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Preface

Since the publication of Alfred Haar’s work on orthogonal function systems a

hundred years ago, the world has witnessed a tremendous growth in the theory

and practice of wavelet, even though a reported, systematic study of the subject field

and its applications to engineering did not occur until the 1980s. Over the last 3

decades, a plethora of literature has been published, describing advancement in the

wavelet theory and its successful applications in various fields of engineering: from

image processing in biomedical engineering to signal processing in meteorology to

bridge monitoring in civil engineering. The adaptive, multiresolution capability of

the wavelet transform has also made it a powerful mathematical tool for the

diagnostics of equipment operation conditions in manufacturing, such as tool

breakage.

Past research on wavelets has been translated into a large volume of publications

and significantly impacted the state-of-the-technology. These papers, together with

a series of classic books, have taught generations of engineers the theory and

applications of wavelets. Nevertheless, there exists a gap in the literature that is

particularly dedicated to graduate students and practicing engineers in

manufacturing who are interested in learning about and applying the theory of

wavelet transform to solving problems related to equipment and process monitor-

ing, diagnostics, and prognostics in manufacturing.

The book is intended to bridge such a gap by presenting a systematic yet easily

accessible treatment of the mathematics of wavelet transform and illustrate, in

concrete terms, how wavelet transform as a mathematical tool can be realized for

applications in manufacturing. Contributing to the understating and adoption of

wavelets by the manufacturing community is the primary motivation for this book,

and the 12 chapters included herein provide an overview of some of the latest

efforts in this vibrant field.

To establish a common ground for the treatment of signals, which is the focal

point of this book, Chap. 1 starts by introducing a general classification scheme of

signals typically countered in mechanical systems, from the point of view of their

statistical behavior – deterministic and nondeterministic signals. Using a mass–

spring–damper system as a physical embodiment, the analytical expression, wave-

form, and solution of deterministic signals are first illustrated. These are then
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contrasted against the nondeterministic family of signals, and the concept of

nonstationary, which provides the fundamental motivation for dedicating this

book to wavelet transform in manufacturing, is introduced. Taking signals

measured in two representative manufacturing processes as a realistic example,

the link between manufacturing and signal processing, as well as the need for

properly treating nonstationary signals, are established, motivating the dedication

of the book to this subject matter.

Chapter 2 reviews several major events occurred in the field of signal processing

since the invention of the Fourier transform in the nineteenth century, thereby

recognizing the historical significance of spectral analysis. Such events have

initiated and accompanied the conceptualization, formulation, and growth of the

theory of wavelet transform. Based on the concept that signal transformation (for

revealing the information content of the signal) can generally be represented by a

convolution operation between the signal and a known template function, we

sought to illustrate the common ground shared by the Fourier transform as well

as its enhanced version (the short-time Fouriertransform), which has a fixed length

of the analysis window, and the wavelet transform, which features an analysis

window of variable length.

The next three chapters, Chaps. 3–5, are devoted to introducing the fundamental

mathematics involved in understanding what wavelet transform is and does, and

how to apply it to decompose nonstationary signals as typically encountered in

manufacturing. Aware of the existence of many excellent books on wavelets and at

the same time, the recognized need by many graduate students and practicing

engineers for a step-by-step treatment of some of the mathematical procedures

involved to implement the wavelet transform, in terminologies familiar to engi-

neers, we tried to take a balanced approach when writing these chapters. Specifi-

cally, we introduced the continuous version of the wavelet transform in Chap. 3, by

first drawing the resemblance between a continuous, sinusoidal wave and a time-

localized wavelet that is essentially a linear, integral transformation satisfying the

admissibility condition. To provide the readers with a handy access to some of the

most often encountered properties of the continuous wavelet transform (CWT) in

one place, we included descriptions of concepts such as superposition, covariance

under translation and dilation, and the Mayol principle, together with a mathemati-

cal proof, for each of these properties. By providing detailed proofs, we wish to

encourage readers who might have initially felt intimidated by the wavelet mathe-

matics to gain some confidence in approaching the topic from a practical yet

mathematically rigorous perspective, instead of resorting to a strictly recipe type

of operations. We then proceeded to give a step-for-step procedure for implement-

ing the CWT, in two ways, such that readers can see, in concrete terms, where all

the background information finally leads to, in terms of performing CWT on some

representative signals.

Chapter 4 introduces the discrete version of the wavelet transform, or DWT. The

chapter is motivated by the recognition that CWT, while enabling a 2D decompo-

sition of signals in the time–frequency (via the scale) domain with high resolution,

is computationally complex due to the generation of redundant data. In comparison,

the DWT is computationally more efficient, thus it is better suited for image
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compression and real-time applications. Using logarithmic discretization as an

example, we first discussed how parameters are discretized to guarantee correct

information retrieval as a result of the DWT process. Several derivation details are

provided to illustrate the thought process. We then moved to the dyadic discretiza-

tion method that allows for orthogonalwavelet basis to be constructed, based on the

theory of multiresolution analysis (MRA). To satisfy readers who may be interested

in knowing a bit more about the “why” and “how” related to MRA, we supple-

mented the explanation with several mathematical details, and illustrated why the

process of DWT will lead to the generation of detailed and approximate informa-

tion. In this context, we demonstrated that DWT, in essence, is about performing a

series of low-pass and high-pass filtering operations, which can be implemented by

following Mallat’s algorithm. Mirroring the structure of Chap. 3, we presented

several commonly used wavelets for DWT and illustrated how they can be used for

applications such as signal denoising, by means of soft and hard thresholding.

While enabling flexible time–frequency resolution in signal decomposition, the

relatively low resolution of DWT in analyzing the high-frequency region gives rise

to the wavelet packet transform (WPT), which is the focus of Chap. 5. After a brief

coverage of its definition and basic properties, two algorithms for implementing the

WPT – the recursive algorithm developed by Mallat and a Fourier transform-based

algorithm that leads to the harmonic wavelet packet transform – are introduced. We

then illustrated how a signal’s time–frequency composition of a vibration signal,

which relates directly to the working state of manufacturing equipment, can be

revealed by the WPT, and how WPT can be applied to removing Gaussian noise

from a chirp signal. These applications exemplify how the enhanced resolution of

WPT can provide an attractive tool for detecting and differentiating transient

elements with high-frequency characteristics.

With the fundamentals of wavelet transform covered, Chaps. 6–8 describe

several application scenarios where the effectiveness of wavelet transforms are

demonstrated. The first application relates to signal enveloping, a technique com-

monly used for nondestructive testing and structural defect identification. Addres-

sing the limitation of enveloping in requiring a priori knowledge for choosing the

filtering band to extract a signal’s envelope, an adaptive, multiscale enveloping

method (MuSEnS) that is rooted in the wavelet transform is described in Chap. 6,

which effectively overcomes the limitation. Taking advantage of the Hilbert trans-

form in extracting the envelop of an analytic signal and the fact that performing

wavelet transform on a signal using a complex-valued base wavelet will result in an

analytic signal, the chapter illustrates how a signal’s envelope can be readily

calculated from the modulus of the corresponding wavelet coefficients. To illustrate

the effectiveness of this technique in signal decomposition, two manufacturing-

related applications – differentiation of ultrasonic pulses that are timely overlapped

and spectrally adjacent for wireless pressure measurement in injection molding and

bearing defect diagnosis in rotary machines – are demonstrated, using both experi-

mentally measured signals and synthetic signals for quantitative evaluation.

While the localized signal decomposition capability of wavelet transform is

particularly useful for transient events identification, the result of wavelet transform

does not explicitly reveal distinct characteristic frequencies that are often times
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indicative of defective modes of a machine, e.g., the ball passing frequency at the

inner raceway of a rolling element, when a localized spalling is present. In such

situations, the effectiveness of wavelet transform can be leveraged by the Fourier

transform in identifying a signal’s frequency components. This leads to the formu-

lation of a unified time-scale-frequency analysis technique that adds spectral post-

processing to the data set extracted by wavelet transform, for enhanced defect

diagnosis. In Chap. 7, we demonstrate such an integrated method, in the context

of a generalized signal transformation frame. An expression for both the Fourier

transform and wavelet transform in the generalized frame is first presented, estab-

lishing the basis for crossdomain unification of the two transforms. Next, the

viability of postspectral analysis of wavelet processed data is analytically justified,

and the effectiveness of the technique in identifying the bearing defects under

various operating conditions is demonstrated.

A question that naturally arises upon defect detection is the severity of the

defect, which affects the proper scheduling of maintenance. To answer this ques-

tion, we demonstrate in Chap. 8 how WPT can be applied in classifying machine

defect severity, using vibration signals from rolling bearings as an example. We

start the discussion by associating features (e.g., energy content or Kurtosis value)

of a signal with the subfrequency bands of its decomposition, enabled by the WPT,

and demonstrate how WPT can flexibly extract features from the subfrequency

bands of the decomposed signal where the features are concentrated. The chapter

further contains a discussion on how to process the features, once they are obtained,

for classification purpose. Relevant techniques for selecting best-suited features

using the Fisher linear discriminant analysis and principal component analysis, and

classifying features to quantify defect severity levels are described. Two case

studies presented toward the end of the chapter on ball and roller bearings confirm

the validity of WPT for defect severity classification.

Chapter 9 continues the discussion on signal classification, with a focus on how

it can be applied to differentiate different working conditions of a machine, for the

purpose of diagnosis. The concept of discriminant features is first introduced, and a

technique called the local discriminant bases (LDB) is described in detail. In a

nutshell, the LDB algorithm determines an optimal set of wavelet packet nodes,

each of which corresponding to a wavelet packet basis, to represent signals acquired

under different machine states as different classes. Similar to the Shannon entropy

feature introduced in Chap. 5 for signal compression, several features suited for

diagnosis of rotating machines, e.g., relative entropy or correlation index, are

identified in this chapter. We provided a step-by-step description of the LDB

algorithm, for readers to see how the algorithm can be implemented. Using three

synthetic signals with added white noise and vibration signals measured on a

gearbox under different states of wear, we quantitatively demonstrated how the

wavelet packet bases constructed using the LDB algorithm can more successfully

differentiate and classify these signals than without using the LDB.

Given the abundance of the base wavelets in the published literature, it is natural

to ask the question as to how to choose an optimal base wavelet for analyzing a

particular type of signal. This is based on the understanding that (1) the choice of

base wavelet made in the first place will affect the result obtained at the end, and
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(2) each base wavelet may be developed for different purposes and emphasis;

therefore, an educated approach to their selection is needed when solving a specific

type of engineering problems. In this book, we have tried to address this issue of

significant intellectual interest in two ways. First, in Chap. 10, we introduced a

general strategy for base wavelet selection, using both qualitative measures (e.g.,

orthogonality and compact support) and quantitative measures (e.g., Shannon

entropy and discrimination power). Subsequently, we presented several criteria

for base wavelet selection, including the energy-to-Shannon entropy ratio and the

maximum information measure. Using both real-valued and complex-valued base

wavelets, we demonstrated how these criteria can be applied to selecting the best-

suited base wavelet from a pool of candidates to decompose both a numerically

formulated Gaussian-modulated sinusoidal test signal and a vibration signal

measured on a defective ball bearing, thus confirming the effectiveness of these

criteria.

Besides investigating how to choose an appropriate base wavelet from the

existing library, another approach is to design a customized wavelet that is adapted

to a specific type of application to maximize the degree of matching with the signal

of interest, thus improving the effectiveness of feature extraction. Such a comple-

mentary technique is the focus of Chap. 11. After reviewing the fundamental issues

involved in the wavelet design process and several customized wavelets, we

described in detail the process of designing an impulsewavelet for bearing vibration

analysis, based on the impulse response of the mechanical structure where the

bearing is housed. The importance of satisfying the dilation equation to avoid

information loss in the signal reconstruction is stressed, and the procedure of

meeting this requirement is illustrated. Using the designed impulse wavelet, vibra-

tion signals from a defective bearing are analyzed, and the result is compared with

that from using five standard wavelets available in the library, using the signal-to-

noise ratio for the defect-characteristic frequency as the measure for comparison.

The good performance of the impulse wavelet confirms the validity of the analytical

procedure described in developing customized wavelets for enhanced signal analy-

sis in a broad range of applications in engineering.

The last chapter of the book provides a brief survey of some new advancement

reported in recent years that goes beyond the classical wavelet transform. These

latest developments address some of the fundamental limitations inherent to the

wavelet transform, e.g., when it is used to analyze signals of finite length and/or

limited duration, or for capturing and defining image boundaries. We started the

survey by introducing the second generation wavelet transform, or SGWT, which

uses the so-called lifting scheme to replace the traditional mechanism of wavelet

construction that uses translation and dilation. Major operation steps for realizing

the SGWT, such as splitting, prediction, and updating, are described, and the

effectiveness of the technique for separation and reconstruction of an intermittent

linear chirp signal is demonstrated. Addressing the inherent limitations of classical

wavelets (e.g., isotropic) and the specific challenges in image processing (e.g., in

resolving image boundaries), we then introduced the ridgelet and curvelet trans-

forms. The former was developed to address the need for analyzing anisotropic

features in images, whereas the latter enables improved representation of curved
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boundaries in images. For each transform, we have presented the definition and

basic properties, and demonstrated a representative application in manufacturing.

As is true with any book, the writing reflects upon the authors’ understanding of

and knowledge about the subject matter. While we have strived to present to the

readers a composition that is both rigorous in the mathematical treatment and

relevant in the examples chosen to complement the theory, it is inherently difficult

for a work of this size to be completely free of errors. We bear the responsibility for

anything that is not correctly stated in the book and would greatly appreciate

hearing from our readers about any mistakes they found such that we can correct

them in future printings.

We thank the anonymous reviewers for their insightful and constructive com-

ments that have both sharpened our thinking and provided clues to improving the

pedagogic presentation. We are indebted to former graduate students at the Elec-

tromechanical Systems (EMS) Laboratory, whose intellectual contributions have

made the book a reality. In particular, we thank Drs. Brian Holm-Hansen, Changt-

ing Wang, and Li Zhang, who dedicated a substantial part of their doctoral research

to the study of wavelet for diagnosis in manufacturing equipment and processes,

and Dr. Qingbo He, who spent a year as a postdoctoral research fellow at the EMS

Laboratory, working on the characterization of physical activities, for their dedica-

tion to and enthusiasm in exploring the world of wavelets, which has laid the

foundation for this book. We also thank the US National Science Foundation for

funding a number of relevant projects, which has allowed us to systematically study

this fascinating subject.

This book-writing project was initially planned to be completed in 1 year, but a

number of events that took place in between have delayed the writing and made the

time needed for ultimately completing the book nearly twice as long. We take this

opportunity to express our sincere appreciation to the publisher for supporting this

project. In particular, we thank Mr. Stephen Elliot, Senior Editor for Engineering,

and Mr. Andrew Leigh, editorial assistant, for their earnest cooperation, editorial

assistance, and above all, patience, which has created a relaxed environment for us

to finish the writing while juggling many other deadline issues. Last but not the

least, we sincerely thank our respective families for their understanding and carry-

ing the load for us during the course of this project so that we could devote as much

time as possible to the writing of the book. It is our hope that the book is worth their

selfless support, and our readers will find in it something that is of value to their

research.
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Chapter 1

Signals and Signal Processing in Manufacturing

The term “signal” refers to a physical quantity that carries certain type of

information and serves as a means for communication. As an example, the output

of an accelerometer in the form of a voltage that varies with time is a signal that

carries information about the vibration of the structure (e.g., a machine tool) on

which the accelerometer is installed. Such a signal can serve as a means for

communicating the operation status of the machine tool to the machine operator.

1.1 Classification of Signals

In general, any signal can be broadly classified as being either deterministic or

nondeterministic (Bendat and Piersol 2000). Deterministic signals are those that can

be defined explicitly by mathematical functions. An example is the vibration caused

by imbalance in a rolling bearing, when the bearing’s gravitational center does not

coincide with the rotational center. Nondeterministic signals, in comparison, are

random in nature and are described in statistical terms. An example is the acoustic

emission signals generated during a machining process. In real-world applications,

whether a measured signal is deterministic or nondeterministic depends on its

reproducibility. A signal that can be generated repeatedly with identical results is

considered to be deterministic, otherwise it is nondeterministic.

1.1.1 Deterministic Signal

There are two types of deterministic signals: periodic and transient. They are briefly

explained and illustrated in the following.

1.1.1.1 Periodic Signal

A periodic signal is defined as a function that repeats itself exactly after a certain

period of time, or cycle. Such a signal is mathematically expressed as

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,
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xðtÞ ¼ xðtþ nTÞ n 2 ℤ (1.1)

In the above equation, ℤ represents the integer set, n is an integer, and T > 0

represents the period. The simplest example of a periodic signal is the sinusoidal

signal.

In practice, many physical systems can produce such a type of signal. A typical

scenario is a single-degree-of-freedom (SDOF) mass-spring-damper system (Rao

2003). As illustrated in Fig. 1.1, the mass m is attached to the wall through a spring

k and a damper c, and can vibrate in the horizontal direction. The motion

(or displacement) of themass-spring-damping system under input FðtÞ is expressed as

m€xðtÞ þ c _xðtÞ þ kxðtÞ ¼ FðtÞ (1.2)

where xðtÞ is the displacement of the mass, _xðtÞ the velocity of the mass, and €xðtÞ the
acceleration of the mass.

Let us suppose that the system is under free vibration, with the external forcing

input F(t) being zero. Also assume that the damping coefficient c¼ 0. If the system

is initially pulled away from the equilibrium position by a distance A0 and released

with the initial velocity equal to zero, so that

xðt ¼ 0Þ ¼ A0 _xðt ¼ 0Þ ¼ 0 (1.3)

then the solution of (1.2) will generate a periodic signal with the period T ¼ 2p=on.

This will be a cosine function, as illustrated in Table 1.1a

A complex periodic signal can also be generated from the same system (Fig. 1.1)

with c ¼ 0, when the system is subject to a harmonic forcing input,FðtÞ ¼ F cosðotÞ.
As illustrated in Table 1.1b, the complete response can be expressed as the sum

of cosine waveforms of two different frequencies.

1.1.1.2 Transient Signal

A transient signal is defined as a function that lasts a short period of time. Such a

signal can be generated by the system shown in Fig. 1.1, with the damping

coefficient c 6¼ 0 and free vibration, as illustrated in Table 1.1c.

k

x(t)

F(t)m

c

Fig. 1.1 A single-degree-of-

freedom (SDOF) mass-

spring-damper system
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Periodic and transient signals are often mixed together in real-world applications.

Such a signal can be generated, for example, by the system shown in Fig. 1.1 with the

damping coefficient c 6¼ 0, under a harmonic force, as illustrated in Table 1.1d.

1.1.2 Nondeterministic Signal

Nondeterministic signals, also called random signals, do not follow explicit mathe-

matical expressions. They can be generally divided into two categories: stationary

and nonstationary.

Table 1.1 Example of deterministic signals

Mathematical function Waveform

(a) A simple periodic signal x(t)

t

T=2p /wn

Condition

c ¼ 0

FðtÞ ¼ 0

Solution

xðtÞ ¼ A0 cosðontÞ

(b) A complex periodic signal x(t)

t

Condition

c ¼ 0

FðtÞ ¼ F cosðotÞ
Solution

xðtÞ ¼ A1 cosðontÞ þ A2 cosðotÞ

(c) A transient signal x(t)

t

Condition

c 6¼ 0

FðtÞ ¼ 0

Solution

xðtÞ ¼ A0e
�zon t cosðodtÞ

(d) A mixed deterministic signal x(t)

t

Condition

c 6¼ 0

FðtÞ ¼ F cosðotÞ
Solution

xðtÞ ¼ A0e
�zon t cosðodtÞ þ A3 cosðotÞ

Note: on ¼
ffiffiffi

k
m

q

;od ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

on, and z ¼ c
2mon

<1; A1 ¼ A0 � F
k�mo2 ; A2 ¼ F

k�mo2 ; A3 ¼ F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk�mo2Þ2þc2o2
p
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1.1.2.1 Stationary Signal

A signal xðtÞ is considered stationary when none of its statistical properties change

with time. Generally, wide-sense stationary (Bendat and Piersol 2000) is used to

characterize the signal. This requires that it satisfies the following conditions on its

mean function:

Efxðt1Þg ¼ mxðt1Þ ¼ mxðt1 þ tÞ t 2 ℤ (1.4)

and the autocorrelation function:

Efxðt1Þ; xðt1 þ tÞg ¼ Rxxðt1; t1 þ tÞ ¼ Rxxð0; tÞ t 2 R (1.5)

In the above equations, the symbol t is the real number, R is defined as the real

number set, and Rxx is the autocorrelation function of the signal xðtÞ. Equation (1.4)
indicates that the mean function mxðtÞ must be time-invariant or remain unchanged

as time goes by. As shown in (1.5), the autocorrelation function of the signal

depends only on the time difference t. The mean function and autocorrelation

function of a signal can be obtained by time-averaging over a short time interval

T as follows:

Efxðt1Þg ¼ 1

T

Z t1þT

t1

xðtÞdt (1.6)

and

Efxðt1Þ; xðt1 þ tÞg ¼ 1

T

Z t1þT

t1

xðtÞxðtþ tÞdt (1.7)

Table 1.2a illustrates an example of a stationary signal, which satisfies the two

conditions expressed in (1.5) and (1.6).

1.1.2.2 Nonstationary Signal

A signal whose statistical properties change with time is called a nonstationary

signal. As a result, a nonstationary signal does not satisfy the conditions specified

in (1.4) and (1.5). Table 1.2b illustrates a nonstationary signal.

It should be noted that signal classification method as described above is not

rigid and exclusive. No signals encountered in the real-world are exactly determin-

istic. Furthermore, there exist other means to classify a signal. For example, a signal

can be considered as being either linear or nonlinear, as defined by the superposition

principle. An SDOF mass-spring system is considered linear, if a linear relationship

exists between the force input to the system and its corresponding displacement

4 1 Signals and Signal Processing in Manufacturing



output. In real-world applications, a signal may contain some or several of the

components described above.

1.2 Signals in Manufacturing

Signals are ubiquitously present in manufacturing machines and systems. For

example, metal removal is essential to many manufacturing processes, as seen in

turning, milling, and drilling (Schey 1999). During such a process, interactions

between the cutting edge of the tool and the workpiece lead to removal of fragments

of varying volumes, producing whereby time-varying or transient components in

the vibration signals. Figure 1.2 illustrates the waveform of a vibration signal

measured on a CNC milling machine center (shown in Fig. 1.3) when it is in

production.

Another manufacturing process where transient signals may present is sheet

metal stamping. The physical setup of a sheet metal stamping operation consists of

three main components, namely, the die, the binder, and the punch (Suchy 2006), as

shown in Fig. 1.4. During a stamping operation, the periphery of the sheet metal

workpiece is held between the binder and die flange. As the punch moves down, the

workpiece is pressed into the die, causing plastic deformation in the workpiece

material. The flow of the workpiece material into the die is regulated by the binder

force (Ahmetoglu et al. 1992; Koyama et al. 2004).

To characterize the stamping process, tonnage measurement has been conducted

by placing accelerometers on the columns of the stamping machine. In Fig. 1.5,

the output of an accelerometer is shown, in which four different phases of the forming

operations are characterized: press idle, travel, contact, and free vibration. When the

press is idle, the punch runs down until the binder touches the workpiece at point A.

Then travel starts, and the signal amplitude increases as the stamping force increases,

until it reaches point B where the punch touches the workpiece. After that, contact

between the punch and workpiece is established, and metal forming starts. The signal

quickly increases to its maximum at point C, as the punch pushes the sheet metal into

the die. At point D, the forming process is completed, and the amplitude of the

Table 1.2 Example of nondeterministic signals

(a) Stationary signal (b) Nonstationary signal

x(t)

t

T
1

T
2

T
3

T
1 

= T
2 

= T
3

x(t)
T

1
T

2
T

3

T
1 

≠ T
2 

≠ T
3

t
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vibration signal quickly drops to zero. After point E, vibration of the stamping

machine diminishes with time, until the next stamping operation starts.

For nonmetallic material processing, injection molding is widely employed

because of its capability in mass production of plastic parts. Figure 1.6 illustrates a

typical injectionmoldingmachine. The injectionmolding process generally consists of

four stages (Potsch andMichaeli 1995; Bryce 1996; Johannaber 2008): (1) plastication,

where the raw material is melted in the barrel, (2) injection, during which the melted

polymer is injected into the mold cavity, (3) packing, holding, and cooling, when

additional polymer melt is forced into the cavity under high pressure to compensate

for the volumetric shrinkage until the part is sufficiently solidified, and (4) ejection,

where the mold opens and the part is ejected out of the mold by the push pins.

During each injection molding cycle, pressure within the mold cavity varies,

as illustrated in Fig. 1.7. Such time-variation serves as a measure for identifying

Fig. 1.3 A CNC milling machine center (Haas Automation, Inc., http://www.haascnc.com)

Time (s)

A
m

p
li
tu

d
e 

(V
)

6
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0

−2

−4
0 0.2 0.4 0.6 0.8 1

Fig. 1.2 Vibration signal measured during a milling process
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Fig. 1.5 A typical tonnage signal during stamping process

Fig. 1.4 A typical stamping machine (BowStar Biz Management Ltd)
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and characterizing the various stages of the molding process. At point ➀ where

the plasticized polymer enters the cavity, pressure starts to increase from zero in

an approximately linear gradient relative to the duration of filling time. When the

melt reaches the end of the cavity at point ➁, the material is compacted to ensure

reproduction of the mold cavity contour. Such a process is indicated by a fast

pressure ramping rate as shown in the curve from➁ to➂. During the holding phase

from ➂ to ➃, a constant holding pressure is applied to the melt to compensate for

the contraction of the polymer by injecting additional material into the cavity. As

the molded part starts to cool down and solidify, viscosity of the material increases

and the flow channel becomes constricted. As a result, pressure drop is seen from

the sensor data as indicated by the section from ➃ to ➄.

The close association between signals and manufacturing, in addition to the

various processes as illustrated above, is also seen in various components that have

been employed in various machine equipment. One representative is the rolling

bearings, which have been widely applied to providing loading support

and rotational freedom in manufacturing, transportation, aerospace, and defense

Fig. 1.6 A typical injection molding machine (Ferromatik Milacron)
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Fig. 1.7 Pressure signal measured during an injection molding process
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(e.g., machine tools, trains, helicopters, power generator, etc.). Because of faulty

installation, inappropriate lubrication, and other unpredictable adverse conditions

during bearing operations, premature failure of bearings may occur, for example, in

the form of surface spalling on the bearing raceways. As a result, impulsive signals

will be generated every time when the rolling elements interact with the defects.

These impulsive signals subsequently excite the machine system, leading to forced

vibrations. Figure 1.8 illustrates a customized spindle system where bearings are

installed. Vibration signals measured at two stages during a run-to-failure

experiment on the spindle system are shown in Fig. 1.9.

Fig. 1.8 A customized

spindle-bearing test system
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Fig. 1.9 The vibration signals from bearing run-to-failure test. (a) Signal measured from stage I

when defect is at the initial stage and (b) signal measured from stage II, where defect has grown

significantly
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Gearbox, as illustrated in Fig. 1.10, has been employed in a wide range of

machinery and control systems, because of its ability in transferring both

power and motion with high efficiency. When a defect is developed in a gear, the

vibration signal of the gearbox will contain amplitude and phase modulations

that are periodic with respect to the rotation of the gear. Figure 1.11 shows

an example of vibration signals measured on a gearbox under different running

conditions.

Fig. 1.10 An automobile transmission gearbox (Topic Media PTY LTD)

Fig. 1.11 Acceleration signals measured on a gearbox: (a) normal condition, (b) slight fault
condition, and (c) severe fault condition
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1.3 Role of Signal Processing for Manufacturing

Growing demand for high-quality and low-cost production has increased the

need for condition monitoring, health diagnosis, and enhanced controls in

manufacturing equipment and processes (Tönshoff et al. 1988; Byrne et al. 1996;

Ganesan et al. 2004; Liang et al. 2004). Accordingly, sensor-based information

acquisition and processing systems have gained increasing attention from the

research community worldwide (Teti 1996; DimlaSnr 2000; Tseng and Chou 2002;

Frankowiak et al. 2005). The goal of these efforts is to obtain information in real-time

about the operation status of the machines and use the information for the following

purposes:

1. Identification of machine faults at the incipient stage such that proper corrective

measures can be taken before the faults have progressed to cause significant

structural damage and costly downtime, thus enabling adaptive instead of fixed-

time maintenance and production scheduling

2. More accurate control of the quality of products being manufactured, which is

directly related to the working conditions of the machine

In addition to monitoring individual machines, data gathered from the sensors

provide insight into the manufacturing process itself, and can be used to assist in

high-level decision-making for production optimization.

Signals encountered in manufacturing machines typically consist of three major

components:

1. A periodic component resulting from the cyclic interactions between the inter-

facing elements of the machine, such as vibrations caused by the interaction

between the rolling elements and the raceway

2. A transient component caused by “one-time” events, such as the sudden breakage

of a drilling bit or the inception of a crack inside a workpiece

3. Broadband background noise

Detection of the existence of these signals in real-time during the manufacturing

process and extracting relevant information from the signals in a timely manner

are of significant interest and importance, as they are precursors of potential

machine defect and product quality deterioration that will negatively impact the

manufacturing processes. On the other hand, detection of such signals can be

challenging, as these signals are generally short in duration and weak in amplitude.

Often times, they can be buried under strong background noises, making

their detection difficult (Gu et al. 2002; Padovese 2004; Shi et al. 2004). Further-

more, the one-shot nature of these signals makes the assumption for stationary

signals invalid, thus reducing the effectiveness of conventional signal processing

techniques. For example, while Fourier transform has been extensively used in

conjunction with filtering techniques, its effective utilization depends upon signals

containing distinct characteristic frequency components of sufficient energy con-

tent, within a limited frequency band. If the feature components spread over a wide
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spectrum, it would be difficult to use Fourier transform to differentiate them from

disturbing or masking components, especially when the feature components are

weak in magnitude. This has been shown in condition-monitoring studies of bear-

ings with an incipient defect (Mori et al. 1996).

Time-frequency and time-scale techniques have been the subject of extensive

research over the past decade for nonstationary signal analysis. Typical representa-

tives include the short-time Fourier transform (STFT) and wavelet transform (Li and

Ma 1997; Satish 1998). STFT was developed to address the limitation of the Fourier

transform, which is rooted in its basis functions extending over an infinite period of

time. As a result, Fourier transform is not well adapted to nonstationary transient

signals with short durations. A solution to this problem is to perform a “time

localized” Fourier transform within a sliding window, as in the case of STFT

(Chui 1992). Popular choices for the window function include the Hamming, the

Hann, and the Gaussian functions. When a Gaussian window is chosen, the STFT is

called a Gabor transform (Gabor 1946). A one-sided Gaussian window has been

used for detection of transient signals in a workpiece (Friedlander and Porat 1989).

The disadvantage of the STFT is that its time resolution (the smallest separation in

time of two signal components that can be discriminated) and bandwidth cannot be

chosen to be simultaneously small, according to the uncertainty principle (Cohen

1989). The time-bandwidth product of the STFT must be greater than or equal to the

inverse of 4p. The equal sign holds only when the window function is a Gaussian

function. This means that the time-frequency resolution over the entire time-fre-

quency plane is fixed, once the window function is chosen. As a result, a trade-off

must be made between the time resolution and frequency resolution, when the STFT

is applied to transient signal analysis.

To overcome the resolution limitation of the Gabor transform, the wavelet

transform has been increasingly investigated for nonstationary signal analysis

(Mallat 1989; Daubechies 1990, 1992; Rioul and Vetterli 1991). In contrast to

the Gabor transform with fixed windows, the wavelet transform uses short

windows at high frequencies and long windows at low frequencies (Rioul and

Vetterli 1991). Such a nature leads to the wavelet transform being called the

constant relative-bandwidth frequency analysis. Unlike the Fourier transform,

which expresses a signal as the sum of a series of single-frequency sine and cosine

functions, the wavelet transform decomposes a signal into a set of basis functions.

These basis functions are obtained from a single base wavelet function by a

two-step operation: scaling (through dilation and contraction of the base

wavelet along the time axis, as will be explained in Chap. 2), and time shift

(i.e., translation along the time axis). Essentially, the wavelet transform process

measures the “similarity” between the signal being analyzed and the base wavelet.

Through variations of the scales and time shifts of the base wavelet function,

features hidden within the signal can be extracted, without requiring the signal

to have a dominant frequency band.

Research on manufacturing machine and process monitoring and diagnosis

using the wavelet transform has attracted increasing attention worldwide. For

example, the adaptive capability has made wavelet transform a good analytical
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tool for decomposing gearbox vibration signals. Studies have demonstrated its

ability to detect incipient failures as well as differentiating different types of defects

(Wang and McFadden 1993, 1995; Zheng et al. 2002). The discrete wavelet

transform has been applied to analyzing spindle motor current for tool failure

diagnosis in end-milling, under varying cutting conditions (Lee and Tarng 1999).

Similar studies of wavelet transform for machine tool monitoring have been

reported (Fu et al. 1998; Li et al. 2000). For detecting localized bearing defects

and/or estimating the defect severity level, the advantage of wavelet transform has

been extensively investigated (Wang and Gao 2003; Lou and Loparo 2004; Yan and

Gao 2005; Chiementin et al. 2007; Wang et al. 2009), and the results have shown its

superior performance over the conventional, Fourier-based approaches. Other appli-

cations of wavelet transform, including singularity detection (Sun and Tang 2002),

denoising and extraction of weak signals (Altmann and Mathew 2001; Lin 2001),

vibration signal compression (Tanaka et al. 1997; Staszewski 1998), and system

and parameter identification (Robertson et al. 1998; Kim et al. 2001), have also

been reported.

It can be concluded that the wavelet transform provides a powerful mathematical

tool for the analysis, characterization, and classification of nonstationary signals

typically seen in manufacturing. The adaptive, multiresolution capability of

the wavelet transform makes it well suited for decomposing signals of varying

time and frequency resolutions that are characteristic of the underlying defect

mechanisms associated with a machine, a dynamical structure, or a manufacturing

process. Such capability makes the wavelet transform an enabling tool for advancing

the science base of signal processing inmanufacturing. It is such significance and the

associated potential impact that motivate this book, and it is the intention of the

book to provide graduate students and practicing engineers with a systematic,

comprehensive, yet easily accessible coverage of the fundamental theory and repre-

sentative applications of wavelet transform in the broad and vibrant field of

manufacturing research.
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Chapter 2

From Fourier Transform to Wavelet
Transform: A Historical Perspective

To ensure safe and economical operation and product quality, manufacturing

machines and processes are constantly monitored and evaluated for their working

conditions, on the basis of signals collected by sensors, which are generally

presented in the form of time series (e.g., time-dependent variation of vibration,

pressure, temperature, etc.). To extract information from such signals and reveal the

underlying dynamics that corresponds to the signals, proper signal processing

technique is needed. Typically, the process of signal processing transforms a

time-domain signal into another domain, with the purpose of extracting the charac-

teristic information embedded within the time series that is otherwise not readily

observable in its original form. Mathematically, this can be achieved by represent-

ing the time-domain signal as a series of coefficients, based on a comparison

between the signal xðtÞ and a set of known, template functions fcnðtÞgn2z as

(Chui 1992; Qian 2002)

cn ¼
Z 1

�1
xðtÞc�

nðtÞdt (2.1)

where (·)* stands for the complex conjugate of the function (·). The inner product

between the two functions xðtÞ and cnðtÞ is defined as

hx;cni ¼
Z

xðtÞc�
nðtÞdt (2.2)

Then (2.1) can be expressed in the general form as

cn ¼ hx;cni (2.3)

The inner product in (2.3), in essence, describes an operation of comparing the

“similarity” between the signal xðtÞ and the template function fcnðtÞgn2z, that is,
the degree of closeness between the two functions. The more similar xðtÞ is to cnðtÞ,
the larger the inner product cn will be. On the basis of this notion, this chapter

presents a historical perspective on the evolution of the wavelet transform. This is

realized by observing the similarities as well as differences between the wavelet
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transform and other commonly used techniques, in terms of the choice of the

template functions fcnðtÞgn2z. To illustrate the point, a nonstationary signal

as shown in Fig. 2.1 is used as an example. The signal consists of four groups

of impulsive signal trains, each containing two transient elements of different

center frequencies at 1,500 and 650 Hz, respectively. The four groups are separated

from one another by a 12-ms time interval. Within each group, the two transient

elements are time-overlapped. The sampling frequency used to capture the signal

is 10 kHz.

2.1 Fourier Transform

The Fourier transform is probably the most widely applied signal processing tool

in science and engineering. It reveals the frequency composition of a time series

xðtÞ by transforming it from the time domain into the frequency domain. In 1807,

the French mathematician Joseph Fourier (Fig. 2.2) found that any periodic signal

can be presented by a weighted sum of a series of sine and cosine functions.

However, because of the uncompromising objections from some of his contempor-

aries such as J. L. Lagrange (Herivel 1975), his paper on this finding never

got published, until some 15 years later, when Fourier wrote his own book, The

Analytical Theory of Heat (Fourier 1822). In that book, Fourier extended his

finding to aperiodic signals, stating that an aperiodic signal can be represented by

a weighted integral of a series of sine and cosine functions. Such an integral is

termed the Fourier transform.

Using the notation of inner product, the Fourier transform of a signal xðtÞ can be
expressed as

Xð f Þ ¼ hx; ei2pfti ¼
Z 1

�1
xðtÞe�i2pft dt (2.4)
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Fig. 2.1 A nonstationary signal x(t)
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Assuming that the signal has finite energy,

Z 1

�1
jxðtÞj2dt<1

Accordingly, the inverse Fourier transform of the signal xðtÞ can be expressed as

xðtÞ ¼
Z 1

�1
Xð f Þei2pft df (2.5)

Signals obtained experimentally through a data acquisition system are generally

sampled at discrete time intervals DT, instead of continuously, within a total

measurement time T. Such a signal, defined as xk, can be transformed into the

frequency domain by using the discrete Fourier transform (DFT), defined as

DFTðfnÞ ¼
1

N

X

N�1

k¼0

xke
�i2pfnkDT (2.6)

where N ¼ T=DT is the number of samples, and fn ¼ n=T; n ¼ 0; 1; 2; . . . ;N � 1

are the discrete frequency components. The inverse DFT can then be expressed as

xk ¼
1

DT

X

ðN�1Þ=T

fn¼0

DFTð fnÞei2pfnkDT (2.7)

Equations (2.4) and (2.6) indicate that the Fourier transform is essentially a

convolution between the time series xðtÞ or xk and a series of sine and cosine

functions that can be viewed as template functions. The operation measures the

similarity between xðtÞ or xk and the template functions, and expresses the average

frequency information during the entire period of the signal analyzed. In Fig. 2.3,

such an operation is graphically illustrated.

“An arbitrary function,

continuous or with

discontinuities, defined in a finite 

interval by an arbitrarily

capricious graph can always be 

expressed as a sum of sinusoids”

J.B.J. Fourier

Fig. 2.2 Jean B. Joseph Fourier (1768–1830)
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To compute the DFT of a signal with N samples, multiplication of an N � N

matrix that contains the primitive nth root of unity e�i2p=N by the signal is needed.

Such an operation takes a total of arithmetic operations on the order of N2 to

complete. The computational time increases quickly as the number of the samples

increases. For example, a time series of N ¼ 256 (i.e., 28) samples takes 65,536

operational steps to complete, whereas for N ¼ 4,096 (i.e., 212), a total of

16,777,216 steps will be needed to compute its DFT. The high computational

cost limited the widespread application of the DFT in its early stage, until a more

efficient algorithm, called the Cooley–Tukey algorithm, was introduced in 1965

(Cooley and Tukey 1965). This algorithm is also called the fast Fourier transform

(FFT), and what it does is to recursively break down a DFT of a large data sample

(i.e., a large N) into a series of smaller DFTs of smaller samples by dividing the

transform with size N into two pieces of size N/2 at each step, and reduce the

arithmetic operations to a total of N logðNÞ. Comparing to the N2 operations

required for DFT, this represents a time reduction of up to 96%, when, for example,

the data sample number N is 256.

In practice, the phenomena of leakage and aliasing can happen during the

calculation of DFT (Körner 1988). Leakage is caused by the discontinuities

involved when a signal is extended periodically for performing the DFT. Applying

a window to the signal to force it to contain a full period can prevent leakage from

happening. However, the window itself may contribute frequency information to

the signal. Aliasing occurs when the Shannon’s sampling theorem is violated,

(Bracewell 1999) causing the actual frequency component to appear at different

locations in the frequency spectrum. This can be solved by ensuring the sampling

frequency to be at least twice as large as the maximum frequency component

contained in the signal (Bracewell 1999). This requires, however, that the maxi-

mum frequency component is known a priori.

The Fourier transform of the signal shown in Fig. 2.1 is illustrated in Fig. 2.4.

The figure shows two major frequency peaks at 650 and 1,500 Hz, respectively.

e
j2π ft

cos(2p fnt) sin(2p fnt)

sin(2p f2t)

sin(2p f1t)cos(2p f1t)

cos(2p f2t)
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f2

f1

f

•
•
•

x(t)

Fig. 2.3 Illustration of the Fourier transform of a continuous signal x(t)
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However, it does not reveal how the signal’s frequency contents vary with time;

that is, the figure does not reveal if the two frequency components are continuously

present throughout the time of observation or only at certain intervals, as is

implicitly shown in the time-domain representation. Because the temporal structure

of the signal is not revealed, the merit of the Fourier transform is limited; specifi-

cally, it is not suited for analyzing nonstationary signals. On the other hand, as

signals encountered in manufacturing are generally nonstationary in nature (e.g.,

subtle, time-localized changes caused by structural defects are typically seen in

vibration signals measured from rotary machines), a new signal processing tech-

nique that is able to handle the nonstationarity of a signal is needed.

2.2 Short-Time Fourier Transform

A straightforward solution to overcoming the limitations of the Fourier transform is

to introduce an analysis window of certain length that glides through the signal

along the time axis to perform a “time-localized” Fourier transform. Such a concept

led to the short-time Fourier transform (STFT), introduced by Dennis Gabor

(Fig. 2.5) in his paper titled “Theory of communication,” published in 1946

(Gabor 1946).

As shown in Fig. 2.6, the STFT employs a sliding window function g(t)

that is centered at time t. For each specific t, a time-localized Fourier transform

is performed on the signal x(t) within the window. Subsequently, the window

is moved by t along the time line, and another Fourier transform is performed.

Through such consecutive operations, Fourier transform of the entire signal can

be performed. The signal segment within the window function is assumed to

be approximately stationary. As a result, the STFT decomposes a time domain

signal into a 2D time-frequency representation, and variations of the frequency

content of that signal within the window function are revealed, as illustrated in

Fig. 2.6.
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Using the inner product notation as before, the STFT can be expressed as

STFTðt; f Þ ¼ hx; gt; f i ¼
Z

xðtÞg�t; f ðtÞdt ¼
Z

xðtÞgðt� tÞe�j2pft dt (2.8)

Equation (2.8) can also be viewed as a measure of “similarity” between the signal

xðtÞ and the time-shifted and frequency-modulated window function gðtÞ. Over the
past few decades, various types of window functions have been developed (Oppen-

heim et al. 1999), and each of them is specifically tailored toward a particular type

of application. For example, the Gaussian window designed for analyzing transient

signals, and the Hamming and Hann windows are applicable to narrowband,

random signals, and the Kaiser-Bessel window is better suited for separating two

signal components with frequencies very close to each other but with widely

differing amplitudes. It should be noted that the choice of the window function
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Fig. 2.6 Illustration of short-time Fourier transform on the test signal x(t)
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directly affects the time and frequency resolutions of the analysis result. While

higher resolution in general provides better separation of the constituent compo-

nents within a signal, the time and frequency resolutions of the STFT technique

cannot be chosen arbitrarily at the same time, according to the uncertainty principle

(Cohen 1989). Specifically, the product of the time and frequency resolutions is

lower bounded by

Dt � Df � 1

4p
(2.9)

where Dt and Df denote the time and frequency resolutions, respectively. Analyti-

cally, the time resolution Dt is measured by the root-mean-square time width of the

window function, defined as

Dt2 ¼
R

t2jgðtÞj2dt
R

jgðtÞj2dt
(2.10)

Similarly, the frequency resolution Df is measured by the root-mean-square band-

width of the window function, and is defined as (Rioul and Vetterli 1991)

Df 2 ¼
R

f 2jGðf Þj2 df
R

jGðf Þj2 df
(2.11)

In (2.11), Gðf Þ is the Fourier transform of the window function g(t). As

an example, the Gaussian window function gðtÞ ¼ e�at2t2 (with a being a constant

and t controlling the window width) has the time and frequency resolutions of

Dt ¼ t=ð2 ffiffiffi

a
p Þ and Df ¼ ffiffiffi

a
p

=ðt � 2pÞ, respectively. As a result, the time-frequency

resolution provided by the Gaussian window when analyzing a signal x(t)

is Dt � Df ¼ 1=4p. As the time and frequency resolutions of a window function

are dependent on the parameter t only, once the window function is chosen,

the time and frequency resolutions over the entire time-frequency plane are

fixed. Illustrated in Fig. 2.7 are two scenarios where the products of the time and

frequency resolutions of the window function (i.e., the area defined by the

product of Dt � Df ) are the same, regardless of the actual window size (t or t=2 )

employed.

The effect of the window size t on the time and frequency resolutions is

illustrated in Fig. 2.8, where STFT with the Gaussian window was performed

on the signal shown in Fig. 2.1. Altogether three different window sizes (i.e., 1.6,

6.4, and 25.6 ms) were chosen. While the smallest window width of 1.6 ms

has provided high time resolution in separating the four pulse trains contained

in the signal, as illustrated in Fig. 2.8a, its frequency resolution was too low

to differentiate the two time-overlapped transient elements within each group.

As a result, the frequency elements 1,500 and 650 Hz are displayed as one

lumped group on the time-frequency plane. In contrast, the largest window width
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of 25.6 ms provided good frequency resolution to illustrate the two frequency

components in Fig. 2.8b. However, the time-resolution was insufficient to differen-

tiate the four pulse trains that are timely separated with a 12-ms interval. The

best overall performance is given by the window width of 6.4 ms, shown in

Fig. 2.8c, which allowed for all of the transients to be adequately differentiated

on the time-frequency plane. Given that the specific frequency content of an
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experimentally measured signal is generally not known a priori, selection of

a suitable window size for effective signal decomposition using the STFT technique

is not guaranteed. The inherent drawback of the STFT motivates researchers

to look for other techniques that are better suited for processing nonstationary

signals. One of such techniques, which is the focus of this book, is the wavelet

transform.

Fig. 2.8 Results of the STFT

of the signal using three

different window sizes.

(a) Window size 1.6 ms,

(b) window size 25.6 ms, and

(c) window size 6.4 ms
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2.3 Wavelet Transform

From a historical point of view, the first reference to the wavelet goes back to

the early twentieth century when Alfred Haar (Fig. 2.9) wrote his dissertation titled

“On the theory of the orthogonal function systems” in 1909 to obtain his doctoral

degree at the University of Göttingen. His research on orthogonal systems of

functions led to the development of a set of rectangular basis functions (Haar

1910), as illustrated in Fig. 2.10. Later, an entire wavelet family, the Haar wavelet,

was named on the basis of this set of functions, and it is also the simplest wavelet

family developed till this date.

Essentially, Haar’s basis function consists of a short positive pulse followed by

a short negative pulse, and it was used to illustrate a countable orthonormal system

for the space of square-integrable functions on the real line (Haar 1910). Later, the

Haar basis function was applied to compress images (DeVore et al. 1992).

Little advancement in the field of wavelets was reported after Haar’s work, until

a physicist, Paul Levy (Fig. 2.11), investigated the Brownian motion in the 1930s.

He discovered that the scale-varying function, that is, the Haar basis function,

was better suited than the Fourier basis functions for studying subtle details in

the Brownian motion. In addition, the Haar basis function can be scaled into

different intervals, such as the interval [0, 1] or the intervals [0, 1/2] and [1/2, 1],

thereby providing higher precision when modeling a function than that provided by

the Fourier basis function, as it can only have one interval [–1, –1].

Fig. 2.9 Alfred Haar

(1885–1933)
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Fig. 2.10 The rectangular

basis function
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While several individuals, such as John Littlewood, Richard Paley (Littlewood

and Paley 1931), Elias M. Stein (Jaffard et al. 2001), and Norman H. Ricker

(Ricker 1953) have contributed, from the 1930s to the 1970s, to advancing

the state of research in wavelets as it is called today, major advancement in the

field was attributed to Jean Morlet (Fig. 2.12) who developed and implemented

the technique of scaling and shifting of the analysis window functions in analyz-

ing acoustic echoes while working for an oil company in the mid 1970s (Mackenzie

2001). By sending acoustic impulses into the ground and analyzing the

received echoes, the existence of oil beneath the earth crust as well as the thickness

of the oil layer can be identified. When Morlet first used the STFT to analyze

these echoes, he found that keeping the width of the window function fixed

did not work. As a solution to the problem, he experimented with keeping

the frequency of the window function constant while changing the width of the

window by stretching or squeezing the window function (Mackenzie 2001). The

resulting waveforms of varying widths were called by Morlet the “Wavelet”, and

this marked the beginning of the era of wavelet research. As a matter of fact,

the approach that Morlet used was similar to what Haar did before, but the

theoretical formation of the wavelet transform was first proposed only after

Jean Morlet teamed up with Alex Grossmann to work out the idea that a signal

could be transformed into the form of a wavelet and then transformed back into its

original form without any information loss (Grossmann and Morlet 1984).

Fig. 2.11 Paul Levy

(1886–1971)

Fig. 2.12 Jean Morlet

(1931–2007)
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In contrast to the STFT technique where the window size is fixed, the wavelet

transform enables variable window sizes in analyzing different frequency compo-

nents within a signal (Mallat 1998). This is realized by comparing the signal with a

set of template functions obtained from the scaling (i.e., dilation and contraction)

and shift (i.e., translation along the time axis) of a base wavelet cðtÞ and looking for
their similarities, as illustrated in Fig. 2.13.

Using again the notation of inner product, the wavelet transform of a signal x(t)

can be expressed as

wtðs; tÞ ¼ hx;cs;ti ¼
1
ffiffi

s
p

Z 1

�1
xðtÞc� t� t

s

� �

dt (2.12)

where the symbol s> 0 represents the scaling parameter, which determines the time

and frequency resolutions of the scaled base wavelet cðt� t=sÞ. The specific values
of s are inversely proportional to the frequency. The symbol t is the shifting

parameter, which translates the scaled wavelet along the time axis. The symbol

c�ð�Þ denotes the complex conjugation of the base wavelet c(t). As an example,

if the Morlet wavelet cðtÞ ¼ ei2pf0t e�ðat2=b2Þ is chosen as the base wavelet, its scaled
version will be expressed as

c
t� t

s

� �

¼ ei2pf0
t�t
s e

�a
ðt�tÞ2
s2b2 (2.13)
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with the parameters f0, a, and b all being constants. The corresponding time and

frequency resolutions of the Morlet wavelet will be calculated as Dt ¼ sb=2
ffiffiffi

a
p

and

Df ¼ ffiffiffi

a
p

=ðs � 2pbÞ, respectively. These expressions indicate that the time and

frequency resolutions are directly and inversely proportional to the scaling param-

eter s, respectively. In Fig. 2.14, variations of the time and frequency resolutions of

the Morlet wavelet at two locations on the time–frequency (t–f) plane, ðt1; �=s1Þ
and ðt2; �=s2Þ, are illustrated.

It is seen that changing the scale from s at the location ðt1; �=s1Þ to s2 ¼ 2s1 at

ðt2; �=s2Þ decreases the time resolution by half (as the width of the time window is

doubled) while doubling the frequency resolution (because the width of the fre-

quency window is reduced to half). Through variations of the scale s and time shifts

(by t) of the base wavelet function, the wavelet transform is capable of extracting

the constituent components within a time series over its entire spectrum, by using

small scales (corresponding to higher frequencies) for decomposing high frequency

components and large scales (corresponding to lower frequencies) for low fre-

quency components analysis. As an example, Fig. 2.15 illustrates the result of the

wavelet transform performed on the signal shown in Fig. 2.1, using the Morlet base

wavelet. It is evident that all the transient components are differentiated in the time

scale domain.

Following up the impactful work of Morlet and Grossmann, numerous

researchers have invested significant effort in further developing the theory of

wavelet transform. Examples include Strömberg’s early work on discrete wavelets

in 1983 (Strömberg 1983), Grossmann, Morlet, and Paul’s work on analyzing

arbitrary signals in terms of scales and translations of a single base wavelet function

(Grossmann et al. 1985, 1986), and Newman’s work on Harmonic wavelet trans-

form in 1993 (Newland 1993). Perhaps the most important step that has led to the

prosperity of the wavelets was the invention of multiresolution analysis by
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Stephane Mallat (Fig. 2.16) (Mallat 1989a, b, 1999) and Yves Meyer (Fig. 2.17)

(Meyer 1989, 1993). Such an invention was introduced by a paper written by Meyer

on orthogonal wavelets, entitled “Orthonormal wavelets” (Meyer 1989).

The key to multiresolution analysis is to design the scaling function of the

wavelet such that it allowed other researchers to construct their own base wavelets

in a mathematically grounded fashion. As an example, Ingrid Daubechies

(Fig. 2.18) created her own family of wavelet, the Daubechies wavelets, around

1988 (Daubechies 1988, 1992), on the basis of the concept of multiresolution.

Figure 2.19 illustrates one member of the Daubechies wavelet family: Daubechies

2 base wavelet. This type of wavelet is orthogonal and can be implemented using

simple digital filtering techniques.

Since then, a proliferation of activities on wavelet transform and its applications

in many fields has been seen. These include image processing, speech processing,

as well as signal analysis in manufacturing which is the focus of this book.

Fig. 2.15 Wavelet transform of the signal

Fig. 2.16 Stephane Mallat
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Strömberg JO (1983) A modified Franklin system and higher-order spline systems on Rn as

unconditional bases for Hardy space. Proceedings of Conference on Harmonic Analysis in

Honor of Antoni Zygmund, vol 2, pp 475–494

Jean B. Joseph Fourier, http://mathdl.maa.org/images/upload_library/1/Portraits/Fourier.bmp

Dennis Gabor, http://nobelprize.org/nobel_prizes/physics/laureates/1971/gabor-autobio.html

Alfred Haar, http://www2.isye.gatech.edu/�brani/images/haar.html

Paul Levy, http://www.todayinsci.com/L/Levy_Paul/LevyPaulThm.jpg

Jean Morlet, http://www.industrie-technologies.com/GlobalVisuels/Local/SL_Produit/Morlet.jpg

Stephane Mallat, http://www.cmap.polytechnique.fr/�mallat/Stephane.jpg

Yves Meyer, http://www.academie-sciences.fr/membres/M/Meyer_Yves.htm

Ingrid Daubechies, http://commons.princeton.edu/ciee/images/people/DaubechiesIngrid.jpg

32 2 From Fourier Transform to Wavelet Transform: A Historical Perspective



Chapter 3

Continuous Wavelet Transform

Wavelet transform is a mathematical tool that converts a signal into a different

form. This conversion has the goal to reveal the characteristics or “features” hidden

within the original signal and represent the original signal more succinctly. A base

wavelet is needed in order to realize the wavelet transform. The wavelet is a small

wave that has an oscillating wavelike characteristic and has its energy concentrated

in time. Figure 3.1 illustrates a wave (sinusoidal) and a wavelet (Daubechies

4 wavelet) (Daubechies 1992).

The difference between a wave and a wavelet is that a wave is usually smooth

and regular in shape, and can be everlasting, while in contrast, a wavelet may be

irregular in shape, and normally lasts only for a limited period of time. A wave (e.g.,

sine and cosine) is typically used as a deterministic template in the Fourier

transform for representing a signal that is time-invariant or stationary. In compari-

son, a wavelet can serve as both a deterministic and nondeterministic template for

analyzing time-varying or nonstationary signals by decomposing the signal into a

2D, time-frequency domain.

Mathematically, a wavelet is a square integrable function cðtÞ that satisfies the
admissibility condition (Chui 1992; Meyer 1993; Mallat 1998):

Z 1

�1

Cð f Þj j2
ð f Þ df<1 (3.1)

In this equation,Cð f Þ is the Fourier transform (i.e., frequency domain expression) of

thewavelet functioncðtÞ (in the time domain). The admissibility condition implies that

the Fourier transform of the function cðtÞ vanishes at the zero frequency; that is,

jCð f Þj2
�

�

f¼0
¼ 0 (3.2)

This means that the wavelet must have a band-pass like spectrum. A zero at the zero

frequency also means that the average value of the wavelet cðtÞ in the time domain

is zero:

Z 1

�1
cðtÞdt ¼ 0 (3.3)
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Equation (3.3) indicates that the wavelet must be oscillatory in nature. Through

the process of dilation (i.e., stretching or squeezing the wavelet function by 1/s) and

translation, (i.e., shift along time axis by t), a family of scaled and translated

wavelets can be obtained as

cs;tðtÞ ¼
1
ffiffi

s
p c

t� t

s

� �

; s>0; t 2 R (3.4)

The purpose of having the factor 1
ffiffi

s
p in (3.4) is to ensure that the energy of the

wavelet family will remain the same under different scales. For example, by

assuming that the energy of the wavelet function cðtÞ is given by

e ¼
Z 1

�1
cðtÞj j2 dt (3.5)

the energy of the scaled and translated wavelets cs;tðtÞ can be calculated as

e0 ¼
Z 1

�1

1
ffiffi

s
p c

t� t

s

� �

�

�

�

�

�

�

�

�

2

dt ¼ 1

s

Z 1

�1
c

t

s

� ��

�

�

�

�

�

2

dt ¼ e (3.6)

As a result, the energy of the original base wavelet cðtÞ and the scaled and

translated wavelets remains the same. The relationship between cðtÞ and cs;tðtÞ is
illustrated in Fig. 3.2, and the process through which a signal is decomposed by

analyzing it with a family of scaled and translated wavelets such as cs;tðtÞ is called
the wavelet transform.

Generally, the wavelet transform can be represented in continuous (i.e., contin-

uous wavelet transform (CWT)) as well as in discrete forms (i.e., discrete wavelet

transform). The CWT of a signal xðtÞ is defined as (Rioul and Vetterli 1991)

wtðs; tÞ ¼ 1
ffiffi

s
p

Z 1

�1
xðtÞc� t� t

s

� �

dt (3.7)

where c�ð�Þ is the complex conjugate of the scaled and shifted wavelet function

cð�Þ.
As shown in this definition, the CWT is as an integral transformation. In this sense,

it is similar to the Fourier transform in that integration operation will be performed in

Fig. 3.1 Representation of a wave and a wavelet. (a) A sinusoidal wave and (b) a wavelet
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both transforms. On the other hand, as the wavelet contains two parameters (scale

parameter s and translation parameter t), transforming a signal with the wavelet

basis means that such a signal will be projected into a 2D, time-scale plane, instead

of the 1D frequency domain in the Fourier transform. Furthermore, because of the

localization nature of the wavelet, the transformation will extract features from the

signal in the time-scale plane that are not revealed in its original form, for example,

what specific bearing defect-related spectral components existed at what time.

3.1 Properties of Continuous Wavelet Transform

Equation (3.7) indicates that the CWT is a linear transformation, characterized by

the following properties.

3.1.1 Superposition Property

Suppose xðtÞ, yðtÞ 2 L2ðRÞ, and k1 and k2 are constants. If the CWT of xðtÞ is

wtxðs; tÞ and the CWT of yðtÞ is wtyðs; tÞ, then the CWT of zðtÞ ¼ k1xðtÞ þ k2yðtÞ
is given by
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Fig. 3.2 Illustration of translation (by the time constant t) and dilation (by the scaling factor s)
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wtzðs; tÞ ¼ k1wtxðs; tÞ þ k2wtyðs; tÞ (3.8)

Proof: Let wtxðs; tÞ ¼ 1
ffiffi

s
p

R

xðtÞc� t�t
s

� �

dt and wtyðs; tÞ ¼ 1
ffiffi

s
p

R

yðtÞc� t�t
s

� �

dt;

then

wtzðs; tÞ ¼
1
ffiffi

s
p

Z

zðtÞc� t� t

s

� �

dt

=
1
ffiffi

s
p

Z

½k1xðtÞ þ k2yðtÞ�c� t� t

s

� �

dt

= k1
1
ffiffi

s
p

Z

xðtÞc� t� t

s

� �

dtþ k2
1
ffiffi

s
p

Z

yðtÞc� t� t

s

� �

dt

= k1wtxðs; tÞ þ k2wtyðs; tÞ

(3.9)

This proves the superposition property of the CWT.

3.1.2 Covariant Under Translation

Suppose the CWT of xðtÞ is wtxðs; tÞ; then the CWT of xðt� t0Þ is wtxðs; t� t0Þ.
The proof of this property is shown below:

Proof: Let x0ðtÞ ¼ xðt� t0Þ; then

wtx0ðs; tÞ ¼
1
ffiffi

s
p

Z

xðt� t0Þc� t� t

s

� �

dt (3.10)

Let t0 ¼ t� t0; then

wtx0ðs; tÞ ¼
1
ffiffi

s
p

Z

xðt0Þc� t0 þ t0 � t

s

� 	

dt0 ¼wtxðs; t� t0Þ (3.11)

This means that the wavelet coefficients of xðt� t0Þ can be obtained by translating

the wavelet coefficients of xðtÞ along the time axis with t0.

3.1.3 Covariant Under Dilation

Suppose the CWT of xðtÞ is wtxðs; tÞ; then the CWT of x t
a

� �

is
ffiffiffi

a
p

wtx
s
a
; t
a

� �

Proof: Let x0ðtÞ ¼ x t
a

� �

; then

wtx0ðs; tÞ ¼
1
ffiffi

s
p

Z

x0ðtÞc� t� t

s

� �

dt ¼ 1
ffiffi

s
p

Z

x
t

a

� �

c� t� t

s

� �

dt (3.12)
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Let t0 ¼ t
a
; then (3.12) becomes

wtx0ðs; tÞ ¼
1
ffiffi

s
p

Z

xðt0Þc� at0 � t

s

� 	

dðat0Þ

¼
ffiffiffi

a
p
ffiffi

s
a

p

Z

xðt0Þc� t0 � t
a

s
a

� 	

dt0 ¼
ffiffiffi

a
p

wtx
s

a
;
t

a

� �

(3.13)

Equation (3.13) indicates that, when a signal is dilated by a, its corresponding

wavelet coefficients are also dilated by a along both the scale and time axes.

3.1.4 Moyal Principle

Suppose xðtÞ, yðtÞ 2 L2ðRÞ. If the CWT of xðtÞ is wtxðs; tÞ and the CWT of yðtÞ is
wtyðs; tÞ; that is,

wtxðs; tÞ ¼ hxðtÞ;cs;tðtÞi (3.14a)

wtyðs; tÞ ¼ hyðtÞ;cs;tðtÞi (3.14b)

then

hwtxðs; tÞ;wtyðs; tÞi ¼ CchxðtÞ; yðtÞi (3.15)

where Cc ¼
R1
0

Cð f Þj j2
f

df . The proof of this property is as follows.

Proof According to the Parseval’s theorem, the inner product of two functions in

time domain can be equivalently given in the frequency domain as

hxðtÞ; yðtÞi ¼ 1

2p

Z

Xð f ÞY�ð f Þdf (3.16)

Consequently, we have

wtxðs; tÞ ¼ hxðtÞ;cs;tðtÞi ¼
1

2p

Z

Xð f ÞC�
s;tð f Þdf (3.17a)

wtyðs; tÞ ¼ hyðtÞ;cs;tðtÞi ¼
1

2p

Z

Yð f ÞC�
s;tð f Þdf (3.17b)

From (3.4), we know that cs;tðtÞ ¼ 1
ffiffi

s
p c t�t

s

� �

. Therefore,

Cs;tð f Þ ¼
ffiffi

s
p

Cðsf Þe�j2pf t (3.18a)
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C
�
s;tð f Þ ¼

ffiffi

s
p

C
�ðsf Þe j2pf t (3.18b)

By incorporating (3.18b) into (3.17) and utilizing the following integral relation,

Z

e�j 2pð f�f 0Þtdt ¼ 2pdð f � f 0Þ (3.19)

the left side of (3.15) can be expanded as

hwtxðs; tÞ;wtyðs; tÞi ¼
s

2p

ZZ

ds

s2
Xð f ÞY�ð f ÞCðsf ÞC�ðsf Þdf

¼ 1

2p

Z Z

Cðsf Þj j2
s

ds

" #

Xð f ÞY�ð f Þdf
(3.20)

As
R

Cðsf Þj j2
s

ds ¼
R

Cðsf Þj j2
sf

dðsf Þ ¼
R

Cðf 0Þj j2
f 0 dðf 0Þ ¼ Cc, (3.20) can be expressed as

hwtxðs; tÞ;wtyðs; tÞi ¼ Cc

1

2p

Z

Xð f ÞY�ð f Þdf ¼ CchxðtÞ; yðtÞi (3.21)

This proves the existence of Moyal principle for CWT. It is noted that Cc is

actually the admissibility condition of the wavelet. Only when this condition is

satisfied can the Moyal principle exist. Furthermore, if xðtÞ ¼ yðtÞ, then (3.15)

becomes

Z 1

0

ds

s2

Z 1

�1
wtxðs; tÞ2
�

�

�

�dt ¼ Cc

Z 1

�1
xðtÞj j2dt (3.22)

This means that the integral of the square of wavelet coefficients is proportional

to the energy of the signal.

3.2 Inverse Continuous Wavelet Transform

A transformation is considered to be meaningful in practice only when its

corresponding inverse transformation exists. The same principle applies to the

CWT. It can be shown that, as long as the wavelet satisfies the admission condition

as defined in (3.1), the inverse CWT will exist. This means that a signal can be

perfectly reconstructed from its corresponding wavelet coefficients, which can be

written as
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xðtÞ ¼ 1

Cc

Z 1

0

ds

s2

Z 1

�1
wtxðs; tÞcs;tðtÞdt

¼ 1

Cc

Z 1

0

ds

s2

Z 1

�1
wtxðs; tÞ

1
ffiffi

s
p c

t� t

s

� �

dt

(3.23)

where Cc ¼
R1
0

Cð f Þj j2
f

df<1 is the admission condition of the wavelet cðtÞ.
The proof of (3.23) is shown below:

ProofAssume that x1ðtÞ ¼ xðtÞ, and x2ðtÞ ¼ dðt� t0Þ. As hxðtÞ; dðt� t0Þi ¼ xðt0Þ,

Ccxðt0Þ ¼ CchxðtÞ; dðt� t0Þi (3.24)

According to theMayol principle shown in (3.15), (3.24) can be further written as

Ccxðt0Þ ¼ hwtxðs; tÞ;wtdðt�t0Þðs; tÞi

¼
Z 1

0

ds

s2

Z

wtxðs; tÞwt�dðt�t0Þðs; tÞdt

¼
Z 1

0

ds

s2

Z

wtxðs; tÞhcs;tðtÞ; dðt� t0Þi�dt

¼
Z 1

0

ds

s2

Z

wtxðs; tÞhcs;tðtÞ; dðt� t0Þidt

¼
Z 1

0

ds

s2

Z

wtxðs; tÞcs;tðt0Þdt

¼ 1
ffiffi

s
p

Z 1

0

ds

s2

Z

wtxðs; tÞc
t0 � t

s

� 	

dt

(3.25)

This illustrates that the inverse CWT exists.

3.3 Implementation of Continuous Wavelet Transform

To implement the CWT, two approaches can be taken. The first approach is to

obtain the wavelet coefficients directly from (3.7). The computation procedure is as

follows:

1. The wavelet is placed at the beginning of the signal, and set s ¼ 1 (the original,

base wavelet).

2. The wavelet function at scale “1” is multiplied by the signal, integrated over all

times, and then multiplied by 1=
ffiffi

s
p

.

3. Shift the wavelet to t ¼ t, and get the transform value at t ¼ t and s ¼ 1.

4. Repeat the procedure until the wavelet reaches the end of the signal.

5. Scale s is increased by a given value, and the above procedure is repeated for all s.

6. Each computation for a given s fills the single row of the time-scale plane.

7. Wavelet transform is obtained if all s are calculated.
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The second approach to implementing the CWT is on the basis of the convolu-

tion theorem, which states that the Fourier transform of the convolution operation

on two functions in the time domain is the product of the respective Fourier

transforms of these two functions in the frequency domain (Bracewell 1999). The

Fourier transform of (3.7) is expressed as

WTðs; f Þ ¼ Ffwtðs; tÞg ¼ 1

2p
ffiffi

s
p

Z 1

�1

Z 1

�1
xðtÞc� t� t

s

� �

dt

� 	

e�j2pf t dt (3.26)

Applying the convolution theorem to (3.26) leads to

WTðs; f Þ ¼
ffiffi

s
p

Xðf ÞC�ðsf Þ (3.27)

where Xðf Þ denotes the Fourier transform of xðtÞ and C�ð�Þ denotes the Fourier

transform of c�ð�Þ. By taking the inverse Fourier transform, (3.27) is converted

back into the time domain as

wtðs; tÞ ¼ F�1fWTðs; f Þg ¼
ffiffi

s
p

F�1fXðf ÞC�ðsf Þg (3.28)

where the symbol F�1½�� denotes the operator of inverse Fourier transform. There-

fore, the implementation of the CWT can be realized through a pair of Fourier and

inverse Fourier transforms.

Figure 3.3 illustrates the procedure for implementing the CWT. After taking the

Fourier transform of the signal x(t) and the scaled base wavelet cðs; tÞ to obtain

their frequency information Xðf Þ and Cðsf Þ, respectively, the inner product

between Xðf Þ and complex conjugate of Cðsf Þ is calculated. Next, the CWT of

the signal x(t), denoted as cwtðs; tÞ, is obtained by taking the inverse Fourier

transform on the inner product of WTðs; f Þ.

Fig. 3.3 Procedure for

implementing the continuous

wavelet transform

40 3 Continuous Wavelet Transform



3.4 Some Commonly Used Wavelets

This section introduces several commonly used wavelets for performing the CWT.

3.4.1 Mexican Hat Wavelets

The Mexican hat wavelet is a normalized, second derivative of a Gaussian function,

which is mathematically defined as (Mallat 1998)

cðtÞ ¼ 1
ffiffiffiffiffiffi

2p
p

s3
1� s2

t2

� 	

e
�t2

2s2 (3.29)

Figure 3.4 illustrates the Mexican hat wavelet and its associated magnitude

spectrum. The Mexican hat wavelet is often called the Ricker wavelet in geophys-

ics, where it is frequently employed to model seismic data (Zhou and Adeli 2003;

Erlebacher and Yuen 2004).

3.4.2 Morlet Wavelet

The Morlet wavelet is defined as (Grossmann and Morlet 1984; Teolis 1998)

cMðtÞ ¼
1
ffiffiffiffiffiffi

pfb
p ej2pfct e

�t2

fb (3.30)

where fb is the bandwidth parameter and fc denotes the wavelet center frequency. As

an example, Fig. 3.5 illustrates the complex Morlet wavelet function and its

corresponding magnitude spectrum when fb ¼ 1 Hz and fc ¼ 1 Hz. The Morlet

wavelet has been widely used for identifying transient components embedded in a
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Fig. 3.4 Mexican hat wavelet (left) and its magnitude spectrum (right)
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signal, for example, bearing defect-induced vibration (Lin and Qu 2000; Nikolaou

and Antoniadis 2002; Yan and Gao 2009).

3.4.3 Gaussian Wavelet

Mathematically, a Gaussian function is expressed as (Teolis 1998)

f ðtÞ ¼ e�jt e�t2 (3.31)

Taking the Nth derivative of this function yields the Gaussian wavelet as

cGðtÞ ¼ cN
dðNÞf ðtÞ
dtN

; (3.32)

where N is an integer parameter ðr1Þ and denotes the order of the wavelet, and cN is

a constant introduced to ensure that kf ðNÞðtÞk2 ¼ 1. Figure 3.6 illustrates the

Gaussian function with its magnitude spectrum for the case of N¼ 2. The Gaussian

wavelet is often used for characterizing singularity that exists in a signal (Mallat

and Hwang 1992; Sun and Tang 2002).
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Fig. 3.5 Morlet wavelet (left) and its magnitude spectrum (right): fb ¼ 1 Hz and fc ¼ 1 Hz
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3.4.4 Frequency B-Spline Wavelet

A frequency B-spline wavelet is defined as (Teolis 1998)

cBðtÞ ¼
ffiffiffiffi

fb
p

sin c
fbt

p

� 	
 �p

ej2pfct (3.33)

where fb is the bandwidth parameter, fc denotes the wavelet center frequency, and

p is an integer parameter ðr2Þ. The notation of sin cð�Þ is a sin c function, which is
defined as

sin cðxÞ ¼ 1 x ¼ 0
sin x
x

otherwise

�

(3.34)

As an example, a B-spline wavelet for the case of fb ¼ 1 Hz, fc ¼ 1 Hz, and p ¼ 2

together with its corresponding magnitude function is shown in Fig. 3.7. The appli-

cation of the frequency B-spline wavelet has been seen in biomedical signal analysis

(Moga et al. 2005; Fard et al. 2007).

3.4.5 Shannon Wavelet

The Shannon wavelet is a special case of the frequency B-spline wavelet for p ¼ 1:

cSðtÞ ¼
ffiffiffiffi

fb
p

sin cðfbtÞej2pfct (3.35)

where fb is the bandwidth parameter and fc denotes the wavelet center frequency.

The notation of sin cð�Þ is a sin c function and defined in (3.34). Figure 3.8

illustrates the Shannon wavelet for the case of fb ¼ 1 Hz and fc ¼ 1 Hz, with its

corresponding magnitude spectrum. The Shannon wavelet has been shown for the

analysis and synthesis of the 1/f processes (Shusterman and Feder 1998).
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3.4.6 Harmonic Wavelet

The harmonic wavelet is defined in the frequency domain as (Newland 1994a, b;

Yan and Gao 2005)

Cm;nðf Þ ¼
1

n�m
mbfbn

0 elsewhere

�

(3.36)

where the symbols m and n are the scale parameters. These parameters are real but

not necessarily integers. Furthermore, the bandwidth fb and center frequency fc are

determined by the scale parameter as

fb ¼ n� m; fc ¼
nþ m

2
(3.37)

As an example, Fig. 3.9 shows the harmonic wavelet function and its

corresponding magnitude spectrum for the case of m ¼ 0.5 and n ¼ 1.5. The

harmonic wavelet was first designed by Newland for analyzing vibration signals

(Newland 1993). Later, the application of harmonic wavelet has been extended to

heart rate variability analysis (Bates et al. 1997) and image denoising (Iftekhar-

uddin 2002).
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Fig. 3.9 Harmonic wavelet (left) and its magnitude spectrum (right): m ¼ 0.5 Hz and n ¼ 1.5 Hz
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3.5 CWT of Representative Signals

Using the wavelets introduced in Sect. 3.4, the CWT is applied to several typical

signals, as described below.

3.5.1 CWT of Sinusoidal Function

The first signal analyzed is a pure sinusoidal function. Figure 3.10a illustrates a 50 Hz

sinusoidal signal, and Fig. 3.10b illustrates the CWT results of the signal. It is seen that

the 50 Hz component is present all the time throughout the analysis duration.
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Fig. 3.10 A sinusoidal function (a) time domain waveform (b) CWT results
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3.5.2 CWT of Gaussian Pulse Function

The second signal is a Gaussian pulse function. Figure 3.11a shows a Gaussian pulse

signal with 10 kHz center frequency. Figure 3.11b illustrates the CWT results of the

Gaussian pulse signal, which is identified in the time-scale domain at around 0 s.

3.5.3 CWT of Chirp Function

The last signal is a chirp function. Figure 3.12a shows an example of a chirp signal.

It is a linear swept-frequency signal with the instantaneous frequency being 50 Hz

at time zero. The instantaneous frequency 10 Hz is achieved after 1 s. Figure 3.12b

illustrates the CWT results of the chirp signal, and the change of frequency along

with time can be clearly seen.
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Fig. 3.11 A Gaussian pulse function (a) time domain waveform (b) CWT results
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3.6 Summary

This chapter begins with definition of a wavelet, where the admissibility condition

that a wavelet should satisfy is emphasized. The CWT and its related properties

are then introduced. Two approaches for implementing the CWT are discussed

in Sect. 3.3, followed by the introduction of some commonly used wavelets in

Sect. 3.4. Typical signals are analyzed using the CWT and the results are shown

in Sect. 3.5.
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Chapter 4

Discrete Wavelet Transform

According to the definition of the continuous wavelet transform (CWT) given in

(3.7), Chap. 3, the scale parameter s and translation parameter t can be varied

continuously. As a result, performing the CWT on a signal will lead to the genera-

tion of redundant information. Although the redundancy is useful in some applica-

tions, such as signal denoising and feature extraction where desired performance is

achieved at the cost of increased computational time and memory size, other

applications may need to emphasize reduced computational time and data size,

for example, in image compression and numerical computation. Such requirements

illustrate the need for reducing redundancy in the wavelet coefficients among

different scales as much as possible, while at the same time, avoiding sacrificing

the information contained in the original signal. This can be achieved by parameter

discretization, as described in the following section.

4.1 Discretization of Scale and Translation Parameters

The approach to reducing redundancy is to use discrete values of scale and

translation parameters. A natural way to implement this is to use a logarithmic

discretization of the scale s and then link it to step size taken between the values of

translation parameter t. This type of discretization is expressed as

s ¼ s
j
0

t ¼ kt0s
j
0

(

s0<1; t0 6¼ 0; j 2 Z; k 2 Z (4.1)

where the symbol Z denotes an integer. The corresponding family of the base

wavelet is then expressed as

cj;kðtÞ ¼
1
ffiffiffiffi

s
j
0

q c
t� kt0s

j
0

s
j
0

 !

(4.2)

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,

DOI 10.1007/978-1-4419-1545-0_4,# Springer Science+Business Media, LLC 2011
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Generally, the values of s0 ¼ 2 and t0 ¼ 1 are adopted (Addison 2002). Conse-

quently, (4.2) is expressed as

cj;kðtÞ ¼
1
ffiffiffiffi

2j
p c

t� k2j

2j

� �

(4.3)

As a result, the wavelet transform of a given signal x(t) is obtained as

wtðj; kÞ ¼ hxðtÞ;cj;kðtÞi ¼
1
ffiffiffiffi

2j
p

Z 1

�1
xðtÞc� t� k2j

2j

� �

dt (4.4)

where the symbol h�i denotes inner product operation. Equation (4.4) poses the

following two questions:

1. Can the results of the discretized wavelet transform represent the entire infor-

mation content of the signal x(t)? In other words, can the wavelet coefficients

obtained as a result of the wavelet transform be used to perfectly reconstruct the

original signal x(t)?

2. Can any signal x(t) be expressed as the summation of cj;kðtÞ, in the form of the

following equation?

xðtÞ ¼
X

j;k

Cj;kcj;kðtÞ (4.5)

In (4.5), Cj;k represents the coefficient of the discrete wavelet transform (DWT),

which corresponds to wt(j, k) in (4.4). Finally, if the answer to question (2) is “yes,”

then how can we calculate the coefficient Cj;k?

Assume that the answer to question (1) is “yes,” and we can select cs;tðtÞ and
discretize s and t properly. Then, there must exist a function ~cj;kðtÞ, defined as the

dual function of cj;kðtÞ, that can be used for reconstructing the signal x(t) described
in question (1), as follows:

xðtÞ ¼
X

j;k

hxðtÞ;cj;kðtÞi~cj;kðtÞ (4.6)

where the term ~cj;kðtÞ can be obtained by performing the scaling and translation

operations on ~cðtÞ as

~cj;kðtÞ ¼
1
ffiffiffiffi

2j
p ~c

t� k2j

2j

� �

(4.7)

On the basis of the above assumption, if there exists another signal y(t), we can

obtain the inner product of the signals x(t) and y(t) as shown in (4.8). Note that the

symbol * indicates the complex conjugate operator:
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yðtÞ; xðtÞh i ¼ xðtÞ; yðtÞh i�¼
X

j;k

hxðtÞ;cj;kðtÞi~cj;kðtÞ; yðtÞ
* +�

¼
X

j;k

hxðtÞ;cj;kðtÞih~cj;kðtÞ; yðtÞi
 !�

¼
X

j;k

hyðtÞ; ~cj;kðtÞihcj;kðtÞ; xðtÞi

¼
X

j;k

hyðtÞ; ~cj;kðtÞicj;kðtÞ; xðtÞ
* +

(4.8)

Equation (4.8) implies that

yðtÞ ¼
X

j;k

hyðtÞ; ~cj;kðtÞicj;kðtÞ (4.9)

which means that the answer to question (2) is also positive. It further implies that

the coefficient Cj;k can be calculated as

Cj;k ¼ hyðtÞ; ~cj;kðtÞi (4.10)

Therefore, once question (1) is answered, the answer to question (2) can be

readily derived from it. The answer to the question (1) can be presented in

mathematical terms as follows.

If a set of wavelet coefficients hxðtÞ;cj;kðtÞi exists that describes complete

information of the signal x(t), then the following statements must hold:

1. When x1ðtÞ ¼ x2ðtÞ, the inner product of x1(t) and the scaled and translated

wavelet cj;kðtÞ can be expressed as

hx1ðtÞ;cj;kðtÞi ¼ hx2ðtÞ;cj;kðtÞi (4.11)

2. For xðtÞ ¼ 0, we have

hxðtÞ;cj;kðtÞi ¼ 0 (4.12)

3. When x1ðtÞ is very close to x2ðtÞ, the corresponding wavelet coefficients

hx1ðtÞ;cj;kðtÞi must be close to hx2ðtÞ;cj;kðtÞi. In other words, if x1ðtÞ � x2ðtÞk k
is very small, then

P

j;k

hx1ðtÞ;cj;kðtÞi � hx2ðtÞ;cj;kðtÞi
�

�

�

�

2
must be very small, too.

Mathematically, this can be expressed as

X

j;k

hx1ðtÞ;cj;kðtÞi � hx2ðtÞ;cj;kðtÞi
�

�

�

�

2 � B x1ðtÞ � x2ðtÞk k2; B 2 Rþ (4.13)
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that is,

X

j;k

hxðtÞ;cj;kðtÞi
�

�

�

�

2 � B xðtÞk k2 (4.14)

In (4.13), the symbol Rþ denotes the set of positive real numbers, and B is a

positive real number.

Furthermore, if we want to reconstruct x(t) from the wavelet coefficient

hxðtÞ;cj;kðtÞi, the following condition must hold:

When hx1ðtÞ;cj;kðtÞi is very close tohx2ðtÞ;cj;kðtÞi, x1ðtÞ must be very close to

x2ðtÞ, too, which leads to

A xðtÞk k2�
X

j;k

hxðtÞ;cj;kðtÞi
�

�

�

�

2
; A 2 Rþ (4.15)

where A is a positive real number.

Combining (4.15) with (4.14), we obtain the following equation:

A xðtÞk k2�
X

j;k

hxðtÞ;cj;kðtÞi
�

�

�

�

2 � B xðtÞk k2; A;B 2 Rþ (4.16)

This ensures that the DWT of a signal x(t) can be obtained. Equation (4.16)

is called a wavelet frame (Addison 2002). The values of the wavelet frame bounds,

A and B, depending on both the scale parameter s and the translation parameter t

that are chosen for analysis and the base wavelet function used (Daubechies 1992).

Particularly, if A ¼ B, the wavelet frame is known as a tight frame. In such a case,

the signal x(t) can be reconstructed through the inverse discretized wavelet trans-

form as

xðtÞ ¼ 1

A

X

1

j¼�1

X

1

k¼�1
wtðj; kÞcj;kðtÞ (4.17)

If A 6¼ B, but the difference between A and B is not too large (Addison 2002), the

signal x(t) can still be reconstructed as

x0ðtÞ ¼ 2

Aþ B

X

1

j¼�1

X

1

k¼�1
wtðj; kÞcj;kðtÞ (4.18)

The difference between x(t) and x0(t) is determined by the values of A and B,

and becomes small in practice when the ratio of B/A is approaching the value of one.
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4.2 Multiresolution Analysis and Orthogonal
Wavelet Transform

Of the various forms of wavelet discretization, the dyadic discretization with s0 ¼ 2

and t0 ¼ 1 has been widely used, as shown in (4.3). This is because it allows the

selection of the base wavelet to be made in such a way that its corresponding family

set cj;kðtÞ constitutes an orthogonal basis within the tight wavelet frame, character-

ized by A ¼ 1. To construct a base wavelet having the characteristics of orthogo-

nality, the multiresolution analysis (MRA) is presented here as the theoretical

foundation.

4.2.1 Multiresolution Analysis

The concept of MRA was formed when Mallat was working on image processing in

the 1980s (Mallat 1989a, b). At that time, the idea of studying images simulta-

neously at different scales had been popular for years already (Witkin 1983; Burt

and Adelson 1983). This provided the background for using orthogonal wavelet

bases as a tool to describe the information contained in the image, from coarse

approximation to high-resolution approximation, and led to the formulation of

MRA (Mallat 1989a, b). Theoretically, a MRA of the space L2ðRÞ consists of a

sequence of successive approximation subspaces fVj; j 2 Zg that satisfies the fol-

lowing properties:

1. Monotonicity, that is, � � � � V2 � V1 � V0 � V�1 � V�2 � � � � (where the

symbol � denotes a subset operator). This means that the subspace

fVj; j 2 Zg holds the successive inclusion relationship.

2. Completeness, that is, \
j2Z

Vj ¼ f0g; [
j2Z

Vj ¼ L2ðRÞ, where \ denotes the

intersect operator, and [ denotes the union operator. This property indicates

that all the subspaces together form a complete L2ðRÞ.
3. Dilation regularity, that is, xðtÞ 2 Vj , xð2jtÞ 2 V0, where , denotes “if and

only if,” and 2 denotes “is an element of.” The term j 2 Z indicates the

multiresolution aspect of the subspaces fVj; j 2 Zg.
4. Translation invariance, that is, xðtÞ 2 V0 ) xðt� nÞ 2 V0; for all n 2 Z

(with ) denotes “imply”).

5. Existence of orthogonal basis: there exists a function fðtÞ 2 V0, whose

corresponding closed subspaces ffðt� nÞgn2Z form an orthogonal basis of the

zero-scale space V0; that is,
R

R
fðt� nÞfðt� mÞ dt ¼ dm;n.

The function fðtÞ is the scale function, whose translated version fkðtÞ ¼ fðt� kÞ
satisfies the condition of hfkðtÞ;fk0ðtÞi ¼ dk;k0ðk; k0 2 ZÞ. The zero-scale space V0

is composed of a set of closed subspaces, formed by fkðtÞ and is denoted as

V0 ¼ span
k

ffðt� kÞg.
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From the above description, we know that all the closed subspaces fVj; j 2 Zg
are formed from the same scale function fðtÞ with different translation values, and

the relationship among all the subspaces is illustrated in Fig. 4.1. It can be seen that

the closed subspaces fVj; j 2 Zg hold the inclusion relationship, and they are not

orthogonal. As a result, the scale function family fj;kðtÞ ¼ 2�j=2fð2�jt� kÞ does
not hold the orthogonal property; that is, ffj;kðtÞgj2Z;k2Z cannot be used as an

orthogonal basis in L2(R) space.

To find the orthogonal bases in the L2(R) space, we can define Wj (j 2 Z) as the

orthogonal complement of Vj in Vj�1, as illustrated in Fig. 4.2.

We can then write as follows:

Vj�1 ¼ Vj �Wj (4.19)

and

Wj?Wj0 ; for j 6¼ j0 (4.20)

where the symbol � denotes direct summation operator, and ? denotes the

orthogonal operator.

V0 ⊃ ⊃ ⊃V1 V2 V3
Fig. 4.1 Inclusion

relationship among closed

subspaces fVj; j 2 Zg

W1

W1

W2

W2

W3

W3

V3

V3

V0 V1 V2 V3⊃
⊥ ⊥ ⊥

⊃ ⊃Fig. 4.2 Illustration of

wavelet subspaces
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It follows that, for j < J, we can have the following relationship:

Vj ¼ VJ � �
J�j�1

k¼0
WJ�k (4.21)

where all the subspacesWj (j 2 Z) are orthogonal, and they form the L2(R) space as

L2ðRÞ ¼ �
j2Z

Wj (4.22)

Furthermore, the Wj spaces inherit the scaling property from the Vj (Daubechies

1992); that is,

xðtÞ 2 W0 , xð2�jtÞ 2 Wj (4.23)

Therefore, if fc0;k k 2 Zg is a set of orthogonal bases in W0 space, then accord-

ing to (4.23), for the scale j 2 Z, fcj;k ¼ 2�i=2cð2�jt� kÞ; k 2 Zg is a collection

of orthogonal bases in the Wj space. Accordingly, the entire collection of

fcj;k; j 2 Z; k 2 Zg forms the sets of orthogonal bases in L2(R) space, and we

call the function cðtÞ the wavelet function, and the Wj space in (4.23) denotes the

wavelet space in scale j.

4.2.2 Orthogonal Wavelet Transform

From the definition of the MRA, we know that

V0 ¼ V1 �W1 ¼ V2 �W2 þW1 ¼ V3 �W3 �W2 þW1 ¼ . . . (4.24)

Therefore, for a given signal xðtÞ 2 V0, where V0 is defined as zero-scale space, we

can decompose it into two parts (the detailed information inW1 and the approximate

information in V1). The approximate information in V1 can then be further decom-

posed to get the next level of detailed information inW2 and approximate information

in V2, respectively. Such a decomposition process can be repeated until the designed

scale j is reached. This, in a nutshell, is how a DWT is implemented.

Mathematically, we can define xjaðtÞ as the approximate information at scale j

after the signal x(t) is projected onto the Vj space:

xjaðtÞ ¼
X

k

aj;kfkð2�jtÞ ¼
X

k

aj;kfj;kðtÞ; k 2 Z (4.25)

where

aj;k ¼ hxðtÞ;fj;kðtÞi (4.26)

are called the approximate coefficients.
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Similarly, when the signal x(t) is projected onto the Wj space, the detailed

information at scale j is obtained as

x
j
dðtÞ ¼

X

k

dj;kckð2�jtÞ ¼
X

k

dj;kcj;kðtÞ; k 2 Z (4.27)

where

dj;k ¼ hxðtÞ;cj;kðtÞi (4.28)

are called detailed coefficients.

Consequently, when a given signal xðtÞ 2 L2ðRÞ is decomposed into the set of

subspaces,

L2ðRÞ ¼
X

J

j¼�1
Wj � VJ (4.29)

with J being any predetermined scale, we will have

xðtÞ ¼
X

J

j¼�1

X

1

k¼�1
dj;kcj;kðtÞ þ

X

1

k¼�1
aJ;kfj;kðtÞ (4.30)

If J ! 1, (4.30) can be simplified as

xðtÞ ¼
X

1

j¼�1

X

1

k¼�1
dj;kcj;kðtÞ (4.31)

Equation (4.31) is equivalent to (4.17) when A¼ B¼ 1. We know that in such cases

the wavelet bases are orthogonal (Daubechies 1992). As a result, (4.30) and (4.31)

express the inverse orthogonal wavelet transform, and (4. 26) and (4.28) express the

orthogonal wavelet transform. From the above description, we see that the idea of

orthogonal wavelet transform and MRA has followed the same path; thus, MRA

provides the theoretical basis for orthogonal wavelet transform.

4.3 Dual-Scale Equation and Multiresolution Filters

The inherent relationship between the scale function fðtÞ and wavelet function cðtÞ
can be expressed in a dual-scale equation as

fðtÞ ¼
X

n

hðnÞf�1;nðtÞ ¼
ffiffiffi

2
p X

n

hðnÞfð2t� nÞ (4.32)
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cðtÞ ¼
X

n

gðnÞf�1;nðtÞ ¼
ffiffiffi

2
p X

n

gðnÞfð2t� nÞ (4.33)

where

hðnÞ ¼ hf;f�1;ni
gðnÞ ¼ hc;f�1;ni

(

(4.34)

It should be noted that the dual-scale relationship only exists between two

successive scales j and j � 1; that is,

fj;0ðtÞ ¼
X

n

hðnÞfj�1;nðtÞ (4.35)

cj;0ðtÞ ¼
X

n

gðnÞfj�1;nðtÞ (4.36)

Furthermore, the coefficients h(n) and g(n) will not change with the scale j. This

can be proved as follows:

Proof:

hfj;0ðtÞ;fj�1;nðtÞi ¼
Z

R

½2�j=2fð2�jtÞ�½2�j�1=2f�ð2�jþ1t� nÞ� dt

¼
ffiffiffi

2
p Z

fðt0Þf�ð2t0 � nÞ dt0ðlet t0 ¼ 2�jtÞ

¼hfðtÞ;f�1;nðtÞi ¼ hðnÞ

(4.37)

Similarly, we can prove that hcj;0ðtÞ;fj�1;nðtÞi ¼ gðnÞ. This means that the

coefficients h(n) and g(n) are determined by the scaling function fðtÞ and wavelet

function cðtÞ, respectively, and are not related to how we choose the scale j.

Furthermore, if we perform an integral operation on both sides of (4.35), we obtain

the following:
Z

R

fj;0ðtÞ dt ¼
X

n

hðnÞ
Z

R

fj�1;nðtÞ dt (4.38)

As
Z

R

fj�1;nðtÞdt ¼ 2�
j�1

2

Z

R

fð2�jþ1t� nÞdt

¼
t0¼2t ffiffiffi

2
p Z

R

2�
j

2 f ð2�jt0 � nÞ 1
2
dt0

¼ 1
ffiffiffi

2
p

Z

R

fj;nðtÞ dt

¼ 1
ffiffiffi

2
p

Z

R

fj;0ðtÞ dt

(4.39)
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substituting (4.39) in (4.38) leads to

X

n

hðnÞ ¼
ffiffiffi

2
p

(4.40)

Similarly, we can perform an integral operation on both sides of (4.36) as

Z

R

cj;0ðtÞ dt ¼
X

n

gðnÞ
Z

R

fj�1;nðtÞ dt (4.41)

Given that
R

R
cðtÞ dt ¼ 0, (4.41) can be simplified as

X

n

gðnÞ ¼ 0 (4.42)

The coefficients h(n) and g(n) are called a pair of low-pass and high-pass

wavelet filters, which are used to realize the DWT, on the basis of the Mallat

algorithm, as described below.

4.4 The Mallat Algorithm

The dual-scale (4.32) can be rewritten as

fðtÞ ¼
X

n

hðnÞ
ffiffiffi

2
p

fð2t� nÞ (4.43)

Accordingly, the scaled and translation version of fðtÞ can then be expressed as

fð2�jt� kÞ ¼
X

n

hðnÞ
ffiffiffi

2
p

fð2ð2�jt� kÞ � nÞ

¼
X

n

hðnÞ
ffiffiffi

2
p

fð2�jþ1t� 2k � nÞ
(4.44)

Let m ¼ 2k þ m; then (4.44) can be rewritten as

fð2�jt� kÞ ¼
X

n

hðm� 2kÞ
ffiffiffi

2
p

fð2�jþ1t� mÞ (4.45)

On the basis of the theory of MRA, we can define the following:

Vj�1 ¼ span
k

f2ð�jþ1Þ=2fð2�jþ1t� kÞg (4.46)
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As a result, a given signal x(t) in the Vj - 1 space can be expressed as

xðtÞ ¼
X

k

aj�1;k2
ð�jþ1Þ=2fð2�jþ1t� kÞ (4.47)

If such a signal is projected (i.e., decomposed) onto the Vj and Wj spaces, the

result can be expressed as

xðtÞ ¼
X

k

aj;k2
�j=2fð2�jt� kÞ þ

X

k

dj;k2
�j=2cð2�jt� kÞ (4.48)

where aj;k and dj;k are calculated as

aj;k ¼ hxðtÞ;fj;kðtÞi ¼
Z

R

xðtÞ2�j=2f�ð2�jt� kÞ dt (4.49)

dj;k ¼ hxðtÞ;cj;kðtÞi ¼
Z

R

xðtÞ2�j=2c�ð2�jt� kÞ dt (4.50)

Substituting (4.45) in(4.49) results in

aj;k ¼
X

m

hðm� 2kÞ
Z

R

xðtÞ2ð�jþ1Þ=2f�ð2�jþ1t� mÞ dt

¼
X

m

hðm� 2kÞhxðtÞ;fj�1;mi

¼
X

m

hðm� 2kÞaj�1;m

(4.51)

Similarly, (4.50) can be further rewritten as

dj;k ¼
X

m

gðm� 2kÞ
Z

R

xðtÞ2ð�jþ1Þ=2c�ð2�jþ1t� mÞ dt

¼
X

m

hðm� 2kÞhxðtÞ;cj�1;mi

¼
X

m

hðm� 2kÞdj�1;m

(4.52)

This means that, through such a pair of filters, the signal x(t) is decomposed into

low- and high-frequency components, respectively, as (Mallat 1998)

aj;k ¼
X

m

hðm� 2kÞaj�1;m

dj;k ¼
X

m

gðm� 2kÞaj�1;m

8

>

>

<

>

>

:

(4.53)

4.4 The Mallat Algorithm 59



In (4.53), aj,k is the approximate coefficient, which represents the low-

frequency component of the signal, and dj,k is the detailed coefficient, which

corresponds to the high-frequency component. The approximate coefficients

at wavelet decomposition level j are obtained by convolving the approximate coeffi-

cients at the previous decomposition level (j � 1) with the low-pass filter coefficients.

Similarly, the detailed coefficients at wavelet decomposition level j are obtained by

convolving the approximate coefficients at the previous decomposition level (j � 1)

with the high-pass filter coefficients. Such a process represents the idea of Mallat’s

algorithm to implement the DWT, and is schematically shown in Fig. 4.3.

From Fig. 4.3, we see that a signal is decomposed by a four-level DWT. After

passing through the high-pass and low-pass filters on the first level (level 1), the

output of the low-pass filter, denoted as the approximate coefficients of the level 1,

is filtered again by the second-level filter banks. The process repeats itself, and at

the end of the fourth level decomposition, the signal is decomposed into five feature

groups: one group containing the lowest frequency components, denoted as the

approximate information and labeled as AAAA, and four groups containing pro-

gressively higher frequency components, called the detailed information and

labeled as AAAD, AAD, AD, and D. The levels 1–4 correspond to the wavelet scales

21 ¼ 2, 22 ¼ 4, 23 ¼ 8, and 24 ¼ 16, respectively.

4.5 Commonly Used Base Wavelets

This section introduces several commonly used orthogonal wavelets, which can be

used as the basis for performing the DWT.

Level 3

H G

H G

H G

H G

Level 4

Level 2

Level 1

Signal

A D

AA

AAA

AAAA AAAD

AAD

AD

Note: H - Low pass filter; G - High pass filter; A - Approximate information; D - Detailed information

Fig. 4.3 Procedure of a four-level signal decomposition using discrete wavelet transform. Note:

H low-pass filter, G high-pass filter, A approximate information, D detailed information
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4.5.1 Haar Wavelet

The Haar wavelet is mathematically defined as (Haar 1910)

cHaarðtÞ ¼
1 0 � t< 1

2

�1 1
2
� t<1

0 otherwise

8

<

:

(4.54)

Its function and magnitude spectrum are illustrated in Fig. 4.4.

The Haar wavelet is orthogonal and symmetric in nature. The property of

symmetry ensures that the Haar wavelet has linear phase characteristics, meaning

that when a wavelet filtering operation is performed on a signal with this base

wavelet, there will be no phase distortion in the filtered signal. Furthermore, it is the

simplest base wavelet with the highest time resolution given by a compact support

of one as shown in (4.54) (Daubechies 1992). However, the rectangular shape of the

Haar wavelet determines its corresponding spectrum with slow decay characteris-

tics, leading to a low frequency resolution. Examples of using the Haar wavelet for

manufacturing related work include the stamping process monitoring (Zhou et al.

2006) and fault detection in dry etching process (Kim et al. 2010).

4.5.2 Daubechies Wavelet

The family of the Daubechies wavelets is orthogonal, however, asymmetric, which

introduces a large phase distortion. This means that it cannot be used in applications

where a signal’s phase information needs to be kept. It is also a compactly

supported base wavelet with a given support width of 2N - 1, in which N is the

order of the base wavelet (Daubechies 1992). In theory, N can be up to infinity.

In real-world applications, the Daubechies wavelets with order up to 20 have been

used. The Daubechies wavelets do not have explicit expression except for the one

with N¼ 1, which is actually the Haar wavelet as discussed above. With an increase

of the support width (i.e., an increase of the base wavelet order), the Daubechies
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Fig. 4.4 Haar wavelet (left) and its magnitude spectrum (right)
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wavelet becomes increasingly smoother, leading to better frequency localization.

Accordingly, the magnitude spectra for each of the Daubechies wavelets decay

quickly, as illustrated in Fig. 4.5, where the Daubechies 2 base wavelet and

Daubechies 4 base wavelet are used as examples.

The Daubechies wavelets have been widely investigated for fault diagnosis of

bearings (Nikolaou and Antoniadis 2002; Lou and Loparo 2004) and automatic

gears (Rafiee et al. 2010)

4.5.3 Coiflet Wavelet

The family of the Coiflet wavelets is orthogonal (Daubechies 1992), and near

symmetric. This property of near symmetry leads to the near linear phase char-

acteristics of the Coiflet wavelet. They are designed to yield the highest number of

vanishing moments (2N) for both the base wavelet of the order N and the scaling

function, for a given support width of 6N - 1. Figure 4.6 illustrates the sample

waveforms of the Coiflet wavelets, with their corresponding magnitude spectra at

orders 2 and 4, respectively. The Coiflet wavelet has been used for fault diagnosis of

rolling bearings (Sugumaran and Ramachandran 2009).
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Fig. 4.5 Daubechies wavelet (left) and its magnitude spectrum (right). (a) Daubechies 2 base

wavelet and (b) Daubechies 4 base wavelet
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4.5.4 Symlet Wavelet

Symlet wavelets(Daubechies 1992) are orthogonal and near symmetric. This

property ensures minimal phase distortion. A Symlet wavelet of order N has the

number of vanishing moments N for a given support width of 2N - 1. They are

similar to the Daubechies wavelet, except for better symmetry. Waveforms with

their corresponding magnitude spectra for the Symlet wavelet at orders 2 and 4 are

illustrated in Fig. 4.7a, b, respectively. Examples of using the Symlet wavelet

for signal decomposition in manufacturing-related problems include characteriza-

tion of fabric texture (Shakher et al. 2004) and health monitoring of rolling bearings

(Gao and Yan 2006).

4.5.5 Biorthogonal and Reverse Biorthogonal Wavelets

The family of biorthogonal and reverse biorthogonal wavelets (Daubechies 1992) is

biorthogonal and symmetric. The property of symmetry ensures that they have

linear phase characteristics. This type of base wavelet can be constructed by the

spline method (Cohen et al. 1992). Figures 4.8 and 4.9 illustrate sample waveforms

with their magnitude spectrum for several biorthogonal and reverse biorthogonal

wavelets, respectively. In practice, this group of wavelets has been used for surface

profile filtering inmanufacturing processmonitoring and diagnostics (Fu et al. 2003).
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Fig. 4.6 Coiflet wavelet (left) and its magnitude spectrum (right). (a) Coiflet 2 base wavelet and

(b) Coiflet 4 base wavelet

4.5 Commonly Used Base Wavelets 63



−2

−1

0

1

2

a

0

0.5

1

1.5

2

−2

−1

0

1

2

0

0.5

1

1.5

2

0 1 2 3

Time (ms)

A
m

p
lit

u
d

e

−20 −10 0 10 20

Frequency (Hz)

M
a

g
n

it
u

d
e

Symlet 2 base wavelet 

0 1 2 3 4 5 6 7

Time (ms)

A
m

p
lit

u
d
e

−20 −10 0 10 20

Frequency (Hz)

M
a
g
n
it
u
d
e

Symlet 4 base wavelet 

b

Fig. 4.7 Symlet wavelet (left) and its magnitude spectrum (right). (a) Symlet 2 base wavelet and

(b) Symlet 4 base wavelet
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Fig. 4.8 Biorthogonal 2.4 wavelet (left) and its magnitude spectrum (right)
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Fig. 4.9 Reverse biorthogonal 2.4 wavelet (left) and its magnitude spectrum (right)
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4.5.6 Meyer Wavelet

The Meyer wavelet is orthogonal and symmetric. However, it does not have a finite

support. The Meyer wavelet has explicit expression and is defined in the frequency

domain as follows:

CMeyerðf Þ ¼

ffiffiffiffiffiffi

2p
p

eipf sin p
2
nð3 fj j � 1Þ

� �

1
3
� fj j � 2

3
ffiffiffiffiffiffi

2p
p

eipf cos p
2
n 3

2
fj j � 1

� 	� �

2
3
� fj j � 4

3

0 fj j=2 1
3
; 4
3


 �

8

>

>

<

>

>

:

(4.55)

where nð�Þ is an auxiliary function, expressed as

nðaÞ ¼ a4ð35� 84aþ 70a2 � 20a3Þ; a 2 h0; 1i (4.56)

The Meyer wavelet with its magnitude spectrum is illustrated in Fig. 4.10.

Typical applications of Meyer wavelet in manufacturing-related problems

include signal denoising and bearing fault diagnosis (Abbasion et al. 2007).

4.6 Application of Discrete Wavelet Transform

One of the most popular applications of the DWT is to remove noise contained in a

signal. This is based on the observation that a signal’s energy is often distributed

over a few wavelet coefficients with high magnitude, while energy of the noise is

distributed across most of the wavelet coefficients with low magnitude. A thresh-

olding scheme can therefore be devised to remove the noise. Mathematically,

assume a signal with noise contamination expressed as

yðtÞ ¼ xðtÞ þ seðtÞ (4.57)
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Fig. 4.10 Meyer wavelet (left) and its magnitude spectrum (right)
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where x(t) is the signal, e(t) is a Gaussian white noise N(0,1), and s represents the

noise level. The objective of denoising is to suppress the noise e(t) and to recover

the signal x(t). Generally, the denoising procedure consists of three steps:

1. Signal decomposition: Choosing a base wavelet and a decomposition level

J, and then performing DWT up to level J on the signal.

2. Detailed coefficients thresholding: For each decomposition level from 1 to J,

selecting a threshold and applying it to the detailed coefficients.

3. Signal reconstruction: Performing wavelet reconstruction to obtain denoised

signal, based on the original approximate coefficients of level J and the modified

detailed coefficients of levels 1 to J.

It should be noted that two thresholding approaches (hard thresholding and soft

thresholding) can be used in the denoising process (Donoho 1995; Donoho and

Johnstone 1995). Hard thresholding can be described as the process of setting the

value of the detailed coefficient dj;k to zero, if its absolute value is lower than the

threshold (denoted as thr). This is mathematically expressed as

d̂j;k ¼
dj;k dj;k 	 thr

0 dj;k < thr

�

(4.58)

Soft thresholding can be considered as an extension of the hard thresholding, as

shown in Fig. 4.11. It sets those detailed coefficients to zero if their absolute values

are lower than the threshold, and then shrinks the nonzero coefficients toward zero.

Mathematically, this can be expressed as
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Fig. 4.11 Illustration of hard thresholding and soft thresholding
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d̂j;k ¼ sgnðdj;kÞð dj;k
�

�

�

�� thrÞ dj;k 	 thr

0 dj;k < thr

�

(4.59)

where

sgnðdj;kÞ ¼
þ1 dj;k 	 0

�1 dj;k < 0

�

(4.60)

As an example, Fig. 4.12a shows a “blocks” test signal, and Fig. 4.12b shows

that it is contaminated by a Gaussian white noise to make a signal-to-noise ratio

of 4. The signal is decomposed up to level 3, with sym8 wavelet being the base

wavelet. After performing soft thresholding to the detailed coefficients at each

decomposition level, the signal is reconstructed as shown in Fig. 4.12c. As only a

small number of large coefficients characterize the original “blocks” signal, this

DWT-based denoising method performs well.
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Fig. 4.12 Example of

discrete wavelet transform for

denoising. (a) A “blocks”

signal, (b) a “blocks” signal
contaminated by Gaussian

white noise, and (c) denoised
signal using discrete wavelet

transform
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4.7 Summary

This chapter begins with a description of the discretization of the scale and transla-

tion parameters. The MRA and orthogonal wavelet transform are then introduced in

Sect. 4.2. After that, we describe in Sect. 4.3 the dual-scale equation and its

associated wavelet filter pair. The Mallat algorithm for implementing the DWT is

then discussed in Sect. 4.4, followed by the introduction of some commonly used

wavelets in Sect. 4.5. Some typical applications of the DWT are shown in Sect. 4.6.
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Chapter 5

Wavelet Packet Transform

While discrete wavelet transform provides flexible time–frequency resolution, it

suffers from a relatively low resolution in the high-frequency region. This defi-

ciency leads to difficulty in differentiating high-frequency transient components.

The wavelet packet transform (WPT), in comparison, further decomposes the

detailed information of the signal in the high-frequency region, thereby overcoming

this limitation. Figure 5.1 schematically illustrates a WPT-based signal decompo-

sition process, where a four-level WPT produces a total of 16 subbands, with each

subband covering one-sixteenth of the signal frequency spectrum (Gao and Yan

2006). The enhanced signal decomposition capability makes WPT an attractive tool

for detecting and differentiating transient elements with high-frequency character-

istics.

In this chapter, we introduce the theoretical basis of a wavelet packet and

algorithms to realize the WPT. Representative applications of the WPT are then

introduced to illustrate this computational technique.

5.1 Theoretical Basis of Wavelet Packet

5.1.1 Definition

The wavelet packet is defined by the following equation (Wickerhauser 1991):

u
ðjÞ
2nðtÞ¼

ffiffiffi

2
p X

k

hðkÞuðjÞn ð2t� kÞ

u
ðjÞ
2nþ1ðtÞ¼

ffiffiffi

2
p X

k

gðkÞuðjÞn ð2t� kÞ:
with n¼ 0;1;2; . . . and k¼ 0;1; . . . ;m

8

>

>

<

>

>

:

(5.1)

with u
ð0Þ
0 ðtÞ being the scaling function fðtÞ, that is, uð0Þ0 ðtÞ ¼ fðtÞ, and uð0Þ1 ðtÞ being

the base wavelet function cðtÞ, that is, uð0Þ1 ðtÞ ¼ cðtÞ (Wickerhauser 1991). The

superscript (j) in (5.1) denotes the jth level wavelet packet basis, and there will be 2j

wavelet packet bases at the jth level.
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To illustrate the derivation process of wavelet packet basis, the Haar wavelet

(Haar 1910) is used here as an example. The coefficients h(k) and g(k) for Haar

wavelet are defined as (Daubechies 1992)

hð0Þ ¼ hð1Þ ¼ 1
ffiffiffi

2
p ; hðkÞ¼ 0 when k ¼ 2; 3; . . . ;m

gð0Þ ¼ gð1Þ ¼ � 1
ffiffiffi

2
p ; gðkÞ¼ 0 when k ¼ 2; 3; . . . ;m

8

>

>

<

>

>

:

(5.2)

From (5.1) and (5.2), the first level of the Haar wavelet packet basis, indicated by

the superscript (1) is obtained as

u
ð1Þ
0 ðtÞ ¼ u

ð0Þ
0 ð2tÞ ¼ fð2tÞ

u
ð1Þ
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ffiffiffi

2
p 1
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0 ð2t� 1Þ

8

>

<

>

:

(5.3)

Similarly, the second and third levels of the Haar wavelet packet basis can be

derived using (5.4) and (5.5), respectively:
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(5.4)
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Fig. 5.1 Procedure for signal decomposition using wavelet packet transform. Note: A approxi-

mate information, D detailed information, H low-pass filter, G high-pass filter
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u
ð3Þ
0 ðtÞ ¼ fð8tÞ

u
ð3Þ
2n ðtÞ ¼ uð3Þn ð2tÞ þ uð3Þn ð2t� 1Þ; n ¼ 1; 2; 3

u
ð3Þ
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>

>

>

:

(5.5)

Figure 5.2a–c illustrates the waveforms of the Haar wavelet packet bases at

levels 1 through 3 that are derived from the scaling function. Using the same

approach, the Haar wavelet packet bases at all other levels can be obtained.
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Fig. 5.2 Wavelet packet bases for the Haar wavelet: (a) level 1; (b) level 2; and (c) level 3
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5.1.2 Wavelet Packet Property

Equation (5.1) indicates that the wavelet packet has the following properties

(Wickerhauser 1991; Coifman et al. 1992).

5.1.2.1 Shift Orthogonality

If fuðjÞn ðtÞgn2Z is the set of wavelet packet bases obtained from the scaling function

u
ð0Þ
0 ðtÞ ¼ fðtÞ of an orthogonal base wavelet, then these bases hold the property of

shift orthogonality:

hujnðtÞ; ujnðt� kÞi ¼ dk; k 2 z (5.6)

where h�i denotes inner product operation. The symbol dk represents a Dirac

function.

Proof: When n ¼ 0, u
ðjÞ
0 ðtÞ, and u

ðjÞ
1 ðtÞ are the scaled versions of fðtÞ and cðtÞ,

respectively. By definition of the scaling function and base wavelet function, they

are orthogonal (Daubechies 1992).

When n 6¼ 0, as u
ðjÞ
2 ðtÞ and u

ðjÞ
3 ðtÞ are both a linear combination of u

ðjÞ
1 ðtÞ as seen

in (5.3) and (5.4), and u
ðjÞ
1 ðtÞ is a scaled version of the wavelet function cðtÞ, which

is orthogonal and normalized (Daubechies 1992), u
ðjÞ
2 ðtÞ and u

ðjÞ
3 ðtÞ are orthogonal.

As an example, if we have

u
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ffiffiffi
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ffiffiffi
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8

>

>

<

>

>

:

(5.7)

where k0 ¼ 0; 1; . . . ;m and k00 ¼ 0; 1; . . . ;m.
Then

huðjÞ2 ðtÞ; uðjÞ2 ðt� kÞi ¼ 2
X

k0

X

k00
hk0hk00huðjÞ1 ð2t� k0Þ; uðjÞ1 ð2t� 2k � k00Þi (5.8)

The inner product on the right-hand side of (5.8) is equal to 1/2 when

k0 ¼ 2k þ k00; otherwise, it is equal to zero. Therefore,

huðjÞ2 ðtÞ; uðjÞ2 ðt� kÞi ¼
X

k0
hk00h2kþk00 ¼ dk (5.9)

Similarly, u
ðjÞ
4 ðtÞ and u

ðjÞ
5 ðtÞ are both linear combinations of u

ðjÞ
2 ðtÞ, and they are

also orthogonal. Using the same approach, wavelet packet bases of higher levels

can be derived.
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5.1.2.2 Orthogonal Relationship between u
ð jÞ
2n ðtÞ and u

ð jÞ
2nþ1ðtÞ

huðjÞ2nðtÞ; u
ðjÞ
2nþ1ðtÞi ¼ 0 (5.10)

Proof From (5.1), we have

huðjÞ2nðtÞ; u
ðjÞ
2nþ1ðtÞi ¼ 2

Z

X
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X

k00
hk0gk00u

ðjÞ
n ð2t� 2k � k0ÞuðjÞn ð2t� k00Þ dt

¼ 2
X

k0

X

k00
hk0gk00

Z

uðjÞn ð2t� 2k � k0ÞuðjÞn ð2t� k00Þ dt
(5.11)

The result of integral part in (5.11) is equal to zero except when k00 ¼ 2k þ k0.
Therefore,

huðjÞ2nðtÞ; u
ðjÞ
2nþ1ðtÞi ¼

X

k00
hk0gk00 ¼ 0 (5.12)

5.2 Recursive Algorithm

Once the wavelet packet basis is defined using (5.1), a recursive algorithm can be

designed to implement WPT for signal decomposition. The result of the decompo-

sition is given by (Mallat 1999):

djþ1;2n ¼
X

m

hðm� 2kÞdj;n

djþ1;2nþ1 ¼
X

m

gðm� 2kÞdj;n

8

>

>

<

>

>

:

(5.13)

where dj,n denotes the wavelet coefficients at the jth level, nth subband, djþ1,2n, and

djþ1,2nþ1 denote the wavelet coefficients at the (jþ1)th level, 2nth, and (2nþ1)th

subbands, respectively, and m is the number of the wavelet coefficients.

Theoretically, there are multiple ways (>2L) to analyze a signal using an L-level

decomposition (Mallat 1999). This makes it possible to optimize the signal decom-

position process and improve the effectiveness. Various criteria, such as lpðp � 2Þ
norm, logarithmic entropy, and Shannon entropy, can be utilized as the cost

function to facilitate the optimization process. A widely applied criterion for

optimal WPT-based signal representation is the Shannon entropy (Coifman and

Wickerhauser 1992). For wavelet coefficients at the nth subfrequency band within

the level j, dj;n ¼ fdj;n : n ¼ 1; 2; . . . ; 2jg, the Shannon entropy is defined as

Entropy ðdj;nÞ ¼ �
X

i

pi � logðpiÞ (5.14)
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where pi is the probability distribution of the energy contained in the wavelet

coefficients at the nth subfrequency band within the level j. The probability

distribution function is defined as

pi ¼ dj;nðiÞ
�

�

�

�

2
= dj;n
�

�

�

�

2
(5.15)

with
Pm

i¼1 pi ¼ 1, and pi � log2 pi ¼ 0 if pi ¼ 0. The upper limit m represents the

number of wavelet coefficients at the nth subfrequency band within the level j.

Equations (5.13) and (5.14) indicate that the entropy of the wavelet coefficients

is bounded by

0 � Eentropyðdj;nÞ � log2m (5.16)

From (5.16), we see that the Shannon entropy will have a large value if the

energy content is spread out across the constituent wavelet coefficients within the

subfrequency band. Conversely, it assumes a small value if the energy is concen-

trated on a few dominant components. As we want the signal information to be

concentrated within as few coefficients as possible, the minimum Shannon entropy

should be contained in the wavelet coefficients as a result of the signal decomposi-

tion. Mathematically, such a process involves comparing the entropy of the lower

level (e.g., in the subbands DAAA and DAAD, Fig. 5.1) of the tree structure with the

entropy of the higher source level (e.g., subband DAA), starting from the bottom of

the decomposition (e.g., level 4). If the higher level has returned smaller entropy

than the sum of the entropies from the lower level, then the higher level subfre-

quency band will be retained. Otherwise, it will be replaced by the two subfre-

quency bands at the lower level. Such a process is executed until it reaches the top

level of the decomposition.

5.3 FFT-Based Harmonic Wavelet Packet Transform

Besides the recursive algorithm introduced in the previous section, another algo-

rithm for WPT, based on the Fourier transform, has been shown to be effective

when realizing the harmonic wavelet packet transform (HWPT) (Samuel et al.

2000; Yan and Gao 2005).

5.3.1 Harmonic Wavelet Transform

The mathematical expression of the harmonic wavelet is defined in Chap. 3 as

Cm;nð f Þ ¼
1

ðn� mÞ m � f � n

0 elsewhere

8

<

:

(5.17)
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Accordingly, its corresponding time domain expression is obtained by taking the

inverse Fourier transform as (Yan and Gao 2005)

cm;nðtÞ ¼
e jn2pt � e jm2pt

j2pðn� mÞt (5.18)

If the harmonic wavelet is translated by a step k/(m � n), in which k is the

translation parameter, a generalized expression that is centered at t ¼ k=ðn� mÞ
with a bandwidth of ðn� mÞ can be obtained as (Newland 1994)

cm;n t� k

n� m

� �

¼
e jn2p t� k

n�mð Þ � e jm2p t� k
n�mð Þ

� �

j2pðn� mÞ t� k
n�m

	 
 (5.19)

On the basis of the generalized expression, the harmonic wavelet transform of a

signal xðtÞ can be performed as

hwtðm; n; kÞ ¼ ðn� mÞ
Z 1

�1
xðtÞc�

m;n t� k

n� m

� �

dt (5.20)

where hwtðm; n; kÞ is the harmonic wavelet coefficient.

By taking the Fourier transform of (5.20), an equivalent expression of the

harmonic wavelet transform in the frequency domain can be expressed as

HWTðm; n; f Þ ¼ Xðf Þ �C�ððn� mÞf Þ (5.21)

where Xðf Þ is the Fourier transform of the signal xðtÞ, and C�ððn� mÞf Þ is the

conjugate of Cððn� mÞf Þ, which is the Fourier transform of the harmonic wavelet

at the scale (m, n). As the harmonic wavelet has compact frequency expression as

shown in (5.17), the harmonic wavelet transform can be readily obtained through a

pair of Fourier transform and inverse Fourier transform operations (Newland 1993).

As shown in Fig. 5.3, after taking the Fourier transform of a signal xðtÞ to obtain
its frequency domain expression Xðf Þ, the inner product HWTðm; n; f Þ of Xðf Þ and
the conjugate of the harmonic wavelet C�ððn� mÞf Þ at the scale (m, n) are

calculated. Finally, the harmonic wavelet transform of the signal xðtÞ, denoted as

hwtðm; n; kÞ, is obtained by taking the inverse Fourier transform of the inner product

HWTðm; n; f Þ.

5.3.2 Harmonic Wavelet Packet Algorithm

The scale parameters m and n determine the bandwidth that the harmonic wavelet

covers. Shown in Fig. 5.4a–d are the real and imaginary parts of the generalized

harmonic wavelet under two exemplary sets of scale parameters, m¼ 0, n¼ 16 and
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m¼ 16, n¼ 32, while the translation parameter k¼ 8 remains the same. We can see

that, through appropriate variation of these two scale parameters, the harmonic

wavelet can be scaled to match the signal within different frequency regions

associated with the same bandwidth of ðn� mÞ (16 in this example), as shown in

Fig. 5.4e–f. As a result, the HWPT operation is realized.

Similar to the WPT, the number of frequency subbands for the HWPT has to be

s powers of two, in which s corresponds to the decomposition level of WPT. As a

result, the signal can be decomposed into 2s frequency subbands, with the band-

width expressed in Hertz for each subband that is defined by

fband ¼
fh

2s
(5.22)

In (5.20), fh is the highest frequency component of the signal to be analyzed. As

the bandwidth of the harmonic wavelet is ðn� mÞ, selection of the values for m and

n of the HWPT has to satisfy the following condition:

m� n ¼ fband (5.23)

Thus, the harmonic wavelet packet coefficients hwptðs; i; kÞ can be obtained as

hwptðs; i; kÞ ¼ hwtðm; n; kÞ (5.24)

where s is the decomposition level, i is the index of the subband, and k is the index

of the coefficient. In addition, the parameters m and n need to satisfy the following

condition:
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m ¼ i� fband ¼ i� fh

2s

n ¼ ðiþ 1Þ � fband ¼ ðiþ 1Þ � fh

2s

8

>

<

>

:

; i ¼ 0; 1; . . . ; 2s � 1 (5.25)

As a result, by selecting the appropriate parameter pairs (m, n) based on (5.25),

the FFT-based HWPT algorithm can be realized through the computational process

as illustrated in Fig. 5.3.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1
−0.5

0

0.5

1

0.5

1

0.5

1

a b

d

f

c

e

Fig. 5.4 Waveforms of the harmonic wavelet with their Fourier transforms under different scale

parameters

5.3 FFT-Based Harmonic Wavelet Packet Transform 77



5.4 Application of Wavelet Packet Transform

Using the WPT, we can determine a signal’s time–frequency composition, thereby

having a good understanding of what is contained within the signal. Furthermore,

the WPT can be applied to remove noise contained in the signal. In the following,

we demonstrate two examples of these applications.

5.4.1 Time-Frequency Analysis

Figure 5.5 shows a vibration signal measured on a ball bearing during a run-

to-failure test. Physically, when a localized defect is initiated in a rolling element

bearing, for example, due to spalling on the surface of the bearing raceway, impact

will be generated every time when a rolling element rolls over the defect. Such

impacts subsequently excite the intrinsic modes of the bearing system, giving rise to

transient vibrations at the mode-related resonant frequencies. As the defect size

increases, different intrinsic modes of the bearing system will be excited, leading to

frequency shifts of the impact-induced transient vibrations. Therefore, by evaluat-

ing the time–frequency distributions of the vibration signal, degradation of the

bearing’s health condition can be monitored.

Applying the WPT to the vibration data, we have seen in Fig. 5.6 that not only all

the major transient elements are identified, but the corresponding frequency shifts

are also clearly seen. The result also shows the increased number of frequency

components after the 45-ms time point, reflecting the defect size propagation.

Fig. 5.5 Vibration signal from a ball bearing
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5.4.2 Wavelet Packet for Denoising

Figure 5.7a shows a noisy chirp signal, where Gaussian noise is added to the signal,

leading to a signal-to-noise ratio of seven. The denoising idea illustrated here is in

principle identical to that developed in the wavelet framework in Chap. 4. The only

difference is that the WPT provides better flexibility because of a more complete

analysis of the signal. In this example, the Stein’s unbiased estimate of risk (SURE)

criterion threshold is used to construct the wavelet coefficients (Donoho 1995;

Donoho and Johnstone 1995). For the purpose of comparison, the signal is pro-

cessed using both the wavelet packets-based denoising and wavelet-based denois-

ing techniques, and the results are shown in Fig. 5.7b, c, respectively. It can be seen

that the performance of the wavelet packets-based denoising approach is better than

that of the wavelet-based approach.

5.5 Summary

This chapter begins with the introduction of a theoretical basis of a wavelet packet,

where the definition of the wavelet packet and its related properties are presented.

Two approaches for implementing the WPT are then discussed. Applications of the

WPT on time-frequency analysis and denoising are illustrated in Sect. 5.4.

Fig. 5.6 Wavelet packet transform of the bearing vibration signal
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Chapter 6

Wavelet-Based Multiscale Enveloping

The use of enveloping technique has been found in many engineering fields.

For example, enveloping is employed for the detection of ultrasonic signals, as

seen in nondestructive testing (McGonnagle 1966; Greguss 1980; Liang et al 2006).

It also presents a complementary tool to spectral analysis in detecting structural

defects in rolling bearings (e.g., surface spalling) and gearbox (e.g., broken teeth)

(Tse et al 2001; Wang 2001). Generally, three steps are involved in envelope

extraction, as illustrated in Fig. 6.1. First, the measured signal passes through a

band-pass filter with its bandwidth covering the high-frequency components of

interest. As a result, the rest of the frequency components outside of the passing

band are rejected, leaving only bursts of the band-passed components in the signal,

as shown in Fig. 6.1b. Next, the band-passed signal is rectified, and shown in

Fig. 6.1c. Finally, the rectified signal passes through a low-pass filter that is

designed to allow only the low-frequency envelope of the signal to pass through,

as shown in Fig. 6.1d.

A limitation when applying this technique is that it requires a proper filtering

band to be chosen to accurately extract the signal’s envelope, for which a priori

knowledge of the signal is desired. In this chapter, an adaptive, multiscale envelop-

ing technique based on the wavelet transform is introduced, which overcomes the

limitation of the conventional enveloping technique.

6.1 Signal Enveloping Through Hilbert Transform

The Hilbert transform has shown to present a good alternative to the conventional

enveloping technique in extracting a signal’s envelope (Hahn 1996). Mathemati-

cally, the Hilbert transform of a real-valued signal is defined as

~xðtÞ ¼ H½xðtÞ� ¼

Z 1

�1

xðtÞ

pðt� tÞ
dt (6.1)

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,
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where H½�� denotes the Hilbert transform operator. The symbol ~xðtÞ represents the
Hilbert transform result of a real-valued signal xðtÞ, and is the convolution of xðtÞ
and (1=pt):

~xðtÞ ¼ xðtÞ �
1

pt
(6.2)

where the symbol � denotes the “convolution” operation. According to the

convolution theorem, the Fourier transform of the convolution of two signals is

the product of the respective Fourier transforms of the two signals (Oppenheim

et al. 1999). Accordingly, the Fourier transform of ~xðtÞ can be expressed as

~Xðf Þ ¼ Xðf Þ � F
1

pt

� �

(6.3)

where the symbol � denotes the “product” operation, Xð f Þ is the Fourier trans-

form of the signal xðtÞ, and F½1=pt� denotes the Fourier transform of the term 1=pt.
Specifically, this is defined as

Band-Pass Filtering

a

Time

Time

b

Rectifying

Time

c

Low-Pass Filtering

Time

d

Fig. 6.1 Procedure for

traditional envelope

extraction
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F
1

pt

� �

¼ �j sgn f ¼
�j f>0

0 f ¼ 0

j f<0

8

<

:

(6.4)

Combining (6.4) with (6.3) yields

~Xðf Þ ¼

�jXð f Þ f>0

0 f ¼ 0

jXð f Þ f<0

8

>

<

>

:

(6.5)

Through an inverse Fourier transform performed on (6.5), the Hilbert transform

of the real-valued signal can be realized. Accordingly, a special type of complex-

valued signal zðtÞ can now be formulated as

zðtÞ ¼ xðtÞ þ j~xðtÞ (6.6)

with the real-valued signalxðtÞ being its real part, and the Hilbert transform of the

signal, ~xðtÞ, being the imaginary part. Because of the inherent linearity property of

the Fourier transform, the corresponding expression of (6.6) in the frequency

domain can then be given as

Zðf Þ ¼ Xðf Þ þ j ~Xðf Þ (6.7)

Combining (6.7) with (6.5) yields

Zðf Þ ¼ Xðf Þ þ j

�jXð f Þ f>0

0 f ¼ 0

jXð f Þ f<0

8

>

<

>

:

¼

2Xðf Þ f>0

Xð0Þ f ¼ 0

0 f<0

:

8

>

<

>

:

(6.8)

Equations (6.6) and (6.8) indicate that the complex-valued signal zðtÞ is analytic
in nature (Lawrence 1999). This means that it can also be expressed in terms of the

complex polar coordinates as

zðtÞ ¼ aðtÞ e jyðtÞ (6.9)

where

aðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xðtÞ2 þ ~xðtÞ2
q

(6.10)

yðtÞ ¼ tan�1 ~xðtÞ

xðtÞ

� �

(6.11)
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Equations (6.10) and (6.11) are called amplitude envelope function and

instantaneous phase function of the signal xðtÞ, respectively. This indicates that

performing the Hilbert transform on a real-valued signal xðtÞ, results in the formu-

lation of a corresponding analytic signal zðtÞ, from which the envelope aðtÞ of the
signal can be extracted. Such a property of the Hilbert transform makes it well

suited for enveloping, as described in the following section.

6.2 Multiscale Enveloping Using Complex-Valued Wavelet

Among various base wavelets commonly used for signal analysis (Lee and Tang

1999; Yen and Lin 2000; Yoshida et al. 2000; Prabhakar et al. 2002; Yan and Gao

2005a), the complex-valued wavelets have the property of being analytic in nature.

Such wavelets are generally defined as

cðtÞ ¼ cRðtÞ þ jcIðtÞ ¼ cRðtÞ þ jH½cRðtÞ� (6.12)

where cRðtÞ and cIðtÞ represent the real and the imaginary parts of the complex-

valued wavelet, respectively, and cIðtÞ is the Hilbert transform of cRðtÞ.
The wavelet transform wtcðs; tÞ of a signal xðtÞ using complex-valued wavelet is

expressed as

wtcðs; tÞ ¼ wtRðs; tÞ þ jwtIðs; tÞ ¼ wtRðs; tÞ þ jH½wtRðs; tÞ� (6.13)

where wtRðs; tÞ and wtIðs; tÞ are the real and imaginary parts of the transformation

results, respectively. They are defined as

wtRðs; tÞ ¼ sj j�1=2

Z 1

�1

xðtÞc�
R

t� t

s

� �

dt

wtIðs; tÞ ¼ H½wtRðs; tÞ� ¼ sj j�1=2

ð1

�1

xðtÞH c�
R

t� t

s

� �h i

dt

8

>

>

<

>

>

:

(6.14)

Equations (6.13) and (6.14) indicate that the results of wavelet transform

wtcðs; tÞ of a signal xðtÞ using the complex-valued wavelet is also analytic. As a

result, the signal’s envelope at scale s, envwtðs; tÞ, can be readily calculated from the

modulus of the wavelet coefficients as

envwtðs; tÞ ¼ wtcðs; tÞk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wtRðs; tÞ
2 þ H½wtRðs; tÞ�

2

q

(6.15)

As the wavelet transform itself can be considered as a series of band-pass

filtering operations (implemented through the scaled parameter s) as described in

Chap. 3, and the signal’s envelope can be obtained by calculating the modulus of

the wavelet coefficients when the complex-valued wavelet is used, a multiscale
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enveloping technique can be developed on the basis of the wavelet transform.

Computationally, this technique first decomposes the signal (e.g., vibrations

measured on a defective rolling bearing) into different wavelet scales by means

of a complex-valued wavelet transform, as illustrated in Fig. 6.2a. A series of

wavelet coefficients, which are expressed as real part and imaginary part, respec-

tively, are then obtained (Fig. 6.2b). The envelope signal in each scale (Fig. 6.2c) is

finally calculated from the modulus of the wavelet coefficients.

6.3 Application of Multiscale Enveloping

This section describes the application of the multiscale enveloping technique

introduced above to two different mechanical systems.

6.3.1 Ultrasonic Pulse Differentiation for Pressure Measurement

in Injection Molding

Online monitoring and control of pressure in the cavity of an injection machine has

been shown to be critically important for improving product quality while main-

taining low rejection rates in injection molding (Rawabdeh and Petersen 1999). The

design of a self-powered wireless sensor has enabled the placement of multiple

sensors within a mold to achieve comprehensive spatial coverage of the cavity

pressure profile (Gao et al. 2001; Theurer et al. 2001). To overcome electromag-

netic shielding caused by the steel mold that surrounds the sensors, ultrasonic wave

has been explored as an alternative to electromagnetic wave for pressure data
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Fig. 6.2 Illustration of the multiscale enveloping algorithm
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transmission out of the mold (Zhang et al. 2004). Specifically, mold cavity pressure

measured by a piezoceramic sensing element is digitized into a series of ultrasonic

pulse trains, with each pulse train representing the crossing of a preset pressure

threshold. The actual cavity pressure (denoted as➊ in Fig. 6.3a) is reconstructed by

multiplying the total number of the pulse trains (denoted as ➌ in Fig. 6.3a) with the

known threshold value. Given a matrix arrangement of such wireless sensors within

the mold cavity, spatial coverage of the cavity pressure profile can be obtained. An

example of a sensor matrix consisting of six wireless sensors and a single receiver is

illustrated in Fig. 6.3b.

Fig. 6.3 Sensing principle and the sensor array arrangement in an injection mold. (a) Sensing

principle:➊ actual pressure,➋measured pressure, and➌ ultrasonic pulse trains and (b) illustration

of the sensor array configuration
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The limitation of such a 1D enveloping technique is illustrated in Fig. 6.4, which

illustrates a total of six ultrasonic pulse trains generated by six transmitters, with the

center frequencies being 2,210, 2,480, 2,785, 3,140, 3,530, and 3,980 kHz, respec-

tively. Each pulse train is related to the crossing of the melt pressure of a threshold

level at a specific location along the cavity. The envelope of the signal is given in

Fig. 6.4b. By thresholding the enveloped signal, the time of arrival of each pulse

train can be determined. However, as the difference in frequency of the pulse trains

cannot be accurately resolved, the spectrum of the multiple pulse trains appears in

Fig. 6.4c as a lumped group, giving the appearance as if they were generated by a

single transmitter.

Such a problem can be solved by using the multiscale enveloping technique

introduced in this chapter, which decomposes the pulse trains into individual

frequency subbands and extracts the respective envelope from the pulse trains in

each subband. Multiplying the number of crossings by the envelope with each
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respective threshold value, the cavity pressure profile can be reconstructed. This is

illustrated in the following sections, through both simulation and experiments.

6.3.1.1 Simulation

The performance of the multiscale enveloping for pulse detection on a sensor

matrix consisting of six spatially distributed ultrasonic transmitters is evaluated

first by means of a computer simulation. The six spectrally adjacent ultrasonic pulse

trains are centered at 2,210, 2,480, 2,785, 3,140, 3,530, and 3,980 kHz, respectively,

labeled as① through⑥ in Fig. 6.5. The pulses are separated by an interval of 10 ms

from one another, simulating the flow of polymer melt over the sensor matrix

sequentially at a constant speed. As shown in Fig. 6.5, the six pulses could be

detected and well separated into six levels (each level corresponds to a specific

scale calculated on the basis of ultrasonic pulse center frequency) through a

wavelet-based multiscale enveloping process.

In another simulation, the multiscale enveloping technique is applied to decom-

posing an ultrasonic signal consisting of two different types of ultrasound pulse

trains:

1. spectrally identical (with the same center frequency of 3,980 kHz) and timely

adjacent (5 ms apart), as labeled ① and ② in Fig. 6.6a

2. timely overlapped and spectrally adjacent (with center frequencies of 2,210 and

2,785 kHz, respectively) as labeled ③ and ④ in Fig. 6.6a.

As shown in Fig. 6.6b, pulses ① and ② are successfully differentiated both

spectrally (at the same level 6, because of their identical center frequency) and
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temporally (successive along the time axis, with 5 ms separation). Similarly, the two

pulses ③ and ④ are well separated into the first and third levels, reflecting on the

different center frequencies that they contain.

6.3.1.2 Experimental Study

To experimentally verify the performance of the developed multiscale enveloping

technique for ultrasonic pulse detection, three ultrasonic transmitters were designed

and prototyped, with the center frequencies being 2,480, 2,785, and 3,140 kHz,

respectively. An electrical pulser (model C-101-HV from PAC company) was used

to electrically excite the transmitters. Ultrasonic pulses generated were then trans-

mitted through a steel block of 6 cm thickness, which represents a realistic injection

mold. The pulses were received by an ultrasonic receiver located on the opposite

side of the steel block. The received ultrasonic pulses were measured and recorded

using a digital oscilloscope (model TDS 3012B from Tektronix).

In the first experiment, a single transmitter (center frequency 3,140 kHz) was

excited repetitively at 10 kHz. As a result, a series of pulses were generated with

two adjacent pulses being timely separated by 100 ms, as shown in Fig. 6.7a. For

each train of pulses generated (by each excitation), the first arrived pulse with the

highest amplitude, plus two reflections with decaying amplitudes were clearly

observed. The received pulses were processed using the multiscale enveloping

technique, and their corresponding envelopes were extracted. As shown in

Fig. 6.7a, the first arrival and the first two reflections were clearly differentiated

at level 4. As the reflections have much lower amplitude than the first arrival, they
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can be readily eliminated through thresholding from the extracted envelope. In the

second experiment, the pulse repetition frequency was increased to 50 kHz, result-

ing in a temporal separation of 20 ms between the adjacent pulses. As shown in
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Fig. 6.7b, the reflections were buried under the first arrivals; therefore, they did not

affect the pulse detection.

To evaluate the pulse detector’s ability in differentiating spectrally adjacent

pulses in the frequency domain, the three transmitters (of center frequencies

2,480, 2,785, and 3,140 kHz) were placed side-by-side on one side of the steel

block and excited simultaneously, with the excitation repetition frequency being

30 kHz (corresponding to 33 ms pulse separation). The pulses received by the

ultrasonic receiver are shown in the upper portion of Fig. 6.8a, where temporal

overlap of the three transmitters cannot be differentiated in the time domain.

Applying the multiscale enveloping technique, the envelopes of the three pulse

trains were successfully extracted and differentiated in levels 2, 3, and 4, respec-

tively, as shown in Fig. 6.8b.

To examine the robustness of the multiscale enveloping technique, repetition

frequency of the excitation input to the transmitters was varied to be 30, 20,

and 10 kHz for the three transmitters, resulting in a pulse separation of 33, 50,

and 100 ms, respectively. As shown in Fig. 6.8b, the pulse trains were again

successfully detected and differentiated, with the corresponding envelopes sepa-

rated into levels 2, 3, and 4, respectively.

6.3.2 Bearing Defect Diagnosis in Rotary Machine

A large number of applications in machine condition monitoring involve rotary

machine components, for example, bearings, spindles, and gearboxes (Kiral and

Karag€ulle 2003; Wu et al. 2004; Choy et al. 2005). To detect structural defects that

may occur in these machine components, spectral analysis of the signal’s envelope

has been widely employed (McFadden and Smith 1984; Ho and Randall 2000). This

is based on the consideration that structural impacts induced by a localized defect

often excite one or more resonance modes of the structure and generate impulsive

vibrations in a repetitive and periodic way. Frequencies related to such resonance

modes are often located in higher frequency regions than those caused by machine-

borne vibrations, and are characterized by an energy concentration within a rela-

tively narrow band centered at one of the harmonics of the resonance frequency. By

utilizing the effect of mechanical amplification provided by structural resonances,

defect-induced vibration features can be separated from the background noise and

interference for diagnosis purpose. However, as different resonance modes can be

excited under varying machine operating conditions, consistent results are not

guaranteed by simply applying the traditional enveloping spectral analysis.

Research has found that complementing the wavelet-based multiscale enveloping

with spectral analysis by means of the multiscale enveloping spectrogram

(MuSEnS) technique could significantly enhance the effectiveness of bearing defect

diagnosis (Yan and Gao 2005b). Basically, the MuSEnS starts with a signal’s

envelope extraction by using the developed wavelet-based multiscale enveloping

technique; Fourier transform is then performed repetitively on the extracted
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envelope signal envwtðs; tÞ at each scale s, resulting in an “envelop spectrum” of the

original signal at the various scales. Such envelop spectra can be expressed as

ENVwtðs; f Þ ¼ F½envwtðs; tÞ� ¼
1

2p

Z 1

�1

wtcðs; tÞk ke�i2pf t dt (6.16)
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where the envelope signal envwtðs; tÞ is obtained using (6.15), and calculated

directly from the modulus of the wavelet coefficients

wtcðs; tÞk k of the original signal: The result of the ENVwtðs; f Þ operation is a 2D

matrix, with each of its rows corresponding to the envelop spectrum of the vibration

signal at a specified scale s, and each of its columns corresponding to a specific

frequency component of the envelope spectrum across all the scales. By looking at

the square of the magnitude of ENVwtðs; f Þ, as seen in

Eðs; f Þ ¼ ENVwtðs; f Þj j2 (6.17)

which is termed as the energy spectrum, the final output Eðs; f Þ of the MuSEnS is

obtained. The energy spectrum indicates how the energy content is distributed in

the scale-frequency plane. For the purpose of visualization, such a result can be

illustrated in a 3D scale-frequency-energy map, which can indicate the intensity

and location of the defect-related frequency lines. The applications of the MuSEnS

technique to bearing defect diagnosis are introduced in the next section.

6.3.2.1 Numerical Simulation Using the MuSEnS Algorithm

A synthetic signal that consists of different signal components for simulating

vibration signal from the rolling element bearing is first constructed to quantita-

tively evaluate the MuSEnS technique. Generally, vibration signals from a bearing

may include the following constituent components:

1. vibration caused by bearing imbalance with a characteristic frequency of fu,

equal to the bearing rotational speed, which occurs when the gravitational center

of the bearing does not coincide with its rotational center

2. vibration caused by bearing misalignment at frequency fm, equal to twice the

shaft speed, which occurs when the two raceways of the bearing (inner and

outer) fall out of the same plane, resulting in a raceway axis that is no longer

parallel to the axis of the rotating shaft

3. vibration due to rolling elements periodically passing over a fixed reference

position on the outer raceway, at the frequency fBPFO
4. structure-borne vibration attributed by other components, which is broadband in

nature, and can be modeled as white noise.

When a localized structural defect occurs on the surface of the bearing raceways

(inner or outer), a series of impacts will be generated every time the rolling

elements interact with the defects, subsequently exciting the bearing system.

Such forced vibration is represented by high-frequency resonances that are ampli-

tude modulated at the repetition frequency of the impacts.

For the numerical simulation, only defect-induced resonant vibration and

structure-borne vibration are considered in the synthetic signal, as other vibration

components can be filtered out through data preprocessing. The simulated resonant
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vibration is obtained experimentally from the measured impulse response of a

ball bearing (model 2214). This bearing has 17 rolling elements. When it rotates at

300 rpm, a total of eight impacts will be generated per bearing revolution, because of

the ball–defect interactions. This translates into an impact interval of 25 ms or a

40-Hz signal repetition frequency. Figure 6.9a illustrates such a series of impact-

related vibrations. By adding white noise to these vibrations, a synthetic signal is

then generated to simulate the actual bearing vibrations due to a localized outer

raceway defect. The signal-to-noise ratio (SNR) of the synthetic system is set at

�12 dB. The synthetic signal with its time and frequency domain waveform is

shown in Fig. 6.9b, c. Because of the noise corruption, no apparent signal feature

could be identified, except for the relatively dominant spectral components ranging

from 2,500 to 3,500 Hz.

The synthetic signal is analyzed using the wavelet-based MuSEnS technique,

where the complex Morlet wavelet is used as the base wavelet for defect character-

istic extraction. A series of equally spaced scales ranging from 1 to 6 (with an

increment of sI) were chosen to stretch the complex Morlet wavelet for extracting

the defect-related feature embedded in the synthetic signal. The lower and upper

limits of the scales correspond to the wavelet center frequency at 10,000 and
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1,667 Hz, respectively. This ensures that the defect-induced resonant vibration

component can be fully covered by the wavelet transformation. To increase the

possibility of matching the center frequency of a scaled wavelet with the frequency

of the defect-induced resonant vibration, a small-scale interval is preferred. How-

ever, a small-scale interval leads to increased computational load, as more scales

will be involved in the signal decomposition. A trade-off must therefore be made

between the accuracy and computational time. On the basis of preliminary studies,

an increment of sI ¼ 0:2 was employed in this study. As the MuSEnS shown in

Fig. 6.10, high-energy concentration can be identified at the 40-Hz frequency line,

which corresponds to the defect-related repetition frequency. Also strongly repre-

sented in the spectrogram is the harmonics of the defect-related frequency at 80 Hz.

This result demonstrates the effectiveness of the MuSEnS algorithm in identifying

defect features hidden in bearing vibration signals.

6.3.2.2 Case Study

The first experimental case study of using MuSEnS algorithm to diagnose bearing

defects is conducted on a roller bearing. A seeded defect in the form of 0.1 mm

diameter hole is made in the outer raceway. The bearing is subject to a 3,665-N

radial load, and the shaft rotational speed is 1,200 rpm (or a 20-Hz rotational

frequency). On the basis of the geometrical parameters of the bearing and the

rotational speed, a defect-related repetitive frequency of (fBPFO ¼ 5.25frpm) or

105 Hz can be analytically determined (Harris 1991). Figure 6.11 shows the bearing

vibration signal acquired under the sampling frequency of 25 kHz. From its

corresponding power spectrum, it is evident that frequency component related to

bearing rotation is dominant in the frequency region of [0, 150] Hz. However,
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Fig. 6.10 Defect repetition frequency detection on the synthetic signal using multiscale envelop-

ing spectrogram (MuSEnS) technique
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defect-related frequency component of 105 Hz is submerged in the spectrum and

therefore, cannot be identified.

The MuSEnS algorithm is then applied to decompose the bearing signal. The

scales used are between 1 and 8, with an increment 0.2. These scales cover the

frequency range of 1.56–12.5 kHz. The corresponding MuSEnS of the bearing

vibration signal is shown in Fig. 6.12. Two major peaks are clearly shown at 20 and

105 Hz frequency lines, respectively. The 20-Hz component runs across the entire

scale region, and is related to the bearing rotating speed. The 105-Hz component is

identified at the scales of 1–2.4, and represents the repetitive frequency of the

bearing due to the structural defect on the outer raceway. This demonstrates that the

MuSEnS is able to clearly identify the existence of the structural defect, and

pinpoint its location on the outer raceway for diagnosis purpose.

The second experimental case study of using the MuSEnS algorithm for diagno-

sis of bearing inner raceway defect is investigated on a ball bearing of model SKF

6220. The defect-related repetitive frequency is calculated to be (fBPFI ¼ 5.9frpm) or

59 Hz, basedon the bearing geometry and rotational speed (600 rpm) (Harris 1991).

A radial load of 10,000 N is applied to the bearing. As shown in Fig. 6.13, while

frequency components related to the shaft speed and ball rotation are shown in the

power spectrum, the defect-related repetitive frequency is not identified.

The MuSEnS algorithm is then applied to the same signal, with the decomposi-

tion scales chosen to be �2–10 at an increment of 0.2. The scales cover the

frequency range from 500 to 2,500 Hz. As shown in Fig. 6.14, besides frequency

components related to the shaft frequency and its harmonics, an appreciable peak

can be seen at 59 Hz, which is the inner raceway defect-related repetitive frequency.

This indicates that a structural defect exists on the inner raceway of the ball bearing.

The peaks at 49 and 69 Hz frequency lines are attributed to the combined effect of
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bearing imbalance at 10 Hz frequency and the structural defect at 59 Hz frequency,

as they can be calculated as 59 	 10 Hz.

6.4 Summary

Awavelet-based multiscale enveloping technique is introduced in this chapter. This

multidomain signal processing technique combines band-pass filtering (implemen-

ted through variation of the scale parameter s of the base wavelet) and enveloping
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(obtained through modulus of the wavelet coefficients) into a single-step operation.

The effectiveness of the multiscale enveloping technique is demonstrated through

studies in ultrasonic pulse differentiation for pressure measurement in injection

molding and bearing defect diagnosis in rotary machines, both numerically and

experimentally.

When the multiscale enveloping technique is used to identify the ultrasonic

pulses generated from injection molding process, not only spectrally identical and

timely adjacent but also timely overlapped and spectrally adjacent ultrasonic pulses

could be detected and differentiated. This allows for comprehensive spatial cover-

age of the cavity pressure profile by placing multiple sensors with different working

frequency ranges at different locations in the injection mold. When the wavelet-

based enveloping is combined with spectral domain postprocessing, a new algo-

rithm termed MuSEnS was developed, which has been shown to be more accurate

and illustrative in depicting critical features related to structural defects embedded

in the bearings than the traditional enveloping spectral analysis. As many of the

applications in manufacturing equipment and system monitoring involve rotary

machine components (e.g., bearings, spindles, gearboxes, etc.), it is possible that

the MuSEnS technique may contribute to improving solutions to a wide variety of

machine monitoring problems.
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Chapter 7

Wavelet Integrated with Fourier Transform:
A Unified Technique

Fourier transform-based spectral analysis has been widely applied to processing

signals, such as vibration and acoustic signals (Mori et al. 1996; Tandon and

Choudhury 1999; Cavacece and Introini 2002), acquired from manufacturing

systems. Because of noise contamination and signal interference, the constituent

components of interest may be submerged in the signal and difficult to be revealed

through a spectral analysis (Ho and Randall 2000). Furthermore, events occurred in

the manufacturing system may be transient in nature, for example, the initiation and

propagation of surface spalling in a ball bearing (Gao and Yan 2006; Orhan et al.

2006). As another example, the process of metal removal can be viewed as

consisting of multiple, individual transient events in which a single chip of metal

is removed (Ge et al. 2004; Obikawa and Shinozuka 2004; Byrne and O’Donnell

2007; Malekian et al. 2009). On the one hand, given the global analysis nature, it is

difficult to apply the Fourier transform for localizing these transient events. On the

other hand, the Fourier transform can identify a signal’s frequency components,

from which a specific event (e.g., localized bearing defects, which have distinct

characteristic frequencies at inner raceway, outer raceway, or rolling element itself)

can be detected. Leveraging the capability of wavelet transform in transient signal

analysis, this chapter introduces a unified time–scale–frequency analysis technique

through spectral postprocessing on the data set extracted by wavelet transforms to

enhance the effectiveness of signal representation and identification.

7.1 Generalized Signal Transformation Frame

Fourier transform and wavelet transform were originated from different theoretical

platforms, and each technique analyzes a signal from a different perspective.

Specifically, the Fourier transform depicts the energy concentration of constituent

frequency components within the signal, whereas the wavelet transform presents

the similarity between the signal being analyzed and the base wavelet, in the

time–scale domain. To enable cross-domain unification of the two techniques for

signal analysis, a common signal transformation platform needs to be established

first, which is the focus of this chapter.

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,

DOI 10.1007/978-1-4419-1545-0_7,# Springer Science+Business Media, LLC 2011

103



Let us first define a function W1,0(t) within a certain time interval, or support,

expressed as [0, L), where the symbol L represents the width of support. The

function W1,0(t) is called the base template function for signal analysis. Next, we

define Ws, u(t), which is a derived version of W1,0(t). Comparing to W1,0(t), the

magnitude of Ws,u(t) is scaled by scale s, where s � 0 is an integer number, and its

location along the time axis is shifted by time u, with u∈ R, and R represents the set

of all real numbers. The function Ws,u(t) is called the derived template function, at

scale s and time u, and is supported within the time interval [u, u þ sL]. Generally,

Ws,u(t) can be expressed in terms of the base template function W1,0(t) as:

Ws;uðtÞ ¼
1
ffiffi

s
p W1;0

t� u

s

� �

(7.1)

where 1=
ffiffi

s
p

is a factor for purpose of normalization. Specifically, it ensures that the

following relationship between the derived template function Ws,u(t) and the base

template function W1,0(t) is always satisfied:

Z 1

�1
W2

s;uðtÞdt ¼
Z 1

�1
W2

1;0ðtÞdt � jjW1;0ðtÞjj2 (7.2)

The physical significance of (7.2) is that all the derived template functions

preserve the same amount of energy as the base template function does.

In a linear signal space, the set of all derived template functions {Ws,u(t): s � 0,

u ∈ R} forms a continuous frame Gc, spanned by scale s and time u. In accordance

with the discrete data sampling process, where data points are taken at time

instances u ¼ mkL from a derived template function with a scale factor of s ¼ k,

a discrete expression of the derived template function is obtained as:

Wk;m ¼ 1
ffiffiffi

k
p W1;0

t� mkL

k

� �

(7.3)

where Wk, m(t) is a simplified expression for Wk, mkL(t). In the above notation, k or

k-1 ∈ N, m ∈ Z, and k and m represent a discrete version of the continuous

parameters s and u. The notation k-1 ∈ N corresponds to s<1. The set {Wk, m(t):

k or k-1 ∈ N, m ∈ Z}, with N being the set of all nonnegative integers and Z being

the set of all integers, forms a discrete frame Gd, spanned by the parameters k andm.

The continuous frame Gc (or discrete frame Gd) provides a generalized frame for

signal transformation, and is defined as complete in the linear signal space, if any

signal function x(t) can be expressed in it as (Kaiser 1994):

xðtÞ ¼
Z 1

0

Z 1

�1
Cðs; uÞWs;uðtÞds du (7.4)

or, in the case of discrete frame Gd:
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xðtÞ ¼
X

1

k¼1

X

1

m¼�1
Cðk;mÞWk;mðtÞ (7.5)

In (7.4) and (7.5), the coefficient of the functions, C(s, u) or C(k, m), can be

considered as a measure function, which expresses the extent to which the signal

function x(t) is correlated to the derived template function {Ws,u(t): s� 0, u∈ R} of

scale s, at the specific time u.

Under the discrete frame Gd, the significance of the measure function expressed

in (7.5) can be further illustrated, considering that there exists a complete orthogo-

nal set {Wk,m(t)} within such a frame. The orthogonal identity states that:

Z 1

�1
Wk1;m1

ðtÞWk2;m2
ðtÞdt ¼

Z 1

�1
W2

k1;m1
ðtÞdt; for k2 ¼ k1; m2 ¼ m1

0; otherwise

8

<

:

(7.6)

where k1 and k2 ∈ {k}, and m1 and m2 ∈ {m}. Using the identity of (7.6), multi-

plying the two sides of (7.5) by Wk1;m1
ðtÞ, and integrating over the time interval

(� 1, 1 ), we have:

Z 1

�1
xðtÞWk1;m1

ðtÞdt ¼
Z 1

�1

X

k

X

m

Cðk;mÞWk;mðtÞWk1;m1
ðtÞdt

¼Cðk1;m1Þ
Z 1

�1
W2

k1;m1
ðtÞdt

(7.7)

With k ¼ k1 and m ¼ m1, rearranging (7.7) yields,

Cðk;mÞ ¼
R1
�1 xðtÞWk;mðtÞdt
R1
�1 W2

k;mðtÞdt
¼
R1
�1 xðtÞW1;0

t�mkL
k

� �

dt
R1
�1 W2

1;0ðtÞdt
(7.8)

The equation indicates that the measure function C(k, m) expresses the correlation

(or similarity) between the signal function x(t) and the derived template function

Wk,m(t) of scale k and at time mkL. This concept can be expanded to view a signal

transformation operation, such as Fourier or wavelet transform, as a correlation

operation between a signal and a template function, and the result expresses the

measures of correlation between the two functions. When a template function

derived from a base template function has a large value of C(k, m), or correlation,

with a signal feature at certain scale k and time mkL, the template function is said to

have a good match with that corresponding feature. As a result, the feature will be

effectively extracted by this particular template function. Signal components that

are of little correlation to the template function will show small or no correlation

measures, and thus be suppressed in the analysis. A signal may show different

correlation measures with different base template functions. In Table 7.1, several
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basic template functions are expressed in the generalized signal transformation

frame, and they are discussed in the following sections.

7.1.1 Fourier Transform in the Generalized Frame

A signal x(t) of period T can be expressed through its Fourier transform as

(Bracewell 1999):

xðtÞ ¼
X

1

n¼0

cne
�j2pnt=T ; �1<t<1; n 2 N (7.9)

where cn is the nth-order transformation coefficient. If a single-period complex

exponential function is defined as the base template function:

W1;0ðtÞ ¼ e�j2pt=L; t 2 ½0;LÞ (7.10)

then the corresponding derived template function can be expressed, per definition in

(7.1), as:

Wk;mðtÞ ¼
1
ffiffiffi

k
p e�j2p t

kL
�mð Þ; t 2 ½mkL;mkLþ kLÞ (7.11)

Using the derived template function, the signal x(t) shown in (7.9) can be

expressed, in the generalized transformation frame, as:

xðtÞ ¼
X

k

X

m

Cðk;mÞWk;mðtÞ ¼
X

k

X

m

1
ffiffiffi

k
p Cðk;mÞe�j2p t

kL
�mð Þ

¼
X

k

X

m

1
ffiffiffi

k
p Cðk;mÞ

 !

e�j2p t
kL ¼

X

k

�CkVkðtÞ
(7.12)

Table 7.1 Basic template functions expressed in the generalized transformation frame

Frame {Wk,m(t)} Properties

Fourier

function
W1;0ðtÞ ¼ e�j2pt=L; t 2 ½0;LÞ Exponential function forms a

complete orthogonal base

Haar

function W1;0ðtÞ ¼
þ1 0 � t<L=2

�1 L=2 � t<L

(

; t 2 ½0; LÞ
Rectangular waveform forms a

complete orthogonal base

Daubechies

function
W1;0ðtÞ ¼ c

ðnÞ
1;0ðtÞ; t 2 ½0; LÞ a Fractal shape forms a complete

orthogonal base
aThere are different Daubechies functions c

ðnÞ
1;0ðtÞ

depending on different order of n
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where the term

�Ck ¼
X

m

1
ffiffiffi

k
p Cðk;mÞ (7.13)

represents the sum of the normalized individual measure functions corresponding to

the discrete scale k in the Fourier transform, and the term

VkðtÞ ¼ e�j2p t
kL (7.14)

represents a periodic exponential function with a period of kL over the time

interval (�1, 1), for a given scale k. Comparing (7.9) with (7.12), it can be

seen that k ¼ 1/n when L ¼ T, and cn ¼ �Ck, The expression k¼ 1/n indicates that a

higher scale (k) corresponds to a lower frequency (n), and cn ¼ �Ck is defined only

by the frequency n or scale k. From this discussion, the Fourier transform can be

viewed in the generalized frame as a 1D function, defined by the scale k with the

orthogonal base {Vk(t)}. There is no time information of the extracted signal

features contained in this function. This explains why the Fourier transform does

not provide time information of the extracted frequency components.

7.1.2 Wavelet Transform in the Generalized Frame

Wavelet transform decomposes a signal using finite time intervals (or support) at

different scales, thus maintains the time location information of the signal features.

Through variation of the scales of the template function used, nonstationary or

transient features within a signal can be extracted more effectively than by using

the exponential (sine and cosine) functions in the Fourier transform. The wavelet

transform can be expressed as:

Cðs; uÞ ¼
Z 1

�1
xðtÞWs;uðtÞdt (7.15)

where the termC(s, u) represents the wavelet coefficients (ormeasure function, in the

generalized signal transformation frame). The wavelet function Ws,u(t) is defined

by (7.1). To reduce computational load and avoid redundancy in signal representa-

tion, discrete instead of continuous wavelet transform is often employed for analyz-

ing signals consisting of discrete data points acquired through a data acquisition

process. Generally, a discrete wavelet transform discretizes a signal by using a scale

of the power of 2 (Daubechies 1992; Kaiser 1994). At the scale k ¼ 2n (n ∈ N), the

discrete wavelet functionWk,m(t) (m∈ Z) has the support of Tw¼ 2nL. Physically, the

term 2nL represents the time resolution, which increases linearly with the logarithm of

the scale, enabling signal feature extractions at different resolutions. The frequency
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resolution of wavelet transform is the inverse of the time resolution, or 1/Tw.

It increases as the scales become higher (i.e., when n increases), and is therefore

well suited for analyzing slow-changing signals. At lower scales, the frequency

resolution decreases, enabling analysis of fast-changing signals. Such is in contrast

to the Fourier transform, which maintains a constant frequency resolution over the

entire spectrum, and have a time resolution that is defined by the signal duration.

To illustrate the ability of wavelet transform in signal feature extraction, we

analyze an frequency shifted keying (FSK) signal, which is commonly used for data

modulation and wireless data transmission (Gibson 1999). An FSK signal is

expressed as:

xðtÞ ¼
square ð2pf1tÞ for message ‘‘1’’

square ð2pf2tÞ for message ‘‘0’’

(

(7.16)

where square (2pfnt) represents a periodic square wave with a unit amplitude and

frequency fn. Figure 7.1 illustrates an example of such an FSK signal, where the

frequency f1 ¼ 30 Hz is used to transmit the digit “1” and f2 ¼ 125 Hz is used to

transmit the digit “0.” The message to be transmitted is [1 0 0 1 1 0 1 0 0 0]. Such a

signal x(t) is nonsinusoidal and nonstationary.

To analyze this signal, we choose the Haar wavelet as the base wavelet, since its

square-shaped wave form best matches the shape of the FSK signal. Given that the

wavelet has a support of L ¼ 1 s (refer to Table 7.1), the measure function C(s1, m)

can be calculated by using (7.8). For the message “1,” C(s1, m) is calculated to

be
ffiffiffiffi

s1
p

, at scale s1 ¼ 1/f1 and time t ¼ ms1. The measure C(s1, m) is zero for the

message “0.” Similarly, at scale s2 ¼ 1/f2, C(s2, m) is
ffiffiffiffi

s2
p

at time t ¼ ms2 for

the message “0,” and zero for a message “1.” The result of such a wavelet transform

operation indicates that the Haar wavelet was able to locate the time instant of the

message “1” or “0” at scales s1 and s2, respectively, and expresses the FSK signal

x(t) in the generalized signal transform frame as a single-form expression:

xðtÞ ¼
X

1

m¼�1
Cðs1;mÞcð1Þ

s1;m
ðtÞ þ Cðs2;mÞcð1Þ

s2;m
ðtÞ (7.17)
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-1

0

1

Fig. 7.1 A FSK signal x(t)
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The results are shown in Fig. 7.2, where the messages “1” and “0” can be clearly

separated into two different scales. In comparison, it is not feasible to use the

Fourier transform to specify at which time which message (1 or 0) is transmitted.

The sine and cosine template functions in the Fourier transform do not match the

square waveform of the FSK signal, and consequently, the frequency component of

the FSK signal will be spread out in a broad spectrum, especially when the message

“0” and “1” are randomly transmitted.

7.2 Wavelet Transform with Spectral Postprocessing

As a time–scale domain technique, the wavelet transform utilizes template func-

tions of different time resolutions at different scales to extract “transient” features

embedded in a signal. Such transient features can be generated by the interactions

between the rolling elements in bearing and a localized defect (e.g., surface spal-

ling) on the surface of the raceway. As the rolling elements periodically roll over
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Extracted FSK signal for message “0”

Extracted FSK signal for message “1”

Fig. 7.2 Extracted FSK signals. (a) Extracted FSK signal for message “1” and (b) extracted FSK

signal for message “0”
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the localized defect, the “transient” feature will reoccur at a fundamental frequency

f0, which is a function of the bearing rotational speed. Such a relationship will be

reflected in a wavelet transform of the bearing vibration signal, in that the measure

function C(s1,m) will retain the same fundamental frequency along the time axis, at

one of its scales (s1). As a result, the spectral feature of the transient signal is

retained in the wavelet transform, although it is not explicitly expressed. Because of

masking by noise and other signals with similar spectral characteristics that appear

at the same scale, it can be difficult to rely on wavelet transform alone to identify

such hidden patterns.

Such constraint of the wavelet transform can be compensated for by subse-

quently applying the Fourier transform to the measure function C(s1, m) resulting

from the wavelet transform. Such a postspectral technique reveals the specific

frequency location of the transient features, and presents a unified approach to

transient signal processing. The following section explains how such a postspectral

method is realized.

7.2.1 Fourier Transform of the Measure Function

In a complete linear signal space, the wavelet-extracted data set at scale s can be

expressed as:

xsðtÞ ¼
Z u¼1

u¼�1
CsðuÞWsðt� uÞdu ¼ CsðtÞ �WsðtÞ (7.18)

where the symbol
N

represents the convolution operation between the measured

function Cs(u) and the wavelet functionWs(u). To perform Fourier transform on the

data set, the Fourier transform of the measure function Cs(u) is first derived. For this

purpose, the wavelet transform defined in (7.15) at a fixed scale s is rewritten as:

CsðuÞ ¼
Z 1

�1
xðtÞWsðt� uÞdt (7.19)

In (7.19), the terms Cs(u) and Ws(t � u) represent their respective counterparts in

(7.15), C(s, u) and Ws,u(t), with a fixed scale s. Through a normalization operation,

‖W1,0(t)‖
2 in (7.2) is set as 1 for simplicity. With respect to time u, the Fourier

transform of Cs(u), denoted as ~Csðf Þ, is derived as:

~Csðf Þ ¼ ~xðf Þ ~Ws;uðf Þ (7.20)

where the symbol ~xðf Þ expresses the Fourier transform of the signal x(t). The

symbol ~Ws;uðf Þ expresses the Fourier transform of the wavelet function Ws,u(t),

which is derived as:
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~Ws;uðf Þ ¼
Z 1

�1
Ws;uðtÞe�j2pft dt ¼

Z 1

�1

1
ffiffi

s
p W1;0

t� u

s

� �

e�j2pft dt

¼ 1
ffiffi

s
p
Z 1

�1
W1;0

t� u

s

� �

e�j2pft s � d t� u

s

� �h i

¼
ffiffi

s
p Z 1

�1
W1;0

t� u

s

� �

e�j2pfs t�u
s
þu

sð Þd t� u

s

� �

¼
ffiffi

s
p

e�j2pfu

Z 1

�1
W1;0

t� u

s

� �

e�j2pfs t�u
sð Þd t� u

s

� �

¼
ffiffi

s
p

e�j2pfu ~W1;0ðsf Þ

(7.21)

Combining (7.21) with (7.20) yields:

~Csðf Þ ¼ ~xðf Þ
ffiffi

s
p

e�j2pfu ~W1;0ðsf Þ (7.22)

Let ~W�
1;0ðsf Þ ¼ e�j2pfu ~W1;0ðsf Þ, (7.22) can be further expressed as:

~Csðf Þ ¼
ffiffi

s
p

~xðf Þ ~W�
1;0ðsf Þ (7.23)

where the superscript * denotes the conjugate operator.

Similar to (7.19), in the case of discrete wavelet transform, the discrete measure

function Ck(m) at a fixed scale k can be expressed as:

CkðmÞ ¼
Z 1

�1
xðtÞWkðt� mkLÞdt (7.24)

The corresponding Fourier transform of Ck(m) is expressed as:

~Ckðf Þ ¼ ~xðf Þ ~Wk;mðf Þ (7.25)

In (7.25), ~Wk;mðf Þ is derived as follows:

~Wk;mðf Þ ¼
Z 1

�1
Wk;mðtÞe�j2pft dt ¼

Z 1

�1

1
ffiffiffi

k
p W1;0

t� mkL

k

� �

e�j2pft dt

¼ 1
ffiffiffi

k
p

Z 1

�1
W1;0

t� mkL

k

� �

e�j2pft k � d t� mkL

k

� �	 


¼
ffiffiffi

k
p Z 1

�1
W1;0

t

k
� mL

� �

e�j2pf t
k
�mLþmLð Þkd t

k
� mL

� �

¼
ffiffiffi

k
p

e�j2pfmkL

Z 1

�1
W1;0

t

k
� mL

� �

e�j2pfk t
k
�mLð Þd t

k
� mL

� �

¼
ffiffiffi

k
p

e�j2pfmkL

Z 1

�1
W1;0

t

k
� mL

� �

e�j2pfk t
k
�mLð Þd t

k
� mL

� �

¼
ffiffiffi

k
p

e�j2pfmkL ~W1;0ðkf Þ

(7.26)
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As a result, (7.25) is given by:

~Ckðf Þ ¼ ~xðf Þ ~Wk;mðf Þ ¼ ~xðf Þ
ffiffiffi

k
p

e�j2pfmkL ~W1;0ðkf Þ (7.27)

Let ~W�
1;0ðkf Þ ¼ ~W1;0ðkf Þe�j2pfmkL, (7.27) can be further expressed as:

~Ckðf Þ ¼
ffiffiffi

k
p

~xðf Þ ~W�
1;0ðkf Þ (7.28)

Equations (7.23) and (7.28) illustrate that the Fourier transform of the measure

function at scale s (for continuous transform) or k (for discrete transform) can be

viewed as the original signal x(t) passing through a data filter, which is a contracted

(by a frequency factor of s or k) and amplified (by a factor of
ffiffi

s
p

or
ffiffiffi

k
p

) version of

the filter represented by the base wavelet function. Such an operation establishes the

link between measured function and data filtering, and is of significance in wavelet

transform-based signal analysis.

7.2.2 Fourier Transform of Wavelet-Extracted Data Set

With the Fourier transform of the measure function obtained, the Fourier transform

of the extracted (or reconstructed) data set from the continuous wavelet transform,

denoted xs(t) as shown in (7.18), can be derived as:

~xsðf Þ ¼ ~Csðf Þ ~Wsðf Þ
¼

ffiffi

s
p

~xðf Þ ~W�
1;0ðsf Þ

ffiffi

s
p

~W1;0ðsf Þ
¼s~xðf Þj ~W1;0ðsf Þj2

(7.29)

In case of a discrete wavelet transform, the Fourier transform of the data set xk(t) is

obtained by setting s ¼ k and u ¼ mkL in (7.18), and its Fourier transform is

expressed as:

~xkðf Þ ¼ ~Ckðf Þ ~Wkðf Þ
¼

ffiffiffi

k
p

~xðf Þ ~W�
1;0ðkf Þ

ffiffiffi

k
p

~W1;0ðkf Þ
¼k~xðf Þj ~W1;0ðkf Þj2

(7.30)

This indicates that the Fourier transform of the extracted data set xk(t) at scale k can

be viewed as the Fourier transform of the original signal x(t) passing through a low-

pass filter and the filter being represented by the transfer function j ~W1;0ðkf Þj2. If the
template function at scale k correlates well with the “transient” feature of the signal

x(t) in the time domain, then its Fourier transform will contain a strong “distur-

bance” component in its spectrum. As a result, the filter j ~W1;0ðkf Þj2 will extract the
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“disturbance” signal features from the original signal x(t) at the scale k, as shown in

(7.29) and (7.30). Because of a lower degree of correlation between this filter and

other constituent components in the signal, other components will be attenuated at

the scale k.

The filtering effect of postspectral processing of a wavelet transformed data

series is illustrated in Fig. 7.3. The “transient” feature, represented by the solid thick

line, is shown to have a fundamental frequency f1, characterized by a magnitude

peak at f1 and its harmonics (2f1 and 3f1) in the frequency spectrum. When an

appropriate base wavelet is selected (or designed) to decompose this signal (Holm-

Hansen et al. 2004), a base template function will exist at a certain scale k where a

high degree of correlation between the template function and the “transient”

features can be identified. If the data set resulting from such a wavelet transform

is subsequently processed by the Fourier transform, the result will be a data

spectrum similar to that of the “transient” signal, with its major frequency compo-

nents at f1, 2f1, and 3f1, respectively. Such a postspectral analysis can be viewed as

filtering the data set in the frequency domain denoted by ~W1;0ðkf Þ.

7.3 Application to Bearing Defect Diagnosis

This section illustrates how the unified time–scale–frequency analysis technique

described earlier can be applied to rolling bearing defect diagnosis. A custom-

designed bearing test bed, as shown in Fig. 7.4, is set up to provide an experimental

platform for evaluating the developed method. Axial and radial loads on the test

bearing are applied through a hydraulic system, and the bearing rotation speed is

varied by controlling the DC drive motor. Commercially available accelerometers

(model 8624) are placed on the housing for vibration measurement with a data

sampling frequency of 10 kHz. A deep-groove ball bearing of type 6220 with a

seeded structural defect serves as the test bearing. The defect is implemented as a

0.25-mm diameter hole drilled on the inner raceway of the bearing, simulating the
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Fig. 7.3 Illustration of the filtering effect of wavelet transform
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condition of a surface spall. The relationship between the bearing rotational

frequency fr and the characteristic frequencies associated with defect-induced

vibrations can be determined analytically as a function of the defect location, for

example, on the inner raceway (fBPFI), outer raceway (fBPFO) or a rolling element

(fBSF) (Harris 1991). Specifically for the test bearing, these characteristic frequen-

cies are calculated as fBPFI 	 5.86fr, fBPFO 	 4.1fr, fBSF 	 5.3fr, respectively (SKF

1996). By identifying the existence of these characteristic frequencies and/or their

combinations, the existence of bearing structural defects can be determined.

In the experimental evaluation, following aspects are studied:

1. The effectiveness of the unified time–scale–frequency analysis technique in

extracting defect features (i.e., characteristic frequencies) from bearing vibration

signals is compared to that of the Fourier transform and the discrete wavelet

transform when it is applied alone.

2. The effectiveness of the new technique at different wavelet decomposition

levels.

3. The effectiveness of the new technique under varying bearing operating condi-

tions, such as the radial load, axial load, and shaft rotational speed.

Fig. 7.4 Bearing test bed with hydraulic load application capability
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7.3.1 Effectiveness in Defect Feature Extraction

To establish a basis for objective comparison, vibration signals are measured on both

a defect-free (i.e., healthy) and a defective bearing of the same model (SKF 6220),

under the same operation conditions: shaft speed fr ¼ 600 rpm (corresponding to 10

Hz rotational frequency), axial load of 7,038 N, and radial load of 17,468 N.

Figures 7.5 and 7.6 shows the two signals in the time and frequency domains,

respectively, while the related frequency resolution is approximately 0.3 Hz.

As shown in Fig. 7.6, both spectra indicate the existence of two dominant

frequency components: (1) ball rotation (fBPFO1, ball passing frequency on outer

raceway, with the subscript “1” referring to the 6220 bearing) and (2) bearing

misalignment (fm). Ball rotation-related vibration has a peak value at the funda-

mental frequency fBPFO1 ¼ 41 Hz, which is equal to 4.1 fr. Misalignment-related

vibration has a characteristic frequency of fm ¼ 20 Hz ( ¼ 2fr). In addition to these

two major components, components related to bearing imbalance are also identified

at the frequency fu ¼ 10 Hz (identical to fr). However, visual comparison of the

two spectra reveals no difference between them, as the characteristic frequency

of fBPFI1 ¼ 58.6 Hz, related to the inner raceway defect, is not recognized.
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Fig. 7.5 Time domain signals from a healthy and a defective bearing. (a) Signals from a healthy

bearing and (b) signals from a defective bearing
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This illustrates that Fourier transform, when applied alone, may not be effective in

detecting the existence of bearing structural defect.

The same signals are then analyzed using discrete wavelet transform, with the

Daubechies 2 wavelet as the base wavelet. Figure 7.7 illustrates the wavelet

coefficients of the vibration signals at the decomposition level 7, which has a

corresponding frequency range of 39–78 Hz, thus covering the defect characteristic

frequency of fBPFI1 ¼ 58.6 Hz. As seen in Fig. 7.7, the wavelet coefficients for the

defective bearing have shown more dynamical variations than that of the healthy

bearing. To quantify their difference, the root-mean-square (RMS) values of the

two wavelet coefficients are calculated. It is found that the RMS value of the

defective bearing (56 mV) is about 145% larger than that of the healthy bearing

(22.8 mV). Although such an increase can be used as an indicator of structure defect

in the bearing, it has the limitation that proper threshold needs to be set up a priori,

to determine the quantitative extent that distinguishes a healthy bearing from a

defective one. Another limitation of the wavelet transform is that the wavelet

coefficients do not provide any indication on the specific location of the defect in

the bearing, since it does not explicitly reveal the characteristic frequencies from

the bearing.

Next, the bearing signal (as shown in Fig. 7.5) is analyzed using the unified

time–scale–frequency method. For this purpose, the wavelet coefficients of the

signal (shown in Fig. 7.7) is postprocessed using the Fourier transform.
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Fig. 7.7 Wavelet decomposition of bearing signals at decomposition level 7. (a) Wavelet coeffi-
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Fig. 7.8 Unified analysis for defect feature extraction at decomposition level 7. (a) PSD of the

healthy bearing and (b) PSD of the defective bearing
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Comparing the spectra of the healthy (Fig. 7.8a) and defective bearings

(Fig. 7.8b), it is seen that the inner raceway defect can be clearly identified by its

characteristic frequency at fBPFI1 ¼ 58.6 Hz. No distinctive peak is seen in the

spectrum of the healthy bearing at this frequency. The spectrum further indicates

several other major peaks at fm ¼ 20 Hz, fBPFO1 ¼ 41 Hz, and fBPFO2 ¼ 56.5 Hz.

These are reflective of misalignment (at 20 Hz) of the defective bearing and

rotational characteristic of other bearing. For example, fBPFO1 ¼ 41 Hz is the ball

passing frequency of the type 6220 bearing, and fBPFO2 ¼ 56.5 Hz is found to be

related to ball rotation of a different bearing (cylindrical bearing type 2322 with its

vibration component indicated by the subscript “2”). This is based on the para-

meters of Z¼ 14,D¼ 33.5 mm, and dm¼ 175 mm, and the characteristic frequency

of the type 2322 bearing is calculated as fBPFI2¼ 83.4 Hz, fBPFO2¼ 56.5 Hz, fBSF2¼
50.1 Hz. This bearing structurally supports the rotating shaft in the bearing test bed.

Comparing with the Fourier analysis and the wavelet transform, the new, unified

time–scale–frequency technique has shown to be more effective in extracting

bearing defect features. In that it not only reveals the existence of a localized

bearing defect, but also the defect characteristic frequency that is indicative of its

specific location (e.g., inner raceway).

7.3.2 Selection of Decomposition Level

When evaluating the unified technique, a particular decomposition level (e.g., level

7) is chosen for the wavelet transform. The selection of an appropriate level is based

on the signal sampling rate (or frequency) fsample and the defect characteristic

frequency fchar. The relationship is expressed as:

fsample

2Lþ1
� fChar �

fsample

2L
(7.31)

where L denotes the wavelet decomposition level. As an example, when the

sampling frequency is fsample ¼ 10 kHz, the frequency range associated with

decomposition level L ¼ 7 is calculated as 39–78 Hz. In Table 7.2, the frequency

ranges covered by each of the decomposition levels under a 10 kHz sampling rate

are shown. The essence of finding the best-suited decomposition level when

wavelet transforming a dynamic signal is to ensure that its frequency range

½fsample=2
Lþ1; fsample=2

L
 covers the characteristic frequency of structural defect in

the bearing with the highest likelihood, if such a defect exists.

Table 7.3 lists the best-suited decomposition levels for analyzing bearing vibra-

tion signals specifically related to a localized inner raceway defect, under various

bearing rotational (or shaft) speeds. Since at 600 rpm, the defect characteristic

frequency fBPFI1 ¼ 58.6 Hz falls within the frequency range of 39–78 Hz, decom-

position level 7 is chosen initially for data analysis.
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The importance of choosing proper decomposition level is illustrated in Fig. 7.9,

where the results of decomposing defective bearing signal at levels 6 and 8 are

shown. It is seen that none of the two levels (combined with the postspectral analysis)

are able to identify the defect characteristic frequency at fBPFI1 ¼ 58.6 Hz, due to the

Table 7.3 Best suited decomposition level for inner raceway defect frequency detection

Shaft speed (rpm) fBPFI1(Hz) Decomposition level Frequency range (Hz)

300 29.3 8 19–39

600 58.6 7 39–78

900 87.9 6 78–156

1,200 117.2 6 78–156

1,500 146.5 6 78–156

Table 7.2 Frequency range associated with each decomposition level at a 10-kHz sampling rate

Decomposition level Frequency range (Hz) Decomposition level (L) Frequency range (Hz)

1 2,500–5,000 5 156–312

2 1,250–2,500 6 78–156

3 625–1,250 7 39–78

4 312–625 8 19–39
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Fig. 7.9 Unified analysis using Daubechies 2 wavelet at levels 6 and 8. (a) Resutls from

decomposition level 6 and (b) results from decomposition level 8
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mismatch between their respective frequency range (level 6 at 78–156 Hz and level 8

at 19–39Hz) and the characteristic frequency of the inner raceway defect (at 58.6 Hz).

7.3.3 Effect of Bearing Operation Conditions

To investigate the effectiveness of the unified time–scale–frequency analysis

method in defect feature extraction under varying bearing operating conditions,

three groups of experiments are designed and conducted using a type 6220 ball

bearing with a seeded defect.

7.3.3.1 Variation of Radial Load

The effect of radial loads on defect feature extraction is illustrated through the

experimental results shown in Fig. 7.10, where four levels of radial loads are

presented. It is noted that, as the radial load has progressively increased from

4,367 to 26,202 N, the peak value of the bearing defect frequency of fBPFI1( ¼
58.6 Hz) has grown by 609.5%, as given in Table 7.4. Such an increase can be

explained by the increased preload applied by the rolling elements of the bearing to

the defect on the raceway. An increased preload enhances the impacts when the

rolling elements roll over the defect, leading to increased amplitude of the defect

feature.

7.3.3.2 Variation of Axial Load

Increase in the axial load has also shown to lead to an increase of the defect feature

amplitude, as is evident when comparing the three different axial load conditions in

Fig. 7.11. For example, when the axial load applied to the bearing increases from

0 to 4,192 N, the defect signal amplitude at defect characteristic frequency fBPFI1
has increased by 4.7%, from 3:18� 10�3 to 3:33� 10�3 W/Hz, as listed in

Table 7.5. This is because the application of axial load on the bearing increases

the extent of the bearing load zone distribution, resulting in an increased number of

defect impacts within the load zone (Harris 1991). Such an increase enhances the

overall energy content of the defect signal at its feature frequency, and is reflected

by the increased defect feature amplitude.

7.3.3.3 Variation of Rotational Speed

The power spectral density graphs in Fig. 7.12 illustrate the effect of bearing

rotational speed on the defect signal strength. As the speed increased from 300

to 1,200 rpm, the defect frequency amplitude increased by 71.2%, as listed in
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Fig. 7.10 Effect of the radial load on defect feature amplitude. (a) Radial load 4,367 N, (b) radial
load 10,918 N, (c) radial load 17,468 N, and (d) radial load 26,202 N
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Fig. 7.11 Effect of axial load on defect feature amplitude. (a) Axial load 0 N, (b) axial load 5,240
N, and (c) axial load 15,721 N

Table 7.4 Effect of radial load on the defect signal amplitude (fBPFI1)

Radial load (N) PSD 10–3 (W/Hz) Percentage of increase

4,367 0.42 –

10,918 0.99 135.7

17,468 1.77 321.4

26,202 2.98 609.5

Table 7.5 Effect of axial load on the defect feature amplitude (fBPFI1)

Axial load PSD 10–3 (W/Hz) Percentage of increase

0 3.18 –

5,240 3.33 4.7

15,721 3.54 11.3
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Table 7.6. The speed-related defect feature amplitude increase can be explained by

the fact that with the increase of the speed, the number of impacts per bearing

revolution increases proportionally, hence the total amount of defect impact energy

also increases, leading to increased peak amplitude at the defect characteristic

frequency fBPFI1.
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Fig. 7.12 Effect of bearing speed on defect amplitude. (a) Speed 300 rpm (at decomposition level 8),

(b) speed 600 rpm (at decomposition level 7), and (c) Speed 1,200 rpm (at decomposition level 6)

Table 7.6 Effect of speed on the defect signal amplitude (fBPFI1)

Shaft speed (rpm) PSD 10–4 (W/Hz) Percentage of increase

300 1.56 –

600 2.03 30.1

1,200 2.67 71.2
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7.4 Summary

This chapter introduces a unified time–scale–frequency analysis technique based on

the combination of discrete wavelet transform with frequency domain postproces-

sing. The effectiveness of this technique in improving bearing defect diagnosis is

then investigated. A localized defect of 0.25 mm in diameter at the inner raceway of

a type 6220 bearing has been successfully detected, under various bearing operation

conditions. It is shown that the Fourier-transform-based spectral analysis technique

alone is not reliable to detect the transient components that are characteristic of

localized bearing defect, whereas wavelet transform alone does not explicitly

identify the specific location of the defect. Thus, the unified technique combines

the advantages of both the time and frequency domain analyses and provides more

information on the defect feature than each of the techniques employed individu-

ally. In addition to bearing defect diagnosis, the new technique provides a powerful

tool for the detection, extraction, and identification of weak “defect” features

submerged in vibration signals in a wide range of manufacturing equipment
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Orhan S, Akt€urk N, Çelik V (2006) Vibration monitoring for defect diagnosis of rolling element

bearings as a predictive maintenance tool: comprehensive case studies. NDTE Int 39:293–298

SKF Company (1996) SKF bearing maintenance handbook. SKF Company, Denmark

Tandon T, Choudhury A (1999) A review of vibration and acoustic measurement methods for the

defection of defects in rolling element bearings. Tribol Int 32:469–480

124 7 Wavelet Integrated with Fourier Transform: A Unified Technique



Chapter 8

Wavelet Packet-Transform for Defect
Severity Classification

Once a defect is detected, the next question that comes up naturally is how severe the

defect is. Since machine downtime is physically rooted in the progressive degrada-

tion of defects within themachine’s components, accurate assessment of the severity

of defect is critically important in terms of providing input to adjusting the mainte-

nance schedule and minimizing machine downtime. This chapter describes how

wavelet packet transform (WPT)-based techniques can classify machine defect

severity, with specific application to rolling bearings.

8.1 Subband Feature Extraction

Because of the complex nature of machines and the intricacy of related parameters, it

is generally difficult to assess the status of a machine directly from the measured time

domain data. The general practice is to extract “features” to identify characteristics

and patterns embedded in the data series that are indicative of status changes of the

machine being monitored. The advent of wavelet transform has provided an effective

tool for feature extraction from various time-varying signals, such as washing

machines (Goumas et al. 2002), rolling bearings (Mori et al. 1996; Prabhakar et al.

2002), andmachine tools (Lee and Tang 1999; Li et al. 2000a, 2000b).As an extension

of the wavelet transform, WPT provides more flexible time–frequency decomposi-

tion, especially in the high-frequency region, when compared with the wavelet

transform. In particular, WPT allows for feature extraction (e.g., energy content or

kurtosis value) from subfrequency bands of the decomposed signal where the features

are concentrated, thereby directing the computation to where it is most needed. Prior

efforts have studied different sets of wavelet packet vectors to represent bearing

vibration under different defect conditions (Liu et al. 1997). Altmann and Mathew

(2001) found that features extracted from wavelet packets that cover the multiple

subfrequency bands yield a higher signal-to-noise (S/N) ratio than those from a

conventional band-pass filter. For multistage gearbox vibration analysis, the Hilbert

transform and WPT were combined to enable gear defect detection at the incipient

stage (Fan and Zuo 2006).

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,

DOI 10.1007/978-1-4419-1545-0_8,# Springer Science+Business Media, LLC 2011
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Given a time–domain signal x(t), the WPT decomposes it into a number of

subbands, as expressed by the resulting wavelet packet coefficients:

xðtÞ ¼
X

2j�1

n¼0

xnj ðtÞ (8.1)

In (8.1), the term xnj ðtÞ denotes the wavelet coefficients at the j level, n subband.

From these coefficients, “features” will be extracted, at each subband, to provide

information on the condition of the machine being monitored.

8.1.1 Energy Feature

The energy content of a signal provides a quantitative measure for the signal, which

uniquely characterizes the signal. The amount of energy contained in a signal xðtÞ is
expressed as:

ExðtÞ ¼

ð

jxðtÞj2dt (8.2)

The energy content of a signal can also be calculated from the coefficients of the

signal’s transform. In the case of a WPT, the coefficients xnj ðtÞ quantify the amount

of energy associated with each of the subbands. The total amount of energy

contained in the signal is equal to the sum of the energy in each subband and

expressed as:

ExðtÞ ¼
X

2j�1

n¼0

ð

jxnj ðtÞj
2
dt (8.3)

Since the energy content of each subband of the signal is directly related to the

severity of the defect, it presents an indicator or feature of the machine’s condition.

From (8.3), the energy feature in each subband is defined as:

En
j ¼

ð

jxnj ðtÞj
2
dt (8.4)

Similarly, when a signal is represented by discrete, sampled values x(i) (i ¼ 1, 2,

. . ., M), the total energy feature in the subbands is calculated as:

En
j ¼

X

M

i¼1

xnj ðiÞ
2

(8.5)
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8.1.2 Kurtosis

Kurtosis is a dimensionless, statistical measure that characterizes the flatness of a

signal’s probability density function. An impulsive signal that is peaked has a larger

kurtosis value than a signal that is flat and varies with time slowly, as illustrated in

Fig. 8.1.

Mathematically, the kurtosis of a signal is defined as its fourth-order moment:

KxðtÞ ¼
E½ðxðtÞ � mxðtÞÞ

4�

s4
xðtÞ

(8.6)

where mxðtÞ and sxðtÞ denotes the mean value and standard deviation of the signal x

(t), respectively. The symbol E½�� denotes the expectation operation. Table 8.1 lists
the kurtosis values of several representative signals. It should be noted that the

value of kurtosis does not depend on the amplitude of a signal.

For the wavelet packet coefficients in each subband, the corresponding kurtosis

value is defined as:

Kn
j ¼

E½ðxnj ðtÞ � mxn
j
ðtÞÞ

4�

s4
xn
j
ðtÞ

(8.7)

where the symbols mxn
j
ðtÞ and sxn

j
ðtÞ are the mean and standard deviation of the

wavelet packet coefficients xnj ðtÞ, respectively.
When the wavelet packet coefficients are sampled as xnj ðiÞ, the kurtosis value is

calculated as:

Kn
j ¼

PN
i¼1 ½x

n
j ðiÞ � mxn

j
ðiÞ�

4

Ns4
xn
j
ðiÞ

(8.8)

where the symbols mxn
j
ðiÞ and sxn

j
ðiÞ are the mean and standard deviation of the

wavelet packet coefficients xnj ðiÞ, respectively.
Since the energy content of a signal provides a robust indicator of the signal,

but is not sensitive in characterizing incipient defects, whereas the kurtosis

Gaussian

Random

Signal

Impulsive

Signal

Fig. 8.1 Illustration of

probability density functions

of signals
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value has high sensitivity to incipient defects but has low stability (Yan and

Gao 2004), these two features can be combined instead of being used alone to

improve the signal characterization. Suppose we decompose a signal into j levels

(e.g., j ¼ 4), which generates 2j or 24 ¼ 16 subbands. Given that the energy

and kurtosis values are calculated from each subband, there will be 2 � 2j or

2 � 24 ¼ 32 features extracted from the signal. These features can be expressed

in a feature vector as:

FV ¼ ½E0
j ;E

1
j ; . . . ;E

2
j�1

j ; K0
j ;K

1
j ; . . . ;K

2
j�1

j
�T (8.9)

For simplicity, (8.9) can be expressed as:

FV ¼ f fljl ¼ 1; 2; . . . ; pg; p ¼ 2
jþ1

(8.10)

where f1 ¼ E0
j ; . . . ; f2 j ¼ E2

j
�1

j ; f
2
j
þ1

¼ K0
j ; . . . ; fp ¼ K2 j�1

j .

Determining which features shown in (8.10) are most effective for character-

izing machine defect is generally not a simple, straightforward process because

the usefulness of features may be affected by factors such as the specific location

of the sensors, and consequently, the quality of the signal measured in terms of

the S/N ratio or signal contamination. Furthermore, using more features may

not necessarily improve the effectiveness of defect severity estimation, while

increasing the computation cost (Malhi and Gao 2004). Since defect-induced

signals are typically reflected in the variation of the characteristic frequencies

(e.g., characteristic defect frequency shifts as the defect size grows), degradation

of machine conditions is predominantly reflected in certain subfrequency bands,

whereas other subfrequency bands contain information unrelated to the defect.

This indicates that feature selection is needed for identifying significant features

from the pool of WPT-based feature set.

8.2 Key Feature Selection

This section introduces two feature selection methods: Fisher linear discriminant

(FLD) analysis and principal component analysis (PCA). The goal is to differentiate

the signals (which represent different machine defect severity) by examining only

Table 8.1 Kurtosis values of

several typical signals
Signal Kurtosis

Square signal 1.0

Sinusoidal signal 1.5

Gaussian signal 3.0

Pulse signal >3.0

128 8 Wavelet Packet-Transform for Defect Severity Classification



those subbands with distinct feature discrimination than others, thus improving the

efficiency while not missing critical information related to the signal, to ensure

reliability of the diagnostic operation.

8.2.1 Fisher Linear Discriminant Analysis

Distance measures, such as the Bhattacharyya distance, Kolmogorov distance, and

FLD (Fukunaga 1990; Yen and Lin 2000; Duda et al. 2001), have been applied to

components differentiation within a class pair. Generally, the greater the distance

between two feature components within a class pair is, the easier it will be to

separate them. Ilustrated in Fig. 8.2 are two feature components representing the

two signals from a healthy and a defective bearing, respectively. The features in the

right-hand section of the figure are easier to be separated than those in the left-hand

section because the probability distributions of the two components do not overlap,

because of their relatively smaller standard distributions and larger distance

between the mean values, compared with the two features in the left section. The

result is that this pair of features has a higher discriminant power than the other pair

of features.

The approach introduced here for efficient feature selection is to evaluate the

discriminant power of each individual feature within a class pair. Features that have

a low discriminant power are excluded from the data analysis process, as they

contain little useful information. Such an approach can be realized by examining

the rank order (Kittler 1975) of the feature vector FV ¼ f fljl ¼ 1; 2; . . . ; pg, shown
in (8.10), as:

Jð f1Þ � Jð f2Þ � � � � � Jð fdÞ � � � � � Jð fpÞ (8.11)

where Jð�Þ is a criterion function for evaluating the discriminant power of a specific

feature. Here the utility of the FLD is introduced (Duda et al. 2000), where the

criterion function for differentiating a class pair is given by:

s1

m1 m2 m1 m2s2 s1 s2

healthy damagedhealthy damaged

Feature without overlappingFeature with overlapping

a b

Note: m1, m2 : mean value, s1, s2 : standard deviation

Fig. 8.2 Feature discrimination based on the distance between constituent components. (a) Feature
with overlapping. (b) Feature without overlapping. Note: m1;m2 : mean value, s1; s2 : standard

deviation
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Jflði; jÞ ¼
jmi; fl � mj; fl j

2

s2i; fl þ s2j; fl
(8.12)

The symbols mi; fl , mj; fl and s
2
i; fl
, s2j; fl represent the mean values and the variances of

the lth feature, fl, and for the classes i and j, respectively. Since typically more than

two defect severity levels need to be evaluated in a machine defect diagnosis

system, a k-class, p feature component problem with kðk � 1Þ=2 class pairs is

investigated for generality. The process for feature selection, based on the FLD

analysis method, is illustrated in Fig. 8.3.

Features (i.e., subband energy and kurtosis values) are first extracted by

means of the WPT from the signals measured on the machine (e.g., a milling

machine, a spindle), under various operating conditions (e.g., speed and load).

The mean values and variances of each individual feature fl corresponding

to each machine status are then calculated, for each set of operation conditions

(e.g., 1,200 rpm, 3.6 kN radial load). For each possible class pair

fði; jÞji ¼ 1; 2; . . . ; k � 1; j ¼ iþ 1; iþ 2; . . . ; kg formed from two different

machine states (e.g., health vs. light defect), the discriminant power measure Jflði; jÞ
for each feature fl, is calculated, using (8.12). Descending sorting Jflði; jÞ yields:

Y

N

Start

End

Sub-band feature fl extraction

Condition pair (i,j) selection

Discriminant power Jf
l
 (i,j) calculation

Feature subset Fi,j selection

Final feature set Ffinal selection

Next class

pair exist ?

Fig. 8.3 Flowchart of the

FLD feature selection process
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Jf1ði; jÞ � Jf2ði; jÞ � � � � � Jfdði; jÞ � � � � � Jfpði; jÞ (8.13)

The first group of d features that have the highest relative Jflði; jÞ values are chosen
to form the feature subset Fi;j, for each class pair ði; jÞ :

Fi; j ¼ f fljl ¼ 1; 2; . . . ; dg; i ¼ 1; 2; . . . ; k � 1; j ¼ iþ 1; iþ 2; . . . ; k (8.14)

The final feature set is obtained by taking the union of each feature subset across all

the class pairs as:

Ffinal ¼
[

L�1

i¼1

[

L

j¼iþ1

Fi; j

)(

(8.15)

This feature set is subsequently selected for the machine defect severity classification.

8.2.2 Principal Component Analysis

PCA, as a multivariate statistical technique, has been intensively studied and

utilized as an effective tool for process monitoring (Kano et al. 2001), structural

damage identification (De Boe and Golinval 2003), and machine health diagnosis

(Baydar et al. 2001; He et al. 2008). This is due to its ability in dimension reduction

and pattern classification. In general, the PCA technique seeks to determine a series

of new variables, called the principal components, which indicates the maximal

amount of variability in the data with a minimal loss of information (Jolliffe 1986),

to best represent the data in a least square sense.

Suppose there are m feature vectors FViði ¼ 1; 2; . . . ;mÞ extracted from m

signals, respectively. A p� m feature matrix X can then be formulated as:

X ¼ ½FV1;FV2; . . . ;FVm� (8.16)

where the symbol FV denotes a p-dimensional feature vector as shown in (8.10).

Depending on the decomposition level j of the WPT, the dimension of the feature

vector is determined as p ¼ 2jþ1. Correspondingly, a scatter matrix S is constructed

from the feature matrix X as:

S ¼ E½ðX � �XÞðX � �XÞT � (8.17)

Where �X is the mean value of X, and E½�� is the statistical expectation operation

(Duda et al. 2000). Performing singular value decomposition on the scatter matrix

leads to:
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S ¼ ALAT (8.18)

where A is a p� p matrix whose columns are the orthonormal eigenvectors of the

scatter matrix, and ATA ¼ Ip. The symbol L is a diagonal matrix whose diagonal

elements l1 � l2 � � � � � lp are the eigenvalues of the scatter matrix. Since the

eigenvector inmatrixAwith the highest eigenvalue (i.e., l1 in the diagonalmatrixL )

is the first principle component of the p-dimensional feature vectors, it is better-suited

than any other feature vectors as the representative feature that identifies the condition

of the machine being monitored, for example, defect severity of a bearing. As a result,

PCA ranks the order of eigenvectors bymeans of their respective eigenvalues, from the

highest to the lowest. Such a ranking sequence reflects upon the order of significance of

the corresponding components. By examining the accumulated variance (e.g., 90%) of

the principle components, which is defined as:

var ¼

Pq

i¼1
li

Pp

j¼1
lj

 !

� 100% (8.19)

a lower-dimensional feature vectors Y can be constructed as:

Fig. 8.4 Simulated data of ( f1, f2, f3, f4) for developing a feature selection scheme
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Y ¼ AT
p�qX (8.20)

where q<p, and Ap�q is the first q columns of A.

Given that the features transformed by the principal components are not directly

connected to the physical nature of the defect, the eigenvectors in Ap�q for the

transformed features are only used as the basis for choosing the most significant

features from the original p-dimensional feature vectors. This is explained by

means of a numerical simulation. As illustrated in Fig. 8.4, four normalized feature

vectors, f1, f2, f3, and f4, are constructed with each of them forming clusters around

four distinct levels of magnitudes. A total of 100 samples are considered for each of

the four features, hence each feature is a 100-by-1 vector. The four features are

simulated to have random variations from the same mean for each of the four

clusters. This is similar in principle to the variation of a measured data feature for

four different defect severities. Each of the four clusters for each feature contained

25 data points. The four features become less clearly differentiated from f1 to f4, as

overlap between the clusters increases.

It is evident that a suitable feature selection scheme should be able to rank f1, f2,

f3, and f4 in the same order as shown in Fig. 8.4. To derive the principal components

for the simulated data set, the four normalized features are collected in a 4-by-100

matrix X:

X ¼ ½ f1; f2; f3; f4�
T

(8.21)

The eigenvalues and the eigenvectors are calculated from the scatter matrix S. The

matrix of eigenvectors can be represented asA¼ [ai,j], where i¼ 1 to 4, and j¼ 1 to 4.

The eigenvector a4 consists of four components from the fourth column of the matrix

A as a4 ¼ ½ a1;4 a2;4 a3;4 a4;4 �. Similar arrangement applies to a1, a2, and a3 (i.e.,

a1 ¼ ½ a1;1 a2;1 a3;1 a4;1 �, a2 ¼ ½ a1;2 a2;2 a3;2 a4;2 �, and

a3 ¼ ½ a1;3 a2;3 a3;3 a4;3 � ), respectively. The matrix A is a 4 � 4 square matrix

because of the presence of the four features f1–f4. The eigenvector corresponding to the

eigenvalue with the largest magnitude is chosen. As shown in Table 8.2, one of the

four eigenvalues of the data set is much larger than the other three, indicating thatmost

of the variance is concentrated in one direction. Table 8.3 lists the component

magnitudes for the eigenvector corresponding to the largest eigenvalue. Since this

corresponds to a4, the feature that is responsible for the maximum variance in the data

is thus identified.

Subsequently, the magnitudes of the four components of e4 are examined. As

shown in Table 8.3, ja1,4j > ja2,4j > ja3,4j > ja4,4j. This result can be interpreted in

terms of the directionality of the eigenvector (a4) in the original feature space. If the

unit vectors for the original feature space are represented as u1, u2, u3, and u4 (where

u1 ¼ [1 0 0 0]T, u2 ¼ [0 1 0 0]T, etc.), then a higher magnitude of ai,4 denotes

the similarity in direction of the eigenvector a4 with ui, when compared with the

other unit vectors forming the basis for the original feature space. For the simulated

data, the component a1,4 has the largest magnitude, followed by a2,4, a3,4, and a4,4.
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Thus, the feature represented along u1 is the most sensitive, followed by those along

u2, u3, and u4. As a result, the PCA-based scheme ranks the four features f1–f4 as

desired and selects most representative features.

8.3 Neural-Network Classifier

Once a suitable feature set (e.g., 6) is chosen from the extracted features (e.g., 32),

the machine defect severity levels can be evaluated by means of a status classifier.

Neural network as a classifier has been applied to machine health diagnosis, for

example, for classifying rotating machines with imbalance and rub faults (McCor-

mick and Nandi 1997), bearing faults (Li et al. 2000), and tank reactor operation

states (Maki and Loparo 1997). In general, a neural network consists of multiple

layers of nodes or neurons, and each layer has a number of parallel nodes that are

connected to all the nodes in the succeeding layer through different weights

(Haykin 1994). Using a training algorithm, the weights are adjusted such that the

neural network responds to the inputs with outputs corresponding to the severity of

a structural defect at the output layer. Figure 8.5 illustrates the architecture of a

feed-forward neural network. For the ith layer of links, the symbols w(i), b(i), x(i),

and y(i) represent a vector of weights between the layers, node biases of a layer,

inputs of nodes at one layer, and output at the output layer, respectively. At the

output layer, a linear neuron is used to produce an output to indicate the machine

defect severity level.

The weights of a multilayer feed-forward neural network are continuously

updated, while it is trained with training data consisting of a set of machine defect

feature input vectors (x) and known output (d). This is realized by minimizing the

error between the computed output of the network and the known output in the

training process. Consider n pairs of input and output training data {(xp, dp)j, p¼ 1,

2,. . ., n}. For the pth pair data {xp, dp}, the mean square error (MSE) of the network

output yp is expressed as:

Table 8.3 The fourth

eigenvector component

magnitudes for simulated

data

Component Magnitude

a1,4 0.599

a2,4 0.523

a3,4 0.439

a4,4 0.417

Table 8.2 Eigenvalues for

simulated data
l1 0.241

l2 0.775

l3 1.318

l4 32.023

134 8 Wavelet Packet-Transform for Defect Severity Classification



ep ¼
X

j

m¼1

ðdpm � ypmÞ
2

(8.22)

where m is the number of nodes at the output layer. Assuming that each input vector

corresponds to a single severity value, the value of m is 1. For the entire training

data set, the total error Err, i.e., the learning error, is expressed as:

Err ¼
X

n

p¼1

ep ¼
X

n

p¼1

X

j

m¼1

ðdpm � ypmÞ
2

(8.23)

In the training process, the learning error is minimized through continuously

updating the connection weights in its structure with certain learning rule. After

training with the training data, the designed network with the resulting connection

weights generalize the relationship between the input and output to correctly

classify new input data. When input feature vectors associated with a defective

measurement occur, for which the network is however not trained, the neural

network will interpolate a defect severity by the location of the new input in the

space spanned by the training data.

There are several gradient-based learning rules to minimize the learning error Err

by changing the connection weight w of the multilayer feed-forward neural network.

Different learning rules differ in how they use the gradients to update the weightsw in

training. Steepest decent with fixed learning rate is the traditional learning rule of the

neural network, in which the weight w(k) between the kth layer and (k þ 1)th layer is

tuned for each epoch, along the gradient direction by an amount:

1

2

3

1

2

3

1

2

Input Layer

(1)

Hidden Layer

(2)

Hidden Layer

(3)

Output Layer

(4)

x
(1)

1

x
(2)

x
(3)

x
(1)

2

x
(1)

3

x
(1)

4

Input

Vector x

Computed

Output

(y)

Weights

w
(3)

Weights

w
(2)

Weights

w
(1)

1

Bias

b
(1)

Bias

b
(2)

Bias

b
(3)

3

4

-

Known

Output

(d) 

Error

(e)
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DwðkÞ ¼ �� �
@E

@wðkÞ
(8.24)

where �, referred to as the learning rate, is fixed between 0 and 1. The learning rate

affects the convergence speed and stability of the weights during learning. Gener-

ally, the training error decreases slowly with a learning rate � close to 0. On the

contrary, the error may oscillate and not converge if � is close to 1. To speed up the
training process for the steepest descent method, (8.24) is modified by adding a

momentum term (Haykin 1994), expressed as:

DwðkÞ ¼ �� �
@E

@wðkÞ
þ a � Dwprev (8.25)

where Dwprev is the previous adjust amount, and the momentum constant a is set

between 0.1 and 1 in practice. The addition of this momentum term smoothes weight

updating and tends to resist erraticweight changes (Haykin 1994).After the network is

trained with representative data, it is able to evaluate the new measurement data and

classify them according to the rules that it has learned through the training data set.

8.4 Formulation of WPT-Based Defect Severity Classification

Utilizing the advantages of the WPT in subband signal decomposition, this section

introduces aWPT-based defect severity classification algorithm, with assistance from

the neural-network classifier introduced in Sect. 8.3. It starts with a WPT on the

measured signals. After statistical features are extracted from the wavelet coefficients

Signal 1

WPT

Sub-band FE

Sub-band Feature Vectors

Signal n

WPT

Sub-band FE

Key Feature Selection

Neural Network Classifier

Wavelet Packet Transform (WPT)

Input Signal x

Neural Network (NN) Classifier

Output Diagnostic Information

Selected Feature Vector (FV)

Training Evaluation

Sub-band Feature Extraction (FE)

Store NN

Model 

Guide FV

selection

Fig. 8.6 Procedure of the WPT-based defect severity classification
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in each subband, key feature selection process is performed to determine the most

significant features from the feature set, which are subsequently used as input to a

neural network-based classifier for defect severity classification. Figure 8.6 illustrates

how the developed technique is realized. The left side of Fig. 8.6 depicts the training

process of the hybrid technique in a manner of supervised learning (i.e., based on the

available reference data, denoted as signal 1, . . ., n). In addition to providing inputs

for constructing the neural-network classifier model, the results from the feature

selection process are used to guide the feature vector selection in the evaluation

process. The right side of Fig. 8.6 describes an evaluation process of the WPT-based

algorithm. An input signal is passed through the process of signal decomposition,

feature extraction, and selection. Eventually, the corresponding defect severity level

is determined through the neural network classifier.

8.5 Case Studies

The application of the above described wavelet packet-based machine defect

severity classification algorithm is described through two case studies.

8.5.1 Case Study I: Roller Bearing Defect Severity Evaluation

The first case study is to evaluate the defect severity level of a set of roller bearings

(N205 ECP) with and without seeded defects. Specifically, vibration data were

measured from both a new, “healthy” bearing that served as a reference base and

three defective bearings containing localized defects of different sizes:

(a) one 0.1 mm diameter hole in the outer raceway

(b) one 0.5 mm diameter hole in the outer raceway

(c) one 1 mm diameter hole in the outer raceway

In Fig. 8.7, segments of vibration signals measured from the healthy and defective

bearings are shown.

To provide sufficient training and testing data sets to the neural-network classi-

fier, a total of 240 vibration data sets were collected under a bearing rotating

speed of 1,200 rpm and a radial load of 3,600 N. For each operation condition,

60 data sets were collected. Each data set was first decomposed by the WPT.

Analysis has shown that features extracted from a four-level decomposition

provided adequate information to differentiate the four defect conditions from

each other (Gao and Yan 2007). On the basis of the information collected in the

16 subfrequency bands (since 24 ¼ 16 ), a feature vector was subsequently con-

structed, which contained 32 feature elements (i.e., 16 subband energy values and

16 subband kurtosis values).
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FLD analysis is then applied for feature selection. Themeans and variances of the

feature element, fl, are obtained for each of the four bearing conditions. Table 8.4

summarizes the discriminant power of the extracted features for different condition

pairs, based on the Fisher discriminant criterion. The first three key features within

each condition pair, for example, E12
4 , E13

4 , and E14
4 for the condition pair (healthy,

light defect), are selected, and the final feature set is obtained through a union
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Fig. 8.7 Vibration signals

measured from roller bearings

with different conditions. (a)
Signal from a healthy bearing.

(b) Signal from a defective

bearing (0.1-mm diameter

hole). (c) Signal from a

defective bearing (0.5-mm

diameter hole). (d) Signal
from a defective bearing
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operation from all the six condition pairs as listed in Table 8.5, where the energy

features E2
4, E

7
4, E

12
4 , E13

4 , E14
4 , and E15

4 are selected as the most representative

features, because they possess higher discriminant power than others as listed in

Table 8.4.

Next, the PCA technique was performed on the feature vectors. As seen in Fig. 8.8,

the first five principal components represent over 90% variance, which preserves most

of the information contained in the original feature set (Jolliffe 1986). This is

Table 8.4 Discriminant power of the extracted features for various condition pairs in different

subbands

Subband

features

Healthy vs.

light

Healthy vs.

medium

Healthy vs.

severe

Light vs.

medium

Light vs.

severe

Medium

vs. severe

E0
4

0.52 2.55 1.80 2.58 2.19 2.15

E1
4

0.06 48.91 8.57 0.43 0.05 10.49

E2
4

18.29 695.40 118.62 41.28 8.37 193.98

E3
4

0.01 110.73 8.86 1.06 0.97 27.86

E4
4

1,222.60 92.10 89.62 1,696.00 216.26 52.50

E5
4

45.20 212.92 125.51 374.81 260.53 11.15

E6
4

41.60 346.97 61.40 2.88 0.08 5.64

E7
4

226.86 440.07 191.23 308.11 88.32 71.01

E8
4

2.41 172.13 7.43 173.16 0.01 183.39

E9
4

87.38 47.61 4.48 69.18 204.47 52.60

E10
4

466.15 8.60 211.70 916.98 170.90 340.01

E11
4

80.74 14.86 69.41 60.15 15.69 44.79

E12
4

5,118.80 1,238.00 133.33 7,946.10 873.16 12.21

E13
4

12,702.00 308.19 2,280.10 7,397.60 3,293.60 788.82

E14
4

3,652.80 36.25 2,374.40 2,414.90 707.70 1,414.70

E15
4

1,863.40 56.36 12,956.60 730.50 86.52 1,150.90

K0
4

2.54 57.50 41.34 0.33 0.10 7.88

K1
4

0.01 0.33 4.04 0.01 0.01 2.30

K2
4

0.02 17.60 7.80 0.03 0.01 16.22

K3
4

0.04 6.98 37.80 0.04 0.03 51.64

K4
4

0.91 39.95 9.99 0.03 0.25 3.07

K5
4

0.34 74.66 50.31 0.18 0.15 1.06

K6
4

0.07 2.33 7.47 0.09 0.10 8.72

K7
4

7.81 30.13 21.94 1.84 1.90 10.41

K8
4

0.98 51.73 6.09 0.05 0.14 0.36

K9
4

0.40 74.16 32.09 0.10 0.18 7.43

K10
4

0.25 14.71 9.05 0.02 0.06 0.51

K11
4

0.89 15.32 38.21 0.11 0.38 3.09

K12
4

0.30 4.62 11.99 0.04 0.02 0.93

K13
4

0.02 9.95 2.88 0.01 0.02 0.92

K14
4

0.03 16.09 3.15 0.02 0.03 2.39

K15
4

0.01 9.42 4.90 0.01 0.01 1.51
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considered sufficient for constructing the corresponding subspace principle

component matrix (based on their corresponding eigenvectors) for choosing the

features from the original feature vector. Table 8.6 lists the eigenvectors that corre-

spondto the first five principal components. By searching for those components with

the largestmagnitude in each eigenvector, the corresponding energy valuesE0
4 andE

3
4,

kurtosis values K1
4 , K

3
4 , and K

15
4 are identified as the most representative features.

The selected feature set was input to a multiplayer perception (MLP) neural

network for bearing defect severity classification. Since different ratios (e.g.,

70–30 or 50–50) for the training and testing data were suggested for neural

network-based classifier in the literature (Paya et al. 1997; Jack and Nandi

2001), but no single fixed ratio has been preferred, two thirds of the data sets

corresponding to each condition were used for training the classifier, and the

remaining one third for performance checking, from a total of 240 collected data

sets. This was aimed at providing sufficient training data to ensure accuracy of the

classifier. The classification rates are listed in Table 8.7. When the FLD-selected

Table 8.5 Final feature set obtained through a union operation by Fisher linear discriminant

analysis

Subband

features

Healthy

vs. light

Healthy vs.

medium

Healthy

vs. severe

Light vs.

medium

Light vs.

severe

Medium

vs. severe

Final

feature set

E2
4

✓ ✓

E7
4

✓ ✓

E12
4

✓ ✓ ✓ ✓ ✓

E13
4

✓ ✓ ✓ ✓ ✓ ✓

E14
4

✓ ✓ ✓ ✓ ✓ ✓

E15
4

✓ ✓ ✓

Fig. 8.8 Accumulated variance of principal components for the tested bearings
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Table 8.6 The first five eigenvectors of the extracted features for the roller bearing

Subband features a1 a2 a3 a4 a5

E0
4

0.382 0.106 0.605 0.222 0.069

E1
4

0.039 �0.128 0.186 �0.013 �0.039

E2
4

0.060 �0.115 �0.028 �0.388 �0.079

E3
4

0.030 �0.163 0.052 �0.501 0.002

E4
4

�0.045 �0.025 �0.052 �0.133 �0.035

E5
4

�0.078 0.015 �0.194 �0.030 �0.011

E6
4

0.030 0.013 �0.117 �0.094 �0.016

E7
4

�0.042 0.046 �0.195 0.044 0.014

E8
4

�0.068 0.100 �0.225 0.270 0.044

E9
4

�0.098 0.103 �0.252 0.284 0.045

E10
4

�0.046 0.012 0.032 0.069 0.001

E11
4

�0.085 0.019 0.177 0.185 0.004

E12
4

�0.026 0.001 �0.033 �0.012 �0.005

E13
4

�0.021 0.001 0.012 0.016 �0.002

E14
4

�0.021 0.008 0.015 0.040 0.004

E15
4

�0.012 0.009 0.017 0.041 0.004

K0
4

�0.012 �0.063 0.236 0.067 �0.010

K1
4

0.482 �0.445 �0.138 0.337 �0.422

K2
4

0.241 �0.273 �0.088 �0.132 �0.347

K3
4

0.459 �0.156 �0.081 �0.101 0.745

K4
4

0.080 0.017 �0.225 0.100 �0.023

K5
4

0.193 �0.104 �0.176 0.045 0.156

K6
4

0.030 �0.108 �0.080 �0.288 �0.031

K7
4

0.016 �0.035 �0.073 �0.133 �0.010

K8
4

0.036 �0.011 �0.114 0.014 �0.005

K9
4

0.085 �0.001 �0.120 0.044 0.038

K10
4

0.059 0.041 �0.136 0.025 �0.019

K11
4

0.056 0.063 �0.093 0.010 0.049

K12
4

0.033 0.039 �0.295 0.063 0.078

K13
4

0.294 0.361 �0.124 �0.113 �0.139

K14
4

0.276 0.297 �0.128 0.050 0.056

K15
4

0.295 0.598 0.028 �0.208 �0.263

Table 8.7 Neural-network classifier results of the roller bearing

Classification

rate

WPT features

with FLD (%)

WPT features

with PCA (%)

WPT features

only (%)

Raw data

features (%)

No defect 100 95 90 85

0.1-mm hole 95 80 70 60

0.5-mm hole 100 95 95 95

1-mm hole 100 100 100 95

Overall 99 92 88 83
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feature set was used as input to theMLP classifier, only 5% of measured data with the

0.1-mm hole in the bearing outer raceway is misclassified, out of the whole test data.

This led to 98% overall classification success.When the PCA-selected feature set was

used as theMLP input, a classification rate of 92%was identified, which is lower than

the FLD-selected feature set. The rate, on the contrary, is still higher than the rates

obtained using WPT features only as the input to MLP (88%) and using raw data

features as the input (83%). This illustrates that theWPT-based feature extraction and

selection method is effective in defect severity classification.

8.5.2 Case Study II: Ball Bearing Defect Severity Evaluation

For the second case study, a run-to-failure experiment was conducted on a deep

groove ball bearing (type 1100KR) of 52 mm outer diameter, under a radial load of

5,498 N. The bearing contained a 0.27-mm wide groove across its outer raceway as

an embedded defect, and was continually run under a rotational speed of 2,000 rpm.

Upon reaching approximately 2.7 million revolutions, the defect has propagated

throughout the entire raceway and rendered the bearing practically nonfunctional.

This case study was designed to investigate the effect of continuous degradation of

the defect, whereas case study I discussed above concerns with the effect of discrete

defects.

Vibration signals were collected during the experiment at an interval of every

7 min. Figure 8.9 illustrates the trend of the vibration amplitude along the process of

defect propagation. Three vibration signals are also shown in Fig. 8.10, and they are

measured right after the bearing is physically examined at different test stages. For

Phase I

0.27 mm

5.5 mm

12 mm

Phase II

Revolution (million)

V
ib

ra
ti
o
n
 A

m
p
lit

u
d
e
 (

V
)

0
0.30

0.60

0.90

1.20

1.50

0.5 1.0 1.5 2.0 2.5 3.0

Phase III

Test Condition:

Radial Load – 5498 N

Shaft Speed – 2000 rpm
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purpose of defect severity evaluation, all the collected vibration data sets are

divided into three sections with the threshold values of the amplitude being set at

0.6 and 0.9 V, respectively. As shown in Fig. 8.9, the three sections correspond to

three different defect propagation phases during the run-to-failure test. It should be

noted that, since no prior knowledge was available regarding the relationship

between the vibration amplitude and the defect severity level, the choice of three

phases investigated here is empirical.

The vibration signals were first decomposed into 16 subbands. The energy and

kurtosis features were then calculated from the wavelet packet coefficients in each

subband to formulate the feature vectors. FLD analysis was then used for feature

selection. Themeans and variances of the feature element, fl, were obtained for each

of the four bearing initial conditions. Table 8.8 summarizes the discriminant power

of the extracted features for different phase pairs, based on the Fisher discriminant

criterion. The first three key features within each phase pair were selected and the

final feature setwas obtained through a union operation among different phase pairs

(i.e., phase I, phase II; phase I, phase III; and phase II, phase III). As listed in

Table 8.9, the kurtosis features K0
4 , K

1
4 , K

2
4 , K

6
4 , and K10

4 are selected as the

most representative features.

When the PCA was performed on the extracted subband feature vectors, the

first two principal components shown in Fig. 8.10 represent over 90% variance,

which was subsequently used as the reference features from the original feature

set. Table 8.10 lists the eigenvectors corresponding to the first two principal

components. The highest magnitude in the first eigenvector was found to be

associated with the first component, and the highest magnitude in the second

eigenvector was seen to be related to the third component. Accordingly, the

Fig. 8.10 Accumulated variance of principal components for the ball bearing 1100KR

8.5 Case Studies 143



Table 8.8 Discriminant power of the extracted features for the ball bearing phase pair in various

subbands

Subband features Phase I vs. phase II Phase I vs. phase III Phase II vs. phase III

E0
4

1.08 � 10–8 1.25 � 10–8 2.66 � 10–9

E1
4

1.30 � 10–8 1.15 � 10–8 2.65 � 10–8

E2
4

2.23 � 10–9 1.72 � 10–8 5.18 � 10–8

E3
4

6.13 � 10–7 6.81 � 10–7 4.38 � 10–9

E4
4

3.54 � 10–7 4.37 � 10–8 4.05 � 10–10

E5
4

5.54 � 10–7 2.54 � 10–7 2.90 � 10–10

E6
4

1.81 � 10–8 5.13 � 10–9 7.44 � 10–8

E7
4

1.82 � 10–5 1.42 � 10–6 7.26 � 10–7

E8
4

9.94 � 10–7 5.05 � 10–7 9.64 � 10–7

E9
4

5.54 � 10–6 3.23 � 10–6 5.07 � 10–6

E10
4

5.59 � 10–4 1.13 � 10–6 3.62 � 10–7

E11
4

2.72 � 10–3 1.49 � 10–5 1.69 � 10–6

E12
4

2.15 � 10–6 1.80 � 10–7 8.29 � 10–9

E13
4

5.39 � 10–6 8.77 � 10–7 9.99 � 10–8

E14
4

7.55 � 10–4 3.40 � 10–6 2.26 � 10–6

E15
4

1.24 � 10–3 1.75 � 10–5 9.36 � 10–6

K0
4

2.07 � 10–1 2.54Eþ01 1.75Eþ00

K1
4

8.18 � 10–2 4.69 � 10–1 5.16 � 10–1

K2
4

2.35 � 10–3 1.39Eþ00 3.14 � 10–1

K3
4

9.96 � 10–5 4.10 � 10–2 4.11 � 10–2

K4
4

7.98 � 10–4 1.93 � 10–5 1.34 � 10–5

K5
4

3.72 � 10–4 4.19 � 10–3 4.61 � 10–3

K6
4

1.22 � 10–3 9.56 � 10–1 2.37 � 10–1

K7
4

6.30 � 10–6 4.94 � 10–2 9.81 � 10–3

K8
4

3.26 � 10–4 2.18 � 10–6 2.76 � 10–6

K9
4

2.85 � 10–5 9.04 � 10–7 9.47 � 10–7

K10
4

3.05 � 10–3 1.05 � 10–6 8.54 � 10–7

K11
4

1.57 � 10–4 6.45 � 10–7 7.02 � 10–7

K12
4

1.13 � 10–3 3.02 � 10–5 2.23 � 10–5

K13
4

5.42 � 10–4 3.45 � 10–6 2.04 � 10–7

K14
4

2.64 � 10–4 5.86 � 10–6 3.50 � 10–6

K15
4

7.76 � 10–4 6.13 � 10–5 9.54 � 10–6

Table 8.9 Final feature set obtained for the ball bearing through a union operation by FLD

Subband

features

Phase I vs.

phase II

Phase I vs.

phase III

Phase II vs.

phase III

Final feature

set

K0
4

✓ ✓ ✓ ✓

K1
4

✓ ✓ ✓

K2
4

✓ ✓ ✓

K6
4

✓ ✓

K10
4

✓ ✓

144 8 Wavelet Packet-Transform for Defect Severity Classification



Table 8.10 The first two

eigenvectors calculated the

extracted features for the ball

bearing

Subband features a1 a2

E0
4

�0.997 �0.022

E1
4

�0.033 �0.229

E2
4

0.024 �0.942

E3
4

0.027 �0.037

E4
4

0.027 0.012

E5
4

0.023 �0.001

E6
4

0.029 �0.241

E7
4

0.021 0.004

E8
4

�0.001 0.001

E9
4

0.001 �0.001

E10
4

0.003 �0.002

E11
4

0.001 �0.001

E12
4

0.012 0.006

E13
4

0.006 0.004

E14
4

0.003 0.002

E15
4

0.003 0.002

K0
4

�0.001 �0.001

K1
4

�0.001 �0.001

K2
4

�0.001 �0.001

K3
4

�0.001 �0.001

K4
4

0.001 0.001

K5
4

�0.001 �0.001

K6
4

�0.001 �0.001

K7
4

�0.001 �0.001

K8
4

0.001 0.001

K9
4

0.001 0.001

K10
4

0.001 0.001

K11
4

0.001 0.001

K12
4

0.001 0.001

K13
4

�0.001 �0.001

K14
4

0.001 �0.001

K15
4

�0.001 �0.001

Table 8.11 Results of neural-network classification rate of results of the ball bearing

Classification

rate

WPT features

with FLD (%)

WPT features

with PCA (%)

WPT features

only (%)

Raw data

features (%)

Phase I 92 87 82 79

Phase II 91 84 81 77

Phase III 94 88 88 82

Overall 92 86 82 78
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energy value at subbands 1 and 3 were (denoted as E0
4 and E2

4 ) identified as the

most representative features.

Following the same procedure as described in case study I, 2/3 of the data sets

corresponding to each defect propagation phase are used for training the MLP

classifier, and the remaining 1/3 data points are used for performance checking. As

shown in Table 8.11, when the features selected from the FLD approach were used

as input to the MLP classifier, the classification rate for each phase is found to be

92%, 91%, and 94%, respectively. This led to the overall classification rate of 92%.

In comparison, when features selected using PCA technique were used as input to

the MLP, the classification rates were lower, 87%, 84%, and 88%, respectively.

Furthermore, when feature set extracted from each subband and raw data was

directly used as the MLP input, the classification rates dropped down to even

lower values (e.g., 82% overall classification rate for WPT features only, and

78% overall classification rate for raw data features). This indicates again the

effectiveness of the presented approach for defect severity classification.

8.6 Summary

This chapter introduces a wavelet packet-based signal processing approach for

machine defect severity classification. After the subband energy and kurtosis

features are extracted from realistic vibration signals using the wavelet-packet

coefficients, the most representative features are chosen using the Fisher discrimi-

nant criterion and principal feature analysis, respectively. These features are used as

inputs to the neural-network classifiers to evaluate the machine defect severity. The

effectiveness of the approach has been experimentally verified through two case

studies for rolling bearing defect severity classification. It is shown that the intro-

duced approach provides a practical way for feature extraction and selection.

In addition to bearing defect severity classification, this approach is applicable to

classifying the working states of other machines and machine components, thus

providing a useful tool for machine condition monitoring and diagnosis.
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Chapter 9

Local Discriminant Bases for Signal
Classification

The goal of analyzing signals from manufacturing machines is to extract relevant

features from the waveforms to effectively characterize the working conditions of

the machines (e.g., tool breakage and gear degradation). As we have shown in

Chap. 5, the wavelet packet transform can lead to redundant signal decomposition

within certain time–frequency subspaces. When performing wavelet packet trans-

form, the time–frequency subspaces are collectively called the wavelet packet

library. Each of the subspaces is denoted as a wavelet packet node. Such a way of

signal decomposition provides the possibility of selecting a particularly suited set of

wavelet packet nodes out of the wavelet packet library for a specific signal analysis

task, such as data compression, regression, or classification (Saito 1994). However,

the choice of wavelet packet nodes is dependent on the specific task. For example,

the optimal wavelet packet transform technique introduced in Chap. 5 is geared

toward signal compression (Coifman and Wicherhauser 1992), in which the wave-

let packet nodes are selected based on minimizing an information cost function

(e.g., Shannon entropy). This chapter introduces how to choose a good set of

wavelet packet nodes from a wavelet packet library, for purpose of signal classifi-

cation. Such a technique has shown to be effective for monitoring and diagnosis of

rotating machines.

9.1 Dissimilarity Measures

To classify signals obtained from a machine under different working status, the

features extracted from the signals should clearly differentiate different working

status of the machine, where each status is considered as a distinct class. For

example, signals measured on a new gearbox are denoted as one class, while signals

measured on a gearbox with broken-teeth are denoted as another class. Such type of

features is referred to as “discriminant” features of the signal. The main objective of

signal classification by using the wavelet packet transform is to find an optimal set

of wavelet packet nodes (each node representing a wavelet packet basis) that are

capable of discriminating different classes as effectively as possible. This can be

achieved by decomposing the signal of interest into different classes, using the local

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,

DOI 10.1007/978-1-4419-1545-0_9,# Springer Science+Business Media, LLC 2011
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discriminant bases (LDB) algorithm (Saito 1994; Saito and Coifman 1995). The

optimal choice of LDBs depends on the nature of the signals and the dissimilarity

measures used to distinguish classes. In general, the dissimilarity measure is aimed

at evaluating the “statistical distances” of each wavelet packet node among differ-

ent classes. Numerous dissimilarity measures have been developed (Basseville

1989; Saito 1994; Saito et al. 2002; Umapathy and Krishnan 2006; Umapathy

et al. 2007), among which the following four measures have been typically asso-

ciated with the application of the LDB algorithm.

9.1.1 Relative Entropy

Relative entropy is one of the first dissimilarity measures used for identifying the

LDBs (Saito 1994). On the basis of the definition of relative entropy, this dissimi-

larity measure is defined as:

D1ðp
1; p2Þ ¼

X

n

i¼1

p1i log
p1i
p2i

(9.1)

where
Pn

i¼1 p
1
i ¼ 1 and

Pn
i¼1 p

2
i ¼ 1. The symbols p1 and p2 denote nonnegative

sequences, respectively. It is assumed that log 0 ¼ �1, logðx=0Þ ¼ þ1 for

x> 0, and 0� ð�1Þ ¼ 0. The discriminant information D1(p
1, p2) between these

two sequences measures how differently p1 and p2 are distributed. From the defini-

tion, it is seen that the nonnegative sequences p1 and p2 can be considered as

probability density function. Since the normalized energy of wavelet coefficients

(i.e., representation of energy distribution) within each wavelet packet basis is

actually an expression of the probability density function associated with that wavelet

packet node, it can be used as replacement in (9.1). Consequently, the relative

entropy can be used as a dissimilarity measure in the LDB algorithm. Furthermore,

(9.1) indicates that the relative entropy measure D1 is nonnegative and will be zero if

the two sequences of p1 and p2 are the same. The more separate from each other the

two sequences are, the higher the relative entropy measure D1 will be. However, it

should be noted that the relative entropy measure shown in (9.1) is only applicable to

a two-class problem. For multiple-class problems (e.g., gearbox under four different

conditions: such as (a) faultless, (b) slight-worn, (c) medium-worn, and (d) broken-

teeth), the dissimilarity measure based on relative entropy is modified as:

D1ðfp
mgLm¼1Þ ¼

X

L�1

a¼1

X

L

b¼aþ1

D1ðp
a; pbÞ (9.2)

where L is the number of classes. Equation (9.2) indicates that the dissimilarity

measure of multiple-class problems is the summation of relative entropy for each

pair of two-classes among all the classes.
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9.1.2 Energy Difference

From the decomposition results of a signal’s wavelet packet transform, the normal-

ized energy associated with the wavelet packet node (j, k) is calculated as:

Ej;k ¼

PM
l¼1 jxj;k;lj

2

ExðtÞ
(9.3)

In (9.3), the symbols j and k represent the wavelet packet decomposition level and

subfrequency band, respectively. These two symbols, collectively, represent a

wavelet packet node ( j, k). The symbol xj;k;l denotes the lth wavelet packet coeffi-

cient within the node ( j, k), and the symbol M denotes the total number of

coefficients within that node. ExðtÞ is the total energy contained in the signal.

The difference in the normalized energy associated with wavelet packet node

( j, k) between the signals from two classes (denoted as class 1 and class 2) can be

defined as a dissimilarity measure, given by:

D2ðE
1;E2Þ ¼ E1

j;k � E2
j;k (9.4)

The symbols E1
j;k and E2

j;k represent the normalized energy associated with wavelet

packet node (j, k) from class 1 and class 2 signals, respectively. Since each wavelet

packet node corresponds to a time–frequency subspace, the normalized energy

computed at a node provides the energy distribution of the signal in a particular

subfrequency band. The greater the difference at a particular node in the energy

distribution of the two classes, the more significant the node for discriminating the

classes will be. Similar to the definition expressed by (9.1), (9.4) represents the

energy difference measure used for a two-class problem. For multiple-class pro-

blems, the dissimilarity measure based on the energy difference is expressed as:

D2ðfE
mgLm¼1Þ ¼

X

L�1

a¼1

X

L

b¼aþ1

D2ðE
a;EbÞ (9.5)

where L is the number of classes. Equation (9.5) indicates the dissimilarity measure

of multiple-class problems is the summation of energy difference for each pair of

two-classes among all the classes.

9.1.3 Correlation Index

The dissimilarity measure can also be defined from the correlation between the

wavelet packet node (j, k) from class 1 and class 2. This measure can be used to

identify those nodes that can detect the difference in the temporal characteristics of
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the signals between class 1 and class 2. The dissimilarity measure based on the

correlation index, which is used in a two-class problem, is formulated as:

D3ðx
1; x2Þ ¼ hx1j;k;l; x

2
j;k;li (9.6)

where the symbols j, k, and l represent decomposition level, subfrequency band, and

time position, respectively, and x1j;k;l and x2j;k;l are the coefficients of the

corresponding wavelet packet node (j, k) of class 1 and class 2. An average low

correlation index at a particular node indicates high dissimilarity between the

classes. Similarly, for a multiple class problem, the dissimilarity measure based

on correlation index is expressed as:

D3ðfx
mgLm¼1Þ ¼

X

L�1

a¼1

X

L

b¼aþ1

D3ðx
a; xbÞ (9.7)

where L is the number of classes. Equation (9.7) indicates that the dissimilarity

measure of multiple-class problems is the summation of correlation index for each

pair of two-classes among all the classes.

9.1.4 Nonstationarity

Nonstationarity of the wavelet packet coefficients may also be used to measure

the dissimilarity. It is computed as the set of variances along the segments of the

wavelet packet coefficients at a given node (j, k). The ratio of this variance between

class 1 and class 2 indicates the amount of deviation in the nonstationarity between

the two classes. Consequently, the dissimilarity measure based on nonstationarity,

which is used in a two-class problem, can be defined as:

D4ðv
1; v2Þ ¼

var½v1j;k�

var½v2j;k�
(9.8)

where the symbols j and k represent the decomposition level and subfrequency band

of the wavelet coefficients, respectively. The symbols v1 and v2 are variance

vectors. Each of them contains L variances, obtained by equally segmenting the

wavelet packet coefficients at node (j, k) for class 1 and class 2 signals, respectively.

For example, given a signal in class 1 with 4,096 data points, there will be 1,024

wavelet packet coefficients at node (2, 1), since 4,096/22 ¼ 1,024. If these wavelet

packet coefficients are equally partitioned into eight segments (i.e., L ¼ 8), then

there will be eight elements in variance vector v1. Each of the elements is calculated

from 128 wavelet packet coefficients (1,024/8 ¼ 128). Variance vector v2 can be

obtained in the same way.
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Similarly, for multiple class problems, the dissimilarity measure based on

nonstationarity is expressed as:

D4ðfv
mgLm¼1Þ ¼

X

L�1

a¼1

X

L

b¼aþ1

D4ðv
a; vbÞ (9.9)

where L is the number of classes. Equation (9.9) indicates that the dissimilarity

measure of multiple class problems is the summation of nonstationarity for each

pair of two-classes among all the classes.

9.2 Local Discriminant Bases

Utilizing one of the dissimilarity measures introduced earlier (e.g., relative

entropy), the LDB algorithm can identify wavelet packet nodes that exhibit high

discrimination, as indicated by a large statistical distance among the classes.

Let us assume that O0,0 denotes the wavelet packet node 0 of the parent tree (i.e.,

the signal itself). Then at each level, the wavelet packet node Oj,k is split into two

mutually orthogonal subspaces (i.e., nodes Ojþ1,2k and Ojþ1,2kþ1), given by

Oj;k ¼ Ojþ1;2k � Ojþ1;2kþ1 (9.10)

where j indicates the level of the tree, and k represents the node index in level j, given

by k ¼ 0, . . ., 2j � 1. This process is repeated until level J, giving rise to 2J mutually

orthogonal subspaces. The goal is to select a set of best subspaces that provide

maximum dissimilarity information among different classes of the signals. This can

be realized by a pruning approach, where the wavelet packet tree is pruned in such a

way that, starting from the bottom decomposition level, a node is split if the

cumulative discriminative measure of the children nodes is greater than that of the

parent node. In other words, a node is split if the children nodes have better

discriminative power than that of the parent node. Such a process is executed until

it reaches the top level of the decomposition. As a result, the process will end with a

subset of wavelet packet nodes that contribute to maximizing the statistical distance

among different classes. As an example, Fig. 9.1 shows a wavelet packet tree for a

two-level signal decomposition. The LDB algorithm first compares the discriminant

Ω 1,0

Ω 2,0 Ω 2,1 Ω 2,2 Ω2,3

Ω 1,1

Ω 0,0

Fig. 9.1 Illustration of all

nodes in two-level wavelet

packet decomposition

9.2 Local Discriminant Bases 153



power associated with the coefficients of training signals in different classes at

the O1,1 node with that of the O2,2 and O2,3 nodes, respectively. If the relative

entropy of O1,1 is larger than that of O2,2 and O2,3, it keeps the bases belonging to

node O1,1 and omits the other two nodes (O2,2 and O2,3). Otherwise it keeps the

two nodes (O2,2 and O2,3) and disregards the basis of node O1,1. This process is

applied to all the nodes in a sequential manner, up to the scale j ¼ 0. As a result, a

set of complete orthogonal wavelet packet bases having the highest discriminant

power are obtained, which can be sorted out further for classification, according

to a decreasing order.

Suppose that Aj,k represents the desired local discriminant base restricted to the

span of Bj,k, which is a set of wavelet packet coefficients at (j, k) node, and Dj,k is the

array containing the discriminant measure of the same node, then the LDB algo-

rithm for selecting the optimal wavelet packet base can be summarized as follows

(Tafreshi et al. 2005):

LDB Algorithm Given a training dataset that consists of L class of signals

ffx
ðlÞ
i gNl

i¼1g
L
l¼1 with Nl being the total number of training signals in class l,

Step 0: Choose a time–frequency analysis method, such as the wavelet packet

transform, to decompose the signals in the training dataset.

Step 1: Select a dissimilarity measure (e.g., relative entropyD1ðfp
mgLm¼1Þ) to apply

on the wavelet packet coefficients to the corresponding nodes (j, k) of the

wavelet packet trees.

Step 2: Set AJ,k ¼ BJ,k where BJ,k is the basis set spanning subspace of Oj,k node

(J, k), and then evaluate DJ,k for k ¼ 0, . . ., 2J – 1.

Step 3: Determine the best subspace Aj,k for j¼ J – 1, . . ., 0, k¼ 0, . . ., 2j – 1 by the

following rule:

Set Dj,k as the dissimilarity measure, e.g., Dj,k ¼ D1ðfp
mgLm¼1Þ

If Dj,k� Djþ1,2kþ Djþ1,2kþ1, i.e., if the discriminant power of a parent node

in wavelet packet tree is greater than those of children nodes,

Then

Aj,k ¼ Bj,k
Else

Aj,k ¼ Djþ1,2k

L

Djþ1,2kþ1 and set Dj,k ¼ Djþ1,2k þ Djþ1,2kþ1.

Step 4: Order sort the chosen basis functions by their power of discrimination in a

decreasing order.

Step 5: Select the first k(�l) highest discriminant base functions.

After step 3 is performed, a complete orthogonal basis is constructed. Orthogo-

nality of the bases ensures that wavelet coefficients used as features during classifi-

cation process are uncorrelated as much as possible. Subsequently, one can simply

choose the first k highest discriminant bases in step 5 and use the corresponding

coefficients as features in a classifier, or employ a statistical method, such as

Fisher’s criteria, to reduce the dimensionality of the problem first and then apply

them into a classifier.
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9.3 Case Study

To evaluate the effectiveness of the wavelet packet bases constructed using the

LDB algorithm, three classes of signals are synthetically formed:

xð1ÞðtÞ ¼ SineðtÞ þ n1ðtÞ for class 1

xð2ÞðtÞ ¼ GauspulsðtÞ þ n2ðtÞ for class 2

xð3ÞðtÞ ¼ TripulsðtÞ þ n3ðtÞ for class 3

8

>

>

<

>

>

:

(9.11)

In (9.11), SineðtÞ, GauspulsðtÞ, and TripulsðtÞ represent the sinusoidal, Gaussian-

modulated sinusoidal pulse, and triangle wave signals, respectively. The terms

n1(t), n2(t), and n3(t) represent white noise. For each class, 100 training signals

and 1,000 test signals were constructed, and the white noise was regenerated each

time. Figure 9.2 shows one sample signal with 64 sampling points from each class.

Each sample signal can be decomposed up to the six level (i.e., 26 ¼ 64), and the

total number of nodes contained in the wavelet packet library for the signal is 127

(i.e., 1 for the 0 level, 2 for the first level, . . ., 64 for the sixth level).

The LDB algorithm is first applied to the training signals to select a subset of

wavelet packet nodes from a wavelet packet library that best discriminate the three

classes. Figure 9.3 shows the selected wavelet packet nodes. It can be seen that the

selected wavelet packet nodes (highlighted in black color) are distributed across

different decomposition levels. Altogether, they form complete orthogonal bases.

The first six selected LDB bases are shown in Fig. 9.4, with each containing

64 coefficients. It should be noted that these bases are sorted according to their

discriminant power. A complete discrimiant power for all the 64 LDB bases is

0 10

a

b

c
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0
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1

Fig. 9.2 Sample waveform from (a) class 1, (b) class 2, and (c) class 3
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shown in Fig. 9.5 with a decreasing order. A rapid decrease of the discriminant

power relative to the LDB bases is seen after the first few bases. Therefore, only the

first few bases (e.g., the first six bases) with large discriminative power are

considered for purpose of classification.

Wavelet coefficients constructed by projecting the signals onto the selected

bases are then used to form feature variables for classification. For the training

data set, two features (i.e., two wavelet coefficients) generated by the top two LDB

bases have produced the clustering result as shown in Fig. 9.6.

To classify the three synthetic signals introduced above, these two features are

used as input to a classifier. Various classifiers, such as linear discriminant analysis

(LDA), neural network (NN), and support vector machine (SVM) can be considered

for this purpose. In this example, the LDA classifier is selected due to its simplicity

(Duda et al. 2000). Taking the two features as inputs to the LDA classifier, the
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Fig. 9.3 The wavelet packet nodes selected by the LDB algorithm
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Fig. 9.4 The first six LDB bases selected from the signals
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training dataset are classified. The test signals are subsequently projected onto the

top two LDB vectors to produce coefficients. Figure 9.7 indicates the scatter plot

of the testing dataset by the two features. It is seen that, using the LDA classifier, all

the testing data set are classified successfully.
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Fig. 9.5 Discriminant power of all 64 LDB bases
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Fig. 9.6 Training signals represented by selected top two LDB features
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The above case study illustrates that the LDB-based wavelet packet base selec-

tion method is effective in producing features that enables effective discrimination

of different classes.

9.4 Application to Gearbox Defect Classification

Application of the LDB algorithm to real-world classification problems has been

reported in various areas, such as geophysical acoustic waveform classification

(Saito and Coifman 1997), radar signal classification (Guglielmi 1997), automatic

target recognition (Spooner 2001), ultrasonic echoes classification (Christian

2002), audio signal classification (Umapathy et al. 2007), biomedical signal analy-

sis (Englehart et al. 2001; Umapathy and Krishnan 2006), and fault classification of

mechanical systems (Tafreshi et al. 2005; Yen and Leong 2006). In this chapter, the

LDB algorithm is applied to classifying the severity of defects in gearbox. Figure

9.8 illustrates the experimental set-up (Rafiee et al. 2007) where the vibration from

a four-speed motorcycle gearbox is measured. An electrical motor drives the

gearbox at a constant nominal rotational speed of 1,420 rpm. A tachometer mea-

sures the actual rotational speed to account for fluctuations caused by the load

variations. Vibration signals are measured by a triaxial accelerometer mounted on

the outer surface of the gearbox’s housing, close to the input shaft of the gearbox.

Four different working conditions of the test gear, including faultless, slight-worn,

medium-worn, and with broken-teeth, are examined by analyzing the measured

vibration data. The signals are sampled at 16,384 Hz. The sampled signals under the

four different working conditions are shown in Fig. 9.9.

−5 −4 −3 −2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

Feature 1

F
ea

tu
re

 2

Class 1

Class 2

Class 3

Fig. 9.7 Testing signals represented by selected top two LDB features

158 9 Local Discriminant Bases for Signal Classification



Gearbox

Motor

Shock

Absorber

Load

Mechnism

Tachometer

Data

Acquisition

System 

Sensor

Location 
Test Gear

Schematic View of Gearbox

Fig. 9.8 Experimental setup to test a four-speed motorcycle gearbox
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worn, and (d) broken-teeth
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To classify the gearbox defect under different working conditions, 60 training

signals and 80 testing signals, each containing 1,024 data points, are segmented

from the raw signal corresponding to each defect condition. The LDB algorithm is

then applied to the training data, where the relative entropy was chosen as the

discriminant measure. Figure 9.10 shows the wavelet packet nodes selected from a

four-level signal decomposition, and the first 6 LDB bases are shown in Fig. 9.11

To evaluate the effectiveness of the LDB algorithm, the performance of classifi-

cation by using the testing data are compared between the LDB-selected nodes and

all the 16 nodes at the 4th decomposition level. The energy values from the selected

nodes are calculated and then used as inputs to a LDA classifier for characterizing

the severity of the defect. Figures 9.12 and 9.13 illustrate the distribution of two

energy features from node (3, 4) and node (4, 15) for the training and test data,

respectively. The results of classification of gearbox defect severity are listed in

Table 9.1. It is seen that, for the training data, although the misclassification rate for

features with and without basis selection is the same, the LDB-selected features

have resulted in a lower misclassification rate (1.56%) than those without (2.19%),

for the testing data. This indicates the merit of the LDB in signal classification.
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Fig. 9.10 Selected wavelet packet nodes for the gearbox data by the LDB algorithm
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9.5 Summary

The LDB provides an effective platform for the wavelet packet transform to

decompose and classify signals. In this chapter, we have demonstrated that, using

this approach, working conditions of a gearbox can be successfully classified by

analyzing the measured vibration signals. Research on the theory of LDB has been

continued in recent years. For example, the probability density of each class is

estimated from the wavelet packet nodes to select the discriminant bases (Saito

et al. 2002), and the features derived from this approach has been shown to be more

sensitive to phase shifts than those from the original LDBs. Combing the LDB

algorithm with signal-adapted filter banks (Strauss et al. 2003), a shape-adapted

LDB approach has been developed for bio-signal processing. It can be expected that

more powerful algorithms and computational tools are yet to come to better serve

the need for signal classification in manufacturing.
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Chapter 10

Selection of Base Wavelet

One of the advantages of wavelet transform for signal analysis is the abundance of

the base wavelets developed over the past decades – there are a total of 13 wavelet

families documented in the MATLAB library. From such abundance arises a

natural question of how to choose a base wavelet that is best suited for analyzing

a specific signal. The question is valid, since the choice in the first place may affect

the result of wavelet transform at the end. As an example, Fig. 11.1 (top row, left)

illustrates an impulsive signal and how it may appear as a time series (top row,

right) in real-world applications. The three rows below illustrate three representa-

tive base wavelets and the results of using them to analyze the impulsive signal: (1)

Daubechies wavelet (Daubechies 1992), (2) Morlet wavelet, and (3) Mexican hat

wavelet. These base wavelets have been used for machine condition monitoring and

health diagnosis studies, as reported in Shao and Nezu (2004), Li et al. (2000), and

Abu-Mahfouz (2005). Comparing the wavelet transform results using these wave-

lets (shown in the right column, Fig. 10.1), it is apparent that only the Morlet

wavelet is effective in extracting the impulsive component from the signal, as

illustrated by the similarity in the waveform between the corresponding wavelet

coefficient and the impulsive component. The Daubechies and Mexican-hat wave-

lets, in comparison, did not fully reveal the characteristics of impulsive component.

Such an example motives the study of base wavelet selection to achieve optimal

result in feature extraction from a signal. In this chapter, we first present a general

strategy for base wavelet selection, from both a qualitative and a quantitative

aspect. Subsequently, we introduce several quantitative measures that can be used

as guidelines for wavelet selection, to guarantee effective extraction of signal

features.

10.1 Overview of Base Wavelet Selection

The topic of base wavelet selection has been addressed by researchers from

different aspects. These prior approaches can be categorized as either qualitative

or quantitative, and are reviewed in the following two sections.

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,

DOI 10.1007/978-1-4419-1545-0_10,# Springer Science+Business Media, LLC 2011
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10.1.1 Qualitative Measure

Base wavelets are characterized by a number of properties, such as orthogonality,

symmetry, and compact support. Understanding these properties will be helpful for

choosing a candidate base wavelet from the wavelet families for analyzing a

specific signal. For example, the orthogonality property indicates that the inner

product of the base wavelet is unity with itself, and zero with other scaled and

shifted wavelets. As a result, using an orthogonal wavelet will result in efficient

signal decomposition into nonoverlapping subfrequency bands. High computa-

tional efficiency can be achieved when orthogonal wavelets are used for imple-

menting the discrete wavelet transform (DWT, see Chap. 4 for details) and wavelet

packet transform (WPT, refer to Chap. 5). The symmetric property ensures that a

base wavelet can serve as a linear phase filter. This is an important property in

filtering operations, as the absence of it can lead to phase distortion. A compact

support wavelet is one whose basis function is nonzero only within a finite interval.

This allows the wavelet transform to efficiently represent signals that have localized

features. The efficiency of such representation is important for data compression.

In recent years, the basic properties of wavelets have been extensively investi-

gated to determine the suitability of a wavelet for specific applications. For example,

based on the experiments conducted on a total of 23 Brodatz textures (Mojsilović

Impulsive component

Daubechies wavelet

Morlet wavelet

Mexican-hat wavelet Coefficients extracted by Mexican-hat wavelet

Coefficients extracted by Daubechies wavelet

Coefficients extracted by Morlet wavelet

A series of impulsive components

Fig. 10.1 Impulsive feature extraction using different base wavelets
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et al. 2000), it was concluded that the Biorthogonal wavelets with symmetry

property enabled higher texture classification rate than the Daubechies wavelets,

which is asymmetrical (e.g., 64.34% for Db3 vs. 82.17% for Bior3.3r). Similarly, the

symmetric property of five wavelets (i.e., Haar, Db6, Coif4, Bior5.5, and Bior6.8)

were reviewed (Fu et al. 2003), from which the Bior6.8 wavelet was chosen as the

best-suited wavelet to separate the roughness, waviness, and geometrical form of an

engineering surface into different frequency bands for both functional correlation

and process diagnosis in manufacturing. In the area of biomedical engineering, the

regularity and symmetry of base wavelets were considered as essential features for

auditory-evoked potentials (AEP) signal analysis (Bradley and Wilson 2004). The

morphology and latency of peaks, which characterize the AEP signal, were pre-

served when using a symmetric base wavelet, and the smooth peaks contained in the

AEP signal were well matched when regularity of a base wavelet is greater than two.

By taking into account the properties of compact support, vanishing moment, and

orthogonality, the Coiflet 4 wavelet was selected to effectively separate burst and

tonic components in the compound surface electromyogram (EMG) signals

recorded from patients with dystonia (Wang et al. 2004). In addition to orthogonal-

ity, the property of complex or real basis was used to guide the choice of the base

wavelet for electrocardiogram (ECG) signal analysis (Bhatia et al. 2006). The

Morlet wavelet, Gaussian wavelet, Paul wavelet at order 4, and quadratic B-Spline

wavelet were preselected as the candidates for ECG events detection and segmenta-

tion. In the area of image processing, the properties of regularity, compact support,

symmetry, orthogonality, and explicit expression were used for recommending base

wavelet for image sequence superresolution (Ahuja et al. 2005). It was concluded

that the B-Spline family represents the most suitable base wavelet among the four

candidates (i.e., Daubechies, Symlet, Coiflet, and B-Spline wavelets) for image

sequence superresolution, as it is orthogonal, symmetric, and has the highest regu-

larity, smallest support size, and explicit expression. In analyzing power system

transients (Safavian et al. 2005), the Db4, Coiflet, and B-Spline wavelet were shown

to be equally well-performing for the transient detection in a power system, as they

share the same basic properties: finite support size and low vanishing moment.

Shape matching has been studied as an alternative approach to wavelet selec-

tion. For example, to measure the timing of multiunit bursts in surface EMGs

from single trials (Flanders 2002), wavelets of different shapes, such as square,

triangular, Gaussian and Mexican Hat, were investigated. The Db2 wavelet was

chosen for its similarity to the shape of motor unit potentials hidden in the EMG

signal. Also, base wavelets of different shapes were compared with ECG signals

to determine their appropriateness for extracting a reference base from corrupted

ECG, for magnetic resonance imaging (MRI) sequence triggering (Fokapu et al.

2005; Abi-Abdallah et al. 2006). To analyze impulses in vibration signals,

researchers looked at the geometric shape of wavelets to determine the optimal

choice (Yang and Ren 2004). It was found that components in a signal may be

extracted effectively when a base wavelet with similar shape as the component is

employed.
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10.1.2 Quantitative Measure

The various approaches described in Sect. 10.1.1 illustrate the importance of

choosing an appropriate base wavelet for effective signal processing. However,

the basis properties of a wavelet only qualitatively determine its suitability for a

particular application. As far as shape matching is concerned, it is generally

difficult to accurately match the shape of a signal to that of a base wavelet through

a visual comparison. These deficiencies motivate the study of quantitative measures

for base wavelet selection.

The measures of inequality (Goel and Vidakovic 1995), which includes the Schur

concave functions such as Shannon entropy and Fishlow’s measure (Marshall and

Olkin 1979), Emelen’s modified entropy measure (Emlen 1973), and Schur convex

functions (Gini’s coefficient and Schutz’s coefficient by Marshall and Olkin 1979)

were proposed for wavelet selection in data compression and data denoising. A time-

series, which was constructed by adding white noise into the sampled Db3 wavelet

function, was used to evaluate each of the inequality measures. All of them, except

for the Fishlow’s measure, recognized the Db3 wavelet as the best base wavelet

among a set of wavelets (Db1–Db20, Db30, Coif8, Coif12, and Coif18).

The Shannon entropy was also utilized to identify optimal base wavelet for

velocity and temperature time series analysis in atmospheric surface layer (ASL)

(Katul and Vidakovic 1996). The large scale eddy motion and small scale fluctua-

tions in the ASL were successfully separated with the chosen Daubechies wavelet.

In another study (Bedekar et al. 2005), the Shannon entropy was used to choose the

Daubechies wavelet of order 3 from 23 preselected wavelets as the optimal wavelet

for radio-frequency intravascular ultrasound (IVUS) data decomposition. It accu-

rately decomposed 29 out of 30 IVUS data at all levels. The rest of the wavelets

only decomposed less than 21 IVUS data.

In the field of biomedical engineering, study on horse gait classification has

discussed an uncertainty model for wavelet selection (Arafat et al. 2003). The

model combines the fuzzy uncertainty with the probabilistic uncertainty to provide

a better measure, when compared with using either fuzzy or probabilistic uncer-

tainty alone, for choosing an appropriate base wavelet to improve correct classifi-

cation of different horse gait signals.

Study on assessing hypnotic state of anesthetized patients undergoing

surgery (Bibian et al. 2001) has used the discrimination power, which is defined

as the difference between the statistical features, such as probability density

function, in the awake as well as in the anesthetized states, to select the appropri-

ate base wavelet. It was found that among the Daubechies, Coiflet, Symlet,

biorthogonal, and reverse biorthogonal wavelets, the Daubechies wavelet at

order 8 provided the highest discrimination power, thus effectively estimated

the hypnotic state. In another study on diagnosing cardiovascular ailments in

patients (Singh and Tiwari 2006), experimental results have revealed the suitabil-

ity of the Daubechies base wavelet at order 8 for the ECG signal denoising, as it
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has the maximum cross correlation coefficient between the ECG signal and

the chosen base wavelets, (Daubechies, Symlet, and Coiflet wavelets). The

cross correlation measure has also been used in evaluating a base wavelet for

detecting and locating the partial discharge (PD) occurred in operational trans-

formers (Ma et al. 2002a, b; Yang et al. 2004). It was found that an optimal base

wavelet would maximize the correlation coefficient between the signal of interest

and the base wavelet, resulting in PD pulses being successfully separated from

electrical noise.

For image denoising, two criteria, the signal information extraction criterion and

the distribution error criterion, were proposed to select an optimal wavelet

for improving the denoising performance (Zhang et al. 2005). The first criterion

was implemented by calculating the mutual information of wavelet coefficients of

the image without noise contamination and those of the image with noise contami-

nation. The second criterion was the difference between the Gaussian and the actual

distribution of the wavelet coefficients of the image without noise contamination.

It was reasoned that the smaller the difference is the better the denoising perfor-

mance will be, as the denoising performance is optimal only if the underlying signal

distribution is Gaussian. Using these two criteria, it was found that the Bior1.3

wavelet provided the best performance among the eight wavelets (Bior1.1, Bior1.3,

Bior2.2, Bior2.4, Bior3.3, Db2, Db3, and Db4) investigated when testing four

benchmark images.

For automatic ultrasound nondestructive foreign body (FB) detection and

classification in nonflat surface containers (Tsui and Basir 2006), the relative

entropy was employed as a wavelet coefficient similarity measure to select the

best base wavelet. The results have shown that the best base wavelet for FB shape

classification is Bior3.1, while Haar (or Sym1 or reverse Bior1.1) and reverse

Bior3.9 are the best for spherical and rectangular FB material classifications,

respectively.

For analysis of impulses in vibration signals (Schukin et al. 2004), the minimum

total error and time-frequency resolution were devised to evaluate different base

wavelets on impulsive parameter identification of a single-degree-of-freedom sys-

tem model. A comprehensive comparison among ten base wavelets (complex

B-Spline, Gaussian, Shannon, etc.) indicated that the impulse wavelet is the most

appropriate base wavelet for the analysis of impulses.

10.2 Wavelet Selection Criteria

The importance of the base wavelet has been addressed by various researchers, as

summarized earlier. This section introduces several quantitative measures in eval-

uating the performance of base wavelets for the specific application domain of

condition monitoring and health diagnosis in manufacturing.
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10.2.1 Energy and Shannon Entropy

The energy content of a signal is a measure that uniquely characterizes the signal,

thus can be used for base wavelet selection. The amount of energy contained in a

signal xðtÞ is expressed as:

ExðtÞ ¼
ð

jxðtÞj2dt (10.1)

Similarly, when the signal is represented by discrete sample values

xðiÞði ¼ 1; 2; . . . ;NÞ, the amount of energy is given by:

ExðiÞ ¼
X

N

i¼1

jxðiÞj2 (10.2)

In (10.2), N is the length of the signal expressed by the number of data points, and

x(i) is the amplitude of the signal.

The energy content of a signal can also be calculated from its wavelet coeffi-

cients, and is expressed as:

Eenergy ¼
ðð

jwtðs; tÞj2dsdt (10.3)

The corresponding sampled version is given by:

Eenergy ¼
X

s

X

i

jwtðs; iÞj2 (10.4)

Equations (10.3) and (10.4) indicate that the energy associated with each particular

scaling parameter s is expressed as:

EenergyðsÞ ¼
ð

jwtðs;tÞj2dt (10.5)

And the energy of the corresponding sampled version is described as:

EenergyðsÞ ¼
X

N

i¼1

jwtðs; iÞj2 (10.6)

where N is the number of wavelet coefficients and wt(s, i) represents the wavelet

coefficients.

If a major frequency component corresponding to a particular scale s exists in the

signal, then the wavelet coefficients at that scale will have relatively high
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magnitudes at the time when this major frequency component occurs. As a result,

the energy related to such frequency component will be extracted from the signal

when applying the wavelet transform to the signal. For purpose of condition

monitoring and health diagnosis, the higher the energy content extracted from the

defect-induced transient vibrations is the more effective the wavelet transform of

the signal will be. Therefore, the energy content can serve as a criterion for

selecting the base wavelet. This is formulated in the following criterion.

1. Maximum energy criterion: The base wavelet that extracts the largest amount of

energy from the signal being analyzed represents the most appropriate wavelet

for extracting features from defect-induced transient vibrations.

Given that for the same amount of energy within a subfrequency band, the specific

condition of the signal may be significantly different (e.g., only several frequency

components with high magnitude and others with negligible magnitude vs. a

widespread spectrum), the spectral distribution (or concentration) of the energy

needs to be considered also to ensure effective feature extraction. The energy

distribution of the wavelet coefficients is quantitatively described by the Shannon

entropy (Cover and Thomas 1991):

EentropyðsÞ ¼ �
X

N

i¼1

pi � log2 pi (10.7)

where pi is the energy probability distribution of the wavelet coefficients, defined as:

pi ¼
jwtðs; iÞj2
EenergyðsÞ

(10.8)

with
PN

i¼1 pi ¼ 1, and pi � log2 pi ¼ 0 if pi ¼ 0.

Equations (10.7) and (10.8) indicate that the entropy of the wavelet coefficients

is bounded by:

0 � EentropyðsÞ � log2 N (10.9)

in which EentropyðsÞ will be equal to (1) zero, if all other wavelet coefficients are equal
to zero except for one wavelet coefficient, and (2) log2 N, if the probability of energy

distribution for all the wavelet coefficients are the same (i.e., 1/N). This leads to the

conclusion that the lower the entropy value is, the higher the energy concentration will

be. Therefore, an appropriate base wavelet should yield large magnitude at a few

wavelet coefficients and negligiblemagnitude at others when the signal is decomposed

into various scales, leading to the minimum Shannon entropy. The corresponding

Shannon entropy-based wavelet selection criterion can thus be designed as:

2. Minimum Shannon entropy criterion: The base wavelet that minimizes the

entropy of the wavelet coefficients represents the most appropriate wavelet for

defect-induced transient vibration analysis.
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Combining the strengths of the two criteria described earlier, we note that an

appropriate base wavelet should extract the maximum amount of energy from the

signal being analyzed, while minimizing the Shannon entropy of the corresponding

wavelet coefficients. This lead to the energy-to-Shannon entropy ratio, which is

defined as:

RðsÞ ¼ EenergyðsÞ
EentropyðsÞ

(10.10)

In (10.10), the energy EenergyðsÞ and the entropy EentropyðsÞ are calculated from

(10.6) and (10.7), respectively. By maximizing the energy-to-Shannon entropy ratio

RðsÞ, an appropriate base wavelet can be selected from a set of candidate base

wavelets. This leads to the following criterion for wavelet selection:

3. Energy-to-Shannon entropy ratio measure: The base wavelet that has produced

the maximum energy-to-Shannon entropy ratio should be chosen as the most

appropriate wavelet for defect-induced transient vibration signal analysis.

10.2.2 Information Theoretic Measure

The energy and Shannon entropy-related criteria are solely based on the content of

the wavelet coefficients themselves. Since the coefficients of a signal’s wavelet

transformation are inherently related to the signal, information theoretic measures,

which describes the relationship between a pair of data sequence, can be explored for

best suited base wavelet selection. These are introduced in the following sections.

10.2.2.1 Joint Entropy

The joint entropy HðX; YÞ between two data sequences X and Y is defined to

measure information associated with them as a whole (Cover and Thomas 1991).

This is expressed as

HðX; YÞ ¼ �
X

x2X

X

y2Y
pðx; yÞ log pðx; yÞ (10.11)

where p(x, y) is the joint probability distribution of the two data sequences.

10.2.2.2 Conditional Entropy

With probability distribution of the data sequence X known, the amount of infor-

mation contained in the other data sequence Y can be measured by the condition

entropy HðYjXÞ as (Cover and Thomas 1991):

172 10 Selection of Base Wavelet



HðYjXÞ ¼ �
X

x2X
pðxÞHðYjX ¼ xÞ

¼ �
X

x2X
pðxÞ

X

y2Y
pðyjxÞ log pðyjxÞ

(10.12)

In (10.12), p(x) is the probability distribution of the data sequence X, and pðyjxÞ
denotes the conditional probability distribution of the data sequence Y when the

data sequence X is known. The conditional probability distribution pðyjxÞ is

expressed as (Mendenhall and Sincich 1995):

pðyjxÞ ¼ pðx; yÞ
pðxÞ (10.13)

with p(x, y) being the joint probability distribution of the two data sequence X and Y.

As a result, (10.12) can be further expressed as:

HðYjXÞ ¼ �
X

x2X

X

y2Y
pðx; yÞ log pðx; yÞ

pðxÞ

¼ �
X

x2X

X

y2Y
pðx; yÞ log pðx; yÞ þ

X

x2X

X

y2Y
pðx; yÞ log pðxÞ

¼ HðX; YÞ þ
X

x2X
pðxÞ log pðxÞ ¼ HðX; YÞ � HðXÞ (10.14)

Equation (10.14) indicates that, given the data sequence X, the condition entropy of

data sequence Y can be calculated by the joint entropy between the two data

sequences, minus the entropy of the data sequence X.

10.2.2.3 Mutual Information

The mutual information I(X; Y) measures the amount of information that data

sequence X contains about data sequence Y, which is defined as (Cover and Thomas

1991):

IðX; YÞ ¼
X

x2X

X

y2Y
pðx; yÞ log pðx; yÞ

pðxÞpðyÞ

¼
X

x2X

X

y2Y
pðx; yÞ log pðx; yÞ �

X

x2X

X

y2Y
pðx; yÞ log½ pðxÞpðyÞ�

¼ � HðX; YÞ �
X

x2X
pðxÞ log pðxÞ �

X

y2Y
pðyÞ log pðyÞ

¼ � HðX; YÞ þ HðXÞ þ HðYÞ

(10.15)
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Equation (10.15) indicates that the mutual information is the sum of the entropies

H(X) and H(Y), minus the joint entropy H(X, Y).

The relationships among the joint entropy, condition entropy, and mutual infor-

mation are illustrated in a Venn diagram (Cover and Thomas 1991), as shown in

Fig. 10.2. It is noted that the mutual information I(X; Y) is represented by the

intersection of the two data sequences. The greater the mutual information is, the

more similar the two data sequences will be. The condition entropy H(XjY) or

H(YjX) expresses the information that is particular to each corresponding data

sequence itself, while the joint entropy H(X, Y) includes all information of the

two data sequences.

The above-described relationship can be applied to base wavelet selection by

taking the signal to be analyzed and its corresponding wavelet coefficients as two

data sequences X and Y, respectively. Since defect-induced transient features are

represented by the wavelet coefficients, a high value of mutual information between

the vibration signal and wavelet coefficients can be expected when an appropriate

wavelet is chosen. It should be noted that, when a vibration signal is obtained, the

information H(X) is fixed. Similarly, the information H(Y) of the wavelet coeffi-

cients is fixed once a base wavelet is chosen. On the basis of the relationship

described earlier, low values of both the joint entropy and condition entropy are

desired for choosing an appropriate wavelet for characterizing defect-induced

transient vibrations.

Following are several criteria for base wavelet selection, based on the informa-

tion theoretic measures.

4. Minimum joint entropy criterion: The base wavelet that minimizes the joint

entropy between the signal and the wavelet coefficients represents the most

appropriate wavelet for defect-induced transient feature extraction.

5. Minimum condition entropy criterion: The base wavelet that minimizes the

condition entropy between the signal and the wavelet coefficients represents

the most appropriate wavelet for defect-induced transient feature extraction.

H(X,Y)

H(X|Y)

H(X) H(Y)

H(Y|X)H(Y|X)I(X;Y)

Fig. 10.2 Relationships

among entropies and mutual

information
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6. Maximum mutual information criterion: The base wavelet that maximizes the

mutual information between the signal and the wavelet coefficients represents

the most appropriate wavelet for defect-induced transient feature extraction.

10.2.2.4 Relative Entropy

In contrast to the mutual information, which measures shared information between

two data sequences, the relative entropy (also known as Kullback Leibler distance or

the divergence) is a measure of the distance between probability distributions of data

sequences X and Y (Cover and Thomas 1991). The relative entropy is defined as

DðXjjYÞ ¼
X

x2X
pðxÞ log pðxÞ

pðyÞ (10.16)

with pðxÞ log pðxÞ
pðyÞ ¼ 0 if pðxÞ ¼ 0, and pðxÞ log pðxÞ

pðyÞ ¼ 1 if pðyÞ ¼ 0.

Equation (10.16) states that the relative entropy value is always nonnegative,

and it is zero if and only if both probability distributions are equivalent [i.e., p(x) ¼
p(y)]. The smaller the relative entropy is, the more similar the distributions of the

two data sequences will be. For applications in machine condition monitoring and

health diagnosis, it is expected that an appropriately chosen base wavelet will be

able to extract features related to defect-induced transient vibrations completely.

Consequently, a small relative entropy value between the signal (i.e., data sequence

X) and its corresponding wavelet coefficients (i.e., data sequence Y) is desired. The

following criterion reflects this consideration:

7. Minimum relative entropy criterion: The base wavelet that minimizes the rela-

tive entropy between the signal and the wavelet coefficients represents the most

appropriate wavelet for defect-induced transient feature extraction.

Synthesizing the above criteria, an appropriate wavelet should minimize the

joint entropy, condition entropy, and relative entropy while maximizing the mutual

information. Such consideration is captured in the following information measure:

InfoðsÞ ¼ IðX; YÞ
HðX; YÞ � HðYjXÞ � DðXjjYÞ (10.17)

In (10.17), the joint entropy HðX; YÞ, condition entropy HðYjXÞ, relative entropy

DðXjjYÞ, and mutual information IðX; YÞ are calculated using (10.11), (10.14),

(10.16), and (10.15), respectively. Maximizing the information measure InfoðsÞ
leads to the following comprehensive criterion:

8. Maximum information criterion: The base wavelet that has produced the maxi-

mum information value should be chosen to be the most appropriate wavelet for

defect-induced transient feature extraction.
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10.3 Numerical Study on Base Wavelet Selection

To quantitatively evaluate the base wavelet selection criteria described earlier, a

Gaussian-modulated sinusoidal test signal is numerically simulated. Mathemati-

cally such a signal can be expressed as

xðtÞ ¼ e�bðt�t0Þ2 sin½2pf ðt� t0Þ� (10.18)

The symbol b denotes the attenuation factor, and t0 is the time delay of the signal.

This type of signal has been widely used for simulating transient vibrations

involved in mechanical systems (Ho and Randall 2000; Schukin et al. 2004;

Yang and Ren 2004). Figure 10.3 illustrates the test signal, in which the center

frequency is 48 Hz, and the sampling frequency is 1,024 Hz. In the following, the

criteria presented in the above sections are evaluated for choosing best suited base

wavelet from both real-valued and complex-valued wavelets.

10.3.1 Evaluation Using Real-Valued Wavelets

The performance of real-valued wavelets on processing the test signal is evaluated

first, for which the DWT is performed to decompose the test signal. The decomposi-

tion level L of the wavelet transform is determined by the sampling frequency fq and
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Fig. 10.3 Test signal: Gaussian-modulated sinusoidal signal
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frequency component to be identified in the signal, as expressed in the following

equation:

fq

2Lþ1
bfcharb

fq

2L
(10.19)

In (10.19), fq is the sampling frequency, and fchar is related to the characteristic

frequency component of the signal (e.g., fchar ¼ 48 Hz for the test signal). In Table

10.1, the respective frequency ranges covered by each of the decomposition levels

under the sampling rate of 1,024 Hz are shown. Since the center frequency (48 Hz)

of the test signal falls within the frequency range of 32–64 Hz, which is covered by

the decomposition level 4 (corresponding to scale s ¼ 24 ¼ 16), this level is chosen

for the evaluation of each wavelet.

Thirty candidate base wavelets were preselected from seven wavelet families.

The energy extracted from the Gaussian-modulated sinusoidal signal by these

wavelets is listed in Table 10.2. It is shown that the Meyer wavelet has extracted

the highest amount of energy, thus is considered the most appropriate base wavelet

for analyzing the Gaussian-modulated sinusoidal signal with the given parameters.

It is also found that the amount of energy that is extracted from the signal increases

with increasing order of the base wavelet, for each wavelet family. This is because

base wavelets of higher order within a wavelet family possess higher degree of

regularity. As a result, they are better suited for extracting energy from the

Gaussian-modulated sinusoidal test signal than their lower-ordered counterparts

in the same wavelet family.

The Shannon entropy of the extracted Gaussian-modulated sinusoidal signal is

then calculated, as listed in Table 10.3. On the basis of the minimum Shannon

entropy, the Symlet 3 wavelet is considered as the most appropriate base wavelet.

Table 10.1 Frequency range for each decomposition level under a 1,024 Hz sampling rate

Decomposition level (L) Frequency range (Hz) Decomposition level (L) Frequency range (Hz)

1 256–512 4 32–64

2 128–256 5 16–32

3 64–128 6 8–16

Table 10.2 Energy extracted from the test signal: real-valued wavelets

Base wavelet Energy (J) Base wavelet Energy (J) Base wavelet Energy (J)

Haar 33.855 Coif4 60.662 Bior2.6 53.645

Db2 45.546 Coif5 61.856 Bior4.4 52.310

Db4 54.433 Sym2 45.546 Bior5.5 54.614

Db6 58.167 Sym3 51.143 Bior6.8 58.415

Db8 60.207 Sym4 54.433 rBio1.3 45.326

Db10 61.471 Sym6 58.167 rBio2.4 55.138

DB20 63.687 Sym8 60.217 rBio2.6 55.546

Coif1 46.065 Meyr 64.146 rBio4.4 59.235

Coif2 55.038 Bior1.3 53.481 rBio5.5 61.123

Coif3 58.692 Bior2.4 49.198 rBio6.8 60.464
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This conclusion is not consistent with the Meyer wavelet selected by the maximum

energy criterion. To resolve such conflict, the energy-to-Shannon entropy ratio is

calculated and the results are listed in Table 10.4. From the maximum energy-to-

Shannon entropy ratio criterion, the Meyer wavelet possesses the highest values,

thus is considered the most appropriate wavelet to analyze the Gaussian-modulated

sinusoidal signal.

Various criteria based on information theoretic measures have also been studied

to evaluate the performance of each of the real-valued candidate wavelets, as listed

in Table 10.5–10.8. It is noted that all of the four measures (i.e., joint entropy,

condition entropy, mutual information, and relative entropy) point to the Meyer

wavelet as the most suited wavelet when analyzing the Gaussian-modulated sinu-

soidal signal. This is because it maximizes the maximum mutual information, while

minimizing the joint entropy, condition entropy, and relative entropy. The compre-

hensive criterion “maximum information” that integrates the effect of these four

measures, as illustrated in (10.17), has also shown that theMeyer wavelet is the most

appropriate wavelet. This is verified in Table 10.9, in which amaximum information

value is obtained when the Meyer wavelet is chosen as the base wavelet.

Table 10.3 Shannon entropy of the extracted signal: real-valued wavelets

Base

wavelet

Shannon

entropy

Base

wavelet

Shannon

entropy

Base

wavelet

Shannon

entropy

Haar 3.667 Coif4 2.945 Bior2.6 5.959

Db2 3.137 Coif5 2.985 Bior4.4 5.673

Db4 3.475 Sym2 3.137 Bior5.5 6.042

Db6 3.171 Sym3 2.800 Bior6.8 4.069

Db8 3.491 Sym4 3.011 rBio1.3 4.579

Db10 3.121 Sym6 3.598 rBio2.4 4.665

DB20 3.653 Sym8 3.613 rBio2.6 4.949

Coif1 2.856 Meyr 2.959 rBio4.4 4.664

Coif2 3.609 Bior1.3 6.197 rBio5.5 5.034

Coif3 3.617 Bior2.4 6.214 rBio6.8 4.069

Table 10.4 Energy-to-Shannon entropy ratio of the extracted signal: real-valued wavelets

Base wavelet

Energy-to-Shannon

entropy ratio

Base

wavelet

Energy-to-Shannon

entropy ratio

Base

wavelet

Energy-to-Shannon

entropy ratio

Haar 9.229 Coif4 20.594 Bior2.6 9.002

Db2 14.512 Coif5 20.719 Bior4.4 9.220

Db4 15.662 Sym2 14.512 Bior5.5 9.047

Db6 18.341 Sym3 18.265 Bior6.8 14.356

Db8 17.246 Sym4 18.079 rBio1.3 9.896

Db10 19.693 Sym6 16.162 rBio2.4 11.817

DB20 17.428 Sym8 16.662 rBio2.6 11.221

Coif1 16.124 Meyr 21.678 rBio4.4 12.699

Coif2 15.244 Bior1.3 8.629 rBio5.5 12.141

Coif3 16.224 Bior2.4 7.915 rBio6.8 14.858
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10.3.2 Evaluation Using Complex-Valued Wavelets

The criteria for choosing an appropriate complex-valued wavelet can be evaluated

by applying the continuous wavelet transform to the test signal. The scale whose

Table 10.5 Joint entropy of the extracted signal: real-valued wavelets

Base wavelet Joint entropy Base wavelet Joint entropy Base wavelet Joint entropy

Haar 4.086 Coif4 3.261 Bior2.6 3.414

Db2 3.409 Coif5 3.246 Bior4.4 3.338

Db4 3.394 Sym2 3.398 Bior5.5 3.415

Db6 3.495 Sym3 3.291 Bior6.8 3.379

Db8 3.358 Sym4 3.250 rBio1.3 3.603

Db10 3.256 Sym6 3.441 rBio2.4 3.329

DB20 3.086 Sym8 3.336 rBio2.6 3.619

Coif1 3.082 Meyr 2.957 rBio4.4 3.341

Coif2 3.614 Bior1.3 3.682 rBio5.5 3.348

Coif3 3.366 Bior2.4 3.313 rBio6.8 3.453

Table 10.6 Condition entropy of the extracted signal: real-valued wavelets

Base

wavelet

Condition

entropy

Base

wavelet

Condition

entropy

Base

wavelet

Condition

entropy

Haar 1.539 Coif4 0.715 Bior2.6 0.792

Db2 0.851 Coif5 0.699 Bior4.4 0.868

Db4 0.847 Sym2 0.851 Bior5.5 0.833

Db6 0.948 Sym3 0.745 Bior6.8 1.057

Db8 0.812 Sym4 0.704 rBio1.3 0.783

Db10 0.710 Sym6 0.895 rBio2.4 1.073

DB20 0.539 Sym8 0.790 rBio2.6 0.795

Coif1 0.536 Meyr 0.411 rBio4.4 0.802

Coif2 1.067 Bior1.3 1.136 rBio5.5 0.907

Coif3 0.819 Bior2.4 0.767 rBio6.8 0.792

Table 10.7 Mutual information of the extracted signal: real-valued wavelets

Base wavelet

Mutual

information

Base

wavelet

Mutual

information

Base

wavelet

Mutual

information

Haar 1.243 Coif4 1.261 Bior2.6 1.045

Db2 0.69 Coif5 1.317 Bior4.4 1.101

Db4 1.074 Sym2 0.869 Bior5.5 1.165

Db6 1.151 Sym3 0.990 Bior6.8 1.559

Db8 1.174 Sym4 1.085 rBio1.3 0.969

Db10 1.291 Sym6 1.110 rBio2.4 0.873

DB20 1.502 Sym8 1.241 rBio2.6 1.011

Coif1 0.760 Meyr 1.721 rBio4.4 0.913

Coif2 1.078 Bior1.3 0.511 rBio5.5 0.979

Coif3 1.148 Bior2.4 0.997 rBio6.8 1.435
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corresponding center frequency is equal to that of the frequency component of

interest (e.g., 48 Hz in the test signal) is chosen for the wavelet transform. In

general, the scale of the wavelet, s, and the corresponding center frequency of the

scaled wavelet, fs c, are related by (Abry 1997):

s ¼ fq fb c

fs c

(10.20)

Table 10.9 Information value of the extracted signal: real-valued wavelets

Base

wavelet

Information

value

Base

wavelet

Information

value

Base

wavelet

Information

value

Haar 0.296 Coif4 3.226 Bior2.6 0.773

Db2 0.232 Coif5 5.155 Bior4.4 1.054

Db4 0.679 Sym2 0.232 Bior5.5 1.550

Db6 1.139 Sym3 0.471 Bior6.8 2.915

Db8 2.146 Sym4 0.858 rBio1.3 0.187

Db10 4.348 Sym6 1.221 rBio2.4 0.292

DB20 40 Sym8 2.347 rBio2.6 0.461

Coif1 0.339 Meyr 1,000 rBio4.4 0.371

Coif2 0.594 Bior1.3 0.082 rBio5.5 0.537

Coif3 1.495 Bior2.4 0.633 rBio6.8 1.534

Table 10.10 Energy

extracted from the test signal:

complex-valued wavelets

Base wavelet Energy (J)

Morlet wavelet 96.243

Gaussian wavelet 58.942

B-Spline wavelet 57.257

Shannon wavelet 14.789

Harmonic wavelet 15.835

Table 10.8 Relative entropy of the extracted signal: real-valued wavelets

Base wavelet

Relative

entropy Base wavelet

Relative

entropy Base wavelet

Relative

entropy

Haar 0.4851 Coif4 0.163 Bior2.6 1.155

Db2 1.09 Coif5 0.111 Bior4.4 0.564

Db4 0.506 Sym2 1.091 Bior5.5 0.423

Db6 0.290 Sym3 0.764 Bior6.8 0.371

Db8 0.194 Sym4 0.507 rBio1.3 0.240

Db10 0.125 Sym6 0.281 rBio2.4 0.182

DB20 0.022 Sym8 0.194 rBio2.6 1.146

Coif1 1.149 Meyr 0.002 rBio4.4 0.985

Coif2 0.435 Bior1.3 1.155 rBio5.5 0.515

Coif3 0.266 Bior2.4 0.564 rBio6.8 0.817
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where fq is the sampling rate, fb fc is the center frequency of the base wavelet, and

fs c is the center frequency of the scaled wavelet.

Table 10.10 lists the energy values extracted from the test signal, whereas Table

10.11 lists the corresponding Shannon entropy of the extracted signal. It is seen that the

maximum energy criterion selected the complex Morlet wavelet as the most suited

wavelet among the five complex-valued wavelets, while the minimum Shannon

entropy criterion identified theComplex Gaussianwavelet. Such a conflict is resolved

by the integrated energy-to-Shannon entropy ratio criterion. InTable 10.12, it is shown

that theComplexMorletwavelet led to themaximumenergy-to-Shannonentropy ratio.

As a result, the Complex Morletwavelet is considered the most suited base wavelet.

The information theoretic measures can also be used to evaluate performance for

each of the candidate wavelets, as listed in Table 10.13–10.16. It is noted that the

Complex Morlet wavelet is again identified as the most suited wavelet by using the

following three criteria: minimum joint entropy, the minimum condition entropy,

Table 10.11 Shannon

entropy of the extracted

signal: complex-valued

wavelets

Base wavelet Shannon entropy

Morlet wavelet 7.322

Gaussian wavelet 7.290

B-Spline wavelet 7.365

Shannon wavelet 7.690

Harmonic wavelet 7.453

Table 10.12 Energy-to-

Shannon entropy ratio of the

extracted signal: complex-

valued wavelets

Base wavelet

Energy-to-Shannon

entropy ratio

Morlet wavelet 13.143

Gaussian wavelet 8.085

B-Spline wavelet 7.772

Shannon wavelet 1.923

Harmonic wavelet 2.125

Table 10.13 Joint entropy of

the extracted signal: complex-

valued wavelets

Base wavelet Joint entropy

Morlet wavelet 3.121

Gaussian wavelet 3.280

B-Spline wavelet 3.248

Shannon wavelet 4.167

Harmonic wavelet 3.639

Table 10.14 Condition

entropy of the extracted

signal: complex-valued

wavelets

Base wavelet Condition entropy

Morlet wavelet 0.575

Gaussian wavelet 0.734

B-Spline wavelet 0.702

Shannon wavelet 1.614

Harmonic wavelet 1.093
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and the minimum relative entropy. However, when the maximum mutual informa-

tion criterion is applied, the Complex Gaussian wavelet is identified as the winner.

We apply once again the comprehensive criterion “maximum information,” and

the conflict is successfully resolved. As shown in Table 10.17, a maximum

information value is obtained when the complex Morlet wavelet is chosen as

the base wavelet.

The reason why the Complex Morlet wavelet is the most suited base wavelet for

analyzing the Gaussian-modulated sinusoidal signal can be explained from a

physical point of view by comparing their corresponding analytical expressions,

as shown in (10.18) and (10.21) below:

cMðtÞ ¼
1
ffiffiffiffiffiffi

pfb
p e j2pfcte

�t2

fb
(10.21)

Tuning the bandwidth fb and center frequency fc of the ComplexMorlet wavelet, the

scaled Complex Morlet wavelet can be expressed as:

cðtÞ ¼
ffiffiffiffiffiffiffiffi

120

p

r

e j2p48te�120t
2

(10.22)

Equation (10.22) illustrates a perfect match of the scaled Complex Morlet wavelet

to the Gaussian-modulated sinusoidal signal given in (10.18). As a result, its

Table 10.17 Information

value of the extracted signal:

complex-valued wavelets

Base wavelet Information value

Morlet wavelet 111.111

Gaussian wavelet 12.346

B-Spline wavelet 66.667

Shannon wavelet 0.864

Harmonic wavelet 13.889

Table 10.16 Relative

entropy of the extracted

signal: complex-valued

wavelets

Base wavelet Relative entropy

Morlet wavelet 0.009

Gaussian wavelet 0.060

B-Spline wavelet 0.011

Shannon wavelet 0.214

Harmonic wavelet 0.027

Table 10.15 Mutual

information of the extracted

signal: complex-valued

wavelets

Base wavelet Mutual information

Morlet wavelet 1.665

Gaussian wavelet 1.808

B-Spline wavelet 1.705

Shannon wavelet 1.296

Harmonic wavelet 1.551
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wavelet coefficients best represent the test signal, which is why this wavelet has

extracted the maximum amount of energy from the test signal.

In summary, using the Gaussian-modulated sinusoidal test signal, we have demon-

strated how to systematically choose a base wavelet from a number of candidates by

using the various quantitative measures. The two comprehensive criteria, i.e., engery-

to-Shannon entropy measure and maximum information measure, have shown to be

effective in choosing the most suited base wavelet for decomposing vibration signals

for machine condition monitoring and health diagnosis.

10.4 Base Wavelet Selection for Bearing Vibration Signal

We now demonstrate how the two comprehensive wavelet selection criteria,

maximum energy-to-Shannon entropy ratio and maximum information measure,

have been applied to selecting base wavelet for bearing vibration signals. Figure

10.4a illustrates the waveform of a vibration signal measured from a ball bearing that

contains a localized defect on its outer raceway. The sampling rate is 10,000 Hz. The

spectrum in Fig. 10.4b indicates a major peak frequency component at 1,840 Hz.

This component is used as the reference base for determining the decomposition
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Fig. 10.4 Bearing vibration signal and its corresponding spectrum. (a) Time domain waveform

and (b) frequency domain spectrum
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level (for DWT) as well as for the scale selection (when performing CWT). The

two criteria have been applied to evaluating real-valued and complex-valued

wavelets, respectively.

The real-valued wavelets are evaluated first. The decomposition level of the

DWT is chosen to be 2, which corresponds to scale 4 (s¼ 22). This scale covers the

frequency range from 1,250 to 2,500 Hz, within which the major peak frequency

component is located (at 1,840 Hz). After calculation of the energy and Shannon

entropy values of the bearing vibration signal by each of the candidate wavelets, the

energy-to-Shannon entropy ratio is calculated for each wavelet, and the results are

listed in Table 10.18. On the basis of the maximum energy-to-Shannon entropy ratio

criterion, the reverse Biorthogonalwavelet 5.5 (denoted as rBio5.5) was considered

as the most appropriate wavelet for analyzing the bearing vibration signal.

Various similarity measures, including joint entropy, condition entropy, relative

entropy, and mutual information, have also been calculated to evaluate the candi-

date base wavelets. By integrating these similarity measures into the maximum

Table 10.18 Energy-to-Shannon entropy ratio of the extracted bearing vibration signal: real-

valued wavelets

Base

wavelet

Energy-to-Shannon

entropy ratio

Base

wavelet

Energy-to-Shannon

entropy ratio

Base

wavelet

Energy-to-Shannon

entropy ratio

Haar 56.279 Coif4 75.980 Bior2.6 69.647

Db2 80.793 Coif5 76.473 Bior4.4 69.864

Db4 104.750 Sym2 80.120 Bior5.5 91.454

Db6 71.343 Sym3 73.969 Bior6.8 77.721

Db8 74.153 Sym4 59.229 rBio1.3 43.843

Db10 93.488 Sym6 77.946 rBio2.4 69.435

DB20 85.949 Sym8 68.515 rBio2.6 70.795

Coif1 66.550 Meyr 77.757 rBio4.4 76.204

Coif2 72.738 Bior1.3 39.720 rBio5.5 109.920

Coif3 75.050 Bior2.4 63.477 rBio6.8 78.777

Table 10.19 Information value of the extracted bearing vibration signal: real-valued wavelets

Base

wavelet

Information

value

Base

wavelet

Information

value

Base

wavelet

Information

value

Haar 0.106 Coif4 0.143 Bior2.6 0.180

Db2 0.223 Coif5 0.142 Bior4.4 0.181

Db4 0.143 Sym2 0.223 Bior5.5 0.219

Db6 0.127 Sym3 0.180 Bior6.8 0.167

Db8 0.116 Sym4 0.108 rBio1.3 0.105

Db10 0.136 Sym6 0.171 rBio2.4 0.162

DB20 0.129 Sym8 0.122 rBio2.6 0.169

Coif1 0.173 Meyr 0.108 rBio4.4 0.140

Coif2 0.169 Bior1.3 0.101 rBio5.5 0.242

Coif3 0.124 Bior2.4 0.179 rBio6.8 0.158
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information criterion, it is found that the reverse Biorthogonal wavelet 5.5 is the

most suited wavelet for analyzing the bearing vibration signal. Details of the results

are listed in Table 10.19.

Continuous wavelet transform is also applied to analyze the bearing signals,

using the five commonly seen complex-valued wavelets. The energy and Shannon

entropy values of the bearing vibration signal extracted by each wavelet are first

calculated, and their corresponding energy-to-Shannon entropy ratios are then

determined. As listed in Table 10.20, the Complex Morlet wavelet indicates the

maximum energy-to-Shannon entropy ratio, thus is considered the most appropriate

base wavelet for bearing signal analysis.

In addition, the value of the information measure of the bearing vibration signal

extractedbyeachcandidatewavelet is calculated, and the result is shown inTable10.21.

Based on the maximum information criterion, the Complex Morlet wavelet is again

identified as themost suitedwavelet, since it demonstrates the highest informationvalue

compared to other four candidate wavelets.

10.5 Summary

Using a number of quantitative measures, we presented a systematic approach in

selecting a base wavelet that is best suited for analyzing nonstationary signals,

typically seen in manufacturing. These measures are examined from two difference

aspects: (1) their corresponding wavelet coefficients (i.e., the energy and Shannon

entropy measures) and (2) the relationship between the signal being analyzed and the

Table 10.20 Energy-to-

Shannon entropy ratio of the

extracted bearing vibration

signal: complex-valued

wavelets

Base wavelet

Energy-to-Shannon

entropy ratio

Morlet wavelet 60.765

Gaussian wavelet 56.044

B-Spline wavelet 35.051

Shannon wavelet 12.476

Harmonic wavelet 14.504

Table 10.21 Information

value of the extracted bearing

vibration signal: complex-

valued wavelets

Base wavelet Information value

Morlet wavelet 0.189

Gaussian wavelet 0.068

B-Spline wavelet 0.105

Shannon wavelet 0.017

Harmonic wavelet 0.091
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coefficients of the base wavelet used for the analysis (i.e., joint entropy, condition

entropy, mutual information, and relative entropy). Based on these measures, two

comprehensive base wavelet selection criteria (i.e., the maximum energy-to-Shannon

entropy ratio and the maximum information measure) are identified as the quantita-

tive measure for determining the best suited wavelet. Both numerical study and

experimental data analysis have shown that these two criteria provide quantitative

guidance to base wavelet selection for effective signal analysis.
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Chapter 11

Designing Your Own Wavelet

To achieve effective signal signature extraction, Chap. 10 introduced several

quantitative measures for selecting appropriate base wavelets from a pool of

available wavelet families, such as Daubechies, Myer, and Morlet wavelets. This

chapter introduces a complimentary technique focusing on wavelet customization.

The goal is to design a wavelet that is specifically adapted to the signal of interest.

Because such a customized wavelet would have a higher degree of matching with

the signal than other wavelets, the effectiveness of signature extraction will

improve.

11.1 Overview of Wavelet Design

Researchers have studied various techniques for designing base wavelets. In the late

1980s to early 1990s, Daubechies’ work has led to the publication of orthonormal

(Daubechies 1988) and biorthonormal (Cohen et al. 1992) base wavelets with

compact support. These wavelets are independent of the signal to be analyzed.

Tewfik et al. (1992) have developed cost functions for finding the optimal ortho-

normal wavelet basis to represent a specified signal within a finite number of scales.

Their work has been extended by assuming band limited signals and finding the

optimal M-band wavelet basis within a finite number of scales (Gopinath et al.

1994), for representing a desired signal. During the same period, Aldroubi and

Unser (1993) proposed a method to match a wavelet basis to a desired signal by

either projecting the desired signal onto an existing wavelet basis, or transforming

the wavelet basis under certain conditions such that the error norm between the

desired signal and the new wavelet basis is minimum. Recently, Chapa and Rao

(2000) have developed two sets of equations for designing a wavelet directly from a

signal of interest. The first set of equations derives expressions for continuously

matched wavelet spectrum amplitudes, whereas the second set provides a direct

discrete algorithm for calculating approximations to the optimal complex wavelet

spectrum. By formulating wavelet design as a constrained optimization problem

and then solving it by converting the optimization problem into an iterative line-

search problem through a first-order parameterization of the perfect reconstruction

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,
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constraint, a signal-adapted, biorthogonal filter banks of finite length was

constructed by Lu and Antoniou (2001). Later, Shark and Yu (2003) proposed a

genetic algorithm-based design method to construct orthonormal wavelet filter

banks with an optimal shift-invariant property. On the basis of a generalized

Mexican-hat function, the authors also designed a new class of continuous wavelets

for arbitrary transient signals (Shark and Yu 2006), where signal matching is

achieved by minimizing the spectral difference between the reference signal and

the generalized Mexican-hat wavelet. Gupta et al. (2005a) have proposed to

construct wavelets that are matched to a given signal in the statistical sense.

The main idea is to first estimate a high-pass wavelet filter from the statistics of

the signal, and then obtain a FIR/IIR biorthogonal perfect reconstruction filter bank.

This leads to the construction of a statistically matched wavelet. The authors have

also designed both biorthogonal and semiorthogonal wavelet from a signal by

maximizing projection of the signal onto successive scaling subspaces while mini-

mizing energy of the signal in the wavelet subspace (Gupta et al. 2005b). Using the

same idea, Guido et al. (2006) designed a spikelet wavelet that has shown improved

performance on pattern recognition of signals corresponding to neural action

potentials of H1, a motion sensitive neuron in the fly’s visual system. These prior

efforts motivate our study of application-specific base wavelets for improved

signature extraction in signals related to manufacturing.

11.2 Construction of an Impulse Wavelet

Considering that base wavelets available in the literature (e.g., provided by

MATLAB) are developed primarily from a mathematical point of view without

reference to a specific physical system – although in real-world applications, signals

to be analyzed are generally produced by physical systems – it would be interesting,

from an intellectual pursuit point of view, to study how to construct a customized

base wavelet from the physical phenomena being analyzed. Naturally, such con-

struction process will have to satisfy the mathematical requirement for designing a

base wavelet. With this in mind, we introduce an impulse wavelet designed for

analyzing vibration signals measured from rolling bearings, which are widely used

in manufacturing machines.

Generally, a base wavelet must satisfy the conditions as described in Chaps. 3

and 4 to ensure that a signal’s wavelet transformation does not result in loss of

information so that the signal can be properly reconstructed from the corresponding

wavelet coefficients. Mathematically, such a reconstruction exists if a scaling

function f(t), which satisfies the following dilation equation (Burrus et al. 1998;

Cui et al. 1994), can be found as:

1
ffiffiffi

2
p f

t

2

� �

¼
X

n

hnfðt� nÞ (11.1)
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In (11.1), hn is a set of scaling coefficients applied to f(t - n). Equation (11.1)

indicates that the dilated version of f(t) can be written as the sum of translated

versions that are scaled by the coefficients hn. Furthermore, it indicates that a

scaling function at one scale can be constructed from a number of scaling functions

at a previous scale. In general, the construction of a base wavelet starts from the

scaling function that satisfies (11.1). Such scaling function is then used to derive the

base wavelet.

Assuming an impulsive input is applied to a rolling bearing, a corresponding

output signal can be defined by the convolution integral in the continuous form as

(Inman 1996; Lutes and Sarkani 1997):

xðtÞ ¼
ðt

0

RðtÞhðt� tÞdt (11.2)

where RðtÞ denotes the impulsive input, and x(t) denotes the output signal.

In the discrete form, the impulsive input RðtÞ is sampled at R(n), and the output

signal can be obtained as:

xðtÞ ¼
X

n

RðnÞhðt� nÞ (11.3)

In (11.2) and (11.3), the symbol h(l) represents the impulse response of the rolling

bearing. Considering the discrete form of convolution expression, the similarity

between (11.3) and (11.1) becomes apparent: the output x(t) in (11.3) can be viewed

as the sum of translated versions of the impulse response h(l) that are scaled by the

input R(n). If the impulse response satisfies (11.1), then it can be used to form a

scaling function that contains relevant information on the underlying dynamics of

the bearing being monitored. Subsequently, the scaling function can be used to

construct a base wavelet for analyzing vibration signals measured from the bearing.

Because of the nature of such a derivation, it is expected that the base wavelet

presents a more direct and meaningful decomposition of the bearing signal than the

standard wavelets commonly found in the literature.

To construct the base wavelet, several impulse responses of a ball bearing have

been taken through hammer strikes, as shown in Fig. 11.1. The corresponding

spectra are shown in Fig. 11.2. It is seen that the frequency components below

1,500 Hz are consistent in terms of their magnitudes, but those above 1,500 Hz have

varied. The magnitudes of these high frequency components are smaller than those

of the lower frequency components.

Because of their relatively small magnitude and random behavior, the high

frequency components were treated as noise and removed from the signal with a

low pass filter. The cutoff frequency for the filter was chosen to be 1,500 Hz, as the

spectral components of each impulse were stable below this frequency. As seen in

Fig. 11.3 where the original and filtered signals are shown, the filter is effective in

removing noise from the impulse response and retaining the frequency constant of

the original signal.
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In order for the filtered impulse response shown in Fig. 11.3 to be used as a

scaling function, it must satisfy the dilation equation, for which the length of the

support interval of the signal must be at least one. A function with a support interval

of less than one would have a gap between hnf(t–n) and hn+1f(t–n–1), within which

nothing contributes to the sum on the right hand side of (11.1). Consequently, such a

function would not satisfy the dilation equation. To address this issue, the impulse

response is first dilated such that its support is greater than one. After dilation, the

coefficients hn are determined from a recursive relationship that is derived from the

dilation equation.

As an example of the procedure of satisfying the dilation equation, a standard

Daubechies scaling function f(t) (Fig. 11.4) is illustrated below. It should be noted

first that an explicit expression for the Daubechies scaling function does not exist

(Daubechies 1992).
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After the sequence of coefficients hn is obtained, they are used to form an FIR

filter denoted by H*. The FIR filters H* and G* are quadrature mirror filters if, for a

signal x(t):

jjH�xðtÞjj þ jjG�xðtÞjj ¼ jjxðtÞjj (11.4)

Together, H* and G* form a pair of reconstruction filters for the wavelet decompo-

sition of a signal. This process, called deconstruction, is implemented via the

adjoints of H* and G*, which are denoted by H and G, respectively (Kaiser 1994).

For the Daubechies scaling function f(t) shown in Fig. 11.4a, the filter coefficients

are as follows: hn ¼ {0.2304, 0.7148, 0.6309, �0.0280, �0.1870, 0.0308, 0.0329,

�0.0106}, n ¼ 0, 1, . . . , 7 (Misiti et al. 1997). In Fig. 11.4b, the scaled and

translated version of f(t) (i.e., hnf(t – n) for n ¼ 0, 1, 2, . . . , 7) is shown. Since

f(t) is a valid scaling function and hn are valid filter coefficients, the dilation

equation is satisfied, as shown in Fig. 11.4c.

The above procedure is repeated for the impulse response as shown below in

Fig. 11.5. It should be noted that the impulse response f(t) here is a function of the

bearing dynamics, not an exact solution to the dilation equation. However, a set of

filter coefficients hn can be determined such that the impulse response approxi-

mately satisfies the dilation equation.

The filter coefficients can be calculated such that the dilation equation is satisfied

exactly at integer values of t. The solution is recursive: each hn, for n > 0, can be
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Fig. 11.5 The impulse scaling function obtained from the ball bearing
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explicitly determined as a function of f(t) and h0, h1, h2, . . . , hn�1. The first

coefficient, h0, is simply a function of f(t). These solutions are obtained by eval-

uating the dilation equation at integer values of t. For t ¼ 1, (11.1) gives

fð1=2Þ=
ffiffiffi

2
p

¼ h0fð1Þ. The terms h1fð0Þ, h2fð�1Þ, etc., do not appear because

f(t)¼ 0 for t� 0. (Recall that f is compactly supported.) Thus, h0 is determined by:

h0 ¼
2�1=2fð1=2Þ

fð1Þ (11.5)

Similarly, for t ¼ 2, (11.1) gives:

1
ffiffiffi

2
p fð1Þ ¼ h0fð2Þ þ h1fð1Þ (11.6)

For t ¼ 3:

1
ffiffiffi

2
p f

3

2

� �

¼ h0fð3Þ þ h1fð2Þ þ h2fð1Þ (11.7)

For t ¼ N + 1:

1
ffiffiffi

2
p f

N þ 1

2

� �

¼ h0fðN þ 1Þ þ h1fðNÞ þ h2fðN � 1Þ þ � � � þ hNfð1Þ (11.8)

Equations (11.5)–(11.8) determine a recursive definition for each filter coefficient hn.

With the first coefficient h0 given by (11.5), the remaining coefficients are given by:

hn ¼
2�1=2fððnþ 1Þ=2Þ �

Pn�1

k¼0
hkfðnþ 1� kÞ

fð1Þ ; for n � 1 (11.9)

Since the scaling function f(t) is given by the impulse response of the bearing, each

of the filter coefficients hn can be readily determined from (11.5) and (11.9).

Furthermore, note that the dilation equation can be written as:

1
ffiffiffi

2
p f

t

2

� �

¼ h0fðtÞ þ
X

N

j¼1

hjfðt� jÞ (11.10)

Since hn is given by (11.9), the dilation equation can be rewritten as:

1
ffiffiffi

2
p f

t

2

� �

¼
PN

j¼1
2�1=2fððjþ1Þ=2Þ�Pj�1

k¼0
hkfð jþ1� kÞ

h i

fðt� jÞ
fð1Þ þh0fðtÞ (11.11)
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Collecting terms yields the following form for the dilation equation:

1
ffiffiffi

2
p f

t

2

� �

¼
PN

j¼1
½2�1=2fðð jþ 1Þ=2Þfðt� jÞ�

fð1Þ

�
PN

j¼1

Pj�1

k¼0
hkfð jþ 1� kÞfðt� jÞ

fð1Þ þ h0fðtÞ (11.12)

Note that only the second term on the right hand side of (11.12) contains filter

coefficients hn, which are determined by (11.5) and (11.9). Equation (11.12) serves

to illustrate the interesting relationship that the dilation equation imposes between

hn and f(t). Particularly, the expression given by (11.12) shows that the dilated

version of the scaling function is related not only to f(t � n) scaled by the filter

coefficient hn, but also to f(t � n), scaled by f(t), which is evaluated at integer

values of t. The recursive relationship given by (11.9) gives hn such that the dilation

equation is satisfied at x ¼ {0, 1, 2, . . .}. At other points, the sum on the right hand

side of (11.1) might differ from the left hand side. In practical treatment of an

impulse scaling function such as shown in Fig. 11.5a, (11.5) and (11.9) are first used

to obtain an initial set of filter coefficients. These coefficients are then optimized by

minimizing the following error function:

Erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ðT

0

1
ffiffiffi

2
p f

t

2

� �

�
X

n

hnfðt� nÞ
 !2

dt

v

u

u

t (11.13)

The errorErms is a scalar valued function of the vector of filter coefficients hn, and the

optimization is accomplished by finding the vector which minimizes Erms. Since

Erms is a measure of how well the dilation equation is satisfied, the vector hn
minimizing Erms is the best set of filter coefficients that can be obtained from f(t).

Using this technique, the filter coefficients are determined to be: hn ¼ {�0.0529,

0.4897, 0.9601, 0.4848, 0.1467, 0.2653, 0.1723, 0.1295, 0.1208, 0.0495, �0.0182,

�0.0255, 0.0131}, for n ¼ 0, 1, . . . , 12. The translated and scaled versions of f(t)

corresponding to these hn (i.e., hnf(t� n)) are plotted in Fig. 12.5b. As indicated by

Fig. 12.5c, the impulse response is an approximate solution to the dilation equation

(Erms¼ 0.0984). The low pass filter coefficients derived from this scaling functionf(t)

can then be used to determine the corresponding wavelet c(t) (Young 1993; Mallat

1998). The coefficients for the high pass reconstruction filter G* are determined from

(11.4). The wavelet is evaluated by upsampling G*, convolving it with H*, and then

iteratively repeating this procedure:

H�
nþ1 ¼* G��H�

n (11.14)

where * is a dyadic up-sampling operator. Thus, after N iterations, cðtÞ ffi H�
Nþ1.

Figure 11.6 shows the result of four iterations of (11.14), which produced a
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customized wavelet, based on the impulse response of the rolling bearing structure.

The set of FIR filters based on c(t) and synthesis based on f(t) are given in

Table 11.1, where the filters have been normalized to have a norm of 1=
ffiffiffi

2
p
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Fig. 11.6 The wavelet derived from the impulse response

Table 11.1 Normalized filter coefficients

Deconstruction Reconstruction

Low pass High pass Low pass High pass

0 0.0274 �0.0274 0

0.0068 0.2532 0.2532 �0.0068

�0.0132 �0.4964 0.4964 �0.0132

�0.0094 0.2507 0.2507 0.0094

0.0256 �0.0759 0.0759 0.0256

0.0625 0.1372 0.1372 �0.0625

0.0670 �0.0891 0.0891 0.0670

0.0891 0.0670 0.0670 �0.0891

0.1372 �0.0625 0.0625 0.1372

0.0759 0.0256 0.0256 �0.0759

0.2507 0.0094 �0.0094 0.2507

0.4964 �0.0132 �0.0132 �0.4964

0.2532 �0.0068 0.0068 0.2532

�0.0274 0 0 0.0274
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11.3 Impulse Wavelet Application

As an application example, the impulse wavelet is used to diagnose bearing defect.

Figure 11.7a shows a vibration signal measured on a SKF 6220 ball bearing with a

0.25-mm hole on its inner raceway. This signal is sampled at 10 kHz, and the

rotating speed of the bearing is 600 rpm (i.e., corresponding to 10 Hz rotating

frequency). Based on geometric dimensions of the bearing and the rotating speed

(Harris 1991), the defect characteristic frequency on the inner raceway of such

bearing is fBPFI1 ¼ 58.6 Hz. As illustrated in Fig. 11.7b, such a defect-related

frequency component is not seen in its power spectral density (PSD) resulted from

the Fourier transform.

Utilizing the wavelet integrated with Fourier transform technique, which is

described in Chap. 7, the same vibration signal is first analyzed by the wavelet

transform. The impulse wavelet, developed from the impulse response of the rolling

bearing as described above, is used as the base wavelet. Fourier transform is then

performed on the wavelet coefficients obtained from the wavelet transform to

expose explicitly the related frequency components. Figure 11.8 illustrates the

resulting wavelet coefficients and their corresponding PSD. It is seen that the

defect-related frequency component fBPFI1 at 58.6 Hz is clearly shown in the

spectrum, thus verifying the existence of a localized inner raceway defect.

To demonstrate the signature extraction capability of the designed impulse

wavelet for bearing defect diagnosis, a comparison study is carried out, where

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

Time (s)

S
ig

n
a
l 
(V

)

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

Frequency (Hz)

P
S
D

 (
W

a
tt

s/
H

z)

f
m

f
BPFO1 

f
u

Fig. 11.7 Vibration signal and its PSD from a defective bearing

198 11 Designing Your Own Wavelet



five standard base wavelets from the literature: Daubechies 2 and 4 wavelets,

Coiflets 1, Symlets 3, and Biorthogonal 2.2 (Daubechies 1992; Lou and Loparo

2004; Zhang et al. 2005) are used to analyze the vibration signal. The upper parts of

Figs. 11.9–11.13 are intermediate results (i.e., wavelet coefficients) of the

integrated wavelet-Fourier transform analysis, and the lower parts of these figures

are their corresponding PSDs. It is shown that all the five standard base wavelets

can identify the defect-related frequency component, and the results are shown in

the lower parts of Figs. 11.9–11.13.

In the spectra of Figs. 11.9–11.13, there exists a frequency component fBPFO2 at

56.5 Hz, which has a distinct magnitude. Such a frequency component is identified

as from the ball rotation of another bearing in the support structure (Yan et al.

2009). To enable a quantitative performance comparison of the developed impulse

wavelet and other five standard base wavelets, a signal-to-noise ratio measure is

introduced, which is the amplitude ratio between the defect frequency fBPFI1 and the

adjacent frequency fBPFO2. As listed in Table 11.2, the impulse wavelet has shown

the highest signal-to-noise ratio in detecting the defect-characteristic frequency of

fBPFI1 ¼ 58.6 Hz. This result can be attributed to the nature of this customized

wavelet, which is derived from the actual impulse response of the bearing structure.

The direct link to the dynamics of the bearing and thus inherent better match to the

bearing signature than a standard wavelet has made it more effective in exposing

the constituent features for defect identification.
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Fig. 11.10 Wavelet-integrated Fourier spectrum results using Daubechies 4 (Db4) wavelet
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Fig. 11.11 Wavelet-integrated Fourier spectrum results using Coiflets 1 (Coif1) wavelet
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Fig. 11.12 Wavelet-integrated Fourier spectrum results using Symlets 3 (Sym3) wavelet
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11.4 Summary

This chapter introduces the procedure to design a wavelet based on the dynamics of

the physical system being analyzed. Using the impulse response of a rolling bearing

system, an impulse wavelet has been constructed for defect-induced signature

extraction. Experimental study has verified the effectiveness of the impulse wavelet

in identifying bearing localized defect of the bearing in its inner raceway, as

illustrated in the comparative study involving five standard wavelets from the

literature. Although the impulse wavelet development is based on a specific type

of bearing, the analytical procedure described in this chapter should be applicable to

the analysis of other types of mechanical systems.
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Fig. 11.13 Wavelet-integrated Fourier spectrum results using Biorthogonal 2.2 (Bior2.2) wavelet

Table 11.2 Comparison of

signal-to-noise ratios for

different base wavelets

Base wavelet fBPFI1/ fBPFO2

Impulse 9.55

Db2 1.88

Db4 0.27

Coif1 1.41

Sym3 0.62

Bior2.2 0.43
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Chapter 12

Beyond Wavelets

In previous chapters, we have introduced the theoretical foundation and practical

applications related to the wavelet transform. The ability of wavelet transform in

adaptive time-scale representation and decomposition of a signal into different

subfrequency band presents an efficient signal analysis method without introducing

calculation burden (Sweldens 1998). Consequently, it has become a prevailing tool

for nonstationary signal processing (e.g., transient pattern identification and loca-

tion). Given, however, the great variety of signals that appear in real-world applica-

tions, there remains plenty of room for continued advancement in the theory of the

classical wavelet transform. For example, one of the limitations of the wavelet

transform is to modify the base wavelet function to better analyze signals of finite

length or duration, instead of infinite or periodic signals (Sweldens 1997).

In addition, it has limitations in precisely capturing and defining the geometry of

image edges. In this chapter, we introduce several new developments in signal

and image processing that address these limitations and extend beyond the scope of

the classical wavelet transform method (Jiang et al. 2006, 2008; Li et al. 2008;

Zhou et al. 2010).

12.1 Second Generation Wavelet Transform

Second generation wavelet transform (SGWT), as an advanced mathematical tool

for time-scale representation of signals, has been developed to overcome deficien-

cies of the classical wavelet transform. Specifically, the mechanism of constructing

a base wavelet from the translation and dilation of a fixed function has been

replaced by the so-called lifting scheme (Sweldens 1996, 1998). The resulting

wavelet transform has the following properties (Uytterhoeven et al. 1997):

1. It is a generic method that is faster to calculate and easier to implement than the

classical wavelet transform.

2. It can transform signals with a finite length without extension of the signal to

infinite duration.

R.X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing,
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3. It can be applied to irregular signal samplings and extended for the

determination of weighting functions.

4. Its inverse transform shares the same complexity as the forward transform.

12.1.1 Theoretical Basis of SGWT

The architecture of the lifting scheme can be illustrated in Fig. 12.1. The forward

procedure of the lifting scheme, similar to its counterpart in the classical discrete

wavelet transform, is to obtain both the approximation and detail of the original

signal. It mainly incorporates three critical operational steps: (1) splitting,

(2) prediction, and (3) updating. When starting the lifting scheme process, the

signal x(i) is first split into two subsets, the odd sample xodd and the even sample

xeven, by means of a sample sequence. For example, given a signal x(i),

where i ¼ 1; 2; 3; . . . ; 2n (n is a natural number), it will be split as:

xodd ¼ xð2i� 1Þf g
xeven ¼ xð2iÞf g

(

; i ¼ 1; 2; 3; . . . ; n (12.1)

When the splitting procedure of the signal x(i) is completed, the odd and even

subsamples are obtained and the signal is subsampled by a factor of 2.

Following the splitting operation is the prediction operation, which predicts the

odd data sample with the even data sample as:

xodd ¼ PðxevenÞ (12.2)

In (12.2), P is the prediction operator that is independent of the signal.

The difference between the predicted result and the odd sample is considered as

the detail of the original signal, d, described as:

d ¼ xodd � xodd ¼ xodd � PðxevenÞ (12.3)

Split P
Signal 

x(t)

xeven

xodd -

U

+ Approximation

Detail

Fig. 12.1 Forward transform procedure of lifting scheme
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Given the xeven and the detail, the approximation can be calculated with the

updating operator U as:

a ¼ xeven þ UðdÞ (12.4)

Similar to the prediction operation, the updating operation is also independent

of the signal to be analyzed. The functions of prediction and updating operators

are similar to that of a pair of h(n) and g(n) filters in the classical wavelet transform,

and they can be derived from the scaling function fðtÞ and wavelet function cðtÞ
by iteration algorithm (Claypoole 1999; Claypoole et al. 2003). It should be

noted that the prediction and updating operators can be optimized using different

algorithms, such as the Claypoole’s optimization algorithm (Claypoole 1999;

Claypoole et al. 2003).

Based on the forward procedure described above, the signal is decomposed into

two parts: approximation and detail. This process can be iterated by taking the

approximation as the input signal to continue the decomposition. Furthermore, by

iterated decomposition of the detail and the approximation together, wavelet packet

transform can be realized with the lifting scheme.

The decomposition is invertible, and the signal reconstruction procedure is

illustrated in Fig. 12.2.

As the forward procedure realizes decomposition of the original signal,

the reverse procedure realizes signal reconstruction. Similar to the forward

procedure, the reverse procedure involves both the prediction operator and the

updating operator. This means that the following relationship exists:

xodd ¼ d þ PðxevenÞ
xeven ¼ a� UðdÞ

(

(12.5)

The signal can then be reconstructed by merging xeven and xodd.

P
Signal 

x(t)

xeven

xodd

−

U

+

Approximation

Detail

Merge

Fig. 12.2 Reverse transform procedure of lifting scheme
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12.1.2 Illustration of SGWT in Signal Processing

Several examples are illustrated here on the application of the SGWT algorithm.

The first example involves a signal that consists of two frequency components,

sampled at 100 Hz as:

xðtÞ ¼ sinð2p � 11tÞ þ sinð2p � 41tÞ (12.6)

The signal can be separated by one-level SGWT. Performing SGWT on this

signal, where the db8 wavelet function is used as the starting point to derive the

prediction and updating operators and to get the approximation part a1 and detailed

part d1. The result is shown in Fig. 12.3. The accuracy of the decomposition result

is evaluated through calculation of the error. Specifically, the absolute values of

subtracting approximation coefficients in a1 and detailed coefficients in d1 at each

sampling point from the original signal are summed up, as illustrated below:

error ¼
X

N

i¼1

½xðiÞ � ða1ðiÞ þ d1ðiÞÞ� (12.7)

Performing the above calculation, the resulted error is only 1.26 � 10�12, which

verifies the accuracy of the decomposition.
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The second example involves an intermittent linear chirp signal as expressed

in (12.7):

xðtÞ ¼
sin 2p

tþ 20

3

� �

t

� �

t 2 ½1; 4� [ ½6; 9�

0 else

8

>

<

>

:

(12.8)

The signal is decomposed using the SGWT, and the results are shown in

Fig. 12.4.

Adopting the same concept as that in the first example, the error of this transform

is calculated as 4.09 � 10�13, which again verifies the accuracy of the decom-

position result using the SGWT.

In the area of manufacturing, surface topography has been considered as one

of the factors that affect the functional performance of components. The features of

a surface, such as the roughness and waviness, have direct impact on the wear

rate of the component. To identify these surface features, the SGWT has been used

for surface analysis (Jiang et al. 2001a, b, 2008). As an example, the bearing surface

of a worn metallic femoral head is shown in Fig. 12.5a, where two different types

of scratches (a regular scratch that is related to manufacturing process and a random

scratch that is generated during the service time) exist (Jiang et al. 2001b). With

the application of the SGWT to processing the bearing surface, the waviness feature

can be clearly seen in Fig. 12.5b.
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Fig. 12.4 Separation and reconstruction of intermittent linear chirp
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12.2 Ridgelet Transform

Classical wavelet transform has been found insufficient in addressing certain

problems in image processing. Prominent among the limitations is the fact

that wavelets are essentially isotropic (i.e., its characteristics is uniform in all

directions) in nature and are therefore inadequate for analyzing anisotropic features

in images (Starck et al. 2006). Such constraint on the applicability of wavelets to

image processing has led to research in improved methods of representation and

analysis. One such method is called ridgelet analysis, which was developed

by researchers at the Stanford University in 1998 (Candes 1998; Candes and

Donoho 1999). The analysis is based on ridge functions that were known since

the late 1970s (Logan and Shepp 1975).

12.2.1 Theoretical Basis of Ridgelet Transform

Ridgelets and the associated ridgelet analysis present a multiscale representation

of mathematical functions through the superposition of ridge functions. The ridge

functions are expressed as rða1x1 þ a2x2 þ � � � þ anxnÞ (Candes and Donoho 1999).
They are a set of functions with n variables, and are constant along the hyperplanes

a1x1 þ a2x2 þ � � � þ anxn ¼ c. A graphical representation of the ridgelet functions

is given in Fig. 12.6.

Fig. 12.5 Bearing surface of a new metallic femoral head (Jiang et al. 2001b). (a) The measured

surface and (b) SGWT processed surface
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Furthermore, a ridge function can also be expressed as a multivariate function

(f : Rn!R) of a set of real numbers as

f ðx1; x2; . . . ; xnÞ ¼ gða1x1 þ � � � þ anxnÞ ¼ gðaxÞ (12.9)

where g : R!R is a function of a set of real numbers, and

a ¼ ða1; a2; . . . ; anÞ 2 R is a vector representing the direction. The multivariate

function f with n variables can be further approximately represented by a superpo-

sition ofm (m< n) ridge functions (Candes 1998; Candes and Donoho 1999; Starck

et al. 2006) as

f ðx1; x2; . . . ; xnÞ �
X

m

i¼1

cisðai1x1 þ ai2x2 þ � � � þ ainxnÞ (12.10)

where ci denotes the coefficients and m denotes the number of ridge functions.

Ridgelet transform is associated with the ridge functions, and the concept of

ridgelet transform is similar to that of the Fourier transform in that it is associated

with the periodic sine and cosine functions, as mathematically expressed below.

Consider a smooth, univariate function c, such that c : R! R, with a vanishing

mean,
R

cðtÞ dt ¼ 0. Given this function, we can further define a bivariate function

ca;b;y : R
2 ! R

2 as (Candes and Donoho 1999):

ca; b;yðxÞ ¼ a�1=2c
x1 cos yþ x2 sin y� b

a

� �

(12.11)

Fig. 12.6 A ridgelet with ridge functions marked by lines parallel to y-axis (Starck et al. 2003)
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In (12.11), x ¼ ðx1; x2Þ 2 R2; a>0 is the dilation parameter, b 2 R represents the

translation parameter, and y 2 0;½ 2pÞ represents the direction parameter.

Equation (12.11) represents a ridgelet, whereas the dilation and translation

parameters given above perform the function of scaling and translating the

ridgelet, similar to the dilation (by the scaling factor s) and translation (by the

time constant t) operations in a wavelet. The function ca;b;yðxÞ is constant along
the lines (i.e., ridges) x1 cos yþ x2 sin y ¼ constant. Transverse to these ridges, it

is a wavelet function. Accordingly, the continuous ridgelet transform of any

integrable bivariate function can be expressed as (Candes 1998; Candes and

Donoho 1999; Starck et al. 2006).

Rfða; b; yÞ ¼
Z

ca;b;yðxÞf ðxÞ dx (12.12)

It is interesting to note that ca;b;y is defined on the R2 space and the associated

transform is therefore 2D. The inverse of (12.12) used in reconstruction is given as

(Candes and Donoho 1999)

f ðxÞ ¼
Z 2p

0

Z 1

�1

Z 1

0

4p

a3
Rfða; b; yÞca;b;yðxÞ da db dy (12.13)

12.2.2 Application of the Ridgelet Transform

The 2D nature of the ridgelet transform makes it very well suited for analyzing and

processing images. Prominent ridgelet applications include denoising, edge detec-

tion, and classification of tissues from images of internal human organs. As an

example, Fig. 12.7 shows two images of a supernova before and after denoising

using ridgelets, respectively (Starck et al. 2003).

It can be seen that the original x-ray image (the left side of Fig. 12.7) is blurred

by the noise, while the image becomes clear after the noise has been filtered out

using the ridgelet transform (the right side of Fig. 12.7).

Another example of the application of the ridgelet transform is to characterize

surface topography (Ma et al. 2005). This is an important issue, as it has impacts on

the mechanical and physical properties of the system. Figure 12.8 shows the results

of extracting deep scratches from a honed surface, which were seen in an automo-

tive engine cylinder (Ma et al. 2005). Their distribution of such scratches on the

surface and their amplitudes directly affect the gas or air flow and pressure balance

in an engine. In Fig. 12.8b, deep scratches are reconstructed by means of a ridgelet

transform.
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Fig. 12.7 Image denoising using the ridgelet transform. Reproduced from Starck et al. (2003)

Fig. 12.8 Extraction of

linear scratches from a honed

surface of the automotive

engine cylinder (Ma et al.

2005). (a) Raw measurement

surface and (b) extracted
surface using ridgelet
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12.3 Curvelet Transform

Ridgelet transform is a relatively new system of representation and analysis, which

has been shown to be effective in resolving edges (Candes and Donoho 1999; Do

and Vetterli 2003; Dettori and Semler 2007). However, ridgelets are limited to

resolving only straight edges; curved edges cannot be represented with as few

coefficients as required for a straight edge (Do and Vetterli 2003; Starck et al.

2003). The inadequacy of wavelets and ridgelets in resolving edges has been the

primary driving force behind the search for better representation and analysis.

Curvelet analysis, introduced in the year 2000 (Candes and Donoho 2000), holds

potential in addressing the shortcomings of wavelets and ridgelets. A brief intro-

duction to the fundamentals of curvelets is given in this section.

12.3.1 Curvelet Transform

The curvelet transform is defined as the inner product of the function f to be

analyzed and a family of curvelets gaby (Candes and Donoho 2000, 2005a, b):

Gfða; b; yÞ ¼ hf ; gabyi (12.14)

where a>0 is the scale parameter, b is the translation parameter, and y 2 0; 2pÞ½ is

the orientation parameter. The symbol Gf represents the curvelet transform. The

family of curvelets is explained by starting with two smooth, nonnegative, real

valued windowing functions called the radial window W(r) and the angular

window V(t), respectively (Candes and Donoho 2005a, b). The two windowing

functions are subject to the following two admission conditions:

Z 1

0

1

a
WðarÞ2 da ¼ 1; 8 r>0 (12.15)

Z 1

�1

VðtÞ2 dt ¼ 1 (12.16)

In (12.5), r 2 ð1=2; 2Þ is the radial coordinate and in (12.6) t 2 ½�1; 1� denotes the
time variable. According to the definition in (12.14), at a given scale a, a family of

curvelets can be generated by translation and rotation of a basic element ga00 as

shown in (12.17) (Candes and Donoho 2005a, b):

gaby ¼ ga00ðRyðx� bÞÞ (12.17)

where Ry is a 2 � 2 rotation matrix that is related to planar rotation by an angle y.
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The basic element itself is expressed mathematically as:

ga00ðr;oÞ ¼ WðarÞV o
ffiffiffi

a
p
� �

a3=4 (12.18)

where r and o are polar coordinates defined in the frequency domain.

Generally, the discrete curvelet transform is often used to process the function f,

which also starts with two window functions: the radial window W(r) and the

angular window V(t) (Candes et al. 2006). The transform is subject to the condi-

tions expressed in (12.19)–(12.21) as:

X

1

j¼�1
Wð2jrÞ2 ¼ 1 (12.19)

X

1

l¼�1
Vðt� lÞ2 ¼ 1 (12.20)

Ujðr; yÞ ¼ 2�3j=4Wð2�jrÞV 2 j=2b cy

2p

� �

(12.21)

In (12.21), the window function Uj is derived from the radial window W(r) and the

angular window V(t) and expressed in the Fourier domain. The symbols

r 2 ð3=4; 3=2Þ and y denote polar coordinates, and t 2 ð�1=2; 1=2Þ is the time

variable.

Based on these notations, a family of curvelets at a fixed scale of 2j is defined as:

’j;l;kðxÞ ¼ ’jðRylðx� x
ðj;lÞ
k ÞÞ (12.22)

where x
ðj;lÞ
k ¼ R�1

yl
ðk12�j; k22

�j=2Þ represents the position information, and

Ry ¼
cos y sin y

�sin y cos y

 !

represents the rotation information in terms of y radians,

respectively.

Accordingly, the inner product between a curvelet ’j;l;k and a function f results in

the curvelet coefficients as:

cðj; l; kÞ ¼ hf ; ’j;l;ki ¼
Z

R
2

f ðxÞ ’j;l;kðxÞ dx (12.23)

where cðj; l; kÞ are the curvelet coefficients.

The physical interpretation of (12.23) in the Fourier domain at a scale of 2j can

be illustrated in Fig. 12.9. The concentric circles represent the family of curvelets

’j;l;kðxÞ and the shaded portion represents one curvelet from this family.
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While the curvelets described above are expressed in the polar coordinates,

Cartesian coordinates are desirable to implement the curvelet transform (Donoho

and Duncan 2000; Candes et al. 2006). Consequently, the window functions

expressed in (12.19)–(12.21) are expressed in the Cartesian coordinates as

WjðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
jþ1ðoÞ � F2

j ðoÞ
q

; j>0 (12.24)

VjðoÞ ¼ V
2 j=2b co2

o1

� �

(12.25)

UjðoÞ ¼ WjðoÞVjðoÞ (12.26)

whereFðo1;o2Þ ¼ fð2�jo1Þfð2�jo2Þ;2j �o1 � 2jþ1;�2�j=2 � ðo2=o1Þ � 2�j=2,

and 0� f� 1; f¼ 1; ½�1=2;1=2�
0; ½�2;2�

(

.

Currently, there are two prevalent methods of calculating the curvelet coeffi-

cients. The first method, called the digital curvelet transform via unequispaced fast

Fourier transform (Candes et al. 2006), involves the following four steps:

1. Calculate the 2D FT of the function of interest (f [t1, t2]), to obtain its Fourier

samples, f̂ ½n1; n2�:
2. Resample f̂ ½n1; n2� for each scale/angle pair (j, l) to obtain sampled values

f̂ ½n1; n2 � n1 tan yl�.
3. Multiply the resampled f̂ with the window function Uj, to obtain

~fj;l½n1; n2� ¼ f̂ ½n1; n2 � n1 tan yl� Uj½n1; n2�, where tan yl ¼ l 2� j=2b c.
4. Calculate the inverse of the 2D FT of every ~fj;l to obtain the discrete curvelet

coefficients, cðj; l; kÞ.

Fig. 12.9 A family of

curvelets in polar coordinates,

with the shaded area

representing support for a

single curvelet (Candes et al.

2006)

216 12 Beyond Wavelets



The second method is called digital curvelet transform via wrapping (Candes

et al. 2006), and involves the following computational steps:

1. Calculation of 2D FT of the function of interest (f [t1, t2]), to obtain its Fourier

samples, f̂ ½n1; n2�.
2. Calculation of the product Uj;l½n1; n2� f̂ ½n1; n2�.
3. Wrapping the product Uj;l½n1; n2� f̂ ½n1; n2� around the origin to obtain

~fj;l½n1; n2� ¼ WðUj;l f̂ Þ½n1; n2�.
4. Calculation of inverse 2D FFT of every ~fj;l to obtain discrete curvelet

coefficients, cðj; l; kÞ.

12.3.2 Application of the Curvelet Transform

Because of its multiscale nature, most of the curvelet applications are related

to image processing. Specifically, the curvelet transform has been applied to

image compression, contrast enhancement, feature extraction from noisy images,

pattern detection, noise filtration, edge detection, etc. As an example, a

denoising operation on a test image “Lena” is shown in Fig. 12.10. This image,

which is 512 � 512 pixels in size (Fig. 12.10a), was contaminated with random

noise (peak signal-to-noise ratio, PSNR: 22.1), as shown in Fig. 12.10b. Curvelet

transform is then applied for image denoising via thresholding of its curvelet

coefficients. The result is a filtered image as seen in Fig. 12.10c, which has an

improved PSNR value of 31.1.

In manufacturing, the curvelet has been used for surface characterization.

Fig 12.11a shows a surface of a worn metallic femoral head. When additive white

noise is added into it, the surface has a signal-to-noise ratio (SNR) of 56.43 dB.

When the wavelet transform is used to remove the noise, the SNR of the surface has

increased to 58.72 dB. Finally, the performance of the denoising operation was

further improved when the curvelet transform is applied to process the surface,

where the SNR has increased to 61.62 dB.

12.10 (a) Original image, (b) image contaminated with noise, and (c) image after denoising
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12.4 Summary

This chapter briefly presents development in signal processing that goes

beyond the classical wavelet transform. The SGWT based on the lifting

scheme is first introduced to allow for the design of the base wavelet functions

to better fit the signal to be analyzed. The ridgelet and curvelet transforms

are then introduced from the point of view of overcoming the limitations

in detecting edges (straight and curved) of images when applying the classical

wavelet transform. These techniques, together with further advancement

reported in the literature, such as multiwavelet transform (Cotronei et al. 1998),

dual-tree wavelet transform (Selesnick et al. 2005), and contourlet transform

(Do and Vetterli 2005), promise to continually push the envelope of signal

and image processing to better serve the needs for a wide range of engineering

problems.

Fig. 12.11 Denoising of a microscalar surface (Ma 2007). (a) Original surface (scale unit: mm),

(b) noisy surface (signal-to-noise ratio, SNR ¼ 56.43 dB), (c) denoised surface using wavelet

(SNR ¼ 58.72 dB), and (d) denoised surface using curvelet (SNR ¼ 61.62 dB)
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