with both signals present at the grid of V10, the signals cancel each other, preventing the speaker from tripping the VOX circuit. Speaking into the microphone produces signals not present in the speaker circuit, permitting the VOX circuit to function normally. The VOX control not only adjusts for proper anti-trip voltage, but also determines the sensitivity of the VOX circuit. ### PUSH-TO-TALK CIRCUIT With the Function switch in the PTT (push-to-talk) position, V10 is disabled by grounding its grid, V2B is made to operate and close the relay by grounding its grid (shorting the bias) with the push-to-talk switch in the microphone. The Function switch in the PTT position also makes the VOX delay circuit inoperative by removing C105 from ground. Push-to-talk operation with the Function switch in the VOX position uses the VOX delay circuit, causing the receiver to "delay" before coming on after the microphone button is released. The Function switch in the Tune position turns the transmitter on by grounding the grid of V2B. #### RECEIVER SECTION # RADIO FREQUENCY AMPLIFIER V8A AND RECEIVER MIXER V8B The incoming signal is connected to RF amplifier V8A through coil L3. The amplified signal from V8A is then coupled through coil L2 to receiver mixer V8B. During receiving, cutoff bias is removed in the receiver section to permit tubes V8A, V8B, V9, and V12A to operate. V8A is controlled by bias from the AVC (automatic volume control) circuit. AVC in the receiver is similar to ALC in the transmitter, in that it maintains a constant receiver output (gain) even though the incoming signal level may vary considerably. The cutoff voltage on the bias line is controlled by section C of the relay. #### CRYSTAL FILTER The signal is coupled from mixer V8B to the crystal filter through C80, which is small in value to avoid upsetting the input impedance of the filter. The crystal filter exhibits the same characteristics in receiving as in transmitting; it shapes the IF passband to have steep sides, a flat top, and a narrow bandwidth. This permits good selectivity for SSB reception in crowded amateur bands. ## COMMON IF AMPLIFIER V3 AND RECEIVER IF AMPLIFIER V9 Signals from the crystal filter are amplified by common IF amplifier V3 and then fed to receiver IF amplifier V9. The cathode and screen of tube V9 are connected directly to those of tube V2A. The meter, which is connected in this circuit, indicates received signal strength in S units, as the AVC voltage changes the current in V9. The meter functions as an ALC indicator when transmitting without any switching. The gain of V9 is controlled by the AVC voltage applied through resistors R91 and R92. ### PRODUCT DETECTOR V11A AND AUDIO FRE-QUENCY AMPLIFIER V12B. The amplified signal from V9 is coupled through IF transformer T3 to the grid of product detector V11A. Also, a signal from carrier oscillator V11B is fed to the cathode of V11A. A heterodyne mixing action takes place in V11A, resulting in an output signal which is the difference frequency of these two signals: an audio signal. Capacitors C111 and C112 bypass any RF signal coming from V11A, but permit the audio signal to pass through to AF amplifier V12B. The output from V12B is fed to the AF output amplifier V12A through the AF Gain control, and to the AVC circuit. #### AUTOMATIC VOLUME CONTROL Audio voltage is coupled to diodes D120 and D121 through resistor R128 and capacitor C128. The diodes and capacitor C129 form a voltage doubler, producing a negative DC voltage proportional to the signal strength. Full AVC voltage is applied to the grid of receiver RF amplifier V8A to prevent overloading by strong received signals. Capacitor C129 in the AVC circuit charges quickly to furnish a fast AVC response time,