. A monic common divisor
d(x) isthegcd if and only if d(x) isdivisible by every common divisor; that is, if c(x) isa
common divisor, then c(x) | d(x).

Moreover, f(x) and g(x) have a unique gcd.

Sketch of Proof.  Analogous to the proof of Proposition 1.8. e

Every polynomial f (x) isdivisible by u and by uf (x), where u isaunit. The analog of
aprime number is apolynomial having only divisors of these trivial sorts.

Definition. Anelement p inadomain R isirreducible if pisneither O nor aunit and, in
any factorization p = uv in R, either u or v isaunit. Elementsa, b € R areassociates if
thereisaunit u € Rwithb = ua.

For example, aprime p € Z is an irreducible element, asis —p. We now describe
irreducible polynomials p(x) € k[x], when k isafield.

Proposition 3.33. If kisajfield, then a polynomial p(x) € K[x] isirreducibleif and only
if deg(p) = n > 1 and there is no factorization in k[x] of the form p(x) = g(x)h(x) in
which both factors have degree smaller than n.

Proof. Weshow first that h(x) € k[x] isaunitif andonly if deg(h) = 0. If h(x)u(x) = 1,
then deg(h) + deg(u) = deg(1) = 0; since degrees are nonnegative, we have deg(h) = 0.
Conversely, if deg(h) = 0, then h(x) isanonzero constant; that is, h € k; sincek isafield,
h has an inverse.

If p(x) isirreducible, then its only factorizations are of the form p(x) = g(x)h(x),
where g(x) or h(x) isaunit; that is, where either deg(g) = 0 or deg(h) = 0. Therefore,
p(x) has no factorization in which both factors have smaller degree.

Conversely, if p(x) is not irreducible, then it has a factorization p(x) = g(x)h(x) in
which neither g(x) nor h(x) isaunit; that is, neither g(x) nor h(x) has degree 0. Therefore,
p(x) has afactorization as a product of polynomials of smaller degree. o
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If k is not a field, however, then this characterization of irreducible polynomials no
longer holds. For example, 2x + 2 = 2(x + 1) is not irreducible in Z[x], even though,
in any factorization, one factor has degree 0 and the other degree 1 (when k is a field, the
units are the nonzero constants, but thisis no longer true for more general coefficients).

Asthe definition of divisibility depends on the ambient ring, so irreducibility of a poly-
nomial p(x) € K[x] aso depends on the commutative ring k[x] and hence on the field
k. For example, p(x) = x2 4+ lisirreducible in R[x], but it factors as (x +i)(x — i) in
C[x]. On the other hand, alinear polynomial f (x) isawaysirreducible [if f = gh, then
1 = deg(f) = deg(g) + deg(h), and so one of g or h must have degree 0 while the other
has degree 1 = deg( f)].

Corollary 3.34. Letk beajfieldandlet f(x) e k[x] be a quadratic or cubic polynomial.
Then f (x) isirreducible in k[x] if and only if f (x) doesnot have aroot in k.

Sketch of Proof. If f(x) = g(x)h(x) and neither g nor h is constant, then deg(f) =
deg(g) + deg(h) impliesthat at least one of the factorshasdegree 1. o

It is easy to see that Corollary 3.34 can be false if deg(f) > 4. For example, consider
f(x) =x*+2x2+ 1= (x2+ D2inR[x].

Example 3.35.
(i) We determine the irreducible polynomialsin Io[x] of small degree.

As always, the linear polynomials x and x + 1 areirreducible.

There are four quadratics: x2; x2 + x; X2 + 1; x%2 4+ x + 1 (more generally, there
are p" monic polynomials of degree n in Ix[x], for there are p choices for each of the n
coefficients ap, ..., ap—1). Since each of the first three has aroot in I, there is only one
irreducible quadratic.

There are eight cubics, of which four are reducible because their constant termis0. The
remaining polynomials are

X3+ 1; X3+ X+ 1L X3+ x% + 1; X34+ X%+ x + 1L

Since 1 isaroot of the first and fourth, the middle two are the only irreducible cubics.

There are 16 quartics, of which eight are reducible because their constant term is 0. Of
the eight with nonzero constant term, those having an even number of nonzero coefficients
have 1 as aroot. There are now only four surviving polynomials f (x), and each of them
hasnorootsinIo; i.e., they have no linear factors. If f(x) = g(x)h(x), then both g(x) and
h(x) must be irreducible quadratics. But there is only one irreducible quadratic, namely,
X2+ x4+ 1, and s0 (x? 4+ x 4+ 1)% = x* 4+ x? + Lisreducible while the other three quartics
areirreducible. The following list summarizes these observations.

Irreducible Polynomials of Low Degree over I
degree2:  x?+x+1.
degree 3: X3+ X+ 1; x3 4+ x2 4+ 1.
degree 4: x4+ x3 41 X4+ x+1; X+ x3 4+ x2 4+ x4+ 1.
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(i) Hereis alist of the monic irreducible quadratics and cubics in I3[x]. The reader can
verify that the list is correct by first enumerating all such polynomials; there are 6 monic
guadratics having nonzero constant term, and there are 18 monic cubics having nonzero
constant term. It must then be checked which of these have 1 or —1 as aroot (it is more
convenient to write —1 instead of 2).

Monic Irreducible Quadratics and Cubics over I3

degree2:  x?41; X2+ x —1; x2—x—1.

degree 3: x3—x+1; X34+ x2 —x+1; x3 —x2 41
X3 —x24+x+1; x3—x—1; X3+ x2 - 1;
x3+x2+x—1 x3-x2-x—1 <«

It is easy to see that if p(x) and q(x) are irreducible polynomials, then p(x) | q(x) if
and only if there is a unit u with q(x) = up(x). If, in addition, both p(x) and q(x) are
monic, then p(x) | g(x) implies p(x) = q(x).

Lemma 3.36. Letk beajfield, let p(x), f(x) € k[x], and let d(x) = (p, f) betheir gcd.
If p(x) isa monic irreducible polynomial, then

1 ifpx)f fx)

d(x) = .
px) if p(x) | f(x).

Sketch of Proof.  Sinced(x) | p(x), wehaved(x) = 1or d(x) = p(X). e
Theorem 3.37 (Euclid’s Lemma). Let k beafield and let f(x), g(x) € K[x]. If p(x)
isan irreducible polynomial in k[x], and p(x) | f(X)g(x), then either

px) | fx) or  px) | gx).
More generally, if p(x) | f1(X)--- fa(x), then p(x) | fj (x) for somei.

Sketch of Proof. Assumethat p | fg butthat p 4 f. Since pisirreducible, (p, f) = 1,
andso 1 = sp + tf for some polynomials s and t. Therefore,

g =spg +tfg.

But p | fg, by hypothesis,andsop|g. e

Definition. Two polynomials f (x), g(x) € k[x], wherek is afield, are called relatively
prime if their gcd is 1.
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Corollary 3.38. Let f(x), g(x), h(x) € k[x], where k isafield, and let h(x) and f (x)
berelatively prime. If h(x) | f(X)g(x), thenh(x) | g(x).

Sketch of Proof. The proof of Euclid’s lemma also works here: Since (h, f) = 1, we
havel=sh+tf,andsog=shg+tfg. e

Definition. [f kisafield, then arational function f (x)/g(x) € k(x) isin lowest terms if
f (x) and g(x) arerelatively prime.

Proposition 3.39. If kisa field, every nonzero f (x)/g(x) € k(x) can be put in lowest
terms.

Sketch of Proof. If f =df’ andg = dg’, whered = (f, g), then f’ and g’ arerelatively
prime, and so f’/g isinlowest terms. o

The next result allows us to compute geds.

Theorem 3.40 (Euclidean Algorithm). Ifkisafieldand f(x), g(x) € K[x], then there
are algorithms for computing the ged (f, g), as well as for finding a pair of polynomials
s(x) and t (x) with

(f,9) =sX) f(x) +t(xX)g9(x).

Proof. The proof is essentially a repetition of the proof of the euclidean algorithmin Z;
just iterate the division algorithm:

g=mf+r
f=0pri+r2
r =qarz2+r3

-4 =0n-2M-3+TIn-2
-3 =0n-1M-2+"In-1
-2 =0nM-1+"n

'n—1 = On+1ln.

Since the degrees of the remainders are strictly decreasing, this procedure must stop after
a finite number of steps. The claim isthat d = ry, isthe gcd, once it is made monic. We
seethat d isacommon divisor of f and g by back substitution: work from the bottom up.
To seethat d is the ged, work from the top down to show that if ¢ is any common divisor
of f andg,thenc |r; for everyi. Finaly, to find sand t withd = sf + tg, again work
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from the bottom up.

' =Trn-2—0nln-1
= -2 —0n(Frn-3 — On—1rn-2)
=1+ 0gh-1rn-2—0nfn-3
= (14 0gn-1)(rn—4 — Gn—2rn—-3) — Gnfn-3
=1+ 0h-Drn-4—[A+ h-1)Gr—2 + An]rn-3

=sf+tg e
Here is an unexpected bonus from the euclidean agorithm.

Corollary 3.41. Let k be a subfield of a field K, so that k[x] is a subring of K[x]. If
f(x), g(x) € K[x], then their gcd in k[x] isequal to their gcd in K[x].

Proof. Thedivision algorithm in K[Xx] gives
g9(x) = Q(X) f(x) + R(x),

where Q(x), R(x) € K[x]; since f (x), g(x) € K[x], thedivision algorithm in k[x] gives
9(x) = q(x) f () +r(X),

where q(x), r (x) € K[x]. But the equation g(x) = q(x) f(x) + r (x) aso holdsin K[x]
because k[x] < K[x], so that the uniqueness of quotient and remainder in the division
algorithm in K[x] gives Q(x) = q(x) € K[x] and R(x) = r(x) € K[x]. Therefore, the list
of equations occurring in the euclidean algorithm in K[x] isexactly the samelist occurring
in the euclidean algorithm in the smaller ring k[x], and so the same gcd is obtained in both
polynomial rings. e

For example, the ged of x3 — x2 4+ x — 1 and x* — 1 is x? + 1, whether computed in
R[x] or in C[x], in spite of the fact that there are more divisors with complex coefficients.

Here is the analog for polynomials of the fundamenta theorem of arithmetic; it shows
that irreducible polynomials are “building blocks” of arbitrary polynomials in the same
sense that primes are building blocks of arbitrary integers. To avoid long sentences, let us
agree that a “product” may have only one factor. Thus, when we say that a polynomial
f (x) is aproduct of irreducibles, we allow the possibility that the product has only one
factor, that is, that f (x) isitself irreducible.

Theorem 3.42 (Unique Factorization). If k is a field, then every polynomial f(x) €
k[x] of degree > 1isa product of a nonzero constant and monic irreducibles. Moreover, if
f (x) has two such factorizations

f(X) =api(x) - - pm(X) and f(x) =bge(x) - - - g (x),
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that is, a and b are nonzero constants and the p’s and q’s are monic irreducibles, then
a = b, m = n, and the q’s may be reindexed so that g; = p; for all i.

Proof. We prove the existence of a factorization for a polynomia f (x) by (the second
form of) inductionon deg(f) > 1. If deg(f) = 1, then f (x) = ax+c = a(x+alc). As
every linear polynomia, x + a~c isirreducible, and so it is a product of irreducibles in
our present usage of “product.” Assume now that deg(f) > 1. If f(x) isirreducible and
its leading coefficient is a, write f (x) = a(a~1 f (x)); we are done, for a=1 f (x) ismonic.
If f(x)isnotirreducible, then f (x) = g(x)h(x), where deg(g) < deg(f) and deg(h) <
deg( f). By theinductive hypothesis, there are factorizations g(x) = bp1(x) - - - pm(x) and
h(x) = cqi(X) - - - gn(X), where the p’s and g’s are monic irreducibles. It follows that

f(X) = (bc)pr(X) - - - Pm(X)qe(X) - - - Gn(X),

asdesired.
We now prove, by induction on M = max{m, n} > 1, that if there is an equation

ap1(X) - -+ Pm(X) = ba(X) - - - G (X)

in which a and b are nonzero constants and the p’s and q’s are monic irreducibles, then
a = b, m = n, and the q’s may be reindexed so that g = p; for all i. For the base step
M = 1, the hypothesis gives a polynomial, cal it g(x), with g(x) = ap1(x) = bgi(x).
Now a is the leading coefficient of g(x), because p1(x) is monic; similarly, b is the
leading coefficient of g(x) because gi(x) is monic. Therefore, a = b, and canceling
gives p1(X) = gu(x). For the inductive step, the given equation shows that pm(x) |
g1(X) - - - gn(x). By Euclid’s lemma for polynomials, there is somei with pm(x) | g (X).
But q; (x), being monic irreducible, has no monic divisors other than 1 and itself, so that
gi (X) = pm(X). Reindexing, we may assume that g, (X) = pm(X). Canceling this factor,
we have ap1(X) - - - pm—1(X) = bgi(X) - - - gh—1(X). By the inductive hypothesis, a = b,
m — 1 = n — 1 (hence m = n), and after possiblereindexing, g; = p; forali. e

Let k beafield, and assumethat therearea, ry, ..., rn € k with

n
f(x) = aH(x —r).

i=1
Ifri,...,rs, wheres < n, arethedistinct roots of f (x), then collecting terms gives
f) =ax —r)®x—ra)% .- (x —rg)®,

wherether; aredistinct and ej > 1 for all j. We call ej the multiplicity of theroot rj. As
linear polynomials are always irreducible, unique factorization shows that multiplicities of
roots are well-defined.

Although there are some techniques to help decide whether an integer is prime, the
genera problem is a very difficult one. It is also very difficult to determine whether a
polynomial isirreducible, but we now present some useful techniquesthat frequently work.
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We know that if f(x) € k[x] and r isaroot of f(x) in afield k, then there is a
factorization f (X) = (x—r)g(x) ink[x], sothat f (x) isnotirreducible. In Corollary 3.34,
we saw that this decides the matter for quadratic and cubic polynomials in K[x]: such
polynomials areirreducible in k[x] if and only if they have no rootsin k. Thisis no longer
true for polynomials of degree > 4.

Theorem 3.43. Let f(x) =ag+aiXx + --- + anx" € Z[x] < Q[X]. Every rational root
r of f(x) hastheformb/c, whereb | agandc | a,.

Proof. Wemay assumethatr = b/cisinlowest terms, that is, (b, ¢) = 1. Substituting r
into f(x) gives
0= f(b/c) =ag+aib/c+ -+ anb"/c",

and multiplying through by c" gives
0=apc" +ajhbc" 1+ ... +a,b".

Hence, apc” = b(—a;c"1 — ... —a,b" 1), that is, b | agc”. Since b and ¢ are relatively
prime, it followsthat b and c" are relatively prime, and so Euclid’slemmain Z givesb | ag.
Similarly, apb" = c(—ap_1b"1 — ... —apc" 1), c | a,b", andc | a,. e

Definition. A complex number « is called an algebraic integer if o isaroot of amonic
f(x) € Z[x].

We note that it is crucia, in the definition of algebraic integer, that f(x) € Z[x] be
monic. Every agebraic number z, that is, every complex number z that is aroot of some
polynomial g(x) € Q[X], is hecessarily aroot of some polynomial h(x) € Z[x]; just clear
the denominators of the coefficients of g(x).

Of course, every ordinary integer is an algebraic integer. To contrast ordinary integers
with more general algebraic integers, elements of Z may be called rational integers.

Corollary 3.44. A rational number z that is an algebraic integer must liein Z. More
precisaly, if f(x) € Z[x] € Q[x] isa monic polynomial, then every rational root of f (x)
isan integer that divides the constant term.

Proof. If f(x) =agp+aix+---+anx"ismonic, then ay = 1, and Theorem 3.43 applies
atonce. e

For example, consider f(x) = x2 + 4x2 — 2x — 1 € Q[x]. By Corollary 3.34, this
cubic isirreducible if and only if it has no rational root. As f (x) is monic, the candidates
for rational roots are +1, for these are the only divisors of —1in Z. But f (1) = 2 and
f(—=1) = 4, so that neither 1 nor —1 isaroot. Thus, f(x) hasno rootsin @, and hence
f (x) isirreduciblein Q[x].

This corollary gives a new solution of Exercise 1.15(i) on page 12. If mis an integer
that is not a perfect square, then the polynomial x2 — m has no integer roots, and so ./mis
irrational. Indeed, the reader can now generalize to nth roots: If mis not an nth power of
an integer, then /misirrational, for any rational root of x" — m must be an integer.
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EXERCISES

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

Find the gcd of X2 — x — 2 and x3 — 7x + 6 inI5[x], and expressit as alinear combination of
them.
Hint. Theanswerisx — 2.

Let Rbeadomain. If f(x) € R[x] hasdegreen, provethat f (x) hasat most n rootsin R.
Hint. UseFrac(R).

Show that the following pseudocode implements the euclidean algorithm finding the ged f (x)
and g(x) inI3[x], where f (x) = x2 + 1 and g(x) = x5 + x + 1.

Input: g, f
Output: d
d:=f;s:=g¢g
WHILE s # 0DO
rem := remainder(h, s)

h:i=s
S :=rem
END WHILE

Prove the converse of Euclid’s lemma. Let k be afield and let f (x) € k[x] be a polynomial
of degree > 1; if, whenever f(x) divides a product of two polynomials, it necessarily divides
one of the factors, then f (x) isirreducible.

Let f(x), g(x) € R[x], where Risadomain. If the leading coefficient of f(x) isaunitin R,
then the division algorithm gives a quotient q(x) and aremainder r (x) after dividing g(x) by
f (x). Provethat q(x) andr (x) are uniquely determined by g(x) and f (x).

Hint. UseFrac(R).

Let k be afield, and let f(x), g(x) € K[x] be relatively prime. If h(x) € k[x], prove that
f () ['h(x) and g(x) | h(x) imply f(x)g(x) | h(x).

Hint. See Exercise 1.19 on page 13.

If k isafidd, provethat v/1 — x2 ¢ k(x), where k(x) is the field of rational functions.

Hint. Mimic aproof that /2 isirrational.

(i) In R[x], where Risafield, let f = p{---pi™and g = p;--- p", where the p;’s
are distinct monic irreducibles and g, i > O for al i (as with integers, the device
of allowing zero exponents alows us to have the same irreducible factors in the two
factorizations). Provethat f | gif andonly if < & foralli.

(ii) Usethe (unique) factorization into irreducibles to give formulas for the gcd and lcm of
two polynomials analogous to the formulasin Proposition 1.17.

If pisaprime, prove that there are exactly %(p3 — p) monic irreducible cubic polynomials
inIp[x]. (A formulafor the number of monic irreducible polynomials of degree ninlp[x] is
given on page 194.)

(i) Let f(x) = (x —ag)---(x —an) € K[x], where k is a field. Show that f(x) has
no repeated roots (that is, al the g are distinct elements of k) if and only if the gcd
(f, f') = 1, where f/(x) isthe derivative of f.

Hint. Use Exercise 3.24 on page 130.

(if) Provethat if p(x) € Q[x] isanirreducible polynomial, then p(x) has no repeated roots

inC.



Sec. 3.5 Homomorphisms 143

Hint. Corollary 3.41.
3.38 Let¢ = e2i/n,
(i) Provethat
XM= 1=x-DX-Ox—¢2)--(x—¢"h

and, if n isodd, that
X"+ 1= X+ DX+ X+ x4+ "D,

Hint. Use Corollary 3.29.
(if) For numbersa and b, prove that
a"—b"=(@a-b@a-¢b@-¢) - @-¢"'h)
and, if nisodd, that
a"+b" = @+ b)@+cb)y@+¢?h)--- @+ " ).

Hint. Setx =a/bif b #0.

3.5 HOMOMORPHISMS

Just as homomorphisms are used to compare groups, so are homomorphisms used to com-
pare commutative rings.

Definition. If A and R are (commutative) rings, a (ring) homomorphism is a function
f: A— Rsuchthat

) fy=1
(i) f@+a)=f@+ f@)fordla, a €A
(iii) f(aa) = f(a)f(@)forala,a e A.

A homomorphism that is also a bijection is called an isomorphism. Commutative rings A
and R are called isomorphic, denoted by A = R, if thereisan isomorphism f: A — R.

Example 3.45.

(i) Let R be adomain and let F = Frac(R) denote its fraction field. In Theorem 3.13
we said that R is a subring of F, but that is not the truth; R is not even a subset of F.
We did find asubring R’ of F, however, that has a very strong resemblance to R, namely,
R ={[a,1] :a€ R} € F. Thefunction f: R — R/, givenby f(a) = [a, 1], iseasily
seen to be an isomorphism.

(if) When an element in acommutative ring R was “identified” with a constant polynomial
[in the proof of Lemma 3.16(iii)], that is, r was identified with (r,0, 0, ...), we implied
that Risasubring of R[x]. Thesubset R = {(r,0,0,...) : r € R} isasubring of R[x],



144 Commutative Rings | Ch. 3

and it is easy to see that the function f: R — R’, defined by f(r) = (r,0,0,...),isan
isomorphism.

(iii) If Sisasubring of acommutative ring R, thentheinclusioni: S — Risaring homo-
morphism because we have insisted that the identity 1 of Rliesin S. [See Exercise 3.4(iii)
onpage124] «

Example 3.46.
(i) Complex conjugation z = a +ib > Z = a — ib isan isomorphism C — C because
1=1zZ4+w=Z+w,andZw = Zw

(ii) Here is an example of a homomorphism of rings that is not an isomorphism. Choose
m > 2anddefine f : Z — I, by f(n) = [n]. Noticethat f issurjective (but not injective).

(iii) The preceding example can be generalized. If R isacommutative ring with its “one”
denoted by ¢, then the function x: Z — R, defined by x(n) = ne, is aring homomor-
phism.8

(iv) Let R be acommutative ring, and let a € R. Define the evaluation homomorphism
€: R[X] > Rbyey(f(x)) = f(a); thatis, if f(x) =Y rix', then f(a) =) rja'. We
let the reader check that e, is aring homomorphism. <

Certain properties of a ring homomorphism f: A — R follow from its being a ho-
momorphism between the additive groups A and R. For example, f(0) = 0, f(—a) =
—f(a),and f(na) = nf(a) foral n e Z.

Lemma 3.47. If f: A— Risaring homomorphism, then, for all a € A,

(i) f@)=f@"foraln=>0;

(i) ifaisaunit, then f(a) isaunitand f(a 1) = f(a)~1;infact, if aisa unit, then
f@M=f@ "foraln>1;

(iii) if f: A— Risaring homomorphism, then
f(U(A) =U(R),
where U (A) isthe group of units of A; if f isanisomorphism, then

U(A) Z U(R).

Sketch of Proof. (i) Inductiononn > 0.

(i) Ifab =1,then 1 = f(ab) = f(a) f(b). The last statement follows by induction on
n>1

(iii) Immediate, from part (ii). e

8Recall that if a € R and n is a positive integer, then na is the additive version of the multiplicative notation
a"; that is, na isthe sum of a with itself n times.
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Proposition 3.48. |f Rand Sare commutativeringsand ¢ : R — Sisaring homomor-
phism, then there is a ring homomorphism ¢*: R[x] — S[x] given by

P iroFTIX+12X2 4 > (o) + 9(r)X + 9(r)X2 + -+ .

Sketch of Proof. Itisclear that ¢* iswell-defined, and a routine calculation shows that it
isaring homomorphism. e

Definition. If f: A — Risaring homomorphism, then itskernel is
ker f = {a € Awith f(a) =0},

and itsimage is
imf={reR:r = f(a) forsomea e R}.

Noticethat if weforget their multiplications, then therings A and R are additive abelian
groups and these definitions coincide with the group-theoretic ones.

Let k be a commutative ring, let a € k, and, as in Example 3.46(iv), consider the
evaluation homomorphism e; : k[x] — k sending f(x) — f(a). Now e, is aways
surjective, for if b € k, thenb = ey(f), where f(X) = x — a + b. By definition, ker e,
consists of all those polynomials g(x) for which g(a) = O; that is, ker e; consists of all the
polynomialsin k[x] having a as aroot.

Thekernel of agroup homomorphism isnot merely asubgroup; it isanormal subgroup;
that is, it isaso closed under conjugation by any element in the ambient group. Similarly,
if Risnot thezeroring, thekernel of aring homomorphism f: A — Risamost asubring
[ker f isnot asubring because it never contains 1: f (1) = 1 # 0], and we shall see that it
is closed under multiplication by any element in the ambient ring.

Definition. Anideal in acommutativering Risasubset | of R such that
(i Oel;
(i) ifa,be |, thena+bel;®

(iii) ifael andr € R, thenrae l.

The ring R itself and the subset consisting of 0 aone, which we denote by {0}, are
alwaysidealsin acommutativering R. Anidea | # Riscaled aproper ideal.

Example 3.49.
If by, by, ..., by liein R, then the set of all linear combinations

I ={riby +raby+---+rpby :ri € Rforali}

91N contrast to the definition of subring, it sufficesto assumethata+b e | insteadofa—b e |. If | isan
ideadl andb e |, then(—1)be l,andsoa—b=a+ (-Dbe l.
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isanideal in R. Wewrite | = (by, by, ..., bp) in this case, and we call | the ideal
generated by b1, by, ..., by. Inparticular, if n = 1, then

Il =Mm)={b:r e R}

isanideal in R; (b) consists of all the multiples of b, and it is called the principal ideal
generated by b. Notice that R and {0} are always principal ideals: R = (1) and {0} = (0).
In Z, the even integers form the principal ideal (2). «

Proposition 3.50. If f: A — Risaring homomorphism, then ker f isanideal in A
andim f isasubring of R. Moreover, if Aand R are not zero rings, then ker f isa proper
ideal.

Sketch of Proof.  ker f is an additive subgroup of A; moreover, if u € ker f anda € A,
then f(au) = f(@)f(u) = f(@) -0 = 0. Hence, ker f isanided. If Ris not the zero
ring, then 1 # O; hence, theidentity 1 € A doesnot lieinker f, because f(1) =1 # 0in
R, and so ker f isaproper ided. It isroutineto check thatim f isasubringof R. e

Example 3.51.
(i) If anideal | inacommutativering R contains 1, then | = R, for now | containsr =r1
for every r € R. Indeed, if | containsaunit u, then | = R, for then | containsu=u = 1.
(i) It followsfrom (i) that if Risafield, thentheonly ideals | in R are {0} and R itself: if
| # {0}, it contains some nonzero element, and every nonzero element in afield isaunit.
Conversely, assume that R isanonzero commutative ring whose only ideals are R itself
and {0}. If a € Randa # 0, then the principal ideal (a) = R, for (a) # 0, and so
1le R=(a). Thereisthusr € Rwithl =ra;thatis, ahasaninversein R,andso Risa
fild. =

Proposition 3.52. Aring homomorphism f : A — Risaninjectionifandonlyif ker f =
{0}.

Sketch of Proof.  This follows from the corresponding result for group homomorphisms,
because f isahomomorphism from the additive group of A tothe additivegroupof R. e

Corollary 3.53. If f: k — Risaring homomorphism, wherek is a field and R is not
the zeroring, then f isan injection.

Proof. Theonly proper ideal ink is{0}. e

Theorem 3.54. If kisafield, then everyideal | ink[x] isa principal ideal. Moreover, if
| # {0}, thereis a monic polynomial that generates | .

Sketch of Proof. If k is a field, then k[x] is an example of a euclidean ring. In Theo-
rem 3.60, we will prove that every ideal in aeuclideanringisaprincipal ideal. e
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Definition. A domain R is a principal ideal domain if every ided in R is a principal
ideal. This name s often abbreviated to PID.

Example 3.55.
(i) Thering of integersisaPID.

(ii) Every field isaPID, by Example 3.51(ii).
(iii) If k isafield, then the polynomial ring k[x] isa PID, by Theorem 3.54.

(iv) There arerings other than Z and k[X], wherek isafield, that have adivision agorithm;
they are called euclidean rings, and they, too, are PIDs. We shall consider them in the next
section. <

It isnot true that idealsin arbitrary commutative rings are always principal ideals.

Example 3.56.
Let R = Z[x], the commutative ring of all polynomialsover Z. It is easy to see that the set
| of al polynomials with even constant term is an ideal in Z[x]. We show that | isnot a
principal ideal.

Suppose there is d(x) € Z[x] with | = (d(x)). The constant 2 € |, so that there
is f(X) € Z[x] with 2 = d(x) f(x). Since the degree of a product is the sum of the
degrees of the factors, 0 = deg(2) = deg(d) + deg(f). Since degrees are nonnegative, it
follows that deg(d) = 0[i.e, d(x) is anonzero constant]. As constants here are integers,
the candidates for d(x) are =1 and +2. Suppose d(x) = =£2; since X € I, thereis
g(X) € Z[x] withx = d(x)g(x) = £2g(x). But every coefficient on theright sideis even,
while the coefficient of x on the left sideis 1. This contradiction gives d(x) = +1. By
Example 3.51(ii), | = Z[x], another contradiction. Therefore, no such d(x) exists, that is,
theideal | isnot aprincipal ideal. «

Certain theorems holding in Z carry over to PIDs once the standard definitions are
generalized; the notion of divisor has already been generalized.

Definition. An element § in acommutativering R is agreatest common divisor, gcd, of
dementsa, 8 € Rif

(i) 8 isacommon divisor of « and 8;

(i) if y isany common divisor of « and 8, then y | 6.

Greatest common divisors, when they exist, need not be unique; for example, it is easy
to see that if ¢ is a greatest common divisor of f and g, then soisuc for any unitu € R.
In the specia case R = Z, we force uniqueness of the ged by requiring it to be positive; if
R = K[x], where k isafield, then we force uniqueness of the gcd by further requiring it to
be monic.
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Remark. Let RbeaPID andlet 7, € Rwith x irreducible. A gcd § of 7 and « is, in
particular, adivisor of 7. Hence, m = 8¢, and irreducibility of = forces either § or ¢ to be
aunit. Now o = 8. If § isnot aunit, then ¢ isaunit, and so

a=488= mz_lﬁ;
that is, = | «. We concludethat if  t «, then § isaunit; that is, 1isagcd of 7 and . «

For an example of a domain in which a pair of elements does not have a gecd, see
Exercise 3.60 on page 158.

Theorem 3.57. Let RbeaPID.
(i) Bverya, B8 € Rhasagcd, §, which isalinear combination of « and 8:

d=oa+ 18,

whereo, 7 € R.
(if) If anirreducible element = € R divides a product o3, then either = | @ or 7 | B.

Proof. (i) We may assume that at least one of « and g isnot zero (otherwise, theged isO
and the result is obvious). Consider the set | of all the linear combinations:

| ={ca+1tB:0,7inR}

Now « and g arein | (takeo = 1and t = O or viceversa). It iseasy to check that | isan
ideal in R, and so thereisé € | with | = (8), because RisaPID; we claim that § isagcd
of o and 8.

Sincea € | = (8), wehavea = ps for some p € R; that is, § isadivisor of «;
similarly, § isadivisor of 8, and so § isacommon divisor of « and 8.

Since s € |, itisalinear combination of « and 8: Thereare o, T € Rwith

d =o0ua+18.
Findly, if y is any common divisor of « and 8, thena = ya’ and 8 = B/, so that y
divides§, for § = oa + 8 = y (0’ + t8"). We conclude that § is a ged.

(i) If 7 | o, wearedone. If 7 1 «, then the remark saysthat 1 isagcd of = and «. There
arethuselementso, 1 € Rwithl =07 + ta, and so

B=onp+ tap.
Sincerw | af, itfollowsthat 7 | B, asdesired. o

Example 3.58.

If I and J areidealsin acommutativering R, we now show that | N J isalsoanideal in R.
SinceOe |l and0e J,wehaveOec I NJ.Ifa,belnd,thena—bel anda—be J,
foreachisanidea,andsoa—belnJ.lfaelNnJandr € R, thenrae | andra € J,
hencera € | N J. Therefore, | N J isanideal. With minor alterations, this argument also
provesthat the intersection of any family of idealsin Risalsoanidea in R. «
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Definition. If f and g are elementsin a commutative ring R, then a common multiple
isanedementm € Rwith f | mandg | m. If f and g in R are not both 0, define their
least common multiple, abbreviated Icm, to be a common multiple ¢ of them withc | m
for every common multiplem. If f = 0 = g, definetheir lcm = 0. Thelecmof f andgis
often denoted by [ f, g].

Least common multiples, when they exist, need not be unique; for example, it is easy
to seethat if cisaleast common multiple of f and g, then soisuc for any unitu € R. In
the specia case R = Z, we force uniqueness of the Icm by requiring it to be positive; if
R = K[x], where k isafield, then we force uniqueness of the lcm by further requiring it to
be monic.

EXERCISES

3.39 (i) Letyp: A — Rbeanisomorphism, and let v : R — A beitsinverse. Show that v is
an isomorphism.
(ii) Show that the composite of two homomorphisms (isomorphisms) is again a homomor-
phism (isomorphism).
(iii) Show that A = R defines an equivalence relation on the class of all commutative rings.
3.40 Let Rbeacommutativering and let 7 (R) bethe commutativering of all functions f : R — R
with pointwise operations.
(i) Show that R isisomorphic to the subring of F(R) consisting of al the constant func-
tions.
(i) If f(x) € R[X], letps: R— Rbedefinedbyr — f(r) [thus, ¢+ isthe polynomial
function associated to f (x)]. Show that the function ¢: R[x] — F(R), defined by
o(f (X)) = ¢, isaring homomorphism.
(iii) Show that ¢ isinjectiveif Risan infinite field.
3.41 Let | and J be nonzero idealsin acommutative ring R. If Risadomain, provethat | N J #
{0}
3.42 Let R beacommutativering. Show that the function ¢: R[x] — R, defined by
grag+agXx +apXx+ - +anx" — ag,
is a homomorphism. Describe ker ¢ in terms of roots of polynomials.
3.43 If Risacommutativering and ¢ € R, prove that the function ¢ : R[x] — R[x], defined by
f(x) > f(x+ c),isanisomorphism. In moredetail, (3", sx') =Y s(x+0)'.
Hint. Thisisaroutine but long calculation.
344 (i) Provethat F, the field with four elements (see Exercise 3.14 on page 125), and I are
not isomorphic commutative rings.
(if) Provethat any two fields having exactly four elements are isomorphic.
Hint. First provethat 1+ 1 = 0, and then show that the nonzero elementsform acyclic
group of order 3 under multiplication.
3.45 (i) Show that every element a € Iy hasa pthroot (i.e, thereisb € Ip witha = bP).
(i) Letk beafieldthat containslp asasubfield[e.g., k = Ip(x)]. For every positive integer
n, show that the function ¢n: k — K, given by ¢(a) = aP", is aring homomorphism.
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346 If Ris afield, show that R = Frac(R). More precisely, show that the homomorphism
f: R — Frac(R) in Example 3.45(i), namely, r — [r, 1], is an isomorphism.

347 (i) If Aand Raredomainsand ¢: A — Risaringisomorphism, prove that
[a, b] = [¢(@), ¢(b)]

isaring isomorphism Frac(A) — Frac(R).
(ii) Provethat if afield k contains an isomorphic copy of Z as asubring, then k must contain
an isomorphic copy of Q.
(iii) Let Rbeadomainandlet ¢: R — k bean injective ring homomorphism, wherek isa
field. Prove that there exists a unique ring homomorphism @ : Frac(R) — k extending
@, thatis, ®|R = ¢.
3.48 Let R beadomain with fraction field F = Frac(R).
(i) Provethat Frac(R[x]) = F(x).
(if) Provethat Frac(R[Xx1, X2, ..., Xn]) = F(Xq, X2, ..., Xn) (see page 129).
349 (i) If Rand Sare commutative rings, show that their direct product R x Sisalso acom-
mutative ring, where addition and multiplication in R x Sare defined “coordinatewise”:

9+, s)=+r',s+s) ad ()0’ s)=r,ss).

(ii) Show that if m and n are relatively prime, then Imn = Iy x I asrings.
Hint. See Theorem 2.81.
(iii) Show that if neither R nor Sisthe zeroring, then R x Sisnot adomain.
(iv) Showthat R x {O}isanided in R x S.
(v) Show that R x {0} isaring isomorphicto R, butitisnot asubringof R x S.
3.50 (i) If Rand Sarenonzero commutative rings, prove that

URx S =U(R) xU(S),

where U (R) isthe group of units of R.
Hint. Show that (r, s) isaunitin R x Sif andonly if r isaunitin Rand sisaunitin
S.
(ii) Redo Exercise 2.65 on page 94 using part (i).
(iii) Use part (i) to give another proof of Corollary 2.83.
3.51 Let F betheset of al 2 x 2 real matrices of the form

a b
a-[3
Provethat F isafield (with operations matrix addition and matrix multiplication), and prove

that thereisan isomorphism ¢ : F — C with det(A) = p(A)p(A).
Hint. Definegp: F — Chby ¢(A) =a+ib.

3.52 Ifkisafield and [ f, g] denotesthe lcm of monic polynomials f (x), g(x) € k[x], show that

[f.al(f.9 = fg.
Hint. See Exercise 1.26 on page 13. By definition, lcm’s are monic.
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3.53 If RisaPID and a, b € R, provethat their Icm exists.
3.54 (i) If kisafield, provethat thering of formal power seriesk[[x]] isaPID.

Hint. If | isanonzero ideal, choose t € | of smallest order. Use Exercise 3.27 on
page 130 to provethat | = (7).

(ii) Prove that every nonzero idea in k[[x]] is equal to (x") for somen > 0.
3.55 If kisafield, show that the ideal (x, y) inK[x, y] isnot aprincipal ideal (see page 129).

3.56 For every m > 1, provethat every ideal in Iy isaprincipal idea. (If miscomposite, then Iy
isnot aPID becauseit is not adomain.)

3.6 EUCLIDEAN RINGS

There are rings other than Z and k[ x], where k isa field, that have a division algorithm. In
particular, we present an example of such aring in which the quotient and remainder are
not unique. We begin by generalizing a property shared by both Z and K[x].

Definition. A euclidean ring isadomain R that is equipped with afunction
9:R—{0} > N,
called adegree function, such that

(i) a(f) <a(fg)foral f,ge Rwith f,g #0;
(i) fordl f,ge Rwith f # 0, thereexistq,r € Rwith

g=af +r,
whereeitherr =0or d(r) < a(f).

Note that if R has a degree function 9 that is identically 0, then condition (ii) forces
r = 0 always; taking g = 1 showsthat R isafield in this case.

Example 3.59.
(i) Theintegers Z is a euclidean ring with degree function a(m) = |m|. In Z, we have

a(mn) = |mn| = |m||n| = a(m)a(n).

(ii) When k is a field, the domain K[X] is a euclidean ring with degree function the usual
degree of anonzero polynomial. In k[x], we have

d(fg) =deg(fg)
= deg(f) + deg(9)
=9(f)+3(9).
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Since d(mn) = 9(m)a(n) in Z, the behavior of the degree of aproduct is not determined
by the axiomsin the definition of adegreefunction. If adegreefunction d ismultiplicative,
thatis, if

a(fg) =a(f)a(g),
then 9 iscalled anorm.
(iii) The Gaussian integers Z[i] form a euclidean ring whose degree function

d@+hi)=a%+b?

isanorm. One reason for showing that Z[i] isaeuclidean ring isthat itisthen aPID, and
hence it has unique factorization of its elements into products of irreducibles; Gauss used
this fact in his proof that if an odd prime p is sum of two squares, say p = a2 + b2, where
a and b are natural numbers, then the pair a, b is unique (see Theorem 3.66).

To seethat 9 isamultiplicative degree function, note first that if « = a + bi, then

d(a) = ad,

wherea@ = a — bi isthe complex conjugate of «. It follows that 9 (a8) = 9(«x)d(B) for al
a, B € ZJ[i], because

d(@pB) = apaf = apap = aaff = 0(a)d(B);

indeed, thisiseven truefor al o, 8 € Q[i] = {Xx + Vi : X,y € Q}, by Corollary 1.31.
We now show that 9 satisfiesthe first property of adegreefunction. If 8 = c+id € Z][i]
and 8 # 0, then

1<9(p),
for 8(8) = ¢? + d? isapositive integer; it followsthat if o, g € Z[i] and 8 # 0, then

d(a) < 3(@)d(B) = d(ap).

Let us show that 9 also satisfies the second desired property. Given «, 8 € Z[i] with
B # 0, regard «/B as an element of C. Rationalizing the denominator gives «/8 =

aB/BB = aB/d(B), o that
a/B =X+ Vi,

wherex, y € Q. Writex =a+uandy = b+ v, wherea, b € Z are integers closest

to x and y, respectively; thus, |ul, |v] < % (If x or y hastheform m + % where misan

integer, then there is achoice of nearest integer: x = m+ 3 or x = (m+1) — 1; asimilar
choice arisesif x or y hastheformm — %.) It follows that

a = B@+bi)+ B+ vi).

10The Gaussian integers are so called because Gauss tacitly used Z[i] and its norm 9 to investigate biquadratic
residues.
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Noticethat 8(u + vi) € Z[i], foritisequa to « — B(a + bi). Finally, we have
3(B(U+vi)) = 3(B)A(U + vi),

and so 9 will be a degree function if 9(u 4+ vi) < 1. And thisis so, for the inequalities
lul < $and|v] < 3 giveu? < 7 andv? < 3, andhenced(u +vi) =u2+v2 < 7 + % =
% < 1. Therefore, 9(B(uU + vi)) < 3(B), and so Z[i] is a euclidean ring whose degree
functionisanorm.

We now show that quotients and remainders may not be unique (because of the choices
noted previously). For example, let« = 3+ 5 and 8 = 2. Then«/B = % + gi; the
choices are

There are four quotients and remainders after dividing 3 4+ 5i by 2in Z[i], for each of the
remainders (e.g., 1+ i) hasdegree2 < 4 = 9(2):
3+5 =2(1+2)+(1+i);
=21+3)+ @A —i);
=22+2)+ (-1+1i);
=22+3)+(=1-1i). =

Theorem 3.60. Every euclideanring RisaPID.

Proof. Let| beanidea in R. If | = {0}, then | = (0) is principal; therefore, we may
assumethat | # (0). By the least integer axiom, the set of all degrees of nonzero elements
in | hasasmallest element, say, n; choosed < | with a(d) = n. Clearly, (d) C I, and so
it sufficesto provethereverseinclusion. If a € I, thenthereareq,r € Rwitha =qd+r,
where eitherr = 0or a(r) < a(d). Butr = a—qd € |, and so d having least degree
impliesthatr = 0. Hence,a=qd € (d),and | = (d). e

Corollary 3.61. Thering of Gaussian integersZ[i] isa principal ideal domain.

The converse of Theorem 3.60 isfalse: There are PIDs that are not euclidean rings, as
we see in the next example.

Example 3.62.
It is shown in algebraic number theory that the ring

R={a+ba:a,beZ}

where o = %(1 + +/—19), isaPID [Ris the ring of algebraic integers in the quadratic
number field Q(+/—19)]. In 1949, T. S. Motzkin showed that R is not a euclidean ring by
showing that it does not have a certain property of euclidean rings that does not mention
its degree function.
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Definition. Anelement u in adomain R isauniversal side divisor if u isnot aunit and,
for every x € R, either u | x or thereisaunit z e Rwithu | (X + 2).

Proposition 3.63. If R isa euclidean ring but not a field, then R has a universal side
divisor.

Proof. Define
S={d(v) : v # 0and v isnot aunit},

where 9 isthe degree function on R. Since Risnot afield, by hypothesis, Sisanonempty
subset of the natural numbers. By the least integer axiom, S has a smallest element, say,
d(u). Weclaim that u isauniversal sidedivisor. If x € R, there are elementsq and r with
X =qu+r,whereeitherr =0o0ra(r) < a(u). Ifr =0,thenu | x;if r # 0, thenr must
be aunit, otherwiseits existence contradicts 9 (u) being the smallest number in S. We have
shown that u isauniversal sidedivisor. e

Motzkin then showed that the ring {a + b : a,b € Z}, wherea = (1 + V=19),
has no universal side divisors, concluding that this PID is not a euclidean ring. For details,
we refer the reader to K. S. Williams, “Note on Non-euclidean Principal Ideal Domains,”
Math. Mag. 48 (1975), 176-177. <

What are the unitsin the Gaussian integers?

Proposition 3.64.

() Let R be aeuclidean ring R that is not a field. If the degree function 9 is a norm,
then @ isa unit if and only if 9 () = 1.

(il) Let Rbeaeuclideanring Rthat isnot afield. If the degree function 8 isa normand
if 3(a) = p, where p isa prime number, then « isirreducible.

(iii) Theonly unitsinthering Z[i] of Gaussian integersare +1 and +i.

Proof. (i) Since 12 = 1, we have 9(1)2 = 9(1), so that 3(1) = Oor (1) = 1. If
(1) =0,thend(a) = 9(1la) = 3(1)a(a) = Oforal a € R. But Risnot afield, and so d
isnot identically zero. We conclude that 9(1) = 1.

If « € Risaunit, thenthereis 8 € Rwith 8 = 1. Therefore, 3(«)d(8) = 1. Since
the values of 9 are nonnegative integers, d(«) = 1.

For the converse, we begin by showing that thereis no element 8 € R with 9(8) = 0.
If such an element existed, the division algorithm would give1 = g8 +r, whereq,r € R
and eitherr = 0or a(r) < a(B8) = 0. Theineguality cannot occur, and sor = O; that is,
B isaunit. But if 8 isaunit, then 3(8) = 1, aswe have just proved, and this contradicts
a(B) =0.

Assume now that 3(«) = 1. Thedivision algorithm givesq, r € Rwith

a:q(x2~|—r,
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wherer = 0or d(r) < 9(e@?). Asd(a?) = d(x)2 = 1, eitherr = 0or d(r) = 0. But
we have just seen that 3(r) = 0 cannot occur, so that r = 0 and « = qe?. It follows that
1 =g, and S0 @ isaunit.

(ii) If, on the contrary, « = By, where neither 8 nor y is a unit, then p = d(a) =
3(B)a(y). As pisaprime, either 9(8) = 1or d(y) = 1. By part (i), either B or y isa
unit; that is, « isirreducible.

(i) If « = a+ bi € Z[i] isaunit, then 1 = d(«) = a2 + b2. This can happen if and only
ifa2=1andb?=0o0ra?2=0andb?=1;thatis « =+lora==+i. e

If nisan odd number, then either n = 1 mod 4 or n = 3 mod 4; consequently, the odd
prime numbers are divided into two classes. For example, 5, 13, 17 are congruent to 1 mod
4, while 3, 7, 11 are congruent to 3 mod 4.

Lemma 3.65. If pisaprimeand p = 1 mod 4, then thereis an integer m with
m? = —1 mod p.

Proof. If G = (Ip)™ isthe multiplicative group of nonzero elementsin I, then |G| =
p—1=0mod4;thatis, 4isadivisor of |G|. By Proposition 2.78, G contains a subgroup
S of order 4. By Exercise 2.36 on page 72, either Siscyclicora? = 1forala e S.
Sincel, isafield, however, it cannot contain four roots of the quadratic x2 — 1. Therefore,
Siscyclic,™ say, S = ([m]), where [m] is the congruence class of m mod p. Since [m]
has order 4, we have [m*] = [1]. Moreover, [m?] # [1] (lest [m] have order < 2 < 4),
and so [m?] = [—1], for [—1] is the unique element in S of order 2. Therefore, m? =
—1modp. e

Theorem 3.66 (Fermat’s’? Two-Squares Theorem). An odd prime p is a sum of two
squares,
p=a?+b?

wherea and b are integers, if and only if p = 1 mod 4.

Proof. Assumethat p = a2 + b?. Since p isodd, a and b have different parity; say, a is
even and bisodd. Hence,a =2mandb = 2n + 1, and

p=a?+b?=4m?+4n? +4n+ 1= 1mod 4.
Conversely, assumethat p = 1 mod 4. By the lemma, there is an integer m such that

p|(m?+1).

11 Theorem 3.30 says that G is a cyclic group, which implies that Sis cyclic, for every subgroup of a cyclic
group isitself cyclic. We choose to avoid this theorem here, for the proof just given is more elementary.

12Fermat was the first to state this theorem, but the first published proof is due to Euler. Gauss proved that
there is only one pair of natural numbers a and b with p = a2 + b?.
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InZ[i], thereisafactorizationm? + 1 = (m+i)(m—i), and so
pl(m+i)y(m—i)in ZJ[i].

If p| (m=i)inZ[i], thenthereareintegersu and v withm+i = p(u +iv). Comparing
the imaginary parts gives pv = 1, a contradiction. We conclude that p does not satisfy
the analog of Euclid’s lemma in Theorem 3.57 (recall that Z[i] is a PID); it follows from
Exercise 3.62 on page 158 that p is not an irreducible element in Z[i]. Hence, thereisa
factorization

p=caBinZli]

in which neither « = a+ibnor 8 = ¢+ id isaunit. Therefore, taking norms gives an
equation in Z:

p? = 3(p)
= d(ap)
= ()3 (B)
= (a2 4 b?)(c® + d?).
By Proposition 3.64, the only unitsin Z[i] are 1 and =i, so that any nonzero Gaussian
integer that is not a unit has norm > 1; therefore, a2 + b? # 1 and ¢ + d? # 1. Euclid’s

lemma now gives p | (@2 + b?) or p | (¢ + d?); the fundamental theorem of arithmetic
gives p = a® 4 b? (and p = ¢ + d?), asdesired. o

We are going to determine all the irreducible elements in Z[i], but we first prove a
lemma.

Lemma 3.67. |If @ € Z[i] isirreducible, then there is a unique prime number p with
a | pinZ[il.

Proof. Notethat if « € Z[i], then@ € Z[i]; since 3(«) = o, we have o | d(«). Now
d() = p1--- Ppn, Where the p; are prime numbers. AsZ[i] isaPID, Exercise 3.62 on
page 158 gives o | pj for somei (for « isirreducible). If « | q for some primeq # pi,
thena | (q, pi) = 1, forcing « to be aunit. This contradiction shows that p; isthe unique
prime number divisibleby «. o

Proposition 3.68. Leto = a+ bi € Z[i] be neither 0 nor a unit. Then « isirreducible if
and only if

(i) «isanassociate of a prime pinZ of theform p = 4m+ 3; or
(if) aisanassociateof 1+ i or itsconjugate 1 —i; or
(iii) 3(a) = a® +b?isaprimein Z of the form 4m + 1.
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Proof. By Lemma 3.67, there is a unique prime number p divisible by « in Z[i]. Since
o | p,wehaved(a) | 9(p) = p2inZ, sothat () = p or d(x) = p; that is,

a?+b>=p o a’+b’=p?

Looking at p mod 4, we see that there are three possibilities (for p = 0 mod 4 cannot
occur).
(i) p= 3 mod 4.

In this case, a® + b% = p cannot occur, by (the easy direction of) Theorem 3.66, so
that 3(a) = a2 + b? = p?. Now pisdivisible by «, so thereis g with «f = p. Hence,
d(a)d(B) = d(p). Since p € Z, we have d(p) = p?, so that p?d(8) = p? Thus,
9(B) = 1, B isaunit, by Proposition 3.64(i), and p isirreduciblein Z][i].

(if) p = 2 mod 4.

Inthiscase, p = 2, and so a® + b? = 2 or a? 4+ b? = 4. The latter case cannot occur

(because a and b are integers), and the first case giveso = 1+ i (up to multiplication

by units). The reader should check that both 1 + i and 1 — i are, indeed, irreducible
elements.

(iii) p =1 mod 4.

If () isaprime p (with p = 1 mod 4), then « isirreducible, by Proposition 3.64(ii).
Conversely, suppose « isirreducible. Asd(x) = p or d(a) = p?, it suffices to eliminate
the latter possibility. Since o | p, we have p = «f for some 8 € Z[i]; hence, asin
case (i), d(a) = p? impliesthat B isaunit. Now @ = p? = (aB)?, so that @ = 2. But
B2 = 41, by Proposition 3.64(iii), contradicting @ # +«. Therefore, d(a) = p.

For example, 3 is an irreducible element of the first type, and 2 + i is an irreducible
element of the third type. We should remember that there are interesting connections be-
tween prime numbers and irreducible Gaussian integers, that knowing the Gaussian units
is valuable, and that the norm is a useful tool in proving results. The ring of Gaussian
integers is an instance of aring of algebraic integers, and these comments remain true for
theserings as well.

EXERCISES

Definition. Let k beafield. A common divisor of aj(x), ax(x), ..., an(X) ink[x] isapolynomial
c(x) € K[x] with c(x) | g (x) for al i; the greatest common divisor is the monic common divisor of
largest degree. We writec(x) = (a1, @, ..., an)-

3.57 Letk beafidd, and let polynomiasaj(x), ax(x), ..., an(X) in k[x] be given.
(i) Show that the greatest common divisor d(x) of these polynomials has the form
>t (X)aj (x), wheretj (x) € k[x] for1 <i <n.
Hint. Example 3.49.
(ii) Provethat c(x) | d(x) for every monic common divisor c(x) of the g (x).
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3.58

3.59

3.60

3.61

3.62
3.63

3.64

3.65

3.66
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(i) Show that x, y € K[x, y] are relatively prime, but that 1 is not a linear combination of
them [i.e., there do not exist s(x, y), t(X, y) € K[X, y] with 1 = xs(x, y) + yt(X, y)].
Hint. Use adegree argument.

(ii) Show that 2 and x arerelatively primein Z[x], but that 1 is not alinear combination of
them; that is, there do not exist s(x), t(x) € Z[x] with 1 = 2s(x) + xt(x).

A student claims that x — 1 is not irreducible because x — 1 = (VX + D(/X — 1) isa
factorization. Explain the error of hisways.
Hint. Show that \/X + 1isnot apolynomial.

Prove that there are domains R containing apair of elements having no ged. (Seethe definition
on page 147.)

Hint. Let k be afield and let R be the subring of k[x] consisting of al polynomials having
no linear term; that is, f (x) € Rif and only if

f(X)=s0+5X°+ 53X+ .

Show that x° and x® have no ged in R.

Provethat R = Z[v2] = {a + bv/2 : a,b € Z} is aeuclidean ring with 3(a + by/2) =
|a2 — 2b2|.

If Risaeuclideanringand = € Risirreducible, provethat = | «f impliesz | @ or 7 | B.

Let 3 be the degree function of aeuclidean ring R. If m,n € Nand m > 1, prove that 3’ is
also adegree function on R, where

' (X) =ma(x) +n

for al x € R. Conclude that a euclidean ring may have no elements of degree O or degree 1.
Let R be a euclidean ring with degree function 9.

(i) Provethat (1) < d(a) for al nonzeroa € R.

(if) Provethat anonzerou € Risaunitif and only if a(u) = 3(2).

Hint. A proof can be generalized from the special case of polynomials.

Let R be aeuclideanring, and assume that b € R is neither zero nor a unit. Prove, for every
i >0, thatab') <o+, _
Hint. Thereareq,r € Rwithb' =qb'*1 4r.
If pisaprimeand p = 3mod 4, prove that one of the congruences a2 = 2mod p or

2= _2mod pissolvable.
Hint. Show that ]IE = (—1) x H, where H isagroup of odd order m, say, and observe that
either 2 or —2liesin H because

I xIn={1} xH)U({-1} x H).

Finally, use Exercise 2.54 on page 81.

LINEAR ALGEBRA

We interrupt the exposition to discuss some linear algebra, for it is a necessary tool in
further investigation of commutative rings.
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Vector Spaces

Linear algebra is the study of vector spaces and their homomorphisms, with applications
to systems of linear equations. From now on, we are going to assume that most readers
have had some course involving matrices, perhaps only with real entries or with complex
entries. Such courses often deal mainly with computational aspects of the subject, such as
Gaussian elimination, and finding inverses, determinants, eigenvalues, and characteristic
polynomials of matrices, but here we do not emphasize this important aspect of linear
algebra. Instead, we discuss more theoretical properties of vector spaces (with scalarsin
any field) and linear transformations (which are homomorphisms between vector spaces).

Dimension is a rather subtle idea. We think of a curve in the plane, that is, the image
of acontinuous function f : R — R?, as a one-dimensional subset of a two-dimensional
ambient space. Imagine the confusion at the end of the nineteenth century when a “space-
filling curve” was discovered: There exists a continuous function f : R — R2 with image
the whole plane! We are going to describe a way of defining dimension that works for
analogs of euclidean space, called vector spaces (there are topological ways of defining
dimension of more general spaces).

Definition. If k is a field, then a vector space over k is an (additive) abelian group V
equipped with ascalar multiplication; that is, thereisafunctionk x V — V, denoted by
(a,v) — av, suchthat, foral a,b,1 e kandal u,v € V,
() a(u+v) = au+ av;
(i) (@a+byv =av + by;
(iil) (ab)v = a(bv);
(iv) 1v =v.

The elements of V are called vectors and the elements of k are called scalars.13

Example 3.69.

(i) Euclidean space V = R" is a vector space over R. Vectors are n-tuples (ay, .. ., an),
where g € R for al i. Picture avector v as an arrow from the origin to the point having
coordinates (ay, . .., a,). Addition is given by

@i, ...,an) + (1, ...,bp) =(@1+b1,...,a,+ bp);

geometrically, the sum of two vectorsis described by the parallelogram law.
Scalar multiplication is given by

av=a(ay,...,ay) = (aay, ..., aap).

13The word vector comes from the Latin word meani ng “to carry”; vectorsin euclidean space carry the data of
length and direction. The word scalar comes from regarding v — av as a change of scale. The terms scale and
scalar come from the Latin word meaning “ladder,” for the rungs of aladder are evenly spaced.
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Scalar multiplication v — av “stretches” v by afactor |a|, reversing its direction when a
is negative (we put quotes around stretches because av is shorter than v when |a| < 1).

(ii) The example in part (i) can be generalized. If k is any field, define V = k", the set of
al n-tuplesv = (a1, ..., an), wherea; € k for al i. Additionisgiven by

(a].’"'ﬂan)_'_(blv"'abn) =(a1+bla"'7an+bn)a
and scalar multiplication is given by

av=a(ay,...,an) = (aay, ..., aan).

(iii) If R isacommutative ring and K is a subring that is a field, then R is a vector space
over k. Regard the elements of R as vectors and the elements of k as scalars; define scalar
multiplication av, wherea € k and v € R, to be the given product of two elementsin R.
Notice that the axioms in the definition of vector space are just particular cases of some of
the axioms holding in the commutative ring R.

For example, if k isafield, then the polynomial ring R = k[x] is a vector space over k.
Vectors are polynomials f (x), scalars are elements a € k, and scalar multiplication gives
the polynomial af (x); that is, if

f(X) = bpx" + -+ + b1x + by,
then
af (x) = ab,x" + - - - + abyx + aby.

In particular, if a field k is a subfield of a larger field E, then E is a vector space
overk. «

A subspace of avector space V isasubset of V that isavector space under the addition
and scalar multiplicationin V.

Definition. |If V isavector space over afield k, then asubspace of V isasubset U of V
such that

(i) 0eU;
@ii) u,u e U implyu+u’ e U;
(i ueU anda e kimply au € U.

Example 3.70.
(i) The extreme casesU = V and U = {0} (where {0} denotes the subset consisting of
the zero vector alone) are always subspaces of a vector space. A subspace U C V with
U # V iscadled aproper subspace of V; wemay writeU C V to denoteU being a proper
subspace of V.
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(i) If v = (ay, ..., an) isanonzero vector in R", then the line through the origin
¢t={av:aecR}

is asubspace of R".

Similarly, aplane through the origin consists of all vectors of the form av; + bz, where
v1, v2 isafixed pair of noncollinear vectors, and a, b vary over R. It is easy to check that
planes through the origin are subspaces of R".

(iii) If m < n and R™ is regarded as the set of all those vectors in R" whose last n — m
coordinates are 0, then R™ is a subspace of R". For example, we may regard the plane R?
asall points (x, y, 0) in RS,

(iv) If kisafield, then ahomogeneous linear system over k of m equationsin n unknowns
isaset of equations

ayXy+---+amxn=0

aX1+---+anXn =0

amiX1 + -+ amnXn =0,

wherea;j;i € k. A solution of thissystemisavector (Cy, ..., ¢y) € k", where}"; ajici =0
forall j; asolution (cy, ..., Cy) isnontrivial if somec; # 0. The set of al solutionsforms
a subspace of k", called the solution space (or nullspace) of the system.

In particular, we can solve systems of linear equations over Ip, where pisaprime. This
saysthat we can treat a system of congruences mod p just as one treats an ordinary system
of equations.

For example, the system of congruences

3X—-2y+z=1mod7
X+y—2z=0mod7
—X+2y+z=4mod7

can be regarded as a system of equations over the field ;. This system can be solved
just as in high school, for inverses mod 7 are now known: [2][4] = [1]; [3][5] = [1];
[6][6] = [1]. The solutionis

x,y,2)=([3]. [4].[1]). <«

Definition. A list in avector space V isan ordered set vy, ..., vy Of vectorsin V.
More precisely, we are saying that there is somen > 1 and some function
0. {1,2,...,n} —>V,

with ¢(i) = v; forali. Thus, X = img; notethat X is ordered in the sense that there is
afirst vector v1, a second vector vp, and so forth. A vector may appear several timeson a
list; that is, ¢ need not be injective.
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Definition. Let V be a vector space over a field k. A k-linear combination of alist
v1, ..., vpninVisavector v of theform

v=av1+---+anvn,

wherea; € k forali.

Definition. If X =v1,..., vy isalistinavector space V, then

(vy, ..., vm),

the set of all the k-linear combinations of vy, ..., vm, is caled the subspace spanned by
X. Weadsosay that vy, ..., vn spans (v, ..., vm).

Lemma 3.71. Let V be a vector space over ajfield k.
(i) Every intersection of subspaces of V isitself a subspace.

(ii) If X =v1,...,vmisalistinV, then theintersection of all the subspaces of V con-
taining X is (vs, ..., vm), the subspace spanned by v1, ..., vm, and so (vs, . .., vm)
isthe smallest subspace of V containing X.

Sketch of Proof.  Part (i) isroutine. Let X = {v1, ..., vm}, and let S denote the family of
al the subspaces of V containing X; we claim that

()S= (v1.....vm).
SeS

Theinclusion C isclear, because (v1, ..., vm) € S. For the reverse inclusion, note that if
S e S, then Scontains vy, ..., vm, and S0 it contains the set of all linear combination of
V1, ..., Um, NAMEy, (v1, ..., vm). o

It follows from the second part of the lemma that the subspace spanned by alist X =
v1, ..., um does not depend on the ordering of the vectors, but only on the set of vectors
themselves. Were all terminology in algebra consistent, we would call (vs, ..., vm) the
subspace generated by X. The reason for the different terms is that the theories of groups,
rings, and vector spaces developed independently of each other.

If X = @, then (X) = (Ngs S where S is the family of al the subspaces of V
containing X. As every subspace contains X = o, {0} itself is one of the subspaces
occurring in the intersection of all the subspaces of V, and so (@) = [gcy S= {0}

Example 3.72.
(i) LetV =R?, lete; = (1,0), and let e = (0, 1). Now V = (e, &), forif v = (a, b) €
V, then
v=(a,0+(0,b)
=a(1,0) + b0, 1)
=ae; +bey € (e, €) .
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(i) If kisafieldand V = k", define g asthe n-tuple having 1 in theith coordinate and 0’s
elsawhere. The reader may adapt the argument in part (i) to show that ey, . . ., &, spansk".

(iii) A vector space V need not be spanned by afinite list. For example, let V = Kk[x], and
suppose that X = f1(X), ..., fm(X) isafinitelistin V. If d isthe largest degree of any
of the fj (x), then every (nonzero) k-linear combination of f1(x), ..., fnm(X) has degree at
most d. Thus, x4+1 is not a k-linear combination of vectorsin X, and so X does not span
K[x]. <=

The following definition makes sense even though we have not yet defined dimension.
Definition. A vector spaceV is called finite-dimensional if it is spanned by afinite list;

otherwise, V is called infinite-dimensional.

Example 3.72(ii) shows that k" is finite-dimensional, while part (iii) of this Example
shows that k[X] is infinite-dimensional. By Example 3.69(iii), both R and C are vector
spaces over Q, and they are both infinite-dimensional.

Notation. If vy, ..., vmisalist,thenvy, ..., 0i..., vy istheshorter list with v; deleted.

Proposition 3.73. |f V isa vector space, then the following conditions on a list X =
v1, ..., Um SPanning V are equivalent:

(i) X isnot a shortest spanning list;
(ii) somev; isin the subspace spanned by the others; that is,

Vi € (U1, ..., Uiy, Um)

(iii) therearescalarsay, ..., am, not all zero, with
m
Z asvy, = 0.
=1

Sketch of Proof. (i) = (ii). If X isnot a shortest spanning list, then one of the vectorsin
X can be thrown out, and the shorter list still spans.

(i) = (iii). If vi = 3_;  cjvj, thendefinea = —1 # Oand aj = cj forall j #1i.

(iii) = (i). The given equation implies that one of the vectors, say, vi, isalinear combi-
nation of the others. Deleting v; gives a shorter list, which still spans: If v € V isalinear
combination of all the vj (including vi), just substitute the expression for vj as a linear
combination of the other vj and collect terms. o
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Definition. A list X = v1,..., vy in avector space V is linearly dependent if there
arescalars ay, . .., am, not all zero, with Zznzl agvy = 0; otherwise, X is caled linearly
independent.

The empty set & is defined to be linearly independent (we may interpret o as alist of
length 0).

Example 3.74.
(i) Any list X = v1, ..., vy containing the zero vector islinearly dependent.

(i) A list v of length 1 is linearly dependent if and only if vy = O; hence, alist v1 of
length 1 islinearly independent if and only if v1 # O.

(iii) A list vy, v2 islinearly dependent if and only if one of the vectorsis a scalar multiple
of the other.

(iv) If thereis arepetitioninthelist vy, ..., vy (that is, if vj = vj for somei # j), then
v1, ..., Umislinearly dependent: Definec = 1, ¢j = —1, and all other ¢ = 0. Therefore,
if vy, ..., vmislinearly independent, then all the vectors v; aredistinct. <

The contrapositive of Proposition 3.73 isworth stating.

Corollary 3.75. If X = vq,..., vy isalist spanning a vector space V, then X is a
shortest spanning list if and only if X islinearly independent.

Linear independence has been defined indirectly, as not being linearly dependent. Be-
cause of the importance of linear independence, let us define it directly. A list X =
V1, ..., Uy iSlinearly independent if, whenever a k-linear combination Z?‘zl vy = 0,
thenevery a; = 0. It followsthat every sublist of alinearly independent list isitself linearly
independent (thisis one reason for decreeing that & be linearly independent).

We have arrived at the notion we have been seeking.

Definition. A basis of avector space V isalinearly independent list that spansV.

Thus, bases are shortest spanning lists. Of course, all the vectorsin alinearly indepen-
dent list vq, ..., vy are distinct, by Example 3.74(iv).

Example 3.76.

In Example 3.72(ii), wesaw that X = ey, ..., e, spansk”, where g isthe n-tuple having 1
intheith coordinate and 0’s el sewhere. We can easily prove that X islinearly independent,
and henceit isabasis; it is called the standard basis of k". <«

Proposition 3.77. Let X = vy, ..., vy bealistinavector space V over afield k. Then X
isabasisif and only if each vector in V has a unique expression as a k-linear combination
of vectorsin X.
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Sketch of Proof. If avector v = > auv = > bjv, then Y (& — b))y = 0, and so
independence givesa; = by for al i; that is, the expression is unique.

Conversely, existence of an expression shows that the list of v; spans. Moreover, if
0 =) cv withnotal ¢ = 0, then the vector 0 does not have a unique expression as a
linear combination of thev;. e

Definition. If X = v1,..., vy isabasis of avector space V and if v € V, then there
areunique scalarsag, ..., ap withv = Zin=1 ajvj. Then-tuple (ay, ..., a,) iscaled the
coordinate set of avector v € V relative to the basis X.

Observe that if vy, ..., vy is the standard basis of V = k", then this coordinate set
coincides with the usual coordinate set.
If v1, ..., vy isabasisof avector space V over afield k, then each vector v € V hasa
unique expression
v=aiv1 + au2+ - -+ anvn,

whereg; € k for dl i. Sincethereisafirst vector v1, a second vector vy, and so forth, the
coefficientsin thisk-linear combination determine a unique n-tuple (ag, ap, .. ., a,). Were
abasis merely asubset of V and not alist (i.e., an ordered subset), then there would be n!
coordinate sets for every vector.

We are going to define the dimension of a vector space V to be the number of vectors
in abasis. Two questions arise at once.

(i) Does every vector space have abasis?

(if) Do all bases of avector space have the same number of elements?

The first question is easy to answer; the second needs some thought.

Theorem 3.78. Every finite-dimensional vector space V has a basis.

Sketch of Proof. A finite spanning list X exists, since V is finite-dimensiona. If it is
linearly independent, it is a basis; if not, X can be shortened to a spanning sublist X', by
Proposition 3.73. If X’ islinearly independent, it is a basis; if not, X’ can be shortened
to a spanning sublist X”. Eventually, we arrive at a shortest spanning sublist, which is
independent and henceisabasis. e

The definitions of spanning and linear independence can be extended to infinitelistsina
vector space, and we can then prove that infinite-dimensional vector spaces also have bases
(see Theorem 6.48). For example, it turns out that abasis of k[x] is1, x, X2, ..., x",....

We can now prove invariance of dimension, one of the most important results about
vector spaces.

Lemma 3.79. Let ug,...,uy be elements in a vector space V, and let v1,...,vm €
(U, ..., Up). Ifm>n,thenvy, ..., vy isalinearly dependent list.
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Proof. The proof isby inductiononn > 1.

Base Sep. If n = 1, thenthereare at least two vectors v, v and vy = a;u; and vy = agua.
If uy = 0, then v1 = 0 and thelist of v’sislinearly dependent. Suppose u; # 0. We may
assumethat v1 # 0, or we are done; hence, a; # 0. Therefore, v1, vo islinearly dependent,
for vy — azal‘lvl = 0, and hencethe larger list v1, ..., vy islinearly dependent.

Inductive Step. There are equations, fori = 1,..., m,
Vi = g1U1 + -+ a@nUn.
We may assumethat someag;j1 # 0, otherwisevs, ..., vm € (U2, ..., Uy), and theinductive
hypothesis applies. Changing notation if necessary (that is, by re-ordering the v’s), we may
assumethat aj; # 0. For eachi > 2, define
v =V — a;lal_llvl € (U2, ..., Upn)
(writing v/ asalinear combination of theu’s, the coefficient of uy isaj1—(a; 1a1‘11)a11 =0).
Sincem — 1 > n — 1, theinductive hypothesis gives scalars by, . . . , by, not al 0, with
bovs + - - - + bmup, = 0.
Rewrite this equation using the definition of v;:
(=Y biaizag)v1 + bpvz + - - + bmvm = 0.
i>2
Not all the coefficientsare 0, and sO v1, ..., vy islinearly dependent. o
The following familiar fact illustrates the intimate relation between linear algebra and
systems of linear equations.
Corollary 3.80. A homogeneous system of linear equations, over a field k, with more
unknowns than equations has a nontrivial solution.
Proof. Ann-tuple (81, ..., Bn) isasolution of asystem

a1X1+ -+ amnXn =0

amiX1 + -+ 4+ amnXn =0

if ¢j181+ -+ + ajnfn = Ofor al i. In other words, if ¢y, ..., ¢y are the columns of the
m x n coefficient matrix A = [«;j], then

B1C1+ -+ BnCn = 0.

Notethat ¢; € k™. Now k™ can be spanned by m vectors (the standard basis, for example).
Sincen > m, by hypothesis, Lemma 3.79 shows that thelist ¢y, . . ., ¢y islinearly depen-
dent; there are scalars y1, ..., yn, not dl zero, with y1¢1 + - - - + ynCy = 0. Therefore,
(Y1, ..., yn) isanontrivia solution of the system. e
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Theorem 3.81 (Invariance of Dimension). If X =Xq,...,xpand¥Y =y1,..., ymare
bases of a vector space V, thenm = n.

Proof. If m £ n, then either n < mor m < n. In the first case, y1,...,Ym €
(X1, ..., Xn), because X spans V, and Lemma 3.79 gives Y linearly dependent, a con-

tradiction. A similar contradiction arisesif m < n,andsowemusthavem=n. e

Itisnow permissible to make the following definition.

Definition. If V is afinite-dimensional vector space over a field k, then its dimension,
denoted by dimg (V) or dim(V), isthe number of elementsin abasisof V.

Example 3.82.
(i) Example 3.76 shows that k" has dimension n, which agrees with our intuition when
k = R. Thus, the plane R x R istwo-dimensional!

(i) If V = {0}, then dim(V) = 0, for there are no elementsin its basis @. (Thisis a good
reason for defining @ to be linearly independent.)

(iii) Let X = {xq, ..., Xn} be afinite set. Define
kX = {functions f : X — k}.
Now k* is avector spaceif we define addition f + f’ to be
f+f x> fX)+ ')
and scalar multiplication af ,fora e kand f: X — Kk, by
af : x —» af (x).
Itiseasy to check that the set of n functions of the form fy, wherex € X, defined by

1 ify=x;

=10 ity £x.

form abasis, and so dim(k*) = n = | X|.

The reader should note that thisis not anew example: Ann-tuple (ay, .. ., ay) isrealy
afunction f: {1,...,n} — kwith f(i) = g for all i. Thus, the functions fy comprise
the standard basis. «

Here is a second proof of invariance of dimension; it will be used, in Chapter 6, to
generalize the notion of dimension to the notion of transcendence degree. We begin with
amodification of the proof of Proposition 3.73.

Lemma 3.83. If X = vq,..., vy isalinearly dependent list of vectorsin a vector space
V, then there exists vy withr > 1with vy € (vy, v2, ..., vr_1) [Whenr = 1, we interpret
(v1, ..., vr—1) tomean {O}].
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Remark. Let us compare Proposition 3.73 with this one. The earlier result says that if
v1, v2, v3 islinearly dependent, then either vy € (v2, v3), v2 € (v1, v3), OF V3 € (v1, V2).
Thislemma saysthat either v1 € {0}, v2 € (v1), OF v3 € (v1, V2). «

Proof. Letr be the largest integer for which vy, ..., vy —1 is linearly independent. If
vy = 0, then v € {0}, and we aredone. If v1 # O, thenr > 2; since vy, v2, ..., vp IS
linearly dependent, we haver —1 < n. Asr — lislargest, thelist v, vo, ..., vy islinearly
dependent. There are thus scalars ay, ..., &, not al zero, with ajv1 + --- + a vy = 0.
In this expression, we must have a; # O, for otherwise vy, ..., vr—1 would be linearly
dependent. Therefore,

r-1
vr=Y_ (—aHav € (v,...,vr-1). o
i1

Lemma 3.84 (Exchange Lemma). If X = X3, ..., Xy isa basis of a vector space V
andyj, ..., ¥y isalinearly independent subset of V, thenn < m.

Proof. We begin by showing that one of the x’sin X can be replaced by y, so that the
new list still spansV. Now y, € (X), since X spans V, so that the list

yn5X19”"Xm

islinearly dependent, by Proposition 3.73. Sincethelist y1, . . ., yn islinearly independent,
Vn ¢ {0}. By Lemma 3.83, thereis somei with x; = ay, + Zj<i a;jXxj. Throwing out X
and replacing it by y, gives a spanning list

X' =VYn, X1, ..., Ky voy Xm -

Ifv= Z'j“:l bj xj, then (as in the proof of Proposition 3.73), replace x; by its expression
as ak-linear combination of the other x’s and y, and then collect terms.

Now repeat thisargument for the spanning list yn—1, ¥n, X1, ..., %i, ..., Xm. Theoptions
offered by Lemma 3.83 for this linearly dependent list are yn € (Yn—1), X1 € (¥n—1, Yn),
X2 € (Yn—1, ¥n, X1), and so forth. SinceY islinearly independent, soisitssublist yn_1, Yn,
and the first option y, € (yn—1) is not feasible. It follows that the disposable vector
(provided by Lemma 3.83) must be one of the remaining x’s, say x,. After throwing out
X¢, We have anew spanning list X”. Repeat this construction of spanning lists; each time a
new y is adjoined as the first vector, an x is thrown out, for the option y; € (Yi+1, ..., ¥n)
isnot feasible. If n > m, that is, if there are more y’s than x’s, then this procedure ends
with a spanning list consisting of m y’s (one for each of the m x’s thrown out) and
no x’s. Thus a proper sublist of Y = vy, ..., ¥y spans V, and this contradicts the linear
independence of Y. Therefore, n <m. e
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Theorem 3.85 (Invariance of Dimension). If X =Xg,...,Xxpand¥Y =yi,..., Yy, are
bases of a vector space V, thenm = n.

Proof. By Lemma 3.84, viewing X as a basis with m elements and and Y as a linearly
independent list with n elements gives the inequality n < m; viewing Y a basis and X
as alinearly independent list gives the reverse inequality m < n. Therefore, m = n, as
desired. o

Definition. A longest (or a maximal) linearly independent list uy, ..., uy isalinearly
independent list for which there is no vector v € V such that ug, ..., Unm, v is linearly
independent.

Lemma 3.86. If V isa finite-dimensional vector space, then a longest linearly indepen-
dentlist vy, ..., vpisabasisof V.

Sketch of Proof. If the list is not a basis, then it does not span: Thereisw € V with
w ¢ (v, ..., vn). Butthelonger list with w adjoined is linearly independent, by Proposi-
tion3.73. e

It is not obvious that there are any longest linearly independent lists; that they do exist
follows from the next result, which is quite useful in its own right.

Proposition 3.87. LetZ = u;, ..., Uy bealinearly independent list in an n-dimensional
vector space V. Then Z can be extended to a basis; i.e., there are vectors vmy1, . . ., Un SO
thatus, ..., Un, Um+1, ..., vp iSabasisof V.

Sketch of Proof. If the linearly independent list Z does not span V, thereis w1 € V
with w1 ¢ (Z), and the longer list Z, w1 is linearly independent, by Proposition 3.73. If
Z, wq does not span V, thereis wy € V with wy ¢ (Z, w1). Sincedm(V) = n, the
length of these lists can never exceed n. Otherwise, compare a linearly independent list
with n + 1 elements with a basis, and reach a contradiction using the exchange lemma,
Lemma3.84. e

Corollary 3.88. If dm(V) = n, then any list of n + 1 or more vectorsis linearly depen-
dent.

Sketch of Proof. Otherwise, such a list could be extended to a basis having too many
elements. e

Corollary 3.89. Let V bea vector space withdim(V) = n.

(i) Alistof nvectorsthat spansV must be linearly independent.
(if) Any linearly independent list of n vectors must span V.
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Sketch of Proof. (i) Were it linearly dependent, then the list could be shortened to give a
basis, and this basisistoo small.

(ii) If the list does not span, the it could be lengthened to give a basis, and this basisistoo
large. o

Corollary 3.90. LetU be a subspace of a vector space V of dimension n.
(i) U isfinite-dimensional and dim(U) < dim(V).
@iy IfdimU) =dim(V),thenU = V.

Sketch of Proof. (i) Takeup € U. If U = (u1), then U isfinite-dimensional. Otherwise,
thereisus ¢ (u1). By Proposition 3.73, u1, uz islinearly independent. If U = (uq, uz),
we are done. This process cannot be repeated n + 1 times, for thenug, ..., uy1 would be
alinearly independent listinU < V, contradicting Corollary 3.88.

A basisof U islinearly independent, and so it can be extended to abasis of V.

(i) If dim(U) = dim(V), then abasis of U isalready a basis of V (otherwise it could be
extended to abasis of V that would betoo large). e

EXERCISES

3.67 If the only subspaces of avector space V are {0} and V itself, prove that dim(V) < 1.

3.68 Prove, in the presence of all the other axioms in the definition of vector space, that the com-
mutative law for vector addition is redundant; that is, if V satisfies all the other axioms, then
u+v=v+ufordlu,veV.

Hint. If u,v € V, evaluate —[(—v) + (—u)] in two ways.

3.69 If V isavector space over I, and if v1 # vy are nonzero vectorsin V, prove that vq, v is
linearly independent. Isthis true for vector spaces over any other field?

3.70 Provethat the columns of an m x n matrix A over afield k are linearly dependent in k™ if and
only if the homogeneous system Ax = 0 has a nontrivial solution.

3.71 If U is a subspace of a vector space V over a field k, define a scalar multiplication on the
quotient group V /U by
a(v+U)=av+U,

wherea € k and v € V. Prove that this is a well-defined function that makes V /U into a
vector space over k (V/U is caled aquotient space).

3.72 If V isafinite-dimensional vector space and U is a subspace, prove that
dimU) 4+ dim(V/U) = dim(V).

Hint. Provethatif vy +U, ..., v +U isabasisof V/U, thenthelist vy, ..., vr islinearly
independent.
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Definition. |f U and W are subspaces of a vector space V, define
U+W={u+w:ueU andw e W}.

3.73 (i) Provethat U + W isasubspaceof V.
(ii) If U and U’ are subspaces of a finite-dimensional vector space V, prove that

dim(U) + dimU’) = dimU NU’) + dimU + U").

Hint. Takeabasisof U N U’ and extend it to bases of U and of U’.

Definition. 1f U and W are vector spacesover afield k, then their direct sum isthe set of all ordered
pairs,
UdW={Uuw):ueUandw e W},

with addition
u,w)+ W, w)=u+u, w+w)

and scalar multiplication
a(U, w) = (au, aw).

3.74 If U and W are finite-dimensional vector spaces over afield k, prove that

dmU @& W) = dimU) + dim(W).

Linear Transformations
Homomorphisms between vector spaces are called linear transformations.

Definition. If V and W are vector spaces over afield k, then afunction T: V — Wisa
linear transformation if, for al vectorsu, v € V and all scalarsa € k,

() Tu+v) =T+ T();

(i) T(av) = aT (v).
We say that a linear transformation T is nonsingular (or is an isomorphism) if T is a

bijection. Two vector spaces V and W over k areisomorphic, denoted by V = W, if there
isanonsingular linear transformation T: V. — W.

If we forget the scalar multiplication, then a vector space is an (additive) abelian group
and alinear transformation T is agroup homomorphism. It iseasy to seethat T preserves
all k-linear combinations:

T@vi+ -+ amum) = a1 T(vy) + -+ amT (vm).
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Example 3.91.
(i) The identity function 1y : V — V on any vector space V isanonsingular linear trans-
formation.

(i) If 6 isan angle, then rotation about the origin by 6 isalinear transformation Ry : R2 —
R2. The function Ry preserves addition because it takes parallelograms to parallelograms,
and it preserves scalar multiplication because it preserves the lengths of arrows.

(ii1) If V and W are vector spaces over afield k, write Homg (V, W) for the set of all linear
transformations V. — W. Define addition S+ T by v — S(v) + T(v) foral v € V,
and define scalar multiplication «T: V. — W, wherea € k, by v — «aT(v) for al
veV.BothS+ T andaT arelinear transformations, and Homy (V, W) is a vector space
overk. «

Definition. If V isavector space over afield k, then the general linear group, denoted
by GL(V), isthe set of all nonsingular linear transformationsV — V.

A composite ST of linear transformations Sand T is again a linear transformation,
and ST isnonsingular if both Sand T are; moreover, the inverse of a nonsingular linear
transformation is again nonsingular. It followsthat GL (V) is a group with composition as
operation, for composition of functions is always associative.

We now show how to construct linear transformations T: V — W, whereV and W are
vector spaces over afield k. The next theorem saysthat thereisalinear transformation that
does anything to abasis.

Theorem 3.92. Let vy, ..., vy, be a basis of a vector space V over a field k. If W is
a vector space over k and ug, ..., up isalist in W, then there exists a unique linear
transformation T: V. — W with T (vj) = u; for all i.

Proof. By Theorem 3.77, each v € V hasaunique expression of theformv = >, a v,
andsoT:V — W, givenby T(v) = ) aui, isa(well-defined!) function. It isnow a
routine verification to check that T isalinear transformation.

To prove uniqueness of T, assumethat S: V — W isalinear transformation with

S(vi) = Ui =T (v)
forali.lfveV,thenv=>) av and

Sw) =S avi)
=Y S@avi)
=Y aSw)
=Y aT@)=Tw).

Sincevisarbitrary, S=T. e
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Corollary 3.93. If two linear transformations S, T: V — W agree on a basis, then
S=T.

Proof. Thisfollows at once from the uniqueness of the defined linear transformation. e

Linear transformations defined on k™ are easy to describe.

Proposition 3.94. If T: k" — kM isalinear transformation, then there existsan m x n
matrix A such that

T(y) = Ay
for all y € k" (here, yisann x 1 column matrix and Ay is matrix multiplication).

Sketch of Proof. If ey, ..., e isthe standard basis of k" and €/, ..., €, is the standard
basis of k™, define A = [a;j] to be the matrix whose jth column is the coordinate set of
T(ej). If S: K" — k™ isdefined by S(y) = Ay, then S = T because both agree on a
basis: T(ej) =) ajje = Aej. e

Theorem 3.92 establishes the connection between linear transformations and matrices,
and the definition of matrix multiplication arises from applying this construction to the
composite of two linear transformations.

Definition. Let X = vq,..., vy beabasisof V andletY = wy, ..., wm be abasis of
W. If T : V - W isalinear transformation, then the matrix of T is the m x n matrix
A = [a;;] whose jth column ayj, ayj, ..., amj is the coordinate set of T (vj) determined
by the w’s: T (vj) = Zim:l ajjwj. The matrix A does depend on the choice of bases X
and Y; we will write

A=y[T]x

when it is necessary to display them.

Incase V = W, we often let thebases X = v1,..., vy and wq, ..., wm coincide. |If
ly:V — V, given by v — v, isthe identity linear transformation, then x[1y]x isthe
N x nidentity matrix |, (usualy, the subscript n is omitted), defined by

I =[],

where §jj is the Kronecker delta. Thus, | has 1’s on the diagonal and 0’s elsewhere. On
the other hand, if X and Y are different bases, then y[1y]x is not the identity matrix; its
columns are the coordinate sets of the x’s with respect to the basis Y.

Example 3.95.
LetT: V — W bealinear transformation, andlet X = vy, ...,vnandY = w1y, ..., wm
be bases of V and W, respectively. The matrix for T is set up from the equation

T(j) =ajwr +ajwz + - - + amjwm.



174 Commutative Rings | Ch. 3

Why are the indices reversed? Why not write
T(UJ) = ajj_'l,l)]_ + ajsz 4. 4+ ajmwm?

Consider the following example. Let A be an m x n matrix over afield k. The function
T: k" — k™M, defined by T(X) = AX, where X isan n x 1 column vector, is a linear
transformation. If e1, ..., e, and €, ..., €, are the standard bases of k" and k™, respec-
tively, then the definition of matrix multiplication saysthat T (ej) = Aej isthe jth column
of A. But

Agj = alje’l+azjeé+---+amje{n.
Therefore, the matrix associated to T isthe original matrix A.

In Proposition 3.98, we shall prove that matrix multiplication arises from composition
of linear transformations. If T: V — W hasmatrix Aand S: W — U has matrix B, then
the linear transformation ST : V — U has matrix BA. Had we defined matrices of linear
transformations by making coordinate sets rows instead of columns, then the matrix of ST
would have been AB. <«

Example 3.96.
(i) Let T: R? — R? be rotation by 90°. The matrix of T relative to the standard basis

X=(1,0),(0,1)is
x[Tlx = [(l) _01} -

However, if Y = (0, 1), (1, 0), then

v[Tly = |:_01 (ﬂ :

(i) Let k be afield, let T: V — V be a linear transformation on a two-dimensional
vector space, and assume that there is some vector v € V with T (v) not a scalar multiple
of v. The assumption on v says that the list X = v, T(v) is linearly independent, by
Example 3.74(iii), and hence it is a basis of V [because dim(V) = 2]. Write vy = v and
vo=To.

We compute x[T]x.

T() =v2 and T(v2) =avi+ by

for some a, b € k. We conclude that

X[T]X:[g g} <

The following proposition is a paraphrase of Theorem 3.92.

Proposition 3.97. Let V and W be vector spaces over afield k, and let X = v1, ..., vp
andY = wy, ..., wn bebases of V and W, respectively. If Homg(V, W) denotes the set
of all linear transformations T: V — W, and Matmxn(K) denotes the set of all m x n
matrices with entries in k, then the function T +— v[T]x is a bijection Homg(V, W) —
Matmxn(K).
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Proof. Given a matrix A, its columns define vectors in W; in more detail, if the jth
column of Ais (ayj, ..., amj), define z; = Zﬂlaijwi. By Theorem 3.92, there exists
alinear transformation T: V. — W with T(vj) = z; and v[T]x = A. Therefore, 1 is
surjective.

To see that w isinjective, supposethat v[T]x = A = v[9 x. Since the columns of A
determine T (vj) and S(vj) for al j, Corollary 3.93 givesS=T. e

The next proposition shows where the definition of matrix multiplication comes from:
the product of two matricesis the matrix of acomposite.
Proposition 3.98. LetT:V — Wand S: W — U belinear transformations. Choose
bases X = x1,..., X 0f V,Y=vy1,...,ynof W,and Z = z3, ..., z; of U. Then
z[So TIx = (z[Sly) (v[T1x).
Proof. Let y[T]x = [aj], sothat T(xj) = > ,apjYp, and let z[S]y = [bgp], so that

ST(x}) = S(T(x)) = (3 apj yp)
p

= Zaij(yp) = Zzapjbquq = Zcquq,
p P q q

where cqj = 3, bgpapj. Therefore,
z[STIx = [cqj] = z[Slyv[T]x. e

Corollary 3.99. Matrix multiplication is associative.
Proof. Let Abeanm x n matrix, let B beann x p matrix, and let C bea p x g matrix.
By Theorem 3.92, there are linear transformations
KI5 kP30 B gm
withC =[T],B=[9],and A=[R].
Then

[Ro(SoT)] =[R][ScT] =[RI(Y[T]) = A(BC).
On the other hand,

[(Ro S oT]=[Ro§[T] = (RI[SP[T] = (AB)C.
Since composition of functionsis associative,

Ro(SoT)=(Ro9SoT,

and so
A(BC) =[Ro(SoT)]=[(RoSoT]=(AB)C. e

We can prove Corollary 3.99 directly, although it is rather tedious, but the connection
with composition of linear transformations is the real reason why matrix multiplication is
associative.
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Corollary 3.100. LetT:V — W bealinear transformation of vector spaces V over a
fiedd k, and let X and Y be bases of V and W, respectively. If T is nonsingular, then the
matrix of T~ isthe inverse of the matrix of T:

x[THy = ([Tl

Proof. | =y[lwly = v[TIxx[T Yy and | = x[Iv]x = x[T Yvv[TIx. e

The next corollary determines all the matrices arising from the same linear transforma-
tion.

Corollary 3.101. Let T:V — V bealinear transformation on a vector space V over a
field k. If X and Y are bases of V, then there is a nonsingular matrix P with entriesin k
so that

v[Tly = P(x[TIx)P~%

Conversely, if B = PAP~1, where B, A, and P aren x n matrices with entriesin k and
P is nonsingular, then thereisalinear transformation T : k" — k" and bases X and Y of
k" such that B = Y[T]Y and A = )([T])(.

Proof. The first statement follows from Proposition 3.98 and associativity:

Y[Tly = v[IvT1lvly = (v[Iv]X) (X [T (x[v]y).

Set P = y[1y]x, and note that Corollary 3.100 gives P~1 = x[1v]y.

For theconverse, let E = ey, . . ., &, bethe standard basis of k", and define T : k" — k"
by T(ej) = Aej (remember that vectorsin k" are column vectors, so that Ae;j is matrix
multiplication; indeed, Ae;j is the jth column of A). It followsthat A = g[T]g. Now
defineabasisY = yi,...,yn by yj = P‘lej; that is, the vectorsin Y are the columns
of P~1. Notethat Y is abasis because P~1 is nonsingular. It suffices to prove that B =
v[Tly; thatis, T(yj) = > bijyi, where B = [bjj].

T(yj) = Ay
= AP g
= P 1Be

=P > bije
i
=ZbijP_la
i
:Zbijyi [}
i
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Definition. Two n x n matrices B and A with entriesin afield k are similar if thereisa
nonsingular matrix P with entriesink with B = PAP ™1,

Corollary 3.101 says that two matrices arise from the same linear transformation on a
vector space V (from different choices of basis) if and only if they are similar. In Chapter
9, we will see how to determine whether two given matrices are similar.

Just as for group homomorphisms and ring homomorphisms, we can define the kernel
and image of linear transformations.

Definition. If T: V — W isalinear transformation, then the kernel (or the null space)
of Tis
ker T ={veV:T() =0}

and theimage of T is
imT ={weW:w=T()forsomev € V}.

Asin Proposition 3.94, an m x n matrix A with entriesin afield k determines a linear
transformation k" — k™, namely, y — Ay, where y isan n x 1 column vector. The
kernel of this linear transformation is usually called the solution space of A [see Exam-
ple 3.70(iv)].

The proof of the next proposition is routine.

Proposition 3.102. LetT: V — W bealinear transformation.

(i) ker T isasubspaceof V andimT isa subspace of W.
(if) T isinjectiveif and only if ker T = {0}.

We can now interpret the fact that a homogeneous system over afield k withr equations
in n unknowns has a nontrivial solutionif r < n. If Aisther x n coefficient matrix of
the system, then ¢: x > Ax isalinear transformation ¢: k" — k'. If there is only the
trivial solution, then ker ¢ = {0}, sothat k" isisomorphic to asubspace of k', contradicting
Corollary 3.90(i).

Lemma 3.103. LetT:V — W bealinear transformation.

(i) If T isnonsingular, then for every basis X = vq, v2, ..., vy of V, wehave T (X) =
T(v), T(v2), ..., T(vy) abasisof W.

(ii) Conversely, if there exists some basis X = v1, v, ..., vy Of V for which T(X) =
T (v1), T(v2), ..., T(vy) isabasisof W, then T isnonsingular.

Proof. (i)If > ¢T(vi)) =0,then T} civj) =0,andso > cv € ker T = {0}. Hence
each ¢ = 0, because X is linearly independent. If w € W, then the surjectivity of T
providesv € V withw = T(v). Butv = Y gvi,andsow = T(v) = TQ_avi) =
> & T(vi). Therefore, T(X) isabasisof W.
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(i) Let w € W. Since T(v1),..., T(vy) isabasisof W, wehave w = > ¢ T(v) =
T civi), and so T issurjective. If Y civi € ker T, then Y ¢ T(vi) = 0, and so linear
independence gives al ¢ = 0; hence, > civi = O and ker T = {0}. Therefore, T is
nonsingular. e

Theorem 3.104. If V isan n-dimensional vector space over a field k, then V isisomor-
phic to k".

Proof. Choose a basis vq,...,vn Of V. If e, ..., e, is the standard basis of k", then
Theorem 3.92 says that there is alinear transformation T: V — k" with T (v;) = g for
ali; by Lemma3.103, T isnonsingular. e

Theorem 3.104 does more than say that every finite-dimensional vector space is es-
sentially the familiar vector space of al n-tuples. It says that a choice of basisin V is
tantamount to a choice of coordinate set for each vector in V. We want the freedom to
change coordinates because the usual coordinates may not be the most convenient ones for
agiven problem, as the reader has probably seen (in a cal culus course) when rotating axes
to simplify the equation of a conic section.

Corollary 3.105. Two finite-dimensional vector spaces V and W over a field k are iso-
morphic if and only if dim(V) = dim(W).

Remark. In Theorem 6.51, we will see that this corollary remains true for infinite-
dimensional vector spaces. <

Proof. Assume that thereisanonsingular T: V — W. If X = vq,..., vy isabasis of
V, then Lemma 3.103 saysthat T (v1), ..., T(vy) isabasis of W. Therefore, dim(W) =
IX| = dim(V).

If n = dim(V) = dim(W), then there areisomorphisms T: V — k"and S: W — k",
by Theorem 3.104. It follows that the composite S™1T: V — W isnonsingular. e

Proposition 3.106. Let V be afinite-dimensional vector space with dim(V) = n, and let
T:V — V bealinear transformation. The following statements are equivalent:

(i) T isanisomorphism;
(if) T issurjective;
(iii) T isinjective.

Proof. (i) = (ii) Thisimplication is obvious.

(il) = (iii) Letvq, ..., vy beabasisof V. SinceT issurjective, therearevectorsuy, ..., Up
with Tu; = v; for all i. We claim that uy, ..., Uy is linearly independent. If there are
scaars ¢y, . .., Cn, Not dl zero, with >~ ciu; = O, then we obtain a dependency relation
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0=>c¢T() = > ¢, acontradiction. By Corollary 3.89(ii), us, ..., un isabasis
of V. To show that T is injective, it suffices to show that ker T = {0}. Suppose that
T(@w)=0.Nowv=> cu,andso0=T)> cu = cuj; hence linear independence
of v1,...,vp givesdl ¢ = 0, and so v = 0. Therefore, T isinjective.

(iii) = (i) Letv1, ..., vy beabasisof V. If cy, ..., c, arescalars, not al O, then > civ; #
0, for abasisis linearly independent. Since T is injective, it followsthat > ¢ Tv # 0,
and so Twy, ..., Tuy islinearly independent. Therefore, Lemma 3.103(ii) showsthat T is
anisomorphism. e

Recall that an n x n matrix A with entriesin afield k isnonsingular if there is amatrix
B with entries in k (its inverse), with AB = | = BA. The next corollary shows that
“one-sided inverses” are enough.

Corollary 3.107. If Aand B aren x n matriceswith AB = |, then BA = |. Therefore,
Aisnonsingular with inverse B.

Proof. There are linear transformations T, S: k" — k" with[T] = Aand[§] = B, and
AB = | gives
[TS] =[TI[Y = [Len].

Since T +— [T] isabijection, by Proposition 3.97, it follows that TS = 1xn. By Propo-
sition 1.47, T is a surjection and S is an injection. But Proposition 3.106 says that
both T and S are isomorphisms, sothat S = Tt and TS = 1y = ST. Therefore,
| =[ST] =[9[T] = BA, asdesired. o

Definition. The set of al nonsingular n x n matrices with entries in k is denoted by
GL(n, k).

Now that we have proven associativity, it is easy to prove that GL (n, K) isagroup under
matrix multiplication.

A choice of basis gives an isomorphism between the general linear group and the group
of nonsingular matrices.

Proposition 3.108. Let V be an n-dimensional vector space over a field k, and let X =
v1,...,un beabasisof V. Then u: GL(V) — GL(n, k), definedby T — [T] = x[T]x,
is an isomorphism.

Proof. By Proposition 3.97, the function i/ T +— [T] = x[T]x isabijection
Homg(V, V) — Matp(k),

where Homi (V, V) denotesthe set of al linear transformationson V and Maty, (k) denotes
the set of al n x n matrices with entriesin k. Moreover, Proposition 3.98 saysthat [T S| =
[TI[S] fordl T, Se Homg(V, V).

If T € GL(V), then[T] isanonsingular matrix, by Corollary 3.100; that is, if n isthe
restriction of u/, then w: GL(V) — GL(n, k) is an injective homomorphism.
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It remains to prove that i is surjective. If A € GL(n, k), then A = [T] for some
T:V — V. It sufficesto show that T is an isomorphism; that is, T € GL(V). Since
[T] isanonsingular matrix, there is a matrix B with [T]B = |. Now B = [S] for some
S:V - V,aud

[T =[TI[S =1 =[1lv].
Therefore, TS = 1y, since n isabijection,and so T € GL(V), by Corollary 3.107. e

The center of the general linear group is easily identified; we now generalize Exer-
cise 2.56 on page 81.

Definition. A linear transformation T: V — V is ascalar transformation if there is
cekwithT() =cvfordlv e V;thais, T = cly. A scalar matrix isamatrix of the
formcl, wherec € k and | isthe identity matrix.

A scdar transformation T = cly is nonsingular if and only if ¢ # O (itsinverse is
C_llv).
Corollary 3.109.

(i) The center of the group GL (V) consists of all the nonsingular scalar transforma-
tions.

(if) The center of the group GL (n, k) consists of all the nonsingular scalar matrices.

Proof. (i) If T € GL(V) isnot scalar, then Example 3.96(ii) showsthat there existsv € V
with v, T (v) linearly independent. By Proposition 3.87, thereisabasisv, T (v), us,.. ., Up
of V. Itiseasy to seethat v, v + T (v), Us, ..., U, isaso abasis of V, and so thereisa
nonsingular linear transformation Swith S(v) = v, (T (v)) = v+ T (v), and S(uj) = u;
forall i. Now Sand T do not commute, for ST (v) = v + T (v) while TS(v) = T (v).
Therefore, T isnot in the center of GL(V).

(ii) If f: G — H isany group isomorphism between groups G and H, then f(Z(G)) =
Z(H). In particular, if T = cly isanonsingular scalar transformation, then [T] isin the
center of GL(n, k). But it iseasily checked that [T] = cl isascalar matrix. e

EXERCISES

3.75 LetV and W bevector spacesover afieldk,andlet S, T: V — W belinear transformations.
(i) If V and W are finite-dimensional, prove that

dim(Homg (V, W)) = dim(V) dim(W).
(il) Thedual space V* of avector space V over k is defined by
V* = Homi(V, k).

If dm(V) = n, prove that dim(V*) = n, and hencethat V* = V.
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3.76

3.77

3.78

3.79

(iii) If X =vq,...,vnisabasisof V, definedq, ..., 8 € V* by

0 ifj#i
Si(vi) =
D=0 =
Provethat 81, ..., 8n isabasisof V* (itiscalled thedual basis arisingfromuy, . .., un).
If A= [2 3} definedet(A) = ad —bc. If V isavector spacewith basis X = v1, vp, define

T:V — V by T(vy) = avy + bvy and T(vp) = cvq + dvp. Provethat T isanonsingular
linear transformation if and only if det(x[T]x) # O.

Hint. You may assume the following (easily proved) fact of linear algebra: Given a system
of linear equations with coefficientsin a field,

ax+hby=p
cx +dy =q,

then there exists aunique solution if and only if ad — bc # 0.
Let U be a subspace of avector space V.

(i) Provethat the natural map =: vV — V /U, givenby v — v + U, isalinear transfor-
mation with kernel U . (Quotient spaces were defined in Exercise 3.71 on page 170.)

(ii) State and prove thefirst isomorphism theorem for vector spaces.

Hint. Hereisthe statement. If f: V — W isalinear transformation with ker f = U,
then U is a subspace of V and there is an isomorphism ¢: V/U = im f, namely,
e+ U) = f(v).

Let V beafinite-dimensional vector space over afield k, and let 3 denote the family of all the

bases of V. Provethat 55 isatransitive GL (V)-set.

Hint. Use Theorem 3.92.

(i) If U and W are subspaces of avector space V suchthat U "W = {0} andU + W =V,

provethat V = U & W (see the definition of direct sum on page 171).

(ii) A subspace U of avector space V is adirect summand if there is a subspace W of V
withU NW = {0} andU + W = V. If V isafinite-dimensional vector space over a
field k, prove that every subspace U is adirect summand.

Hint. Takeabasis X of U, extend it to abasis X’ of V, and define W = (X’ — X).

3.80 If T: V — W isalinear transformation between vector spaces over afield k, define

rank(T) =dim@imT).

(i) Regard the columnsof an mx n matrix A asm-tuples, and definethe column space of A
to be the subspace of k™ spanned by the columns; definerank(A) to be the dimension of
the column space. If T: k" — k™ isthe linear transformation defined by T (X) = AX,
where X isann x 1 vector, prove that

rank(A) = rank(T).
(if) If Aisanm x n matrix and B isan p x m matrix, prove that
rank(BA) < rank(A).

(iii) Provethat similar n x n matrices have the same rank.
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3.8 QUOTIENT RINGS AND FINITE FIELDS

Let us return to commutative rings. The fundamental theorem of algebra (Theorem 4.49)
states that every nonconstant polynomia in C[x] is a product of linear polynomials in
C[x], that is, C contains all the roots of every polynomial in C[x]. We are going to prove
a “local” analog of the fundamental theorem of algebra for polynomials over an arbitrary
field k: Given a polynomial f (x) € k[x], then there is some field K containing k that
also contains all the roots of f (x) (we call this alocal analog for even though the larger
field K contains al the roots of the polynomial f (x), it may not contain roots of other
polynomialsin k[x]). The main idea behind the construction of K involves quactient rings,
aconstruction akin to quotient groups.

Let | beanideal in acommutative ring R. If we forget the multiplication, then | isa
subgroup of the additive group R; since R isan abelian group, the subgroup | isnecessarily
normal, and so the quotient group R/1 is defined, asis the natural map 7: R — R/I
given by w(a) = a+ |. Recall Lemma 2.40(i), which we now write in additive notation:
a+l=b+linR/lifandonlyifa—bel.

Theorem 3.110. If | isanideal inacommutativering R, then the additive abelian group

R/1 canbe madeinto a commutativering in such away that the natural mapn: R — R/I

is a surjective ring homomor phism.

Sketch of Proof.  Define multiplication on the additive abelian group R/1 by
@+hHbm+1)=ab+1.

To seethat thisisawell-defined function R/l x R/l — R/I,assumethata+ | =a’' + |
andb+1 =b'+1,thatis,a—a’ € | andb—b’ € |. Wemust show that (&' +1)(b'+1) =
ab' +1 =ab+1,thatis,ab—a’b’ € |. But

ab—ab'=ab—-ab+ab-alb’
=(@—-a)b+ab-b)el,
asdesired.
To verify that R/I isacommutative ring, it now suffices to show associativity and com-
mutativity of multiplication, distributivity, and that oneis 1+ | . Proofs of these properties

are routine, for they are inherited from the corresponding property in R. For example,
multiplication in R/l is commutative because

@+ )b+ 1)=ab+1 =ba+1 =+ 1)@+l

Rewriting the equation (a + 1)(b + I) = ab + | using the definition of 7, namely,
a+ 1| = n(@), givesn(@)r(b) = w(ab). Sincex (1) = 1+ 1, it followsthat = isa
ring homomorphism. Finally, = issurjectivebecausea+ 1 = (a). o

Definition. The commutative ring R/I constructed in Theorem 3.110 is called the
quotient ring®* of Rmodulo | (briefly, R mod I).

14presumabl y, quotient rings are so called in analogy with quotient groups.
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We saw in Example 2.68 that the additive abelian group Z/(m) isidentical to I,. They
have the same elements: the coset a+ (m) and the congruence class[a] are the same subset
of Z; they have the same addition:

a+(m+b+(m =a+b+(m)=[a+b] =[a] + [b].

We can now see that the quotient ring Z/(m) coincides with the commutative ring Iy, for
the two multiplications coincide as well:

@+ (m))(b+ (m)) = ab+ (M) = [ab] = [a][b].
We can now prove a converse to Proposition 3.50.

Corollary 3.111. If | isanideal in a commutative ring R, then there are a commutative
ring A and aring homomorphismz: R — Awith | = kersx.

Proof. If weforget the multiplication, then the natural map 7 : R — R/I isahomomor-
phism between additive groups and, by Corollary 2.69,

| =kerr={reR:n(@=0+1=1}

Now remember the multiplication: (a+ I)(b+ 1) = ab+ |; that is, z(a)x (b) = 7 (ab).
Therefore,  is aring homomorphism, and ker r is equal to | whether the function = is
regarded as a ring homomorphism or as a homomorphism of additive groups. e

Theorem 3.112 (First Isomorphism Theorem). If f: R — A isa homomorphism of
rings, thenker f isanideal in R, im f isa subring of A, and

R/ker f =im f.

Proof. Let| = ker f. We have aready seen, in Proposition 3.50, that | isanideal in R
and that im f isasubring of A.

If we forget the multiplication in the rings, then the proof of Theorem 2.70 shows that
the function ¢: R/l — A, given by ¢(r + |) = f(r), is an isomorphism of additive
groups. Sincep(1+1) = (1) = 1, it now sufficesto provethat ¢ preserves multiplication.
Buto((r +1)(s+ 1)) =es+1)= f(rs)= f()f(s) = +1)p(s+1). Therefore,
@ isaringisomorphism. e

For rings as for groups, the first isomorphism theorem creates an isomorphism from a
homomorphism once we know its kernel and image. It also says that there is no signif-
icant difference between a quotient ring and the image of a homomorphism. There are
analogs for commutative rings of the second and third isomorphism theorems for groups
(see Exercise 3.82 on page 196 for the third isomorphism theorem; the second isomor-
phism theorem is better stated in the context of modules; see Theorem 7.9), but they are
less useful for rings than are their group analogs. However, there is a useful analog of the
correspondence theorem, which we will prove later (see Proposition 6.1).
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Definition. If kisafield, theintersection of all the subfields of k is called the prime field
of k.

Every subfield of C contains QQ, and so the prime field of C and of R isQ. The prime
field of afinite field isjust the integers mod p, as we show next.

Notation. From now on, we will denote Il by F, when we are regarding it as a field.

Borrowing terminology from group theory, call the intersection of all the subfields of
afield containing a subset X the subfield generated by X; it is the smallest subfield con-
taining X in the sense that if F isany subfield containing X, then F contains the subfield
generated by X. The primefield isthe subfield generated by 1, and the prime field of Fp(x)
isFp.

Proposition 3.113. Ifkisafield, thenitsprimefield isisomorphicto Q or to IF, for some
prime p.

Proof. Consider the ring homomorphism yx : Z — k, defined by x (n) = ne, where we
denote the onein k by . Since every idea in Z is principal, there is an integer m with
ker x = (m). If m = 0, then x isaninjection, and so there is an isomorphic copy of Z that
isasubring of k. By Exercise 3.47(ii) on page 150, thereisafield Q = Frac(Z) = Q with
imy € Q C k. Now Q isthe prime field of k, for every subfield of k contains 1, hence
contains im x, and hence it contains Q, for Q = Q has no proper subfields. If m # 0,
the first isomorphism theorem gives I, = Z/(m) = imx C k. Since k isafield, im x
isadomain, and so Proposition 3.6 gives m prime. If we now write p instead of m, then
imy ={0,¢,2¢,...,(p— 1e} isasubfield of k isomorphic to F,. Clearly, im x isthe
prime field of k, for every subfield contains ¢, hence containsimy. e

Thislast result isthe first step in classifying different types of fields.
Definition. A field k has characteristic 0 if its prime field isisomorphic to Q; afield k
has characteristic p if its prime field isisomorphic to IF, for some prime p.

Thefields Q, R, C have characteristic O, as does any subfield of them; every finite field
has characteristic p for some prime p, as does Fp(x), the ring of all rational functions
over Fp.

Proposition 3.114. If k isa field of characteristic p > 0, then pa = 0 for all a € k.

Proof. Sincek has characteristic p, wehave p- 1 = 0, where Listheonein k. The result
now follows from Proposition 3.2(v). e

Proposition 3.115. If k isafinitefield, then |k| = p" for some prime p and somen > 1.

Proof. The prime field P of k cannot be the infinite field Q, and so P = F, for some
prime p. Now K is avector space over P, and so it is a vector space over IF,. Clearly, k is
finite-dimensional, and if dimg,, (k) = n, then |k| = p". e
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Remark. Hereisaproof of the last proposition using group theory. Assumethat k isa
finite field whose order |k| is divisible by distinct primes p and q. By Proposition 2.78,
Cauchy’s theorem for abelian groups, there are elements a and b in k having orders p and
g, respectively. If & denotes one in k, then the elements pe (the sum of ¢ with itself p
times) and qe satisfy (pe)a = 0and (ge)b = 0. Sincek isafield, it isadomain, and so

pe = 0=(e.

But (p, q) = 1, sothereareintegerss andt with sp+tq = 1. Hence, ¢ = s(pe)+t(ge) =
0, and thisis a contradiction. Therefore, |k| has only one prime divisor, say, p, and so |Kk|
isapower of p. «

Proposition 3.116. Ifkisafieldand | = (p(x)), where p(x) isa nonzero polynomial in
k[x], then the following are equivalent: p(x) isirreducible; k[x]/I isafield; k[x]/] isa
domain.

Proof. Assumethat p(x) isirreducible. Notethat | = (p(x)) isaproper ideal, so that the
oneink[x]/I, namely, 1+ I, isnot zero. If f(x)+ | € k[x]/] isnhonzero, then f(x) ¢ I,
that is, f(x) isnot amultiple of p(x) or, to say it another way, pt f. By Lemma3.36, p
and f arerelatively prime, and so there are polynomias s and t with sf 4 tp = 1. Thus,
sf —lel,andsol+ 1 =sf +1 =(s+ I)(f + ). Therefore, every nonzero element
of k[x]/I hasaninverse, and sok[x]/| isafield.

Of course, every field isadomain.

If K[x]/l isadomain. If p(x) is not an irreducible polynomial in k[x], there is a
factorization p(x) = g(x)h(x) in K[x] with deg(g) < deg(p) and deg(h) < deg(p). It
follows that neither g(x) 4+ | nor h(x) + | iszeroink[x]/1. After al, the zero in k[x]/1
isO+ 1 =1I,andg(x)+ | =l ifandonly if g(x) € | = (p(x)); but if this were so, then
p(x) | g(x), giving the contradiction deg(p) < deg(g). The product

@)+ D)+ =px)+1 =1

is zero in the quotient ring, and this contradicts k[x]/1 being a domain. Therefore, p(x)
must be an irreducible polynomial. e

The structure of R/I can be rather complicated, but for special choices of R and I,
the commutative ring R/I can be easily described. For example, when p(x) is an irre-
ducible polynomial, the following proposition gives a complete description of the field

K[x]/(P(X)).
Proposition 3.117. Let k be a field, let p(x) € k[x] be a monic irreducible polynomial
of degreed, let K = K[x]/I,where| = (p(x)),andlet 8 =x+ 1 € K.

() Kisafidldandk’ = {a+ | : a € k} isasubfield of K isomorphic to k. Therefore,
if k" isidentified with k, then k is a subfield of K.

(if) gisarootof p(x)inK.
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(i) 1f g(x) € k[x] and g isaroot of g(x), then p(x) | g(x) in k[x].
(iv) p(x) isthe unique monic irreducible polynomial in k[x] having 8 asa root.

(v) The list 1,8, 82,..., 891 is a basis of K as a vector space over k, and so
dimg(K) = d.

Proof. (i) Thequotient ring K = k[x]/I isafield, by Proposition 3.116, because p(X) is
irreducible. It is easy to see, using Corollary 3.53, that the restriction of the natural map,
¢ = mlk: k > K, defined by ¢(a) = a+ |, isan isomorphism fromk — k.

(i) Let p(x) = ag+ arx + - - - + ag_1x971 + x4, wherea; € kforalli. InK = k[x]/I,
we have

PB) =@+ 1)+ @+ HB+-+ @A+ 1)sY
:(ao+|)+(a1+l)(x+|)+...+(1+|)(X+|)d
=@+ D)+ @x+ 1)+ 4+ @I+ 1)
=ag+aX+- -+ x4+
=px)+1 =1,

because p(x) € | = (p(x)). But | = 0+ | isthe zero element of K = k[x]/I, and so 8
isaroot of p(x).

(iii) If p(x) t 9(x) ink[x], then their gcd is 1, because p(x) isirreducible. Therefore, there
are s(x), t(x) € k[x] with 1 = s(x) p(xX) + t(x)g(x). Sincek[x] € K[x], we may regard
thisas an equation in K[x]. Evaluating at 8 givesthe contradiction 1 = 0.

(iv) Let h(x) € k[x] be amonic irreducible polynomial having 8 as aroot. By part (iii),
we have p(x) | h(x). Since h(x) isirreducible, we have h(x) = cp(x) for some constant
¢; since h(x) and p(x) are monic, we have c = 1 and h(x) = p(x).

(v) Every element of K has the form f(x) + |, where f(x) € k[x]. By the division
algorithm, there are polynomials q(x), r (x) € k[x] with f(x) = q(X)p(x) + r(x) and
either r(x) = Oordeg(r) < d = deg(p). Since f —r = gqp < I, it follows that
fO)+1 =r) +1.1fr(x) =bg+bix+ -+ bg_1x9~1, whereb; € k for al i, then
we see, asin the proof of part (i), thatr(x) + | =bp+b18+---+ bg_189-1. Therefore,
1,8 6% ..., B9-1 spans K.

To prove uniqueness, suppose that

bo+b1f+ - +by_18" P =co+cif+ - +cg_1897L.

Define g(x) € K[x] by g(x) = Zidz_ol(bi —¢c)x': if g(x) = 0, we aredone. If g(x) # O,
then deg(g) is defined, and deg(g) < d = deg(p). On the other hand, 8 isaroot of g(x),
and so part (iii) gives p(x) | g(x); hence, deg(p) < deg(g), and thisis a contradiction.
It follows that 1, 8, B2, ..., B9 1 isabasis of K as a vector space over k, and this gives
dmg(K)=d. e
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Definition. If K isafield containing k as a subfield, then K is called a (field) extension
of k, and we write “K /k is a field extension.”1°

An extension field K of a field k is afinite extension of k if K is a finite-dimensional
vector space over k. The dimension of K, denoted by [K : k], iscalled the degree of K /k.

Proposition 3.117(v) showswhy [K : K] is called the degree of the extension K / k.

Example 3.118.
The polynomial x2+1 e R[x] isirreducible, and so K = R[x]/(x?+1) isafield extension
K /R of degree 2. If B isaroot of x? + 1, then 82 = —1; moreover, every element of K

has a unique expression of the form a + bg, where a,b € R. Clearly, this is another
construction of C (which we have been viewing as the pointsin the plane equipped with a
certain addition and multiplication).

Here is a natural way to construct an isomorphism K — C. Consider the evaluation
map ¢: R[x] — Cgivenby ¢: f(X) — f(i). First, ¢ is surjective, for a + ib =
p(@+ bx) € img. Second, kerp = {f(x) € R[x] : f(i) = 0}, the set of al polynomials
inR[x] havingi asaroot. We know that x2 4 1 € ker ¢, so that (x?> + 1) < ker ¢. For the
reverse inclusion, take g(x) € kerg. Now i isaroot of g(x), and so ged (g, x2 + 1) # 1
in C[x]; therefore, ged (g, x? + 1) # 1in R[x]. Irreducibility of x2 + 1 in R[x] gives
X241 g(x),and so g(x) € (x2+ 1), Therefore, ker ¢ = (x?+ 1). The first isomorphism
theorem now gives R[x]/(x? + 1) = C. «

The easiest way to multiply in C isto first treat i as a variable and then to impose the
condition i2 = —1. To compute (a + bi)(c + di), first write ac + (ad + bc)i + bdi?2, and
then observe that i = —1. More generally, if B isaroot of an irreducible p(x) € K[x],
then the proper way to multiply

(bo+b1f + - +bn1B" Do+ 1B+ -+ cro1f™H

inthe quotient ring k[x]/(p(x)) isto regard the factors as polynomialsin g, multiply them,
and then impose the condition that p(8) = 0.

A first step in classifying fields involves their characteristic; that is, describing prime
fields. A next step considers whether the elements are algebraic over the prime field.

Definition. Let K/k beafield extension. Anelement o € K isalgebraic over k if thereis
some honzero polynomial f (x) € K[x] having & as aroot; otherwise, « istranscendental
over k. An extension K /k isalgebraic if every o € K isalgebraic over k.

When areal number is called transcendental, it usually means that it is transcendental
over Q.

Proposition 3.119. If K/k isafinitefield extension, then K /k isan algebraic extension.

15This notation should not be confused with the notation for a quatient ring, for a field K has no interesting
ideals; in particular, if k C K, thenk isnot anideal in K.
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Proof. By definition, K /k finite meansthat [K : k] = n < oo; that is, K has dimension
n as a vector space over k. By Corollary 3.88, the list of n + 1 vectors 1, a, o, a"
is dependent. Thus, there are cp, C1, ..., ¢ € k, not al 0, with " ca' = 0. Thus, the
polynomial f(x) = Y ¢ x isnot the zero polynomial, and « isaroot of f (x). Therefore,
aisagebracoverk. e

The converse of thislast proposition is not true. We shall see, in Example 6.55, that the
set A of al complex numbers algebraic over Q is an algebraic extension of Q that isnot a
finite extension.

Definition. If K/k isan extension and o € K, then k(«) is the intersection of al those
subfields of K that contain k and «; we call k(«) the subfield of K obtained by adjoining
a tok.

More generally, if Aisa(possibly infinite) subset of K, define k(A) to be the intersec-
tion of all the subfields of K that contain kU A; we call k(A) the subfield of K obtained by
adjoining Ato k. Inparticular, if A = {z3, ..., zy} isafinite subset, then we may denote
k(A) by k(zy, ..., Zn).

Itisclear that k(A) isthe smallest subfield of K containing k and A; that is, if B isany
subfield of K containing k and A, then k(A) € B.

We now show that the field kK[x]/(p(X)), where p(x) € K[x] isirreducible, isintimately
related to adjunction.
Theorem 3.120.

(i) If K/kisan extension and « € K isalgebraic over k, then thereis a unique monic
irreducible polynomial p(x) € k[x] having « as a root. Moreover, if | = (p(x)),
then k[x]/l = k(a); indeed, there exists an isomorphism

¢ K[X]/l = k(a)

withp(x+ 1) =acandp(c+ 1) =cforall c € k.
(ii) If &’ € K isanother root of p(x), then there is an isomorphism

0 : k(a) — k()
with 0(«) = o’ and 6(c) = cfor all c € k.
Proof. (i) Consider evaluation, the ring homomorphism ¢ : k[x] — K defined by
¢ fX) > f(a).

Now img isthe subring of K consisting of all polynomialsin «; that is, all elements of
the form f () with f(x) € k[x]. Now ker¢ istheidea in k[x] consisting of al those
f(x) € k[x] having « as aroot. Since every ideal in k[x] is a principal ideal, we have
ker ¢ = (p(x)) for some monic polynomia p(x) € k[x]. But K[x]/(p(x)) = im¢, which
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isadomain, and so p(x) isirreducible, by Proposition 3.116. This same proposition says
that k[x]/(p(x)) isafield, and so thefirst isomorphism theorem givesk[x]/(p(X)) = img;
that is, img isasubfield of K containing k and «. Since every subfield of K that contains
k and ¢ must contain img, we have img = k(a). We have proved everything in the
statement except the uniqueness of p(x); but this now follows from Proposition 3.117(iv).

(ii) Asin part (i), thereareisomorphisms ¢ : k[x]/| — k() and v : k[x]/] — k(a’) with
p(c+1)=candy(c) =c+| foral c € k; moreover, p: X+ — aandy: x+1 — o'.
The composite§ = ¢! isthe desired isomorphism. e

Definition. |If K/k isafield extension and « € K is algebraic over k, then the unique
monic irreducible polynomia p(x) € K[x] having « asaroot is caled the minimal poly-
nomial of o over k, and it is denoted by

irr(ee, k) = p(x).

The minimal polynomial irr(«, k) does depend on k. For example, irr(i, R) = x2 + 1,
whileirr(i, C) = x —1i.

The following formulais quite useful, especially when proving a theorem by induction
on degrees.

Theorem 3.121. Letk C E C K befields, with E a finite extension of k and K afinite
extension of E. Then K is a finite extension of k, and

[K : K] =[K : E][E : K].

Proof. If A=a;,...,anisabasisof E over kandif B = by, ..., by isabasis of K
over E, then it suffices to prove that alist X of al a;b; isabasisof K over k.

To see that X spans K, takeu € K. Since B isabasis of K over E, there are scalars
Aj € Ewithu=3}; Ajbj. Since Aisabasis of E over k, there are scalars 1ji € k with
Aj =2 wjiai. Therefore, u =} ;; ujiabj, and X spans K over k.

To prove that X is linearly independent over k, assume that there are scalars 1ujj € k
with Zij wiigibj = 0. If wedefinexj = > ; ujia, then1j € E and Zi Ajbj = 0.
Since B islinearly independent over E, it follows that

0=1;j ZZMjiai
i

for al j. Since Aislinearly independent over k, it follows that jj = Ofor all j andi, as
desired. e

There are several classical problems in euclidean geometry: trisecting an angle; dupli-
cating the cube (given a cube with side length 1, construct a cube whose volume is 2);
squaring the circle (given acircle of radius 1, construct a square whose areais equal to the
areaof thecircle). In short, the problems ask whether geometric constructions can be made
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using only a straightedge (ruler) and compass according to certain rules. Theorem 3.121
has a beautiful application in proving the unsolvability of these classical problems. For a
discussion of these results, the reader may see my book, A First Course in Abstract Alge-
bra, pages 332-344.

Example 3.122.

Let f(x) = x*—10x2+1 € Q[x]. If Bisaroot of f(x),thenthe quadratic formulagives
B2 = 5+ 2,/6. But theidentity a + 2v/ab + b = (Va + vb)’ gives g = +(v/2+ /3.
Similarly, 5 — 2v/6 = (v2 — Jﬁ)z, so that the roots of f (x) are

V243, —V2-V3, V2-V3 —V2+43

By Theorem 3.43, the only possible rational roots of f(x) are +1, and so we have just
proved that these roots are irrational .
We claimthat f (x) isirreduciblein Q[x]. If g(x) isaquadratic factor of f(x) in Q[x],

then
g9(x) = (x — av2 — bv/3) (x — cv/2 — dv/3),
wherea, b, c,d € {1, —1}. Multiplying,

gx) = x2 — ((a+ OV2+ (b+ d)«/§>x + 2ac + 30d + (ad + bc)v/6.

We check easily that (a + ¢)~/2 + (b + d)+/3isrational if andonlyifa+c=0=b+d;
but these equations force ad + bc # 0, and so the constant term of g(x) is not rational.
Therefore, g(x) ¢ Q[x], and so f(x) isirreducible in Q[x]. If B = V2 + /3, then
f(x) =irr(8, Q).

Consider the field E = Q(8) = Q(v/2 + +/3). Thereisatower of fieldsQ € E € F,
where F = Q(+/2, v/3), and s0

[F:Q] =[F:EJ[E:Q]

by Theorem 3.121. Since E = Q(8) and 8 isaroot of an irreducible polynomial of degree
4, namely, f (x), wehave[E : Q] = 4. On the other hand,

[F:Q] =[F:Q(v2)][Q(v2) : Q].

Now [Q(v/2) : Q] = 2, because /2 isaroot of theirreducible quadratic x? — 2 in Q[X].
We claim that [F : Q(+/2)] < 2. The field F arises by adjoining +/3 to Q(v/2); either
V3 € Q(+/2), in which case the degree is 1, or x? — 3 is irreducible in Q(v/2)[x], in
which case the degreeis 2 (in fact, the degreeis 2). It followsthat [F : Q] < 4, and so the
equation[F : Q] = [F : E][E : Q] gives[F : E] = 1; thatis, F = E.

Let us note that F arises from Q by adjoining all the roots of f (x), and it also arises
from Q by adjoining all the roots of g(x) = (x2 — 2)(x?2 — 3). <

We now prove two important results: The first, dueto L. Kronecker, saysthat if f(x)
k[x], wherek isany field, then there is some larger field E that contains k and all the roots
of f(x); the second, due to E. Galois, constructs finite fields other than IF .
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Theorem 3.123 (Kronecker). Ifkisafieldand f(x) € k[x], then there exists a field K
containing k as a subfield and with f (x) a product of linear polynomialsin K[x].

Proof. The proof is by induction on deg(f). If deg(f) = 1, then f (x) islinear and we
can choose K = k. If deg(f) > 1, write f(X) = p(X)g(x), where p(x) is irreducible.
Now Proposition 3.117(i) provides afield F containing k and aroot z of p(x). Hence, in
F[x], we have p(x) = (x — 2h(x) and f(X) = (X — 2)h(x)g(x). By induction, there
isafield K containing F (and hence k) so that h(x)g(x), and hence f (x), isa product of
linear factorsin K[x]. e

For the familiar fields Q, R, and C, Kronecker’s theorem offers nothing new. The
fundamental theorem of algebra, first proved by Gaussin 1799 (completing earlier attempts
of Euler and of Lagrange), says that every nonconstant f(x) € C[x] hasaroot in C; it
follows, by induction on the degree of f (x), that al the roots of f(x) liein C; that is,
f(x) =ax —ry)...(x —rp), wherea € Candrj € Cforal j. On the other hand,
if k = Fp or k = C(x) = Frac(C[x]), then the fundamental theorem does not apply;
but Kronecker’s theorem does apply to tell us, for any given f(x), that there is always
some larger field E that contains al the roots of f (x). For example, there is some field
containing C(x) and v/x. Thereis a general version of the fundamental theorem that we
givein Chapter 6: Every field k is a subfield of an algebraically closed field K, that is, K
is afield containing k such that every f(x) € K[x] isaproduct of linear polynomialsin
K[x]. In contrast, Kronecker’s theorem gives roots of just one polynomial at atime.

The definition of k(A), the field obtained by adjoining a set A to k, assumes that A is
asubset of afield extension K of k. In light of Kronecker’s theorem, we may now speak
of afield extension k(zy, .. ., z,) obtained by adjoining all the roots of some f (x) € K[x]
without having to wonder whether such an extension K /k exists.

Definition. Let k beasubfield of afield K, and let f (x) € k[x]. We say that f (x) splits
over K if
fx)=ax—2z1) - (X—1z),

wherezs, ..., z, arein K and a € k is nonzero.
If f(X) € k[x] isapolynomial, then afield extension E/k is called asplitting field of
f(x) over k if f(x) splitsover E, but f (x) does not split over any proper subfield of E.

For example, consider f (x) = x2 + 1 € Q[x]. Theroots of f(x) are +i, and so f(x)
splits over C; that is, f(X) = (X —i)(X 4+ i) isaproduct of linear polynomials in C[x].
However, C isnot a splitting field over Q, for C is not the smallest field containing Q and
al theroots of f(x). The splitting field of f (x) € k[x] depends on k aswell ason f (x):
Here, the splitting field over Q isQ(i); the splitting field over R isR(i) = C.

In Example 3.122, we proved that E = Q(v/2 + +/3) is a splitting field of f(x) =
x* — 10x2 + 1, aswell asasplitting field of g(x) = (x? — 2)(x? — 3).

The existence of splitting fieldsis an easy consegquence of Kronecker’s theorem.

Corollary 3.124. Letk beafield, andlet f (x) € k[x]. Then a splitting field of f (x) over
k exists.
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Proof. By Kronecker’s theorem, there is a field extension K /k such that f (x) splitsin
K[x]; say, f(X) = a(X — a1)--- (X — ap). Thesubfield E = K(aq,...,an) Of K isa
splitting field of f(x) overk. e

Thus, a splitting field of f(x) € k[x] isthe smallest subfield E of K containing k and
al theroots of f(x). The reason we say “a’ splitting field instead of “the” splitting field is
that the definition involves not only f (x) and k, but the larger field K aswell. Analysis of
this technical point will enable us to prove Corollary 3.132: Any two finite fields with the
same number of elements are isomorphic.

Example 3.125.

Let k be afield and let E = Kk(yi, ..., ¥n) be the rationa function field in n variables
Vi, ..., Yn Over k; that is, E = Frac(k[ya, ..., Yn]), the fraction field of the ring of poly-
nomialsin n variables. The general polynomial of degree n over Kk is defined to be

f(x) = l—[(x —¥i) € Frac(k[y1, ..., YnD[X].
i

The coefficients of f(X) = (X — y1)(X — ¥2) - - - (X — ¥n), which we denote by g;, can be
given explicitly [see Egs. (1) on page 198] in terms of the y’s. Notice that E is a splitting
field of f(x) over thefield K = k(ag, ..., an—1), for it arisesfrom K by adjoining to it all
therootsof f(x), namely, al they’s. «

Here is another application of Kronecker’s theorem.

Proposition 3.126. Let p beaprime, and let k be afidd. If f(x) = xP — ¢ € k[x] and
« isa pthroot of ¢ (in some splitting field), then either f (x) isirreduciblein k[x] or ¢ has
a pthroot in k. In either casg, if k contains the pth roots of unity, then k(«) is a splitting
Jield of f(x).

Proof. By Kronecker’s theorem, there exists a field extension K /k that contains al the
rootsof f(x);thatis, K containsall the pthrootsof c. If «P = c, then every such root has
the form wa, where w is a pth root of unity; that is, w isaroot of xP — 1.

If f(x)isnotirreducibleink[x], then thereisafactorization f (x) = g(x)h(x) ink[x]
with g(x) a nonconstant polynomial with d = deg(g) < deg(f) = p. Now the constant
term b of g(x) is, up to sign, the product of some of the roots of f (x):

+b = ada),

where w, which isaproduct of d pth roots of unity, isitself a pth root of unity. It follows
that
(£b)P = (@9w)P = o9 = 9.

But p being primeand d < p forces (d, p) = 1; hence, there are integers s and t with
1 =sd + tp. Therefore,

c= Csd+tp — Csttp — (ib)psctp — [(ib)sct]p.
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Therefore, ¢ hasa pthroot in k.

If« € K isapthrootof c, then f (x) =[], (X—w«a), where w ranges over the pth roots
of unity. Since we are now assuming that all o lieink, it follows that k(«) is a splitting
fieldof f(X). e

It follows, for every prime p, that xP — 2isirreduciblein Q[x].

We are now going to construct the finite fields. My guessisthat Galois knew that C can
be constructed by adjoining a root of a polynomial, namely, x% + 1, to R, and so it was
natural for him to adjoin a root of a polynomial to F,. Note, however, that Kronecker’s
theorem was not proved until a half century after Galois’s death.

Theorem 3.127 (Galois). If pisaprimeand n isa positive integer, then thereisa field
having exactly p" elements.

Proof. Writeq = p", and consider the polynomial
g(x) = x4 —x € Fp[x].

By Kronecker’s theorem, there is a field K containing I, such that g(x) is a product of
linear factorsin K[x]. Define

E={eeK:g =0}

thus, E is the set of all the roots of g(x). Since the derivative g'(x) = gx9-1 — 1 =
p"x9-1 — 1 = —1 (see Exercise 3.23 on page 130), it follows that the gcd(g, g') is 1. By
Exercise 3.37 on page 142, al the roots of g(x) are distinct; that is, E hasexactly q = p"
elements.

We claim that E isasubfield of K, and thiswill complete the proof. If a, b € E, then
a9 = aand b9 = b. Therefore, (ab)¥ = a9b¥ = ab, and ab € E. By Exercise 3.45 on
page 149(iii), (@ —b)¥ = a9 — b% = a — b, sothata — b € E. Finaly, if a # 0, then the
cancellation law applied to a9 = a givesa%~! = 1, and so the inverse of a isa%=2 (which
liesin E because E isclosed under multiplication). e

We will soon see that any two finite fields with the same number of elements are iso-
morphic.

Recall Theorem 3.30: The multiplicative group of a finite field k is a cyclic group; a
generator « of this group is called aprimitive element; that is, every nonzero element of k
isapower of a.

Notation. Denote afinite field having q = p" elements (where p isa prime) by
Fq.

Corollary 3.128. For every prime p and every integer n > 1, there exists an irreducible
polynomial g(x) e Fp[x] of degree n. In fact, if « is a primitive element of IFpn, then its
minimal polynomial g(x) = irr(a, Fp) has degreen.
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Remark. An easy modification of the proof replacesF, by any finite field. <

Proof. Let E/Fp beafield extensionwith p" elements, and let @ € E be aprimitive ele-
ment. Clearly, Fp(a) = E, for it contains every power of «, hence every nonzero element
of E. By Theorem 3.120(i), g(x) = irr(a, Fp) € Fp[x] isan irreducible polynomial hav-
ing o asaroot. If deg(g) = d, then Proposition 3.117(v) gives [Fp[x]/(9(X)) : Fp] = d;
but Fp[x]/(9(x)) = Fp(e) = E, by Theorem 3.120(i), so that [E : Fp] = n. Therefore,
n = d, and so g(x) isan irreducible polynomial of degreen. e

This corollary can also be proved by counting. If m = pf*- .. pi, define the Mobius
Jfunction by

1 ifm=1;
w(m) = 0 ifany g > 1;
D"ifl=e=e=-=én

If Np, isthe number of irreducible polynomialsin Fp[x] of degree n, then

1
Np = ﬁdzlnju(d)p”/d.

An elementary proof can be found in G. J. Simmons, “The Number of Irreducible Polyno-
mials of Degree n over GF(p),” American Mathematical Monthly 77 (1970), pages 743—
745.

Example 3.129.
(i) In Exercise 3.14 on page 125, we constructed a field k with four elements:

a b )
{2 L0, ]ranen)

Ontheother hand, we may construct afield of order 4 asthe quotient F = F2[x]/(q(X)),
whereq(x) € F2[x] istheirreducible polynomial x2+x+ 1. By Proposition 3.117(v), F is
afield consisting of all a+ bz, wherez = x + (q(x)) isaroot of gq(x) anda, b € . Since
Z2+z+1=0,wehavez?2 = —z—1 = z+1; moreover, 8 = zz2 = z(z+1) = 2 +z= 1.

It isnow easy to seethat thereisaring isomorphism ¢ : k — F with ¢ ([g a—? bD =
a+ bz
(i) According to the table in Example 3.35(ii) on page 137, there are three monic irre-
ducible quadraticsin [F3[x], namely,

PX)=x24+1, qxX)=x>4+x—1, and r(x) =x>—x—1;

each gives rise to afield with 9 = 32 elements. Let us look at the first two in more detail.
Proposition 3.117(v) saysthat E = F3[x]/(p(X)) isgiven by

E ={a+ba: wherea® +1=0}.
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Similarly, if F = F3[x]/(q(x)), then
F={a+bg: wherep2+p8—-1=0}.

These two fields are isomorphic, for themap ¢ : E — F (found by trial and error), defined
by
p@+ba) =a+b(l-p),

is an isomorphism.
Now F3[x]/(x%2 — x — 1) is also a field with nine elements, and it can shown that it is
isomorphic to both of the two fields E and F just given (see Corollary 3.132).

(iii) In Example 3.35(ii) on page 137, we exhibited eight monic irreducible cubics p(x) €
IF3[x]; each of them givesriseto afield F3[x]/(p(x)) having 27 = 3 elements. <

We are now going to solve the isomorphism problem for finite fields.

Lemma 3.130. Let f(x) € k[x], where k is a field, and let E be a splitting field of
f(x) over k. Let ¢: k — Kk’ be an isomorphism of fields, let ¢*: k[x] — k/[x] be the
isomorphism

gx) =ag+a1X+ -+ anx" > g*(x) = p(a) + ¢(@)X + - - + p(@n)x",

and let E’ be a splitting field of f*(x) over k’. Then there is an isomorphism
®: E - E’ extending ¢.

[
e B/

E
k

—(p> k/
Proof. The proof is by inductionond = [E : k]. If d = 1, then f(x) is a product
of linear polynomiasin k[x], and it follows easily that f*(x) is aso a product of linear
polynomialsin k'[x]. Therefore, E’ = k’, and we may set & = ¢.

For the inductive step, choose aroot z of f(x) in E that isnot in k, and let p(x) =
irr(z, k) be the minimal polynomial of z over k (Proposition 3.117). Now deg(p) > 1,
because z ¢ k; moreover, [k(2) : k] = deg(p), by Theorem 3.117. Let Z be aroot of
p*(x) in E’, and let p*(x) = irr(Z, k') be the corresponding monic irreducible polynomial
ink'[x].

By a straightforward generalization'® of Proposition 3.120(ii), there is an isomorphism
¢ k(z2) — K (Z) extending ¢ with ¢ z+— Z. We may regard f (x) as apolynomia with

18provi ng the generalization earlier would have involved introducing all the notation in the present hypothe-
sis, and so it would have made a simple result appear complicated. The isomorphism ¢: k — k' induces an
isomorphism ¢*: k[x] — Kk/[x], which takes p(x) to some polynomial p*(x), and ¢* induces an isomorphism
K[X1/(p(x)) — K'[X]/(p* (X))
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coefficientsin k(z) (for k € k(z) impliesk[x] € k(z)[x]). We claim that E is a splitting
field of f(x) over k(z); that is,

E=k(2(z,..., Zn),
where zy, . .., z, aretheroots of f(x)/(x — z); after al,
E=k(z z1,...,20) =k(2)(z1, ..., Zn).

Similarly, E’ is a splitting field of f*(x) over k'(Z). But [E : k(2] < [E : K], by
Theorem 3.121, so that the inductive hypothesis gives an isomorphism ®: E — E’ that
extends ¢, and hence p. e

Theorem 3.131. Ifkisafieldand f (x) € k[x], then any two splitting fields of f (x) over
k are isomorphic via an isomor phism that fixes k pointwise.

Proof. Let E and E’ be splitting fields of f(x) over k. If ¢ is the identity, then the
theorem appliesat once. e

It is remarkable that the next theorem was not proved until the 1890s, 60 years after
Galois discovered finite fields.

Corollary 3.132 (E. H. Moore).  Any two finite fields having exactly p" elements are
isomorphic.

Proof. If E isafield with q = p" elements, then Lagrange’s theorem applied to the
multiplicative group E* shows that a9~! = 1 for every a € E*. It follows that every
element of E isaroot of f(x) = x4 —x € Fp[x], and so E is asplitting field of f(x)
over Fp. e

E. H. Moore (1862-1932) began his mathematical career as an algebraist, but he did
important work in many other parts of mathematics as well; for example, Moore-Smith
convergence is named in part after him.

Finite fields are often called Galois fields in honor of their discoverer. In light of Corol-
lary 3.132, we may speak of the field with g elements, where @ = p" is a power of a
prime p.

EXERCISES

3.81 Provethatif | = {0}, then R/l = R.

3.82 (Third Isomorphism Theorem for Rings) If R is a commutative ring having ideals | < J,
then J/1 isanidea in R/l and thereisaring isomorphism (R/1)/(J/1) = R/J.

3.83 For every commutativering R, provethat R[x]/(x) = R.
3.84 Provethat F3[x]/(x3 — X2 + 1) = F3[x]/(x3 = x2 + x + 1).
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3.85

3.86

3.87

3.88

3.89

3.90

391

3.92

3.93

3.94

3.95

If X isasubset of acommutativering R, define Z(X) to be the intersection of all those ideals
| in R that contain X. Prove that Z(X) isthe set of al a € R for which there exist finitely
many elements X1, ..., Xn € X and elementsr; € Rwitha =ryxq + --- +rnXn.
Let h(x), p(x) € k[x] be monic polynomials, where k isafield. If p(x) isirreducible and if
every root of h(x) (in an appropriate splitting field) is also aroot of p(x), prove that h(x) =
p(x)™ for someinteger m > 1.
Hint. Useinduction on deg(h).
Chinese Remainder Theorem.

(i) Prove that if k is a field and f(x), f/(x) € k[x] are relatively prime, then given

b(x), b’ (x) € k[x], there exists c(x) e k[x] with

c—be(f) and c—b e (f);

moreover, if d(x) is another common solution, thenc — d e (ff/).
Hint. Adapt the proof of Theorem 1.28. This exercise is generalized to commutative
ringsin Exercise 6.11(iii) on page 325.

(ii) Provethatif kisafield and f (x), g(x) € k[x] arerelatively prime, then

K[X]/(f(x)g(x)) = K[x]/(f(x)) x K[X]/(9(X)).

Hint. Seethe proof of Theorem 2.81.
(i) Provethat afield K cannot have subfieldsk’ and k” withk’ = Q and k” = F, for some
prime p.
(i) Provethat afield K cannot have subfieldsk’ and k” with k' = Fp and k” = Fq, where
p # g are primes.
Prove that the stochastic group (2, Fs) = Ag.
Hint. See Exercise 3.19 on page 125.
Let f(X) = g+ S1X + - + Sp_1X"1 4+ x" € K[x], where k is a field, and suppose that
f(X) = (X —ap))(X —a2)--- (X —ap). Provethat s,_1 = —(a1 + a2 + - - - + ap) and that
so = (—=1)"aqaz - - - ap. Conclude that the sum and product of all the roots of f (x) lieink.
Write addition and multiplication tables for the field Fg with eight elements.
Hint. Useanirreducible cubic over F.
Letk € K C E befields. Provethat if E isafinite extension of k, then E is afinite extension
of K and K isafinite extension of k.
Hint. Use Corollary 3.90(ii).
Letk € F € K be atower of fields, and let z € K. Prove that if k(z)/k is finite, then
[F(@ : F] <[k(2 : K]. Inparticular, [F(2) : F] isfinite.
Hint. UseProposition 3.117 to obtain an irreducible polynomial p(x) € k[x]; the polynomial
p(x) may factor in K[x].
(i) IsF4 asubfield of Fg?
(i) For any prime p, prove that if IF pn is asubfield of Fpm, then n | m (the converseis also
true, as we shall see later).
Hint. View Fpm asavector space over [Fpn.
Let K/k be afield extension. If A C K andu € k(A), prove that thereareay,...,an € A
withu € k(ag, ..., an).



Fields

4.1 INSOLVABILITY OF THE QUINTIC

This chapter will discuss what is nowadays called Galois theory (it was originally called
theory of equations), the interrelation between field extensions and certain groups asso-
ciated to them, called Galois groups. This theory will enable us to prove the theorem of
Abel-Ruffini as well as Galois’s theorem describing precisely when the quadratic formula
can be generalized to polynomials of higher degree. Another corollary of thistheory isa
proof of the fundamental theorem of algebra.

By Kronecker’s theorem, Theorem 3.123, for each monic f(x) € k[x], wherek isa
field, thereisafield K containing k and (not necessarily distinct) roots z, . . ., z, with

n-1

f)=x"+a,1x""" 4+ +ax+ag=(X—21)-- (X — Zn).

By induction on n > 1, we can easily generalize! Exercise 3.90 on page 197

a3=—) ZZj% @)

a =ED)"zzp- - zp.

1The coefficients a; may be viewed as polynomialsin zg, ..., Zn; as such, they are caled the elementary
symmetric polynomials, for they are unchanged if the z’s are permuted.

198
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Noticethat —a,_1 isthe sum of therootsand that +ag isthe product of the roots. Given the
coefficients of f (x), can we find its roots; that is, given the a’s, can we solve the system
(1) of n eguations in n unknowns? If n = 2, the answer is yes: The quadratic formula
works. If n = 3 or 4, the answer is till yes, for the cubic and quartic formulas work. But
if n > 5, we shall see that no analogous solution exists.

We did not say that no solution of system (1) existsif n > 5; we said that no solution
analogous to the solutions of the classical formulas exists. It is quite possible that there
is some way of finding the roots of a quintic polynomial if we do not limit ourselves to
field operations and extraction of roots only. Indeed, we can find the roots by Newton’s
method: if r isareal root of a polynomia f (x) and if X isa ‘“good” approximationtor,
thenr = limp— o Xn, Where x,, is defined recursively by xn11 = Xn — f(Xn)/f’(xn) for
al n > 0. Thereis a method of Hermite finding roots of quintics using elliptic modular
functions, and there are methods for finding the roots of many polynomials of higher degree
using hypergeometric functions.

We are going to show, if n > 5, that there is no solution “by radicals” (we will define
this notion more carefully later). The key observation is that symmetry is present. Recall
from Chapter 2 that if 2 is a polygon in the plane R2, then its symmetry group ()
consists of all those motions ¢ : R? — R? of the plane for which ¢(Q2) = Q. Moreover,
motions ¢ € X (£2) are completely determined by their values on the vertices of A; indeed,
if Q hasn vertices, then X (£2) isisomorphic to asubgroup of S,.

We are going to set up an analogy with symmetry groupsin which polynomials play the
role of polygons, a splitting field of a polynomial plays the role of the plane R2, and an
automor phism fixing k plays the role of amotion.

Definition. Let E be a field containing a subfield k. An automorphism? of E is an
isomorphismo: E — E; wesay that o fixes k if o (a) = afor every a € k.

For example, consider f(x) = x? + 1 € Q[x]. A splitting field of f(x) over Q is
E = Q(), and complex conjugation o : a — a is an example of an automorphism of E
fixing Q.

Proposition 4.1. Let k be a subfield of a field K, let

n—1

f(x) =x"+an_1x""" + - +ax +ag € K[X],

and let E = k(z1,...,2,) € K bea splitting field. If o: E — E is an automorphism
fixing k, then o permutes the set of roots {z1, . . ., z,} of f(X).

Proof. Ifr isaroot of f(x), then

n—1

O0=f(r)=r"+an """+ +ar +ao.

2The word automor phismis made up of two Greek roots: auto, meaning “self,” and morph, meaning “shape”
or “form.” Just as an isomorphism carries one group onto an identical replica, an automorphism carries a group
onto itself.
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Applying o to this equation gives
0=0("+0(@n-)oM" 1+ +o@)o)+o(0)
=o(M)"+an10M)" + - tao(r) +a
= f(o(r)),

because o fixes k. Therefore, o (r) isaroot of f(x); thus, if Z isthe set of al the roots,
theno|Z: Z — Z, where o|Z isthe restriction. But o|Z is injective (because o is), sO
that Exercise 1.58 on page 36 saysthat o |Z isapermutationof Z. e

Hereisthe analog of the symmetry group X (£2) of apolygon €.

Definition. Let k be a subfield of afield E. The Galois group of E over k, denoted by
Gal(E/k), isthe set of all those automorphisms of E that fix k. If f(x) e k[x], and if
E =k(z,..., Zn) isasplitting field, then the Galois group of f (x) over k is defined to
be Gal(E/k).

It is easy to check that Gal (E/k) is a group with operation composition of functions.
This definition is due to E. Artin (1898-1962), in keeping with his and E. Noether’s em-
phasison “abstract” algebra. Galois’sorigina version (agroup isomorphic to thisone) was
phrased, not in terms of automorphisms, but in terms of certain permutations of the roots of
a polynomial (see Tignol, Galois’ Theory of Algebraic Equations, pages 306-331). Note
that Gal (E/K) isindependent of the choice of splitting field E, by Theorem 3.131.

The following lemmawill be used several times.

Lemma4.2. LetE =Kk(z,...,2zy). If o: E — E isanautomorphismjixing k, that is,
ifo € Ga(E/k),andif o(z) = z for all i, then o isthe identity 1g.

Proof. We prove the lemmaby inductiononn > 1. If n = 1, then eachu € E hasthe
formu = f(z1)/9(z1), where f (x), g(x) € K[x] and g(z1) # 0. But o fixes z; as well
as the coefficients of f (x) and of g(x), so that o fixesal u € E. For the inductive step,
write K = k(zq, ..., Zn—1), and note that E = K (z,) [for K(z,) isthe smallest subfield
containingk and z1, . .., z,—1, Zy]. Having noted this, the inductive step isjust arepetition
of the base step with k replaced by K.

Theorem 4.3. |If f(x) € k[x] hasdegreen, thenitsGaloisgroup Gal(E/Kk) isisomorphic
to a subgroup of S,.

Proof. Let X = {z1,...,z,}. If 0 € Ga(E/k), then Proposition 4.1 shows that its
restriction o | X is a permutation of X; that is, o|X € Sx. Define ¢: Gal(E/k) — Sx
by ¢: o > o|X. To seethat ¢ is a homomorphism, note that both ¢ (o t) and ¢(o)¢(1)
are functions X — X, and hence they are equal if they agree on each z € X. But
p(01): Z — (01)(Z), Whilep(o)e(t): z — o(t(z)), and these are the same.

Theimageof ¢ isasubgroup of Sx = S,. Thekernel of ¢ istheset of all o € Gal(E/k)
such that o isthe identity permutation on X; that is, o fixes each of theroots z;. Aso aso
fixes k, by definition of the Galois group, Lemma 4.2 gives ker ¢ = {1}. Therefore, ¢ is
injective, giving the theorem. e
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If f(x) =x2+ 1 e Q[x], then complex conjugation o is an automorphism of its split-
ting field Q(i) which fixes Q (and interchangesthe rootsi and —i). Since Gal(Q(i)/Q) is
a subgroup of the symmetric group S, which has order 2, it follows that Gal(Q(i)/Q) =
(o) = I>. We should regard the elements of any Galois group Gal (E/ k) as generalizations
of complex conjugation.

We are going to compute the order of the Galois group, but we first obtain some infor-
mation about field isomorphisms and automorphisms.

Lemma 4.4. If kisa field of characteristic O, then every irreducible polynomial p(x) €
k[x] has no repeated roots.

Proof. In Exercise 3.37 on page 142, we saw, for any (not necessarily irreducible) poly-
nomia f (x) with coefficients in any field, that f (x) has no repeated roots if and only if
theged (f, f/) = 1, where f/(x) isthe derivative of f (x).

Now consider p(x) e K[x]. Either p'(x) = 0 or deg(p’) < deg(p). Since p(x) is
irreducible, it is not constant, and so it has some nonzero monomial ax', wherei > 1.
Therefore, i a x ~1 is a nonzero monomial in p’(x), because k has characteristic 0, and so
p'(X) # 0. Finally, since p(x) isirreducible, its only divisors are constants and associates;
as p/(x) has smaller degree, it is not an associate of p(x), andsotheged (p/, p) =1. o

Recall Theorem 3.120(i): If E/k isan extension and o € E is algebraic over k, then
there isa unique monic irreducible polynomial irr(e, k) € k[x], called its minimal polyno-
mial, having o asaroot.

Definition. Let E/k bean agebraic extension. Anirreducible polynomia p(x) issepa-
rable if it has no repeated roots. An arbitrary polynomial f (x) isseparable if each of its
irreducible factors has no repeated roots.

An element « € E is caled separable if either « is transcendental over k or if « is
algebraic over k and itsminimal polynomial irr(«, k) hasno repeated roots; that is, irr(«, k)
is a separable polynomial.

A field extension E/k is called aseparable extension if each of its elementsis separa-
ble; E/k isinseparable if it is not separable.

Lemma 4.4 shows that every extension of afield of characteristic O is a separable exten-
sion. If E isafinitefield with p" elements, then Lagrange’s theorem (for the multiplicative
group E*) shows that every element of E is aroot of xP" — x. We saw, in the proof of
Theorem 3.127 (the existence of finite fields with p" elements), that xP" — x has no re-
peated roots. It followsthat if k C E, then E/k isaseparable extension, for if « € E, then
irr(e, k) isadivisor of xP" — x.

Example 4.5.
Here is an example of an inseparable extension. Let k = Fp(t) = Frac(Fp[t]), and let
E = k(a), wherea isaroot of f(x) = xP —t;thatis, aP =t. In E[X], we have

fX)=xP—t=xP—-aP=x—-a)P.
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If we show that o ¢ K, then f(x) isirreducible, by Proposition 3.126, and so f(x) =
irr(a, K) isan inseparable polynomia. Therefore, E/ Kk is an inseparable extension.

It remains to show that o« ¢ k. Otherwise, there are g(t), h(t) e Fp[t] with o =
g(t)/h(t). Hence, g = oh and gP = «PhP = thP, so that

deg(gP) = deg(thP) = 1+ deg(hP).

But p | deg(gP) and p | deg(hP), and this gives a contradiction.
We will study separability and inseparability more thoroughly in Chapter 6.

Example 4.6.
Let m be a positive integer, let k be a field, and let f(x) = x™ — 1 € k[x]. If the
characteristic of k does not divide m, then mx™~1 =£ 0 and the ged (f, f) = 1; hence,
f (x) has no repeated roots. Therefore, any splitting field E/k of f (x) contains m distinct
mth roots of unity. Moreover, the set of these roots of unity is a (multiplicative) subgroup
of E* of order m that is cyclic, by Theorem 3.30. We have proved that if characteristic
k 1 m, then there exists a primitive mth root of unity » in some extension field of k, and w
is a separable element.

On the other hand, if p® is a prime power and k has characteristic p, then x*° — 1 =
(x — 1)P°, and so there is only one peth root of unity, namely, 1. <

Separability of E/k allows usto find the order of Gal (E/ k).

Theorem 4.7.

(i) Let E/k be a splitting field of a separable polynomial f(x) € k[x], let ¢: k —> K
be a field isomorphism, and let E’/k’ be a splitting field of f*(x) € k/[x] [where
f*(x) is obtained from f (x) by applying ¢ to its coefficients].

o

E
k

I
ok

Then there are exactly [E : k] isomorphisms ®: E — E’ that extend ¢.
(i) If E/k isasplitting field of a separable f (x) € K[x], then

|Gal(E/K)| = [E : K].

Proof. (i) The proof, by induction on[E : K], modifiesthat of Lemma3.130. If [E : k] =
1, then E = k and there is only one extension ® of ¢, namely, ¢ itself. If [E : k] > 1, let
f(xX) = p(x)g(x), where p(x) is an irreducible factor of largest degree, say, d. We may
assumethat d > 1, otherwise f (x) splitsover k and [E : k] = 1. Choose aroot o of p(x)
(notethat @ € E because E is a splitting field of f(x) = p(xX)g(x)). If ¢: k(e) — E’
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is any extension of ¢, then ¢(a) isaroot o’ of p*(x), by Proposition 4.1; since f*(x) is
separable, p*(x) has exactly d rootsa’ € E’; by Lemma 4.2 and Theorem 3.120(ii), there
are exactly d isomorphisms ¢ : k(a) — k(') extending ¢, one for each o’. Now E is
also agplitting field of f (x) over k(«), because adjoining al theroots of f (x) to k(w) still
produces E, and E’ isasplitting field of f*(x) over K'(a). Since[E : k(a)] = [E : K]/d,
induction shows that each of the d isomorphisms ¢ has exactly [E : k]/d extensions
®: E — E’. Thus, we have constructed [ E : k] isomorphisms extending ¢. But there are
no others, because every t extending ¢ has t|k(a) = ¢ for some ¢: k(a) — K'(a’).

(i) Inpart (i), takek = k', E=FE,andgp = 1x.

Example 4.8.

The separability hypothesis in Theorem 4.7(ii) is necessary. In Example 4.5, we saw that
if k = Fp(t) and « is aroot of xP —t, then E = k(«) is an inseparable extension.
Moreover, XxP —t = (x — )P, so that « isthe only root of this polynomial. Therefore, if
o € Ga(E/k), then Proposition 4.1 shows that o (o) = «. Therefore, Gal(E/k) = {1},
by Lemma4.2, and so | Gal(E/k)| < [E : k] = pinthiscase. «

Corollary 4.9. Let E/k be a splitting field of a separable polynomial f(x) € k[x] of
degreen. If f(x) isirreducible, thenn | | Gal(E/Kk)|.

Proof. By thetheorem, |Gal(E/k)| = [E : K]. Let« € E bearoot of f(x). Since f(x)
isirreducible, [k(«) : k] = n, and

[E:K =[E : k@)][k(@) : k] = n[E : k(@)]. e

We shall see, in Proposition 4.38, that if E/k isa splitting field of a separable polyno-
mial, then E/K is a separable extension.
Here are some computations of Galois groups of specific polynomialsin Q[x].

Example 4.10.

(i) Let f(x) =x3—1e Q[x]. Now f(x) = (x — D)(x? 4+ x + 1), where x2 + x + 1
is irreducible (the quadratic formula shows that its roots w and @, do not liein Q). The
splitting field of f(x) is Q(w), for w? = @, and s0 [Q(w) : Q] = 2. Therefore,
| Gal(Q(w)/Q)| = 2, by Theorem 4.7(ii), and it is cyclic of order 2. Its nontrivia ele-
ment is complex conjugation.

(i) Let f(x) = x2 —2 e Q[x]. Now f(x) isirreducible with roots ++/2, so that E =
Q(+/2) isasplitting field. By Theorem 4.7(ii), | Gal (E/Q)| = 2. Now every element of E
has a unique expression of the form a + b+/2, where a, b € Q [Theorem 3.117(v)], and it
iseasily seenthat o : E — E, defined by o : a 4+ bv/2 — a — by/2, is an automorphism
of E fixing Q. Therefore, Gal(E/Q) = (o), where o interchanges v/2 and —+/2.

(iii) Let g(x) = x3 — 2 € Q[x]. Therootsof g(x) are«, wa, and w?a, wherea = /2, the
real cuberoot of 2, and w isa primitive cube root of unity. It iseasy to seethat the splitting
field of g(x) isE = Q(«, w). Note that

[E:Q] =[E: Q)][Q(x) : Q] = 3[E : Q(a)],
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for g(x) isirreducible over Q (it is a cubic having no rational roots). Now E # Q(«),
for every element in Q(«) is real, while the complex number w is not real. Therefore,
[E:Q] =|Ga(E/Q)| > 3. On the other hand, we know that Gal (E/Q) isisomorphic to
asubgroup of Sz, and so we must have Gal(E/Q) = Ss.

(iv) We examined f(x) = x* — 10x? + 1 € Q[x] in Example 3.122, when we saw that
f(x) isirreducible; in fact, f(x) = irr(B, Q), where B = V2 + V3. If E = Q(B),
then [E : Q] = 4; moreover, E is a splitting field of f(x), where the other roots of
f(X) are —+/2 — /3, =2 + /3, and /2 — /3. It follows from Theorem 4.7(ii) that if
G = Ga(E/Q), then |G| = 4; hence, either G=ET40r G =V,

We also saw, in Example 3.122, that E contains +/2 and +/3. If o is an automorphism
of E fixing Q, then o (+/2) = uv/2, where u = +1, because (o (+/2)2 = 2. Therefore,
02(v2) = 0 (UV2) = Uo (V2) = U222 = /2; similarly, 02(v/3) = /3. If « isaroot of
f(x), then & = uv/2 + v4/3, whereu, v = +1. Hence,

02(05) = ugz(«/é) + vaz(«/g) =uv2+vv/3=uc.

Lemma4.2 giveso? = 1g for al o € Gal(E/Q), and so Gal(E/Q) = V.

Here is another way to compute G = Gal(E/Q). We saw in Example 3.122 that E =
Q(V2++/3) = Q(v/2, V/3) isdso asplitting field of g(x) = (x2—2)(x% — 3) over Q. By
Proposition 3.120(ii), thereis an automorphism ¢ : Q(+/2) — Q(+/2) taking v/2 — —+/2.
But v/3 ¢ Q(v/2), as we noted in Example 3.122, so that x2 — 3 is irreducible over
Q(+/2). Lemma 3.130 shows that ¢ extends to an automorphism &: E — E; of course,
® € Ga(E/Q). There aretwo possibilites: ®(+/3) = ++/3. Indeed, it is now easy to see
that the elements of Gal (E/Q) correspond to the four-group, consisting of the identity and
the permutations (in cycle notation)

(V2, —vV2)(v/3, V), (V2 —vV2)(v3, —V3), (V2. V2)(V3, —V3). «
Here are two more general computations of Galois groups.

Proposition 4.11. If misa positive integer, if k isa field, and if E is a splitting field of
XM — 1 over k, then Gal(E/k) is abelian; in fact, Gal(E/K) is isomorphic to a subgroup
of the multiplicative group U (I,) of all [i] with (i, m) = 1.

Proof. Assume first that the characteristic of k does not divide m. By Example 4.6, E
contains a primitive mth root of unity, w, and so E = k(w). The group of al roots of
xM—1in E iscyclic, say, with generator w, so that if o € Gal(E/k), thenitsrestrictionis
an automorphism of the cyclic group (w). Hence, o (w) = &' must also be a generator of
(w); that is, (i, m) = 1, by Theorem 2.33(i). It iseasy to seethat i isuniquely determined
mod m, so that the function ¢: Gal(k(w)/K) — U(Im), given by ¢(o) = [i] if o (w) =
o', iswell-defined. Now ¢ is a homomorphism, for if t(w) = !, then

1o(w) = 1(0') = (o) =o'l

Finaly, Lemma4.2 shows that ¢ isinjective.
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Suppose now that k has characteristic p and that m = p®n, where p { n. By Exam-
ple 4.6, there is a primitive nth root of unity w, and we claim that E = k(w) isasplitting
field of x™ — 1. If {™ = 1, then 1 = ¢P™™ = (¢")P°. But the only pth root of unity is
1, since k has characteristic p, and so ¢" = 1; that is, ¢ € k(w). We have reduced to the
case of the first paragraph. [In fact, moreistruein this case: Gal(E/k) isisomorphicto a
subgroup of the multiplicative group U (Iy).] e

Remark. We cannot conclude more from the proposition; given any finite abelian group
G, thereis some integer m with G isomorphic to a subgroup of U (TIr,). <

Theorem 4.12. If pisaprime, then
Gal(Fpn /Fp) = I,

and a generator isthe Frobenius F: u — uP.

Proof. Letq = p", and let G = Gal(Fq/Fp). Since Fq has characteristic p, we have
(a + b)P = aP + bP, and so the Frobenius F is a homomorphism of fields. As any
homomorphism of fields, F is injective; as Fq is finite, F must be an automorphism, by
Exercise 1.58 on page 36; that is, F € G.

If = € Fq is a primitive element, then d(x) = irr(w, Fp) has degree n, by Corol-
lary 3.128, and so |G| = n, by Theorem 4.7(ii). It sufficesto prove that the order j of F is
not less than n. Butif FI = 1, for j < n, then uP’ = uforall of theq = p" elements

u € Fq, giving too many roots of the polynomial xP X, e

The following nice corollary of Lemma 3.130 says, in our analogy between Galois the-
ory and symmetry of polygons, that irreducible polynomials correspond to regular poly-
gons.

Proposition 4.13. Let k beafield and let p(x) € k[x] have no repeated roots. If E/k is
a splitting field of p(x), then p(x) isirreducible if and only if Gal(E/K) acts transitively
on the roots of p(x).

Proof. Assume that p(x) isirreducible, and let «, 8 € E be roots of p(x). By Theo-
rem 3.120(i), there is an isomorphism ¢ : k(a) — k(B) with (o) = B and which fixes
k. Lemma 3.130 shows that ¢ extends to an automorphism @ of E that fixes k; that is,
® € Ga(E/k). Now @ (a) = ¢(a) = B, and so Gal (E/ k) acts transitively on the roots.

Conversely, assume that Gal(E/k) acts transitively on the roots of p(x). If p(x) =
gi1(X) - - - e (X) is a factorization into irreducibles in k[x], wheret > 2, choose a root
a € E of gq1(x) and choose aroot 8 € E of g2(x). By hypothesis, thereiso € Ga(E/k)
with o (@) = B. Now o permutes the roots of g1 (x), by Proposition 4.1. However, 8 is not
aroot of gi(x), because p(x) has no repeated roots, and thisis a contradiction. Therefore,
t = 1; thatis, p(x) isirreducible. e
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We can now give another proof of Corollary 4.9. Theorem 2.98 saysthat if X isa G-set,
then |G| = |O(X)||Gx|, where O(x) isthe orbit of x € X. In particular, if X isatransitive
G-set, then | X| isadivisor of |G|. Let f(x) € k[x] be a separable irreducible polynomial
of degree n, and let E/k be its splitting field. If X isthe set of roots of f (x), then X is
atransitive Gal (E/Kk)-set, by Proposition 4.13, and so n = deg(f) = |X] isadivisor of
| Gal(E/K)|.

The analogy? is complete.

Polygon 2 ...........cooviinat polynomial f(x) € Kk[x]
Regular polygon................. irreducible polynomial
Verticesof Q .................... roots of f(x)
Plane............cccoociin. .. splitting field E of f (x)
Motion.............oiiieinn automorphism fixing k
Symmetry group () ....v.vt.. Galois group Gal(E/ k)

Here is the basic strategy. First, we will translate the classical formulas (giving the
roots of polynomials of degree at most 4) in terms of subfields of a splitting field E over k.
Second, thistrandation into the language of fieldswill itself be trandated into the language
of groups: If there is aformula for the roots of f (x), then Gal(E/k) must be a solvable
group (which we will soon define). Finally, polynomials of degree at least 5 can have
Galois groups that are not solvable. The conclusion isthat there are polynomials of degree
5 for which there is no formula, analogous to the classical formulas, giving their roots.

Formulas and Solvability by Radicals

Without further ado, here is the trandation of the existence of aformulafor the roots of a
polynomial in terms of subfields of a splitting field.

Definition. A pure extension of type m is an extension k(u)/k, where u™ < k for some
m > 1. An extension K /K is aradical extension if thereis atower of fields

k=Ko Kic---CKi=K

in which each Kj_1/K; isapure extension.

If U™ = a € k, then k(u) arises from k by adjoining an mth root of a. If k € C, there
are m different mth roots of a, namely, u, wu, w?u, ..., ®™ lu, where w = e#/Mijsa
primitive mth root of unity. More generally, if k contains the mth roots of unity, then a pure
extension k(u) of typem, that is, U™ = a € k, then k(u) isasplitting field of x™ — a. Not
every subfield k of C contains all the roots of unity; for example, 1 and —1 are the only
roots of unity in Q. Since we seek formulas involving extraction of roots, it will eventually
be convenient to assume that k contains appropriate roots of unity.

3Actually, a better analogy would involve polyhedra in euclidean space R" instead of only polygons in the
plane.
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When we say that thereisaformula for the roots of apolynomial f (x) analogousto the
quadratic formula, we mean that there is some expression giving theroots of f (x) interms
of the coefficients of f(x). The expression may involve the field operations, constants,
and extraction of roots, but it should not involve any other operations involving cosines,
definite integrals, or limits, for example. We maintain that a formula as we informally
described exists precisely when f (x) is solvable by radicals, which we now define.

Definition. Let f(X) € k[x] have a splitting field E. We say that f (X) is solvable by
radicals if thereisaradical extension

k=Ko KiC---CK

with E C K;.

Actually, there is a nontrivial result of Gauss that we are assuming. It is true, but not
obvious, that x" — 1 is solvable by radicals in the sense that there is the desired sort of
expression for

e2ri/n — cos(%) +isin (27”)
(see van der Waerden, Modern Algebra |, pages 163-168, or Tignol, Galois’ Theory of
Algebraic Equations, pages 252-256). This theorem of Gauss is what enabled him to
construct aregular 17-gon with ruler and compass.

Let usillustrate this definition by considering the classical formulas for polynomials of
small degree.

Quadratics

If f(X) =x2+ bx + ¢, then the quadratic formula gives its roots as
%(—b:l: N[ 4c).

Let k = Q(b, c). Define K; = k(u), whereu = +/b2 — 4c. Then K isaradical extension
of k, for u? € k. Moreover, the quadratic formulaimplies that K1 is the splitting field of
f(x), and so f (x) issolvable by radicals.

Cubics

Let f(X) = X%+ bX? 4+ cX +d, and let k = Q(b, c,d). The change of variable
X =X- %b yields a new polynomial f~(x) = x3 + gx +r € k[x] having the same
splitting field E [for if u isaroot of f(x), thenu — %b isaroot of f(x)]; it follows that
f(x) issolvable by radicalsif and only if f (x) is. Special cases of the cubic formulawere
discovered by Scipio del Ferro around 1515, and the remaining cases were completed by
Niccol 0 Fontana (Tartaglia) in 1535 and by Giralamo Cardano in 1545. The formula gives
theroots of f(x) as

g+h, wg+o’h, and o9+ owh,
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whereg® = 1 (—r + «/_> h=-0/3g,R=r2+40% andw = — 1 +i f isaprimitive

cube root of unity. B
The cubic formulais derived as follows. If uisaroot of f(x) = x3 + gx +r, write

u=g+h,
and substitute:
0= fuy=fg+h =g®+h%+ Bgh+qu-+r.

Now the quadratic formula can be rephrased to say, given any pair of numbersu and v, that
there are (possibly complex) numbers g and h withu = g + h and v = gh. Therefore, we
can further assumethat 3gh + q = 0; that is,

@®+h=-r ad gh=-}q
After cubing the latter, the resulting pair of equationsis

@+hd=—r
gshs = _2_17q37
giving the quadratic in g®:
®+rg®— La®=o0.
The quadratic formula gives

= %(—r +m> =3(-r+vR)

[note that h? is also aroot of this quadratic, so that h® = §(—r — \/ﬁ)]. There are three
cube roots of g%: g, wg, and w2g. Because of the constraint gh = 3q each of these has
a“mate,” namely, h = —g/(3g), —q/(30g) = w?h, and —q/(3w?g) = wh.

Let us now see that f(x) is solvable by radicals. Define K1 = k(~R), where R =
re+ 27q and define K» = K1(«), where o3 1( r + +/R). The cubic formula shows
that Ko containsthe root o + 8 of f(x) where 8 = —q/3«. Flnally define K3 = Ks(w),
where w3 = 1. The other roots of f(x) are we + w?B and w?a + wp, both of which liein
K3, andso E C Kas.

A splitting field E need not equal K3, for if al the roots of f(x) arered, then E C
R, whereas K3 Z R. An interesting aspect of the cubic formula is the so-called casus
irreducibilis; the formulafor the roots of an irreducible cubic in Q[x] having all roots rea
requires the presence of complex numbers (see Rotman, Galois Theory, 2d ed., page 99).

Casus Irreducibilis. If f(x) = x3+qgx+r e Q[x] isanirreducible polynomial having
three real roots, then any radical extension K;/Q containing the splitting field of f (x) is
not redl; that is, K; € R.
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Example 4.14.
If f(x) =x3—15x—126,thenq = —15,r = —126, R = 15376, and v'R = 124. Hence,
g% = 125, sothat g = 5. Thus, h = —q/(3g) = 1. Therefore, therootsof f(x) are

6, 50w+w?=-3+2V3, 5w’+w=-3-23
Alternatively, having found one root to be 6, the other two roots can be found as the roots

of the quadratic f(x)/(Xx —6) = x?+6x +21. «

Example 4.15.
The cubic formula is not very useful because it often gives the roots in unrecognizable
form. For example, let

f(X)=(X—1(X—2)(X+3) =x3—7x+6.

The cubic formula gives

31 —400 31 / =400
It isnot at al obvious that g + h is area number, let alone an integer. There is another
version of the cubic formula, dueto F. Viéte, which givestherootsin terms of trigonometric

functions instead of radicals (see my book, A First Course in Abstract Algebra, pp. 360-
362). «

Quartics
Let f(X) = X*+bX3+cX?+dX+e andletk = Q(b, ¢, d, €). The change of variable
X = x — 1byieldsanew polynomia f(x) = x* + gx? +rx + s € k[x]; moreover, the
splitting field E of f(x) isequal to the splitting field of f(x), for if uisaroot of f(x),
thenu — %b isaroot of f(x). Thequartic formulawas found b~y Luigi Ferrari in 1545, but
here isthe version presented by R. Descartesin 1637. Factor f (x) in C[x]:

FoO=x*4+gx2+rx+s= X2+ jX+ X% — jx +m),

and determine |, £ and m. Expanding and equating like coefficients gives the equations

t+m—j?=q;
jm—20) =r;
fm=s.

The first two equations give

2m=j24+q+r/j;
2t =j%4+q-r/j.
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Substituting these values for m and ¢ into the third equation yields the resolvent cubic:
(i%°+2a(j%% + @* — 49)]% — 2,

The cubic formulagives j2, from which we can determine m and ¢, and hence the roots of
the quartic.
Define pure extensions
k=Ko C K1 € Kz CKg,

asin the cubic case, so that j2 € Ks. Define K4 = K3(j) (sothat £, m € Kg). Finally,
define Ks = Ky (,/j2 - 4£) and Kg = Ks (,/j2 - 4m) [giving roots of the quadratic
factors x2 + jx + £ and x2 — jx 4+ mof f~(x)]. The quartic formulagives E C Kg.

We have just seen that quadratics, cubics, and quartics are solvable by radicals. Con-
versely, if f(x) isapolynomial that is solvable by radicals, then there is a formula of the
desired kind that expressesits roots in terms of its coefficients. For suppose that

k=KogC Ki<C---C Kt

isaradica extension with splitting field E € K;. Let zbe aroot of f(x). Now K; =
Ki—1(u), where u is an mth root of some element « € K;_1; hence, z can be expressed in
terms of u and K_1; that is, z can be expressed in terms of ¥/« and K{_3. But Ki_3 =
Ki—2(v), where some power of v liesin K{_2. Hence, z can be expressed in terms of u,
v, and Ki_»2. Ultimately, z is expressed by a formula analogous to those of the classical
formulas.

Translation into Group Theory

The second stage of the strategy involves investigating the effect of f (x) being solvable by
radicals on its Galois group.

Suppose that k(u)/k is a pure extension of type 6; that is, u® e k. Now k(u®)/k isa
pure extension of type 2, for (u®)? = u® e k, and k(u)/k(u®) is obviously apure extension
of type 3. Thus, k(u)/k can be replaced by a tower of pure extensionsk C k(u2) < k(u)
of types 2 and 3. More generally, we may assume, given a tower of pure extensions, that
each field is of prime type over its predecessor: If k C k(u) is of type m, then factor
m = pg--- Py, Where the p’s are (not necessarily distinct) primes, and replace k < k(u)
b

’ k € k(u™Py € ku™PiP2) C ...  k(u).

Here is a key result allowing us to translate solvability by radicals into the language of

Galois groups.

Theorem 4.16. Letk € B € E be atower of fields, let f(x), g(x) € K[x], let B bea
splitting field of f (x) over k, and let E be a splitting field of g(x) over k. Then Gal(E/B)
isa normal subgroup of Gal(E/k), and

Gal(E/k)/ Gal(E/B) = Gal(B/k).
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Proof. Let B = k(zi1,...,2%), where z1,...,7 aretherootsof f(x) INE. If 0 €
Gal(E/k), theno permuteszy, . . ., z, by Proposition 4.1(i) (for o fixesk), andso o (B) =
B. Define p: Ga(E/k) — Gal(B/k) by 0 — o|B. Itiseasy to see, asin the proof of
Theorem 4.3, that p is a homomorphism and that ker p = Gal(E/B). It follows that
Gal(E/B) isanormal subgroup of Gal(E/k). But p is surjective: If t € Gal(B/k), then
Lemma 3.130 appliesto show that thereiso € Gal(E/k) extending t [i.e., p(0) = o|B =
7]. The first isomorphism theorem completesthe proof. e

The next technical result will be needed when we apply Theorem 4.16.

Lemma 4.17.

(i) If B=K(ay,...,an) isafinite extension of a field k, then thereis a finite extension
E/B that is a splitting field of some polynomial f(x) € k[x] (such an extension
of smallest degree is called a normal® closure of B/k). Moreover, if each «; is
separable over k, then f (x) can be chosen to be a separable polynomial.

(i) If B is a radical extension of k, then the extension E/B in part (i) is a radical
extension of k.

Proof. (i) By Theorem 3.120(i), there is an irreducible polynomia pj(x) = irr(ej, k)
in K[x], for each i, with pj(«j) = 0, and a splitting field E of f(x) = p1(X)--- pa(X)
containing B. If each «; is separable over k, then each p; (X) is a separable polynomial,
and hence f (x) is a separable polynomial.

(ii) For each pair of roots o and o’ of any pj(x), there is an isomorphism y : k(o) —
k(a") which fixes k and which takes o — o/, for both k(«) and k(a’) are isomorphic
to K[x]/(pi (x)). By Lemma 3.130, each such y extends to an automorphismo € G =
Gal(E/k). It followsthat E = k(o (U1),...,0(Ut) : o € G).

If B/k isaradical extension, then

k € k(u1) S k(ug,up) €--- Ck(ug,...,u) = B,
where each k(uy, ..., Ujs+1) is a pure extension of k(us, ..., uj); of course, o(B) =
k(o (u1),...,o(ut)) isaradica extension of k for every o € G. We now show that E

isaradical extension of k. Define
B1 = k(o (uy) : o € G).
Now if G = {1, 0, 7, ...}, then the tower
k € k(u1) € k(uz, o(u1)) € k(uz, 0 (u1), t(U1) € -+ € By

displays B asaradical extension of k. For example, if uf' liesink, then t(up)™ = z(u")
liesin (k) = k, and hence 7 (u1)™ liesink C k(u1, o (u1)). Assuming, by induction, that

4\We often call an extension E/k anormal extension if it isthe splitting field of some set of polynomialsin
K[x].
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aradical extension Bj/k containing {o (uj) : 0 € G} foral j < i has been constructed,
define

Bi;1=Bi(cUjt1) : 0 € G).
It is easy to see that Bj;1/B; is a radical extension: |If ui”ll € k(ug,...,u;), then
T(Uir1)™ € k(r(up),...,T(Uj)) C Bi; it follows that Bj1 is aradical extension of k.
Finally, since E = By, we have shown that E isaradical extensionof k. e

We can now give the heart of the trandlation we have been seeking.

Lemma 4.18. Let
Ko€KiCKyC .- CKy

be a radical extension of a field Ko. Assume, for each i > 1, that each K; is a pure
extension of prime type p; over K;_1, where p; # char(Kp), and that Kq contains all the
pith roots of unity. If K; isa splitting field over Ko, then there is a sequence of subgroups

Gal(Ki/Ko) =Go>G1 > G2 > -+ > Gt = {1},
with each G;j_1 a normal subgroup of G; and with G;j /G;j_1 cyclic of prime order p;j1.
Proof. For eachi, define G; = Gal(K{/K;). Itisclear that

Gal(Kt/Ko) =Go>G1>G2> -+ > Gt = {1}

is a sequence of subgroups. Since K1 = Ko(u), where uPt € Ky, the assumptions that
char(Kp) # p1 and that Kg contains all the p1th roots of unity implies that Ko contains
a primitive psth root of unity w; hence, K1 isasplitting field of the separable polynomial
xP1 — uPz, for theroots are u, wu, .. ., P2 ~1u. We may thus apply Theorem 4.16 to see
that G; = Ga(Kt/Kj) isanormal subgroup of Go = Gal(K;/Kp) and that Go/G1 =
Gal(K1/Kg). By Theorem 4.7(ii), Go/G1 = Ip,. This argument can be repeated for
eachi. e

We have been led to the following definition.

Definition. A normal series® of agroup G is a sequence of subgroups
G=Gp=>2G61>2G2>---> Gy = {1}

with each Gj_1 anormal subgroup of Gj; the factor groups of this series are the quotient
groups

Go/G1,G1/Gy, ..., Gn_1/Gnp.
A finite group G iscalled solvable if it has anormal series each of whose factor groups has
prime order (see the definition of infinite solvable groups on page 286).

5This terminology is not quite standard. We know that normality is not transitive; that is, if H < K are
subgroups of a group G, then H < K and K <1 G does not force H <t G. A subgroup H < G iscdled a
subnormal subgroup if thereisachan
G=Gp>G1>Gy>--->Gt=H

with Gj < Gj_q forali > 1. Normal series as defined in the text are called subnormal series by some authors;
they reserve the name normal series for those seriesin which each G; isanormal subgroup of the big group G.
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Inthislanguage, Lemma4.18 saysthat Gal (K /Kp) isasolvablegroupif K; isaradical
extension of Ko and K contains appropriate roots of unity.

Example 4.19.

(i) By Exercise 2.86(ii) on page 113, every finite abelian group G hasa(necessarily normal)
subgroup of prime index. It follows, by induction on |G|, that every finite abelian group is
solvable.

(ii) Let us seethat S isa solvable group. Consider the chain of subgroups
S$>A>V=>W=> (1},

where V is the four-group and W is any subgroup of V of order 2. Note, since V is
abelian, that W is a normal subgroup of V. Now |S;/A4| = |Sy|/|A4] = 24/12 = 2,
|A4/V| = |A4l/IV] = 12/4 =3, |V/W]| = [V|/IW| = 4/2 = 2, and |W/{1}| = [W| = 2.
Since each factor group has prime order, & is solvable.

(iii) A nonabelian simple group G, for example, G = As, is not solvable, for its only
proper normal subgroup is {1}, and G/{1} = G isnot cyclic of prime order. <«

The awkward hypothesisin the next lemma, about roots of unity, will soon be removed.

Lemma 4.20. Let k be afield and let f(x) € k[x] be solvable by radicals, so thereis
aradical etensonk = Ko € K1 C --- € K; with K; containing a splitting field E of
f(x). If each Kj/Kj_1 isa pure extension of prime type p;, where p; # char(k), and if
k contains all the p;th roots of unity, then the Galois group Gal(E/k) is a quotient of a
solvable group.

Proof. Thereisatower of pure extensions of prime type
k=KoC K1 CKyC---CKy

with E € Ky; by Lemma4.17, wemay assumethat Kt isalso asplitting field of some poly-
nomial in k[x]. The hypothesis on k allows usto apply Lemma 4.18 to see that Gal (K;/ k)
is a solvable group. Since E and K; are splitting fields over k, Theorem 4.16 shows that
Gal(K¢/k)/ Gal(K{/E) = Gal(E/k), asdesired. e

Proposition 4.21. Every quotient G/N of a solvable group G isitself a solvable group.

Proof. LetG =Gg> Gy > Gy > ... > Gt = {1} be asequence of subgroups asin the
definition of solvable group. Since N <1 G, we have NG; a subgroup of G for all i, and so
there is a sequence of subgroups

G=GgN>GiN>...>G{N =N > {1}.
Thisisanormal series: With obvious notation,

(@MGi1IN@N ™ < gGi+1Ng ™ = giGis1g 'N < Gi11N;
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the first inequality holds because n(Gj1N)n"t < NGj11N < (Gi11N)(Gj41N) =
Gi11N (for Gi 11N isasubgroup); the equality holds because Ng* = g~ N (for N < G,
and so its right cosets coincide with its left cosets); the last inequality holds because
Git1 < Gj.

The second isomorphism theorem gives
Gi ~ Gi(Gi41N) _ GiN
Gi N (Gi+aN) ~  Gjz1N  GjN’
the last equation holding because G;Gj;1 = Gj. Since Gj11 < Gj N Gj4+1N, the third
isomorphism theorem gives a surjection G; /Gj+1 — G;i/[Gj N Gj+1N], and so the com-
positeisasurjection Gj /Gj+1 — GiN/Gj+1N. AsG;j/Gj41 iscyclic of prime order, its
image is either cyclic of prime order or trivial. Therefore, G/N isasolvable group. e

Proposition 4.22. Every subgroup H of a solvable group G isitself a solvable group.
Proof. Since G is solvable, thereis a sequence of subgroups
G=Gp>G1>G2>---> Gt =({1}
with G; normal in Gj_1 and Gj_1/G;j cyclic, for al i. Consider the sequence of subgroups
H=HNGy>HNG1>HNG2>--->HNGt ={1}.
Thisisanormal series: If hjy1 € HN Gj41 and g € H N G;j, then gihi+1gi_l € H,
for gi, hiy1 € H; dso, g hi+1gi‘1 € Gj4+1 because Gj 1 isnormd in Gij. Therefore,

gihi+16 1 € H N Git1, and so H N Gi11 < H N G;i. Findly, the second isomorphism
theorem gives

(HNGi)/(HNGj1) = (HNG)/[(HNGi)NGj]
= Gi+1(HN Gj)/Git1.
But the last (quotient) group is a subgroup of G;/G;jt1. Since the only subgroups of a

cyclic group C of prime order are C and {1}, it follows that the nontrivia factor groups
(H NGj)/(H N Gjy1) arecyclic of prime order. Therefore, H isasolvable group. e

Example 4.23.

In Example 4.19(ii), we showed that &, is a solvable group. However, if n > 5, the
symmetric group S, is not a solvable group. If, on the contrary, S, were solvable, then
so would each of its subgroups be solvable. But As < & < S, and As is not solvable
because it isanonabelian smple group. <

Proposition 4.24. If H < G and if both H and G/H are solvable groups, then G is
solvable.

Proof. Since G/H issolvable, thereisanormal series
G/H = Ki > K3 > Ky ={1}
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having factor groups of prime order. By the correspondence theorem for groups, there are
subgroups K; of G,
G>Ki>Kz>--->Kpn=H,

with Kj /H = K" and Kj 11 <1 Kj for al i. By the third isomorphism theorem,
Ki/Kiy1 = Ki/Kiga

for al i, and so K; /Kj1 iscyclic of prime order for all i.
Since H is solvable, thereisanormal series

H>H>Hy>- Hq= {1}
having factor groups of prime order. Splice these two series together,
G>Ki1>Ky>--->Kpn=>=Hy>Hy>---Hg = {1},

to obtain anormal series of G having factor groups of primeorder. o

Corollary 4.25. If H and K are solvable groups, then H x K issolvable.
Proof. Since(H x K)/H = K, theresult follows at once from Proposition 4.24. e

We return to fields, for we can now give the main criterion that a polynomial be solvable
by radicals.

Theorem 4.26 (Galois). Let f(x) € K[x], where k is a field, and let E be a splitting
field of f(x) over k. If f(x) issolvable by radicals, then its Galois group Gal(E/k) isa
solvable group.

Remark. The converse of thistheorem isfalseif k has characteristic p > 0 (see Propo-
sition 4.56), but it istrue when k has characteristic O (see Theorem 4.53). <

Proof. In the proof of Lemma 4.20, we assumed that the ground field contained certain
pith roots of unity (the primes p; were types of pure extensions). Define m to be the
product of all these p;j, define E* to be a splitting field of x™ — 1 over E, and define
k* = k(2), where Q is the set of all mth roots of unity in E*. Now E* isa splitting field
of f(x) over k*, and so Gal(E*/k*) issolvable, by Proposition 4.21.
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Consider thetower k € k* C E*; wehave Gal(E*/k*) <Ga (E*/k), by Theorem 4.16,
and

Gal(E*/k)/ Gal (E*/Kk*) = Gal (K*/K).

Now Gal(E*/k*) is solvable, while Gal (k*/k) is abelian, hence solvable, by Proposi-
tion 4.11; therefore, Gal(E*/K) is solvable, by Proposition 4.24. Finaly, we may use
Theorem 4.16 once again, for the tower k € E C E* satisfies the hypothesis that both E
and E* are splitting fields of polynomialsin k[x] [E* isasplitting field of (x™ — 1) f (x)].
It followsthat Gal(E*/k)/ Gal(E*/E) = Ga(E/k), and so Gal(E/K) issolvable, foritis
aquotient of asolvable group. e

Recall that if k isafield and E = k(y1, ..., ¥n) = Frac(k[ys, ..., Yn]) isthe field of
rational functions, then the general polynomial of degree n over k is

X =YD(X=y2) - (X = Yn).

Galois’s theorem is strong enough to prove that there is no generalization of the quadratic
formulafor the genera quintic polynomial.

Theorem 4.27 (Abel-Ruffini). If n > 5, the general polynomial of degree n

) =X=yDX—=y2) - (X=Yn)
over afield k isnot solvable by radicals.

Proof. In Example 3.125, we saw that if E = Kk(y1, ..., ¥n) isthe field of al rational
functions in n variables with coefficients in a field k, and if F = k(ao, ..., a)—1), where
the g are the coefficients of f (x), then E isthe splitting field of f (x) over F.

We claim that Gal(E/F) = S,. Exercise 3.47(i) on page 150 says that if A and R
are domains and ¢: A — R is an isomorphism, then a/b — ¢(@)/¢(b) is an isomor-
phism Frac(A) — Frac(R). In particular, if o € S, then there is an automorphism & of
K[V1,...,Yn] defined by &: f(y1,....¥n) — F(Yo1,...,VYon); thatis, & just permutes
the variables, and & extends to an automorphism o* of E = Frac(k[y1, ..., yn]). Equa
tions (1) on page 198 show that o * fixesF,andsoo* € Gal(E/F). UsingLemma4.2, itis
easy to seethat o — o* isaninjection §, — Ga(E/F), sothat |S,| < | Gal(E/F)|. On
the other hand, Theorem 4.3 shows that Gal(E/F) can be imbedded in S,, giving the re-
verseinequality | Gal(E/F)| < |S,|. Therefore, Gal(E/F) = S,. But S, isnot asolvable
group if n > 5, by Example 4.23, and so Theorem 4.26 shows that f (x) is not solvable by
radicals. e

We know that some quintics in Q[x] are solvable by radicals; for example, x° — 1 is
solvable by radicals, for its Galois group is abelian, by Proposition 4.11. On the other
hand, we can give specific quintics in Q[x] that are not solvable by radicals. For example,
f(x) = x® — 4x 4 2 € Q[x] isnot solvable by radicals, for it can be shown that its Galois
group isisomorphic to S (see Exercise 4.13 on page 218).
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EXERCISES

4.1
4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

Givenu, v € C, prove that thereexist g, h € C withu = g+ h and v = gh.
Show that the quadratic formula does not hold for ax2 + bx + ¢ € k[x] when characteristic(k)
=2

(i) Findtherootsof f(x) = x3 — 3x + 1 € Q[X].

(i) Findtherootsof f(x) = x* — 2x2 + 8x — 3 € Q[x].

Let f(x) € E[X], where E isafield, and let 0 : E — E be an automorphism. If f (x) splits
and o fixes every root of f (x), provethat o fixes every coefficient of f(x).

(Accessory Irrationalities) Let E/k be a splitting field of f(x) € k[x] with Galois group
G = Gal(E/k). Provethat if k*/k isafield extension and E* isa splitting field
E*
E
k*
k

of f(x) over k*, thenrestriction, o — o |E, isan injective homomorphism
Gal(E*/k*) — Ga(E/k).

Hint. If o € Ga(E*/k*), then o permutestherootsof f(x), sothat o|E € Ga(E/k).
(i) Let K/k beafield extension, and let f (x) € k[x] be aseparable polynomial. Prove that
f (x) isaseparable polynomia when viewed as a polynomial in K[x].
(ii) Letkbeafield, andlet f (x), g(x) € k[x]. Provethat if both f (x) and g(x) are separable
polynomials, then their product f (x)g(x) is also a separable polynomial.
Let k beafield and let f(x) € k[x] be a separable polynomial. If E/k isasplitting field of
f (x), prove that every root of f(x) in E isaseparable element over k.

Let K/k be afield extension that is a splitting field of a polynomial f (x) € k[x]. If p(x) €
k[x] isamonic irreducible polynomial with no repeated roots, and if

pX) =g1(X)---gr(x) in K[x],

where the g;j (x) are monic irreducible polynomialsin K[x], prove that al the gj (x) have the
same degree. Conclude that deg(p) = r deg(g;).
Hint. In some splitting field E/K of p(x) f (x), let « be aroot of gj (x) and 8 be aroot of
gj (x), wherei # j. Thereisanisomorphism ¢: k(o) — k(8) with p(a) = B, which fixesk
and which admits an extensionto ®: E — E. Show that ®|K induces an automorphism of
K[x] taking gj (x) to gj (x).

(i) Give an example of agroup G having a subnormal subgroup that is not a normal sub-

group.
(ii) Give an example of agroup G having a subgroup that is not a subnormal subgroup.
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4.10 Prove that the following statements are equivalent for a quadratic f(x) = ax2 +bx + ¢
Q[x].
(i) f(x)isirreduciblein Q[x].
(i) v/b2 — 4acisnot rational.
(iii) Gal(Q(v/b2 — 4ac), Q) has order 2.
4.11 Letk beafidd, let f(x) € k[x] be apolynomia of degree p, where p isprime, and let E/k
be asplitting field. Prove that if Gal(E/k) = I, then f (x) isirreducible.
Hint. Show that f (x) has no repeated roots.
4.12 (i) Provethatif o isa5-cycleand r isatransposition, then S5 is generated by {o, 7}.
Hint. Use Exercise 2.94(iii) on page 114.
(ii) Give an example showing that $,, for some n, contains an n-cycle o and atransposition
T suchthat (o, t) # Sh.
4.13 Let f(x) = x® — 4x + 2 € Q[x] and let G be its Galois group.
(i) Assuming that f (x) is an irreducible polynomial, prove that |G| is a multiple of 5.
[We can prove that f(x) is irreducible using Eisenstein’s criterion, Theorem 6.34 on
page 337.]
(ii) Provethat f(x) hasthreereal roots and two complex roots, which are, of course, com-
plex conjugates. Concludethat if the Galoisgroup G of f (x) isviewed as asubgroup of
S, then G contains complex conjugation, which is atransposition of the roots of f (x).
(iii) Provethat G = S5, and concludethat f (x) isnot solvable by radicals.
Hint. Use Exercise4.12.

4.2 FUNDAMENTAL THEOREM OF GALOIS THEORY

Galois theory analyzes the connection between algebraic extensions E of a field k and
the corresponding Galois groups Gal(E/k). This connection will enable us to prove the
converse of Galois's theorem: If k is a field of characteristic 0, and if f(x) € k[x] has
a solvable Galois group, then f (x) is solvable by radicals. The fundamental theorem of
algebrais aso a consequence of this analysis.

We have already seen several theorems about Galois groups whose hypothesis involves
an extension being a splitting field of some polynomial. Let us begin by asking whether
there is some intrinsic property of an extension E/k that characterizesits being a splitting
field, without referring to any particular polynomial in k[x]. It turns out that the way to
understand splitting fields E/k is to examine them in the context of both separability and
the action of the Galois group Gal(E/k) on E.

Let E be afield and let Aut(E) be the group of al (field) automorphisms of E. If k is
any subfield of E, then Gal (E/k) isasubgroup of Aut(E), and so it actson E. Whenever
agroup actson aset, we areinterested inits orbits and stabilizers, but we now ask for those
elements of E stabilized by every o in some subset H of Aut(E).

Definition. |f E isafieldand H isasubset of Aut(E), then thefixed field of H isdefined

by
EM ={acE:o(a =afordlo e H}.
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The most important instance of afixed field EM ariseswhen H isasubgroup of Aut(E),
but we will meet acasein which it is merely a subset.

Itiseasy to seethat if o € Aut(E),then E® = {a € E : o(a) = a} isasubfield of E;
it followsthat EH isasubfield of E, for

EH = ﬂ E°.

oeH

In Example 3.125, we considered E = Kk(yi, ..., ¥n), the rational function field in n
variables with coefficientsin afield k, and its subfield K = k(ag, . .., an—1), where

f(X)=(X—YyDX—Y¥2) - (X—Yn) =8+ X+ -+ 81X 4 x"

is the general polynomial of degree n over k. We saw that E is a splitting field of f (x)
over K, for it arises from K by adjoining to it al the roots of f (x), namely, al the y’s.
Now the symmetric group S, < Aut(E), for every permutation of vy, ..., y, extendsto an
automorphism of E, and it turns out that K = E. The elements of K are usually called
the symmetric functionsin n variables over k.

Definition. A rational function g(x1, ..., Xn)/h(X1, ..., Xn) € K(X1, ..., Xn) iS asym-
metric function if it is unchanged by permuting its variables. For every o € S5, we have
9(Xo1, -+ > Xon)/N(Xo1, .., Xon) = 9(X1, ..., Xn)/N(Xq, ..., Xn).

The various polynomials in Egs. (1) on page 198 define examples of symmetric func-
tions, they are called the elementary symmetric functions.
The proof of the following proposition is almost obvious.

Proposition 4.28. If E isafield, then the function H — EM, from subsets H of Aut(E)
to subfields of E, isorder-reversing: 1f H < L < Aut(E), then E- € EH.

Proof. Ifa e EL, theno(a) = aforal o € L. SinceH < L, it follows, in particular,
that o(a) = aforal o € H. Hence, EL C EH. o

Example 4.29.

Suppose now that k is asubfield of E and that G = Gal(E/k). It isobviousthat k € E©,
but the inclusion can be strict. For example, let E = Q(v/2). If 0 € G = Ga(E/Q),
then o must fix Q, and so it permutes the roots of f (x) = x3 — 2. But the other two roots
of f(x) arenot real, so that o (/2) = /2. It now follows from Lemma 4.2 that o isthe
identity; that is, E© = E. Notethat E isnot asplitting field of f(x). «

Our immediate goal is to determine the degree [E : E€], where G < Aut(E). To this
end, we introduce the notion of characters.
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Definition. A character® of a group G in a field E is a (group) homomorphism
o: G — E*, where E* denotes the multiplicative group of nonzero elements of the
field E.

If o € Aut(E), thenitsrestrictiono|[E*: EX — E* isacharacter in E.

Definition. If E isafieldand G < Aut(E), thenalist oq, ..., o of charactersof G in
E isindependent if, whenever ¢, ...,cy € E and

Zciai(x)zo foral x € G,
i

then all theg = 0.

In Example 3.82(iii), we saw that the set EX of all the functions from a set X to afield
E isavector space over E, where addition of functions is defined by

o4+ 1! X o(X)+ t(X),
and scalar multiplication is defined, for ¢ € E, by
Co: X = Co(X).

Independence of characters, as just defined, is linear independence in the vector space EX
when X isthe group G.

Proposition 4.30 (Dedekind). Everylistos, ..., on oOf distinct characters of a group G
in a field E isindependent.

Proof. The proof isby inductiononn > 1. Thebase stepn = listrue, forif co(x) =0
foral x € G, theneitherc = 0or o(x) = 0; but o(x) # 0, becauseimo C E*.
Assumethat n > 1; if the characters are not independent, thereare ¢; € E, not all zero,
with
€101(X) + - -+ + Cn—10n-1(X) + Chon(x) =0 2
for al x € G. Wemay assume that al ¢; # 0, or we may invoke the inductive hypothesis
and reach a contradiction, as desired. Multiplying by c;* if necessary, we may assume that

ch = 1. Since o, # o1, thereexists y € G with o1(y) # on(y). In EQ. (2), replace x by
yX to obtain

C101(Y)o1(X) + - - - + Ch_10n—1(Y)on—1(X) + on(Y)on(X) =0,

6This definition isaspecia case of character in representation theory: If o: G — GL(n, E) is a homomor-
phism, then its character x, : G — E isdefined, for x € G, by

Xo (X) = trace(o (X)),

where the trace of an n x n matrix is the sum of its diagonal entries. Whenn = 1, then GL(1, E) = E* and
Xo (X) = o (X) iscalled alinear character.
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for o (yx) = i (y)oi (X). Now multiply this equation by o, (y)~? to obtain the equation
c1on(y) 1o1(¥)o1(X) + -+ + Ca-10n(Y) "Ton-1(¥)on-1(X) + on(x) = 0.
Subtract this last equation from Eq. (2) to obtain asum of n — 1 terms:
ca[1— on(y) toa(Y)]oa(X) + Co[1 — on(y)oa(]o2(X) + - = 0.
By induction, each of the coefficients ¢i[1 — on(y) toi(y)] = 0. Now ¢ # 0, and so
on(y)"loi(y) = 1fordli < n. Inparticular, on(y) = o1(y), contradicting the definition
ofy. e
Lemma 4.31. IfG = {01, ..., on} isaset of n distinct automorphisms of a field E, then
[E:E®]>n.

Proof. Suppose, on the contrary, that [E : EC] =r < n,andlet o, ..., oy beabasis of
E/EC. Consider the homogeneous linear system over E of r equationsin n unknowns:

o1(a1)Xy + - -+ + on(a)Xn =0
o1(a2)Xy + -+ - + on(a2)Xn =0

o1(op)X1 + -+ - + on(or )%y = 0.

Sincer < n, there are fewer equations than variables, and so there is a nontrivial solution
(C1,...,Cn)in EN.

We are now going to show that o1(8)c1 + - - - + on(B)cn = Ofor any B € E*, which
will contradict the independence of the characters o1 |E™, ..., on|E*. Sinceay, ..., ar is
abasisof E over EC, every 8 € E can be written

B=Y biai,

whereb; € EC. Multiply theith row of the system by o1 () to obtain the system with i th
row:
o1(bi)o1(ai)cr + - - - + o1(bi)on(wi)Cn = 0.

But o1(bj) =bj = oj(by) forall i, j, because b EC. Thus, the system hasith row:
o1(biei)C1+ -+ - + on(biai)cn = 0.
Adding all the rows gives
o1(B)CcL+ -+ +on(B)en =0,

which contradicts the independence of the charactersoy, . . ., On. o
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Proposition 4.32. If G = {01, ..., on} isasubgroup of Aut(E), then
[E: E®] =G|

Proof. Inlight of Lemma4.31, it sufficesto prove [E : EC] < |G|. If, on the contrary,
[E: EC] > n, let {w1, ..., wns1} bealinearly independent list of vectorsin E over EC.
Consider the system of n equationsin n + 1 unknowns:

o1(@1)X1 + - + o1(wn+1)Xn+1 =0

on(w1)X1 + -+ + on(wn+1)Xnt1 = 0.

Thereisanontrivial solution (o1, ..., ant+1) Over E; we proceed to normalize it. Choose
asolution (81, ..., B, 0, ..., 0) having the smallest number r of nonzero components (by
reindexing the wj, we may assume that al nonzero components come first). Note that
r # 1, lest o1(w1)B1 = Oimply g1 = 0. Multiplying by itsinverse if necessary, we may
assumethat B, = 1. Notal B € EC, lest the row corresponding to o = 1g violates
the linear independence of {w1, ..., wn4+1}. Our last assumption is that 81 does not lie
in EC (this, too, can be accomplished by reindexing the w;). There thus exists o with
ok(B1) # B1. Since By = 1, the original system has jth row

oj(w)p1+ -+ 0oj(wr-1)Br-1+ 0j(wr) =0. 3
Apply ok to this system to obtain
okoj(w1)ok(B1) + - - + okoj(wr—1)ok(Br-1) + okoj(wr) = 0.

Since G isagroup, oxa1, . . ., 0kon isjust apermutation of o1, . .., on. Setting okoj = oj,
the system hasith row

oi (@1)ok(B1) + -+ - + i (wr—1)ok(Br-1) + 0i (wr) = 0.
Subtract this from theith row of Eq. (3) to obtain a new system with ith row:
oi(w1)[B1 — ok(BD] + - - - + oi (wr—1)[Br—1 — ok (Br-1)] = 0.

Since B1 — ok(B1) # 0, we have found a nontrivial solution of the origina system having
fewer than r nonzero components, a contradiction. e

These ideas give a result needed in the proof of the fundamental theorem of Galois
theory.

Theorem 4.33. |f G and H are finite subgroups of Aut(E) with E¢ = E™  thenG = H.
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Proof. We first show that if o € Aut(E), then o fixes EC if and only if o € G. Clearly,
o fixes EC if o € G. Suppose, conversely, that o fixes EC but o ¢ G. If |G| = n, then

n=|G|=[E:E®],

by Proposition 4.32. Since o fixes EC, we have EG ¢ ECYIe}, But the reverse inequality
aways holds, by Proposition 4.28, so that EG = ECGV{°}, Hence,

n=[E:EC]=[E:ECY] > |GU{o}=n+1,

by Lemma4.31, giving the contradictionn > n 4 1.
If o € H, then o fixes EF = EC, and hence o € G; thatis, H < G; the reverse
inclusion is proved thesameway, andsoH = G. o

We can now give the characterization of splitting fields we have been seeking.

Theorem 4.34. If E/K is a finite extension with Galois group G = Gal(E/k), then the
following statements are equivalent.

(i) Eisasplitting field of some separable polynomial f (x) € K[x].
(i) k= EC.
(iii) Everyirreducible p(x) € k[x] having oneroot in E is separable and splitsin E[X].

Proof. (i) = (ii) By Theorem 4.7(ii), |G| = [E : K]. But Proposition 4.32 gives |G| =
[E : EC], sothat

[E:Kk] =[E:EC].
Sincek < E®, wehave[E : k] = [E : EC][EC : k], sothat [EC : k] = 1andk = EC.

(if) = (iii) Let p(x) € K[x] be anirreducible polynomial having aroot « in E, and let the
distinct elements of theset {0 («): 0 € G} beas, ..., an. Define g(x) € E[X] by

900 = [ J(x — ).

Now each o € G permutes the ¢, so that each o fixes each of the coefficients of g(x);
that is, the coefficients of g(x) liein E€ = k. Hence g(x) isa polynomial in k[x] having
no repeated roots. Now p(x) and g(x) have a common root in E, and so their ged in
E[x] isnot 1; it follows from Corollary 3.41 that their gcd isnot 1 in k[x]. Since p(x) is
irreducible, it must divide g(x). Therefore, p(x) has no repeated roots, hence is separable,
and it splitsover E.

(iif) = (i) Choose @1 € E with a1 ¢ k. Since E/K is a finite extension, o1 must be
algebraic over k; let p1(X) = irr(a1, K) € K[x] beits minimal polynomial. By hypothesis,
p1(X) is a separable polynomia that splits over E; let Ky € E beits splitting field. If
K1 = E, we are done. Otherwise, choose a2 € E with oz ¢ Ki. By hypothesis, there
is aseparable irreducible pa(x) € k[x] having o2 asaroot. Let Ko € E be the splitting
field of p1(x)p2(x), a separable polynomial. If K, = E, we are done; otherwise, repeat
this construction. This process must end with K, = E for some m because E /K is finite.
Thus, E isasplitting field of the separable polynomial p1(X) - -+ pm(X). e
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Definition. A field extension E/k isaGalois extension if it satisfies any of the equivalent
conditions in Theorem 4.34.

Example 4.35.
If E/k is a finite separable extension, then the radical extension of E constructed in
Lemma4.17 isaGaoisextension. «

Corollary 4.36. If E/k isa Galoisextension and if B is an intermediate field, that is, a
subfield B withk € B C E, then E/B isa Galois extension.

Proof. We know that E is a splitting field of some separable polynomial f(x) € K[x];
thatis, E = k(a1, ..., an), whereas, ..., an aretherootsof f(x). Sincek € B C E, we
have f(x) € B[X] and E = B(a1,...,an). o
Recall that the elementary symmetric functions of n variables are the polynomials, for
j=1...,n
€j (X1, ..., Xn) = Z Xig = Xij .

ip<--<ij

Ifz1, ..., z, aretheroots of X"+a,_1x""1+- - .+ag, thenej (z1, ..., zn) = (=D aq_j.

Theorem 4.37 (Fundamental Theorem of Symmetric Functions). Ifkisafield, every
symmetric function in k(x1, ..., Xn) is a rational function in the elementary symmetric
functionsey, ..., en.

Proof. Let F be the smallest subfield of E = k(x, ..., Xn) containing the elementary
symmetric functions. Aswe saw in Example 3.125, E is the splitting field of the general
polynomial f (t) of degreen:

n
fy=]]a—x.
i=1

As f (1) is a separable polynomial, E/F is a Galois extension. We saw, in the proof of
Theorem 4.27, the Abel—Ruffini theorem, that Gal(E/F) = S,. Therefore, ES' = F, by
Theorem 4.34. But to say that 6(x) = g(X1, ..., %n)/h(X1, ..., Xn) liesin ES isto say
that it is unchanged by permuting its variables; that is, 6(x) isasymmetric function. e

Exercise 6.84 on page 410 shows that every symmetric polynomial ink[xy, ..., Xp] lies
ink[er, ..., €n].
Definition. If A and B are subfields of a field E, then their compositum, denoted by
AV B, istheintersection of all the subfields of E that contain AU B.

Itiseasy to seethat A v B isthe smallest subfield of E containing both A and B. For
example, if E/k is an extension with intermediate fields A = k(ay,...,an) and B =
k(B1, ..., Bm), then their compositumis

k(a,...,an) VKB, ..., Bm) =k(a1,...,an, B1, ..., Bm).



Sec. 4.2 Fundamental Theorem of Galois Theory 225

Proposition 4.38.

(i) Every Galoisextension E/k isa separable extension of k.

(i) If E/k is an algebraic field extension and S € E is any, possibly infinite,” set of
separable elements, then k(S)/k is a separable extension.

(iii) Let E/k be an algebraic extension, where k is a field, and let B and C be interme-
diate fields. If both B/k and C/k are separable extensions, then their compositum
B v C isalso a separable extension of k.

Proof. (i) If B € E, then p(x) = irr(B8, k) € K[X] is an irreducible polynomial in k[x]
having aroot in E. By Theorem 4.34(iii), p(x) is a separable polynomial (which splitsin
E[x]). Therefore, 8 is separable over k, and E/k is a separable extension.

(ii) Let us first consider the case when S is finite; that is, B = k(aq, ..., o) is afinite
extension, where each «j is separable over k. By Lemma4.17(i), thereisan extension E/B
that is a splitting field of some separable polynomia f (x) € k[x]; hence, E/k isaGalois
extension, by Theorem 4.34(i). By part (i) of thisproposition, E/k isaseparable extension;
that is, for all « € E, the polynomial irr(«, k) has no repeated roots. In particular, irr(«, k)
has no repeated rootsfor al « € B, and so B/k is a separable extension.

We now consider the genera case. If « € k(S), then Exercise 3.95 on page 197 says
that there are finitely many elements a1, ...,an € Switha € B = K(ag,...,an). As
we have just seen, B/k is a separable extension, and so « is separable over k. Asa isan
arbitrary element of k(S), it followsthat k(S) /K is a separable extension.

(iii) Apply part (i) tothesubset S= BUC,for BVvC =k(BUC).

Query: If E/k is a Galois extension and B is an intermediate field, is B/k a Galois
extension? The answer is no; in Example 4.29, we saw that E = Q(+/2, w) isa splitting
field of x3 — 2 over Q, where w is a primitive cube root of unity, and so it is a Galois
extension. However, the intermediate field B = Q(/2) is not a Galois extension, for
x3 — 2isanirreducible polynomial having aroot in B, yet it does not split in B[x].

The following proposition determines when an intermediate field B does give a Galois
extension.

Definition. |If E/kisaGaloisextensionandif B isanintermediate field, then aconjugate
of B isanintermediate field of the form

B = {o(b) : b e B}

for someo € Ga(E/k).

"This result is true if finitely many transcendental elements are adjoined (remember that transcendental el-
ements are always separable, by definition), but it may be false if infinitely many transcendental elements are
adjoined.
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Proposition 4.39. |If E/k is a Galois extension, then an intermediate field B has no
conjugates other than B itself if and only if B/k isa Galois extension.

Proof. Assumethat B® = B for al o € G, where G = Gal(E/k). Let p(x) € K[x] be
an irreducible polynomia having aroot 8 in B. Since B C E and E/k is Galais, p(x)
is a separable polynomial and it splitsin E[x]. If g/ € E is another root of p(x), there
exists an isomorphism o € G with o (8) = B’ (for G acts transitively on the roots of an
irreducible polynomial, by Proposition 4.13). Therefore, 8’ = o(8) € B = B, so that
p(x) splitsin B[x]. Therefore, B/ k isa Galois extension.

Conversely, since B/k is a splitting field of some polynomia f (x) over k, we have
B =k(as,...,an),whereas, ..., an aredl therootsof f(x). Sinceevery o € Gal(E/k)
must permute the roots of f (x), it followsthat o must send B toitself. o

We are now going to show, when E/k isa Galois extension, that the intermediate fields
are classified by the subgroups of Gal(E/ k).
We begin with some general definitions.

Definition. A set X isapartially ordered set if it hasabinary relation X < y defined on
it that satisfies, for al x, y, z € X,

() Reflexivity: X < X;
(il) Antisymmetry: 1f x < y,andy < X, thenx = vy;
(iii) Transitivity: If x < yandy < z, thenx < z

An element c in a partially ordered set X is an upper bound of a,b € X if a < cand
b < c;anelement d € X isaleast upper bound of a, b if d isan upper boundandifd < ¢
for every upper bound ¢ of a and b. Lower bounds and greatest lower bounds are defined
similarly, everywhere reversing the inequalities.

We will discuss partially ordered sets more thoroughly in the Appendix. Here, we are
more interested in special partially ordered sets called lattices.

Definition. A lattice isapartially ordered set £ in which every pair of elementsa, b € £
has a greatest lower bound a A b and aleast upper bound a v b.

Example 4.40.
(i) If U isaset, define £ to bethe family of al the subsets of U, and define A < B to mean
A C B. Then L isalattice, where AAB=ANBand Av B=AUB.

(i) If G isagroup, define £ = Sub(G) to be the family of al the subgroups of G, and
define A < Btomean A < B; that is, A isasubgroup of B. Then L is alattice, where
AAB=AnNBandAvV Bisthe subgroup generated by AU B.

(iii) If E/k isafield extension, define £ = Int(E/k) to bethe family of al theintermediate
fields, and define K < B tomean K C B; that is, K isasubfield of B. Then L isalattice,
where K A B = K N B and K v B isthe compositum of K and B.
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(iv) If nis a positive integer, define Div(n) to be the set of all the positive divisors of
n. Then Div(n) is a partialy ordered set if one definesd < d’ to meand | d’. Here,
dAd =gcd(d,d)andd vd =lecm(d,d). =

Definition. If £ and £ are lattices, afunction f: £ — L' iscalled order-reversing if
a=<binZimplies f(b) < f(@)inL'.

Example 4.41.
There exist lattices £ and £’ and an order-reversing bijection ¢: £ — £’ whose inverse
¢~ 1: £/ — Lisnot order-reversing. For example, consider the lattices

N
.,

o

i}

|
P—N—Ww— A

The bijection ¢ : £ — £/, defined by

p@=1 o¢b =2 ¢)=3 ¢ =4
isan order-reversing bijection, but itsinversep=1: £’ — L isnot order-reversing, because
2=<3butc=¢"13) 290712 =b. <

The De Morgan laws say that if A and B are subsets of aset X, and if A’ denotes the
complement of A, then

(ANBY =AUB and (AUB) =ANB.
These identities are generalized in the next lemma.

Lemma 4.42. Let £ and £’ belattices, and let ¢: £ — £’ be a bijection such that both
¢ and ¢~ are order-reversing. Then

p@anb)=¢@ Vveb and g@Vb) =g¢@) Apb).

Proof. Sincea,b < av b, wehavegp(av b) < ¢(@@), ¢(b); that is, ¢(a v b) isalower
bound of p(a), ¢(b). It followsthat p(a Vv b) < (@) A ¢(b).

For the reverse inequality, surjectivity of ¢ givesc € £ with ¢(a) A ¢(b) = ¢(c). Now
@(c) = (@) A @(b) < ¢(@), p(b). Applying ¢, which is also order-reversing, we have
a, b < c. Hence, cisan upper bound of a, b, sothat a v b < c. Therefore, p(a v b) >
¢(c) = (@) A ¢(b). A similar argument proves the other half of the statement. o
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Theorem 4.43 (Fundamental Theorem of Galois Theory). Let E/k beafinite Galois
extension with Galois group G = Gal(E/ k).

(i) Thefunction y: Sub(Gal(E/k)) — Int(E/k), defined by
y:Hm+—~ EH,
is an order-reversing bijection whose inverse, §: Int(E/k) — Sub(Gal(E/k)), is
the order-reversing bijection
5: B— Ga(E/B).
(ii) For every B € Int(E/k) and H € Sub(Gal(E/k)),
EC4E/® =B and Ga(E/E")=H.
(iii) For every H, K € Sub(Gal(E/k)) and B, C € Int(E/k),
EHVK — EH ﬂ EK.
EHﬂK — EH v EK
Gal(E/(B v C)) = Gal(E/B) N Gal(E/C);
Ga(E/(BNC)) = Ga(E/B) v Ga(E/C).
(iv) For every B € Int(E/k) and H € Sub(Gal(E/k)),
[B:k] =[G:Ga(E/B)] and [G:H]=[EM:K.
(v) If B € Int(E/k), then B/k isa Galoisextension if and only if Gal (E/B) isanormal
subgroup of G.

Proof. (i) Proposition 4.28 proves that y is order-reversing, and it is also easy to prove
that § is order-reversing. Now injectivity of y is proved in Theorem 4.33, so that Propo-
sition 1.47 shows that it suffices to prove that yé: Int(E/k) — Int(E/K) is the iden-
tity; it will follow that y is a bijection with inverse §. If B is an intermediate field,
then 8y : B — ECA(E/B) But E/EB is a Galois extension, by Corollary 4.36, and so
ECA(E/B) — B, by Theorem 4.34.

(i) Thisisjust the statement that y§ and §y areidentity functions.
(iii) These statements follow from Lemma 4.42.
(iv) By Theorem 4.7(ii) and the fact that E/B is a Galois extension,
[B: k] =[E:K]/[E:B]=|G|/|Ga(E/B)| =[G : Gda(E/B)].

Thus, the degree of B/k istheindex of its Galois group in G. The second equation follows
from this one; take B = EM, noting that (ii) gives Gal(E/EH) = H:

[EM K] =[G : Ga(E/EM")] =[G : H].
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(v) It follows from Theorem 4.16 that Gal(E/B) <1 G when B/k is a Galois extension
(both B/k and E/k are splitting fields of polynomias in k[x]). For the converse, let
H = Ga(E/B), and assume that H <« G. Now EH = ECA(E/B) — B py (ii), and s0
it suffices to prove that (EM)? = EH for every o € G, by Proposition 4.39. Suppose
now that a € EM; that is, n(@) = aforadl n € H. If o € G, then we must show that
n(o(@) =o(@) foral n € H. Now H <« G saysthat if € H and o € G, then thereis
n' € H withno = on’ (of course, n’ = o ~1no). But

no(@) =on'(@ =o(@,
because n/(a) = a, as desired. Therefore, B/k = EH /kisGalois. e

Here are some corollaries.

Theorem 4.44. If E/K isa Galois extension whose Galois group is abelian, then every
intermediate field is a Gal ois extension.

Proof. Every subgroup of an abelian group isanormal subgroup. e

Corollary 4.45. A Galoisextension E/k has only finitely many intermediate fields.
Proof. The finite group Gal(E/Kk) has only finitely many subgroups. e

Definition. A field extension E/k isasimple extension if thereisu € E with E = k(u).

The following theorem of E. Steinitz characterizes simple extensions.

Theorem 4.46 (Steinitz). A finite extension E/k is simple if and only if it has only
finitely many intermediate fields.

Proof. Assumethat E/k isasimple extension, so that E = k(u); let p(x) = irr(u, k) €
k[x] beits minimal polynomial. If B isany intermediate field, let

q(x) =irr(u, B) = bg 4+ bix + - - - + bp_1x""1 + x" € B[x]
be the monic irreducible polynomia of u over B, and define
B’ =k(by, ...,bn-1) C B.
Note that q(x) is anirreducible polynomial over the smaller field B’. Now
E =k(u) € B'(u) € B(u) C E,

so that B'(u) = E = B(u). Hence, [E : B] = [B(u) : B]and[E : B'] = [B’(u) : B].
But each of these is equal to deg(q), by Proposition 3.117(v), sothat [E : B] = deg(q) =
[E: B’]. Since B’ C B, itfollowsthat [B : B'] = 1; that is,

B =B =k(bp,...,bn_1).
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We have characterized B in terms of the coefficients of q(x), a monic divisor of p(x) =
irr(u, k) in E[x]. But p(x) has only finitely many monic divisors, and hence there are only
finitely many intermediate fields.

Conversely, assume that E/k has only finitely many intermediate fields. If k is a finite
field, then we know that E/k is a simple extension (take u to be a primitive element);
therefore, we may assume that k is infinite. Since E/K is a finite extension, there are
eementsus, ..., uy with E = k(us, ..., up). By inductionon n > 1, it suffices to prove
that E = k(a, b) isasimple extension. Now there are infinitely many elements ¢ € E of
theform c = a + th, wheret € k, for k is now infinite. Since there are only finitely many
intermediate fields, there are, in particular, only finitely many fields of the form k(c). By
the pigeonhole principle? there exist distinct elementst, t’ € k with k(c) = k(c'), where
¢ = a+t'b. Clearly, k(c) € k(a, b). For the reverse inclusion, the field k(c) = k(c')
containsc — ¢ = (t —t')b, sothat b € k(c) (becauset — t’ # 0). It follows that
a=c—thek(),andsok(c) =k(a,b). e

An immediate consequence is that every Galois extension is simple; in fact, even more
istrue.

Theorem 4.47 (Theorem of the Primitive Element). If B/k is a finite separable
extension, then thereisu € B with B = k(u). In particular, if k has characteristic 0, then
every finite extension B/k is a simple extension.

Proof. By Example 4.35, theradical extension E/k constructed in Lemma 4.17 isa Ga-
lois extension having B as an intermediate field, so that Corollary 4.45 says that the exten-
sion E/k has only finitely many intermediate fields. It follows at once that the extension
B/k has only finitely many intermediate fields, and so Steinitz’s theorem says that B/ k
hasaprimitiveelement. o

The theorem of the primitive element was known by Lagrange, and Galois used a mod-
ification of it in order to construct the original version of the Galois group.
We now turn to finite fields.

Theorem 4.48. Thefinite field Fq, where g = p", has exactly one subfield of order pd
for every divisor d of n, and no others.

Proof. First, Fy/Fp isaGalois extension, for it is a splitting field of the separable poly-
nomia x9 — x. Now G = Ga(Fq/Fp) is cyclic of order n, by Theorem 4.12. Since a
cyclic group of order n has exactly one subgroup of order d for every divisor d of n, by
Lemma 2.85, it follows that G has exactly one subgroup H of index n/d. Therefore, there
isgnly one intermediate field, namely, EH, with [E" : Fp] = [G : H] = n/d, and
E™ = Fpn/d. [

We now give two algebraic proofs of the fundamental theorem of algebra, proved by
Gauss (1799): The first, due to P. Samuel (which he saysis “by a method essentially due

8|f there is an infinite number of pigeons in only finitely many pigeonholes, then at least one of the holes
contains an infinite number of pigeons.
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to Lagrange”), uses the fundamental theorem of symmetric functions; the second uses the
fundamental theorem of Galois theory, as well as a Sylow theorem which we will provein
Chapter 5.

Assumethat R satisfies aweak form of the intermediate value theorem: If f(x) € R[X]
andthereexista, b € R suchthat f(a) > 0Oand f (b) < 0, then f(x) hasareal root. Here
are some preliminary consequences.

(i) Every positive real number r hasa real square root.

If f(x)=x2—r,then
fA+r)=@Q+r)2—r=1+r+r?>0,
and f(0) = —r <O.

(if) Every quadratic g(x) € C[x] has a complex root.
First, every complex number z has acomplex square root: When ziswritten in polar
formz = re?, wherer > 0, then \/z = /r€?/2. The quadratic formula gives the
(complex) roots of g(x).
(iii) Thefield C has no extensions of degree 2.
Such an extension would contain an element whose minimal polynomial is an irre-
ducible quadratic in C[x]; but Item (ii) shows that no such polynomial exists.
(iv) Every f(x) € R[x] having odd degree hasa real root.
Let f(x) =ag+agX + --- + an_1x""1 4+ x" € R[x]. Definet = 1+ 3 |aj|. Now
laj| <t —1foradli and,if h(x) = f(x) — x", then
[lh(t)| = |aO +at+---+ an_lt”‘1|
<t-DA+t+...+t"
=t"-1
<t"
Therefore, —t" < h(t) and 0 = —t" +t" < h(t) +t" = f (t).
A similar argument shows that |h(—t)| < t", so that

f(=t) =h(=t) + ()" < t" + (=D)".

When n is odd, (—t)" = —t", and so f(-t) < t" —t" = 0. Therefore, the
intermediate value theorem provides areal number r with f(r) = O; that is, f(x)
has areal root.

(v) Thereisno field extension E/R of odd degree > 1.

If u € E, thenitsminimal polynomial irr(u, R) must have even degree, by Item (iv),
sothat [R(u) : R] iseven. Hence[E : R] = [E : R(W][R(u) : R] iseven.
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Theorem 4.49 (Fundamental Theorem of Algebra). If f (x) € C[x] hasdegreen > 1,
then f (x) hasa complex root, and hence f (x) splits: Therearec, uy, ..., Un € C with

f(X) =c(X—u1)--- (X —Un).

Proof. We show that f(x) = Y ax' e C[x] has a complex root. Define f(x) =
> a@x', where 3 is the complex conjugate of a. Now f(x)f(x) = chxk, where
Ck = Zi-}-j:kaiaj; hence, Tk = cx, sothat f (x) f(x) € R[x]. If f(x) hasacomplex root
z, then zisaroot of f(x) f(x). Conversely, if zisacomplex root of f(x)f(x),thenzisa
root of either f(x) or T(x). Butif zisaroot of f(x), thenzisaroot of f(x). Therefore,
f (x) has a complex root if and only if f(x) f(x) hasacomplex root, and so it suffices to
prove that every real polynomial has a complex root.

To summarize, it suffices to prove that every nonconstant monic f (x) € R[x] has a
complex root. Let deg(f) = 2“m, where m is odd; we prove the result by induction on
k > 0. The base step k = Ois proved in Item (iv), and so we may assumethat k > 1. Let
a1, ...,ap betheroots of f(x) insome splitting field of f (x). For fixedt € R, define

900 = [Jox—8ip,
{i.i}
where fjj = aj+aj+tajojand (i, j} variesover al thetwo-element subsetsof {1, ..., n}.
First,
deg(g) = 2n(n — 1) = 2" Im(n — 1).

Now n = 2miseven, because k > 1, so that n — 1 isodd; hence, m(n — 1) isodd. Thus,
the inductive hypothesis will apply if gr(x) € R[x].
For each coefficient ¢ of g;(x), thereis an elementary symmetric function

e...,¥ij,.-) € R[L...,¥ij, .. ]
withc=e(..., §ij,...). If wedefine
h(Xg, ..., %) =e(.., X +Xj +tXiXj,...),

then
c=e(..,a +aj+tojaj,...) =hla, ..., an).

Eacho € S actsonR[Xq, ..., Xn] Viao : X + Xj +IXiXj = Xgi + Xoj + tX5iXsj, and
hence it permutes the set of polynomials of this form. Since the elementary symmetric
functione(. .., yij, ...) isinvariant under every permutation of the variables y;;, it follows
that h(x1, ..., %) = E(.., X + Xj + tXXj,...) isasymmetric function of xy, ..., Xn.
By the fundamental theorem of symmetric polynomials (Exercise 6.84 on page 410), there
isapolynomial ¢(x) € R[Xq, ..., Xy] with

h(X].? A Xn) == (!)(e]-(xl’ AR Xn)’ MR a](xl’ AR Xn))'
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Theevaluation (x1, ..., Xy) — (a1, ..., an) gives

c=h(ay,...,an) =pE1(a1,...,an), ..., en(ay, ..., an)).

Bute (a1, ..., an) isjust therth coefficient of f(x), whichisreal, and socisredl; thatis,
gt (X) € R[x].

By induction, g;(x) has acomplex root for eacht € R. Thereareinfinitely many t € R
and only finitely many two-element subsets {i, j}. By the pigeonhole principle, there exists
asubset {i, j} and distinct realst and s with both aj + «j + tojaj and aj + aj + Sajqj
complex [for the jj are the roots of gt (x)]. Subtracting, (t — S)ajaj € C; ast # s, we
haveajaj € C; say, ajarj = U. Sinceaj +oj +tajoj € C,itfollowsthat o +oj € C; say,
ai + ) = v. Therefore, oj isaroot of x> — vx + u, and the quadratic formula, Item (ii),
givesaj € C, asdesired. That f (x) splits now follows by inductiononn > 1. e

Here is a second proof.

Theorem (Fundamental Theorem of Algebra). Every nonconstant f (x) € C[x] hasa
complex root.

Proof. Asinthe proof just given, it sufficesto prove that every nonconstant f (x) € R[x]
has a complex root. Let E/R be a splitting field of (x2 + 1) f (x) that contains C. Since
R has characteristic 0, E/R isa Galois extension; let G = Gal(E/R) be its Galois group.
Now |G| = 2™k, wherem > 0 and k is odd. By the Sylow theorem (Theorem 5.36),
G has a subgroup H of order 2™; let B = EM be the corresponding intermediate field.
By the fundamental theorem of Galois theory, the degree [B : R] is equa to the index
[G : H] = k. But we have seen, in Item (v), that R has no extension of odd degree
greater than 1; hencek = 1 and G isa 2-group. Now E/C isaso a Galois extension, and
Ga(E/C) < G isaso a2-group. If thisgroup is nontrivial, then it has a subgroup K of
index 2. By the fundamental theorem once again, the intermediate field EX isan extension
of C of degree 2, and this contradicts Item (iii). We conclude that [E : C] = 1, that is,
E = C. But E isasplitting field of f (x) over C, and so f (x) hasacomplex root. e

We now prove the converse of Galois’s theorem (which holds only in characteristic 0):
Solvability of the Galois group implies solvability by radicals of the polynomial. It will
be necessary to prove that a certain field extension is a pure extension, and we will use the
norm (which arises quite naturally in algebraic number theory; for example, it was used in
the proof of Theorem 3.66, Fermat’s two-squares theorem).

Definition. If E/k isaGaloisextensionandu € E*, defineitsnorm N (u) by

Nw= T[] ow.

oeGa(E/K)

Here are some preliminary properties of the norm, whose simple proofs are left as ex-
ercises.

(i) Ifue EX, then N(u) € k* (because N(u) € EC =Kk).
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(i) N(uv) = N(U)N(v), sothat N: E* — k* isahomomorphism.
(iii) If a € k, then N(a) = a", wheren = [E: K].
(iv) If o €e Gandu € E*, then N(o(u)) = N(u).

Given a homomorphism, we ask about its kernel and image. The image of the normis
not easy to compute; the next result (which was the ninetieth theorem in an 1897 exposition
of Hilbert on algebraic number theory) computes the kernel of the norm in a special case.

Theorem 4.50 (Hilbert’s Theorem 90). Let E/k be a Galois extension whose Galois
group G = Gal(E/k) iscyclic of order n, say, with generator o. Ifu € E*,then N(u) = 1
if and only if there exists v € E* withu = vo (v) L.

Proof. If u=vo(v)~1, then
N(U) = N(vo (v)™)
=N@N@®™
=N@N@ @)™
=NwN@ =1
Conversdly, let N(u) = 1. Define “partial norms” in E*:
So=u,
81 = Uo (U),

82 = Uo (U)o 2(u),

Sn—1 = Uo(U)---o" ().
Notethat 61 = N(u) = 1. Itiseasy to see that
Uo (i) =81 for dlo<i<n-2 4
By independence of the characters 1, o, o2, ..., 0" 1, there exists y € E with
80y + 810 (Y) + -+ + 020" 2 (V) + 0" H(Y) £ O;
call thissum z. Using Eq. (4), we easily check that
7 (2) = 5(80)0 () + 0 (BD)(Y) + -+ + 0 (Bn-2)0"H(y) + 0" (Y)
=u510(y) + u0%(y) + - +u 10" Hy) +y
= u(810.(y) + 820%(y) + - + 80-10" W) ) + U b0y

—ulz e
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Corollary 4.51. Let E/k be a Galois extension of prime degree p. If k contains a prim-
itive pth root of unity , then E = k(z), where zP € k, and so E/k is a pure extension of
type p.

Proof. TheGaloisgroup G = Gal(E/k) hasorder p, henceiscyclic; let o beagenerator.
Observe that N(w) = wP = 1, because » € k. By Hilbert’s Theorem 90, we have
o = zo(z)~ 1 forsomez € E. Hence o (z) = w1z Thus, 6 (z°) = (0~12)P = zP, and so
zP € EC, because o generates G; since E/k is Galois, however, we have E© = k, so that
zP € k. Notethat z ¢ k, lest w = 1, so that k(z) # k is an intermediate field. Therefore
E = k(2), because[E : k] = pisprime, and hence E hasno proper intermediate fields. e

We confess that we have presented Hilbert’s Theorem 90, not only because of its corol-
lary, which will be used to prove Galois’s theorem, but also because it is a well-known
result that is an early instance of homological algebra (see Corollary 10.129). Hereis an
elegant proof of Corollary 4.51 due to E. Houston (we warn the reader that it uses eigen-
values, atopic we have not yet introduced).

Proposition 4.52. Let E/k be a Galois extension of prime degree p. If k contains a
primitive pth root of unity w, then E = k(z), where zP € k, and so E/k isa pure extension
of type p.

Proof. Since E/k isaGalois extension of degree p, its Galoisgroup G = Gal(E/k) has
order p, and henceitiscyclic.: G = (o). View E as a vector space over k. If a € k and
u € E, theno(au) = o(a)o (U) = ac (u), because o € Gal(E/K) (so that it fixes k), and
sowemay view o : E — E asalinear transformation. Now o satisfies the polynomial
xP—1, becauseo P = 1g, by Lagrange’stheorem. But o satisfies no polynomial of smaller
degree, lest we contradict independence of the characters 1, o, 2, ..., o P~1. Therefore,
xP —1 isthe minimum polynomial of o, and so every pthroot of unity w isan eigenvalue of
0. Sincew™ ! € k, by hypothesis, there is some eigenvector z € E of o witho (2) = w1z
(notethat z ¢ k becauseit is not fixed by o). Hence, o (zP) = (0(2))P = (0~ 1)PzP = 2P,
from which it follows that zP € E® = k. Now p = [E : k] = [E : k(2)][k(2) : K]; since
pisprimeand [k(2) : K] # 1, wehave[E : k(2)] = 1; thatis, E = k(z),and so E/k isa
pure extension. e

Theorem 4.53 (Galois). Let k be a field of characteristic O, let E/k be a Galois exten-
sion, and let G = Gal(E/k) be a solvable group. Then E can be imbedded in a radical
extension of k.

Therefore, the Galois group of a polynomial over afield of characteristic O isa solvable
group if and only if the polynomial is solvable by radicals.

Remark. A counterexamplein characteristic p isgiven in Proposition 4.56. <

Proof. Since G is solvable, it has a normal subgroup H of prime index, say, p. Let
 be a primitive pth root of unity, which exists in some extension field, because k has
characteristic 0. We distinguish two cases.
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Case (i): € k.

We prove the statement by induction on [E : k]. The base step is obviously true, for
k = E isaradica extension of itself. For theinductive step, consider the intermediate field
EH. Now E/E" is a Galois extension, by Corollary 4.36, and Gal(E/E") is solvable,
being a subgroup of the solvable group G. Since [E : EM] < [E : K], the inductive
hypothesis gives a radical tower Ef € Ry € -.- € R, where E € R.. Now EH/k
is a Galois extension, because H < G, and itsindex [G : H] = p = [EM : K], by the
fundamental theorem. Corollary 4.51 (or Proposition 4.52) now appliestogive EM = k(2),
where zP ¢ k; that is, EM/k is a pure extension. Hence, the radical tower above can be
lengthened by adding the prefix k € EH, thus displaying R/ k as aradical extension.

Case (ii): General case.

Let k* = k(w), and define E* = E(w). We claim that E*/k is a Galois extension.
Since E/k is a Galois extension, it is the splitting field of some separable f (x) € Kk[x],
and so E* is a splitting field over k of f(x)(xP — 1). But xP — 1 is separable, because
k has characteristic 0, and so E*/k is a Galois extension. Therefore, E*/k* is dso a
Galoisextension, by Corollary 4.36. Let G* = Gal(E*/k*). By Exercise 4.5 on page 217,
accessory irrationdlities, there is an injection ¢: G* — G = Ga(E/k), so that G* is
solvable, being isomorphic to a subgroup of a solvable group. Since w € k*, the first case
saysthat thereisaradical tower k* € R} € --- € Ry withE € E* C Ry, Butk* = k(w)
is a pure extension, so that this last radical tower can be lengthened by adding the prefix
k € k*, thusdisplaying R};,/k asaradical extension. e

We now have another proof of the existence of the classical formulas.

Corollary 4.54. If k has characteristic O, then every f (x) € k[x] with deg(f) < 4is
solvable by radicals.

Proof. If G isthe Galoisgroup of f(x), then G isisomorphic to a subgroup of &. But
S isasolvable group, and so every subgroup of & is also solvable. By Galois’s theorem,
f (x) issolvable by radicals. e

Suppose we know the Galois group G of a polynomia f(x) € Q[x] and that G is
solvable. Can we use thisinformation to find the roots of f (x)? The answer is affirmative;
we suggest the reader ook at the book by Gaal, Classical Galois Theory with Examples,
to see how thisis done.

In 1827, N. H. Abel proved that if the Galois group of a polynomomial f (x) iscommu-
tative, then f (x) issolvable by radicals (of course, Galois groups had not yet been defined).
This result was superseded by Galois’s theorem, proved in 1830, but it is the reason why
abelian groups are so called.

A deep theorem of W. Feit and J. G. Thompson (1963) says that every group of odd
order is solvable. It follows that if k is a field of characteristic 0 and f(x) € k[x] isa
polynomial whose Galois group has odd order, equivalently, whose splitting field has odd
degree over k, then f (x) is solvable by radicals.
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The next proposition gives an example showing that the converse of Galois’s theorem
isfalsein prime characteristic.

Lemma4.55. Ifk = Fp(t), thefield of rational functionsover F, then f (x) = xP—x—t
has no rootsink.

Proof. If there is aroot a of f(x) lying in K, then there are g(t), h(t) € Fp[t] with
a = g(t)/h(t); we may assume that (g,h) = 1. Since « isaroot of f(x), we have
(g/h)P — (g/h) = t; clearing denominators, there is an equation gP — hP~1g = thP in
Fp[t]. Hence, g | thP. Since (g,h) = 1, wehave g | t, so that g(t) = at or g(t) isa
constant, say, g(t) = b, wherea, b € . Transposing hP~1g in the displayed equation
showsthat h | gP; but (g, h) = 1 forces h to be a constant. We conclude that if @ = g/h,
thena = at or « = b. Inthefirst case,

O=of —a—t
= (a)P — (at) — t
=aPtP —at —t
=atP—at—t by Fermat’stheoreminFp
=t@Pt-a-1.

It follows that atP~! —a — 1 = 0. But a # 0, and this contradicts t being transcendental
over Fp. Inthe second case, « = b € Fp. But b isnot aroot of f(x), for f(b) =
bP — b —t = —t, by Fermat’stheorem. Thus, no root « of f (x) canlieink. e

Proposition 4.56. Let p be a prime, and let k = Fp(t). The Galois group of f(x) =
xP — x —t over kiscyclic of order p, but f (x) isnot solvable by radicals over k.

Proof. Leta bearoot of f(x). Itiseasy to see that the roots of f(x) area + i, where
0<i < p, for Fermat’s theorem givesiP =i inFp, and so

@+D)P—(@+i)—t=aP+iP—-a—i—-t=aP—a—-t=0.

It follows that f (x) is a separable polynomia and that k(«) is a splitting field of f(x)
over k. We claim that f (x) isirreduciblein k[x]. Suppose that f (x) = g(x)h(x), where

d-1

900 = x4+ cg_ x4 - 4o e K[X]

and 0 < d < deg(f) = p; then g(x) is a product of d factors of the form « + i.
Now —cq—1 € k isthe sum of the roots. —cy_1 = da + j, where j € Fp, and so
do € k. Since0 < d < p, however, d # 0ink, and thisforces o € k, contradicting the
lemma. Therefore, f (x) isan irreducible polynomial in k[x]. Sincedeg(f) = p, we have
[k(e) : K] = p and, since f(x) is separable, we have | Gal (k(x)/Kk)| = [k(x) : kK] = p.
Therefore, Gal (k(a)/k) = Ip.

It will be convenient to have certain roots of unity available. Let Q be the set of al
gth roots of unity, where q < p isaprime divisor of p!. We claim that « ¢ k(£2). On
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the one hand, if n = ]_[q<pq, then Q is contained in the splitting field of x" — 1, and so
[k(2) : K] | n!, by Theorem 4.3. It follows that p { [k(€2) : k]. On the other hand, if
o € k(R), then k() € k(2) and [k(S2) : K] = [K(S2) : k(a)][k() : kK] = p[k(R) : k(w)].
Hence, p | [k(2) : K], and thisis a contradiction.

If f(x) weresolvable by radicals over k(£2), there would be aradical extension

K@ =BoCBiC---CB

with k(22, o) € B;. We may assume, for each i > 1, that B;/Bj_1 is of prime type;
that is, Bi = Bj_1(uj), where u?‘ € Bi_1 and q; isprime. Thereissome j > 1 with
a € Bj buta ¢ Bj_;. Simplifying notation, we set uj = u, q; = ¢, Bj_1 = B,
and Bj = B. Thus, B = B(u), U = b € B,« € B, ando,u ¢ B. Weclam
that f(x) = xP — x — t, which we know to be irreducible in k[x], is also irreducible in
B[x]. By accessory irrationalities, Exercise 4.5 on page 217, restriction gives an injection
Ga(B(a)/B) — Gal(k()/k)) = Ip. If Gal(B(w)/B) = {1}, then B(e) = B and
a € B, acontradiction. Therefore, Gal(B(x)/B) = I, and f(x) isirreduciblein B[x],
by Exercise 4.11 on page 218.

Sinceu ¢ B’ and B contains all the gth roots of unity, Proposition 3.126 shows that
x% — bisirreducible in B[x], for it does not split in B[x]. Now B’ = B(u) is a splitting
fieldof x4 — b, ands0[B’ : B] = q. Wehave B C B(x) € B/, and

g=[B:B]=[B:B@)][B) : B].

Sinceqisprime, [B' : B(a)] = 1; that is, B’ = B(«),and soq = [B’ : B]. As«x isaroot
of theirreducible polynomial f(x) = xP — x —t € B[x], wehave[B(x) : B] = p; there-
fore, g = p. Now B(u) = B’ = B(«) is a separable extension, by Proposition 4.38, for
« isaseparable element. It followsthat u € B’ is also a separable element, contradicting
irr(u, B) = x4 — b = xP — b = (x — u)P having repeated roots.

We have shown that f (X) is not solvable by radicals over k(£2). It followsthat f (x) is
not solvable by radicals over k, for if therewerearadical extensonk =Ry C Ry € --- C
R with k() € Ry, then k() = Ro(2) € Ri(Q) C --- C R(2) would show that f(x)
is solvable by radicals over k(£2), acontradiction. e

The discriminant of a polynomial is useful in computing its Galois group.

Definition. If f(x) = [[; (X — ;) € k[x], wherek isafield, define
A= H(Oti —aj),
i<j
and define the discriminant tobe D = D(f) = A% = [Ti-jei - aj)?.

Itisclear that f(x) hasrepeated rootsif and only if itsdiscriminant D = 0.

The product A = ]_[i<j (i —aj) hasonefactor «j — «j for each distinct pair of indices
@, ]) (therestrictioni < j prevents a pair of indices from occurring twice). If E/k isa
splitting field of f(x) and if G = Gal(E/k), then each 0 € G permutes the roots, and so
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o permutes all the distinct pairs. However, it may happen that i < j while the subscripts
involved in o (o) — o (aj) arein reverse order. For example, suppose the roots of a cubic
are a1, a2, and a3, and suppose there is o € G with o(a1) = a2, o(a2) = a1, and
o(a3) = a3. Then
o(A) = (0(1) — o (a2)) (0 (1) — o (@3)) (0 (@2) — 0 (3))

= (a2 — a1) (o2 — a3) (@1 — @3)

= —(a1 — a2)(a2 — az)(a1 — a3)

= —A.
In general, each term o — orj occursin o (A) with apossible sign change. We conclude,
for dl o € Ga(E/k), that o(A) = +A. Itisnatural to consider A2 rather than A, for
A depends not only on the roots of f (x), but also on the order in which they are listed,

whereas D = A? does not depend on the listing of the roots. For a connection between
discriminants and the alternating group An, see Proposition 4.59(ii) on page 241.

Proposition 4.57. If f(x) € k[x] isa separable polynomial, then its discriminant D lies

ink.
Proof. Let E/k beasplitting field of f (x); since f (x) isseparable, Theorem 4.34 applies
to show that E/k isaGaloisextension. Each o € Gal(E/k) permutestherootsuy, ..., Up

of f(x),ando(A) = £A, aswe have just seen. Therefore,
a(D) = (A% = 0(A)? = (£A)* = D,

sothat D € EC. Since E/k isaGaloisextension, wehave E® = k,andsoD € k. o

If f(x) = X2+ bx + ¢, then the quadratic formula gives the roots of f (x):

a=3(-b+vbZ—4c) and B =3(-b— b2 —4c).
It follows that
D=A%=(a—p)>=b’—4c.
If f(x)isacubicwithrootse, 8, y, then
D = A%=(@—B)%(@— 2B -1

it is not obvious how to compute the discriminant D from the coefficients of f (x).
Definition. A polynomial f(x) = x"+cn_1x""1+. . .4cg € K[X] isreduced if co_1 = 0.

If f(x)isamonic polynomial of degree n and if ch—1 # 0ink, where char(k) = 0, then
itsassociated reduced polynomial is

fx) = f(x—2en ).
If f(X) =x"+cr_1X" L+ +coek[x]and B € kisaroot of f(x), then
0= f(B)=f(B— e

Hence, 8 isaroot of fv(x) if and only if 8 — %cn_l isaroot of f(x).
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Theorem 4.58. Let k be afield of characteristic 0.

(i) A polynomial f(x) e k[x] and its associated reduced polynomial f(x) have the
same discriminant.

(i) The discriminant of a reduced cubic f(x) = x3+ gx +r is
D = —4q® — 27r2.

Proof. (i) If the roots of f(x) = Y ¢ X are a1, ..., an, then the roots of f~(x) are
Br.....Bn, Where Bi = aij + 2cy_1. Therefore, i — Bj = o —«j foralli, j,

[J@i —ap) =T - 80
i<j i<j
and so the discriminants, which are the squares of these, are equal.
(i) The cubic formula gives the roots of f(x) as
a=g+h, B=wg+w’h, ad y=w?g+owh,
whereg = [3(-r + «/ﬁ)]m, h=—q/3g, R=r?+ 4503, and w isacube root of unity.
Because ® = 1, we have
a—B=(g+h) — (09 + v’h)
= (g— w’h) — (@g —h)
= (g - o’h) — (g — o’ho
= (g - o’ (1 - w).
Similar calculations give
a—y =(g+h) — @g+owh) =(g-oh)d -
and
B -y = (@g+ ’h) — (@’g+ oh) = (g — Hol - o).
It follows that
A = (g —h)(g— wh)(g — o®Ne(l - o’) (1 - ).
By Exercise 4.14 on page 246, we have (1 — w?)(1— w)? = 3i+/3; moreover, theidentity
x3—1=(X—1)(X—w)X—ad),
withx = g/h, gives
(@—h)(g-wh)(g-o?h) =g*>—h*=VR
(we saw on page 208 that g® — h® = /R). Therefore, A = 3i+/3V/R, and
D=A2=_27R=-27%2—-4q%
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Remark. Letk beafield, and let f(x) = amx™ + am_1x™1 + ... + ayx + a9 and
g(X) = bnX" 4+ bp_1x" 1 + - .- 4+ bix + bg € K[x]. Their resultant is defined as

Res(f, g) = det(M),

where M = M(f, g) isthe (m + n) x (m+ n) matrix

@n am-1 - a ag
m am-1 - a1 Qo
9n am-1 - a1 Q
M=1by s - b by :
bh  bho1 - b1 bo
bn bn—l bl b0

there are n rows for the coefficients & of f(x) and m rows for the coefficients b; of
g(x); al the entries other than those shown are assumed to be 0. It can be proved that
Res(f,g) = 0if and only if f and g have a nonconstant common divisor. We mention the
resultant here because the discriminant can be computed in terms of it:

D(f) = (-)""~D/2Resg(f, '),

where f/(x) is the derivative of f (x). See the exercises in Dummit and Foote, Abstract
Algebra, pages 600-602. <

Here isaway to use the discriminant in computing Galois groups.
Proposition 4.59. Let k be a field with characteristic # 2, let f (x) € k[x] be a polyno-
mial of degree n with no repeated roots, and let D = A2 beitsdiscriminant. Let E/k be

a splitting field of f(x), and let G = Gal(E/k) be regarded as a subgroup of S, (asin
Theorem 4.3).

(i) IfH = A,NG, then EM = k(A).
(i) Gisasubgroup of A, ifandonlyif /D € k.
Proof. (i) The second isomorphism theorem givesH = (G N A,) < G and
[G:H]=[G: AnNG]=[AG: A =[S : A =2
By the fundamental theorem of Galoistheory (which applies because f (x) has no repeated
roots, hence is separable), [EM : k] = [G : H], sothat [E" : k] = [G : H] < 2. By
Exercise 4.25 on page 248, we have k(A) € E*, and sok(A) € EF. Therefore,

[EM K =[E" : k(A)][k(A) : K] < 2. (5)
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There are two cases. If [EM : k] = 1, then each factor in Eq. (5) is 1; in particular,
[EM : k(A)] = 1and EM = k(A). If[EP : K] = 2, then [G : H] = 2 and there
eXistso € G,0 ¢ Ap, sothat o (A) = —A. Now A # 0, because f (x) has no repeated
roots, and —A # A, because k does not have characteristic 2. Hence, A ¢ EC = k and
[k(A) : k] > 1. It follows from Eq. (5) that [E™ : k(A)] = 1and EH = k(A).

(i) The following are equivalent: G < Ap; H = G N A, = G; EM = E® = k. Since
EH =k(A), by part (i), EM = kisequivalenttok(A) = k; thatis, A=+vD ek. e

We now show how to compute Galois groups of polynomials over Q of low degree.

If f(x) € Q[x] isquadratic, then its Galois group has order either 1 or 2 (because the
symmetric group S has order 2). The Galoisgroup hasorder 1if f (x) splits; it has order 2
if f(x)doesnot split; thatis, if f(x) isirreducible.

If f(x) € Q[x]isacubic having arational root, then its Galois group G isthe same as
that of its quadratic factor. Otherwise f (x) isirreducible; since |G| is now amultiple of 3,
by Corollary 4.9, and G < S, it followsthat either G = A3 =3 0rG = S3.

Proposition 4.60. Let f(x) € Q[x] be an irreducible cubic with Galois group G and
discriminant D.

(i) f(x) hasexactly onereal root if and only if D < O, inwhichcase G = Ss.

(i) f(x) hasthree real rootsif and only if D > 0. In this case, either D € Q and
GZIzorvVD¢QandG = Ss.

Proof. Note first that D # 0: Since Q has characteristic 0, irreducible polynomials over
Q have no repeated roots. If f(x) has three real roots, then A isreal and D = A2 > 0.
The other possibility isthat f (x) has onereal root & and two complex roots. 8 = u+iv
andf =u—iv. Sincep — = 2ivanda = @, we have

A=(a—B)a—PB)B-B
=@—B—PBB-H
= |a — BI%(2iv),

andso D = A?2 = —4?|la — B|* < 0.

Let E/Q be the splitting field of f(x). If f(x) has exactly one real root «, then E #
Q(a). Hence |G| > 3and G = Ss. If f(x) hasthreereal roots, then D > 0 and /D is
real. By Proposition 4.59(ii), G = Ag = I3 if and only if +/D isrational; hence G = S if
VDisirrational. e

Example 4.61.

The polynomia f (x) = x3 — 2 € Q[x] isirreducible, by Theorem 3.43. Its discriminant
isD = —108, and so it hasonerea root; since /—108 ¢ Q (itisnot even real), the Galois
group of f (x) isnot contained in Az. Thus, the Galois group is Ss.
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The polynomia x3 — 4x + 2 € Q[x] isirreducible, by Theorem 3.43 or by Eisenstein’s
criterion; its discriminant is D = 148, and so it has 3 real roots. Since +/148 isirrational,
the Galois group is Ss.

The polynomial f(x) = x3 — 48x + 64 € Q[x] isirreducible, by Theorem 3.43; the
discriminant is D = 2123% and so f (x) has 3 real roots. Since +/D isrationd, the Galois
groupis Az =13. «

Before examining quartics, let us notethat if d isadivisor of | S| = 24, thenitisknown
that $ has a subgroup of order d (see Exercise 5.23 on page 277). If d = 4, then V and
14 are nonisomorphic subgroups of order d; for any other divisor d, any two subgroups of
order d are isomorphic. We conclude that the Galois group G of aquartic is determined to
isomorphism by its order unless |G| = 4.

Consider a(reduced) quartic f (x) = x*4+qx?+rx+s e Q[x]; let E/Q beits splitting
field and let G = Gal(E/Q) be its Galois group. [By Exercise 4.15 on page 246, thereis
no lossin generality in assuming that f (x) isreduced.] If f(x) hasarational root «, then
f(X) = (x — a@)c(x), and its Galois group is the same as that of the cubic factor c(x); but
Galois groups of cubics have already been discussed. Supposethat f (x) = h(x)£(x) isthe
product of two irreducible quadratics; let « be aroot of h(x) and let 8 bearoot of £(x). If
Q) NQ(B) = Q, then Exercise 4.17(iv) on page 246 showsthat G = V, the four group;
otherwise, o € Q(B), sothat Q(B) = Q(«, B) = E, and G has order 2.

We are left with the case f () irreducible. The basic ideanow isto compare G with the
four group V, namely, the normal subgroup of &

V={1),123@4%, (1324, 1423},

so that we can identify the fixed field of V. N G. If the four (necessarily distinct) roots of
f(X) are a1, a2, a3, a4, consider the numbers [which are distinct, by Proposition 4.63(ii)]:

u = (o1 + a2) (a3 + ag),
v = (o1 + a3) (o2 + ag), (6)
w = (a1 + ag)(az + a3).

It is clear that if 0 € V N G, then o fixesu, v, and w. Conversdly, if o € & fixes
U= (o1 + a2)(a3 + aa), then

o eVU{(12),(34),(1324),(1423)].

However, none of the last four permutations fixes both v and w, and so o € G fixes each
of u, v, wifandonly if o € VN G. Therefore,

EVNCG = Qu, v, w).
Definition. Theresolvent cubic of f(x) = x* 4+ qx2 +rx +sis

g(xX) = (X =W (X = v)(X — w),

where u, v, w are the numbers defined in Egs. (6).
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Proposition 4.62. The resolvent cubic of f (x) = Xx* + qx2+rx +sis
g(x) = x® — 2qx° + (g% — 4s)X + 2.

Proof. If f(x) = (X2 4 jX + £)(x? — jx + m), then we saw, in our discussion of the
quartic formula on page 209, that j2 isaroot of

h(x) = x3 + 2qx® + (g% — 4s)x — 2,

apolynomial differing from the claimed expression for g(x) only inthe sign of itsquadratic
and constant terms. Thus, anumber g isaroot of h(x) if and only if —g isaroot of g(x).

Let thefour rootsa, ao, a3, a4 of f(x) beindexed sothat a1, ap areroots of X2+ j X+
and a3, a4 areroots of x2— jx+m. Then j = —(a1+a2) and —j = —(az+aa); therefore,

U= (a1 +a2)(az+ag) = —j2

and —u isaroot of h(x) sinceh(j?) = 0.
Now factor f (x) into two quadratics, say,

f(X) =X+ Jx+0)(X° — [x +m),

where o1, a3 are roots of the first factor and o2, a4 are roots of the second. The same
argument as before now shows that

v = (o1 +a3)(op +as) = —|%
hence —v isaroot of h(x). Similarly, —w = —(a1 + a4)(a2 + a3) isaroot of h(x).
Therefore,

h(x) = (X + U)(X + v) (X + w),
and so

g(x) = (X —u)(X —v)(X — w)
is obtained from h(x) by changing the sign of the quadratic and constant terms. e

Proposition 4.63.

(i) The discriminant D(f) of a quartic polynomial f(x) € Q[x] is equal to the dis-
criminant D(g) of its resolvent cubic g(x).

(i) If f(x) isirreducible, then g(x) has no repeated roots.
Proof. (i) One checks easily that
U—v = a1a3 + azeq — o102 — azag = — (a1 — ag)(@2 — a3).
Similarly,
U—w=—(o1—a3)(ax—as) and v—w= (01— a2)(az—as).
We conclude that D(g) = [(u — v)(u — w)(v — w)]? = [ [T - aj)]2 = D(f).

(ii) If f(x) isirreducible, then it has no repeated roots (for it is separable because Q has
characteristic 0), and so D(f) # 0. Therefore, D(g) = D(f) # 0, and so g(x) has no
repeated roots. e
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In the notation of Egs. (6), if f(x) isanirreducible quartic, then u, v, w are distinct.

Proposition 4.64. Let f(X) € Q[x] beanirreducible quartic with Galois group G with
discriminant D, and let m be the order of the Galois group of its resolvent cubic g(x).

(i) If m=6,then G = S;. Inthiscase, g(x) isirreducible and /D isirrational.
(i) 1fm =3, then G = A4. Inthiscase, g(x) isirreducible and +/D isrational.
(iif) 1fm =1, then G = V. Inthiscase, g(x) splitsin Q[x].

(iv) If m= 2,then G = Dg or G = I4. Inthis case, g(x) has an irreducible quadratic
factor.

Proof. We have seen that EV"® = Q(u, v, w). By the fundamental theorem of Galois
theory,

[G:VNG]=[EY®: Q]
= [Q(u, v, w) : Q]
=1Ga(Q(u, v, w)/Q)]

=m.

Since f (x) isirreducible, |G| is divisible by 4, by Corollary 4.9, and the group-theoretic
statements follow from Exercise 4.28 on page 248 and Exercise 4.29 on page 248. Finaly,
in the first two cases, |G| is divisible by 12, and Proposition 4.59(ii) decides whether
G = S or G = A4. The conditions on g(x) in the last two last two cases are easy to
See. e

We have seen that the resolvent cubic has much to say about the Galois group of the
irreducible quartic from which it comes.

Example 4.65.
(i) Let f(x) = x* —4x + 2 € Q[x]; f(x) isirreducible [the best way to see thisis with
Eisenstein’s criterion, Theorem 6.34, but we can also see that f (x) has no rational roots,
using Theorem 3.43, and then showing that f (x) has no irreducible quadratic factors by
examining conditionsimposed on its coefficients]. By Proposition 4.62, the resolvent cubic
is

g(x) = x5 — 8x + 16.

Now g(x) isirreducible (again, the best way to see this uses some results of Chapter 6:
specifically, Theorem 6.30, for if we reduce mod 5, we obtain x3 + 2x + 1, and this poly-
nomial isirreducible over I because it has no roots). The discriminant of g(x) is —4864,
so that Theorem 4.60 shows that the Galois group of g(x) is S, hence has order 6. Theo-
rem 4.64 now showsthat G = .

(ii) Let f(x) = x* —10x? + 1 € Q[x]; f(x) isirreducible, by Exercise 6.23(viii) on
page 339. By Proposition 4.62, the resolvent cubic is

X3 + 20%2 + 96X = X(X + 8)(X + 12).
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Inthiscase, Q(u, v, w) = Q and m = 1. Therefore, G = V. [Thisshould not be asurprise
if we recall Example 3.122, where we saw that f (x) arises as the irreducible polynomial

of « = V2 + /3, where Qo) = Q(+v/2,v/3).] =«

An interesting open question is the inverse Galois problem: Which finite abstract
groups G are isomorphic to Gal(E/Q), where E/Q is a Galois extension? D. Hilbert
proved that the symmetric groups S, are such Galois groups, and I. Shafarevich proved
that every solvable group is a Galois group (see Neukirch-Schmidt-Wingberg, Cohomol-
ogy of Number Fields). After the classification of the finite simple groups in the 1980s, it
was shown that most simple groups are Galois groups. For more information, the reader is
referred to Malle-Matzat, Inverse Galois Theory.

EXERCISES

4.14 Provethat (1 — w?)(1 — w)? = 3i/3, where w = €271/3,

415 (i) Provethat if a # 0, then f(x) and af (x) have the same discriminant and the same
Galois group. Conclude that it is no loss in generality to restrict attention to monic
polynomials when computing Galois groups.

(i) Letk beafield of characteristic 0. Prove that apolynomia f (x) € k[x] and its associ-
ated reduced polynomia f (x) have the same Galois group.

416 (i) Let k be afield of characteristic 0. If f(x) = x5 + ax? + bx + ¢ € k[x], then its
associated reduced polynomial is x3 + gx +r, where

2 2

_ 1 _ 3_1
q=b-3a° ad r=s5a’-zab+c

(if) Show that the discriminant of f(x) is
D = a®b? — 4b® — 4a%c — 27¢? + 18abhc.

4.17 Letk beafield, let f(x) € k[x] be a separable polynomial, and let E/k be a splitting field of
f (x). Assume further that there is a factorization

f(x) = g(x)h(x)

ink[x], and that B/ k and C/k are intermediate fields that are splitting fields of g(x) and h(x),
respectively.
(i) Provethat Gal(E/B) and Gal(E/C) are normal subgroups of Gal(E/ k).
(if) Provethat Gal(E/B) N Gal(E/C) = {1}.
(iii) If BNC =k, provethat Gal(E/B) Gal(E/C) = Gal(E/k). (Intermediate fields B and
C are caled linearly disjoint if BN C = k.)
(iv) Use Proposition 2.80 and Theorem 4.16 to show, in this case, that

Gal(E/k) = Ga(B/k) x Gal(C/K).

(Note that Gal(B/ k) is not a subgroup of Gal(E/k).)
(v) Use (iv) to give another proof that Gal(E/Q) = V, where E = Q(v/2 + v/3) [see
Example 3.122 on page 190].
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(vi) Let f(x) = (x3—2)(x3—3) € Q[x]. If B/Q and C/Q arethe splitting fields of x3 — 2
and x3 — 3inside C, prove that Gal(E/Q) % Gal(B/Q) x Gal(C/Q), where E isthe
splitting field of f (x) contained in C.
4.18 Let k be a field of characteristic O, and let f(x) € k[x] be a polynomia of degree 5 with
splitting field E/k. Provethat f (x) issolvable by radicalsif and only if [E : k] < 60.
419 (i) If £ and £ arelattices, afunction f: £ — L’ iscalled order-preserving if a < bin
L implies f(a) < f(b) in £'. Provethat if £ and £’ arelatticesand ¢: £ — L' isa
bijection such that both ¢ and o Llare order-preserving, then

p@anb)y=9p@ Arpb and ¢@vb) =ep@) Vo).

Hint. Adapt the proof of Lemma4.42.
(ii) Let E/k beaGalois extension with Gal(E/K) cyclic of order n. Prove that

¢ Int(E/k) — Div(n),

[see Example 4.40(iv)] defined by ¢ (L) = [L : K], is an order-preserving lattice iso-
morphism.
(iii) Provethat if L and K are subfields of Fpn, then

[LVK:Fp]=lem([L : Fpl, [K : Fp])

and
4.20 Find al finite fields k whose subfieldsform achain; that is, if k' and k” are subfields of k, then
gither kK C k” ork” C k'.

421 (i) Let k be an infinite field, let f(x) € K[x] be a separable polynomid, and let E =
k(ap,...,an), whereaq, ..., an aretheroots of f(x). Provethat therearec; € k so
that E = k(8), where 8 = cjaq + - - - + Cnan.

Hint. Usethe proof of Steinitz’s theorem.

(ii) (Janusz). Let k be afinite field and let E = k(a, B). Prove that if k() and k(B) are
linearly digoint [that is, if k(o) NKk(8) = k], then E = k(« + B8). (Thisresult isfalsein
general. For example, N. Boston used the computer algebra system MAGMA to show
that there is a primitive element o of o6 and a primitive element g of F510 such that
Fo(a, B) =Fy whileFo(a + 8) = F215.)

Hint. Use Exercise 4.19(iii) and Exercise 1.26 on page 13.
4.22 Let E/k beaGaloisextensionwith Galoisgroup G = Gal(E/k). Definethetrace T: E — E
by
Tw= ) o).

oeG
(i) ProvethatimT C kandthat T(u+v) = T(u) + T(v) foral u,v € E.
(if) Useindependence of charactersto prove that T is not identically zero.
4.23 Let E/k beaGaloisextension with [E : k] = n and with cyclic Galoisgroup G = Gal(E/k),
say, G = (o).
(i) Definetr = o — 1, and provethat ker T = ker z.
Hint. Show that kert = k, sothatdim(imzt) =n— 1= dim(ker T).



248

4.24

4.25

4.26

4.27

4.28

4.29

4.30
4.31

4.32

Fields Ch. 4

(ii) Trace Theorem: Prove that if E/k is a Galois extension with cyclic Galois group
Gal(E/k) = (o), then

kerT ={ae E:a=o0(u)—uforsomeu € E}.

Let k be a field of characteristic p > 0, and let E/k be a Galois extension having a cyclic
Galoisgroup G = (o) of order p. Using the trace theorem, prove that thereisan elementu
E witho (u) —u = 1. Provethat E = k(u) and that thereisc € k withirr(u, k) = xP —x —c.

Ifo e Syand f(xq,...,X%n) € K[X1, ..., Xn], wherek isafield, define

(0f)Xq, .., Xn) = T Xy1s - - -5 Xon)-

(i) Provethat (o, f(X1,...,Xn) = of definesanaction of S, onk[x1, ..., Xn].

(i) Let A = A(Xq,...,%Xn) = ]'[i<]- (Xi —Xj) (on page 239, we saw that o A = £A for dl
o€ X)) lIfoe K, provethat o € Ayifandonlyif oA = A.
Hint. Defineg: S, — G, where G isthe multiplicative group {1, —1}, by

1 ifoA =A;

YO=1 1 itoa=_a.

Prove that ¢ isahomomorphism, and that ker ¢ = An.

Prove that if f(x) € Q[x] is an irreducible quartic whose discriminant is rational, then its
Galois group has order 4 or 12.
Let f(x) = x*+rx +s € Q[x] have Galois group G.
(i) Provethat the discriminant of f (x) is —27r% + 256s°.
(ii) Provethatif s < 0, then G isnot isomorphic to a subgroup of A4.
(iii) Provethat f(x) = x* + x + lisirreducibleand that G = S.
Let G beasubgroup of $4 with |G| amultiple of 4, and definem = |G/(G N V).
(i) Provethat misadivisor of 6.
(i) fm=6,thenG = &;if mM=3,thenG = Ay;ifm=1,then G =V, if m= 2, then
G=Dg, G=1I4,0rG=V.
Let G be asubgroup of &. If G actstransitively on X = {1,2,3,4} and |G/(VN G)| = 2,
then G = Dg or G = I4. [If we merely assume that G acts transitively on X, then |G| isa
multiple of 4 (Corollary 4.9). The added hypothesis |G/(V N G)| = 2 removes the possibility
G = Vwhenm = 2in Exercise 4.28]
Compute the Galois group over Q of x# + x2 — 6.
Compute the Galois group over Q of f(x) = x* + X2+ x+ 1.
Hint. Use Example 3.35(ii) to prove irreducility of f(x), and prove irreducibility of the
resolvent cubic by reducing mod 2.
Compute the Galois group over Q of f(x) = 4x% + 12x + 9.
Hint. Provethat f(x) isirreducible in two steps: First show that it has no rationa roots,
and then use Descartes’s method (on page 209) to show that f (x) is not the product of two
quadratics over Q.
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We now seek some structural information about groups. Finite abelian groups turn out to
be rather uncomplicated: They are direct sums of cyclic groups. Returning to nonabelian
groups, the Sylow theorems show, for any prime p, that finite groups G have subgroups of
order p&, where p®isthelargest power of p dividing |G|, and any two such areisomorphic.
The ideas of normal series and solvability that arose in Galois theory yield invariants of
groups (the Jordan-Holder theorem), showing that simple groups are, in a certain sense,
building blocks of finite groups. Consequently, we display more examples of simple groups
to accompany the alternating groups Ay, for n > 5, which we have aready proved to be
simple. This chapter concludes by investigating free groups and presentations, for they are
useful in constructing and describing arbitrary groups. The chapter ends with a proof that
every subgroup of afree group isitself afree group.

5.1 FINITE ABELIAN GROUPS

We continue our study of groups by classifying all finite abelian groups; as is customary,
we use the additive notation for the binary operation in these groups. We are going to prove
that every finite abelian group is adirect sum of cyclic groups and that this decomposition
iS unique in a strong sense.

Direct Sums

Groups in this subsection are arbitrary, possibly infinite, abelian groups.

Let us say at the outset that there are two ways to describe the direct sum of abelian
groups S, ..., Sy. The easiest version is sometimes called their external direct sum,
whichwedenoteby § x - - - x §;; itselementsarethe n-tuples (s, ..., &), wheres € §
for all i, and its binary operation is

/ J

(St,---»S) + (S, ..., S) =(SL+ S, ..., S+ 5).

249
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However, the most useful version, isomorphicto § x --- x &, is sometimes called their
internal direct sum; it involves subgroups § of agivengroup G withG = § x --- x S,.
We will usually omit the adjectives external and internal.

The definition of the direct sum of two subgroupsisthe additive version of the statement
of Proposition 2.80.

Definition. If Sand T are subgroups of an abelian group G, then G is the direct sum,
denoted by
G=Se&T,

if S+ T =G (i.e,foreacha € G, thaeares € Sandt € T witha = s+ t) and
SNT ={0}.

Here are several characterizations of a direct sum.

Proposition 5.1. The following statements are equivalent for an abelian group G and
subgroups Sand T of G.

(i) G=SoT.
(ii) Every g € G hasa unique expression of the form

g=s+t,

wheres € Sandt e T.
(iii) There are homomorphisms p: G — Sand q: G — T, called projections, and
i:S— Gandj: T — G, calledinjections, such that

pi=1s. qi=1r. pj=0 qi=0 and ip+jq=1Ils.

Remark. The equations pi = 1gand qj = 1t imply that the mapsi and j must be
injections and the maps p and g must be surjections. <«

Proof. (i) = (ii) By hypothesis, G = S+ T, so that each g € G has an expression
of thefoomg = s+twiths € Sandt € T. To see that this expression is unique,
suppose dso that g = ' +t/, wheres’ € Sandt’ € T. Thens+t = s + t/ gives
s—§ =t'—teSNT = {0}. Therefore, s = s’ andt = t/, as desired.

(ii) = (iii) If g € G, thenthereare uniques € Sandt € T with g = s+ t. Thefunctions
p and g, given by
p(g) =sandq(g) =t,

are well-defined because of the uniqueness hypothesis. It is routine to check that p and g
are homomorphisms and that al the equations in the statement hold.

(iii) = (i) If g € G, theequation 1c = ip + jq gives
g=ip(@ +ja(@ € S+T,

because S=imiand T =imj.
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Ifge S;theng=igand pg = pig=9;ifge T,theng = jgand pg = pjg = 0.
Therefore, if ge SNT,theng=0. Hence, SNT ={0}, S+ T=G,andG=SHT. e

The next result shows that there is no essential difference between internal and external
direct sums.

Corollary 5.2. Let Sand T be subgroups of an abelian group G. If G = S& T, then
SeT=SxT.

Conversely, given abelian groups Sand T, define subgroups S = Sand T’ = T of
Sx T hy

S={0:s5€¢S and T'={0,t):teT}
thenSx T =S T

Proof. Define f: S®T — Sx T asfollows. Ifa € S® T, then the proposition says that
there isaunique expression of theforma =s+t,andso f: a+> (s,t) isawell-defined
function. Itisroutine to check that f isan isomorphism.

Conversely, if g = (s,t) ¢ Sx T,theng = (5,00 + (0,t) e S+ T'and SN T’ =
{(0,0)}. Hence, Sx T=S & T'. o

Definition. If 5, S, ..., S, ... are subgroups of an abelian group G, define the finite
direct sum S ® S @ --- d S, using inductiononn > 2:

SO DSH1=[SODD D S| DSt

We will also denote the direct sum by

n
Y S=59%9 0%

i=1

Given S, S, ..., $ subgroups of an abelian group G, when is the subgroup they gen-
erate, (S, S, ..., Sh), equal to their direct sum? A common mistake is to say that it is
enough to assumethat § N'S; = {0} for al i # j, but the following example shows that
thisis not enough.

Example 5.3.

Let V be atwo-dimensional vector space over a field k, which we view as an additive
abelian group, and let x, y be a basis. It is easy to check that the intersection of any
two of the subspaces (x), (y), and (x + y) is {0}. On the other hand, we do not have
V =[(x) ® (V)] ® (x+y) because [(x) ® (V)] N (X +y) # {0}. «

In the context of abelian groups, we shall write S C G to denote S being a subgroup
of G, as we do when denoting subrings and ideals; in the context of general, possibly
nonabelian, groups, we will continue to write S < G to denote a subgroup.
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Proposition54. LetG =S5 + S+ .-+ S, wherethe § are subgroups; that is, for
eacha € G, thereares € § for all i, with

a=si+8+-+5.

Then the following conditions are equivalent.

(GC=50Sd---®S.
(ii) Every a € G has a unique expression of the forma = s; + S + - - - + &, where
s € S foralli.

(iii) For eachi, R
SNE+S+-+S+-+5) ={0},

Where§ means that theterm § is omitted from the sum.

Proof. (i) = (ii) The proof is by induction on n > 2. The base step is Proposition 5.1.
For theinductive step, define T = § + S+ - + §,0tha G =T & S11. Ifae G,
then a has a unique expression of theforma =t + 41, wheret € T and 41 € Si+1
(by the proposition). But the inductive hypothesis says that t has a unique expression of
theformt =s; + --- + s, wheres € § foral i < n, asdesired.

(i) = (iii) Suppose that
xeSN(S+S+ - +S+ - +%).

Thenx =s € §Sands =} sj, wheres; € §j. Unlessall thesj = 0, the element 0
has two distinct expressions: 0 = —§ + Zj# sjand0 =040+ --- + 0. Therefore, all
sj=0andx =5 =0.

(i) = () Since S 1N (S + S+ -+ S) = (0}, we have
C=510(S+S+ - +S).

Theinductive hypothesisgives S + S+ -+ S$S=S P S P --- & S, because, for al
j < n,wehave

SN(Si+ - +5+ - +SCSN(S++S++ S+ )
={0}. o

Corollary 5.5. LetG = (y1,...,Y¥n). If,foral m; € Z, wehave > ; myy; = Oimplies
miy; = 0; then
G=(yu® - ® (¥n).

Proof. By Proposition 5.4(ii), it sufficesto provethat if >, kiyi = Y ; £iyi, thenkiy, =
¢iyi forall i. But thisisclear, for ) ; (ki — ¢i)yi = Oimplies (ki — ¢i)y; = Oforali. e
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Example 5.6.
Let V bean n-dimensional vector space over afield k, which we view as an additive abelian
group. If v1, ..., vy isabasis, then

V =(v1) ® (v2) ®--- & (vn),

where (vi) = {rv; : r € k} isthe one-dimensional subspace spanned by v;j. Eachv € V
has a unique expression of theformv = s; + - -+ + s, wheres = rjv; € (v;), because
Vi,...,vniSabasis. <

Now that we have examined finite direct sums, we can generalize Proposition 2.79 from
two summands to a finite number of summands. Although we state the result for abelian
groups, it should be clear that the proof works for nonabelian groups as well if we assume
that the subgroups H; are normal subgroups (see Exercise 5.1 on page 267).

Proposition 5.7. If G1, Gy, ..., G, are abelian groups and H; € G; are subgroups,
then

(G1®:--®Gn)/(H1® - @ Hn) = (G1/H1) x -+ x (Gn/Hn).
Proof. Definef :G1®---® Gpn — (G1/H1) & --- ® (G /Hp) by

(91,--.,9n) = (91 + Hi, ..., gn + Hn).

Since f isasurjective homomorphism withker f = Hy & - - - & Hp, the first isomorphism
theorem givestheresult. o

If G isan abelian group and mis an integer, et us write
mG ={ma:ae G}.

It iseasy to see that mG isasubgroup of G.
Proposition 5.8. If G isan abelian group and pisaprime, then G/ pG isa vector space
over [Fp.

Proof. If[r] e Fpanda e G, define scalar multiplication
[rl@a+ pG) =ra+ pG.

This formula is well-defined, for if k = r mod p, then k = r 4+ pm for some integer m,
and so

ka+ pG =ra+ pma+ pG =ra+ pG,

because pma € pG. It is now routine to check that the axioms for a vector space do
hold. e
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Direct sums of copies of Z arise often enough to have their own name.

Definition. Let F = (X1, ..., Xp) be an abelian group. If
F=(X)® & (Xn),

where each (x;) = Z, then F is called a (finitely generated) free abelian group with basis
X1, ..., Xn. More generally, any group isomorphic to F is called afree abelian group.

For example, Z™ = Z x - - - x Z, the group of all m-tuples (ny, ..., nm) of integers, is
afree abelian group.

Proposition 5.9. |f Z™ denotes the direct sum of m copies of Z, then Z™ = Z" if and
onlyifm=n.

Proof. Only necessity needs proof. Note first, for any abelian group G, that if G =
G1®-- @ Gp, then2G =2G1 & - - - & 2Gy,. It follows from Proposition 5.7 that

G/2G = (G1/2G1) @ - - - & (Gn/2Gn),

so that |G/2G| = 2". Similarly, if H = Z™M, then |H/2H| = 2™. Findly, if G = Z" =
Z™M = H,then G/2G = H/2H and 2" = 2™. Weconcludethatn =m. e

Corollary 5.10. If F isa (finitely generated) free abelian group, then any two bases of F
have the same number of elements.

Proof. If x1,...,Xyisabasisof F,then F = Z", andif yi, ..., ¥m is another basis of
F,then F = Z™M. By the proposition,m=n. e

Definition. If F isafree abelian group with basis x, ..., Xn, then n is called the rank
of F, and wewriterank(F) = n.

Corollary 5.10 says that rank(F) is well-defined; that is, it does not depend on the
choice of basis. In this language, Proposition 5.9 says that two finitely generated free
abelian groups are isomorphic if and only if they have the same rank; that is, the rank of
a free abelian group plays the same role as the dimension of a vector space. Comparing
the next theorem with Theorem 3.92 shows that a basis of a free abelian group behaves as
does a basis of avector space.

Theorem 5.11. Let F be a free abelian group with basis X = {x1, ..., Xp}. If Gisany
abelian group and if y : X — G isany function, then there exists a unique homomor phism
g: F - Gwithg(x) = y(x) for all x;.

=

X4V>G
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Proof. Every element a € F has a unique expression of the form
n
a= Z m X,
i=1
wherem; € Z. Defineg: F — G by
n
g@ = > myx).
i=1

If h: F — G is a homomorphism with h(xj) = g(x;) for al i, then h = g, for two
homomorphisms that agree on a set of generators must be equal. e

Theorem 5.11 characterizes free abelian groups.

Proposition 5.12. Let A be an abelian group containing a subset X = {X, ..., Xn}, and
let A have the property in Theorem 5.11: For every abelian group G and every function
y: X — G, there exists a unique homomorphismg: A — G with g(x;) = y () for all
xi. Then A= Z"; that is, A isa free abelian group of rank n.

Proof. Consider the diagrams

A z"
PT g and qT h
BN Q
X ?‘ Zn X ? A,

where p: X — Aandq: X — Z" areinclusions. The first diagram arises from the given
property of A, and so gp = q; the second arises from Theorem 5.11, which shows that Z"
enjoys the same property; hence, hq = p. We claim that the compositeg: A — Z"isan
isomorphism. To see this, consider the diagram

A.
"
pT . hg
BN
X—p>A.

Now hgp = hq = p. By hypothesis, hg is the unique such homomorphism. But 1a
is another such, and so hg = 1a. A similar diagram shows that the other composite
gh = 10, and so g isan isomorphism. e

Basis Theorem
It will be convenient to analyze finite abelian groups “one prime at atime.”

Recall that a p-group is a finite group G of order pX for some k > 0. When working
wholly in the context of abelian groups, p-groups are called p-primary groups.



256 Groups 1 Ch. 5

Definition. |If pisaprime, then an abelian group G isp-primary if, for eacha € G, there
isn > 1with p"a=0.
If G isany abelian group, then its p-primary component is

Gp={aeG: p'"a=0forsomen > 1}.

Itiseasy to see, for every prime p, that G isasubgroup of G (thisis not the case when
G isnot abelian; for example, G2 isnot asubgroup if G = S3).

If we do not want to specify the prime p, we may write that an abelian group is primary
(instead of p-primary).

Theorem 5.13 (Primary Decomposition).
(i) Every finite abelian group G isa direct sum of its p-primary components:
Gszl@"'@Gpn.

(i) Two finite abelian groups G and G’ are isomorphic if and only if G, = G/, for
every prime p.

Proof. (i) Let x € G be nonzero, and let its order be d. By the fundamental theorem of
arithmetic, there are distinct primes py, ..., pn and positive exponentsey, . . ., ey with

Definer; = d/p?, so that piri = d. It followsthat rix € Gp, for each i (because
dx = 0). Butthegedd of ry,...,r, is 1 (the only possible prime divisors of d are
P1, ..., Pn; but no p; is a common divisor because p; t ri); hence, there are integers
S1, ..., S Withl=Y"; sri. Therefore,

X=ZSFiX€Gp1+'“+Gpn.
i

Write Hi = Gp, + Gp, + --- 4+ Gp, + --- 4+ Gp,. By Proposition 5.4, it suffices to
prove that if
X € Gpl N H|,
thenx = 0. Sincex € Gy, we have pfx = 0 for some¢ > O; since x € Hi, we have
gj . 9j
X =) Yj, where pj’yj = 0; hence, ux = 0, whereu = [T, 4 pj‘. But p’ and u are
relatively prime, so there exist integerss and t with 1 = sp{Z + tu. Therefore,

X = (sp{ +tu)x = sp’x +tux = 0.

(ii) If f: G — G’ is ahomomorphism, then f(Gp) < G/, for every prime p, for if
p‘a = 0,then 0 = f(p‘a) = p‘f(a). If f isanisomorphism, then f~1: G’ — Gis
also an isomorphism [so that f~1(G},) < Gy for all p]. It follows that each restriction
f|Gp: Gp — G}, isanisomorphism, with inverse f ~1|G,.

Cornversely, if there areisomorphisms fp: Gp — G’pfor al p, then thereisanisomor-
phisme: >, Gp— >, G givenby 3 pap—> >, fp(@p). e
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The next type of subgroup will play an important role.

Definition. Let p beaprimeandlet G bea p-primary abelian group.® A subgroup S < G
is apure2 subgroup if, for al n > 0,

SN p"G = p"S.

Theinclusion SN p"G > p"Sistrue for every subgroup S € G, and so it is only
the reverseinclusion SN p"G C p"Sthat is significant. It saysthat if s € S satisfies an
equation s = p"afor somea € G, then thereexistss’ € Swiths = p"s'.

Example 5.14.

(i) Every direct summand Sof G isapure subgroup. If G = S® T and (s, 0) = p"(u, v),

whereu € Sand v € T, then it is clear that (s,0) = p"(u, 0). (The converse: “Every

pure subgroup Sisadirect summand” istrue when Sis finite, but it may be false when S

isinfinite.)

(i) If G = (a) isacyclic group of order p?, where p isaprime, then S = (pa) isnot a

pure subgroup of G, for if s = pa € S, thenthereisno elements’ € Swiths = pa = ps'.
<

Lemma 5.15. If pisaprimeand G is a finite p-primary abelian group, then G has a
nonzero pure cyclic subgroup.

Proof. Since G is finite, we may choose an element y € G of largest order, say, p‘. We
claimthat S = (y) isapure subgroup of G.
Supposethat s € S, sothat s = mp'y, wheret > Oand p f m, and let

s=pa

for somea € G; an element s’ € S must be found with s = p"s’. We may assume that
n < ¢: otherwise, s = p"a = 0 (for p‘g = Ofor al g € G because y has largest order
p*), and we may choose s’ = O.

If t > n, defines’ = mp'~"y e S, and note that

p's'= p"'mp' "y = mp'y =s.
Ift < n, then

f—n Ny _ ~f—Ng _ ~0—n

pla=p“~"pla=p~s=p

Butpfmand?—n+t < ¢ because —n +t < 0, and so p‘a # 0. This contradicts y
having largest order, and so this case cannot occur. e

mpt y = mpE—n-‘rt y.

1if G isnot a primary group, then apure subgroup S € G is defined to be a subgroup that satisfies SN MG =
mSfor all m € Z (see Exercises 5.2 and 5.3 on page 267).

2Recall that pure extensions k(u)/k arose in our discussion of solvahility by radicals on page 206; in such an
extension, the adjoined element u satisfies the equation u" = a for some a e k. Pure subgroups are defined in
terms of similar equations (written additively), and they are probably so called because of this.
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Definition. [If pisaprimeand G isafinite p-primary abelian group, then
d(G) = dim(G/pG).
Observe that d is additive over direct sums,
d(G @ H) =d(G) +d(H),
for Proposition 2.79 gives

(G®H)/pG @ H) = (G & H)/(pG @ pH)
= (G/pG) ® (H/pH).

The dimension of the left side is d(G @ H) and the dimension of the right-hand side
isd(G) + d(H), for the union of a basis of G/pG and a basis of H/pH is a basis of
(G/pG) @ (H/pH).

The nonzero abelian groups G with d(G) = 1 are easily characterized.

Lemma 5.16. If G # {0} is p-primary, then d(G) = 1if and only if G iscyclic.

Proof. If G iscyclic, then so isany quotient of G; in particular, G/ pG is cyclic, and so
dim(G/pG) = 1.

Conversely, if G/pG = (z+ pG), then G/pG = I,. Sincel, isasimple group, the
correspondence theorem says that pG is amaximal proper subgroup of G; we claim that
pG isthe only maximal proper subgroup of G. If L € G isany maximal proper subgroup,
then G/L = I, for G/L isasimple abelian group of order a power of p, hence has order
p (by Proposition 2.107, the abelian simple groups are precisely the cyclic groups of prime
order). Thus, if a € G, then p(a+ L) =0in G/L, sothat pa € L; hence pG C L. But
pG ismaximal, and so pG = L. It follows that every proper subgroup of G is contained
in pG (for every proper subgroup is contained in some maximal proper subgroup). In
particular, if (z) isa proper subgroup of G, then (z) C pG, contradicting z+ pG being a
generator of G/ pG. Therefore, G = (z), and so G iscyclic. e

Lemma 5.17. Let G be a finite p-primary abelian group.
(i) If SC G, thend(G/S) < d(G).
(i) If Sisa pure subgroup of G, then

d(G) = d(S) + d(G/S).

Proof. (i) By the correspondence theorem, p(G/S) = (pG + S)/S, so that
(G/9/p(G/S = (G/9/[(pG + §/F = G/(pG + ),

by the third isomorphism theorem. Since pG € pG + S, there is a surjective homomor-
phism (of vector spaces over IFp),

G/pG — G/(pG +9),
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namely, g + pG — g+ (pG + S). Hence, dim(G/pG) > dim(G/(pG + 9)); that is,
d(G) > d(G/S).
(ii) We now analyze (pG + S)/ pG, thekernel of G/ pG — G/(pG + S). By the second
isomorphism theorem,

(pG + 9)/pG = S/(SN pG).

Since Sisapure subgroup, SN pG = pS; therefore,
(PG + 9)/pG = §/pS,

and so dim[(pG + S)/pG] = d(S). But if W is a subspace of a finite-dimensional vector
space V, then dim(V) = dim(W) + dim(V /W), by Exercise 3.72 on page 170. Hence, if
V =G/pGand W = (pG + S/ pG, we have

d(G) =d(S) +d(G/S). e

Theorem 5.18 (Basis Theorem). Every finite abelian group G isa direct sum of cyclic
groups of prime power orders.

Proof. By the primary decomposition, Theorem 5.13, we may assumethat G is p-primary
for some prime p. We prove that G is a direct sum of cyclic groups by induction on
d(G) > 1. Thebase step is easy, for Lemma5.16 showsthat G must be cyclic in this case.

To provetheinductive step, we begin by using Lemma5.15 to find anonzero pure cyclic
subgroup S € G. By Lemma5.17, we have

d(G/S) =d(G) —d(S) =d(G) — 1 < d(G).

By induction, G/Sisadirect sum of cyclic groups, say,
q
G/S= Z(Yi ),
i=1

whereXj = x; + S.
Let x € G and let X have order p¢, whereX = x 4+ S. We claim that thereisz € G with
Zz+ S=X =X+ Ssuchthat
order z = order (X).

Now x has order p", wheren > ¢. But p‘(x + S) = p‘X = 0in G/S, so there is some
s € Swith p‘x = s. By purity, thereiss’ € Swith p‘x = p’s’. If wedefinez=x — ¢/,
then pfz=0andz+ S = x + S = X. If zhas order p™, then m > ¢ because z > X;
since pfz = 0, the order of z equals pt.
For eachi, choose zi € G withz + S= X; = X + Sand with order z; = order X;;
define T by
T=(z1,...,29).
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Now S+ T = G, because G isgenerated by Sandthe z’s. Toseethat G = S& T, it now
sufficesto provethat SN T = {0}. If y € SN T, theny = ), mjz, wherem; € Z. Now
y e S andso ) ; mX; = 0in G/S. Sincethisisadirect sum, each mjX; = 0; after all,
for eachi,

—

—Mi%; =Y miXj € (i) N ((Xa) + -+ Xi) + - + (X)) = {0}.
j#
Therefore, mjzi = Ofor al i, and hencey = 0.
Findly, G=S& T impliesd(G) = d(S) +d(T) =1+ d(T), sothat d(T) < d(G).
By induction, T isadirect sum of cyclic groups, and this completes the proof. e

The shortest proof of the basis theorem that | know is due to G. Navarro, American
Mathematical Monthly 110 (2003), pages 153-154.

Lemma 5.19. A finite p-primary abelian group G iscyclic if and only if it has a unique
subgroup of order p.

Proof. Recall the unnumbered theorem on page 94: If G is an abelian group of order n
having at most one cyclic subgroup of order p for every prime divisor p of n, then G is
cyclic. Thelemmafollowsat oncewhen nisapower of p. TheconverseisLemma?2.85. e

Remark. We cannot remove the hypothesisthat G be abelian, for the group Q of quater-
nions is a 2-group having a unique subgroup of order 2. However, if G is a (possibly
nonabelian) finite p-group having a unique subgroup of order p, then G is either cyclic
or generaized quaternion (the latter groups are defined on page 298). A proof of this last
result can be found in Rotman, An Introduction to the Theory of Groups, pages 121-122.

One cannot remove the finiteness hypothesis, for Proposition 9.25(iii) shows that the
infinite p-primary group Z(p°°) has a unique subgroup of order p. «

Lemma 5.20. If G isafinite p-primary abelian group and if a is an element of largest
order in G, then A = (a) isa direct summand of G.

Proof. The proof is by induction on |G| > 1; the base step is trivially true. We may as-
sumethat G isnot cyclic, for any group isadirect summand of itself (with complementary
summand {0}). Now A has a unique subgroup of order p; cal it C. By Lemma5.19, G
contains another subgroup of order p, say C’. Of course, AN C’ = {0}. By the second
isomorphism theorem, (A+C’)/C’ = A/(ANC’) = Aisacyclic subgroup of G/C’. But
no homomorphic image of G can have a cyclic subgroup of order greater than |A| (for no
element of an image can have order larger than the order of a). Therefore, (A+ C’)/C’ is
acyclic subgroup of G/C’ of largest order and, by the inductive hypothesis, it is a direct
summand: Thereisasubgroup B/C’, whereC’' € B C G, with

G/C'=((A+C)/C) @ (B/C).

Weclaimtha G = A® B. Clearly, G = A+ C'+ B = A+ B (for C' € B), while
ANBC AN((A+CHNB)=ANC ={0}. e
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Theorem 5.21 (Basis Theorem). Every finite abelian group G isa direct sum of cyclic
groups.

Proof. The proof is by induction on |G| > 1, and the base step is obvioudly true. To
prove the inductive step, let p beaprimedivisor of |G|. Now G = G, @& H,where p{ [H|
(either we can invoke the primary decomposition or reprove this specia case of it). By
induction, H is adirect sum of cyclic groups. If Gy is cyclic, we are done. Otherwise,
Lemma5.20 appliesto write Gp = A@ B, where Aiscyclic. By the inductive hypothesis,
B isadirect sum of cyclic groups, and the theorem isproved. o

Another short proof of the basistheorem is due to R. Rado, Journal London Mathemat-
ical Society 26 (1951), pages 75-76 and 160. We merely sketch the proof.

Let G be an additive abelian group, and let X1, ..., X, be elements of G. Form the
1 x n matrix X whose jth entry is xj. If U isan n x n matrix with entries in Z, then
XU isanother 1 x n matrix with entriesin G, for its entries are Z-linear combinations of
X1, ..., Xn. It iseasy to check associativity: If U and V aren x n matrices with entriesin
Z,then X(UV) = (XU)V. Moreover, there is an obvious relation between the subgroups
generated by XU and by X; namely, (XU) C (X).

Lemma A. Let G be an additive abelian group, let x1, ..., X, be elements of G, let X be
the 1 x n matrix X whose jth entry is xj, and let U bean n x n matrix with entriesin Z.
If det(U) = 1, then (XU) = (X).

Definition. Ann x 1 matrix [ay, ..., a,] withentriesinaPID Ris caled aunimodular
column ifgcd (ag,...,an) = 1.

Lemma B. If Risa PID, then every unimodular column[ay, . .., as] isthefirst column of
somen x nmatrix U over Rwithdet(U) = 1.

Sketch of Proof. The proof is by induction onn > 2. If n = 2, then there are elements
a1

a t
The inductive step begins by setting d = gcd(ay, - .., ah—1) and defining b = g /d for
i <n-—1 Since[by,..., by—1] isaunimodular column, the inductive hypothesis says it
isthe first column of an (n — 1) x (n — 1) matrix U’ of determinant 1. Now (an, d) = 1,
since[ay, ..., ay] isaunimodular column, and so there are s, t € Rwithtd + sa, = 1.
These data are used, in a clever way, to modify U’ and then augment it to formann x n
unimodular matrix with first column [ag, ..., an]. e

sandtin Rwithta; + sap = 1, and U = is a matrix of determinant 1.

Theorem. (i) If an abelian group G = (X1, ..., Xy) and if [ay, ..., a,] is a unimodular
column, then thereisa set of n generators of G one of whose elementsisaixi +- - - +anXn.

(i)If G = (X1, ..., Xn) isafinite abelian group, then G is a direct sum of cyclic groups.

Proof. (i) By LemmaB, thereisann x n matrix U with det(U) = 1 whose first column
is[ai,...,an]. Sincedet(U) = 1, LemmaA appliesto say that the elements of XU, the
first of whichisaixs + - - - + anXn, generate G.
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(i) Let n be the smallest cardinal of any generating set of G, and call such a generating
set aminimal generating set. The proof is by induction on the number n of elementsin a
minimal generating set. If n = 1, then G is cyclic, and we are done. Of &l the elements
in minimal generating sets, choose one, say x, having smallest order, say k (so no minimal
generating set contains an element of order less than k). Choose a minimal generating set
{Xa,..., Xn—1, X} containing X, and define X, = X. Now H = (xq, ..., Xn—1) iSaproper
subgroup of G, by minimality of n, and H isadirect sum of cyclic groups, by theinductive
hypothesis. It sufficesto provethat H N (x,) = {0}, forthen G = H + (Xn) = H & (Xn),
as desired. If, on the contrary, (xn) N H # {0}, then there are integers ay, . . ., a, with
anXn # 0and apxy, = Z{‘;llaixi € H (of course, we may assumethat 0 < a, < k). Let
d = gcd(ay, . . ., an). Now [ag/d, ..., an/d] isaunimodular column, and so the element
g = —(an/d)xn + Z{‘;ll(ai /d)X; is part of a minimal generating set of G, by part (i).
But dg = 0, and so the order of g isadivisor of d; hence, g is an element of a minimal
generating set that has order smaller than k, a contradiction. Therefore, (x,) N H = {0},
and so G isadirect sum of cyclic groups. e

Fundamental Theorem

When are two finite abelian groups G and G’ isomorphic? By the basis theorem, such
groups are direct sums of cyclic groups, and so our first guess isthat G = G’ if they
have the same number of cyclic summands of each type. But this hope is dashed by Theo-
rem 2.81, which saysthat if m and n arerelatively prime, then Iy = I, x In; for example,
Is = I x 3. Thus, weretreat and try to count primary cyclic summands. But how can we
do this? Asin the fundamental theorem of arithmetic, we must ask whether there is some
kind of unique factorization theorem here.
Before stating the next lemma, recall that we have defined

d(G) =dim(G/pG).
In particular, d(pG) = dim(pG/p?G) and, more generally,
d(p"G) = dim(p"G/p"G).

Lemma 5.22. Let G be a finite p-primary abelian group, where p is a prime, and let
G = >_; Cj, where each Cj iscyclic. If by > 0 isthe number of summands C; having
order p", thenthereissomet > 1 with

d(p"G) = bp+1+bnyo + - + by
Proof. Let B, bethedirect sum of al Cj, if any, with order p". Thus,
G=Bi1®&B® - &B

for somet. Now
P"G=p"Bry1®--- D p"B,
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because p"B;j = {0} for dl j < n. Similarly,
pn+1G — pﬂ+an+2 QD pn+1Bt.
Now Proposition 5.7 shows that p"G/p"*t1G isisomorphic to
[P"Bni1/P" 'Bni1] @ [P"Bni2/p " Bri2] @ - @ [p"Br/p" B

Exercise 5.7 on page 267 gives d(p"Bm/p"t1Bm) = dim(p"Bm) = by foral n < m;
since d is additive over direct sums, we have

d(p"G) =bny1+bn2+---+be. e

The numbers b, can now be described in terms of G.

Definition. Let G be a finite p-primary abelian group, where p isaprime. For n > 0,
define
Up(n, G) = d(p"G) — d(p""*G).
Lemma 5.22 shows that

d(p"G) =bni1+---+ b

and
d(p"G) = by + - + by,

Theorem 5.23. If pisaprime, then any two decompositions of afinite p-primary abelian
group G into direct sums of cyclic groups have the same number of cyclic summands of
each type. More precisely, for each n > 0, the number of cyclic summands having order
p*tlisU,(n, G).

Proof. By the basis theorem, there exist cyclic subgroups C; with G = »; Cj. The
lemma shows, for each n > 0, that the number of C; having order p"*1isUp(n, G), a
number that is defined without any mention of the given decomposition of G into a direct
sum of cyclics. Thus, if G = }°; Dj is another decomposition of G, where each Dj is

cyclic, then the number of Dj having order p"*1isaso Up(n, G), asdesired. o

Corollary 5.24. |f G and G’ are finite p-primary abelian groups, then G = G’ if and
onlyif Up(n, G) = Up(n, G’) for all n > 0.

Proof. If ¢ : G — G’ is an isomorphism, then ¢(p"G) = p"G’ for adl n > 0, and
S0 ¢ induces isomorphisms of the IF -vector spaces p"G/p"*1G = p"G'/p"*t1G’ for all
n>0by p"g+ p"1G — p"u(g) + p"t1G’. Thus, their dimensions are the same; that
is,Up(n, G) = Up(n, G").

Conversely, assume that Up(n, G) = Up(n, G’) foradln > 0. If G = ), C; and
G =) i C}, where the C; and C} are cyclic, then Lemma 5.22 shows that there are
the same number of summands of each type, and so it is a simple matter to construct an
isomorphismG — G’. e
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Definition. If G isa p-primary abelian group, then its elementary divisors are the num-
bers in the sequence having Up (0, G) p’s, Up(1, G) p%’s, ..., Up(t —1,G6) pt’s, where
p! isthe largest order of acyclic summand of G.

If G isafinite abelian group, then its elementary divisors are the elementary divisors of
al its primary components.

Theorem 5.25 (Fundamental Theorem of Finite Abelian Groups). Two finite abelian
groups G and G’ areisomorphic if and only if they have the same elementary divisors; that
is, any two decompositions of G and G’ into direct sums of primary cyclic groups have the
same number of summands of each order.

Proof. By the primary decomposition, Theorem 5.13(ii), G = G’ if and only if, for each
prime p, their primary components are isomorphic: G, = G’p. The result now follows
from Corollary 5.24.

Example 5.26.

How many abelian groups are there of order 72? Now 72 = 2332, so that any abelian group
of order 72 is the direct sum of groups of order 8 and order 9. There are three groups of
order 8, described by the elementary divisors

2,2,2), (2,4, and (8);
there are two groups of order 9, described by the elementary divisors
3,3) and (9.

Therefore, to isomorphism, there are six abelian groups of order 72. <«

Here is a second type of decomposition of a finite abelian group into a direct sum of
cyclics that does not mention primary groups.

Proposition 5.27. Every finite abelian group G is a direct sum of cyclic groups
GC=3C)®S(C) & b ),
wheret > 1, S(¢j) isa cyclic group of order ¢;, and
CilC| ]G

Proof. Let py, ..., pn bethe prime divisors of |G|. By the basis theorem, we have, for
each pi,

Gp =SSP @ S(p™) @ -+ & S(p™).
We may assumethat 0 < g1 < g2 < --- < g¢; moreover, we may alow “dummy”
exponents gj = 0 so that the same last index t can be used for all i. Define

S § ) Enj
Ci =Py Py - Pn-
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Itisplanthatcy | ca | --- | ¢. Finaly, Theorem 2.81 shows that
S(py) @ S(py) @ -+~ @ S(p”) = S(cj)

forevery j. o

Definition. |f G isan abelian group, then its exponent is the smallest positive integer m
for which mG = {0}.

Corollary 5.28. If Gisafiniteabeliangroupand G = S(c1) ® S(C2) @ - - - D S(Ct), S(C)
isacyclicgroup of order ¢; andcy | c2 | -+ - | ¢, then ¢ isthe exponent of G.

Proof. Sincec | ¢ fordl i, wehavec;S(ci) = Oforall i, and so ¢G = {0}. On the
other hand, there is no number e with 1 < e < ¢; with eS(¢;) = {0}, and so ¢; is the
smallest positive integer annihilating G. e

Corollary 5.29. Every noncyclic finite abelian group G has a subgroup isomorphic to
I. & I for somec > 1.

Proof. By Proposition 5.27, G = I, ® I, ® - -- @ I, wheret > 2, because G is not
cyclic. Since cy | ¢, the cyclic group I, contains a subgroup isomorphic to I, , and so G
has a subgroup isomorphictollc;, ® Ic,. e

Let us return to the structure of finite abelian groups.

Definition. If G isafinite abelian group, and if

G = S(c1) & S(C2) & -+  S(C),

wheret > 1, S(cj) is acyclic group of order ¢j > 1,andcy | C2 | --- | G, then
C1, C2, ..., ¢ arecaled theinvariant factors of G.
Corollary 5.30. If G isa finite abelian group with invariant factorscy, . .., ¢; and ele-

mentary divisors{pie”}, then |G| = Htjzl cj = [1i pial , and its exponent is c;.
Proof. We have

G=EZ/(c)®---DZ/(Cr)
gﬂcl@"’@ﬂq'

Since the underlying set of a direct sum is the cartesian product, we have |G| = ]_[tj:1 Cj
and |G| = [T;; piaj . That ¢; isthe exponent was proved in Corollary 5.28. e
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Example 5.31.
In Example 5.26, we displayed the elementary divisors of abelian groups of order 72; here
aretheir invariant factors.

elementary divisors <« invariant factors
(2,2,2,3,3)=(2,2,2,1,3,3) < 2|6|6
(2,4,3,3) < 6]12
(8,3,3) =(1,8,3,3) « 3|24
2,2,2,99=(2,2,2119 <« 2|2]|18
(2,4,9=(2,4,1,9 < 2|36
8,9 <~ 72 <

Theorem 5.32 (Invariant Factors). Two finite abelian groups are isomorphic if and
only they have the same invariant factors.

Proof. Given the elementary divisors of G, we can construct invariant factors, as in the
proof of Proposition 5.27: o _
¢ =pr Py pn

where those factors p*, p?2, - - not equal to p® = 1 are the elementary divisors of the
pi -primary component of G. Thus, the invariant factors depend only on G because they
are defined in terms of the elementary divisors.

To prove isomorphism, it suffices, by the fundamental theorem, to prove that the ele-
mentary divisors can be computed from the invariant factors. Sincecj = p1 p2 pn ,
the fundamental theorem of arithmetic shows that c; determines all those prime powers

pieij which are distinct from 1; that is, the invariant factors ¢; determine the elementary
divisors. e

In Example 5.31, we started with elementary divisors and computed invariant factors.
Let us now start with invariant factors and compute elementary divisors.

invariant factors <> elementary divisors
21616=2]2-3]2-3 < (2,2,2,3,3)

6112=2-3|22.3 < (2,4,3,3)

3124=3|22.3 < (8,3,3)

212118=2212-3 < (2,2,2,9)

2136=2|22-3% < (2,4,9

72=22.32 & (8,9).
The results of this section will be generalized, in Chapter 9, from finite abelian groups

to finitely generated abelian groups, where an abelian group G isfinitely generated if there
are finitely many elements ag, ..., a5 € G so that every x € G is alinear combination



Sec. 5.1 Finite Abelian Groups 267

of them: x = ), mja;, where m; € Z for al i. The basis theorem generalizes: Every
finitely generated abelian group G is a direct sum of cyclic groups, each of which is a
finite primary group or an infinite cyclic group; the fundamental theorem also generalizes:
Given two decompositions of G into adirect sum of cyclic groups (asin the basis theorem),
the number of cyclic summands of each type isthe samein both decompositions. The basis
theorem is no longer true for abelian groups that are not finitely generated; for example,
the additive group Q of rational numbersis not adirect sum of cyclic groups.

EXERCISES

51 (i) Let G beanarbitrary, possibly nonabelian, group, and let Sand T be normal subgroups
of G. Provethatif SN T = {1}, thenst = tsforall se Sandt € T.
Hint. Show that sts~1t~1e SNT.
(if) Prove that Proposition 5.4 holds for nonabelian groups G if we assume that all the
subgroups § are normal subgroups.
5.2 Let G be an abelian group, not necessarily primary. Define a subgroup S € G to be a pure
subgroup if, fordl m e Z,
SNmG =mS.
Provethat if G isa p-primary abelian group, then asubgroup S C G ispure asjust defined if
andonly if SN p"G = p"Sfor al n > 0 (the definition in the text).
5.3 Let G beapossibly infinite abelian group.
(i) Provethat every direct summand Sof G isa pure subgroup.
Define the forsion subgroup tG of G as

tG = {a € G : a hasfinite order}.

(ii) Prove that tG is a pure subgroup of G. [There exist abelian groups G whose torsion
subgroup tG is not a direct summand (see Exercise 9.1(iii) on page 663); hence, a pure
subgroup need not be a direct summand.]

(iii) Provethat G/tG isan abelian group in which every nonzero element has infinite order.
5.4 Let pbeaprimeand let g bereatively primeto p. Provethat if Gisa p-groupand g € G,
then there exists x € G withgx = g.
5.5 Let G = (a) be acyclic group of finite order m. Prove that G/nG isacyclic group of order
d, whered = (m, n).
5.6 For agroup G and a positive integer n, define

GlnN={geG:g"=1}.

Prove that G[n] = (a™4), whered = (m, n), and conclude that G[n] = Ig.

5.7 Provethat if B = Bm = (X1) ® - - - @ (Xp,,,) isadirect sum of bm cyclic groups of order p™,
and if n < m, then the cosets p"x; + p" 1B, for 1 < i < bm are abasisfor p"B/p"+1B.
Conclude that d(p"Bm) = bm whenn < m. [Recall that if G is a finite abelian group, then
G/ pG isavector space over Fp and d(G) = dim(G/pG).]

3This terminology comesfrom algebraic topology. To each space X, a sequence of abelian groupsisassigned,
called homology groups, and if X is “twisted,” then there are elements of finite order in some of these groups.
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5.8 (i) If G isafinite p-primary abelian group, where p isaprime, and if x € G has largest
order, prove that (x) isadirect summand of G.
(if) Provethat if G is afinite abelian group and x € G has maximal order (that is, thereis
no element in G having larger order), then (x) isadirect summand of G.

5.9 Prove that a subgroup of a finite abelian group is a direct summand if and only if it is a pure
subgroup.
Hint. Modify the proof of the basis theorem, Theorem 5.18.

5.10 (i) If G and H arefinite abelian groups, prove, for al primes p and al n > 0, that
Up(n,G® H) =Up(n, G) +Up(n, H).

(i) If A, B, and C are finite abelian groups, provethat A@ B = A® C impliesB = C.
(iii) If Aand B arefinite abelian groups, provethat A® A= B & B implies A= B.
5.11 If nis a positive integer, then a partition of n is a sequence of positive integersiq < ip <
-+ <ip withig+io+---+ir =n. If pisaprime, prove that the number of nonisomorphic
abelian groups of order p" isequal to the number of partitions of n.
5.12 Prove that there are, to isomorphism, exactly 14 abelian groups of order 288.
5.13 Prove the uniqueness assertion in the fundamental theorem of arithmetic by applying the fun-
damental theorem of finite abelian groupsto G = I

514 (i) If Gisafinite abelian group, define
vk (G) = the number of elementsin G of order k.

Prove that two finite abelian groups G and G’ are isomorphic if and only if v (G) =
vk(G’) for al integersk.

Hint. If B isadirect sum of k copies of acyclic group of order p", then how many
elements of order p" arein B?

(ii) Give an example of two nonisomorphic not ne