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Preface

Plate structures are typically thin structures, working under bending and/or

in-plane loads and are extensively used in engineering applications, such as

aerospace, mechanical and civil engineering and naval architecture. Plates can

be manufactured from such isotropic materials as steel, aluminum or titanium

alloys. Notably, the spectrum of material systems available to a designer of plate

structures has significantly expanded in recent decades, so that composite and

sandwich plates are now being widely used in modern engineering. Advanced

plate structures, incorporating piezoelectric and shape memory elements as well

as nanotube-reinforced materials are now gathering added attention from scientists

and engineers.

While in the majority of books, plates are considered jointly with shells, there

are important differences in the response of these types of structures, justifying a

separate book exclusively concerned with the plate analysis. Shell structures are

characterized by curvature in one or several planes (e.g., cylindrical, spherical,

ellipsoidal and conical shells). The curvature may increase the stiffness of the shell,

but it also makes it more vulnerable in certain loading scenarios. For example,

while a spherical shell or panel possesses high strength when loaded by pressure

applied at the inner surface, it may become unstable and buckle, with catastrophic

consequences, if pressure is applied at the outer surface. On the other hand, a

flat plate subject to pressure does not exhibit buckling tendencies and although

its bending response is inferior to that of a comparable spherical shell, it may be

preferable. The difference in the qualitative response of plate and shell structures,

combined with a broad range of available plate materials and designs, motivated the

author to write this book specially dedicated to the behavior and response of plates.

The purpose of the book is to present the foundations, methods of analysis, and

guidelines for scientists and engineers working with plate structures. Accordingly,

a brief paragraph on design philosophy is included at the end of each chapter;

while by no means comprehensive, these paragraphs emphasize some of the most

critical aspects of design and provide recommendations to designers. The subject

of elastic-plastic response of plates is excluded from consideration since plastic

stresses are usually disallowed in applications. The first chapter of the book presents
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vi Preface

the general theoretical foundations employed in the analysis of plates. It describes

the fundamental concepts and mathematical apparatus of mechanics that are applied

in the subsequent chapters to address specific plate problems. The second chapter

of the book concentrates on widely used rectangular isotropic plates. The problems

of boundary conditions, response to various loading classes, including bending and

buckling, the presence of an elastic foundation, and the effect of initial imperfections

are discussed. In addition, it illustrates the analysis of reinforced plates and discusses

nonlinear postbuckling response.

Plates of non-rectangular shapes, including circular plates, are considered in the

third chapter of the book. As most of these plates defy a convenient and accurate

analytical solution, we restrict ourselves to the case of axisymmetric bending

of circular plates and several non-circular classes of plates, where closed form

solutions are known. For other cases, such as an asymmetric bending of circular

plates, we present only the theoretical approach and mathematical formulation of the

problem. The solutions for these cases are usually obtained via numerical methods,

which are out of the scope of this book.

Dynamic problems are reviewed in the fourth chapter of the book. Besides the

subject of free and forced vibrations, and vibrations of stringer-reinforced plates,

the qualitative effect of large amplitudes, i.e. nonlinear motion, is discussed. The

response of plates to non-periodic loads is demonstrated via the example of blast

loading. In addition, dynamic instability constituted in large-amplitude vibrations,

in response to in-plane harmonic-in-time loads, is illustrated.

Plates manufactured from composites are discussed in the fifth chapter. Com-

posite materials have become popular in an amazing spectrum of applications due

to their features enabling a designer to tailor and optimize the structure. This

chapter provides a formulation of the analysis of thin-walled laminated structures

and includes bending and buckling problems of thin composite laminates as well as

static and dynamic response of stringer-reinforced composite plates. In addition,

the formulation for shear deformable plates exhibiting non-negligible transverse

shear deformability is illustrated using the first-order shear deformation theory. The

theory of shear deformable plates is followed with the discussion on the analysis

of sandwich plates since these structures can seldom be adequately modeled by a

classical thin plate theory.

Thermoelastic problems of plate structures are discussed in the sixth chapter.

We start with the heat transfer problem, establishing the profile of temperature

throughout the plate. Only after the distribution of temperature and its effect on

material properties are known, the solution can proceed to thermomechanical stress

or stability analysis. The corresponding solutions are shown in the chapter, while a

representative example of the response of a composite plate to fire demonstrates a

typical modern engineering problem.

The last chapter of the book is concerned with representative advanced ap-

plications of plates using modern materials and concepts on the examples of

plates with piezoelectric sensors and actuators and functionally graded plates.

Governing equations for the former class of plates are formulated, both for thin

and for relatively thick plates (the latter requires analysis through first-order shear
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deformation theory). Active control of plates using composite piezoelectric stringers

is discussed. The effect of temperature on the readings from piezoelectric sensors

bonded to plates is considered. In this chapter we also address a comprehensive

analysis of functionally graded plates subject to thermomechanical loading, with

the exception of the solution of the micromechanical problem, i.e. heat transfer and

the subsequent thermomechanical stress problem.

The goal of the book is to provide the reader with a vision and an insight

into the problems of analysis and design of plate structures. The comprehension

of the corresponding problems and the understanding of the limitations and the

applicability of various solutions and plate models are particularly emphasized.

Many representative solutions are either shown in their entirety or outlined so that

the reader can clearly see the subsequent steps. Some available solutions that result

in a very time-consuming analysis and/or approximate results are omitted since

industry relies on numerical analyses of the corresponding problems. For example,

while the solution of the problem of axisymmetric bending of circular plates is

exact, so that using a numerical approach is not warranted (it is important to realize

that finite element or finite difference methods only provide approximate solutions),

asymmetric bending of circular plates can be quicker and more accurately analyzed

using a numerical procedure.

The book can be used as a textbook for a one-semester or one-quarter course.

It can also be useful to engineers whose work involves design of thin-walled

structures, including plates, and to researchers working in this area.
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Chapter 1

Introduction and Basic Concepts

This chapter represents a collection of concepts and mathematical formulations

that are employed to develop the theory of plates. In the subsequent chapters the

equations introduced here will be reduced to the form used in the relevant version of

the theory. The material outlined in this chapter refers to derivations and concepts

that can be found in relevant references concerned with solid mechanics or theory

of elasticity (some of these sources are referred to below). Accordingly, the goal is

to both illustrate that the background of the theory of plates can be traced to the

fundamental concepts of mechanics as well as to outline details of this background

so that we can refer to them in the subsequent chapters, without the need in further

justification or elucidation.

1.1 Theoretical Foundations of the Theory of Plates

Four classes of equations in any solid mechanics model, including the theory of

plates, involve equations of motion, constitutive law, strain-displacement equations

and compatibility equations. Equations of motion guarantee equilibrium of stresses

and their moments acting on an infinitesimal element detached from the structure,

including dynamic effects. Constitutive law provides a link between stresses and

strains in the material. Strain-displacement equations specify relationships between

strains and displacements (and rotations). Compatibility equations establish condi-

tions that must be satisfied to ensure single-valuedness of displacements found by

integration of strain-displacement equations.

We begin with well known concepts of tensors of stress and strain and the

vector of displacements. These tensors and vector characterize the state of stress

and deformation within an infinitesimal element encompassing the point of interest

within the body.

Consider a particle in an arbitrary Cartesian (rectangular) coordinate system

in a three-dimensional space (Fig. 1.1). Two sets of coordinates can be used to

characterize the position of the particle. The coordinates of the particle in the
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Fig. 1.1 Displacements of

a point in the Cartesian

coordinate system (xi D
undeformed coordinates,

QxiD deformed coordinates,

uD displacement vector)

~, x3x3

~, x2x2

~x1x1,

( ),, x3x2x1

( )~
,

~
,

~ x3x2x1

u 

undeformed (original) position of the body are .x1; x2; x3/, while the coordinates

moving with the particle to a new location as the body experiences deformations

and referred to as deformed coordinates are . Qx1; Qx2; Qx3/. Accordingly, one can refer

to “undeformed” .x1; x2; x3/ and “deformed” . Qx1; Qx2; Qx3/ coordinate systems, the

former defining the position of the particle before deformations and the latter

referring to the position of the same particle after deformations took place. The

displacements of the point produced by external loads applied to the body form the

elements of the vector

u D

8

<

:

u1 .x1; x2; x3/

u2 .x1; x2; x3/

u3 .x1; x2; x3/

9

=

;

D

8

<

:

Qx1 .x1; x2; x3/ � x1
Qx2 .x1; x2; x3/ � x2
Qx3 .x1; x2; x3/ � x3

9

=

;

(1.1)

where ui identifies a displacement along the xi-axis.

While (1.1) specifies displacements in the undeformed coordinate system, it is

also possible to define displacements using deformed coordinates:

u D

8

<

:

u1 . Qx1; Qx2; Qx3/

u2 . Qx1; Qx2; Qx3/

u3 . Qx1; Qx2; Qx3/

9

=

;

D

8

<

:

Qx1 � x1 . Qx1; Qx2; Qx3/

Qx2 � x2 . Qx1; Qx2; Qx3/

Qx3 � x3 . Qx1; Qx2; Qx3/

9

=

;

(1.2)

Equations 1.1 and 1.2 imply that the displacement vector can be determined if

the transformations from the deformed to undeformed position or vice versa are

known, i.e.

Qxi D Qxi
�

xj
�

; xi D xi
�

Qxj
�

; i; j D 1; 2; 3 (1.3)

The strains at the point represent both the relative stretching or contraction along

the corresponding coordinate direction and shearing in the plane formed by a couple

of coordinate axes (there are three such mutually perpendicular planes). While the

concept of linear (normal) strain is well understood, it is useful to indicate that the

shear strain is simply the change of the right angle between coordinate directions

that are mutually perpendicular in the undeformed state but change their orientation
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as a result of deformation. The strains are derived according to either Lagrange’s or

Euler’s approach. The Lagrangian tensor of strain refers to strains in the undeformed

coordinate system (this tensor is also called Green’s strain tensor). In the contrary,

the Eulerian tensor of strain is introduced in the system of coordinates of the

deformed body (this tensor is sometimes called Cauchy’s tensor of strains). In terms

of displacements the Green and Cauchy tensors are given by (Fung 1994):

"i i � "xixi D
@ui

@xi
C
1

2

3
X

nD1

�

@un

@xi

�2

"ij � "xixj D
ij

2
D
1

2

"

@uj

@xi
C
@ui

@xj
C

3
X

nD1

�

@un

@xi

@un

@xj

�

#

n D 1; 2; 3 (1.4)

and

Q"i i � Q" Qxi Qxi D
@ui

@ Qxi
�
1

2

3
X

nD1

�

@un

@ Qxi

�2

Q"ij � Q" Qxi Qxj D
Qij

2
D
1

2

"

@uj

@ Qxi
C
@ui

@ Qxj
�

3
X

nD1

�

@un

@ Qxi

@un

@ Qxj

�

#

n D 1; 2; 3 (1.5)

respectively, where as above, Qxi are the coordinates in the deformed position and

xi are undeformed coordinates. The first equations in (1.4) and (1.5) define linear

strains along the corresponding axes, while the second equations introduce shear

strains in the plane formed by the corresponding couple of axes. For example, "11 is

the Lagrange (Green) strain along the x1-axis, and Q"23 is the Euler (Cauchy) shear

strain in the Qx2 Qx3 plane. It is evident that the strains defined by (1.4) or (1.5) are

symmetric, i.e. "ij D "j i ; Q"ij D Q"j i . The Cauchy strain tensor is also sometimes

called the Almansi tensor.

Note that in the case of a geometrically linear formulation the difference between

the Lagrangian and Eulerian strain tensors disappears and the strains are defined as

the following functions of displacements:

"i i D
@ui

@xi

"ij D
ij

2
D
1

2

�

@uj

@xi
C
@ui

@xj

�

(1.6)

In cases where environmental effects, such as temperature or moisture are present,

the strain-displacement relationships are modified to reflect the corresponding

contributions as shown in Sect. 1.9.
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The strain components that are defined by (1.4), (1.5) or (1.6) form the tensor

of strain. The tensor represents an object whose properties are independent of the

reference system of coordinates. Furthermore, this object is characterized by its

components that change from one system of coordinates to another according to a

certain transformation law (see for example, Sokolnikoff 1964). A vector represents

a tensor of rank 1 that is characterized by three components, while the tensor of

strain characterized by nine components is called a tensor of rank 2.

It should be emphasized that while there are six independent components of

the tensor of strain, they depend on three displacements only. Therefore, additional

constraints should be superimposed on strains to ensure that the integration process

yields single-valued solutions for displacements. For example, in the case of

infinitesimal strains (geometrically linear formulation where the difference between

Lagrangian and Eulerian strains disappears), the 81 compatibility equations in a

Cartesian coordinate system are (Fung 1994):

@2"ij

@xk@xl
C

@2"kl

@xi@xj
�

@2"ik

@xj @xl
�

@2"jl

@xi@xk
D 0; i; j; k; l D 1; 2; 3 (1.7)

Equations 1.7 can be verified by differentiating the second equation (1.6) with

respect to xk and xl yielding
@2"ij
@xk@xl

. Subsequently one can obtain the other strain

derivatives in (1.7) by interchanging the subscripts. Finally, the substitution of the

corresponding expressions for strains in terms of displacements into (1.7) yields an

identity.

As a result of symmetry of strains, only six equations (1.7) are independent. They

are

@2"11

@x2@x3
D

@2"12

@x1@x3
�
@2"23

@x21
C

@2"13

@x1@x2

@2"22

@x1@x3
D

@2"23

@x1@x2
�
@2"13

@x22
C

@2"12

@x2@x3

@2"33

@x1@x2
D

@2"13

@x2@x3
�
@2"12

@x23
C

@2"23

@x1@x3

2
@2"12

@x1@x2
D
@2"11

@x22
C
@2"22

@x21

2
@2"23

@x2@x3
D
@2"22

@x23
C
@2"33

@x22

2
@2"13

@x1@x3
D
@2"33

@x21
C
@2"11

@x23
(1.8)

The compatibility equations where strains are replaced by stresses through the linear

constitutive relations are called the Beltrami-Mitchell equations.
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Fig. 1.2 Stresses acting on an infinitesimal element with dimensions dx1; dx2; dx3. Each figure

shows the system of stresses acting on a couple of opposite faces of the element

The analysis of stresses within the domain occupied by the body requires

us to formulate the equations of motion (or equations of equilibrium, in the

static problem). We begin by considering the state of stress at a point. Naturally,

it is impossible to identify the stresses at a mathematical point, so we draw

an infinitesimal parallelepiped element encompassing the point in question. The

stresses acting on the faces of this element replace the effect of the cut-off part of the

body (in other words, we analyze the equilibrium of the element considering its free-

body diagram). As is shown in Fig. 1.2, there are three stress components applied

at each face, including one component perpendicular to the face and two mutually

perpendicular shear components. The latter components represent the effect of the

shear stress (the vector of the shear stress does not have to be oriented along one of

the coordinate axes, but it can be resolved into two components that are shown in

the Fig. 1.2).
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Equations of motion can be derived from the principle of conservation of the

linear momentum of the body that is actually Newton’s second law. According to

this law, the time rate of change of the linear momentum of the body is equal to the

applied force. Mathematically, this law can be expressed in the three-dimensional

system of coordinates .x1; x2; x3/ as follows:

@�ij

@xj
CXi D �

Dvi

Dt
(1.9)

where Xi are the projections of the body force on the xi coordinate axis, � is the

mass density, vi is the component of the velocity vector, t is time, and Dvi
Dt

the

material derivative of the velocity representing the rate of its change with respect to

time t , i.e. acceleration. In the Lagrangian formulation, i.e. if the motion is analyzed

using the undeformed system of coordinates,

Dvi

Dt
D
@vi

@t
D
@2ui

@t2
(1.10)

In the Eulerian description, one has to account for the nonhomogeneous velocity

field and the expression for the acceleration includes additional terms, introducing

the convective component (e.g., Reddy 2008).

A further discussion along the lines of continuum mechanics should refer to the

Navier equations that represent the linear version of equations of motion (1.9) in

terms of displacements. A derivation of such equations requires us to substitute

stresses in terms of strains (see Sect. 1.2) into (1.9) and subsequently use the strain-

displacement relationships (1.6).

The principle of conservation of the angular momentum states that the rate of

change of the angular momentum of the body is equal to the sum of applied external

moments. This principle results in the conclusion that the tensor of stress that is

work conjugate to the linearized strain tensor (1.6) is symmetric, so that

�ij D �j i (1.11)

The principle of conservation of mass implies that the mass within a certain

domain occupied by the material remains without change as this domain is

transformed to a new position as a result of motion of the body. Equations of

continuity can be derived from this principle (Reddy 2008). The first and second

laws of thermodynamics factor into limitations of the constitutive law. Material can

dissipate but cannot create energy. The existence of a strain energy function places

certain restrictions on a linear elastic constitutive law including symmetry that is

discussed in the next paragraph. The second law also serves as a foundation of

the energy methods that are discussed in Sect. 1.5. A detailed discussion of these

principles that can be found in books on continuum mechanics is outside the scope

of this monograph.
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1.2 Constitutive Relations for Composite, Isotropic and

Piezoelectric Materials

As follows from the previous paragraph, the relationships between the stresses

and strains “tie together” the equations of motion in terms of components of the

tensor of stress with the kinematic and strain-displacement equations. Stress-strain

relationships that are also referred to as constitutive relations describe the actual

material that may be isotropic or anisotropic, physically linear or nonlinear, etc. In

this book we concentrate on materials operating within the physically linear range.

We begin with a linear anisotropic material whose stress-strain relationships,

excluding the effects of moisture or temperature, can be written as

˚

�ij

�

D
�

Cijkl

�

f"klg ; i; j; k; l D 1; 2; 3 (1.12)

where repeated indices imply summation (according to Einstein’s notation). There

are nine components in tensors of stress and strain and the order of the square matrix

of stiffness coefficients that are also called elastic constants
�

Cijkl
�

is also equal to 9.

As a result of the principle of conservation of angular momentum discussed in

the previous Sect. (see Eq. 1.11), the elements of the tensor of stress are symmetric.

The tensor of strain is also symmetric. Accordingly, �ij D �j i ; "kl D "lk and the

number of independent elements of the tensors of stress and strain is reduced to 6.

The order of the matrix of stiffness of an anisotropic material is also reduced to 6.

Furthermore, the symmetry that is observed with respect to the first two and last

two subscripts dictates that Cijkl D Cj ikl ; Cijkl D Cij lk (Gibson 2007) that also

follows from the energy conservation condition.

A conventional contracted notation for the stresses, strains and stiffness compo-

nents is

�1 D �11; �2 D �22; �3 D �33;

�4 D �23 D �23; �5 D �13 D �13; �6 D �12 D �12;

"1 D "11; "2 D "22; "3 D "33;

"4 D 23 D 2"23; "5 D 13 D 2"13; "6 D 12 D 2"12 (1.13)

where we acknowledge a popular notation for shear stresses in the ij plane, i.e. �ij .

The elements of the contracted stiffness matrix are defined as follows

Cijkl ! C˛ˇ W 11 ! 1; 22 ! 2; 33 ! 3; 23 ! 4;

13 ! 5; 12 ! 6 (1.14)

Accordingly, the contracted form of the constitutive relations is

f�˛g D
�

C˛ˇ
� ˚

"ˇ
�

(1.15)



8 1 Introduction and Basic Concepts

where repeated indices imply summation. Note that the elements of the matrices of

stiffness that are multiplied by shear strains in (1.12) and (1.15) differ by a factor

of 2.

As indicated above, the number of equations (1.15) is equal to 6. The matrix of

stiffness coefficients includes 36 components, but only 21 of them are independent

since C˛ˇ D Cˇ˛ . Furthermore, in practical situations many components of the

matrix of stiffness are equal to zero. Consider for example, the case of a monoclinic

material with one plane of material properties symmetry (1–2 plane). Then the

constitutive relations are (Jones 1999):

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1
�2

�3
�23
�13
�12

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

D

2
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6

6
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6

6

4

C11 C12 C13 0 0 C16
C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36
0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66
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ˆ
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>

=

>

>

>

>

>

>

>

;

(1.16)

The number of independent stiffness coefficients (elastic constants) in (1.16) is equal

to 13.

The case where the material has three planes of property symmetry is found in

orthotropic materials, such as composite laminae (layers) with unidirectional fibers

oriented along one of the axes 1, 2 or 3 discussed in Chap. 5. In such case, Eq. 1.16

include only nine independent elastic constants (the planes of symmetry are 1–2,

1–3 and 2–3):
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(1.17)

A further simplification is possible in the material with one plane where the

properties are isotropic, i.e. independent of the direction. If this plane is 1–2 and

the planes 1–3 and 2–3 are planes of material property symmetry, the constitutive

relations become

8
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(1.18)
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The number of independent elastic constants is now reduced to 5. The material

characterized by (1.18) is called transversely isotropic. An example of such material

is a composite lamina (layer) with fibers of a circular cross section that are oriented

in the direction of axis 3 and uniformly distributed in cross sections perpendicular

to this axis. Accordingly, the properties of such lamina are direction-independent in

the plane 1–2, while 1–3 and 2–3 are planes of property symmetry. Note that we will

refer to composite materials characterized by equations shown above in Chap. 5.

Finally, an isotropic material has the same properties in all directions and

possesses an infinite number of planes of symmetry. Such a material has only two

independent elastic constants:
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(1.19)

While the constitutive relations and elastic constants for composite materials are

discussed in Chap. 5, in the case of isotropic materials the elastic constants are

immediately available in terms of Lame constants �; G the latter being the shear

modulus of the material or alternatively, in terms of the modulus of elasticity E and

the Poisson ratio �:

C11 D �C 2G; C12 D �;

� D
G .2G � E/

E � 3G
; G D

E

2 .1C �/
(1.20)

The stress-strain constitutive relations shown above could be inverted yielding the

strain-stress relations. In particular, the inverted form of (1.15) is

f"˛g D
�

S˛ˇ
� ˚

�ˇ
�

(1.21)

where
�

S˛ˇ
�

D
�

C˛ˇ
��1

is the matrix of compliance coefficients. The number of

independent compliance coefficients is equal to the number of independent elastic

constants in the same class of materials.

Piezoelectric materials have attracted the interest of engineers using them both

as sensors as well as actuators. The attractive feature of these materials is related to

their ability to acquire an electric potential as a result of applied mechanical strains

(direct piezoelectric effect). These materials also exhibit the converse piezoelectric

effect generating mechanical strains in response to the applied electric field. Sensory

applications utilize the direct effect, while piezoelectric actuators are based on the

application of the converse effect.
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The constitutive relations for a piezoelectric medium that is not affected by

environmental effects are (Berlincourt et al. 1964; Patron and Kudryavtsev 1993):

f�˛g D
�

C˛ˇ
� ˚

"ˇ
�

� Œe˛m� fEmg

fDmg D Œem˛� f"˛g C Œ"mk� fEkg (1.22)

where fEmg is the vector of electric field defined as the gradient of the electric

potential in the corresponding direction, e˛m D �
�

@�˛
@Em

�

"
and "mk D

�

@Dm
@Ek

�

"
are piezoelectric constants and dielectric coefficients respectively, evaluated at a

constant strain, and the “electric displacement” Dm D �
�

@Ge
@Em

�

"
is a derivative of

the Gibbs free energy determined at a constant strain. Note that Eqs. 1.22 could be

written for a more general thermo-electro-mechanical case, including temperature,

pyroelectric constants and entropy (e.g., Patron and Kudryavtsev 1993).

In the case of a transversely isotropic piezoelectric material, such as a polarized

ceramic of a mm6 symmetry class (Patron and Kudryavtsev 1993) with the 3-axis

oriented along the polarization direction, the matrix of elastic constants corresponds

to that in (1.18), while the matrices of piezoelectric and dielectric coefficients are

Œema� D

2

4

0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

3

5 ; Œ"mk� D

2

4

"11 0 0

0 "11 0

0 0 "33

3

5 (1.23)

An alternative form of equations (1.22) presents strains and electric displace-

ments in terms of stresses and the applied electric field:

f"˛g D
�

S˛ˇ
� ˚

�ˇ
�

C Œd˛m� fEmg

fDmg D Œdm˛� f�˛g C Œ"mk � fEkg (1.24)

where d˛m D
�

@"˛
@Em

�

�
are piezoelectric coefficients determined at a constant stress.

The constitutive or stress-strain relations outlined in this paragraph can be

simplified in the analysis of thin plates using the assumption of plane stress.

According to this assumption, in-plane stresses are much higher than the stresses

acting in the thickness direction. Accordingly, in the classical thin plate theory of

plates �3; �13; �23 are neglected as compared to �1; �2; �12.

1.3 Strain-Displacement Relations for Plates and Relevant

Kinematic Assumptions

In this paragraph we outline kinematic assumptions used in the analysis of plates by

various theories. Specific cases, such as sandwich plates, are discussed in relevant

sections of the book. We consider a rectangular coordinate system shown in Fig. 1.3
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Fig. 1.3 System of

rectangular (Cartesian)

coordinates that is often used

in the analyses of plates and

notation for displacements

along the corresponding axes

x(u)

z(w)y(v)

where x and y are in-plane coordinate (i.e., these coordinate axes are in the middle

plane that is equidistant from the two surfaces of the plate). The corresponding

displacements along these axes are denoted by u and v, respectively. The coordinate

z is counted from the middle plane and the deflection of the plate in the z-direction

is denoted by w. Note that following a typical orientation of axes in the theory of

plates we rotated the coordinate system as compared to that shown in Figs. 1.1 and

1.2. Naturally, this does not alter the following analysis.

Kinematic and strain-displacement relations do not explicitly restrict the choice

of the material of the plate, but rather reflect its geometric features, i.e. a relatively

small thickness. However, the choice of these relations may be influenced by

material properties, such as low transverse shear modulus. These relations are

paramount to the development of the theory of plates specifying the range of validity

of the particular theory.

Kinematic assumptions of the theory of plates determine the accuracy adopted

to describe its deformations throughout the thickness. The classical (thin) plate

theory is the simplest, assuming in-plane displacements to be linear functions of the

thickness coordinate. Additionally, the thickness of the plate is assumed unaffected

by its deformations. Such assumptions referred to as Kirchhoff-Love assumptions

represent an extension of the slender or Euler-Bernoulli beam theory to plates. The

classical plate theory will be considered in this paragraph. So-called first-order

and higher-order theories reflect either a larger thickness of the plate or a low

transverse shear stiffness of its material by modifying the assumption of the classical

theory. For example, the third-order theory represents in-plane displacements as

cubic functions of the thickness coordinate. Some higher-order theories discard the

assumption that the thickness remains constant during deformations. An example

where such assumption becomes invalid is found in sandwich structures with a

“soft” core. Plates that are either thick or have a low transverse shear stiffness are

often referred to as “shear deformable.”

In addition to the assumptions related to the effect of thickness and material

shear deformability, the choice of the plate theory requires consideration of the

relative magnitude of deformations as compared to the plate dimensions. In the case

where deflections in the thickness direction become comparable with the thickness

of the plate, geometric nonlinearity should be taken into account. In industry, the

boundary between the applicability of geometrically linear and nonlinear theories

is sometimes associated with the deflections being smaller or larger than half-

thickness, respectively. Of course, this boundary has no theoretical justification, i.e.
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Fig. 1.4 Deformations in the

xz-plane according to the

Kirchhoff-Love hypothesis
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it is simply an arbitrary limit indicating when the engineer can disregard nonlinear

terms in the strain-displacement relationships without making a large error. It will

be illustrated later in this book that neglecting geometric nonlinearity in the analysis

of plate structures leads to a conservative estimate of stresses.

Before proceedings to the formulation of the strain-displacement relations for

thin plates, it is worth mentioning that geometrically nonlinear effects are essential

in relatively thin and flexible structures. Such structures are often adequately

characterized by the classical thin plate theory, without the need to account for

transverse shear deformations and to use first-order or higher-order theories of

plates. On the other hand, “thick” structures that experience significant transverse

shear deformations and require the application of first-order of higher-order theories

are relatively rigid, so that failure occurs at small deformations that do not

require a geometrically nonlinear formulation. Accordingly, solutions for typical

isotropic material plates including both shear deformability as well as geometric

nonlinearity are often unnecessary since the overlap of two phenomena is negligible.

The situation may sometimes be different in composite and sandwich structures

where the material exhibits low transverse shear stiffness. If this is the case, the plate

may experience large nonlinear deformations, accompanied by noticeable transverse

shear strains.

The analysis of thin plates is conducted by the Kirchhoff-Love assumption that

cross sections of the plate perpendicular to the middle plane prior to deformation

remain plane and perpendicular to the deformed middle plane after the deformation

(Fig. 1.4). Of course, this implies that in-plane displacements are linear functions of

curvature and the thickness coordinate as was already indicated above. In addition,

the thickness of the plate being assumed constant, the normal strain in the direction

perpendicular to the middle plane is equal to zero.
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Following the Kirchhoff-Love assumption, displacements of an arbitrary point of

the plate are

u D

8

<
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u .x1; x2; x3/
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w .x1; x2; x3/
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>

;

(1.25)

where u0 .x; y/ and v0 .x; y/ are displacements of the middle plane. The first

equation (1.25) immediately follows from the consideration of Fig. 1.4.

The strains in the middle plane can be obtained as linear functions of the

displacements from (1.6) or as nonlinear functions following the Lagrange or Euler

definitions (1.4) and (1.5), respectively. In particular, combining (1.4) with (1.25)

yields
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(1.26)

where u and v in the underlined nonlinear terms denote in-plane displacements at

the point. The strains in the left side of (1.26) represent normal strains in the x and

y directions and the in-plane shear strain, respectively.

The nonlinear expressions for the strains can be simplified since the underlined

terms are usually negligible, so that the geometrically nonlinear equations that are

customarily adopted in the theory of thin plates are
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(1.27)

The strains given by (1.27) can further be separated into two components: those

occurring at the middle plane of the plate and those dependent on the distance z

between the point where the strains are evaluated and the middle plane. The middle

plane strains are
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Fig. 1.5 Element of the

middle plane in the xz-plane

before and after deformation
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The components of the strains dependent on the z-coordinate are given by

"x.z/ D z�x D �z
@2w

@x2
; "y.z/ D z�y D �z

@2w

@y2
; "xy.z/ D

z�xy

2
D �z

@2w

@x@y
(1.29)

Physically, �x , �y and �xy are the changes of curvature in the planes xz and yz and

the twist of the middle plane, respectively, with respect to a stress-free reference

state. This is illustrated below for the change of curvature in the xz plane.

Consider an element of the middle plane of the plate in the xz plane (Fig. 1.5).

Prior to deformation, the length of this element was equal to dx. As a result of

deformation, the plate acquired a deflection w .x; y/, so that in the xz plane (y D

const) this deflection is simply w.x/. We can characterize the deformed position of

the element by w.x/ and by the local curvature acquired by the middle plane. The

local radius of curvature in the xz plane is denoted by �x . This radius is determined

using the definition of curvature of the curve w D w.x/:

1

�x
D

� d 2w

dx2

h

1C
�

dw
dx

�2
i
3
2

� �
d 2w

dx2
(1.30)

where the nonlinear contribution in the denominator is neglected compared to unity.

The curvature in the yz plane is specified by analogy. The illustration of the concept

of twist of the middle plane omitted here for brevity can be found in many books

(e.g., Timoshenko and Woinowsky-Krieger 1959).
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Fig. 1.6 Polar coordinate

system (axes and

displacements)

y 
z

r

x

x(u)

r(u′)
y(v)

(v′)θ

v′ u′

The strains evaluated above can be written in the form where the middle plane

strains and the strains associated with the change of the curvature and twist of the

middle plane are decomposed:

"x D "0x C z�x

"y D "0y C z�y

xy D 0xy C z�xy (1.31)

Note that in this theory geometric nonlinearity affects only the strains in the

middle plane, while the changes in curvature and twist appear unaffected by

the magnitude of deflections. This reflects the degree of accuracy of the theory

employed to develop the strain-displacement equations. Such accuracy is sufficient

for the analysis of most plate structures.

In case of different coordinate systems, the strain-displacement relations are

modified accordingly. In particular, in the polar coordinate system shown in Fig. 1.6

where r; � and z are radial, tangential (circumferential) and thickness coordinates,

respectively, kinematic relations (1.25) become
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(1.32)

where the prime is introduced to distinguish in-plane displacement components in

the polar system from those in the Cartesian system of coordinates.

The total strains at the distance z from the middle plane can be represented

similarly to (1.31) in terms of middle plane strains and the changes of curvature

and twist:

"r D "0r C z�r
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"� D "0� C z��

r� D 0r� C z�r� (1.33)

The strains in (1.33) can be evaluated using the transformation relations between

rectangular and polar coordinates in the case where both coordinate systems share

the origin (naturally, the z-coordinate is not affected by this change of the coordinate

system):
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r D
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x
(1.34)

It immediately follows that
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The derivatives with respect to the Cartesian coordinates can now be expressed

in terms of the derivatives in the polar coordinate system by (Fung 1994):
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(1.36)

The inspection of Fig. 1.6 immediately yields simple relationships between in-

plane displacements in rectangular and polar coordinate systems:

u D u0 cos � � v0 sin �

v D u0 sin � C v0 cos � (1.37)

As indicated above, the tensor of strain is transformed according to the tensor

transformation law. Accordingly, the strains in the Cartesian coordinate system

given by (1.4), (1.5) or (1.6) are transformed to the components of the vector of

strains in the polar coordinate system through the transformation equations
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(1.38)
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Now one can substitute the strains in the Cartesian coordinate system into (1.38)

simultaneously replacing displacements and derivatives with their expressions in

the polar coordinate system according to (1.37) and (1.36). For example, in the

geometrically linear formulation we obtain
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(1.39)

where the prime is eliminated in understanding that in-plane displacements are in

the polar coordinate system.

This expression could be generalized to include geometrically nonlinear terms.

The corresponding relations are (Reddy 2007):
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(1.40)

Decomposing the strains into the middle plane components and the changes of

curvature in the rz plane (radial plane), �z plane (tangential plane) and twist of the

middle plane we obtain
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where nonlinear terms are underlined and
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Fig. 1.7 Deformations in the

xz-plane according to the

first-order shear deformation

theory
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In the case of axisymmetric deformations the derivatives with respect to the

tangential coordinate are equal to zero and the displacement in this direction v0 D 0.

Accordingly, (1.41) and (1.42) simplify to
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and
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In this book we will also consider shear-deformable composite plates (Chap. 5).

As we have already indicated, although transverse shear deformability is seldom

essential in isotropic plate structures, it is often important in the analysis of

composite and particularly sandwich plates. We limit the illustration to the first-

order theory that is based on the assumption that a plane perpendicular to the

middle plane remains flat, without warping, after deformation but rotates about the

deformed middle plane (Fig. 1.7). Accordingly, referring to deformations in the xz

plane we consider the slope of the middle plane @w
@x

and the rotation of the plane

AB from the original orientation that was perpendicular to the undeformed middle

plane x . The combination of these two angles represents the transverse shear strain.

Extrapolating the same approach to strains in the yz plane we obtain
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As is obvious from Fig. 1.7 and a counterpart of this figure that could be

shown for the yz plane, the kinematic relations of the first-order shear deformation

theory are
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It is easily observed that in the case where transverse shear deformations are

negligible the classical plate theory is recovered by setting

 x D �
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;  y D �
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(1.47)

The in-plane strains produced by the changes of curvature and twist according to

the first order shear deformation theory are obtained by substituting (1.46) into (1.4).

The middle plane strains are not affected by shear deformability of the material; they

are given by (1.28). However, the strain components associated with the changes of

curvature and twist according to the first-order shear deformation theory are
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1.4 Stress Resultants and Stress Couples

The three-dimensional state of stresses in a structure can be analyzed solving the

equations of equilibrium (or equations of motion) at each point. However, in the

theory of plates (as well as in the theory of shells) it was found more convenient to

analyze the equilibrium replacing the actual three-dimensional stress distribution in

a relatively thin structure with functions of stresses that depends only on the middle

plane coordinates. These functions of stress are chosen in such manner that they are

statically equivalent to the actual system of stresses. This enables us to reduce the

equations of equilibrium from three to two dimensions (the thickness coordinate is

eliminated). Once the equations of equilibrium are solved, we evaluate the strains
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Fig. 1.8 Stresses acting on an infinitesimal element with dimensions dx; dy; dz. Following the

assumptions of the classical and first-order shear deformation theories stresses on the planes ABCD

and A0B 0C 0D0 are disregarded

in the three-dimensional domain occupied by the plate and subsequently, determine

the stresses throughout the entire plate.

Consider the domain occupied by a plate where the in-plane stress vector at each

point in the Cartesian coordinate system is given by
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(1.49)

Note that following a typical notation of the theory of plates, the system of

coordinates 1-2-3 referred to above is replaced with the system x-y-z (Fig. 1.3).

As a result of symmetry, in-plane shear stresses �xy D �yx . The stresses referred to

in (1.49) and applied to an infinitesimal plate element are depicted in Fig. 1.8.

We replace the actual system of stresses with so-called stress resultants and stress

couples that represent integrals of the stresses and of the moments of the stresses

with respect to the middle plane, respectively. These integrals are taken through the

thickness of the plate. Accordingly, the vector of in-plane stress resultants is
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dz (1.50)

h being the thickness of the plate.
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The vector of stress couples is
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Note that in-plane shear stresses�xy and �yx produce equal stress resultants and stress

couples.

Transverse shear stresses �xz; �yz can be replaced with the vector of transverse

shear stress resultants:

fQg � fQi g D
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Obviously, the moment of transverse shear stress with respect to the middle

plane is equal to zero. The normal transverse stress �z is usually much smaller

than transverse shear stresses, differing from them by an order of magnitude in

typical plate geometries. Accordingly, the effect of this stress on the equations of

equilibrium is disregarded.

A similar approach can be applied to derive the vectors of in-plane and transverse

shear stress resultants and stress couples in other coordinate systems. For example,

in a polar coordinate system characterized by the radial .r/, circumferential .�/ and

thickness .z/ coordinates the corresponding vectors expressed in terms of in-plane

and transverse shear stresses are:

fN g D

8

<

:

Nr .r; �/

N� .r; �/

Nr� .r; �/

9

=

;

D

h
2
Z

� h
2

8

<

:

�r .r; �; z/

�� .r; �; z/

�r� .r; �; z/

9

=

;

dz

fM g D

8

<

:

Mr .r; �/

M� .r; �/

Mr� .r; �/

9

=

;

D

h
2
Z

� h
2

8

<

:

�r .r; �; z/

�� .r; �; z/

�r� .r; �; z/

9

=

;

zdz (1.53)

fQg D

�

Qr .r; �/

Q� .r; �/

�

D

h
2
Z

� h
2

�

�rz .r; �; z/

��z .r; �; z/

�

dz

where the notation of the stresses is evident (also, see Chap. 3).

The stress resultants and stress couples in the rectangular system of coordinates

are shown in Fig. 1.9. It is obvious that stress resultants Nx; Nxy; Qx and stress
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Fig. 1.9 Stress resultants and

stress couples acting on the

element of the plate. Top

view: in-plane stress

resultants, middle view: stress

couples, bottom view;

transverse shear stress
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couplesMx ; Mxy are applied at the cross sections x D const , whileNy; Nyx ; Qy

andMy ; Myx are applied at y D const . The stress resultant Nyx and stress couple

Myx are produced by the in-plane shear stress �yx acting at the front and back edges

of the element. However, as follows from (1.11),Nyx D Nxy and Myx D Mxy.

Considering that stress resultants represent integrals of the corresponding stresses

through the thickness, while stress couples are integrals of the moments of these

stresses, we observe that stress resultants and stress couples are the forces and mo-

ments per unit length of the corresponding cross section, respectively. Accordingly,

the units of stress resultants and those of stress couples are force per unit length

(e.g., N/m or lbf/in) and moment per unit length (e.g., N or lbf), respectively.

It is obvious that at the macromechanical scale stress resultants and couples are

equivalent to the actual system of stresses in the cross section. However, even if

stress resultants and couples are found, we still need to know stresses at each point

through the thickness of the plate to analyze the strength. This problem can be

addressed as follows.

Consider a thin plate where the vector of in-plane stresses is related to the vector

of in-plane strains by the system of equations similar to (1.12) or (1.15). This system

is reduced to three in-plane equations that are written here in the form
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f�g D ŒC � f"g (1.54)

where ŒC � is a matrix of stiffness coefficients.

According to the previous discussion, the in-plane stress resultants and stress

couples are

fN g D

h
2
Z

� h
2

ŒC � f"g dz; fM g D

h
2
Z

� h
2

ŒC � f"g zdz (1.55)

As was shown above, in the theory of thin and first-order shear deformable plates

the vector of in-plane strains is a linear function of the thickness coordinate, so that

it can be represented by (1.31), i.e.

f"g D
˚

"0
�

C z f�g (1.56)

where the first vector in the right side represents the strains in the middle plane, and

the second vector refers to the changes of curvature and twist of the plate.

The substitution of in-plane strains given by (1.56), into (1.55), yields the in-

plane stress resultants and stress couples:
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(1.57)

Given the terms in the left side of the above equation, we can evaluate the

components of the strain vector "0; �. Subsequently, in-plane stresses can be

determined from the constitutive equations at every point. Such approach to the

solution involves the reduction of the actual equilibrium problem to a simplified but

macromechanically equivalent two-dimensional formulation in terms of stress re-

sultants and stress couples that depend on the coordinates x and y and subsequently,

the return to in-plane strain and stress fields that depend on all three coordinates x,

y and z.

In the case of a thin isotropic plate experiencing geometrically nonlinear

deformations the substitution of (1.19), (1.20), (1.28) and (1.29) into (1.57) yields
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where

D D
Eh3

12 .1 � �2/
(1.59)

is the so-called cylindrical or bending stiffness of the plate. Similar relationships

can be derived for the polar coordinate system and for non-isotropic materials.

1.5 Introduction to the Rayleigh-Ritz and Galerkin Methods

As indicated in Sect. 1.1, the first law of thermodynamics or the principle of

conservation of energy serves as the foundation for energy-based methods employed

in the analysis of structures, including plates. In the absence of energy dissipation

and other non-conservative forces, i.e. if the forces acting on the system are

conservative, this principle is reduced to the principle of stationery total energy (e.g.

Thomson 1993):

…CK D const or ı .…CK/ D 0 (1.60)

where … and K are the potential and kinetic energies of the system, respectively

and ı is a variational operator. In static problems the principle of stationary total

energy reduces to the principle of minimum total potential energy implying that the

virtual work of forces acting on the system in equilibrium is equal to zero, so that

ı… D 0 or … D const:

The Lagrange equation that can be derived for conservative systems from the

principle of stationery total energy (e.g., Thomson 1993) is:

d

dt

�

@L

@ Pqi

�

�
@L

@qi
D 0 (1.61)
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where the functional L D K � … (it is also called the Lagrangian), and qi and

Pqi are generalized coordinates and generalized velocities, respectively. Generalized

coordinates referred to above represent independent coordinates that characterize

the instantaneous position of the system and equal in number to that of its degrees

of freedom.

The Hamilton principle for conservative systems can be derived from the

Lagrange equation (e.g., Goldstein 1950):

t1
Z

t0

ı .K �…/dt D

t1
Z

t0

ı .K � U � V /dt D 0 (1.62)

where U is the strain energy and V is the energy of applied loads. The Hamilton

principle implies that a true motion path of the system between states specified at

arbitrary time instances is such that the Lagrangian has an extreme (and constant)

value.

Using appropriate constitutive and strain-displacement relations and applying

Green’s theorem one can derive equations of motion and the boundary conditions

for the system from Hamilton’s principle (e.g., Reddy 2002, and Whitney 1987).

This procedure is demonstrated in Sect. 1.6 for plate structures.

Consider the case where the motion of the system can be represented by the

approximation

u D
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u1 .x1; x2; x3; t/

u2 .x1; x2; x3; t/

u3 .x1; x2; x3; t/

9

=

;

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

n1
P

iD1

k1i .t/f1i .x1; x2; x3/

n2
P

jD1

k2j .t/f2j .x1; x2; x3/

n3
P

sD1

k3s.t/f3s .x1; x2; x3/

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(1.63)

In (1.63), k1i .t/; k2j .t/; k3s.t/ are unknown functions of time and f1i .x1; x2;

x3/; f2j .x1; x2; x3/ ; f3s .x1; x2; x3/ are assumed functions of the coordinates

that satisfy kinematic boundary conditions, i.e. the conditions for displacements

and slopes along the boundaries of the domain occupied by the system. Note that

the number of terms in each of series (1.63) can vary, though in many applications

it is convenient to use n1 D n2 D n3.

The requirement that the Lagrangian of the system remains stationary implies

that the variation of this functional is equal to zero. Accordingly, assuming motion

in the form (1.63) one obtains
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n3
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sD1

@.… �K/

@k3s
ık3s D 0

(1.64)
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However, the variations of the functions k1i .t/; k2j .t/; k3s.t/ are arbitrary. There-

fore, the condition (1.64) can be satisfied only if

@.… �K/

@k1i
D
@.… �K/

@k2j
D
@.… �K/

@k3s
D 0

i D 1; 2; :::; n1; j D 1; 2; :::; n2; s D 1; 2; :::; n3; (1.65)

Equations 1.65 represent the Rayleigh-Ritz method. Historically, Rayleigh was

the first to propose this approach for the study of vibrations of an undamped

structure using a single-degree approximation (Rayleigh 1877). This approach was

extended by Ritz (1909) who suggested using a multi-degree of freedom approach,

i.e. more than one term approximation in the series representing the motion.

Equations 1.65 enable us to avoid solving the partial differential equations of

motion where displacements depend on the spatial coordinates and time. Instead,

the Rayleigh-Ritz method reduces the problem to a system of ordinary differential

equations with only one independent variable, i.e. time. Furthermore, in static prob-

lems, this method results in a system of algebraic equations since in such problems

k1i ; k2j ; k3s are unknown constant coefficients in the series approximation (1.63).

The Rayleigh-Ritz method formulated by (1.65) could also be derived from the

principle of stationary total energy (1.60) by indicating that the constant value of

the total energy of a conservative system should be equal to the maximum value of

potential energy achieved when the system reached an extreme deviation from static

equilibrium and stopped so that its kinetic energy is equal to zero. On the other hand,

the same constant value corresponds to the maximum kinetic energy that is reached

when the system passes through the static equilibrium position and its potential

energy is equal to zero. Then we can require that the series for displacements (1.63)

should be such that the difference between the maximum potential and kinetic

energies is minimized. Of course, this difference depends on the coefficients of

series (1.63). The result of the error minimization is the system of equations (1.65).

Note that the static boundary conditions referring to boundary values of stress

resultants and stress couples do not have to be addressed in the Rayleigh-Ritz

method. However, if the series (1.63) accurately reflect these conditions, the

accuracy of the solution may be improved.

The Galerkin method (Galerkin 1915) is considered an energy method, although

its implementation does not directly employ the energy of the system. Bypassing

the theoretical foundation of this method, we refer to the equations of motion and

boundary conditions that can be derived from the Hamilton principle. The solution

is sought in the form (1.63), except for the requirement that the functions of coor-

dinates in these series must satisfy both kinematic and static boundary conditions.

The procedure associated with the Galerkin method belongs to a class of weighted

residual methods (Reddy 2002). According to these methods we require that the

residual of the equations of motion must be orthogonal to a set of independent
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weight functions. In the Galerkin method the weight functions are identical with

the functions f1i .x1; x2; x3/ ; f2j .x1; x2; x3/ ; f3s .x1; x2; x3/. Accordingly, the

method results in the mathematical formulation:

•

�

Lq Œu .x1; x2; x3/�f1i .x1; x2; x3/ dx1dx2dx3 D 0

•

�

Lq Œu .x1; x2; x3/�f2j .x1; x2; x3/ dx1dx2dx3 D 0

•

�

Lq Œu .x1; x2; x3/�f3s .x1; x2; x3/ dx1dx2dx3 D 0 (1.66)

where Lq Œu .x1; x2; x3/� D 0 are equations of motion reflecting the equilibrium

of forces in the q-th direction .q D x1; x2; x3/ and � is the volume occupied

by the structure. Although the Galerkin method is applied directly to equations

of equilibrium or motion, it follows from the Hamilton principle (e.g. Whitney

1987).

The Galerkin procedure requires that series (1.63) satisfy all kinematic and static

boundary conditions. If some of these conditions are violated, the Generalized

Galerkin procedure enables us to incorporate them in the formulation resulting in a

more accurate solution. Although this procedure is relatively little known, contrary

to the standard Galerkin procedure, solutions utilizing it have been published

(Houbolt and Brooks 1958; Simitses 1986; Birman and Suhir 2007). It can be shown

that the Rayleigh-Ritz and Galerkin methods using the same series (1.63) result

in identical results if the boundary conditions are kinematic or if the functions of

coordinates satisfy both kinematic and static boundary conditions.

There are numerous other energy-based methods that are applied to the analysis

of structures, including plates. While the review of these methods is outside the

scope of the book, we refer readers to extensive literature on the subject, such as the

book of Wunderlich and Pilkey (2003) or the monograph of Reddy (2002).

Considering the fact that equations of motion of plate structures and their

boundary conditions are derived in this chapter, it is useful to understand the place

of energy methods in the analysis. The combination of equations of motion and

boundary conditions for plate structures often denies an exact integration. This may

make attractive an alternative approach based on the spectrum of available energy

methods, such as the Rayleigh-Ritz and Galerkin methods. Numerical procedures,

including finite element, finite difference or boundary element methods, can be

developed, using either the equations of motion or energy methods.
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1.6 Equations of Motion and Boundary Conditions: Derivation

from the Hamilton Principle

Equations of motion and boundary conditions of a plate can be derived from

the Hamilton principle. Alternatively, it is possible to obtain these equations by

analyzing the equilibrium of an infinitesimal element detached from the plate where

the effect of adjacent parts of the plate separated from the element is represented

by stress resultants and stress couples. The advantage of the former approach is

related to a simultaneous derivation of both the equations of motion as well as the

boundary conditions. In this paragraph, we derive such equations for the case of a

shear deformable plate. The following derivation is based on the solutions presented

by Vol’mir (1972), Whitney (1987) and Reddy (2007).

The strain energy of an elastic plate in a Cartesian coordinate system is

given by

U D
1

2

•

�

�

�x"x C �y"y C �z"z C �yzyz C �xzxz C �xyxy

�

d� (1.67)

The energy of transverse pressure p .x; y; t / applied to the surface of the plate is

V D �

“

A

pwdA (1.68)

where A is the surface area.

The kinetic energy of the plate is given by
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where � .x; y; z/ is a mass density of the material.

The expression for the strain energy can be transformed using the constitutive

relations. Substituting (1.15) into (1.67), using the definition of stress resultants

and stress couples according to (1.50)–(1.52) and accounting for the previously

introduced assumption that "z D 0 we obtain
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Now we can substitute the expressions for the strains in (1.70). In particular,

considering geometrically nonlinear plates and adopting the first-order shear defor-

mation theory, i.e. combining (1.31), (1.28) and (1.48) we obtain
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(1.71)

The kinetic energy is expressed in terms of displacements and rotations by

substituting (1.46) into (1.69):
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where Om D
R

z

� .x; y; z/ dz is the mass of the plate per unit surface area and

I D

Z

z

� .x; y; z/ z2dz (1.73)

Equation 1.72 is obtained by assumption that the mass density is symmetric about

the middle plane. The first integral in the right side of (1.72) represents in-plane and

transverse inertias, while the second integral includes rotational inertia terms.

The kinetic and strain energy and the energy of applied pressure can now be

substituted into the Hamiltonian. Consider the integral of the variation of the kinetic

energy. As follows from (1.72),
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Integrating (1.74) by parts yields
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The variations of displacements and rotations are arbitrary. Therefore, it is

possible to assume that they are different from the actual motion at any time except

for the initial and final instants so that

ıu0 .t0/ D ıu0 .t1/ D ıv0 .t0/ D ıv0 .t1/ D ıw .t0/ D ıw .t1/ D ı x .t0/

D ı x .t1/ D ı y .t0/ D ı y .t1/ D 0 (1.76)

Then the first integral in the right side of (1.75) yields zero since every term

in this integral is multiplied by one of initial or final values of displacement or

rotation variations. Accordingly, we do not consider this integral in the subsequent

derivations.

The terms that constitute potential energy can also be integrated by parts. Let us

consider a part of the plate limited by the contour formed by lines x D const that

will be denoted by Sx and by lines y D const will be denoted by Sy . Consider for

example the variation of the first term in (1.71). The integration by parts yields
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Similar procedure can be applied to all terms in (1.71). While the terms related

to variations of in-plane displacements u0 and v0 and those due to variations of

rotations  x and  y are easily evaluated, it is useful to show terms related to the

variation of the transverse deflection since they include geometrically nonlinear

contributions:
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The variation of the energy of applied pressure given by (1.68) is
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Collecting all terms in Hamiltonian (1.62) we obtain the following variational

equation:
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The equations of motion are obtained by requiring that the coefficients at the

variations of displacements and rotations in the area integrals must be equal to zero:

@Nx

@x
C
@Nxy

@y
D Om

@2uo

@t2

@Nxy

@x
C
@Ny

@y
D Om

@2vo

@t2

@Qx

@x
C
@Qy

@y
C

@

@x

�

Nx
@w

@x
CNxy

@w

@y

�

C
@

@y

�

Nxy

@w

@x
CNy

@w

@y

�

C p D Om
@2w

@t2

@Mx

@x
C
@Mxy

@y
�Qx D I

@2 x

@t2

@Mxy

@x
C
@My

@y
�Qy D I

@2 y

@t2
(1.81)

Consider the case where besides transverse pressure p .x; y; t / the plate is

subject to in-plane stress resultants NNx; NNy and NNxy applied along the edges

(throughout this book, an overbar identifies applied loads). For example, it is

possible to apply along the edge x D const stress resultants NNx and NNxy.

In a geometrically linear formulation in-plane stress resultants are constant over

the surface area of the plate. Furthermore, in most practical problems in-plane inertia

terms in the first two equations (1.81) are negligible. Accordingly, in such case

equations (1.81) become
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Another form of the equations of motion applicable to both linear and nonlinear

problems is obtained if rotational inertia terms in the right side of the last two

equations of motion (1.81) are negligible. Accordingly, transverse shear stress
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resultants expressed in terms of stress couples can be substituted in the third

equation of motion yielding
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Neglecting in-plane inertia terms, the equations of motion become
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(1.84)

The doubly-underlined terms in the last equation (1.84) account for the bending-

stretching coupling in geometrically nonlinear problems. In such problems, these

terms incorporating stress resultants given by (1.58) are nonlinear functions of

displacements. However, in a geometrically linear formulation bending and twisting

are uncoupled from in-plane stretching and shear. Accordingly, in linear problems

if the plate is not subject to external in-plane loads, Nx D Ny D Nxy D 0 and the

doubly-underlined terms in the last equation (1.84) are equal to zero.

Equations 1.81 or 1.82 are applicable to the analysis of plates characterized by

the first-order shear deformation theory. This is because this theory involves five

unknown displacements and rotations, i.e. u0; v0; w;  x ;  y . Accordingly, upon

the substitution of the constitutive relations, the number of equations is equal to

the number of equations of motion (or equilibrium), i.e. the problem is statically

determinate. On the other hand, three equations (1.84) are suitable for the analysis

of the classical theory of plates since they involve three displacements only.

The boundary conditions are formulated from the requirement that the integrals

along the contours Sx and Sy must be equal to zero. Accordingly, we list these

conditions that directly follow from (1.80). For example, for the former contour

they are:

Nxıu0 D 0

Nxyıv0 D 0
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ıw D 0



34 1 Introduction and Basic Concepts

Mxı x D 0

Mxyı y D 0 (1.85)

where the underlined term in the third equation is added to account for the energy

of the twisting stress couple acting along the contour Sx. The presence of this term

becomes clear from the discussion on the boundary conditions in Sect. 2.1 (see

discussion related to Fig. 2.2). This term is directly derived using the Hamilton

principle in the case of thin plates characterized by the classical theory (e.g.,

Whitney 1987, and Reddy 2007).

The above requirements are satisfied if one of the terms forming each of the

five products in (1.85) is equal to a prescribed value (such prescribed values are

identified in the following equations by a “hat”):

Nx D NNx D ONx or u0 D Ou0

Nxy D NNxy D ONxy or v0 D Ov0
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@w

@y
C
@Mxy

@y
D OVx or w D Ow0

Mx D NMx D OMx or  x D O x

Mxy D NMxy D OMxy or  y D O y (1.86)

Similar boundary conditions can be formulated along Sy :

Ny D NNy D ONy or v0 D Ov0

Nxy D NNxy D ONxy or u0 D Ou0
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The boundary conditions have an identical form in static and dynamic problems.

However, in the case of a thin plate the number of boundary conditions is reduced

to four. For example, for the contour Sx these conditions are:

Nx D NNx D ONx or u0 D Ou0

Nxy D NNy D ONxy or v0 D Ov0
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In the conclusion of this paragraph, it is useful to show the expression for the

energy of applied in-plane stress resultants that may be useful in the application of

the Rayleigh-Ritz method. In the linear problem, neglecting stretching of the middle

plane of the plate, this energy:
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1.7 Equations of Motion and Boundary Conditions: Derivation

from the Analysis of an Infinitesimal Plate Element

Equations of motion derived in the previous paragraph from Hamilton’s principle

could also be obtained by the analysis of equilibrium of forces and moments acting

on an infinitesimal element detached from the plate (Fig. 1.9). According to this

approach, the action of adjacent removed parts of the plate is represented by stress

resultants and stress couples applied to the edges of the element. Additionally,

external loads acting on the surface of the element are included in the consideration.

Consider an infinitesimal element of a plate shown in Fig. 1.9. The inertia

contribution will be included in the equations of equilibrium using d’Alambert’s

principle. We should derive three equations of dynamic equilibrium of forces

acting in the direction of the coordinate axes and three equations of equilibrium

of moments. However, it would be easy to show that the equilibrium of moments

about the z-axis is identically satisfied since Nxy D Nyx andMxy D Myx .

The dynamic equilibrium of forces acting in the x-direction is obtained taking the

projections of in-plane forces on this axis. The forces in the x-direction produced by

in-plane stress resultants Nx and Nxy are

F.Nx/ D
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Transverse shear stress resultants also produce a projection force in the x-

direction. However, the effect of this contribution is small in plates and shallow

shells and can be neglected (e.g., Vol’mir 1972). Combining the contributions

of the in-plane stress resultants given by (1.90), including the in-plane inertia

of the infinitesimal element Om @2u0
@t2

dxdy and canceling out the surface area of the

element dxdy in all terms we obtain the first equation of motion that is predictably
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Fig. 1.10 Illustration to the

evaluation of the projection of

stress resultant Nx on the

z-axis

identical with the first equation (1.81). The second equation (1.81) that represents

the dynamic equilibrium of forces in the y-direction is obtained in the same manner.

The equilibrium of forces in the z-direction includes the contributions of

transverse shear and in-plane stress resultants. The latter stress resultants produce

the projection equal to the product of the stress resultant and the sine of the angle

formed by the middle plane with the original undeformed position (Fig. 1.10). The

rotation of the cross section about the middle plane that is considered in shear

deformation theories does not affect this projection.

The contributions of the stress resultants to the dynamic equilibrium in the

z-direction are now shown in detail:
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The terms produced by in-plane shear stress resultant are:
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(1.92)

The underlined terms in the above equations are of higher order and can be neglected

in many cases. Additional terms are contributed by the transverse pressure acting

on the surface of the element, i.e. pdxdy and by transverse inertia, i.e. Om @2w

@t2
dxdy.

Combining all above-mentioned terms and canceling the surface area of the element

that is present in all terms we obtain the third equation (1.81).

The equations of dynamic equilibrium of moments about the x- and y-axes can be

obtained without difficulty. The rotational inertia terms are derived by considering

the inertial moment of an element. For example, for a plate where the material is

symmetrically distributed about the middle plane, the inertial moment of the element

dxdy in the xz plane is

h
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� h
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�
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@2 x
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dxdy (1.93)

The contributions of the stress couples and transverse shear stress resultants to the

moment in the xz plane about the right edge of the element shown in Fig. 1.9 are (in-

plane stress resultants produce a negligible effect on the equilibrium of moments):
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Neglecting higher-order terms and accounting for (1.93) we obtain the fourth

equation (1.81). The remaining fifth equation is obtained by analogy.
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1.8 An Alternative Formulation of Equations of Equilibrium

and Boundary Conditions of Thin Plates in Terms

of a Stress Function

The approach considered in this paragraph is applicable to plates that can be

analyzed by the classical (thin plate) theory. Consider vibrations of a thin plate

neglecting the contribution of in-plane inertia (static problem represents a particular

case of the dynamic problem so that the present formulation can be applied to the

static case as well). Then equations of motion are given by equations (1.84). The

approach considered here is based on reducing these three equations to a single

equation through the introduction of the stress function defined by
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(1.95)

It is immediately observed that the first two equations (1.84) where in-plane

inertia is neglected are identically satisfied. The third equation is represented in

terms of the stress function while the stress couples are expressed in terms of

deflection w according to (1.58). This yields
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In the above equation the Laplacian r4 .:::/ D @4.:::/

@x4
C2 @4.:::/

@x2@y2
C @4.:::/

@y4
in Cartesian

coordinates.

Now equations of motion are reduced to a single equation that contains two

unknowns, i.e. the deflection and the stress function. The second equation is the

equation of compatibility of deformations. It is obtained from conditions (1.8). In

the case of plane stress the only applicable condition is the fourth equation (1.8)

relating in-plane strains. Substituting the strains expressed in terms of displacements

we obtain
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(1.97)

The middle-plane strains can be expressed in terms of the stress function using

the inverted form of the constitutive relations for the case of plane stress that are

available from (1.19):
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0xy D
�xy

G
D
Nxy

Gh
D �

1

G

@2'

@x@y
(1.98)

Now we can substitute the strains in terms of the stress function from (1.98)

into the left side of the compatibility equation (1.97) yielding the second equation

necessary for the analysis:
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Equations 1.96 and 1.99 that pose a statically determinate problem (two un-

knowns and two equations) are often used in the analysis of plates, particularly

in geometrically nonlinear cases.

1.9 Effect of Temperature on Constitutive Relations

and Material Constants

Environmental conditions, such as temperature and moisture, affect the analysis

of structures in two ways. Firstly, the constitutive stress-strain relations include

thermally-induced (or moisture-induced) contributions to the strains. Accordingly,

the equations of motion when written in terms of displacements and therefore

depend on the constitutive relations are affected, by the corresponding terms. The

second effect is sometimes disregarded or forgotten but it may be as important as

explicit environment-dependent terms in the constitutive relations. This is the effect

of the environment on the material constants, such as the moduli of elasticity and

shear, the Poisson ratio, the coefficient of thermal expansion and the strength of

the material (of course, this effect raises the question whether a reference to these

properties as “constants” is misleading). Moreover, the problem of heat transfer that

predicts the distribution of temperature throughout the structure is dependent on

the effect of temperature on thermal conductivity and thermal boundary conditions

(similar considerations apply to the problem of moisture distribution). In this book

we limit the analysis to thermal problems, although moisture can significantly

affect the behavior of polymer-matrix composite plates. Furthermore, we restrict

the discussion to plate structures that can be treated by the classical or first-order

shear deformation theories.

The strain-displacement relations are modified by including thermally-induced

components of strain. For example, geometrically nonlinear relationships (1.27)

in an orthotropic or isotropic material that composes a structure analyzed by the

classical theory (i.e. neglecting transverse shear deformations) become
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where the quantities with prime in the left side represent mechanical strains, "x; "y
and xy are total strains, ˛i .i D x; y; xy/ are coefficients of thermal expansion

and the integration in the right side is performed over the range of temperature (T)

from the reference to the current value.

The counterpart of the above equations for the case of a shear-deformable

problem is
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In addition, transverse shear strains are present in the first-order shear deforma-

tion theory (see Eq. 1.45). However, they are not affected by temperature as long as

the plane of the plate contains two principal material axes.
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fibers

a b c

fibers

Fig. 1.11 Response to an elevated temperature: (a) isotropic plate, (b) fiber-reinforced layer with

the fibers oriented in the x-direction, (c) layer with the fibers oriented at an angle to the x- and

y-axes

In the case of an isotropic material the coefficient of thermal expansion is

identical in all directions. Moreover, an isotropic plate does not experience shearing

deformations due to temperature. Accordingly, in such plate ˛x D ˛y ; ˛xy D 0.

In a fiber-reinforced layer the coefficients of thermal expansion in the direction of

fibers and the direction perpendicular to the fibers differ. However, the layer does

not experience in-plane shear due to temperature in the coordinate system with one

of the axes oriented along the fibers. Accordingly, if the fibers are oriented along one

of the axes (say, the x-axis), ˛x ¤ ˛y ; ˛xy D 0. Finally, if the fibers are oriented

at an angle to the x and y axes, the layer exhibits in-plane shear as well as axial

deformations in response to temperature changes. Accordingly, ˛x ¤ ˛y ; ˛xy ¤ 0.

The difference in the response of an isotropic plate, a fiber-reinforced layer with the

fibers oriented in the x-direction, and a layer with the fibers oriented at an angle

to the x- and y-axes is depicted in Fig. 1.11. As is shown in this figure, isotropic

materials experience identical expansion in all directions as a result of an elevated

temperature. Specially orthotropic materials (materials with the fibers oriented along

the x-axis) experience a larger expansion in the direction perpendicular to the fibers

than in the fiber direction, reflecting a much smaller thermal expansion coefficient in

the latter direction. In the case of materials where the fibers are inclined relative to

the coordinate axes (generally orthotropic materials), an elevated temperature causes

both expansion in the coordinate directions as well as in-plane shear. If temperature

decreases, the pattern of deformations remains similar to that described above, but

expansion is replaced with contraction.

It should also be noted that as long as the fibers remain in the plane of the

layer, temperature does not affect transverse shear deformations. However, this

effect would be present if the fibers were inclined relative to the plane z D const:

This explains the necessity to carefully analyze local thermal stresses in woven

plates, accounting for their contribution to transverse shear. On the other hand, the

coefficient of thermal expansion in the z-direction is always present, i.e. ˛z ¤ 0.

However, thermal strains and stresses associated with this coefficient often affect

the solution of plate problems negligibly, except for high local thermal stresses in

the vicinity of such discontinuities as rivets and bolts.
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Constitutive relations for in-plane stresses in the case where fibers are arbitrary

oriented in the plane can be obtained from (1.16) adopting the assumption of plane

stress:
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(1.102)

where we account for the effect of temperature on both the stiffness as well as the

coefficients of thermal expansion, and the strains "i .i D x; y; xy/ can include

geometrically nonlinear or/and transverse shear effects.

Linear elastic constitutive equations (1.102) can be sufficiently accurate in

numerous applications (e.g., Tauchert 1995). In problems where it is essential to

reflect the effect of the history of temperature on the stiffness an alternative form of

these equations is
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In numerous solutions published in literature it is considered acceptable to

integrate the terms in the right side of (1.103) effectively neglecting the history of

thermal loading. This results in the constitutive relations
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(1.104)

where �T is the local change of temperature from the stress-free reference value

and T is the current temperature. Equations 1.104 yield approximate values of

stresses that are not equal to those obtained from more accurate equations (1.103).

The integration of the constitutive equations and their moments with respect to

the middle plane through the thickness yields stress resultants and stress couples.

Accordingly, using (1.104) we obtain the following counterpart of (1.57):
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where the vector ˛ D
˚

˛x ˛y ˛xy

�T
:

The extended form of equations (1.105) depends on the material, temperature

distribution and the theory of plates adopted for the analysis. For example, for an

isotropic geometrically nonlinear plate treated by the classical theory and subject to

a uniform temperature these equations become
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where E D E.T /; � D �.T / and accordinglyD D D.T /, and thermally-induced

terms areN T
x D N T

y D Eh˛
1��2

.T � T0/, the coefficient of thermal expansion being a

function of the current temperature, i.e. ˛ D ˛.T /.

The relations are more complicated if temperature varies through the thickness

of the plate, i.e. T D T .z/. An example of such situation is found in plates subject

to heat flux on one surface and active cooling on the opposite surface. Then material

properties vary through the thickness. In such general case the constitutive relations

(1.105) can be written as
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Table 1.1 The modulus of elasticity of selected metals (Msi) as a function of temperature (ıF)

(From: http://www.engineeringtoolbox.com)

Material �200 �100 70 200 300 400 500 600 700 800 900

Carbon steel

(C<D0.3%)

30.8 30.2 29.5 28:8 28:3 27:7 27.3 26.7 25.5 24.2 22.4

Nickel alloy

(Monel 400)

27.3 26.8 26.0 25:4 25:0 24:7 24.3 24.1 23.7 23.1 22.6

Titanium (grades

1,2,3,7)

15.5 15:0 14:6 14:0 13.3 12.6 11.9 11.2

Aluminum and

aluminum

alloys

10.8 10.5 10.0 9:6 9:2 8:7

where thermally-induced terms are

�

N T

M T

�

D

h
2
Z

� h
2

ŒC .T .z//�

�

1

z

�

˛ .T .z// T .z/dz (1.108)

It is important to briefly review the effect of temperature on the material proper-

ties that has already been reflected in the equations presented in this paragraph. It

is impossible to reflect such effects in a universal mathematical form due to variety

amongst materials and their different sensitivity to the environment. The relevant

information is sometimes provided by manufacturers, but it is often difficult to find

a reliable data. An example of empirical data for the modulus of elasticity of a

number of metals is presented in Table 1.1.

One of the methods enabling an analytical approach to thermal problems

accounting for the effect of temperature on material properties is based on approx-

imating experimental property-temperature relationships with analytical functions.

In particular, truncated polynomial functions were proposed by Touloukian (1967)

in the form:

P D P0
�

P�1T
�1 C 1C P1T C P2T

2 C P3T
3
�

(1.109)

where P is a property (modulus of elasticity, Poisson’s ratio, etc.), Pi are coefficients,

and T is temperature counted from the reference value. The first term in the brackets

introduces a singularity at the reference temperature and it is often eliminated by

setting P�1D0.

Examples of relevant relationships are presented here for silicon nitride and

nickel (Yang et al. 2006):

Silicon nitrideW

E D 348:49� 109
�

1 � 3:070 � 10�4T C 2:160 � 10�7T 2 � 8:946 � 10�11T 3
�

http://www.engineeringtoolbox.com
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� D 0:24

˛ D 5:8723 � 10�6
�

1C 9:095 � 10�4T
�

NickelW

E D 223:95� 109
�

1 � 2:794 � 10�4T C 3:998 � 10�9T 2
�

� D 0:31

˛ D 9:9209 � 10�6
�

1C 8:705 � 10�4T
�

(1.110)

where the modulus of elasticity is measured in Pa, and temperature and the

coefficients of thermal expansion refer to the Kelvin scale. Note that the Poisson

ratio remains constant reflecting a rather general trend of a weak dependence of

the Poisson ratio on temperature. The coefficient of thermal expansion in (1.110)

is a linear function increasing with temperature, although in other materials this

relationship exhibits nonlinearity. The nonlinear relationship between the modulus

of elasticity and temperature that could also be observed in Table 1.1 is evident in

the above equations.

1.10 Strength Theories

The first experiments concerned with the strength of materials were conducted by

Leonardo Da Vinci. While in the case of a uniaxial loading the stress reaching a yield

limit of the material can be associated with failure, the situation is more complex

in the case of a multiaxial state of stress. Strength theories address the problem

providing analytical expressions for combinations of multiaxial stresses or strains

that cause failure.

1.10.1 The Maximum Principal Stress Criterion

The first criterion suggested by Rankin is called the maximum principal stress

criterion and it predicts failure reflecting its name, i.e. at the maximum principal

stress reaching the strength (a yield or failure stress) of the material. Accordingly,

the loss of strength is avoided if

Max .j�1j ; j�2j ; j�3j/ < Y (1.111)

where Y is the yield stress (yield limit) and �i .i D 1; 2; 3/ are the principal

stresses. In the case where the yield limits in tension and compression differ, i.e.

Yt ¤ jYcj, the corresponding criterion is
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Max .�1; �2; �3/ < Yt

Min .j�1j ; j�2j ; j�3j/ < jYc j (1.112)

where compressive stresses and the yield stress in compression are negative. If

inequalities (1.112) are satisfied, the loss of strength does not occur.

1.10.2 The Maximum Principal Strain Criterion

This criterion can be written in the form somewhat similar to that for the previous

criterion, but the principal stresses are replaced with the principal strains, while the

yield stress is replaced with the strain corresponding to yielding of the material ("t
in tension and "c in compression):

Max ."1; "2; "3/ < "t

Min .j"1j ; j"2j ; j"3j/ < j"c j (1.113)

It may be more convenient to express this criterion in terms of principal stresses. For

example, if the yield stresses in tension and compression are equal .Yt D jYc j D Y /,

the criterion becomes (Boresi and Schmidt 2003):

max
i¤j¤k

ˇ

ˇ�i � �
�

�j C �k
�
ˇ

ˇ < Y (1.114)

1.10.3 The Maximum Shear Stress (Tresca’s) Criterion

This criterion reflects tests first conducted by Coulomb that illustrated that yielding

is often associated with the slippage (shearing). Accordingly, the condition of failure

is formulated as the requirement that the maximum shear stress at the point must

equal the maximum shear stress in yielding under uniaxial loading. These stresses

being equal to one-half the maximum difference between the principal stresses and

one-half axial yield stress, respectively, the criterion states that the loss of strength

does not occur if

j�1 � �3j < Y (1.115)

where �1 and �3 are the algebraically maximum and minimum principal stresses,

respectively.
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1.10.4 Maximum Distortional Energy Density Criterion

(Von Mises Criterion)

This criterion should be discussed in light of a possible subdivision of the strain

energy density into two components, i.e. the contribution associated with the change

in volume and the so-called distortional contribution related to the change of shape.

The effect of the former contribution on yielding is disregarded. Accordingly,

yielding is associated with the distortional strain energy density reaching a critical

value equal to its value corresponding to the onset of yielding in the uniaxial state of

stress. This occurs when the second deviatoric stress invariant becomes equal to the

squared shear yield stress of the material. Mathematical transformations necessary

to develop this criterion are straightforward (e.g., Boresi and Schmidt 2003). The

convenient form of the criterion in terms of the effective stress is

�e < Y (1.116)

where

�e D

r

1

2

h

.�1 � �2/
2 C .�1 � �3/

2 C .�2 � �3/
2
i

D

r

1

2

h

�

�x � �y
�2

C .�x � �z/
2 C

�

�y � �z

�2
i

C 3
�

�2xy C �2xz C �2yz

�

(1.117)

Inequality (1.116) predicts the condition that has to be satisfied to avoid the loss of

strength that occurs if the effective stress reaches the yield limit of the material.

1.10.5 Christensen’s Yield and Failure Criterion

The four criteria outlined above are typically used in the analysis of ductile

materials, such as metals. However, there is a need in a comprehensive theory

predicting conditions of failure encompassing both the loss of strength in ductile

materials as well as fracture in more brittle materials. Such theory has been proposed

by Christensen (2004, 2007). The approach adopted in these papers utilizes the

governing yield function in the form of a quadratic polynomial of the invariants of

the stress tensor. The resulting criterion consists of two equations, one of them more

suitable for ductile materials and the second reflecting fracture in brittle materials.

Using the absolute (positive) value of the compressive yield stress, the strength

criterion is
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(1.118)

It is evident that if the yield strengths in tension and compression are equal equation

(1.118) reduces to the von Mises strength criterion given by (1.116) and (1.117).

For relatively brittle materials where Yt 6
1
2
Yc the fracture condition also has to

be considered. As was shown by Christensen, this condition can be reduced to the

maximum principal stress criterion referred to above.

The strength criteria for orthotropic materials (such as layers in composite

laminates) are discussed in Chap. 5.

1.11 Outline of a Comprehensive Plate Analysis

The material presented in this chapter should be considered from the point of view

of the analysis of plate structures. The mathematical formulation necessary for the

analysis of such structures includes:

– Kinematic assumptions that specify a distribution of displacements throughout

the plate.

– Strain-displacement relationships that may be linear or geometrically nonlinear

(in the latter case, the strains are nonlinear functions of displacements).

– Constitutive relationships representing stresses in terms of strains. These rela-

tionships can be linear (elastic case) or nonlinear (e.g., elastic-plastic case). Other

factors, such as viscosity or environmental effects can also be incorporated in

these relationships.

– Integral functions of stress and stress moments about the middle plane, i.e. stress

resultants and stress couples, respectively.

– Equations of equilibrium or motion.

– Boundary conditions.

– Initial conditions that have to be considered in dynamic problems (not discussed

in this chapter).

Besides solution based on the exact or approximate integration of the equations

of equilibrium (or motion), an alternative approach is based on using one of the

energy methods. In such cases, equations of equilibrium are replaced with the

corresponding energy formulation but the boundary conditions still have to be

satisfied. While in the Rayleigh-Ritz method it is sufficient to satisfy only kinematic

boundary conditions, static conditions must also be satisfied using other methods.

The solution of the problem can be sought in terms of displacements or

alternatively, in terms of the deflection of the plate and the stress function. In both
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cases, the boundary conditions can be represented in terms of the corresponding

unknowns.

The environment, i.e. temperature (and/or moisture), has a dual effect on the

solution. Environment-induced terms appear in the strain-displacement relation-

ships and subsequently, in the equations of equilibrium and energy expressions.

Boundary conditions formulated in terms of stress resultants and stress couples are

also affected by such terms. In addition, environmental factors influence material

“constants,” such as stiffness, coefficients of thermal expansion, strength, etc.

These effects affect the solution of heat transfer problems and the distribution of

temperature throughout the plate. As a result of a nonuniform temperature, stiffness

terms in the equations of equilibrium and in energy formulations may include

variable coefficients dependent on coordinates.

Once the solution for displacements (and for the stress function, if it is included

in the analysis) is generated, the stresses can be evaluated throughout the plate using

the strain-displacement and constitutive relations. Subsequently, strength criteria

yield the prediction of the strength of the plate. In relevant situations, i.e. if the

plate material is brittle, the possibility of fracture also has to be considered.

At the closure of this chapter we should discuss the relationship between

analytical and numerical solutions. The latter solutions are usually based on finite

element, finite difference or boundary element methods. These solutions are only

as accurate as the assumptions and theories employed to develop the corresponding

numerical procedure. In general, exact solutions, if available, are always preferred.

Although the number of plate problems where exact solutions are available is

limited, they may be used as benchmarks to check the accuracy of numerical solu-

tions. As will be shown in subsequent chapters, approximate solutions representing

deformations of rectangular or circular plates in double or single Fourier series

(independent variables being in-plane coordinates) are available for a number of

boundary conditions. These solutions are very accurate as long as the series exhibit

a satisfactory convergence. Such convergence is usually obtained for deformations

but it is worse for stresses that involve derivatives of the Fourier series.

The number of available Fourier-series solutions for plates being limited, numer-

ical methods should be applied for the cases where the plate has a complicated

geometry or boundary conditions differ from those suitable for an analytical

solution. In all situations, it is important to accurately reflect the actual boundary

conditions (see for example, the discussion in Sect. 2.2).

The choice of the theory of plates employed in the analysis depends on the

plate geometry and anticipated deformations. If transverse deflections remain small

(less than about one-half the thickness of the plate), geometric nonlinearity can

often be neglected. On the other hand, if the plate is relatively thick or exhibits

high transverse shear deformability, a first order or higher order shear deformation

theory has to be employed. The need for such a theory is seldom encountered in the

analysis of metallic plates because of their relatively large side-to-thickness ratios.

The situation for composite and particularly for sandwich plates is different and

shear-deformable theories are more often applied to their analysis as is discussed in

Chap. 5 which includes an example of the first order theory. A possible alternative
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to using a first order or higher order theory in the analysis of plates is using a

three-dimensional finite element procedure. Such modeling can be conducted using

a commercial software finite element package.
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Chapter 2

Static Problems in Isotropic Rectangular Plates

Plate structures are often subject to static loads that can cause the loss of strength

or instability. The solution of relevant problems can be undertaken either employing

equations of equilibrium or applying energy methods. This chapter illustrates the

formulation and solution of representative problems for isotropic rectangular plates.

While mathematical formulations presented in the chapter can be employed in

a finite element or finite difference analysis, solved problems are useful either

as benchmark solutions or in cases where the plate can accurately be described

by the corresponding model. The chapter illustrates various boundary conditions

encountered in applications and presents a discussion on their relevance. The effect

of initial imperfections that are present in numerous situations is discussed in

detail. The approach to the analysis of plates on an elastic foundation that is

often necessary in civil engineering applications is elucidated. The analysis of

stringer-reinforced plates is also included since stringers are often employed to

increase the strength and stability of plates. The discussion of stability includes the

peculiarities of the postbuckling response of plates that is important in numerous

design applications. Besides solutions employing the integration of the equation of

equilibrium, the energy (Rayleigh-Ritz) approach to the analysis is demonstrated.

Although problems considered in this chapter have been studied for a long time,

their value and practical applicability have not diminished. Besides the introduction

to the analysis of rectangular isotropic plates, we elucidate a number of application

aspects and limitations to the present solutions that are seldom discussed in

textbooks on the theory of plates. This discussion may be valuable to engineers

working on design and development of isotropic plate structures.

2.1 Classical Navier’s Problem

The first solution of the stress problem for plate structures was presented by Navier.

The problem that he considered dealt with a rectangular isotropic plate simply

supported along all edges and subject to a lateral load that was represented in double

V. Birman, Plate Structures, Solid Mechanics and Its Applications 178,

DOI 10.1007/978-94-007-1715-2 2, © Springer ScienceCBusiness Media B.V. 2011
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Fig. 2.1 Rectangular plate

subject to transverse pressure

y

b

o a x
p(x, y)

z

Fourier series. As we will see in this paragraph, such problem is applicable to an

amazing variety of structures found in diverse applications.

The analysis is conducted by the following assumptions:

1. The problem is physically linear, i.e. the stresses remain in the linear elastic

range;

2. The problem is geometrically linear, implying linear strain-displacement rela-

tionships;

3. Transverse shear deformability of the plate can be disregarded, i.e. the classical

thin plate theory is applicable.

The second and third assumptions are usually applicable to metallic plates that

have the ratio of the thickness to the length of the shorter edge smaller than 1/20 and

undergo maximum deflections that are smaller than half-thickness of the plate.

The plate of length and width, a and b, respectively, that is subject to an

arbitrary distributed transverse pressure p(x,y) is shown in Fig. 2.1. The equation

of equilibrium used in the analysis is simplified since there are no applied in-plane

loads. In addition, bending deformations of the plate being small, they do not cause

stretching of the middle plane. Accordingly, Eq. 1.96 becomes

Dr 4w D p.x; y/ (2.1)

The boundary conditions corresponding to simply supported edges where deflec-

tions and bending stress couples are equal to zero are available from (1.88) and

(1.58):

x D 0; x D a W w D 0; Mx D �D

�

@2w

@x2
C �

@2w

@y2

�

D 0 !
@2w

@x2
D 0

y D 0; y D b W w D 0; My D �D

�

@2w

@y2
C �

@2w

@x2

�

D 0 !
@2w

@y2
D 0

(2.2)

The simplification of conditions for stress couples in (2.2) is possible because the

deflections of the plate do not vary along the corresponding edges. For example, at

x D 0 w D 0, so that @2w

@y2 D 0, etc.
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Note that we used two out of four boundary conditions at each edge of the plate.

There is no need to address “in-plane” boundary conditions since they refer to in-

plane displacements at the middle plane of the plate and in-plane stress resultants. In

the present geometrically linear problem, such displacements and stress resultants

are equal to zero (however, they would not necessarily be negligible, if the problem

involved geometrically nonlinear terms).

The load that can be an arbitrary function of the coordinates is represented in

double Fourier series

p.x; y/ D

1
X

mD1

1
X

nD1

pmn sin˛mx sin ˇny (2.3)

where m and n are integer numbers, ˛m D m�
a

; ˇn D n�
b

, and the coefficients of

series are available from

pmn D
4

ab

b
Z

0

a
Z

0

p.x; y/ sin ˛mx sin ˇnydxdy (2.4)

For example, if the applied pressure is uniformly distributed over the plate surface,

i.e. p D p0 (p0 being constant), pmn D 16p0

mn�2 . If the applied load is represented by a

concentrated force P D P.x D �; y D �/; pmn D 4P
ab

sin ˛m� sin ˇn�:

Obviously, the number of terms in series (2.3) cannot be infinite, i.e. in reality,

these series should be truncated. The convergence of series (2.3) and accordingly

the number of terms retained in these series depend on the applied load function

p(x,y). If this is a monotonous function of coordinates, several terms are sufficient

to accurately represent it in double Fourier series. On the other hand, in the case of

a concentrated force or if pressure is applied over a limited area of the plate, the

number of terms necessary to retain in (2.3) may be quite large.

The choice of the deflection function is guided by two requirements, i.e. it must

satisfy both the equation of equilibrium as well as the boundary conditions. In the

case of a simply supported plate boundary conditions (2.2) are identically satisfied

if the deflection is assumed in the form

w D

M
X

mD1

N
X

nD1

Wmn sin ˛mx sin ˇny (2.5)

where M and N correspond to the terms retained in truncated series (2.3).

The substitution of (2.5) and (2.3) into the equation of equilibrium (2.1) yields

M
X

mD1

N
X

nD1

h

D.˛2
m C ˇ2

n/
2
Wmn � pmn

i

sin ˛mx sin ˇny D 0 (2.6)
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Equation 2.6 must be satisfied at all points within the domain 0 � x � a; 0 �

y � b. Obviously, this can be achieved only if the coefficients at every product of

trigonometric functions are equal to zero. This yields the values of amplitudes of

harmonics in (2.5):

Wmn D
pmn

D
�

˛2m C ˇ2
n

�2
(2.7)

Accordingly,

w D
1

D

M
X

mD1

N
X

nD1

pmn
�

˛2
m C ˇ2

n

�2
sin ˛mx sin ˇny (2.8)

In numerous applications the analysis of deformations is important only to

ensure that the geometrically linear theory adopted in the analysis is applicable (the

analysis is usually concerned with the stresses and the check of strength). At large

deflections, typically exceeding one-half the plate thickness, a discrepancy between

the linear and nonlinear solutions cannot be ignored and the analysis should be

carried numerically using a nonlinear software package.

The constitutive relations for an isotropic plate (1.19) can be simplified utilizing

the assumption of plane stress, so that �3 D �13 D �23 D 0. Then, using the Lame

constants according to (1.20) and replacing the subscripts 1 ! x; 2 ! y; 3 ! z

yields the bending and in-plane shear stresses:

�x D
E

1 � �2

�

"x C �"y

�

�y D
E

1 � �2

�

"y C �"x

�

�xy D Gxy (2.9a)

In the case where the linear solution is acceptable, deflections found by (2.8)

can be substituted into the changes of curvature and twist (1.29), while in-plane

strains given by (1.28) are equal to zero. The substitution of (1.29) into constitutive

relations (2.9a) yields the bending and in-plane shear stresses that are linear

functions of the thickness coordinate:

�x D
Ez
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X
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˛2
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�xy D �
Ez

1 C �
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nD1

˛mˇnWmn cos ˛mx cos ˇny (2.9b)

Alternatively, using (2.8)
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The stresses given by (2.9b) and (2.9c) reach extreme (algebraically maximum

and minimum) values on the plate surfaces z D ˙h
2

and are equal to zero at the

middle plane. The convergence of series (2.9b) and (2.9c) is generally worse than

that of series (2.5).

Although the stresses can directly be calculated by (2.9), numerous references

present stress couples, instead of the stresses. The stress couples are obtained by the

substitution of (2.8) into (1.58):
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The extreme stresses given by (2.9c) with z D ˙h
2

are related to the stress

couples by
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Fig. 2.2 Contribution of

twisting stress couples to the

force applied by the plate to

the edge support structure

MAC

C A B

MAB

dy dy

MxydyMxy
∂y

∂Mxy
+

The previous part of this paragraph presents the comprehensive solution for a plate

subject to an arbitrary pressure. In addition, it is sometimes necessary to estimate

the load applied by the plate to the supporting structures. One of the reasons is the

proof of the assumption that these structures provide simple support to the plate, i.e.

the deflections of the plate at the edges really approach zero. If the rib supporting the

edge is relatively flexible, such assumption becomes unacceptable and it is necessary

to analyze the plate with elastically supported edges.

Consider two adjacent infinitesimal elements of the edge x D const, each of

them of length dy. As is reflected in Fig. 2.2, the twisting moment varies along the

edge, so that it is equal to MAB D Mxydy for element AB and MAC D .Mxy C
@Mxy

@y
dy/dy for element CA. The moment acting on each of two elements can be

replaced with a couple of forces shown in Fig. 2.2. Accordingly, the force per unit

length of the edge at point A that includes the contributions of both the transverse

shear stress resultant as well as the twisting moment becomes

Vx D Qx C
@Mxy

@y
(2.12a)

Similarly, along the edges y D const, the edge force per unit length is given by

Vy D Qy C
@Mxy

@x
(2.12b)

Transverse shear stress resultants can be expressed in terms of stress couples

from the static versions of the last two equations (1.81). Subsequently, substituting

the stress couples in terms of deflections according to (1.58), we obtain



2.1 Classical Navier’s Problem 59

Qx D �D

�

@3w

@x3
C

@3w

@x@y2

�

Qy D �D

�

@3w

@y3
C

@3w

@y@x2

�

(2.13)

The combination of Eqs. 2.10, 2.12 and 2.13 yields the expressions for the forces

per unit length of each edge of the plate shown in Fig. 2.1:

x D 0; x D a W Vx D

M
X

mD1

N
X

nD1

pmn˛m
�

˛2m � .2 � �/ ˇ2
n

�

�

˛2
m C ˇ2

n

�2
cos ˛m Ox sin ˇny

y D 0; y D b W Vy D

M
X

mD1

N
X

nD1

pmnˇn

�

ˇ2
n � .2 � �/ ˛2

m

�

�

˛2
m C ˇ2

n

�2
sin ˛mx cos ˇn Oy

(2.14)

where Ox D 0 or a; Oy D 0 or b. Note that Eq. 2.14 determine the load applied by

the edge of the simply supported plate to the supporting structure and vice versa, the

force applied by the structure to the plate.

The reactions at the corners may be of particular interest to designers of

rectangular hatch covers. As was shown in numerous references on theory of plates

(e.g., Timoshenko and Woinowsky-Krieger 1959, and Ventsel and Krauthammer

2001), at the corner of two supported edges such reactions are obtained as

R D 2Mxy D �

�

2D .1 � �/
@2w

@x@y

�

^
x ;

^
y

(2.15)

where
�

^
x;

^
y

�

are the coordinates of the corner. The substitution of (2.8) yields
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(2.16)

There are numerous tabulated results available to engineers designing simply

supported rectangular plates under a variety of loads (e.g., Timoshenko and

Woinowsky-Krieger 1959 and Roark 1965). We illustrate here results shown in the

former reference. For a simply supported rectangular plate with the Poisson ratio

equal to 0.3 that is subject to a uniform pressure, the maximum deflection can be

represented by

wmax D w

�

a

2
;

b

2

�

D k1

p0a
4

D
(2.17)
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Table 2.1 Coefficients in the expressions for maximum deflections and

bending stress couples for a simply supported plate subject to a uniform

pressure (Poisson ratio � D 0:3)
b
a

1.0 1.5 2.0 3.0 4.0 1

k1 0.00406 0.00772 0.01013 0.01223 0.01282 0.01302

k2 0.0479 0.0812 0.1017 0.1189 0.1235 0.1250

k3 0.0479 0.0498 0.0464 0.0406 0.0384 0.0375

The maximum bending stress couples occur at the center of the plate and are

given by .b � a/:

Mx;max D k2p0a
2; My ;max D k3p0a

2 (2.18)

The coefficients in (2.17) and (2.18) are shown for several representative plate

aspect ratios in Table 2.1.

As is obvious from Table 2.1, increasing the length of a rectangular plate subject

to a uniform pressure results in larger deflections and a larger maximum principal

stress �x . However, as the plate becomes longer, the detrimental effect of further

separation of short edges on maximum deflections and principal stresses at the

center weakens since they are mostly limited by the support provided by the long

edges of the plate (x D 0 and x D a). At large values b/a the plate bends into a

cylindrical surface, so that the support provided by short edges to the central section

of the plate becomes negligible.

It is also useful to refer here to tabulated results for the maximum transverse

shear stress resultants, edge reactions, and corner forces provided by Timoshenko

and Woinowsky-Krieger (1959). Maximum edge reactions vary in a narrow range

Vx ;max D ıp0a; Vy ;max D ı1p0a where a is the shorter edge of the plate, while

0:42 � .ı; ı1/ � 0:50, the lower limit corresponding to a square plate and the

higher limit referring to the plate with an infinite aspect ratio. The corner reaction

varies dependent on the aspect ratio in the range 0:065pb2 � jRj � 0:095pb2.

Example 2.1: Estimate of the Validity of the Assumption of Simple Support for a

Plate Subject to Uniform Pressure. The estimate of the accuracy of the solution

obtained by assumption that support structures prevent deflections of the edges of

the plate can be obtained by considering a plate that is simply supported along

two opposite edges and elastically supported by flexible beams along the other

couple of edges. Such results were tabulated for square plates by Timoshenko and

Woinowsky-Krieger (1959, p. 218). The results for deflections and stress couples

presented in this reference depend on the coefficient

� D
EI

Da

where I is the moment of inertia of the flexible beams.

Consider the case where the side of a 10 mm thick square plate (and the length

of the supporting beams) is equal to 1.0 m. A light rolled steel S shape profile
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S75 � 8:5 has the height d D 76mm, moment of inertia I D 1:05 � 106mm4 and

weighs 8.5 kg/m (Beer and Johnston 1991). The modulus of elasticity of the plate

and supporting beams is E D 200GPa and the Poisson ratio is equal to � D 0:3.

Accordingly,

� D
EI

Da
D

12
�

1 � �2
�

I

h3a
D

12 � 0:91 � 1:05 � 10�6

10�6 � 1:0
D 11:466

Comparing the maximum deflection and bending couples corresponding to such

structure (see the table on page 218 of Timoshenko and Woinowsky-Krieger 1959)

to those of the plate that is simply supported along all edges .� D 1/we observe

that the error is less than 5%, even though the beams are very flexible. Accordingly,

the assumption of simply supported edges is justified, with the exception of designs

that involve very long and slender beams supporting the edges of the plate.

Example 2.2: Convergence of Series Representing Deflections of a Simply Supported

Square Plate Subject to Uniform Pressure. Consider a square plate .a D b/ subject

to uniform pressure p D p0. The solution (2.8) yields the maximum deflection at

the center of the plate:

w
�a

2
;

a

2

�

D
1

�4D

M
X

mD1

N
X

nD1

pmna4

.m2 C n2/
2

sin
m�

2
sin

n�

2

D
16p0a

4

�6D

M
X

mD1

N
X

nD1

1

mn.m2 C n2/
2

sin
m�

2
sin

n�

2

where m and n are odd numbers. It is easy to observe that even values of these

integers correspond to asymmetric about the center of the plate pressure and

deflections. Such asymmetry is physically meaningless and the corresponding terms

are equal to zero as also follows from (2.4).

The corresponding stresses and stress couples can be obtained from (2.9c) and

(2.10). It is evident that the convergence of the series for the stresses and stress

couples is identical; accordingly, we will present here the results for the latter. At

the center of the plate the shear stress couple is equal to zero, while the bending

stress couples are
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Naturally, it is appropriate to use M D N , since in a square plate Mx

�

a
2
; a
2

�

D

My

�

a
2
; a
2

�

.

Even a casual inspection of the expressions for deflections and stress couples at

the center of the plate leads to the conclusion that the convergence of deflections

should be better than that of stress couples or stresses. The reason is that the terms

in the series for stress couples contain squares of integralsm and n in the numerator,

while the series for deflections does not include such terms. Limiting the analysis

to the first four terms, i.e. the combinations .m; n/ D .1; 1/ ; .3; 1/ ; .1; 3/ ; .3; 3/,

we obtain

�6D

16p0a4
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D 0:25 � 2 � 0:00333 C 0:0003429 D 0:2437
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D 0:325 � 0:03097 � 0:01232 C 0:00401 D 0:28572

As was indicated by Timoshenko and Woinowsky-Krieger (1959) and as follows

from the present computations, the result obtained retaining the first term in the

expansion for deflections is only 2.5% larger that the exact solution. However, we

can also observe that the convergence of the series for bending couples is not as good

as that for deflections, i.e. it is necessary to retain more terms in the corresponding

series. Thus, it may be necessary to retain a large number of terms in the solution of

the Navier problem to accurately evaluate stresses in the plate.

Example 2.3: Navier’s Solution in Cases of Concentrated Loads and Loads Applied

Over a Limited Area (Timoshenko and Woinowsky-Krieger 1959). In numerous

applications the load is distributed over a limited area of the plate. An example is a

wheel of a vehicle supported by the plate of a deck. Such plates are designed for the

most unfavorable loading case assuming that the pressure from the wheel is either

uniformly distributed over its footprint or simply replacing it with a concentrated

force.

Consider a simply supported plate loaded by a force F that is uniformly

distributed over the rectangular region � � u
2

� x � � C u
2
; � � v

2
� y � � C v

2

(Fig. 2.3). The coefficients in series (2.4) representing the load become
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Fig. 2.3 Plate loaded over a

rectangular region
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Subsequently, the analysis is identical to that for the case where pressure is

uniformly distributed over the entire surface of the plate.

In case where the force can be assumed concentrated at the point .�; �/, so that

u ! 0; v ! 0, the coefficients in series (2.4) are

pmn D
4F

ab
sin ˛m� sin ˇn�

The deflections of the plate subject to a concentrated force F are given by
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The convergence of series (2.4) approximating a concentrated force or a force

distributed over a small area is inferior to that in the case where the series represent

a distributed pressure. Similarly, the series for deflections, and particularly series for

bending stresses or couples, do not exhibit good convergence observed in Example

2.2. For example, the deflections of a square plate subject to the force applied at the

center are given by
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D k0 F a2

D

where m and n are odd integrals and k0 is a numerical coefficient.

Retaining four terms .m; n D 1; 3/ Timoshenko and Krieger (1959) obtained

k0 D 0:01121 that is 3.5% smaller than the “exact” solution. In case where nine

first terms are retained .m; n D 1; 3; 5/ the coefficient k0 D 0:01142 that is 1.56%
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smaller than the accurate solution (Ugural 1999). Predictably, the convergence of

series for the stresses is even worse.

It should be noted that a “concentrated force” applied to the plate is physically

impossible. Such force would create an infinite pressure at the point of application.

Even if the force was applied over a very small area, it would simply penetrate the

plate. It is obvious that the state of stress in the vicinity to the concentrated force

is three-dimensional, i.e. the plane-stress assumption is not applicable due to high

transverse shear and normal stresses acting in the thickness direction. Approximate

analytical solutions of the corresponding problems have been suggested by a number

of researchers (the reference to these solutions can be found in the books by

Timoshenko and Woinowsky-Krieger 1959; Ugural 1999; Ventsel and Krauthammer

2001). An alternative approach is based on using a three-dimensional finite element

analysis in the vicinity to the point of application of the concentrated force

accounting for the local stresses.

2.2 Boundary Conditions in Realistic Structures

The solution shown in the previous paragraph is both simple and explicit. However,

it is applicable only if the plate is simply supported. Such boundary conditions are

quite typical in applications.

Simple support corresponds to the situation where the edge is prevented from

transverse deflections, while its rotations are unconstrained. The former requirement

implies that the support structure has an infinite stiffness in the plane of the edge.

For example, a bulkhead shown in Fig. 2.4 almost completely prevents deflections in

the z-direction (the bulkhead is shown with stringers since an unsupported bulkhead

would be too vulnerable to lateral loads and to in-plane compression). At the same

time, the torsional resistance of the bulkhead to rotations of the plate around the

edge (around the y-axis) is relatively small. While this resistance could be evaluated

p(x, y) p(x, y)

x

y

w=0

Mx ≈ 0

side view

bulkhead

z

Fig. 2.4 Support provided to the plate by a bulkhead
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Fig. 2.5 Support provided to

the plate by a stringer. Case

(a): open profile stringer

provides simple support, case

(b): closed profile stringer

provides elastic clamping

p(x, y)
x

y

Case (a)

Mx = 0

w = 0

w = 0

p(x, y)
Mx = 0

side view 

Case (b) side view only
Mx ≠ 0

w = 0

p(x, y)

z

numerically (or even analytically), it is customary to assume that the conditions at

the edge of the plate are w D 0; Mx D 0 corresponding to simple support. Note that

neglecting rotational stiffness of the bulkhead implies that elastic clamping of the

plate supported by the bulkhead and associated with such stiffness is disregarded.

This is a conservative assumption that results in an overestimate of deflections and

stresses in the plate.

The other case where the edge of the plate can be assumed simply supported

may occur if the support structure represents a stringer or frame as shown in

Fig. 2.5. While the stringer is almost always sufficiently stiff to prevent deflections

of the plate (w D 0), its torsional stiffness that defines a degree of resistance

to rotation of the plate about the support structure depends on geometry. The

torsional stiffness of open-profile beams is much smaller than that of closed-profile

counterparts. Accordingly, while the edge supported by an open profile stringer

or frame can usually be modeled by assumption of simple support (Fig. 2.5, case

(a)), this assumption may be too conservative if the stringer or frame has a closed

profile (Fig. 2.5, case (b)). On the other hand, the assumption that closed-profile

stringers and frames provide complete clamping may lead to an underestimation

of deflections and stresses. Accordingly, it is preferable to solve such problem

numerically or develop an analytical solution accurately modeling torsional stiffness

of the support.

Finally, it is necessary to discuss the case of continuous plates supported by

identical stringers (Fig. 2.6). An interesting situation occurs if the plate is subject

to uniform pressure and the spacing between the stringers is equal. As is reflected

in Fig. 2.6, in such case each section of the plate between stringers deforms as if

it was clamped (w D w;x D 0). Such clamping is not due to special structural

arrangements (in fact, stringers can have open profile and negligible torsional
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Fig. 2.6 Continuous plate

supported by equally-spaced

stringers and subject to

uniform pressure. As a result

of symmetry of load and

geometry, the plate is

effectively clamped at each

stringer

p(x, y) = p0

s sss

x

y

w,x = 0

w = 0

z

stiffness). Instead, it is a result of symmetry of both the load and geometry about

each stringer. However, the designer has to be cautious adopting the assumption that

the sections of the plate are clamped and accordingly, reducing its thickness based

on the analysis of stresses in clamped plates that are smaller than those in otherwise

identical plates with simply supported edges. This is because if the load becomes

nonuniform (for example, only one of adjacent sections of the plate is subject to

pressure), symmetry is lost and the corresponding section of the plate can rotate

about the stringer. It is necessary to remember that a simply supported edge results

in a conservative design that is often justified in engineering applications, while the

assumption that the edge is clamped may lead to underestimating the stresses in the

plate.

A further discussion on the analysis of continuous plates is presented below in

Example 2.6. As follows from this example, if symmetry of loading and/or structural

symmetry about the supports is violated, the exact solution is still available, although

it involves a time consuming procedure.

2.3 Representative Analytical Solution: Levy’s Method

As is clear from the previous discussion, there are numerous cases where the

assumption of simply supported edges is not acceptable. For example, if a deck

supported by identical parallel stringers (Figs. 2.6 and 2.7) is subject to uniform

pressure, the symmetry of the structure and the load about each stringer enables us

to model the edges of each section supported by these stringers as clamped. If the

other edges are supported by frames with a negligible torsional stiffness, they can be

assumed simply supported. Therefore, in this case the plates of the deck are clamped

at two opposite edges and simply supported at the other two edges.

The Levy method deals with plates that have a couple of simply supported

parallel edges, while the other couple of edges can be arbitrary supported. In
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Fig. 2.7 Continuous plate

supported by parallel

stringers

x = 0

x

y

p(x,y)

x3x1 x2

0

b

y

a1 a2 a3

simple
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Fig. 2.8 Plate is simply

supported at the edges x D 0

and x D a. The boundary

conditions along y D ˙ b
2

are

arbitrary

y

xab/2

b/2

particular, if the edges x D 0 and x D a are simply supported, while the boundary

conditions along the edges y D � b
2

and y D b
2

are arbitrary (Fig. 2.8), the solution

of (2.1) is sought in the form

w D wh C wp D

M
X

mD1

.fm.y/C gm.y// sin ˛mx (2.19)

where wh and wp denote the solution of the homogeneous equation obtained from

(2.1) and a particular integral of (2.1), respectively, while fm.y/ and gm.y/ are

functions that have to satisfy the boundary conditions along the y-edges. The

coordinate system in Fig. 2.8 is different from those in Fig. 2.1. This choice is

in compliance with standard coordinate systems and notations employed in the

solution of the present problem and in the analyses of continuous plates in literature.

If the edges y D ˙ b
2

have identical boundary conditions and the load is symmetric

about the plate centerline, this choice of the coordinate system enables us to

simplify the solution as shown below. Obviously, series (2.19) satisfy the boundary

conditions along the simply supported edges x D 0 and x D a. The substitution of

the first series in (2.19) into the homogeneous version of (2.1) yields
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M
X

mD1

�

d 4fm

dy4
� 2˛2m

d 2fm

dy2
C ˛4mfm

�

sin ˛mx D 0 (2.20)

This equation has to be satisfied at any point within the interval 0 < x < a.

Accordingly, the terms in square brackets must be equal to zero. The solution of

the resulting ordinary fourth-order differential equation yields

fm D C1m cosh˛my C C2my sinh˛my C C3m sinh˛my C C4my cosh˛my (2.21)

where Cim .i D 1; 2; 3; 4/ are constants that should be specified from the bound-

ary conditions. Note that the first two terms are symmetric about y D 0 and the last

two terms are antisymmetric about this axis.

The particular integral can be specified if the load is represented in series

p .x; y/ D

M
X

mD1

pm.y/ sin˛mx

pm.y/ D
2

a

a
Z

0

p .x; y/ sin ˛mxdx (2.22)

Now the functions gm.y/ have to be found from (2.1) which, upon the substitu-

tion of (2.22), and the corresponding terms in (2.19) yields

M
X

mD1

�

d 4gm

dy4
� 2˛2m

d 2gm

dy2
C ˛4mgm �

pm.y/

D

�

sin˛mx D 0 (2.23)

Equation 2.23 is satisfied at every point within 0 < x < a if

d 4gm

dy4
� 2˛2m

d 2gm

dy2
C ˛4mgm �

pm.y/

D
D 0 (2.24)

The solution of (2.24) depends on the form of the functions pm.y/. Once this

solution is available, constants of integration Cim .i D 1; 2; 3; 4/ are obtained

by the substitution of (2.19) where fm.y/ is given by (2.21) into the boundary

conditions along the edges y D � b
2

and y D b
2
.

A simplification is possible if the load is symmetric about the x-axis and the

boundary conditions along y D b
2

and y D � b
2

are identical. Then the deflections

of the plate are symmetric about the x-axis, so that w.y/ D w .�y/. Obviously, this

can only be achieved if C3m D C4m D 0 in (2.21). Accordingly, for such symmetric

problems

fm D C1m cosh˛my C C2my sinh˛my (2.25)
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The following examples concentrate on plates with various representative bound-

ary conditions. In all examples, the plate is subject to uniform pressure as is rather

typical in applications.

Example 2.4: Plate with Two Simply Supported and Two Clamped Edges Subject to

Uniform Pressure p0. Consider the case shown in Fig. 2.8 where the edges y D ˙ b
2

are clamped. Equation 2.22 yields pm D 4p0
m�

, m being an odd number. A particular

integral of (2.24) is

gm D
4p0a

4

m5�5D

Now using the condition of symmetry about y D 0, the substitution of fm C gm,

the former function being given by (2.25), into the boundary conditions y
�

b
2

�

D
@w. b

2 /
@y

D 0 yields the system of two equations with respect to constants of

integration:

2

4

cosh m0
b

2
sinh m0

˛m sinh m0 m0 cosh m0 C sinh m0

3

5

�

C1m

C2m

�

D �

�

gm

0

�

(a)

where m0 D m�b
2a

.

Once the constants of integration are found from (a), the stresses can be

determined from equations (1.31) where the middle plane strains are equal to

zero, (1.29) and (1.19). Subsequently, a strength criterion should be applied to

predict whether the plate fails or remains capable of carrying the prescribed applied

pressure. Alternatively, it is possible to solve the problem in terms of unknown

applied pressure and specify its allowable value from the strength criterion.

Example 2.5: Plate with Two Simply Supported and Two Elastically Supported

Edges Subject to Uniform Pressure (Timoshenko and Woinowsky-Krieger 1959).

Consider now the problem shown in Fig. 2.8 assuming that the edges x D 0; a

are simply supported while the edges y D ˙ b
2

are supported by ribs of a finite

flexural stiffness EI that have negligible torsional stiffness (open-profile flexible

stringers).

The boundary conditions along y D ˙ b
2

are identical and since the load is

symmetric about the centerline y D 0 it is justified to represent the homogeneous

solution by (2.25). Then two conditions that have to be satisfied are

My

�

b

2

�

D 0

Vy

�

b

2

�

D EI
@4w

�

b
2

�

@x4
(b)
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The substitution of the expressions for the stress couple and transverse shear

stress resultant given by (1.58), (2.12b) and (2.13) in terms of the deflection into

boundary conditions (b) yields

@2w
�

b
2

�

@y2
C �

@2w
�

b
2

�

@x2
D 0

Œ6pt�
@3w

�

b
2

�

@y3
C .2 � �/

@3w
�

b
2

�

@x2@y
D

EI

D

@4w
�

b
2

�

@x4
(c)

The substitution of (2.19) with fm given by (2.25) and gm by the formula in

Example 2.4 into boundary conditions (c) yield the system of two equations with

respect to constants C1m and C2m. The solution of this system is

C1m D
4p0a

4

m5�5D

�
�.1 C �/ sinh m0 � �.1 � �/m0 cosh m0 � �m� .2 cosh m0 C m0 sinh m0/

.3 C �/ .1 � �/ sinh m0 cosh m0 � .1 � �/2m0 C 2�m�cosh2m0

C2m D
4p0a

3

m4�5D

�
� .1 � �/ sinh m0 C �m� cosh m0

.3 C �/ .1 � �/ sinh m0 cosh m0 � .1 � �/2m0 C 2�m�cosh2m0

where the coefficient � is defined as in Example 2.1. Tabulated results for a square

plate can be found in the book of Timoshenko and Woinowsky-Krieger (1959).

Example 2.6: Approach to the Analysis of Continuous Plates. Continuous plates

shown in Figs. 2.6 and 2.7 may be subject to different loads within each section.

Furthermore, the spacing of parallel stringers may be unequal. In such cases, the

assumption that the stringers provide clamping to the adjacent sections of the plate

discussed in Sect. 2.2 becomes invalid and the analysis has to rely on the approach

similar to the three-moment equation method for continuous beams.

Consider the three-span plate shown in Fig. 2.7 where the edges are simply

supported. The plate is reinforced by two stringers that are sufficiently stiff

to prevent deflections but whose torsional stiffness is insignificant (open-profile

beams). Then, if the lengths of three sections of the plate are unequal or if the load

applied to the plate differs from one section to the other, the plate will experience

rotations at the cross sections x1 D a1; x2 D 0 and x2 D a2; x3 D 0.

The kinematic continuity of the sections of the plate over the stringers dictates

the following conditions:
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x1 D a1; x2 D 0 W
@w1

@x1
D
@w2

@x2
; w1 D w2 D 0

x2 D a2; x3 D 0 W
@w2

@x2
D
@w3

@x3
; w2 D w3 D 0 (d)

where deflections wi refer to the i-th section of the plate.

Additional conditions can be formulated by considering the stress couples that

are applied to each adjacent section over the stringer. The torsional stiffness of the

stringers being assumed negligible, the equilibrium of these stress couples yields

x1 D a1; x2 D 0 W M .1/
x D M .2/

x

x2 D a2; x3 D 0 W M .2/
x D M .3/

x (e1)

where the superscripts identify the corresponding section. Note that the expressions

for the stress couples along the stringers can be simplified. This is because
@2w

@y2
D 0 along the stringers where deflections remain constant and equal to zero.

Accordingly, conditions (e1) are replaced with

x1 D a1; x2 D 0 W
@2w1

@x21
D
@2w2

@x22

x2 D a2; x3 D 0 W
@2w2

@x22
D
@2w3

@x23
(e2)

The outer edges parallel to the stringers are simply supported, so that

x1 D 0 W w1 D M .1/
x D 0

x3 D a3 W w3 D M .3/
x D 0 (f1)

These conditions can be replaced with

x1 D 0 W w1 D
@2w1

@x21
D 0

x3 D a3 W w3 D
@2w3

@x23
D 0 (f2)

The solution is now obtained by applying the Levy method to each plate section.

For simply supported edges y D 0 and y D b the solution for the i-th section can

be represented by
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free edge

simple
support

support
by web 

Fig. 2.9 Section of the flange of an I-beam between the web and two brackets (shaded). The flange

may be clamped or simply supported at the web. Brackets usually provide simple support

wi D

M
X

mD1

�

C
.i/
1m cosh˛ixi C C

.i/
2mxi sinh ˛ixi C C

.i/
3m sinh˛ixi C C

.i/
4mxi cosh˛ixi

C g.i/m .xi /

�

sin ˇmy (g)

where ˛mi D m�
ai

, g
.i/
m .x/ is a particular integral for the corresponding section that

depends on the applied load and C
.i/
rm .r D 1; 2; 3; 4/ are constants of integration.

There are 12 constants of integration in Eq. g for each index m since the plate

consists of three sections. These constants can be determined from six equations (d),

two equations (e2) and four equations (f2). Other continuous plates can be treated

using the same approach. The advantage of the present solution is that it is exact.

However, in the case of a larger number of sections or different boundary conditions

along the edges y D 0 and y D b, the solution may become too cumbersome so

that it may be preferable to apply numerical methods. A finite torsional stiffness of

stringers could also be incorporated in the solution.

Once the deflections of each span are determined, the stresses can be found using

the strain-displacement and constitutive relations. The deflections being affected

by the constraint on rotations that adjacent spans superimpose on each other, the

corresponding solution for the stresses also reflects this constraint.

There are numerous problems where the Levy method is useful, in spite of the

necessity to conduct straightforward but lengthy transformations. An example of

such problems is demonstrated in Fig. 2.9 where the flange of an I-beam supported

by the web and two brackets can be modeled as a plate clamped or simply supported

along one edge (web), simply supported by the brackets and free along the fourth

edge. Brackets similar to those in Fig. 2.9 are often employed in welded I-beams

to increase the stability of the web and of the compressed flange. The assumption

that the brackets provide simple support to the flange is usually justified. If the

transverse load is symmetric about the web, the corresponding edge of the flange

can be assumed clamped. If the symmetry of the transverse load about the web is in
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question, the corresponding edge should be treated as simple support. The analyses

of both cases can be conducted by the Levy method.

2.4 Plates on Elastic Foundation

There are numerous applications where the plate is continuously supported within

the span. In the case where the support is linear elastic, its reaction is proportional

to the local deflection of the structure (so-called Winkler’s elastic foundation).

Accordingly, if the plate supported by an elastic foundation experiences a local

deflection w, the reaction (counter-pressure) applied by the foundation to the plate

is kw where k is a proportionality coefficient called the modulus of the foundation.

It is evident that the units of the modulus of foundation are force per unit area, per

unit deflection, i.e. N/m3 or lbf/in3. It should be noted that the linear elastic model

of the foundation is often only a computationally convenient simplification.

Soil provides an example of the elastic foundation in civil engineering structures.

For example, if a storage tank is resting on the ground, the plates of the bottom will

be subject to the reaction of the ground that can be modeled as an elastic foundation.

Another example of a linear elastic foundation is found in concrete pavements and

foundation slabs of buildings (Ventsel and Krauthammer 2001).

Predictably, the moduli of elastic foundations found in civil engineering ap-

plications vary within a broad range. For example, the measurements on the

stiffness of subgrades taken in 63 tests conducted by the New York Department

of Transportation varied from 27 to 680 kPa/mm (Bryden et al. 1971).

Consider the problem where a simply supported plate subject to an arbitrary load

p .x; y/ as shown in Fig. 2.1 is resting on a continuous nonuniform linear elastic

foundation with the modulus k .x; y/. Then the equation of equilibrium becomes

Dr4w D p .x; y/ � k .x; y/w (2.26)

Naturally, boundary conditions are not affected by the foundation. Therefore, the

solution can be sought in series (2.5) that satisfy these conditions.

The solution is particularly simple if the foundation is uniform, i.e. k .x; y/ D

k D const. Then the substitution of (2.5) into (2.26) yields

Wmn D
pmn

D
�

˛2m C ˇ2
n

�2
C k

(2.27)

As could be anticipated, the presence of an elastic foundation reduces the

deflections. Bending stresses in the plate that are proportional to deflections are also

reduced by the foundation. Although the foundation introduces transverse normal

stresses at the interface with the plate, these stresses cannot overcome the beneficial

effect of reduced bending stresses, i.e. foundations improve the strength and

stiffness of plates.
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In the case where the stiffness of the foundation is variable, the solution can

be sought using the Galerkin procedure (Sect. 1.5). For a simply supported plate

this procedure results in the system of linear algebraic equations where the mn-th

equation is:

b
Z

0

a
Z

0

�

Dr4w � p .x; y/C k .x; y/w
�

sin ˛mx sin ˇnydxdy D 0 (2.28)

where the integers m and n are within the range 1 � m � M; 1 � n � N used in

truncated series (2.5).

Substituting series (2.3) and (2.5) into (2.28) and recalling that sine functions are

orthogonal, one obtains

D
�

˛2
m C ˇ2

n

�2
Wmn � pmn

C
4

ab

M
X

iD1

N
X

j D1

b
Z

0

a
Z

0

k .x; y/ Wij sin ˛i x sin ˇj y sin ˛mx sin ˇnydxdy D 0

(2.29)

The integrals in the right side of (2.29) can be obtained analytically or numerically.

Subsequently, the amplitudes of series (2.5) can be determined from the system of

linear algebraic equations (2.29).

An alternative approach to the analysis of the plate supported by a nonuniform

elastic foundation is based on the Rayleigh-Ritz approach (Sect. 1.5). The advantage

of this approach is that static boundary conditions can be violated, though the

kinematic boundary conditions must be satisfied. The presence of the elastic

foundation is accounted for by adding its strain energy to the total energy of the

plate:

Uk D
1

2

b
Z

0

a
Z

0

k .x; y/ w2dxdy (2.30)

Accordingly, if the deflection is represented by

w D
X

i

Wiˆi .x; y/ (2.31)

where functions ˆi .x; y/ satisfy the kinematic boundary conditions, the Rayleigh-

Ritz method implies

@

@Wp

.U C Uk C V / D 0 (2.32)
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where V is the energy of the applied pressure and external in-plane stress resultants

given by (1.68) and (1.89). The strain energy of the plate U is obtained from (1.70)

that is simplified to account for the Kirchhoff-Love hypothesis
�

�xz D �yz D 0
�

and

for the fact that middle-plane strains "0
x D "0

y D 0
xy D 0. Then substituting the

expressions for bending and twisting stress couples and for the changes of curvatures

and twist in terms of deflections according to (1.58) and (1.29), respectively, we

obtain

U D
1

2

b
Z

0

a
Z

0

D

"

�

@2w

@x2

�2

C

�

@2w

@y2

�2

C 2�
@2w

@x2

@2w

@y2
C 2.1 � �/

�

@2w

@x@y

�2
#

dxdy

(2.33)

Using the expressions for the components of energy referred to above and

the expression for the deflections (2.31) in the Rayleigh-Ritz formulation (2.32)

is straightforward. Besides the variable over the plate surface elastic foundation,

this method can also be applied to the case of a variable-stiffness plate where

D D D .x; y/.

The linear elastic foundation model discussed above may not be accurate in a

number of practical situations. Accordingly, several alternative foundation models

have been suggested. While the discussion of these models is outside the scope

of this book, mentioned here is the review provided in the paper by Kerr (1984)

and research of Reissner (1967). In particular, models that represent the reaction

of the foundation in terms of power series can be introduced by a differential

operator including only even order derivatives, so that the foundation response is

given by

Np D k0w C k1r
2w C k2r

4w C ::: (2.34)

where ki .i D 0; 1; 2; :::/ are coefficients.

The Pasternak foundation model that represents an extension of the Winkler

foundation accounting for the effect of in-plane shear may be accurate in certain

applications (Pasternak 1954). According to this model, the response of the

foundation is given by

Np D kw � Gf r2w (2.35)

where both k and Gf are foundation constants. Of course, the Pasternak model can

be characterized as a particular case of the more general formulation (2.34).

It is also worth mentioning that besides models based on a representation of

the foundation reaction via differential operators with coefficients available from

experimental data, an analytical approach based on the theory of elasticity may be

applied as long as the foundation remains elastic. If the foundation is “sufficiently

deep,” the analysis can be conducted modeling it by an elastic semi-infinite
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half-sphere supporting the plate. Then the Boussinesq solution relates the local

deflection at a point
�

xi ; yj
�

to the reaction of the foundation (Vlasov and Leont’ev

1966):

w
�

xi ; yj
�

D

b
Z

0

a
Z

0

K
�

.x � xi / ;
�

y � yj
��

Np .x; y/ dxdy (2.36)

whereK
�

.x � xi / ;
�

y � yj
��

is the Green function.Detailed analyses based on the

foundation models reflected in Eqs. 2.34, 2.35 and 2.36 are outside the scope of this

book.

2.5 Combined Lateral and In-Plane Loading

There are a number of applications where the plate is subject to a combination of

lateral loads and in-plane tension, compression or shear. For example, a bottom plate

of the central section of a cargo ship in rough seas experiences bending from cargo

combined with in-plane tension or compression. In-plane loads are generated by

bending of the hull due to a nonuniform distribution of buoyancy forces and weight

along the hull. In-plane loads reach maximum values when the length of the waves

is equal to that of the vessel. In particular, the mid-section bottom structure is subject

to tension when the ship is sagging due to the waves that peak at the bow and stern.

However, when a wave peaks at the midsection (hogging), the bottom experiences

compressive stresses (see Fig. 2.10). Dynamic effects of in-plane loads could be

accounted for through a magnification factor.

A rectangular plate subject to a combination of lateral and in-plane loads is

shown in Fig. 2.11. The equations of equilibrium correspond to the static version

of (1.92), i.e.

Fig. 2.10 Schematic illustration of bending of a ship in rough seas. Left: upper deck is com-

pressed, while the bottom is in tension. Right: upper deck works in tension, while the bottom is

compressed
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Fig. 2.11 A plate subject to a

combination of transverse

pressure and in-plane loads
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C
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D 0
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C
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@y
D 0
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@x2
C 2
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C
@2My

@y2
C p CNx

@2w

@x2
C 2Nxy

@2w

@x@y
CNy

@2w

@y2
D 0 (2.37)

It is important to discuss here the principal difference between geometrically

linear and nonlinear problems. In the case of large deflections, i.e. if the problem is

geometrically nonlinear, in-plane stresses are affected by deflections w, (in other

words, stretching and bending of the plate are coupled). Accordingly, in-plane

stress resultants are not constant but location-dependent, so that Ni DNi .x; y/ ;

i Dx; y; xy. Furthermore, in the nonlinear problemNi DNi .u; v;w/ ; i Dx; y; xy.

This implies that three equations (2.37) are coupled, so that each of them written

in terms of displacements includes all three displacements u, v and w. In the

geometrically nonlinear problem, the last three terms in the third equation (2.37)

are nonlinear functions of displacements.

The situation is much simpler in the linear case where deflections remain small,

so that their effect on in-plane stress resultants is negligible. Then the in-plane stress

resultants are constants and equal to the applied external loads, Ni D NNi . Then

substituting the expression for bending stress couples in terms of deflections (1.58)

into the last equation (2.37) yields the following linear equation:

Dr4w D p .x; y/C NNx
@2w

@x2
C 2 NNxy

@2w

@x@y
C NNy

@2w

@y2
(2.38)

The solution of equation (2.38) can be sought by the same methods as those

applied to the case where in-plane loads are absent. In the simple but rather typical

case where a simply supported plate is undergoing a combination of lateral pressure

and in-plane loads Nx D NNx; Ny D NNy , a modified Navier solution is applicable

as follows.
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Recognizing that in-plane loads do not affect boundary conditions (2.2)

corresponding to simply supported edges, the solution is sought in the form (2.5)

that identically satisfies these conditions. Furthermore, the pressure is represented in

series (2.3). Then the substitution of (2.3) and (2.5) into (2.38) yields the amplitudes

of terms in the series for deflections:

Wmn D
pmn

D
�

˛2m C ˇ2
n

�2
C NNx˛2

m C NNyˇ2
n

(2.39)

Compressive in-plane stress resultants . NNx < 0; NNy < 0/ increase the bending

deflection, while tension results in smaller deformations.

Bending stresses throughout the plate can now be evaluated from (2.9b). These

stresses are superimposed on constant in-plane membrane stresses produced by

applied loads, so that the total stress is

�x D
NNx

h
C

Ez

1 � �2

M
X

mD1

N
X

nD1

�

˛2
m C �ˇ2

n

�

Wmn sin ˛mx sin ˇny

�y D
NNy

h
C

Ez

1 � �2

M
X

mD1

N
X

nD1

�

ˇ2
n C �˛2

m

�

Wmn sin ˛mx sin ˇny

�xy D �
Ez

1 C �

M
X

mD1

N
X

nD1

˛mˇnWmn cos ˛mx cos ˇny (2.40)

It is worth emphasizing that in-plane loads have a dual effect on the stresses in

the plate. First of all, they produce uniform throughout the plate stresses as reflected

in the first terms in the expressions for �x and �y in (2.40). In addition, these stresses

affect bending deflections of the plate since the amplitudes Wmn are influenced by

in-plane stress resultants according to (2.39). Therefore, bending stresses given by

the terms dependent on these amplitudes in (2.40) are affected by in-plane loading.

Finally, it is noted that in the case where applied in-plane loading is compressive,

the denominator in (2.39) may become equal to zero, signifying infinite deflections

of the plate. This may occur even if the lateral pressure is very small. As we will

see in the next paragraph, such situation occurs when the loads reach a buckling

combination. However, the validity of the present linear solution in the case of

combined bending and nearly buckling in-plane loads is limited since if the plate

is flexible and experiences large deformations, it is necessary to use a geometrically

nonlinear formulation. On the other hand, maximum stresses in a more rigid plate

reach the yield limit even at small deformations, necessitating a physically nonlinear

analysis. Accordingly, the present solution is applicable only if the deformations

remain relatively small and the stresses are within the elastic range.
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2.6 Buckling of Rectangular Isotropic Plates

Consider the case where a rectangular plate is subject to a combination of in-plane

compression along both x- and y-axes as well as in-plane shear. In the absence of

lateral loads the equation of equilibrium (2.38) is reduced to

Dr4w D Nx
@2w

@x2
C 2Nxy

@2w

@x@y
CNy

@2w

@y2
(2.41)

where in-plane stress resultants differ from the applied loads in a nonlinear

formulation. The other two equilibrium equations coincide with the first two

equations (2.37).

Note that (2.41) is a homogeneous equation, so that the trivial solution w D

0 is always possible. This solution corresponds to the prebuckling state where

the plate remains flat but experiences in-plane displacements (u and v). These

displacements are very small due to a large in-plane stiffness of flat plates.

Prebuckling displacements can be determined from the linear version of the strain-

displacement relationship (1.28) where w D 0 and the strains are expressed in terms

of applied stress resultants by:

Q"x D
1

Eh

�

NNx � � NNy

�

Q"y D
1

Eh

�

NNy � � NNx

�

Qxy D
NNxy

Gh
(2.42)

In the above equations, the wave over the strain identifies the prebuckling state.

The integration of the prebuckling strain-displacement equations is straightfor-

ward if the plate is subject to in-plane compression only. Then the solution of the

first two linearized equations (1.28) combined with the symmetry requirement to

prebuckling displacements Qu0

�

x D a
2

�

D 0; Qv0

�

y D b
2

�

D 0 yields

Qu0 D
1

Eh

�

NNx � � NNy

�

�

x �
a

2

�

Qv0 D
1

Eh

�

NNy � � NNx

�

�

y �
b

2

�

(2.43)

The first two equations (2.37) representing the conditions of in-plane equilibrium

are identically satisfied since in the linear prebuckling state Nx D NNx; Ny D NNy

and Nxy D 0.

As the load applied to the plate increases, there are the following possibilities:

1. A thin and flexible plate remains within the elastic range. However, at a certain

load the state is reached where the energy balance permits more than one
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equilibrium position, i.e. there is an alternative deflected configuration, besides

w D 0. The plate invariably assumes such deflected configuration, exhibiting the

phenomenon that we call buckling.

2. A thicker plates may reach plastic state prior to buckling. Note that prebuckling

in-plane stresses are uniformly distributed throughout the plate, i.e. plasticity

will develop simultaneously at all points of the plate. Subsequently, as the load

continues to increase, plastic stresses at every point of the plate will increase at

the same rate. Such elasto-plastic plates can either collapse due to the loss of

strength or become unstable in the plastic range.

In this paragraph we concentrate on elastic buckling.

If the plate buckles, the corresponding displacements u; v; w are superimposed

on the prebuckling state, so that the total deformations become QU D Qu0 C u; QV D

Qv0 C v; QW D w. Equations of equilibrium of a plate experiencing buckling and

boundary conditions for such plate can be written as

F
�

QU ; QV ; QW
�

D 0

B
�

QU ; QV ; QW
�

D 0 (2.44)

where F and B are differential operators (the former representing the system of

equations of equilibrium and the latter being the set of boundary conditions).

Applied in-plane loads are incorporated in these equations. In general, the operators

in (2.44) can include both linear and nonlinear terms, so that F D FLCFN; B D

BL C BN where linear and nonlinear contributions are FL; BL and FN; BN ,

respectively.

The substitution of total displacements, including prebuckling and buckling

deformations, into (2.44) yields

FL .Qu0; Qv0/C FL .u; v; w/C FN
�

QU ; QV ; QW
�

D 0

BL .Qu0; Qv0/CBL .u; v; w/C BN
�

QU ; QV ; QW
�

D 0 (2.45)

In the case where we are concerned with linear buckling, i.e. limit the analysis

to specifying the buckling load, rather than studying the postbuckling response

of the plate, nonlinear operators in (2.45) can be omitted. Furthermore, the terms

underlined in (2.45) are identically satisfied by the solution of the problem of

prebuckling deformations. Accordingly, the linear formulation of the buckling

problem is reduced to

FL .u; v; w/ D 0

BL .u; v; w/ D 0 (2.46)

This implies that linear buckling of a mechanically loaded plate can be studied

without a reference to prebuckling deformations. Of course, as is obvious from
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(2.45), prebuckling deformations affect nonlinear postbuckling behavior, i.e. the

corresponding problems (prebuckling and postbuckling responses) are coupled.

The formulation of linear buckling problems can be reduced to the simple

statement: “Find the combination of applied loads that makes a nontrivial equi-

librium configuration possible.” Obviously, prebuckling deformations affect the

configuration of the plate, but it remains flat. Thus, a “nontrivial equilibrium”

referred to above implies deflections from the flat configuration.

The approach leading to a closed-form solution of equations of equilibrium

usually utilizes the assumption that the mode shape of the buckled plate can be

represented in the form of products of functions of coordinates. These functions

should identically satisfy all boundary conditions. In addition, they should be

cancelled out in the equations of equilibrium leading to an algebraic equation for the

buckling load (see Example 2.7 below). Unfortunately, such approach is applicable

only to a limited number of boundary conditions, such as simply supported plates.

An analytical solution of the buckling problem for plates with two opposite simply

supported edges utilizing equations of equilibrium is also possible along the lines of

the Levy’s method. Other analytical procedures can utilize energy methods, such as

the Rayleigh-Ritz method or the Galerkin procedure. In numerous cases geometry

and/or boundary conditions are such that the solution has to be obtained by one of

numerical methods, such as the finite element method.

In view of the previous discussion, it is obvious that linear buckling of a

rectangular plate can be studied using Eq. 2.41 where in-plane stress resultants

represent applied loads identified below with an overbar and w is a deflection from

the prebuckling flat shape:

Dr4w � NNx
@2w

@x2
� 2 NNxy

@2w

@x@y
� NNy

@2w

@y2
D 0 (2.47)

The other two equilibrium conditions given by first two equations (2.37) depend

only on in-plane stress resultants. As follows from (1.58), as long as the problem is

linear, these stress resultants do not include transverse deflections w. Accordingly,

they do not affect the analysis of buckling.

Example 2.7: Buckling of a Simply Supported Plate Subject to Uniaxial Compressive

Load. This classical example appears in every book on the theory of plates

or on stability of structures. This example is worth considering since simply

supported plates are encountered in numerous applications. For example, the plates

of the upper deck of the middle section of a ship shown in Fig. 2.10 experience

compression every time the bow and stern are supported by the waves, while the

middle section is sagging.

The formulation of the problem is reduced to finding the stress resultant
NNx that allows a nonzero solution of the equation of equilibrium (2.47) where
NNy D NNxy D 0, subject to boundary conditions (2.2). The buckling deflection is

sought in the form
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Fig. 2.12 Buckling load

coefficient for a simply

supported plate compressed

along the x-axis as a function

of the plate aspect ratio and

the number of half-waves in

the buckling mode shape (m)
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w D Wmn sin˛mx sin ˇny (h)

where Wmn is unknown amplitude of the buckling deflection.

It is evident that integers m and n represent the number of half-waves in the mode

shape of buckling. The buckling mode (h) identically satisfies boundary conditions

(2.2). The substitution of (h) into the equilibrium equation (2.47) yields

h

D
�

˛2
m C ˇ2

n

�2
C NNx˛2

m

i

Wmn sin ˛mx sin ˇny D 0 (i)

This equation must be satisfied at every point within the plate. Accordingly,

trigonometric functions cannot be assumed equal to zero. Furthermore, instability

implies that Wmn ¤ 0. Therefore, the buckling equation (i) is satisfied by prescribing

the values of the applied stress resultant, such that the term in the square brackets is

equal to zero:

NNx;cr D �
�2D

b2

�

mb

a
C

n2a

mb

�2

D �k
�2D

b2
; k D

�

mb

a
C

n2a

mb

�2

(j)

The actual buckling load corresponds to the smallest absolute value of those

given by (j). It can be observed that the plate buckles forming only one half-wave

in the direction perpendicular to the direction of the applied load, i.e. n D 1. The

value of m corresponding to buckling depends on the plate aspect ratio as shown

schematically in Fig. 2.12. In numerous engineering applications, the buckling stress

resultant for plates with the aspect ratio a
b

� 1 is taken using k D 4 resulting in a

very simple formula NNx;cr D � 4�2D
b2 .

Note that the condition of buckling determined by (j) does not provide infor-

mation about the amplitude of deflection, i.e. Wmn. This is a common feature of

eigenvalue problems, such as buckling and free vibrations. The linear solution can

only establish the eigenvalues and eigenvectors (mode shapes), without specifying

the amplitude of the eigenvectors. The magnitude of postbuckling deformations
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Fig. 2.13 Schematic

illustration of buckling loads

combinations for biaxially

compressed rectangular plates

change in
the buckling
mode shape

stable plate

buckled
plate

Ny

Nx

Ny, crNx, cr

can be determined solving a geometrically nonlinear problem. Nevertheless, in

numerous applications where buckling is disallowed the linear solution is sufficient.

Example 2.8: Buckling of a Simply Supported Plate Subject to Biaxial Load. The

previous solution can easily be extended to the case where the plate is subject

to a combination of in-plane stress resultants oriented along both x- and y-axes.

Retaining the corresponding terms in (2.47) and assuming the mode shape of

buckling in the form (k) we obtain the following equation for critical combinations

of applied loads:

D
�

˛2m C ˇ2
n

�2
C NNx˛2

m C NNyˇ2
n D 0 (k)

Equation j can be obtained as a particular case of (k) where NNy D 0. As is easily

observed from (m), instability is possible even if the load along one of the axes

is tensile. The results available from (k) are schematically shown in Fig. 2.13 that

illustrates the combinations of applied stress resultants corresponding to instability.

The combinations of the applied stress resultants to the right and above the boundary

correspond to a stable plate. The combinations to the left and below the boundary

cause instability. The buckling combinations can be specified by assuming the value

of one of the stress resultants, say NNy . Then the couples of indices .m; n/ are varied

to find the smallest absolute value NNx . The change in the buckling mode shape

referred to in Fig. 2.13 implies that the combinations of applied loads corresponding

to buckling occur at a different couple .m; n/ than that associated with the adjacent

branch of the boundary. The values NNx;cr and NNy ;cr represent buckling loads for

the plate uniaxially compressed along the x- and y-axes, respectively.

2.7 Application of the Rayleigh-Ritz Method and Galerkin

Procedure to Bending and Buckling Problems

In numerous situations it is impossible to exactly satisfy both the equation of

equilibrium as well as the boundary conditions. An example is found in plates

without a couple of parallel simply supported edges that cannot be analyzed by
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the Levy method. Structures that deny a closed form or exact analytical solution are

often analyzed using approximate methods, such as the Rayleigh-Ritz and Galerkin

methods introduced in Chap. 1. These methods are illustrated below for the cases

where the plate is subject to an arbitrary pressure and in-plane loads and accounting

for a possible elastic foundation.

The strain energy of a rectangular plate experiencing elastic, geometrically linear

deformations is given by (2.33). The potential energy of pressure p .x; y/ and

the energy of applied in-plane stress resultants are given by (1.68) and (1.89),

respectively. These terms are employed in solutions utilizing the Rayleigh-Ritz

method.

The Galerkin procedure was briefly described in Sect. 1.5. The linear equations

of equilibrium being uncoupled, only the last equation (1.66) reflecting equilibrium

of forces in the transverse to the plate direction has to be considered. For example,

if a rectangular plate .0 � x � a; 0 � y � b/ resting on a linear elastic foundation

is subject to a combination of transverse pressure and in-plane stress resultants, this

equation results in a system of equations

b
Z

0

a
Z

0

�

Dr4w � p � NNx
@2w

@x2
� 2 NNxy

@2w

@x@y
� NNy

@2w

@y2
C kw

�

fmn.x; y/dxdy D 0

(2.48)

where

w D

M
X

mD1

N
X

nD1

Wmnfmn .x; y/ (2.49)

In (2.49), fmn .x; y/ are functions that satisfy all boundary conditions.

The following two examples illustrate the application of the Rayleigh-Ritz

method to the analysis of buckling of a plate subject to in-plane axial and shear loads

and the Galerkin procedure for a clamped plate subject to an arbitrary distributed

pressure.

Example 2.9: Buckling of a Plate Subject to In-Plane Axial and Shear Loads.

Consider a simply supported plate subject to a combination of in-plane axial stress

resultant NNx and in-plane shear stress resultant NNxy . An example of such situation

is encountered in panels of the web of an I-beam subject to bending load and

supported by flanges and brackets as is shown in Fig. 2.14 (the brackets are used

to enhance stability of the web and the compressed flange). In such case, each web

panel is subject to a combination of variable through the height axial stresses and

in-plane shear stresses. In numerous applications the bending moment varies with

the axial x-coordinate. However, the analysis can often be conducted adopting a

conservative approach and using the maximum value of the bending moment acting

on the particular panel. In such case, the corresponding stress resultants NNx are
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Fig. 2.14 Simply supported section of the web of an I-beam between flanges and brackets (case

(a): shaded) that can buckle as a result of in-plane bending loads. The computational scheme is

shown in case (b). Shear stresses acting in the plane of the web as a result of transverse shear force

are not shown

independent of the axial coordinate. The shear stress reaches the maximum at the

middle axis of the web
�

y D b
2

�

but the variations of this stress through the depth

of the web are relatively small. Accordingly, it is possible to conservatively use

the maximum value of the shear stress resultant NNxy
�

b
2

�

and assume it constant

through the depth of the web. In the following analysis we consider the case where

the stress resultant NNx.y/ is a linear function of the y-coordinate, while the shear

stress resultant NNxy is constant.

The approach to the solution of the stability problem can combine the results

for particular cases where the plate is subject to in-plane bending and compression

and where the plate is subject to in-plane shear (Timoshenko and Gere 1981). The

applied in-plane bending stress resultant can be represented by

NNx D NN
�

1 � ˛
y

b

�

(l)

where the coefficient ˛ D 2. If ˛ ¤ 2 we obtain various cases where in-

plane tension or compression is applied simultaneously with bending. In particular,

˛ D 0 corresponds to a uniformly distributed compressive load without bending,

0 < ˛ < 2 represent various combinations of compression and in-plane bending,

while ˛ > 2 describes cases of tension combined with in-plane bending.

The plate being simply supported, all boundary conditions are satisfied repre-

senting the buckled surface in series (2.5). The presence of in-plane shear makes

it impossible to satisfy the equation of equilibrium, even if in-plane bending and
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tension/compression are absent. This is easily observed if we substitute (2.5) into

the equilibrium equationDr4w D 2 NNxy
@2w
@x@y

. The result is

D

M
X

mD1

N
X

nD1

�

˛2m C ˇ2
n

�2
Wmn sin ˛mx sin ˇny D 2 NNxy

M
X

mD1

N
X

nD1

Wmn cos ˛mx cos ˇny

Obviously, it is impossible to eliminate trigonometric functions in the above

equation, i.e. the exact solution is impossible. A similar conclusion could be

obtained in case of in-plane bending, without shear. Therefore, the solution is sought

using the Rayleigh-Ritz method.

The substitution of (2.5) into the expression for the strain energy (2.33) and

integration yield

U D
Dab

8

M
X

mD1

N
X

nD1

�

˛2
m C ˇ2

n

�2
W 2

mn (m1)

The potential energy of the in-plane bending load shown here for the general

case, i.e. for an arbitrary value of ˛ � 0 can be obtained from (1.89) by the

substitution of (l) and (2.5):

V1 D �
NN ab

8

M
X

mD1

N
X

nD1

˛2
mW 2

mn

C
NN ˛ab

4

M
X

mD1

˛2
m

"

1

4

N
X

nD1

W 2
mn �

8

�2

N
X

nD1

N
X

iD1

ni

.n2 � i2/
2
WmnWmi

#

(m2)

where n ˙ i are odd numbers.

The potential energy of the applied shear load is available from (1.89) and (2.5) as

V2 D �4 NNxy

M
X

mD1

N
X

nD1

M
X

pD1

N
X

qD1

mnpq

.m2 � p2/ .q2 � n2/
WmnWpq (m3)

where m ˙ p and n ˙ qare odd numbers.

The buckling load combinations are available using the Rayleigh-Ritz method

(Sect. 1.5) that in the present problem implies that @.U CV1CV2/

@Wmn
D 0. The result is the

system of linear algebraic equations (Timoshenko and Gere 1981 and Ugural 1999):

Dab

4

�

˛2
m C ˇ2

n

�2
Wmn D

NN ab

4
˛2

m

(

Wmn �
˛

2

"

Wmn �
16

�2

N
X

iD1

ni

.n2 � i2/
2
Wmi

#)

C 8 NNxy

M
X

pD1

N
X

qD1

mnpq

.m2 � p2/ .q2 � n2/
Wpq

(n)
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This is a system of linear homogeneous algebraic equations with respect to

amplitudes Wmn. The combinations of buckling loads can be determined from the

requirement of a nonzero solution of the system of equations (n). This requirement

implies that the determinant of the system of equations (n) must be equal to zero. It is

evident that applied stress resultants, i.e. NN and NNxy , are included in the coefficients

of the system of equations (n), so that their buckling combinations are available

from the equation equating the determinant to zero. As a result of the presence of in-

plane shear loads and a dependence of the in-plane load on the y-coordinate, series

(2.5) can approximate the mode shape of buckling only if they include a significant

number of terms. The solutions for particular cases where the plate is subject to

a single type of loads, i.e. in-plane bending or shear are available in the book of

Timoshenko and Gere (1981).

Example 2.10: Bending of a Clamped Rectangular Plate on a Linear Elastic

Foundation Subject to an Arbitrary Distributed Pressure. Consider a clamped

rectangular plate of in-plane dimensions 2a � 2b subject to an arbitrary distributed

pressure p .x; y/. This problem was solved by the Galerkin procedure for a clamped

plate subject to a uniform pressure by Timoshenko and Woinowsky-Krieger (1959)

and by Ventsel and Krauthammer (2001) whose solution is reproduced here.

Considering a plate with the origin of coordinates at the center, it can easily be

verified that a deflection represented by the following expression identically satisfies

the boundary conditions along the edges x D ˙a; y D ˙b:

w D

M
X

mD0

N
X

nD0

Wmnfmn .x; y/ D

M
X

mD0

N
X

nD0

Wmn

�

x2 � a2
�2Cm�

y2 � b2
�2Cn

(o)

Limiting the analysis to the first term in series (o) and substituting it into (2.48)

we obtain

f1W00 D f2

f1 D 20:805Da5b5
�

a4 C
4

7
a2b2 C b4

�

f2 D

b
Z

0

a
Z

0

p .x; y/
�

x2 � a2
�2�
y2 � b2

�2
dxdy (p)

In particular, if a square clamped plate without a foundation is subject to a

uniform pressure, the maximum deflection at the center of the plate is wmax D

0:0213
p0a

4

D
exceeding the exact solution by about 5%.

The stress couples corresponding to the deflection modeled by the first term in

series (o) can be determined from (1.58):

Mx D �4DW00

h

�

3x2 � a2
� �

y2 � b2
�2

C �
�

x2 � a2
�2 �

3y2 � b2
�

i
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stringers

plate
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welds

Fig. 2.15 Initial imperfections in fillet welded plates (plate welded to stringers)

My D �4DW00

h

�

x2 � a2
�2 �

3y2 � b2
�

C �
�

3x2 � a2
� �

y2 � b2
�2

i

Mxy D �16D .1 � �/ W00xy
�

x2 � a2
� �

y2 � b2
�

(q)

The maximum stresses are given by (2.11). The presence of an elastic foundation

does not explicitly affect the stresses in (2.11). However, the foundation is incorpo-

rated in the stress analysis through its effect on the amplitude value of the deflection,

i.e. W00.

2.8 Effect of Initial Imperfections on Bending and Buckling

of Rectangular Plates

Initial imperfections in metallic plates often result from postwelding deformations.

A detailed discussion of imperfections in welded plates was presented in the

monograph of Masubuchi (1980). It should be noted that fillet welds are typical

joints in plated structures. Postwelding deformations in the plate that is fillet welded

to unidirectional stringers are schematically shown in Fig. 2.15.

The analysis of a plate with initial imperfections w0 .x; y/ that is subject

to transverse pressure and/or in-plane compression requires adjustments to the

governing equations. Bending stresses in an unloaded imperfect plate are equal

to zero. Accordingly, the terms contributed by bending stress couples in the

equilibrium equation are not affected by the presence of imperfections if deflections

w are counted from the imperfect shape. However, the situation is different when

we account for the effect of the applied in-plane stress resultants. The difference

can easily be deduced from Fig. 1.10 replacing the deviation from the flat surface w

for the perfect plate with w0 C w for the plate with the initial imperfection. In the

latter case, stress resultants produce the projections on the z-axis that account for the

total deviation of the plate from the flat configuration. In particular, the projection

of the stress resultant NNx becomes

� NNx

@ .w0 C w/

@x
dy C NNx

�

@ .w0 C w/

@x
C

@2 .w0 C w/

@x2
dx

�

dy
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D NNx
@2 .w0 C w/

@x2
dxdy (2.50)

where we assume that in-plane forces remain independent of the in-plane coordinate

and equal to the applied loads (this assumption is valid in a geometrically linear

problem). The contributions of other applied stress resultants can be obtained in a

similar manner.

The substitution of the projections of the applied stress resultants into the

equation of equilibrium of an imperfect plate results in

Dr4w � NNx
@2 .w0 C w/

@x2
� 2 NNxy

@2 .w0 C w/

@x@y
� NNy

@2 .w0 C w/

@y2
D p .x; y/

(2.51)

It is impractical to search for the analytical solution in case where the plate is

subject to in-plane shear. However, we can obtain a closed-form result if the plate is

subject to axial loads acting in the x- and y-directions. Accordingly, the following

solution refers to the situation where NNxy D 0.

Boundary conditions are not affected by the presence of initial imperfections.

Therefore, if the plate is simply supported the solution can be sought in the form

(2.5). The imperfect shape of the plate can be represented in double Fourier series

similar to (2.5):

w0 D

M
X

mD1

N
X

nD1

0

W mn sin ˛mx sin ˇny (2.52)

where amplitudes
0

Wmn are assumed known.

The substitution of series (2.5), (2.52) and (2.3) into (2.51) yields uncoupled

equations for the amplitudes of harmonics in the series for deflections:

Wmn D
pmn �

�

NNx˛2
m C NNyˇ2

n

�
0

Wmn

D
�

˛2
m C ˇ2

n

�2
C NNx˛2

m C NNyˇ2
n

(2.53)

Several conclusions are available from (2.53):

1. If the transverse pressure is absent and the perfect plate is subject to compression,

the buckling combinations of in-plane stress resultants are available from the

requirement that the denominator of the right side of this equation must be equal

to zero. This implies that the linear buckling problem represents a particular case

of bending of an imperfect plate subject to compression (and/or in-plane shear)

and transverse loads.
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Fig. 2.16 A qualitative

response of an imperfect plate

to in-plane compression.

A D imperfect unloaded plate,

C D as the load approaches

the buckling value,

deflections asymptotically

approach infinite values,

B D in reality, the plate

collapses due to a load that

is smaller than the buckling

value as a result of the loss

of strength

Ncr

Nx

* B

A (w0)
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2. If the plate without imperfections is subject to transverse pressure and in-plane

compression equation (2.53) reduces to (2.39).

3. Even if transverse pressure is absent, an imperfect plate subject to in-plane

compression . NNi < 0/ experiences bending, rather than buckling. However,

if the applied in-plane loads are tensile . NNi > 0/, the plate actually becomes

“flatter”. While the physical reason for such “flattening” of the plate is obvious,

mathematically, the phenomenon is due to opposite signs of
0

Wmn andWmn in case

of tensile in-plane loads.

4. If in-plane loads are absent, deflections from the imperfect surface of the plate

subject to transverse pressure are found from the correspondingly simplified

equation (2.53) that yields the result identical with (2.8). Thus, initial imperfec-

tions do not affect bending as long as in-plane loads are absent and the problem

is linear.

The stresses in the plate with imperfections subject to a combination of transverse

pressure and in-plane axial compression represent the sum of stresses due to applied

compressive loads that are uniformly distributed through the thickness and bending

stresses. The corresponding expressions for the stresses are identical to (2.40)

where the effect of initial imperfections is incorporated through the amplitudesWmn

determined by (2.53).

Extreme values of stresses occur on the surfaces of the plate, i.e. at z D ˙h
2
, as

was the case in perfectly flat plates. However, in-plane coordinates of the location

of the extreme stresses can be influenced by the shape of the initial imperfection.

For example, if a flat plate fails at x D a
2
; y D b

2
, this does not mean that an

imperfect plate of the same geometry and subject to the same loading fails at the

same location.

A qualitative illustration of the response of an imperfect plate subject to in-plane

compression is depicted in Fig. 2.16. As the load increases, the imperfect plate

experienced increasing deflections from the initial shape following the path ABC.

If the entire load-deflection response was linear, the deflections would approach

infinity as the load asymptotically approaches the buckling value. However, in

reality, the deflection cannot increase indefinitely due to physical and geometric



2.9 Effect of Stringers on Bending and Buckling of Plates 91

nonlinearities. As schematically shown in the figure, the plate collapses at point B

as a result of yielding of the material. Such collapse may occur at geometrically

linear deformations (i.e., if the deflections are small enough to neglect geometric

nonlinearity), if the plate is stiff. In a thin and flexible plate, the analysis may

require using nonlinear strain-displacement relationships as the plate approaches

the collapse state.

If the magnitude of the imperfection can be predicted from experience or

statistical data, while the exact shape is too difficult or too expensive to measure,

it is safe to assume that this shape corresponds to the shape of deformation of the

otherwise identical perfect plate subject to the same load as the imperfect plate. In

the case of in-plane compression or shear the mode shape of imperfections should

coincide with the buckling mode of the perfect plate. Usually, this represents the

“worst case scenario,” predicting failure at the smallest combination of applied loads

and resulting in the safest design.

2.9 Effect of Stringers on Bending and Buckling of Plates

Plates employed in aerospace, mechanical, marine and civil engineering structures

are often reinforced by ribs. Accordingly, a typical plated structure consist of a

plate supported by “rigid” frames and/or bulkheads and numerous ribs (stringers)

providing local support (Fig. 2.17). These stringers are usually flexible, so that they

bend (or buckle) together with the plate. Accordingly, the total deformation of the

plate includes:

1. Deformation of the reinforced plate jointly with the stringers;

2. Local deformation of sections of the plate between parallel stringers.

These deformation components are not independent. “Local” deformations of

the sections of the plate between parallel stringers are superimposed on the “global”

deformation of the plate together with the stringers. Note that the failure of stringers

Fig. 2.17 Plate supported by

transverse frames and

longitudinal stringers

stringers

frames



92 2 Static Problems in Isotropic Rectangular Plates

Fig. 2.18 Rectangular plate

supported by stringers

parallel to the edges. The

edges of the plate are simply

supported by frames or

bulkheads

x
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lr

b
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is usually unlikely in reinforced structures, but it can be analyzed by evaluating

maximum stresses in the stringers that are available from either numerical or

analytical solution.

In the buckling problem, it is necessary to compare buckling loads corresponding

to global and local buckling and select the smaller result as the actual buckling

load. The subsequent postbuckling response has to be analyzed using a nonlinear

theory and accounting for the interaction between global and local deformations.

Such postbuckling analysis is usually carried by a numerical (finite element or finite

difference) method.

Note that the solution of the problem of buckling of a simply supported

rectangular plate reinforced by one stringer oriented along the direction of applied

compressive stresses incorporating both global and local deformations was reported

by Timoshenko in 1915. This solution developed by Timoshenko is illustrated in

Sect. 2.10. The formulation presented in the present paragraph is suitable to the

solution of the global problem, although local deformations of the plate between the

stringers may be incorporated through an appropriate choice of the expression for

the displacements of the plate.

Consider a rectangular plate reinforced by stringers oriented in two mutually

perpendicular directions parallel to the edges (Fig. 2.18). The following formulation

can address both bending and buckling problems, i.e. the load can be either

transverse pressure or axial compression in one or both x- and y-directions. Stringers

usually have an open profile and negligible stiffness in the direction perpendicular to

their axis. Accordingly, neglecting torsional stiffness of such stringers, it is justified

to assume that they contribute only to the stiffness in the plane of their axes. The

approach demonstrated below can be applied to the case of a small number of

stringers (“discrete” stringers approach) as well as if stringers are numerous and

closely spaced. In the latter situation, the so-called “smearing technique” is appli-

cable smearing the stiffness of stringers over the plate surface. The corresponding

solutions have been developed for both plates and shells; mentioned here are some

of the first contributions made by Baruch and Singer (1963), Hedgepeth and Hall
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(1965), Block et al. (1965) and Singer et al. (1965). While these studies refer to

cylindrical shells, the solution for flat plates is available as a particular case (e.g.,

Birman 1993).

If the stringers are not symmetric about the middle plane of the plate, as is typical

in applications, it is necessary to account for coupling between bending and in-plane

displacements. Linear equations of equilibrium of a reinforced plate subject to a

combination of static pressure and in-plane tensile or compressive stress resultants

are available from (2.37):

@Nx

@x
C
@Nxy

@y
D 0

@Nxy

@x
C
@Ny

@y
D 0

@2Mx

@x2
C 2

@2M

@x@y
C
@2My

@y2
C NNx

@2w

@x2
C NNy

@2w

@y2
D �p (2.54)

The stress resultants and stress couples are written in the form that is usually

employed in the analysis of anisotropic or composite structures (for more details,

see Chap. 5):

�

N
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�

D

�

A B

B D

� �

"0

�

�

(2.55)

where the vectors of stress resultants, stress couples, middle-plane strains and

changes of curvature and twist are introduced in Chap. 1. The stiffness terms are

composed of the contributions of the skin and stringers (in the following, single and

double primes refer to the skin and stringers, respectively):
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(2.56)

In (2.56), the stiffness terms contributed by the isotropic skin are defined as
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where the integrals are taken with respect to the z-coordinate counted from the

middle plane of the plate.

Physically, terms A0
ij represent extensional stiffness of the plate (without ac-

counting for the contribution of the stringers), terms B 0
ij reflect so-called coupling

stiffness between bending and in-plane stretching and shear contributions, and D0
ij

are bending stiffness terms. The reason coupling terms are absent in the isotropic

plate is related to their symmetry about the middle plane. It is evident that the

contribution of the skin to the stress resultants and couples is identical to that in the

unreinforced plate being given by (1.58) where the bending stiffness corresponds to

(1.59).

It is now possible to evaluate the contribution of the stringers to the bending

response of the plate. Based on the previous discussion, the stringers contribute

to the stiffness exclusively in their axial direction. Thus, the contribution of the

stringers is
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Z
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� 00
yzd z (2.58)

where � 00
x and � 00

y are the stresses in the stringers oriented in the x- and y-directions,

respectively, ı .y � ys/ and ı .x � xr / are Dirac delta functions, and ys and xr

the coordinates of the corresponding stringers. Note that torsional stiffness of the

stringers being neglected, they do not affect in-plane shear stress resultant and the

twist stress couple.

The stringers deform together with the plate; accordingly, the stresses in (2.58)

are

� 00
x D E"00
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(2.59)
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The substitution of (2.59) into (2.58) yields
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(2.60)

In (2.60) As; Fs; Is are the cross sectional area, and the first and second

moments of the stringer oriented along y D ys about the middle plane of the

skin, respectively, and Ar ; Fr ; Ir are the area and moments of the stringer oriented

along x D xr . Accordingly, the expressions for the total stress resultants and stress

couples, accounting for the contributions of both the skin and the stringers, are

Nx D N 0
x CN 00

x

Ny D N 0
y CN 00

y

Mx D M 0
x CM 00

x

My D M 0
y CM 00

y (2.61)

where the contribution of the skin (terms with a single prime) is given by equations

(2.56) with extensional, coupling and stiffness terms as per (2.57).

Now we can evaluate the stiffness terms contributed by the stringers, i.e.
˚

A00
ij ; B

00
ij ; D

00
ij

�

. As follows from (2.56) and (2.60), the contribution of the

stringers oriented in the x-direction to the stiffness of the plate is

˚

A00
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D
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˚
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(2.62)

Similarly, a system of stringers oriented in the y-direction along the lines x D xr
contributes the stiffness

˚

A00
22; B

00
22; D

00
22

�

D
X

r

ı .x � xr / E
˚

Ar ; Fr ; Ir
�

(2.63)

In a particular case of a large number of closely spaced identical stringers in one

or both directions, the so-called smeared stiffeners technique can be used. According

to this technique
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ı .y � ys/ D
1

ls

ı .x � xr / D
1

lr
(2.64)

ls and lr being the spacings of the corresponding stringers (see Fig. 2.18). This

simplification affects terms in Eqs. 2.58, 2.60, 2.62 and 2.63. Note that using the

smeared stiffeners techniques automatically results in studying only the global

response of the plate since local deformations between the stringers cannot be

modeled.

Now, combining the stress resultants and couples contributed by the skin and

by the stringers, we obtain the equations of equilibrium that coincide with those

for an orthotropic plate with a different stiffness in the directions of the x- and y-

axes:

A11u;xx C A66u;yy C .A12 C A66/ v;xy � B11w;xxx � .B12 C 2B66/w;xyy D 0

.A12 C A66/ u;xy C A66v;xx CA22v;yy � .B12 C 2B66/w;xxy � B22w;yyy D 0

D11w;xxxx C 2 .D12 C 2D66/w;xxyy CD22w;yyyy � B11u;xxx � .B12 C 2B66/

�
�

u;xyy C v;xxy
�

� B22v;yyy � NNxw;xx � NNyw;yy D p (2.65)

In (2.65), .:::/ ;i � @.:::/

@i
; i D x; y. This notation for differential operators is

often employed in the theory of plates. Accordingly, we present it here in addition

to the notation used throughout the book.

Boundary conditions written in terms of displacements, stress resultants and

stress couples are not explicitly affected by the presence of stringers. However, if

the stringers are extended to the edges, as they usually are, the stress resultants and

stress couples in these conditions are given by (2.61) accounting for the contribution

of the stringers.

In rare situations where stringers are joined to the plate symmetrically, i.e.

identical stringers are placed against each other on the opposite surfaces of the

plate, coupling between in-plane and transverse displacements disappears. In such

case, only the third equation of equilibrium (2.65) should be considered. Upon

the corresponding simplifications (eliminating the coupling terms), this equation

becomes

�
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whereD is the bending stiffness of the plate and

ND11 D D C
X

s

ı .y � ys/EIs

ND22 D D C
X

r

ı .x � xr /EIr (2.67)

In the case where the plate is simply supported, the solution of the equation of

equilibrium (2.66) is sought in the form (2.5). If the pressure is represented by series

(2.3), the solution is

Wmn D
pmn

ND11˛4m C 2D˛2mˇ2
n C ND22ˇ4

n C NNx˛2
m C NNyˇ2

n

(2.68)

Consider the case where stringers are located on one surface of the plate as is

typical in applications. Then we have to integrate the system of equations (2.65)

subject to boundary conditions. The analytical solution is available that satisfies the

conditions of simple support along all boundaries:

x D 0; x D a w D Mx D Nx D v0 D 0

y D 0; y D b w D My D Ny D u0 D 0
(2.69)

These conditions are satisfied if the mode shape of deformation is represented by

the following double Fourier series:
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Pressure applied to the plate can be represented in series (2.3).

The substitution of (2.70) and (2.3) into (2.65) yields
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(2.71)
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where
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Given the applied loads, the amplitudes of deflections in series (2.70) can be

evaluated from (2.71). Subsequently, the strains and stresses can be determined

throughout the plate. In the case of in-plane loading, the buckling combinations

of the applied stress resultants NNx and NNy corresponding to the mode shape

of instability characterized by m and n deformation half-waves in the x- and

y-directions, respectively, are available from the nonzero requirements to the

solution of the homogeneous version of (2.71). This requirement is satisfied if the

determinant of the system of equations (2.71) is equal to zero yielding the buckling

equation:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

S11mn S12mn S13mn

S12mn S22mn S23mn

S13mn S23mn S33mn

ˇ

ˇ
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ˇ

ˇ

D 0 (2.73)

While buckling combinations of loads corresponding to the global overall instability

of the plate involving both the skin and stringers deforming together can be

determined from (2.73), local buckling of sections of the plate between stringers

and buckling of stringers is not addressed by this solution.

2.10 Stability of a Simply Supported Plate Reinforced with a

Single Longitudinal Stringer

Consider a plate subject to axial compression NNx and supported by a single centrally

located stringer along y D 0 (the coordinate system is shown in Fig. 2.8). The

stringer is assumed to have negligible torsional and out-of-axis stiffness, so that we

account only for its flexural stiffness EI. As indicated above, this problem was first

analyzed by Timoshenko (1915). The present solution is based on the monograph

of Vol’mir (1967).

The solution of the equation of equilibrium for the section of the plate limited

by x D 0; x D a and y D 0; y D b
2

is obtained assuming simply supported edges

x D 0; x D a and y D b
2
. Deformations of each section of the plate buckling

together with the stringer are identical, so that the slope @w
@y

D 0 along y D 0.
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The solution is obtained by the Levy method, so that the shape of the buckled plate

is represented by

w D Y.y/ sin ˛mx (2.74)

where the function Y.y/must satisfy both the equation of equilibrium as well as the

boundary conditions along the edges y D b
2

and y D 0.

The expression (2.74) is substituted into the equation of equilibrium for the

section of the plate, i.e.

Dr4w C NNx
@2w

@x2
D 0 (2.75)

where the sign of the second term reflects the rule of signs adopted by Vol’mir

(1967), i.e. the compressive stress resultant is positive. This yields an ordinary

differential equation
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The solution of (2.76) can be sought as Y.y/ D eky . The roots of the

characteristic equation obtained by the substitution of Y.y/ into (2.76) are
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The analysis of the roots in (2.77) yields the conclusion that k3;4 are imaginary

numbers. Hence the solution of (2.76) can be written as

Y.y/ D C1m cosh ky C C2m sinh ky C C3m cos Nky C C4m sin Nky (2.78)

where Cim are constants of integration, k D k1;2 and Nk D

s

˛m

�

q

NNx
D

� ˛m

�

The critical value of the applied compressive load can be determined by

substituting (2.78) into the boundary conditions along y D 0 and y D b
2
. Three

of these conditions have already been specified:

Y

�

b

2

�

D 0;
d 2Y

�

b
2

�

dy2
D 0;

dy.0/

dy
D 0 (2.79)

The forth boundary condition is derived by considering deformations of the

stringer. The stringer is subject to the reaction from two adjacent sections of the

plate that can be evaluated from
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R D �D

�

@3w

@y3
C .2 � �/

@3w

@x2@y

�

(2.80)

where the second term in the brackets in the right side is equal to zero by virtue of

the other boundary condition along the same edge being @w
@y

D 0. Accordingly, the

equation for the stringer that deforms as a column subject to compression is

EIs

@4w

@x4
C �sAs

@2w

@x2
C 2D

@3w

@y3
D 0 (2.81)

where E; As and Is are the modulus of elasticity, cross sectional area and the

moment of inertia of the stringer, respectively, and �s is the compressive stress

applied to the stringer. The latter stress is related to the stress resultant acting on the

plate, i.e. NNx, so that the corresponding term in (2.81) can be written as a function

of the applied stress resultant. The factor 2 in the last term in the left side of (2.81)

reflects the presence of two adjacent sections of the plate supported by the stringer.

Substituting (2.74) into (2.81) yields the fourth boundary condition

EIs˛
4
mY � �sAs˛

2
mY C 2D

@3Y

@y3
D 0 (2.82)

The buckling equation corresponding to the mode shape of deformation with m

halfwaves along the x-axis is now derived by substituting (2.78) into (2.79) and

(2.82) and requiring nonzero solutions of the resulting system of four homogeneous

equations with respect to constants of integration Cim.

An alternative solution of this problem is obtained by the Rayleigh-Ritz method

(e.g., Timoshenko and Gere 1981). This reference also contains tabulated results

that may be useful in design of plates reinforced by one or two unidirectional

stringers and subject to compression or shear loads. Whichever method is applied

to the analysis, the advantage of the analytical approach considering both the

deformations of the plate sections between the stringers as well as deformations

of the stringers is evident since the solution automatically accounts for both global

and local deformations.

2.11 Postbuckling Response of Plates

While plates subject to compression and in-plane shear loads are often considered

unsafe if they buckle, in reality, this phenomenon is less dangerous to flat plates than

to either columns or shells. The reason is that plates possess stable postbuckling

behavior, i.e. they do not snap through to an alternative equilibrium position, but

rather gradually develop postbuckling deflections as a result of an increasing load.

This behavior represents an important potential safety margin for plates that is

absent in columns or shells, as discussed below.
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The analysis of postbuckling behavior of plates has been conducted since the

pioneering work of von Karman and his associates (Karman et al. 1932). This anal-

ysis requires an analytical solution of nonlinear partial differential equations subject

to boundary conditions. The accuracy of the solution sought in double Fourier series

is limited by the number of terms retained in these series. Besides, it appears difficult

to satisfy boundary conditions corresponding to realistic engineering problems.

Accordingly, while early solutions retain their importance due to qualitative results

and conclusions that are still valid today, the nonlinear analysis of plates, including

their postbuckling behavior, is usually conducted using numerical methods.

Equations of equilibrium and compatibility considered in the case where the plate

is subject to axial compression are available from (1.96) and (1.99), respectively.

These equations are reproduced here, for convenience:
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@2w
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(2.83)

Kinematic boundary conditions are not affected by nonlinearity. However, static

boundary conditions are affected as linearized constitutive expressions for the stress

resultants and stress couples have to be replaced with their nonlinear counterparts

(1.58).

If the plate is simply supported, its postbuckling deflections can be represented in

double Fourier series. The complication is that while the terms in these series are un-

coupled upon the substitution in the linear equation of equilibrium (e.g., Sect. 2.1),

they remain coupled in the nonlinear problem. This results in a complicated and time

consuming solution procedure that requires a researcher to retain a limited number

of terms in the series, reducing the accuracy of the analytical solution. Furthermore,

it appears that some of the boundary conditions can be satisfied only in the integral

sense as is demonstrated below.

Consider the case of a simply supported plate subject to a uniform compression
NNx along the x-axis. The deflections are sought in double Fourier series (2.5)

satisfying the conditions of zero deflection and bending stress couple along the plate

boundary. The substitution of (2.5) into the second (compatibility) equation (2.83)

yields

' D
X

rD0

X

sD0

Frs .Wmn/ cos˛rx cos ˇsy C
NNxy2

2h
(2.84)

where Frs .Wmn/ are quadratic algebraic functions and the number of terms in the

series in the right side of (2.84) is dependent on the number of terms in series (2.5).

The problem with the in-plane boundary conditions becomes evident upon the

analysis of (2.84). At the loaded edges of the plate, i.e. x D 0 and x D a, the
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y
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a x

Nx Nx (y)σ

2
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be

Fig. 2.19 Axially compressed plate. The stresses do not remain uniform in the postbuckling

regime: they are higher in the vicinity to the edge supports and lower in the central region of

the plate. The effective width introduced according to von Karman et al. (1932) is denoted by be

condition Nx D NNx can be satisfied only in the integral sense, i.e. according to

(1.97),

Nx D
h

b

b
Z

0

@2'

@y2
dy D � NNx (2.85)

The second boundary condition superimposed by this solution is apparently,

Nxy D �h @2'

@x@y
D 0 along all edges. However, this condition makes little sense

in real structures where the edges of a simply supported plate are welded, bolted

or bonded to rigid ribs or frames that constrain displacements along the edge and

apply in-plane shear stresses to the plate. Thus, it is preferable to rely on numerical

procedures, such as finite elements or finite difference methods that can provide

a more accurate solution for nonlinear postbuckling deformations and stresses.

The same comment remains valid in cases where the plate experiences nonlinear

bending.

Both the analysis of postbuckling behavior of rectangular plates and experimental

evidence have demonstrated that these plates do not collapse if compressive or

in-plane shear loads exceed the buckling values. This indication of the capacity

of plates to operate in the postbuckling load range generated significant interest,

particularly, in view of the fact that columns and shells cannot operate beyond the

buckling load. The reason was explained in the work of Karman et al. (1932) who

pointed to a nonuniform postbuckling in-plane stress distribution across the width

of a compressed plate (Fig. 2.19). Accordingly, an approach to the estimate of the

ultimate load-carrying capacity of rectangular plates subject to compression is based

on the replacement of the actual plate with two identical strips adjacent to its edges

y D 0 and y D b, while the central underloaded strip of the plate is discounted.

According to this approach, the strips of the plate adjacent to the edges are uniformly

stressed and failure occurs when this stress reaches the ultimate or allowable value

for the material .�ult/, i.e.,
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Fig. 2.20 Difference in

postbuckling response of

plates (1), columns (2) and

cylindrical shells (3) subject

to axial compression

Load Euler load

Axial displacement or strain

3

2

1

NNult D �ultbeh (2.86)

where be is the width of two strips adjacent to the edges.

Equation 2.86 can be used to evaluate the ultimate (postbuckling) load-carrying

capacity of the plate if the effective width is known. There are several methods of

estimating this width. For example, von Karman et al (1932) suggested the following

formula:

be D b

r

�cr

�ult

(2.87)

where �cr D
NNx ;cr

h
is the buckling value of the applied stress.

The empirical formula obtained by Winter (e.g., Bedair 2009) is

be D b

r

�cr

�ult

�

1 � 0:22

r

�cr

�ult

�

(2.88)

Other formulas for the effective width have also been proposed.

As emphasized above, the qualitative response of flat plates in the postbuckling

regime is different from those of columns and shells. This is reflected in Fig. 2.20.

Upon reaching the buckling load, shells snap through to a buckled equilibrium

position. The descending branch of curve 3 that schematically represents the

response of a shell is unstable. Instead of following this branch the shell abruptly

snaps through to the ascending branch of curve 3. This phenomenon is often

accompanied by large stresses, far exceeding those allowable in the shell structure.

Accordingly, the buckling load is often associated with the ultimate load of the

shell. The presence of almost unavoidable initial imperfections makes shells even

more vulnerable as their instability (snap through) occurs at an even lower load than

the theoretical buckling value (e.g., see for details Jones 2006).

Straight columns subject to compression may support a small additional load

upon buckling, but the corresponding postbuckling deformations are very large even

at very small additional loads in excess of the buckling value. This implies that curve

2 characterizing the response of a column is nearly horizontal, i.e. the buckling load

serves as the ultimate load for columns.

The situation is different in the case of plates that exhibit gradually increasing

deformations as the load exceeds the buckling value (curve 1). Eventually, the
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stresses reach the yield limit and the plate collapses. However, the additional

postbuckling load-carrying capacity may be quite significant, providing a designer

with an implicit margin of safety.

2.12 Design Philosophy and Recommendations

Rectangular plates are encountered in more engineering applications than plates

of other shapes. Exact analytical solutions for rectangular plates are available in

numerous design problems. In this paragraph we comment on several aspects of

design and analysis of rectangular plates the engineer should be aware of.

Boundary conditions of rectangular plates can often be modeled as simple

support. In such model, the torsional stiffness of stringers, frames or bulkheads

supporting the edges is neglected. This simplification is usually justified if support

structures have an open profile (closed profile beams have a higher torsional

stiffness, providing an elastic clamping to the plate). The assumption that the

deflection of a simply supported edge is negligible is usually acceptable, except

for the case where the support structure is very flexible and experiences a noticeable

bending. While the analysis of plates by assumption that the edges provide simple

support is often justified, a notable exception is the case where the corresponding

edge supports two adjacent identical plates subject to identical loading. Then the

support can be modeled as clamping, by virtue of symmetry of both geometry and

load.

Plates found in applications often have initial imperfections. Such imperfections

are acquired as a result of rough handling and/or postwelding deformations. The

presence of initial imperfections has a relatively little effect on bending of the

plate as long as deflections remain small. This is because the plate is not stressed

in the imperfect position, so that only additional deformations from this position

cause stresses in the plate. However, if deflections from the imperfect state are

large, justifying the nonlinear analysis, the interaction between the imperfections

and deflections becomes essential and it has to be accounted for.

While initial imperfections affect the bending response only in the nonlinear

range, their effect in case of in-plane loading (either compression or shear) is

significant, even if the imperfections are small. The classical buckling phenomenon

is replaced in imperfect plates with progressive bending from the imperfect position,

increasing with a larger load. The geometrically linear load-deflection curve

asymptotically approaches the buckling value of the load as deflections increase to

infinity. In reality, infinite deflections cannot occur since as deflections (and stresses)

become large, the geometrically linear solution becomes invalid. Moreover, at large

stresses, the material becomes plastic and the plate collapses at lower loads than the

buckling values.

It should be emphasized that the shape and magnitude of initial imperfections are

difficult and expensive to measure. Sometimes, the relevant information is available

based on statistics. If the magnitude of the imperfection is known or estimated,
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while its shape is not determined, it is preferable to assume the most unfavorable

shape. Such shape usually corresponds to the bending shape of the plate without

imperfections or, in buckling problems, the buckling shape of the plate.

Stringers significantly increase the overall stiffness of the plate and are often

employed to enhance its response to loading. Additionally, the size of unreinforced

sections of the plate between the stringers is reduced compared to that of the

same plate without stringers. Both these effects result in the capacity to sustain

larger bending loads as well as a better buckling response (both a higher buckling

load as well as a higher post-buckling load-carrying capacity). The weight added

by stringers is usually much lower than the additional weight if the thickness of

the plate is increased to achieve an equivalent improvement in the load-carrying

capacity of the plate.

In the case of a plate reinforced by flexible stringers, the sections between the

stringers cannot be analyzed as simply supported. Instead, the deformation of the

plate includes the overall bending of the reinforced structure and local bending

between the stringers. The former problem can usually be approached assuming

that the boundaries of the reinforced plate are simply supported. Bending of sections

between the stringers is superimposed on the global deformation. With the exception

of situations where it is possible to analytically account for the combination of the

global and local response, the superposition of these response patterns often requires

the application of numerical models that yield the overall solution (see Sect. 2.10

for the representative case where the analytical overall solution is available). In

the problem where the response is nonlinear, it is necessary to use a numerical

approach since the combination of global and local nonlinear analytical solutions

is not feasible.

The effect of large deformations, i.e. geometric nonlinearity, on the bending

response is usually “beneficial.” This is because deflections and stresses in the

plate analyzed accounting for nonlinearity are smaller than those in the counterpart

evaluated using the linear theory. The adaption of the linear approach introduces

an additional margin of safety since the response of real plates is more accurately

modeled using a geometrically nonlinear theory. In buckling problems geometric

nonlinearity has to be accounted for in the postbuckling analysis. Contrary to

beams and shells, the postbuckling response of plates is stable, i.e. the buckling

phenomenon does not automatically imply the collapse of the structure. While

designers usually avoid buckling, such stable postbuckling response implies an

additional load-carrying capacity that may be important in the ultimate load

analysis. As postbuckling deflections accumulate in the plate as a result of additional

load, the stresses also increase, eventually reaching the yield limit. Accordingly, the

ultimate load-carrying capacity should be specified accounting for a combination

of a geometrically and physically nonlinear behavior of the plate (nonlinear elasto-

plastic response). In less flexible plates subject to compression or in-plane shear

yielding may occur prior to reaching the elastic buckling load. Then the analysis

should be concerned with elasto-plastic buckling.
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Chapter 3

Static Problems in Isotropic Circular Plates

and in Plates of Other Shapes

Although rectangular plates considered in Chap. 2 are often found in applications,

other shapes of plates are also encountered in various branches of engineering.

Examples of circular plates include bulkheads in submersible vehicles and in

aerospace applications and end closures of pressure vessels. If circular bulkheads

are reinforced by ring and radial stringers, the sections of these bulkheads between

stringers represent sector plates. Triangular plates are found in isogrid structures.

Elliptical plates may serve as covers for hatches in decks.

In this chapter, we concentrate on physically linear (elastic) thin plates of various

shapes. Accordingly, the Kirchhoff-Love assumption of the classical (technical)

plate theory remains valid.

Governing equations of plates of various nonrectangular shapes may differ from

those for rectangular plates reflecting the actual geometry of the structure and the

convenient coordinate system. However, the list of equations necessary for the

analysis remains without a change, including:

– Kinematic relations;

– Strain-displacement relations;

– Constitutive law, i.e. elastic material Hookean relations, elasto-plastic equations,

etc.;

– Expressions for stress couples and stress resultants;

– Equations of motion or equilibrium;

– Boundary conditions.

In the energy formulation, equations of motion or equilibrium are replaced

with the expressions for the strain energy, the energy of the applied load, and the

kinetic energy (in dynamic problems). The other alternative formulation utilizing the

stress function requires us to specify the compatibility equation in the appropriate

coordinate system. An outline of the governing equations in the case of a circular

plate is demonstrated in the next paragraph.
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3.1 Governing Equations of Circular Plates

Consider a thin circular plate shown in Fig. 1.6. Kinematic equations representing

displacements as functions of polar coordinates are given by (1.32). The strain-

displacement relations are (1.39) for geometrically linear asymmetric deformations

and (1.40) for geometrically nonlinear deformations. If the strains are decomposed

into the components in the middle plane of the plate and the changes of curvature

and twist, the corresponding components are given by (1.41) and (1.42), respec-

tively. The simplified strain-displacement relationships for the case of axisymmetric

deformations, such that the displacements, strains and stresses are independent of

the circumferential � coordinate, are (1.43) and (1.44).

All fundamental equations necessary for the analysis of plates in the polar

coordinate system can be directly obtained from the corresponding equations in

the Cartesian coordinate system introduced in Chap. 1 replacing the derivatives of

the functions in Cartesian coordinates with their counterparts in the polar coordinate

system. The relationships between the first derivatives of functions in two coordinate

systems have already been given by Eq. 1.36. Additionally, we illustrate here

without a derivation the laws governing the transformation from the Cartesian to the

polar coordinate system for second derivatives as well as for the Laplacian operator
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The Hookean relationships for circular isotropic plates are available from (1.19).

For thin plates in the state of plane stress, these relations are reduced to
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Radial �r , tangential �� and in-plane shear stresses �r� that appear in (3.2) are

applied to an infinitesimal element of the plate formed by two infinitely close

circumferences and two radial lines forming an infinitesimal angle as shown in

Fig. 3.1. The substitution of strain-displacement relations enables us to express the

stresses in terms of displacements. Obviously, dependent on the strain-displacement

relationships, the expressions for the stresses can reflect either geometrically linear

or nonlinear formulations.

Stress couples and stress resultants in a polar coordinate system are defined

by (1.53). The substitution of the expressions for the stresses (3.2) and strains

given by (1.41), (1.42) into (1.53) yields a counterpart to Eq. 1.58 that presented

stress couples and stress resultants in the Cartesian coordinate system. In particular,

employing a nonlinear formulation according to (1.41) and (1.42), the stress couples

and stress resultants in the polar coordinate system are:
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The stress resultants and stress couples defined above are shown in Fig. 3.2.

Transverse shear stress resultants Qr and Q� that are also depicted in Fig. 3.2

were determined from the analysis of equilibrium of moments acting on the

infinitesimal element in the planes rz and �z, respectively. Alternatively, these stress

resultants could be obtained in terms of displacements from their definition (1.53)

by integrating transverse shear stresses through the thickness of the plate.
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The equations of motion or equilibrium can be derived by three methods:

1. Derivation of both the equations of equilibrium as well as the boundary con-

ditions using the Hamilton principle, similarly to the procedure for rectangular

plates (e.g., Reddy 1999, 2007).

2. Transformation of equations of equilibrium in Cartesian coordinates into equa-

tions in polar coordinates using the transformation of coordinates relationships

(e.g., Timoshenko and Woinowsky-Krieger 1959).

3. Analysis of equilibrium of forces and moments acting on an infinitesimal element

of the plate shown in Fig. 3.2.

In particular, the following equations of motion of thin plates were derived using

the Hamilton principle by Reddy (2007):
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where I0 D Om D �h; I2 D �h3

12
.

In addition, transverse shear stress resultants can be determined from the analysis

of the equilibrium of moments:
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Boundary conditions obtained from the Hamilton principle resemble those in the

Cartesian coordinate system specified in Chap. 1:

r D constW Nr D ONr or u0 D Ou0

Nr� D ONr� or v0 D Ov0

Vr D OVr or w D Ow
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The conditions for straight boundaries .� D const/ are valid for a sector plate, such

as the section of an annular plate between two radial and two ring stiffeners. The

Kirchhoff shear forces in (3.6) are:
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If the problem is geometrically linear, the first two equations (3.4) characterizing

in-plane motion or equilibrium are uncoupled from the last equation. It is also easy

to show that the boundary conditions are uncoupled in linear problems. Accordingly,

linear bending problems require us to specify transverse deflections only as was also

the case in rectangular plates (Chap. 2).

The alternative to solving three equations of motion (3.4) or using an energy

method is based on the introduction of the stress function that can satisfy the first two

equations (3.4) leaving us with the single equation of motion and the compatibility

equation. The latter equation can be written in the polar coordinate system by

substituting the strains given by (1.40) into (1.97) and applying the coordinate

transformation relationships (3.1). The application of the stress function in dynamic

problems of circular plates requires us to adopt the assumption that in-plane inertias

in the first two equations (3.4) are negligible. Since this simplification is acceptable

in most problems, the stress function that identically satisfies the corresponding

equations is introduced by
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The remaining third equation (3.4) and the compatibility equation are shown

below for the case where the plate is subject to transverse pressure (static in-plane

loads can also be incorporated in this formulation):
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The differential operators in (3.9) are derived using (3.1):
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3.2 Axisymmetric Bending Problem

If a circular or annular plate is subject to an axisymmetric load that depends only

on the radial coordinate, deformations, strains and stresses are also axisymmet-

ric. Accordingly, they are independent of the circumferential coordinate and all

derivatives with respect to this coordinate are equal to zero. Furthermore, tangential

displacements v0 D 0, though strains and stresses in the circumferential direction

are present. Several representative axisymmetric bending problems are considered

in this section.

First of all, it is useful to reproduce axisymmetric versions of some of the

governing equations presented or referred to in the previous section. In particular,

the axisymmetric version of the strain-displacement relationships is given by (1.43)

and (1.44). The stress resultants and stress couples, including nonlinear terms, are

obtained from (3.3):
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Equations of motion in terms of stress resultants and stress couples (3.4) are now

reduced to two equations:
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If the problem is static, equations of equilibrium obtained from (3.13) are ordinary

differential equations.

The expression for the stress function (3.8) is also simplified in an axisymmetric

problem:

�r D Nr

h
D 1

r

d'

dr
; �� D N�

h
D d 2'

dr2
; �r� D 0 (3.14)

The formulation employing the stress function in a static axisymmetric problem

coincides with (3.9) where the axisymmetric versions of the operator r4 .:::/ and

the differential operator L.w; '/ are

r4 .:::/ D r2 .:::/r2 .:::/ D
�

d 2

dr2
C 1

r

d

dr

��

d 2 .:::/

dr2
C 1

r

d .:::/

dr

�

D d 4 .:::/

dr4
C 2

r

d 3 .:::/

dr3
� 1

r2
d 2 .:::/

dr2
C 1

r3
d .:::/

dr

D 1

r

d

dr

�

r
d

dr

�

1

r

d

dr

�

r
d .:::/

dr

���

(3.15)

and

L.w; '/ D 1

r

d'

dr

d 2w

dr2
C 1

r

dw

dr

d 2'

dr2
D 1

r

d

dr

�

dw

dr

d'

dr

�

(3.16)

The linear axisymmetric strains in the middle plane and the changes of curvature

and twist are obtained from (1.41), (1.42), respectively:
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"0r D du0

dr

"0� D u0

r

"0r� D 0 (3.17)

and

�r D �d
2w

dr2

�� D �1
r

dw

dr

�r� D 0 (3.18)

It is observed that the radial displacement and transverse deflection in the middle-

plane strains and in the changes of curvature and twist are uncoupled.

The bending stresses are available from (3.2) and (3.18):

�r D � Ez

1 � �2

�

d 2w

dr2
C �

r

dw

dr

�

�� D � Ez

1 � �2

�

�
d 2w

dr2
C 1

r

dw

dr

�

�r� D 0 (3.19)

In-plane membrane stresses obtained by the substitution of (3.17) into (3.2) can

easily be evaluated in terms of the in-plane radial displacement.

Note that in linear axisymmetric problems in-plane displacements and membrane

stresses are uncoupled from transverse deflections and bending stresses. Accord-

ingly, in cases of bending, buckling or transverse vibrations, it is only necessary

to consider the axisymmetric version of the first equation (3.9). Furthermore, as

follows from (3.14)

�� D d.r�r /

dr
(3.20)

If the linear problem is static, the axisymmetric version of the first equation (3.9)

can be integrated yielding

D
dr2w

dr
D p C NNr

dw

dr
C C0

r
(3.21)
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NNr being an applied radial stress resultant that is constant throughout the plate as

long as the problem is linear. In a solid circular plate, the singularity can be avoided

only if C0 D 0.

3.2.1 Bending of a Solid Circular Plate Subject to a Uniform

Pressure or to an Axisymmetric Pressure That Is a

Function of the Radial Coordinate: Geometrically Linear

Problem

In a linear problem, equations of equilibrium (3.4) and the boundary conditions are

uncoupled. Accordingly, in the absence of in-plane loads, in-plane displacements

and membrane stresses are equal to zero, while the transverse deflection should be

determined from the first equation (3.9) that becomes

Dr4w D p.r/ (3.22)

The complimentary solution of the homogeneous equation obtained from (3.22) is

wh D C1 ln r C C2r
2 ln r C C3r

2 C C4 (3.23)

where constants of integration Ci will be determined from the boundary conditions

as shown below.

A particular integral of (3.22) can be derived by a successive integration of

this equation. Omitting the intermediate steps, we present here the result of this

integration (the validity of this result can be checked by substituting it into (3.22)):

wp D
Z

1

r

Z

r

Z

1

r

Z

rp.r/

D
drdrdrdr (3.24)

It is useful to outline here the results for an important case where the plate is

subject to a uniform pressure, i.e. p.r/ D p0. Then, as follows from (3.23), (3.24)

and (3.12),

w D C1 ln r C C2r
2 ln r C C3r

2 C C4 C p0r
4

64D

Mr D �D
�

� C1
1 � �
r2

C C2 .2 .1C �/ ln r C 3C �/C 2C3 .1C �/

C p0r
2

16D
.3C �/

�



3.2 Axisymmetric Bending Problem 117

M� D �D
�

C1
1 � �
r2

C C2 .2 .1C �/ ln r C 1C 3�/C 2C3 .1C �/

C p0r
2

16D
.1C 3�/

�

Qr D �4D
�

C2
1

r
C p0r

8D

�

(3.25)

If the strength analysis employs the maximum principal stress criterion, the

location of the maximum stress can be predicted in the general case. The maximum

principal stress is the radial stress and its location coincides with that of the

maximum radial stress couple that is found from the requirement

dMr

dr
D �D

�

2C1 .1 � �/

r3
C 2C2 .1C �/

1

r
C p0r

8D
.3C �/

�

D 0 (3.26)

Once the constants of integration are specified from the boundary conditions,

the radial location of the maximum stress �r can be determined from (3.26).

Subsequently, this stress is found from (3.19). In the case where the von Mises

strength criterion is employed, the procedure finding the location of failure is more

involved, but it is still straightforward.

There are two boundary conditions that must be specified at each edge of an

annular plate resulting in four equations for four constants of integration in (3.22).

In the case of a solid circular plate that has only one edge, two missing conditions are

contributed reflecting the requirement that displacements and stresses at the center

of the plate r D 0 should be finite. The former requirement implies that C1 D 0.

In addition, the symmetry implies that the slope of the plate at the center should

be equal to zero. The requirement to the slope and non-singular displacement and

stresses at the plate center can be satisfied if C2 D 0.

Example 3.1: Solid Circular Plate of Radius r D a Subject to a Uniform Pressurep0
This problem can be encountered in design of cargo hatches and covers of circular

openings in bulkheads. Boundary conditions can vary from simply supported to

clamped or elastically supported and elastically clamped plates. For example, in

the latter case the torsional stiffness of the rim structure is finite but insufficient to

completely prevent the rotation of the edge.

The deflection of the plate is represented by the corresponding simplification of

(3.25):

w D C3r
2 C C4 C p0r

4

64D
(a)
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In a clamped plate where w.a/ D dw.a/

dr
D 0,

C3 D �p0a
2

32D
; C4 D p0a

4

64D

w D
p0
�

a2 � r2
�

64D
(b)

The stresses in the plate are derived by substituting the deflection given by (a)

into (3.19):

�r D 3p0z

4h3

�

.1C �/ a2 � .3C �/ r2
�

�� D 3p0z

4h3

�

.1C �/ a2 � .1C 3�/ r2
�

(c)

The algebraically maximum radial and tangential stresses occur on the plate

surfaces
�

z D ˙h
2

�

at the center and along the boundary of the plate:

�r .r D 0/ D �� .r D 0/ D 3 .1C �/

8
p0

�a

h

�2

�r .r D a/ D �3
4
p0

�a

h

�2

�� .r D a/ D �3�
4
p0

�a

h

�2

(d)

The Poisson ratio of isotropic materials being smaller or equal to 0.5, it is obvious

that the algebraically maximum radial stress is at the edge, while the maximum

tangential stress is at the center.

If the strength analysis is conducted using the von Mises strength criterion, it is

necessary to determine the radial location where the effective stress is maximum. In

the plane stress axisymmetric problem, the von Mises criterion is

�eeff D �2r � �r�� C �2� D �2all (e)

�al l being the allowable stress. It can easily be checked that the effective stress is

maximum at

r D .1C �/ a

s

6

.13C 18� C 13�2/
(f)

For example, if the Poisson ratio is equal to 0.3, the maximum effective stress occurs

at r D 0:749a.
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If the plate is simply supported, boundary conditions are w.a/ D Mr .a/ D 0.

Straightforward transformations yield

w D p0a
4

64D

�

r4

a4
� 2

3C �

1C �

r2

a2
C 5C �

1C �

�

�r D 3p0z

4h3
.3C �/

�

a2 � r2
�

�� D 3p0z

4h3

�

.3C �/ a2 � .1C 3�/ r2
�

(g)

The maximum stresses occur at the center of the plate being equal to

�r .0/ D �� .0/ D 3 .3C �/

8
p0

�a

h

�2

(h)

In applications, the edge of the plate is supported by a circular ring or stiffener

providing finite resistance both to transverse deflections as well as to rotations.

It is possible to account for both effects, i.e. both elastic support and elastic

clamping, by satisfying the boundary conditions. In the present case these condi-

tions are

Vr .a/ D Qr.a/ D kw.a/; Mr.a/ D �
dw.a/

dr
(i)

where k and � are coefficients of elastic support and elastic clamping, respectively.

The substitution of the radial stress couple and transverse stress resultant from (3.12)

into (i) and using the solution (a) yields the values of constants of integration that

can subsequently be applied to specify deflections and stresses.

3.2.2 Bending of a Solid Circular Plate of Radius r D a Subject

to a Concentrated Central Force P

If a circular plate is subject to a load applied at the center, the problem is

axisymmetric. There is no pressure distributed over the plate surface, i.e. the right

side of the equation of equilibrium (3.22) is equal to zero. Accordingly, the solution

is given by (3.23) where the singularity of deflections at the center is avoided by

requiring that C1 D 0. The constant of integration C2 that was taken equal zero in

Example 3.1 is retained in the solution.

Besides two boundary conditions along the edges of the plate, the additional

condition introduced following Timoshenko and Woinowsky-Krieger (1959) is the

equilibrium of a circular section of the plate of an arbitrary radius r D r1 as reflected
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P

r1

a

r1

Qr

P

Fig. 3.3 Circular plate loaded at the center and the illustration of the equilibrium condition for a

circle of radius r1

in Fig. 3.3. It is evident that vertical forces acting on such section are in equilibrium

if the transverse shear stress resultant balances the applied concentrated force

2�r1Qr .r D r1/C P D 0 (3.27)

where Qrcan be evaluated in terms of unknown constants of integration by

substituting (3.23) into (3.12). This procedure yields the constant of integration

C2 D P
8�D

.

Combining the solution for C2 with two boundary conditions along the edge

of the plate we can obtain the remaining constants of integration, deflections and

stresses. For example, if the plate is clamped along the boundary,

w D P

16�D

�

2r2 ln
r

a
C a2 � r2

�

�r D 3P z

�h3

h

.1C �/ ln
a

r
� 1

i

�� D 3P z

�h3

h

.1C �/ ln
a

r
� �

i

(3.28)

It is evident that the stresses given by (3.28) are singular at the center of the plate.

An approximate approach based on the analysis of Nadai (1925) was reproduced in

the monograph of Ugural (1999). According to this approach, the maximum stresses

given by (3.28) can be obtained using an “equivalent radius:”

req D
q

1:6r2P C h2 � 0:675h if rP < 0:5h

req D rP if rP > 0:5h (3.29)

where rP is the radius of a circle loaded by the force P (in other words, we realize

that even a “concentrated” force cannot physically be applied at one point). While
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this solution represents a historical interest, the availability of three-dimensional

finite element modeling capable of an accurate account for the local state of stresses

close to the center of the plate reduces its practical utility.

3.2.3 Annular Plate Subject to Loading Applied at the Inner Edge

This problem was discussed in detail by Timoshenko and Woinowsky-Krieger

(1959). In particular, they considered two cases, i.e. the plate loaded by uniformly

distributed bending stress couples M1 and M2 along both the inner and outer

edges, respectively, as shown in Fig. 3.4, Case “a” and the plate subject to a

uniformly distributed transverse shear stress resultant Q1 (Fig. 3.4, Case “b”). In

both problems the outer edge is simply supported, i.e. its deflections are equal

to zero, while the inner edge is not supported. Other boundary conditions could

also be considered, e.g., the rotations of the inner edge of the plate subject to a

prescribed transverse shear stress resultant could be prevented. This and similar

problems could be addressed using a similar approach to that considered below and

using appropriate boundary conditions.

Similar to the previous problem (Sect. 3.2.2), the pressure is equal to zero and

the solution of the equation of motion is given by (3.23) where all terms are retained

since the singularity at the center does not present a problem in an annular plate.

The boundary conditions that have to be satisfied are

Mr .r D b/ D M1; Mr .r D a/ D M2

Qr .r D b/ D Q1; w .r D a/ D 0 (3.30)

where in Case “a” Q1 D 0 and in Case “b” M1 D M2 D 0.

Using the deflection given by (3.23) and the expressions for the bending couple

and transverse shear stress resultant given in (3.12) we can derive the corresponding

solutions for both cases. In particular, in Case “a”,

w D M1b
2 �M2a

2

2 .1C �/D .a2 � b2/
�

r2 � a2
�

C .M1 �M2/ a
2b2

.1 � �/D .a2 � b2/
ln
r

a

Mr D M1b
2 �M2a

2

a2 � b2
C .M1 �M2/ a

2b2

r2 .a2 � b2/

M� D M2a
2 �M1b

2

a2 � b2
� .M1 �M2/ a

2b2

r2 .a2 � b2/ (3.31)

Case “b” and other problems related to annular plates are extensively discussed

in the book of Timoshenko and Woinowsky-Krieger (1959). In particular, a super-

position of available solutions enables us to model bending of an annular plate that

is simply supported along the outer edge, free along the inner edge, and subject

to a uniform pressure (Fig. 3.5). The results for this problem were obtained by a
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M2

M1

Q1

M2 M1 M1 M2

b b

a a

Q1
Q1

b b

a a

Case a Case b

Fig. 3.4 Annular plate subject to uniformly distributed bending stress couples (Case a) and to

uniformly distributed transverse shear stress resultants (Case b). The outer and inner radii are

denoted by a and b, respectively

superposition of the solution for the solid simply supported plate and the solution

for the section of this plate cut off by the inner radius (see details in Timoshenko

and Woinowsky-Krieger 1959). The solution of this problem can also be obtained

without superposition by substituting the expression for deflections of the plate

subject to a uniform pressure (first equation 3.25) into the boundary conditions

Mr.b/ D Qr .b/ D 0;

w.a/ D Mr .a/ D 0 (3.32)

The transverse shear stress resultant and stress couple in (3.32) have already been be

evaluated in terms of constants of integration in (3.25). Thus, conditions (3.32) yield

a system of four linear algebraic equations with respect to constants of integration.

Another problem that may represent an interest to designers of circular bulkheads

is depicted in Fig. 3.6. The section of the bulkhead between reinforcements (3) is a

sector plate (see a discussion on sector plates in Sect. 3.6). If the distance between

the radial stiffeners is large, bending in the central part of the sector plate 3 can be
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P0

b b

a a

P0

Fig. 3.5 Annular plate subject to a uniform pressure and simply supported along the outer edge

2

1

3

Fig. 3.6 Circular bulkhead reinforced by ring (1) and radial (2) stringers. Sector plate 3 is

supported by rings and stringers

analyzed without accounting for their effect. Then such section can be considered

as an annular plate. A typical load on bulkheads is represented by a hydrostatic

(uniform) pressure. Ring stiffeners (1) usually provide conditions approaching

simple support. Accordingly, the solution for such plate can be obtained using

the solution (3.25) and specifying the constants of integration from the boundary

conditions

w.b/ D Mr .b/ D 0

w.a/ D Mr.a/ D 0 (3.33)

where r D a and r D b are the coordinates of ring stiffeners.
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3.3 Geometrically Nonlinear Axisymmetric Bending Problem

for a Solid Annular Plate

The previous paragraph outlines the approach to exact and relatively uncomplicated

analytical solutions for both solid and annular circular plates. The validity of these

solutions is limited by the allowable range of deflections. Indeed, the solutions

developed using linear strain-displacement relationships become inaccurate at large

deflections of the plate. As indicated elsewhere in this book, while the strict limit

of the applicability of linear solutions is not available (such limit would depend on

the allowable error for deformations or stresses using the linear theory), a rather

typical practice is to recommend a nonlinear solution at deflections exceeding half-

thickness of the plate.

The principal contribution of nonlinear deformations to the analysis is related to

coupling between in-plane displacements and transverse deflections. This coupling

complicates the analytical solution, so that a numerical analysis is often the pre-

ferred approach. Physically, coupling between displacements implies the emergence

of in-plane membrane stress resultants in a plate experiencing bending, transverse

deflections and bending stresses being in turn affected by these in-plane stress

components.

The strain-displacement relationships (3.17) have to be modified in the case of a

nonlinear axisymmetric deformation. While the changes of curvature (3.18) are not

altered, the middle-plane strains are:

"0r D du0

dr
C 1

2

�

dw

dr

�2

"0� D u0

r

"0r� D 0 (3.34)

Analytical methods that can be used for the nonlinear analysis of circular plates

experiencing bending are outlined in the book of Timoshenko and Woinowsky-

Krieger (1959). The exact solution of the nonlinear governing equations is usually

impossible, but the solution can be based on approximate and numerical methods.

In particular, the Rayleigh-Ritz method representing radial displacements and

deflections in series with terms dependent on powers of the radial coordinate can be

used for the analysis. The other approach is based on using the Galerkin procedure

to integrate the equations of equilibrium. All methods of solution depend on the

series representation of displacements and/or stress resultants, i.e. the accuracy is

always dependent on the number of terms retained in these series.

The following approach to the solution of the problem of nonlinear bending of

a solid circular plate clamped along the edge and subject to a uniform pressure

utilizes the Rayleigh-Ritz method (Timoshenko and Woinowsky-Krieger 1959).
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The expression for the strain energy of a circular plate experiencing an axisymmetric

deformation is derived by substituting stress resultants and stress couples for an

axisymmetric problem (3.12) into the formula for the strain energy (1.70) that is

rewritten in the case of the axisymmetric plane problem in polar coordinates as

follows:

U D 1

2

“

A

�

Nr"
0
r CN�"

0
� CMr�r CM���

�

dA (3.35)

The substitution of the middle plane strains and changes of curvature as given by

(3.34) and (3.18) into (3.35) yields
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�
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(3.36)

The potential energy of the applied uniform pressure is evaluated from (1.68):

V D �2�
a
Z

0

p0wrdr (3.37)

In a clamped plate with the boundary prevented from the radial displacement the

boundary conditions are

w.a/ D dw.a/

dr
D 0; u.a/ D u.0/ D 0 (3.38)

where the last condition reflects the symmetry of radial displacements with respect

to the plate center. Conditions (3.38) can be satisfied by representing the displace-

ments in the form

u0 D r .a � r/
�

C1 C C2r C C3r
2 C � � �

�

w D C0

�

1 � r2

a2

�2

(3.39)

where Ci .i D 0; 1; 2; 3; :::/ are unknown constants.
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The substitution of series (3.39) into the Rayleigh-Ritz formulation @.UCV1/
@Ci

D 0

yields the system of nonlinear algebraic equations with respect to the unknown

constants. In particular, the solution obtained retaining only terms with C0, C1 and

C2 in (3.39) and using the Poisson ratio equal to 0.3 yields

C0 D w.0/ D p0a
4

64D

1

1C 0:488
C 20
h2

;

C1 D 1:185
C 2
0

a3
; C2 D �1:75C

2
0

a4
(3.40)

Obviously, as reflected in (3.40), radial in-plane displacements are much smaller

compared to the maximum deflection of the plate that occurs at the center. The

underlined term in the expression for w.0/ represents the coupling between in-

plane and transverse displacements. As can be checked by the inspection of the

first equation (3.40), coupling, i.e. geometric nonlinearity, reduces deflections of

the plate. For example, if the deflection at the center is equal to half-thickness of the

plate, the stretching produced as a result of coupling reduces the deflection by 11%.

The stresses that can be found by (3.19) are also reduced as a result of the

inclusion of geometric nonlinearity in the solution. This fact, previously referred

to in Chap. 2, reflects on the conservative nature of linear solutions and explains

why structures designed neglecting geometric nonlinearity are usually safe (though

they are may be unnecessary heavy).

Coupling between in-plane displacements and transverse deflections that is

present in nonlinear problems may cause a major difference in the solution.

Accordingly, in-plane boundary conditions may become important in the bending

problem. For example, if radial displacements at the edge are unconstrained, the

formula for the deflection at the center of the plate becomes (Timoshenko and

Woinowsky-Krieger 1959):

w.0/ D p0a
4

64D

1

1C 0:146
w20
h2

; (3.41)

The comparison of this equation with the first equation (3.40) yields the conclu-

sion that the nonlinear effect (underlined term) weakened as a result of the change in

the in-plane boundary condition. This is predictable since a constraint against radial

displacements resulted in larger membrane stresses affecting the bending response

(as reflected in the first equation (3.40)). In particular, the difference in the nonlinear

and linear solutions corresponding to the bending deflection at the center of the

plate equal to its half-thickness that was equal to 11% in the case of the in-plane

constrained edge reduces to 3.5% if the edge is unconstrained.
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3.4 Asymmetric Bending Problem for Circular Plates

Asymmetric problems in circular plates require a complicated analytical solution

that is often avoided in favor of numerical methods of the analysis. Nevertheless, the

analytical solution of the bending problem is available in the form that is applicable

to an arbitrary distribution of transverse load applied to the plate as long as it is can

be represented in the form of trigonometric series dependent on the circumferential

coordinate (Mc Farland et al. 1972; Jawad 2004).

Consider bending of a solid circular plate by transverse pressure p .r; �/ that is

a continuous function of both the radial as well as circumferential coordinates. The

pressure is represented in Fourier series:

p .r; �/ D f0.r/C
M
X

mD1

Œfm.r/ cosm� C gm.r/ sinm�� (3.42)

where the functions of the radial coordinate are available from

f0.r/ D 1

�

�
Z

��

p .r; �/ d�

fm.r/ D 1

�

�
Z

��

p .r; �/ cosm� d�

gm.r/ D 1

�

�
Z

��

p .r; �/ sinm�d� (3.43)

The problem being static and linear, in-plane displacements and transverse bending

deflections are uncoupled. In such case, we have to analyze the static version of the

equation of motion (3.9), i.e. Dr4w D p where the differential operator in the left

side given by (3.10) and the pressure is a function of the radial and circumferential

coordinates. The second equation (3.9) is the compatibility equation that does not

affect the solution due to the absence of coupling between membrane and bending

stresses.

The solution of the homogeneous equation obtained from the first equation (3.9)

is sought in the Fourier series

wh .r; �/ D W 0
0 .r/C

M
X

mD1

�

W 0
m.r/ cosm� CW 00

m.r/ sinm�
�

(3.44)

The substitution of (3.44) into the homogeneous version of the equation of

equilibrium (3.9) results in the equation
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M
X

iD0

Si .r/ cos i� C
M
X

mD1

Pm.r/ sinm� D 0; i D 0; m (3.45)

where

Si.r/ D d 4W 0
i

dr4
C 2

r

d 3W 0
i

dr3
� 1C 2i2

r2
d 2W 0

i

dr2
C 1C 2i2

r3
dW 0

i

dr

C
i2
�

i2 � 4
�

r4
W 0

i

Pm.r/ D d 4W 00
m

dr4
C 2

r

d 3W 00
m

dr3
� 1C 2m2

r2
d 2W 00

m

dr2
C 1C 2m2

r3
dW 00

m

dr

C
m2
�

m2 � 4
�

r4
W 00

m (3.46)

Obviously, Eq. 3.45 can be satisfied only if all coefficients at trigonometric

functions are equal to zero, i.e.

Si .r/ D 0; Pm.r/ D 0: (3.47)

The solution of ordinary differential equations (3.47) is found representing the

corresponding function of the radial coordinate in power series

W 0
i .r/ D ısr

s; W 00
m .r/ D �sr

s (3.48)

The substitution of (3.48) into (3.47) yields

W 0
0.r/ D A0 CB0r

2 C C0 ln r CD0r
2 ln r

W 0
1.r/ D A1r C B1r

3 C C1r
�1 CD1r ln r

W 0
i.r/ D Ai r

i C Bi r
iC2 C Ci r

�i CDi r
2�i for i > 1

W 00
1.r/ D E1r C F1r

3 CG1r
�1 CH1r ln r

W 00
m.r/ D Emr

m C Fmr
mC2 CGmr

�m CHmr
2�m for m > 1 (3.49)

where A0; A1; Ai ; :::;Hm are constants of integration that should be determined

from the boundary conditions.

The particular integral corresponding to the load represented in the form (3.42)

is sought in the form resembling (3.44) as

wp .r; �/ D S0.r/C
M
X

mD1

ŒSm.r/ cosm� CRm.r/ sinm�� (3.50)
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The substitution of (3.42) and (3.50) into the first equation (3.9) and equating the

coefficients at the same functions of the circumferential coordinate in the left and

in the right sides of the resulting equation yields ordinary differential equations for

functions S0.r/; Sm.r/ and Rm.r/:

d 4S0

dr4
C 2

r

d 3S0

dr3
� 1

r2
d 2S0

dr2
C 1

r3
dS0

dr
D f0.r/

D

d 4Sm

dr4
C 2

r

d 3Sm

dr3
� 1C 2m2

r2
d 2Sm

dr2
C 1C 2m2

r3
dSm

dr
C
m2
�

m2 � 4
�

r4
Sm

D fm.r/

D

d 4Rm

dr4
C 2

r

d 3Rm

dr3
� 1C 2m2

r2
d 2Rm

dr2
C 1C 2m2

r3
dRm

dr
C
m2
�

m2 � 4
�

r4
Rm

D gm.r/

D (3.51)

The solution of Eq. 3.51 can be specified dependent on the radial variations of

the applied load, i.e. the functions in the right side of these equations. Subsequently,

the solution

w .r; �/ D W 0
0 .r/C

M
X

mD1

�

W 0
m.r/ cosm� CW 00

m.r/ sinm�
�

C S0.r/

C
M
X

mD1

ŒSm.r/ cosm� CRm.r/ sinm�� (3.52)

must be subject to boundary conditions to specify the constants of integration.

Boundary conditions have to employ the linearalized expression for the stress

resultants and stress couples (3.3), including the contributions that were omitted

in the axisymmetric formulation.

An example of the solution for a particular case where the applied pressure is

a linear function of the radial coordinate is presented in the monograph of Jawad

(2004). In this book the pressure applied to a simply supported plate was given by

p D f1
r

a
cos � (3.53)

Following the procedure outlined above the deflection was obtained as

w D f1

192D

�

r5

a
� 2 .5C �/

3C �
ar3 C 7C �

3C �
a3r

�

cos � (3.54)
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Note that while the pressure in (3.53) is a linear function of the radial coordinate,

the deflections and stresses that can be found using (3.54) are nonlinear functions of

this coordinate.

While the solution shown in this paragraph is applicable for an arbitrary

distribution of pressure applied to the plate as long as it can accurately be modeled

by series (3.42), its limitations are evident. For example, a sector plate supported

by concentric ring and radial stiffeners as shown in Fig. 3.6 and subject to a

uniform pressure can be considered clamped along the radial stiffeners, as a result

of symmetry of both geometry and load about each stiffener, i.e. the corresponding

boundary conditions are w D @w
@�

D 0. Obviously, such conditions cannot be

satisfied by a series solution similar to that presented in this paragraph.

3.5 In-Plane Loading and Buckling of Circular Plates

Representative problems considered in this paragraph include bending of solid

clamped plates subject to a combination of transverse pressure and radial com-

pressive stress resultant, axisymmetric buckling of radially compressed simply

supported and clamped solid circular plates, asymmetric buckling of clamped solid

circular plates and buckling of annular plates.

3.5.1 Bending of a Solid Circular Plate Subject to Uniform

Pressure and Compression

Consider the problem of bending of a solid circular plate subject to a combination

of uniform transverse pressure p0 and radial compression by the stress resultant
NNr uniformly distributed along the edge r D a (Nadai 1925). This problem is

axisymmetric since the pressure is uniform.

Introducing the variable D � dw
dr

Eq. 3.21 where C0 D 0 to avoid singularity at

the plate center becomes

d 2 

dr2
C 1

r

d 

dr
C
�

n2r
a2

� 1

r2

�

 D �p0
D

(3.55)

where n2r D NNra
2

D
is a nondimensional applied stress resultant that is positive in

compression.

The solution of (3.55) is (Timoshenko and Woinowsky-Krieger 1959):

 D C1J1

�nr r

a

�

� p0r

2 NNr

w D
Z

 dr D C1
a

nr
J0

�nrr

a

�

� p0r
2

4 NNr
C C2 (3.56)
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where J1 .:::/ and J0 .:::/ are the Bessel functions of the first kind of the first and

zero order, respectively, and C1; C2 are constants of integration.

If the plate is clamped around the boundary, the constants of integration C1 and

C2 are specified from the conditions w .r D a/ D  .r D a/ D 0. Transformations

yield

w D p0a
2

2n2rD

(

�

J0
�

nr r
a

�

� J0 .nr /
�

a2

nrJ1 .nr /
� a2 � r2

2

)

(3.57)

It can be observed that as the compressive stress resultant increases deflections

become larger and reach the infinite value if J1 .nr / D 0. Of course, in reality,

both physical and geometric nonlinearities have to be accounted for, i.e. the present

solution becomes invalid at large deflections. It is obvious that similarly to the case

of a combined transverse load and compression of rectangular plates, buckling load

corresponds to w D 1. Accordingly, the linear buckling stress resultant can be

found from J1 .nr / D 0. It can be shown that this condition yields

NNcr D 14:68
D

a2
(3.58)

Denoting the nondimensional compressive load by QN D NNr
NNcr

, the deflection of

the plate can approximately be represented as

w D w .p0/

1 � QN
(3.58a)

where w .p0/ is the deflection of the plate subject to uniform pressure that is given

by Eq. b in Example 3.1.

3.5.2 Buckling of a Solid Circular Plate

Although the solution for the buckling stress resultant of a clamped plate was shown

in Sect. 3.5.1, it is useful to consider a “purely” buckling problem where the plate is

subject to compression only. The problem of stability of clamped plates was first

considered by Bryan (1890), while the simply supported plate was analyzed by

Dinnik (1911).

The solution of the homogeneous equation (3.55) is

 D C1J1

�nrr

a

�

C C2Y1

�nrr

a

�

(3.59)

where Y1
�

nr r
a

�

is the Bessel function of the second kind of the first order.

The singularity caused by the function Y1
�

nr r
a

�

at the center of a solid plate

can be avoided only if C2 D 0. If the solid plate is clamped along the boundary
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r D a, the condition  .r D a/ D 0 yields the buckling equation J1 .nr / D 0 and

the solution for the buckling stress resultant given by (3.57) that was shown in the

previous section.

If the plate is simply supported, the corresponding boundary condition obtained

using (3.12) is

Mr .r D a/ D �D
�

d 2w.a/

dr2
C �

r

dw.a/

dr

�

D D

�

d .a/

dr
C �

r
 .a/

�

D 0 (3.60)

The substitution of  D C1J1
�

nr r
a

�

into this condition yields the value of the

buckling stress resultant referred to above:

NNcr D 4:20
D

a2
(3.61)

Thus, clamping increases the buckling load of the plate by nearly three and a half

times.

The solution shown in this example was obtained by assumption that the mode

shape of buckling of the plate is axisymmetric. An alternative buckling shape mode

is asymmetric and the actually realized shape corresponds to the lowest buckling

load (both axisymmetric and asymmetric cases should be analyzed and compared

yielding the buckling load).

The asymmetric solution can be obtained by observing that as follows from

(3.20), in linear buckling problems where in-plane stresses do not vary with radial

coordinate �r D �� . In such case, the linear version of equations (3.9) yields

r4w C
NNr
D

r2w D 0 (3.62)

It can be verified by substitution that the solution of (3.62) corresponding to

an asymmetric mode shape of instability with mnodal diameters and avoiding

singularity at the plate center is

w D
h

C1Jm

�nrr

a

�

C C2r
m
i

sinm� (3.63)

Jm .:::/ being the Bessel function of the first kind and m-th order.

If the plate is clamped, boundary conditions specified above (w .r D a/ D
 .r D a/ D 0) yield the following buckling equation:

2

6

6

6

4

2

6

4

dJm

�nrr

a

�

d
�nr r

a

�

3

7

5

rDa

mrm�1

Jm .nr / rm

3

7

7

7

5

�

C1

C2

�

D 0 (3.64)
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a

b

Nr

Nr

Fig. 3.7 Annular plate subject to radial compression along both edges

The nonzero solution of this equation obtained by requiring that the determinant

of the matrix of coefficients is equal to zero results in JmC1 .nr / D 0 (Vol’mir

1967). The buckling stress resultant corresponding to the smallest root that is found

at m D 1 is equal to NNcr D 26:40D
a2

. Obviously, axisymmetric buckling occurs at

a lower applied stress resultant, i.e. asymmetric mode shape is not realized in the

present problem.

3.5.3 Buckling of an Annular Plate

Compressed annular plates are found in circular bulkheads reinforced with ring

stiffeners. Another example is a circular frame supporting a cylindrical shell subject

to hydrostatic pressure.

Consider an annular plate loaded along the outer and inner edges by equal stress

resultants NNr as shown in Fig. 3.7. In the case of an axisymmetric buckling the

solution can be adopted from (3.59), complimented with the term that was neglected

to avoid singularity in solid circular plates (see Eq. 3.21):

 D C1J1

�nrr

a

�

C C2Y1

�nrr

a

�

C C3

r
(3.65)

Integrating (3.65), one obtains

w D a

nr

h

C1J0

�nr r

a

�

C C2Y0

�nr r

a

�i

C C3 ln r C C4 (3.66)
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On the other hand, if the mode shape of buckling is asymmetric, Eq. 3.63 is

modified to account for terms neglected in the case of solid plates:

w D
h

C5Jm

�nrr

a

�

C C6r
m C C7Ym

�nrr

a

�

C C8r
�m
i

sinm� (3.67)

Four constants of integration in either axisymmetric or asymmetric cases are

determined from the boundary conditions. For example, Yamaki (1958) considered

four cases:

(a) Clamping along both outer and inner edges;

(b) Simple support along both edges;

(c) Clamping along the outer edge and free deflection without rotations along the

inner edge;

(d) Simple support along the outer edge and free deflection without rotations along

the inner edge.

Other possible loading cases include annular plates subject to radial stresses

applied along the inner edge and acing in the outward direction (Mansfield 1960,

considered this problem for an infinite plate) or in the inward direction (Meissner

1933). Interestingly, buckling occurs in both these cases, even though the orientation

of stresses in these two cases is opposite to each other. However, in both cases,

one of the components of in-plane stresses in the polar coordinate system is

compressive reflecting the Poisson effect. In particular, if the stresses act in

the outward direction, radial stresses �r are compressive, while circumferential

(tangential) stresses�� are tensile. In this case, the mode shape of instability is

axisymmetric. If radial stresses applied along the inner edge are oriented toward

the center of the plate, the radial stresses are tensile, but the tangential stresses are

compressive resulting in an asymmetric mode shape of instability with m D 2.

Buckling of annular plates with the outer edge clamped and the inner edge free

loaded by compressive radial stresses applied along the outer edge was considered

by Majumdar (1968).

3.6 Bending of Plates of Non-rectangular and Non-circular

Shapes

Plates of found in applications may have triangular, skewed, trapezoidal, oval and

elliptical shapes. Most of these plates are analyzed by numerical methods using

commercially available software. However, there are several exceptions where an

accurate analytical solution, often tracing back to the beginning of the twentieth

century, is available.
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Fig. 3.8 Equilateral triangular plate

3.6.1 Bending of Equilateral Triangular Plates Subject

to Uniform Pressure

An example where the problem of bending of triangular plates is encountered

in found isogrid plates where the skin is supported by intersecting ribs forming

a triangular pattern. Uniform pressure represents typical load acting on such

plates.

Consider a triangular plate shown in Fig. 3.8 where all angles are equal to 60ı

and all edges have equal length (equilateral triangular plate). The edges of the plate

are simply supported. Equations of the boundaries of the triangular plate shown in

Fig. 3.8 are

AB W x C a

3
D 0

AC W xp
3

C y � 2a

3
p
3

D 0

BC W xp
3

� y � 2a

3
p
3

D 0 (3.68)

The problem of simply supported equilateral plates subject to stress couples uni-

formly distributed along all edges was discussed by Timoshenko and Woinowsky-

Krieger (1959). A more relevant for practical applications situation where the load
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is represented by uniform pressure was also discussed in this book. In this case,

deflections in the form

w D p0

64aD

�

x3 � 3xy2 � a
�

x2 C y2
�

C 4a3

27

��

4

9
a2 � x2 � y2

�

(3.69)

satisfy both boundary conditions as well as the equation of equilibrium. Subse-

quently, the stresses in the plate can be calculated using constitutive equations in the

rectangular coordinate system. The largest bending stresses occur along the lines

bisecting the angles of the triangle where in-plane shear stress is equal to zero due

to symmetry. In particular, if the Poisson ratio of the material is equal to 0.3, these

stresses are:

�max
x D ˙0:1488p0

�a

h

�2

.x D �0:062a/

�max
y D ˙0:1554p0

�a

h

�2

.x D 0:129a/ (3.70)

3.6.2 Bending of Isosceles Triangular Plates

The problem where a simply supported isosceles triangular plate OBC is subject to

a concentrated force as shown in Fig. 3.9 can be solved by the method of images

introduced by Nadai (1925). The method is based on introducing an imaginary

symmetric plate shown by dashed lines in the figure resulting in a square plate.

A fictitious force equal to the applied force but acting in the opposite direction is

applied at the point that mirrors the point of application of the load relative to the

diagonal BC of the square plate. As a result of antisymmetry of forcesF andF 0 with

respect to the diagonal BC, the deflections along this diagonal are equal to zero. This

is a boundary condition for the triangular plate OBC. Subsequently, deflections of

the plate due to forces F and F 0 are obtained by superposition of deflections due

to each of these forces that are available from Example 2.3. These deflections that

satisfy boundary conditions along edges OB and OC are:

w D w.F /C w
�

F 0
�

D 4Fa2

�4D

M
X

mD1

N
X

nD1

1 � .1/mCn

.m2 C n2/
2

sin ˛m� sin ˛n� sin ˛mx sin˛ny

(3.71)

The solution of the problem where a simply supported right triangular plate

is subject to uniform pressure can be obtained from (3.71) by substituting F D
p0d� d� into this equation and integrating over the surface of the plate. The result is
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Fig. 3.9 Isosceles triangular plate
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(3.72)

3.6.3 Bending and Buckling of Skew Plates

Skew plates (Fig. 3.10) represent practical interest for airplane wings and other

applications. Unfortunately, the analysis of such plates is complicated since the

equation of equilibrium transferred into the oblique coordinate system defies

an exact solution. The results are usually obtained numerically. Representative

procedures can be found in the monograph of Szillard (2004) and papers of Rao and

Farran (1986), York (1996), Huyton and York (2001, 2006). For example, Huyton

and York (2001) presented design curves for buckling strength of thin skew plates

of various aspect ratios, skew angle and rotational restraint of edges.

An example of a numerical bending analysis of clamped skew plates experi-

encing large deformations as a result of uniform pressure or a concentrated force

is presented in Fig. 3.11 (Duan and Mahendran 2003). Load-deflection curves are
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Fig. 3.10 Skew plate

h

x
b

a

y

0

θ

presented in this figure for various aspect ratios (a and b being half-lengths of skew

and longitudinal edges, respectively). The nondimensional maximum deflection

normalized with respect of the plate thickness is shown as a function of uniform

pressure (in the paper, q denotes the uniform pressure) and a concentrated force P.

The effect of the aspect ratio on bending is evident in this figure. Furthermore, geo-

metric nonlinearity becomes noticeable at the deflection exceeding half-thickness of

the plate. The skew angle is another parameter that affects the response of skewed

plates (this effect is not shown in Fig. 3.11).

3.6.4 Response of Elliptical and Super-Elliptical Plates

Elliptical plates are used as hatch covers where the absence of corners is preferable

due to the requirement to reduce stress concentration. The cover is sometimes bolted

to the rim around the hatch providing conditions that approach clamping. In the

case where clamping cannot be assured it is often justified to use the assumption

of a simply supported edge. The load applied to these plates is almost invariably

represented by a uniform pressure.

Consider a so-called super-elliptical plate the boundary equation

�x

a

�2k

C
�y

b

�2k

D 1 (3.73)

where a and b are the major and minor semi-axes and k is a real number. Static

and dynamic analyses of such plates have been published by a number of authors

(Leissa 1967; Wang et al. 1994; Altekin and Altay 2008; Ceribasi and Altay 2009).

However, with the exception of the case k D 1 corresponding to an elliptical

plate, the solutions are numerical. For example, the Rayleigh-Ritz method that

does not require satisfaction of natural (static) boundary conditions can be applied

representing the deflection of a simply supported plate by

w D
�

�x

a

�2n

C
�y

b

�2n

� 1

� �

C00 C C20

�x

a

�2

C C02

�y

b

�2
�

(3.74)
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Fig. 3.11 Load-deflection curves of clamped skew plates with 60ı skew angle and different aspect

ratios (From Duan and Mahendran 2003)

where Cij are either constant coefficients (static problems) or time functions

(dynamic problems) that have to be specified by the Rayleigh-Ritz method. This

expression satisfies the requirement of zero deflections along the plate boundary but

violates the condition of zero bending stress couples in the planes perpendicular

to the boundary. If the plate is clamped, the previous formula for deflections can

be modified by taking a square of the first term in the right side and satisfying

all boundary conditions. Other expressions for the deflection were used to solve

dynamic problems for super-elastic plates with a variable thickness and/or to
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Fig. 3.12 Elliptical plate
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accurately evaluate higher natural frequencies of the plate (e.g., Ceribasi and Altay

2009) as well as to analyze such boundary conditions as point-supports of the edge

(e.g., Altekin and Altay 2008).

If k D 1 in (3.73), the geometry is reduced to classical elliptical plates

extensively investigated in literature (e.g., Timoshenko and Woinowsky-Krieger

1959). We will consider the case of the plate subject to uniform pressure (Fig. 3.12).

If the plate is clamped around the boundary, the corresponding boundary conditions

w D @w
@n

D 0where n is a normal to the edge are identically satisfied by representing

the deflection in the form

w D W

�

1 � x2

a2
� y2

b2

�2

(3.75)

The constantW is found by substituting (3.75) into (2.1):

W D p0

8D

a4b4

3a4 C 2a2b2 C 3b4
(3.76)

The corresponding maximum stresses are available through the substitution

of (3.75) into the expressions for changes of curvature and twist (1.29) and the

subsequent substitution of (1.29) into the plane-stress version of the constitutive
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relations (2.9a). The highest bending stresses occur on the plate surfaces at the center

of the plate and at the ends of the major and minor axes of the ellipse:

x D y D 0 W �max
x D ˙24DW

h2

�

1

a2
C �

b2

�

; �max
y D ˙24DW

h2

�

1

b2
C �

a2

�

x D ˙a; y D 0 W �max
x D �48DW

a2h2
; �max

y D �48�DW

a2h2

x D 0; y D ˙b W �max
x D �48�DW

b2h2
; �max

y D �48DW

b2h2
(3.77)

At all locations listed above the in-plane shear stress is equal to zero. The change

in the sign of the stress from the center of the plate to boundaries on the same plate

surface reflected in Eq. 3.77 occurs since the stress couples applied to the plate by

the clamped boundary are reactive. Accordingly, they have the opposite direction

as compared to the bending stress couples at the center of the plate (the situation

is similar to a distribution of moments in a clamped beam subject to pressure).

Note that if a D b the present solution reduces to the results for circular plates.

The results for clamped elliptical plates subject to a linearly varying pressure and

for simply supported elliptical plates undergoing uniform pressure are presented by

Timoshenko and Woinowsky-Krieger (1959).

3.6.5 Sector Plate Subject to Bending

An example of a sector plate is shown in Fig. 3.6 where a circular bulkhead is

reinforced by ring and radial stiffeners. If the sector angle is small, the analysis

should account for the influence of straight edges on bending of the plate and

employ an asymmetric approach. Besides numerical procedures usually utilizing

finite element or finite difference methods, the analytical solution is available as is

demonstrated in this section.

The boundary conditions along the straight edges of the sector plate shown in

Fig. 3.13 can be modeled as clamping or simple support. The former condition is

realized if the plate represents a part of the circular bulkhead divided into identical

sector plates by radial stiffeners (Fig. 3.6) and loaded by a hydrostatic pressure. In

such case clamping is effectively enforced through the symmetry of the adjacent

sector plates with respect to the radial stiffener as well as because uniform pressure

is also symmetric with respect to the stiffener. Simple support along the straight

edges is the boundary condition for a single sector plate or in case where the

symmetry of pressure or geometry with respect to the radial stiffener is violated.

In this section we consider a sector plate simply supported along straight edges and

subject to a uniform pressure p0.
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Fig. 3.13 Sector plate.

Straight boundaries:

� D 0; � D ˛. Curved

boundaries: r D a; r D b

r
=

θ

θ α

O

b

a

The conditions of simple support along the straight edges � D 0 and � D ˛ are

satisfied if

w D 0;
@2w

@�2
D 0 (3.78)

The pressure can be represented in Fourier series as follows:

p D 4p0

�

1
X

nD1;3;:::

1

n
sin

n��

˛
(3.79)

Of course, the series in (3.79) and subsequent solution are truncated, i.e. the

“infinite” number of terms should not be understood literally.

The equation of equilibrium for asymmetric bending available from the first

equation (3.9), i.e.Dr4w D p, and boundary conditions (3.78) are satisfied if the

particular integral of the equation of equilibrium is represented in Fourier series

(Nadai 1925)

wp D 4p0r
4

�D

1
X

nD1;3;:::

1

n .16 � n2�2=˛2/ .4 � n2�2=˛2/
sin

n��

˛
(3.80)

The general solution of the homogeneous equation of equilibrium that also

satisfies boundary conditions (3.78) is

wh D
1
X

nD1

�

A�
nr

n�=˛ C B�
n r

�n�=˛ C C �
n r

2Cn�=˛ CD�
n r

2�n�=˛
�

sin
n��

˛
(3.81)

where n are odd numbers and constants of integration A�
n through D�

n are deter-

mined from boundary conditions along the curved edges.

The solution can now be obtained by substituting the deflection w D wh C wp
into the boundary conditions along the edges r D b and r D a. There are two
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conditions along each of these edges that can be used to specify four constants of

integration for each integer n.

3.7 Design Philosophy and Recommendations

Plates of a non-rectangular shape are found in engineering applications, although

they are less typical than rectangular counterparts. Among these plates, circular

plates have been most intensively investigated. Besides their practical applications,

the reason for the interest to circular plates is the convenience of using a polar

coordinate system employed to characterize their geometry. Other plate shapes are

seldom characterized in rectangular or polar coordinate systems, although there are

several exceptions, such as elliptical and triangular configurations discussed in the

chapter.

While the shape of the plate may prevent an analytical solution, this is seldom a

limitation due to the availability of numerical procedures. On the other hand, tech-

nological considerations sometimes impose constraints on the shape of plates used

in applications. These limitations are due to the convenience of the manufacture as

well as the need to avoid sharp angles formed by the plate boundaries that cause

stress concentrations.

The number of exact analytical solutions for non-rectangular plates is limited. In

particular, numerous axisymmetric problems for circular and annular plates have a

closed form solution. The solutions for the case of large axisymmetric deformations

of such plates are also available, but such problems are usually treated numerically.

Analytical solutions are also available for asymmetrically deformed circular and

sector plates characterized by a geometrically linear theory. Other plates that can

be analyzed using convenient analytical solutions include elliptical plates as well as

equilateral and isosceles triangular plates with boundary conditions specified in the

chapter.

Practical recommendations regarding the distinction between geometrically

linear and nonlinear formulations for circular plates and plates of other shapes are

identical to those for rectangular plates. Designs based on a geometrically linear

analysis become unnecessary conservative if deflections exceed half-thickness of

the plate. In case where linear solutions predict larger deflections, it is appropriate

to use a nonlinear analysis for the evaluation of stresses and deformations.

It is useful to mention here that besides the shape of the plate dictated by

geometry of the structure, plates of irregular shapes may be encountered as a result

of using non-straight stringers to optimize the structural performance. For example,

if the orientation of the stringer follows the path of the largest principal stresses in

the plate, the sections of the plate between such stringer and other support structures

may not be rectangular. Such situations may arise as a result of the desire to reduce

the weight of the structure, particularly in the aerospace industry.
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Chapter 4

Dynamic Problems in Isotropic Plates

Plates found in applications are often subject to dynamic loads. These loads can

be directly applied to the plate (i.e., wave impact, wind gusts, blast overpressure,

impact by birds or other objects, etc.). In numerous applications, dynamic loads

are applied to the plate by unbalanced rotating machinery supported by the plate

or through the kinematic excitation by beams that support both the plate and the

engine. In all these problems, the structural integrity of the plate has to be analyzed

to prevent immediate failure due to excessive dynamic stresses or fatigue damage

as a result of continuous large-amplitude vibrations. The present chapter provides

an insight into vibrations of isotropic plates, including free and forced vibrations,

response to non-harmonic dynamic loads, large-amplitude vibrations and dynamic

instability. Dynamic problems of composite plates that can be investigated using

an extension of analytical and numerical tools employed for the analysis of their

isotropic counterparts are outside the scope of this book. An exception applicable

to the analysis of composite plates is vibration of plates reinforced with stringers

whose constitutive equations and equations of motion resemble those of composite

plates (Sect. 4.5).

4.1 Typical Problems

The subject of dynamics of plates refers to multiple and diverse problems that have

to be addressed by a designer. To better understand the subject we begin with the

classification of relevant problems.

Dynamic problems can be subdivided into the following classes:

1. Free vibrations;

2. Forced vibrations due to a harmonic excitation;

3. Forced non-periodic response to a non-harmonic load;

4. Forced response to in-plane (parametric) dynamic load.

V. Birman, Plate Structures, Solid Mechanics and Its Applications 178,
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The solutions of all these classes of problems depend on the motion being

characterized by a geometrically linear or nonlinear theory. It is rather typical

to consider the motion linear if the maximum dynamic deflection of the plate

does not exceed its half-thickness, while nonlinear solutions are applied in case

of larger deformations. In addition, damping can have a significant effect on the

response of the plate. If the response is considered by assumption that damping is

negligible, the error is usually small as long as the plate is not in the narrow range

of frequencies corresponding to resonance conditions discussed below. Note that

plates are continuous systems whose vibrations share many features with vibrations

of beams, shells and other structures. A brief outline of the classes of problems listed

above is provided in this paragraph.

Free vibrations refer to the motion of the plate that occurs if it is displaced from

static equilibrium by an initial displacement, rotation or an impulse resulting in

initial velocity. The motion following the removal of the initial excitation is referred

to as “free vibrations” since the plate vibrates in the absence of external driving force

or moment. The frequencies of free vibrations are called natural frequencies (the

lowest natural frequency is referred to as the fundamental frequency). The number

of natural frequencies equals the number of degrees of freedom of the system.

Plates are characterized by a distributed mass over the domain occupied in space,

rather than a system of concentrated masses. Accordingly, the number of degrees of

freedom of the plate is infinite. While the natural frequencies are determined from

the equations of motion, the amplitudes of free motion are specified from the initial

conditions. Damping results in a decrease of natural frequencies, although in plates

such decrease is usually small and can be neglected. The only significant effect of

damping in case of free vibrations of plates is a reduction and eventual suppression

of motion with time. This occurs since while additional energy is not supplied to the

plate experiencing free vibrations, the available energy is “spent” overcoming the

resistance due by damping.

The motion of plates subject to a harmonic-in-time driving load represents a

superposition of free vibrations and forced response. The former are usually quickly

eliminated through damping, even if its effect on forced motion is negligible.

A typical frequency-amplitude relationship of a plate is schematically shown in

Fig. 4.1. The response is shown for a spectrum of driving frequencies in the

range overlapping the lowest three natural frequencies of the plate. Note that the

amplitude of motion becomes infinite when the frequency of the applied load

(driving frequency) is equal to one of the natural frequencies. This condition called

“resonance” explains the reason for the free vibration analysis where a typical goal is

to design the system (plate) with natural frequencies that are remote from anticipated

driving frequencies. Consider an example, where the same beams support an

unbalanced engine and the plate. In such case, the plate natural frequencies should

not coincide with the frequencies of dynamic loads transmitted by the engine to the

beams since these are also the frequencies of kinematic excitation applied by the

same beams to the plate.

While amplitudes of motion corresponding to the resonance in Fig. 4.1 are

infinite, in reality they are limited due to unavoidable damping present in the system.
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ω1 ω2 ω3 ω

A

Fig. 4.1 Forced vibrations of a continuous system (plate) without accounting for damping. The

absolute value of the amplitude is shown as a function of the driving frequency (frequency of the

applied load), ! iare the natural frequencies of the system

A

ω1 ω2 ω3 ω

Fig. 4.2 Forced vibrations of a continuous system (plate) accounting for damping

The effect of damping on the forced motion is reflected in Fig. 4.2. The most

significant effect is on the motion at resonance where damping results in limited

amplitudes. This effect becomes more pronounced at higher resonance frequencies.

Accordingly, resonances occurring at the fundamental frequency of motion and at

other low natural frequencies are often considered the “most damaging.” The other

consequence of damping is a small “shift” of the resonance frequencies to smaller

values compared to those evaluated without damping (in typical plate structures

such shift is usually negligible).

The designer should be concerned with two damage scenarios. The plate may

collapse due to excessive amplitude of dynamic stresses. This mode of failure

can be predicted based on the analysis of forced motion (e.g., Sect. 4.3). The

other possible mode of failure is associated with continuous vibrations that do not

immediately result in the collapse, but rather generate fatigue damage that may

occur after millions of cycles of motion. Fatigue analysis has to account for coupling

of the vibration and fatigue problems (e.g., the stiffness of a plate with fatigue
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A

ω1 ω2 ω

Fig. 4.3 Geometrically nonlinear frequency-amplitude relationship of system (plate) with a

hardening nonlinearity

cracks is reduced affecting the amplitudes of motion and fatigue damage during

the subsequent life).

Non-periodic response of a plate to such loads as impact or blast overpressure

is analyzed using standard methods of the theory of vibration combined with the

theory of plates (Sect. 4.4). The solution is relatively straightforward if the motion

is linear since in such case equations of motion can often be reduced to uncoupled

ordinary differential equations where time serves as an argument. Every uncoupled

equation in such formulation characterizes a single mode of motion. The solution

of uncoupled equations is available by initial value methods or by the convolution

integral.

Both free and forced vibrations of the plate can be affected by geometrically

nonlinear effects that become essential at large amplitudes of motion. Plates possess

a hardening nonlinear response meaning that forced vibration frequency-amplitude

relationships “bend” to the right (to larger frequencies) on the frequency-amplitude

plane (Fig. 4.3). The response is schematically shown in Fig. 4.3 for driving

frequencies in the range of the lowest two natural frequencies of the plate. In the

presence of damping the amplitude of motion is limited. The “middle” brunches

identified by broken curves in Fig. 4.3 are not realized since the corresponding

motion is unstable. Examples of geometrically nonlinear problems of isotopic plates

are discussed in Sect. 4.6.

In addition to problems where dynamic load is applied to the surface of the

plate, these structures sometimes operate under in-plane dynamic forces. If such

forces are supplemental to transverse loading, they affect the motion of the plate.

In the situation where in-plane dynamic forces represent the only load applied

to the plate they may result in parametric or dynamic instability characterized by

large-amplitude transverse vibrations. An example of such problem is illustrated in

Sect. 4.7.
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The chapter also includes a paragraph on forced vibrations of reinforced plates

(Sect. 4.5) since such problems are routinely encountered by designers. The analysis

of such vibrations should be concerned with possible resonance of both the entire

plate with the stringers as well as resonance of sections of the plate between the

stringers and resonance of the stringers. The reason is that each of these structures,

i.e. the reinforced plate, sections of the plate between the stringers and the stringers

themselves, have their own natural frequencies. Accordingly, undesirable large-

amplitude vibrations occur if the frequency of driving forces coincides with any

of these natural frequencies.

4.2 Free Vibrations of Rectangular Isotropic Plates

Consider an isotropic rectangular plate with geometry corresponding to that in

Fig. 2.11. The plate is subject to in-plane static stress resultants NNx and NNy . Free

linear vibrations of the plate are analyzed using the equation of equilibrium (2.38)

where following D’Alembert’s principle pressure is replaced with the inertial term:

Dr4w D � Om@
2w

@t2
C NNx

@2w

@x2
C NNy

@2w

@y2
(4.1)

Usually in dynamic problems boundary conditions are not explicitly affected

by time. However, designers should be aware that this statement is correct only

if boundary structures providing support to the plate are “rigid,” i.e. they do not

participate in motion. An example where vibrations of boundary structures interact

with and affect dynamics of the plate would be the case where the plate was

supported by flexible beams. In such case it is necessary to consider the motion

of the entire plate-beam system.

In this paragraph we consider the case of a simply supported plate where

boundary conditions correspond to (2.2). The motion of the plate is represented

by series (2.5) where the amplitude of each harmonic is a function of time:

w D
M
X

mD1

N
X

nD1

Wmn.t/ sin ˛mx sinˇny (4.2)

Series (4.2) satisfy the boundary conditions. The functions of time are harmonic,

so that

Wmn.t/ D Amn sin!mnt C Bmn cos!mnt (4.3)

where Amn and Bmn are constants and !mn are frequencies corresponding to motion

with m and n halfwaves in the x- and y-directions, respectively.



150 4 Dynamic Problems in Isotropic Plates

Upon the substitution of (4.2) into (4.1) the equations of motion for each

harmonic are uncoupled:

�

˛4m C 2˛2mˇ
2
n C ˇ4n � Om

D
!2mn C ˛2m

D
NNx C ˇ2n

D
NNy
�

Wmn.t/ D 0 (4.4)

The natural frequency corresponding to themn� th mode of motion is obtained

from (4.4). In the absence of in-plane stress resultants it is given by

!mn D �2

r

D

Om

�

m2

a2
C n2

b2

�2

(4.5)

If in-plane stress resultants are present, the expression for the natural frequency

becomes

!mn D !mn

� NNx D NNy D 0
�

s

1 �
NNx

NNx;cr .m; n/
�

NNy
NNy ;cr .m; n/

(4.6)

where the frequency !mn

� NNxD NNyD 0
�

is given by (4.5) and the terms NNx;cr .m; n/
and NNy;cr .m; n/ are critical loads of the plate subject to compression along the x-

and y-axes, respectively (see Sect. 2.6).

The fundamental (lowest) frequency of the plate without in-plane loading is

available from (4.5) using m D n D 1. As is evident from (4.5) this frequency

always corresponds to a single half-wave along both pairs of parallel edges,

irrespectively of the plate aspect ratio.

It can be observed from (4.6) that the natural frequencies are reduced if the plate

is subject to compressive in-plane loads. In the contrary, tension results in larger

natural frequencies. The natural frequency becomes equal to zero when applied

loads reach a critical combination, i.e. the term under the square root in the right

side of (4.6) becomes equal to zero.

Boundary conditions have a profound effect on natural frequencies of plates.

This is reflected in Table 4.1 where the lowest five frequencies of square plates are

compared for several representative boundary conditions (the Poisson ratio in all

cases was equal to 0.3).

The analysis of free vibration motion requires us to specify constants Amn and

Bmn in (4.3) that depend on initial conditions. Consider the case where both the

initial deflection and initial velocity of the plate are prescribed being functions of

the x- and y-coordinates. Then they can be represented in the form resembling series

(4.2):

w .x; y; t D 0/ D
M
X

mD1

N
X

nD1

Wmn.0/ sin˛mx sinˇny

Pw .x; y; t D 0/ D
M
X

mD1

N
X

nD1

PWmn.0/ sin ˛mx sinˇny (4.7)
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Table 4.1 Natural frequencies of square isotropic plates with various boundary conditions (Based

on data from Leissa (1973))

Boundary

conditions

k for fundamental

frequency

k (second

mode)

k (third

mode)

k (fourth

mode)

k (fifth

mode)

SSSS 19:74 49:35 78:96 98:70 128:30

CFCF 22:27 26:53 43:66 61:47 67:55

CSCS 28:95 54:74 69:33 94:58 102:21

CCCC 36:00 73:41 108:27 131:64 132:24

CCFF 6:94 24:03 26:68 47:79 63:04

CFFF 3:49 8:52 21:43 27:33 31:11

FFFF 13:49 19:79 24:43 35:02 61:53

! D k
q

D
Oma4

S D simply supported edge, C D clamped edge, F D free edge

where the dot identifies the derivative with respect to time, i.e.
�

.:::/ D @.:::/

@t
, and

Wmn.0/ and PWmn.0/ are available from

Wmn.0/ D 4

ab

b
Z

0

a
Z

0

w .x; y; 0/ sin˛mx sinˇnydxdy

PWmn.0/ D 4

ab

b
Z

0

a
Z

0

Pw .x; y; 0/ sin˛mx sinˇnydxdy (4.8)

Constants Amn and Bmn are now obtained using (4.3) and (4.8):

Bmn D Wmn.0/; Amn D
PWmn

!mn

(4.9)

4.3 Forced Harmonic Vibrations of Rectangular

Isotropic Plates

Forced vibrations of rectangular isotropic panels can be studied by modifying the

equation of motion to account for the driving load. This load is usually applied in the

form of a distributed pressure, concentrated dynamic loads or kinematic excitation

due to vibrations of supporting structures. In the former case, equation of motion

(4.1) becomes (static in-plane loads are not included)

Dr4w D � Om@
2w

@t2
C p .x; y; t / (4.10)
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Boundary conditions are not affected by the load applied to the plate, except for

the case where the plate is driven by the motion of its supports that is discussed

below or if the support structures are flexible implying the necessity to analyze a

joint plate-support dynamics.

The effect of damping on vibrations of plates is often accounted for using

the viscous damping model. While a detailed discussion of damping is outside

the scope of this book, a useful reference to the phenomenon can be found in

Nashif et al. (1985). In the case of viscous damping, its effect is reflected through

the presence of the corresponding term in the equation of motion. Accordingly,

the left side of (4.10) would contain the viscous elastic term c @w
@t

, c being the

damping coefficient. In the subsequent solutions damping is excluded from the

consideration, though we implicitly account for its effect suppressing free motion

of the plate.

Let the applied pressure be represented in double Fourier series

p .x; y; t / D
M
X

mD1

N
X

nD1

pmn.t/ sin˛mx sinˇny (4.11)

The substitution of these series and the motion modeled by (4.2) into (4.10) yields

uncoupled equations for the amplitudes of harmonics of a simply supported plate:

Om
D

RWmn C
�

˛2m C ˇ2n
�2
Wmn.t/ D pmn.t/

D
(4.12)

Equation 4.12 is valid for the analysis of motion of simply supported plates

with negligible damping experiencing linear vibrations. The solution depends on

the function pmn.t/ and it can be obtained by standard methods of the theory of

vibration of single-degree of freedom systems.

Consider the particular case where the load is harmonic, i.e.

pmn.t/ D pmn sin!t (4.13)

! being the driving frequency. The time-dependent term Wmn.t/ includes the free

vibration contribution (4.3) representing the solution of the homogeneous equation

obtained from (4.12). A particular integral of the nonhomogeneous equation (4.12)

representing the forced response is combined with (4.3) resulting in

Wmn.t/ D Amn sin!mnt C Bmn cos!mnt C pmn

D
�

˛2m C ˇ2n
�2 � Om!2

sin!t (4.14)

As noted above, free vibrations become negligible after a short transient period

as a result of energy dissipation. On the other hand, forced vibrations can con-

tinue indefinitely as long as energy is supplied to the plate by the driving load.
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Accordingly, the free vibration contribution in (4.14) is usually neglected and the

resulting motion referred to as “steady state vibrations” can be represented as

Wmn.t/ D pmn

Om
�

!2mn � !2
� sin!t (4.15)

where the natural frequency !mn is introduced through (4.5).

It is observed from (4.14) or (4.15) that if the driving frequency is equal to the

natural frequency of the corresponding mode, the amplitude of motion is infinite,

i.e. the plate vibrates in resonance (see Fig. 4.1). Accounting for damping limits the

amplitudes as is schematically shown in Fig. 4.2. This observation is valid for all

boundary conditions. In the presence of static in-plane loads, the form of Eq. 4.15

is not altered, but the natural frequency is now given by (4.6).

4.3.1 Kinematic Excitation of the Plate

Consider now an important practical case where forced vibrations of the plate are

driven by the motion of beams or other structures supporting its edges. If this motion

is harmonic and torsional stiffness of the supporting structure is negligible, dynamic

boundary conditions are represented by a generalization of conditions (2.2):

x D 0; x D a W w D W sin!t; Mx D �D
�

@2w

@x2
C �

@2w

@y2

�

D 0

y D 0; x D b W w D W sin!t; My D �D
�

@2w

@y2
C �

@2w

@x2

�

D 0 (4.16)

where the amplitude of the edge motionW is known.

The equation of motion of the plate is (4.1) since no driving loads are applied to

its surface. The steady-state solution can be sought in the form

w D
"

M
X

mD1

N
X

nD1

NWmn sin˛mx sinˇny CW

#

sin!t (4.17)

Equation 4.17 identically satisfy boundary conditions (4.16).

The substitution of (4.17) into (4.1) where in-plane loads are absent yields

M
X

mD1

N
X

nD1

h

D
�

˛2m C ˇ2n
�2 � Om!2

i

NWmn sin ˛mx sinˇny D Om!2W (4.18)
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tPsinω

y2

y1

x1

x2

y

x

Fig. 4.4 Rectangular plate subject to a load distributed over the segment x1 6 x 6 x2; y1 6

y 6 y2

The solution for amplitudes NWmn is available by representing the term in the right

side of (4.18) in double Fourier series

W D
M
X

mD1

N
X

nD1

OWmn sin ˛mx sinˇny (4.19)

where

OWmn D 16

mn�2
W m; n D odd (4.20)

Even values of m or n yield OWmn D 0.

The substitution of (4.19) into (4.18) and equating the coefficients at the same

trigonometric functions in the left and right sides of this equation result in

NWmn D Om!2 OWmn

D
�

˛2m C ˇ2n
�2 � Om!2

(4.21)

4.3.2 Energy Method for the Analysis of Plate Vibrations

Energy methods can successfully be applied to the analysis of both free and forced

vibrations of plates. In this paragraph we illustrate the application of the Rayleigh-

Ritz method to the analysis of forced vibrations of a simply supported plate subject

to a harmonic load P.t/ D P sin!t uniformly distributed over the segment x1 6

x 6 x2; y1 6 y 6 y2 as shown in Fig. 4.4.
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The potential energy of the plate, including the strain energy given by (2.33) and

the energy of the applied load given by (1.68) is

… D D
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� 2 .1 � �/
"

@2w

@x2
@2w

@y2
�
�

@2w

@x@y

�2
#)
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.x2 � x1/ .y2 � y1/

y2
Z
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x2
Z
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wdxdy (4.22)

The kinetic energy of the plate is given by equation (1.69) that can be simplified

since in-plane displacements and inertia are usually negligible in the linear problem

concerned with transverse (lateral) vibrations. Accordingly,

K D 1

2
Om

b
Z

0

a
Z

0

�

@w

@t

�2

dxdy (4.23)

The solution is obtained by the Rayleigh-Ritz method. The steady-state motion

of the plate is modeled by series

w D
M
X

mD1

N
X

nD1

Wmn sin ˛mx sinˇny sin!t (4.24)

that satisfy all boundary conditions.

The Rayleigh-Ritz method implies the application of equation (1.65) that

becomes

@ .… �K/
@Wmn

D 0 (4.25)

The substitution of (4.24) into (4.22) and (4.23) and the subsequent application

of (4.25) yield uncoupled equations for each amplitudeWmn:

Wmn D 4

ab

fmn

D
�

˛2m C ˇ2n
�2 � Om!2

(4.26)

where

fmn D P

.x2 � x1/ .y2 � y1/

y2
Z

y1

x2
Z

x1

sin ˛mx sinˇnydxdy (4.27)
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4.4 Non-periodic Response (Representative Example

of Blast Loading)

The response of the plate to a dynamic non-periodic load is analyzed reducing

the partial differential equations of motion where the response depends on both

spatial coordinates and time to ordinary differential equations where time is the

only argument. Subsequently, the response is found using the convolution integral

or numerical initial value methods well known in the theory of vibration. In this

paragraph we consider a representative non-periodic dynamic problem, i.e. the

response of a plate to explosive blast overpressure.

A plate subject to blast loading experiences overpressure that is applied almost

instantaneously and varies on the time scale of milliseconds. An example of blast

overpressure measurements recorded during the test of a steel plate is shown in

Fig. 4.5.

An analytical model for the air blast overpressure was developed in the eighties

(e.g., Gupta et al. 1987) and extensively used in structural studies (Birman and Bert

1987; Librescu and Nosier 1990; Genin and Birman 2009; Nguyen et al. 2011).

The overpressure is represented as a function of time by the modified Friedlander

exponential decay equation:

pblast .t/ D p0

�

1 � t

tp

�

exp

�

�a
0t

tp

�

(4.28)

where p0 is the peak overpressure, tp is a positive phase duration of the pulse and

a0 is an empirical decay parameter.

Fig. 4.5 Record of time history of the air blast overpressure (From Houlston et al. 1985)
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The blast overpressure is usually uniformly distributed over the surface of the

plate so that it can be represented in series (4.11) where

pmn.t/ D 16

mn�2
pblast.t/ (4.29)

where m and n are odd numbers. The motion of the plate that is simply supported

around the perimeter is given by (4.2).

The nondimensional form of the uncoupled modal equation obtained as a result

of the substitution of (4.2) and (4.11) into (4.10) is (Birman and Bert 1987):

d 2 QWmn

d�2
C N!2mn

QWmn D Qpmn .�/ (4.30)

where

QWmn D Wmn

h
; � D !11t;

N!mn D !mn

!11
; Qpmn D pmn

Omh!211
(4.31)

The solution obtained for the case where the plate was at rest at the instant of

blast, i.e. the initial deflection and velocity are equal to zero, is
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(4.32)

In (4.32),

Np D p0

Omh!211
; �p D !11tp (4.33)

Equation 4.32 is valid both for isotropic as well as for symmetrically laminated

composite plates as long as we use appropriate natural frequencies. An example of

the response of a cross-ply symmetrically laminated plate to blast load is shown in

Fig. 4.6. A square 8-ply glass/epoxy cross-ply laminate of thickness h D 0.008 m

and in-plane dimension a D 0.5 m was considered in this example. The layers
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Fig. 4.6 Nondimensional deflection of a plate subject to blast loading as a function of the

fundamental frequency denoted by !1. “Approximation” refers to the solution shown in Eq. 4.34

(From Genin and Birman 2009)

included glass fibers and spherical glass particles added to the epoxy matrix to

enhance the stiffness of the laminate. The fundamental frequency of the laminate

with a variable content of particles and fibers, !11, varied in the range from 250 to

800 Hz. For this natural frequency range, and using the blast considered by Librescu

and Nosier (1990), i.e. tp D 0.1 s, a0 D 2, several oscillations occur in the panel

during the positive pressure phase of the blast duration, tp (Fig. 4.6). As can be

observed in this figure, the peak deflection in the plates with a higher fundamental

frequency was larger than in the plates that had lower fundamental frequencies.

The approximate solution for the peak deflection at the center of the plate during

the positive phase of the pulse was derived in the form (Genin and Birman 2009)

wblast
max D wstatic

max

�

2 � �

!11tp

�

1C a0
�

�

(4.34)

where the static deflection resulting from the application of the quasi-static peak

pressure is

wstatic
max D 16p0

�2 Om!211
(4.35)
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4.5 Vibrations of Reinforced Plates

Vibration problems of reinforced plates have been extensively considered due to

a wide range of applications of such structures. The motion of a reinforced plate

occurs both at the global level, i.e. the structure vibrating as one unit including

the skin and stringers, and at the local level. The latter involves the motion of

unreinforced sections of the plate between the stringers (see for example, sections of

the plate in Fig. 2.18). The interaction between global and local vibrations that takes

place in case of nonlinear vibrations is accounted for in finite element and other

numerical solutions. The analytical solution for nonlinear vibrations accounting for

mode interactions requires too many simplifications to be an accurate tool. In this

paragraph we concentrate on global geometrically linear vibrations of reinforced

plates that are uncoupled with local vibration modes.

We begin with a simple case where the stringers are symmetric about the plate

middle plane, although the utility of such design is limited. Then the global motion

of the plate reinforced by stringers can be analyzed by adding the inertia term to

equation (2.66):

�

ND11
@4

@x4
C 2D

@4

@x2@y2
C ND22

@4

@y4

�

w � NNx
@2w

@x2
� NNy

@2w

@y2
D p .x; y; t / � Om@

2w

@t2

(4.36a)

In the case where the plate is simply supported along all edges the analytical

solution is available representing pressure and deflections in the form (4.11) and

(4.2), respectively. This yields the system of uncoupled equations of motion for

every harmonic in these series:

Om RWmn C
� ND11˛4m C 2D˛2mˇ

2
n C ND22ˇ4n C NNx˛2m C NNyˇ2n

�

Wmn.t/ D pmn.t/

(4.36b)

The solution of problems of free vibrations, forced harmonic vibrations and

forced non-harmonic motion are available using (4.36b). In particular, the amplitude

of motion caused by harmonic excitation (4.13) is

NWmn D pmn

ND11˛4m C 2D˛2mˇ
2
n C ND22ˇ4n C NNx˛2m C NNyˇ2n � Om!2

(4.36c)

Plates with stringers on one surface are more typical in industry. Then equation

(4.36a) is not applicable and it is necessary to account for coupling between bending

and in-plane displacements. For example, in the case of forced vibrations of the plate

reinforced by stringers in the x- and y-directions equations of motion available as

an extension of (2.65) accounting for inertial terms become
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A11u;xx C A66u;yy C .A12 C A66/ v;xy � B11w;xxx � .B12 C 2B66/w;xyy D Omu;tt

.A12 C A66/ u;xy C A66v;xx C A22v;yy � .B12 C 2B66/w;xxy � B22w;yyy D Omv;tt
D11w;xxxx C 2 .D12 C 2D66/w;xxyy CD22w;yyyy � B11u;xxx

� .B12 C 2B66/
�

u;xyy C v;xxy

�

� B22v;yyy � NNxw;xx � NNyw;yy Dp .x; y; t / � Omw;tt
(4.37)

The mass of the plate per unit surface area is

Om D mp C ı .y � ys/ �sAs C ı .x � xr / �rAr

where mp is the mass of the panel without stringers per unit surface area, �s is the

mass density of the material of the stringer oriented in the x-direction, and As is the

cross sectional area of this stringer. The mass density and cross sectional area of the

stringers oriented in the y-direction are �r and Ar , respectively.

Consider the case where the applied uniformly distributed harmonic pressure is

represented by (4.11) and (4.13). The analytical solution is available that satisfies

the conditions of simple support along all boundaries, i.e. equations (2.69), in the

form

u D
M
X

mD1

N
X

nD1

Umn cos˛mx sinˇny sin!t

v D
M
X

mD1

N
X

nD1

Vmn sin ˛mx cosˇny sin!t

w D
M
X

mD1

N
X

nD1

Wmn sin ˛mx cosˇny sin!t (4.38)

The substitution of (4.38) into (4.37) yields systems of uncoupled equations for

each mode of motion (i.e. for each harmonic in series (4.38)):
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(4.39)

where Sijmn are given by (2.72).

Equations 4.39 can be applied to solve both free and forced vibration problems.

In the former case, the vector in the right side is equal to zero. Accordingly, the

requirement to non-zero amplitudes of free vibration implies that the determinant

of the system of homogeneous equations obtained from (4.39) must be equal to

zero, i.e. det ŒS� D 0. Three natural frequencies obtained from the solution of

det ŒS� D 0 include one lower value and two values that are much higher. The lower
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value corresponds to the frequency of predominantly transverse vibrations, while

two higher frequencies are associated with predominantly in-plane free vibrations.

This reflects the fact that in-plane stiffness of the plate is much higher than its

transverse stiffness. Usually, the effect of the higher frequencies on the frequency

of predominantly transverse vibrations can be neglected, so that this frequency can

be found from the correspondingly simplified condition:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

S11mn S12mn S13mn

S12mn S22mn S23mn
S13mn S23mn S33mn � Om!2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0 (4.40)

Additional natural frequencies correspond to vibrations of panels of the plate

between the stringers. Coupling between these additional frequencies and the fre-

quencies of the reinforced plate is negligible as long as the problem is geometrically

linear. Also, the natural frequencies of the stringers (with adjacent sections of skin)

have to be considered, though these frequencies are typically much higher than those

of either the reinforced plate or plate sections between the stringers.

Example 4.1 Vibrations of Stringer-Reinforced Functionally Graded Plates Func-

tionally graded composite materials (FGM) are formed of two or more phases

(matrix, particles and fibers) that vary throughout the domain occupied by the

structure with the goal of optimizing its performance (Birman and Byrd 2007). Ex-

amples of such materials are particulate composites with a piece-wise or continuous

variation of the volume fraction of particles and fiber-reinforced composites where

the volume fraction or orientation of fibers depends on the location.

The effect of stringers on the natural frequencies is reflected in Fig. 4.7 (Birman

and Byrd 2008). The panels were manufactured from titanium boride/titanium

(TiB/Ti). Functionally graded panels had seven 0.254 mm thick layers with varying

volume fraction of the constituent materials; the properties of the layers are listed

in Table 4.2. The panels were reinforced by a system of equally-spaced blade

stringers oriented along the x-axis. The thickness of titanium blade stringers located

on the titanium-rich surface of the plate was equal to the thickness of the panel

(1.778 mm). Accordingly, the panels were pseudo-isotropic, but the theory for

isotropic panels had to be extended to the functionally-graded case as shown in the

paper (this extension can be comprehended upon reading Sect. 5.6). The horizontal

and vertical axes in Fig. 4.7 correspond to the ratio of the fundamental frequency of

the reinforced plate to that of the plate without stringers and the ratio of the height

of the stringer to the thickness of the panel, respectively.

As follows from Fig. 4.7, increasing the fundamental frequency to a desirable

level can easily be achieved through the use of relatively light stringers. This reflects

a dramatic improvement in the stiffness of plates available using stringers.

Besides harmonic vibrations, reinforced plates are sometimes subject to non-

harmonic loads, such as blast. Similar to forced vibrations, it is necessary to account

for “global” dynamic response of the entire plate with reinforcement as well as local

motion between the stringers. The solution of this problem is outside the scope of
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Fig. 4.7 Blade stringer height as a function of desired fundamental frequency (!0 corresponding

to m D n D 1). The thickness of the plate is h D 1:778mm: The stringer spacing is equal to

0.1667 m. Case 1: a D 0:5m; b D 1:5m; !0 D 141:00 1
s
: Case 2: a D b D 1:0m; !0 D 63:46 1

s
:

Case 3: a D 1:0m; b D 0:5m; !0 D 158:60 1
s

(From Birman and Byrd 2008)

Table 4.2 Properties of the

layers of the functionally

graded plate

Layer number �
�

kg

m3

�

E .GPa/ �

1 4570.0 106.9 0.34

2 4568.5 117.0 0.31

3 4567.0 133.0 0.28

4 4565.5 159.0 0.25

5 4564.0 193.0 0.22

6 4562.5 237.0 0.19

7 4561.0 274.0 0.17

the book, but it is instructive to refer to available experimental and numerical (FEA)

studies (e.g., Houlton et al. 1985; Houlton and DesRochers 1987).

4.6 Large-Amplitude Vibrations

Geometrically nonlinear effects that usually become essential at the amplitude of

vibrations equal to or exceeding half-thickness of the plate can be analyzed using

equations of motion or by energy methods. Examples of early analytical solutions

can be found in the monographs of Chia (1980) or Vol’mir (1972). However, due

to difficulties involved in satisfying the boundary conditions as well as a result

of coupling of modes of motion, such solutions are seldom applied in industry.

The majority of contemporary solutions rely on the numerical analysis. In this

paragraph we review a representative problem for a simply supported rectangular

plate experiencing free vibrations illustrating qualitative effects of large vibrations

on dynamic characteristics of the plate and the limitations of the analytical approach.
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The nonlinear equation of motion and the compatibility equation for a plate

in the Cartesian coordinate system are (1.96) and (1.99), respectively. Limiting

the analysis of an isotropic plate to a single-degree-of-freedom approach, and

concentrating on the fundamental frequency and mode of motion, the deflection

is sought in the form

w .x; y; t / D W.t/ sin ˛1x sinˇ1y (4.41)

Equation 4.41 may adequately represent the motion of the plate vibrating with

moderate amplitudes in the vicinity to the fundamental frequency.

The substitution of (4.41) into (1.99) yields

1

E
r4' D �4

2a2b2
W 2.t/ .cos 2˛1x C cos 2ˇ1y/ (4.42)

The solution of (4.42) including the complementary solution of the homogeneous

equation and a particular integral is
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C
NNxy2
2h

C
NNyx2
2h

(4.43)

where the applied in-plane stress resultants NNx and NNyare positive in tension.

Evidently, the shear stress is absent throughout the plate. The boundary condi-

tions for in-plane stress resultants NNx and NNy can be satisfied only in the integral

sense as was indicated in Sect. 2.11, i.e.

x D 0; x D a W h

b
Z

0

@2'

@y2
dy D NNxb

y D 0; y D b W h

a
Z

0

@2'

@x2
dx D NNya (4.44)

Obviously, such integral satisfaction of in-plane boundary conditions may yield

inaccurate results. Besides, adding terms to the mode shape of deflections that is

necessary due to coupling of modes at large deformations results in a complicated

mathematical formulation. This is a drawback of the analytical solution.

The exact integration of equation of motion (1.96) is impossible, but the solution

is usually obtained using the Galerkin procedure (e.g., Vol’mir 1972; Chia 1980). In

the present formulation this procedure implies
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The substitution of (4.41) and (4.43) into (4.45) and integration result in

Duffing’s equation:

‰.t/ D d 2W

dt2
C !211W

�

1CK
W 2

h2

�

D 0 (4.46)

where the coefficient K depends on in-plane boundary conditions, material prop-

erties and geometry of the plate. In particular, if the edges of the plate are not

constrained against in-plane displacements, i.e. NNx D NNy D 0,

K D
3
�

1 � �2
�

�

1C a4

b4

�

4
�

1C a2

b2

�2
(4.47)

� being Poisson’s ratio of the plate material.

Let us assume that the motion is harmonic, i.e. W D QW h sin!t . Then the

Duffing equation (4.46) can be integrated over the period of motion:

2�
!
Z

0

�.t/dt D 0 (4.48)

The integration yields a relationship between the natural frequency, the amplitude

of nonlinear vibrations and the fundamental frequency of linear vibrations (!11 �

!0):

! D !0

�

1C
3

4
K QW 2

�

(4.49)

Due to limitations of a single-degree-of-freedom analytical solution equation

(4.49) and similar results can be used only as the first approximation. However,

a fundamental observation valid in nonlinear dynamics of plate structures can be

made based on the analysis of this equation. It is obvious that plates represent

nonlinear systems with a hardening nonlinearity, i.e. increasing amplitudes of

motion correspond to larger natural frequencies.

Nonlinear frequency-amplitude relationships encompass the free-vibration “skele-

ton” curves. A schematic illustration of such relationship is shown in Fig. 4.8.

The ratio !
!11

along the horizontal axis represents the driving frequency normalized

with respect to the fundamental frequency of the plate. The curve “f” originating

from !
!11

D 1 at zero amplitude represents free vibrations of the plate. Other

curves depict the forced response for different amplitudes of the harmonic pressure.

The “middle” brunches of the forced motion curves are unstable (as indicated by

broken curves) and they are not realized. If the frequency increases, the response

corresponds to the “upper” brunch, but at a certain value of the driving frequency
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Fig. 4.8 Schematic amplitude vs. nondimensional frequency relationship for forced nonlinear

vibrations of a plate subject to a harmonic uniformly distributed pressure; “f” D free nonlinear

vibrations; q1 and q2 D forced vibrations (q2 > q1). Points B and C correspond to snap through

between the upper and lower branches of the relationships for q1

this response becomes unstable, the amplitude abruptly decreases (point B), and at

larger frequencies vibrations corresponds to the “lower” brunch. In the contrary, if

the frequency of the dynamic pressure decreases from large values, the response is

represented by the lower brunch of the graphs. At the point where the tangent to

this brunch is perpendicular to the horizontal axis (point C), snap-through to the

upper brunch occurs and at lower frequencies the response corresponds to the upper

brunch. Note that such behavior is typical for all vibrating systems with a hardening

nonlinearity.

4.7 Dynamic Instability of Plates

In numerous engineering applications plates are subject to dynamic in-plane loads.

As a result of dynamically applied impulsive loads, the plate can buckle; such

phenomenon is usually referred to as dynamic buckling (e.g., Birman 1989). On

the other hand, if in-plane loads are harmonic functions of time, the plate may

experience transverse vibrations with gradually increasing amplitudes that are often

called dynamic or parametric instability. The phenomenon of dynamic instability

that we consider in this paragraph depends on the relationship between the driving

and natural frequencies of the plate as well as on the amplitude of driving in-plane

stress resultants. While in-plane vibrations are present at all combinations of the

amplitude and frequency of the driving load, dynamic instability occurs only within

certain regions on the driving frequency-driving amplitude plane. The boundaries of

the regions of instability on this plane represent harmonic and periodic solutions of

the equations of motion.
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Fig. 4.9 Dynamic instability of plates subject to in-plane harmonic-in-time loads. The regions of

dynamic instability are shaded. The response of an undamped plate is shown in figure “on the left”,

the qualitative effect of damping is reflected in figure “on the right”

Numerous studies devoted to dynamic instability of plates were reviewed in the

classical monograph of Bolotin (1956). A review of the subject was published by

Xie (2006). The qualitative response of rectangular plates to harmonic-in-time in-

plane loading is depicted in Fig. 4.9. The vertical axis reflects the amplitude of

dynamic in-plane load (the coefficient k is defined below in equation (4.54)), while

the ratio along the horizontal axis represents a doubled fundamental frequency of

the plate loaded by in-plane static loads divided by the frequency of the applied

load. The amplitude of motion increases with time in the regions of instability

schematically shown in this figure. The “widest” region that is called the principal

instability region has the “origin” at the zero amplitude of the load and the driving

frequency equal to twice the fundamental frequency of the plate. Note that the

motion within the regions of instability is theoretically infinite, unless we account

for the effect of damping. In the presence of damping there is a minimum amplitude

of the driving load required to trigger dynamic instability, while if damping is

neglected, dynamic instability can be caused by a load of a very small amplitude (the

difference between dynamic instability of undamped and damped plates is evident

from the comparison of Fig. 4.9). The amplitude of the in-plane load required

to cause dynamic instability of damped systems increases for higher instability

regions as compared to the principal region (Fig. 4.9). Accounting for damping

results in limited amplitudes of motion within instability regions, even in the linear

formulation.

The present solution is based on pioneering work of Bolotin on dynamic stability

(Bolotin 1954). Consider a rectangular plate of size a � b subject to a dynamic

in-plane stress resultant applied at the edge x D a

NNx D N0 CNt cos!t (4.50)

The plate is simply supported, while in-plane boundary conditions are as follows:

– All edges remain straight during the motion;
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– The edges x D 0, y D 0 and y D b cannot move in the plane of the plate;

– The edge x D a is not restrained against the motion in the plane of the plate.

Considering the case where the frequency of the dynamic load is close to twice

the fundamental frequency of the plate we limit the analysis representing the motion

by the first harmonic of series (4.2) wherem D n D 1.

The substitution of (4.50) and the first harmonic of (4.2) into the system of equa-

tions of motion in terms of the deflection and stress function and transformations

similar to those in Sect. 4.6 yield the following equation of motion (Bolotin 1954):

d 2 QW11

dt2
C !211

�

1 �
N0 CNt cos!t

Ncr

�

QW11 C � QW 3
11 D 0 (4.51)

where the nondimensional deflection is defined as in (4.31) and Ncr D Nx;cr is

the buckling load of the plate corresponding to the case of a uniaxial compression.

The fundamental frequency is specified in the absence of in-plane loads, i.e. !11 D

!11
�

NNx D NNy D 0
�

. The motion described by (4.51) belongs to the class referred

to as parametric vibrations (vibrations excited by in-plane dynamic loads).

The coefficient at the nonlinear term is given by

� D
0:75

�

1� �2
� �

1C 3�4
�

.1C �2/
2

!211 (4.52)

� D a
b

being the aspect ratio.

Introducing the squared nondimensional fundamental frequency of the plate

subject to static in-plane compression

�2 D !211

�

1 �
N0

Ncr

�

(4.53)

and the coefficient reflecting the magnitude of dynamic loading

k D
Nt

Ncr �N0
(4.54)

the equation of motion (4.51) is reduced to a nonlinear version of the Mathieu

equation:

d 2 QWmn

dt2
C�2 .1 � k cos!t/ QWmn C � QW 3

mn D 0 (4.55)

The linear version of equation (4.55) is referred to as the Mathieu equation.

Different combinations of the driving frequency and the amplitude of the dynamic

load correspond to stable or unstable motion of the plate. The motion within stable

regions is oscillatory, though not regularly periodic. In the regions of dynamic
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instability the amplitude increases with time (though this increase can be controlled

by damping and geometrically nonlinear effects). The combinations (regions) of

stable and unstable motion on the driving frequency-driving load amplitude plane

(so-called Ince-Strutt diagram) are separated by periodic solutions of the equation

of motion.

In this paragraph the analysis is limited to the motion of the plate with a

negligible damping. Then introducing a nondimensional time scale� D ˝t , the

periodic solution in the vicinity of the frequency! D 2˝ can be sought in the from

QWmn D F1 cos
!�

2˝
C F2 sin

!�

2˝
(4.56)

The substitution of (4.56) into (4.55), transformations and neglecting superhar-

monics of the third order (terms proportional to 3!�
2˝

that have little effect on motion

in the vicinity of the nondimensional time !�
2˝

corresponding to the origin of the

principal instability region) lead to the following equation:

�

1 �
!2

4˝2
�
k

2
C
3

4
ı
�

F 21 C F 22
�

�

F1 cos
!�

2˝

C

�

1 �
!2

4˝2
C
k

2
C
3

4
ı
�

F 21 C F 22
�

�

F2 sin
!�

2˝
D 0 (4.57)

where ı D �

˝2
.

Obviously, Eq. 4.57 can be satisfied at all time instances only if the terms in the

brackets are equal to zero. This yields two nonlinear equations with respect to the

amplitude F D
q

F 21 C F 22 :

1 �
!2

4˝2
˙
k

2
C
3

4
ıF 2 D 0 (4.58)

The boundaries of the principal instability region specified from the linear ver-

sion of (4.58) are

!2

4˝2
D 1˙

k

2
or

!

2˝
� 1˙

k

4
(4.59)

The boundaries of the principal region of instability according to (4.59) are shown in

Fig. 4.10 by vertical lines. In the linear problem, the amplitudes within the interval

of driving frequencies defined by (4.59) gradually increase to infinity.

In the presence of the nonlinear term, the boundaries of the principal instability

region are determined from (4.58):

F D

s

4

3ı

�

!2

4˝2
� 1˙

k

2

�

(4.60)
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Fig. 4.10 The boundaries of the principal instability region of the plate. Broken vertical lines:

linear problem; solid inclined lines: nonlinear problem

The relationship between the squared nondimensional driving frequency and the

squared amplitude of motion given by (4.60) is schematically shown in Fig. 4.10.

If damping is present, the unstable motion with large amplitudes occurs at the

combinations of frequencies and amplitudes within solid straight lines in Fig. 4.10.

Note that the width of the principal instability region corresponds to the coefficient

k that reflects the amplitude of the applied in-plane load (see Eq. 4.54). In reality,

the amplitudes remain limited due to the dissipation of energy, so that immediate

failure is unlikely in realistic structures. However, fatigue damage remains a serious

consideration. Accordingly, designers should avoid the situation where the plate can

experience dynamic instability.

4.8 Design Philosophy and Recommendations

Design of plates subject to dynamic loading should address two possible modes of

failure. The plate can collapse in case where dynamic stresses exceed the failure

stress of the material. An example of such problem would be an explosive blast

destroying the plate. In other cases dynamic stresses remain within allowable limits

and do not cause instantaneous failure, but rather result in fatigue damage. Both

situations, i.e. instantaneous and fatigue failure, can be prevented employing the

analysis that predicts dynamic deflections and stresses in the plate.

Excessive deflections are seldom the problem by themselves, i.e. they can often

be tolerated as long as the stresses remain within allowable limits. However, similar

to the problem of static bending, the knowledge of these deflections is necessary

to identify the problem as either geometrically linear or nonlinear. In addition to

deflections and stresses, accelerations have to be limited in some applications. Such

limitations on accelerations are often enforced if structural vibrations can affect

people (e.g., pilots and passengers of military and civilian airplanes) since inertial

forces and moments are proportional to accelerations.
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The knowledge of natural frequencies is important to avoid resonances of either

transverse or parametric vibrations (the latter resonance is associated with dynamic

instability). The analysis predicts infinite amplitudes of forced vibrations in the

geometrically linear problem for plates (and for other structures) experiencing

resonance as long as damping is neglected. The presence of damping limits

the amplitude of motion, particularly at resonance, though it may still reach

unacceptable values resulting in excessive dynamic stresses.

The most dangerous resonance of transverse vibrations occurs when the driving

frequency coincides with the fundamental (lowest) natural frequency of the plate.

Resonances with higher natural frequencies are relatively less dangerous as the

result of a larger effect of damping.

Static in-plane compressive loads reduce natural frequencies of the plate. At the

limit, when the compressive load is equal to the buckling value, the fundamental

frequency is reduced to zero (as a matter of fact, one of the methods of buckling

analysis specifies the buckling load from this condition). In the contrary, tension

results in higher natural frequencies. The resonance of plates loaded by static in-

plane loads occurs at driving frequencies that are different from those evaluated

without accounting for such loads due to a difference in the natural frequencies.

Accordingly, the designer should be aware of possible in-plane static loads since

they may significantly affect the response of the plate in dynamic environments.

Reinforcing the plate with stringers is an effective method of reducing its

dynamic response. The analysis of dynamic characteristics of reinforced plates

should account for the possibility of three resonance cases:

– Resonance of the entire reinforced plate, including both skins and stringers;

– Resonance of sections of the plate between the stringers;

– Resonance of stringers with the adjacent skin.

If any of these resonances takes place, excessive vibrations may cause fatigue

damage or an immediate dynamic collapse.

If the plate subject to a harmonic in-plane load undergoes in-plane vibrations

that have small amplitude, such plate is considered dynamically stable. However,

at certain combinations of applied load amplitudes and driving frequencies, the

plate becomes dynamically unstable developing significant transverse vibrations

(dynamic instability). The combinations of amplitudes and frequencies of in-plane

driving loads separating regions of stable and unstable vibrations correspond to

periodic motion of the plate. The motion of the plate within the regions of dynamic

instability is limited due to the effects of damping and geometric nonlinearity. Nev-

ertheless, dynamic instability should be avoided since large-amplitude vibrations

may result either in immediate failure of the plate or in fatigue damage.
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Chapter 5

Mechanics of Composite Plates

Composite plates are increasingly used in engineering applications where they pro-

vide enhanced strength and stiffness without incurring additional weight compared

to metallic counterparts or alternatively, enable a designer to reduce the weight,

without sacrificing strength and stiffness. This is reflected in Fig. 5.1 where both

specific strength as well as specific stiffness of composite materials are shown to

be remarkable superior to typical alloys (specific strength and specific stiffness

are strength per unit weight and elastic modulus per unit weight, respectively).

Potential advantages of composite plates are related to the opportunity to “tailor” the

response by orienting stiff high-strength fibers in the direction of maximum stresses.

In other words, such plates utilize the principal difference of composites from

isotropic materials, i.e. their anisotropic direction-dependent properties. A further

enhancement in the response may be achieved by using sandwich plates where

a light and relatively compliant core joins two stiff opposite facings and whose

concept can be traced back to the classical I-beam.

5.1 Basic Concepts of Thin Laminated Plates

Each layer (lamina) in a composite laminated plate includes fibers embedded

within the matrix. A number of fiber arrangements can be considered, including

unidirectional, woven or discontinuous (short) fibers. Short fibers can be either

aligned along a preferential direction or randomly oriented in the plane of the

lamina (thicker plates with a 3-D random fiber distribution are also used in

applications). While structures with a random orientation of fibers are isotropic,

materials with unidirectional, woven or oriented discontinuous fibers have direction-

dependent anisotropic properties. In this chapter we concentrate on laminated plates

(laminates) composed of laminae with unidirectional fibers.

A laminate consisting of laminae that are perfectly bonded forming the composite

structure is shown in Fig. 5.2. Furthermore, Fig. 5.3 illustrates a unidirectional

lamina and its principal coordinate system 1-2-3 with the axes oriented along and

V. Birman, Plate Structures, Solid Mechanics and Its Applications 178,
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Fig. 5.1 Effectiveness of composite materials compared to alloys illustrated through the compari-

son of specific strength and specific stiffness (Kelly 1987). 1: the fiber volume fraction of 50% at 0ı

layers, 40% at C/�45ı and 10% at 90ı (composite laminates). 2: balanced laminated composites

with equal proportion of 45ı, 90ı and 135ı layers. 0: unidirectionally laminated composites with

volume fraction of fibers between 40% and 60%

Fig. 5.2 Schematic

illustration of a laminated

plate. The fibers in each

lamina are oriented at a

different angle to the

reference coordinate system

y

z

x

fibers

perpendicular to the fiber direction. The reference coordinate system that is also

shown in Fig. 5.3 corresponds to the coordinate system employed in the analysis of

the entire structure (e.g., Cartesian coordinate system used to analyze rectangular

plates). The angle between the direction of fibers in the individual lamina and the

axis of the laminate shown in this figure is called the lamination angle of the lamina.
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Fig. 5.3 Lamina with

unidirectional fibers. The

lamina principal coordinate

system is associated with the

axes 1, 2 and 3. The reference

coordinate system is

associated with the directions

x, y and z

y z 

x
fibers

1

2

3

θ

Top view 

θ
y 

x 

θ

2

1

The mathematical foundations of the theory of thin composite plates differ

from those of thin isotropic plates only in the constitutive relations. The kinematic

equations and the equations of equilibrium in terms of stress couples and stress

resultants remain without change whether the material is anisotropic or isotropic.

Similarly, static boundary conditions in terms of stress resultants and stress couples

and kinematic boundary conditions are not affected by the material of the plate.

However, composite materials being anisotropic, the strength criteria used in the

analysis of laminated plates differ from those applicable to isotropic plates.

The assumptions involved in the theory of thin laminated plates are consistent

with those for thin plates from isotropic materials. However, laminated plates being

constructed of a number of layers, perfect bonding between the layers becomes an

additional and important requirement. If bonding between the layers is violated,

the so-called delamination crack begins to propagate violating the integrity of the

structure. Such crack is difficult to detect without expensive testing; eventually, it

“unzips” the plate resulting in catastrophic failure.

The constitutive relations for a lamina are affected by the choice of the coordinate

system. At the lamina level, the natural choice of in-plane coordinates is shown in

Fig. 5.3 where the 1-axis is oriented in the fiber direction, while the in-plane 2-

axis and the out-of-plane 3-axis are perpendicular to the fibers. The strain-stress

relationships in this coordinate system are
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(5.1)

where Ei are the moduli of elasticity in the respective directions, Gij are the shear

moduli in the ij-planes, and �ij are the Poisson ratios (�ij is the strain in the j-

direction produced by a unit strain in the i-direction).

The material characterized by Eq. 5.1 is called specially orthotropic (see

Eqs. 1.17 that represent an inverse of (5.1)); such material has three planes

of property symmetry. There are 12 engineering constants that characterize the

response of such material, but only 9 of these constants are independent since the

matrix of compliance coefficients in the right side of (5.1) is symmetric, so that
�ij
Ei

D
�j i
Ej

. In the reference coordinate system x-y-z forming an angle with the

principal material system 1-2-3 that is not equal to 0ı or 90ı the material response

is referred to as generally orthotropic. The constitutive relations for such material

are discussed in the next paragraph.

The analysis of thin composite plates being undertaken by assumption of

plane stress, i.e. neglecting the stresses in the z-direction, Eq. 5.1 are simplified

accordingly. The inverse of the remaining three equations that relate in-plane

stresses and strains is

8

<

:

�1
�2

�12

9

=

;

D

2

4

Q11 Q12 0

Q21 Q22 0

0 0 Q66

3

5

8

<

:

"1
"2

12

9

=

;

(5.2)

where Qij are so-called reduced stiffnesses expressed in terms of engineering

constants by

Q11 D
E1

1 � v12v21

Q12 D
v12E2

1 � v12v21
D Q21

Q22 D
E2

1 � v12v21

Q66 D G12 (5.3)

The values of engineering constants for a composite lamina combining fibers

and matrix depend on the volume occupied by each constituent phase. A large

relative volume of fibers defined as the ratio of the volume occupied by the fibers

to the volume of the lamina (it is referred to as “fiber volume fraction” and denoted
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Table 5.1 Engineering constants of unidirectionally laminated composite materials

Material E1; GPa E2; GPa G12; GPa �12 Vf

Kevlar 49/Epoxy 75:80 5:50 2.07 0.34 0.60

Carbon/epoxy AS4/3501-6 142:00 10:30 7.20 0.27 0.60

E-glass/epoxy Scotchply® 1002 38:6 8:27 4.14 0.26 0.45

E-glass/vinylester 24:4 6:87 2.89 0.32 0.30

Table 5.2 Strengths of unidirectionally laminated composite materials

Material s
.C/
1 ; MPa s

.�/
1 ; MPa s

.C/
2 ; MPa s

.�/
2 ; MPa s12; MPa

Kevlar 49/Epoxy 1;380:0 586:0 34.5 138.0 44.1

Carbon/epoxy

AS4/3501-6

1;830:0 1096:0 57.0 228.0 71.0

E-glass/epoxy

Scotchply®

1002

1;103:0 621:0 27.6 138.0 82.7

E-glass/vinylester 584:0 803:0 43.0 187.0 64.0

by Vf ) results in higher stiffness and strength, particularly in the fiber direction.

The volume fraction of fibers is naturally limited by the packing limitation. For

example, if the aligned identical fibers of a circular cross section are packed within

the composite material, the maximum possible volume fraction (such that fibers

“touch” each other but do not overlap) is easily found to be �
4

D 0:785. The volume

fraction of typical composites in applications varies between 0.30 and 0.65. Typical

values of engineering constants for representative composite materials are presented

in Table 5.1 (Barbero 1998; Gibson 2007).

As is evident from Table 5.1, the stiffness of a lamina in the fiber direction is

significantly higher than that in the direction transverse to the fibers. A similar

observation could be made for the strengths of a lamina where we distinguish

between the tensile and compressive strengths in the fiber and transverse directions.

Accordingly, five characteristic strength values for a composite lamina include the

tensile and compressive longitudinal strengths in the fiber direction
�

s
.C/
1 ; s

.�/
1

�

,

the tensile and compressive strengths in the transverse direction
�

s
.C/
2 ; s

.�/
2

�

and the in-plane shear strength .s12/. The values of these strengths for materials

presented in Table 5.1 are reproduced in Table 5.2 (Barbero 1998; Gibson 2007).

As reflected in Table 5.2, unidirectionally laminated composites are most

vulnerable to transverse tension. Although the compressive transverse strength is

higher than that in tension, it is still low relative to the strengths in the fiber direction.

The explanation is that while fibers take the lion share of the load in the axial

direction, their contribution to load sharing in the transverse direction is smaller,

while the strength of the matrix material is invariably low compared to that of the

fibers.

The relatively low transverse stiffness and strength of unidirectionally laminated

composite laminae lead to the design concept of a laminate. A laminate represents a

combination of bonded laminae with the angles of lamination chosen to provide the
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required performance. It is necessary to design laminate that possesses appropriate

strength and stiffness in the major loading direction, while retaining sufficient

properties in the transverse direction (a unidirectional material is usually too

vulnerable to transverse loading to present a viable design).

Laminates are analyzed using the coordinate system that generally does not

coincide with the principal coordinate system of individual layers. The origin

of the laminate coordinate system is located at its middle plane while in-plane

axes are oriented similarly to the orientation of such axes in isotropic plates. In

particular, for rectangular plates considered in this chapter, the orientation of in-

plane axes coincides with that of the edges. The coordinate systems of individual

laminae form an angle with the laminate coordinate system. This lamination angle

.�/ is used to specify the lamina orientation. The rule of sign for the angle is

irrelevant for the subsequent analysis; it is usually assumed that the angle is positive

if the rotation from the x-axis to the 1-axis observed looking in the positive z-

direction is in the counterclockwise direction (Fig. 5.3). Laminates are identified

by the angles of lamination of the corresponding layers counted from one surface
�

z D � h
2

�

to the opposite surface
�

z D h
2

�

. For example, a four-layered laminate

with the angles of lamination C45ı, �45ı, �45ı, C45ı will be identified as

[45ı/�45ı/�45ı/45ı]. A laminate formed by 8 layers symmetric about the middle

plane with the layers on one side of the plane oriented at 0ı, 30ı, �30ı, C90ı

is identified as [0ı/30ı/�30ı/90ı]s, etc. A lamina oriented at an angle to the

laminate coordinate system is called a generally orthotropic lamina; such lamina has

different constitutive relations in the laminate coordinate system from the specially

orthotropic relations (5.1). Laminates where all laminae are oriented in either x or

y directions are called “cross-ply” (e.g., an 8-layer plate Œ0ı=90ı=90ı=0ı�s). If a

laminate has at least one layer of a different orientation, forming an angle with x

and y axes, it is called “angle-ply.”

As will be discussed below, the best design is usually achieved forming laminates

that are symmetric about the middle plane. If the load is predominantly applied in

one direction, it is preferable to orient most layers in this direction. For example,

if the bending load produces the maximum stresses in the x-direction, the laminate

[0ı/30ı/�30ı/90ı]s may be acceptable since the outer laminae oriented in the load

direction are located at the maximum distance from the middle plane, providing high

stiffness and strength in this direction. The thickness of a typical lamina is usually

limited to a fraction of a millimeter. Composite laminates consist of numerous

laminae, so that the examples of laminates in this paragraph are given only to

elucidate notations and they do not refer to laminates found in practice.

5.2 Governing Equations for Thin Composite Plate

The formulation of the constitutive relations for thin laminated plates involves the

following steps. First, we have to modify the stress-strain equations (5.2) to account

for the transformation of coordinates in the case of a generally orthotropic lamina.
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This transformation enables us to consider strains and stresses in the lamina in

the coordinate system of the laminate irrespectively of the lamination angle. As

is shown in textbooks on composite materials (e.g., Gibson 2007), the transformed

stress-strain relationships are

8
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(5.4)

where transformed reduced stiffnesses are expressed in terms of reduced stiffnesses

as follows

NQ11 D Q11cos4� C Q22sin4� C 2 .Q12 C 2Q66/ sin2�cos2�

NQ12 D .Q11 C Q22 � 4Q66/ sin2�cos2� C Q12

�

cos4� C sin4�
�

NQ22 D Q11sin4� C Q22cos4� C 2 .Q12 C 2Q66/ sin2�cos2�

NQ16 D .Q11 � Q12 � 2Q66/ cos3� sin � � .Q22 � Q12 � 2Q66/ cos �sin3�

NQ26 D .Q11 � Q12 � 2Q66/ cos �sin3� � .Q22 � Q12 � 2Q66/ cos3� sin �

NQ66 D .Q11 C Q22 � 2Q12 � 2Q66/ sin2�cos2� C Q66

�

sin4� C cos4�
�

(5.5)

Note that the difference in notation between transformed reduced and reduced

stiffnesses is often muted in technical documentation (usually, the reference is

simply to “reduced stiffnesses”), i.e. the designer should be alert to what exactly

the reference to “reduced stiffness” implies in the particular problem.

It is important to establish relationships between stresses in the lamina coordinate

system (1-2-3) and the laminate system (x-y-z) since we will utilize them to check

the strength:
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(5.6)

Extrapolating the concept of stress resultants and stress couples introduced for

isotropic plates, we can integrate the layer-wise stresses and their moments about

the middle plane. Relationships (5.4) referring to the stresses in the k-th layer and

representing the strains in terms of middle plane components and the changes of its

curvature and twist are:
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(5.7)
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Fig. 5.4 Layers of a laminated plate. The numbers of layers vary from 1 to N

The integration according to (1.57) yields
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(5.8)

where the stiffness terms include so-called extensional Aij , coupling Bij and

bendingDij stiffnesses:

Aij D

Z t=2

�t=2

�

NQij

�

k
d z D

N
X

kD1

�

NQij

�

k
.zk � zk�1/

Bij D

Z t=2

�t=2

�

NQij

�

k
zd z D

1

2

N
X

kD1

�

NQij

�

k

�

z2k � z2k�1

�

Dij D

Z t=2

�t=2

�

NQij

�

k
z2 d z D

1

3

N
X

kD1

�

NQij

�

k

�

z3k � z3k�1

�

(5.9)

The coordinates of the interfaces of the layers referred to in (5.9) are shown in

Fig. 5.4.

The terminology of composite materials refers to symmetric and antisymmetric

laminates. Both these classes of laminates have equal number of layers on each

side of the middle plane. The laminate is symmetric if each couple of layers at
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equal and opposite distance from the middle plane has the same thickness and the

same lamination angle, while in antisymmetric laminates the angles of lamination

of each couple of layers are opposite, although these layers are otherwise identical.

Accordingly, [45ı/�45ı/�45ı/45ı] would be an example of a symmetric laminate,

while the laminate [�45ı/45ı/�45ı/45ı] is antisymmetric. It is easily shown from

the second equation (5.9) that each couple of layers in a symmetric laminate

produces a net-zero contribution to the coupling stiffness, so that in these laminates

Bij D 0. This fact has important implications on composite structures due to the

following observations presented here without a proof, for the sake of brevity:

1. Nonzero coupling stiffness in asymmetrically laminated plates results in larger

deflections and stresses as compared to the case where the same layers are

symmetrically arranged about the middle plane. This is generally the rule as long

as symmetrically laminated outer layers are oriented in the plane of the maximum

bending stress couple. For example, if a four-layer plate is subject to the bending

stress couple Mx, the symmetric lamination Œ0ı=90ı=90ı=0ı� is a much better

design than either an alternative symmetrically laminated plate Œ90ı=0ı=0ı=90ı�

or an antisymmetric laminate Œ0ı=90ı=0ı=90ı�.

2. Nonzero coupling stiffness in asymmetric or antisymmetric laminates results in a

smaller buckling load and a lower fundamental frequency that those in a laminate

where otherwise identical layers are symmetric about the middle plane. This

reduction in the eigenvalues is always undesirable in the case of the buckling

load and usually detrimental in the case of the fundamental (lowest) frequency

of the structure.

Accordingly, most composite plates (as well as beams and shells) found in

applications are symmetric about the middle plane. One exception is found in the

structures subject to thermal loading applied at one of the surfaces. In such case,

it may be beneficial to design the structure that is asymmetric about the middle

plane at room temperature. However, due to a nonuniform temperature distribution

through the thickness, the properties of various layers degrade at a different rate

and the structure may actually become “symmetric” or nearly symmetric under

operational high-temperature conditions. We do not consider this case in the present

chapter and limit ourselves to symmetric configurations avoiding a further reference

to antisymmetric and asymmetric structures.

Additional simplifications of Eqs. 5.8 are possible in symmetric laminates. In

particular, it can be shown that extensional stiffness terms A16 D A26 D 0. A

numerical analysis of multilayered symmetric angle-ply laminates illustrates that as

the number of layers increases, the bending stiffness terms D16 and D26 become

small compared to other bending terms (e.g., Barbero 1998). Accordingly, if the

number of laminae exceeds 12 (with a typical laminae thickness this corresponds to

the laminate thickness of only about 1.5 mm), it is possible to neglect these terms.

In this case Eq. 5.8 are simplified:
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(5.10)

A popular type of laminates are symmetric cross-ply structures composed of the

layers oriented at 0ı and 90ı relative to the x-axis (the number of layers in each

direction may vary). As follows from (5.5), in such structures NQ16 D NQ26 D 0.

Accordingly,A16 D A26 D D16 D D26 D 0, so that (5.10) represent the constitutive

law for the symmetric cross-ply laminates, even if the number of layers is small.

Note that Eq. 5.10 are also applicable to the analysis of specially orthotropic plates.

Linear equations of equilibrium for symmetric laminates in terms of displace-

ments are obtained by the substitution of constitutive relations (5.10) and the

linearized strain-displacement relationships (1.28), (1.29) into the equations written

in terms of stress resultants and stress couples (1.84). This results in coupled

equations for in-plane displacements obtained from the first two equations of

equilibrium and the uncoupled equation for the transverse deflection shown here

for a laminate subject to transverse pressure p .x; y/:

A11u
0;xx C A66u

0;yy C .A12 C A66/ v
0;xy D 0

.A12 C A66/ u0;xy C A22u
0;yy C A66v

0;xx D 0 (5.11a)

and

D11w;xxxx C 2 .D12 C 2D66/w;xxyy CD22w;yyyy D p .x; y/ (5.11b)

where .:::/ ;i D @.:::/

@i
; i D x; y. For comparison, if all stiffness terms were present,

the equilibrium equations would be coupled (e.g., Gibson 2007).

The analytical solution for the general case where all stiffness terms are present

is impossible. Closed form solutions in double Fourier series exist for the following

particular cases, besides the case of symmetric laminates discussed in Sect. 5.4

(Jones 1999):

1. Antisymmetric cross-ply laminates .A16 D A26 D B12 D B16 D B26 D B66 D

D16 D D26 D 0/. The solution exists for simply supported plates with the

boundary conditions x D 0; a W w D Mx D v D Nx D 0; y D 0; b W

w D My D u D Ny D 0.

2. Antisymmetric angle-ply laminates .A16 D A26 D B11 D B12 D B22 D B66 D

D16 D D26 D 0/. The solution exists for the simply supported plates with the

boundary conditions x D 0; a W w D Mx D u D Nxy D 0; y D 0; b W w D

My D v D Nxy D 0.
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However, as noted above, antisymmetric laminates are avoided in typical design

practices, so that available solutions for such laminates are useful only as benchmark

results. In angle-ply symmetric laminates with a small number of layers the

equilibrium equation (5.11b) is complicated by the presence of additional terms in

the left side 4
�

D16w;xxxy CD26w;xyyy
�

that make the Fourier analysis impossible.

These terms become negligible in multilayered symmetric structures, so that the

plate can be analyzed using (5.11b).

It is noted that besides equilibrium equations (5.11a and 5.11b), the boundary

conditions are also uncoupled for multilayered symmetric laminates. This follows

from the constitutive relations (5.10) where the first three equations relate in-plane

stress resultants to in-plane displacements in the middle plane, while the last three

equations refer stress couples to the transverse deflection. Accordingly, the first three

equations lead to in-plane static boundary conditions that are used with (5.11a),

while the last three equations provide out-of-plane static conditions analyzed with

(5.11b). In case where the plate is subject to pressure applied at one of the surfaces,

i.e.p .x; y/, the bending problem is uncoupled from the problem of in-plane middle

plane displacements. The latter displacements being unaffected by the applied loads

are equal to zero, i.e. u0 D v0 D 0.

If displacements are large, the problem becomes geometrically nonlinear and in-

plane displacements and transverse deflections are coupled. This is immediately

evident if the nonlinear strain-displacement relationships (1.28) and (1.29) are

substituted into constitutive relations (5.8) or (5.10). In the general anisotropic

case (5.8) both stress resultants as well as stress couples are affected by all three

displacement components u0; v0 and w. Therefore, coupling of these components

occurs both through the equations of equilibrium in terms of displacements and

via static boundary conditions. In the case of a multilayered symmetric laminate,

constitutive equations (5.10) result in the stress resultants that depend on u0; v0 and

w, while the stress couples are independent of in-plane displacements.

An alternative formulation of the nonlinear problem is obtained using the stress

function (1.95) that identically satisfies the first two equations of equilibrium

(1.84). The inverse of the first three constitutive relations (5.10) for multilayered

symmetrically laminated plates is
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(5.12)

where the compliance coefficients aij are easily available in terms of the extensional

stiffnesses Aij by the inverse of the matrix

�

aij
�

D
�

Aij
��1

(5.13)

The substitution of (5.12) into the strain compatibility equation (1.97) and

the substitution of both (5.12) and the last three equations (5.10) into the third
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equilibrium equation (1.84) yields the system of two nonlinear differential equations

with respect to the stress function and the deflection:

a22'; xxxx C .2a12 C a66/ ';xxyy C a11'; yyyy D
�

w;xy
�2

� w;xxw;yy

D11w;xxxx C 2 .D12 C 2D66/w;xxyy CD22w;yyyy

D p .x; y/C h
�

';yyw;xx � 2';xyw;xy C ';xxw;yy
�

(5.14)

The solution employing the stress function formulation can be obtained in a

number of cases (e.g., Yang et al. 2006). Unfortunately, it is often difficult to satisfy

in-plane boundary conditions and numerous studies achieved this task only in the

integral sense (e.g., Liew et al. 2003) satisfying the conditions in average over the

length of the edge, rather than at every point.

Finally, it is useful to discuss how temperature affects the formulation of the

problem (the effect of moisture on the formulation is similar, see for example,

Gibson 2007). The effects of thermal loading on composite structures include:

1. Effect on the strain-displacement relationships (see Sect. 1.9). This effect

leads to thermally-induced terms in the constitutive relations as discussed in

Chap. 6.

2. Effect on the material properties. This involves the effect on the moduli of

elasticity and Poisson ratios as well as temperature-affected strengths of the

material, its thermal conductivities, etc. Experimental data for the entire list of

properties affected by temperature is usually difficult to find. However, a partial

analysis accounting only for thermal effects on some of the properties may lead to

dangerous results. For example, the analysis that takes into account a degradation

in the moduli of elasticity but disregards decreases in the strength associated with

the local temperature may lead to catastrophic results.

3. Effect of temperature on the solution of the heat transfer problem. This problem

has to be addressed to evaluate a temperature distribution throughout the

structure.

5.3 Strength Criteria for Laminated Composites

Deflections found from the analysis are usually valuable as a check whether the

solution can be obtained using the linear theory. Similar to isotropic plates, the

stress check is needed to evaluate the strength of the structure, while deflections

usually serve only to validate the theory adopted for the analysis. Contrary to

isotropic plates, the stress analysis of laminates is more complicated requiring a

layerwise strength check. Moreover, it is impossible to predict where failure takes

place, i.e. although the strains are linearly distributed throughout the thickness, the

combination of stresses in a layer located in the interior of the plate may result
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x 

z xε xσ

Strain Stress Stiffness

Fig. 5.5 Example of a distribution of stiffness, strain and stress in a laminated plate

in failure in this layer, prior to any damage in the outermost layers. The stresses

are piecewise functions of the z-coordinate changing from layer to layer. This is

reflected in Fig. 5.5 where we schematically illustrate a possible scenario of a

distribution of strains and stresses in a four-layered composite laminate subject to

bending. In the case shown in Fig. 5.5 the stresses in the outer layers exceed those

in the inner layers. However, if the stiffness distribution is shown in Fig. 5.5 was

altered so that the stiffness of the inner layers greatly exceeded that of the outer

ones, the stresses in the former layers could exceed their counterparts in the latter

layers. Note that larger stresses in a layer do not automatically imply that this layer

fails first. This is because the strength may also vary from layer to layer, so that the

strength analyst should avoid rush judgments influenced by the experience of design

of isotropic structures.

The analysis begins with the evaluation of displacements and strains in the layers.

Subsequently, the stresses in each layer are found from (5.7). The failure criterion

should now be applied to each layer to check its strength. This requires us to

transform the stresses in every layer to its principal coordinate system using (5.6).

There is a large number of strength criteria for laminated orthotropic laminae. This

is not surprising considering that even in the case of isotropic materials a designer

can choose between numerous yield criteria (yielding is often associated with the

loss of strength). The situation in composite materials is even more complex than in

isotropic counterparts since there are a number of possible failure modes, including

failure of fibers and matrix, debonding of fibers from matrix and delamination

between the layers. Moreover, failure can be studied at the homogeneous material

level or at the micromechanical level, distinguishing between various modes of

failure.

There are a number of reviews of failure theories for composite materials (e.g.,

Christensen 1997; Puck and Schurmann 2002; Hinton et al. 2002). We do not

attempt to review these theories in the framework of this book and simply outline

several popular methods used for the analysis of composite plates in numerous

applications. The plate is assumed in the state of plane stress except for Hashin’s

and Christensen’s criteria.
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The maximum principal stress criterion provides the envelope of local stresses in

the lamina principal axes:

s
.�/
1 < �1 < s

.C/
1

s
.�/
2 < �2 < s

.C/
2

j�12j< s12 (5.15)

The values of strength for several representative composite materials referred to

in (5.15) are found in Table 5.2. The lamina fails if any of inequalities (5.15) is

violated.

Both the Tsai-Hill and the Tsai-Wu strength criteria are derived from the

quadratic polynomial failure criteria (Jones 1999; Christensen 2005). In particular,

the former (Tsai-Hill) criterion reads

�21
s21

�
�1�2

s21
C
�22
s22

C
�212
s212

D 1 (5.16)

The choice of tensile or compressive strengths s1; s2 in (5.16) is dictated by the sign

of the stresses �1; �2, i.e. a tensile stress in either direction means that we should

use the tensile strength in the same direction, etc.

In the case of plane stress the Tsai-Wu strength criterion has the form

(Christensen 2005):
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.�/
2

C 2F12�1�2 C
�212

s212
D 1 (5.17)

The coefficient F12 has to be specified from a biaxial test. The requirement that the

material should not fail under hydrostatic pressure yields

F12 D
1

4s223
�

1

s
.C/
2 s

.�/
2

�
1

4s
.C/
1 s

.�/
1

(5.18)

where s23 is the shear strength in the plane perpendicular to the fibers. The effect of

F12 on the strength being relatively small, it was suggested that the corresponding

term can be disregarded (Narayanaswami and Adelman 1977).

Two criteria shown below account for different modes of failure dependent on

the local stresses. It is convenient to illustrate these criteria for a three-dimensional

state of stress, understanding that they can always be reduced to the particular case

of plane stress. The strength criterion of Hashin (1980) distinguishes between failure

modes dominated by tensile or compressive failure of fibers and matrix The criterion

consists of four conditions shown here for a transversely isotropic lamina:
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Tensile fiber breakage .�1 > 0/

 

�1

s
.C/
1

!2

C
1

s212

�

�212 C �213
�

D 1 (5.19a)

Compressive fiber failure .�1 < 0/

��1

s
.�/
1

D 1 (5.19b)

Tensile matrix failure .�2 C �3 > 0/

.�2 C �3/
2

s
.C/
2

C
�212 C �213 C �223 � �2�3

s212
D 1 (5.19c)

Compressive matrix failure .�2 C �3 < 0/

1

s
.�/
2

2

4

 

s
.�/
2

2s23

!2

� 1

3

5 .�2 C �3/C
.�2 C �3/

2

4s223
C
�212 C �213

s212
C
�223 � �2�3

s223
D 1

(5.19d)

The criterion of Christensen (1997) shown here for a three-dimensional state of

stress also distinguishes between fiber and matrix dominated failure modes.

Fiber failure mode:
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Matrix failure mode:
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(5.20b)

In addition to the criteria outlined above and concerned with failure of a lamina,

delamination criteria have been developed to predict the conditions for “unzipping”

of laminates due to fracture along laminae interfaces (e.g., Tong and Steven 1999).

In the conclusion of this paragraph it is emphasized that in composite laminates

failure of one layer does not automatically imply failure of the entire laminate.

While in many applications failure of even a single layer is unacceptable, progres-

sive damage can be monitored allowing for a sequential failure of laminae. This

methodology is explained in literature on composite materials and structures (e.g.,

Jones 1998).
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5.4 Representative Bending Problems for a Thin

Composite Plate

There are several problems concerned with bending of composite plates where

the exact solution is available. Some of these problems can serve as benchmark

solutions verifying available numerical models. Moreover, the simplest among these

problems is Navier’s solution for simply supported specially orthotropic plates that

is applicable to many real structures.

5.4.1 Bending of a Simply Supported Specially Orthotropic Plate

Subject to Transverse Pressure (Navier’s Solution)

The discussion on the boundary conditions presented in Chap. 2 remains valid for

composite plates. Accordingly, the assumption that the edges are simply supported

is often acceptable, either as a conservative simplification in situations where an

accurate evaluation of boundary conditions is too cumbersome or if supporting

structures represent open-profile beams with high stiffness against bending and

low torsional stiffness. The applicability of the specially orthotropic mathemati-

cal formulation to symmetrically laminated cross-ply or symmetric multi-layered

angle-ply plates was discussed in Sect. 5.2 (Eq. 5.10 are applicable to all these

plates). Accordingly, bending response of symmetric cross-ply and angle-ply plates

is governed by the same equilibrium equations and boundary conditions as those for

a specially laminated counterpart. As is shown below, the difference between these

plates becomes apparent only at the phase of the stress analysis of individual layers

where the constitutive relations are customized to reflect the actual layer orientation.

Consider a rectangular plate subject to an arbitrary distributed pressure p .x; y/

as shown in Fig. 2.1. The solution of the equation of equilibrium (5.11b) that

is uncoupled from the in-plane equilibrium equations must satisfy the boundary

conditions for bending:

x D 0; x D a Ww D 0; Mx D �
�

D11w;xx CD12w;yy
�

D 0 ! w;xx D 0

y D 0; y D b W w D 0; My D �
�

D12w;xx CD22w;yy
�

D 0 ! w;yy D 0

(5.21)

where the stress couples are obtained from (5.10) by substituting the expressions for

the changes of curvatures and twist (1.29).

Limiting the analysis to the geometrically linear case, the solution is sought in

double Fourier series (2.5) that satisfy the boundary conditions as is easily verified

by substitution. The substitution of deflections given by (2.5) and pressure given by

(2.3) into (5.11b) yields uncoupled equations for each harmonic. The amplitude of

the mn-th harmonic is
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Wmn D
pmn

D11˛4m C 2 .D12 C 2D66/ ˛2mˇ
2
n CD22ˇ4n

(5.22)

The stresses can now be calculated in each layer. Limiting the analysis to the

plane stress state we obtain the strains in the k-th layer by substituting (2.5) into

the strain-displacement expressions (1.31) where middle plane strains are equal to

zero and the changes of curvature and twist are given by (1.29). These strains are

subsequently substituted into (5.7) yielding
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(5.23)

Although the stiffness terms A16; A26; D16; D26 are not present in the equilibrium

analysis, the transformed reduced stiffness NQ16 and NQ26 should be accounted for in

the stress analysis of individual angle-ply layers. The stress transformation (5.6) can

now be applied to evaluate the principal stresses in every layer that are subsequently

employed in a strength criterion to check its strength.

5.4.2 Bending of a Specially Orthotropic Plate Subject

to Transverse Pressure p . x ; y / Where Only Two Opposite

Edges Are Simply Supported (Levy’s Solution)

Consider bending of a plate where the edges x D 0 and x D a are simply supported

while the boundary conditions along the edges y D � b
2

and y D b
2

are arbitrary

(Fig. 2.8). A similar problem was considered for isotropic plates in Sect. 2.3.

The solution of the equation of equilibrium (5.11b) is sought in the form similar

to (2.19) that is reproduced here for convenience

w D

M
X

mD1

.fm.y/ C gm.y// sin ˛mx (5.24)

where fm.y/ and gm.y/ are unknown functions similar to those defined in Sect. 2.3.

The boundary conditions along the simply supported edges are satisfied by (5.24).

The pressure acting on the plate is represented in single Fourier series (2.22).

Subsequently, the substitution of (2.22) and (5.24) into (5.11b) yields the following

nonhomogeneous equation:
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M
X

mD1

�

D22
d 4fm

dy4
� 2 .D12 C 2D66/ ˛

2
m

d 2fm

dy2
CD11˛

4
mfm

�

sin ˛mx

D

M
X

mD1

pm.y/ sin ˛mx (5.25)

This equation must be satisfied at arbitrary values of x. Accordingly, trigonomet-

ric functions cannot be assumed equal to zero. As a result, we obtain uncoupled

equations for unknown functions fm.y/:

D22

d 4fm

dy4
� 2 .D12 C 2D66/ ˛

2
m

d 2fm

dy2
CD11˛

4
mfm D pm.y/ (5.26)

Realizing that any particular integral of (5.26) will satisfy the solution, finding

such an integral usually does not present a problem. For example, if the load is

independent of the y-coordinate, i.e. pm.y/ D pm D const:, we can take fm D
pm

D11˛4m
.

The corresponding homogeneous equation is

D22

d 4gm

dy4
� 2 .D12 C 2D66/ ˛

2
m

d 2gm

dy2
CD11˛

4
mgm D 0 (5.27)

The solution of the homogeneous equation (5.27) can be represented in the

form

gm D

4
X

jD1

CjFj .y/ (5.28)

where Cj are constants of integration and Fj .y/ are functions that depend on the

roots of the characteristic equation

�2
1;2 D ˛2

m

D12 C 2D66 ˙
h

.D12 C 2D66/
2 � D11D22

i
1
2

D22

(5.29)

The following cases are distinguished dependent on the roots given by (5.29):

1. Real unequal roots occur if .D12 C 2D66/
2 > D11D22. Then

F1 D cosh �1y; F2 D sinh �1y; F3 D cosh �2y; F4 D sinh �2y (5.30)

2. Real and equal roots �1 D �2 � � occur if .D12 C 2D66/
2 D D11D22. Then
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F1 D cosh �y; F2 D sinh �y; F3 D y cosh �y; F4 D y sinh �y (5.31)

3. Complex conjugate roots occur if .D12 C 2D66/
2 < D11D22. They can be

represented as in the form ˙ .�a ˙ i�b/ where the real and imaginary parts are

easily available. Accordingly, in this case,

F1 D .cosh �ay/.cos �by/; F1 D .cosh �ay/.sin �by/;

F3 D .sinh �ay/.cos �by/; F4 D .sinh �ay/.sin �by/ (5.32)

Constants of integration can be found from four boundary conditions along the

edges y D � b
2

and y D b
2
. Examples of such solutions can be found in a number of

references, (e.g. Reddy 2004, and Whitney 1987).

5.4.3 Bending of Clamped Elliptical and Circular

Anisotropic Plates

This is an important problem that has an analytical solution (Lekhnitskii 1968).

The boundary conditions of elliptical and circular plates used in applications

can sometimes be modeled as clamping. If such plates are manufactured from a

laminated composite material, a cross-ply design is more practical than trying to

manufacture a cylindrically orthotropic structure.

Consider a clamped symmetrically laminated cross-ply elliptical plate subject

to a uniform pressure p0 where the layers are oriented in the directions of the

principal elliptical axes (Fig. 3.12). The equation of equilibrium of the plate is given

by (5.11b) where p .x; y/ D p0. The kinematic boundary conditions are identical

to those used in the analysis of isotropic elliptical plates (Sect. 3.6). Following the

procedure similar to that used in the case of isotropic plates it is easy to verify that

the solution satisfying both the equation of equilibrium as well as the boundary

conditions is

w .x; y/ D p0a
4

8
h

3D11 C 2 .D12 C 2D66/
�

a
b

�2 C 3D22

�

a
b

�4
i

�

1 � x2

a2
� y2

b2

�2

(5.33)

The stress couples and stresses can easily be evaluated as functions of the deflection

using the last three equations (5.10) and (5.7) where NQ16 D NQ26 D 0. In particular,

the maximum bending stress couple found at the ends of the large semi-axis x D
˙a; y D 0 if D11 > D22

�

a
b

�2
is



192 5 Mechanics of Composite Plates

jMxjD
p0a

2D11

3D11 C 2 .D12 C 2D66/
�

a
b

�2
C 3D22

�

a
b

�4
(5.34a)

IfD11 < D22

�

a
b

�2
, the maximum bending stress couple occurs at the ends of the

smaller semi-axis x D 0; y D ˙b being equal to

ˇ

ˇMy

ˇ

ˇ D p0a
2D22

3D11 C 2 .D12 C 2D66/
�

a
b

�2 C 3D22

�

a
b

�4

�a

b

�2

(5.34b)

In the particular case of an isotropic plate the solution shown above converges to the

result illustrated in Sect. 3.5.

If the cross-ply laminated plate is circular, the present solution is applicable using

a D b; r2 D x2 C y2 W

w .x; y/ D p0a
4

8 Œ3D11 C 2 .D12 C 2D66/C 3D22�

�

1 � r2

a2

�2

(5.35)

5.5 Buckling Problems for Thin Composite Plates

5.5.1 Linear Buckling Problems

The choice of the buckling problem for thin composite plates considered here is

based on the previous discussion where it was shown that the majority of laminated

structures in applications can be analyzed using solutions for specially orthotropic

plates with the bending stiffness terms reflecting the actual angle-ply or cross-

ply lamination. The boundaries are often accurately modeled as simply supported.

Accordingly, we consider buckling of a simply supported specially orthotropic plate

subject to biaxial compression by the stress resultants NNx and NNy (see Fig. 2.11)

where p D NNxy D 0.

The equation of equilibrium follows from (5.11b) where transverse pressure is

replaced with the projections of the applied in-plane stress resultants on the z-

direction, similar to the buckling analysis in Chap. 2. Compressive stress resultants

that result in buckling are assumed negative. Accordingly, the equation of equilib-

rium is

D11w;xxxx C 2 .D12 C 2D66/w;xxyy CD22w;yyyy � NNxw;xx � NNyw;yy D 0

(5.36)

In-plane stress resultants do not affect bending boundary conditions (5.21).

In-plane equations of equilibrium and in-plane boundary conditions become
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relevant for symmetrically laminated plates only in the postbuckling geometrically

nonlinear analysis.

The nontrivial solution that satisfies both the equation of equilibrium (5.36) as

well as boundary conditions (5.21) is given by the same expression as in case of

isotropic plates (Eq. h in Example 2.7), i.e. w D Wmn sin ˛mx sinˇny.

The substitution of the buckling deflection into (5.36) and the requirement

Wmn ¤ 0 yields the buckling load combinations defined from

NNx;cr˛
2
m C NNy ;crˇ

2
n CD11˛

4
m C 2 .D12 C 2D66/ ˛

2
mˇ

2
n CD22ˇ

4
n D 0 (5.37)

Example 5.1: Uniaxial Compression of a Simply Supported Plate The solution

is available from (5.37). Obviously, only the smallest eigenvalue, i.e. the smallest

critical value of the applied stress resultant is of interest. Accordingly, it is evident

that the plate buckles similarly to its isotropic counterpart forming one half-wave in

the y-direction perpendicular to the applied load .n D 1/. The solution becomes

NNx;cr D �
� �

ma

�2
�

D11m
4 C 2 .D12 C 2D66/ m2�2 C D22�4

�

; � D
a

b
(a)

The mode shape of buckling, i.e. the value of m corresponding to the buckling

load, is now specified dependent on the plate aspect ratio (Berthelot 1999):

m D 1 if � �
p

2

�

D11

D22

�
1
4

m D 2 if
p

2

�

D11

D22

�
1
4

� � �
p

6

�

D11

D22

�
1
4

m D 3 if
p

6

�

D11

D22

�
1
4

� � �
p

12

�

D11

D22

�
1
4

(b)

5.5.2 Geometric Nonlinearity and Initial Imperfections

The geometrically nonlinear problem can be obtained using the nonlinear stress

function formulation presented in (5.14) with appropriate boundary conditions.

Alternatively, it is possible to formulate a nonlinear counterpart of three equilibrium

equations (5.11) in terms of displacements (Chia 1980). Examples of studies

accounting for geometrically nonlinear deformations, usually in conjunction with

other effects, such as shear deformability of the plate, thermal loading, presence of

stiffeners, etc. are found in the papers of Reddy and Chao (1981), Starnes et al.

(1985), Huang and Tauchert (1988), Sheinman and Frostig (1988), Savithri and

Varadan (1993), Argyris and Tenek (1994) and Shen (2000).
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Fig. 5.6 Nondimensional

buckling load
�

NN 0
x

�

versus

nondimensional deflection of

axially compressed

symmetrically laminated

plates. Case 1: Biaxial

compression (the ratio
NNy
NNx

is

prescribed). Case 2: Uniaxial

compression. Case 3:

In-plane compression applied

simultaneously with

transverse pressure

h
w

′Nx
2

3
1

Postbuckling behavior of composite plates that is often analyzed using finite

element or finite difference methods is characterized by a stable load-deformation

curve. The final failure occurs as a result of the loss of strength. Examples of relevant

studies can be found in the papers of Shin et al (1993) and Han et al (2006).

The postbuckling behavior of symmetrically laminated plates schematically

shown in Fig. 5.6 clearly reflects the prebuckling state where transverse deflections

are absent and the postbuckling response characterized by a monotonous increase of

deflections. In the presence of transverse pressure deflections develop even at small

loads and buckling is replaced with bending.

The effect of initial imperfections on the response of composite plates is similar

to that in their isotropic counterparts. Deflections develop even at small in-plane

compressive and shear loads and they gradually increase as the loads become

larger. Within the linear range, the equation of equilibrium of specially orthotropic,

symmetric cross-ply and symmetric multi-layered angle-ply plates subject to biaxial

compression are described by a generalization of Eq. 5.36:

D11w;xxxx C 2 .D12 C 2D66/w;xxyy CD22w;yyyy � NNx.w;xx C w0;xx/

� NNy.w;yy C w0;yy/ D 0 (5.38)

where as in case of isotropic plates, w is a deflection from the imperfect surface

.w0/.

Imperfections do not introduce coupling between in-plane displacements and

transverse deflections in the linear equations of equilibrium. Similar to isotropic

plates, imperfections do not affect boundary conditions. Accordingly, the solution

of the linear problem for a simply supported plate can be sought representing both

initial imperfections and the deflections from the imperfect surface in double Fourier

series as shown in Sect. 2.8 (the series for deflections satisfy boundary conditions

(5.21)). The substitution of these series into (5.38) yields the amplitude of the mn-th

harmonics:
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Wmn D �

�

NNx˛
2
m C NNyˇ

2
n

�
0

Wmn

D11˛4m C 2 .D12 C 2D66/ ˛2mˇ
2
n CD22ˇ4n � NNx˛2m � NNyˇ2n

(5.39)

If the plate is isotropic, the result (5.39) converges to the corresponding solution in

Sect. 2.8.

Example 5.2: Stress Analysis of the Plate Prior and After Buckling This discussion

is related to the mode of failure, i.e. buckling vs. loss of strength. While the buckling

loads of biaxially compressed plates are given by (5.37), a sufficiently stiff structure

can fail if the in-plane stresses cause the loss of strength at load combinations that

are smaller than those given by (5.37). The strength criteria discussed in Sect. 5.3

can be applied to check each layer at prebuckling conditions. There are no bending

stresses in the plate prior to buckling (we assume that initial imperfections are

absent). However, the analysis of layer-wise stresses is less trivial than in case of

isotropic plates where the stress is obtained by dividing the in-plane load by the

thickness. The chain of necessary calculations is shown below for the general case

where the plate is subject to both biaxial compression and shear.

(a) In-plane strains uniformly distributed through the thickness for a specially

orthotropic plate are (same formulae are applicable to symmetric cross-ply and

symmetric multi-layered angle-ply configurations):

8

ˆ

<

ˆ

:

"0x
"0y
0xy

9

>

=

>

;

D

2

4

A11 A12 0

A12 A22 0

0 0 A66

3

5

8

<

:

NNx
NNy
NNxy

9

=

;

(5.40)

(b) Layer-wise stresses obtained from (5.7) are (k-th layer):

8

<

:

�x
�y

�xy

9

=

;

k

D

2

4

NQ11
NQ12

NQ16

NQ12
NQ22

NQ26

NQ16
NQ26

NQ66

3

5

k

8

ˆ

<

ˆ

:

"0x
"0y
0xy

9

>

=

>

;

(5.41)

(c) Stresses in the principal layer directions (along and perpendicular to the fibers)

can now be obtained from the stress transformation equations (5.6). Note that in

angle-ply plates the stiffness terms NQ16; NQ26are present, except for the layers

oriented in the x or y-directions, while in cross-ply plates these terms are equal

to zero. As is evident from the above equations, although the strain remains

constant through the thickness prior to buckling, the stresses vary from layer to

layer.

The stress analysis of the plate after buckling may be necessary since plates

exhibit stable postbuckling behavior. The analysis involves the same steps as those

shown for the prebuckling state. However, the plate acquires curvature in the

postbuckling phase, so that Eq. 5.40 are replaced with the inverse of (5.10):
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8
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"0y
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�x
�y
�xy

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

D

2

6

6

6

6

6

6

6

4

A11 A12 0 0 0 0

A12 A22 0 0 0 0

0 0 A66 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D22 0

0 0 0 0 0 D66

3

7
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9

>
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>

>

>
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>

>

>

>

>

>

>

;

(5.42)

It is emphasized that in the postbuckling regime the in-plane stress resultants dif-

fer from the applied in-plane loads due to coupling between in-plane displacements

and transverse deflections. Once the strains are specified from (5.42), the layer-wise

stresses can be determined from (5.7).

5.6 Statics and Dynamics of Stringer-Reinforced Composite

Plates

Reinforcing composite plates with stringers provides the same advantages as in

isotropic metallic plates. The methodology of the analysis is similar to that for

reinforced isotropic plates (Chap. 2). In this paragraph we illustrate examples of

analytical solutions for an orthotropic plate with discrete stringers as well as the

application of the smeared stiffeners technique.

A detailed study of composite plates reinforced by stringers was published by

Lekhnitskii (1968); his original paper on orthotropic plates reinforced by stringers

appeared in 1948 (Lekhnitskii 1948). More recent studies of stiffened rectangular

composite plates were published by Starnes et al. (1985), Sheinman and Frostig

(1988), Birman (1993, 1994), Wang et al. (2004, 2005) and Birman and Byrd (2008).

Most published studies were conducted assuming that the plate is symmetrically

laminated about its middle surface.

5.6.1 Bending of an Orthotropic Plate Reinforced by a System

of Parallel Stringers

Consider a rectangular plate reinforced by parallel equally-spaced stringers as

shown in Fig. 5.7 that is subject to pressure p .x; y/. The spacing between the

stringers is large so that using the smeared stiffeners technique may result in a

significant error. The stringers are bonded to the plate along the entire length and

both the ends of the stringers as well as the edges x D 0 and x D a are simply

supported. The following solution was published by Lekhnitskii (1948).
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a x o 

b 

y1

y2

yn

Fig. 5.7 Rectangular plate reinforced by equally-spaced parallel stringers

The plate is assumed specially orthotropic. As was previously emphasized,

such model can be applied to symmetrically laminated cross-ply plates as well as

symmetrically laminated angle-ply plates with a sufficiently large number of layers.

The stringers can be either isotropic or laminated. It is noted that in aerospace

composite structures stringers often have a hat cross section. Although these cross

sections differ from T-shape stringers in Fig. 5.7, the analysis can be conducted by

the procedure shown below.

The bending moment and the transverse force in the n-th stringer experiencing

deformations jointly with the plate are

NMn D �EIn Nwn;xx; NQn D �EIn Nwn;xxx (5.43)

where EIn is the bending stiffness of the stringer and Nwn D w .x; y D yn/ is a

deflection of the plate under the n-th stringer that is equal to the deflection of the

perfectly bonded stringer. The bending stiffness of the stringer is determined relative

to its centroidal axis perpendicular to the xz-plane. If the stringer is isotropic, E is

its modulus of elasticity. For a laminated stringer, E represents a flexural modulus.

Bending of each section of the plate between parallel n-th and (n C 1)-th stringers

is governed by the equilibrium equation (5.11b) that becomes:

D11wn;xxxx C 2 .D12 C 2D66/wn;xxyy CD22wn;yyyy D pn .x; y/ (5.44)

In (5.44) wn is a plate (skin) deflection between the parallel stringers and the edges

x D 0, x D a, and pn is the pressure within the same plate section.

The solution must satisfy the boundary conditions along x D 0 and x D a, i.e.

wn .x D 0/ D wn .x D a/ D Mxn .x D 0/ D Mxn .x D a/ D 0 where we refer to

the stress couples in the n-th section of the plate. Similar conditions at the ends of

the stringers that are bonded to the plate imply that Nwn .x D 0/ D Nwn .x D a/ D
NMn .x D 0/ D NMn .x D a/ D 0 where the overbar identifies the moment in the

stringer.
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The deformation and force continuity conditions along the n-th stringer axis

relate the deflections, slopes, bending stress couples and transverse shear stress

resultants in adjacent sections of the plate to the corresponding functions for the

stringer at y D yn:

wn .x; yn/ D wnC1 .x; yn/ D Nwn.x/

wn;y .x; yn/ D wnC1;y .x; yn/

My.nC1/ .x; yn/ �Myn .x; yn/ D Cn Nwn;xxy

Qy.nC1/ CMxy.nC1/;x �Qyn �Mn;x D EIn Nwn;xxxx (5.45)

where Cn is a torsional stiffness of the stringer.

The set of solutions wn .x; y/ for 1 � n � N C 1 where N C 1 is

the number of plate sections and N is the number of stringers must satisfy the

equilibrium equations (5.44) for each plate section, the continuity conditions (5.45),

the boundary conditions along x D 0 and x D a that are specified above and the

conditions along the edges parallel to the stringers, i.e. along y D 0 and y D b. It

can be observed that due to simply supported boundary conditions along the edges

x D 0 and x D a the following solution resembles the Levy approach.

The pressure and the deflection within each section are represented in the Fourier

series:

pn .x; y/ D
M
X

mD1

pnm.y/ sin ˛mx

wn .x; y/ D
M
X

mD1

fnm sin ˛mx (5.46)

The expression for the deflection in (5.46) satisfies the boundary conditions along

the edges x D 0, x D a. The substitution of (5.46) into the equilibrium equation

(5.44) and the continuity conditions (5.45) yields the ordinary differential equation

for each span of the plate as well as the continuity conditions along the edges

y D yn:

D22fnm;yyyy � 2 .D12 C 2D66/ ˛
2
mfnm;yy CD11˛

4
mfnm D pnm.y/ (5.47)

and

y D yn W fnm D f.nC1/m; fnm;y D f.nC1/m;y

f.nC1/m;yy � fnm;yy D Cn˛
2
m

D22

fnm;y
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f.nC1/m;yyy � fnm;yyy D �
EIn

D22
˛4mfnm (5.48)

In the case of open-profile stringers, their torsional stiffness can often be neglected,

i.e. Cn � 0.

The solution of Eq. 5.47 involves four constants of integration for each span, i.e.

fnm D

4
X

iD1

CinmFinm.y/ (5.49)

where Finm.y/ are trigonometric or hyperbolic functions that can be specified

dependent on the plate properties and geometry.

For a plate with N sections between the stringers the number of unknown

constants of integration is 4N. These constants can be determined from 4(N-1)

continuity conditions (5.48) along (N-1) span edges and 4 boundary conditions

at the outer edges of the plate y D 0 and y D b. The numbers of boundary and

continuity conditions being equal to the number of constants of integration, these

constants are found from the system of 4N linear algebraic equations. Therefore,

the solution of the problem is exact, with the accuracy limited only by the number

of terms retained in series (5.46). If the deflections of the plate become too large,

exceeding half-thickness, the geometrically linear solution shown here becomes

too conservative and it is preferable to use a numerical solution accounting for

geometric nonlinearity.

The solution shown above could be used in design of a stringer-reinforced plate

as follows.

1. The check of the strength and deflections of sections of the plate between the

stringers can be accomplished using the solution for deflections (5.49) to evaluate

the strains and layer-wise stresses. Subsequently, one of the strength criteria

discussed in Sect. 5.3 should be applied to check the strength of each layer.

2. In addition, it is necessary to check the strength of stringers. Although this is

seldom a problem, i.e. the failure occurs in the sections of the plate, light stringers

placed at a significant spacing may be unsafe. The corresponding check is easily

conducted employing deflections given by Eq. 5.46 to find the bending moment

and transverse force in the plane of the stringer according to (5.43). Subsequently,

the analysis of the stringer is straightforward. For example, if the n-th stringer is

composite, the bending stress in the j-th layer can be found as

� .j /x D �zj
NMn

EIn
E.j /
nx (5.50)

where E
.j /
nx and zj are the modulus of elasticity of the layer in the axial stringer

direction and the distance from the layer to the centroid of the stringer.
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5.6.2 Buckling and Free Vibrations of Stringer-Reinforced

Cross-Ply and Functionally Graded Plates Analyzed

by the Smeared Stiffeners Technique

In this section we consider the case where the plate shown in Fig. 5.7 is asymmetric

about the middle plane and reinforced by identical closely spaced stringers.

Although it is usually recommended to use symmetric laminates, possible examples

of composites asymmetric about the middle plane are functionally graded structures

referred to below in this paragraph and in Chap. 7. Composite plates symmetric

about the middle plane and reinforced by stringers can be analyzed as a particular

case of the present solution. The case where the plate is reinforced by stringers

oriented in both x- and y-directions can be considered using a straightforward

extension of this solution (Birman and Byrd 2008).

Geometrically linear equations of motion of a thin elastic plate including in-plane

compressive static loads have already been developed in Chap. 4 (equations (4.37)).

The mass per unit surface area in these equations is determined from

Om D mp C
X

n

ı .y � yn/

Z

z

☛n.z/bn.z/d z (5.51)

where mp is the mass of the plate without the stringers per unit surface area, ☛n is

the mass density of the stringer material and bn.z/ is the width of the stringer. The

z-coordinate is counted from the middle plane of the panel. It is also necessary to

update the stiffness terms in equations (4.37) since the plate is composite, rather

than isotropic as in Chap. 4.

The stress resultants and stress couples in the plate without stringers are given by

relationships (5.10). The nonzero elements of the stiffness matrices contributed by

the cross-ply panel without stringers are

A0 D

2

4

A0
11 A

0
12 0

A0
12 A

0
22 0

0 0 A0
66

3

5 B 0 D

2

4

B 0
11 B

0
12 0

B 0
12 B

0
22 0

0 0 B 0
66

3

5

D0 D

2

4

D0
11 D

0
12 0

D0
12 D

0
22 0

0 0 D0
66

3

5 (5.52)

where

˚

A0
ij ; B

0
ij ; D

0
ij

�

D

h
2
Z

�
h
2

Qij

˚

1; z; z2
�

d z (5.53)
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Similar to Chap. 4, we assume that the contribution of the stringers affects only

the stiffness in the direction of their axes. Furthermore, the torsional stiffness of the

stringers is neglected. Therefore, the corresponding stiffness terms affected by the

presence of composite stringers are

˚

A00
11; B

00
11; D

00
11

�

D
X

n

ı .y � yn/

Z

z

bn.z/En.z/
˚

1; z; z2
�

d z (5.54)

where En.z/ is the modulus of elasticity of the stringer material and the coordinate

is counted from the middle plane of the panel. The contributions of the stringers to

other elements of the stiffness matrices are assumed negligible, i.e. A00
ij D B 00

ij D

D00
ij D 0 .ij ¤ 11/. Note that Eq. 5.54 differ from (2.62) or (2.63) since the latter

equations were written for isotropic stringers, while (5.54) enable us to incorporate

laminated stringers in the analysis. The elements of the overall stiffness matrices of

the panel in Eq. 5.10 are obtained by summation the contributions of the skin and

stringers according to (2.56).

Similar to paragraphs 2.9 and 4.5, all edges of the panel are assumed simply

supported by frames or beams that have negligible torsional stiffness and negligible

stiffness in the direction perpendicular to their axes, while their axial stiffness is

very high. The corresponding boundary conditions are w D Mx D Nx D v D 0

along x D 0; x D a and w D My D Ny D u D 0 along y D 0; y D b.

In this paragraph we limit ourselves to a particular case where one can apply the

smeared stiffeners technique that has already been discussed in reference to isotropic

stringer-reinforced plates. Consider the situation where the number of equally-

spaced stringers is sufficiently large so that the spacing is small. Furthermore, the

cross sections of the stringers are identical, as is often the case in applications.

Then the contribution of stringers to the stiffness can be smeared over the surface

of the panel. As was shown by Birman (1993), even composite plates with only

three equally-spaced stringers can be adequately analyzed by the smeared stiffeners

technique (of course, this technique should not be applied in problems where local

bending between the stringers is essential).

The mode shapes of buckling and free vibrations can be represented by Eq. 4.38

where dynamic terms sin!t are excluded in the former problem. The substitution

of (4.38) into (4.37) yields equations (4.39) that can be used to find the buckling

load combinations or the natural frequencies.

Example 5.3: Buckling Loads of Functionally Graded Stringer-Reinforced Plates

Consider the effect of stringers on the buckling loads of a functionally graded plate

discussed in Example 4.1. In all examples concerned with buckling the load was

applied in the x-direction. The aspect ratio of plates considered in examples varied

but the mode shape of buckling in all cases was dominated by a single half-wave

in both x and y directions (this is also the mode corresponding to the fundamental

frequency of the plate).

The blade stringer height necessary to achieve the required values of the buckling

load evaluated using the analysis described above is shown in Fig. 5.8. The
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Fig. 5.8 Blade stringer height as a function of desired buckling load. The thickness of the plate

is h D 1:778mm. The spacing of the stringers is equal to 0.1667 m. Case 1: a D 0:5m; b D

1:5m;N0 D 4089N
m

. Case 2: a D b D 1:0m;N0 D 3312N
m

. Case 3: a D 1:0m; b D 0:5m;N0 D

20700N
m

(From Birman and Byrd 2008)

corresponding result relevant to the natural frequency was illustrated in Fig. 4.7.

The buckling load referred to in Fig. 5.8 is normalized with respect to its value for

the unstiffened plate. The vertical axis represents a ratio of the height of the blade

stringer to the thickness of the plate. Both Figs. 5.8 and 4.7 clearly demonstrate

the advantages of using stringer-reinforced plates, i.e. the possibility of achieving

a much higher buckling load as well as an increased fundamental frequency at the

expense of a relatively small increase in weight.

5.7 Shear Deformable Composite Plates

In the previous chapters we assumed that the plate is “thin,” except for the discussion

of shear deformable plates in Chap. 1. Accordingly, the previous solutions were

developed using the classical (technical) theory of plates. The foundation for such

approach is easily understood if one considers bending of a thin plate. If the plate

is subject to lateral pressure p, the transverse normal stress at the loaded surface is

equal and opposite to this pressure, i.e. �z D �p. At the opposite surface the stress

�z D 0. Between two surfaces, the stress �z gradually changes from zero to�p.

The relative magnitude of stresses can easily be estimated on the example of

a simply supported isotropic plate subject to a uniform pressure p0. According to

Timoshenko and Woinowsky-Krieger (1959), the maximum bending stress couples

at the center of a square plate are Mx D My D 0:0479p0a
2 where a is the

in-plane dimension. The ratio between the maximum transverse normal and in-

plane stresses can be estimated as

ˇ

ˇ

ˇ

�max
z

�max
x

ˇ

ˇ

ˇ
D

ˇ

ˇ

ˇ

�max
z

�max
y

ˇ

ˇ

ˇ
D 3:48

�

h
a

�2
. Therefore, the

maximum transverse normal stress can reach 5% of the maximum in-plane stresses

only if the thickness to size ratio is smaller than 0.12. Such thick plates are

seldom found in applications. Although transverse shear stresses can be larger than
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the transverse normal stress, isotropic structures usually do not require a three-

dimensional solution. An exception may be found in the vicinity of discontinuities,

such as rivet holes where three-dimensional effects can be present.

Contrary to isotropic materials, composite laminates often possess relatively

low shear stiffness. This results in higher transverse shear strains that may inval-

idate the classical plate theory based on the assumption that transverse shear is

negligible.

The theory of shear deformable plates can be traced back to pioneering work

of Reissner (1945) and Mindlin (1951). Predictably, these early studies were

concerned with isotropic plates and limited to the first-order theory. The extension

of the analysis to anisotropic (composite) plates was undertaken by Reissner and

Stavsky (1961), Stavsky (1961) and Yang et al. (1966). The subject of shear

deformable plates and shells, including first-order as well as higher-order theories,

was comprehensively reviewed in the monograph of Reddy (2004).

According to higher-order shear deformable theories, the displacements of the

plate are represented by

u .x; y/ D u0 .x; y/C z x .x; y/C
X

iD2

zi☞i .x; y/

v .x; y/ D v0 .x; y/C z y .x; y/C
X

iD2

zi�i .x; y/

w D w0 .x; y/ (5.55)

Transverse deflections remain constant throughout the thickness as was the case

in the classical plate theory. In-plane displacements include the terms proportional

to the first power of z, reflecting rotations about the middle plane. The higher-order

terms proportional to higher power of z account for a possible warping of the cross

section (these terms are associated with the higher-order theories). The number

of functions ☞i and �i in higher-order theories can be reduced by requiring that

transverse shear stresses and transverse normal stresses on the surfaces of the plate

must be equal to zero. In particular, such requirement to shear stresses is employed

in the third-order theory where the highest order of the power in (5.55) is equal to

i D 3. In the contrary, the assumption that transverse shear strains remain constant

throughout the thickness of the plate adopted in the first order shear deformation

theory results in the violation of the boundary condition for transverse shear and

normal stresses on the surfaces.

This book does not include a review of higher-order theories and the discussion is

limited to the first-order shear deformation theory. This theory is usually adequate

for the study of typical composite and sandwich plates, except for plates that are

subject to local concentrated loads or have discontinuities resulting in a local 3-D

state of stress. Also, the first order theory cannot characterize sandwich plates with

a “soft” core (Frostig et al. 2005, and Li and Kardomateas 2008).
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The following analysis is conducted by assumption that deformations of the

plate remain small, justifying the use of the geometrically linear theory. Shear

deformable plates are usually relatively thick and as a result, they are quite stiff.

Such plates often fail prior to achieving large deformations that would justify the

use of geometrically nonlinear strain-displacement relations.

According to the first order theory, the in-plane strains in the plate can be written

utilizing Eqs. 1.46 and 1.48 in the form:

"0x D u0;x ; �x D  x ;x

"0y D v0;y ; �y D  y ;y

0xy D u0;y C v0;x ; �xy D  x ;y C  y ;x (5.56)

Transverse shear strains are presented by (1.45). These strains do not vary

throughout the thickness of the plate reflecting the assumptions of the first-order

theory. As a result, transverse shear stresses are present on the plate surfaces

reflecting the approximate nature of the theory. Although the transverse normal

strain is assumed equal to zero, "z D w0;z D 0, it is possible to calculate the stress

�z on the plate surfaces either integrating the corresponding elasticity equilibrium

equation �xz;x C �yz;y C �z;z D 0 or the using three-dimensional stress-strain

relationships. This stress should be equal to zero or to the applied pressure on the

surface of the plate. Therefore, this boundary condition is also violated in the first-

order theory. The inaccuracy introduced in the solution through the violation of

the boundary conditions on the surface is partially compensated by an appropriate

choice of the shear correction factor as explained below.

The strains are now substituted into the constitutive relations (5.7) and (5.8) that

are not affected by the kinematics of the plate resulting in in-plane stresses and the

corresponding in-plane stress resultants and bending and twisting stress couples.

Additionally, transverse shear stresses in the k-th layer are:

�

�yz

�xz

�

k

D

�

NQ44
NQ45

NQ45
NQ55

�

k

�

yz

xz

�

(5.57)

where the corresponding transformed reduced stiffnesses are evaluated as functions

of the reduced stiffnesses and the lamination angle of the layer:

NQ44 D Q44cos2� C Q55sin2�

NQ45 D .Q55 � Q44/ cos � sin �

NQ55 D Q55cos2� C Q44sin2� (5.58)

Each term in (5.58) refers to a particular layer (the layer index “k” is omitted).

The reduced stiffnesses in (5.58) are the following functions of the properties of the

corresponding layer:
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Q44 D G23; Q55 D G13; (5.59)

where G23 is the shear modulus in the plane perpendicular to the fibers and G13
is the shear modulus in the plane oriented along the fibers and perpendicular to the

plane of the layer. Typically,G13 D G12, unless special measures are taken to ensure

a different fiber density in the corresponding planes.

The transverse shear stress resultants are obtained by integrating the correspond-

ing stresses throughout the thickness of the plate (see Eq. 1.52):

Qy D k

h
2
Z

�
h
2

�yzd z; Qx D k

h
2
Z

�
h
2

�xzd z; (5.60)

where k is the so-called shear correction factor introduced to account for the

inaccuracy due to the assumptions employed in the first order theory that is

discussed below.

The substitution of (5.57) into (5.60) yields the constitutive relations for the

transverse shear stress resultants. In most applications, such as cross-ply and

symmetrically laminated angle-ply composites, coupling between transverse shear

strains is absent, so that

Qy D kA44
�

w;y C  y
�

Qx D kA55 .w;x C  x/ (5.61)

where fA44; A55gD

h
2
R

� h
2

˚

NQ44; NQ55

�

d z.

Equations of motion for shear deformable plates were derived in Sect. 1.6

(Eq. 1.81). Dynamic equations are affected by inertial terms that take into account

the in-plane, translational and rotational inertias. Accounting for these contributions

in composite laminates, Eq. 1.81 are modified:

Nx;x CNxy;y D Omu0;t t C I1 x ;t t

Nxy;x CNy ;y D Omv0;t t C I1 y ;t t

Mx;x CMxy;y �Qx D I1u0;t t C I2 x ;t t

Mxy;x CMy ;y �Qy D I1v0;t t C I2 y ;t t

Qx;x CQy;y CNxw;xx C 2Nxyw;xy CNyw;yy

C
�

Nx;x CNxy;y
�

w;x C
�

Nxy;x CNy ;y
�

w;y D �p C Omw;t t (5.62)
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where

fOm; I1; I2g D

Z h
2

� h
2

�✁z/
˚

1; z; z2
�

d z (5.63)

�✁z/ being a mass density that can vary from layer to layer, contrary to isotropic

materials where it is constant. If the mass density is constant throughout the plate,

Eq. 5.62 are reduced to (1.81) where I D I2.

Although all terms in (5.62), except for those proportional to time derivatives

of rotations, are present in the classical plate theory, the stress resultants and stress

couples are different. Considering a relatively small effect of in-plane and rotational

inertias on the in-plane equations of motion, the doubly-underlined terms in the

last equation (5.62) are often disregarded. Furthermore, in the absence of nonlinear

effects, the singly-underlined terms are present only if in-plane loads NNx ; NNy ; NNxy
are applied to the plate so that Nx D NNx; Ny D NNy; Nxy D NNxy .

Limiting the analysis to the static case and substituting Eqs. 5.8 and 5.60 into

(5.62) we obtain the equations of equilibrium. In the general case, these equations

are quite long and they cannot be analytically integrated. Accordingly, we show

here the solution for a specially orthotropic plate that is also applicable to cross-

ply symmetrically laminated plates and to multilayer, angle-ply symmetrically

laminated plates as discussed above. In such case, A16 D A26 D D16 D D26 D 0

and ŒB� D 0 so that equations of equilibrium become uncoupled, i.e. two equations

for in-plane displacements are independent of three equations for the deflection and

rotations:

A11u0;xx C A66u0;yy C .A12 C A66/ v0;xy D 0

.A12 CA66/ u0;xy C A66v0;xx C A22v0;yy D 0 (5.64)

and

� kA55w;x CD11 x ;xx CD66 x ;yy � kA55 x C .D12 CD66/  y ;xy D 0

�A44w;y C .D12 CD66/  x ;xy CD66 y ;xx CD22 y ;yy � kA44 y D 0

k
�

A55w;xx C A44w;yy
�

C NNxw;xx C 2 NNxyw;xy C NNyw;yy C kA55 x ;x

C kA44 y ;y D �p (5.65)

In addition, boundary conditions must be specified along the edges. Here we

refer to several possible sets of boundary conditions for the edges x D 0 and x D a.

The conditions for the edges y D constant can be formulated by analogy. Note that

there are five conditions along each edge reflecting the presence of five unknowns,

i.e. three displacements u0; v0; w and two rotations  x ;  y in the equations of

equilibrium.
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1. Simply supported edges (the support structure has infinite stiffness in the plane

of the edge and negligible out-of-plane stiffness):

w D  y D v0 D Nx D Mx D 0 (5.66)

Note that a variation of this condition obtained by replacing v0 D 0withNxy D 0

implies that the support structure has a negligible stiffness along the edge; such

situations are not encountered in practice.

2. Simply supported edges (the support structure has infinite stiffness in the plane

of the edge and its out-of-plane displacements are prevented):

w D  y D v0 D u0 D Mx D 0 (5.67)

Such condition can occur as a result of adjacent plates supported at the same edge

whose in-plane stiffness restrains displacements of the boundaries.

3. Clamped edge (such effect can be achieved due to symmetry of both the adjacent

plates as well as the load about the edge, as explained in Sect. 2.2):

w D u0 D v0 D  x D  y D 0 (5.68)

4. Free edge (such edge should be avoided due to a potential for delamination of the

layers as a result of local concentration of transverse shear and normal stresses):

Qx D Nx D Mx D Nxy D Mxy D 0 (5.69)

It can be observed that for symmetrically laminated plates considered here, in the

linear formulation, in-plane boundary conditions in terms of in-plane displacements

and stress resultants are uncoupled from the conditions referring to transverse

deflections, rotations, stress couples and transverse shear stress resultants. If the

plate with A16 D A26 D D16 D D26 D ŒB� D 0 is subject to transverse loads, such

as lateral pressure or concentrated forces, in-plane displacements u0 D v0 D 0.

The analytical solution is available if the out-of-plane boundary conditions

correspond to those in (5.66), i.e. w D  y D Mx D 0 along x D 0, x D a and

w D  x D My D 0 along y D 0, y D b. The plate considered below is subject to an

arbitrary distributed pressure and to in-plane stress resultants NNx and NNy .

It is evident that the solution in double Fourier series

w D

M
X

mD1

N
X

nD1

Wmn sin ˛mx sinˇny

 x D

M
X

mD1

N
X

nD1

Fmn cos˛mx sinˇny

 y D

M
X

mD1

N
X

nD1

Pmn sin ˛mx cosˇny (5.70)
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satisfies the boundary conditions. The substitution of (5.70) into (5.65) yields

a system of three algebraic equations with respect to the amplitudes of the

corresponding harmonics for each couple .m; n/:

�

Lij
� ˚

Wmn Fmn Pmn
�T

D
˚

0 0 pmn
�T

(5.71)

where Lij D Lj i , the superscript “T” identifies a transpose of the matrix or vector,

and pmn is the amplitude in the double Fourier series (2.3) representing an arbitrary

applied pressure.

The elements of the matrix of coefficients in (5.71) are

L11 D D11˛
2
m CD66ˇ

2
n C kA55

L12 D .D12 CD66/ ˛mˇn

L13 D kA55˛m

L22 D D66˛
2
m CD22ˇ

2
n C kA44

L23 D kA44ˇn

L33 D
�

kA55 C NNx
�

˛2m C
�

kA44 C NNy
�

ˇ2n (5.72)

Note that the series solution shown here is not possible in case where in-plane

shear stress resultant NNxy is applied to the plate. Both bending as well as buckling

problems can be solved using (5.72). In case where transverse pressure is applied

to the plate this system of three equations is solved with respect to the amplitudes

Wmn; Fmn; Pmn. The presence of in-plane tensile or compressive loads does not

change the approach to the solution of the bending problem since they are included

in the coefficient L33. If the load is represented by in-plane compressive stress

resultants and transverse pressure is absent, critical combinations of NNx and NNy
corresponding to the mode shape of buckling with m and n half-waves in the x and

y directions respectively, are determined from the nonzero requirement to the vector

of amplitudes. This implies that the determinant formed by the coefficients Lij in

(5.71) must be equal to zero.

The following observations can be made:

1. In dynamic problems, the counterparts of Eqs. 5.64 and 5.65 are uncoupled

as long as the plate is symmetric about the middle plane. This is because the

rotational inertia coefficient I1 D 0 due to symmetry.

2. Besides the solution for a specially orthotropic plate shown above, exact solu-

tions of geometrically and physically linear problems in double Fourier series

are available for the following cases:

– Antisymmetric cross-ply plate with boundary conditions (5.66). See Bert et al.

(1981).
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– Antisymmetric angle-ply plates with boundary conditions w D  y D u D

Nxy D Mx D 0 along the edges x D 0 and x D a and similar conditions

along the perpendicular edgesy D 0 and y D b. See Bert and Chen (1978).

Additionally, Levy’s approach to the analysis of antisymmetric angle-ply and cross-

ply plates with one pair of simply supported opposite edges has been published

(Reddy 2004).

It remains to specify the shear correction factor k that appears in Eq. 5.60. This

factor originally introduced for isotropic structures by Timoshenko in 1921 has been

a subject of numerous studies (see for example, a discussion in the papers of Bert

and Gordaninejad (1983) and Birman and Bert (2002)). The most popular methods

of the evaluation of the shear correction factor include:

1. Comparison of the transverse shear stress according to the theory of elasticity

solution for a homogeneous orthotropic plate to the stress given by the first-order

shear deformation theory (essentially, an extension of the Timoshenko approach

for isotropic beams);

2. Comparison of the strain energies for a homogeneous orthotropic plate derived in

terms of transverse shear stress resultants according to the elasticity formulation

and according to the first-order theory (extension of the Reissner approach for

isotropic beams).

The former method yields k D 2
3
, while the latter method results in k D 5

6

(Whitney 1987).

Dynamic analyses of shear deformable structures with the goal of specifying the

shear correction factor have also been undertaken (see Birman and Bert (2002) for

relevant references). It was shown that the shear correction factor may be a function

of the plate material constants and aspect ratio. In general, the shear correction factor

calculated by presently available methods lies in the range between 2/3 and 1.

An example of the comparison between exact solutions obtained by the theory of

elasticity and solutions generated by the classical and first-order shear deformation

theories was presented for cross-ply rectangular laminates experiencing bending as

a result of a sinusoidal pressure in the book of Whitney (1987). It was shown that

the classical theory of thin plates becomes inaccurate at the size-to-thickness ratio

smaller than approximately 25. In the contrary, the first-order theory yielded results

that are in close agreement with the exact elasticity solution. The results obtained by

the first-order theory were relatively insensitive to the value of the shear correction

factor. The first-order shear deformation theory was also found accurate for the

analysis of a sandwich plate discussed in the next paragraph (for a detailed analysis

of the applicability of the first-order shear deformation theory to the analysis of

sandwich plates, see the recent paper of Nguyen et al (2010)).

A detailed comparison of the accuracy of the higher-order (third-order), first-

order and classical plate theories with available three-dimensional (3-D) elasticity

solutions was presented in the monograph of Reddy (2004). Similar to the obser-

vations that follow from Whitney (1973), a discrepancy between deflections and

in-plane bending stresses obtained by various theories can become essential if the
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side-to-thickness ratio is smaller than approximately 25. The deflections and stresses

obtained by higher-order, first-order and classical plate theories are unconservative,

the dangerous error increasing for the first-order and particularly, classical theories.

Both the classical and the first-order theories overpredict the eigenvalues (buckling

load and natural frequencies) of shear deformable plates.

In spite of the observations made above, the first-order shear deformation

theory can be sufficiently accurate for the strength, buckling and vibration analyses

of numerous composite structures found in engineering applications, with the

exception of cases of sandwich plates with a “soft” core (e.g., Li and Kardomateas

2008) and the situations where the structure is subject to concentrated loads. This

theory cannot be relied on for the stress analysis in the vicinity of discontinuities

with a local concentration of 3-D stresses. Even if a composite structure is “thin,”

material properties may superimpose a requirement to use first-order or higher-order

theories, rather than the classical theory of thin plates. For example, Greenberg and

Stavsky (1980) showed that relatively long cylindrical shells should be analyzed by

the first-order theory if they have a low transverse shear modulus.

5.8 Sandwich Plates

The concept of sandwich construction can be traced to I-beams or truss structures. A

beam of a rectangular cross section working in bending is usually a bad design. It is

easy to observe that the bending stress in such beam varies from a maximum tensile

stress on one surface to a maximum compressive stress on the opposite surface

leaving the central part of the cross section underloaded. Although the maximum

transverse shear stress occurs at the neutral axis of such beam, i.e. half-way from

each of the outer surfaces, this stress does not govern the design, except for very

short and deep configurations.

The necessity to increase the moment of inertia of a beam subject to bending, si-

multaneously increasing the buckling load and the fundamental frequency, resulted

in an I-beam, i.e. the structure where a light and slender web carries a small fraction

of the load that is mostly carried by the flanges. A version of the concept of an I-

beam is found in a truss where the “web” consists of a system of diagonal members.

A sandwich structure typically consists of two facings joined by a light core

of different material (Fig. 5.9). The facings are designed to mostly carry in-plane

and/or bending loads, while the core joins the facings into a cohesive structure and

carries a lion share of the transverse shear load. Accordingly, the facings are usually

manufactured from heavier materials with high strength and stiffness, while a lighter

core has lower strength and stiffness. The effectiveness of a sandwich structure can

qualitatively be illustrated using the approach of Vinson (1999) who compared the

bending stiffness and the maximum bending stress in a monocoque (single layer)

isotropic beam to those in the beam where the cross section is divided into two

half-thickness facings that are separated and located at a distance from each other

(Fig. 5.10). The core between two facings does not carry the load and its weight is
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Fig. 5.9 Sandwich plate showing two facings and a honeycomb core

 h = 2tf  

 

 

tf

hc

tf

light core

Fig. 5.10 Illustration of the sandwich effect. Left: solid (monocoque) plate. Right: The solid cross

section is replaced with a sandwich consisting of two half-thickness facings separated by a light

core of a negligible stiffness

assumed small compared to that of the facings. Therefore, we compare two designs

of an approximately equal weight. As was shown by Vinson (1999), the ratio of the

bending stiffness of the sandwich and monocoque designs is equal to

Dsand

Dmon

D
3

4

�

hc

tf

�2

(5.73)

where hc and tf are the thicknesses of the core and one of the facings, respectively.

Furthermore, the ratio of the bending stress is

�sand

�mon
D
2tf

3hc
(5.74)

Obviously, the stiffness of the sandwich beam is three times higher than that of the

monocoque beam if the core is twice thicker than each facing. In reality, the core-to-

facing thickness ratio is usually larger. If it is equal to 5 (e.g. the sandwich consisting

of two 2-mm facings separated by a 10-mm thick core), the stiffness increases by a

factor of 18.75. For hc
tf

D 10, the stiffness ratio is 75(!). The increase in the strength
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Fig. 5.11 Plainview of a

hexagonal honeycomb core

d

tc
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W

is not as high as that in the stiffness. However, as is evident from (5.74), for hc
tf

D 10,

the strength increases by a factor of 15, i.e. the gains are very impressive.

Typical materials used for facings are metals (steel, aluminum and titanium

alloys), composites and wood. Composite facings may be laminated or woven;

examples of facing materials are carbon/epoxy or graphite/epoxy (aerospace ap-

plications) and less expensive glass/epoxy and glass/vinylester (naval and civil

applications). The properties of typical facing materials can be found in the

monographs of Vinson (1999) or Zenkert (1997).

The core of a sandwich plate should satisfy a number of requirements, including

low weight, the capacity to carry transverse shear and transverse normal loads and

preventing wrinkling or kinking of the facings. Typical designs of the core include

foam, honeycomb, web and truss constructions (Vinson 1999). In the following,

the discussion is limited to honeycomb and foam core sandwich plates, excluding

web and truss core sandwiches, although such designs have been entertained by

civil engineers. Honeycomb core are widely used in aerospace applications, while

foam core are found in civil engineering. Sandwich structures in naval applications

often employ balsa cores. The honeycomb core can have hexagonal, square and

other shapes. The geometry of the hexagonal core is depicted in Fig. 5.11. It is

noted that the stiffness and strength in the in-plane transverse (W) and longitudinal

(L) directions are different, enabling a designer to better tailor the response of the

structure. While the properties of foam cores are predictable, the effective properties

of a honeycomb core depend on the material of the core as well as on the size

and shape of the cells. Table 5.3 presents selective properties of typical sandwich

cores.

The assumptions employed in the analysis of sandwich structures vary dependent

on the employed theory. It is usually accepted that the solution should account for

shear deformability of the structure since transverse shear moduli of the core are low.

Reviews of the history and methods of the analysis of sandwich structures can be
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Table 5.3 Properties of balsa, honeycomb and foam core materials (Zenkert 1997; Divinycell

Technical Data Sheet, www.diabgroup.com)

Core

Density

(kg/m3)

Transverse

shear modulus

(MPa)

L-direction

Transverse

shear modulus

(MPa)

W-direction

Shear

strength

(MPa)

L-direction

Shear

strength

(MPa)

W-direction

Balsa 96 108 108 1:85 1.85

Balsa 130 134 134 2:49 2.49

Balsa 180 188 188 3:46 3.46

Al. alloy

honeycomb

32 180 98 0:83 0.48

Al. alloy

honeycomb

70 460 200 2:2 1.5

Al. alloy

honeycomb

130 930 370 5:0 3.1

Foam: Divinycell

H 60

60 20 20 0:76 0.76

Foam: Divinycell

H100

100 35 35 1:6 1.6

Foam: Divinycell

H200

200 85 85 3:5 3.5

Note: Balsa exists in different densities; denser balsa has better stiffness and strength. The

properties of balsa and foam cores are independent of the in-plane direction)

found in the monographs by Plantema (1966), Allen (1969), Zenkert (1997), Vinson

(1999) and Carlsson and Kardomateas (2011). The review by Noor et al (1996) and

the ASME volume by Rajapakse et al (2000) contain additional information. There

are also special International Conferences on Sandwich Construction that publish

valuable proceeding. In this paragraph we do not attempt to review all available

theories; instead, we discuss the approach based on the first-order shear deformation

theory and comment on the modes of failure of sandwich plates.

The assumptions employed in the analysis of sandwich structures by the first-

order shear deformation theory can be subdivided in two classes:

1. Kinematic assumptions of the first-order shear deformation theory are repeated

here for convenience:

– A cross section perpendicular to the undeformed middle plane of the sandwich

plate rotates about this plane during deformations but remains flat (no

warping). This implies that in-plane displacements are linear functions of the

thickness coordinate;

– The transverse deflection is uniform throughout the thickness, i.e. the trans-

verse normal strain "z D 0.

2. Assumptions reflecting geometry and material properties:

– In-plane stresses in the core are negligible;

www.diabgroup.com
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– Transverse shear stresses in the facings can be neglected (note that it is

possible to apply the first-order theory without employing this assumption).

The problem is assumed both geometrically and physically linear. Effects of local

failure modes on the global response are neglected in the linear formulations (for

example, it is assumed that buckling of the plate is uncoupled from wrinkling of

the facings). The thickness of the facings and that of the core are usually assumed

constant. Perfect bonding is assumed between the facings and the core so that they

deform as a unit, without sliding with respect to each other.

Using these assumptions, we can apply the first-order shear deformation theory

discussed in the previous paragraph to the analysis of sandwich plates. The second

group of assumptions listed above affects the computation of the material stiffness

terms. In particular, the extensional, coupling and bending stiffness terms that

affect the stress resultants and stress couples produced by in-plane stresses are

calculated by integrating the corresponding transformed reduced stiffnesses through

the thickness of the facings only:

˚

Aij ; Bij ; Dij
�

D

�
hc
2

Z

�

�

hc
2 Ctf

�

NQij

˚

1; z; z2
�

d z C

�

hc
2 Ctf

�

Z

hc
2

NQij

˚

1; z; z2
�

d z;

ij D 11; 12; 22; 16; 26; 66 (5.75)

where hc and tf are shown in Fig. 5.10 and the middle plane z D 0 is located at the

mid-height of the core. If the facings are either symmetric cross-ply laminated or

multilayered symmetric angle-ply laminated, A16 D A26 D Bij D D16 D D26 D

ŒB� D 0 in Eq. 5.75.

Transverse shear stress resultants produced by stresses �xz and �yz are calculated

by integrating these stresses through the thickness of the core. The corresponding

extensional stiffness terms are

fA44; A55g D

hc
2
Z

�
hc
2

˚

NQ44; NQ55

�

d z (5.76)

The choice of the shear correction factor in sandwich structures is sometimes

dictated by the experience with ordinary shear deformable plates where it is

typically taken equal to 5/6 or 2/3. Birman and Bert (2002) compared the shear

correction factors in sandwich beams derived by six different methods:

1. Modeling the structure as a discrete mass system;

2. Comparison of the shear strain energies;

3. Comparison of the average shear strains;

4. Comparison of natural frequencies;
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5. Comparison of average transverse shear stresses;

6. Minimization of the quadratic error of the shear stresses.

In each case, the results obtained by the first-order shear deformation theory were

compared to the available exact solution. The results of these comparisons illustrated

that the first three methods lack universality, i.e. they were applicable only within

certain ranges of geometry and material properties. The latter three methods yielded

the shear correction factor equal to 1.0 for arbitrary geometry and materials. Based

on these comparisons, the authors recommended using the factor equal to 1.0 in the

analysis of sandwich structures.

Using the values of stiffnesses given in (5.75) and (5.76) the analysis of

displacements and rotations in sandwich structures can be conducted as shown in

Sect. 5.7. Numerical solutions become necessary if boundary conditions prevent

the analysis in double Fourier series. Sandwich structures with a soft core, local

concentrated loads and discontinuities can be analyzed by higher-order theories or

three-dimensional theory of elasticity.

The features of the results obtained by the first order shear deformation analysis

discussed above are:

1. In-plane strains "x ; "y ; xy are linear functions of the thickness coordinate;

2. In-plane stresses �x ; �y ; �xy are equal to zero within the core. In the facings,

in-plane stresses change abruptly from layer to layer reflecting the changes in

the transformed reduced stiffness. Accordingly, the maximum stresses do not

necessarily occur at the outer surfaces of the plate as would be the case in metallic

structures.

3. Transverse shear stresses are neglected in the facings. Transverse shear strains

evaluated by (1.45), according to the assumptions of the first order theory remain

constant throughout the thickness of the core. Accordingly, the stresses �xz; �yz

do not depend on the z-coordinate. In reality, transverse shear stresses do not

remain independent of the thickness coordinate and this simplification of the first

order theory may become the source of an error. Higher-order theories account

for a nonuniform through the thickness transverse shear stress distribution.

The previous discussion does not refer to possible local modes of failure that can

occur both in bending and in buckling problems. Therefore, it is important to discuss

these non-global modes of failure that are unique to sandwich structures. The

mathematical treatment of these modes is excluded; see for example, the monograph

of Vinson (1999) for details regarding the first three modes.

1. Wrinkling occurs in the facings subject to compression or in-plane shear.

Wrinkling is characterized by narrow waves in the facings. If the sandwich

plate is undergoing uniaxial compression, wrinkles are perpendicular to the

direction of the compressive stress (Fig. 5.12). In the case of biaxial compression,

wrinkling was analyzed by Birman and Bert (2004). Wrinkling may occur even if

the plate is subject to bending since one of the facings experiences compression.

2. Core shear instability or crimping is schematically shown in Fig. 5.13. This mode

of failure occurs when both facings are subject to compression.
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Fig. 5.12 Facing wrinkling under compression. Note that compressive forces cannot be applied to

the core, so that joints between sandwich and adjacent structures have to be designed accordingly

to distribute these forces between the facings
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Fig. 5.13 Core shear instability

3. Face dimpling could occur in honeycomb-core sandwich plates. It is manifested

by a local instability of the facing over one cell of the honeycomb core. Such

mode of failure is unlikely in sandwich plates manufactured using conventional

geometries and materials.

4. Core-face debond (e.g., Camps et al. 2000). This mode of failure results in the

loss of shear transfer between the core and the adjacent facing and a violation

of the overall integrity of the sandwich structure. Debond in foam-core plates

usually involves a crack propagating in the foam core near the interface with the

facing. Therefore, this is a fracture problem that requires us to specify the debond

toughness. In honeycomb sandwich structures, debond involves a separation of

the honeycomb core from the facing.

5. Delamination in the facing can occur as a result of high local transverse stresses,

such as those experienced during impact. This mode of failure is sometimes

accompanied by other modes, such as the core-facing debond. Delamination can

sometimes be avoided in impact-prune structures by using woven (textile) facings

that do not include multiple layers.
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5.9 Design Philosophy and Recommendations

The subject of composite material structures and in particular, composite plates

involves numerous multidisciplinary and multiscale aspects. Each of the relevant ar-

eas, including the choice of the material, design, joints, the checks that are necessary

to perform dependent on the loading conditions, manufacturing issues, maintenance

requirements, environmental effects, etc. often present a much broader spectrum of

problems than those encountered in isotropic plates. In spite of these complications,

composites provide a potential for lighter structures capable of withstanding higher

loads and offering longer life-spans. While it is impossible to address all issues

listed above in this paragraph, we outline here some of the fundamental concerns

that should be considered by designers of composite plate structures. Most of

the subjects reviewed below are applicable to composite structures of arbitrary

geometries, i.e. shells, stringers, frames, etc., besides composite plates.

Composite materials possess a higher specific strength and specific stiffness

than typical metals and alloys. While assessing the comparison between relative

strength and stiffness of composite and metallic materials in Fig. 5.1, it is also

important to remember that composite properties can be tailored in the manner

that is impossible in metals and alloys. It is possible to optimize the response

of a composite plate by varying the orientation and volume fraction of fibers in

the layers or by using functionally graded materials. A recently suggested method

of optimizing the response is based on the introduction of stiff particles in the

fiber-reinforced matrix (Genin and Birman 2009). Another important advantage

of composite materials is related to their high fatigue resistance. Polymer-matrix

composites (PMC) are free from corrosion problems, while metal-matrix (MMC)

and ceramic matrix (CMC) materials can withstand high temperature.

The advantages of composites should be compared to their shortcomings. Among

those we can point to a high manufacturing cost, delamination tendencies, and

difficulties involved in periodic inspections necessary to detect delaminations

and other local damage. For example, a review of costs of composite materials

compared to aluminum alloys in aerospace structures was presented by Resetar et

al. (undated) in mid-1990s. Although this data is partially outdated, some of the

conclusions remain valid. Two types of costs were compared, namely nonrecurring

and recurring. The former costs refer to expenses involved in the study, analysis,

design, tooling and evaluation, while the latter costs are consumer support, repair,

etc. Both nonrecurring engineering as well as nonrecurring tooling for composites

was (and remains) more expensive than those for metals. At the same time, the

rate of reduction of the cost of composite materials with time is higher than that of

metals (in other words, the cost of composites becomes less burdensome every year).

A more expensive composite structure may still be advantageous considering the

benefits due to its lower weight that affects the lifetime cost. An example is Boeing

787 Dreamliner with the composite airframe that is 20% lighter than a similar

aluminum airframe as a result of relying on carbon reinforced plastics and other
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composites (Hale 2006). Accordingly, the fuel cost for such composite airplane is

much lower than the cost for a counterpart built using aluminum alloys.

Delamination is a serious consideration for engineers adopting composites.

This damage is constituted by inter-layer cracks that “unzip” the structure. The

source of delamination is usually an impact or a local concentration of transverse

stresses, such as that encountered at the free edge of a laminate or in the vicinity

to discontinuities. Delamination cracks are usually impossible to detect by visual

inspection. Accordingly, a non-destructive technique, such as ultrasound testing, is

often required.

General design considerations, although by no means complete, include the

following observations and recommendations that are essential for a successful

design of composite plates:

1. The majority of composite structures are symmetrically laminated about the

middle surface (middle plane in plate structures). The number of layers in

laminates found in engineering applications is usually large. The coupling

stiffness matrix as well as some extensional and bending stiffness terms in

symmetric multilayered laminates are equal to zero, i.e. ŒB� D A16 D A26 D

D16 D D26 D 0. The absence of coupling is beneficial for the structure compared

to same-weight same-material asymmetric structures subject to identical load in

a number of ways:

(a) Smaller deformations;

(b) Smaller stresses;

(c) Higher buckling load;

(d) Higher fundamental frequency (this is often desirable to avoid resonance);

(e) Higher resistance against impact, etc.

Although a symmetric laminate is usually preferable, the symmetry can be

violated if the structure is subject to a thermal field resulting in a nonuniform

through the thickness temperature distribution. Properties of all materials are

affected by temperature (see Sect. 1.9). However, this effect is more pronounced

in polymeric matrix composites (PMC) where the stiffness of the matrix can be

significantly affected, as a result of even relatively small temperature variations.

Therefore, a small temperature gradient in the thickness direction in PMC plates

can result in a transformation of the symmetrically laminated structure into an

asymmetric laminate and a significant reduction of the stiffness.

2. The danger of delamination damage dictates the necessity to avoid discontinuities

or free unsupported edges that have a potential for a local concentration of

transverse stresses acting in the thickness direction.

3. The stiffness and strength of a composite plate can be increased by the following

methods:

(a) Using a stiffer material with a higher strength. Although this may be an

acceptable solution, cost considerations may interfere in such replacement

of the material. Stringer-reinforced and sandwich designs are often more

weight-efficient and they have a potential for a higher load-carrying capacity.
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(b) Increasing the thickness of the plate to increase its strength and stiffness.

While in isotropic structures bending stiffness is proportional to the third

power of the thickness, the situation is different in composites where the

stiffness of each layer is different. Optimizing the orientation of the layers, it

may be possible to achieve an even better result than in isotropic structures.

However, the use of stringers or a sandwich design support the plate are

usually more efficient.

(c) Using functionally graded structures where the proportion of constituent

phases varies through the thickness (Birman and Byrd 2007) or spatially

tailored structures with in-plane variable stiffness (Birman et al. 2008).

(d) Stringer-reinforced structures can almost always be designed either lighter

or with a higher load-carrying capacity than plates of the same total weight

without stringers. In other words, it is beneficial to redistribute the material

making the skin thinner and reinforcing it by stringers. The advantages

of stringer-reinforced composite plates are similar to those in isotropic

counterparts, including higher strength and buckling load and higher natural

frequencies. However, these structures may exhibit unique modes of damage

the designer should be aware of. In particular, a resin-rich region can form

in co-cured stringer-reinforced plates at the junction of the web and the

plate. Local cracks may originate from this resin-rich region and propagate

throughout the plate. In addition, a three-dimensional local state of stress

with large transverse stresses at the edge of the stringer flange sometimes

results in a development of delaminations. An example of such damage is

shown in Fig. 5.14 where the crack has already propagated throughout the

entire width of the flange-to-plate skin surface. The methods of preventing

such local delaminations and damage include using z-pins (e.g. Greenhalgh

et al 2006).

While reinforced composite plates have high bending load-carrying ca-

pacity, the stress analysis should include the check of strength of the

stringers, in addition to that for the skin. In a reinforced plate experiencing

bending the strains in the stringer at the location that is most remote from the

skin will be larger than those in the skin. Hence the stresses in the stringers

may be larger than those in the skin. Whether such higher stresses materialize

depends on the plate. This is because in composite laminates higher strains

do not automatically imply higher stresses, the latter being dependent on the

stiffness of a particular layer.

(e) Sandwich structures represent a valid alternative to stringer-reinforced plates.

While these structures have a number of peculiar failure modes, they also

offer a very significant weight reduction and strength and stiffness gains that

may rival and exceed those available in stringer-reinforced counterparts. De-

signers have a broad choice of sandwich structural arrangements, including

various core designs, relative thickness of facings and the core, dissimilar

facings, etc. As a result, sandwich plates and shells have found numerous

applications in design of aerospace, naval and civil engineering structures.
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Fig. 5.14 Cross section of a

co-cured stringer and adjacent

plate with clearly shown web

delamination. The material of

the plate and stringer is

graphite/epoxy Hexcel

T800/M21 (From Greenhalgh

et al. 2006)

Design of joints in sandwich structures represents a serious problem (this

problem is not discussed in detail since it is outside the scope of the book). For

example, if the structure is subject to tension, in-plane shear or compression, it is

vital to avoid any in-plane loads directly applied to the core because of its low in-

plane stiffness and strength. Some of the relevant issues are discussed in literature

on sandwich structures referred to in this chapter.

Overall, in spite of a more complicated design process, manufacturing issues and

lifetime inspection requirements, composite plates have numerous advantages that

make them attractive in numerous applications. This is reflected in a steady increase

in the use of composites in various areas of engineering.
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Chapter 6

Thermoelastic Problems in Isotropic

and Composite Plates

Plates often operate in high-temperature environments. Thermal loading can be

applied instantaneously (thermal shock), as a continuous function of time or

statically. Besides being a function of time, temperature may vary through the

thickness or over the planform of the plate. Relevant issues that have to be addressed

by a designer include the following steps:

1. Solution of the problem of heat conduction throughout the plate in association

with appropriate thermal boundary conditions;

2. Solution for thermally-induced displacements and stresses in conjunction with

appropriate structural boundary conditions;

3. Application of the strength criterion.

The steps outlined above cannot be implemented without accounting for the

effect of temperature on the material properties discussed in Sect. 1.9. In particular,

an accurate distribution of temperature throughout the plate should reflect the

influence of temperature on thermal conductivity. The effect of temperature on the

stiffness requires adjustments to the tensor of stiffness, and the strength is also a

function of temperature. The solution can be simplified if functional relationships

between material properties and temperature are known, as in the case shown

in Eq. 1.109. However, such information is not available for numerous materials

used in engineering applications complicating the design process. Note that elastic

deformations may be coupled with the heat transfer problem, but such coupling is

usually neglected (e.g., Boley and Weiner 1960; Nowinski 1978). While the effect

of temperature on the strength of the plate material is not discussed in this book, the

designer should be aware that it may be considerable. For example, composite plates

collapse if temperature approaches the glass transition value. In metallic plates, the

material melting temperature can be identified with the collapse thermal loading,

while the bound of the dangerous temperature range should be specified dependent

on the load and material properties.

In this chapter we begin with the formulation of the heat transfer problem for a

three-dimensional medium (such medium can represent a plate where temperature

varies both over the surface as well as through the thickness). A representative
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226 6 Thermoelastic Problems in Isotropic and Composite Plates

problem illustrates a one-dimensional heat transfer in a functionally graded plate

(plate composed of two materials with variable through the thickness volume

fractions) where temperature varies in the thickness direction. Subsequently, we

concentrate on thermal problems of isotropic and composite plates, including

bending and buckling. A representative problem that has to be addressed in

numerous applications, i.e. the effect of fire on composite plates, is described in

detail. At the end of the chapter we provide a number of practical recommendations

for designers of plates operating at high temperature.

6.1 Heat Transfer Problem

Consider heat conduction in an anisotropic three-dimensional medium using a

Cartesian coordinate system. If the internal heat generation is absent, the equation

of heat transfer is (Ozisik 1993):
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where ki i and kij D kj i are elements in the thermal conductivity tensor (thermal

conductivity coefficients), � is the density and cp is the specific heat. Equation 6.1

is written by assumption that the properties of the medium (thermal conductivities)

are not affected by local temperature. If the effect of temperature on the principal

conductivities is accounted for, Eq. 6.1 should be modified accordingly. For

example, if the principal axes of the conductivity tensor coincide with the coordinate

system, i.e. kij D 0, and ki i .T / are the so-called principal conductivities, the

equation of heat transfer becomes
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Equation 6.2 is applicable to the analysis of layers in cross-ply plates, while in

angle-ply layers kij ¤ 0 and the corresponding equation is more complicated.

In a multilayered composite plate the orientation of the principal axes of the

conductivity tensor varies from layer to layer. Accordingly, Eqs. 6.1 or 6.2 should be

used for each layer. The solutions of these equations must satisfy thermal boundary

conditions as well as the conditions of thermal continuity at the interfaces of

adjacent layers.

Thermal boundary conditions should be specified both on the plate surfaces as

well as along its edges. The latter are often disregarded in large plates assuming that

heat exchange with edges structures does not affect the overall response. However,
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it is necessary to remember that heat flow to or from edge structures may affect the

distribution of temperature.

Boundary conditions on the surfaces of the plate can include convection,

radiation and external heat supply. In particular, in the case of convection to an

ambient environment at temperature T1, the heat flux measured in units of energy

per surface area (W/m2) is

qc D h .T � T1/ (6.3)

where h is a heat transfer coefficient that is also called boundary conductance (it

may be influenced by the surface temperature T ).

The heat flux due to radiation between a convex surface and the surroundings is

evaluated by

qr D "�
�

T 4 � T 41
�

(6.4)

where " is the surface emissivity and � D 5:6697 � 10�8W=.m2K4/ is the Stefan-

Boltzmann constant. Note that temperatures in (6.4) are measured in degrees Kelvin

(absolute temperature scale). In certain situations, Eq. 6.4 can be reduced to the

form (6.3) where h D hr is called the radiation boundary conductance (e.g., Boley

and Weiner 1960).

The heat flux conducted through the surface in the normal direction is a function

of the conductivity in this direction (the conductivity normal to the plate surface, i.e.

kn � kz � k33):

qn D �k33.T /
@T
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(6.5)

The balance of energy on the surface exposed to all three mechanisms of heat

exchange, i.e. convection, radiation and heat conduction as well as heat flux supplied

by an external source qext results in a single equation where the inflow is equal to

outflow by convection and radiation (Ozisik 1993).

Particular cases of boundary conditions include

1. Prescribed surface temperature T .x; y; t /.

2. Prescribed heat flux from outside (e.g., heat from fire):

qext .x; y; t / D �k33.T /
@T .x; y; t /

@z
(6.6)

3. Perfectly insulated surface:

@T .x; y; t /

@z
D 0 (6.7)

4. Convection boundary condition that implies the balance between the conduction

of heat in the direction perpendicular to the plate surface and the convection
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into the ambient environment. For a plate cross section with the surfaces 1 and

2 perpendicular to the z-axis that is oriented from surface 1 to surface 2 this

condition is as follows:

At surface 1
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Equation 6.8 can be extended to account for the effect of radiation. If the

ratio of the difference between the surface and ambient temperatures to the latter

temperature is much smaller than unity, the corresponding equations are
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where the heat transfer radiation coefficient is

hr D 4"�T 3
1 (6.10)

The interface thermal continuity conditions between adjacent layers of a com-

posite plate require the continuity of both the temperature and the heat flux through

the interface. Therefore, for the interface between the .i � 1/th and i th layers,

Ti�1 .x; y; t / D Ti .x; y; t /

k
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Equations presented in this paragraph can be employed to formulate the heat

transfer problem for a multilayered plate. In the general case of a composite angle-

ply plate the solution can be obtained analytically (e.g., Ozisik 1993) or more often,

numerically. If the heat flow is limited to the thickness direction only, the solution

becomes easier since the mathematical formulation is reduced to the ordinary

differential equation available from (6.1) or (6.2) in the static case and to the partial

differential equation involving the z-coordinate and time in the dynamic case. An

example is illustrated in the next paragraph.
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6.2 Representative Problem: Heat Transfer in a Functionally

Graded Plate Subject to a Uniform over the Surface

Thermal Loading

Functionally graded material (FGM) structures have a number of advantages, such

as a reduced or eliminated delamination tendency and improved thermal properties

(for a detailed analysis of applications of FGM, see the review by Birman and

Byrd 2007). In typical FGM structures, these improved properties are achieved

by a graded distribution of constituent phases through the thickness. Structures

designed with in-plane varying properties are sometimes called spatially tailored.

An extended discussion of FGM plates is presented in Chap. 7, while the present

paragraph merely illustrates the static one-dimensional conduction in a FGM plate

as an example of heat transfer problems that have to be addressed in the analysis of

such structures.

In most high-temperature applications of FGM structures the phase with a

low thermal conductivity coefficient dominates the region that is subject to high

temperature. For example, in ceramic-metal FGM structures ceramic particles

(ceramic phase) would be concentrated close to the exposed surface, while the

volume fraction of the metal phase gradually increases towards the colder surface.

In this paragraph we illustrate a one-dimensional (through the thickness) steady

state heat transfer problem for a FGM plate. Such problem arises when the plate is

subject to a uniform over the surface thermal loading and the heat exchange between

the plate and the boundary structures can be neglected (accordingly, there is no in-

plane heat flow). In such case, if volume fractions of the constituent phases vary

only in the thickness direction, the assumption of a one-dimensional heat transfer is

justified.

The thermal conductivity of a particulate material can be determined by the

method proposed by Hatta and Taya (1985) that was later employed by Vel and

Batra (2003) in the study of transient thermal stresses in FGM plates. According to

this approach, if the particles and matrix are isotropic,

k D k1 C
.k2 � k1/ V2

1C .1 � V2/ .k2 � k1/ .3k1/
�1

(6.12)

where the indices 1 and 2 refer to the matrix and particulate phases, respectively, V2
is a volume fraction of particles and ki are the thermal conductivities.

Alternatively, thermal conductivity of a material with spherical particles can be

determined by the model of Yin et al. (2005):
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where
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(6.14)

Numerical examples illustrated that the conductivities predicted by Eqs. 6.12 and

6.13 are almost identical.

Consider now one-dimensional quasi-static heat conduction in a FGM plate

subject to prescribed temperatures on the opposite surfaces, so that T .z0/ D

T0; T .zN / D T1 where the coordinate is counted from the hotter surface .z0 D 0/.

The coordinate of the colder surface is z D zN � Qh ( Qh being the thickness of the

plate, it differs from the notation employed for the thickness elsewhere in the book

to distinguish it from the heat transfer coefficient in convection problems). Other

thermal boundary conditions could also be considered using the approach illustrated

below.

The heat transfer equation written by assumption of the absence of internal heat

generation is obtained from (6.2):

d
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Substituting (6.12) or (6.13) into (6.15) and using (1.109) or an alternative

analytical thermal conductivity-temperature relation to characterize temperature

dependence of the conductivities of the individual phases yields the mathematical

problem that can be solved numerically.

Consider for example the case where the thermal conductivity of the composite

material can be written as a product of functions of the thickness coordinate z and

the local temperature T. Then the substitution of k .z; T / D f1.z/ � f2.T / into

(6.15) yields ˆ .T/ D C1� .z/ C C2 where
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In the particular case where f1.z/ D ko C �k
Qh

z; f2.T / D ao C a1T the solution

for the temperature distribution is (this solution was obtained by Dr. L.W. Byrd who

also provided Figs. 6.1–6.4)
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Case a Case b
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Fig. 6.1 Thermal conductivities of silicon nitride (Si3N4), metal (SS304) and FGM Si3N4/SS304

plates as functions of temperature. Case a: Conductivities of ceramic (Si3N4) and metal (SS304).

Case b: Conductivities throughout the thickness of a FGM plate subject to various uniform

temperatures

In this solution 0 � z � Qh, while k0, k1 are the values of the thermal conductivity at

z D 0 and z D Qh, respectively.

The 0.01 m-thick ceramic-metal plate considered in numerical examples con-

tained silicon nitride (Si3N4) particles embedded within metal (SS304) matrix. The

conductivities of ceramic and metal phases are shown as functions of temperature

in Fig. 6.1a using data from Incropera and DeWitt (1996). Although the conduc-

tivities of two materials are almost identical at room temperature, they diverge

at elevated temperatures. The volume fraction of the ceramic phase considered in

this example was distributed through the thickness according to the power law

V2.z/ D
�

z
Qh

C 1
2

�n

, the z-coordinate being counted from the middle surface of

the plate and the power n D 3. In Fig. 6.1b, the conductivity of the FGM plate

determined by Eq. 6.12 is shown as a function of the thickness coordinate and a

uniform through-the-thickness temperature.

The effect of the material distribution (power n in the law V2.z/) on the

conductivity of a 0.01 m thick FGM plate subject to a uniform temperature (1,000 K)

is shown in Fig. 6.2. In this and subsequent figures, z D –0.005 m is the colder

surface and z D 0.005 m is the hotter surface. A lower overall conductivity is

preferred in applications where it is desirable to maintain a low temperature of the

colder side of the plate for a longer time (this includes the case where the colder side

is actively cooled). As follows from Fig. 6.2, a lower power n is desirable in such

applications. This is not surprising since lower values of n correspond to a larger

overall content of ceramic particles.

Temperature distribution in the plate subject to a heat flux on the ceramic-rich

surface (z D 0.005 m) is shown in Fig. 6.3. The nonuniform temperature affects the

response of the plate in two ways producing a thermally-induced bending moment

and changing the stiffness tensor throughout the thickness.

The effect of a uniform temperature on the stiffness of the 0.01 m thick

FGM plate considered in the previous examples is illustrated in Fig. 6.4 where
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Fig. 6.2 Thermal conductivity of a 0.01 m thick Si3N4 FGM plate as a function of position and

power n at 1,000 K

Fig. 6.3 Temperature

distribution in a 0.01 m thick

Si3N4 FGM plate (n D 3)

subject to heat flux
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the homogenization technique for the temperature-affected stiffness of ceramic

and steel phases was employed to determine variations of the extensional (A11),

coupling (B11) and bending (D11) normalized stiffnesses with temperature. The

stiffnesses were normalized with respect to the corresponding values at 300 K.

While the extensional and bending stiffnesses decrease with temperature, the

coupling stiffness exhibits a small decrease at temperatures below 500 K followed

with an increase at higher temperature values. Significant stiffness variations at

elevated temperatures reflected in Fig. 6.4 emphasize the necessity to account for
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as a function of uniform temperature

all effects, i.e. explicit thermally-induced stress couples and stress resultants as

well as variations of material properties, in the analysis of plates operating in high-

temperature environments.

6.3 Thermal Bending and Buckling of Rectangular

Isotropic Plates

In this and subsequent paragraphs it is assumed that the temperature distribution

throughout the plate has already been established from the solution of the heat

transfer problem. Accordingly, the analysis is limited to the structural response.

Consider a thin rectangular isotropic plate subjected to a known thermal field.

The analysis is conducted by the plane stress assumption. Accordingly, the strain-

displacement relations are given by (1.27) or by its geometrically linear version. The

constitutive law (2.9a) has to be generalized to account for thermal expansion. This

law is reproduced here in the explicit form:
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where temperature is counted from the stress-free reference state (residual stresses

are not considered). In isotropic materials temperature does not cause shear strains

and stresses, as is reflected in (6.19).

The integration of the stresses given by (6.19) and the moments of these stresses

about the middle plane through the thickness of the plate yields stress resultants and

stress couples that represent a generalization of the corresponding expressions in

(1.58):
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where all material properties are affected by temperature. “Thermal contributions”

to the stress resultants and stress couples are

fNT ; MT g D

h
2
Z

�
h
2

˛.T /E.T /T .z/ f1; zg dz (6.21)

If the effect of temperature on properties is negligible, Eq. 6.21 becomes

fNT ; MT g D ˛E

h
2
Z

�
h
2

T .z/ f1; zg dz (6.22)

The stresses can be evaluated in terms of stress resultants and stress couples.

In particular, if the effect of temperature on material properties is neglected, the

stresses are given by (Boley and Weiner 1960):
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Based on the analysis of Eqs. 6.22 and 6.23 it can be concluded that if temperature

varies through the thickness, in addition to in-plane stress resultants and membrane

stresses, it contributes to bending stress couples and to bending stresses in the plate.

Equations of motion in terms of stress resultants and stress couples are not

explicitly affected by the presence of temperature. Accordingly, they correspond

to equations (1.84) where the stress resultants and couples are given by (6.20). The

first two equations (1.84) are identically satisfied through the introduction of the

stress function given in (1.95). The compatibility equation (1.97) in conjunction

with the strain-stress relationships available from (6.19) and with the stress function

defined in (1.95) is analyzed jointly with the third equation (1.84) yielding the stress

function and deflection.

The following observations are now made to gain an insight into the problem.

1. The compatibility equation (1.97) cannot be reduced to the form convenient

for the analysis (similar to Eq. 1.99) if the material properties are affected by

temperature that varies with in-plane coordinates. However, the compatibility

equation can be reduced to a convenient form if temperature is independent of

in-plane coordinates or if material properties are unaffected by temperature. In

such cases, the counterpart of (1.99) is

1

E
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where r2 .:::/ D @2.:::/

@x2 C @2.:::/

@y2 .

2. The third equation of equilibrium (1.84) cannot be presented in a convenient

form resembling equation (2.1), unless material properties are independent of

temperature or temperature is independent of in-plane coordinates. However, if

at least one of these conditions is satisfied, the substitution of the stress couples

given by (6.20) and using the stress function defined by (1.95) yields
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Thermomechanical (structural) boundary conditions for the plate may involve

kinematic conditions in terms of displacements and slopes that are not affected

by temperature. However, static conditions in terms of stress resultants and stress
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couples are explicitly affected by thermal terms as is easily observed from (6.20).

For example, the conditions of simple support along the edges x D constant and

y D constant become
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�

MT
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respectively.

Analyzing boundary conditions (6.26) or other static boundary conditions

along the plate edges, additional observations are available:

3. Static boundary conditions in thermal problems are nonhomogeneous since

they contain thermally-induced terms. Accordingly, such conditions imply an

unavoidable thermally-induced bending in cases where MT ¤ 0. Consider for

example a simply supported plate subject to a variable through the thickness

temperature that is independent of in-plane coordinates. This seems to imply

a possible trivial solution for deflections available from Eqs. 6.24 and 6.25.

However, in reality thermal bending takes place due to the presence of the

“loading” term in boundary conditions (6.26).

4. If the plate subject to a variable through the thickness but independent of in-

plane coordinates temperature is clamped around all edges, it does not experience

bending. This is because temperature does not affect the kinematic boundary

conditions corresponding to clamping, while the system of Eqs. 6.24 and 6.25

has a trivial solution for deflections.

5. Irrespective of out-of-plane boundary conditions involving deflections, rotations

(slopes of the middle surface), bending stress couples and transverse shear stress

resultants, if the in-plane expansion of the plate is limited, thermally-induced

compression is applied to the plate. This compression exaggerates bending

deformations for all boundary conditions, except for those corresponding to

clamping. In the latter case, a plate subject to temperature varying in the thickness

direction does not experience bending and in-plane compression may result in

thermal buckling.

Example 6.1: Thermal Bending of a Simply Supported Plate: Geometrically Linear

Problem. Consider a simply supported isotropic plate subject to an arbitrary

through-the-thickness temperature that is uniform over the plate surface, i.e. T D

T .z/. In addition to thermally-induced stress couples, in-plane thermally-induced

stress resultants are present if in-plane edge displacements are constrained.
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Case 1: In-plane unconstrained edges. We start with the case where in-plane

displacements are not constrained, so that the plate is free to expand in the x- and

y-directions. Accordingly, thermally-induced stress resultants are equal to zero and

the linear formulation enables us to reduce the governing equations to the equation

of equilibrium available from (6.25):

Dr4w D �
1

1 � �
r2MT (a)

The edges are simply supported, so that the solution of (a) must satisfy boundary

conditions (6.26).

The solution is available by representing both thermally-induced bending stress

couples as well as deflections in double Fourier series:

MT D

M
X

mD1

N
X

nD1

Mmn sin ˛mx sin ˇny

w D

M
X

mD1

N
X

nD1

Wmn sin ˛mx sin ˇny (b)

where the amplitude of harmonics in the former series is

Mmn D
4

ab

b
Z

0

a
Z

0

MT sin ˛mx sin ˇnydxdy (c)

Boundary conditions (6.26) at the edges x D 0; a and y D 0; b are identically

satisfied by series (b). The substitution of (b) into (a) yields the solution for the

amplitudes in the series for deflections:

Wmn D
Mmn

.1 � �/ D .˛2 C ˇ2/
(d)

The stresses can be evaluated from Eqs. 6.20 and 6.23 or from (6.19).

Case 2: In-plane constrained edges. The problem is more complicated if the edges

of the plate prevent its expansion. For example, if the in-plane boundary conditions

are

x D 0; x D a W u D 0; Nxy D 0

y D 0; y D b W v D 0; Nxy D 0 (e)
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it is necessary to integrate equation (6.24). In the linear problem where the

temperature is uniformly distributed over the plate surface (this represents the

“simplest” case for the analysis), the solution can be represented by

' D
NT

2h

�

x2 C y2
�

(f)

While this solution satisfies the condition of zero shear stress resultants along the

plate edges, the condition for zero in-plane displacements cannot be satisfied. This is

easily observed if the mid-plane strains are obtained in terms of the stress function

according to (1.98). The integration of these strains results in the expressions for

in-plane displacements that do not satisfy kinematic conditions (e).

In the particular case of boundary conditions (e) the solution for a simply sup-

ported plate could be obtained by substituting the linear version of the constitutive

relations (6.20) into equations of equilibrium (static version of (1.84)). The resulting

three linear partial differential equations could be solved by representing displace-

ments u0; v0 and w as well as temperature in double Fourier series satisfying

boundary conditions. While the implementation of this procedure can serve as an

exercise, a similar approach is impossible in case of other boundary conditions.

The present example illustrates that the stress and deflection analysis of plates

in the presence of temperature requires using numerical methods in all but several

benchmark problems. This is obviously the case if the response is nonlinear and

the governing equations are formulated either in the form of (6.24) and (6.25) or

in terms of displacements utilizing equations of equilibrium (1.84) and nonlinear

expressions for stress resultants and couples (6.20).

Example 6.2: Thermal Buckling of a Simply Supported Plate Consider a plate that

is simply supported along all boundaries, prevented from in-plane expansion by

adjacent structures and supports, and subject to an elevated uniform temperature.

Obviously, such temperature does not produce thermal bending of the plate, while

generating in-plane stress resultants determined by (6.21) or (6.22). All in-plane

displacements of the edges being prevented, we can assume u0 D v0 D 0 throughout

the plate.

Thermal buckling implies the existence of an out-of-plane deflection that satisfies

equations of equilibrium and boundary conditions. In the present problem, geo-

metric nonlinearity is discounted, i.e. we analyze the buckling temperature, rather

than the postbuckling behavior of the plate. Accordingly, temperature being uniform

throughout the plate surface, NT D const and the compatibility equation (6.24) is

identically satisfied by choosing the stress function in the form (f). The equation of

equilibrium (6.25) becomes

Dr4w D NT

�

@2w

@x2
C
@2w

@y2

�

(g)

The boundary conditions corresponding to simply supported edges are available

from (6.26). Thermal bending being absent, these conditions revert to those for a

plate without thermal loading, i.e. (2.2).
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Assuming that the plate buckles into the shape characterized by the equation (h)

in Example 2.7 reproduced here for convenience

w D Wmn sin˛mx sin ˇny (h)

we satisfy the boundary conditions. The buckling temperature can be obtained from

the solution of the equilibrium equation (g) that upon the substitution of (h) yields

NT D D
�

˛2
m C ˇ2

n

�

(i)

In the case of a uniform temperature the thermal stress resultant is

NT D
Eh˛

1 � �
T (j)

Substituting (j) into (i) we obtain the buckling temperature

T D min
m;n

8

<

:

�2
h

m2
�

b
a

�2
C n2

i

12 .1 C �/ ˛
�

b
h

�2

9

=

;

(k)

It was tacitly assumed in (j) that material properties are unaffected by temperature.

As is shown below, such assumption is justified since plates buckle at low temper-

atures. Furthermore, as is evident from (k), a uniformly heated simply supported

plate buckles into the shape with one half-wave in both x- and y-directions, i.e.

m D n D 1.

Representative examples were considered using (k) in the monograph of Jones

(2006) for a square 6061-T6 aluminum plate with the coefficient of thermal

expansion and the Poisson ratio equal to ˛ D 23:6 � 10�6
�

1
ıC

�

and � D 0:32,

respectively. At the side-to-thickness ratio b
h

D 100 the plate would buckle at

T D 5:3ıC , while at b
h

D 50 the buckling temperature was T D 21:1ıC .

Such absolute values of temperature corresponding to buckling are extremely small

and require further discussion. As is obvious form this and other examples easily

generated using (h), if the plate buckling resulted in failure, practically every

plate used in engineering would fail as a result of normal temperature variations

during its lifetime. Jones (2006) suggested that thin plates have imperfections

resulting in bending, rather than buckling, due to an elevated temperature. While

this explanation points to one of possible reasons for a safe behavior of plates

under applied temperature, it is necessary to indicate that initial imperfections are

less likely in thicker plates. However, as follows from the above results, even a

relatively thick plate with the side-to-thickness ratio equal to 50 that is unlikely

to have noticeable initial imperfections experiences buckling as a result of a very

small temperature. Metallic plates with a smaller side-to-thickness ratio are seldom

encountered in engineering.
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A possible explanation to the fact that predicted thermal buckling does not

cause a catastrophic failure is in the postbuckling behavior of the plate that is

stable (similar to a stable postbuckling response of mechanically compressed plates

depicted in Fig. 2.20). As the plate deforms in the postbuckling regime, its middle

surface stretches. Plates prevented from expansion under an elevated temperature

are subject to two opposing trends: (a) thermally-induced in-plane stresses due to

the constraint superimposed on the expansion of the plate; (b) in-plane stresses

developed in the deformed plate as a result of its stretching. While the compressive

stress resultants are related to the former stresses, once out-of-plane postbuckling

deformations develop, the latter stresses reduce the magnitude of compression in

the plate. Accordingly, as temperature increases, out-of-plane deflections can be

stopped and even reversed. This phenomenon is supported by experimental evidence

as is discussed on the example of plates buckling due to fire in Sect. 6.5.

At the closing of this paragraph we emphasize the conclusion that the integration

of the equations of equilibrium as well as the satisfaction of boundary conditions

are complicated in the presence of temperature, except for several simple cases,

such as those presented in the examples above. This difficulty may be overcome

by using the Rayleigh-Ritz method that enables us to satisfy kinematic boundary

conditions while violating the static ones (in thermal problems the latter conditions

are often nonhomogeneous). An alternative to using the Rayleigh-Ritz method is a

numerical procedure, such as the finite element or finite differences methods. The

other observation refers to different in-plane boundary conditions that can affect

the response of thermally loaded plates both quantitatively and qualitatively. These

conditions include:

(a) Edges preventing in-plane expansion of the heated plate.

(b) Edges free to move in-plane so that thermal expansion is not prevented.

Note that while the expansion of the plate may be unconstrained, tangential

displacements along the edges may still be limited due to the axial stiffness of

the structures supporting the edges.

(c) Edges that partially limit the expansion of the plate. For example, joints of

perpendicular stringers supporting the plate at the corners are constrained by

virtue of the axial stiffness of stringers. However, deformations of the stringers

in the plane of the plate at the mid-length of the edge, i.e. between the joints in

the direction perpendicular to the stringer axis are possible.

6.4 Thermal Bending and Buckling Problems for Rectangular

Composite and Sandwich Plates

The present paragraph includes the formulation of thermal problems for shear

deformable and thin composite plates. Representative examples are shown for

bending and buckling of thin plates.
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The stress-strain-temperature relationships for an orthotropic lamina oriented at

an angle to the principal axes of the laminate are written here by assumptions of the

first-order shear deformation theory neglecting the history of thermal loading (see

the explanation in regards to Eq. 1.104). Adding thermal contributions to Eqs. 5.7

and 5.57 we obtain for the k-th generally orthotropic layer:
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k
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6
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6

6

6

6
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NQ11.T / NQ12.T / NQ16.T / 0 0

NQ12.T / NQ22.T / NQ26.T / 0 0

NQ16.T / NQ26.T / NQ66.T / 0 0

0 0 0 NQ44.T / NQ45.T /

0 0 0 NQ45.T / NQ55.T /

3
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k

(6.27)

Transformed reduced stiffnesses NQij .T / are defined by Eqs. 5.5 and 5.58 in

terms of reduced stiffnesses that depend on the material properties affected by

temperature. The coefficients of thermal expansion for a generally orthotropic

layer are the following functions of the coefficients ˛1.T /; ˛2.T / in the principal

coordinate system of this layer:
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(6.28)

The stress resultants and couples are obtained by the extension of equations (5.8)

and (5.57), accounting for the effect of temperature:
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where all elements of the matrix of stiffness coefficients may be affected by local

temperature
�

Aij D Aij .T /; Bij D Bij .T /; Dij D Dij .T /;
�

, A45 D
R

z

NQ45d z and

“thermal” terms are
8
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The substitution of the stress resultants and stress couples given by (6.29) into

equations of equilibrium (static version of Eq. 5.62) yields the version of such

equations in the case where thermal loading is present. Limiting the analysis to

cross-ply symmetrically laminated plates and multi-layer angle-ply symmetrically

laminated plates where A16 D A26 D A45 D D16 D D26 D 0 and ŒB� D 0 we

obtained two systems of uncoupled equations in Chap. 5. However, in the presence

of temperature varying through the thickness, some of the stiffness terms that were

eliminated in Eqs. 5.64 and 5.65 are not equal to zero:

1. If temperature varies thorough the thickness in a symmetrically laminated cross-

ply plate, A16 D A26 D A45 D D16 D D26 D 0 since the corresponding

reduced stiffness in each layer is zero, i.e. Q16 D Q26 D Q45 D 0. Additionally,

B16 D B26 D 0. However, other elements of the matrix of coupling stiffness,

i.e. B11; B12; B22; B66 are not equal to zero since the properties of each couple

of layers symmetric about the middle plane but subject to different temperatures

are not equal to each other. These coupling stiffness terms can be taken equal to

zero only in the case where the effect of temperature on the material properties

is disregarded.

2. In multi-layered symmetrically laminated angle-ply plates none of the stiffness

terms can be assumed equal to zero as long as the effect of temperature on the

material properties is included into consideration and temperature varies through

the thickness.

The transverse shear stress resultants given by (6.29) are not explicitly affected

by temperature, although the implicit effect is present through the temperature-

affected transformed stiffness terms NQij .

It is now possible to formulate equations of equilibrium accounting for both

the effect of temperature on material properties as well as explicit thermal terms

introduced in (6.30). The system of five equations incorporating all stiffness terms

is very long and defies an analytical solution (e.g., Tauchert 1985). A number of

analytical solutions have been developed for particular cases.

It is possible to arrive at a number of interesting conclusions relevant to both

thick (shear deformable) and thin plates analyzing equations (6.29) and (6.30):

1. If temperature varies through the thickness of the plate, thermally-induced

contributions to stress couples are present, i.e. M T
x ¤ 0; M T

y ¤ 0; M T
xy ¤ 0.

This means that thermal bending occurs for all boundary conditions, except for
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the case where all edges are clamped and temperature does not vary over the plate

surface (as explained in the previous paragraph, kinematic boundary conditions

corresponding to clamping are not affected by temperature). The reason for

thermal bending is that it is impossible to satisfy conditions of zero bending stress

couples along the edges in the presence of thermally-induced contributions.

2. Following the previous conclusion, it is evident that thermal buckling may occur

only in clamped plates subject to a uniform over the surface and varying through

the thickness temperature (of course, a uniform temperature is a particular case

of this thermal profile).

Consider now the case where temperature varies over the surface of the

plate. In such case, thermally-induced contributions to stress resultants and stress

couples given by (6.30) are functions of the x- and y-coordinates. In the case

of a shear-deformable plate characterized by the first-order theory, equations of

equilibrium obtained as an extension of (5.62) are

N 0
x;x CN 0

xy ;y D N T
x ;x CN T

xy;y

N 0
xy;x CN 0

y ;y D N T
xy;x CN T

y ;y

M 0
x ;x CM 0

xy;y �Qx D M T
x ;x CM T

xy;y

M 0
xy;x CM 0

y ;y �Qy D M T
xy;x CM T

y ;y

Qx ;x CQy ;y CN 0
xw;xx C 2N 0

xyw;xy CN 0
yw;yy

C
�

N 0
x ;x CN 0

xy;y
�

w;x C
�

N 0
xy;x CN 0

y ;y
�

w;y D �pC

N T
x w;xx C 2N T

xyw;xy CN T
y w;yy

�

N T
x ;x CN T

xy;y

�

w;x

C
�

N T
xy;x CN T

y ;y

�

w;y (6.31)

where terms with the prime are the elements of stress resultants and stress couples

obtained from (6.29) without accounting for the vector of explicit thermal terms

in the right side of these equations. The singly and doubly underlined terms

in the last equation (6.31) are cancelled out as a result of the first and second

equations (6.31), respectively. If thermal terms in the right side of (6.31) are

dependent on the in-plane coordinates, the system of equilibrium equations is

non-homogeneous, even in the absence of transverse pressure. This leads to the

following conclusion (valid for both shear-deformable and thin plates):

3. If the plate is subject to a variable over the surface thermal load, it experi-

ences thermal bending. Thermal buckling does not occur in such case, even

if temperature is uniform through the thickness and the plate is symmetrically

laminated.
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In the case of thin plates, Eqs. 6.27–6.30 remain valid, except for transverse shear

stresses and strains in (6.27) and for transverse shear stress resultants in (6.29) that

are equal to zero. Equations of equilibrium (6.31) are simplified according to the

thin plate theory. Substituting the constitutive relations (6.29) into the equations

of equilibrium (6.31) and retaining only linear terms in the strain-displacement

relationships (1.28), (1.29) yields
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Analyzing Eq. 6.32 we can note that temperature varying through the thickness

makes the plate that was symmetrically laminated at room temperature asymmetric

by adding terms Bij and A16; A26; D16; D26. Thus, symmetry of a laminated

plate that is almost always desirable can be lost at an elevated temperature. The

above-mentioned stiffness terms associated with an elevated temperature are also

responsible for coupling between the first two equations and the last equation (6.32)

that is absent in a symmetrically laminated plate.

Geometrically nonlinear terms can be incorporated in (6.32) resulting the

formulation that usually requires a numerical analysis. An alternative formulation

for the geometrically nonlinear thermoelastic problem is based on using the stress

function (e.g., Tauchert 1985).

It is sometimes convenient to use the Rayleigh-Ritz method to solve thermoelas-

tic problems. The reason is evident since assumed expressions for displacements

in this method can violate static boundary conditions. Therefore, in problems
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where a closed form solution satisfying both the equations of equilibrium and

the boundary conditions is unavailable, the Rayleigh-Ritz method may offer a

satisfactory alternative.

Large deflections are seldom encountered in thick shear deformable plates that

fail at relatively small deformations due to their high stiffness. Accordingly, the

expression for the potential energy is shown here for thin plates, accounting for

geometrically nonlinear terms. The combination of the expression for the strain

energy (1.67), the stress-strain relations (6.27) and nonlinear strains in the Cartesian

coordinate system (1.27) yields the potential energy for thermally loaded plate (e.g.,

Tauchert 1985):
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(6.33)
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Representing the displacements of the plate in the series

u0 D
X

m

X

n

UmnX
0
m.x/Y

0
n.y/

v0 D
X

m

X

n

VmnX
00
m.x/Y

00
n.y/

w D
X

m

X

n

WmnX
000
m.x/Y

000
n .y/ (6.34)

where the functions of coordinates, as a minimum, satisfy kinematic boundary

conditions, the amplitudes of terms, i.e. Umn; Vmn and Wmn are found upon the

substitution of (6.34) into (6.33), and applying the requirement that the potential

energy must be minimal at equilibrium, so that @…
@Umn

D @…
@Vmn

D @…
@Wmn

D 0. The

solution of the resulting system of algebraic equations yields the amplitude values

that can subsequently be used in equations (6.27) to specify the stresses.

Example 6.3: Thermal Bending of a Thin Symmetrically Laminated Cross-Ply Plate

Neglecting the Effect of Temperature on Material Properties (Linear Problem)

Consider thermal bending of a plate subject to an arbitrary temperature distribution,

but neglecting its effect on material properties. Accordingly, the plate that was

symmetric prior to thermal loading remains such in the presence of temperature. In

this problem the equations of equilibrium (6.32) are simplified since several stiffness

terms are equal to zero. Furthermore, the thermal contribution to the shear stress

resultant is also absent, i.e. N T
xy D M T

xy D 0. Accordingly, upon simplifications,

equations of equilibrium (6.32) become
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(l)

It is observed that equations (l) are uncoupled, i.e. the first two equations include

in-plane displacements, while the last equation depends on the transverse deflection

only.

Boundary conditions are also uncoupled as is evidenced from the expressions for

stress resultants and stress couples for a symmetric cross-ply plate
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(m)

where mid-plane strains and changes of curvature and twist are given by linear

equations (1.28) and (1.29).

Temperature can be represented in double Fourier series, so that

T D
X

m

X

n

Tmn .x; y; z/ sin ˛mx sin ˇny (n)

It is noted that the temperature distribution should satisfy the heat conduction

equation and thermal boundary conditions.

The thermal contributions to stress couples and stress resultants are available in

double Fourier series by substituting (n) into (6.30):
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sin ˛mx sin ˇny (o)

where the coefficients Kmn; Lmn; Gmn and Hmn can be specified dependent on

Tmn .x; y; z/.

If the edges of the plate are simply supported by structures that do not

prevent in-plane extension or contraction, but constrain tangential displacements,

the corresponding boundary conditions are (2.69):

x D 0; x D a W v0 D w D 0; Nx D Mx D 0

y D 0; y D b W u0 D w D 0; Ny D My D 0

It is easy to verify that these boundary conditions are identically satisfied if the

displacements are represented in series (2.70):

u0 D
X

m

X

n

Umn cos ˛mx sin ˇny

v0 D
X

m

X

n

Vmn sin ˛mx cos ˇny
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w D
X

m

X

n

Wmn sin ˛mx sin ˇny

The substitution of (o) and (2.70) into the first two equations of equilibrium (l)

yields a system of two equations for amplitudes Umn and Vmn:

"
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D �
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Lmnˇn
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(p)

The equation for Wmn is obtained applying the Galerkin procedure to the last

equation (l). For example, the (mn)-th equation is
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sin ˛mx sin ˇnydxdy D 0 (q)

Upon the substitution of deflection from the third equation (2.70) and thermal

terms (o), and using the orthogonality property of sine functions, Eq. q yield the

system of coupled equations
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Once the amplitudes are found from (p) and (r), the stresses in the plate can be

determined from the first three equations (6.27).

Example 6.4: Thermal Buckling of a Thin Symmetrically Laminated Cross-Ply

Plate Subject to a Uniform Temperature Consider a simply supported cross-ply

plate subject to uniform temperature T . In this case thermal contributions to stress

couples are absent since the changes of material properties in symmetric layers

occurring at the same temperature are identical. Furthermore, the thermal in-plane

shear stress resultant contribution is equal to zero, as was the case in the previous

example. The nonzero in-plane thermal terms N T
x and N T

y are constant and equal
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to N T
x D KT; N T

y D LT where the coefficients and are determined from the

corresponding equations (m).

It is noted that while such formulation neglecting the heat flow to or from

boundary structures and its effect on the thermal field distribution is typical, it has a

potential drawback. If the stringers or bulkheads forming the boundary serve as heat

sinks, temperature within the plate under consideration may become nonuniform.

In this case the response may qualitatively be affected since a nonuniform temper-

ature distribution results in bending, rather than buckling. Therefore, the present

problem is solved by assumption that the boundaries do not affect the temperature

distribution.

In the case of uniform temperature, equations of equilibrium (l) are simplified:

A11
@2u0

@x2
CA66
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C .A12 C A66/

@2v0
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@y2
D 0

D11

@4w
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@4w
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@4w
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D �N T
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�N T

y

@2w

@y2
(s)

In-plane and transverse displacements in Eq. s and boundary conditions (2.69)

are uncoupled. Prebuckling in-plane displacements can be found from the first two

equations (s) and in-plane boundary conditions

x D 0; x D a W v0 D 0; Nx D 0

y D 0; y D b W u0 D 0; Ny D 0 (t)

The buckling temperature is determined from the third equation (s) assuming

the buckling deflection in the form of the third equation (2.70) that satisfies the

boundary conditions of simple support. The substitution of this deflection into the

third equation (s) and the requirement thatWmn ¤ 0 yields the buckling temperature:

Tcr D min
m;n

�

K˛2m C Lˇ2
n

D11˛4
m C 2 .D12 C 2D66/ ˛2

mˇ2
n C D22ˇ4

n

�

(u)

Note that the observation regarding a small temperature increase that is sufficient

to cause buckling of plates made in the previous paragraph remains applicable in the

cases of composite plates. Therefore, it is often necessary to conduct postbuckling

analysis using either the Rayleigh-Ritz method (e.g., Huang and Tauchert 1988) or

a numerical procedure.
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6.5 Example of Thermal Problem in Applications: Composite

Plates Subject to Fire

The problems of durability and real-time and residual strength and stiffness of

composite structures experiencing the effect of fire are of major interest to designers.

In this book we refer to these problems as an example of modern issues that require

a combination of experimental, analytical and numerical efforts. Composite and

sandwich plates subject to a potential danger of fire are found in aerospace and

naval structures as well as in civil engineering applications.

Studies of the response of composite and sandwich plates and columns to fire

reflect diverse aspects of the problem, including those related to material degrada-

tion at high temperature, heat transfer and mechanical response (e.g., Mouritz and

Gibson 2006; Kardomateas et al. 2009). For example, material transformation in

polymer-matrix composite structures during fire involves a degradation of properties

of the matrix due to an elevated temperature. This includes both the conversion of

matrix into char near the surface exposed to the heat flux as well as the reduction

of the properties of the material adjacent to a colder surface. Both processes

are dynamic since they reflect a gradual conversion of the matrix into char, the

propagation of the charred region toward the colder surface of the plate and the

change of the thermal profile across the thickness. An example of the temperature

distribution throughout the thickness of an E-glass/vinyl ester plate or column

exposed to fire with time is shown in Fig. 6.5. In this figure, the plate or column

consisted of four Œ0ı=90ı=45ı= � 45ı=Random� sub-layers. Although the original

paper refers to a column, the solution of the thermal problem is also applicable to a

plate subject to a uniform heat flux over the surface (the problems of heat transfer

for the plate and column are identical in this study since heat transfer from side

surfaces of the column was not considered). As is shown in Fig. 6.5, temperature of

the colder surface .
y

H
D 0/ increases with time that is measured in seconds since

the onset of the exposure of the surface
y

H
D 1 to the heat flux generated by fire.

Some of the conclusions from studies of mechanical response of composite and

sandwich structures subject to fire that are applicable to plates are listed below.

1. The asymmetry of material properties, decomposition of resin near the sur-

face exposed to fire and a nonuniform temperature distribution throughout

the thickness result in thermal bending stress couples. These stress couples

tend to decrease with time as a result of a gradually increasing depth of the

charred region adjacent to the exposed surface where the stiffness of material

is negligible.

2. If the edges of the plate are constrained against contraction, in-plane tensile stress

resultants develop due to heating of the plate as a result of stretching of its middle

surface caused by thermally-induced bending. These stress resultants increase

with time due to progressive bending. However, upon reaching a peak value, they

decrease due to an increasing depth of the charred region and a degradation of

material properties in the intact part of the plate. An example is shown in Fig. 6.6

for a large aspect ratio E-glass/vinyl ester composite plate. The plate that was
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Fig. 6.7 Maximum deflections of a large aspect ratio sandwich panel as a function of the

temperature of the heated surface T0, the thickness of the facings (hfu D 2.5 mm or 5 mm) and

the properties of the Divinycell H45 or H60 core (From Birman et al. 2006)

simply supported along short edges and free along long edges was 0.15 m long,

0.025 m wide and 0.012 m thick. The increase of the depth of the charred region

with time is also shown as a percentage of the thickness of the plate in this figure.

3. Deformations of plates subject to a nonuniform through thickness temperature

produced by fire and an associated thermally-induced bending moment increase

with time, reach a peak value and reverse their direction. This is related to a

reduction of bending moment due to material decomposition and an increasing

depth of the charred region.

In addition to the study concerned with the effect of fire on composite and

sandwich plates, the response of such plates to an elevated surface temperature

was extensively investigated (e.g., Birman et al. 2006). A typical plate experiences

the reversal of deformations and stresses if the temperature of the exposed surface

increases. This situation is depicted in Fig. 6.7 illustrating maximum deflections

of a representative large aspect ratio sandwich plate with cross-ply facings where

long edges were completely restrained against in-plane displacements as a function

of temperature of the exposed surface. Cross-ply graphite-epoxy facings of the

panel were 2.5 mm or 5 mm thick, while the Divinycell core considered in the

example could be manufactured of two different grades H45 and H60. The panel

was 101.6 mm wide, the core thickness was fixed at 20 mm and the overall panel

thickness varied reflecting the thickness of the facings. The phenomenon of the

reversal of deformations as the exposed surface temperature increases was also

reported by Meyers and Hyer (1992) who analyzed deflections of a composite panel

subject to a linearly distributed through the thickness temperature. An experimental
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paper of Lattimer et al. (2004) who considered deformations of sandwich panels

subjected to fire also supports this observation.

The loss of strength is only one of possible failure modes for sandwich plates

subjected to a combination of compressive and thermal loads (the latter loads

include those generated by fire). Another possible mode of failure is wrinkling

of one of the facings. This phenomenon should be analyzed accounting for

temperature-induced property degradation of the facings and the core. An example

of the analysis evaluating thermal wrinkling conditions in sandwich plates was

conducted by Birman (2005). As follows from this analysis, solutions neglecting the

effect of temperature on the properties of the facings and core produce inadequate

and unconservative predictions of the wrinkling stress. Moreover, as a result of the

loss of stiffness due to elevated temperatures, wrinkling may become the dominant

mode of failure in sandwich panels that do not exhibit this phenomenon at room

temperature.

6.6 Design Philosophy and Recommendations

Design of plates subjected to thermal loading involves several problems including

heat transfer analysis, adjustment of properties accounting for the effect of tem-

perature, and stress analysis. These problems can be coupled, e.g., heat transfer

is affected by the variations of thermal conductivity due to local temperature.

Furthermore, local stresses affect material properties (Dunn 1997), while being at

the same time influenced by the temperature distribution, although the effect of

stress on properties is usually neglected. A designer should always analyze the

temperature in the structure to justify neglecting its effect on the material constants.

For example, an elevation of temperature by 100ıC may have a relatively mild effect

on properties of steel, while its effect on properties of a glass/epoxy plate cannot be

disregarded.

The effect of temperature in plates where the edges are constrained against in-

plane displacements can result in either bending or buckling, dependent on the

temperature distribution throughout the plate and boundary conditions. For example,

an isotropic or composite plate with a through the thickness temperature variation

will experience thermally-induced bending if its edges are simply supported, while

the same plate buckles if the edges are clamped. Temperature that varies over the

surface of the plate causes bending in all cases. Boundary structures may serve

as heat sinks resulting in an outflow of heat from the plate and a nonuniform

temperature over the plate surface.

A uniform temperature applied to isotropic or symmetrically laminated com-

posite plates with edges constrained against in-plane expansion causes buckling.

However, thermal buckling in such plates occurs at a very low temperature, often

only several degrees over the reference stress-free value. As is well known, small

temperature variations during the lifetime do not cause catastrophic failure of plates.
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This is explained by a stable postbuckling behavior of plates and by tensile in-

plane stresses that develop in the middle surface of a deformed plate with the

edges constrained against in-plane displacements as it experiences stretching due

to postbuckling deflections.

In polymeric composite plates subjected to elevated temperatures due to fire the

process of transformation of matrix into char is time-dependent. Accordingly, heat

transfer, property changes and structural response problems are affected by time,

although the process is often sufficiently slow to be considered quasi-static. The

thermal field through the thickness of the plate may vary time in problems where one

surface is subject to a heat flux, while the opposite surface is in contact with ambient

environment. Then, temperature increases on the colder surface of the plate with

time, unless it is affected by active cooling (of course, the same trend in temperature

history and distribution is present in metallic plates).

Note that effects of temperature in composite material plates occur at different

scales. A microscale problem involves local stresses due to a mismatch in the

coefficients of thermal expansion of fibers and matrix. These local stresses are

in self-equilibrium, but they may cause debonding of fibers from matrix or

local damage to the matrix. In composites operating at an elevated temperature,

micromechanical thermal local stresses may actually reduce residual thermal

stresses that develop due to a difference between the operational and processing

temperatures. Micromechanical thermal stresses do not explicitly affect the response

of the composite plate, unless they cause local damage affecting its behavior.

The macromechanical thermal problem is solved upon the homogenization of the

plate material, i.e. using composite thermal conductivities, coefficients of thermal

expansion, etc. Macromechanical thermal stresses are not in self-equilibrium as is

evidenced by the necessity to refer to boundary conditions reflecting the reaction of

adjacent structures to thermally-induced deformations of the plate.

A designer of plate structures that experience effects of temperature can incor-

porate all above-mentioned effects in the framework of a numerical or analytical

solution. While thermal bending can usually be adequately analyzed using a

geometrically linear theory as long as the deflections remain smaller than half-

thickness of the plate, if the plate experiences buckling, its postbuckling behavior

should account for geometrically nonlinear effects.

A typical analysis and design approach can often be subdivided into two steps,

preferably accounting for the effect of temperature on material properties:

1. Solution of the heat transfer problem,;

2. Solution of the structural response problem;

While the effect of temperature on material properties is referred to in both

steps, different properties affect the solutions at each of these steps, e.g., thermal

conductivities affects heat transfer, while structural response is dependent on moduli

of elasticity and coefficients of thermal expansion. The effect of temperature on the

properties of structural materials is obtained experimentally and unfortunately, in

many cases such data is limited or unavailable.
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In conclusion of this paragraph it is emphasized that a constraint on in-plane

expansion of the plate is often imposed by adjacent plate structures. Furthermore,

the presence of such structures often forces the edges of the plate to remain straight

due to symmetry (e.g., adjacent edges of two identical plates subject to a thermal

load symmetric about the stringer supporting these edges remain straight).
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Chapter 7

Examples of Advanced Applications: Plates

with Piezoelectric Sensors and Actuators
and Functionally Graded Plates

While the previous chapters attempt to provide a comprehensive formulation of the

theory of plates applied to isotropic and composite material structures, this chapter

illustrates representative areas of recent research and development. Naturally, the list

of such areas is extensive, including solutions where the response of plate materials

is elastic-plastic, viscoelastic or viscoplastic, plates formed of several materials

and incorporating inclusions of various shapes, textile composites, shape memory

alloy structures, etc. In this chapter we concentrate on two developments, i.e. plates

with piezoelectric sensors and actuators and functionally graded material plates.

The former area is particularly relevant to thin-walled aerospace structures whose

dynamic response can be monitored and controlled by piezoelectric sensors and

actuators. It is also applicable to energy harvesting and structural health monitoring

systems. Functionally graded plates possess a number of potential advantages

over conventional composite plate designs, including elimination of delamination

tendencies present in laminated structures, reduced thermal residual stresses and

improved thermal response during lifetime, possible enhancement in fatigue and

fracture characteristics, etc. Since functionally graded plates are often applied in

thermal applications, the discussion is centered on relevant problems.

7.1 Governing Equations for Shear Deformable and Thin

Plates with Piezoelectric Layers

In this paragraph, we formulate piezothermoelastic constitutive equations for

thin and shear deformable laminated plates including both generally laminated

composite as well as piezoelectric layers. The latter layers can serve as either sensors

or actuators. The present formulation can also be reduced to a particular case where

piezoelectric elements are arranged in “patches,” rather than continuous layers.

An example of a plate with piezoelectric layers is found in bimorph actuators and

sensors (Fig. 7.1). In a typical bimorph design, three layers forming such actuator

V. Birman, Plate Structures, Solid Mechanics and Its Applications 178,
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1

2

2

3

3

−+

4

Fig. 7.1 Bimorph design. 1 D metallic substrate, 2 D electrodes, 3 D piezoelectric layers,

4 D base. Electrodes are usually so thin that their contribution to the stiffness can be neglected

include the central thin metallic substrate and two outer piezoceramic layers wired

to produce a moment and zero in-plane force in response to the applied voltage. For

example, in Fig. 7.1, the upper piezoelectric layer produces tensile force (horizontal

arrows), while the lower layer yields an equal compressive force. The outcome is

a zero net force and a bending moment equal to the product of the force by the

distance between the centroids of piezoelectric layers. Although a bimorph can be

modeled as a cantilevered beam structure, a more accurate analysis should represent

it as a large aspect ratio plate.

The theory of a piezoelectric layer (or plate) accounting for both applied voltage

as well as temperature was applied to the analysis of thin laminates by Tauchert

(1992) and extended to first-order shear-deformable plates by Jonnalagadda et al.

(1994). The constitutive relations for a three-dimensional piezothermoelastic body

(Nye 1957) were reduced to the case of a generally orthotropic layer, relating

stresses, strains and electric filed components in a three-dimensional space:
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where k refers to the layer number within the laminate, z is the poling direction,

transformed reduced stiffnesses NQij are defined in Chap. 5, Neij are transformed
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piezoelectric coefficients and N�i are transformed stress-temperature coefficients.

Temperature T is counted from a thermally stress-free state. While the explicit

effect of temperature on the stress is evident in (7.1), its implicit effect that can be

quite significant is related to thermally-induced changes of the material constants

(this effect will be discussed in the chapter). In general, piezoelectric properties

decrease at an elevated temperature. At the Curie temperature that is specified

for each piezoelectric material, it undergoes complete depolarization and the loss

of the piezoelectric effect. Mechanical stresses also affect the performance of a

piezoelectric material.

The above constitutive equations have provided the basis for various plate

theories with piezoelectric actuators and sensors which utilize a wide range of

kinematic assumptions. For the interested reader, a first review on this topic was

provided by Saravanos and Heyliger (1999). Limiting the analysis to classical and

first-order theories and accordingly, neglecting normal stresses in the direction

perpendicular to the plane of the layer one obtains:
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Equations 7.1 or 7.2 should be complemented by three equations defining the

components of the electric displacement and corresponding to the second equation

(1.22) expanded to account for the effect of temperature. Electric displacements in

terms of strain, electric field and temperature are (Mindlin 1974; Tzou and Bao

1995):
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where Np3 is the pyroelectric constant.
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Transformed piezoelectric coefficients, dielectric constants and stress-temperature

coefficients in Eqs. 7.1 through 7.3 are given by

Ne
.k/
31 D e31

.k/c2k C e32
.k/s2k ; Ne

.k/
32 D e31

.k/s2k C e32
.k/c2k ; Ne

.k/
36 D

�

e31
.k/ � e32

.k/
�

cksk

Ne
.k/
14 D Ne

.k/
25 D

�

e15
.k/ � e24

.k/
�

cksk ; Ne
.k/
24 D e24

.k/c2k C e15
.k/s2k ; Ne15 D e15

.k/c2k C e24
.k/s2k ;

Ne
.k/
33 D e33

.k/;

N"
.k/
11 D "11

.k/c2k C "22
.k/s2k ; N"

.k/
22 D "11

.k/s2k C "22
.k/c2k ;

N"
.k/
12 D

�

"11
.k/ � "22

.k/
�

cksk ; N"
.k/
33 D "33

.k/ (7.4)

and

N�
.k/
1 D �1

.k/c2
k C �2

.k/s2
k ; N�

.k/
2 D �1

.k/s2
k C �2

.k/c2
k ; N�

.k/
3 D �3

.k/;

N�
.k/
6 D

�

�1
.k/ � �2

.k/
�

cksk (7.5)

The functions ck D cos �kand sk D sin �kdepend on the angle �kbetween the

orthotropy coordinate system of the piezoelectric layer and the coordinate system of

the plate. The pyroelectric constant Np3 D p3 is a property of the material of the layer.

The piezoelectric and stress-temperature coefficients in (7.4) and (7.5) are material

constants defined in the orthotropy axes of the material that coincide with the layer

principal axes (the corresponding terms are shown in these equations without an

overbar). The piezoelectric constants in the orthotropy axes are usually available

from the manufacturer of the material, while the stress-temperature coefficients are

determined in terms of the coefficients of thermal expansion and the elements of the

stiffness tensor in the orthotropy axes as
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Note that Eqs. 7.1–7.3 are concerned with a more general case than a transversely

isotropic piezoelectric layer presented in Chap. 1 (see Eqs. 1.22–1.24). This is

because they refer to the situation where the principal axes of the layer do not

coincide with the coordinate axes of the plate. As first explained by Lee (1990), the

reason for such situation may be technological and it is related to polling and rolling

of the plate necessary to produce a piezoelectric effect. While the polling direction

is perpendicular to the plane of the layer, the rolling direction is parallel to its plane.

The resulting stretched orthotropic layer exhibits the symmetry of an orthorhombic

class mm2 crystal with respect to the laminate coordinate axes (an example of such

material is a PVDF). On the other hand, piezoceramics represent an example of

mm6 transversely isotropic materials. In such materials the planesyz and xz that are

normal to the x and y axes, respectively, are the mirror planes, while the plane xy
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perpendicular to the z-axis is the plane of twofold symmetry. In mm2 piezoelectric

materials e24 ¤ e15, while in mm6 materials these coefficients are equal to each

other. Temperature does not produce transverse stresses in the planes xz and

yz since these are mirror planes for the material. Piezoelectric composite films,

with embedded piezoelectric fibers, in the form of active piezoelectric composites

developed by Hagood and his colleagues at MIT (e.g., Rodgers and Hagood 1998)

and Macro Composite Actuators (developed at NASA Langley), provide another

case where the material axes may not coincide with the structural ones.

The stress resultants and stress couples are introduced using the generalization

of the first-order shear deformation theory discussed in par. 5.7 to account for the

presence of the piezoelectric effect and temperature. Accordingly, the displacements

of an arbitrary point of the plate are expressed in terms of the middle-plane

displacements and rotations by (1.46). The strain-displacement relations including

both in-plane strains and transverse shear components are given by (5.56) and

(1.45), respectively. Subsequently, the integration of both the stresses given by (7.2)

and the moments of these stresses with respect to the middle plane of the plate

yields the stress resultants and stress couples including both piezoelectric as well as

thermal contributions:
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where piezoelectric and thermal terms are identified by superscripts “E” and “T”,

respectively. These terms are defined by
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Note that while the integration in (7.7) has to be conducted throughout the

thickness of the laminated plate, the terms associated with the electric field account

only for the contribution of piezoelectric layers (accordingly, in these terms the

limits of integration encompass only these layers).

The equations of motion in terms of stress resultants and stress couples are not

affected by the presence of piezoelectric and thermal terms that are incorporated

in their expressions according to (7.7). Therefore, one can use equations (5.62)

with the boundary conditions specified according to Sect. 5.7. Further details on

the computational analysis of shear deformable plates with piezoelectric layers can

be found in the papers of Chandrashekhara and Agarwal (1993), Jonnalagadda et al.

(1994) and other relevant publications.

The simply supported laminate considered by Jonnalagadda et al. (1994) con-

sisted of eight cross-ply graphite-epoxy T300/5208 layers
�

00=900=00=900
�

2
and a

double-thickness polyvinylidene fluoride (PVDF) layer at the lower surface. The

latter layer served as the actuator, the applied electric field being Ez D 30 � 106 V
m

.

The comparison with the classical thin plate theory solution presented below

relies on the results obtained by the latter theory that is also described in this

paragraph.

Representative results for the nondimensional static deflection (deflection at the

center divided by the thickness) for a square plate subject to a uniform pressure

are shown in Fig. 7.2. As follows from this figure, the first order theory becomes

significantly different from the classical theory of thin plates at the side-to-thickness

ratio smaller than 25. In general, it can be shown that the trends found for shear

deformable plates without piezoelectric elements remain valid in the presence of

these elements. In other words, transverse shear deformability should be accounted

for only if the plates are relatively “thick.” However, available piezoelectric

actuator materials limit the magnitude of the electric field to between 500 and

1,000 V/mm (Morgan Matroc, http://www.morganelectroceramics.com/tutorials/

piezoguide11.html). Accordingly, the voltage necessary to control relatively rigid

thick structures is often unrealistic. This means that shear-deformable plates cannot

be effectively controlled by piezoelectric actuators employing presently available

materials. However, piezoelectric sensors are not affected by such limitations, i.e.

it is quite feasible to use them in shear deformable composites, including sandwich

structures.

http://www.morganelectroceramics.com/tutorials/piezoguide11.html
http://www.morganelectroceramics.com/tutorials/piezoguide11.html
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Fig. 7.2 Nondimensional deflection of a square laminate .a D b D 300 mm/ generated by

piezoelectric actuation evaluated by the first order shear deformation and classical thin plate

theories (From Jonnalagadda et al. 1994)

Considering flexible (thin) piezoelectric composites, the constitutive equations

given by the first three equations (7.2) and the in-plane stress resultants and stress

couples (7.7) are still applicable. Both sensor as well as actuator formulations

for thin laminated piezoelectric plates were presented by Lee (1990), without

accounting for the effect of temperature. Here we illustrate the corresponding

formulations for vibration problems of thin laminates with piezoelectric layers.

Solutions of static problems can be obtained by the corresponding simplifications

of equations introduced below.

Equations of motion of a thin laminated plate with piezoelectric layers in terms of

stress couples and stress resultants are identical to (1.84). In dynamic problems, the

explicit effect of a constant temperature on vibrations is present only if deformations

are sufficiently large to justify using the geometrically nonlinear analysis (of course,

the implicit effect reflected in thermally-induced changes of the material properties

is present in both geometrically linear and nonlinear formulations). If the problem is

linear, the substitution of the linear versions of strain-displacement relations (1.28),

(1.29) yields
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where linear differential operators in the left side are identical to those in the case

of generally laminated composite plates and in-plane inertial terms are added to

the first two equations. Contrary to “conventional” laminates, in a number of appli-

cations involving piezoelectric materials, such as a unimorph, the layers are often

asymmetric about the middle plane of the plate. Accordingly, the corresponding

operators are presented here for a general case:

L11 .:::/ D A11
@2 .:::/

@x2
C 2A16

@2 .:::/

@x@y
C A66

@2 .:::/

@y2

L12 .:::/ D L21 .:::/ D A16
@2 .:::/

@x2
C .A12 C A66/

@2 .:::/

@x@y
CA26

@2 .:::/

@y2

L13 .:::/ D L31 .:::/ D �B11
@3 .:::/

@x3
� 3B16

@3 .:::/

@x2@y
� .B12 C 2B66/

@3 .:::/

@x@y2

� B26
@3 .:::/

@y3

L22 .:::/ D A66
@2 .:::/

@x2
C 2A26

@2 .:::/

@x@y
C A22

@2 .:::/

@y2

L23 .:::/ D L32 .:::/ D �B16
@3 .:::/

@x3
� .B12 C 2B66/

@3 .:::/

@x2@y
� 3B26

@3 .:::/

@x@y2

� B22
@3 .:::/

@y3

L33 .:::/ D D11

@4 .:::/

@x4
C 4D16

@4 .:::/

@x3@y
C 2 .D12 C 2D66/

@4 .:::/

@x2@y2
C 4D26

@4 .:::/

@x@y2

CD22

@4 .:::/

@y4 (7.10)

A nonlinear version of equations (7.10) is available (e.g., Reddy 2004). Note that

the contribution of in-plane inertial terms OmRu and Om Rv in the right side of the first

two equations (7.9) are often negligible compared with the transverse inertial term

Om Rw. Accordingly, these terms are omitted in many solutions.

Boundary conditions are identical to those considered for thin plates, without

accounting for piezoelectric and thermal effects (e.g., (1.88)). However, if these

conditions are formulated in terms of stress resultants and stress couples, they

include piezoelectric and thermal terms according to the constitutive relations (7.7).

In a linear dynamic problem, static thermal terms do not explicitly affect the

boundary conditions, i.e. static thermoelastic and dynamic piezoelastic boundary

conditions are uncoupled.

In the problems where piezoelectric elements operate in the actuator mode, the

voltage is usually applied in the z-direction, so thatEx D Ey D 0; Ez D V
hk

whereV

is the voltage and hk is the thickness of the actuator (k-th layer). If a piezoelectric
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layer operates as a sensor in the closed circuit, the applied electric field is equal to

zero and the charge accumulated on the electrode bonded to the surface Ak of the

piezoelectric layer is given by (Lee 1990):

Nq D

Z

Ak

�

e
.k/
31 "

.k/
x C e

.k/
32 "

.k/
y C e

.k/
36  .k/

xy

�

dAk (7.11)

Note that piezoelectric sensors are usually employed to measure dynamic

processes since a constant charge produced by a constant mechanical load would

yield a decreasing signal as a result of the losses in the circuit. The electric charge Nq

is related to the current passing through the electrode by i D @ Nq

@t
.

Although piezoelectric sensors take advantage of the direct piezoelectric effect

which mandates generation of electric charge in response to an applied strain field,

in many practical applications voltage generated in the sensor is the preferred output.

This requires us to operate a sensor in the open circuit so that the total charge

flux over the area of the electrode can be assumed equal to zero. This implies that

electric charge is accumulated on the sensor electrodes, and voltage is generated in

the sensor due to capacitor effect, which can be determined from (Birman 1996)

V D �
1

Ak

Z

Ak

Z

hk

E.k/
z dzdAk (7.12)

Note that the electric field in the sensor can be found from the third equation

(7.3) where the electric displacement is equal to zero.

7.2 Thin Plates with Piezoelectric Sensors and Actuators

In this paragraph we present the solution of the problem of free and forced vibrations

of a thin cross-ply laminated simply supported plate including transversely isotropic

piezoelectric layers that serve as sensors and/or actuators. The piezoelectric and

other layers are not necessarily symmetric about the middle plane.

The behavior of an asymmetric cross-ply laminated plate was analyzed by

Tauchert (1992) and Lam and Ng (1999). In this case Ai6 D Bi6 D Di6 D

0 .i D 1; 2/ since Q16 D Q26 D NQ16 D NQ26 D 0 for all composite and

piezoelectric layers. Furthermore, in-plane shear piezoelectric stress resultant and

couple are N E
xy D M E

xy D 0 since e36 D Ne36 D 0 for all piezoelectric layers.

The exact solution can be obtained for the boundary conditions given in (2.69)

where the stress resultants and stress couples incorporate piezoelectric contributions

according to (7.7). Such conditions correspond to the case where the plate is

supported by boundary structures that are “infinitely rigid” in their plane but provide

negligible rotational or out-of-plane stiffness. The absence of the in-plane stress

resultant perpendicular to the boundary implies that there no adjacent plates and
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the bending stiffness of the boundary structure in the plane of the plate can be

disregarded.

The solution of equations of motion (7.9) is obtained using double Fourier series

(4.38) that satisfy all kinematic boundary conditions. These series are reproduced

here in the modified form, accounting for the fact that the motion may not be

periodic in time:

u D
X

m

X

n

Umn.t/ cos˛mx sinˇny

v D
X

m

X

n

Vmn.t/ sin ˛mx cosˇny

w D
X

m

X

n

Wmn.t/ sin ˛mx sinˇny (7.13)

The static boundary conditions as well as the equations of motion can be satisfied

by representing the load and non-zero applied piezoelectric components in terms of

double Fourier series:

p .x; y; t / D
X

m

X

n

pmn.t/ sin ˛mx sinˇny

n

NE
x ; N

E
y ; M

E
x ; M

E
y

o

D
X

m

X

n

n

N .mn/
x .t/; N .mn/

y .t/; M .mn/
x .t/; M .mn/

y .t/
o

� sin˛mx sinˇny (7.14)

The substitution of series (7.13) and (7.14) into (7.9) yields uncoupled systems of

ordinary differential equations. For the mn-harmonics, the corresponding system is

2

4

Om 0 0

0 Om 0

0 0 Om

3

5

8

<

:

RUmn
RVmn
RWmn

9

=

;

C

2

4

k11 k12 k13
k12 k22 k23
k13 k23 k33

3

5

mn

8

<

:

Umn
Vmn
Wmn

9

=

;

D

8

<

:

0

0

pmn.t/

9

=

;

C

8

ˆ

ˆ

<

ˆ

ˆ

:

˛mnN
.mn/
x .t/

ˇmnN
.mn/
y .t/

˛2mnM
.mn/
x .t/C ˇ2mnM

.mn/
y .t/

9

>

>

=

>

>

;

(7.15)

where k
.mn/
ij D Sijmn .r; k/ given by Eqs. 2.72.

Equations 7.15 represent a system of ordinary differential equations, time being

the independent variable. The solution of these equations can be conducted by

standard methods of the theory of vibrations.
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If the plate experiences forced vibrations and piezoelectric layers act as sensors

operating in a closed circuit, the last vector in the right side of (7.15) is equal to zero.

Then the deflections and strains are determined from the solution of accordingly

simplified equations of motion that depend on piezoelectric layers only to the extent

of the contribution of these layers to the stiffness. Subsequently, using the strains

found from the solution in conjunction with equation (7.11), we can determine the

signal from the sensors. If the piezoelectric layers are employed as sensors in the

open circuit, the electric displacement is equal to zero and the electric field in

the direction perpendicular to the surface of the plate can be determined similar

to the approach shown in Sect. 7.4. Note that in this case piezoelectric terms in the

right side of system (7.15) are not equal to zero. If the contribution of these terms is

accounted for (sometimes, it can be neglected), the solution may require an iterative

approach. Such approach would involve finding the strains by assumption of zero

electric field, specifying the field in the sensors based on these strains, updating the

strains to account for the effect of this electric field, etc. A detailed analysis along

the lines outlined here is outside the scope of the book.

If piezoelectric layers are employed as actuators, the corresponding terms in

the last vector in the right side of (7.15) can be found as functions of the applied

voltage. The effect of the applied voltage on the motion of the plate is subsequently

determined from the solution of (7.15). On the other hand, piezoelectric sensors and

actuators are often used in the same structure forming a feedback system where the

voltage supplied to the actuators is a function of the signal generated in the sensors.

For example,

V.t/ D Gqq.t/CGi i.t/ (7.16)

represents a constant gain feedback in a closed-loop control system where Gq
and Gi are gains. A constant-gain negative-velocity feedback corresponding to a

negative value of Gi produces an effect similar to viscous damping.

While using piezoelectric layers as a part of the laminated plate is feasible, an

alternative solution is based on using piezoelectric patches that are also referred

to as “distributed” sensors and actuators (Fig. 7.3). Such problems have been

addressed by a number of investigators, the pioneering work being published by

Chandrahsekhara and Agarwal (1993) and Tzou and Fu (1994a,b).

It can sometimes be assumed that the thickness of piezoelectric patches is small

as compared to the thickness of the plate enabling us to neglect the contribution

of the patches to the bending stiffness. In symmetric configurations, in-plane and

transverse displacements are uncoupled and the equation of motion obtained from

the third equation (7.9) becomes

Om Rw C L33.w/ D p.t/C
@2ME

x

@x2
C
@2ME

y

@y2
(7.17)
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x

y
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z

z

x

2

1

Fig. 7.3 A plate with distributed sensors and actuators (piezoelectric patches). 1 D distributed

actuators, 2 D distributed sensors

Tzou and Fu (1994) represented control moments in a modal expansion form, i.e.

ME
x D

X

m

X

n

�mn.t/zad31EaGV

ME
y D

X

m

X

n

�mn.t/zad32EaGV (7.18)

where �mn is the modal participation factor, za is a distance from the middle plane of

the plate to the middle plane of the actuator, d3i is the piezoelectric strain constant

representing the strain in the i-th direction generated per unit electric field applied

in direction 3 (z-direction),Ea is the modulus of elasticity of the actuator and G

is a gain. The feedback gain considered in this paper included displacement and

velocity feedback controls. This technique can be adopted to incorporate a number

of arbitrary located and shaped actuators. The analysis of the response of the plate

described by (7.17) and (7.18) can be conducted using double Fourier series as

shown in the paper of Tzou and Fu (1994).

Chandrashekhara and Agarwal (1993) considered a reduction in the amplitude of

the transient response of a clamped symmetrically laminated cross-ply AS/3601-6

graphite-epoxy plate with collocated patch sensors and actuators. The square plate

had a side length of 254 mm and the length-to-thickness ratio equal to 100 (the

results for plates with such geometry generated by the first order and classical plate
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theories are practically identical). Piezoceramic patches (PZT G1195) were attached

at the top and bottom surfaces of the plate. The plate was subject to a constant

uniformly distributed pressure equal to 25 kPa and lasting for 1:6 � 10�3 s.

As follows from the paper, a negative-velocity feedback gain results in a much

quicker damping out of the response. In particular, using the feedback characterized

by a ratio of the voltage in actuators to current in the sensors equal to �250V/A,

the amplitudes of vibrations were reduced to a prescribed level in about half time

compared to that in identical plates without active control.

7.3 Active Control of Composite Plates Using Piezoelectric

“Stiffeners-Actuators”

This paragraph illustrates the application of smart stiffeners (stringers) to active

control of structures. This approach was considered for composite plates (Birman

1993), sandwich plates (Birman 1994), and spherical caps (Birman et al. 1999). Two

types of smart stiffeners have been considered, i.e. piezoelectric and shape memory

alloy stiffeners. In this book we analyze the first class, i.e. piezoelectric stringers

operating in the active mode.

The concept of smart stiffeners originated from the ideas employed in reinforced

structures where stiffeners provide an enhanced stiffness and strength with a

relatively small additional weight. In smart stiffeners the added stiffness is less

important than active control forces and/or moments applied by the stiffeners to

the structure. The motivation for the use of active stiffeners instead of continuous

piezoelectric layers is related to a potential convenience of installation, operation

and inspection as well as a possible strategic placement of stiffeners over the surface

of the plate maximizing the efficiency of active control applying it at the critical

locations. In addition, placing piezoelectric elements at a larger distance from the

plate middle surface than that available in the case of piezoelectric layers and

patches provides a higher active bending moment due to a larger eccentricity.

Consider a composite plate reinforced by a system of stiffeners (Fig. 7.4). The

stiffeners can be fully piezoelectric or they can be constructed from composite

and piezoelectric components. In the latter case, the function of composite layers

is to increase the eccentricity of the piezoelectric component, rather than the

contribution to the plate stiffness. A very stiff composite component would actually

be counterproductive for active control increasing local stiffness and neutralizing

the beneficial effect of piezoelectrically-generated control forces. Accordingly, as

shown in Fig. 7.4, it is desirable to use a light web joining the plate and a

piezoelectric layer. The piezoelectric layer should be located at a maximum distance

from the middle plane of the plate to increase the eccentricity of the piezoelectric

force and maximize the control moment.

Equations of motion of the plate in terms of stress resultants and stress couples

are (1.84) where the effect of in-plane inertia is neglected. The analysis resembles
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xr

x

y

ys

stringers

piezoelectric layer

light web

plate

Fig. 7.4 Plate with a system of stiffeners. The stiffeners include a piezoelectric layer and a light

composite web as is shown in the cross section

that of composite plates reinforced by stringers in Sect. 5.6, with additional

peculiarities related to active piezoelectric control exercised through the stiffeners.

The stiffeners having an open profile, their torsional stiffness is neglected. The

plate reinforced by stiffeners capable of an efficient active control is thin, so that

transverse shear deformability can be omitted and the analysis conducted by the

classical plate theory. The stress resultants and stress couples reflect the contribution

of the stiffeners that can be evaluated in the manner similar to that the previous

chapters.

If the stiffeners are heterogeneous, combining piezoelectric and composite

components, the mass of the plate per unit area is

Om D mp C
X

r

ı .x � xr /

Z

y

Z

z

�r .y; z/ d zdy C
X

s

ı .y � ys/

Z

x

Z

z

�s .x; z/ d zdx

(7.19)

where mp is the mass of the unreinforced plate (skin), �r .y; z/ and �s .x; z/ are local

mass densities of the stiffeners oriented along the y- and x-axes, respectively, and the

integration is conducted over the cross section of the corresponding stiffener. The

integration is shown both over the width and the depth coordinates to emphasize

that the width of piezoelectric and composite components may differ as is shown in

Fig. 7.4.
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The stresses in the piezoelectric layers (actuators) of the stiffeners oriented along

the x- and y-axes account for the piezoelectric contribution due to the voltage

component in the z (thickness) direction:

� .a/
x D Ea

�

u0;x C
1

2
w;2x �zsaw;xx �

d31V

hsa

�

� .a/
y D Ea

�

v0;y C
1

2
w;2y �zraw;yy �

d31V

hra

�

(7.20)

where zsa and zra are distances from the plate middle plane to the centroids of the

corresponding piezoelectric layers, and hsa and hra are the thicknesses of these

layers. Note that the strains in (7.20) include geometrically nonlinear contributions.

In the composite component of the stiffener the last terms in the right side of the

corresponding equation (7.20) should be omitted and the modulus of elasticity and

the distance from the middle plane modified accordingly.

The stress resultants and stress couples can now be evaluated accounting for two

contributions, i.e. the contribution of the skin of the plate without stiffeners and the

contribution associated with the stiffeners. In particular, if the skin is symmetric

cross laminated or if it is composed of multiple symmetric generally orthotropic

layers, the corresponding stress resultants and stress couples are given by (5.10). In

the general lamination case, the corresponding constitutive equations for the skin

are (5.8). The terms contributed by the stiffeners are obtained by integrating the

stresses given by (7.20) and the moments of these stresses with respect to the plate

middle plane over the cross sections of the corresponding stiffeners:

N .s/
x D

X

s

ı .y � ys/

�

Qs

�

u0;x C
1

2
w;2x

�

� Fsw;xx � EaAsa

d31V

hsa

�

M .s/
x D

X

s

ı .y � ys/

�

Fs

�

u0;x C
1

2
w;2x

�

� Isw;xx � EaFsa

d31V

hsa

�

N .s/
y D

X

r

ı .x � xr /

�

Qr

�

v0;y C
1

2
w;2y

�

� Fr w;yy � EaAra

d31V

hra

�

M .s/
y D

X

r

ı .x � xr /

�

Fr

�

v0;y C
1

2
w;2y

�

� Ir w;yy � EaFra

d31V

hra

�

(7.21)

where

˚

Qs; Fs; Is
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E.z/
˚

1; z; z2
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˚

Qr ; Fr ; Ir
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dAr
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fAsa; Fsag D

Z

Asa

f1; zg dAsa

fAra; Frag D

Z

Ara

f1; zg dAra (7.22)

In the first two equations (7.22), the integration is conducted over the cross sec-

tional area of stiffeners oriented in the x- and y-directions, respectively .As andAr /.

The modulus of elasticity in these equations refers to the modulus of composite or

piezoelectric components located at a distance z from the plate middle plane. The

last two equations (7.22) account for the piezoelectric contribution. Accordingly,

the integration is conducted only over the cross sectional areas of the piezoelectric

layers .Asa and Ara/. As follows from (7.21), it is possible to account for a variable

spacing of the stiffeners, i.e. xr .x/; ys.y/, so that their effect can be maximized by

applying active control at the strategically selected parts of the plate.

Similarly to the analysis of isotropic plates discussed in Sect. 2.9, in the case

where stiffeners are identical and closely spaced, the Dirac functions can be replaced

with the inverse of the spacing of the stiffeners according to (2.64), enabling the

application of the smeared stiffeners technique.

The stress resultants and couples given by (7.21) are added to their counterparts

contributed by the skin of the plate. The total stress resultants and couples are

substituted into the equations of motion (1.84) yielding the system of equations:
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L31 L32 L33

3

5

8

<

:

u0

v0

w

9

=

;

C

2

4

0 0 K13.w/
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=
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=
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V C
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P .w; V /

9

=
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(7.23)

where linear differential operatorsLij are identical with the corresponding operators

in reinforced plates, including the contributions associated with the stiffness of

the stiffeners. These operators are presented here for a general case where the

constitutive relations for the skin are given by (5.8):

L11 D NA11
@2

@x2
C 2A16

@2

@x@y
C A66

@2

@y2

L12 D L21 D A16
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C .A12 C A66/
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@2

@y2

L13 D �L31 D �

�

NB11
@3

@x3
C .B12 C 2B66/

@3
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C 3B16

@3
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C B26

@3

@y3

�
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L22 D A66
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@x2
C 2A26
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@x@y
C NA22

@2
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(7.24)

In isotropic, cross-ply laminated and multilayered angle-ply symmetrically

laminated plates these operators are simplified since A16 D A26 D B16 D B26 D

D16 D D26 D 0. In the absence of the stiffeners these operators are reduced to the

case of thin laminated plate.

The extensional, coupling and bending stiffness terms with an overbar in (7.24)

include the contribution of the stiffeners:

NA11 D A11 C
X

s

ı .y � ys/Qs; NA22 D A22 C
X
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ND11 D D11 C
X

s

ı .y � ys/ Is; ND22 D D22 C
X

r

ı .x � xr / Ir (7.25)

Nonlinear functions and operatorsKij ; N3 in the left side of (7.23) are presented

in the paper of Birman (1993).

Differential operators in the right side of (7.23) are

P1 D
X

s

ı .y � ys/ R1
@

@x

P2 D
X

r

ı .x � xr / R2
@

@y

P3 D
X

s

ı .y � ys/ R1zsa
@2

@x2
C
X

r

ı .x � xr / R2zra
@2

@y2

P .w; V / D
X

s

ı .y � ys/R1
@ .V w;x/

@x
C
X

r

ı .x � xr / R2
@
�

V w;y
�

@y
(7.26)

In the above equations,

R1 D EaAsa
d31

hsa
; R2 D EaAra

d31

hra
(7.27)
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The solution of several representative dynamic problems using active control by

piezoelectric stiffeners was discussed by Birman (1993).

As is obvious from (7.25), in the presence of stiffeners, the plate that is

symmetrically laminated has nonzero coupling stiffness NB11; NB22 attributed to

the contribution of the stiffeners. The analysis of equations (7.23) in the general

case where the plate reinforced by piezoelectric stiffeners is asymmetric can be

conducted analytically in the case where the problem is linear and the simple support

is specified according to (2.69). Then the solution could be sought as an extension of

the approach in the previous paragraph. The coupling stiffness disappears if identical

stiffeners are bonded to the opposite surfaces of the plate preserving a symmetric

design. If the stiffeners are symmetric about the middle plane linearized equations

of motion (7.23) are reduced to a single equation for transverse vibrations:

Om Rw C ND11
@4w

@x4
C 2 .D12 C 2D66/

@4w

@x2@y2
C ND22

@4w

@y4
C P3.V /

C P .w; V / D p .x; y; t / (7.28)

Equation 7.28 is applicable to the analysis of forced motion as well as free

vibrations (in the latter case, the driving load p .x; y; t / D 0). The analysis can

be conducted by standard methods of the theory of vibrations of plates.

If identical stiffeners bonded to the opposite plate surfaces are driven by out-

of-phase voltage, the active control can be very effective. In such case, the force

applied to the plate is equal to zero, while the active moment is equal to a product

of the force generated in each stiffener and the distance between the centroids of

the piezoelectric components of the stiffeners bonded to the opposite surfaces of the

plate. This situation resembles the operation of a bimorph shown in Fig. 7.1.

7.4 Effect of Temperature on Measurements Obtained

from Piezoelectric Sensors

Temperature affects the response of composite plates incorporating piezoelectric

elements through the following effects:

(a) Direct influence of temperature on the properties of the piezoelectric material

(sensor or actuator);

(b) Effect of temperature on the properties of other materials constituting the

plate (for example, reduction of elastic properties of the polymer matrix in a

composite material, as the temperature increases towards the glass transition

point);

(c) Thermally induced stresses;

(d) Thermally induced electric charge (pyroelectric effect).
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In this section we concentrate on the effect of temperature on the properties

of piezoelectric sensors and the related issue of the interpretation of readings

from such sensors. Birman (1996) considered this problem for open-circuit sensors

incorporated in thin composite plates. In such formulation the sensor is in the state of

plane stress, i.e. the stresses acting perpendicular to its plane z D constant are equal

to zero. Furthermore, the sensor is transversely isotropic in the plane z D constant

and polarized in the thickness z-direction. It is also assumed that the problem is

both geometrically and physically linear. The sensor being a relatively small patch

bonded to the plate, its effect on the overall plate stiffness is usually negligible.

In some situations it may be necessary to consider the influence of the converse

piezoelectric effect, i.e. the impact of the electric field generated in the sensor on

the response of the structure. Additionally, the influence of the bonding layer could

become essential, particularly in the vicinity to the edges of a piezoelectric patch

(sensor) bonded to the composite substrate due to a local concentration of three-

dimensional stresses that could cause debonding of the sensor. These complicating

factors are not included in the present analysis.

The governing equations (7.2) and (7.3) for a transversely isotropic piezoelectric

sensor in the state of plane stress reduce to (Birman 1996)

�

�x

�y

�

D

�

Q11 Q12

Q12 Q11

� �

"x � ˛1T � d31Ez

"y � ˛1T � d31Ez

�

Dz D d31 .Q11 C Q12/
�

"x C "y � 2 .˛1T C d31Ez/
�

C "33Ez C p3T (7.29)

where reduced stiffnesses, the coefficient of thermal expansion and the piezoelec-

tric coefficient correspond to the in-plane isotropic sensor material, i.e.Q11 D

Q22; ˛1 D ˛2; d31 D d32.

In open-circuit sensors the electric displacement Dz D 0 and the electric field

generated in a sensor can be obtained from the last equation (7.29) as a function

of strain and temperature. Furthermore, if temperature is quasi-static, it does not

explicitly affect linear dynamic deformations, i.e. its influence is limited to the effect

on the material properties. Accordingly, the component of the electric field in the

polarization direction is

Ez D
d31 .Q11 C Q12/

�

"x C "y

�

2d 2
31 .Q11 C Q12/ � "33

(7.30)

The integration of the electric field according to (7.12) yields the voltage gener-

ated in the sensor. This voltage can be presented in a nondimensional form as a ratio

of the voltage at the current temperature to that at the reference temperature
�

Tref

�

:

R D
V.T /

V
�

Tref

� D k1k2 (7.31)
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where

k1 D
f1.T /
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�
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� ; k2 D
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�
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�

"x C "y
�

d zdAsen
(7.32)

where Asen and hs are the surface area and the thickness of the sensor, respectively.

Obviously, coefficients k1 and k2 account for the effects of temperature on the

properties of the sensor and the composite substrate, respectively. As indicated

above, we assume that the sensor does not noticeably contribute to the stiffness

of the plate; otherwise, the coefficient k2would also reflect the effect of temperature

on the stiffnesses of both the composite substrate as well as the sensor. The product

of coefficients k1 and k2represents a factor by which the voltage in the sensor is

affected by temperature.

It remains to specify the response of the plate to dynamic loading. If this loading

is represented by a uniformly distributed harmonic pressure, and temperature is

uniform, the equation of flexural vibrations of a plate that can be symmetrically

cross-ply laminated, multilayered symmetric angle-ply laminated or isotropic is

obtained by adding thermal terms to the last equation (7.9):

D11
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(7.33)

where in a transversely isotropic sensor N T
x D N T

y D NT is found from (7.8).

The solution of the problem of the response of a simply supported plate is sought

by representing the pressure and deflections in double Fourier series as it was

done in Chap. 4. The substitution of (4.2) and (4.11) into the equation of motion

(7.33) yields the amplitudes of harmonics in the series representing deflections.

Subsequently, the strains in the sensor are found as

˚

"x; "y
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wherezs is a distance from the middle plane of the sensor to the plate middle plane.

The sum of strains in the sensors that is needed to evaluatef2 according to

(7.32) is
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where the plate is assumed to undergo periodic vibrations with frequency !.
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Fig. 7.5 Effect of temperature on the component of the sensor voltage dependent on the properties

of piezoelectric sensors (From Birman 1996)
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Fig. 7.6 Effect of temperature on the component of the sensor voltage dependent on the strains in

large aspect ratio specially-orthotropic Kevlar-epoxy plates. Curves 1, 2 and 3 correspond to the

driving frequencies equal to zero (static case), 25 and 50 rad/s, respectively. (From Birman 1996)

The effect of temperature on the coefficient k1 associated with the effect of

thermally-induced changes in piezoelectric sensor properties was evaluated for

several classes of piezoceramics produced by Morgan Matroc, i.e. PZT-4, PZT-5A,

PZT-5H and PZT-8 (Birman 1996). As follows from Fig. 7.5, the coefficient k1
decreases due to an elevated static temperature, although the trend may be reversed

at low temperatures.

The effect of temperature on the properties of the plate can further complicate

measurements from piezoelectric sensors as is reflected in the coefficient k2. A

somewhat extreme case is shown in Fig. 7.6 for a large aspect ratio specially

orthotropic Kevlar-epoxy plate where the fibers are oriented along long edges.

We call this case “extreme” since such lamination is highly unlikely in practical

applications where the stiffness has to be maintained in the direction of both long
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and short edges (accordingly, a cross-ply or angle-ply plate is more likely to be used

in design). A specially orthotropic plate is shown here since it better elucidates the

effect of a thermally-induced matrix degradation (the effect of temperature on the

fibers is insignificant in the temperature range shown in Fig. 7.6). A difference in

the response to an elevated temperature is dependent on the driving frequency as can

be observed in Fig. 7.6. This is related to the relationship between the driving and

fundamental frequencies. An increase in the deflections and strains in the static and

low-frequency cases (curves 1 and 2) is attributed to degradation in the stiffness at

a higher temperature. This degradation both increases the plate flexibility as well as

results in a smaller fundamental frequency that approached the driving frequency.

An increasing temperature could result in a resonance as is evident from curve 2. On

the other hand, if the driving frequency exceeds the fundamental frequency of the

plate at a room temperature, a higher temperature results in a larger gap between the

fundamental and driving frequencies and smaller amplitudes (curve 3). As follows

from Figs. 7.5 and 7.6, using piezoelectric sensors in plate structures exposed to

temperature variations can result in inaccurate readings if thermal effects both on

the sensor as well as on the plate are disregarded.

While the solution in the paper of Birman (1996) applied a decomposition of

the sensory voltage in the coefficients reflecting the effect of temperature on the

properties of sensors and that associated with the response and property variations

of the composite substrate, Lee and Saravanos (1997, 2000) formulated the problem

at a more general level. The motivation emerges from other practical situations

requiring for example to consider the influence of the converse piezoelectric effect,

i.e. the impact of the electric field generated in the sensor on the response of

the structure. In other cases, the influence of the bonding layer could become

essential, particularly in the vicinity to the edges of a piezoelectric patch (sensor)

bonded to the composite substrate due to a local concentration of three-dimensional

stresses that could cause debonding of the sensor. In the former paper a layer-wise

formulation was employed to account for mechanical, thermal and electric coupling

as well as temperature-dependence of the composite and piezoelectric materials. A

finite element model was derived based on this generalized formulation and applied

to the evaluation of stresses, displacements, and voltages in piezoelectric sensors

bonded to a composite plate. An example of voltage obtained in PZT-5A sensors

on the surface of a rectangular symmetrically laminated angle-ply AS4/3501-6

carbon-epoxy plate is shown in Fig. 7.7 where “Constant” and “Temperature-

dependent” curves correspond to the cases where the properties of the sensors and

plate are affected and unaffected by local temperature, respectively. The plate was

simply supported along two opposite edges and free along the other couple of

edges. The sensors were bonded to the surface subject to a higher temperature.

As is shown in Fig. 7.8, the effect of temperature-dependent properties results

in a nonlinear relationship between the voltage and thermal gradient compared

to the case of a temperature-insensitive plate material where this relationship is

linear.
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Fig. 7.7 Effect of temperature-dependence of material properties on voltage in piezoelectric

sensors bonded to a composite plate as a function of thermal gradient through the plate thickness.

(From Lee and Saravanos 1997)

Fig. 7.8 Section of a particulate FGM plate where the volume fraction of two constituent phases

varies in the thickness (vertical) direction. (From Yin et al. 2004)
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7.5 Concept of Functionally Graded Material (FGM) Plates

Functionally graded materials (FGM) are composite materials formed of two or

more constituent phases with a continuously variable composition. These materials

are composite by nature, but their properties reflect a distribution of the con-

stituent phases that is a monotonic, rather than piece-wise function of coordinates.

Accordingly, FGMs possess a number of advantages over laminated composites,

including a potential reduction of in-plane and transverse through-the-thickness

stresses, absent or severely reduced delamination trend, an improved residual stress

distribution, enhanced thermal properties, higher fracture toughness, and reduced

stress intensity factors. A number of reviews dealing with various aspects of FGM

have been published (e.g., Suresh and Mortensen 1998; Miyamoto et al. 1999;

Birman and Byrd 2007).

Functionally graded plates are often understood as particulate-material systems.

However, alternative configurations, including functional grading of fibers, using

several variable fiber systems, and combinations of fibers and particles embedded

within the matrix have also been discussed in literature.

Functionally graded plates are often employed in applications that involve

thermal effects. One of typical high-temperature applications is found in ceramic-

metal plates where ceramic material is mostly concentrated in the vicinity to the

surface exposed to thermal load, while metal dominates at the opposite surface of the

plate. A schematic illustration of a functionally graded plate where the concentration

of two constituent phases varies through the thickness is presented in Fig. 7.8.

An example of a natural biological multifunctional grading is found in the

tendon-to-bone insertion site where the orientation of collagen fibers as well as

the content of mineral varies from tendon to bone (Fig. 7.9). Such double grading

reduces the stress concentration at the site of junction of two materials (tendon and

bone) that possess a huge difference in the stiffness (Ebone � 20 GPa; Etendon �

0:4GPa). The analysis of the effect of grading on the properties and stress

concentration at the tendon-to-bone insertion site can be found in the papers of

Genin et al. (2009) and Liu et al. (2011).

Fig. 7.9 The tendon-to-bone

insertion site (schematic

illustration). The orthotropic

tendon attaches to the bone

through the narrow insertion

region that is characterized by

gradients in mineral volume

fraction (represented by

shading) and collagen fiber

orientation (represented by

lines)

Tendon

Insertion

Bone
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The analysis of functionally graded plates should address a number of issues,

each of them deserving close attention:

1. Micromechanics should be employed to evaluate the properties of the material,

dependent on the concentration of constituent phases. For example, the Mori-

Tanaka micromechanics is suitable for the evaluation of properties of a FGM

plate with arbitrary-shape inclusions embedded within the matrix. However, the

accuracy of this theory is retained only for the inclusion volume fraction limited

to about 35%. Other micromechanical (homogenization) methods include the

self-consistent method, the finite element method, the method of cells and its

modifications, etc.

2. In thermomechanical problems, the issue of heat conduction and temperature

distribution throughout the plate has to be addressed prior to the solution

of the mechanical static and/or dynamic response problems. The solution is

complicated since thermal properties of the FGM plate that should be determined

from a micromechanical model in terms of the properties of the constituent

materials depend on local temperature. In particular, high temperature ceramic-

metal FGM plates often operate in the range of temperatures where it is

impossible to disregard their effect on the properties of either of constituent

materials. Accordingly, the effect of temperature on the properties of such FGM

plates should be incorporated in the relevant analysis, the composite material

properties being evaluated as functions of temperature using a micromechanical

theory since the effect of temperature on each constituent material is different.

The outcome of the thermal analysis includes a distribution of temperature in the

plate and its effect on the local composite properties (such as stiffness, strength

and conductivity).

While the heat conduction problem should be addressed accounting for the

effect of temperature on the properties of constitutive materials, these properties

are in turn affected by local temperature. An analytical solution can be sought if

relationships between the properties and temperature are available in the form of

empirical equations (e.g., Touloukian 1967). Alternatively, an iterative solution

could be employed, evaluating the heat transfer problem without accounting

for thermal effects on the properties in the first iteration. Subsequently, the

distribution of temperature obtained in the first iteration can be used to update

local properties, solve the heat transfer problem in the second iteration, etc.

3. The problems of static or dynamic response of the plate to external loading

include a multitude of possible issues, such as the strength analysis, stability,

dynamic response, natural frequencies, fatigue and fracture. The methods of

analysis employed in the theory of plates may often be applicable to the analysis

of FGM plates concerned with their macromechanical response. Although FGM

plates can be pseudo-isotropic at the local micromechanical scale, the variation

of the material content through the thickness usually makes them asymmetric

with respect to the middle plane. Accordingly, the analysis should rely on the

theory of composite plates, including nonzero elements of the matrix of coupling

stiffnessŒB�. A noticeable exception to asymmetry of FGM plates is found
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in symmetric sandwich FGM structures where identical functional grading is

employed between each facing and the core to eliminate or reduce delamination

tendencies.

In addition to the micromechanical, thermal and structural analyses, the issue

of manufacturability of FGM plates should be closely monitored by engineers.

It is sometimes impossible or impractical to guarantee a prescribed variation of

the material properties if it is governed by a complicated analytical expression

(Birman and Byrd 2007).

In the next two paragraphs we illustrate the formulation of the heat con-

duction and thermomechanical problems. The micromechanical formulation

necessary to evaluate the properties of FGM in terms of the properties of the

constituent materials is outside the scope of the book (references to some of

micromechanical theories suitable for the analysis of FGM plates and exam-

ples of their application can be found in the papers of Genin and Birman

(2009) and Pindera et al. (2009)).

7.6 Thermal Problems of FGM Plates

In the solutions of heat transfer problems in FGM plates authors often concentrate

on one-dimensional heat conduction, i.e. temperature is assumed to vary in the

thickness direction only. However, such one-dimensional approach may become

invalid in the vicinity to the edges if supporting structures serve as heat sinks.

Also, in case where the properties of the plate vary in-plane as well as through

the thickness, thermal analysis has to be three-dimensional. In such cases it is

necessary to generalize the Fourier heat conduction equation (6.2) for a linear three-

dimensional problem where conductivities vary in all directions and internal heat

generation does not take place (Boley and Weiner 1960):
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(7.36)

where the mass density of the material is assumed independent of temperature. Note

that all material properties, except for mass density, can be affected by the local

temperature T .x; y; z; t /.

The solution of (7.36) should be subject to thermal boundary conditions that

are similar to those outlined in Chap. 6 (see Sect. 6.1). Possible conditions on the

surfaces of the plate include a prescribed temperature or heat flux, perfect insulation

or convection boundary conditions.

If the boundaries of the plate are supported by structures that provide a perfect

thermal contact, the in-plane thermal boundary conditions enforce the continuity
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of temperature and heat flux. For example, such conditions along the boundary

x D Nx are

T . Nx; y; z; t / D Tb . Nx; y; z; t /

kx
@T . Nx; y; z; t /

@x
D kxb

@Tb . Nx; y; z; t /

@x
(7.37)

where the subscript “b” refers to the boundary structure.

The solution of the heat transfer problem in the general case can be obtained

by numerical methods. If the properties vary in the z-direction only (as is the case

in the majority of functionally graded materials), the solution is available by the

perturbation method and other numerical methods (e.g., Noda (1999)). An example

of the analytical solution for a particular distribution of thermal conductivity through

the thickness is demonstrated in Sect. 6.2.

Examples of the solution of the heat transfer problem resulting in a temperature

distribution throughout the thickness of the FGM plate are discussed below. Praveen

and Reddy (1998) considered thermal stresses in a ceramic-metal FGM plate subject

to constant temperatures on the opposite metal-rich and ceramic-rich surfaces. All

properties of the plate, including thermal conductivity, were assumed indepen-

dent of temperature and varying through the thickness according to the rule of

mixtures:

P.z/ D .Pc � Pm/

�

2z C h

2h

�n

C Pm (7.38)

where P is the property, subscripts “c” and “m” refer to the ceramic and metal

phases, � h
2

� z � h
2
, and n is a non-negative power, n D 0 corresponding to a

ceramic plate, while increasing values of n reflect a higher metal content. Note that

a relationship between the power n and the volume fraction distribution of ceramic

and metal phases should be specified from micromechanics.

The mathematical formulation of the static heat transfer problem is available

from the heat conduction equation (7.36) and prescribed thermal boundary condi-

tions on the surfaces:
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where kz.z/ is given according to (7.38).

The distribution of temperature throughout the thickness of an aluminum-

zirconia plate is shown for various values of power n and the temperatures of the

ceramic and metal surfaces equal to 300oC and 20oC , respectively in Fig. 7.10.

It can be observed that temperature in fully ceramic or fully metallic plates varies
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Fig. 7.10 Distribution of temperature throughout the thickness of an aluminum-zirconia FGM

plate. The thickness coordinate is normalized with respect to the plate thickness. (From Praveen

and Reddy 1998)

linearly throughout the thickness (the corresponding lines coincide). Such linear

variation is due to neglecting temperature-dependence of the thermal conductivity.

If this simplifying assumption was discarded, the corresponding Ti .z/; i D c;m

relationships would be nonlinear. As reflected in Fig. 7.10, it is possible to signifi-

cantly modify the thermal profile through functional grading, reducing temperature

in the interior of the plate.

One-dimensional transient heat transfer problems in FGM plates were studied by

Carslaw and Jaeger (1959), Jin and Paulino (2001) and Byrd and Birman (2010).

Consider, for example, the situation where the surfaces of a FGM strip (or plate)

were suddenly cooled down from the initial zero reference temperature to prescribed

temperatures, i.e. the initial and boundary conditions were

T .z; t D 0/ D 0; T .z D 0; t �0/ D �T0; T .z D b; t �0/ D �Tb (7.40)

where z D 0 and z D b are the surface coordinates. Neglecting the effect of

temperature on the material properties, the dynamic heat conduction equation is

obtained from the one-dimensional version of (7.36) or from (6.2) as
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(7.41)

The solution of this problem was obtained by applying a discrete model, i.e.

dividing the plate into a number of layers and assuming that the properties within

each layer are constant (Jin and Paulino 2001). Using such approach the heat
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conduction equation within each homogeneous layer is reduced to a standard one-

dimensional dynamic heat conduction problem:

@2T .t/

@z2
D

1

�n

@T .t/

@t
; zn < z < znC1; n D 0; 1; :::; N (7.42)

where (N C 1) is the total number of layers and �n D
kzn

�ncc
is the thermal diffusivity

of the layer (the thermal conductivity, mass density and specific heat in this formula

refer to the n-th layer).

The solution relies on the interface temperatures, so that the initial and boundary

conditions for the n-th layer .zn � z � znC1/ can be written as

T .zn � z � znC1; t D 0/ D 0; T .zn; t > 0/ D Tn.t/; T .znC1; t > 0/ D TnC1.t/

(7.43)

where Tn and TnC1 are interface temperature.

These conditions superimpose the continuity for temperature at the layer inter-

faces at an arbitrary time instant. Additionally, the heat flux continuity is enforced at

the layer interfaces resulting in N equations used to determine N unknown interfacial

temperatures Tn.t/; n D 1; 2; :::; N :

�

kz.n�1/

@Tn�1.t/

@z

�

z!zn

D
�

kzn

@Tn.t/

@z

�

z!zn

(7.44)

where the left and right sides refer to the heat flux in the .n � 1/-th and n-th layers,

respectively.

Numerical solutions of the present and other relevant heat transfer problems in

FGM plates are outside the scope of this book. Thus we limit the discussion to a

representative mathematical formulation of the problem outlined above.

In conclusion, it is possible to find analytical solutions of thermal problems

for specific cases of FGM plates. However, in the general case, particularly if

it is necessary to account for the effect of temperature on the properties of the

constituent materials, the solution of the heat transfer problem should be numerical.

Note that the effect of temperature on the properties of composite materials with

the volume fraction of constituent phases varying through the thickness of the

plate is probably impossible to predict since such information requires a large

number of experiments. Accordingly, it may be necessary to employ the knowledge

of temperature-dependent properties of each constituent material and apply a

micromechanical theory to evaluate the effect of temperature on the composite

material. The problem becomes even more complicated if the properties of a FGM

plate vary both through the thickness as well as in its plane. The three-dimensional

thermal problem for such structure should be solved numerically.
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7.7 Thermomechanical Problems of FGM Plates

Once the problem of temperature distribution throughout the FGM plate is solved,

the analysis can be carried out either using equations of the theory of elasticity

or by one of the plate theories accounting for a variable property distribution

throughout the thickness. In this paragraph we illustrate both methods. In the

following examples it is assumed that the problems of micromechanics and heat

transfer have already been solved, so that it is possible to concentrate on the response

of the plate to external loading.

Example 7.1: Three-Dimensional Thermoelastic Analysis of FGM Plates (Vel

and Batra 2003) The approach based on thermoelasticity utilizes a through-the-

thickness power representation of the properties, displacements, strains and stresses

combined with in-plane trigonometric series for displacements, strains and stresses.

The solution that is applicable only to a certain class of boundary conditions is exact

and can be used as a benchmark. Although the thermal problem in the paper was

solved for a dynamic process, this process was assumed sufficiently slow to neglect

inertial terms when studying the mechanical response.

The constitutive equations governing the quasi-static behavior of a quasi-

isotropic linear elastic material are obtained by a generalization of the corresponding

equations in Chap. 1:

�ij D �.T /"kkıij C 2G.T /"ij � ˇ.T /ıij T (7.45)

where the Lame constants �.T / and G.T / and the stress-temperature modulus ˇ.T /

are functions of temperature and ıij is the Kronecker delta. The solution illustrated

below was obtained by assumption that material properties are independent of

temperature, though they vary with the thickness z-coordinate reflecting the grading

of the plate material. The strains "ij in the geometrically linear problem are given

by equations (1.6).

The solution can be obtained for a plate with the edges that are unrestrained in the

in-plane direction perpendicular to the boundary but infinitely stiff in the boundary

plane. Accordingly,

x D 0; x D a W �x D w D v D 0

y D 0; y D b W �y D w D u D 0 (7.46)

Additionally, the surfaces of the plate are free of external stresses, so that

z D ˙h
2

W �zz D �xz D �yz D 0 (7.47)
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Material properties of the FGM plate are represented in the Taylor series about

the middle surface, so that every property is given by

P D

1
X

nD0

NPnzn (7.48)

Note that varying the coefficients NPn of series (7.48) it is possible to represent

arbitrary variations of material properties (e.g., the shear modulus and thermal

conductivity can vary through the thickness according to different laws, etc.).

The solution of the heat transfer problem was obtained by Vel and Batra (2003)

for the case where the boundaries were maintained at a constant zero temperature

that was also the initial temperature in the plate. Thermal boundary conditions on

the plate surfaces were chosen in the form that allowed modeling a prescribed

temperature or heat flux as well as an exposure to the ambient temperature. Then the

solution of the transient heat transfer problem yielded a distribution of temperature

in the form
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where r, m and k are positive integers and the coefficients Tr .t/ are as shown in the

paper. The problem being linear, the solution can be obtained by superposition of

results obtained for various combinations of m and k.

The solution that satisfies the boundary conditions was obtained by representing

displacements by the series
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Displacements given by (7.50) can be substituted into (1.6), the resulting strains

and temperature given by (7.49) being subsequently employed in the constitutive

relations (7.45). Material properties being expressed in terms of series (7.48), the

constitutive relations substituted into the static version of equations of equilibrium

(1.9),
@�ij

@xj
D 0, yield coupled recurrence algebraic equations for every non-

negative integer power n in series (7.48). These equations presented in the paper

of Vel and Batra (2003) were used to express Ur ; Vr ; Wr .r � 2/ in terms

of six unknown coefficients Ur ; Vr ; Wr .r D 0; 1/. These six coefficients were
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subsequently evaluated from six boundary conditions (7.47) yielding displacements

and stresses throughout the plate.

Example 7.2: Thermoelastic Analysis Based on the Theory of Plates Once the

thermal problem is solved and the FGM properties and temperature distribution

have been determined, the problems of stress analysis, buckling, postbuckling and

dynamic response, can be addressed using a suitable theory of composite plates. For

example, if the plate is analyzed by the first-order shear deformation theory, one

can use equations of motion (5.62), while free vibrations of thin FGM plates can

be analyzed by (1.84). The in-plane stress-strain relationships are obtained from a

generalized version of (5.7) accounting for the presence of temperature:
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where the reference to the k-th layer is eliminated in understanding that a FGM plate

consists of a single layer with continuously varying properties.

In numerous applications a FGM plate consists of two phases, such as metal and

ceramic, and while the properties of the plate vary through its thickness, the material

can be assumed isotropic at each point. In such case bending-twisting coupling is

absent, i.e. Q16 D Q26 D 0 and the constitutive relations become
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Equations 7.52 can be applied to the analysis of shear deformable (first order

theory) or thin FGM plates using the appropriate strain-displacement relationships.

Geometrically nonlinear effects can be accommodated as well.

The properties of ceramic-metal plates considered by Praveen and Reddy (1998)

were evaluated in terms of properties of metal and ceramic by Eq. 7.38. The finite

element analysis was conducted for a square 0:2m � 0:2m � 0:01m plate subject to

a uniform pressure. The nondimensional load parameter was defined as

P D
p0a4

Emh4
;
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Fig. 7.11 Nondimensional deflections at the center of a square FGM aluminum-zirconia plate

under a uniform pressure and varying through the thickness temperature. (From Praveen and Reddy

1998)

In addition to pressure, the plate was subject to temperature of 300ıC at the ceramic

surface, while the metallic surface was maintained at 20ıC.

Variations of the nondimensional deflection of aluminum-zirconia plates are

shown in Fig. 7.11 as a function of the nondimensional load (a temperature

gradient is also present as explained above). Larger deflections in metallic and

predominantly metallic plates are due to a lower stiffness compared to that in

predominantly ceramic plates. The results shown in Figs. 7.11 illustrate that it is

possible to manipulate the response of FGM plates by an appropriate grading of the

material. Among other conclusions from this paper, the linear analysis was shown to

predict higher values of deflections, the difference between the linear and nonlinear

solutions increasing with a higher overall content of metal.

The paper by Na and Kim (2006) represents another example of a three-

dimensional finite element analysis of ceramic-metal FGM plates where material

properties varied through the thickness according to a power law. Geometric

nonlinearity was incorporated into the analysis through the Green-Lagrange strain-

displacement relationships. Temperature distributions were assumed, rather than

evaluated from the heat transfer analysis. Thus, the useful results are limited to

a uniform temperature distribution that does not depend on the solution of the

heat transfer problem. The plate was clamped along all edges and in-plane edge

displacements were prevented. As was shown in this paper, the magnitude of

bending stresses was significantly affected by grading of the plate confirming the

observation regarding a considerable potential for the modification of the response

available in FGM plates.

As a practical matter, it should be noted that while the stresses can be reduced

by an appropriate material grading, the effect of such grading on the strength should

also be considered. This is because the beneficial effect of reduced stresses in the
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plate may be neutralized by a reduced strength. Thus the comprehensive solution

should involve a micromechanical strength analysis. Furthermore, the weight of the

plate affected by grading should be taken into consideration since adding a heavier

material to the plate may contradict design requirements. Accordingly, a design of

FGM plates is a comprehensive process involving coupled micromechanical, heat

transfer (in case thermal effects are present) and macromechanical aspects.

7.8 Conclusions and Recommendations

New materials and technologies have changed the face of engineering, including

design and development of such structures as plates. Today’s engineer has at his

or her disposal the spectrum of possible materials, tailoring tools and design and

computational capacities that were unimaginable several decades ago. However, the

fundamental concepts and theoretical foundations have not been altered by the latest

developments.

The introduction of new materials and structural concepts into practical en-

gineering have emphasized the necessity to address the problem of design in

its entirety, including all aspects, such as micromechanics, heat propagation, and

macromechanics, rather than trying to address separate elements of the problem.

This has been illustrated in our discussion on functionally graded materials subject

to thermomechanical loading where we observe coupling of several theoretical

formulations and problems that are dependent on each other:

– Micromechanics, including stiffness, local strength, and thermal properties;

– Heat transfer;

– Effect of temperature on local properties of individual material phases and on

properties of FGM;

– Macromechanical analysis, including stress analysis, buckling, dynamic, fatigue

and fracture problems.

Another consequence of the introduction of new materials is related to an

interdisciplinary nature of the relevant problem. For example, the analysis of a plate

with piezoelectric sensors and actuators involves both mechanical as well as electric

aspects. If such plate is subject to thermal effects, the influence of temperature on

the properties of sensors and actuators as well as its effect on the material of the

plate have to be addressed, combined with the solution of the heat transfer problem.

Multiscale problems are also typical in modern engineering. While we do not

discuss the subject of nanotubes in this book, adding single-wall or multi-wall

nanotubes to the material substrate can drastically increase the strength and stiffness

of the structure. For example, Qian et al. (2000) reported a nearly 25% increase in

the strength and 36–42% increase in stiffness of composites reinforced by nanotubes

constituting only 1% of the weight of the material. The analysis of the response

of nanotube-reinforced structures should be conducted at the nanoscale that is

necessary to characterize the response of nanotubes, microscale concerned with the
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evaluation of the properties of the nanotube-reinforced material, and macroscale

where we address the issues of structural response.

In this chapter, we considered plates incorporating piezoelectric components that

can serve as both sensors and actuators providing active control to the plate and

functionally graded plates. In particular, piezoelectric layers or patches are used to

control vibrations of plates. They can also be applicable in energy harvesting appli-

cations where forced vibrations produce electric energy that can be either stored or

immediately used. The application of piezoelectric elements in plates is restricted

by material limitations. In particular, voltage limitations are imposed to avoid a

depolarization of the material by an electric field with polarity that is opposite to the

poling voltage. The limits of electric field that can be applied to a piezoelectric

element are typically of an order of 1,000 V/mm, although recently developed

piezoelectrics may be operated at a higher electric field. Temperature limits on

piezoelectric sensors have been discussed in Sect. 7.4. As a result of the degradation

of piezoelectric properties in the vicinity to the Curie temperature, culminating in

an irreversible loss of these properties at this temperature, piezoelectric sensors and

actuators should be operated with caution in cases where the structure is exposed

to thermal loads. Aging of piezoelectric elements is another consideration that

should be considered by a designer. This phenomenon is related to a degradation of

piezoelectric properties of the material with time that may reduce the sensitivity of

piezoelectric sensors and the efficiency of piezoelectric actuators. Finally, it should

be noted that high mechanical stresses can cause a depolarization. While we do not

attempt to quantify all these limitations on the use of piezoelectric materials in plate

structures, the issues raised above should be addressed by a designer.

The choice of a particular piezoelectric material should account for two different

classes of these materials, i.e. piezoceramics (PZT) and piezoelectric polymers

(PVDF), that possess drastically different properties. For example, PZT can with-

stand maximum stresses that are about 25 times higher than their counterparts in

PVDF. It is worth emphasizing that piezoelectric materials can operate at a very

high frequency reaching 200 MHz, providing an extraordinary quick response that

is often valuable in applications.

Functionally graded plates incorporate two or more material phases in a compos-

ite structure with varying properties. The composition of the constituent materials

and the corresponding property variations are usually in the thickness direction.

However, it is also possible to use variable in-plane material distribution, resulting

in variable stiffness and strength in the plane of the plate. In cases where circular

inclusions or particles of an arbitrary shape that are randomly oriented in three

dimensions are embedded within the substrate matrix, the properties of the plate

at each point are isotropic. However, using a preferential orientation of non-circular

particles, it is possible to manufacture non-isotropic particulate FGM plates.

Functional grading provides a designer with an attractive tailoring and opti-

mization tool, enabling him to monitor and control the response of the structure.

While designing a FGM plate, the engineer should be concerned with the issue

of its manufacturability. A distribution of material throughout a small thickness of

the plate governed by a complicated analytical law is often either impossible or
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expensive to reproduce in real life. Thus, technological aspects should prominently

feature in such designs.

In conclusion of this chapter, it is necessary to emphasize that new material and

structural concepts can alter “traditional” engineering disciplines, including design

of plates. The implementation of these concepts usually requires extensive ana-

lytical, experimental and numerical efforts. However, potential benefits associated

with an increased safety and reliability, a broader range of potential applications

and allowable loading conditions, lighter weight and lower cost during lifetime of

structure often justify the necessary effort.
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