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PREFACE 

This book is concerned with the topical problems of mechanics of advanced 
composite materials whose mechanical properties are controlled by high-strength 
and high-stiffness continuous fibers embedded in polymeric, metal, or ceramic 
matrix. Although the idea of combining two or more components to produce 
materials with controlled properties has been known and used from time 
immemorial, modern composites have been developed only several decades ago 
and have found by now intensive application in different fields of engineering, 
particularly, in aerospace structures for which high strength-to-weightand stiffness-
to-weight ratios are required. 

Due to wide existing and potential applications, composite technology has been 
developed very intensively over recent decades, and there exist numerous publica-
tions that cover anisotropic elasticity, mechanics of composite materials, design, 
analysis, fabrication, and application of composite structures. According to the list 
of books on composites presented in Mechanics of Fibrous Composites by C.T. 
Herakovich (1998) there were 35 books published in this field before 1995, and this 
list should be supplemented now with at least five new books. 

In connection with this, the authors were challenged with a natural question as to 
what causes the necessity to publish another book and what is the differencebetween 
this book and the existing ones. Concerning this question, we had at least three 
motivations supporting us in this work. 

First, this book is of a more specificnature than the published ones which usually 
cover not only mechanics of materials but also include analysis of composite beams, 
plates and shells, joints, and elements of design of composite structures that, being 
also important, do not strictly belong to mechanics of composite materials. This 
situation looked quite natural because composite science and technology, having 
been under intensive development only over several past decades, required the books 
of a universal type. Nowadays however, application of composite materials has 
reached the level at which special books can be dedicated to all the aforementioned 
problems of composite technology and, first of all, to mechanics of composite 
materials which is discussed in this book in conjunction with analysis of composite 
materials. As we hope, thus constructed combination of materials science and 
mechanics of solids has allowed us to cover such specific features of material 
behavior as nonlinear elasticity, plasticity, creep, structural nonlinearity and discuss 
in detail the problems of material micro- and macro-mechanics that are only slightly 
touched in the existing books, e.g., stress diffusion in a unidirectional material with 
broken fibers, physical and statistical aspects of fiber strength, coupling effects in 
anisotropic and laminated materials, etc. 

Second, this book, being devoted to materials, is written by designers of 
composite structures who over the last 30 years were involved in practically all main 
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vi Preface 

Soviet and then Russian projects in composite technology. This governs the list of 
problems covered in the book which can be referred to as material problems 
challenging designers and determines the third of its specific features - discussion is 
illustrated with composite parts and structures built within the frameworks of these 
projects. In connection with this, the authors appreciate the permission of the 
Russian Composite Center -Central Institute of Special Machinery (CRISM) to use 
in the book the pictures of structures developed and fabricated in CRISM as part of 
the joint research and design projects, 

The book consists of eight chapters progressively covering all structural levels of 
composite materials from their components through elementary plies and layers to 
laminates. 

Chapter 1 is an Introduction in which typical reinforcing and matrix materials as 
well as typical manufacturing processes used in composite technology are described. 

Chapter 2 is also a sort of Introduction but dealing with fundamentals of 
mechanics of solids, i.e., stress, strain, and constitutive theories, governing 
equations, and principles that are used in the next chapters for analysis of 
composite materials. 

Chapter 3 is devoted to the basic structural element of a composite material -
unidirectional composite ply. In addition to traditional description of microme-
chanical models and experimental results, the physical nature of fiber strength, its 
statistical characteristics and interaction of damaged fibers through the matrix are 
discussed, and an attempt is made to show that fibrous composites comprise a 
special class of man-made materials utilizing natural potentials of material strength 
and structure. 

Chapter 4 contains a description of typical composite layers made of unidirec-
tional, fabric, and spatially reinforced composite materials. Traditional linear elastic 
models are supplemented in this chapter with nonlinear elastic and elastic-plastic 
analysis demonstrating specific types of behavior of composites with metal and 
thermoplastic matrices. 

Chapter 5 is concerned with mechanics of laminates and includes traditional 
description of the laminate stiffness matrix, coupling effects in typical laminates and 
procedures of stress calculation for in-plane and interlaminar stresses. 

Chapter 6 presents a practical approach to evaluation of laminate strength. Three 
main types of failure criteria, i.e., structural criteria indicating the modes of failure, 
approximation polynomial criteria treated as formal approximations of experimen-
tal data, and tensor-polynomial criteria are analyzed and compared with available 
experimental results for unidirectional and fabric composites. 

Chapter 7 dealing with environmental, and special loading effects includes 
analysis of thermal conductivity, hydrothermal elasticity, material aging, creep, and 
durability under long-term loading, fatigue, damping and impact resistance of 
typical advanced composites. The influence of manufacturing factors on material 
properties and behavior is demonstrated for filament winding accompanied with 
nonuniform stress distribution between the fibers and ply waviness and laying-up 
processing of nonsymmetric laminate exhibiting warping after curing and cooling. 



Preface vii 

The last Chapter 8 covers a specific for composite materials problem of material 
optimal design and presents composite laminates of uniform strength providing high 
weight efficiency of composite structures demonstrated for filament wound pressure 
vessels. 

The book is designed to be used by researchers and specialists in mechanical 
engineering involved in composite technology, design, and analysis of composite 
structures. It can be also useful for graduate students in engineering. 

Vulery V. Vasiliev Evgeny V. Morozov 
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Chapter 1 

INTRODUCTION 

1.1. Structural materials 

Material is the basic element of all natural and man-made structures. Figuratively 
speaking it materializes the structural conception. Technological progress is 
associated with continuous improvement of existing material properties as well as 
with expansion of structural material classes and types. Usually, new materials 
emerge due to necessity to improve the structure efficiency and performance, but as 
a rule, new materials themselves in turn provide new opportunities to develop 
updated structures and technology, while the latter presents material science with 
new problems and tasks. One of the best manifestations of this interrelated 
process in development of materials, structures, and technology is associated with 
composite materials to which this book is devoted. 

Structural materials should possess a great number of physical, chemical and 
other types of properties, but there exist at least two principal characteristics that 
are of primary importance. These characteristics are stiffness and strength that 
provide the structure with the ability to maintain its shape and dimensions under 
loading or any other external action. 

High stiffness means that material exhibits low deformation under loading. 
However, saying that stiffness is an important property we do not mean that it 
should be necessarily high. Ability of structure to have controlled deformation 
(compliance) can be also important for some applications (e.g., springs; shock 
absorbers; pressure, force, and displacement gauges). 

Shortage of material strength results in uncontrolled compliance, i.e., in failure 
after which a structure does not exist any more. Usually, we need to have as 
high strength as possible, but there are some exceptions (e.g., controlled failure of 
explosive bolts is used to separate rocket stages). 

Thus, without controlled stiffness and strength the structure cannot exist. 
Naturally, both properties depend greatly on the structure design but are 
determined by stiffness and strength of the structural material because a good 
design is only a proper utilization of material properties. 

To evaluate material stiffness and strength, consider the simplest test - a bar with 
cross-sectional area A loaded with tensile force F as shown in Fig. 1.1. Obviously, 
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2 Mechanics and analysis of composite materials 

Fig. 1 . 1 .  A bar under tension. 

the higher is the force causing the bar rupture the higher is the bar strength. 
However, this strength depends not only on the material properties - it is 
proportional to the cross-sectional area A .  Thus, it is natural to characterize 
material strength with the ultimate stress 

F 
A ’  

a = -

where F is the force causing the bar failure (here and further we use the overbar 
notation to indicate the ultimate characteristics). As follows from Eq. (1. l), stress 
is measured in force divided by area, i.e., according to international (SI) units, 
in pascals (Pa) so that 1 Pa = 1 N/m2. Because loading of real structures induces 
relatively high stresses, we also use kilopascals (1 kPa = IO3 Pa), megapascals 
(1 MPa= lo6 Pa), and gigapascals (1 GPa = 10’ Pa). Conversion of old metric 
(kilogram per square centimeter) and English (pound per square inch) units 
to pascals can be done using the following relations: 1 kg/cm2=98 kPa and 
1 psi =6.89 kPa. 

For some special (e.g., aerospace or marine) applications, Le., for which material 
density, p, is also important, a normalized characteristic 

ak, = -
P 

is also used to describe the material. This characteristic is called “specific strength” 
of the material. If we use old metric units, Le., measure force and mass in kilograms 
and dimensions in meters, substitution of Eq. (1.1) into Eq. (1.2) yields k, in meters. 
This result has a simple physical sense, namely k, is the length of the vertically 
hanging fiber under which the fiber will be broken by its own weight. 

Stiffnessof the bar shown in Fig. 1.1 can be characterized with an elongation A 
corresponding to the applied force F or acting stress u = F/A. However, A is 
proportional to the bar length LO.To evaluate material stiffness, we introduce strain 

A 
LO 

E = - .  

Since E is very small for structural materials the ratio in Eq. (1.3) is normally 
multiplied by 100, and E is expressed as a percentage. 
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Naturally, for any material, there should exist some interrelation between stress 
and strain, i.e. 

E =f’(o)  or c = ( ~ ( 8 ) .  ( 1.4) 

These equations specify the so-called constitutive law and are referred to as 
constitutive equations. They allow us to introduce an important concept of the 
material model which represents some idealized object possessing only those 
features of the real material that are essential for the problem under study. The 
point is that performing design or analysis we always operate with models rather 
than with real materials. Particularly, for strength and stiffness analysis, this model 
is described by constitutive equations, Eqs. (1.4), and is specified by the form of 
function /(a) or (P(E). 

The simplest is the elastic model which implies that AO) = 0, cp(0) =0 and that 
Eqs. (1.4) are the same for the processes of an active loading and an unloading. The 
corresponding stress-strain diagram (or curve) is presented in Fig 1.2. Elastic 
model (or elastic material) is characterized with two important features. First, the 
corresponding constitutive equations, Eqs. (1.4), do not include time as a parameter. 
This means that the form of the curve shown in Fig. 1.2 does not depend on the rate 
of loading (naturally, it should be low enough to neglect the inertia and dynamic 
effects). Second, the work performed by force F is accumulated in the bar as 
potential energy, which is also referred to as strain energy or elastic energy. 
Consider some infinitesimal elongation dA and calculate elementary work 
performed by the force F in Fig 1.1 as d W =  F dA. Then, work corresponding to 
point 1 of the curve in Fig. 1.2 is 

where A, is the elongation of the bar corresponding to point 1 of the curve. The 
work W is equal to elastic energy of the bar which is proportional to the bar volume 
and can be presented as 
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where o =F / A ,  E = A/L0, and el = Al/Lo. Integral 

is a specific elastic energy (energy accumulated in the unit volume of the bar) that is 
referred to as an elastic potential. It is important that U does not depend on the 
history of loading. This means that irrespective of the way we reach point 1 of the 
curve in Fig 1.2 (e.g., by means of continuous loading, increasing force F step by 
step, or using any other loading program), the final value of Uwill be the same and 
will depend only on the value of final strain el for the given material. 

A very important particular case of the elastic model is the linear elastic model 
described by the well-known Hooke’s law (see Fig. 1.3) 

Here, E is the modulus of elasticity. As follows from Eqs. (1.3) and (1.6), E = o 
if E = 1, Le. if A =LO. Thus, modulus can be interpreted as the stress causing 
elongation of the bar in Fig. 1.1 as high as the initial length. Because the majority of 
structural materials fails before such a high elongation can occur, modulus is usually 
much higher then the ultimate stress 8. 

Similar to specific strength k, in Eq. (1.2), we can introduce the corresponding 
specific modulus 

E 
kE -

P 

determining material stiffness with respect to material density. 

Fig. 1.3. Stress-strain diagram for a linear elastic material. 
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Absolute and specific values of mechanical characteristics for typical materials 
discussed in this book are listed in Table 1.1. 

After some generalization, modulus can be used to describe nonlinear material 
behavior of the type shown in Fig. 1.4. For this purpose, the so-called secant, E,, 
and tangent, Et, moduli are introduced as 

While the slope 01 in Fig. I .4determines modulus E, the slopes p and y determine Es 
and E,, respectively.As it can be seen, Es and E,, in contrast to E, depend on the level 
of loading, i.e., on IJ or E. For a linear elastic material (see Fig. 1.3), E, = Et = E. 

Hooke’s law, Eq. (1.6), describes rather well the initial part of stress-strain 
diagram for the majority of structural materials. However, under relatively high 
level of stress or strain, materials exhibit nonlinear behavior. 

One of the existing models is the nonlinear elastic material model introduced 
above (see Fig. 1.2). This model allows us to describe the behavior of highly 
deformable rubber-type materials. 

Another model developed to describe metals is the so-called elastic-plastic 
material model. The corresponding stress-strain diagram is shown in Fig. 1.5. In 
contrast to elastic material (see Fig. 1.2), the processes of active loading and 
unloading are described with different laws in this case. In addition to elastic strain, 
E ~ ,which disappears after the load is taken off, the residual strain (for the bar shown 
in Fig. 1.1, it is plastic strain, sp)retains in the material. As for an elastic material, 
stress-strain curve in Fig. 1.5 does not depend on the rate of loading (or time of 
loading). However, in contrast to an elastic material, the final strain of an elastic-
plastic material can depend on the history of loading, Le., on the law according to 
which the final value of stress was reached. 

Thus, for elastic or elastic-plastic materials, constitutive equations, Eqs. (1.4), do 
not include time. However, under relatively high temperature practically all the 
materials demonstrate time-dependent behavior (some of them do it even under 
room temperature). If we apply to the bar shown in Fig. 1.1 some force F and keep 
it constant, we can see that for a time-sensitive material the strain increases under 
constant force. This phenomenon is called the creep of the material. 

So, the most general material model that is used in this book can be described 
with the constitutive equation of the following type: 

E = f ( o ,t ,  0 , (1-9) 

where t indicates the time moment, while CJ and T are stress and temperature 
corresponding to this moment. In the general case, constitutive equation, Eq. (1.9), 
specifies strain that can be decomposed into three constituents corresponding to 
elastic, plastic and creep deformation, i.e. 

E = & , + E p + e c  . (1.10) 
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Table 1.1 
Mechanical properties of structural materials and fibers. 

Material Ultimate Modulus, Specific Maximum Maximum 
tensile stress, E ((;Pa) gravity specific specific 
if (MPa) strength, modulus, 

ko x 10’ (m) kE x 10%(m) 

Metal alloys 
Steel 
Aluminum 
Titanium 
Magnesium 
Beryllium 
Nickel 

Metal wires (diameter, pm) 
Steel (20-1500) 
Aluminum (150) 
Titanium (I  00-800) 
Beryllium (50-500) 
Tungsten (20-50) 
Molybdenum (25-250) 

Thermoset polymeric resins 
EPOXY 
Polyester 
Phenol-formaldeh yde 
Organosilicone 
Polyimide 
Bismaleimide 

Thermoplastic polymers 
Polyethylene 
Polystyrene 
Teflon 
Nylon 
Polyester (PC) 
Polysulfone (PSU) 
Polyamide-imide (PAI) 
Polyetheretherketone (PEEK) 
Polyphenylenesulfide (PPS) 

Capron 
Dacron 
Teflon 
Nitron 
Polypropylene 
Viscose 

Synthetic fibers 

770-2200 
260-700 
1000-1200 
260 
620 
400-500 

150M400 
290 
1400-1500 
1100-1450 
3300-4000 
1800-2200 

6&90 
30-70 
40-70 
25-50 
55-110 
80 

20-45 
3545 
15-35 
80 
60 
70 
90-190 
9&100 
80 

680-780 
390-880 
3 M O  
390-880 
730-930 
930 

Fibers for advanced composites (diameter, pm) 
Glass (3-19) 3100-5000 
Quartz (10) 6000 
Basalt (9-13) 3000-3500 

18&210 
69-72 
110 
40 
320 
200 

180-200 
69 
I20 
240-310 
410 
360 

2.4-4.2 
2.8-3.8 
7-11 
6.&10 
3.2 
4.2 

6-8.5 
30 
3.5 
2.8 
2.5 
2.7 
2.84.4 
3.1-3.8 
3.5 

4.4 
4.915.7 
2.9 
4.9-8.8 
4.4 
20 

72-95 
74 
90 

7.8-7.85 28.8 
2.7-2.85 26.5 
4.5 26.7 
1.8 14.4 
1.85 33.5 
8.9 5.6 

7.8 56.4 
2.7 10.7 
4.5 33.3 
1.8-1.85 80.5 
19-19.3 21.1 
10.2 21.5 

1.2-1.3 7.5 
1.2-1.35 5.8 
1.2-1.3 5.8 
1.35-1.4 3.7 
1.3-1.43 8.5 
1.2 6.7 

0.95 4.7 
1.05 4.3 
2.3 1.5 
1.14 7.0 
1.32 4.5 
1.24 5.6 
I .42 13.4 
1.3 7.7 
1.36 5.9 

1.1 70 
1.4 60 
2.3 190 
1.2 70 
0.9 IO0 
1.52 60 

2.4-2.6 200 
2.2 270 
2.7-3.0 130 

2750 
2670 
2440 
2220 
17300 
2250 

2560 
2550 
2670 
17200 
2160 
3500 

350 
3IO 
910 
740 
240 
350 

890 
2860 
150 
240 
190 
220 
360 
300 
250 

400 
1430 
130 
730 
480 
1300 

3960 
3360 
3300 

Aramid (12-15) 3500-5500 140-180 1.4-1.47 390 12800 
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Table 1.1 (Contd.) 

Material Ultimate Modulus E Specific Maximum Maximum 
tensile stress, (GPa) gravity specific specific 
C ( M P a )  strength, modulus, 

k, x lo3(m) kF: x IO3(m) 

Polyethylene (20-40) 2600-3300 120-170 0.97 310 17500 
Carbon (5-1 1) 
High-strength 7000 300 1.75 400 17100 
High-modulus 2700 850 1.78 150 47700 
Boron (1O(r200) 2500-3700 39M20 2.5-2.6 150 16800 
Alumina - A1203 (20-500) 240W100 470-530 3.96 100 13300 
Silicon Carbide - Sic (1&I 5) 2700 185 2.4-2.7 110 7700 
Titanium Carbide -Tic  (280) 1500 450 4.9 30 9100 

Boron Nitride - BN (7) 1400 90 1.9 70 4700 
Boron Carbide - B& (50) 2 100-2500 480 2.5 100 10000 

Fig. 1.4. Introduction of secant and tangent moduli. 

Fig. 1.5. Stress-strain diagram for elastic-plastic material. 

However, in application to particular problems, this model can be usually 
substantially simplified. To show this, consider the bar in Fig. 1.1 and assume 
that force F is applied at the moment t = O  and is taken off at moment t = tl as 
shown in Fig. 1.6(a). At the moment t =0, elastic and plastic strains that do not 
depend on time appear, and while time is running, the creep strain is developed. At 
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Fig. 1.6. Dependence of force (a) and strain (b) on time. 

the moment t = tl elastic strain disappears, while reversible part of the creep strain, 
E:, disappears in time. Residual strain consists of the plastic strain, ep, and residual 
part of the creep strain, E:. 

Now assume that cp -=K which means that either material is elastic or the applied 
load does not induce high stress and, hence, plastic strain. Then we can neglect cp in 
Eq. ( I  .IO)and simplify the model. Furthermore let EC << EC which in turn means that 
either material is not susceptible to creep or the force acts for a short time ( t i  is close 
to zero). Thus we arrive at the simplest elastic model which is the case for the 
majority of practical applications. It is important that the proper choice of the 
material model depends not only on the material nature and properties but also on 
the operational conditions of the structure. For example, a shell-type structure made 
of aramid-epoxy composite material, that is susceptible to creep, and designed to 
withstand the internal gas pressure should be analyzed with due regard to the creep 
if this structure is a pressure vessel for long term gas storage. At the same time for a 
solid propellant rocket motor case working for seconds, the creep strain can be 
ignored. 

A very important feature of material models under consideration is their 
phenomenological nature. This means that these models ignore the actual material 
microstructure (e.g., crystalline structure of metals or molecular structure of 
polymers) and represent the material as some uniform continuum possessing some 
effective properties that are the same irrespective of how small the material volume 
is. This allows us, first, to determine material properties testing material samples 
(as in Fig. 1.1). Second, this formally enables us to apply methods of Mechanics of 
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Solids that deal with equations derived for infinitesimal volumes of material. And 
third, this allows us to simplify the strength and stiffness evaluation problem and 
to reduce it to a reasonable practical level not going into analysis of the actual 
mechanisms of material deformation and fracture. 

1.2. Composite materials 

This book is devoted to composite materials that emerged in the middle of the 
20th century as a promising class of engineering materials providing new prospects 
for modern technology. Generally speaking any material consisting of two or more 
components with different properties and distinct boundaries between the compo-
nents can be referred to as a composite material. Moreover, the idea of combining 
several components to produce a material with properties that are not attainable 
with the individual components has been used by man for thousands of years. 
Correspondingly, the majority of natural materials that have emerged as a result of 
a prolonged evolution process can be treated as composite materials. 

With respect to the problems covered in this book we can classify existing 
composite materials (composites) into two main groups. 

The first group comprises composites that are known as “filled materials”. The 
main feature of these materials is the existence of some basic or matrix material 
whose properties are improved by filling it with some particles. Usually the matrix 
volume fraction is more than 50% in such materials, and material properties, being 
naturally modified by the fillers, are governed mainly by the matrix. As a rule, filled 
materials can be treated as homogeneous and isotropic, i.e., traditional models of 
Mechanics of Materials developed for metals and other conventional materials can 
be used to describe their behavior. This group of compositesis not touched on in the 
book. 

The second group of composite materials that is under study here involves 
composites that are called “reinforced materials”. The basic components of these 
materials (sometimes referred to as “advanced composites”) are long and thin fibers 
possessing high strength and stiffness. The fibers are bound with a matrix material 
whose volume fraction in a composite is usually less than 50%. The main properties 
of advanced composites due to which these materials find a wide application in 
engineering are governed by fibers whose types and characteristics are considered 
below. 

The following sections provide a concise description of typical matrix materials 
and fiber-matrix compositions. Two comments should be made with respect to the 
data presented in those sections. First, only a brief information concerning material 
properties that are essential for the problems covered in this book is presented there, 
and, second, the given data are of a broad nature and are not expected to be used in 
design or analysis of particular composite structures. More complete description of 
composite materials and their components including the history of development and 
advancement, chemical compositions, physical characteristics, manufacturing, and 
applications can be found elsewhere (Peters, 1998). 
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1.2.1. Fibers for advanced composites 

Continuous glass fibers (the first type of fibers used in advanced composites) are 
made by pulling molten glass (at a temperature about 1300°C) through 0.8-3.0 mm 
diameter dies and further high-speed stretching to a diameter of 3-19 pm. Usually 
glass fibers have solid circular cross sections. However there exist fibers with 
rectangular (square or plane), triangular, and hexagonal cross sections, as well as 
hollow circular fibers. Typical mechanical characteristics and density of glass fibers 
are listed in Table 1.1, while typical stress-strain diagram is shown in Fig. 1.7. 

Important properties of glass fibers as components of advanced composites for 
engineering applications are their high strength which is maintained in humid 
environments but degrades under elevated temperatures (see Fig. 1.8), relatively 
low stiffness (about 40% of the stiffness of steel), high chemical and biological 
resistance, and low cost. Being actually elements of monolithic glass, the fibers do 
not absorb water and change their dimensions in water. For the same reason, they 
are brittle and sensitive to surface damage. 

Quartz fibers are similar to glass fibers and are obtained by high-speed stretching 
of quartz rods made of (under temperature of about 2200°C) fused quartz crystals 
or sand. Original process developed for manufacturing of glass fibers cannot be used 
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Fig. 1.7. Stress-strain diagrams for typical fibers of advanced composites. 
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Fig. I .8. Temperature degradation of fiber strength normalized by the strength at 20°C. 

because viscosity of molten quartz is too high to make thin fibers directly. However, 
more complicated process results in fibers with higher thermal resistance than glass 
fibers. 

The same process that is used for glass fibers can be employed to manufacture 
mineral fibers, e.g., basalt fibers made of molten basalt rocks. Having relatively 
low strength and high density (see Table 1.1) basalt fibers are not used for high-
performance, e.g. aerospace structures, but are promising reinforcing elements for 
pre-stressed reinforced concrete structures in civil engineering. 

Development of carbon (or graphite) fibers was a natural step aiming at a rise of 
fiber’s stiffness the proper level of which was not exhibited by glass fibers. Modern 
high-modulus carbon fibers demonstrate modulus that is by the factor of about four 
higher than the modulus of steel, while the fiber density is by the same factor lower. 
Though first carbon fibers had lower strength than glass fibers, modern high-
strength fibers demonstrate tensile strength that is 40% higher than the strength of 
the best glass fibers, while the density of carbon fibers is 30% less. 

Carbon fibers are made by pyrolysis of organic fibers depending on which there 
exist two main types of carbon fibers - PAN-based and pitch-based fibers. For 
PAN-based fibers the process consists of three stages - stabilization, carbonization, 
and graphitization. In the first step (stabilization) a system of polyacrylonitrile 
(PAN) filamentsis stretched and heated up to about 400°C in the oxidation furnace, 
while in the subsequent step (carbonization under 900°C in an inert gas media) most 
elements of the filaments other than carbon are removed or converted into carbon. 
During the successive heat treatment at temperature reaching 280OOC (graphitiza-
tion) crystallinecarbon structure oriented along the fibers length is formed resulting 
in PAN-based carbon fibers. The same process is used for rayon organic filaments 
(instead of PAN), but results in carbon fibers with lower characteristics because 
rayon contains less carbon than PAN. For pitch-based carbon fibers, initial organic 
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filaments are made in approximately the same manner as for glass fibers from 
molten petroleum or coal pitch and pass through carbonization and graphitization 
processes. Because pyrolysis is accompanied with a loss of material, carbon fibers 
have a porous structure and their specific gravity (about 1.8) is less than that of 
graphite (2.26). The properties of carbon fibers are affected with the crystallite size, 
crystalline orientation, porosity and purity of carbon structure. 

Typical stress-strain diagrams for high-modulus (HM) and high-strength (HS) 
carbon fibers are plotted in Fig. 1.7. As components of advanced composites for 
engineering applications, carbon fibers are characterized with very high modulus 
and strength, high chemical and biological resistance, electricconductivity and very 
low Coefficient of thermal expansion. Strength of carbon fibers practically does not 
decrease under temperature elevated up to 1500°C (in the inert media preventing 
oxidation of fibers). 

The exceptional strength of 7.06 GPa is reached in Toray T-1000 carbon fibers, 
while the highest modulus of 850 GPa is obtained in Carbonic HM-85 fibers. 
Carbon fibers are anisotropic, very brittle, and sensitive to damage. They do not 
absorb water and change their dimensions in humid environments. 

There exist more than 50 types of carbon fibers with a broad spectrum of 
strength, stiffness and cost, and the process of fiber advancement is not over - one 
may expect fibers with strength up to 10 GPa and modulus up to 1000 GPa within a 
few years. 

Organic fibers commonly encountered in textile applications can be employed as 
reinforcing elements of advanced composites. Naturally, only high performance 
fibers, i.e. fibers possessing high stiffness and strength, can be used for this purpose. 
The most widely used organic fibers that satisfy these requirements are known as 
aramid (aromatic polyamide) fibers. They are extruded from a liquid crystalline 
solution of the corresponding polymer in sulfuric acid with subsequent washing in a 
cold water bath and stretching under heating. Properties of typical aramid fibers 
are listed in Table 1.1, and the corresponding stress-strain diagram is presented in 
Fig. I .7. As components of advanced composites for engineering applications, 
aramid fibers are characterized with low density providing high specific strength 
and stiffness, low thermal conductivity resulting in high heat insulation, and 
negative thermal expansion coefficient allowing us to construct hybrid composite 
elements that do not change their dimensions under heating. Consisting actually of 
a system of very thin filaments (fibrils), aramid fibers have very high resistance 
to damage. Their high strength in longitudinal direction is accompanied with 
relatively low strength under tension in transverse direction. Aramid fibers are 
characterized with pronounced temperature (see Fig. 1.8) and time dependence for 
stiffness and strength. Unlike inorganic fibers discussed above, they absorb water 
resulting in moisture content up to 7% and degradation of material properties by 

The list of organic fibers was supplemented recently with extended chain 
polyethylene fibers demonstrating outstanding low density (less than that of water) 
in conjunctions with relatively high stiffness and strength (see Table 1.1 and 
Fig. 1.7). Polyethylene fibers are extruded from the corresponding polymer melt in 

15-20%. 
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approximately the same way as for glass fibers. They do not absorb water and have 
high chemical resistance, but demonstrate relatively low temperature and creep 
resistance (see Fig. 1.8). 

Boron fibers were developed to increase the stiffness of composite materials while 
glass fibers were mainly used to reinforce composites of the day. Being followed by 
high-modulus carbon fibers with higher stiffness and lower cost, boron fibers have 
now rather limited application. Boron fibers are manufactured by chemical vapor 
deposition of boron onto about 12 pm diameter tungsten or carbon fiber (core). 
Because of this technology, boron fibers have relatively large diameter, 10C~200pm. 
They are extremely brittle and sensitiveto surface damage. Mechanical properties of 
boron fibers are presented in Table 1.1 and Figs. 1.7 and 1.8. Being mainly used in 
metal matrix composites, boron fibers degrade under the action of aluminum or 
titanium matrices at the temperature that is necessary for processing (above 5OOOC). 
To prevent this degradation, chemical vapor deposition is used to cover the fiber 
surface with about 5 pm thick layer of silicon carbide, Sic, (such fibers are called 
Borsic) or boron carbide, B4C. 

There exists a special class of ceramic fibers for high-temperature applications 
composed of various combinations of silicon, carbon, nitrogen, aluminum, boron, 
and titanium. The most commonly encountered are silicon carbide (Sic) and 
alumina (A1203)fibers. 

Silicon carbide is deposited on a tungsten or carbon core-fibre by the reaction of a 
gas mixture of silanes and hydrogen. Thin (8-15 pm in diameter) Sic fibers can 
be made by pyrolysis of polymeric (polycarbosilane) fibers under temperature of 
about 140OOC in an inert atmosphere. Silicon carbide fibers have high strength 
and stiffness, moderate density (see Table 1.1) and very high melting temperature 
(2600°C). 

Alumina (A1203)fibers are fabricated by sintering of fibers extruded from the 
viscous alumina slurry with rather complicated composition. Alumina fibers, 
possessing approximately the same mechanical properties as of Sic fibers have 
relatively large diameter and high density. The melting temperature is about 
2000"c. 

Silicon carbide and alumina fibers are characterized with relatively low reduction 
of strength under high temperature (see Fig. 1.9). 

Promising ceramic fibers for high-temperature applications are boron carbide 
(B4C)fibers that can be obtained either as a result of reaction of a carbon fiber with 
a mixture of hydrogen and boron chloride under high temperature (around 18OOOC) 
or by pyrolysis of cellulosic fibers soaked with boric acid solution. Possessing high 
stiffness and strength and moderate density (see Table 1.1) boron carbide fibers 
have very high thermal resistance (up to 2300°C). 

Metal fibers (thin wires) made of steel, beryllium, titanium, tungsten, and 
molybdenum are used for special, e.g., low-temperature and high-temperature 
applications. Characteristics of metal fibers are presented in Table 1.1 and Figs. 1.7 
and 1.9. 

In advanced composites, fibers provide not only high strength and stiffness 
but also a possibility to tailor the material so that directional dependence of its 



14 

0.2 

Mechanics and analysis of composite materials 

- \ 
\.Stainlesssteel 

Fig. 1.9. Temperature dependence of high-temperature fibers normalized strength (in comparison with 
stainless steel). 

mechanical properties matches that of the loading environment. The principle of 
directional properties can be traced in all natural materials that have emerged as a 
result of a prolonged evolution and, in contrast to man-made metal alloys, are 
neither isotropic nor homogeneous. Many natural materials have fibrous structures 
and utilize high strength and stiffness of natural fibers listed in Table 1.2. As can be 
seen (Tables 1.I and 1.2), natural fibers, having lower strength and stiffness than 
man-made fibers, can compete with modern metals and plastics. 

Table 1.2 
Mechanical properties of natural fibers. 

Fiber Diameter Ultimate tensile Modulus, Specific 
(Pm) stress, ii (MPa) E (GPa) gravity 

Wood 
Bamboo 
Jute 
Cotton 
Wool 
Coir 
Bagasse 
Rice 
Natural silk 
Spider silk 
Linen 
Sisal 
Asbestos 

15-20 
15-30 
10-50 
15-40 
75 
10-20 
25 

5-1 5 
15 
4 

-
0.2 

I60 
550 
580 
540 
170 
250 
180 
IO0 
400 

1750 
270 
560 

1700 

23 
36 
22 
28 

5.9 
5.5 
9 
6 

13 
12.7 

160 

1.5 
0.8 
1.5 
1.5 
1.32 
1.5 
1.25 
1.24 
1.35 

2.5 
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Before being used as reinforcing elements of advanced composites, the fibers are 
subjected to special finish surface treatments undertaken to prevent the fiber 
damage under contact with processing equipment, to provide surface wetting when 
fibers are combined with matrix materials, and to improve the interface bond 
between fibers and matrices. The most commonly encountered surface treatments 
are chemical sizing performed during the basic fiber formation operation and 
resulting in a thin layer applied to the surface of the fiber, surface etching by acid, 
plasma or corona discharge, and coating of fiber surface with thin metal or 
ceramic layers. 

With only a few exceptions (e.g., metal fibers), individual fibers, being very thin 
and sensitive to damage, are not used in composite manufacturing directly, but in 
the form of tows (rovings), yarns, and fabrics. 

A unidirectional tow (roving) is a loose assemblage of parallel fibers consisting 
usually of thousands of elementary fibers. Two main designations are used to 
indicate the size of the tow, namely the K-number that gives the number of fibers in 
the tow (e.g., 3K tow contains 3000 fibers) and the tex-number which is the mass in 
grams of 1000 m of the tow. The tow tex-number depends not only on the number 
of fibers but also on the fiber diameter and density. For example, AS4-6K tow 
consisting of 6000 AS4 carbon fibers has 430 tex. 

A yarn is a fine tow (usually it includes hundreds of fibers) slightly twisted (about 
40 turns per meter) to provide the integrity of its structure necessary for textile 
processing. Yarn size is indicated in tex-numbers or in textile denier-numbers (den) 
such that 1tex =9den. Continuous yarns are used to make fabrics with various 
weave patterns. There exist a wide variety of glass, carbon, aramid, and hybrid 
fabrics whose nomenclature, structure, and properties are described elsewhere 
(Peters, 1998; Chou and KO,1989; Tarnopol’skii et al., 1992; Bogdanovich and 
Pastore, 1996). 

An important characteristic of fibers is their processability that can be 
evaluated as the ratio, Kp = Os/@., of the strength demonstrated by fibers in the 
composite structure, OS, to the strength of fibers before they were processed, 0. 
This ratio depends on fibers’ ultimate elongation, sensitivity to damage, and 
manufacturing equipment causing the damage of fibers. The most sensitive to 
operational damage are boron and high-modulus carbon fibers possessing 
relatively low ultimate elongation 5 (less than 1%, see Fig. 1.7). For example, 
for filament wound pressure vessels, K,= 0.96 for glass fibers, while for carbon 
fibers, K p= 0.86. 

To evaluate fiber processability under real manufacturing conditions, three simple 
tests are used - tension of a straight dry tow, tension of tows with loops, and tension 
of a tow with a knot (see Fig. 1.10). Similar tests are used to determine the strength 
of individual fibers (Fukuda et al., 1997). For carbon tows, normalized strength 
obtained in these tests is presented in Table 1.3 (for proper comparison, the tows 
should be of the same size). As follows from the Table, the tow processability 
depends on the fiber ultimate strain (elongation). The best processability is observed 
for aramid tows whose fibers have high elongation and low sensitivity to damage 
(they are not monolithic and consist of thin fibrils). 
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Fig. 1.10. Testing of a straight tow (a), tows with a loop (b), and tow with a knot (c). 

Table 1.3 
Normalized strength of carbon tows. 

Ultimate strain, E (%) Normalized strength 

Straight tow Tow with a loop Tow with a knot 

0.75 1 0.25 0.15 
1.80 1 0.53 0.18 

I .2.2. Matrix materials 

To utilize high strength and stiffness of fibers in a monolithic composite material 
suitable for engineering applications, fibers are bound with a matrix material whose 
strength and stiffness are, naturally, much lower than those of fibers (otherwise, 
no fibers would be necessary). Matrix materials provide the final shape of the 
composite structure and govern the parameters of the manufacturing process. 
Optimal combination of fiber and matrix properties should satisfy a set of 
operational and manufacturing requirements that sometimes are of a contradictory 
nature and have not been completely met yet in existing composites. 

First of all, the stiffness of the matrix should correspond to the stiffness of the 
fibers and be sufficient to provide uniform loading of fibers. The fibers are usually 
characterized with relatively high scatter of strength that could be increasing due to 
the damage of the fibers caused by the processing equipment. Naturally, fracture of 
the weakest or damaged fiber should not result in material failure. Instead, the 
matrix should evenly redistribute the load from the broken fiber to the adjacent ones 
and then load the broken fiber at a distance from the cross-section at which it failed. 
The higher is the matrix stiffness, the smaller is this distance, and the less is 
the influence of damaged fibers on material strength and stiffness (which should be 
the case). Moreover, the matrix should provide the proper stress diffusion (this is the 
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term traditionally used for this phenomenon in analysis of stiffened structures 
(Goodey, 1946)) in the material under given operational temperature. That is why 
this temperature is limited, as a rule, by the matrix rather than by the fibers. But 
on the other hand, to provide material integrity up to the failure of the fibers, the 
matrix material should possess high compliance. Obviously, for a linear elastic 
material (see Fig. 1.3), combination of high stiffness and high ultimate strain 5 
results in high strength which is not the case for modern matrix materials. Thus, 
close to optimal (with respect to the foregoing requirements) and realistic matrix 
material should have nonlinear stress-strain diagram (of the type shown in Fig. 1.5) 
and possess high initial modulus of elasticity and high ultimate strain. 

However, matrix properties, even being optimal for the corresponding fibers, do 
not demonstrate themselves in the composite material if the adhesion (the strength 
of fiber-matrix interface bonding) is not high enough. High adhesion between fibers 
and matrices providing material integrity up to the failure of the fibers is a necessary 
condition for high-performance composites. Proper adhesion can be reached for 
properly selected combinations of fiber and matrix materials under some additional 
conditions. First, a liquid matrix should have viscosity low enough to allow the 
matrix to penetrate between the fibers of such dense systems of fibers as tows, yarns, 
and fabrics. Second, the fiber surface should have good wetability with the matrix. 
Third, the matrix viscosity should be high enough to retain the liquid matrix in the 
impregnated tow, yarn or fabric in the process of fabrication of a composite part. 
And finally, the manufacturing process providing the proper quality of the resulting 
material should not require high temperature and pressure to make a composite 
part. 

By now, typical matrices are made from polymeric, metal, carbon, and ceramic 
materials. 

Polymeric matrices are divided into two main types, thermoset and thermoplastic. 
Thermoset polymers which are the most widely used matrix materials for advanced 
composites include polyester, epoxy, polyimide and other resins (see Table 1 .1 )  
cured under elevated or room temperature. A typical stress-strain diagram for a 
cured epoxy resin is shown in Fig. 1.11. Being cured (polymerized) a thermoset 

0 
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Fig. 1.1 1. Stress-strain diagram for a typical cured epoxy matrix. 
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matrix cannot be reset, dissolved or melted. Heating of a thermoset material results 
first in degradation of its strength and stiffness and then in thermal destruction. 

In contrast to thermoset resins, thermoplastic matrices (PSU, PEEK, PPS and 
others - see Table 1.1) do not require any curing reaction. They melt under heating 
and convert to a solid state under cooling. Possibility to re-melt and dissolve 
thermoplastic matrices allows us to reshape composite parts forming them under 
heating and simplifies their recycling which is a problem for thermoset materials. 

PoIymeric matrices being combined with glass, carbon, organic, and boron fibers 
yield a wide class of polymeric composites with high strength and stiffness, low 
density, high fatigue resistance, and excellent chemical resistance. The main 
disadvantage of these materials is their relatively low (in comparison with metals) 
temperature resistance limited by the matrix. The so-called thermo-mechanical 
curves are plotted to determine this important (for applications) characteristic of the 
matrix. These curves, presented for typical epoxy resins in Fig. 1.12, show the 
dependence of some stiffness parameter on the temperature and allow us to find the 
so-called glass transition temperature, Tg,which indicates dramatic reduction of 
material stiffness.There exist several methods to obtain material thermo-mechanical 
diagram. The one used to plot the curves presented in Fig. 1.12 involves 
compression tests of heated polymeric discs. Naturally, to retain the complete set 
of properties of polymericcomposites, the operating temperature, in general, should 
not exceed Tg.However, actual material behavior depends on the type of loading. 
As follows from Fig. 1.13, heating above the glass transition temperature only 
slightly influences material properties under tension in the fiber direction and 
dramatically reduces strength in longitudinal compression and transverse bending. 
Glass transition temperature depends on the processing temperature, Tp, under 
which material is fabricated, and higher Tp results, as a rule, in higher Tg. 
Thermoset epoxy matrices cured under 120-160°C have Tg=60-140°C. There also 

I I I I0 ’  I T,”C 
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Fig. 1.12. Typical thermo-mechanical diagrams for cured epoxy resins with glass transition temperatures 
80°C (-) and 130°C (- -- -). 
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Fig. 1.13. Dependence of normalized longitudinal moduli (I), strength under longitudinal tension (2), 
bending (3), and compression (4) on temperature for unidirectional carbon composites with epoxy 

matrices having Tg= 130°C (a) and T, =80°C (b). 

exist a number of high temperature thermoset matrices (e.g., organosilicone, 
polyimide, and bismaleimide resins) with Tg=250-300°C and curing temperatures 
up to 400°C. Thermoplastic matrices are also characterized with a wide range 
of glass transition temperatures - from 90°C for PPS and 140°C for PEEK to 
190°C for PSU and 270°C for PA1 (see Table 1 .1  for abbreviations). Processing 
temperature for different thermoplastic matrices varies from 300°C to 400°C. 

Further enhancement in temperature resistance of composite materials is 
associated with application of metal matrices in combination with high temperature 
boron, carbon, ceramic fibers and metal wires. The most widespread metal matrices 
are aluminum, magnesium, and titanium alloys possessing high plasticity (see 
Fig. 1.14), while for special applications nickel, copper, niobium, cobalt, and lead 
matrices can be used. Fiber reinforcement essentially improves mechanical 
properties of metals. For example, carbon fibers increase strength and stiffness of 
such a soft metal as lead by an order. 

4 
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Fig. 1.14. Typical stress-strain curves for aluminum (I), magnesium (2), and titanium (3) matrices. 

As noted above, metal matrices allow us to increase operational temperatures 
for composite structures. Dependencies of longitudinal strength and stiffness of 
boron-aluminum unidirectional composite material on temperature corresponding 
to experimental results that can be found in Karpinos (1985) and Vasiliev and 
Tarnopol’skii (1990) are shown in Fig. 1.15. Naturally, higher temperature 
resistance requires higher processing temperature, Tp. Indeed, aluminum matrix 
composite materials are processed under Tp=5OO0C, while for magnesium, 
titanium, and nickel matrices this temperature is about 8OO0C, 1000°C, and 
12OO0C, respectively. Some processes require also rather high pressure (up to 
150 MPa). 
In polymeric composites, matrix materials play important but secondary role of 

holding the fibers in place and providing proper load dispersion in the fibers, while 
material strength and stiffness are controlled by the reinforcements. By contrast, 
mechanical properties of metal matrix composites are controlled by the matrix to a 
considerably larger extent, though fibers still provide the main contribution to 
strength and stiffness of the material. 

-E, ,GPa 6,,MPa 

loo0 01100 200 300 400 500: 
T,o C 

Fig. 1.15. Temperature dependence of tensile strength (0) and stiffness (0) along the fibers for 
unidirectional boron-aluminum composite. 
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The next step in the development of composite materials that can be treated as 
matrix materials reinforced with fibers rather than fibers bonded with matrix (which 
is the case for polymeric composites) is associated with ceramic matrix composites 
possessing very high thermal resistance. The stiffnesses of the fibers which are 
usually metal (steel, tungsten, molybdenum, niobium), carbon, boron, and ceramic 
(Sic, A1203) and the ceramic matrices (oxides, carbides, nitrides, borides, and 
silicides) are not very different, and the fibers do not carry the main fraction of the 
load in ceramic composites. The function of the fibers is to provide strength and 
mainly toughness (resistance to cracks) of the composite because non-reinforced 
ceramics is very brittle. Ceramic composites can operate under very high 
temperatures depending on the melting temperature of the matrix that varies from 
1200°C to 3500°C. Naturally, the higher is this temperature the more complicated 
is the manufacturing process. The main shortcoming of ceramic composites is 
associated with a low ultimate tensile elongation of the ceramic matrix resulting in 
cracks appearing in the matrix under relatively low tensile stress applied to the 
material. 

An outstanding combination of high mechanical characteristics and temperature 
resistance is demonstrated by carbon-carbon composites in which both components 
- fibers and matrix are made from one and the same material but with different 
structure. Carbon matrix is formed as a result of carbonization of an organic resin 
(phenolic and furfural resin or pitch) with which carbon fibers are impregnated, or 
of chemical vapor deposition of pyrolytic carbon from a hydrocarbon gas. In an 
inert atmosphere or in a vacuum, carbon-carbon composites can withstand very 
high temperatures (more than 3000°C). Moreover, their strength increases under 
heating up to 2200°C while modulus degrades under temperatures more than 
1400°C. However in an oxygen atmosphere, they oxidize and sublime at relatively 
low temperatures (about 600°C). To use carbon-carbon composite parts in an 
oxidizing atmosphere, they must have protective coatings made usually from silicon 
carbide. Manufacturing of carbon-carbon parts is a very energy and time 
consuming process. To convert initial carbon-phenolic composite into carbon-
carbon, it should pass thermal treatment at 250°C for 150 h, carbonization at about 
800°C for about 100 h and several cycles of densification (one-stage pyrolysis results 
in high porosity of the material) each including impregnation with resin, curing, and 
carbonization. To refine material structure and to provide oxidation resistance, its 
further high-temperature graphitization at 2700°C and coating (at 1650°C) can be 
required. 

Vapor deposition of pyrolytic carbon is also a time consuming process performed 
at 900-1200°C under pressure 150-2000 kPa. 

I .2.3. Processing 

Composite materials do not exist apart from composite structures and are formed 
while the structure is fabricated. Though a number of methods has been developed 
by now to manufacture composite structures, two basic processes during which 
material microstructure and macrostructure are formed are common for all of them. 



22 Mechanics and analysis of composite materials 

Being a heterogeneous media, a composite material has two levels of heterogeneity. 
The first level represents a microheterogeneityinduced by at least two phases (fibers 
and matrix) that form the material microstructure. At the second level the material 
is characterized with a macroheterogeneity caused by the laminated or more 
complicated macrostructure of the material which consists usually of a set of layers 
with different orientations. 

The first basic process yielding material microstructure involves the application of 
a matrix material to fibers. The simplest way to do it used in the technology of 
composites with thermosetting polymeric matrices is a direct impregnation of tows, 
yarns, fabrics or more complicated fibrous structures with liquid resins. Thermo-
setting resin has relatively low viscosity ( I  0-100 Pa s) which can be controlled with 
solvents or heating and good wetting ability for the majority of fibers. There exist 
two versions of this process. According to the so-called “wet” process, impregnated 
fibrous material (tows, fabrics, etc.) is used to fabricate composite parts directly, 
without any additional treatment or interruption of the process. In contrast to that, 
in “dry” or “prepreg” processes impregnated fibrous material is dried (not cured) 
and thus obtained preimpregnated tapes (prepregs) are stored for further utilization 
(usually under low temperature to prevent uncontrolled polymerization of the 
resin). Machine making prepregs is shown in Fig. 1.16. Both processes having 
mutual advantages and shortcomings are widely used for composites with 
thermosetting matrices. 

For thermoplastic matrices, application of the direct impregnation (“wet” 
processing) is limited by relatively high viscosity (about 10l2Pa s) of thermoplastic 
polymer solutions or melts. For this reason, “prepreg” processes with preliminary 
fabricated tapes in which fibers are already combined with thermoplastic matrix are 
used to manufacture composite parts. There also exist other processes that involve 
application of heating and pressure to hybrid materials including reinforcing fibers 
and a thermoplastic polymer in the form of powder, films or fibers. A promising 
process (called fibrous technology) utilizes tows, tapes or fabrics with two types of 
fibers - reinforcing and thermoplastic. Under heating and pressure thermoplastic 
fibers melt and form the matrix of the composite material. 

Metal and ceramic matrices are applied to fibers by means of casting, diffusion 
welding, chemical deposition, plasma spraying, processing by compression molding 
and with the aid of powder metallurgy methods. 

The second basic process provides the proper macrostructure of a composite 
material corresponding to loading and operational conditions of the composite part 
that is fabricated. There exist three main types of material macrostructure - linear 
structure which is specific for bars, profiles and beams, plane laminated structure 
typical for thin-walled plates and shells, and spatial structure which is necessary for 
thick-walled and solid composite parts. 

Linear structure is formed by pultrusion, table rolling or braiding and provides 
high strength and stiffness in one direction coinciding with the axis of a bar, profile 
or a beam. Pultrusion results in a unidirectionallyreinforced composite profile made 
by pulling a bundle of fibersimpregnated with resin through a heated die to cure the 
resin and, to provide the proper shape of the profile cross-section.Profiles made by 
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Fig. 1.16. Machine making a prepreg from fiberglass fabric and epoxy resin. Courtesy of CRISM 

pultrusion and braiding are shown in Fig. 1.17. Table rolling is used to fabricate 
small diameter tapered tubular bars (e.g., ski poles or fishing rods) by rolling 
preimpregnated fiber tapes in the form of flags around the metal mandrel which is 
pulled out of the composite bar after the resin is cured. Fibers in the flags are usually 
oriented along the bar axis or at an angle to the axis thus providing more 

Fig. 1.17. Composite profiles made by pultrusion and braiding. Courtesy of CRISM 
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complicated reinforcement than the unidirectional one typical for pultrusion. Even 
more complicated fiber placement with orientation angle varying from 5" to 85" 
along the bar axis can be achieved using two-dimensional (2D) braiding which 
results in a textile material structure consisting of two layers of yarns or tows 
interlaced with each other while they are wound onto the mandrel. 

Plane laminated structure consists of a set of composite layers providing 
necessary stiffness and strength in at least two orthogonal directions in the plane of 
the laminate. Plane structure is formed by hand or machine lay-up, fiber placement 
and filament winding. 

Lay-up and fiber placement technology provides fabrication of thin-walled 
composite parts of practically arbitrary shape by hand or automated placing of 
preimpregnated unidirectional or fabric tapes onto a mold. Layers with different 
fiber orientations (and even with different fibers) are combined to result in the 
laminated composite material exhibiting desirable strength and stiffness in given 
directions. Lay-up processes are usually accompanied by pressure applied to 
compact the material and to remove entrapped air. Depending on required quality 
of the material, as well as on the shape and dimensions of a manufactured 
composite part compacting pressure can be provided by rolling or vacuum bags, in 
autoclaves, and by compression molding. A catamaran yacht (length 9.2 m, width 
6.8 m, tonnage 2.2 t) made from carbon-epoxy composite by hand lay-up is shown 
in Fig. 1.18. 

Filament winding is an efficient automated process of placing impregnated tows 
or tapes onto a rotating mandrel (Fig. 1.19) that is removed after curing of the 
composite material. Varying the winding angle, it is possible to control material 
strength and stiffness within the layer and through the thickness of the laminate. 
Winding of a pressure vessel is shown in Fig. 1.20. Preliminary tension applied to 
the tows in the process of winding induces pressure between the layers providing 
compaction of the material. Filament winding is the most advantageous in 
manufacturing thin-walled shells of revolution though it can be used in building 
composite structures with more complicated shapes (Fig. 1.21). 

Spatial macrostructure of the composite material that is specific for thick-walled 
and solid members requiring fiber reinforcement in at least three directions (not 
lying in one plane) can be formed by 3D braiding (with three interlaced yarns) or 
using such textile processes as weaving, knitting or stitching. Spatial (3D, 4D, etc.) 
structures used in carbon-carbon technology are assembled from thin carbon 
composite rods fixed in different directions. Such a structure that is prepared for 
carbonization and deposition of a carbon matrix is shown in Fig. 1.22. 

There are two specificmanufacturing procedures that have an inverse sequence of 
the basic processes described above, i.e., first, the macrostructure of the material is 
formed and then the matrix is applied to fibers. 

The first of these procedures is the aforementioned carbonxarbon technology 
that involves chemical vapor deposition of a pyrolytic carbon matrix on preliminary 
assembled and sometimes rather complicated structures made from dry carbon 
fabric. A carbon-carbon shell made by this method is shown in Fig. 1.23. 
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Fig. 1.18. Catamaran yacht Ivan-30 made from carbonxpoxy composite by hand lay-up. Courtesy 
of CRISM. 

Fig. 1.19. Manufacturing of B pipe by circumferential winding of  preimpregnated fiberglilSS fabric. 
Courtesy of CRISM. 
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Fig. 1.22. A 4D spatial structure. Courtesy of CRISM. 

Fig. 1.23. A carbonxarbon conical shell. Courtesy of CRISM. 

In more details the fabrication processes are described elsewhere (Peters, 1998). 

1.3. References 

Bogdanovich, A.E. and Pastore, C.M. ( 1  996). Mechanics of Te.utile and Laminated Composites. Chapman 

Chou, T.W. and KO. F.K. (1989). Textile Structural Composites (T.W. Chou and F.K. KO eds.). Elsevier, 
& Hall, London. 

New York. 
Fukuda. H.. Yakushiii, M. and Wada, A. (1997). Loop test for the strength of monofilaments. In Proc. 

l l t h  Int. Conf on Comp. Mat. ( ICCM-II) .  Val. 5: Textile Composites and Cliaracterization 
(M.L. Scott ed.). Woodhead Publishing Ltd., Gold Cost, Australia, pp. 886892. 



28 Mechanics and analysis of composite materials 

Goodey, W.J. (1946). Stress Drymion Problems. Aircraft Eng. June, 19.5-198; July, 227-234; August, 

Karpinos, D.M. (1985). Composite Materials. Handbook (D.M. Karpinos ed.). Naukova Dumka, Kiev 

Peters, S.T. (1998). Handbook of Composites, 2nd edn. (S.T.Peters ed.). Chapman & Hall, London. 
Tarnopol'skii, Yu.M., Zhigun, I.G. and Polyakov, V.A. (1992). Spatially Reinforced Composites, 

Vadliev, V.V. and Tarnopol'skii, Yu.M. (1990). Composite Materials, Handbook (V.V. Vasiliev and 

271-276; September, 313-316; October, 343-346; November, 385-389. 

(in Russian). 

Technomic, Pennsylvania. 

Yu. M. Tarnopol'skii eds.). Mashinostroenie,Moscow (in Russian). 



Chapter 2 

FUNDAMENTALS OF MECHANICS OF SOLIDS 

Behavior of composite materials whose micro- and macro-structures are much 
more complicated than those of traditional structural materials such as metals, 
concrete, and plastics is nevertheless governed by the same general laws and 
principles of mechanics whose brief description is given below. 

2.1. Stresses 

Consider a solid body referred to Cartesian coordinates as in Fig. 2. I .  The body is 
fixed at the part S, of the surface and loaded with body forces qr.having coordinate 
components qx, q,., and qr, and with surface tractions ps specified by coordinate 
components px,p., and pi.Surface tractions act on surface S, which is determined 
by its unit normal n with coordinate components I,, I , , ,  and I, that can be referred to 
as directional cosines of the normal, i.e., 

I ,  = cos(n,x), />.= cos(n,y), z, = cos(II,z) . (2.1) 

Introduce some arbitrary cross-section formally separating the upper part of the 
body from its lower part. Assume that the interaction of these parts in the vicinity of 
some point A can be simulated with some internal force per unit area or stress r~ 
distributed over this cross-section according to some unknown yet law. Because the 
Mechanics of Solids is a phenomenologicaltheory (see the closure of Section 1.1) we 
do not care about the physical nature of stress, which is only a parameter of our 
model of the real material (see Section 1.1) and, in contrast to forces F,  has never 
been observed in physical experiments.Stress is referred to the plane on which it  acts 
and is usually decomposed into three components - normal stress (a2in Fig. 2.1) 
and shear stresses (7, and rZy in Fig. 2.1). Subscript of the normal stress and the first 
subscript of the shear stress indicate the plane on which the stresses act. For stresses 
shown in Fig. 2.1, this is the plane whose normal is parallel to axis-z. The second 
subscript of the shear stress shows the axis along which the stress acts. If we single 
out a cubic element in the vicinity of point A (see Fig. 2. I), we should apply stresses 
to all its planes as in Fig. 2.2 which also shows notations and positive directions of 
all the stresses acting inside the body referred to Cartesian coordinates. 

29 
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Fig. 2.1. A solid loaded with body and surface forces and referred to Cartesian coordinates. 

Fig. 2.2. 

2.2. Equilibrium equations 

cubic element. 

Now assume that the body in Fig. 2.1 is at the state of equilibrium. Then, we can 
write equilibrium equations for any part of this body. In particular we can do this 
for an infinitely small tetrahedron singled out in the vicinity of point B (see Fig. 2.1) 
in such a way that one of its planes coincides with S, and the other three planes are 
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coordinate planes of the Cartesian frame. Internal and external forces acting on this 
tetrahedron are shown in Fig. 2.3. The equilibrium equation corresponding, e.g., to 
axis-x can be written as 

Here, dS, and dV are the elements of the body surface and volume, while 
dS, = dS,I,, dS, = dS,l,, and dS, = dS,lZ. When the tetrahedron is infinitely 
diminished. the term including d P  which is of the order of the cube of the linear 
dimensions can be neglected in comparison with terms containing dS which is 
of the order of the square of the linear dimensions. The resulting equation is 

6,I, + Z I , l ,  + z:, 1: =p\ (x,y,z)  . ( 2 . 2 )  

Symbol (x.y,z) which is widely used in this chapter denotes permutation with the 
aid of which we can write two more equations corresponding to the other two axes 
changing x for y, y for z, and z for x. 

Consider now the equilibrium of an arbitrary finite part C of the body (see 
Fig. 2.1). If we single this part out of the body, we should apply to it body forces 
qc and surface tractions p ,  whose coordinate components pr, p , ,  and p, can be 
expressed, obviously, by Eqs. (2 .2)  in terms of stresses acting inside the volume C. 
Because the sum of the components corresponding, e.g., to axis-x must be equal to 
zero, we have 

where L’ and s are the volume and the surface area of the part of the body under 
consideration. Substituting p.y from Eqs. (2.2) we get 

(2 .3)  

i OZ 

Fig. 2.3. Forces acting on an elementary tetrahedron. 
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Thus, we have three integral equilibrium equations, Eqs. (2.3), which are valid for 
any finite part of the body. To convert them into the corresponding differential 
equations, we use Green's integral transformation 

Y 1' 

which is valid for any three continuous, finite, and one-valued functions f ( x , y , z )  
and allows us to transform a surface integral into a volume one. Taking J;  = a,, 

= z,, we can write Eqs. (2.3) in the following form= zJT,and 

Because these equations hold whatever the part of the solid may be, provided only 
that it is within the solid, they yield 

Thus, we have arrived at three differential equilibrium equations that could be 
also derived from the equilibrium conditions for the infinitesimal element shown in 
Fig. 2.2. 

However, in order to keep part C of the body in Fig. 2.1 in equilibrium the sum of 
the moments of all the forces applied to this part about any axis must be zero. By 
taking moments about the z-axis we get the following integral equation 

Using again Eqs. (2.2), (2.4) and taking into account Eqs. (2.5) we finally arrive at 
the symmetry conditions for shear stresses, i.e. 

zxy = zm (x,y,.) * (2.6) 

So, we have three equilibrium equations, Eqs. (2.5) which include six unknown 
stresses ox, ay,a, and z,,, zxz,z.~=. 

Eqs. (2.2) can be treated as force boundary conditions for the stressed state of 
a solid. 

2.3. Stress transformation 

Consider the transformation of a stress system from one Cartesian coordinate 
frame to another. Assume that the elementary tetrahedron shown in Fig. 2.3 is 
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located inside the body and that point B coincides with the origin 0 of Cartesian 
coordinates x. y, z in Fig. 2.1. Then, the oblique plane of the tetrahedron can be 
treated as a coordinate plane z‘ = 0 of a new coordinate frame x’, y’, 1 shown in 
Fig. 2.4 and such that the normal element to the oblique plane coincides with the 
z’-axis, while axes x’ and y’ are located in this plane. Component P , ~of the surface 
traction in Eqs. (2.2) can be treated now as the projection on the x-axis of stress (T 

acting on plane z’ = 0. Then, Eqs. (2.2) can be presented in the following explicit 
form specifying projections of stress (T 

Here, I are directional cosines of axis z’ with respect to axes x, y, and z (see Fig. 2.4 
in which the corresponding cosines of axes x’ and y’ are also presented). Normal 
stress o=,can be found now as 

The final result was obtained with the aid of Eqs. (2.6)and (2.7). Changing x’ for y’, 
y‘ for 2. and z’ for x’, Le., performing permutation in Eq. (2.8) we can write similar 
expressions for a.,~and cy!. 

Fig. 2.4. Rotation of the coordinate frame. 
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Shear stress in new coordinates is 

Permutation yields expressions for and Z ~ J , ,. 

2.4. Principal stresses 

The foregoing equations, Eqs. (2.8) and (2.9), demonstrate stress transformations 
under rotation of a coordinate frame. As known, there exists a special position 
of this frame in which shear stresses acting on coordinate planes vanish. Such 
coordinate axes are called the principal axes, and normal stresses that act on the 
corresponding coordinate planes are referred to as the principal stresses. 

To determine the principal stresses, assume that coordinates x', y', and z' in 
Fig. 2.4 are the principal coordinates. Then, according to the aforementioned 
property of the principal coordinates we should take ?zlxl = T ~ ~ J= 0 and 02 = a for 
the plane z' = 0. This means that px = al;~,.,pv = ol??, and pi = aZyzin Eqs. (2.7). 
Introducing new notations for directional cosines of the principal axis, i.e., taking 
lyx = IF, I z . ~= I,,, 12z = IF we have from Eqs. (2.7) 

(2.10) 

These equations were transformed with the aid of symmetry conditions for shear 
stresses, Eqs. (2.6). For some specified point of the body in the vicinity of which 
the principal stresses are determined in terms of stresses referred to some fixed 
coordinate frame x ,  y,  z and known, Eqs. (2.10) comprise a homogeneous system of 
linear algebraic equations. Formally, this system always has the trivial solution, i.e., 
lpx= lpy = I, = 0 which we can ignore because directional cosines should satisfy 
an evident condition following from Eqs. (2.1), i.e. 

(2.1 1) 

So, we need to find a nonzero solution of Eqs. (2.10) which can exist if the 
determinant of the set is zero. This condition yields the following cubic equation 
for a 

~ 3 - 1 , a 2 - 4 0 - 1 3 = 0  , (2.12) 
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(2.13) 

are invariant characteristics (invariants) of the stressed state. This means that if we 
refer the body to any Cartesian coordinate frame with directional cosines specified 
by Eqs. (2.1), take the origin of this frame at some arbitrary point and change 
stresses in Eqs. (2.13) with the aid of Eqs. (2.8) and (2.9), the values of I , ,  I2,13 at 
this point will be the same for all such coordinate frames. Eq. (2.12) has three real 
roots that specify three principal stresses 61.6 2 ,  and 03. There is a rule according to 
which 61 2 a. 2 6 3 ,  Le., a[ is the maximum principal stress and 03 is the minimum 
one. If, for example, the roots of Eq. (2.12) are 100 MPa, -200 MPa, and 0, then 
61 = 100 MPa, 0 2  = 0, and a3 = -200 MPa. 

To demonstrate the procedure, consider a particular state of stress, important for 
applications, namely pure shear in the xy-plane. Let a thin square plate referred to 
coordinates x, y, z be loaded with shear stresses T uniformly distributed over the 
plate thickness and along the edges (see Fig. 2.5). 

One principal plane is evident - it is plane z = 0, which is free of shear stresses. To 
find two other planes, we should take in Eqs. (2.13) a, = a,,= a, = 0, T~~ = T>= = 0, 
and z,, = 5. Then, Eq. (2.12) acquires the form 

c3- = 0 . 

The first root of this equation gives = 0 and corresponds to plane z = 0. Two 
other roots are 6 = h.Thus, we have three principal stresses, i.e., 61 = z,62 = 0, 
03 = -7. To find the planes corresponding to (TI and 03 we should put Zr = 0, 
substitute r~ = fzinto Eqs. (2.lo), write them for the state of stress under study, and 

z 
4 

Fig. 2.5. Principal stresses under pure shear. 
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supplement this set with Eq. (2.11). The final equations allowing us to find 1, and 
IF,, are 

2 7F7lpx+ 7 Ip-" = 0, lp.x+ l& = 1 . 

Solution of these equations yields lp.x= &l/.\/Z and 1, = rl/& and means that 
principal planes (or principal axes) make 45" angles with axes x and y.  Principal 
stresses and principal coordinates XI ,  x2, x3 are shown in Fig. 2.5. 

2.5. Displacements and strains 

For any point of a solid (e.g., L or M in Fig. 2.1) introduce coordinate component 
displacements u,, uV,and u, specifying the point displacements in the directions of 
coordinate axes. 

Consider an arbitrary infinitely small element LM characterized with its 
directional cosines 

dz 
ds

I z = - .dx dY1 --, lv = ,"-6 (2.14) 

Positions of this element before and after deformation are shown in Fig. 2.6. 
Assume that displacements of the point L are u,, u,., and uZ. Then, displacements 
of the point M should be 

UL') = U, + dux, u.!,')= u,,+ du,,, u!') = U, + duZ . (2.15) 

Since uxr uy,  and uz are continuous functions of x, y ,  z 

Fig. 2.6. Displacement of an infinitesimal linear element. 
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au aU,  au, 
ax 8.Y azdu, ="dx+-dy+-dz (xly,z) 

As follows from Fig. 2.6 and Eqs. (2.15) and (2.16) 

dxi = dx + u,!.')- u.,= dx + du, 

= (1 +g)dx+aydy+--dzaux aux (x,Y,z) . 
az 

Introduce strain of element LM as 
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(2.16) 

(2.17) 

(2.18) 

After some rearrangements we arrive at 

where 

Substituting for dxl, dy1, dzl their expressions from Eqs. (2.17) and taking into 
account Eqs. (2.14) we finally get 

where 

au, at+ a u  aux aurau au-au,= -+-+-2- +-2+2- (x y z)ay ax ax ay ax ay ax ay ' * 

(2.20) 

Assuming that the strain is small we can neglect the second term in the left-hand side 
of Eq. (2.19). Moreover, we further assume that the displacements are continuous 
functions that change rather slowly with the change of coordinates. This allows us 
to neglect the products of derivatives in Eqs. (2.20). As a result, we arrive at the 
following equation 
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where 

(2.22) 

can be treated as linear strain-displacement equations. Taking 1, = I ,  I, = I, = 0 in 
Eqs. (2.22), Le., directing element LM in Fig. 2.6 along the x-axis we can readily see 
that cX is the strain along the same x-axis. Similar reasoning shows that E,, and E= in 
Eqs. (2.22) are strains in the directions of axes y and z. To find out the physical 
meaning of strains y in Eqs. (2.22), consider two orthogonal line elements LM and 
LN and find angle CI that they make with each other after deformation (see Fig. 2.6), 
i.e., 

(2.23) 

Here, dxl, dyl, and dzl are specified with Eqs. (2.17), dsl can be found from 
Eq. (2.18) and 

ds’,= ds’(1 + E ’ )  . 

Introduce directional cosines of element LN as 

(2.24) 

(2.25) 

Because elements LM and LN are orthogonal, we have 

lxl: + IJ;,  + lzZ; = 0 . 

Using Eqs. (2.14)’ (2.18), (2.24X2.26) and introducing shear strain y as the 
difference between angles M IL1 N I  and MLN, i.e., as 

x y = - - m
2 

we can write Eq. (2.23) in the following form 

(2.26) 
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Linear approximation of Eq. (2.26) similar to Eq. (2.21) is 

(2.27) 

Here, E , .  E , ,  er and yreV,yr,, ylr components are determined with Eqs. (2.22). If we 
direct now element L M  along the x-axis and element LN along the y-axis putting 
I ,  = 1, I ,  = I ,  = 0 and 1: = 1, 1: = ZL = 0, Eq. (2.27) yields y = yr , .  Thus, yr , ,  y,:, 
and 7,: are shear strains that are equal to the changes of angles between axes x and 
y .  x and z, y and z ,  respectively. 

2.6. Transformation of small strains 

Consider small strains in Eqs. (2.22) and study their transformation under 
rotation of the coordinate frame. Assume that x', y', 1 in Fig. 2.4 form a new 
coordinate frame rotated with respect to original frame x, y ,  z.  Because Eqs. (2.22) 
are valid for any Cartesian coordinate frame, we have 

(2.28) 

Here, u,,, u,,. and u? are displacements along the axes 2,y', 2 which can be linked 
with displacements u,, u,,, and u, of the same point by the following linear 
relations 

Similar relations can be written for derivatives of displacement with respect to 
variables XI,y', 2 and x ,  y ,  z, i.e., 

(2.30) 

Substituting displacements, Eqs. (2.29), into Eqs. (2.28),passing to variables I,y. z 
with the aid of Eqs. (2.30), and taking into account Eqs. (2.22) we arrive at 

These strain transformations are similar to the stress transformations determined 
with Eqs. (2.8) and (2.9).  
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2.7. Compatibility equations 

Consider strain-displacement equations, Eqs. (2.22), and try to determine 
displacements u,, u., and u, in terms of strains E . ~ ,  E ~ , ,  and yx,,, yxz, y,=. As can be 
seen, there are six equations containing only three unknown displacements. In 
the general case, such set of equations is not consistent, and some compatibility 
conditions should be imposed on strains to provide the existence of the solution. To 
derive these conditions, decompose derivatives of the displacements as follows 

Here 

0 -’(”.-%) (x,y,z)
‘ - 2  ax 

(2.32) 

(2.33) 

is the angle of rotation of a body element (such as the cubic element shown 
in Fig. 2.1) around the z-axis. Three Eqs. (2.32) including one and the same 
displacement u, allow us to construct three couples of mixed second-order 
derivatives of u, with respect to x and y or y and x, x and z or z and x, y and z or 
z and y. Because the sequence of differentiation does not influence the result and 
since there are two other groups of equations in Eqs. (2.32), we arrive at nine 
compatibility conditions that can be presented as 

(2.34) 

These equations are similar to Eqs. (2.32), Le., t..ey allow us to determine rotation 
angles only if some compatibility conditions are valid. These conditions compose 
the set of compatibility equations for strains and have the following final form 

where 

aZE, a%, a2yxykrJ&,y )  =-+---
ay2 ax2 axay 

Tx(&,7) ==-aZEx --- -+--a y J j- (x,y,z) .ayaz i:x (aZ ay ax 

Y ,4 7 

(2.36) 
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If strains E , ,  E,, E, and yrc, yc. 7,- satisfy Eqs. (2.35), we can find rotation angles 
Q,, w,. o, integrating Eqs. (2.34) and then determine displacements u,, u , ,  u, 
integrating Eqs. (2.32). 

Six compatibility equations, Eqs. (2.35), derived formally as compatibility 
conditions for Eqs. (2.32) have a simple physical meaning. Assume that we have a 
continuous solid shown in Fig. 2.1 and divide it into a set of pieces that perfectly 
match each other. Now, apply some strains to each of these pieces. Obviously, for 
arbitrary strains, the deformed pieces cannot be assembled into a continuous 
deformed solid. This will happen only under the condition that the strains satisfy 
Eqs. (2.35). However. even if the strains do not satisfy Eqs. (2.35), we can assume 
that the solid is continuous but in a more general Riemannian (curved) space rather 
than in traditional Euclidean space in which the solid existed before the deformation 
(Vasiliev and Gurdal, 1999). Then, six quantities k and r in Eqs. (2.36), being 
nonzero, specify curvatures of the Riemannian space caused by small strains E 

and y. Compatibility equations, Eqs. (2.35), require these curvatures to be equal to 
zero which means that the solid should remain in the Euclidean space under 
deformation. 

2.8. Admissible static and kinematic fields 

In solid mechanics we introduce static field variables which are stresses and 
kinematic field variables which are displacements and strains. 

The static field is said to be statically admissible if the stresses satisfy equilibrium 
equations, Eqs. (2.5), and are in equilibrium with surface tractions on the body 
surface S, where these tractions are given (see Fig. 2.1), i.e., if Eqs. (2.2) are 
satisfied on S,. 

The kinematic field is referred to as kinematically admissible if displacements and 
strains are linked by strain4isplacement equations, Eqs. (2.22), and displacements 
satisfy kinematic boundary conditions on the surface S,, where displacements are 
prescribed (see Fig. 2.1). 

Actual stresses and displacements belong, naturally, to the corresponding 
admissible fields though actual stresses must in addition provide admissible 
displacements, while actual displacements should be associated with admissible 
stresses. Mutual correspondence between static and kinematic variables is estab-
lished through the so-called constitutive equations that are considered in the next 
section. 

2.9. Constitutive equations for an elastic solid 

Consider a solid loaded with body and surface forces as in Fig. 2.1. These 
forces induce some stresses, displacements, and strains that compose the fields of 
actual static and kinematic variables. Introduce some infinitesimal additional 
displacements du,, du,,, and du, such that they belong to a kinematically 
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admissible field. This means that there exist equations that are similar to 
Eqs. (2.22), i.e., 

and specify additional strains. 
Because additional displacementsare infinitely small, we can assume that external 

forces do not change under such variation of the displacements(we do not consider 
here special cases in which external forces depend on displacements of the points at 
which these forces are applied). Then we can calculate the work performed by the 
forces multiplying forces by the corresponding increments of the displacementsand 
write the total work of body forces and surface tractions as 

(2.38) 

Here, V and S are the body volume and external surface of the body in Fig. 2.1. 
Actually, we must write the surface integral in Eq. (2.38) only for the surface S,, 
on which the forces are given. But since the increments of the displacements 
belong to a kinematically admissible field, they are equal to zero on S,, and the 
integral can be written for the whole surface of the body. To proceed, we express 
px, p,,,and pz in terms of stresses with the aid of Eqs. (2.2) and transform the 
surface integral into a volume one using Eq. (2.4). For the sake of brevity, 
consider only x-components of forces and displacement in Eq. (2.38). We have in 
several steps 

+7 -(dux)a +r,--(du,)]dYa 
yx aY az 
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The last transformation step was performed with due regard to Eqs. (2.5), (2.6), and 
(2.37). Finally, Eq. (2.38) acquires the form 

Because the right-hand side of this equation includes only internal variables, i.e., 
stresses and strains, we can conclude that the foregoing formal rearrangement 
actually allowed us to transform the work of external forces into the work of 
internal forces or into potential energy accumulated in the body. For further 
derivation, let us introduce for the sake of brevity new notations for coordinates 
and use subscripts I ,  2, 3 instead of x,y ,  z, respectively. We also use the following 
notations for stresses and strains 

Then, Eq. (2.39) can be written as 

(2.40) 

where 

dU = 0j.jdEij . (2.41) 

This form of equation implies summation over repeated subscripts i , j  = 1,2.3. 
It should be emphasized that by now d U  is just a symbol, which does not mean 

that there exists function U and that dU is its differential. This meaning dU acquires 
if we restrict ourselves to the consideration of an elastic material described in 
Section 1.1.  For this material, the difference between the body potential energy 
corresponding to some initial state A and the energy corresponding to some other 
state B does not depend on the way undertaken to transform the body from state A 
to state B.  In other words, the integral 

ajidsi,i= U ( B )- U ( A )  
.4 

does not depend on the path of integration. This means that the element of 
integration is a complete differential of function U depending on ~ ; j ,i.e., that 
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Comparing this result with Eq. (2.41) we arrive at Green's formulas 

au 
6J - a&,(r..-- (2.42) 

that are valid for any elastic material. Function U(eij)can be referred to as specific 
strain energy (energy accumulated in the unit of body volume) or elastic potential. 
Potential U can be expanded into the Taylor series with respect to strains, Le., 

where 

(2.44) 

Assume that in the initial state of the body corresponding to zero external forces we 
have zij = 0, aij = 0, U = 0. Then, SO = 0 and sij = 0 according to Eq. (2.42). For 
small strains, we can neglect high-order terms in Eq. (2.43) and restrict ourselves to 
the first system of nonzero terms taking 

Then, Eq. (2.42) yields 

(r..IJ -- s.ijklekl * (2.45) 

These linear equations correspond to a linear elastic model of the material 
(see Section 1.1) and, in general, include 34 = 81 coefficients s. However, because 
oij= ojf and &ij = e j i ,  we have the following equations Sf$[  =Sjikl = sij lk which 
reduce the number of independent coefficientsto 36. Then, taking into account the 
fact that the mixed derivative specifying coefficients Sijkl in Eqs. (2.44) does not 
depend on the sequence of differentiation we get 15 equations sijkl = skiii (ij# kl). 
Thus, Eq. (2.45)contains only 2 1 independent coefficients. Returning to coordinates 
x,y ,  z we can write Eq. (2.45) in the following explicit form 

(2.46) 

where 
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(2.49) 

(2.50) 
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E, is the modulus of elasticity in the x-direction (x,y,z); v.~”the Poisson’s ratio 
that determines the strain in the x-direction induced by normal stress acting in the 
orthogonal y-direction (x,y,z); Gxvthe shear modulus in the xy-plane (x,y,z); v.~.,= 
the extension-shear coupling coefficient indicating normal strain in the x-direction 
induced by shear stress acting in the yz-plane (x,y,z); q.vy.zthe shear-extension 
coupling coefficient characterizing shear strain in the xy-plane caused by normal 
stress acting in the z-direction (x,y,  z ) ;  and %x.,.,J= the shear-shear coupling coefficient 
that determines the shear strain taking place in the xy-plane under shear stress acting 
in the yz-plane (x ,y ,2). 

Having constitutive equations, Eq. (2.46), we can now write the finite expression 
for elastic potential, U .  Substituting stresses into Eq. (2.41) and integrating it with 
respect to strains we get after some transformation with the aid of Eq. (2.46) the 
following equation 

u = (%E, + 0JE.V + O,&, + ~.Y?.lJ,,. + T.YzY.Y, + yJz). (2.51) 

Potential energy of the body can be found as 

w = JJJmv 
C’ 

(2.52) 

Compliance matrix, Eq. (2.49), containing 21 independent elastic constants 
corresponds to the general case of material anisotropy that practically never 
appears in real materials. The most common particular case corresponds to an 
orthotropic (orthogonally anisotropic) material which has three orthogonal 
orthotropy (coordinate) axes such that normal stresses acting along these axes do 
not induce shear strains, while shear stresses acting in coordinate planes do not 
cause normal strains in the direction of these axes. As a result, the stiffness and 
compliance matrices become uncoupled with respect to normal stresses and strains 
on one side and shear stresses and strains on the other side. For the case of an 
orthotropic material, with axes x, y, and z coinciding with the orthotropy axes, 
Eq. (2.49) acquires the form 

[CI = 

0 0 0 

0 0 0 

0 0 0 
(2.53) 
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Symmetry conditions. Eqs. (2.50), reduce to 

These equations have a simple physical meaning. The higher the stiffness is, 
demonstrated by the material in some direction, the less is the strain in this direction 
under loading in the orthogonal directions. Taking into account the foregoing 
symmetry conditions we can conclude that an orthotropic material is characterized 
with nine independent elastic constants. 

The simplest material model corresponds to the isotropic material, whose 
mechanical properties are the same for any direction or plane of loading. As a 
result, subscripts indicating coordinate directions and planes in Eq. (2.53) disap-
pear, and it reduces to 

[CI = 

0 0 0
I 1' 1' 

E E E 
- _ - _ _  

0 0 0
1' v I 
E E E

_ _  _ _  

I 
G

0 0 0 - 0 0  

0 0 0 0 - 0  

1
0 0 0 0 0 -

G 

1 
G 

(2.54) 

Compliance matrix, Eq. (2.54), contains three elastic constants, E, G, and Y .  

However, only two of them are independent. To show this, consider the problem 
of pure shear for a plate discussed in Section 2.4 (see Fig. 2.5). For this problem, 
cr, = cr, = cr, = z, = zIz = 0,z,, = z and Eqs. (2.48) and (2.54) yield 

Specific strain energy in 33q. (2.51) can be written as 

However, as follows from Section 2.4, pure shear can be reduced to tension and 
compression in the principal directions (see Fig. 2.5). For these directions, 
Eqs. (2.48) and (2.54) give 
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Here 61 = T, 03 = -T and all the other stresses are equal to zero. The strain energy, 
Eq. (2.51), can be presented now in the following form 

1 l + v  7 

2 Eu = -(a1q + QQ) =--- . 

Because Eqs. (2.55) and (2.56) specify one and the same quantity, we get 

EG = -
2(1 -I-v) 

(2.56) 

(2.57) 

Thus, an isotropic material is characterized within the linear elastic model by two 
independent elastic constants - E and v. 

2.10. Formulations of the problem 

The problem of Solid Mechanics is reduced, as follows from the foregoing 
derivation, to a set of 15 equations, i.e., three equilibrium equations, Eqs. (2.5), 
six strain-displacement equations, Eqs. (2.22), and six constitutive equations, 
Eq. (2.46) or (2.48). This set of equations is complete, Le., it contains 15 unknown 
functions among which there are six stresses, six strains, and three displacements. 
Solution of a particular problem should satisfy three boundary conditions that can 
be written at any point of the body surface. Static or force boundary conditions 
have the form of Eqs. (2.2), while kinematic or displacement boundary conditions 
are imposed on three displacement functions. 

There exist two classical formulations of the problem -displacement formulation 
and stress formulation. 

According to displacement formulation, we first determine displacements u , ~ ,uY, 
and u, from three equilibrium equations, Eqs. (2.5), written in terms of displace-
ments with the aid of constitutive equations, Eq. (2.46), and strain4isplacement 
equations, Eqs. (2.22). Having found displacements we use Eqs. (2.22) and (2.46) to 
determine strains and stresses. 

Stress formulation is much less straightforward than the displacement one. 
Indeed, we have only three equilibrium equations, Eqs. (2.5), for six stresses which 
means that the problem of solid mechanics is not, in general, a statically determinate 
problem. All possible solutions of the equilibrium equations (obviously, there is an 
infinite number of them because the number of equations is less than the number 
of unknown stresses) satisfying force boundary conditions (solutions that do not 
satisfy them, obviously, do not belong to the problem under study) comprise the 
class of statically admissible stress fields (see Section 2.8). Assume that we have one 
of these stress fields. Now, we can readily find strains using constitutive equations, 
Eq. (2.48), but to determine displacements, we need to integrate a set of six strain-
displacement equations, Eqs. (2.22) which having only three unknown displace-
ments are, in general, not compatible. As shown in Scction 2.7, this set can be 
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integrated if strains satisfy six compatibility equations, Eqs. (2.35). We can write 
these equations in terms of stresses using constitutive equations, Eq. (2.48). Thus, 
the stress formulation of the problem is reduced to a set of nine equations consisting 
of three equilibrium equations and six compatibility equations in terms of stresses. 
At first glance it looks like this set is not consistent because it includes only six 
unknown stresses. However, this is not the case because of special properties of 
compatibility equations. As was noted in Section 2.7, these equations provide the 
existence of Euclidean space inside the deformed body. But this space automatically 
exists if strains can be expressed in terms of three continuous displacements as in 
Eqs. (2.22). Indeed, substituting strains, Eqs. (2.22), into compatibility equations, 
Eqs. (2.35), we can readily see that they are identically satisfied for any 
three functions u,, uV,  and u,. This means that the solution of six Eqs. (2.35) 
including six strains is not unique. The uniqueness is ensured by three equilibrium 
equations. 

2.11. Variational principles 

Equations of Solid Mechanics considered in the previous sections can be also 
derived from variational principles that establish the energy criteria according to 
which the actual state of the body under loading can be singled out of a system of 
admissible states (see Section 2.8). 

Consider a linear elastic solid and introduce two mutually independent fields of 
variables: statically admissible stress field ut,01.. u;,T:),  T:, t:_ and kinematically 
admissible field characterized by displacements u:, u:I, uy and corresponding strains 
L, ,E , ,  E , ,  y, ,  ,y:=, yyc. To construct the energy criteria allowing us to distinguish the 
actual variables from admissible ones, consider the following integral similar to the 
energy integral in Eqs. (2.51) and (2.52) 

I /  I /  / I  I /  

(2.58) 

Here, in accordance with the definition of a kinematically admissible field (see 
Section 2.8). 

(2.59) 

Substituting Eqs. (2.59) into Eq. (2.58) and using the following evident relation-
ships between the derivatives 
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we arrive at  

Applying now Green’s integral transformation, Eq. (2.4), to the first three terms 
under the integral and taking into account that statically admissible stresses should 
satisfy equilibrium equations, Eqs. (2.5), (2.6), and force boundary conditions, 
Eqs. (2.2), we obtain from Eqs. (2.58) and (2.60) 

For actual stresses, strains and displacements, Eq. (2.61) reduces to the following 
equation 

(2.62) 

known as Clapeyron’s theorem. 

2.11.1. Principle of minimum total potential energy 

This principle allows us to distinguish the actual displacement field of the body 
from kinematically admissible fields. To derive it, assume that the stresses in 
Eq. (2.61) are actual stresses, i.e., c’= 6, z’ = z, while the displacements and 
the corresponding strains differ from the actual values by small kinematically 
admissible variations, Le., u” = u + 6u, E” = E + 88, y” = y + 6y.  Substituting these 
expressions into Eq. (2.61) and subtracting Eq. (2.62) from the resulting equation 
we arrive a t  
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Assume that under small variation of displacements and strains belonging to the 
kinematically admissible fields surface tractions and body forces do not change. 
Then, we can write the foregoing result in the following form 

6 K : - h A = O .  

Here 

(2.63) 

,6y,,)dV (2.64) 

is the variation of the strain energy (internal potential energy of an elastic solid) 
associated with small kinematically admissible variations of strains and 

(2.65) 

can be formally treated as work performed by surface tractions and body forces on 
the actual displacements. Expressing stresses in Eq. (2.64) in terms of strains with 
the aid of constitutive equations, Eq. (2.46), and integrating, we can determine w: 
which is the body strain energy written in terms of strains. Quantity T = K; - A  is 
referred to as the total potential energy of the body. This name historically came 
from problems in which external forces had a potential function F = -A so that 
T = &;+ F was the sum of internal and external potentials, i.e. the total potential 
function. Then, condition in Eq. (2.63) reduces to 

6 T = O  (2.66) 

which means that T has a stationary (actually, minimum) value under small 
admissible variation of displacements in the vicinity of actual displacements. Thus, 
we arrive at the following variational principle of minimum total potential energy: 
the actual displacement field, in contrast to all kinematically admissible fields, 
delivers the minimum value of the body total potential energy. This principle is a 
variational form of the displacement formulation of the problem discussed in 
Section 2.10. As can be shown, variational equations ensuring the minimum value of 
the total potential energy of the body coincide with equilibrium equations written in 
terms of displacements. 
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2.11.2. Principle of minimum strain energy 

This principle is valid for a linear elastic body and establishes the criterion 
according to which the actual stress field can be singled out of all statically 
admissible fields. Assume that displacementsand strains in Eq. (2.61) are actual, i.e. 
u” = u, E” = E ,  yN = y ,  while stresses differ from the actual values by small statically 
admissible variations, Le., O‘ = o +60, z’ = z +67. Substituting these expressions in 
Eq. (2.61) and subtracting Eq. (2.62) for the actual state we get 

SW, = 0 , (2.67) 

where 

is the variation of the strain energy associated with variation of stresses. Expressing 
strains in terms of stresses with the aid of constitutive equations, Eq. (2.48), and 
integrating, we can determine W,, which is the body strain energy written in terms of 
stresses. As earlier, Eq. (2.67) indicates that strain energy, W,, has a stationary (in 
fact, minimum) value under admissible variation of stresses. As a result we arrive at 
the following variational principle of minimum strain energy: the actual stress field, 
in contrast to all statically admissible fields, delivers the minimum value of the 
body strain energy. This principle is a variational form of the stress formulation of 
the problem considered in Section 2.10. As can be shown, variational equations 
providing the minimum value of the strain energy are compatibility equations 
written in terms of stresses. It is important that stress variation in Eq. (2.68) should 
be performed within the statically admissible field, Le., within stresses that satisfy 
equilibrium equations and force boundary conditions. 

2.11.3. Mixed variational principles 

Two variational principles described above imply variations with respect to 
displacements only or to stresses only. There exist also the so-called mixed 
variational principles in which variation is performed with respect to both kinematic 
and static variables. The first principle from this group follows from the principle of 
minimum total potential energy considered in Section 2.1 1.1. Let us expand the class 
of admissible kinematic variables and introduce displacements that are continuous 
functions satisfying displacement boundary conditions and strains that are not 
linked with these displacements by strain-displacement equations, Eqs. (2.22). 
Then we can apply the principle of minimum total potential energy performing a 
conditional minimization of the total potential energy and introduce Eqs. (2.22) 
as additional constraints imposed on strains and displacements with the aid of 
Lagrange’s multipliers. Using stresses as these multipliers we can construct the 
following augmented functional 
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According to the initial principle, Eq. (2.66), STL = 0. Variation of displacements 
yields, as earlier equilibrium equations, variation of stresses results in strain-
displacement equations, and variation of strains gives constitutive equations (V: 
should be expressed in terms of strains). 

The second form of the mixed variational principle can be derived from the 
principle of minimum strain energy discussed in Section 2.11.2. Again expand the 
class of admissible static fields and introduce stresses that satisfy force boundary 
conditions but are not linked with equilibrium equations, Eqs. (2.5). Then we can 
apply the principle of minimum strain energy if we construct an augmented 
functional adding Eqs. (2.5) as additional constraints. Using displacements as 
Lagrange’s multipliers we obtain 

According to the original principle, Eq. (2.67), ~ W L= 0. Variation with respect to 
stresses (W, should be expressed in terms of stresses) yields constitutive equations in 
which strains are expressed in terms of displacements via strain-displacement 
equations, Eqs. (2.22), while variation of displacements gives equilibrium equations. 

Equations and principles considered in this chapter will be used in the following 
chapters of the book for analysis of composite materials. 
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Chapter 3 

MECHANICS OF A UNIDIRECTIONAL PLY 

Ply or lamina is the simplest element of a composite material, an elementary layer 
of unidirectional fibers in a matrix (see Fig. 3.1) formed while a unidirectional tape 
impregnated with resin is placed on the surface of the tool providing the shape of a 
composite part. 

3.1. Ply architecture 

As the tape consists of tows (bundles of fibers), the ply thickness (whose minimum 
value is about 0.1 mm for modern composites) is much higher than the fiber 
diameter (about 0.01 mm). In an actual ply, the fibers are randomly distributed as in 
Fig. 3.2. Because the actual distribution is not known and can hardly be predicted, 
some typical idealized regular distributions, i.e., square (Fig. 3.3), hexagonal 
(Fig. 3.4), and layer-wise (Fig. 3.5) are used for the analysis. 

Composite ply consists of two constituents: fibers and matrix whose quantities in 
the materials are specified by volume, v, and mass, m, fractions 

Kll6 
K. > K!

v ,  = - ,Vf = - (3.1) 

(3.2) 

Here, Vand Mare volume and mass, while subscripts “f’,“m”, and “c” correspond 
to fibers, matrix, and composite material, respectively. Because K = V,+ V, and 
M, = Mf + Mm,we have 

There exist the following relationships between volume and mass fractions 

55 
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Fig. 3.1. A unidirectional ply. 

Fig. 3.2. Actual fiber distribution in the cross-section of a ply (0,-= 0.65). 

Fig. 3.3. Square fiber distribution in the cross-section of a ply (uf = 0.65). 

Fig. 3.4. Hexagonal fiber distribution in the cross-section of a ply (q= 0.65). 
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Fig. 3 . 5  1.ayer-wise fiber distribution in the cross-section of a ply (or = 0.65). 

where pr, p m ,  and pc are densities of fibers, matrix, and composite. In analysis, 
volume fractions are used because they enter the stiffness coefficients for a ply, while 
mass fractions are usually measured directly during processing or experimental 
study of the fabricated material. 

Two typical situations usually occur. First situation implies that we know the 
mass of fibers used to fabricate a composite part and the mass of the part itself. The 
mass of fibers can be found if we weigh the spools with fibers before and after they 
are used or calculate the total length of tows and multiply it by the tow tex-number 
that is the mass in grams of 1000 m long tow. So, we know the values of Mf and M, 
and can use the first equations of Eqs. (3.2) and (3.4) to calculate or. 

The second situation takes place if we have a sample of a composite material and 
know the densities of the fibers and the matrix used for its fabrication. Then, we can 
find the experimental value of material density, pz, and use the following equation 
for theoretical density 

Pc = Prof + Pmom . (3.5) 

Putting pc = p; and taking into account Eqs. (3.3) we obtain 

Consider for example carbon+poxy composite material with fibers AS4 and matrix 
EPON DPL-862 for which pf = 1.79 g/cm3, p m  = 1.2 g/cm3. Let p; = 1.56 g/cm'. 
Then, Eq. (3.6) yields of = 0.61. 

This result is approximate because it ignores possible material porosity. To 
determine the actual fiber fraction we should remove resin using matrix destruction, 
solvent extraction, or burning the resin out in an oven. As a result, we get Mf and 
having M, can calculate mfand try with the aid of Eqs. (3.2) and (3.4). Then we find 
p ,  using Eq. (3.5) and compare it with p:.  If pc > pz ,  material includes voids whose 
volume fraction (porosity) can be calculated using the following equation 
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For the carbon-epoxy composite material considered above as an example, assume 
that the foregoing procedure results in r n f  = 0.72. Then, Eqs. (3.4), (3.9, and (3.7) 
give uf = 0.63, pc = 1.58 g/cm3, and up = 0.013. 

For real composite materials, we normally have uf = 0.5W.65. Lower fiber 
volume content results in lower ply strength and stiffness under tension along the 
fibers, while higher fiber content, close to the ultimate value, leads to reduction of 
the ply strength under longitudinal compression and in-plane shear due to poor 
bonding of the fibers. 

Since the fibers have circular cross-sections, there exists the ultimate fiber volume 
fraction, uy which is less than unity and depends on the fiber arrangement. For 
typical arrangements shown in Figs. 3.3-3.5, ultimate arrays are presented in 
Fig. 3.6, and the corresponding ultimate fiber volume fractions are 

1 rcd2 IT 

4 
square array u;! = (7) = - = 0.785, 

2 nd2 rc 
hexagonal array vu - ~ ~ - = 0.907, 

‘ - d 2 6 (  4 ) = 2 6  

layer-wise array u;! = dz c2) - =:=0.785 . 

5.2. Fiber-matrix interaction 

f.2.1. Theoretical and actual strength 

The most important property of advanced composite materials is associated with 
rery high strength of a unidirectional ply accompanied with relatively low density. 
rhis advantage of the material is provided mainly by fibers. Correspondingly a 
iatural question arises as to how such traditional lightweight materials like glass 
)r graphite that were never applied as primary load-bearing structural materials can 

Fig. 3.6. Ultimate fiber arrays for square (a), hexagonal (b), and layer-wise (c) fiber distributions. 
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be used to make fibers with the strength exceeding the strength of such traditional 
structural materials as aluminum or steel (see Table 1.1). The general answer is well 
known: strength of a thin wire is usually much higher than the strength of the 
corresponding bulk material. This is demonstrated in Fig. 3.7 showing that the wire 
strength increases while the wire diameter is reduced. 

In connection with this, two questions arise. First, what is the upper limit of 
strength that can be predicted for an infinitely thin wire or fiber? And second, what 
is the nature of this phenomenon? 

The answer for the first question is given in Physics of Solids. Consider an 
idealized model of a solid, namely a regular system of atoms located as shown in 
Fig. 3.8 and find the stress, 6,that destroys this system. Dependence of G on the 
atomic spacing following from Physics of Solids is presented in Fig. 3.9. Point 0 
of the curve corresponds to the equilibrium of the unloaded system, while point 
U specifies the ultimate theoretical stress, 0,.Initial tangent angle, u, characterizes 
material modulus of elasticity, E. To evaluate at, we can use the following sine 
approximation (Gilman, 1959) for OU segment of the curve 

fJ= a, sin 
a -ao

2n- . 
a0 

' d,mm 
0.4 0.8 1.2 1.6 

Fig. 3.7. Dependence of high-carbon steel wire strength on the wire diameter. 

0 

0 

Fig. 3.8. Material model. 
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Fig. 3.9. Atoms’ interaction curve (-) and its sine approximalion(- -- -). 

Introducing strain 

we arrive at 

cr = O,sin 2ns . 

Now, we can calculate modulus as 

Thus 

E 
2n

a t = - .  

This equation yields a very high value for the theoretical strength. For example, for 
a steel wire, at = 33.4 GPa. By now the highest strength reached in 2 pm diameter 
monocrystals of iron (whiskers) is about 12 GPa. 

The model under study allows us to introduce another important characteristic 
of the material. The specific energy that should be spent to destroy the material 
can be presented in accordance with Fig. 3.9 as 

-x 

2y = /”cr(a)da . 
a) 

(3.9) 

As material fracture results in formation of two new free surfaces, y can be referred 
to as specific surface energy (energy spent to form the surface of unit area). 
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The answer for the second question (why the fibers are stronger than the 
corresponding bulk materials) was in fact given by Griffith (1920) whose results 
have formed the basis of Fracture Mechanics. 

Consider a fiber loaded in tension and having a thin circumferential crack as 
shown in Fig. 3.10. The crack length, f, is much less than the fiber diameter, A. 

For a linear elastic fiber, CT =EE,and the elastic potential in Eq. (2.51) can be 
presented as 

When the crack appears, the strain energy is released in a material volume adjacent 
to the crack. Assume that this volume is comprised by conical ring whose generating 
lines are shown in Fig. 3.10 by broken lines and heights are proportional to the 
crack length, 1. Then, the total released energy, Eq. (2.52), is 

1 0 2W = -kn-lI"d ~

2 E (3.10) 

where k is some constant coefficient of proportionality. On the other hand, 
formation of new surfaces consumes the energy 

S = 2 n ~ l d ,  (3.1 1) 

where y is the surface energy, Eq. (3.9). Now assume that the crack length is 
increased by an infinitesimal increment, dl. Then, if for some value of acting stress, CT 

0 
t t t t t t t  

1 1 1  
0 

Fig. 3.10. A fiber with a crack. 
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dW dS->-
d l  d l  

(3.12) 

the crack will propagate, and the fiber will fail. Substituting Eqs. (3.10) and (3.11) 
into inequality (3.12) we arrive at 

(3.13) 

The most important result that follows from this condition specifying some critical 
stress, rrc, beyond which the fiber with a crack cannot exist is the fact that aC 
depends on the absolute value of the crack length (not on the ratio Z/d). But for a 
continuous fiber, 21 < d so, the thinner the fiber, the less is the length of the crack 
that can exist in this fiber and the higher is the critical stress, ifc. More rigorous 
analysis shows that reducing Z to a in Fig. 3.8 we arrive at SC= ifl. 

Consider for example glass fibers that are widely used as reinforcing elements 
in composite materials and have been studied experimentally to support the 
fundamentals of Fracture Mechanics (Griffith, 1920). Theoretical strength of glass, 
Eq. (3.8), is about 14 GPa, while the actual strength of 1 mm diameter glass fibers 
is only about 0.2 GPa, and for 5 mm diameter fibers this value is much lower 
(about 0.05 GPa). The fact that such low actual strength is caused by surface 
cracks can be readily proved if the fiber surface is smoothed by etching the fiber 
with acid. Then, the strength of 5 mm diameter fibers can be increased up to 
2 GPa. If the fiber diameter is reduced with heating and stretching fibers to a 
diameter about 0.0025 mm, the strength rises up to 6 GPa. Theoretical extrapo-
lation of the experimental curve, showing dependence of the fiber strength on the 
fiber diameter for very small fiber diameters, yields 8 = 11 GPa, which is close to 
Cl = 14 GPa. 

Thus, we arrive at  the following conclusion clearing out the nature of high 
performance of advanced composites and their place among the modern structural 
materials. 

Actual strength of advanced structural materials is much lower than their 
theoretical strength. This difference is caused by defects of material microstructure 
(e.g., crystalline structure) or microcracks inside the material and on its surface. 
Using thin fibers we reduce the influence of cracks and thus increase the strength of 
materials reinforced with these fibers. So, advanced composites comprise a special 
class of structural materials in which we try to utilize thc natural potential 
properties of the material rather than the possibilities of technology as we do 
developing high-strength alloys. 

3.2.2. Statistical aspects of Jiber strength 

Fiber strength, being relatively high, is still less than the corresponding theoretical 
strength which means that fibers of advanced composites have microcracks or other 
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defects randomly distributed along the fiber length. This is supported by the fact 
that fiber strength depends on the length of the tested fiber. Dependence of strength 
on the length for boron fibers (Mikelsons and Gutans, 1984) is shown in Fig. 3.1 1. 
The longer the fiber, the higher is the probability of a dangerous defect to exist 
within this length, and the lower is the fiber strength. Tension of fiber segments with 
the same length but taken from different parts of a long continuous fiber or from 
different fibers also demonstrates the strength deviation. Typical strength distribu-
tion for boron fibers is presented in Fig. 3.12. 

The first important characteristic of the strength deviation is the strength 
scatter A@= O,,, - Cmin. For the case corresponding to Fig. 3.12, amax= 4.2 GPa, 
Omin = 2 GPa, and A 8  = 2.2 GPa. To plot the diagram presented in Fig. 3.12, A 6  is 
divided into a set of increments, and a normalized number of fibers n = N,/N (N, is 
the number of fibers failed under the stress within the increments, and N is the total 
number of tested fibers) is calculated and shown on the vertical axis. Thus, the 
so-called frequency histogram can be plotted. This histogram allows us to determine 
the mean value of the fiber strength as

* 3 

a,,, = - ai
N ., = I  

5,GPa 

l O P 3 0 4 0 

Fig. 3.1 1.  Dependence of strength of boron fibers on the fiber length. 

n 
025 

0.2 

0.15 

0.1 

0.05 

0 -
qGPa 

(3.14) 

1 2 3 4 5 

Fig. 3.12. Strength distribution for boron fibers. 
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and the strength dispersion as 

(3.15) 
i = l  

The deviation of fiber strength is characterized with the coefficient of the strength 
variation which is presented as follows 

do 
brn 

r, =:loo% . (3.16) 

For boron fibers under consideration, Eqs. (3.14X3.16) yield om= 3.2 GPa, d, = 
0.4 GPa, r, = 12.5%. 

To demonstrate the influence of fiber strength deviation on the strength of a 
unidirectional ply, consider a bundle of fibers, i.e., a system of approximately parallel 
fibers with different strength and slightly different lengths as in Fig. 3.13. Typical 
stress-strain diagrams for fibers tested under tension in a bundle are shown in 
Fig. 3.14 (Vasiliev and Tarnopol’skii, 1990). As can be seen, the diagrams have two 
nonlinear segments. Nonlinearity in the vicinity of zero stresses is associated with 
different lengths of fibers in the bundles, while nonlinear behavior of the bundle under 
stresses close to the ultimate values is caused by fracture of fibers with lower strength. 

Useful qualitative results can be obtained if we consider model bundles consisting 
of five fibers with different strength. Five such bundles are presented in Table 3.1 
showing the normalized strength of each fiber. As can be seen, the deviation of fiber 
strength is such that the mean strength, am= 1,is the same for all the bundles, while 
the variation coefficient,r,, changes from 31.6% for bundle No. 1 to zero for bundle 
No. 5. The last row in the table shows the effective (observed) ultimate force, F ,  for 
a bundle. Consider, for example, the first bundle. When the force rises up to F = 3, 

Table 3.1 
Strength of bundles consisting of fibers with different strength. 

Fiber no. Bundle no. 

1 2 3 4 5 

0.6 
0.8 
1 .o 
1.2 
1.4 

1.o 
31.6 

3 .2  

0.7 
0.9 
I .o 
1.1 
1.3 

1 .o 
22.4 

3.6 

0.85 
0.9 
1 .o 
1.1 
1.15 

I .o 
12.8 

4.25 

0.9 
0.95 
1.o 
1.Q5 
1.1 

1.o 
7.8 

4.5 

1 .o 
1.o 
1.o 
1.Q 
1 .o 
1 .o 
0 

5.0 
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f 

Fig. 3.13. Tension of a bundle of fibers. 

IS,GPa 

0 0.5 1 1.5 2 2.5 3 

Fig. 3.14. Stress-strain diagrams for bundles of carbon ( I )  and aramid (2) fibers. 

the stresses in all the fibers become oj= 0.6, and fiber No. 1 fails. After this 
happens, the force, F = 3, is taken by four fibers, and oj = 0.75 (j = 2,3 ,4 ,5) .  
When the force reaches the value F = 3.2, the stresses become oj= 0.8, and fiber 
No. 2 fails. After that, oj= 1.07 0’= 3,4,5).  This means that fiber No. 3 also fails 
under force F = 3.2. Then, for two remaining fibers, 0 4  = o5 = 1.6, and they also 
fail. Thus, F = 3.2 for bundle No. 1 .  In a similar way, F can be calculated for the 
other bundles in the table. As can be seen, the lower the fiber strength variation, the 
higher is F which reaches its maximum value, F = 5, for bundle No. 5 consisting 
of fibers with the same strength. 

Table 3.2 demonstrates that strength variation can be more important than the 
mean strength. In fact, while the mean strength, Sm,goes down for bundles No. 
1-5, the ultimate force, P ,  increases. So, it can be better to have fibers with relatively 
low strength and low strength variation rather than high strength fibers with 
high strength variation. 

3.2.3. Stress dijrusion in fibers interacting through the matrix 

The foregoing discussion concerned individual fibers or bundles of fibers that are 
not joined together. This is not the case for composite materials in which the fibers are 
embedded in the matrix material. Usually, the stiffness of matrix is much lower than 
that of fibers (see Table 1. l), and the matrix practically does not take the load applied 
in the fiber direction. But the fact that the fibers arejoined with the matrix even having 
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Table 3.2 
Strength of bundles consisting of fibers with different strength. 

Fiber no. Bundle no. 

1 2 3 4 5 

0.6 0.7 0.85 0.9 0.95 
0.8 0.9 0.9 0.85 0.95 
1.o 1.2 1.1 1.o 0.95 
1.6 1.4 1.15 1.05 0.95 
3.0 I .6 1.4 1 . 1  0.95 

*"I 1.4 1.16 1 .os I .o 0.95 

r, (%I 95.0 66.0 22.0 7.8 0 

F 3.2 3.6 4.25 4.5 4.75 

relatively low stiffness changes the mechanism of fibers interaction and considerably 
increases their effective strength. To show this, the strength of dry fiber bundles can be 
compared with the strength of the same bundles after they were impregnated with 
epoxy resin and cured. The results are listed in Table 3.3. As can be seen, composite 
bundles in which fibers are joined together with matrix demonstrate significantly 
higher strength, and the higher the fiber sensitivity to damage, the higher is the 
difference in strength of dry and composite bundles. The influence of matrix on the 
variation of strength is even more significant. As follows from Table 3.4, variation 
coefficientsof composite bundles are by an order lower than those of individual fibers. 

To clarify the role of matrix in composite materials consider a simple model of a 
unidirectional ply shown in Fig. 3.15 and apply the method of analysis developed 
for stringer panels (Goodey, 1946). 

Let the ply of thickness 6 consist of 2k fibers symmetrically distributed on both 
sides of the central fiber n = 0. The fibers are joined with layers of the matrix 
material, and the fiber volume fraction is 

(3.17) 

Table 3.3 
Strength of dry bundles and composite bundles. 

Fibers Sensitivity of fibers Ultimate tensile load P (N) Strength 
to damage increase ( X )  

Dry bundle Composite bundle 

Carbon High 14 26 
Glass Moderate 21 36 
Aramid Low 66 84 

85.7 
71.4 
21.3 
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Table 3.4 
Variation coefficient for fibers and unidirectional composites. 

Fibers Variation coefficient r2 (YO) 

Fibers Composite 

Glass 
Carbon 
Aramid 
Boron 

29 
30 
24 
23 

2.0 
4.7 
5.0 
3.0 

Let the central fiber have a crack induced by the fiber damage or by the shortage of 
this fiber strength. At a distance from the crack, the fibers are uniformly loaded with 
stress 0 (see Fig. 3.15). 

First, derive the set of equations describing the ply under study. Because the 
stiffness of the matrix is much less than that of fibers, we neglect the stress in the 
matrix acting in the x-direction and assume that the matrix works only in shear. We 
also assume that there are no displacements in the y-direction. 

Considering equilibrium of the last (n  = k) fiber, an arbitrary fiber, and the central 
(n = 0) fiber shown in Fig. 3.16 we arrive at the following equilibrium equations 

k 

( n  + 1) 
n 

(n- 1) 

1 

0 

I' 

sym. sym. 

Fig. 3.15. Model of a unidirectional ply with a broken fiber. 

(3.18) 
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Fig. 3.16. Stresses acting in fibers and matrix layers for the last (a), arbitrary nth fiber (b), and the central 
n = 0 fiber (c). 

Constitutive equations for fibers and matrix can be written as 

Here Efis the fiber elasticity modulus and Gm is the matrix shear modulus, while 

E n  = .:, (3.20) 
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- 1  -I 

Fig. 3.17. Shear strain in the matrix layer. 

is the fiber strain expressed in terms of the displacement in the x-direction. Shear 
strain in the matrix follows from Fig. 3.17, Le., 

(3.21) 

Thus obtained set of equations, Eqs. (3.18)-(3.21) is complete - it includes 10k + 3 
equations and contains the same number of unknown stresses, strains and 
displacements. 

Consider the boundary conditions. If there is no crack in the central fiber, the 
solution of the problem is evident and has the form a,, = a, z,, = 0. Assuming that 
the perturbation of the stressed state induced by the crack vanishes at a distance 
from the crack we arrive at  

a,& + m) = 0: z,(x + 00) = 0 . (3.22) 

Because of the crack in the central fiber we have 

O(](X = 0) = 0 . 

For the rest fibers, symmetry conditions yield 

u , , ( x = O ) = O  ( n =  1 ,2 ,3. . . . .k )  . 

(3.23) 

(3.24) 

To solve the problem, we use the stress formulation and, in accordance with Section 
2. IO, should consider equilibrium equations in conjunction with compatibility 
equations expressed in terms of stresses. 

First, transform equilibrium equations introducing the stress function, F(x)  such 
that 

T , ~=Fi, E,(x+ 03) = 0 . (3.25) 

Substituting Eqs. (3.25) into equilibrium equations, Eqs. (3.18), integrating them 
from x to XI and taking into account Eqs. (3.22) and (3.25) we get 
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(3.26) 

Compatibility equations follow from Eqs. (3.20) and (3.21), Le., 

1 1y, = -((E, - & - I )  . 
a m  

Using constitutive equations, Eqs. (3.19), we can write them in terms of stresses 

Substituting stresses from Eqs. (3.25), (3.26) and introducing dimensionless 
coordinate X =x / a  (see Fig. 3.15) we finally arrive at the following set of governing 
equations: 

where in accordance with Eqs. (3.17) 

(3.27) 

(3.28) 

With due regard to the second equation in Eqs. (3.25) we can take the general 
solution of Eqs. (3.27) in the form 

Fn(T)= Ane-j3 . (3.29) 

Substitution into Eqs. (3.27) yields: 

(3.30) 

(3.31) 

(3.32) 
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Finite-difference equation, (3.31) can be reduced to the following form 

A,T+I- 2A,,cosO + &.I  = 0 , 

where 

;1' 

2/2
cos@=1 -~ 

71 

(3.33) 

(3.34) 

As can be readily checked the solution for Eq. (3.33) is 

A,, = B cos nO + C sin nO (3.35) 

while Eq. (3.34) yields after some transformation 

eI = 2 p  sin -
2 (3.36) 

Substituting the solution, Eq. (3.35), into Eq. (3.30) we obtain after some 
transformation 

B = -Ctan(k + I ) $  

Thus, Eq. (3.35) can be written as 

A,, = C [sinn8 - cos a @ .tan(k + l )O]  . (3.37) 

Substituting Eq. (3.37) into Eq. (3.32) and omitting rather cumbersome trigono-
metric transformations we arrive at the following equation for 0 

e 
tank$= -tan- . (3.38)2 

Z 

Fig. 3.18. Geometric interpretation of Eq. (3.38) for k = 4. 
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Because of periodic properties of tangent function entering Eq. (3.38), it has k + 1 
different roots corresponding to intersection points of the curves z = tan ke and 
z = - tan 8/2. For the case k = 4 considered below as an example, these points are 
shown in Fig. 3.18. Further transformation allows us to reduce Eq. (3.38) to 

2k+  1 
2

sin-e = o ,  

from which it follows that 

(3.39)
27cie, =- ( i=O,1 ,2,...,k) .

2k+  1 

The first root, 60 = 0, corresponds to A = 0 and Fn = const, Le., to the ply without a 
crack in the central fiber. So, Eq. (3.39) specifies k roots ( i  = 1 , 2 , 3 , .. .,k)  for the 
ply under study, and solution in Eqs. (3.29) and (3.37) can be generalized as 

k 

F,,(js)= Ci[sinn 4  - cos n8, tan(k + l)8;]e-’.<? , (3.40) 
1= I 

where, in accordance with Eq. (3.36) 

(3.41)QiA; = 2psin-
2 

and O j  are determined with Eq. (3.39). 
Using Eq. (3.38) we can transform Eq. (3.40) to the following final form 

k 

F,(x)= CjS,,(8i)e-’.ii , 
1= I 

where 

(3.42) 

(3.43) 

Applying Eqs. (3.25) and (3.26) we can find shear and normal stresses, i.e., 

(3.44)
I k  

a ;=I 
~ ( x )= --xAiC;S,(O;)e-;+x (n = 1 , 2 , 3 , ... ,k)  , 

(3.45) 
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(3.47) 

Displacements can be determined with the aid of Eqs. (3.19), (3.21) and (3.25). 
Changing .Y for 2 =x/a we get 

For the first fiber (n = l), we have 

Substituting Eq. (3.42) into these equations we arrive at 

To determine coefficients Ci, we should apply 

(n=2,3 ,4 ,  ... , k )  , (3.48) 

(3.49) 

the boundary conditions and write 
Eqs. (3.23) and (3.24) in the explicit form-using Eqs. (3.47)-(3.49). Substituting S,, 
from Eq. (3.43) and 1.i from Eq. (3.41) we get 

Bi 2n - 12citan sin- Oi = O  (n  = 2,3,4, ...,k ) ,
2 

i: I 

Introducing new coefficients 

Oi 
2

Di=Cj tan- , 

we arrive at the final form of the boundary conditions, Le., 

(3.50) 

(3.51) 

(3.52) 
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k Oi aG,
C ~ ~ s i n -= -uo(O) 
i= I 2 2pan1 

(3.53) 

This set contains k +  1 equations and includes k unknown coefficients D;and 
displacement ~ “ ( 0 ) .  

The foregoing set of equations allows us to obtain the exact analytical solution for 
any number of fibers, k.To find this solution, perform some transformations. First, 
multiply Eq. (3.52) by sin[(2n - l)0.,/2] and sum up all the equations from n = 2 to 
n = k. Adding Eq. (3 .53)  for n = 1 multiplied by sin(O,,/2) we obtain 

2n - 1 2n - 1 aGm 0.S =-ug (0)sin -
2

0; sin -22oisin-
2 h a r n2n=l ;=I 

Now change the sequence of summation, i.e., 

2n - 1 2 n - 1 aGm 0,s8; sin - = -u0(0)  sin- .20;i=l 2n=l sin2 2 2wnl 2 

Using the following known series 

sin 2k0cos(2n - I )e =-
2sinO ’ 

k 

n= I 

we get in several steps 

2n - 1 2n - 1 
0.5Oisin -

2
R ~ , ~= s i n 2  

A 

I?= I 

12n - 1 2n - 1l k=-E2 n= 1 [cos, (ei - OF) - cos2 (oi+e,,) 

-
- O.,) - sink(&+ 6,) 
- e,,) sin f (oi+ €5) 

Using Eq. (3.38) we can conclude that R;., = 0 for i # s. For the case 
have 

(3.54) 

i = s, we 
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As a result, Eq. (3.54) yields 

2aGmu~(0)sin (0.J2) sin O., 
p,(2k sin O,s - sin 2 M V )D,v= (s=  1 ,  2 , 3). . .)k )  . 

Substituting these coefficients into Eq. (3.51) we can find uo(O), Le., 

)- 'sin(Oi/2) sin Oi 
2k sin Oi- sin 2ke1 

15 

(3.55) 

(3.56) 

Thus, the solution for the problem under study is specified with Eqs. (3.44)-(3.50), 
(3.55) and (3.56). 

For example, consider a carbon-poxy ply with the following parameters: 
Ef = 250 GPa, G ,  = 1 GPa, uf = 0.6, k = 4. Distribution of the normalized stresses 
in the fibers along the ply is shown in Fig. 3.19, while the same distribution of shear 
stresses in the matrix is presented in Fig. 3.20. As can be seen, in the vicinity of the 

0 
1.5 

1.25 

1 

0.75 

0.5 

0.25 

0 
0 5 10 15 20 25 30 35 40 45 50 

Fig. 3.19. Distribution of normal stresses along the fibers n = 0,1 ,2 ,3 ,4  for k = 4 Er = 250 GPa. 
G, = 1 GPa. 

0 

-0.02 

-0.04 

4.06 

4.08 

-0.1 
0 5 10 15 20 25 30 35 40 45 50 

Fig. 3.20. Distribution of shear stresses along the fibers fork = 4, Ef = 250 GPa, G,,,= 1 GPa. Numbers 
of the matrix layers: (- - - -) n = I ;  (. .. .. ..) n = 2; (- - - -) n = 3; (- -- -) n = 4. 
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crack in the central fiber, the load carried by this fiber is transmitted by shear 
through the matrix to adjacent fibers. At a distance from the end of the fiber more 
than c, the stress in the broken fiber becomes close to cr, and for 3 > &, the fiber 
behaves as if there is no crack. A portion of the broken fiber corresponding to 
0 5 x 5 c. is not fully effective in resisting the applied load, and Z i  = K.a is referred to 
as the fiber ineffective length. Because the fiber defects are randomly distributed 
along its length, their influence on the strength of the ply is minimal if there are no 
other defects in the central and the adjacent fibers within distance Zi from the crack. 
To minimize the probability of such defects, we should minimize li which depends 
on fiber and matrix stiffnesses and material microstructure. 

To evaluate Zi, consider Eq. (3.47) and assume that cro(X) becomes close to cr if 

e-”;“ -- k  7 

where k is some small parameter indicating how close go(%) should be to o to neglect 
the difference between them (as a matter of fact this difference vanishes only for 
X + 00). Taking approximately Ai = 2p in accordance with Eq. (3.41) and using 
Eq. (3.28) specifying ,u we arrive at 

For k = 0.01 we get 

li = 2 . 3 ~. /=$ . (3.57) 

For a typical carbon-epoxy ply (see Fig. 3.19) with a = 0.016 mm and = 0.6, 
Eq. (3.57) yields 0.29 mm. 

Thus, for real composites, length Zi is very small, and this expIains why a 
unidirectional composite demonstrates much higher strength in longitudinal tension 
than a dry bundle of fibers (see Table 3.3). Reducing G,, Le., the matrix stiffness,we 

1.5 

1.25 

1 

0.75 

0.5 

0.25 

0 -
X

0 5 10 15 20 25 30 35 40 45 50 

Fig. 3.21. Distribution of normal stresses along the fibers n = 0, I ,  2 ,3,4 for k = 4, Er = 250 GPa, 
G, = 0.125 GPa. 
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0 5 10 15 20 25 30 35 40 45 50 

Fig. 3.22. Distribution of shear stresses along the fibers for k =4, Ef = 250 GPa, G,,, = 0.125 GPa. 
Numbers of the matrix layers: (- - - -) n = 1; (.......) n = 2; (-- --) n = 3; (--- -) n = 4. 

increase the fiber ineffectivelength which becomes infinitely large for G, ---f 0. This 
effect is demonstrated in Fig. 3.21 which corresponds to the material whose matrix 
shear stiffness is much lower than that in the foregoing example (see Fig. 3.19). For 
this case, I ,  = 50, and Eq. (3.57) yields Zi = 0.8 mm. Distribution of shear stresses 
in this material is shown in Fig. 3.22. Experiments with unidirectional glass-epoxy 
composites (Et-= 86.8 GPa, uy = 0.68, a = 0.015) have shown that reduction of the 
matrix shear modulus from 1.08 GPa (2; = 0.14 mm) to 0.037 GPa (Z; = 0.78 mm) 
results in reduction of longitudinal tensile strength from 2010 to 1290 MPa, Le., by 
35.8% (Chiao, 1979). 

Ineffective length of a fiber in a matrix can be found experimentally by the single 
fiber fragmentation test. For this test, a fiber is embedded in a matrix, and tensile 
load is applied to the fiber through the matrix until the fiber brakes. Further loading 
results in fiber fragmentation, and the length of the fiber fragment which no longer 
brakes is the fiber ineffective length. For a carbon fiber in epoxy matrix, l;  = 0.3 mm 
(Fukuda et al., 1993). 

According to the foregoing reasoning, it looks like the stiffness of the matrix 
should be as high as possible. However, there exists the upper limit of this stiffness. 
Comparing Figs. 3.20 and 3.22 we can see that the higher the Gn,,the higher is the 
shear stress concentration in the matrix in the vicinity of the crack. If the maximum 
shear stress, z",, acting in the matrix reaches the ultimate value, i,, delamination 
will occur between the matrix layer and the fiber, and the matrix will not transfer the 
load from the broken fiber to the adjacent ones. Maximum shear stress depends on 
the fiber stiffness - the lower the fiber modulus, the higher is z,. This is shown in 
Figs. 3.23 and 3.24, where shear stress distributions are presented for aramid fibers 
(Ef = 150 GPa) and glass fibers (Ef = 90 GPa), respectively. 

Finally, it should be emphasized that the plane model of a ply, considered in this 
section (see Fig. 3.15), provides only qualitative results concerning fibers and matrix 
interaction. In real materials, a broken fiber is surrounded with more than two fibers 
(at least 5 or 6 as can be seen in Fig. 3.2), so the stress concentration in these fibers 
and in the matrix is much lower than would be predicted by the foregoing analysis. 
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Fig. 3.23. Distribution of shear stresses along the fibres fork = 4, EI.= 150 GPa, G,, = I GPa. Numbers 
of the matrix layers: (- - --) n = I ;  (. . . . ...) n = 2; (- -- -) n = 3; (-I I9) n = 4. 
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Fig. 3.24. Distribution of shear stresses along the fibrcs for k = 4, EI.= 90 GPa, G,,, = I GPa. Numbers 
of the matrix layers: (- - - -) n = I ;  (. . .. .. .) n = 2; (- -- -) n = 3; (- II9) n = 4. 

Fig. 3.25. Typical stress-strain diagrams of brittle (1) and ductile (2) metal alloys. 

For hexagonal fiber distribution (see Fig. 3.4), stress concentration factor for the 
fibers does not exceed 1.105 (Tikhomirov and Yushanov, 1980). The effect of fiber 
breakage on tensile strength of unidirectional composites has been recently studied 
by Abu-Farsakh et al. (2000). 



Chapter 3.  Mechanics of a unidirectional ply 19 

3.2.4.Fracture toughness 

Fracture toughness is a very important characteristic of a structural material 
indicating resistance of a material to cracks and governed by the work needed to 
destroy a material (work of fracture). As known, there exist brittle and ductile metal 
alloys whose typical stress-strain diagrams are shown in Fig. 3.25. Comparing 
alloys with one and the same basic metal (e.g., steel alloys) we can see that while 
brittle alloys have higher strength, 5, ductile alloys have higher ultimate elongation, 
E, and, as a result, higher work of fracture which is proportional to the area under 
the stress-strain diagram. Though brittle materials have, in general, higher strength, 
they are sensitive to cracks which propagating can cause material failure under 
stress that is much lower than the static strength. That is why designers usually 
prefer ductile materials with lower strength but higher fracture toughness. A typical 
dependence of fracture toughness on static strength for metals is shown in Fig. 3.26 
(line I). For composites, this dependence is entirely different (line 2) - higher static 
strength corresponds usually to higher fracture toughness (Mileiko, 1982). This 
phenomenon is demonstrated for a unidirectional boron-aluminum composite in 
Fig. 3.27 (Mileiko, 1982). As can be seen, an increase in fiber volume fraction, of, 

Fig. 3.26. Typical relations between fracture toughncss (K) and strength (3) for metals ( 1 )  and 
composites (2). 

0 

0 0.1 0.2 0.3 0.4 OB 

Fig. 3.27. Dependence of static strength ( I ) ,  work of fracture (2),and fatigue strength (3) on fiber volume 
fraction for a boron -aluminum composite material. 
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Fig. 3.28. Mechanism of the crack stopping at the fiber-matrix interface. 

results not only in higher static strength along the fibers (line l), which is quite 
natural. It is also accompanied with elevation of the work of fracture (line 2) and 
consequently, in the increase of material fatigue strength (bending under IO6 cycles, 
line 3), which shows its sensitivity to cracks. 

The reason for such a specific behavior of composite materials is associated with 
their inhomogeneous microstructure, particularly, with fiber-matrix interfaces that 
restrain free propagation of a crack (see Fig. 3.28). Of some importance are also 
fiber defects, local delaminations and fiber strength deviation, which reduce the 
static strength but increase the fracture toughness. As a result, combining brittle 
fibers and brittle matrix we usually arrive at the composite material whose fracture 
toughness is higher than that of its components. 

Thus, we can conclude that composites comprise a new class of structural 
materials entirely different from traditional man-made materials for the several 
reasons. First, using thin fibers we make an attempt to utilize the high strength 
capacity that is naturally inherent in all the materials. Second, this utilization is 
provided by the matrix material, which increases the fiber performance and makes 
it possible to manufacture composite structures. Third, combination of fibers and 
matrices can result in new qualities of composite materials that are not inherent 
either in individual fibers or in the matrices and are not described by the laws of 
mechanical mixtures. For example, as noted above, brittle fiber and matrix 
materials, both having low fracture toughness, can provide a heterogeneous 
composite material with high fracture toughness. 

3.3. Micromechanics of a ply 

Consider a unidirectional composite ply under the action of in-plane normal and 
shear stresses as in Fig. 3.29. Because normal stresses do not change the right angle 
between axes 1 and 2, and shear stresses do not cause elongations in the longitudinal 
and transverse directions 1 and 2, the ply is orthotropic, and the corresponding 
constitutive equations, Eqs. (2.48) and (2.53) yield for the case under study 
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Fig. 3.29. A unidirectional ply under in-plane loading. 

1 
GI2 

Y12 = -212 

The inverse form of these equations is 

(3.58) 

(3.59) 

where 

and the following symmetry condition is valid 

ElV12  = E2V21 . (3.60) 

Constitutive equations, Eqs. (3.58) and (3.59), include effective or apparent 
longitudinal, El, transverse, E2, and shear, G12, moduli of a ply and Poisson’s 
ratios vl2 and v21 only one of which is independent, while the second one can be 
found from Eq. (3.60). 

Elastic constants, El, E2, Gl2 and v12 or v21, are governed by fibers and matrix 
properties and the ply microstructure, i.e., the shape and size of the fibers’ cross-
sections, fiber volume fraction, distribution of fibers in the ply, etc. The problem of 
micromechanics is to derive the corresponding governing relationships, i.e., to 
establish the relation between the properties of a unidirectional ply and those of its 
constituents. 

To do this, we should know first the mechanical characteristics of the fibers and 
the matrix material of the ply. To determine the matrix modulus, E,, its Poisson’s 



82 Mechanics and analysis of composite materials 

Fig. 3.30. Specimens of matrix material. 

-!!!I! - -  
C 

Fig. 3.31. Testing of the matrix specimen. 

ratio, v,, and strength, d,, traditional for material testing specimens and testing 
procedures can be used (see Figs. 3.30 and 3.31). Shear modulus, G,, can be 
calculated with the aid of Eq. (2.57). To find the fibers properties, is a more 
complicated problem. There exist several methods to test elementary fibers by 
bending or stretching 10-30 mm long fiber segments. All of them are rather specific 
because of small (about 0.01 mm) fiber diameter, and, what is more important, fiber 
properties in a composite material can be different from those of individual fibers 
(see Section 3.2.3) with pre-assigned lengths provided by these methods. 

It is worth to know the fibers actual modulus and strength not only for 
micromechanics but also to check the fibers quality before they are used to fabricate 
a composite part. For this purpose, a simple and reliable method has been 
developed to test the fibers in the actual conditions. According to this method, a fine 
tow or an assembly of fibers is carefully impregnated with resin, slightly stretched to 
avoid fiber waviness and cured to provide a specimen of the so-called microcom- 
posite material. The microcomposite strand is ovenvrapped over two discs as in 
Fig. 3.32 or fixed in special friction grips as in Fig. 3.33 and tested under tension to 
determine the ultimate tensile force F and strain E corresponding to some force 
F < F .  Then, the resin is removed by burning it out, and the mass of fibers being 
divided by the strand length and fiber density yields the cross-sectional area of fibers 
in the strand, Af.  Fiber strength and modulus can be calculated as 
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Fig. 3.32. Testing of a microcomposite specimen ovenvrapped over discs. 

In addition to fiber and matrix mechanical properties, micromechanical analysis 
requires the information about the ply microstructure. Depending on the level of this 
information, there exist micromechanical models of different levels of complexity. 

The simplest or zero-order model of a ply is a monotropic model ignoring strength 
and stiffness of the matrix and assuming that the ply works only in the fiber direc- 
tion. Taking E2 = 0 and Glz = 0 in Eqs. (3.59) and putting vl2 = 0 in accordance 
with Eq. (3.60) we arrive at the following equations describing this model 

v- 

Fig. 3.33. Testing of a microcomposite specimen gripped at the ends 
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=EIEI,  02 = 0, t i 2  = 0 , (3.61) 

where El =E p f .  Being very simple and too approximate to be used in stress-strain 
analysis of composite structures, Eqs. (3.61) are extremely efficient for design of 
optimal composite structures in which the loads are carried mainly by fibers (see 
Chapter 8). 

First-order models allow for the matrix stiffness but require only one structural 
parameter to be specified-fiber volume fraction, u f .  Because the fiber distribution in 
the ply is not important for these models, the ply can be presented as a system of 
strips shown in Fig. 3.34 and simulating fibers (shadowed areas) and matrix (light 
areas). Structural parameters of the model can be expressed in terms of fiber and 
matrix volume fractions only, i.e., 

(3.62) 

Assume that the model ply is under in-plane loading with some effective stresses 01, 

0 2 ,  and t i 2  as in Fig. 3.34 and find the corresponding effective elastic constants El ,  
E2, G12, v12, and v21 entering Eqs. (3.58). Constitutive equations for isotropic fiber 
and matrix strips can be written as 

(3.63) 

Here f and m indices correspond, as earlier, to fibers and matrix, respectively. 
Let us make some assumptions concerning the model behavior. First, it is natural 

to assume that effective stress resultant ala is distributed between fiber and matrix 
strips and that the longitudinal strains of these strips are the same that the effective 
(apparent) longitudinal strain of the ply, 8 1 ,  i.e., 

(3.64) 
(3.65) 

Second, as can be seen in Fig. 3.34, under transverse tension the stresses in the strips 
are the same and are equal to the effective stress 02, while the ply elongation in the 
transverse direction is the sum of the fiber and matrix strips elongations, i.e., 

fa2= O y  = a2 , 
Aa = Aaf + Aam 

(3.66) 

(3.67) 
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Fig. 3.34. A first-order model of a unidirectional ply. 

Introducing transverse strains 

we can write Eq. (3.67) in the following form 

The same assumptions can be made for shear stresses and strains, so that 

(3.69) 

(3.70) 

With due regard to Eqs. (3.65), (3.66), and (3.69) constitutive equations, Eqs. (3.63) 
can be reduced to 

1 , 1 
Ef E m

&I = -(e, - VfUZ), &I =-(e$ - vmcJz) , (3.71) 

(3.73) 

The first two equations, Eqs. (3.71), allow us to find longitudinal stresses, Le., 

0: EfSl + Vf62, e? =EmEl + V , ~ J Z  . (3.74) 

Equilibrium equation, Eq. (3.64) can be rearranged with the aid of Eqs. (3.62) to the 
form 

01 = OfUf + b;lVn, . (3.75) 
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Substituting Eqs. (3.74) into this equation we can express e1 in terms of 01and 6 2 .  

Matching this result to the first constitutive equation in Eqs. (3.58) we arrive at 

(3.77) 

The first of these equations specifies the apparent longitudinal modulus of the ply 
and corresponds to the so-called rule of mixtures according to which the property of 
a composition can be calculated as the sum of its constituent material properties 
multiplied by the corresponding volume fractions. 

Now consider Eq. (3.68) that can be written as 

f~2 = EZUf + . 

Substituting strains E: and E? from Eqs. (3.72), stresses cf and 0;" from 
Eqs. (3.74) and E ]  from Eqs. (3.58) with due regard to Eqs. (3.76) and (3.77) we 
can express ~2 in terms of 01 and 62.Comparing this expression with the second 
constitutive equation in Eqs. (3.58) we get 

(3.78) 

Using Eqs. (3.76) and (3.79) we have 

V2I = v f q +  v,u, . (3.80) 

This result corresponds to the rule of mixtures. Another Poisson's ratio can be 
found from Eqs. (3.77) and (3.78). Finally, Eqs. (3.58), (3.70), and (3.73) yield the 
apparent shear modulus 

(3.81) 

This expression can be derived from the rule of mixtures if we use compliance 
coefficients instead of stiffnesses as in Eq. (3.76). 

Since the fiber modulus is typically many times greater than the matrix modulus, 
Eqs. (3.76), (3.78), and (3.81) can be simplified neglecting small terms and presented 
in the following approximate form 
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Only two of the foregoing expressions, namely Eq. (3.76) for E ,  and Eq. (3.80) 
for vz1, both following from the rule of mixtures, demonstrate good agreement with 
experimental results. Moreover, expressions analogous to Eqs. (3.76) and (3.80) 
follow practically from all numerous studies based on different micromechanical 
models. Comparison of predicted and experimental results is presented in 
Figs. 3.35-3.37, where theoretical dependencies of normalized moduli on the fiber 
volume fraction are shown with lines. The circles correspond to the test data for 
epoxy composites reinforced with different fibers that were obtained by the authors 
or taken from publications of Tarnopol'skii and Roze (1969), Kondo and Aoki 
(1982), Lee et al. (1995). As can be seen in Fig. 3.35, not only first-order model, 
Eq. (3.76), but zero-order model, Eqs. (3.61), as well, provide fair prediction for E , ,  
while Figs. 3.36 and 3.37 for E2 and Gl2 call for the improvement of the first-order 
model (the corresponding results are shown with solid lines). 

Second-order models allow for the fiber shape and distribution, but in contrast to 
higher-order models ignore complicated stressed state of fibers and matrix under the 
ply loading shown in Fig. 3.29. To demonstrate this approach, consider a layer-wise 
fiber distribution (see Fig. 3.5) and assume that the fibers are absolutely rigid and 
the matrix is in the simplest uniaxial stressed state under transverse tension. The 
typical element of this model is shown in Fig. 3.38 from which we can obtain the 
following equation 

nR2 nR 
2Ra 2a

q=-=-. 

Because 2R < a, vf < n/4 = 0.785. Equilibrium condition yields 

R 

2R02 = / crndx3 , 
- R  

(3.82) 

(3.83) 

where x3 =Rcosa and 02 is some average transverse stress that induces average 
strain 

0.8 

0.6 

0.4 

0.2 

0 
0 0.2 0.4 0.6 0.8 

Fig. 3.35. Dependence of the normalized longitudinal modulus on fiber volume fraction: (- - - -) zero-
order model, Eqs. (3.61); (-) first-order model, Eqs. (3.76); (*) experimental data. 
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0 -Vf 
0 0.2 0.4 0.6 0.8 

Fig. 3.36. Dependence of the normalized transverse modulus on fiber volume fraction: (-) first-
order model, Eq. (3.78); (. ..... .) second-order model, Eq. (3.89); (- - - -) higher-order model (elasticity 

solution) (Van Fo Fy, 1966); (- -- -) the upper bound; (*) experimental data. 

Aa 
a 

E2 = -

such that the effective (apparent) transverse modulus is calculated as 

GI, 1% 
10 -

8 -

6 -

4 -

2 -

(3.84) 

(3.85) 

0 0.2 0.4 0.6 0.8 

Fig. 3.37. Dependence of the normalized in-plane shear modulus on fiber volume fraction: (-) first-
order model, Eq. (3.81); (. ' ... ..) second-order model, Eq. (3.90); (- - - -) higher-order model (elasticity 

solution) (Van Fo Fy. 1966); (0 )  experimental data. 
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Fig. 3.38. Microstructuralmodel of the second-order. 

The strain in the matrix can be determined with the aid of Fig. 3.38 and Eq. (3.84), 
i.e., 

82--Aa-Aa 
Em = -

l ( a )  - a - 2R sin CI (3.86) 

where in accordance with Eq. (3.82) 

(3.87) 

Assuming that there is no strain in the matrix in the fiber direction and there is no 
stress in the matrix in the x3-direction we have 

A = - = > .2R 421 
a n 

E m  Em om=-.
1 -v; (3.88) 

Substituting o2 from Eq. (3.85) and om,from Eq. (3.88) into Eq. (3.83) and using 
Eq. (3.86) to express E~ we arive at 

Calculating the integral and taking into account Eq. (3.87) we finally get 

where 

(3.89) 

1 E-;. 
= ctan-'I - A  
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Similar derivation for an in-plane shear yields 

(3.90) 

Dependencies of E2 and G12 on the fiber volume fraction corresponding to 
Eqs. (3.89) and (3.90) are shown in Figs. 3.36 and 3.37 (dotted lines). As can be 
seen, the second-order model of a ply provides better agreement with experimental 
results than the first-order model. This agreement can be further improved if 
we take a more realistic microstructure of the material. Consider the actual 
microstructure shown in Fig. 3.2 and single out a typical square element with size a 
as in Fig. 3.39. Dimension a should provide the same fiber volume fraction for the 
element as for the material under study. To calculate E2, we divide the element into 
a system of thin (h << a) strips parallel to axis x2. The ith strip is shown in Fig. 3.39. 
For each strip, we measure the lengths, lo, of the matrix elements the j th of which 
is shown in Fig. 3.39. Then, equations analogous to Eqs. (3.83), (3.88), and (3.86) 
acquire the form 

and the final result is 

where h = h/a, Gj = Io/a. The second-order models considered above can be readily 
generalized to account for the fiber transverse stiffness and matrix nonlinearity. 

Numerous higher-order microstructural models and descriptive approaches have 
been proposed, including 
0 analytical solutions in the problems of elasticity for an isotropic matrix having 

regular inclusions - fibers or periodically spaced groups of fibers, 

Fig. 3.39. Typical structural element. 
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numerical (finite element, finite difference methods) stress analysis of the matrix in 

0 averaging of stress and strain fields for a media filled in with regularly or 

0 asymptotic solutions of elasticity equations for inhomogeneous solids characteri-

0 photoelasticity methods. 
Exact elasticity solution for a periodical system of fibers embedded in an isotropic 
matrix (Van Fo Fy (Vanin), 1966) is shown in Figs. 3.36 and 3.37. As can be 
seen, due to high scatter of experimental data, the higher-order model does not 
demonstrate significant advantages with respect to elementary models. 

Moreover, all the micromechanical models can hardly be used for practical 
analysis of composite materials and structures. The reason for this is that 
irrespective of how rigorous the micromechanical model is, it cannot describe quite 
adequately real material microstructure governed by a particular manufacturing 
process, take into account voids, microcracks, randomly damaged or misaligned 
fibers and many other effects that cannot be formally reflected in a mathematical 
model. Because of this, micromechanical models are mostly used for qualitative 
analysis providing us with understanding of how material microstructural para-
meters affect its mechanical properties rather than with quantitative information 
about these properties. Particularly, the foregoing analysis should result in two main 
conclusions. First, the ply stiffness along the fibers is governed by the fibers 
and linearly depends on the fiber volume fraction. Second, the ply stiffness across 
the fibers and in shear is determined not only by the matrix (which is natural), but 
by the fibers as well. Though the fibers do not take directly the load applied in 
the transverse direction, they significantly increase the ply transverse stiffness (in 
comparison with the stiffness of a pure matrix) acting as rigid inclusions in the 
matrix. Indeed, as can be seen in Fig. 3.34, the higher the fiber fraction, af, the lower 
is the matrix fraction, a,, for the same a, and the higher stress 02 should be applied 
to the ply to cause the same transverse strain ~2 because only matrix strips are 
deformable in the transverse direction. 

Due to the aforementioned limitations of micromechanics, only the basic models 
were considered above. Historical overview of micromechanical approaches and 
more detail description of the corresponding results can be found elsewhere 
(Bogdanovich and Pastore, 1996; Jones, 1999). 

To analyze the foregoing micromechanical models we used traditional approach 
based on direct derivation and solution of the system of equilibrium, constitutive, 
and strain-displacement equations. As known, the same problems can be solved 
with the aid of variational principles discussed in Section 2.1 1. In application to 
micromechanics, these principles allow us not only to determine apparent stiffnesses 
of the ply, but also to establish the upper and the lower bounds on them. 

Consider for example the problem of transverse tension of a ply under the action 
of some average stress 02 (see Fig. 3.29) and apply the principle of minimum strain 
energy (see Section 2.1 1.2). According to this principle, the actual stress field 
provides the value of the body strain energy, which is equal or less than that of any 

the vicinity of fibers, 

randomly distributed fibers, 

zed with a small microstructural parameter (fiber diameter), 
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statically admissible stress field. Equality takes place only if the admissible stress 
state coincides with the actual one. Excluding this case, i.e., assuming that the class 
of admissible fields under study does not contain the actual field we can write the 
following strict inequality 

Wadm, > w,""' . (3.91) 

For the problem of transverse tension, the fibers can be treated as absolutely rigid, 
and only the matrix strain energy can be taken into account. We also can neglect the 
energy of shear strain and consider the energy corresponding to normal strains only. 
With due regard to these assumptions, we use Eqs. (2.51) and (2.52) to get 

(3.92) 
vm 

where Vm is the volume of the matrix and 

u =4(O;"&f +OFEy + OF&?) . (3.93) 

To find energy W, entering inequality (3.91), we should express strains in terms of 
stresses with the aid of constitutive equations, i.e., 

1&2" = -(cy - v,oy - vmo$),E m  (3.94) 

m1 
E m  

Em - -(OY - VmO, - VmO?) .3 -

Consider first the actual stress state. Let the ply in Fig. 3.29 be loaded with stress 0 2  

inducing apparent strain ~2 such that 

(3.95) 

Here, EYt is the actual apparent modulus, which is not known. With due regard to 
Eqs. (3.92) and (3.93) we get 

(3.96) 

where V is the volume of the material. As an admissible field, we can take any state 
of stress that satisfies the equilibrium equations and force boundary conditions. 
Using the simplest first-order model shown in Fig. 3.34 we assume that 

01"= op = 0, oy = 62 . 
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Then, Eqs. (3.92H3.94) yield 

93 

(3.97) 

Substituting Eqs. (3.96) and (3.97) into inequality (3.91) we arrive at 

where in accordance with Eqs. (3.62) and Fig. 3.34 

This result specifying the lower bound on the apparent transverse modulus follows 
from Eq. (3.78) if we put Er -+ m. Thus, the lower (solid) line in Fig. 3.36 represents 
actually the lower bound on E2. 

To derive the expression for the upper bound, we should use the principle of 
minimum total potential energy (see Section 2.1 1 . 1 )  according to which (we again 
assume that the admissible field does not include the actual state) 

Tadm > Tact 1 (3.98) 

where T = W, - A .  Here, &: is determined with Eq. (3.92) in which stresses are 
expressed in terms of strains with the aid of Eqs. (3.94) and A ,  for the problem 
under study, is the product of the force acting on the ply by the ply extension 
induced by this force. Because the force is the resultant of stress 0 2  (see Fig. 3.29) 
which induces strain E:! the same for actual and admissible states, A is also the same 
for both states, and we can present inequality (3.98) as 

F F y m  > . (3.99) 

For the actual state, we can write equations similar to Eqs. (3.96), i.e., 

where V = 2Ra in accordance with Fig. 3.38. For the admissible state, we use the 
second-order model (see Fig. 3.38) and assume that 

where E, is the matrix strain specified by Eq. (3.86). Then, Eqs. (3.94) yield 

(3.101) 
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where 

Substituting Eqs. (3.101) into Eq. (3.93) and performing integration in accordance 
with Eq. (3.92) we get 

Here 

(3.102) 

and r (1)  is given in notation to Eq. (3.89). Applying Eqs. (3.100) and (3.102) in 
conjunction with inequality (3.99) we arrive at 

where 

Z E mE' -
- 20f(1 - 2vmp.J 

is the upper bound on E2 shown in Fig. 3.36 with a broken line. 
Taking statically and kinematically admissible stress and strain fields that are 

more close to the actual state of stress and strain one can increase E: and decrease 
E; making the difference between the bounds smaller (Hashin and Rosen, 1964). 

It should be emphasized that thus established bounds are not the bounds on the 
modulus of a real composite material but on the result of calculation corresponding 
to the accepted material model. Indeed, return to the first-order model shown in 
Fig. 3.34 and consider in-plane shear with stress TI?.As can be readily proved, the 
actual stress-strain state of the matrix in this case is characterized with the following 
stresses and strains 

(3.103) 

Assuming that fibers are absolutely rigid and taking stresses and strains in 
Eqs. (3.103) as statically and kinematically admissible we can readily find that 
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Thus, we have found the exact solution, but its agreement with experimental data is 
rather poor (see Fig. 3.37) because the material model is not quite adequate. 

As follows from the foregoing discussion, micromechanical analysis provides only 
qualitative prediction of the ply stiffness. The same is true for the ply strength. 
Though micromechanical approach in principle can be used for the strength analysis 
(Skudra et al., 1989), it provides mainly proper understanding of the failure 
mechanism rather than the values of the ultimate stresses for typical loading cases. 
For practical applications, these stresses are determined by experimental methods 
described in the next section. 

3.4. Mechanical properties of a ply under tension, shear, and compression 

As shown in Fig. 3.29, a ply can experience five types of elementary loading, i.e., 
0 tension along the fibers, 
0 tension across the fibers, 
0 in-plane shear, 
0 compression along the fibers, 
0 compression across the fibers. 
Actual mechanical properties of a ply under these loading cases are determined 
experimentally by testing specially fabricated specimens. Because the thickness of an 
elementary ply is very small (0.1-0.2 mm), the specimen consists usually of tens of 
plies having the same fiber orientations. 

Mechanical properties of composite materials depend on the processing type 
and parameters. So, to obtain the adequate material characteristics that can be used 
for analysis of structural elements, the specimens should be fabricated with the 
same processes that are used to manufacture the structural elements. In connection 
with this, there exist two standard types of specimens - flat ones that are used to 
test materials made by hand or machine lay-up and cylindrical (tubular or ring) 
specimens that represent materials made by winding. 

Typical mechanical properties of unidirectional advanced composites are 
presented in Table 3.5 and in Figs. 3.4CL3.43. 

Consider typical loading cases. 

3.4.1. Longitudinal tension 

Stiffness and strength of unidirectional composites under longitudinal tension are 
determined by the fibers. As follows from Fig. 3.35, material stiffness linearly 
increases with the rise of the fiber volume fraction. The same law following from 
Eq. (3.75) is valid for the material strength. If the fibers ultimate elongation, Ef, is 
less than that of the matrix (which is normally the case), longitudinal tensile strength 
is determined as 
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Table 3.5 
Typical properties of unidirectional composites. 

Property Glass- Carbon- Carbon- Aramid- Boron- Boron- Carbon- A1203-

epoxy epoxy PEEK epoxy epoxy A1 Carbon AI 

Fiber volume fraction, 0.65 
V f  

Longitudinal modulus, 60 
El (GPa)
Transverse modulus, 13 
E2 @Pa)
Shear modulus, 3.4 
GU (GPa)
Poisson's ratio, v21 0.3 
Longitudinal tensile 1800 
strength, 8: (MPa) 
Longitudinal compressive 650 
strength, a; (MPa) 
Transverse tensile 40 
strength, (MPa) 
Transverse compressive 90 
strength, 8, (MPa) 
In-plane shear strength, 50 

Density, p (g/cm3) 2.1 

712 WPa) 

0.62 

1.55 
140 

1 1  

5.5 

0.27 
2000 

1200 

50 

170 

70 

0.61 0.6 

1.6 1.32 
140 95 

IO 5.1 

5.1 1.8 

0.3 0.34 
2100 2500 

1200 300 

75 30 

250 130 

160 30 

0.5 0.5 

2.1 2.65 
210 260 

19 140 

4.8 60 

0.21 0.3 
1300 1300 

2000 2000 

70 I40 

300 300 

80 90 

0.6 0.6 

1.75 3.45 
170 260 

19 150 

9 60 

0.3 0.24 
340 700 

180 3400 

7 190 

50 400 

30 120 

5; = (E f~ f+Emvm)Ef . (3.104) 

However, in contrast to Eq. (3.76) for E , ,  this equation is not valid for very small 
and very high fiber volume fraction. Dependence of if;' on uf is shown in Fig. 3.44. 
For very low uf, the fibers do not restrain the matrix deformation. Being stretched 
by the matrix, the fibers fail because their ultimate elongation is less than that of the 
matrix and induce stress concentration in the matrix that can reduce material 
strength below the strength of the matrix (point B). Line BC in Fig. 3.44 corres-
ponds to Eq. (3.104). At point C amount of matrix starts to be less than it is 
necessary for a monolythic material, and material strength at point D approxi-
mately corresponds to the strength of a dry bundle of fibers which is less than the 
strength of a composite bundle of fibers bound with matrix (see Table 3.3). 

Strength and stiffness under longitudinal tension are determined using unidirec-
tional strips or rings. The strips are cut out of unidirectionally reinforced plates 
and their ends are made thicker (usually glass+poxy tabs are bonded onto the ends) 
to avoid the specimen failure in the grips of the testing machine (Jones, 1999), 
(Lagace, 1985). Rings are cut out of a circumferentially wound cylinder or wound 
individually on a special mandrel shown in Fig. 3.45. The strips are tested using 
traditional approaches, while the rings should be loaded with internal pressure. 
There exist several methods to apply the pressure (Tarnopol'skii and Kincis, 1985), 
the simplest of which involves the use of mechanical fixtures with different 
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Fig. 3.40. Stress-strain curves for unidirectional glass+poxy composite material under longitudinal 
tension and compression (a), transverse tension and compression (b), and in-plane shear (b). 

number of sectors as in Figs. 3.46 and 3.47. Failure mode is shown in Fig. 3.48. 
Longitudinal tension yields the following mechanical properties of the material 
0 longitudinal modulus, El ,  
0 longitudinal tensile strength, @;C, 
0 Poisson’s ratio, v21. 
Typical values of these characteristics for composites with different fibers and 
matrices are listed in Table 3.5. As follows from Figs. 3.40-3.43, stress-strain 
diagrams are linear practically up to the failure. 

3.4.2. Transverse tension 

There are three possible modes of material failure under transverse tension with 
stress 02 shown in Fig. 3.49 - failure of the fiber-matrix interface (adhesion failure), 
failure of the matrix (cohesion failure), and fiber failure. The last failure mode is 
specific for composites with aramid fibers which consist of thin filaments (fibrils) 
that have low transverse strength. As follows from the micromechanical analysis 
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Fig. 3.41. Stress-strain curves for unidirectional carbon-epoxy composite material under longitudinal 
tension and compression (a), transverse tension and compression (b), and in-plane shear (b). 

(Section 3.3), material stiffness under tension across the fibers is higher than that of 
a pure matrix (see Fig. 3.36). 

For qualitative analysis of transverse strength, consider again the second-order 
model in Fig. 3.38. As can be seen, stress distribution am(x3)is not uniform, and the 
maximum stress in the matrix corresponds to a = 90". Using Eqs. (3.85), (3.86), and 
(3.88) we obtain 

Taking u y  = Om and u2 = 02f, where am and a; are the ultimate stresses for 
the matrix and for the composite material and substituting for A and E2 their 
expressions in accordance with Eqs. (3.87) and (3.89) we arrive at 

(3.105) 
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Fig. 3.42. Stress-strain curves for unidirectional aramidqoxy composite material under longitudinal 
tension and compression (a), transverse tension and compression (b), and in-plane shear (b). 

Dependence of the ratio i?;/@,,, for epoxy composite is shown in Fig. 3.50. As can be 
seen, transverse strength of a unidirectional material is considerably lower than the 
strength of the matrix. It should be noted that for the first-order model that ignores the 
shape of the fiber cross-sections (see Fig. 3.34), 5; is equal to am.Thus, the reduction 
of is caused by the stress concentration in the matrix induced by cylindrical fibers. 

However, both polymeric and metal matrices exhibit, as follows from Fig. I .  11 
and 1.14, elastic-plastic behavior, and plastic deformation reduces, as known, the 
effect of stress concentration. Nevertheless, stress-strain diagrams if: - E, shown 
in Figs. 3.40-3.43 are linear up to the failure point. To explain this phenomenon, 
consider element A of the matrix located in the vicinity of a fiber as in Fig. 3.38. 
Assuming that the fiber is absolutely rigid we can conclude that the matrix strains in 
directions 1 and 3 are close to zero. Taking E;' = 8y = 0 in Eqs. (3.94) we arrive at 
Eqs. (3.101) for stresses according to which of = oy = ,urnor.Dependence of 
parameter ,urn on the matrix Poisson's ratio is presented in Fig. 3.51. As follows 
from this figure, in the limiting case v, = 0.5 we have pm = 1 and a? = or = CT?, 

i.e., the state of stress under which all the materials behave as absolutely brittle. For 
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Fig. 3.43. Stress-strain curves for unidirectional boron-epoxy composite material under longitudinal 
tension and compression (a), transverse tension and compression (b), and in-plane shear (b). 

epoxy resin, vm = 0.35 and p, = 0.54 which, as can be supposed, does not allow the 
resin to demonstrate its rather limited (see Fig. 1.1 1) plastic properties. 

Strength and stiffness under transverse tension are experimentally determined 
using flat strips (see Fig. 3.52) or tubular specimens(see Fig. 3.53). These tests allow 
us to determine 
0 transverse modulus, E2, 
0 transverse tensile strength, 8;. 
For typical composite materials, these properties are given in Table 3.5. 

3.4.3. In-plane shear 

Failure modes of the unidirectional composite under in-plane pure shear with 
stress 2 1 2  shown in Fig. 3.29 are practically the same that ones for a case of 
transverse tension (see Fig. 3.49). However, there is a principal difference in 
material behavior. As follows from Figs. 3.40-3.43, stress-strain curves ~ 1 2 - y ~ ~are 
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0 0.2 0.4 0.6 0.8 

Fig. 3.44. Dependence of normalized longitudinal strength on fiber volume fraction (0 - experimental 
results). 

Fig. 3.45. A mandrel for test rings. 

Fig. 3.46. Two-, four-, and eight-sector test fixtures for composite rings. 

not linear and f12 exceeds ai .  This means that fibers do not restrict free shear 
deformation of the matrix, and stress concentration in the vicinity of fibers does not 
influence significantly material strength because of matrix plastic deformation. 
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,.- 

Fig. 3.47. A composite ring on a eight-sector test fixture. 

Fig. 3.48. Failure modes of unidirectional rings. 

c + 
c * 
c + 
c - 
c d 

O 2 c  - c 2  
c * 
t - 
f - 
c * 

Fig. 3.49. Modes of failure under transverse tension: 1 - adhesion failure; 2 - cohesion failure; 3 - fiber 
failure. 

Strength and stiffness under in-plane shear are determined experimentally by 
testing plates and thin-walled cylinders. A plate is reinforced at  45" to the loading 
direction and is fixed in a square frame consisting of four hinged members as in 
Fig. 3.54. Simple equilibrium consideration and geometric analysis with the aid of 
Eq. (2.27) yield the following equations 
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Fig. 3.50. Dependence of material strength under transverse tension on fiber volume fraction: (-) 
EQ. (3.105); (a) Experimental data. 
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Fig. 3.5 I. Dependence of parameter p,,, on the matrix Poisson’s ratio. 

where 11 is the plate thickness. Thus, knowing P and measuring strains in the x- and 
y-directions we can determine T12 and G12. More accurate and reliable results can 
be obtained if we induce pure shear in a twisted tubular specimen reinforced in 
circumferential direction (Fig. 3.55). Using again simple equilibrium and geometric 
analysis we get 

(PR 212 

I Y12 
~ 1 2 = - ,  G I ? = -  . 

M 
2nR2h ’ ?I2 = - 

Here, M is the torque, R and h the cylinder radius and thickness, and cp the twist 
angle between two cross-sections located at some distance I from each other. Thus, 
having M and measuring cp we can find f12 and GI?.  

3.4.4.  Longitudinal compression 

Failure under compression along the fibers can occur in different modes 
depending on the material microstructural parameters and can hardly be predicted 
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Fig. 3.52. Test fixture for transverse tension and compression of unidirectional strips. 

I a 

Fig. 3.53. Test fixture for transverse tension or compression of unidirectional tubular specimens. 

by micromechanical analysis because of a rather complicated interaction of these 
modes. Nevertheless, useful qualitative results allowing us to understand material 
behavior and, hence, to improve its properties, can be obtained with microstructural 
models. 

Consider typical compression failure modes. Traditional failure mode under 
compression is associated with shear in some oblique plane as in Fig. 3.56. Shear 
stress can be calculated using Eq. (2.9), i.e., 

T = bl sin a cos a 
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Fig. 3.54. Simulation of pure shear in a square frame. 

Fig. 3.55. A tubular specimen for shear test. 

Fig. 3.56. Shear failure under compression. 

and reaches the maximum value at a = 45". Shear failure under compression is 
usually typical for unidirectional composites that demonstrate the highest strength 
under longitudinal compression. On the other hand, materials showing the lowest 
strength under compression exhibit transverse extension failure mode typical for 
wood compressed along the fibers and shown in Fig. 3.57. This failure is caused by 
tensile transverse strain whose absolute value is 

E2 = V21-3  , (3.106) 
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Fig. 3.57. Transverse extension failure mode under longitudinal compression. 

where v21 is Poisson’s ratio and cl = q / E l  is the longitudinal strain. Consider 
Table 3.6 showing some data taken from Table 3.5 and results of calculations for 
epoxy composites. The fourth column displays the experimental ultimate transverse 
strains = .:/E2 calculated with the aid of data presented in Table 3.5, while the 
last column shows the results following from Eq. (3.106). As can be seen, the failure 
mode associated with transverse tension under longitudinal compression is not 
dangerous for composites under consideration because > E2. However, this is 
true only for fiber volume fraction uf = 0.50-0.65 to which the data presented in 
Table 3.6 correspond. To see what happens for higher fiber volume fractions, let us 
use the second-order micromechanical model and the corresponding results in 
Figs. 3.36 and 3.50. We can plot the strain concentration factor k,;(which is the ratio 
of the ultimate matrix elongation, Z,,,, to $ for the composite material) versus the 
fiber volume fraction. As can be seen in Fig. 3.58, this factor, being about 6 for 

Table 3.6 
Characteristics of epoxy composites. 

Material Characteristic 

Glass-epoxy 600 I .oo 0.30 0.31 0.30 
Carbon+poxy I200 0.86 0.27 0.45 0.23 
Aramid-epox y 300 0.3I 0.34 0.59 0.11 
Boron-epoxy 2000 0.95 0.21 0.37 0.20 

Fig. 3.58. Dependence 

0 0.2 0.4 0.6 0.8 

of strain concentration factor on the fiber volume fraction. 
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t'f= 0.6, becomes as high as 25 for uf = 0.75. This means that $ dramatically 
decreases for higher of, and the fracture mode shown in Fig. 3.57 becomes quite 
typical for composites with high fiber volume fractions. 

Both fracture modes shown in Figs. 3.56 and 3.57 are accompanied with fibers 
bending induced by local buckling of fibers. According to N.F. Dow and B.W. 
Rosen (Jones, 1999), there can exist two modes of fiber buckling shown in Fig. 3.59 
- shear mode and transverse extension mode. To study the fibers local buckling (or 
microbuckling which means that the material specimen is straight, while the fibers 
inside the material are curved), consider a plane model of a unidirectional ply shown 
in Figs. 3.15 and 3.60 and take a, = a, af= 6 = d ,  where d is the fiber diameter. 
Then, Eqs. (3.17) yield 

(3.107) 

Because of the symmetry conditions, consider two fibers 1 and 2 in Fig. 3.60 and 
matrix between these fibers. The buckling displacement, li, of the fibers can be 

Fig. 3.59. Shear (a) and transverse extension (b) modes of fiber local buckling 

1 

, T-. 
/ , 

\-, 

Fig. 3.60. Local buckling of fibers in unidirecltional 

-
3 
-
I 
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represented by a sine function as 

U I  (x) = V sin &x, ~ ( x )= V sin &(x - c) , (3.108) 

where V is an unknown amplitude value, the same for all the fibers, A,, = n/ln,I,, is 
a half of a fiber wavelength (see Fig. 3.60), and c = (a +d)cot CI is a phase shift. 
Taking c = 0 we can describe the shear mode of buckling (Fig. 3.59(a)), while c = I ,  
corresponds to extension mode (Fig. 3.59(b)). To find the critical value of stress 01, 

we use the Timoshenko energy method (Timoshenko and Gere, 1961) yielding the 
following buckling condition 

A = W .  (3.109) 

Here, A is the work of external forces and W is the strain energy accumulated in the 
material while the fibers undergo buckling. Work A and energy Ware calculated for 
a typical ply element consisting of two halves of fibers 1 and 2 and matrix between 
them (see Fig. 3.61). The work, A, can be calculated as 

A =a , (a+d)d .d  (3.110) 

with displacement 6 following from Fig. 3.62, Le., 

Fig. 3.61. A typical ply element. 

Fig. 3.62. Deformation of a fiber. 
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Using traditional assumptions, i.e., taking that (dol/&) << I and 6 ez E and 
substituting V I  from Eqs. (3.108) we arrive at 

Thus, Eq. (3.1 10) yields 

(3.111)
IT2 

44, 
A =-c ,Pad( l  + d )  . 

Strain energy consists of three parts, i.e., 

w=wf+w;+K, , (3.112) 

where Wf is the energy of buckled fibers, while Wi and WG correspond to shear strain 
and transverse extension of the matrix which supports the fibers. Strain energy of 
fibers deformed in accordance with Eqs. (3.108) and shown in Fig. 3.61 has the 
form 

where Dfis the fiber bending stiffness. Substituting Eqs. (3.108) and calculating the 
integrals we get 

(3.113) 

To determine the strain energy of the matrix, we assume that the matrix element 
shown in Fig. 3.61 is in the plane state of stress (nonzero stresses are o . ~ ,o!, and z.!,.), 
and equilibrium equations, Eqs. (2.5) can be written as 

(3.114) 

To simplify the solution, we assume that longitudinal stress, G . ~ ,acting in the matrix 
can be neglected in comparison with the corresponding stress acting in the fibers. 
Thus, we can put 0,= 0. Then, Eqs. (3.114) can be integrated and yield 

z.T,. = z(x), Cr!, = B ( X )  -z’(x)y . (3.115) 

Here, z(x) and CT(X) are arbitrary functions of integration and ( ) ’  = d(  )/dx. 
Neglecting also the Poisson effects we can express the strains as follows 
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(3.1 16) 

which can be in turn expressed in terms of displacements with the aid of Eqs. (2.22), 
i.e., 

(3.1 17) 

Substituting Eqs. (3.1 16) into Eqs. (3.1 17) and integrating we can determine the 
displacements as 

Here, u(x) and u(x )  are functions of integration which, as well as functions z(x) and 
~ ( x ) ,should be found using compatibility conditions at fiber-matrix interfaces. 
Using Fig. 3.63 we can write these conditions in the following form: 

d d 
u x k =  0) = - T u + ) ,  ux(y= a )  = -u : (x ) )2 -
u,o, = 0) = u ,  ( x ) ,  UV(y= a )  = u2(x) . 

Satisfying them we can find U(X) and u(x)  directly as 

Fig. 3.63. Compatible fiber-matrix deformation. 
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and derive the following equations for o(x)and t(x) 

1~ ( x )= -V[sin & (x-c) - sin A,J] +-z’(x)a ,
a 2 (3.1 18)Em 

a2 2 
6Em Gm
-t”(x) --z ( x )  = -VI.,,( 1 +d)[cosA,(x - c) + cos A I J X ]  . (3.119) 

We need a periodic solution of Eq. (3.119) and find it in the following form 

z(.) = C[COS n,(x -c) +cos A,,x] . (3.120) 

Substituting into Eq. (3.119) and taking into account that I, = n/l, we get 

(3.121) 

Now, using Eqs. (3.11 9 ,  (3.1 I8), and (3.120) we can write the final expressions for 
the stresses acting in the matrix 

ZX.” = C[COSi,(x - c) + cos A&], 

(3.122) 

where C is specified with Eqs. (3.121). The corresponding strain energies of the 
typical element in Fig. 3.61 are 

Substituting Eqs. (3.122) and integrating we arrive at 

adl,ws =-CC’(l +COSI,C),
2Gm 

In conjunction with these results, Eqs.(3.109), (3.11 lb(3.113) and (3.121) allow us 
to determine GIwhich acquires the following final form 
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0 1  = 7C2Df + Gm(1 +a)  (1 +cos:)
c d (1 +a)a4 2( 1 + (n2Gm/12@m)) 

2Emc (1 -cos- y:) , 
?r2(1 + d )+ (3.123) 

where d = d/a, in= ln/a,  2 = c / a .  The critical value of CTI can be found by 
minimization of the right-hand part of Eq. (3.123) with respect to Zn and 2. 
However, having in mind only qualitative analysis we can omit this cumbersome 
procedure and use Eq. (3.123) for the qualitative assessments and estimates. 

As follows from this equation, the strength of a unidirectional composite under 
longitudinal compression should increase with the rise of the fiber bending stiffness. 
This prediction is definitely supported with experimental data presented in 
Table 3.6. The highest strength is demonstrated by composites reinforced with 
boron fibers that have relatively high diameter and high modulus providing very 
high fiber bending stiffness. Carbon fibers also having high modulus but less 
diameter than boron fibers provide compressive strength which is 40% lower than 
that of boron composites, but is two times higher than the strength of composite 
reinforced with glass fibers having the same diameter as that of carbon fibers but 
lower modulus. The lowest strength in compression is demonstrated by composites 
with aramid fibers. As was already noted, these fibers having high tensile stiffness 
consist of a system of poorly bonded thin filaments and possess low bending 
stiffness. As can be seen in Eq. (3.123), compressive strength also increases with the 
rise of the matrix stiffness. Available experimental results (Woolstencroft et al., 
1982; Crasto and Kim, 1993), show that the strength of carbon composites in 
compression linearly increases while the matrix shear modulus rises up to 
G, = 1500 MPa which is the value typical for epoxy resins. For higher values of 
G,, compression strength does not change, and we can expect that there exists 
some maximum value of G, beyond which the matrix does not allow fibers to 
buckle, and material strength is controlled by fiber strength in compression. Results 
listed in Table 3.5 support this conclusion. As can be seen, changing epoxy matrix 
for aluminum one with higher stiffness we do not increase the compressive strength 
of boron composites. Moreover, increasing the matrix stiffness we usually reduce its 
ultimate elongation. As a result, material can fail under relatively low stress because 
of delamination (see Fig. 3.57). An example of such a material can also be found in 
Table 3.5. Carbon-carbon unidirectional composites with brittle carbon matrix 
possessing very high stiffness demonstrate very low strength under longitudinal 
compression. 

Fracture of actual unidirectional composites occurs usually as a result of 
interaction of fracture modes discussed above. Such fracture is shown in Fig. 3.64. 
Ultimate stress depends on material structural and manufacturing parameters, has 
considerable scatter, and can hardly be predicted theoretically. For example, 
compression strength of composites with the same fibers and matrices having the 
same stiffness but different nature (thermoset or thermoplastic) can be different 
(Crasto and Kim, 1993). 
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Fig. 3.64. Failure mode of a unidirectional carbon+poxy composite under longitudinal compression. 

Strength of composites under longitudinal compression is determined experi- 
mentally using ring or flat specimens and special methods to prevent the specimen 
buckling (Tarnopol’skii and Kincis, 1985). The most accurate results are provided 
by compression of sandwich specimens with composite facings made from the 
material under study (Crasto and Kim, 1993). 

3.4.5. Transverse compression 

Under compression across the fibers, unidirectional composites exhibit traditional 
shear mode of fracture of the type shown in Fig. 3.65. Transverse compression 
strength is higher than in-plane shear strength (see Table 3.5) because of two main 
reasons. First, the area of the oblique failure plane is larger than the area of the 
orthogonal longitudinal ply cross-section in which the ply fails under in-plane shear 
and, second, additional compression across the oblique failure plane (see Fig. 3.65) 
increases the shear strength. Strength under transverse compression is measured 
using flat or tubular specimens shown in Figs. 3.52 and 3.53. 

3.5. Hybrid composites 

The foregoing sections of this chapter concern the properties of unidirectional 
plies reinforced with fibers of a certain type - glass, carbon, aramid, etc. In 

Fig. 3.65. Failure under transverse compression. 
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hybrid composites, the plies can include fibers of two, or may be more types, e.g., 
carbon and glass, glass and aramid and so on. Hybrid composites provide wider 
possibilities to control material stiffness, strength and cost. A promising application 
of these materials is associated with the so-called thermostable structures that do 
not change their dimensions under heating or cooling. For some composites, e.g., 
with glass of boron fibers, longitudinal coefficient of thermal expansion is positive, 
while for other materials, e.g., with carbon or aramid fibers, it is negative (see 
Table 7.1 and Section 7.1.2 of Chapter 7). So, the proper combination of fibers with 
positive and negative coefficients can result in material with zero thermal expansion. 

Consider the problem of micromechanics for a unidirectional ply reinforced with 
two types of fibers. Naturally, the stiffness of these fibers should be different, and we 
assume that E:') > E?). The first-order model of the ply that generalizes the model 
in Fig. 3.34 is presented in Fig. 3.66. For tension in the fiber direction, the apparent 
stress and strain, 01 and E ' ,  are linked by Hooke's law 

in which the effective modulus is specified by the following equation generalizing 
Eq. (3.76) 

El = E ~ l ) u ~ ' )+ E ,(2) (2) +Emu, . (3.125) 

Here, v ! ' )  and u p )  are volume fractions of the fibers of the first and of the second 
type and om is the matrix volume fraction, so that 

We also introduce the total volume fraction of the fibers 

and normalized volume fractions of fibers as 

Fig. 3.66. A first-order microstructural model of a hybrid unidirectional ply. 
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Obviously 

Then, Eq. (3.125) can be written in the form 

(3.126) 

Linear dependence of El on w;” predicted by Eq. (3.126) is in good correlation with 
experimental data reported by Zabolotskii and Varshavskii (1 984) and presented in 
Fig. 3.67. 

Since the fibers of hybrid composites have different stiffness, they are charac-
terized, as a rule, with different ultimate elongations. As follows from Fig. 3.68 
plotted with the data listed in Table 3.5, there exists an inverse linear dependence 
between the ply longitudinal modulus and the ultimate elongation E l .  So, assuming 
E:,” > E!’) we should take into account that E l l )  < This means that Eq. (3.124) 
is valid until E I  < E $ ’ ’ .  Strain E’ = E l ’ )  is accompanied with the failure of fibers of the 
first type. The corresponding part of a possible stress-strain diagram is shown in 
Fig. 3.69 with the line OA. The stress at  point A is 01’) = E I E ~ ’ ) .After the fibers of 
the first type fail, material modulus reduces to 

This modulus determines the slope of line OC in Fig. 3.69. 

E,,GPa 
300 r 

0 
0 0.2 0.4 0.6 0.8 1 

Fig. 3.67. Experimental dependencies of longitudinal modulus on the volume fraction of the higher 
modulus fibers in hybrid unidirectional composites: I - boron*arbon; 2 - boron-aramid; 3 - boron-

glass; 4 - carbon-aramid; 5 - carbon-glass; 6 - aramid-glass. 
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Fig. 3.68. Longitudinal modulus versus ultimate tensile strain for advanced epoxy unidirectional 
composites. 

C 

Fig. 3.69. Typical stress-strain diagrams for hybrid unidirectional composites. 

As ET < El ,  the ply experiences a jump of strain under constant stress GI= o1(1) . 
As follows from Fig. 3.69, the final strain is 

There are two possible scenarios of the further material behavior depending on 
the relation of strain ET and the ultimate strain of the fibers of the second type, E?). If 
E ; ~ E ? ) ,  these fibers will also fail under stress oil), and the material stress-strain 
diagram corresponds to the broken line OA in Fig. 3.69. If E?) > E:, material will 
work up to point C in this figure. Experimental diagrams supporting this prediction 
are shown in Fig. 3.70 (Gunyaev, 1981). 

indicating the minimum amount of the second-type 
fibers that is enough to withstand the load after the failure of the first-type fibers 

The threshold value of 
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Fig. 3.70. Experimental stress-strain diagrams for hybrid carbon-glass epoxy unidirectional composite 
with various volume fraction of glass fibers ug and carbon fibers u,: 1 - ug = 0; 2 - u, = 0.07; 3 - us = 0.14; 

4 - ug = 0.25; 5 - ug = 0.5; 6 - U, = 0. 

can be found from the condition 
follows 

= .$) (Skudra et al., 1989). The final result is as 

For wi2' < i i ~ ! 2 ) ,  material strength can be calculated as 81=El.$.'), while for 

of material strength on wi2)are shown in Fig. 3.71 (Skudra et al., 1989). 
,(2) > ,CTI- = ET$). The corresponding theoretical prediction of the dependencef 

3.6. Phenomenological homogeneous model of a ply 

As follows from the foregoing discussion, micromechanical analysis provides very 
approximate prediction for the ply stiffness and only qualitative information 
concerning the ply strength. However, design and analysis of composite structures 
require rather accurate and reliable information about the properties of the ply 

5,.MPa 

Fig. 3.71. Dependence of the longitudinal strength of unidirectional carbon-glass epoxy composite on 
the volume fraction of glass fibers. 
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that is the basic element of composite structures. This information is provided 
by experimental methods discussed above. As a result, the ply is presented as an 
orthotropic homogeneous material possessing some apparent (effective) mechanical 
characteristics determined experimentally.This means that on the ply level we use a 
phenomenological model of a composite material (see Section 1.l) that ignores its 
actual microstructure. 

It should be emphasized that this model, being quite natural and realistic for the 
majority of applications, sometimes does not allow us to predict actual material 
behavior. To demonstrate this, consider a problem of biaxial compression of a 
unidirectional composite in the 23-plane as in Fig. 3.72. Testing a glass-epoxy 
composite material described by Koltunov et al. (1977) shows a surprising result -
its strength is about 8 = 1200 MPa which is quite close to the level of material 
strength under longitudinal tension, and material failure is accompanied with the 
fiber breakage typical for longitudinal tension. 

Phenomenologicalmodel fails to predict this mode of failure. Indeed, the average 
stress in the longitudinal direction specified by Eq. (3.75) is equal to zero under 
loading shown in Fig. 3.72, Le., 

01 = 0 , U ff + 0yu ,  = 0 . (3.127) 

To apply the first-order micromechanical model considered in Section 3.3, we 
generalize constitutive equations, Eqs. (3.63), for the three-dimensional stress state 
of the fibers and the matrix as 

(3.128) 

Changing 1 for 2, 2 for 3, and 3 for I we can write the corresponding equations for 
€2 and 83. 

Assume that the stresses acting in the fibers and in the matrix in the plane of 
loading are the same, i.e., 

Fig. 3.72. Biaxial compression of a unidirectional composite. 
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(T;=+gm= 2 = -0 (3.129) 

and that E: = E?. Substituting E; and E? from Eqs. (3.128) we get with due regard to 
Eqs. (3.129) 

I 1 
Ef E*, 
-(Of + 2VfO) = -(O;" + 2v,a) 

In conjunction with Eq. (3.127) this equation allows us to find O: which has the 
form 

2a(&vm - Ernvf)urn 

E f u f  +Em urn 
a;= 

Simplifying this result under the condition Ef >> E, we arrive at 

Vm urn 

Uf 
Of= 20- . 

Thus, the loading shown in Fig. 3.72 indeed induces tension of fibers that can be 
revealed using the micromechanical model. The ultimate stress can be expressed in 
terms of fibers' strength 8f as 

1 2.r@=-Sf-
2 Vmvm 

The actual material strength is not as high as follows from this equation which is 
derived under the condition that adhesion strength between the fibers and the 
matrix is infinitely high. Tension of fibers is induced by the matrix that expands in 
the 1-direction (see Fig. 3.72) due to the Poisson effect and interacts with fibers 
through shear stresses whose maximum value is limited by the fiber-matrix adhesion 
strength. Under high shear stress, debonding of fibers can occur reducing the 
material strength that is, nevertheless, very high. This effect is utilized in composite 
shell with radial reinforcement designed to withstand high intensity external 
pressure (Koltunov et al., 1977). 
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Chapter 4 

MECHANICS OF A COMPOSITE LAYER 

A typical composite laminate consists of individual layers (see Fig. 4.1) which 
are usually made of unidirectional plies with the same or regularly alternating 
orientation. A layer can be also made from metals, thermosetting or thermoplastic 
polymers, and fabric or can have a spatial three-dimensionally reinforced structure. 
In contrast to a ply considered in Chapter 3, a layer is referred to a global 
coordinate frame x ,  y ,  z of the structural element rather than to coordinates I ,  2, 3 
associated with the ply orientation. Usually, a layer is  much thicker than a ply 
and has a more complicated structure, but this structure does not change through 
its thickness, or this change is ignored. Thus, a layer can be defined as a three-
dimensional structural element that is uniform in transverse (normal to the layer 
plane) direction. 

4.1. Isotropic layer 

The simplest layer that can be observed in composite laminates is an isotropic 
layer of metal or thermoplastic polymer that is used to protect the composite 
material (Fig. 4.2) and to provide the tightness. For example, filament wound 
composite pressure vessels usually have a sealing metal (Fig. 4.3) or thermoplastic 
(Fig. 4.4) internal liner, that can also be used as a mandrel for winding. Because 
the layer is isotropic, we need only one coordinate system and let it be the global 
coordinate frame as in Fig. 4.5. 

4 .  I. I. Linear elastic model 

Explicit form of Hooke's law in Eqs. (2.48) and (2.54) can be written as: 

1 
E

e,, = -(a,- VC,.- vu,), 
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\ -  

Fig. 4. I .  Laminated structure of a composite pipe. 

n 

L 
Fig. 4.2. Composite drive shaft with external metal protection layer. Courtesy of CRISM. 

Fig. 4.3. Aluminum liner for a composite pressure vessel. 
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Fig. 4.4. Filament wound composite pressure vessel with a polyethylene liner. Courtesy of CRISM. 

Fig. 4.5. An isotropic layer. 

where E is the modulus of elasticity, v the Poisson’s ratio, and G is the shear 
modulus that can be expressed in terms of E and v with Eq. (2.57). Adding 
Eqs. (4.1) for normal strains, we get 

1 
Eo =-Go , 

K 

where 

is the volume deformation. For small strains, volume d q  of an infinitesimal 
material element after the deformation can be found knowing volume d V before 
the deformation and & as 

Volume deformation is linked with the mean stress 
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through volume or bulk modulus 

E 
3(1 - 2 ~ )

K =  (4.5) 

For v = 1/2,K + 00, = 0, and dK = dV for any stresses. Such materials are 
called incompressible- they do not change their volume under deformation and can 
change only their shape. 

The foregoing equations correspond to the general three-dimensional stressed 
state of a layer. However, working as a structural element of a thin-walled 
composite laminate a layer is usually loaded with a system of stresses one of which, 
namely, transverse normal stress o, is much less than the other stresses. Bearing this 
in mind, we can neglect the terms in Eqs. (4.1)that include az and write these 
equations in a simplified form: 

or 

where E =E/( 1 - v 2 ) .  

4.1.2. Nonlinear models 

Materials of metal and polymeric layers considered in this section demonstrate 
linear response only under moderate stresses (see Fig. 1.11 and 1.14). Further 
loading results in nonlinear behavior to describe which we need to apply one of 
nonlinear material models discussed in Section 1.  I .  

A relatively simple nonlinear constitutive theory suitable for polymeric layers can 
be constructed using nonlinear elastic material model (see Fig. 1.2). In the strict 
sense, this model can be applied to materials whose stress-strain curves are the same 
for active loading and unloading. But normally structural analysis is undertaken 
only for active loading. If unloading is not considered, elastic model can be formally 
used for materials that are not perfectly elastic. 

There exists a number of models developed to describe nonlinear behavior of 
highly deformable elastomers like rubber (Green and Adkins, 1960). Polymeric 
materials used to form isotropic layers of composite laminates admitting, in 
principal, high strains usually do not demonstrate them in composite structures 
whose deformation is governed by fibers with relatively low ultimate elongation 
(I-3%). So, creating the model we can restrict ourselves to the case of small strains, 
i.e., to materials whose typical stressstrain diagram is shown in Fig. 4.6. 
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E,% 

0 05 1 1.5 2 2.5 

Fig. 4.6. A typical stress-strain diagram (circles) for a polymeric film and its cubic approximation (solid 
line). 

A natural way is to apply Eqs. (2.41) and (2.42), i.e., (we use tensor notations for 
stresses and strains introduced in Section 2.9 and the rule of summation over 
repeated subscripts), 

Approximation of elastic potential U as a function of eij with some unknown 
parameters allows us to write constitutive equations directly using the second 
relation in Eqs. (4.8). However, the polynomial approximation similar to Eq. (2.43), 
which is the most simple and natural results in constitutive equation of the type 
0 = SE",where S is some stiffness coefficient and n is an integer. As can be seen in 
Fig. 4.7, the resulting stress-strain curve is not typical for materials under study. 
Better agreement with nonlinear experimental diagrams presented, e.g., in Fig. 4.6, 
is demonstrated by the curve specified by the equation E = CCY,where C is some 
compliance coefficient. To arrive at this form of a constitutive equation, we need to 
have a relationship similar to the second one in Eqs. (4.8) but allowing us to express 
strains in terms of stresses. Such relationships exist and are known as Castigliano's 
formulas. To derive them, introduce the complementary elastic potential U, in 
accordance with the following equation: 

Fig. 4.7. Two forms of approximation of the stress-strain curve. 
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The name “complementary” becomes clear if we consider a bar in Fig. 1.1 and the 
corresponding stress-strain curve in Fig. 4.8. The area OBC below the curve 
represents U in accordance with the first equation in Eqs. (4.8), while the area OAB 
above the curve is equal to U,. As was shown in Section 2.9, dU in Eqs. (4.8) is an 
exact differential. To prove the same for dU,, consider the following sum: 

which is obviously an exact differential. Since dU in this sum is also an exact 
differential, dU, should have the same property and can be expressed as 

Comparing this result with Eq. (4.9), we arrive at Castigliano’s formulas 

(4.10) 

which are valid for any elastic solid (for a linear elastic solid, U, = U). 
Complementary potential, U,, in general, depends on stresses, but for an isotropic 

material, Eq. (4.10) should yield invariant constitutive equations that do not depend 
on the direction of coordinate axes. This means that U, should depend on stress 
invariants 1 1 ~ 1 2 ,  I3 in Eqs. (2.13). Assuming different approximations for function 
Uc(Zl, Z2, I3)we can construct different classes of nonlinear elastic models. Existing 
experimental verification of such models shows that dependence U, on 13 can be 
neglected. Thus, we can present complementary potential in a simplified form 
U, (ZI, Z2)and expand this function into the Taylor series as 

E 
C 

E de 

Fig. 4.8. Geometric interpretation of elastic potential. U. and complementary potential, U,. 
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1 1 1 
2 3! 4!

u,= c0 +c ~ ~ I ~+ -clzif +-cI31; +-cI4if + ... 
+ C2l i2  + -c2& +--??I; + -c,4i; + ... 1 1 I 

2 3!  -. 4! 

+ - C I ~ Z I Z I I ~1 + - c 1 2 2 1 i j i 21 3 1+ - ~ 1 1 2 2 1 1 1 22 
2 3! 3! 
1 1 1 

4! 4! 4!+-cI3,1.l:i2 +-c12,21:i; +-c1123i1i;3 + ... , (4.11)  

where 

Constitutive equations follow from Eq. (4.10) and can be written in the form 

au, ai, au, aizE . .  
‘ I  - ail aoij ai, aoii . (4.12) 

Assuming that for zero stresses U, = 0 and cij = 0 we should take co = 0 and CII = 0 
in Eq. (4.11). 

Consider a plane stressed state with stresses o.~ ,o,,,z.~! shown in Fig. 4.5.Stress 
invariants in Eqs. (2.13) entering Eq. (4.12) are 

Linear elastic material model is described with Eq. (4.1 1) if we take 

u, = fC12i;  + C2II2 . (4.14) 

Using Eqs. (4.12)-(4.14) and engineering notations for stresses and strains, we 
arrive at 

8.r = c12(o.v +ox)- C,Iql., 4;= c12(o., + oy)- c2lo.r’ y.vj. = 2C21Z,,. 

These equations coincide with the corresponding equations in Eqs. (4.6) if we take 

1 I + V  

E’ 
c,1 = -E ’

c12 = -

To describe nonlinear stress-strain diagram of the type shown in Fig. 4.6,wc can 
generalize Eq. (4.14) as 

u.- -c12i ;1 +C2lZ2 + -C14Z11 4 1+ -c22z, 2 .‘ - 2  4! 2 
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Then, Eqs. (4.12) yield the following cubic constitutive law: 

The corresponding approximation is shown in Fig. 4.6 with a solid line. Retaining 
more higher-order terms in Eq. (4.1l), we can describe nonlinear behavior of any 
isotropic polymeric material. 

To describe nonlinear elastic-plastic behavior of metal layers, we should use 
constitutive equations of the theory of plasticity. As known, there exist two basic 
versions of this theory - the deformation theory and the flow theory that are briefly 
described below. 

According to the deformation theory of plasticity, the strains are decomposed 
into two components - elastic strains (with superscript 'e') and plastic strains 
(superscript 'p'), i.e., 

E,I = E& + &; . (4.15) 

We again use the tensor notations of strains and stresses (Le., cij and ou)introduced 
in Section 2.9. Elastic strains are linked with stresses by Hooke's law, Eqs. (4.1), 
which can be written with the aid of Eq. (4.10) in the form 

(4.16) 

where U, is the elastic potential that for the linear elastic solid coincides with 
complementary potential U,in Eq. (4.10). Explicit expression for U,can be obtained 
from Eq. (2.5 1) if we change strains for stresses with the aid of Hooke's law, i.e., 

Now present plastic strains in Eqs. (4.15) in the form similar to Eq. (4.16): 

(4.17) 

(4.18) 

where Up is the plastic potential. To approximate dependence of Up on stresses, 
a special generalized stress characteristic, i.e., the so-called stress intensity 0, is 
introduced in classical theory of plasticity as 
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Transforming Eq. (4.19) with the aid of Eqs. (2.13) we can reduce it to the following 
form: 

This means that 0 is an invariant characteristic of a stress state, i.e., that it does 
not depend on position of a coordinate frame. For a unidirectional tension as 
in Fig. 1.1, we have only one nonzero stress, e.g., 011.Then Eq. (4.19) yields 
rs = 01I .  In a similar way, strain intensity E can be introduced as 

(4.20) 

Strain intensity is also an invariant characteristic. For a uniaxial tension (Fig. 1 . 1 )  
with stress CTI I and strain E I  I in the loading direction, we have ~ 2 2= ~ 3 3= -Y,,EI I ,  

where vp is the elastic-plastic Poisson's ratio which, in general, depends on 01I .  For 
this case, Eq. (4.20) yields 

& = ; ( I  + \'p)Ell . (4.21) 

For an incompressible material (see Section 4.1.1), vp = 1/2 and E = E I I .  Thus, 
numerical coefficients in Eqs. (4.19) and (4.20) provide 0 = 011 and E = I:II for 
uniaxial tension of an incompressible material. Stress and strain intensities in 
Eqs. (4.19) and (4.20) have an important physical meaning. As known from 
experiments, metals do not demonstrate plastic properties under loading with 
stresses 0, = or= 0: = 00 resulting only in the change of material volume. Under 
such loading, materials exhibit only elastic volume deformation specified by 
Eq. (4.2). Plastic strains occur in metals if we change material shape. For a linear 
elastic material, elastic potential U in Eq. (2.51) can be reduced after rather 
cumbersome transformation with the aid of Eqs. (4.3), (4.4) and (4.19), (4.20) to the 
following form: 

U=:a"&o+~aE- . (4.22) 

The first term in the right-hand side part of this equation is the strain energy 
associated with the volume change, while the second term corresponds to the change 
of material shape. Thus, CT and E in Eqs. (4.19) and (4.20) are stress and strain 
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characteristics associated with the change of material shape under which it 
demonstrates the plastic behavior. 

In the theory of plasticity, plastic potential Up is assumed to be a function of 
stress intensity a, and according to Eqs. (4.18), plastic strains are 

(4.23) 

Consider further a plane stress state with stresses a,, a),,and zxv in Fig. 4.5. For this 
case, Eq. (4.19) acquires the form 

(4.24) 

Using Eqs, (4.15H4.17) and (4.23), (4.24) we finally arrive at the following 
constitutive equations: 

where 

1 dU, 
a da

o(a) =-- . 

(4.25) 

(4.26) 

To find ~ ( a ) ,we need to specify dependence of U, on a. The most simple and 
suitable for practical applications is the power approximation 

u,=ca”, (4.27) 

where C and n are some experimental constants. As a result, Eq. (4.26) yields 

To determine coefficients C and n we introduce the basic assumption of the plasticity 
theory concerning the existence of the universal stress-strain diagram (master 
curve). According to this assumption, for any particular material there exists the 
dependence between stress and strain intensities, i.e., a = ( P ( E )  (or E =f(a)), that is 
one and the same for all the loading cases. This fact enables us to find coefficients C 
and n from the test under uniaxial tension and extend thus obtained results to an 
arbitrary state of stress. 
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Indeed, consider a uniaxial tension as in Fig. 1.1 with stress 611 .  For this case, 
a = and Eqs. (4.25) yield 

01-
C Y  = -E + o(o,)a., , (4.29) 

V 1 
E .  2

cy = --av --o(a,)a., , 

y.Yv = 0 . 

Solving Eq. (4.29) for co(ax),we get 

1 1 

Es(0.r) E
o(a.,) =--- , 

(4.30) 

(4.31) 

where E, = is the secant modulus introduced in Section 1.1 (see Fig. 1.4). 
Using now the existence of the universal diagram for stress intensity r~ and taking 
into account that cr = a.,for a uniaxial tension, we can generalize Eq. (4.31) and 
write it for an arbitrary state of stress as 

(4.32) 

To determine E,(o)= a/E, we need to plot the universal stress-strain curve. For this 
purpose, we can use an experimental diagram o,(c,) for the case of uniaxial tension, 
e.g., the one shown in Fig. 4.9 for an aluminum alloy with a solid line. To plot the 
universal curve o(E),we should put 6 = a, and change the scale on the strain axis in 

0,,6,MPU 
250 

200 
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0 1 2 3 4 

Fig. 4.9. Experimental stress-strain diagram for an aluminum alloy under uniaxial tension (solid line), 
the universal stress-strain curve (broken line) and its power approximation (circles). 
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accordance with Eq. (4.21).To do this, we need to know the plastic Poisson's ratio 
vp that can be found as vp = -E,,/&,. Using Eqs. (4.29) and (4.30) we arrive at 

As follows from this equation vp = v if E, = E  and vp + 112 for E, +0. 
Dependencies of Es and vp on E for the aluminum alloy under consideration are 
presented in Fig. 4.10. With the aid of this figure and Eq. (4.21) in which we should 
take 81 I = E,, we can calculate E and plot the universal curve shown in Fig. 4.9 with 
a broken line. As can be seen, this curve is slightly different from the diagram 
corresponding to a uniaxial tension. For the power approximation in Eq. (4.27), 
from Eqs. (4.26) and (4.32) we get 

E l 

0 E '
a(.) = ---

Matching these results we find 

E = -+ Cncrn-' . (4.33)E 

This is a traditional approximation for a material with a power hardening law. 
Now, we can find C and n using Eq. (4.33) to approximate the broken line in 
Fig. 4.9. The results of approximation are shown in this figure with circles that 
correspond to E = 71.4 GPa, n = 6, and C = 6.23 x 

Thus, constitutive equations of the deformation theory of plasticity are specified 
by Eqs. (4.25) and (4.32).These equations are valid only for active loading that can 
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Fig. 4.10. Dependenciesof the secant modulus (Es),tangent modulus (Et), and the plastic Poisson's ratio 
(v,) on strain for an aluminum alloy. 
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be identified by the condition do > 0. Being applied for unloading (i.e., for do  < 0), 
Eqs. (4.25) correspond to nonlinear elastic material with stress-strain diagram 
shown in Fig. 1.2. For elastic-plastic material (see Fig. 1.5), unloading diagram 
is linear. So, if we reduce the stresses by some increments AO.~,Abv, AT^?, the 
corresponding increments of strains will be 

Direct application of nonlinear equations (4.25) substantially hinders the problem 
of stress-strain analysis because these equations include function o(0) in Eq. (4.32) 
which, in turn, contains secant modulus E,(a). For the power approximation 
corresponding to Eq. (4.33), E, can be expressed analytically, i.e., 

1 1_ ---+cnon-= . 
Es E 

However, in many cases E, is given graphically as in Fig. 4.10 or numerically in the 
form of a table. Thus, Eqs. (4.25) sometimes cannot be even written in the explicit 
analytical form. This implies application of numerical methods in conjunction with 
iterative linearization of Eqs. (4.25). 

There exist several methods of such linearization that will be demonstrated using 
the first equation in Eqs. (4.25), i.e., 

(4.34) 

In the method of elastic solutions (Ilyushin, 1948), Eq. (4.34) is used in the following 
form: 

(4.35) 

where s is the number of the iteration step and 

For the first step (s = l) ,  we take qo = 0 and solve the problem of linear elasticity 
with Eq. (4.35) in the form 

Finding the stresses, we calculate y l  and write Eq. (4.35) as 

(4.36) 
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where the first term is linear, while the second term is a known function of 
coordinates. Thus, we have another linear problem resolving which we find stresses, 
calculate q2 and switch to the third step. This process is continued until the strains 
corresponding to some step become close within the given accuracy to the results 
found at the previous step. 

Thus, the method of elastic solutions reduces the initial nonlinear problem to a 
sequence of linear problems of the theory of elasticityfor the same material but with 
some initial strains that can be transformed into initial stresses or additional loads. 
This method readily provides a nonlinear solution for any problem that has a linear 
solution, analytical or numerical. The main shortcoming of the method is its poor 
convergence. Graphical interpretation of this process for the case of uniaxial tension 
with stress (r is presented in Fig. 4.1 la. This figure shows a simple way to improve 
the convergence of the process. If we need to find strain at the point of the curve that 
is close to point A, it is not necessary to start the process with initial modulus E. 
Taking E' < E in Eq. (4.36)we can reach the result with much less number of steps. 

According to the method of elastic variables (Birger, 1951), we should present 
Eq. (4.34) as 

(4.37) 

Fig. 4.1 1. Geometric interpretation of (a) the method of elastic solutions, (b) the method of variable 
elasticity parameters, (c) Newton's method, and (d) method of successive loading. 
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In contrast to Eq. (4.39, stresses d, and v;.in the second term correspond to the 
current step rather than to the previous one. This enables us to write Eq. (4.37) in 
the form analogous to Hooke's law, i.e., 

where 

(4.38) 

(4.39) 

are elastic variables corresponding to the step with number s - 1. The iteration 
procedure is similar to that described above. For the first step we take EO= E and 
vo = v in Eq. (4.38). Find e:, et.and 61,determine El ,  V I ,  switch to the second step 
and so on. Graphical interpretation of the process is presented in Fig. 4.1Ib. 
Convergence of this method is by an order higher than that of the method of elastic 
solutions. However, elastic variables in the linear constitutive equation of the 
method, Eq. (4.38), depend on stresses and hence, on coordinates whence the 
method has got its name. This method can be efficiently applied in conjunction with 
the finite element method according to which the structure is simulated with the 
system of elements with constant stiffness coefficients. Being calculated for each step 
with the aid of Eqs. (4.39), these stiffnesses will change only with transition from 
one element to another, and it practically does not hinder the finite element method 
calculation procedure. 

The iteration process having the best convergence is provided by the classical 
Newton's method requiring the following form of Eq. (4.34): 

&;. = c-1 + c;;'(o-; - a;:') + qg(a;,- CT:') +c?;;yT& - ?;;I) ] 
(4.40) 

where 

Because coefficients c are known from the previous step (s - I ) ,  Eq. (4.40) is linear 
with respect to stresses and strains corresponding to step number s. Graphical 
interpretation of this method is presented in Fig. 4.1 IC. In contrast to the methods 
discussed above, Newton's method has no physical interpretation and being 
characterized with very high convergence, is rather cumbersome for practical 
applications. 
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Iteration methods discussed above are used to solve the direct problems of stress 
analysis, i.e., to find stresses and strains induced by a given load. However, there 
exists another class of problems requiring us to evaluate the load carrying capacity 
of the structure. To solve these problems, we need to trace the evolution of stresses 
while the load increases from zero to some ultimate value. To do this, we can use the 
method of successive loading. According to this method, the load is applied with 
some increments, and for each s-step of loading the strain is determined as 

(4.41) 

where ES-l and v,-l are specified by Eqs. (4.39) and correspond to the previous 
loading step. Graphical interpretation of this method is presented in Fig. 4.1 Id. To 
obtain reliable results, the load increments should be as small as possible, because 
the error of calculation is accumulated in this method. To avoid this effect, method 
of successive loading can be used in conjunction with the method of elastic 
variables. Being applied after several loading steps (black circles in Fig. 4.1 Id) the 
latter method allows us to eliminate the accumulated error and to start again the 
process of loading from a proper initial state (light circles in Fig. 4.1 Id). 

Returning to constitutive equations of the deformation theory of plasticity, 
Eq. (4.25), it is important to note that these equations are algebraic. This means that 
strains corresponding to some combination of loads are determined by the stresses 
induced by these loads and do not depend on the history of loading, i.e., on what 
happened to the material before this combination of loads was reached. 

However, existing experimental data show that, in generaI, strains should 
depend on the history of loading. This means that constitutive equations should 
be differential rather than algebraic as they are in the deformation theory. Such 
equations are provided by the flow theory of plasticity. According to this theory, 
decomposition in Eq. (4.15) is used for infinitesimal increments of stresses, Le., 

Here, increments of elastic strains are linked with the increments of stresses by 
Hooke’s law, e.g., for the plane stress state 

while increments of plastic strains 

(4.43) 

are expressed in the form of Eqs. (4.18) but include parameter A which characterizes 
the loading process. 
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Assuming that Up = U,,(o),where o is the stress intensity specified by Eqs. (4.19) 
or (4.24), we get 

The explicit form of these equations for the plane stress state is: 

where 

dUp d jdo(o)  = -- . . 
a do  

(4.45) 

To determine parameter I-, assume that plastic potential Upbeing on the one hand a 
function of o,can be treated as the work performed by stresses on plastic strains, Le., 

Substituting strain increments from Eqs. (4.44) and taking into account Eq. (4.24) 
for o we get 

With due regard to Eq. (4.45) we arrive at the simple and natural relationship 
di. = do/o. Thus, Eq. (4.45) acquires the form 

dodU,, 
o2 d ado(a)  = -- (4.46) 

and Eqs. (4.42H4.44) result in the following constitutive equations of the flow 
theory: 

(4.47) 
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As can be seen, in contrast to the deformation theory, stresses govern the increments 
of plastic strains rather than the strains themselves. 

In the general case, irrespective of any particular approximation of plastic 
potential Up,we can obtain for function do(o)  in Eqs. (4.47) the expression similar 
to Eq. (4.32). Consider a uniaxial tension for which Eqs. (4.47) yield 

Repeating the derivation of Eq. (4.32) we finally get 

do(o)  = *(- 1 -k) , 
0 

(4.48) 

where E,(0)= da/de is the tangent modulus introduced in Section 1.1 (see Fig. 1.4). 
Dependence of Et on strain for an aluminum alloy is shown in Fig. 4.10. For the 
power approximation of plastic potential 

Up=Bo" , (4.49) 

matching Eqs. (4.46) and (4.48) we arrive at the equation 

ds 1 
-= -f 
do  E 

Upon integration we get 

o"-'o Bn 
E = - + -

E n - 1  (4.50) 

This result coincides with Eq. (4.33) within the accuracy of coefficients C and B. 
As in the theory of deformation, Eq. (4.50) can be used to approximate the 
experimental stress-strain curve and to determine coefficients B and n. Thus, 
constitutive equations of the flow theory of plasticity are specified with Eqs. (4.47) 
and (4.48). 

For a plane stress state, introduce the stress space shown in Fig. 4.12 and referred 
to Cartesian coordinate frame with stresses as coordinates. In this space, any 
loading can be presented as a curve specified by parametric equations a, = o,(p),
4.= o~,,(p),T . ~ )= ~,~~(p),where p is the loading parameter. To find strains 
corresponding to point A on the curve, we should integrate Eqs. (4.47) along this 
curve thus taking into account the whole history of loading. In the general case, 
the obtained result will be different from what follows from Eqs. (4.25) of the 
deformation theory for point A .  However, there exists one loading path (the straight 
line OA in Fig. 4.12) that is completely determined by the location of its final point 
A .  This is the so-called proportional loading during which the stresses increase in 
proportion to parameter p ,  i.e., 
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Fig. 4.12. Loading path (OA) in the stress space. 

where, stresses with superscript ‘0’ can depend on coordinates only. For such 
loading, CT = cop, do = oodp, and Eqs. (4.46) and (4.49) yield 

do(a)  = BnonP3do = B n o ~ - 2 p ” - 3dp . (4.52) 

Consider, for example, the first equation of Eqs. (4.47). Substituting Eqs. (4.51) and 
(4.52) we get 

This equation can be integrated with respect top. Using again Eqs. (4.5 1) we arrive 
at the constitutive equation of the deformation theory 

Thus, for a proportional loading, the flow theory reduces to the deformation theory 
of plasticity. Unfortunately, before the problem is solved and the stresses are found 
we do not know whether the loading is proportional or not and what particular 
theory of plasticity should be used. There exists a theorem of proportional loading 
(Ilyushin, 1948) according to which the stresses increase proportionally and the 
deformation theory can be used if: 
(1) external loads increase in proportion to one loading parameter, 
(2 )  material is incompressible and its hardening can be described with the power 

In practice, both conditions of this theorem are rarely met. However, existing 
experience shows that the second condition is not very important and that the 
deformation theory of plasticity can be reliably (but approximately) applied if all 
the loads acting on the structure increase in proportion to one parameter. 

law CT = Se”. 
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4.2. Unidirectional orthotropic layer 

A composite layer with the simplest structure consists of unidirectional plies 
whose material coordinates, I ,  2, 3, coincide with coordinates of the layer, x, y ,  z, as 
in Fig. 4.13. An example of such a layer is presented in Fig. 4.14 -principal material 
axes of an outside circumferential unidirectional layer of a pressure vessel coincide 
with global (axial and circumferential) coordinates of the vessel. 

4.2.1. Linear elastic model 

For the layer under study, constitutive equations, Eqs. (2.48) and (2.53), yield 

z,3 

t 

Fig. 4.13. An orthotropic layer. 

(4.53) 

Fig. 4.14. Filament wound composite pressure vessel. 
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where 

141 

(4.54) 

where 

As for an isotropic layer considered in Section 4.1, the terms including transverse 
normal stress c3can be neglected in Eqs. (4.53) and (4.54) and they can be written in 
the following simplified forms: 

and 

where 

(4.55) 

(4.56) 

Constitutive equations presented above include elastic constants of a layer that are 
determined experimentally. For in-plane characteristics El ,  E?, GI?, and ~ 1 2 ,the 
corresponding test methods were discussed in Chapter 3. Transverse modulus E3 is 
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usually found testing the layer under compression in the z-direction. Transverse 
shear moduli G13 and G23 can be obtained by different methods, e.g., by inducing 
pure shear in two symmetric specimens shown in Fig. 4.15 and calculating shear 
modulus as G13 =P/(2Ay),where A is the in-plane area of the specimen. 

For unidirectional composites, G13 = Gl2 (see Table 3.5) while typical values of 
G23 are listed in Table 4.1 (Herakovich , 1998). 

Poisson’s ratios v31 and ~ 3 2can be determined measuring the change of the layer 
thickness under in-plane tension in directions 1 and 2. 

4.2.2. Nonlinear models 

Consider Figs. 3.40-3.43 showing typical stress-strain diagrams for unidirection-
al advanced composites. As can be seen, materials demonstrate linear behavior only 
under tension. The curves corresponding to compression are slightly nonlinear, 
while the shear curves are definitely nonlinear. It should be emphasized that this 
does not mean that linear constitutive equations presented in Section 4.2.1 are 
not valid for these materials. First, it should be taken into account that the 
deformations of properly designed composite materials are controlled by the fibers, 
and they do not allow the shear strain to reach the values at which the shear stress-
strain curve is strongly nonlinear. Second, the shear stiffness is usually very small in 
comparison with the longitudinal one, and such is its contribution to the apparent 
material stiffness. Material behavior is usually close to linear even if the shear 
deformation is nonlinear. Thus, a linear elastic model provides, as a rule, a 
reasonable approximation to the actual material behavior. However, there exist 
problems, to solve which we should allow for material nonlinearity and apply one 
of nonlinear constitutive theories discussed below. 

First, note that material behavior under elementary loading (pure tension, 
compression, and shear) is specified by experimental stress-strain diagrams of the 
type shown in Figs. 3.40-3.43, and we do not need any theory. The necessity of the 

Fig. 4.15. A test to determine transverse shear modulus. 

Table 4.1 
Transverse shear moduli of unidirectional composites (Herakovich, 1998). 

Material Glass-epoxy Carbon-poxy Aramid-epoxy Boron-AI 

G23 GPa) 4.1 3.2 1.4 49.1 
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theory appears if we are to study the interaction of simultaneously acting stresses. 
Because for the layer under study this interaction usually takes place for in-plane 
stresses 01,a 2 ,  and z 1 2  (see Fig. 4.13), we consider further the plane state of stress. 

In the simplest but rather useful for practical analysis engineering approach, the 
stress interaction is ignored at all, and linear constitutive equations, Eqs. (4.59, are 
generalized as 

(4.57) 

Superscript ‘s’ indicates the corresponding secant characteristics specified by 
Eqs. (1 3). These characteristics depend on stresses and are determined using 
experimental diagram similar to those presented in Figs. 3.40-3.43. Particularly, 
diagrams 01(81) and E ~ ( E I )plotted under uniaxial longitudinal loading yield ,!?](a[) 
and vil (a,),secant moduli E ; ( a 2 )  and G i 2 ( z 1 2 )  are determined from experimental 
curves a 2 ( ~ 2 )  and q z ( y I 2 ) ,  respectively, while $2 is found from the symmetry 
condition in Eqs. (4.53). In a more rigorous model (Jones, 1977), the secant 
characteristics of the material in Eqs. (4.57) are also functions but this time of strain 
energy U in Eq. (2.5 1) rather than of individual stresses. Models of this type provide 
adequate results for unidirectional composites with moderate nonlinearity. 

To describe pronounced nonlinear elastic behavior of a unidirectional layer, we 
can use Eqs. (4.10). Expanding complementary potential U, into the Taylor series 
with respect to stresses we have 

I 1 1 
3! 4!uc = CO +cijaij +TCijkloijOkl + - C ~ k l m n ~ i j ~ k l ~ m n+ - C i j k l m n ~ ~ i j ~ k l ~ m r ~ ~  

I 1 
5! 6!-b - c i j k l m n w r . ~ a i j a k l ~ m , ~ ~ ~ ~ ~ ~+ - C i j k l m n ~ ~ ~ ‘ ~ i i ~ k l ~ m n ~ ~ ~ r . ~ ~ t ~ ~ ~-b ’ ’ ’ 7 

(4.58) 

where 

Sixth-order approximation with terms written in Eq. (4.58) (it implies summation 
over repeated subscripts) allows us to construct constitutive equations including 
stresses in the fifth power. Coefficients ‘e’ should be found from experiments with 
material specimens. Because these coefficients are particular derivatives that do 
not depend on the sequence of differentiation, the sequence of their subscripts is 
not important. As a result, the sixth-order polynomial in Eq. (4.58) includes 84 
‘c’-coefficients. Apparently, this is too many for practical analysis of composite 
materials. To reduce the number of coefficients, we can first use some general 
considerations. Namely, assume that U,= 0 and eij = 0 if there are no stresses 
(aii = 0). Then, co = 0 and cii = 0. Second, we should take into account that the 
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material under study is orthotropic. This means that normal stresses do not induce 
shear strain, while shear stress does not cause normal strains. And third, the 
direction of shear stresses should influence only shear strains, i.e., shear stresses 
should have only even powers in constitutive equations for normal strains, while the 
corresponding equation for shear strain should include only odd powers of shear 
stresses. As a result, constitutive equations will contain 37 coefficients and acquire 
the following form (in new notations for coefficients and stresses): 

81 = +azo: +~ 3 0 :+ ~ 4 0 :  +~5a:+diol 
+2d201~2+40:+ 3d4aio2 + d5o: +d601C: +4d76io2 + 3d80:0: 
+2dsaio; +dloo: + 5dllofaz+4dl2oia: +3d1340: +2dI4alu: 

+dlso: +k l a 1 4 2+k202~:2 + 3k347:~+4k4a:T:z + 2ksalTf2, 

82 = b1o2 +b24 +b3a; +b 4 4  +bsa; 

+dl al +d28 + 2d3a1o2+d4~:+3ds01o22+dko:a2 +d7al 

+ 3di3o:a$ +2d14a:a; + 5dlsolo; + rn1022:~ +k20lz:~ 

+ 3rnz~+:~+4rn30:z:~ +2rn4ozz?,, 

Y U  = ~ 1 7 1 2+~ 2 4 ~+c3zi2 +klzi2a: + rn~ma; 

(4.59)+ 2dsa:oz +3d90:02 +4dlool0; +dllo: +2d126:~~ 

+24znoia2 +2k3z12a: +2rn2212o: 
+2k4z12of+4k5zi20: +2rn3zlzo': +4rn47i2a: . 

For unidirectional composites, dependence 81(01) is linear which means that we 
should put d2 = 1 . .  dl5 = 0, kl = - - .k5 = 0. Then, the foregoing equations 
reduce to 

As an example, consider a special two-matrix fiberglass unidirectional composite 
with high in-plane transverse and shear deformation (see Section 4.3 where it is 
described in details). Stress-strain curves corresponding to transverse tension, 
compression, and in-plane shear are shown in Fig. 4.16. Solid lines correspond to 
Eqs. (4.60) used to approximate experimental results (circles in Fig. 4.16). Coeffi-
cients a1 and dl in Eqs. (4.60) are found using diagrams E I  (01) and ~ ~ ( 0 1 )which are 
linear and not shown here. Coefficients bl .. bs and CI, c2, c3 are determined using 
the least-squares method to approximate curves o: (EZ),07 (Q), and z12(yI2). The 
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Fig. 4.16. Calculated (solid lines) and experimental (circles) stress-strain diagrams for a two-matrix 
unidirectional composite under in-plane transverse tension (~2’). compression (a;) and shear (TI?). 

other coefficients, Le., mI “ ‘ ~ 4 ,  should be determined with the aid of a more 
complicated experiment involving the loading that induces both stresses a? and 212 
acting simultaneously. This experiment is described in Section 4.3. 

As follows from Fig. 3.40-3.43, unidirectional composites demonstrate pro-
nounced nonlinearity only under shear. Assuming that dependence E * ( o ~ )is also 
linear we can reduce Eqs. (4.60) to 

3 5
E I  =alcl +d102, 82 = b ~ c ~ + d ~ a l ,y I 2  = C I Z I ~ + C ~ Z ~ ~ + C ~ Z ~ ~. 

For practical analysis, even more simple form of these equations (with c3 = 0) can 
be used (Hahn and Tsai, 1973). 

Nonlinear behavior of composite materials can be also described with the aid of 
the theory of plasticity that can be constructed as a direct generalization of the 
classical plasticity theory developed for metals and described in Section 4.1.2. 

To construct such a theory, we decompose strains in accordance with Eq. (4.15) 
and use Eqs. (4.16) and (4.18) to determine elastic and plastic strains as 

(4.61) 

where U, and Up are elastic and plastic potentials. For elastic potential, elasticity 
theory yields 

U = ci , jk/ai , jak/  , (4.62) 

where C;jk/ are compliance coefficients, and summation over repeated subscript is 
implied. Plastic potential is assumed to be a function of stress intensity, a, which is 
constructed for a plane stress state as a direct generalization of Eq. (4.24), Le., 

(r = ai,jnj.j+ ,/- + Jaiikl,,,,,a;,ak~a,,,,, + ... , (4.63) 
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where coefficients 'a' are material constants characterizing its plastic behavior. And 
finally, we assume the power law in Eq. (4.27) for the plastic potential. 

To write constitutive equations for a plane stress state, we return to engineering 
notations for stresses and strains and use conditions that should be imposed on an 
orthotropic material and were discussed above in application to Eqs. (4.59). Finally, 
Eqs. (4.19, (4.27) and (4.61), (4.62), (4.63) yield 

1
I 

1 

1 

E l  = alol +d1o2 + no"-![ i ( b i i o i  +cizo2) +-(diio:+2enoioz +e2141 , 

E ~ = ~ I C T ~ + ~ ~ Q I+no"-' [&(b2202 + C I m )  +7(d22o: +2e2Iwl+  el2o:) , 

R; 

R2 

(4.64) 

where 

Deriving Eqs. (4.64) we used new notations for coefficients and restricted ourselves 
to the three-term approximation for o as in Eq. (4.63). 

For independent uniaxial loading along the fibers, across the fibers, and in pure 
shear, Eqs. (4.64) reduce to 

If nonlinear material behavior does not depend on the sign of normal stresses, then 
dll = d22 =0 in Eqs. (4.65). In the general case, Eqs. (4.65) allow us to describe 
material with high nonlinearity and different behavior under tension and compres-
sion. 

As an example, consider a boron-aluminum unidirectional composite whose 
experimental stress-strain diagrams (Herakovich, 1998) are shown in Fig. 4.17 
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Fig. 4.17. Calculated (solid lines) and experimental (circles) stress-strain diagrams for a boron -
aluminum composite under transverse loading (a) and in-plane shear (b). 

(circles) along with the corresponding approximations (solid lines) plotted with the 
aid of Eqs. (4.65). 

4.3. Unidirectional anisotropic layer 

Consider now a unidirectional layer studied in the previous section and assume 
that its principal material axis I makes some angle 4 with the x-axis of the global 
coordinate frame (see Fig. 4.18). An example of such a layer is shown in Fig. 4.19. 

4.3.1. Linear elastic model 

Constitutive equations of the layer under study referred to the principal material 
coordinates are given by Eqs. (4.55) and (4.56). We need now to derive such 
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Z 

Fig. 4.18. A composite layer consisting of a system of unidirectional plies with the same orientation. 

Fig. 4.19. An anisotropic outer layer of a composite pressure vessel. Courtesy of CRISM. 

equations for the global coordinate frame x, y, z (see Fig. 4.18). To do this, we 
should transfer stresses 01, 02 ,  2 1 2 ,  213, 223  acting in the layer and the corresponding 
strains E I ,  ~ 2 ,  y 1 2 ,  713, 7 2 3  into stress and strain components a,, a-v, zxv, z,,, zM and E,, 

E,", y,.", y,,, y,, using Eqs. (2.8), (2.9) and (2.21), (2.27) for coordinate transformation 
of stresses and strains. According to Fig. 4.18, directional cosines, Eqs. (2.1), of 
such transformation are (we take x' = 1, y' = 2,z' = 3) 

I,, = c, I+ = s, 19, = 0,  
If, = -s, If? = c, f v l ,  = 0 ,  
I*, = 0, I?,, = 0, lyi = 1 , 

(4.66) 

where c = cos 4 and s = sin 4. Using Eqs. (2.8) and (2.9) we get 
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The inverse form of these equations is: 
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(4.67) 

(4.68) 

The corresponding transformation for strains follows from Eqs. (2.21) and (2.27), 
].e., 

or 

(4.69) 

(4.70) 

To derive constitutive equations for an anisotropic unidirectional layer, we 
substitute strains, Eqs. (4.69), into Hooke's law, Eqs. (4.56), and thus obtained 
stresses - into Eqs. (4.68). The final result is as follows: 
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where the stiffness coefficients are 

(4.71) 

(4.72) 

where 

, E12=E1~12+2G12, C = C O S ~ ,  s = s i n 4  . El.2 

1 - VI2V21 
E1.2 = 

Dependence of stiffnesscoefficientsA,, in Eqs. (4.72) on 4 was studied by S.W. Tsai 
and N.J. Pagano (see, e.g., Tsai, 1987; Verchery, 1999). Changing powers of sin 4 
and cos 4 in Eqs. (4.72) for multiple-angle trigonometric functions we can reduce 
these equations to the following form (Verchery, 1999): 

(4.73) 
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where 
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where, Ajf are stiffness coefficients corresponding to 4 = 0. As follows from 
Eqs. (4.72), 

As can be seen in Eqs. (4.73), there exist the following differential relationships 
between tensile and coupling stiffnesses (Verchery and Gong, 1999): 

It can be directly checked that Eqs. (4.73) provide three invariant stiffness 
characteristics whose forms do not depend on 4, i.e., 

(4.74) 

Any linear combination of these equations is also an invariant combination of 
stiffness coefficients. 

The inverse form of Eqs. (4.71) can be obtained if we substitute stresses, 
Eqs. (4.67) into Hooke’s law, Eqs. (4.55), and thus expressed strains - into 
Eqs. (4.70). As a result, we arrive at the following particular form of Eqs. (2.48), 
(2.49): 
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where compliance coefficients are 

(4.75) 

(4.76) 

There exist the following dependencies between coefficients of Eqs. (4.71) and 
(4.75): 
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and 

I53 

where 

As can be seen in Eqs. (4.71) and (4.75), the layer under study is anisotropic in plane 
xy because constitutive equations include shear-extension and shear-shear coupling 
coefficients y and 1.For 5, = 0, the foregoing equations degenerate into Eqs. (4.55) 
and (4.56) for an orthotropic layer. 

Dependencies of stiffness coefficients on the orientation angle for a carbon-epoxy 
composite with properties listed in Table 3.5 are presented in Figs. 4.20 and 4.21. 

Uniaxial tension of the anisotropic layer (the so-called off-axis test of a 
unidirectional composite) is often used to determine material characteristics that 
cannot be found in tests with orthotropic specimens or to evaluate constitutive and 
failure theories. Such a test is shown in Fig. 4.22. To study this loading case, we 
should take cv= = 0 in Eqs. (4.75). Then 

(4.77) 

As can be seen from these equations, tension in the x-direction is accompanied not 
only with transverse contraction, as in orthotropic materials, but also with shear. 
This results in the deformed shape of the sample shown in Fig. 4.23. This shape is 
natural because material stiffness in the fiber direction is much higher than that 
across the fibers. 

Such an experiment, in case it could be performed, allows us to determine the in-
plane shear modulus, G12 in principal material coordinates using a simple tensile test 
rather than much more complicated tests described in Section 3.4.3 and shown in 
Figs. 3.54 and 3.55. Indeed, if we know E, from the tensile test in Fig. 4.23 and find 
E l ,  E?, v21 from tensile tests along and across the fibers (see Sections 3.4.1 and 3.4.2), 
we can use the first equation of Eqs. (4.76) to determine 
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Fig. 4.20. Dependencies of tensile (A!I and shear ( A M )stiffnessesof a unidirectional carbon-poxy 
layer on the orientation angle. 

0 1 5 3 0 4 6 6 0 7 5 9 0  

Fig. 4.21. Dependencies of coupling stiffnesses of a unidirectional carbon-epoxy layer on orientation 
angle. 

sin’ 4 cos’ 4 
G12 =--I cos44 sin44 k s i n 2  4 c0s2 4 

ET El E2 El 

In connection with this, a question arises as to what angle should be substituted into 
this equation to provide the most accurate result. The answer is given in Fig. 4.24, 
which displays the strains in principal material coordinates of a carbon-epoxy layer 
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Fig. 4.22. An off-axis test. 

Fig. 4.23. Deformation of a unidirectional layer loaded at an angle to fiber orientation. 

0 15 30 45 60 75 90 

Fig. 4.24. Dependencies of normalized strains in the principle material coordinates on the angle of the 
off-axis test. 
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calculated with the aid of Eqs. (4.69) and (4.77). As can be seen in this figure, the 
best angle is about 10". At this angle, shear strain yI2 is much higher than the normal 
strains 81 and ~ 2 ,so that material deformation is associated mainly with shear. Off-
axis test with d, = 10" can be also used to evaluate material strength in shear 212 
(Chamis, 1979). Stresses acting under off-axis tension in the principal material 
coordinates are statically determinate and can be found directly from Eqs. (4.67) as 

01 = o,cos 2 4, a2 = oxsin2 4, 212 = --a,sin&cos4 . (4.78) 

Thus, applying stress a, and changing d, we can induce a proportional loading with 
different combinations of stresses a],6 2 ,  and 212 to evaluate constitutive or failure 
theory for a material under study. 

However, the test shown in Fig. 4.23 can hardly be performed because the test 
fixture (see Fig. 4.22) restrains the shear deformation of the specimen. This restraint 
does not demonstrate itself only if shear is not induced by the off-axis tension, 
i.e., if yv = 0 in Eqs. (4.77). This means that qXys = 0 or that in accordance with 
Eqs. (4.76), 

This equation has two natural solutions 4 = 0 and 4 = 90" corresponding to 
tension along and across the fibers. However, it can have one more solution, i.e., 

1+121 I
sin2 d, = El 2G12 

I+m I + V l Z  1 . 
EI Giz 

Because 0 < sin2d, < 1, solution for this equation exists if 

(4.79) 

(4.80) 

Unfortunately, these conditions cannot be satisfied for unidirectional composites. 
Indeed, as follows from Eqs. (4.76), there exists the following differential relation 
between compliance coefficients (Verchery and Gong, 1999): 

V X J V$(t)= -2G,, 

This means that vXJy = 0 if E, reaches its extremum value within the interval 
0 < 4 < 90". In other words, function E,(4)  should be as shown in Fig. 4.25 with a 
solid line. Then, uxsy = 0 at 4 = 4,,. But for unidirectional advanced composites 
whose properties are listed in Table 3.5, the curve is similar to the broken line in 
Fig. 4.25, and E, reaches its extremum values at d, = 0 and 4 = 90" only. 
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Fig. 4.25. Angle of an off-axis test without shear-extensioncoupling. 

Thus, to describe a real off-axis test, we need to study the coupled problem for an 
anisotropic strip in which shear is induced by tension but is restricted at the strip 
ends by the jaws of a test frame as in Figs. 4.22 and 4.26. As follows from Fig. 4.26, 
the action of the grip can be simulated if we apply bending moment M and 
transverse force V such that the rotation of the strip ends (v in Fig. 4.23) will 
become zero. As a result, bending normal and shear stresses appear in the strip that 
can be analysed with the aid of the composite beam theory (Vasiliev, 1993). 

To derive the corresponding equations, introduce traditional assumptions of the 
beam theory according to which axial, u,, and transverse, up, displacements can be 
presented as 

u, = u(x) +yo, uJ.= u(x) , 

where u and 8 are the axial displacement and the angle of rotation of the strip cross-
section x = constant and u is the strip deflection in the xy-plane (see Fig. 4.26). The 
strains corresponding to these displacements follow from Eqs. (2.22), Le., 

au, au,, 
ay ax 

y.r>, = -+-= 8 + u’ , 
(4.81) 

where ( )’ = d( )/dx and E is the elongation of the strip axis. These strains are linked 
with stresses by Eqs. (4.75) which reduce to 

0 
f 

+ 
f 

f 

f 

c 

(4.82) 

f d 

Fig. 4.26. Off-axis tension of a strip fixed at the ends. 
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The inverse form of these equations is 

where 

(4.83) 

(4.84) 

Now, decompose the strip displacements, strains, and stresses into two components 
corresponding to 
(1) free tension (see Figure 4.23), and 
(2) bending. 
For the free tension we have z,, = 0 and u = 0. So, Eqs. (4.81) and (4.82) yield 

(4.85) 

where E ]  = u{ and dl'= cr =F/ah,  where F is the axial force applied to the strip, a 
the strip width and h is its thickness. Because dl)= constant, Eqs. (4.85) give 

d O F 
E X  Ex ah

el = qx.vx- = constant, e: = 81 = -= - . (4.86) 

Adding components corresponding to bending (with index 2) we can write the total 
displacements and strains as 

The total stresses can be expressed with the aid of Eqs. (4.83), i.e., 

Transforming these equations with the aid of Eqs. (4.84) and (4.86) we arrive at 

(4.87) 

These stresses are statically equivalent to the axial force P,bending moment M ,  and 
transverse force V ,  which can be introduced as 
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Substitution of Eqs. (4.87) and integration yields 

U3 

12 -M = BIIh-0' (4.89) 

V = a h [ B 4 1 ~+BM(&+vi)]  . (4.90) 

These forces and moment should satisfy the equilibrium equation that follows from 
Fig. 4.27, i.e., 

PI= 0. V ' =  0, MI= V . (4.91) 

Solution of the first equation is P = F = aah. Then, Eq. (4.88) gives 

B14 
E2 = --(e2 + . 

BI I 
(4.92) 

The second equation of Eqs. (4.91) shows that V = Cl, where CI is a constant of 
integration. Then, substituting this result into Eq. (4.90) and eliminating E? with the 
aid of Eq. (4.92) we get 

(4.93) 

where 8 4 4  =BM -B14B41. 

Eq. (4.89) we arrive at the following equation for 81: 
Taking in the third equation of Eqs.(4.91) V = CI and substituting M from 

Integration yields 

M + M'dr 
dxV 

Fig. 4.27. Forces and moments acting on the strip element. 
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The total angle of rotation 8 = 81 + 02, where 8, is specified by Eqs. (4.86), 
should be zero at the ends of the strip, i.e., 8(x = f1/2)  = 0. Satisfying these 
conditions we get 

Substitution into Eq. (4.93) and integration allow us to find the deflection 

(4.94) 

(4.95) 

This expression includes two constants, C, and C4, which should be determined 
from the boundary conditions U ~ ( X= 1/2) = 0. The final result following from 
Eqs. (4.86), (4.94), and (4.95) is 

(4.96) 

where i= l / a  and X =x/l. Deflection of a carbon-epoxy strip having 4 = 45” and 
I=10 is shown in Fig. 4.28. 

Now, we can write the relationship between modulus E, corresponding to the 
ideal test shown in Fig. 4.23 and apparent modulus E.: that can be found from the 
real test shown in Figs. 4.22 and 4.26. Using Eqs. (4.84), (4.86), (4.92), and (4.96) we 
finally get 

c=Exa~ , 

-0.1 1 

Fig. 4.28. Normalized deflection of a carbon-epoxy strip (Q= 45”, T = IO). 
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where 

161 

Consider two limiting cases. For an infinitely long strip ( r+ m), we have E: = E,. 
This result corresponds to the case of free shear deformation specified by 
Eqs. (4.77). For an infinitely short strip (f+ 0), we get 

In accordance with Eqs. (4.83), this result corresponds to a restricted shear 
deformation ( Y . ~ ~ ,= 0). For a strip with finite length, E, < E.: < B1I .  Dependence of 
the normalized modulus on the length-to-width ratio for a 4.5" carbon+poxy layer is 
shown in Fig. 4.29. As can be seen, the difference between and E,. becomes less 
than 5% for I > 3a. 

4.3.2. Non [inear models 

Nonlinear deformation of an anisotropic unidirectional layer can be rather easily 
studied because stresses 01, 02, ZIZ in the principal material coordinates (see 
Fig. 4.18) are statically determinate and can be found using Eqs. (4.67). Substitu-
ting these stresses into nonlinear constitutive equations, Eqs. (4.60) or Eqs. (4.64), 
we can express strains E I ,  E Z ,  and y I 2  in terms of stresses a,, o,,,and zXy.Further 
substitution into Eqs. (4.70) yields constitutive equations that. link strains c.~., c,., 
and y-vy with stresses a,, cy,and T~~ thus allowing us to find strains in the global 
coordinates x,y ,  z if we know the corresponding stresses. 

0 2 4 6 8 

Fig. 4.29. Dependence of the normalized apparent modulus on the strip length-to-width ratio for a 45' 
carbon-epoxy layer. 
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As an example of application of a nonlinear elastic material model described by 
Eqs. (4.60), consider a two-matrix fiberglass composite whose stress-strain curves in 
the principal material coordinates are presented in Fig. 4.16. These curves allowed 
us to determine coefficients 'b' and 'c' in Eqs. (4.60). To find coupling coefficients 
'm',we use a 45" off-axis test. Experimental results (circles) and the corresponding 
approximation (solid line) are shown in Fig. 4.30. Thus, constructed material model 
can be used now to predict its behavior under tension at any other (different from 
0", 45", and 90")angle (the corresponding results are given in Fig. 4.31 for 60") or to 
study more complicated material structures and loading cases (see Section 4.5). 

As an example of application of elastic-plastic material model specified by 
Eq. (4.64), consider a boron-aluminum composite whose stress-strain diagrams in 
principal material coordinates are shown in Fig. 4.17. Theoretical and experimental 
curves (Herakovich, 1998) for 30" and 45" off-axis tension of this material are 
presented in Fig. 4.32. 

a,,MPa 

0 2 4 6 

Fig. 4.30. Calculated (solid line) and experimental (circles) stress-strain diagram for 45" off-axis tension 
of a two-matrix unidirectional composite. 

E, ,% 
0 1 2 3 4 

Fig. 4.31. Theoretical (solid line) and experimental (broken line) stress-strain diagrams for 60" off-axis 
tension of a two matrix unidirectional composite. 
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Q, ,MPa 

E,,% 
0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 

Fig. 4.32. Theoretical (solid lines) and experimental (broken lines) stress-strain diagrams for 30" and 45" 
off-axis tension of a boron-aluminum composite. 

4.4. Orthogonally reinforced orthotropic layer 

The simplest layer reinforced in two directions is the so-called cross-ply layer that 
consists of alternating plies with 0" and 90" orientations with respect to global 
coordinate frame x ,  y, z as in Fig. 4.33. Actually, this is a laminated structure, but 
being formed with a number of plies, it can be treated as a homogeneous 
orthotropic layer (see Section 5.4.2). 

4.4.1. Linear elastic model 

Let the layer consist of m longitudinal (00)plies with thicknesses A t )  (i = 1, 2 ,  3, 
. .., rn) and n transverse (90") plies with thicknesses h,, (j= 1 ,  2, 3 , .  . .,n) made 
from one and the same composite material. Then, stresses cy,and z . ~ ~that 
comprise the plane stress state in the global coordinate frame can be expressed in 
terms of stresses in the principal material coordinates of the plies as 

ci) 

J 
Y 

Fig. 4.33. A cross-ply layer. 
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(4.97) 

i= I j= I 

where, h is the total thickness of the layer (see Fig. 4.33), Le., 

h = ho + h90 , 

where 

are total thickness of longitudinal and transverse plies. 
Stresses in the principal material coordinates of the plies are linked with the 

corresponding strains by Eqs. (3.59) or Eqs. (4.56): 

&i) = (&lij) + 2$i)  ), 
diJ)= E 2 ( & l i j )  + V 2 1 E l(hi)), 

1 

2 
rf‘/)= G,2Yf‘/) , 

(4.98) 

where, as earlier E1?2= E1,2/(1- V I ~ V Z I )  an1 E I V I ~= -v21. Now assume that 
deformation of all the plies is the same that the deformation of the whole layer, i.e., 
that 

Then, substituting Eqs. (4.98) into Eqs. (4.97) we arrive at the following constitutive 
equations: 

where the stiffness coefficients are 

(4.99) 

(4.100) 
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and 

The inverse form of Eqs. (4.99) is 

6, 9. c r  0, 7.vy 
E - - - v x y - 3 el. = - V?!X---, Y.ll. =- 7 

‘I - E,  Ex GX,. 

where 

(4.101) 

(4.102) 

To determine transverse shear moduli G,, and G,,, consider, e.g., pure shear in the 
xz-plane (see Fig. 4.34). As follows from equilibrium conditions for the plies 

The total shear strains can be found as 

where in accordance with Eqs. (4.56) 

(4.105) 

(4.104) 

Fig. 4.34. Pure transverse shear of a cross-ply layer. 



166 Mechanics and analysis of composite materials 

Substituting Eqs. (4.105) into Eqs. (4.104) and using Eqs. (4.103) we arrive at 

where 

4.4.2. Nonlinear models 

Nonlinear behavior of a cross-ply layer associated with nonlinear material 
response under loading in the principal material coordinates (see, e.g., Figs. 4.16 
and 4.17) can be described using nonlinear constitutive equations, Eqs. (4.60) or 
Eqs. (4.64) instead of linear equations (4.99). 

However, this layer can demonstrate nonlinearity that is entirely different from 
what was studied in the previous sections. This nonlinearity is observed in the cross-
ply layer composed of linear elastic plies and is caused by microcracking of the 
matrix. 

To study this phenomenon, consider a cross-ply laminate consisting of three plies 
as in Fig. 4.35. Equilibrium conditions yield the following equations: 

2(6,lhl + cx2h2) = 6, 

2(q,lh, + qv2h2)  = 0 , 

where 

A, = h l / h ,  h 2  = hz/h ,  h = 2(hl +h2) . 

Constitutive equations are 

011.2 = E l , 2 ( E x  + V12.21&y), 

cy1.2 = E2, ,  (E.” + V21.12Ex) , 

(4.106) 

(4.107) 

Fig. 4.35. Tension of a cross-ply laminate. 
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where E1.2 = E1.2/(1- ~ 1 2 ~ 2 1 ) .We assume that strains and E,, do not change 
through the laminate thickness. Substituting Eqs. (4.107) into Eqs. (4.106) we can 
find strains and then stresses using again Eqs. (4.107). The final result is 

To simplify the analysis, neglect Poisson's effect taking v 1 2  = v21 = 0. Then 

(4.108) 

Consider, for example, the case hl = h2 = 0.5 and find the ultimate stresses 
corresponding to the failure of longitudinal plies or to the failure of the transverse 
ply. Putting oy = iit and cr! = ii: we get 

The results of calculation for composites listed in Table 3.5 are presented in 
Table 4.2. As can be seen, ii~;') >> ii?). This means that the first failure occurs in the 
transverse ply under stress 

(4.109) 

This stress does not cause the failure of the whole laminate because the longitudinal 
plies can carry the load, but the material behavior becomes nonlinear. Actually, the 
effect under consideration is the result of the difference between the ultimate 
elongations of the unidirectional plies along and across the fibers. From the data 
presented in Table 4.2 we can see that for all the materials listed in the table EI >> 6. 
As a result, transverse plies following under tension longitudinal plies that have 

Table 4.2 
Ultimate stresses causing the failure of longitudinal (3;'))or transverse (a?') plies and deformation 
characteristics of typical advanced composites. 

o (MPa); Glass- Carbon- Carbon- Aramid- Boron- Boron-AI Carbon- Al@-AI 
e (%) epoxy epoxy PEEK epoxy epoxy carbon 
~~ ~ 

*:I! 2190 2160 2250 2630 1420 2000 890 1100 
a?l 225 690 1125 590 840 400 100 520 
c:l 3 1.43 1.5 2.63 0.62 0.50 0.47 0.27 
82 0.31 0.45 0.75 0.2 0.37 0.1 0.05 0.13 
E l  / E 2  9.7 3.2 2 13.1 1.68 5 9 4  2.1 
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much higher stiffness and elongation fail because their ultimate elongation is 
smaller. This failure is accompanied with a system of cracks parallel to fibers which 
can be observed not only in cross-ply layers but in many other laminates that 
include unidirectional plies experiencing transverse tension caused by interaction 
with the adjacent plies (see Fig. 4.36). 

Now assume that the acting stress 0 2 b, where 8 is specified by Eq. (4.109) and 
corresponds to the load causing the first crack in the transverse ply as in Fig. 4.37. 
To study the stress state in the vicinity of the crack, decompose the stresses in three 
plies shown in Fig. 4.37 as 

(4.110) 0 
0 x 1  = 0 x 3  = 01 + 01, ax2  = 0; - 0 2  , 

and assume that the crack induces also transverse through-the-thickness shear and 
normal stresses 

zxz; = z;, azi = s;, i = 1, 2, 3 . (4.1 11) 

Stresses 0: and 0; in Eqs. (4.1 10) are specified by Eqs. (4.108) with 0 = d 
corresponding to the acting stress under which the first crack appears in the 
transverse ply. Stresses 01 and 0 2  should be self-balanced, i.e., 

Fig. 4.36. Cracks in the circumferential layer of the failed pressure vessel induced by transverse (for the 
vessel, axial) tension of the layer. 

t' 

Fig. 4.37. A cross-ply layer with a crack in the transverse ply. 
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Total stresses in Eqs. (4.1 10) and (4.111) should satisfy equilibrium equations, 
Eqs. (2.5), which yield for the problem under study 

(4.113) 

where I = 1: 2, 3. 
To simplify the problem, assume that the additional stresses 01 and cr2 do not 

depend on z, i.e., that they are uniformly distributed through the thickness of 
longitudinal plies. Then, Eqs. (4.113), upon substitution of Eqs. (4.1 IO) and 
(4.111) can be integrated with respect to z. The resulting stresses should satisfy 
the following boundary and interface conditions (see Fig. 4.37): 

Finally, using Eq. (4.112) to express 01 in terms of 02 we arrive at the following 
stress distribution (Vasiliev et al., 1970): 

(4.114) 

where 

ZI = z - h l  -ha, 2 2 = z + h l  + h Z ,  and ( ) ' = d ( ) / d x .  

Thus, we need to find only one unknown function: 02(x). To do this, we can use the 
principle of minimum strain energy (see Section 2.1 1.2) according to which function 
oz(x) should deliver the minimum value of 

(4.1 15) 
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where EXi=Ex3 =E1 K X 2  =E2, Ezi =E2, GXzi= Gxz3= G131 Gxz2= G23, vx2i = vxz3 

= VI31  v,2 = v23 and El ,  E2, G13, G231 v13, ~ 2 3are elastic constants of a unidirec-
tional ply. Substituting stresses, Eqs. (4.1 14), into the functional in Eq. (4.1 15), 
integrating with respect to z, and using traditional procedure of variational calculus 
providing SW,= 0 we arrive at the following equation for ~ ( x ) :  

where 

General solution for this equation is 

0 2  = e-klx(clsin k2x +c2 cos k2x) + eklx(c3sin k2x + cq cos k2x) , (4.116) 

where 

Assume that the strip shown in Fig. 4.37 is infinitely long in the x-direction. Then, 
we should have 01 4 0 and a2 --f 0 for x 4 03 in Eqs. (4.110). This means that we 
should put c3 = c4 = 0 in Eq. (4.1 16). The other two constants, CIand c2, should be 
determined from the conditions on the crack surface (see Fig. 4.37), i.e., 

ox2(x = 0)  = 0, ZX22(X = 0 )  = 0 . 

Satisfying these conditions we obtain the following expressions for stresses: 

zXz2 = --4(k: +k i )ze-k1xsin kzx, 
k2 

(4.117) 

As an example, consider a glass-epoxy sandwich layer with the following 
parameters: hl = 0.365 mm, h2 = 0.735 mm, E I  = 56 GPa, E2 = 17 GPa, GI, = 
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1.5 

1 -

5.6 GPa, Gz3 = 6.4 GPa, vi3 = 0.095, ~ 2 3= 0.35, 5; = 25.5 MPa. Distributions of 
stresses normalized to the acting stress G are presented in Fig. 4.38. As can be seen, 
there is a stress concentration in longitudinal plies in the vicinity of the crack, while 
the stress in the transverse ply, being zero on the crack surface, practically reaches 
CT: at a distance of about 4mm (or about two thicknesses of the laminate) from the 
crack. The curves look traditionally for the problem of stress diffusion. However, 
analysis of the second equation of Eqs. (4.1 17) allows u s  to reveal an interesting 
phenomenon which can be demonstrated if we increase the vertical scale of the 
graph in the vicinity of points A and B (see Fig. 4.38). As follows from this analysis, 
stress 0 . ~ 2  becomes equal to 0; at point A with coordinate 

“P 
r‘B’-. -

0;f l  

and reaches the maximum value at point B with coordinate xg = n/k?. This 
maximum value 

is higher than stress a’!that causes the failure of the transverse ply. This means that 
a single crack cannot kxist. When stress CT; reaches its ultimate value a:, a regular 
system of cracks located at a distance of 1, = n/k2 from one another appears in the 
transverse ply (see Fig. 4.39). For the example considered above, I ,  = 12.8 mm. 
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Fig. 4.39. A system of cracks in the transverse ply. 

To study the stress state of a layer with cracks shown in Fig. 4.39, we can use 
solution (4.116) but should write it in a different form, i.e., 

tn= CIsinh klx sin k2x + C2 sinh klxcos k2x 
+ C3cosh klxsin k2x + C4 cosh klxcosk2x . (4.118) 

Because the stress state of an element -Z42 <x < 142 is symmetricwith respect to 
coordinate x ,  we should put C2 = C3 = 0 and find constants CI and C4 from the 
following boundary conditions: 

4 x  = ZJ2) = 0, 4 x  = ZC/2)= 0 . (4.119) 

The final expressions for stresses are 

zxz2 =-4(e+g)zsinhklx cos k2x, 
k2c 

(4.120) 

x (kl cosh klxcos k2x - k2 sinh klx sin k2x) , 

where c = sinh(xkl/2k2). 
For the layer considered above as an example, stress distributions corresponding 

to 0 = 5 = 44.7MPa are shown in Figs. 4.40 and 4.41. Under further loading 
(0 > a), two modes of the layer failure are possible. First, formation of another 
transverse crack separating the block with length ICin Fig. 4.39 into two pieces. 
Second, delamination in the vicinity of the crack caused by stresses z,, and az(see 
Fig. 4.41). Usually, the first situation takes place because stresses z,, and 0, are 
considerably lower than the corresponding ultimate stresses, while the maximum 
value of ax2 is close to the ultimate stress 0; = a:. Indeed, the second equation of 
Eqs. (4.120) yields 
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x,mm 

-a 4 0 4 a 

Fig. 4.40. Distribution of normalized stresses in longitudinal (a,,)and transverse ( u , ~ )plies between the 
cracks. 

x, nam 

-0.3 1 
Fig. 4.41. Distribution of normalized shear ( ~ , ~ ~ l )and transverse normal stresses (a,?)at the ply interface 

(z = h l )  between the cracks. 

0O F  = r&,(X = 0) = a,(l - k )  , 

where k = kl/ (k?c) .For the foregoing example, k = 3.85 x So 0.~2m*x is so close 
to 0: that we can assume that under practically the same load another crack occurs 
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in the central cross-section x = 0 of the central block in Fig. 4.39 (as well as in all 
the other blocks). Thus, the distance between the cracks becomes I ,  = 7~/2k2(6.4 
mm for the example under study). The corresponding stress distribution can be 
determined with the aid of Eqs. (4.1 14) and (4.1 18) and boundary conditions (4.1 19) 
in which we should take i, = 7r/2k2. The next crack will again appear at the block 
center and this process will be continued until the failure of longitudinal plies. 

To plot the stress-strain diagram of the cross-ply layer with allowance for the 
cracks in the transverse ply, we introduce the mean longitudinal strain 

where 

For the layer with properties given above, such a diagram is shown in Fig. 4.42 with 
a solid line and is in good agreement with experimental results (circles). Formation 
of cracks is accompanied with horizontal jumps and reduction of material stiffness. 
Stress-strain diagram for the transverse layer that is formally singled out of the 
diagram in Fig. 4.42 is presented in Fig. 4.43. 

To develop a nonlinear phenomenological model of the cross-ply layer, we need 
to approximate the diagram in Fig. 4.43. As follows from this figure and numerous 
experiments, the most suitable and simple approximation is that shown by a broken 
line. It implies that the ply is linear elastic until its transverse stress 0 2  reaches its 
ultimate value a;, and after that 0 2  = a;, Le., a2 remains constant up to the failure 
of longitudinal plies. This means that under transverse tension, unidirectional ply 
is in the state of permanent failure and takes from the longitudinal plies the 
necessary load to support this state (Vasiliev and Elpatievskii, 1967). The stress-

0 0.2 0.4 0.6 0.8 

Fig. 4.42. Stress-strain diagram for a glass-epoxy cross-ply layer: o experiment; -theoretical 
prediction; ----model. 
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0 0.2 0.4 0.6 0.8 

Fig. 4.43. Stress-strain diagram for a transverse ply. 

strain diagram of the cross-ply layer corresponding to this model is shown in 
Fig. 4.42 with a broken line. 

Now consider a general plane stress state with stresses c.~,T,,, and rIJ as in 
Fig. 4.44. As can be seen, stress induces cracks in the inner ply, stress o, causes 
cracks in the outer orthogonal plies, while shear stress T . ~ ~can give rise to cracks in 
all the plies. The ply model that generalizes the model introduced above for a 
uniaxial tension is demonstrated in Fig. 4.45. To determine strains corresponding to 
a given combination of stresses or,o!, and G,,,, we can use the following procedure. 
1. For the first stage of loading (before the cracks appear), the strains are calculated 

with the aid of Eqs. (4.100) and (4.101) providing &:')(a), &-!!)(a), and y!&)(o), 
where o = (ox,t ~ - , ~T~?)is the given combination of stresses. Using Eqs. (4.98) we 
find stresses 0 1 ,  6 2 .  212 in principal material coordinates for all the plies. 

2. We determine the combination of stresses o ; ~ ,o:k,and z ; ~ ~which induce the first 
failure of the matrix in some ply and indicate the number of this ply, say k, 
applying the proper strength criterion (see Section 6.2). Then, the correspon-
ding stresses o*= (o;,o;,l~-:y) and strains zx (o*),cy (cr*), and ya (o*)are 
calculated. 

3. To proceed, i.e., to study the material behavior for rr > c*,we need to consider 
two possible cases for the layer stiffnesses. For this purpose, we should write 
Eqs. (4.100) for stiffness coefficients in a more general form, i.e., 

( 1 )  ( 1 )  ( 1 )  

Fig. 4.44.A cross-ply layer in a plane stress state. 
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Fig. 4.45. Stress-strain diagrams of a unidirectional ply simulating its behavior in the laminate and 
allowing for cracks in the matrix. 

m n m n 
A 1 ,  = xEf)fit)+ cEy)$i, A22 = xgg)fig)+xEY),$ji, 

(4.121)
i= 1 j= I i= I j=  1 
m n m n 

( j )  -(j) -(;) + vviEf)@, Ad4 = GI:)&!) + GI,ci)A,,-ii) ,
AI2 = 5 2 E I  h, 

where h,-(i) -- h,(4/ h  and 

i=l  j= 1 i= 1 j=  I 

= h f i / h .
(a) If ax > 0 in the kth ply, it can work only along the fibers, and we should 

calculate the stiffnesses of the degraded layer taking E: = 0, Gf2 = 0, and 
vf2 = 0 in Eqs. (4.121). 

(b) If U2k < 0 in the kth ply, it cannot work only in shear, so we should take 
C& = 0 in Eqs. (4.121). 

Thus, we find coefficientsA.!:) (st = 11,12,22,44) corresponding to the second stage 
of loading (with one degraded ply). Using Eqs. (4.102) and (4.101) we can determine 
EL2',E f ' ,  Gi:), v$), I$? and express the strains in terms of stresses, i.e., $'(o), .$'(o), 
y;;)(o). The final strains corresponding to the second stage of loading are calculated as 

Exf = &:')(a*) +E:* ) ( ,  -6*), &-; = &;'(a*) +&.f)(, -6*), 
71." -- y:+;)(.*, +y:;ya - a*) . 

To study the third stage, we should find QI,~ 2 , 2 1 2in all the plies, except the kth one, 
identify the next degraded ply and repeat step 3 of the procedure which is continued 
until the failure of the fibers. The resulting stress-strain curves are multi-segmented 



Chapter 4. Mechanics of u composite luyer I71 

lines with straight segments and kinks corresponding to degradation of particular 
plies. 

The foregoing procedure was described for a cross-ply layer consisting of plies 
with different properties. For the layer made of one and the same material, there are 
only three stages of loading - first, before the plies degradation, second, after the 
degradation of the longitudinal or the transverse ply only, and third, after the 
degradation of all the plies. 

As a numerical example, consider a carbon-epoxy cylindrical pressure vessel 
consisting of axial plies with total thickness ho and circumferential plies with total 
thickness h90. The vessel has the following parameters: radius R = 500 mm, total 
thickness of the wall h = 7.5 mm, ho = 2.5 mm, h90 = 5 mm. Mechanical charac-
teristics of a carbon-epoxy unidirectional ply are El = 140 GPa, E2 = 11 GPa, 
v 1 2  = 0.0212, v21 = 0.27, 8; = 2000 MPa, 8; = 50 MPa. Axial, ox, and circumfe-
rentialp,,, stresses are expressed as (see Fig. 4.46) 

(4.122) 

where p is internal pressure. 

result is as follows: 
Using Eqs. (4.100) and (4.102) we calculate first the stiffness coefficients. The 

All = 54.1 GPa, 
E, = 54GPa, Ey = 97GPa, v.,. = 0.055, v, = 0.031 . 

A12 = 3GPa, ,422 = 97.1 GPa, 
(4.123) 

Substituting stresses, Eqs. (4.122) into constitutive equations (4.101) we obtain 

Fig. 4.46. Element of a composite pressure vessel. 
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where p is measured in MPa. For axial plies, E . ~= E ~ , O  and E, = Q,O.  The 
corresponding stresses are 

For circumferential plies, ex = 82.90, E, = El.90 and 

As can be seen, 0;: > CT:'~,.This means that the cracks appear first in the axial plies 
under the pressure p*that can be found from the equation c$;i(P*)= if;. The result 
is p* = 5.53 MPa. 

To study the second stage of loading for p >p*, we should put E 2  = 0, and 
v12 = 0 in Eqs. (4.121) for the axial plies. Then, stiffness coefficients and elastic 
constants become 

All = 54.06GPa, A12 = 2GPa, A 2 2  = 93.4GPa, 
E, = 54 GPa, E, = 93.3 GPa, v,, = 0.037, vp = 0.021 , 

Strains and stresses in the plies are 

&L2)(p(p)= 0.59 x 1 0 - ~ ~ ,&;2)(p)  = 0.7 1 0 - 3 ~ ,  

a$2i(p)= 82.6p, 

d$,(p) = 8 . 6 2 ~. 
c$i0(p) = 99.8p, 

Total transverse stress in the circumferential plies can be calculated as 

Using condition 62,90(P**) = a$ we find pressure p**= 5.95 MPa at which the 
cracks appear in the matrix of the circumferential plies. 

For p 2 p**,we should take E 2  = 0 and v12 = 0 for all the plies. Then 

Ai1 = 46.2GPa, A 1 2  = 0, A 2 2  = 93.4GPa, 
E, =46.2 GPa, E, = 93.4 GPa, v.,, = v - ~= 0 

&i3)(p)= 0.72 x 1 0 - ~ ~ ,  = 0.71 10-3~, 

o[:i(p) = 100.8p, o\:J0(p) = 99 .4~. 

(4.124) 

The total stresses acting along the fibers are 
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To determine the ultimate pressure, we can use two possible strength conditions -
for axial fibers and for circumferential fibers. Condition o ~ . ~ ( p )= 0;' yields 
p = 20.9 MPa, while condition o12so(p)= 17;gives p = 20.4 MPa. Thus, the burst 
pressure governed by the failure of the fibers of circumferential plies is 
p = 20.4 MPa. 

The strains can be calculated for all three stages of loading using the following 
equations: 
e f o r p < p *  

c.JP) = 4:;(PI; 

E.Y..l.(P> = c:.:; w1 + E::; (p -P*1; 
e for p* < p d p** 

e forp**< p b p  

= E:!,!($) + E:2;,,* -p*)+ E.tl , ! (p -p**) . 

For the pressure vessel under study, dependencies of strains on pressure are shown 
in Fig. 4.47 (solid lines). Circles correspond to the failure of the matrix and the 
fibers. 

For comparison, consider two limiting cases. First, assume that no cracks occur in 
the matrix, and the material stiffness is specified by Eqs. (4.123).The corresponding 
diagrams are shown in Fig. 4.47 with broken lines. Second, assume that the load is 
taken by the fibers only, Le., use the monotropic model of a ply introduced in 

P,MPa 

25 r 

152o t/ ,  

'/-10 

I' 
5 /' 

/' 
0 E ,  ,% 

0 0.5 1 1.5 

Fig. 4.47. Dependence of the axial and the circumferential strains of the carbon-epoxy pressure vessel on 
pressure: -model allowing for cracks in the matrix; ---- model ignoring cracks in the matrix; 

- - -_model ignoring the matrix. 
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Section 3.3. Then, material stiffnesses are given by Eqs. (4.124). The corresponding 
results are also presented in Fig. 4.47. As follows from this figure, all three models 
give close results for the burst pressure (which is natural because << Sf) but 
different strains. 

The problem of analysis of cracked cross-ply composite laminate was studied by 
Tsai and Azzi (1966), Hahn and Tsai (1974), Vasiliev et al. (1970), Vasiliev and 
Elpatievskii (1967), Reifsnaider (1977), Hashin (1987) and many other authors. In 
spite of this, the topic is still receiving repeated attention in the literature (Lungren 
and Gudmundson, 1999). Taking into account that matrix degradation leads to 
reduction of material stiffness and fatigue strength, absorption of moisture and 
many other consequences that can be hardly predicted but are definitely undesirable 
it is surprising how many efforts were undertaken to study this phenomenon rather 
than to avoid it. At the first glance, the problem looks simple - all we need is to 
synthesize unidirectional composite whose ultimate elongations along and across 
the fibers, i.e., El and E2, are the same. Actually, the problem is even more simple, 
because E2 can be less than 81 by the factor that is equal to the safety factor of the 
structure. This means that matrix degradation can occur but at the load that exceeds 
the operational level (safety factor is the ratio of the failure load to the operational 
load and can vary from 1.25 up to 3 and more depending on the application of a 
composite structure). Returning to Table 4.2 in which El and & are given for typical 
advanced composites we can see that El > E;! for all the materials and that for 
polymeric matrices the problem could be, in principle, solved if we could increase E2 
up to about 1%. 

Two main circumstances hinder the direct solution of this problem. The first is 
that being locked between the fibers, the matrix does not show the high elongation 
that it has under uniaxial tension and behaves as a brittle material (see Section 
3.4.2). To study this effect, epoxy resins were modified to have different ultimate 
elongations. The corresponding curves are presented in Fig. 4.48 (only the initial 
part of curve 4 is shown in this figure, the ultimate elongation of this resin is 60%). 
Fiberglass composites that were fabricated with these resins were tested under 
transverse tension. As can be seen in Fig. 4.49, the desired value of E2 (that is about 
1%) is reached if the matrix elongation is about 60%. However, the stiffness of this 

0 I , 4  ,,60% 

0 4 8 12 16 2 0 E m ’ ?  

Fig. 4.48. Stress-strain curves for epoxy matrices modified for diff‘erent ultimate elongations. 
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matrix is relatively low, and the second circumstance arises - matrix material with 
low stiffness cannot provide the proper stress diffusion in the vicinity of damaged or 
broken fibers (see Section 3.2.3). As a result, the main material characteristic - its 
longitudinal tensile strength - decreases. Experimental results corresponding to 
composites with resins 1, 2, 3, and 4 are presented in Fig. 4.50. Thus, significant rise 
in transverse elongation is accompanied with unacceptable drop in longitudinal 
strength (see also Chiao, 1979). 

One of the possible ways for synthesizing composite materials with high 
transverse elongation and high longitudinal strength is to combine two matrix 
materials - one with high stiffness to bind the fibers and the other with high 
elongation to provide the proper transverse deformability (Vasiliev and Salov, 
1984). The manufacturing process involves two-stage impregnation. At the first 
stage a fine tow is impregnated with the high-stiffness epoxy resin (of the type 2 
in Fig. 4.48) and cured. The properties of thus fabricated composite fiber are as 
follows: 

0 '  " " " EZ,% 
0 0.2 0.4 0.6 0.8 1 1.2 

Fig. 4.49. Stress-strain curves for transverse tension of unidirectional fiberglass compositeswith different 
epoxy matrices (numbers on the curves correspond to Fig. 4.48). 
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Fig. 4.50. Dependence of the longitudinal strength on the matrix ultimate elongation (numbers on the 
curve correspond to Figs. 4.48 and 4.49). 
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number of elementary glass fibers in the cross-section - 500; 
mean cross-sectional area - 0.15 mm2; 
fiber volume fraction - 0.75; 
density - 2.2 g/cm3; 
longitudinal modulus - 53.5 GPa; 
longitudinal strength - 2100 MPa; 
longitudinal elongation - 4.5%; 
transverse modulus - 13.5 GPa, 
transverse strength - 400 MPa; 
transverse elongation - 0.32%. 

At the second stage, a tape formed of composite fibers is impregnated with a highly 
deformable epoxy matrix whose stress-strain diagram is presented in Fig. 4.51. The 
microstructure of the resulting two-matrix unidirectional composite is shown in 
Fig. 4.52 (dark areas are cross-sections of composite fibers, magnification is not 
enough to see elementary glass fibers). Stress-strain diagrams corresponding to 
transverse tension, compression, and in-plane shear of this material are presented in 
Fig. 4.16. 

The main mechanical characteristics of the two-matrix fiberglass composite are 
listed in Table 4.3 (material No. 1). As can be seen, two-stage impregnation results 
in relatively low fiber volume content (about 50%). Material No. 2 that is composed 
from composite fibers and a traditional epoxy matrix has also low fiber fraction, but 
its transverse elongation is 10 times less than that of material No. 1. Material No. 3 
is a traditional glass-epoxy composite that has the highest longitudinal strength and 
the lowest transverse strain. Comparing materials No. 1 and No. 3 we can see that 
though the fiber volume fraction of the two-matrix composite is lower by 24%, its 
longitudinal strength is less than that of a traditional composite by 3.4% only 
(because the composite fibers are not damaged in the processing of composite 
materials), while its specific strength is a bit higher (due to lower density). Material 
No. 4 demonstrates that direct application of a highly deformable matrix allows us 

0 20 40 60 80 100 120 

Fig. 4.51. Stress-strain diagram of a deformable epoxy matrix. 
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Fig. 4.52. Microstructure of a unidirectional two-matrix composite. 

Table 4.3 
Properties of glass+poxy unidirectional composites. 

No. Material components Fiber volume Longitudinal Ultimate Density Specific strength 
fraction strength 8: transverse p (g/cm3) 8 : / p  x lo3 (m) 

( M P 4  strain (%) 

1 Composite fibers and 0.51 1420 3.0 1.83 77.6 

2 Composite fibers and 0.52 1430 0.3 1.88 76.1 

3 Glass fibers and 0.67 1470 0.2 2.07 71.0 

4 Glass fibers and 0.65 1100 1.2 2.02 54.4 

deformable matrix 

high-stiffness matrix 

high-stiffness matrix 

deformable matrix 

to increase transverse strains but results in 23% reduction in longitudinal specific 
strength. 

Thus, two-matrix glass-epoxy composites have practically the same longitudinal 
strength as traditional materials but their transverse elongation is by an order 
higher. 

Comparison of a traditional cross-ply glass-epoxy layer and a two-matrix one is 
presented in Fig. 4.53. Line 1 corresponds to a traditional material and has a typical 
for this material kink corresponding to the matrix failure in transverse plies (see also 
Fig. 4.37). Theoretical diagram was plotted using the procedure described above. 
Line 2 corresponds to a two-matrix composite and was plotted with the aid of 
Eqs. (4.60). As can be seen, there is no kink on the stress-strain diagram. To prove 
that no cracks appear in the matrix of this material under loading, intensity of 
acoustic emission was recorded during loading. The results are shown in Fig. 4.54. 

Composite fibers of two-matrix materials can be also made from fine carbon 
or aramid tows, while deformable thermosetting resin can be replaced with a 
thermoplastic matrix (Vasiliev et al., 1998). The resulting hybrid thermoset- 
thermoplastic unidirectional composite is characterized with high longitudinal 
strength and transverse strain exceeding 1 YO. Having high strength composite fibers 
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Fig. 4.53. Stress-strain diagrams of a traditional (1) and two-matrix (2) cross-ply glass-epoxy layers 
under tension: - theoretical prediction; o experiment. 

Fig. 4.54. Intensity of acoustic emission for a cross-ply two-matrix composite (above) and a traditional 
fiber-glass composite (below). 

do not experience any damage during laying-up or winding, and the tapes formed 
from these fibers are readily impregnated even with high-viscosity thermoplastic 
polymers. 

4.5. Angle-ply orthotropic layer 

The angle-ply layer is a combination of an even number of alternating plies with 
angles +4 and -4 as shown in Fig. 4.55. The structure of this layer is typical for 
the process of filament winding (see Fig. 4.56). As a cross-ply layer considered in 
the previous section, an angle-ply layer is actually a laminate, but for a large 
number of plies it can be treated as a homogeneous orthotropic layer (see 
Section 5.4.3). 



Chapter 4. Mechanics of a composite layer 185 

I 

Fig. 4.55. Two symmetric plies forming an angle-ply layer. 

Fig. 4.56. Angle-ply layer of a filament wound shell. Courtesy of CRISM. 

4.5.1. Linear elastic model 

Consider two symmetric systems of unidirectional anisotropic plies (see Section 
4.3) consisting of the same number of plies, made of one and the same material and 
having alternating angles +4 and -4. Then, the total stresses a,, a,, and zxy acting 
on the layer can be expressed in terms of corresponding stresses acting in the +4 
and -4 plies as 

(4.125) 

where h is the total thickness of the layer. Stresses with superscripts ‘ + ’ and ‘-’ are 
linked with strains E,, E,,, and y.Tl, which are assumed to be the same for all the plies 
by Eqs. (4.71), Le., 

(4.126) 
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where ATl = A T ,  = A l l ,  AT2 =Ar2 =A12,Ai2  = =A22, AT4 = AT^ =A14, Ai4 = 
-AT4 =A24, A:4 =AT4 =A44, where A, , ,  (mn= 1I, 12,22, 14,24,44) are specified by 
Eqs. (4.72). Substituting Eqs. (4.126) into Eqs. (4.125) we arrive at the following 
constitutive equations for an angle-ply layer: 

The inverse form of these equations is 

where 

(4.127) 

(4.128) 

(4.129) 

As follows from Eqs. (4.127) and (4.128), the layer under study is orthotropic. 
Now derive constitutive equations relating transverse shear stresses zxzand zy and 

the corresponding shear strains yxz and yw. Let the angle-ply layer be loaded by 
stress z,. Then for all the plies, z: = 7,; = z, and because the layer is orthotropic, 
y z  = 7,; = yu, y-2 = y-; = yjz = 0. In a similar way, applying stress z, we have 
72 = T; = z,,, y-; = y; = y.y., 7: = y,; = 'yxr = 0. Writing two last constitutive 
equations of Eqs. (4.71) for these two cases we arrive at 

where stiffnesscoefficients A55 and A66 are specified by Eqs. (4.72). 
Dependencies of E, and G,,. on 4 plotted with the aid of Eqs. (4.129) are shown in 

Fig. 4.57 with solid lines. Theoretical curve for E, is in very good agreement with 
experimental data shown with circles (Lagace, 1985). For comparison, the same 
moduli are presented for the +4 anisotropic layer considered in Section 4.3.1. As 
can be seen, Ex (*4) 3 E,'. To explain this effect, consider a uniaxial tension of both 
layers in the x-direction.While tension of +# ply and of -4 individual plies shown 
in Fig. 4.58 is accompanied with shear strain, the system of these plies does not 
demonstrate shear under tension and, as a result, has higher stiffness. Working as 
plies of a symmetric angle-ply layer individual anisotropic +4 and -4 plies are 
loaded not only with normal stress a, that is applied to the layer, but also with shear 
stress zx-,, that restricts the shear of individual plies (see Fig. 4.58). To find the 
reactive and balanced between the plies shear stress, we can use Eqs. (4.75). Taking 
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Fig. 4.57. Dependencies of the moduli of a carbon-epoxy layer on the orientation angle: - 
orthotropic angle-ply &q5 layer; - - - - anisotropic +$ layer: o experiment for an angle-ply layer. 

Fig. 4.58. Deformation and stresses induced in individual plies (a) and bonded symmetric plies (b) by 
uniaxial tension. 

6,. = 0 we can simulate the stress-strain state of the ply in the *$ angle-ply layer 
putting yr? = 0. Then, the third equation yields 

Superscript ' + ' indicates that elastic constants correspond to an individual +d, ply. 
Substituting this shear stress into the first equation of Eqs. (4.75) we arrive at 
6, = E,E.~, where 

(4.131) 

is the modulus of the k$ angle-ply layer. 
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Under pure shear of an angle-ply layer, its plies are loaded with the additional 
normal stresses. These stresses can be found if we take sx = 0 and sY = 0 in the first 
two equations of Eqs. (4.75). The result is 

Substituting these expressions into the third equation we get z,,, = Gxyyxy, where 

is the shear modulus of an angle-ply layer which is much higher than G.C. (see 
Fig. 4.57). 

Tension of f45" angle-ply specimen provides a simple way to determine in-plane 
shear modulus of a unidirectional ply, G12. Indeed, for this layer, Eqs. (4.72) and 
(4.129) yield 

and 

1 1 
E45 = - (A;; + A::)(A;; - A;;), 1 + ~ 4 5  = - (A;: + A::) . 

A:: A:: 

Taking into account that A:; -A:; = 2G12 we have 

E45 G -  
I 2  - 2(1 + v45) 

(4.132) 

Thus, to find G12, we can test a f45" specimen under tension, measure and E ~ ,  

v45 = - E ~ / E . ~ ,  and use Eq. (4.132) rather than perform determine E45 = 
cumbersome tests described in Section 3. 

4.5.2. Nonlinear models 

To describe nonlinear behavior of an angle-ply layer associated with material 
nonlinearity of its plies, we can use nonlinear constitutive equations, Eqs. (4.60) or 
Eqs. (4.64), instead of Hooke's law. Indeed, assuming that the ply behavior is linear 
under tension or compression along the fibers we can write these equations in the 
following general form: 
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Functions 07 and W I Z  include all the nonlinear terms. Inverse form of these 
equations is 

where 

Repeating the derivation of Eqs. (4.127) but using this time Eqs. (4.133) as 
constitutive equations for the ply we arrive at 

where (s = sin 4, c = cos 4)  

AI\ = (C??.? + C~~C')O?- ~ C ~ ~ C S W I ~ ,A?? = (C22c2+ C I ~ S ~ ) W ~+ ~ C ~ ~ C S W I , ,  
Al;k = (CQ - CZ2)CSW? + C44(C2- S2)WIZ . 

These equations can be used in conjunction with the method of elastic solutions 
described in Section 4.1.2. 

As an example, consider the two-matrix glass-epoxy composite described in 
Section 4.4.2 (see also Figs. 4.16, 4.30, and 4.31). Theoretical (solid lines) and 
experimental (broken lines) stress-strain diagrams for f30", 2c45", and f75"  angle-
ply layers under tension along the x-axis are shown in Fig. 4.59. 

Angle-ply layers demonstrate a specific type of material nonlinearity - structural 
nonlinearity that can occur in the layers composed of linear elastic plies due to the 
change of the plies orientations caused by loading. Because this effect manifests 
itself under high strains, consider a geometrically nonlinear problem of the ply 
deformation. This deformation can be described with the longitudinal, E I ,  trans-
verse, E?,  and shear, y12,strains that follow from Fig. 4.60 and can be expressed as 

(4.134) 

In addition to this, we introduce strain E:'- in the direction normal to the fibers 

(4.135) 
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Fig. 4.59. Theoretical (solid lines) and experimental (broken lines) stress-strain diagrams for f30" (a), 
f45" (b) and f75" (c) angle-ply two-matrix composites under uniaxial tension. 
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and the angle of rotation of the element as a solid in the 12-plane 

where 

x 
W l  = 4' - 4, 0 2  = -+ 4 - (4' + *I2 

are the angles of rotation of axes 1' and 2' (see Fig. 4.60). Thus, 

(4.136) 

Consider some arbitrary element ds, shown in Fig. 4.61 and introduce its strain 

t y  

Fig. 4.60. Ply element before and after deformation. 

Y 

dx 

Fig. 4.61. Linear element before and after deformation. 

(4.137) 
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Repeating the derivation described in Section 2.5 we have 

where 

Using Eq. (4.137) we arrive at 

where cos a = &Ids, and sin a = dy/ds,. 
In a similar way, we can find the angle a’ after the deformation, i.e., 

. I dv’slna =-=-
ds, 1 + E ,  

I dxrcosa = -=-
ds, 1 + E, 

(4.138) 

(4.139) 

(4.140) 

Now return to the ply element in Fig. 4.60. Taking a = 4 in Eqs. (4.139) and (4.140) 
we obtain 

sin$!=-[(1 + E l1 1 +-2)sin++%cos4] ,ax 

cos4) = -[(1 +%)cos4 +-sin4 . 
aY 11 

1 + E 1  

Putting a = n/2 + 4 we have 

sin(# + $) =-[(1 +2)cos 4 -%sin 41 

cos(4’ + +) = -[ - ( I  + z ) c o s 4 + a y s i n g  1 . 

1 + E 2  

1 + E 2  

(4.141) 

(4.142) 
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Using the last equation of Eqs. (4.134) we can find the shear strain as 
sinylz= cos$. After some rearrangements with the aid of Eqs. (4.141) and 
(4.142) we arrive at 

(4.143) 

For 4 = 0, axes 1 and 2 coincide, respectively, with axes x and y (see Fig. 4.60), and 
Eq. (4.143) yields 

(4.144) 

Using this result to express E,,, we can write Eqs. (4.141H4.143) in the following 
final form: 

( 1  + E \ ) ?  = (1 + E , ) ~ C O S ~ ~ +( I  sin^++(^ +&,)(I +q.)sinyr,.sin2+. 

( I  + E ~ Y= ( 1  + ~ , ) ~ s i n ’ 4 + ( 1+ E , , ) ~ C O S ~ + - ( I  +~,.)sin?/,,.sin26: 
1

sin-y12= 
(1  + E l ) ( 1  + ez) 

x ( [ ( ~ + c , . ) ~ - ( l+E.r)2~sin4cos#+ (1 +€,)(I +E,.)sing,,cos24} . 
(4.145) 

As follows from Fig. 4.60 and the last equation of Eqs. (4.134), dsl = 
ds; sin $ = ds; cosyl2.So in accordance with Eqs. (4.134) and (4.135) 

I +e; = ( I  +Ez)COSy,2 . 

Using Eqs. (4.145) to transform this equation we get 

(4.146) 

To express Q,’ in terms of Q, and strains referred to the global coordinate frame x,  y, 
consider Eq. (4.136). After rather cumbersome transformation with the aid of 
Eqs. (4.141) and (4.142) we obtain 
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Taking 4 = 0 we can write rotation angle ozaround the z-axis of the global 
coordinate frame, i.e., 

(4.147) 

Consider now Eqs. (4.I%), (4.144), and (4.147) which form a set of four algebraic 
equations with respect to the derivatives of displacement. Omitting the solution 
procedure we can write the final output as 

Substituting these expressions into Eqs. (4.141) we get 

(4.148) 

Thus obtained nonlinear equations, Eqs. (4.149, generalize Eqs. (4.69) for the case 
of large strains, while Eqs. (4.148) allow us to find the fiber orientation angle after 
the deformation. 

Equilibrium equations, Eqs. (4.68), retain their form but should be written for the 
deformed state, Le., 

(4.149) 

where 4,  a;, and ~ ' 1 ~are stresses referred to coordinate frame 1'2'' (see Fig. 4.60) 
and to the current thickness of the ply. 

Consider a problem of uniaxial tension of a *4  angle-ply layer with stress a,. For 
this case, y,, = 0, w, = 0, and Eqs. (4.149, (4.146), and (4.148) acquire the form: 
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For composite materials, longitudinal strain E I  is usually small, and these equations 
can be further simplified as follows: 

(4.150) 

l+E;=(l+Ex)(l+Ey),  
1 f E ytan 4' = -tan 4
1 + E X  

As an example, consider a specially synthesized highly deformable composite 
material made from glass composite fibers and thermoplastic matrix. Neglecting 
interaction of strains we take constitutive equations for the unidirectional ply as 

(4.151) 

where El  in the first equation is the longitudinal elasticity modulus, while E;' in the 
denominator takes account of the decrease of the ply stiffness due to increase in 
the fiber spacing. Constant E1 and functions 0 2  and 0 1 2  are determined from the 
experimental stress-strain diagrams for o",go", and f45" specimens that are shown 
in Fig. 4.62. Results of calculation with the aid of Eqs. (4.149H4.151) are presented 
together with the corresponding experimental data in Fig. 4.63. 

The foregoing equations comprise the analytical background for a promising 
manufacturing process allowing us to fabricate composite parts with complicated 
shapes deforming not completely cured preforms of simple shapes made by winding 
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Fig. 4.62. Experimental stress-strain diagrams for O", f45", and 90" angle-ply layers. 
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Fig. 4.63. Calculated (circles) and experimental (solid lines) stress-strain diagrams for f15", f30",  f60", 
and f75" angle-ply layers. 

or laying-up (see, e.g., Cherevatsky, 1999). An example of such a part is presented in 
Fig. 4.64. The curved composite pipe shown in this figure was fabricated from a 
straight cylinder that was partially cured, loaded with pre-assigned internal pressure 
and end forces and moments, and cured completely in this state. Desired 
deformation of the part under loading is provided by the proper change of the 
fibers orientation angles governed by Eqs. (4.145), (4.148), and (4.149). 

Angle-ply layers can also demonstrate nonlinear behavior caused by the matrix 
cracking described in Section 4.4.2. To illustrate this type of nonlinearity, consider 
carbon-epoxy f15", f3W, f45", f60", and f75" angle-ply specimens studied 
experimentally by Lagace (1 985). Unidirectional ply has the following mechanical 
properties: E1 = 131 GPa, E2 = 11 GPa, G12 = 6 GPa, v21 = 0.28, IT: = 1770 MPa, 
8; = 54 MPa, 8, = 230 MPa, 112 = 70 MPa. Dependencies al(el)and Q ( E ~ )  are 
linear, while for the in-plane shear, the stress-strain diagram is not linear and is 
shown in Fig. 4.65. To take into account material nonlinearity associated with 
shear, we use constitutive equation derived in Section 4.2.2, Le., 

Fig. 4.64. A curved angle-ply pipe made by deformation of a filament wound cylinder. 
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E * ,  Y,2.% 
0 1 2 3 

Fig. 4.65. Experimental stressstrain diagrams for transverse tension (1) and in-plane shear (2)of a 
carbon-poxy unidirectional ply. 

3
Y12 = Cl7l2 +C2Tl2 , 

where cl = I /G,2  and c2  = 5.2. (MPa)-3. 
The specimens were tested under uniaxial tension in the x-direction. To calculate 

the applied stress ox that causes the failure of the matrix, we use the simplest 
maximum stress strength criterion (see Chapter 6) that ignores the interaction of 
stresses, i.e., 

Nonlinear behavior associated with the ply degradation is predicted applying the 
procedure described in Section 4.4.2. Stress-strain diagrams are plotted using the 
method of successive loading (see Section 4.1.2). 

Consider a f15" angle-ply layer. Point 1 on the theoretical diagram, shown in 
Fig. 4.66, corresponds to the cracks in the matrix caused by shear. These cracks do 
not result in the complete failure of the matrix because transverse normal stress 02 is 
compressive (see Fig. 4.67) and do not reach 8; before the failure of fibers under 
tension (point 2 on the diagram). As can be seen, theoretical prediction of material 
stiffness is rather fair, while predicted material strength (point 2) is much higher 
than experimental (dark circle on the solid line). The reasons for that are discussed 
in the next section. 

Theoretical diagram corresponding to f30" layer (see Fig. 4.66) also has two 
specific points. Point 1 again corresponds to the cracks in the matrix induced by 
shear stress 212, while point 2 indicates the complete failure of the matrix caused by 
compressivestress 0 2  which reaches if? at this point. After the matrix fails, the fibers 
of an angle-ply layer cannot take the load. Indeed, putting E 2  = G12 = v12 = 0 in 
Eqs. (4.72) we obtain the following stiffness coefficients: 

A l l  = El cos44, A22 = El sin44, A12 = El sin24cos2 . 
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Fig. 4.66. Experimental (solid lines) and calculated (broken lines) stress-strain diagrams for O", fl5", 
and f30")angle-ply carbon*poxy layers. 
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Fig. 4.67. Dependencies of the normalized stresses in the plies on the ply orientation angle. 

With these coefficients, the first equation of Eqs. (4.129) yields E, = 0, which means 
that the system of fibers becomes a mechanism, and the stresses in the fibers, no 
matter how high they are, cannot balance the load. A typical failure mode of f30" 
angle-ply specimen is shown in Fig. 4.68. 

Angle-ply layers with fiber orientation angles exceeding 45" demonstrate a 
different type of behavior. As can be seen in Fig. 4.67,transverse normal stress a2 is 
tensile for (6>, 45".This means that the cracks induced in the matrix by normal, Q, 

or shear, 212, stresses cause the failure of the layer. The stress-strain diagrams for 
f60"and f75"layers are shown in Fig. 4.69.As follows from this figure, theoretical 
diagrams are linear and they are close to the experimental ones, while the predicted 
ultimate stresses (circles) are again higher than experimental values (dark circles). 

Now consider the f45"angle-ply layer that demonstrates a very specificbehavior. 
For this layer transverse normal stress, u2, is tensile but not high (see Fig. 4.67), and 
the cracks in the matrix are caused by shear stress, 212.According to the ply model 
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Fig. 4.68. A failure mode of f30" angle-ply specimen. 
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Fig. 4.69. Experimental (solid lines) and calculated (broken lines) stress-strain diagrams for f60" and 
f75" angle-ply carbon-epoxy layers. 

we use, to predict material response after the cracks appeared, we should take 
G12 = 0 in the stiffness coefficients. Then, Eqs. (4.72) yield 

1 -  
A l l  = A12 = A22 = +&)  +-El192 , 4 2 

while Eqs. (4.128) and (4.129) give 

The denominator of both expressions is zero, so it looks like material becomes 
a mechanism and should fail under the load that causes cracks in the matrix. 
However, this is not the case. To explain why, consider the last equation of 
Eqs. (4.150), Le., 
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For the layer under study, tan 4 = 1, E,. < 0, E . ~> 0, so tan 6'< 1 and 6'< 45". But 
in the plies with 4 < 45" transverse normal stresses, 02, become compressive (see 
Fig. 4.67) and close the cracks. Thus, the load exceeding the level at which the 
cracks appear due to shear locks the cracks and induces compression across the 
fibers thus preventing material failure. Because 4' is only slightly less than 45", 
material stiffness, E.r, is very low and slightly increases with the rise of strains 
and decrease of 4'. For the material under study, the calculated and experimental 
diagrams are shown in Fig. 4.70. Circle on the theoretical curve indicates the stress 
a, that causes the cracks in the matrix. More pronounced behavior of this type is 
demonstrated by glass-epoxy composites whose stress-strain curve is presented in 
Fig. 4.71 (Alfutov and Zinoviev, 1982). A specific plateau on the curve and material 
hardening at high strain are the result of the angle variation that is also shown in 
Fig. 4.71. 

'E,,% 
0 0.4 0.8 1.2 1.6 2 

Fig. 4.70. Experimental (solid line) and calculated (broken line) stress-strain diagrams for *45" angle-
ply carbon-epoxy layer. 

0 2 4 6 8 E,,% 

Fig. 4.71. Experimental dependencies of stress ( I )  and ply orientation angle (2) on strain for f45"angle-
ply glass-epoxy composite. 
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4.5.3. Free-edge efects 

As shown in the previous section, there is a significant difference between 
predicted and measured strength of an angle-ply specimen loaded in tension. This 
difference is associated with the stress concentration that takes place in the vicinity 
of the specimen longitudinal edges and was not taken into account in the analysis. 

To study a free-edge effect in an angle-ply specimen, consider a strip whose initial 
width a is much smaller than the length 1. Under tension with longitudinal stress c, 
symmetric plies with orientation angles +4 and -4 tend to deform as shown in 
Fig. 4.72. As can be seen, the deformation of the plies in the y-direction is the same, 
while the deformation in the x-direction tends to be different. This means that 
symmetric plies forming the angle-ply layer interact through interlaminar shear 
stress z,; acting between the plies in the longitudinal direction. To describe the ply 
interaction, introduce the model shown in Fig. 4.73 according to which the in-plane 
stresses in the plies are applied to their middle surfaces, while transverse shear 
stresses act in some hypothetical layers introduced between these surfaces. 

To simplify the problem, we further assume that the transverse stress can be 
neglected, i.e., a,:= 0, and that the axial strain in the middle part of the long strip is 
constant, Le., cX = E =constant. Then, constitutive equations, Eqs. (4.75), for a +4 
ply have a form: 

t '  

I 

Fig. 4.72. Deformation of symmetric plies under tension. 

(4.152) 

Fig. 4.73. A model simulating the plies interaction. 
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(4.153) 

(4.154) 

where elastic constants of an individual ply are specified by Eqs. (4.76). Strain-
displacement equations, Eqs. (2.22), for the problem under study are 

(4.155) 

Integration of the first equation yields for the +q5 and -4 plies 

u;4 =z.x+u(y) ,  U,-b =&.X-u(y)  , (4.156) 

where u(y) is the displacement shown in Fig. 4.73. This displacement results in the 
following transverse shear deformation and transverse shear stress 

(4.157) 

where G, is the transverse shear modulus of the ply specified by Eqs. (4.76). 
Consider the equilibrium state of +4 ply element shown in Fig. 4.74. Equilibrium 
equations can be written as 

(4.158) 

The first of these equations shows that z,,, does not depend on x. Because the axial 
stress, a,, in the middle part of a long specimen also does not depend on x, 
Eqs. (4.153) and (4.155) allow us to conclude that zY and hence do not depend on 
x. As a result, the last equation of Eqs. (4.155) yields in conjunction with the first 
equation of Eqs. (4.156): 

Fig. 4.74. Forces acting on the infinitesimal element of a ply. 
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Using this expression and substituting E from Eq. (4.152) into Eq. (4.154) we 
arrive at 

(4.159) 

where v = V.L!V.Gs-r* 
Substitution of Eqs. (4.157) and (4.159) into the second equation of Eqs. (4.158) 

provides the following governing equation of the problem under study: 

k'u=O , d' u 
dy'
_ _  (4.160) 

where 

Using the symmetry conditions we can present the solution of Eq. (4.160) as 

u = Csinhky . 

Constant C should be found from the boundary conditions for free longitudinal 
edges of the specimen (see Fig. 4.72) according to which zxv(y= fa /2)  = 0. 
Satisfying these conditions and using Eqs. (4.152), (4.153), (4.157), and (4.159) we 
finally obtain: 

(4.161) 
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where 

(4.162) 

Axial stress, ax,should provide the stress resultant equal to aa (see Fig. 4.72), Le., 

7 a,dy= aa 
-a12 

This condition allows us to determine the axial strain as 

a 
E = - - -

& ' 
where 

E,=E,+ [1+- 1,( I  - i t anh  A)] (4.163) 

is the apparent modulus of an angle-ply specimen. 

bonded. Then, A = 0 and because 
Consider two limiting cases. First, assume that G.rz = 0, Le., that the plies are not 

1
lim -tanhI = 1 ,
x-0 I 

E,r =E,'. Second, assume that G,, + 00, Le., that the interlaminar shear stiffness is 
infinitely high. Then 1 4ca and Eq. (4.163) yields 

(4.164) 

This result coincides with Eq. (4.131), which specifies the modulus of an angle-ply 
layer. 

For finite values of Gxz,parameter I in Eqs. (4.162) is rather large because it 
includes the ratio of the specimen width, a, to the ply thickness, 6, which is, usually, 
a large number. Taking into account that tanh I < 1 we can neglect the last term in 
Eq. (4.163) in comparison with unity. Then, this equation reduces to Eq. (4.164). 
This means that tension of angle-ply specimens allows us to measure material 
stiffness with proper accuracy despite the fact that the fibers are cut on the 
longitudinal edges of the specimens. 

However, this is not true for strength. Distribution of stresses over the half-width 
of the carbon-epoxy specimen with properties given above and alii = 20,@= 45" is 
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shown in Fig. 4.75. Stresses e,, z . ~ ~ ,and z,, were calculated with the aid of 
Eqs. (4.161), while stresses el,c2,and in the principal material directions of the 
plies were found using Eqs. (4.69) for the corresponding strains and Hooke's law for 
the plies. As can be seen in Fig. 4.75, there exists a significant concentration of stress 
e' that causes cracks in the matrix. Moreover, interlaminar shear stress z,~ that 
appears in the vicinity of the specimen edge can induce delamination of the 
specimen. The maximum value of stress e? is 

Using the modified strength condition, i.e., c y  = 8; to evaluate the strength of 
f60" specimen we arrive at the result shown with a triangular in Fig. 4.69. As can 
be seen, the allowance for the stress concentration results in a fair agreement with 
experimental strength (dark circle). 

Thus, the strength of angle-ply specimensis reduced by the free-edge effects which 
causes the dependence of the observed material strength on the width of the 
specimen. Such dependence is shown in Fig. 4.76 for 105 mm diameter and 2.5 mm 
thick fiberglass rings made by winding at f35" angles with respect to the axis and 
loaded with internal pressure by two half-discs as in Fig. 3.46 (Fukui et al., 1966). 

It should be emphasized that the free-edge effect occurs in specimens only and 
does not show itself in composite structures which, being properly designed, should 
not have free edges of such a type. 

4.6. Fabric layers 

Textile preforming plays an important role in composite technology providing 
glass, aramid, carbon (see Fig. 4.77), and hybrid fabrics that are widely used as 
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Fig. 4.75. Distribution of normalized stresses over the width of f45"angle-ply carbon-epoxy specimen. 
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Fig. 4.76. Experimental dependence of strength of a f35” angle-ply layer on the width of the specimen. 

Fig. 4.77. A carbon fabric tape. 

reinforcing materials. The main advantages of woven composites are their cost 
efficiency and high processability, particularly, in lay-up manufacturing of large- 
scale structures (see Figs. 4.78 and 4.79). However, on the other hand, processing of 
fibers and their bending in the process of weaving results in substantial reduction of 
material strength and stiffness. As can be seen in Fig. 4.80, where a typical woven 

s 
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Fig. 4.78. A composite body of a boat made of fiberglass fabric by lay-up method. Courtesy of CRISM. 
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Fig. 4.79. A composite leading edge of an aeroplane wing made of carbon fabric by lay-up method. 
Courtesy of CRISM. 

Fig. 4.80. Unit cell of a fabric structure. 

structure is shown the warp (lengthwise) and fill (crosswise) yarns forming the fabric 
make angle a 2 0 with the plane of the fabric layer. 

To demonstrate how this angle influences material stiffness, consider tension 
of the structure shown in Fig. 4.80 in the warp direction. Apparent modulus of 
elasticity can be expressed as 

E,A, = EfAf + E,A, , (4.165) 

where A, = h(2tl + t 2 )  is the apparent cross-sectional area and 

h 
Af = ; (2tl + t 2 ) ,  

L 

h 
A,  = Z(4tl + t 2 )  

are the areas of the fill and warp yarns in the cross section. Substitution into 
Eq. (4.165) yields 
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Because the fibers of the fill yarns are orthogonal to the loading direction, we can 
take Ef =El ,  where E2 is the transverse modulus of a unidirectional composite. 
Compliance of the warp yam can be decomposed into two parts corresponding to tl 
and t2  in Fig. 4.80, i.e., 

2tl + t2 2tl t2 

E\y E1 E,
- + - ,--

where, E1 is the longitudinal modulus of a unidirectional composite, while E ,  can be 
determined with the aid of the first equation of Eqs. (4.76) if we change (b for a,i.e., 

(4.166) 

The final result is as follows: 

For example, consider a glass fabric with the following parameters: a = 12", 
t2 = 2 t l .  Taking elastic constants of a unidirectional material from Table 3.5 we get 
for the fabric composite Ea = 23.5 GPa. For comparison, a cross-ply [0"/90"] 
laminate made of the same material has E = 36.5 GPa. Thus, the modulus of a 
woven structure is by 37% less than the modulus of the same material but reinforced 
with straight fibers. Typical mechanical characteristics of fabric composites are 
listed in Table 4.4. 

Table 4.4 
Typical properties of fabric composites. 

Property Glass fabric-epoxy Aramid fabric-epoxy Carbon fabric-epoxy 

Fiber volume fraction 
Density (g/cm3) 
Longitudinal modulus (GPa) 
Transverse modulus (GPa) 
Shear modulus (GPa) 
Poisson's ratio 
Longitudinal tensile strength 
(MPa)
Longitudinal compressive 
strength (MPa) 
Transverse tensile strength 
(MPa) 

0.43 
1.85 

26 
22 

7.2 
0.13 

400 

350 

380 

0.46 
I .25 

34 
34 
5.6 
0.15 

600 

150 

500 

Transverse compressive strength 280 150 
(MPa) 
In-plane shear strength (MPa) 45 44 

0.45 
I .40 

70 
70 

5.8 
0.09 

860 

560 

850 

560 

150 
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Stiffness and strength of fabric composites depend not only on the yarns and 
matrix properties, but on material structural parameters, i.e., on fabric count and 
weave, as well. The fabric count specifies the number of warp and fill yarns per inch 
(25.4 mm), while the weave determines how the warp and the fill yarns are 
interlaced. Typical weave patterns are shown in Fig. 4.81 and include plain, twill, 
and satin. In the plain weave (see Fig. 4.81a) which is the most common and the 
oldest, the warp yarn is repeatedly woven over the fill yarn and under the next fill 
yarn. In the twill weave, the warp yarn passes over and under two (as in Fig. 4.8 1b) 
or more fill yarns in a regular way. A structure with one warp yarn passing over four 
and under one fill yarn is referred to as a five harness satin weave (Fig. 4.81~). 

Being formed from one and the same type of yarns plain, twill, and satin weaves 
provide approximately the same strength and stiffness of the fabric in the warp and 
the fill directions. Typical stress-strain diagrams for a fiberglass fabric composite 
of such a type are presented in Fig. 4.82. As can be seen, material demonstrates 
relatively low stiffness and strength under tension at the angle of 45" with respect to 
the warp or fill directions. To improve these properties, multiaxial woven fabrics, 
one of which is shown in Fig. 4.81d, can be used. 

Fabric materials whose properties are more close to those of unidirectional 
composites are made by weaving a great number of larger yarns in longitudinal 
direction and fewer and smaller yarns in the orthogonal direction. Such weave is 
called unidirectional. It provides materials with high stiffness and strength in one 
direction, which is specific for unidirectional composites and high processability 
typical for fabric composites. 

Being fabricated as planar structures, fabrics can be shaped on shallow 
surfaces using the material high stretching ability under tension at 45" to the yarns' 

(c)  (4 
Fig. 4.81. Plain (a), twill (b), satin (c),and triaxial (d) woven fabrics. 
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directions. Much more possibilities for such shaping are provided by implementa- 
tion of knitted fabrics whose strain to failure exceeds 100%. Moreover, knitting 
allows us to shape the fibrous preform in accordance with the shape of the future 
composite part. There exist different knitting patterns, some of which are shown in 
Fig. 4.83. Relatively high curvature of the yarns in knitted fabrics and possible fiber 
breakage in the process of knitting result in materials whose strength and stiffness 
are less than those of woven fabric composites, but whose processability is higher, 
and the cost is lower. Typical stress-strain diagrams for composites reinforced by 
knitted fabrics are presented in Fig. 4.84. 

Material properties close to those of woven composites are provided by 
braided structures which, being usually tubular in form are fabricated by mutual 
intertwining, or twisting of yarns about each other. Typical braided structures 
are shown in Fig. 4.85. Biaxial braided fabrics in Fig. 4.85 can incorporate 
longitudinal yarns forming a triaxial braid whose structure is similar to that shown 
in Fig. 4.81d. Braided preforms are characterized with very high processability 
providing near net-shape manufacturing of tubes, and profiles with various cross- 
sectional shapes. 

Although microstructural models of the type shown in Fig. 4.80 and leading to 
equations similar to Eq. (4.167) have been developed to predict stiffness and even 
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Fig. 4.82. Stress-strain curves for fiber glass fabric composite loaded in tension at  different angles with 
respect to the warp direction. 

Fig. 4.83. Typical knitted structures. 
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Fig. 4.84. Typical stress-strain curves for fiberglass knitted composites loaded in tension at different 
angles with respect to direction indicated by the arrow Fig. 4.83. 

( a )  ( b) 

Fig. 4.85. Diamond (a) and regular (b) braided fabric structures. 

strength characteristics of fabric composites (e.g., Skudra et al., 1989), for practical 
design and analysis, these characteristics are usually determined by experimental 
methods. Elastic constants entering constitutive equations written in the principal 
material coordinates, e.g., Eqs. (4.59, are found testing strips cut out of fabric 
composite plates at different angles with respect to the orthotropy axes. The 0" and 
90" specimens are used to determine moduli of elasticity E l ,  E2 and Poisson's ratios 
v12, v21 (or parameters of nonlinear stress-strain diagrams), while the in-plane shear 
stiffness can be obtained with the aid of off-axis tension described in Section 4.3.1. 
For fabric composites, elastic constants usually satisfy conditions in Eqs. (4.80),and 
there exists the angle 6 specified by Eq. (4.79) such that off-axis tension under this 
angle is not accompanied with shear-extension coupling. 

Because Eq. (4.79) specifying 6 includes shear modulus GI?,which is not known, 
transform the results presented in Section 4.3.1. Using Eqs. (4.76) and assuming 
that there is no shear-extension coupling (q,,,, = 0)  we can write the following 
equations: 
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Summing up the first two of these equations we get 

Using the third equation we arrive at the remarkable result 

(4.168) 

(4.169) 

similar to the corresponding formula for isotropic materials, Eq. (2.57). It should be 
emphasized that Eq. (4.169) is valid for off-axis tension in the x-direction making 
some special angle 4 with the principal material axis 1. This angle is given by 
Eq. (4.79). Another form of this expression follows from the last equation of 
Eqs. (4.168) and (4.169), i.e., 

(4.170) 

For fabric composites whose stiffness in the warp and the fill directions is the same 
(El =Ez), Eq. (4.170) yields 4 = 45". 

4.7. Lattice layer 

A layer with a relatively low density and high stiffness can be obtained with a 
lattice structure which can be made by winding modified in such a way that the tapes 
are laid onto preceding tapes and not beside them as in conventional filament 
winding (see Fig. 4.86). Lattice layer can be the single layer of the structure as in 
Fig. 4.87 or can be combined with a skin as in Fig. 4.88. As a rule, lattice structures 
have the form of cylindrical or conical shells in which the lattice layer is formed 
with two systems of ribs - a symmetric system of helical ribs and a system of 
circumferential ribs (see Fig. 4.87 and 4.88). However, there exist lattice structures 
with three systems of ribs as in Fig. 4.89. 

In general, lattice layer can be assumed to consist of k symmetric systems of ribs 
making angles 3$j (j= 1, 2, 3, ...,k )  with the x-axis and having geometric 
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Fig. 4.86. Winding of a lattice layer. Courtesy of CRISM. 

F 

t -  

Fig. 4.87. Carbon-epoxy lattice spacecraft fitting in the assemble fixture. Courtesy of CRISM. 

parameters shown in Fig. 4.90. Particularly, the lattice layer presented in this figure 
has k = 2, q51 = 4, and 42 = 90". 

Because the lattice structure is formed with dense and regular systems of ribs, the 
ribs can be smeared over the layer surface, which is thus simulated with a con- 
tinuous layer having some effective (apparent) stiffnesses. Taking into account that 
the ribs work in their axial directions only, neglecting the ribs torsion and bending 
in the plane of the lattice layer, and using Eqs. (4.72) we get 
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Fig. 4.88. Interstage composite lattice structure. Courtesy of CRISM. 
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Fig. 4.89. A composite lattice shear web structure. 

k 

A12 = A21 = A44 = Bj sin2 4j cos2 4 j ,  
j =  1 

k k 

A44 = Cj cos2 $,, A55 = Cj sin2 4j , 
j =  I j =  1 

where Bj = E,Sj/aj and Cj = GjSj/aj, where Ej and G, are the modulus of elasticity 
and the shear modulus of the ribs materials, Sj  the ribs widths, and uj are the ribs 
spacings (see Fig. 4.90). 

4.8. Spatially reinforced layers and bulk materials 

The layers considered in the previous sections and formed of unidirectionally 
reinforced plies and tapes (Sections 4.24.5 and 4.7) or fabrics reinforced in the layer 
plane (Section 4.6) suffer from a serious shortcoming - their transverse (normal to 
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Fig. 4.90. Geometric parameters of a lattice structure. 

the layer plane) stiffness and strength are substantiaIly lower than the corresponding 
in-plane characteristics. To improve material properties under tension or compres-
sion in the z-direction and in shear in the xz-and the p-planes (see, e.g., Fig. 4.18), 
material should be additionally reinforced with fibers or yarns directed along the 
z-axis or making some angles (less than the right angle) with this axis. 

A simple and natural way of such a triaxial reinforcement is provided by imple-
mentation of three-dimensionally woven or braided fabrics. Three-dimensional 
weaving or braiding is a variant of the corresponding planar process wherein some 
yarns are going in the thickness direction. Another way involves assembling of 
elementary fabric layers or unidirectional plies into a three-dimensionally reinforced 
structure by sewing or stitching. Depending on the size of the additional yarn and 
frequency of sewing or stitching, transverse mechanical properties of the two-
dimensionally reinforced composite can be improved to a greater or lesser extent. 
The third way is associated with introduction of composite or metal pins parallel to 
the z-axis that can be inserted in the material before or after it is cured. The close to 
this effect is reached by the so-called needle punching. The needles puncture the 
fabric, break the fibers that compose the yarns, and direct the broken fibers through 
the layer thickness. Short fibers (or whiskers) may also be introduced into the matrix 
with which the fabrics or the systems of fibers are impregnated. 

Another class of spatially reinforced composites used mainly in carbon-carbon 
technology is formed by bulk materials multi-dimensionally reinforced with fine 
rectilinear yarns composed of carbon fibers bound with a polymeric or carbon 
matrix. The basic structural element of these materials is a parallelepiped shown in 
Fig. 4.91. The simplest spatial structure is the so-called 3D (three-dimensionally 
reinforced) in which reinforcing elements are directed along the ribs A A I,A B  and A D  
of the basic parallelepiped in Fig. 4.9 1. This structure is shown in Fig. 4.92 (Vasiliev 
and Tarnopol’skii, 1990). More complicated 4D structure with reinforcing elements 
directed along the diagonals A C I ,A I C ,BDI and B I D  (see Fig. 4.91) is shown in 
Fig. 4.93 (Tarnopol’skii et al., 1987). An example of this structure is presented in 
Fig. 1.22. Cross-section of a 5D structure reinforced along diagonals AD1 ,A I Dand 
ribs A A I ,A B ,  AD is shown in Fig. 4.94 (Vasiliev and Tarnopol’skii, 1990). There 
exist structures with higher numbers of reinforcing directions. For example, 
combination of a 4D structure (Fig. 4.93) with reinforcements along the ribs AB 
and AD (see Fig. 4.91) results in a 6D structure; addition of reinforcements in the 
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A D 
Fig. 4.91. The basic structural element of multi-dimensionally reinforced materials. 

Fig. 4.92. 3D spatially reinforced structure. 

Fig. 4.93. 4D spatially reinforced structure. 

direction of the rib AA,  gives a 7D structure, and so on up to 13D which is the most 
complicated of the spatial structures under discussion. 

Mechanical properties of multi-dimensional composite structures can be quali- 
tatively predicted with microstructural models discussed, e.g., by Tarnopol’skii 
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Fig. 4.94. Cross-section of a 5D spatially reinforced structure. 

et al. (1992). However, for practical applications these characteristics are usually 
obtained by experimental methods. Being orthotropic in the global coordinates of 
the structure x ,  y, z, spatially reinforced composites are described within the 
framework of a phenomenological model ignoring their microctructure by three-
dimensional constitutive equations analogous to Eqs. (4.53) or Eqs. (4.54) in which 
1 should be changed for x ,  2 - for y, and 3 - for z. These equations include nine 
independent elastic constants. Stiffness coefficients in the basic plane, i.e., 
E,, E,, G,,, and vxr, are determined using traditional tests developed for unidirec-
tional and fabric composites and discussed in Sections 3.4, 4.2, and 4.6. Transverse 
modulus E, and the corresponding Poisson’s ratios v, and vy can be found studying 
material compression in the z-direction. Transverse shear moduli G,.. and Gy can be 
calculated using the results of a three-point beam bending test shown in Fig. 4.95. 
A specimen cut out of the material is loaded with force P, and the deflection at 
the central point, w, is measured. According to the theory of composite beams 
(Vasiliev, 1993) 

Knowing P, the corresponding w and modulus E, (or E,) we can calculate G,, (or 
Cy).It should be noted that for reliable calculation the beam should be rather short, 
because of high ratios l / h  the second term in parenthesis is small in comparison with 
unity. 

The last spatially reinforced structure that is considered here is formed by a 
unidirectional composite material whose principal material axes 1,  2, 3 make some 

tZ I P 

Fig. 4.95. Three-point bending test. 
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angles with the global structural axes x ,  y, z (see Fig. 4.96). In the principal material 
coordinates, constitutive equations have the form of Eqs. (4.53)or Eqs. (4.54). 
Introducing directional cosines I x i ,  l ~ ,l,i which are cosines of the angles that the 
i-axis (i = 1, 2,  3 )  makes with axes i,y, z, respectively, applying Eqs. (2.8), (2.9) 
and (2.31) to transform stresses and strains in coordinates 1, 2, 3 to stresses and 
strains referred to coordinates x,  y,  z, and using the procedure described in Section 
4.3.1 we finally arrive at the following constitutive equations in the global structural 
coordinate frame 

IS1 = 

s l l l l  SI122 SI133 SI112 SI113 SI123 

32222 s2233 s2212 s2213 s2223 

s3333 S3312 S3313 s3323 

SI212 SI213 SI223 

SYm SI313 SI323 

s2323 

is the stiffness matrix in which 

(4.171) 

J 
Y 

Fig. 4.96. Material elements referred to the global structural coordinate frame x, y ,  z and to the principal 
material axes I ,  2. 3. 
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It should be noted that stiffness coefficients are symmetric with respect to the 
couples of subscripts (Sijk[= Skli,) and that notation ( I  2, 3) means that performing 
permutation, Le., changing 1 for 2, 2 for 3, and 3 for 1, we can use Eqs. (4.172) to 
write the expressions for all the stiffness coefficients entering Eq. (4.1 71). Coeffi-
cients Ai and p,,in Eqs. (4.172) are given in notations to Eqs. (4.54) and 

A112 +2G12, A113 =Alp13 +2G13, A223 =ArPrz + ~ G J. 

Resolving Eqs. (4.171) for strains we arrive at Eq. (2.48) with the following 
coefficients of the compliance matrix in Eq. (2.49): 
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where 

Consider a special spatial structure (Pagan0 and Whitford, 1985) formed by the 
fabric composite in which the plies reinforced at angle 4 (warp direction) with 
respect to the x-axis make angles c(and B with the x-axis and the y-axis, respectively, 
as in Fig. 4.97. Directional cosines for this structure are: 

Z.yl = COSACOS+, 
l.r3 = - sin $, 
I,.? =cosAcos~+sinAsinBsin+, 1,3 = -sinBcos+, 
1=1 = sin Isin B +cos Icos Bsin +, 
I,? =cosIsinp-sinhcos/?sin+, lz3 = c o s ~ c o s $, 

l x2  = -sinIcos+, 
1,.1 = sin lcos j?- cos l sin B sin 6,  

where 

V 

X 

Fig. 4.97. Orientation angles in a spatial composite structure. 
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E,GPa G,GPa 

121 6 b8 2 

3 0.8 

1 

4 0.4 

oL------q9 o-& 
0 15 30 45 60 75 90 0 16 30 45 60 75 90 

Fig. 4.98. Dependencies of the elastic constants of a spatially reinforced composite o n  the orientation 
angles: 1 - GL = f l  = 0", 2 - a = p = 8", 3 - ct = f l  = 16". 

Dependencies of elastic constants E,, E,, GXzand G ,  calculated with the aid of 
Eqs. (4.173) for the material with El = 12.9 GPa, E2 = 5.2 GPa, E3 = 3 GPa, 
G12 = G13 = 1.5 GPa, G23 = 1 GPa, v21 = 0.15, ~ 3 1= 0.2, v32 = 0.2 are presented 
in Fig. 4.98 (Vasiliev and Morozov, 1988). 

For planar structures (a= /I= 0), Eqs. (4.172) and (4.173) generalize Eqs. (4.72) 
and (4.76) for a three-dimensional stress state of a layer. 
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Chapter 5 

MECHANICS OF LAMINATES 

A typical composite structure consists of a system of layers bonded together. The 
layers can be made of different isotropic or anisotropic materials, and have different 
structures (see Chapter 4), thicknesses, and mechanical properties. In contrast to 
typical layers which are described in Chapter 4 and whose basic properties are 
determined experimentally, the laminate characteristics are usually calculated using 
the information concerning the number of layers, their stacking sequence, geometric 
and mechanical properties which should be known. A finite number of layers can be 
combined to form so many laminates that the idea to study them using 
experimental methods does not look realistic. While the most complicated typical 
layer is described with nine stiffness coefficients A,,,,, (mn= 11,22,12,14,24,44,55: 
56,66), some of which can be calculated, the laminate is characterized with 21 
coefficients and demonstrates coupling effects that can hardly be simulated in 
experiments. 

Thus, the topic of this chapter is to provide equations allowing us to predict the 
behavior of a laminate as a system of layers with given properties. The only 
restriction that is imposed on the laminate as an element of a composite structure 
concerns its total thickness which is assumed to be much smaller than the other 
dimensions of the structure. 

5.1. Stiffness coefficients of a generalized anisotropic layer 

For the sake of brevity, consider first a thin homogeneous layer, which is 
anisotropic in the xy-plane and whose mechanical properties are some functions of 
the normal coordinate z (see Fig. 5.1). Coordinate axes x and y belong to some 
plane which is referred to as a reference plane such that z = 0 on this plane and 
-e <z < s for the layer under study. There exist some special locations of the 
reference plane discussed below, but in this section its coordinates e and s are not 
specified. We introduce two assumptions both based on the fact that thickness 
h = e +s is small. 

First, it is assumed that the layer thickness, h, does not change under the action of 
stresses shown in Fig. 5.1. Actually, the thickness does change, but because it is 
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z 

X 

*v 

Fig. 5.1. An element of a generalized layer. 

small, this change is negligible. This means that there is no strain in the z-direction, 
and in accordance with Eqs. (2.22), 

(5.1) 

Here, w(x,y)is the so-called normal deflection which is a translational displacement 
of a normal element a-b (see Fig. 5.1) as a solid in the z-direction. 

Second, we assume that in-plane displacements u, and u, are linear functions of 
the thickness coordinate z, i.e., 

where u and v are the displacements of the points of the reference plane z = 0 or, 
which is the same, the translational displacements of the normal element a-6 (see 
Fig. 5.1) as a solid in the x- and y-directions, while 0, and 0, are the angles of 
rotations (usually referred to as “rotations”) of the normal element a b  in the xz-
and yz-planes. Geometric interpretation of the first expression in Eqs. (5.2) is 
presented in Fig. 5.2. 

a 

Fig. 5.2. Decomposition of displacement u, of point A into translational (u )  and rotation (z&) 
components. 
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In-plane strains of the layer, E,, E,,, and y,,, can be found using Eqs. (2.22) and 
(5.1), (5.2) as 

au, 
axEx = -= E; +ZK,, 

3u.v 0
E,? =-= E, +ZK,, 
. ay . (5.3) 

where 

ae, ae, ae,aex 

ax ' aY ay axKVV'--, IC,,,=-+- .K, = -

These generalized strains correspond to the following four basic deformations of the 
layer shown in Fig. 5.3: 
0 in-plane tension or compression (E:, E;), 

0 in-plane shear (y:,,), 
0 bending in xz- and yz-planes ( K ~ ,K,,), and 
0 twisting (K,,,). 

Constitutive equations for an anisotropic layer Eqs. (4.71), upon substitution of 
Eqs. (5.3) yield 

where, A,, =A, ,  are the stiffness coefficients of the material that can depend, in 
general, on coordinate z. 

As follows from Eqs. (5.4), stresses depend on six generalized strains E ,  y ,  and K 
which are the functions of coordinates x and y only. To fulfil the derivation of 
constitutive equations for the layer under study, we introduce the corresponding 
force functions as stress resultants and couples shown in Fig. 5.4 and specified as 
(see also Fig. 5.1) 

-e -e -e 

S S 

--e -e -e 
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J 

f 

Fig. 5.3. Basic deformations of the layer: (a) in-plane tension and compression ( E : , $ ) ;  (b) in-plane 
shear (y:,,); (c) bending (K~);(d) twisting (K~,,). 

Fig. 5.4. Stress resultants and couples applied to the reference plane of the layer. 
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Substituting stresses in Eqs. (5.4) into these equations we arrive at constitutive 
equations that link stress resultants and couples with the correspondinggeneralized 
strains, i.e., 

These equations include membrane stiffness coefficients 

-e 

which specify the layer stiffness under in-plane deformation (Figs. 5.3a and b), 
bending stiffness coefficients 

which are associated with the layer bending and twisting (Figs. 5 . 3 ~and d), and 
membrane-bending coupling coefficients 

F 

c,, = c,,,= 1A , , ~ &  
-e 

through which in-plane stress resultants are linked with bending deformations and 
stress couples are linked with in-plane strains. 

Coefficientswith subscripts 11, 12, 22, and 44 compose the basic set of the layer 
stiffnesses associated with in-plane extension, contraction, and shear (BII ,Bl2, B22, 
BM),bending and twisting ( D I I ,0 1 2 , 0 2 2 ,  OM),and coupling effects( C I ~ ,C12, C22, 
CM).For an anisotropic layer there exist also coupling between extension (a) and 
shear (b) in Fig. 5.3 (coefficientsB14, B24), extension (a) and twisting (d) in Fig. 5.3 
(coefficientsc14,Ct4), bending (c) and twisting (d) in Fig. 5.3 (coefficientsD14,D24). 

Forces and moments N and M specified by Eqs. (5.5) are resultants and couples 
of in-plane stresses a,, cy,and zXy(see Fig. 5.1). However, there exist also transverse 
shear stresses z, and z, which should be expressed in terms of the corresponding 
shear strains. Unfortunately, we cannot apply for this purpose the direct approach 
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that was used above to derive Eqs. (5.5). This approach involves strain-displace-
ment equations, Eqs. (2.22), 

in conjunction with Hooke’s law 

or 

where A,, and a,,, are stiffness and compliance coefficients, respectively. The 
problem is associated with Eqs. (5.2) which specify only approximate dependence 
of displacements u, and uy on coordinate z (actual distribution of ux and uy through 
the layer thickness is not known) and must not be differentiated with respect to z. 
So we cannot substitute Eqs. (5.2) into Eqs. (5.9) which include derivatives of u, 
and uy with respect to z. To see what can happen if we violate this well-known 
mathematical restriction, consider a sandwich laminate shown in Fig. 5.5. It can be 
seen that while linear approximation of u(z) looks reasonable, derivatives of the 
actual and approximate displacements have little in common. 
To derive constitutive equations for transverse shear, consider Fig. 5.6. Actual 

distribution of shear stresses z,, and zp across the layer thickness is not known, but 
we can suppose that it is not important. Indeed, as follows from Eqs. (5.1), elements 
a-b along which the shear stresses act are absolutely rigid. This means (in 
accordance with the corresponding theorem of Statics of Solids) that the 
displacements of these elements in the z-direction depend only on resultants of 
the shear stresses, Le., on transverse shear forces 

(a)  (b) 
Fig. 5.5. Actual (solid lines) and approximate (broken lines) distributions of a displacement (a) and its 

derivative (b) through the thickness of a sandwich laminate. 
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a 

‘3 

Fig. 5.6. Reduction of transverse shear stresses to stress resultants (transverse shear forces). 

-e -e 

Because the particular distribution 

(5.12) 

of txzand z, does not influence the displace-
ments, we can introduce some average stresses having the same resultants as the 
actual ones, i.e., 

However, according to Eqs. (5.11), shear strains are linear combinations of shear 
stresses. So we can use the same law to introduce average shear strains as 

(5.13) 

Average shear strains ’yx and yv can be readily expressed in terms of displacements 
if we substitute Eqs. (5.9) into Eqs. (5.13), i.e., 

These equations, in contrast to Eqs. (5.9), do not include derivatives with respect 
to z. So we can substitute Eqs. (5.1) and (5.2) to get the final result 

aw aw 
ax aY

y.y = e, +-, y), = e, +- . (5.14) 
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Consider Eqs. (5.10) and (5.11). Integrating them over the layer thickness and using 
Eqs. (5.12) and (5.13) we get 

-e -e 

-e -e 

Because the actual distribution of stresses and strains according to the foregoing 
reasoning is not significant, we can change them for the corresponding average 
stresses and strains: 

where 

S 

1 
sm,= s,, =-J am,d~ .h2 

(5.17) 

(5.18) 
-e 

It should be emphasized that Eqs. (5.16) are not the inverse form of Eqs. (5.15). 
Indeed, solving Eqs. (5.16), using Eqs. (5.18) and taking into account that 

a 5 5  =A 6 6  I 

- A m ,  
A m ,  = 

a 5 6  = - 2 5 6  9 a 6 6  =2 5 5  I 

A 5 5 A 6 6  -A:6 ’ 

we arrive at Eqs. (5.15) in which 

(5.19) 

These expressions, in general, do not coincide with Eqs. (5.17). 
Thus, the constitutive equations for transverse shear are specified by Eqs. (5.15), 

and there exist two, in general different, approximate forms of stiffnesscoefficients -
Eqs. (5.17) and (5.19). The fact that equations obtained in this way are approximate 
is quite natural because the assumed displacement field, Eqs. (5.1) and (5.2), is also 
approximate. 
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To compare two possible forms of constitutive equations for transverse shear, 
consider for the sake of brevity an orthotropic layer for which 

For transverse shear in the xz-plane Eqs. (5.15) yield 

where 

-1' 

in accordance with Eq. (5.17), while Eq. (5.19) yields 

(5.20) 

(5.21) 

(5.22) 

If the shear modulus does not depend on z, both equations, Eqs. (5.21) and (5.22), 
give the same result S55 = G,h. 

Using the energy method applied in Section 3.3 we can show that the Eqs. (5.21) 
and (5.22) provide the upper and the lower bounds for the actual transverse shear 
stiffness. Indeed, consider a strip with unit width experiencing transverse shear 
induced by force Y,  as in Fig. 5.7, Assume that Eq. (5.20) links the actual force K. 
with the actual angle yx = A / l  through the actual shear stiffness SSSwhich we do not 
know and which we would like to evaluate. To do this, we can use two variational 
principles described in Section 2.11. According to the principle of minimum total 
potential energy 

Tact < r tdm 7 (5.23) 

Y 

Fig. 5.7. Transverse shear of a strip with unit width. 
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where 
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Tact = u&,-& t ,  Tadm = u&, -Aadm 

are the total energies of the actual state and some admissible kinematic state 
expressed in terms of the strain energy, U, and work A performed by force V, on 
displacement A (see Fig. 5.7). For both states 

Aact =Aadm = V,A 

and condition (5.23) reduces to 

u& < u:dm . (5.24) 

For the actual state, with due regard to Eq. (5.20) we get 

1 1 2Uact =-KY,=+Y, .2 

For the admissible state. we 

I P 

should use the following general equation: 

I 

and admit some approximation for yxz. The simplest one is yz = yx, so that 

(5.25) 

(5.26) 
-e 

Then, Eqs. (5.24H5.26) yield 
S 

S s s d  / G = d z .  
-e 

Comparing this inequality with Eq. (5.21) we can conclude that this equation 
specifies the upper bound for S55. 

To determine the lower bound, we should apply the principle of minimum strain 
energy according to which 

G c ,  < U& , (5.27) 

where 
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For the admissible state we should apply 

and use some admissible distribution for L-. The simplest approximation is 
z,, = V;./hso that 

-e 

Substitution into condition (5.27) yields 

Thus, Eq. (5.22) provides the lower bound for S55, and the actual stiffness satisfies 
the following inequality: 

So, constitutive equations for the generalized layer under study are specified with 
Eqs. (5 .5 )  and (5.15). Stiffness coefficients that are given by Eqs. (5.6)-(5.8), and 
(5.17) or (5.19) can be written in a form more suitable for calculations. To do this, 
introduce new coordinate t = z +e such that 0 d t d h (see Fig. 5.8). Transforming 
the integrals to this new variable we get 

where rnn = 1 1, 12, 22, 14, 24, 44 and 

(5.28) 

Fig. 5.8. Coordinates of an arbitrary point A .  
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Transverse shear stiffnesses, Eqs. (5.17) and (5.19), acquire the form 

and 

where mn = 55,56,66 and 

(5.29) 

(5.30) 

(5.3 1) 

(5.32) 

5.2. Stiffnesscoefficientsof a homogeneous layer 

Consider a layer whose material stiffness coefficients A,, do not depend on 
coordinate z. Then 

(5.33) 

and Eqs. (5.28), (5.30), and (5.31) yield the following stiffness coefficients of the 
layer: 

B,, =A,,h, Cm,=A,, --(; e> ,  

Dmn=A,, 6- eh +e 2 ) ,  S,, =A,,h 
(5.34) 

Both Eqs. (5.30) and (5.31) give the same result for S,,. As follows from the second 
of these equations, membrane-bending coupling coefficients C,, become equal to 
zero if we take e = h/2 ,  Le., if the reference plane coincides with the middle plane of 
the layer shown in Fig. 5.9. In this case, Eqs. (5.5) and (5.15) acquire the following 
de-coupIed form: 
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X 

Y 
Fig. 5.9. Middle plane of a laminate. 

As can be seen, we have arrived at three independent groups of constitutive 
equations for in-plane stressed state of the layer, bending and twisting, and 
transverse shear. Stiffness coefficients, Eqs. (5.34), become 

For an orthotropic layer, there are no in-plane stretching-shear coupling (B14 = 
B24 = 0) and transverse shear coupling (s56= 0). Then, Eqs. (5.35) reduce to 

In terms of engineering elastic constants material stiffness coefficients of an 
orthotropic layer can be expressed as 

(5.38) 
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Finally, for an isotropic layer, we have 

(5.40) 

where E =E / (  I - v’). 

5.3. Stiffness coefficients of a laminate 

Consider a general case, Le., a laminate consisting of an arbitrary number of 
layers with different thicknesses hi and stiffnessesA!), (i = 1,2,3,. ..,k).Location of 
an arbitrary ith layer of the laminate is specified by coordinate ti ,  which is the 
distance from the bottom plane of the laminate to the top plane of the ith layer (see 
Fig. 5.10). Assuming that material stiffness coefficients do not change within the 
thickness of the layer and using piece-wise integration we can write parameter I,,,,, in 
Eqs. (5.29) and (5.32) as 

*k  

YY 

LX 

to = o  
Fig. 5.10. Structure of the laminate. 
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(5.41) 

where I =0, 1 ,  2 and to = 0, tk = h (see Fig. 5.10). For thin layers, Eqs. (5.41) can 
be reduced to the following form, which is more suitable for calculations: 

k k 

where hi = ti - ti-l is the thickness of the ith layer. 
Thus, membrane, coupling, and bending stiffness coefficients of the laminate are 

specified with Eqs. (5.28) and (5.42). Consider transverse shear stiffnesses which 
have two diflerent forms determined by Eqs. (5.30) and (5.31). Because both 
equations coincide for a homogeneous layer (see Section 5.2), we can expect that 
the difference shows itself in laminates consisting of layers with different 
transverse shear stiffnesses. The laminate for which this difference is the most 
pronounced is a sandwich structure with metal facings (inner and outer layers) 
and a foam core (middle layer) that has very low shear stiffness. For such 
a sandwich, experimentally found transverse shear stiffness is S =389 kN/m 
(Aleksandrov et al., 1960), while Eqs. (5.30) and (5.31) yield, respectively, S = 
37200 kN/m and S = 383 kN/m. Thus, Eq. (5.31) provides much more accurate 
result for sandwich structures. This conclusion is also valid for composite 
laminates (Chen and Tsai, 1996). 

A particular case, important for applications, is an orthotropic laminate for 
which Eqs. (5.5) and (5.15) acquire the form: 

(5.43) 

where, membrane, coupling, and bending stiffnesses, B,,, C,,,,, and D,,,,, are 
specified by Eqs. (5.28) and (5.42), while transverse shear stiffnesses are 
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(5.44)h2 
k hi 'Ci=l(i)

A mm 

s m m  = 

Laminates composed of unidirectional plies have special stacking-sequence nota-
tions. For example, notation [0;/+45"/-45"/90~] means that the laminate consists 
of 0" layer having two plies, f45" angle-ply layer, and 90" layer also having two 
plies. Notation [0"/90"],means that the laminate has five cross-ply layers. 

5.4. Quasi-homogeneous laminates 

Some typical layers considered in Chapter 4 were actually quasi-homogeneous 
laminates (see Sections 4.4, and 4.5),but being composed of a number of identical 
plies, they were treated as homogeneous layers. The accuracy of this assumption is 
evaluated below. 

5.4.I .  Laminate composed of identical homogeneous Kayers 

Consider a laminate composed of layers with different thicknesses but the same 
stiffnesses, Le., such that A:; =A,, for all i = 1,2,3, ...k. Then, Eqs. (5.29) and 
(5.32) yield 

This result coincides with Eqs. (5.33), which means that the laminate consisting of 
the layers with the same mechanical properties is a homogeneous laminate (layer) 
studied in Section 5.2. 

5.4.2. Laminate composed of inhomogeneous orthotropic layers 

Let the laminate have the structure [0"/90"],, where p = 1,2,3,... specifies the 
number of elementary cross-ply couples of 0" and 90" plies. In Section 4.4, this 
laminate was treated as a homogeneous layer with material stiffness coefficients 
specified by Eqs. (4.100). Taking 60 = i g o  = 0.5 in these equations we get 

In accordance with Eqs. (5.36), stiffness coefficients of this layer should be 
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To calculate the actual stiffnesses of the laminate, we should put hi= 6, ti = is, 
k = 2p, e = h/2 ,  and h = 2p6 (see Fig. 5.10), where 6 is the thickness of a 
unidirectional ply. Then, Eqs. (5.28) and (5.42) yield 

where 

(5.48) 

63- p 

3 , j= l  

2;;) = -El  [12j2(1 + a)- 6j(3 + a)+ 7 + a],  

6 3 - * 
@ = g E 1 ~ [ 1 2 j ’ ( l+a)-6 j (3cr+1)+7a+I] ,  

j=  I 

where a= E2/E1. 
Matching Eqs. (5.45), (5.46) and (5.47), (5.48) we can see that B,, =Bi,,,  Le., 

membrane stiffnesses are the same for both models of the laminate. Coupling and 
bending stiffnesses are also the same for mn = 12,44. There is no difference between 
the models for a = 1 because the laminate reduces in this case to a homogeneous 
layer. 

Summing up the series in Eqs. (5.48) and using Eqs. (5.47) we arrive at 

Taking into account that in accordance with Eqs. (5.46) and accepted notations 

we can conclude that the only difference between the homogeneous and the 
laminated models is associated with coupling coefficients C I ~and C?? which are 
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equal to zero for the homogeneous model and are specified by Eqs. (5.49) for the 
laminated one. Because p6 = h/2,  we can write these coefficients in the form 

showing that C,, 4 0 for 6 +0. 

5.4.3. Laminate composed of angle-ply layers 

Consider a laminate with the structure [+$/-+Ip, wherep is the number of layers 
each consisting of +4 and -4 unidirectional plies. Constitutive equations (5.5) for 
this laminate are 

where 

(5.50) 

where, h is the laminate thickness, 6 the ply thickness, and A,, are material stiffness 
coefficients specified by Eqs. (4.72). As can be seen, the laminate is anisotropic 
because +4 and -4 plies are located in different planes. Homogeneous model of the 
laminate ignores this fact and yields c14 = c 2 4  = 0. Calculations show that these 
coefficients, not being actually equal to zero, practically do not influence the 
laminate behavior for h/6  220. 

Laminates in which any ply or layer with orientation angle +#Jis accompanied 
by the same ply or layer but with angle -4 are referred to as balanced laminates. 
Being composed of only angle-ply layers these laminates have no shear-extension 
coupling (B14 =B24 = 0) ,  bending-stretching and shear-twisting coupling (CIl= 
C12 = C22 = CU = 0). As follows from Eqs. (5.50), only stretching-twisting and 
bending-shear coupling can exist in balanced laminates. These laminates can 
include also 0" and 90" layers, but membrane-bending coupling can appear in such 
laminates. 
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5.5. Quasi-isotropic laminates 

The layers of the laminate can be arranged in such a way that the laminate 
will behave as an isotropic layer under in-plane loading. Actually, the laminate is 
not isotropic (that is why it is called a quasi-isotropic laminate) because under 
transverse (normal to the laminate plane) loading and under interlaminar shear its 
behavior is different from that of an isotropic (e.g., metal) layer. 

To derive the conditions that should be met by the structure of a quasi-isotropic 
laminate consider in-plane loading with stresses o.~ ,o,., and z.~,. that are shown in 
Fig. 5.1 and induce only in-plane strains E:, E;, and Y:,~. Taking IC, = IC,. = K . ~ ~ ,= 0 in 
Eqs. (5.5) and introducing average (through the laminate thickness 6) stresses as 

we can write the first three equations of Eqs. (5.5) in the following form: 

where in accordance with Eqs. (5.28) and (5.42) 

k 

B,,,= EAikA;, 
i= I 

hi = h i / h  , 

(5.51) 

(5.52) 

where, hi is the thickness of the ith layer normalized to the laminate thickness and 
A , , ,  are the stiffness coefficients specified by Eqs. (4.72). For an isotropic layer, 
constitutive equations analogous to Eqs. (5.51) are 

0, = E(8: + v&;), IT! = E(&:+ V&!) ,  Z.,. = Gy:-v , (5.53) 

where 

- E E = ? ( l - V ) E1 .E = - G = -
1 - v 2 '  2(1 + v )  

(5.54) 

Matching Eqs. (5.51) and (5.53) we can see that shear stretching coefficients of the 
laminate, Le., = B41 and 1%4= B42 should be equal to zero. As follows from 
Eqs. (4.72) and Section 5.4.3, this means that the laminate should be balanced, Le., 
it should be composed of O", &4i(or d i  and IT - 4i),and 90"layers only. Because 
the laminate stiffness in the x- and the y-directions must be the same, we require 
that Bll = B22. Using Eqs. (4.72), taking hi= h for all i, and performing some 
transformation we arrive at the following condition: 



244 Mechanics and analysis of composite materials 

k 
CCOS24  = 0 
i= 1 

As can be checked by direct substitutions, for k =  I this equation is satisfied if 
= 45" and for k = 2 if dl  = 0 and 42= 90". Naturally, such one- and two-

layered materials cannot be isotropic even in one plane. So consider the case k23, 
for which the solution has the form 

(5.55)Rqhi=( i - l ) - l  i =  1,2,3,...,k .k 

Using the sums that are valid for angles specified by Eqn. (5.55) i.e., 

kCsin2cb i=Ccos2(b i=-,
2 

3kCsin4qhi = C C O S ~ ~ ~=-,
8 

k k 

i= I i= I 
k k 

i=l  i= I 

k 
8 

k 
sin2dicos2+i =- , 

i=l 

and calculating stiffness coefficients in Eqs. (5.52) and (4.72) we get 

These stiffnesses provide constitutive equations in the form of Eqs. (5.53) and 
satisfy conditions (5.54) which can be written as 

if 

(5.56) 

Possible solutions (5.55) providing quasi-isotropic properties of the laminates with 
different number of layers are listed in Table 5.1 for k<6.  
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All quasi-isotropic laminates having different structures determined by Eqn. 
(5.55) for a given number of layers, k, possess the same apparent modulus and 
Poisson’s ratio specified by Eqs. (5.56). For typical advanced composites with 
properties listed in Table 3.5, these characteristics are presented in Table 5.2. 

As follows from Tables 5.2 and I .  1,specific stiffness of quasi-isotropic composites 
with carbon and boron fibers exceeds the corresponding characteristic of traditional 
isotropic structural materials - steel, aluminum, and titanium. 

5.6. Symmetric laminates 

Symmetric laminates are composed of layers that are symmetrically arranged with 
respect to the laminate middle plane shown in Fig. 5.9. To study general properties 
of symmetric laminates, consider Eqs. (5.28) and (5.29) and apply them to calculate 
stiffness coefficients with some combination of subscripts, e.g., pn = 1 and n = 1. 
Because coordinate of the reference plane, e, is an arbitrary parameter, we can find 
it from the condition CII= 0. Then, 

Table 5.1 
Angles providing quasi-isotropic properties of the laminates. 

(5.57) 

Number of layers, 
k 

Orientation angle of the ith layer 

4; 4; 4; 4; 4; 4: 

3 0 60 120 -

4 0 45 90 135 - -

5 0 36 72 I08 144 -

6 0 30 60 90 120 150 

Table 5.2 
Modulus of elasticity and Poisson’s ratio of quasi-isotropic laminates made of typical advanced 
composites. 

Property Glass-epoxy Carbon-poxy Aramid-epoxy Boron+poxy Boron-AI 

Modulus, E, GPa 27.0 54.8 34.8 80.3 183.1 
Poisson’s ratio, v 0.34 0.31 0.33 0.33 0.28 
Specific modulus, 1290 3530 2640 3820 6910 
kl; x lo3,m 
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and 

(5.58) 

Introduce a new coordinate of an arbitrary point A in Fig. 5.1 1 as z = t - (h/2) .  
Changing t for z we can present Eq. (5.29) in the form 

Substituting these integrals into Eqs. (5.57) and (5.58) we get 

and 

where 

hI2 

JL'= J A l l d d z  
-h i2  

(5 .59)  

(5.60) 

(5.61) 

and r = 0, 1,2. 

components, i.e., 
Now decompose All as a function of z into symmetric and antisymmetric 

Fig. 5.1 1. Coordinate of point A referred to the middle plane. 
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Then, Eq. (5.61) yields 

247 

-h/2 -h / 2  - h / 2  

As can be seen from Eq. (5.60), Dll reaches its maximum value if J:;) = 0 or = 0 
and All =A i , .  In this case, Eq. (5.59) gives e = h/2.  

Thus, symmetric laminates provide the maximum bending stiffness for a given 
number and mechanical properties of layers and, being referred to the middle-plane, 
do not have membrane-bending coupling effects. This essentially simplifies behavior 
of the laminate under loading and constitutive equations which have the form 
specified by Eqs. (5.35). For a symmetric laminate with the layer coordinates shown 
in Fig. 5.12, stiffness coefficients are calculated as 

The transverse shear stiffness coefficients are given by Eq. (5.31) in which 

To indicate symmetric laminates, contracted stacking-sequence notation is used, 
e.g., [0"/90"/45"],~instead of [0"/90"/45"/45"/90'/0"]. 

Fig. 5.12. Layer coordinates of a symmetric laminate. 
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5.7. Antisymmetric laminates 

In antisymmetric laminates, symmetrically located layers have mutually reversed 
orientations. For example, while laminates [0"/90"/90"/0"] and [+#/ - 4/ - (p/ +4] 
are symmetric, laminates [0"/90"/0"/90"] or [0"/0"/90"/90"] and [+4/ -4/+4/ -4]  
are antisymmetric. In contrast to symmetric laminates which have maximum 
bending and zero coupling stiffness coefficients, antisymmetric laminates demon- 
strate pronounced coupling that can be important for some special applications 
(e.g., robotic parts undergoing complicated deformation under simple loading, rotor 
blades that twist under centrifugal forces, airplane wings twisting under bending, 
etc.). 

The simplest antisymmetric laminate is a cross-ply layer consisting of two plies 
with angles 0" and 90", and the same thickness h/2 (see Fig. 5.13). Taking e = h/2 
and using Eqs. (5.28) and (5.41) we arrive at the following stiffness coefficients 
entering Eqs. (5.43): 

h -  
2 Bl1 = B22 = -(El +E* ) ,  

h2 - - 

8 

B I Z  = EIVIZh, 

CII = -c** = -(E* - E l ) ,  c1* = 0, c 4 4  = 0, 

8 4 4  = GIZA, 

Comparing these results with Eqs. (5.45) and (5.46) corresponding to a quasi- 
homogeneous cross-ply laminate we can see that the antisymmetric cross-ply 
laminate has the same membrane and bending stiffnesses but nonzero coupling 
coefficients CII and C22. This fact shows, in accordance with Eqs. (5.43), that 
in-plane tension or compression of this laminate induces bending. 

As another typical example of an antisymmetric laminate, consider an angle-ply 
structure consisting of two plies with the same thickness h/2 and orientation angles 
+4 and -4, respectively (see Fig. 5.14). The plies (or layers) are characterized with 
the following stiffness coefficients: 

Z 

Y 

Fig. 5.13. An antisymmetric cross-ply laminate. 
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J 
Y 

Fig. 5.14. Unbonded view of an antisymmetric angle-ply laminate. 

where coefficients A,,,,, are specified by Eqs. (4.72). Taking again e = h /2  we arrive at 
constitutive equations in Eqs. (5.50) in which 

Comparing these coefficients with those entering Eqs. (5.50) and corresponding to a 
quasi-homogeneous angle-ply laminate we can conclude that the antisymmetric 
laminate has much more large coupling coefficients C14 and C24, and thus much 
more pronounced extension-twisting coupling effect. 

5.8. Sandwich structures 

Sandwich structures are three-layered laminates consisting of thin facings and a 
light-weight honeycomb or foam core as in Figs. 5.15 and 5.16. Because in-plane 
stiffnesses of the facings are much higher than those of the core, while their 
transverse shear compliance is much lower than the same parameter of the core, the 
stiffness coefficients of sandwich structures are usually calculated assuming that 
in-plane stiffnesses of the core are equal to zero. The transverse shear stiffnesses of 

Fig. 5.15. Composite sandwich panel with honeycomb core. 
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Fig. 5.16. Composite sandwich rings with foam core. 

the facings are assumed to be infinitely high. For the laminate shown in Fig. 5.17 
this means that 

A!! = 0 ,  

A::,? -+ m, 

mn = 11, 12, 14,24,44, 

mn = 55,56,66 . 

As a result, coefficients in Eqs. (5.29) become 

where niiz = 11, 12, 22, 14, 24, 44. Transverse shear stiffnesses, Eqs. (5.31), for an 
orthotropic core, can be presented in the form 

t Z  

t ,  = 

J 
Y 

Fig. 5.17. Sandwich laminate with two laminated facings (1 and 3) and foam core (2). 
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where Ai:) = G.rz and A;:) = C;, are shear moduli of the core. 

5.9. Coordinate of the reference plane 

Stiffness coefficients specified by Eqs. (5.28) include coordinate of the reference 
plane e (see Fig. 5.1) that, being properly pre-assigned, allows us to simplify 
constitutive equations for the laminate. As was shown in Sections 5.2 and 5.6, 
taking the middle plane as the reference plane, i.e., putting e = h/2,  we sometimes 
get C,,,,,= 0, and constitutive equations acquire the simplest form without 
membrane-bending coupling terms. 

Now, a natural question as to whether it is possible to reduce Eqs. (5.5) to this 
form in the general case arises. Taking C,,l,l= 0 in Eqs. (5.28) we get 

(5.63) 

I t  is important, that the reference plane should be one and the same for all mn = 11, 
12, 22, 14, 24, 44, and these six equations should give the same value of e. In the 
general case, this is not possible, so the universal reference plane providing Cm,= 0 
cannot exist. 

However, there are some other (in addition to the homogeneous and symmetric 
structures) particular laminates for which this condition can be met. For example, 
consider a laminate composed of isotropic layers (see Sections 4.1 and 5.2). For such 
laminates 

and in accordance with Eqs. (5.42) 

As can be seen, these parameters, being substituted into Eqs. (5.63) do not provide 
one and the same value of e. But if Poisson's ratio is the same for all the layers, Le., 
vi = v (i = I ,  2, 3,...,k) we get 
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For practical analysis, this result is often used even if Poisson’s ratios of the layers 
are different. In these cases it is approximately assumed that all the layers are 
characterized with some average value of Poisson’s ratio, i.e., 

As another example, consider a sandwich structure described in Section 5.8. In the 
general case, we again fail to find the desirable reference plane. However, if we 
assume that the facings are made of one and the same material (only the thicknesses 
are different), Eqs. (5.62) and (5.63) yield 

h: +h3(h3 +2hl + 2h2) 
2(hi +h3)

e =  

Returning to the general case we should emphasize that the reference plane 
providing Cm,= 0 for all mn does not exist in this case only if the laminate structure 
is given. If the stacking sequence of the layers is not pre-assigned and there is a 
sufficient number of layers, they can be arranged in such a way that C,, = 0. 
Indeed, consider a laminate in Fig. 5.18 and assume that its structure is, in general, 
not symmetric, Le., that 4 # zi and K # k. Using plane z = 0 as the reference plane 
we can write the membrane-bending coupling coefficients as 

Z 

k 

Fig. 5.18. 1 

i’i’ 

k t k s s m m s u  
;ayer coordinates with respect to the reference plane. 
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where, zi20 and 4 80.  Introduce a new layer coordinate Zi = (zi +zi - l ) /2 ,which is 
the distance between the reference plane of the laminate and the middle plane of the 
i-th layer. Then, condition C,, = 0 yields 

Now assume that we have a group of identical layers or plies with the same stiffness 
coefficientsA,, and thicknesses. For example, the laminate should include a 1.5 mm 
thick 0" unidirectional layer which consists of 10 plies (the thickness of an 
elementary ply is 0.15 mm). Arranging these plies above (Bi)and below (4) the 
reference plane in such a way that 

(5.64) 
.j= I 

we have no coupling for this group of plies. Doing the same with the other layers we 
arrive at the laminate without coupling. Naturally, some additional conditions 
following from the fact that the laminate is a continuous structure should be 
satisfied. But even with these conditions, Eqn. (5.64) can be met with several systems 
of the ply coordinates, and symmetric arrangement of plies (2, =3)is only one of 
these systems. General analysis of the problem under discussion is presented by 
Verchery (1999). 

Return to the laminates with pre-assigned stacking sequences of the layers. As 
follows from Eqs. (5.63), we can always make one of coupling stiffness coefficients 
equal to zero, e.g., taking e = estwhere 

(5.65) 

we get Cst= 0 (the rest coupling coefficients are not zero). 
Another way to simplify the equations for stiffnesses is to take e = 0, Le., to take 

the surface of the laminate as the reference plane. In this case, Eqs. (5.28) acquire 
the form 

In practical analysis, constitutive equations for the laminates with arbitrary 
structure are often approximately simplified using the method of reduced or 
minimum bending stiffnesses described, e.g., by Ashton (1969), Karmishin (1974), 
and Whitney (1987). To introduce this method, consider the corresponding equation 
of Eqs. (5.28) for bending stiffnesses, Le. 
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(5.66) 

and find coordinate e delivering the minimum value of D,,,. Using the minimum 
conditions 

d d2 
de de2-Dmn = 0, -Dnln > 0 , 

we get 

(5.67) 

This result coincides with Eqn. (5.65) and yields C,,,,,= 0. Thus, calculating D,, 
and C,, we use for each mn = 1I ,  12, 22, 14, 24, 44 the corresponding value e,,l 
specified by Eqn. (5.67). Substitution yields 

(5.68) 

and constitutive equations, Eqs. (5.5) become uncoupled. Naturally, this approach 
is only approximate because the reference plane coordinate should be the same for 
all stiffnesses, but it is not in the method under discussion. As follows from the 
foregoing derivation, coefficients P,,,specified by Eqs. (5.68) do not exceed the 
actual values of bending stiffnesses, Le., DL,<D,,,. So the method of reduced 
bending stiffnesses leads to underestimation of the laminate bending stiffness. In 
conclusion, it should be noted that this method is not formally grounded and can 
yield both good and poor approximation of the laminate behavior. 

5.10. Stresses in laminates 

Constitutive equations derived in the previous sections of this chapter link forces 
and moments acting on the laminate with the corresponding generalized strains. For 
composite structures, forces and moments should satisfy equilibrium equations, 
while strains are expressed in terms of displacements. As a result, a complete set of 
equations is formed allowing us to find forces, moments, strains, and displacements 
corresponding to a given system of loads acting on this structure. Because the 
problem of structural mechanics is beyond the scope of this book and is discussed 
elsewhere (Vasiliev, 1993), we assume that this problem has been already solved, Le., 
that we know either generalized strains E, y,  and K entering Eqs. (5.5) or forces and 
moments Nand M .  If this is the case, we can use Eqs. (5.5) to find E ,  y ,  and K. Now, 
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to complete the analysis, we need to determine stress acting in each layer of the 
laminate. 

To do this, we should first find strains in any ith layer using Eqs. (5.3) which yield 

where ziis the layer normal coordinate changing over the thickness of the ith layer. 
If the ith layer is orthotropic with principal material axes coinciding with axes s 
and y (e.g., made of fabric), Hooke's law provides the stress we need, i.e., 

where, E$, = E.$,/( 1 - v$v-::) and E.?), E$!",G$,(. vi,!,( '  v!.(i) are elastic constants of the 

polymeric) we should take in Eqs. (5.70) E.? = E,!) = Ej ,  vi?( '  -- vJi( i )  = vi,
layer referred to the principal material axes. For an isotropic layer (e.g., metal or 

G::,, = G; E;/2(1 + v i ) .  

Consider the layer composed of unidirectional plies with orientation angle 4i.Using 
Eqs. (4.69) we can express strains in the principal material coordinates as 

(5.71) 

and find the corresponding stresses, Le., 

where -- E I z / ( 1(;) - vyjvt,)) and E?, E!), GYj, vyj, v!/ are elastic constants of a 
unidirectional ply. 

Thus, Eqs. (5.69-5.72) allow us to find in-plane stresses acting in each layer or 
elementary composite ply. 

Compatible deformation of the layers is provided by interlaminar stresses z,,, zjr, 
and a,. To find these stresses, we need to attract three-dimensional equilibrium 
equations, Eqs. (2.5), which yield 

(5.73) 

Substituting stresses a,, a,.,and z . ~ ~from Eqs. (5.4) and integrating Eqs. (5.73) with 
due regard to forces that can act on the laminate surfaces we can calculate 
transverse shear and normal stresses zx=, z,, and a,. 
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5.11. Example 

As an example, consider a two-layered cylinder shown in Fig. 5.19 and consisting 
of h36" angle-ply layer with total thickness hl = 0.62 mm and 90" unidirectional 
layer with thickness h 2  = 0.60 mm. The 200 mm diameter cylinder is made by 
filament winding from glass+poxy composite with the following mechanical 
properties: E1 = 44 GPa, E 2  = 9.4 GPa, G 1 2  = 4 GPa, v21 = 0.26. Consider two 
loading cases axial - compression with force P and torsion with torque T as in 
Fig. 5.19. 

The cylinder is orthotropic, and to study the problem, we need to apply 
Eqs. (5.43) with some simplifications specific for this problem. First, we assume that 
applied loads do  not induce interlaminar shear and we can take yx = 0 and yv = 0 in 
Eqs. (5.43). Hence, V, = 0 and V ,  = 0. In this case, deformations IC,, K,,, and K... in 
Eqs. (5.3) become the changes of curvatures of the laminate. Because the loads 
shown in Fig. 5.19 deform the cylinder into another cyIinder inducing only its axial 
shortening, change of the radius, and rotation of the cross-sections, there is no 
bending in the axial direction (see Fig. 5 .3~)and out-of-plane twisting (see 
Fig. 5.3d) of the laminate. So, we can take rcX = 0 and rcrV =0 and write constitutive 
equations, Eqs. (5.43), in the following form: 

(5.74) 

To determine the change of the circumferential curvature IC", we should take 
into account that the length of the cross-sectional contour being equal to 2RR before 
the deformation becomes equal to 27c R( 1 +8:) after the deformation. Thus, the 
curvature change is 

(5.75) 

Fig. 5.19. Experimental cylinder. 
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The final result is obtained under the assumption that the strain is small (E: << 1). 
Consider the case of axial compression. Free body diagram for the laminate 

element shown in Fig. 5.20 yields (see Fig. 5.19) 

PN,-=--,  N , . = O .
27LR . 

As a result, the constitutive equations from Eqs. (5.74) that we need to use for the 
analysis of this case become 

(5.76)
P 

271R’ 
B2 I tt +8 2 2 ~ := 0 , 0 -B I I E ,+B12t: = --

M,  = Clle: + &E&, M,* = c 2 1 t :  + CZZ&Y, (5.77) 

where 

The first two equations, Eqs. (5.76), allow us to find strains, i.e., 

(5.79) 

where B = B l l B 2 2  -BI2B?l and 8 2 1  = B I Z .  
Bending moments can be determined with the aid of Eqs. (5.77). Axial moment,

My,has reactive nature in this problem. Nonsymmetric laminate in Fig. 5.20 tends 
to bend in the xz-plane under axial compression of the cylinder. However, the 
cylinder meridian remains straight at a distance from its ends. As a result, a reactive 
axial bending moment appears in the laminate. Circumferential bending moment, 

Fig. 5.20. Forces and moments acting on an element of the cylinder under axial compression. 
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My,associated with the change of the curvature of the cross-sectional contour in 
Eq. (5.75) is very small. 

For numerical analysis, we first use Eqs. (4.72) to calculate stiffness coefficients 
for the angle-ply layer, i.e., 

Ai:)  = 25 GPa, Ai:) = 10 GPa, A$) = 14.1 GPa, A:) = 11.5 GPa , 
(5.80) 

and for the hoop layer 

Ai:) = 9.5 GPa, Ai;) = 2.5 GPa, A$) = 44.7 GPa, A:) = 4 GPa , 
(5.81) 

Then, we apply Eqs. (5.41) to find the I-coefficients that are necessary for the cases 
(axial compression and torsion) under study: 

1:;)= 21.2 GPa mm, 

1:;) = 35.6 GPa mm, 

1;;)= 10.1 GPa mm’, 

1;;)= 27.4 GPa mm2, 

1;;)= 21.7 GPa mm3, 

1;;’ = 94 GPa mm3 . 

1;;)= 7.7 GPa mm, 

1$)= 9.5 GPa mm, 

Z::) = 3.3 GPa mm2, 

1:) = 4.4 GPa mm’, 

Zii)= 5.9 GPa mm3, 

To determine stiffness coefficients of the laminate, we should pre-assign the 
coordinate of the reference plane (a cylindrical surface for the cylinder). Let us put 
e = 0 for simplicity, i.e., we take the inner surface of the cylinder as the reference 
surface (see Fig. 5.20). Then, Eqs. (5.28) yield 

B I I= I/? = 21.2 GPa mm, 

B22 =1;;)= 35.6 GPamm, 

CII=Zi:) = 10.1 GPamm2, 

C22 =Z;:) = 27.4 GPamm2, 

0 1 2  =1;;’= 5.9 GPamm3, 

B12 =1:;)= 7.7 GPamm, 

C12 =Z[i)= 3.3 GPamm’, 

0 2 2  =I;;) = 94 GPamm3 , 

and in accordance with Eqs. (5.78) for R = 100 mm, 

B I ~= 7.7 GPa mm, 
E12 = 3.2 GPa mm2, 

8 2 2  = 35.3 GPa mm, 
c22 = 26.5 GPa mm2 . 
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Calculation with the aid of Eqs. (5.79) gives 

$; = -8.1 ~ O - ~ P ,  E; = 1.8 x ~ O - ~ P  , 

where P should be substituted in kN.  Comparison of the obtained results with 
experimental data for the cylinder in Fig. 5.21 is presented in Fig. 5.22. 

To determine the stresses, we first use Eqs. (5.69) which, in conjunction with 
Eq. (5.75) yield 

(5.82) 

where 0 < ZI < hl and hl < z2 < hl + h?. Because (hl + h ? ) / R  = 0.0122 for the 
cylinder under study, we can neglect z l / R  and z ? / R  in comparison with unity and 
write 

& ( I )  = - 0 
1' 1' - E , . .  

Fig. 5.21. Experimental composite cylinder in test fixtures. 

P,  kN 

E;,% - E;,% 

(5.83) 

-0.4 -0.3 -0.2 -0.1 0 0.1 

Fig. 5.22. Dependence of axial ( E : )  and circumferential ( E ! )  strains of a composite cylinder on the axial 
force: (-) analysis; (oj experiment. 
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Applying Eqs. (5.71) to calculate the strains in the plies principal material 
coordinates and using Eqs. (5.72) to find the stresses, we get: 
0 in the angle-ply layer, 

P P P 
Rh’ Rh Rh

a{’)= -0.26- ay) = -0.028-, 21:) = 0.023- ; 

0 in the hoop layer, 

P P 
Rh Rh

a?) = 0.073-, CY’ = -0.089 -, T$) = 0 , 

where h = hl +hz is the total thickness of the laminate. To calculate interlaminar 
stresses acting between the angle-ply and the hoop layers, we apply Eqs. (5.73). 
Using Eqs. (5.4) and taking Eqs. (5.82) and (5.83) into account, we first find the 
stresses in the layers referred to the global coordinate frame x,  y, z,  i.e., 

a!) = A(’)&O11 x +~ ( i ) & o12 y ’  +). =A ( ~ ) & o21 x +A@),O22 I’ ,Wxy = 0 ’ (5.84) 

where, i = I ,  2 and A$; are given by Eqs. (5.80) and (5.81). Because these stresses 
do not depend on x and y, the first two equations in Eqs. (5.73) yield 

This means that both interlaminar shear stresses do not depend on z. But on the 
inner and on the outer surfaces of the cylinder shear stresses are equal to zero. So 
zxz = 0 and z, = 0. The fact that zp = 0 is natural. Both layers are orthotropic and 
do not tend to twist under axial compression of the cylinder. Concerning zxi = 0 a 
question arises as to how compatibility of the axial deformations of the layers with 
different stiffnesses can be provided without interlaminar shear stresses. The answer 
follows from the model used above to describe the stress state of the cylinder. 
According to this model, the transverse shear deformation yx is zero. Actually, this 
condition can be met if the part of the axial force applied to the layer is proportional 
to the layer stiffness, Le., as 

(5 .85)  

Substituting strains from Eqs. (5.79) we can conclude that within the accuracy of 
a small parameter hJR which was neglected in comparison with unity when we 
calculated stresses PI +P2 = -P, and that the axial strains are the same even if the 
layers are not bonded together. In the middle part of a long cylinder, axial forces 
are automatically distributed between the layers in accordance with Eqs. (5.85). 
However, in the vicinity of the cylinder ends this distribution depends on the loading 
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conditions. The corresponding boundary problem will be discussed further in this 
section. 

The third equation in Eqs. (5.73) formally yields o, = 0. However, this result is 
not correct because the equation corresponds to the plane laminate and is not valid 
for the cylinder. In cylindrical coordinates, the corresponding equation has the 
following form (see, e.g., Vasiliev, 1993): 

-a [(l fx)crz]z = - [ ( I  +-)-+---at,, at,az R ax ay R 

Taking z,~ = 0 and t, = 0, substituting ov from Eqs. (5.84), and integrating we 
obtain 

(5.86) 

where, A,,,,, (mn= 21, 22) are the step-wise functions of z, i.e., 

A,,,,, =A::: for 0 d z < h i ,  
A,,,,, =A::; for h i  <z < h = hl +h2 , 

and C is the constant of integration. Because no pressure is applied to the inner 
surface of the cylinder, a,(z = 0) = 0 and C =  0. Substitution of stiffness 
coefficients, Eqs. (5.80), (5.81) and strains, Eqs. (5.79) into Eq. (5.86) yields 

P z - h l  
Rh R + z  

= CJ!')(Z= h i )  +0.07-.- . 
(5.87) 

On the outer surface of the cylinder, z = h and ot2)= 0 which is natural because this 
surface is free of loads. Distribution of cr, over the laminate thickness is shown in 

2 4 6 

Fig. 5.23. Distribution of the normalized radial stress s2 = tr:Rh/P over the laminate thickness. 
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Fig. 5.23. As can be seen interaction of the layers under axial compression of the 
cylinder results in radial compression that occurs between the layers. 

We now return to transverse shear stress z,, and try to determine the transverse 
stresses taking into account transverse shear deformation of the laminate. To do 
this, we should first specify the character of loading, e.g., assume that axial force T 
in Fig. 5.19 is uniformly distributed over the cross-sectional contour of the angle-ply 
layer middle surface as in Fig. 5.24. As a result we can take T = 2nRN (because the 
cylinder is very thin, we neglect the radius change over its thickness). 

To study the problem, we should supplement constitutive equations, Eqs. (5.74), 
with the missing equation for transverse shear, Eqs. (5.20) and add the terms 
including the change of the meridian curvature I C ~ ,which is not zero any more. As a 
result, we arrive at the following constitutive equations: 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

Forces and moments in the left-hand sides of these equations are linked by 
equilibrium equations that can be written as (see Fig. 5.25) 

AJ:=o, g:-v,=o, y - - = o ,I N,. 
R 

(5.93) 

Fig. 5.24. Application of the axial forces. 
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P N , ,  I 

E + ; : d x  
N,  +N ,  dx 

Fig. 5.25. Forccs and moments acting on the cylinder element. 

where ( )’ = d( )/&. On the other hand, generalized strains entering Eqs. (5.88)-
(5.92) are related to displacements by formulas given as notations to Eqs. (5.3)and 
(5.14), i.e., 

where u is the axial displacement and w is the radial displacement (deflection) of the 
points belonging to the reference surface (see Fig. 5.19), while 6, is the angle of 
rotation of the normal to this surface in the xz-plane and y.r is the transverse shear 
deformation in this plane. The foregoing strain-displacement equations are the 
same that for flat laminates. Cylindrical shape of the structure under study shows 
itself in the expression for circumferential strain 6:. Because the radius of the 
cylinder after the deformation becomes equal to (R + w),we get 

(5.95)0 2n(R+w)  -2nR w =-
2 d  R ‘E,. = 

To proceed with the derivation, we introduce coordinate of the laminate reference 
surface, e, providing CII= 0, i.e., in accordance with Eq. (5.65) e =I,, / I ,  , . For 
the laminate under study, e = 0.48 mm, i.e., the reference surface is located within 
the internal angle-ply layer. Then, Eqs. (5.88)-(5.90), and (5.92), upon substitution 
of strains from Eqs. (5.94) and (5.95) can be written as 

( 1 )  (0) 

(5.96)W
IVr=B1~u’+8l2- ,

R 

R 
(5.97)W’

N , . = B ~ , U + ~ ~ ~ - + C ~ , ~ ~, 

(5.98)W
A&=CIZ-+DII~:,R 

K = SS5(& +w’), (5.99) 

where stiffness coefficients B I ~ ,B I ~ ,BZI=B12, C21 = CIZ,c12 were calculated above 
and 
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(5.100) 

For the unidirectional ply, we take transverse shear moduli G13 = GI* = 4 GPa and 
G23 = 3GPa. Using Eqs. (4.72) we get 

Ai:) = GI3 cos' q5 + GDsin' 4 = 3.7 GPa and A$ = 3 GPa . 

Now, calculation in Eqs. (5.100) yields Dll = 16.9GPamm3 and Sjs = 
4.05 GPa mm. 

Equilibrium equations, Eqs. (5.93), in conjunction with constitutive equations, 
Eqs. (5.96W5.99) compose a set of seven ordinary differential equations including 
the same number of unknown functions -N,, Nv, M,, V,, IC, w,and 0,. Thus, the set is 
complete and can be reduced to one governing equation for deflection w. 

To do this, we integrate the first equilibrium equation in Eqs. (5.93) which shows 
that Nx = constant. Because at the cylinder ends N, = - N ,  this result is valid for the 
whole cylinder. Using Eqs. (5.94) and (5.96) we obtain 

Substitution into Eq. (5.97) yields 

(5.101) 

(5.102) 

where B =Bll& -BllB21. We can express 0, from Eq. (5.99) and, after differen-
tiation, change for N ,  with the aid of the last equilibrium equation in Eqs. (5.93). 
Substituting N, from Eq. (5.102) we arrive at 

(5.103) 

where C = 1 - (C21/(S&)). Using Eqs. (5.98) and (5.103) we can express the 
bending moment in terms of deflection, Le., 

(5.104) 

The governing equation follows now from the second equilibrium equation in 
Eqs. (5.93) if we differentiate it, substitute M: from Eq. (5.104), express V,  in terms 
of 0: and w" using Eq. (5.99) and substitute 0.: from Eq. (5.103). The final equation 
is as follows: 
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IdV - 2a2wN+ p w  =p , (5.105) 

where 

For the cylinder under study, a' = 14/R2 and o2= 139/R2. Because p > a, the 
solution of Eq. (5.105) can be written in the following form: 

4 

w = CnFn(x) + wp , 
1 1 = 1  

where Cnare constants of integration, and 

(5.106) 

To analyze the local effects in the vicinity of the cylinder end, e.g., x = 0 (the stress 
state of the cylinder at a distance from its ends is presented above), we should take 
C3 = 0 and C4 = 0 in Eq. (5.106) which reduces to 

w = CIf i  (x) + CZF2(x)+wp ' (5.107) 

To differentiate the functions entering this solution, the following relationships can 
be used: 

F( = -(tFz + rFI), 

F: = (r2- ?)FI + 2rtF2, 

F,"' = -r(? - 32)F1+ t(? - 3?)f i ,  

FY = -r(? - 3?)F2 - t(t2 - 3r')B . 

F2/ = t f i  - rFz, 

F: = (3- t2)F2 - 2r t f i ,  

Constants of integration CI and CZentering Eq. (5.107) should be found from the 
boundary conditions at x = 0. As follows from Figs. 5.24 and 5.25, 

where M, is specified by Eqs. (5.104) and (5.107), while V, can be found from the 
second equilibrium equation in Eqs. (5.93). 

For the cylinder under study, the final expressions for strains and rotation angle 
are 
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= -*[ I +  e-m(o. 1 I sin tx - 0.052 cos &)I,
2 m  

E =-pB21 [I +e-'"(0.51 sin tx - 0.24costx)],
." 2nRB 

(5.108) 

PB21 -* 0 -- e 
- 2nRB (6.3 cos tx -2.3 sin a) , 

where r =  7.9/R and t = 8.75/R. As can be seen, solution in Eqs. (5.79) is 
supplemented with a boundary-layer solution that vanishes with a distance from the 
cylinder end. 

To determine transverse shear stress T,,, we integrate the first equation in 
Eqs. (5.73) under the condition T=(Z = 0)  = 0. As a result, the shear stress acting in 
the angle-ply layer is specified by the following expression: 

where 

Substitution of Eqs. (5.108) and calculation yield 
-

T::) =*e-* [(23.75cos tx - 9.75sin &)z + (6.3cos tx +24.9 sin tx)z2] .
2nR2B 

(5.109) 

Transverse normal stress can be found from the following equation similar to 
Eq. (5.86): 

For a thin cylinder, we can neglect z/R in comparison with unity. Using Eqs. (5.108) 
and (5.109) for the angle-ply layer, we get 

P 
R2h

0;') = -O.O68-{z+ e-"[(O.l8costx - 0.0725sintx)z 

-(0.12cos&+ 0.059sintx)2 + (0.05costx - 0.076sintx)2]} . 
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23 t  
0 0.04 0.08 0.12 0.16 0.2 

Fig. 5.26. Distribution of normalized transverse shear stress ?,-= = r,\!jRh/P and normal stress 
8: = uL')Rh/P acting on the layers interface (z = hl )  along the cylinder axis. 

As can be seen, the first equation in Eqs. (5.87) follows from this solution if x + 00. 

Distribution of shear stress 72:' (z = h l )  and normal stress (z = h l )  acting at the 
interface between the angle-ply and the hoop layer of the cylinder along its length is 
shown in Fig. 5.26. 

Consider now the problem of torsion (see Fig. 5.19). Constitutive equations in 
Eqs. (5.74) that we need to use for this problem are 

Taking coordinate of the reference surface in accordance with Eq. (5.65), i.e.. 

(5.111) 

we get C44 = 0 and M44 = 0. For the cylinder under study, e = 0.46 mm, i.e., the 
reference surface is within the angle-ply layer. Free-body diagram for the cylinder 
loaded with torque T,(see Figs. 5.19 and 5.27) yields 

Fig. 5.27. Forces and moments acting on an element of the cylinder under torsion. 
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T 
2xR2

Nxy=- . 
Thus, 

T 
y:v = (5.112) 

For the experimental cylinder, shown in Fig. 5.21, normal strains were measured in 
the directions making f45"  angles with the cylinder meridian. To find these strains, 
we can use Eqs. (5.71) with $i = f45", i.e., 

&f - & L O
45 - 2Y.xy 

For the cylinder under study with B44 =Zi:) = 9.5 GPa mm and R = IO0mm, we 
get 

T 
4d2B44E& = f- = f0.84 x 10-6T , 

where, Tis measured in N m. Comparison of thus obtained result with experimental 
data is shown in Fig. 5.28. 

To find the stresses acting in the plies, we should first use Eqs. (5.69) which for the 
case under study yield 

(0&t)= (9 = 0E?, 1 Y,, =Y$ ( i =  1 1  2) . 

Then, Eqs. (5.71) allow us to  determine the strains: 
0 in &q5 plies of the angle-ply layer, 

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 

Fig. 5.28. Dependence of e& on the torque 7' for a composite cylinder: (-) analysis; (0 )  experiment. 
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0 in unidirectional plies of a hoop layer (4 = go"), 

Finally, the stresses can be obtained with the aid of Eqs. (5.72). For the cylinder 
under study, we get: 
0 in the angle-ply layer, 

T T T 
R2h R2h R2h

GI' = f0.41-, r ~ f= ~0 .068- ,  = 0.025- ; 

0 in the hoop layer, 

T 
R2h 

,,90 - YO -, - G., - 0, q; =0.082- , 

where h = 1.22 mm is the total thickness of the laminate. 
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Chapter 6 

FAILURE CRITERIA AND STRENGTH OF LAMINATES 

Consider a laminate consisting of orthotropic layers or plies whose principal 
material axes 1, 2, 3, in general, do not coincide with global coordinates of the 
laminate (x, y, z )  and assume that this layer or ply is in the plane stressed state as 
in Fig. 6.1. It should be emphasized that, in contrast to the laminate that can be 
anisotropic and demonstrate coupling effects, the layer under consideration is 
orthotropic and is referred to its principal material axes. Using the procedure that is 
described in Section 5.10 we can find stresses 0 1 ,  ~ 2 ,and 7 1 2  corresponding to a 
given system of loads acting on the laminate. The problem that we approach now is 
to evaluate the laminate load-carrying capacity, Le., to calculate the loads that cause 
the failure of the individual layers and the laminate as a whole. For the layer, this 
problem can be readily solved if we have a failure or  strength criterion 

F ( C l , Q , T 1 2 )  = 1 , (6-1)  

specifying the combination of stresses that causes the layer fracture. In other words, 
the layer works while F < 1, fails if F = 1, and does not exist as a load-carrying 
structural element if F > 1. In the space of stresses q,Q , T I ~ ,  Eq. (6.1) specifies the 
so-called failure surface (or failure envelope) shown in Fig. 6.2. Each point of the 
space corresponds to a particular stress state, and if the point is inside the surface, 
the layer resists the corresponding combination of stresses without failure. 

Thus, the problem of strength analysis is reduced to a construction of a failure 
criterion in its analytical, Eq. (6.1), or graphical (Fig. 6.2) form. By now, numerous 
variants of these forms have been proposed for traditional and composite structural 
materials (Gol’denblat and Kopnov, 1968; Wu, 1974; Tsai and Hahn, 1975; 
Rowlands, 1975; Vicario and Toland, 1975; etc.) and described by the authors of 
many text-books in Composite Materials. Omitting the history and comparative 
analysis of particular criteria that can be found elsewhere we discuss here mainly the 
practical aspects of the problem. 

6.1. Failure criteria for an elementary composite layer or ply 

There exist, in general, two approaches to construct the failure surface, the first 
of which can be referred to as the microphenomenological approach. The term 

27 1 
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X 

Y 

Fig. 6.1. An orthotropic layer or ply in a plane stressed state. 

Fig. 6.2. Failure surface in the stress space. 

“phenomenological” means that the actual physical mechanisms of failure at the 
microscopic material level are not touched on and that we deal with stresses and 
strains, Le., with conventional and not actually observed state variables introduced 
in Mechanics of Solids. In the micro-approach, we evaluate the layer strength using 
microstresses acting in the fibers and in the matrix and failure criteria proposed for 
homogeneous materials. Being developed up to a certain extent (see, e.g., Skudra 
et al., 1989), this approach requires the minimum number of experimental material 
characteristics, i.e., only those determining the strength of fibers and matrices. As a 
result, coordinates of all the points of the failure surface in Fig. 6.2 including points 
A, B, and C corresponding to uniaxial and pure shear loading are found by 
calculation. To do this, we should simulate the layer or the ply with a suitable 
microstructural model (see, e.g., Section 3.3), apply a pre-assigned system of average 
stresses 01, 02, 212 (e.g., corresponding to vector OD in Fig. 6.2), find the stresses 
acting in material components, specify the failure mode that can be associated with 
the fibers or with the matrix, and determine the ultimate combination of average 
stresses corresponding, e.g., to point D in Fig. 6.2. Thus, the whole failure surface 
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can be constructed. However, uncertainty and approximate character of the existing 
micromechanical models discussed in Section 3.3 result in relatively poor accuracy 
of this method which, being in principle rather promising, has not found by now 
wide practical application. 

The second basic approach that can be referred to as macrophenomenological 
one deals with the average stresses 01, 02, and 212 shown in Fig. 6.1 and ignores the 
ply microstructure. For a plane stress state of an orthotropic ply, this approach 
requires at least five experimental results specifying material strength under: 
0 longitudinal tension, a: (point A in Fig. 6.2), 
0 longitudinal compression, a , ,  
0 transverse tension, 5; (point B in Fig. 6.2), 
0 transverse compression, 8;, 
0 in-plane shear, 212 (point C in Fig. 6.2). 
Obviously, these data are not enough to construct the complete failure surface, and 
two possible ways leading to two types of failure criteria can be used. 

The first type referred to as structural failure criteria involves some assumptions 
concerning the possible failure modes that can help us to specify the shape of 
the failure surface. According to the second way providing failure criteria of 
approximation type, experiments simulating a set of complicated stress states 
(such that two or all three stresses 01, 0 2 ,  and 212 are induced simultaneously) are 
undertaken. As a result, a system of points like point D in Fig. 6.2 is determined 
and approximated with some suitable surface. 

Experimental data that are necessary to construct the failure surface are usually 
obtained testing thin-walled tubular specimens like shown in Figs. 6.3 and 6.4. 
These specimens are loaded with internal or external pressure p ,  tensile or 
compressive axial forces P, and end torques T, providing the given combination of 

- - , U @ l  I 
Fig. 6.3. Glass fabric-epoxy test tubular specimens. 
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Fig. 6.4. Carbon-epoxy test tubular specimens made by circumferential winding (the central cylinder 
failed under axial compression and the right one - under torsion). 

the axial stress, o.,., circumferential stress, o,., and shear stress z.yJ that can be 
calculated as 

PR T 
o,, = - , z,, = ~ 2nRh ’ 2nR2h 

P 
or = - 

Here, R is the cylinder radius and 12 is its thickness. For tubular specimens shown in 
Fig. 6.4 and made from unidirectional carbon-epoxy composite by circumferential 
winding, ox = 02, o,, = 01, and zxv = 212 (see Fig. 6.1). 

Consider typical structural and approximation strength criteria developed for 
typical composite layers and plies. 

6. I .  I .  Maximuin stress and strain criteria 

These criteria belong to a structural type and are based on the assumption that 
there can exist three possible modes of failure caused by stresses 0 1 ,  6 2 ,  212 or strains 
81, E?,  y I 2  when they reach the corresponding ultimate values. 

Maximum stress criterion can be presented in the form of the following 
inequalities: 

It should be noted that here and further all the ultimate stresses 0 and Z including 
compressive strength values are taken as positive quantities. The failure surface 
corresponding to the criterion in Eqs. (6.2) is shown in Fig. 6.5. As can be seen, 
according to this criterion the failure is associated with independently acting 
stresses, and the possible stress interaction is ignored. 
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I --
I - 0 2  

0 2  

Fig. 6.5. Failure surface corresponding to maximum stress criterion. 

It can be expected that the maximum stress criterion describes adequately the 
behavior of the materials in which stresses 61, a;?,and 2];?are taken by different 
structural elements. A typical example of such a material is a fabric composite layer 
discussed in Section 4.6. Indeed, warp and filling yarns (see Fig. 4.80) working 
independently provide material strength under tension and compression in two 
orthogonal directions (1 and 2), while the polymeric matrix controls the layer 
strength under in-plane shear. A typical failure envelope in plane (a l ,~ ;? )for a 
glass-epoxy fabric composite is shown in Fig. 6.6 (experimental data from 
G. Prokhorov and N. Volkov). The corresponding results in plane ( q , ~ n ) ,but 
for a different glass fabric experimentally studied by Annin and Baev (1979) are 
presented in Fig. 6.7. As follows from Figs. 6.6 and 6.7, the maximum stress 
criterion provides a satisfactory prediction of strength for fabric composites within 

o,,MPa 

-1'o:H:oo00 

CT,,MPa 

-200 

-300 

Fig. 6.6. Failure envelope for glassepoxy fabric composite in plane (a,,uz). (-) maximum stress 
criterion. Eqs. (6.2); (0)experimental data. 
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Fig. 6.7. Failure envelope for glass-epoxy fabric composite in plane (01, ~ 1 2 ) .(-) maximum stress 
criterion, Eqs. (6.2); (0 )  experimental data. 

the accuracy determined by the scatter of experimental results. As was already 
noted, this criterion ignores the interaction of stresses. However, this interaction 
takes place in fabric composites which are loaded with compression in two 
orthogonal directions, because compression of the filling yarns increases the 
strength in the warp direction and vice versa. The corresponding experimental 
results from Belyankin et al. (1971) are shown in Fig. 6.8. As can be seen, there is a 
considerable deviation of experimental data from the maximum stress criterion 
shown with solid lines. However, even in such cases this criterion is sometimes used 
to design composite structures, because it is simple and conservative, i.e., it 
underestimates material strength increasing the safety factor for the structure under 
design. There exist fabric composites for which the interaction of normal stresses 
shows itself under tension as well. An example of such a material is presented in 
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Fig. 6.8. Failure envelope for glass-phenolic fabric composite loaded with compression in plane (ul,u2). 
(-)maximum stress criterion,Eqs. (6.2); (- ---) polynomialcriterion,Eqs. (6.15); (0 )  experimental 

data. 
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IT, ,MPa 

IT,,MPa 

-300 

Fig. 6.9. Failure envelope for glass-epoxy fabric composite in plane (a1,CJ?).(-) maximum stress 
criterion, Eqs. (6.2); (- - - -) approximation criterion, Eqs. (6.1I) ,  (6.12); (. .. ..) approximation 

criterion. Eqs. (6.14); (0 )  experimental data. 

Fig. 6.9 (experimental data from Gol’denblat and Kopnov, 1968). Naturally, the 
maximum stress criterion (solid lines in Fig. 6.9) should not be used in this case 
because it overestimates material strength, and the structure can fail under loads 
that are lower than those predicted with this criterion. 

The foregoing discussion concerns fabric composites. Consider a unidirectional 
ply and try to apply to it the maximum stress criterion. First of all, because the 
longitudinal strength of the ply is controlled by the fibers whose strength is much 
higher than that of the matrix, it is natural to neglect the interaction of stress GIon 
one side and stresses 02 and TI?, on the other side. In other words, we can apply the 
maximum stress criterion to predict material strength under tension or compression 
in the fiber direction and, hence, use the first part of Eqs. (6.2), i.e. 

Actually, there exist unidirectional composites with very brittle matrix (carbon or 
ceramic) for which the other conditions in Eqs. (6.2) can be also applied. As an 
example, Fig. 6.10 displays the failure envelope for a carbon-carbon unidirectional 
material (experimental data from Vorobey et al., 1992). However, for the majority 
of unidirectional composites, the interaction of transverse normal and shear stresses 
is essential and should be taken into account. This means that we should apply 
Eq. (6.1) but can simplify it as follows: 
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4 0  1 
Fig. 6.10. Failure envelope for carbon+arbon unidirectional composite in plane (m,512). (-) 

maximum stress criterion, Eqs. (6.2);(0)experimental data. 

The simplest way to induce a combined stress state for the unidirectional ply is to 
use the off-axis tension or compression discussed in Section 4.3.1. Applying stress 
as in Figs. 4.22 and 4.23 we have stresses al, a2 and 712 specified by Eqs. (4.78). 
Then, Eqs. (6.2) yield the following ultimate stresses: 
For a, > 0 

For a, < 0 

Actual ultimate stress is the minimum Sr value of three values provided by Eqs. (6.5) 
for tension or Eqs. (6.6) for compression. Experimental data of S.W. Tsai taken 
from Jones (1999) and corresponding to a glass-epoxy unidirectional composite are 
presented in Fig. 6.1 1. As can be seen, the maximum stress criterion (solid lines) 
demonstrates fair agreement with experimental results for angles close to 0" and 90" 
only. An important feature of this criterion belonging to a structural type is its 
ability to predict the failure mode. Curves 1, 2, and 3 in Fig. 6.1 1 correspond to the 
first, the second and the third equations of Eqs. (6.5) and (6.6). As follows from Fig. 
6.I l(a), the fiber failure occurs only for 4 = 0".For 0" < 4, < 30°, material failure is 
associated with in-plane shear, while for 30" < 4 < 90" it is caused by transverse 
normal stress 02. 

Maximum strain failure criterion is similar to the maximum stress criterion 
discussed above, but is formulated in terms of strains, i.e. 
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Fig. 6. I 1 .  Dependence of the stress on the fiber orientationangle fur or-axes tension (a) and compression 
(h) of glass-epoxy unidirectional composite. (-, - .  - .  -) maximum stress criterion, Eqs. (6.2): 
(. t .  t.. .) approximation criterion, Eqs. (6.3) and (6.16); (- ---) approximation criterion, Eqs. (6.3) 

and (6.17). 

where 

Maximum strain criterion ignores the strain interaction but allows for the stress 
interaction due to Poisson's effect. This criterion provides the results that are rather 
close to those following from the maximum stress criterion and has not found wide 
practical implementation. 

However, there exists a unique stress state to study which only the maximum 
strain criterion can be used. This is longitudinal compression of a unidirectional ply 
discussed earlier in Section 3.4.4. Under this type of loading only longitudinal stress 
CT~is induced, while 02 = 0 and 212 = 0. Nevertheless, the fracture is accompanied 
with cracks parallel to fibers (see Fig. 6.12 showing tests performed by Katarzhnov, 
1982). These cracks are caused by transverse tensile strain E:! induced by Poisson's 
effect. The corresponding strength condition follows from Eqs. (6.7) and (6.8) and 
can be written as 
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Fig. 6.12. Failure modes of a unidirectional glass epoxy composite under longitudinal compression. 

It should be emphasized that the test shown in Fig. 6.12 can be misleading because 
transverse deformation of the ply is not restricted in this test, while it is normally 
restricted in actual laminated composite structural elements. Indeed, the long 
cylinder with material structure [Oy ,] being tested under compression yields material 
strength 0: = 300 MPa, while the same cylinder with material structure [Oy,/9O0] 
gives 0; = 505 MPa (Katarzhnov, 1982). Thus, if we change one longitudinal ply 
for a circumferential ply that practically does not work in compression along the 
cylinder axis but restricts its circumferential deformation, we increase material 
strength in compression by 68.3%. Correspondingly, the failure mode becomes 
quite different (see Fig. 6.13). 

(4 (b) 

Fig. 6.13. Failure mode of a glassepoxy tubular specimen with 10 longitudinal plies and one outside 
circumferential ply: (a) inside view; (b) outside view. 
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6.1.2. Approximation strength criteria 

In contrast to structural strength criteria, approximation criteria do not indicate 
the mode of failure and are constructed by approximation of available experimental 
results with some proper function depending on stresses 01,  02 and 212. The simplest 
and the most widely used criterion is a second-order polynomial approximation 
typical forms of which are presented in Fig. 6.14. In the stress space shown in Fig. 
6.2, the polynomial criterion corresponding to Fig. 6.14(a) can be written as 

To determine coefficients R and S, we need to perform three tests providing material 
strength under uniaxial loading in 1 and 2 directions and in shear. Then, applying 
the following conditions: 

F(o1 = 01, 0 2  = 0,  212 = 0) = 1, 
F(01 = 0, 0 2  = 5 2 ,  212 = 0) = 1, 
F(0l = 0, 0 2  = 0, 212 = 212) = 1 , 

we can find R and S and write Eq. (6.9) in its final form 

V 

V 

(6.10) 

Fig. 6.14. Typical shapes of the curves corresponding to the second-order polynomials. 
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(6.11)  

It looks like this criterion yields the same result for tension and compression. 
However, it can be readily specified for tension or compression. It is important to 
realize that evaluating material strength we usually know the stresses acting in this 
material. Thus, we can take in Eq. (6.10) 

(6.12) 

thus describing the cases of tension and compression. Failure criterion in Eqs. (6.11) 
and (6.12) is demonstrated in Fig. 6.9 in application to a fabric composite loaded 
with stresses 01 and (r2(712 = 0). Naturally, this criterion is specified by different 
equations for different quadrants in Fig. 6.9. 

For some problems, e.g., for the problem of design, for which we usually do not 
know the signs of stresses, we may need to use a universal form of the polynomial 
criterion valid both for tension and compression. In this case, we should apply the 
approximation of the type shown in Fig. 6.14(b) and generalize Eq. (6.9) as 

Using conditions similar to Eqs. (6. lo), i.e. 

F(o ,  = at ,  o2= 0, 212 = 0) = 1 

F(al = -a;, o2 = 0, 712 = 0) = 1 

F(ol = 0, o2 = at,  711 = 0 )  = 1 

F(o l  = 0, a2 = -a;, T I Z  = 0) = I 

F(o1 = 0,  6 2  = 0, 212 = 212) = 1 , 

if 01 > 0, 

if o~< 0, 

if a2 > 0, 

if a2 < 0, 

we arrive at 

(6.13) 

(6.14) 

Comparison of this criterion with the criteria discussed above and with experimental 
results is presented in Fig. 6.9. As can be seen, criteria specified by Eqs. (6.1 l), (6.12) 
and (6.14) provide close results which are in fair agreement with experimental data 
for all the stress states except, may be, biaxial compression for which there are 
practically no experimental results shown in Fig. 6.9. Such results are presented in 
Fig. 6.8 and allow us to conclude that the failure envelope can be approximated in 
this case by the polynomial of the type shown in Fig. 6.14(c), i.e. 
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Coefficients R II .  R22 and SI?can be found as earlier from Eqs. (6.10), and we need 
to use an additional strength condition to determine the coupling coefficient, R p .  
A reasonable form of this condition is F ( q  = -e;, ~2 = -8y, 712  = 0) = 1. This 
means that while for Iql < 8; and 1 ~ 2 1< 8y the interaction of stresses increases 
material strength under compression the combination of compressive failure stresses 
101 I = 0; and 1031 = 07 results in material failure. Then 

(6.15) 

Comparison of this criterion with experimental data is presented in Fig. 6.8. 
Now consider unidirectional composites and return to Fig. 6.1I .  As can be seen, 

the maximum stress criterion, (solid lines), ignoring the interaction of stresses 02 and 
212 demonstrates rather poor agreement with experimental data. The simplest 
approximation criterion, Eqs. (6.1 1) and (6.12), acquires, for the case under study, 
the form 

(6.16) 

and the corresponding failure envelope is shown in Fig. 6.1 1 with dotted lines. 
Providing fair agreement with experimental results for tension (Fig. 6.1 I(a)) this 
criterion fails to predict material strength under compression (Fig. 6.11(b)). 
Moreover, for this case, the approximation criterion yields worse results than are 
demonstrated by the maximum stress criterion. There are simple physical reasons 
for this discrepancy. In contrast to the maximum stress criterion, Eq. (6.16) allows 
for stress interaction, but in such a way that transverse stress 02 reduces material 
strength under shear. However, this is true only if transverse stress is tensile. As can 
be seen in Fig. 6.15, where experimental results taken from Barbero’s book (1998) 
are presented, compressive stress is2 increases the ultimate value of shear stress TI?. 
As a result, the simplest polynomial criterion in Eq. (6.16), being, as it was already 
noted. quite adequate for ( ~ 2> 0, significantly underestimates material strength 
for c2< 0 (solid line in Fig. 6.15). As also follows from Fig. 6.15. the proper 
approximation of experimental results can be achieved if we use the curve of the 
type shown in Fig. 6.14(b) (but moved to the left with respect to the y-axis). Le.. if 
we apply for this case the criterion presented with Eq. (6.14) which can be written as 

(6.17) 

The corresponding approximations are shown in Figs. 6.1 1 and 6.15 with broken 
lines. 
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Fig. 6.15. Failure envelope for glass-cpoxy unidirectional coinposite in plane (02,  ~ 1 2 ) . (-) 
approximation criterion, Eqs. (6.12) and (6.16); (- - - -) approximation criterion, Eqs. (6.17); ( 0 )  

experimental data. 

In conclusion it should be noted that there exist more complicated polynomial 
strength criteria than considered above, e.g., the fourth-order criterion of Ashkenazi 
(1966) and cubic criterion proposed by Tennyson et al. (1980). 

6.1.3. Interlaminar strength 

The failure of composite laminates can be also associated with interlaminar 
fracture caused by transverse normal and shear stresses cr3 and 213, 223 or ai and 
z,,, zu3.(see Fig. 4.18). Because 03 = crz and shear stresses in coordinates (I ,  2, 3) are 
linked with stresses in coordinates (x,  y, z) by simple relationships in Eqs. (4.67) and 
(4.68), the strength criterion is formulated here in terms of stresses oz,z.~=,z , ~which 
can be found directly from Eqs. (5.73). Since the laminate strength in tension and 
compression across the layers is different, we can use the polynomial criterion 
similar to Eq. (6.14). For the stress state under study, we get 

2 

crz(+-&) + (;) = 1 , (6.18) 

where 

2, =4- = 4-
is the resultant transverse shear stress and Z, determines the interlaminar shear 
strength of the material. 

In thin-walled structures, transverse normal stress is usually small and can be 
neglected in comparison with shear stress. Then, Eq. (6.18) can be simplified and 
written as 

z, = zi . (6.19) -
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As an example, Fig. 6.16 displays the dependence of the normalized maximum 
deflection w / R  on the force P for the fiberglass-epoxy cross-ply cylindrical shell of 
radius R loaded with a radial concentrated force P (Vasiliev, 1970). The shell failure 
was caused by deiamination. The shadowed interval shows the possible values of the 
ultimate force calculated with the aid of Eq. (6.19) (this value is not unique because 
of the scatter of interlaminar shear strength). 

6.2. Practical recommendations and discussion 

As follows from the foregoing analysis, for practical strength evaluation of fabric 
composites, we can use either maximum stress criterion, Eqs. (6.2) or second-order 
polynomial criterion in Eq. (6.14) in conjunction with Eq. (6.15) for the case of 
biaxial compression. For unidirectional composites with polymeric matrices, we can 
apply Eqs. (6.3) and (6.4) in which function F is specified by Eq. (6.17). It should 
be emphasized that experimental data have usually rather high scatter, and the 
accuracy of more complicated and rigorous strength criteria can be more apparent 
than real. It should be also noted that the simplicity of the recommended 
polynomial criteria is associated with the fact that from the very beginning they 
were introduced in this chapter as formal approximations of experimental data in 
the principal material coordinates. In the literature, these criteria are sometimes 
formulated in a tensor-polynomial form as linear combinations of mixed invariants 
of the stress tensor aii and the strength tensors of different ranks Sii, Sijk,, etc., Le. 

(6.20) 
i.k i.k.m.11 

Using the standard transformation for tensor components we can readily write this 
equation for an arbitrary coordinate frame. However, the fact that the strength 
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Fig. 6.16. Experimental dependence of the normalized maximum deflection of a fiberglass-epoxy 
cylindrical shell on the radial concentrated force. 
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components form a tensor induces some conditions that should be imposed on these 
components and not necessarily correlate with experimental data. 

To be specific, consider a second-order tensor criterion. Introducing contracted 
notations for tensor components and restricting ourselves to the consideration of 
orthotropic materials referred to the principal material coordinates 1 ,  2, 3 (see Fig. 
6.1) we can present Eq. (6.20) as 

which corresponds to Eq. (6.20) if we put 

Superscript “0” indicates that the components of the strength tensors are referred to 
the principal materia1 coordinates. Applying strength conditions in Eqs. (6.13) we 
can reduce Eq. (6.21) to the following form: 

(6.22) 

This equation looks similar to Eq. (6.14),but there is a principal difference between 
them. While Eq. (6.14)is only an approximation of experimental results, and we can 
take any suitable value of coefficient RY2 (in particular, we put R12 = 0), criterion in 
Eq. (6.22) has an invariant tensor form, and coefficient R12 should be determined 
using this property of the criterion. 

Following Gol’denblat and Kopnov (1968) consider two cases of pure shear in 
coordinates l’, 2’ shown in Fig. 6.17 and assume that T& = T15 and zqg = T i 5 ,  where 

2 
4 

2 

(4 (6) 

Fig. 6.17. Pure shear in coordinates (1’,2’) rotated by 45” with respect to the principal material 
coordinates (1. 2). 
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the overbar denotes, as earlier, the ultimate value of the corresponding stress. In the 
general case, ;s:5 # 7yj. Indeed, for a unidirectional composite, stress induces 
tension of the fibers, while ziS causes compression of the fibers, and the 
corresponding ultimate values can be different. Using results presented in Section 
2.4 we can conclude that for the loading case shown in Fig. 6.17(a), 01= ti5! 
o2= -5I;S and z12 = 0, while for the case in Fig. 6.17(b), CJI = -5ij, 02 = zj5 
and ~~2 = 0. Applying strength criterion in Eq. (6.22) for these loading cases we 
arrive at 

In general, these two equations give different solutions for R&. The unique solution 
exists if the following compatibility condition is valid: 

(6.23) 

If the actual material strength characteristics do not satisfy this equation, then the 
strength criteria in Eq. (6.22) cannot be applied to this material. If they do, then 
coefficient RY2 can be found as 

(6.24) 

For further analysis, consider for the sake of brevity a special orthotropic material 
shown in Fig. 6.18 for which 5: = 8; = a i  = 5, = &J,T& = 7Tj = 745 and 712 = 70. 
As can be seen, Eq. (6.23) is satisfied in this case, and the strength criterion, 
Eq. (6.22), referred to the principal material coordinates ( I ,  2) in Fig. 6.18 acquires 
the form 

(6.25) 

where in accordance with Eq. (6.24) 

(6.26) 
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Fig. 6.18. A special orthotropic material with equal strength in directions 1 and 2 referred to coordinates 
(1, 2) and (l' ,  2'). 

Now, present Eq. (6.25) in the following matrix form: 

where 

(6.27) 

(6.28) 

Superscript "T" means transposition converting the column vector {CJ}into the 
row vector { c } ~ .Let us transform stresses referred to axes (1, 2) into stresses 
corresponding to axes (l',  2') shown in Fig. 6.18. Such transformation can be 
performed with the aid of Eqs. (4.68) if we put o . ~= 01,c,, = CJZ, zxJ,= q z ,  
crl = 0 2  = 0i5,512 = 7;; and take Cp = 45".The matrix form. of this transfor-
mation is 

= (6.29) 

where 

[TI = 1/2 1/2r21/2 -1/21/2 "I0 . 

Substitution of stresses in Eq. (6.29) into Eq. (6.27) yields 

{CJ~~)~[T]~[R~][TI{CT~~}= 1 
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This equation being rewritten as 

( ( T ~ ' } ~[R4'] ((T"}= 1 (6.30) 

specifies the strength criterion for the same material but referred to coordinates 
(l ' ,  2'). The strength matrix has the following form: 

[R"] = [TIT[Ro][T]= 

where 

The explicit form of Eq. (6.30) is 

(6.31) 

(6.32) 

However, since criterion in Eq. (6.25) is a tensor relationship, it can be written in 
coordinates (1', 2') if we change ( T I ,  02, 212for 0j5,$;, 81)for a45, and To for fj j .  
The result is as follows: 

(6.33) 

Because Eqs. (6.32) and (6.33) are the two equivalent forms of one and the same 
criterion, we arrive at the following equations: 

The second of these equations can be easily reduced to the first one. So, there is only 
one condition showing that the combination of strength characteristics 
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(6.34) 

is actually an invariant of the strength tensor. With due regard to Eqs. (6.28) and 
(6.31) this invariant can be also written as 

I, =Ryl -+fl, =R;: -k S$ 

If the actual material characteristics do not satisfy Eq. (6.34), then the tensor 
strength criterion cannot be applied to this material. However, if this equation is 
consistent with experimental data, then the tensor criterion offers considerable 
possibilities to study material strength. Indeed, restricting ourselves to two terms 
presented in Eq. (6.20) let us write this equation in coordinates (l’, 2’) shown in Fig. 
6.18 and assume that 4 # 45”. Then 

(6.35) 
i.k i.k.nr.n 

Here, Si and S$mlfare the components of the second and the fourth rank strength 
tensors which are transformed in accordance with tensor calculus as 

P.4 (6.36) 

Here, I are directional cosines of axes 1’ and 2’ on the plane referred to coordinates 1 
and 2 (see Fig. 6.18), i.e. Z I I  = cos$, 112 = sin$, 121 = -sin 4, 122 = cos $. Sub-
stitution of Eqs. (6.36) into Eq. (6.35) yields the strength criterion in coordinates 
( I ! ,  2’) but written in terms of strength components corresponding to coordinates 
(1, 2), i.e. 

(6.37) 

Apply Eq. (6.37) for the special orthotropic material that was studied above (see 
Fig. 6.18) and for which 

(6.38) 
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Following Gol'denblat and Kopnov (1968) consider material strength under 
tension in the 1'-direction and in shear in plane (1'. 2'). Taking firstoil' lh

I I  = 8(/,,oL2= 0, ~;"1= 0 and then $F2 = Tlh$ ofl = O ?  0%-_= 0 we get from Eq. 
(6.37) 

or in the explicit form 

These equations allow us to calculate material strength in any coordinate frame 
whose axes make angle 4 with the corresponding principal material axes. Taking 
into account Eqs. (6.34) and (6.38) we can derive the following relationship from 
Eqs. (6.39): 

(6.40) 

So, Z, is indeed the invariant of the strength tensor whose value for a given material 
does not depend on (6. 

Thus, tensor-polynomial strength criteria provide universal equations that can be 
readily written in any coordinate frame, but on the other hand, material mechanical 
characleristics, particularly material strength in different directions, should follow 
the rules of tensor transformation, i.e., compose invariants (like Is)that are the same 
for all coordinate frames. 

To demonstrate the difference between the tensor-polynomial and approximation 
polynomial criteria, consider again Eq. (6.IS) and write it for the special orthotropic 
material described above (see Fig. 6.18). Then, Eq. (6.15) formally reduces to Eqs. 
(6.25) or Eq. (6.27) in which 

(6.41) 

Matching these results with Eqs. (6.28), we can see that coefficient RY2 is different 
here. Moreover, because this coefficient was selected to provide the proper 
approximation of experimental results (see, e.g., Fig. 6.8), we can hardly expect 
that Eqs. (6.41) specify the components of a strength tensor. To show that this is 
really not the case, apply to the approximation criterion under study transformation 
resulting in Eq. (6.30). The coefficients of thus constructed approximation criterion 
in coordinates (l', 2') become 
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(6.42) 

Now assume (and this is what should not be done for approximation criteria) that 
criterion in Eqs. (6.15) is valid in coordinates ( l ’ ,  2’) (see Fig. 6.18) as well. Because 
material is orthotropic in these coordinates, we have the following equation similar 
to Eq. (6.33): 

(6.43) 

Matching this result with Eq. (6.30) in which coefficients R are specified by Eqs. 
(6.42) we arrive at the following conditions: 

which can be reduced to 

a45 = a0 . (6.44) 

These conditions can hardly be met for cross-ply or fabric composites as in Fig. 
6.18. 

For an isotropic material, Eqs. (6.25) for the tensor-polynomial criterion and Eq. 
(6.43) for the approximation criterion yield, with due regard to Eqs. (6.44) one and 
the same strength criterion that can be written as 

0: - 0162 + 0;+ 32;, = a’ , (6.45) 

where 0= Oo = 845. Introducing stress intensity c specified by Eqs. (4.19) or 
Eq. (4.24) we arrive at the following result: 

a = o  (6.46) 

known in the theory of plasticity as Huber-Mises plasticity criterion. It should be 
emphasized that stress intensity, a, is the invariant characteristic of the stress state 
(see Section 4.1.2), so for an isotropic material, the approximation criterion in Eq. 
(6.45) or Eq. (6.46) is also a tensor-polynomial criterion. In this latter form it was 
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first time proposed by M.T. Huber in 1904. However, this fact became widely 
known only in 1924 at the International Congress on Applied Mechanics in Delft, 
The Netherlands. Before this Congress, this criterion was associated with R. Mises' 
paper published in 1913 in which it was introduced as an approximation criterion. 
The original plasticity criterion of maximum shear stress being widely recognized 
but having not an easy-to-use hexagon form on the plane of principal stresses 
(a:0 2 ,  2 1 2  = 0) was approximated by R. Mises with Eq. (6.45) as shown in Fig. 
6.19. 

Thus, for isotropic materials, the quadratic approximation strength criterion 
under discussion has an invariant form. However, this is not true for orthotropic 
materials. Using transformation in Eq. (6.37) for $J # 45" we arrive at constraints 
similar to Eq. (6.40) that do not coincide, in contrast to the tensor criterion. with 
Eqs. (6.44) for 5, = 45". From this it follows that approximation polynomial criteria 
can be used only in coordinates in which they approximate experimental results. 

In general, comparing tensor-polynomial and approximation strength criteria 
we can conclude the following. Tensor criteria should be used if our purpose is to 
develop a theory of material strength, because a consistent physical theory must be 
covariant, i.e., constraints that are imposed on material properties within the 
framework of this theory should not depend on a particular coordinate frame. For 
practical applications, approximation criteria are more suitable, but in the forms 
they are presented here they should be used only for orthotropic unidirectional plies 
or fabric layers in coordinates whose axes coincide with the fibers' directions. 

To evaluate the laminate strength, we should first determine the stresses acting in 
the plies or layers (see Section 5.10), identify the layer that is expected to fail first 
and apply one of the foregoing strength criteria. The fracture of the first ply or layer 
may not necessarily result in the failure of the whole laminate. Then, simulating the 
failed element with a proper model (see, e.g., Section 4.4.2) the strength analysis is 
repeated and continued up to the failure of the last ply or layer. 

In principle, failure criteria can be constructed for the whole laminate as a quasi-
homogeneous material. Being not realistic for design problems, to solve which we 

Fig. 6.19. Maximum shear stress criterion (-) and its elliptic approximation with Eq. (6.45) 
( - - - - ) on the plane of principal stresses. 
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should compare numerous laminate structures and can hardly test all of them, this 
approach can be successfully used for structures that are under stable and mass 
production. For example, the segments of two structures of composite drive shafts - 
one made of fabric and the other of unidirectional composite, are shown in Fig. 
6.20. Testing these segments in tension. compression, and torsion we can plot the 
strength envelope on the plane ( M ,  T ) ,  where A4 is the bending moment and Tis the 
torque, and evaluate the shaft strength for different combinations of A4 and T with 
high accuracy and reliability. 

6.3. Examples 

As the first example, consider a problem of torsion of a thin-walled cylindrical 
drive shaft (see Fig. 6.21) made by winding of a glass%poxy fabric tape at angles 
*45". Material properties are El = 23.5 GPa, E2 = 18.5 GPa, GI? = 7.2 GPa, 1'12 = 
0.16, = 0.2, 0: = 510 MPa, a, = 460 MPa, 0; = 280 MPa, 0; = 260 MPa, 
212 = 85 MPa. Shear strain induced by torque T i s  (Vasiliev, 1993) - 

Here T is the torque, R = 0.05 m is the shaft radius, and B44 is the shear stiffness 
of the wall. According to Eqs. (5.39), B44 = A44h, where h = 5 mm is the wall 
thickness, while A44 is specified by Eqs. (4.72) and can be presented as (4 = 45") 

Fig. 6.20. Segments of composite drive shafts with test fixtures. Courtesy of CRISM. 
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Fig. 6.21. Torsion of a drive shaft. 

Using Eqs. (5.71) we can determine strains in the principal material coordinates 1, 2 
of f45"  layers (see Fig. 6.21) 

Applying Eqs. (5.72) and the foregoing results we can express stresses in terms 
of T as 

The problem is to determine the ultimate torque, T,. 
First, use the maximum stress criterion, Eqs. (6.2) which gives the following four 

values of the ultimate torque corresponding to tensile or compressive failure of 
f45"  layers: 

o+I = 0,- t  Tu = 3 4  kNm, 
- _ -
oI = oI, 
0; = a t ,  
c2 = o,, 

Kl = 30.7 kNm, 

Tu= 25.5 kNm, 

T,, = 23.7 kNm . ~. 

The actual ultimate torque is the lowest of these values, Le., Tu = 23.7 kNm. 
Now apply the polynomial criterion in Eq. (6.14), which acquires the form 
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For +45" and -45" layers, we get, respectively, Tu = 21.7 kNm and T, = 17.6 kNm. 
Thus, Tu = 17.6 kNm. 

As the second example, consider the cylindrical shell described in Section 5.1 1 (see 
Fig. 5.19) and loaded with internal pressure p. Axial, p,,and circumferential, N,., 
stress resultants can be found as 

N, =$pR, N,=pR , 

where R = 100 mm is the shell radius. Applying constitutive equations, Eqs. (5.74), 
and neglecting the change of the cylinder curvature (ti,. = 0) we arrive at the 
following equations for strains: 

Using Eqs. (5.71) and (5.72) to determine strains and stresses in the principal 
material coordinates of the plies, we get 

ay)= [(Bz~- 2B12)(cos' 4; + VI' sin' 4;)2B 

(6.48) 

Here, B =BllB'2 -B:', and membrane stiffnessesB,, for the shell under study are 
presented in Section 5.1 1 .  Subscript "i" in Eqs. (6.48) indicates the helical plies for 
which i = 1, 4 ,  = 4 = 36" and circumferential plies for which i = 2 and 42= 90". 

The problem that we consider is to find the ultimate pressurep,. For this purpose, 
we use strength criteria in Eqs. (6.3), (6.4) and (6.16), and the following material 
properties tf; = 1300 MPa, a t  = 27 MPa, 2 1 2  = 45 MPa. 

Calculation with the aid of Eqs. (6.48) yields 

Applying Eqs. (6.3) to evaluate the plies' strength along the fibers, we get 

(ril) = G;,  pu = 14.9 MPa, 
- -+I - I J ~, p,, = 11.2 MPa . 
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(2)For p 3 pu , we should put E2 = 0,GI?= 0 and VI? = 0 in the circumferential 
layer whose stiffness coefficients become 

Membrane stiffnesses of the structure now correspond to the monotropic model of a 
composite unidirectional ply (see Section (3.3)) and can be calculated as 

P,MPa 
I O  -

8 -

6 -

4 -

0 0.4 0.8 1.2 1.6 2 2.4 2.8 

(a)  
P,MPa 

0 0.4 0.8 1.2 1.6 2 2.4 2.8 

(b) 

Fig. 6.22. Dependence of the axial (a) and the circumferential (b) strains on internal pressure. (-) 
analysis; (0)experimental data. 
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where A,,,,, are specified by Eqs. (6.49) and (6.50), and hl = 0.62 mm, h? = 0.6 mm 
are the thicknesses of the helical and circumferential layers. Using again Eqs. (6.48) 
we get for p 2 p!?: 

0‘1” = 137.7p, o:’) = 122.7~ . 

The cylinder failure can now be caused by the fracture of either helical fibers or 
circumferential fibers. The corresponding values of the ultimate pressure can be 
found from the following equations: 

o! ’ )  = 83.9~::) + 92.l(pf’ -p i ’ ) )  + 137.7(p, -pf)) = 0;. 

o!?) = 112p!’) + 134.6(pL2) -p!’)) + 122.7(pU -p!?)) = 0; , 

where p!’) = 1.1 MPa and pf’ = 1.4 MPa. 
The first of these equations yields pu = 10 MPa, while the second - pu = 

10.7 MPa. 
Thus, the failure of the structure under study occurs at p, = 10 MPa as a result of 

fiber fracture in the helical layer. 
Dependencies of strains that can be calculated using Eqs. (6.47) and the 

appropriate values of B,,,,, are shown in Fig. 6.22 (solid lines). As can be seen, the 

Table 6.1 
Burst pressure for filament wound fiberglass pressure vessels 

Diameter of Layer Calculated burst Number of Experimental 
the vessel thickness (mm) pressure (MPa) tested vessels burst pressure 
(mm) 

11 I h 1 Mean value Variation 
(MPa) coeflicient (YO) 

200 0.62 0.60 10 5 9.9 6.8 
200 0.92 0.93 15 5 13.9 3.3 

Fig. 6.23. The failure mode of a composite pressure vessel. 
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theoretical prediction is in fair agreement with experimental results. The same 
conclusion can be made for the burst pressure that is listed in Table 6.1 for two 
types of filament wound fiberglass pressure vessels. Typical failure mode for the 
vessels presented in Table 6.1 is shown in Fig. 6.23. 
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Chapter 7 

ENVIRONMENTAL, SPECIAL LOADING, AND 
MANUFACTURING EFFECTS 

Properties of composite materials, as well as properties of all structural materials 
are affected by environmental and operational conditions. Moreover, for polymeric 
composites this influence is more pronounced than for conventional metal alloys 
because polymers are more sensitive to temperature, moisture, and time than 
metals. There exists also a specific feature of composites associated with the fact 
that they do not exist apart from composite structures and are formed while these 
structures are fabricated. As a result, material characteristics depend on the type 
and parameters of the manufacturing process, e.g., unidirectional composites 
made by pultrusion, hand lay-up, and filament winding can demonstrate different 
properties. 

This section of the book is concerned with the effect of environmental, 
loading, and manufacturing factors on mechanical properties and behavior of 
composites. 

7.I .  Temperature effects 

Temperature is the most important of environmental factors affecting the 
behavior of composite materials. First, because polymeric composites are rather 
sensitive to temperature and have relatively low thermal conductivity. This 
combination of properties allows us, on one hand, to use these materials in 
structures subjected to short-term heating, and on the other hand, requires us to 
perform analysis of these structures with due regard to temperature effects. 
Second, there exist composite materials, e.g., carbon-carbon and ceramic 
composites, that are specifically developed for the operation under intense heating 
and materials like mineral-fiber composites that are used to form heatproof layers 
and coatings. And third, fabrication of composite structures is usually accompa-
nied with more or less intensive heating (e.g., for curing or carbonization), and 
the further cooling induces thermal stresses and strains to calculate which we need 
to attract equations of thermal conductivity and thermoelasticity that are 
discussed below. 

301 
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7.1.I, Thernial conductivity 

Heat flow through the unit area of the surface with normal n is linked with the 
temperature gradient in the n-direction by Fourier's law as 

where I is the thermal conductivity of the material. Temperature distribution along 
the n-axis is governed by the following equation: 

in which c and p are specific heat and density of the material and t is time. For a 
steady (time-independent) temperature distribution, aT/at  = 0 and Eq. (7.2) yields 

Consider a laminated structure referred to coordinates x,z and shown in Fig. 7.1. 
To determine the temperature distribution along the x-axis only we should take into 
account that 2 does not depend on x,and assume that T does not depend on z. 
Using conditions T(x  = 0) = TOand T ( x  = 1) = to find constants C1 and C? in 
Eq. (7.3), where n =x,we get 

'X
T = TO+- (T/ - To)

1 

Introduce the apparent thermal conductivity of the laminate in the ..;-direction, 3,, 
and write Eq. (7.1) for the laminate as 

Z 

Fig. 7.1. Temperature distribution in a laminate. 
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The same equation can be written for the ith layer, i.e. 

The total heat flow through the laminate in the x-direction is 

k 

Substituting the foregoing results we arrive at  

(7.4) 

where h; = h; /h .  

thermal conductivity A, in accordance with the following form of Eq. (7.1): 
Now consider the heat transfer in the z-direction and introduce the apparent 

Taking n = z and I. = 1.; for zi-l< z < ziin Eq. (7.3), using step-wise integration 
and conditions T ( z  = 0) = TO?T ( z  = h )  = G to find constants CI and C: we get for 
the ith layer 

The heat flow through the ith layer follows from Eqs. (7.1) and (7.6), i.e. 

Obviously, q; = 4: (see Fig. 7.1), and with due regard to Eq. (7.5) 

where as earlier, hi= h, /h .  
Thus obtained results, Eqs. (7.4) and (7.7), can be used to determine the thermal 

conductivity of a unidirectional composite ply. Indeed, comparing Fig. 7.1 with 
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Fig. 3.34 showing the structure of the first-order ply model, we can write the 
following equations specifying thermal conductivity of a unidirectional ply along 
and across the fibers: 

Here K l r  and AZf are thermal conductivities of the fiber in longitudinal and transverse 
directions (for some fibers they are different), A,,, is the corresponding charac-
teristic of the matrix, and uf, urn = 1 - uf are fibers and matrix volume fractions. 
Conductivity coefficients in Eqs. (7.8) are analogous to elastic constants specified by 
Eqs. (3.76) and (3.78), and the discussion presented in Section 3.3 is valid for 
Eqs. (7.8) as well. Particularly, it should be noted that application of higher-order 
microstructural models practically does not change 21 but substantially improves 12 
determined by Eqs. (7.8). Typical properties of unidirectional and fabric composites 
are listed in Table 7. I .  

Consider heat transfer in an orthotropic ply or layer in coordinate frame x, y 
whose axes x and y make angle 4 with the principal material coordinates XI and x2 
as in Fig. 7.2. Heat flows in coordinates x, y and XI,  x2 are linked by the following 
equations: 

q.x= q1 cos 4 - q 2  sin 4, qJ,= q1 sin 4 + qz cos 4 . (7.9) 

Here, in accordance with Eq. (7.1) 

Table 7.1 
Typical thermal conductivity and expansion coefficients of composite materials. 

Property Glass- Carbon- Aramid- Boron- Glass Aramid 
epoxy epoxy epoxy epoxy fabric-epoxy fabric-epoxy 

~ 

Longitudinal 0.6 1 0.17 0.5 0.35 0.13 
conductivity 

Transverse 0.4 0.6 0.1 0.3 0.35 0.13 
conductivity 

Longitudinal 7.4 -0.3 -3.6 4.1 8 0.8 
CTE 10' 
XI (]/"a
Transverse 22.4 34 60 19.2 8 0.8 
CTE IO" 

(1PC) 

4W/m K) 

(W/m K) 
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Fig. 7.2. Heat flows in coordinates x. 1’and X I .  x?. 

Changing variables xI ,  x’ for x, y with the aid of the following transformation 
relationships: 

x = X I  cos 4-x, sin 4, y = x, sin4 + x 2  cos4  

and substituting q1 and q2 into Eqs. (7.9) we arrive a t  

where 

(7.10) 

can be treated as the ply thermal conductivities in coordinates x, y. Because the 
ply is anisotropic in these coordinates, the heat flow in the, e.g. x-direction induces 
the temperature gradient not only in the x-direction, but in the y-direction as well. 
Using Eq. (7.4) we can now determine the in-plane thermal conductivities of the 
laminate as 

where 1.,ti.are specified by Eqs. (7.10) in which 1.1.2 = and 4 = 4i. For &#J angle-
ply laminates which are orthotropic, 

As an example, consider the composite body of a space telescope the section 
of which is shown in Fig. 7.3.  The cylinder having diameter D = 1 m and total 
thickncss h = 13.52 mm consists of four layers, i.e. 

= 0. 
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Fig. 7.3. A composite section of a space telescope. Courtesy of CRISM 

0 ?qb$ angle-ply carbon-poxy external skin with the following parameters: 
@s = 20", hE = 3.5 mm, ET = 120 GPa, 
E; = 11 GPd, qz = 5.5 GPa, 19;~ = 0.27, 

= 1 W/m K, 2; = 0.6 W/m K, 
I - - -0.3 x 10 l/OC, = 34 x 10 ' 1/"C, 

0 carbon-poxy lattice laye; (see Fig. 4.90) formed by a system of &4, helical ribs 
with 
4, = 26", h, = 9 mm, 6,. = 4 mm, a,. = 52 mm, E, = 80 GPa, 
I., = 0.9 W/m K, E, = -1 x lop6 1/"C, 

0 internal skin made of aramid fabric with 
h: = 1 mm, E: = E: = 34 GPa, G:, = 5.6 GPa, 

v:, = 
a: = a: = 0.8 x lop6 l/OC (x and 1' are the axial and the circumferential 
coordinates of the cylinder), 

0 internal layer of aluminum foil with 
hf = 0.02 mm, E f  = 70 GPa, vf = 0.3, 
I,t = 210 W/m K, cq = 22.3 x 10 

= 0.15, A: = A: = 0.13 Wjm K, 

I/OC. 
Apparent thermal conductivity of the cylinder wall can be found with the aid of 
Eqs. (7.10), (7.1 1) and the continuum model of the lattice layer described in Section 
4.7 as 

Calculating yields A., = 0.64 W/m K. Thermal resistance of a unit length of this 
structure is 

1 K 
rlr = - = 36.8 - . 

Dh W m  
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As known, heating gives rise to thermal strains which, being restricted, induce 
thermal stresses. Assume that the temperature distribution in a composite structure 
is known and consider the problem of thermoelasticity. 

Consider first a thermoelastic behavior of a unidirectional composite ply studied 
in Section 3.3 and shown in Fig. 3.29. The generalized Hooke's law, Eqs. (3.58) 
allowing for the temperature effects can be written as: 

CIT + E l  T , &?T = E? + &?. T 712T = 712 . (7.12) 

Here and further subscript "T" shows the strains that belong to the problem of 
thermoelasticity, while superscript "T" indicates temperature terms. Elastic strains 
cl,cz and * i l l  in Eqs. (7.12) are linked with stresses by Eqs. (3.58). Temperature 
strains. in the first approximation. can be taken as linear functions of the 
temperature change, Le. 

~f = !.XIAT, C: = XIAT . (7.13) 

where 21 and E: are coefficients of thermal expansion (CTE) along and across the 
fibers and AT = T - Ti is the difference between the current temperature T and 
some initial temperature TO at which thermal strains are zero. Inverse form of 
Eqs. (7.12) is: 

T 
61 El (CIT + 1?12Fzr) - El (8;  + \'1282), 

62 = EI(E?T + Y 2 1 E I I ' )  -E?(&;  + \b1&;): 

TI: = Gi2Yll.r 

(7.14) 

where E1.2 = El,2/(l - Y~IV?~). 
To describe thermoelastic behavior of a ply, apply the first-order micromechani- 

cal model shown in Fig. 3.34. Because CTE (and elastic constants) of some fibers 
can be different in longitudinal and transverse directions generalize the first two 
equations of Eqs. (3.63) as: 

Repeating the derivation of Eqs. (3.76)-(3.79) we arrive at 

(7.15) 
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These equations generalize Eqs. (3.76)-(3.79) for the case of anisotropic fibers and 
specify apparent CTE of a unidirectional ply. 

As an example, consider a high-modulus carbon-epoxy composite tested by 
Rogers et al. ( I  977). Microstructural parameters of the material are as follows 
(2' = 27°C): 
Efl = 41 1 GPa, Eo = 6.6 GPa, vfl = 0.06, 
V ~ L= 0.35, Efl = -1.2 x 
Em= 5.7 GPa, vm = 0.316, am= 45 x IO-' l/"C, of = om = 0.5. 
For these properties, Eqs. (7.16) yield 
El  = 208.3 GPa, E2 = 6.5 GPa, V ~ I= 0.33, 

while experimental results are 
El = 208.6 GPa, E2 = 6.3 GPa, v21 = 0.33 

Thus, it can be concluded that the first-order microstructural model providing 
proper results for longitudinal material characteristics fails to predict a2 with 
required accuracy. Discussion and conclusions concerning this problem and 
presented in Section 3.3 for elastic constants are valid for thermal expansion 
coefficients as well. For practical applications a1 and CI? are normally determined 
by experimental methods. However, in contrast to the elasticity problem, for 
which the knowledge of experimental elastic constants and material strength 
excludes the micromechanical models from consideration, for the thermoelasticity 
problems, these models provide us with useful information even if we know 
experimental thermal expansion coefficients. Indeed, consider a unidirectional ply 
that is subjected to uniform heating which induces only thermal strains, i.e., 
EIT = E:, E ~ T= E:, Y~~~= 0. Then, Eqs. (7.14) yield G I  = 0, Q = 0, 212 = 0. For 
homogeneous materials, this means, that no stresses occur under uniform 
heating. However, this is not the case for a composite ply. Generalizing 
Eqs. (3.74) that specify longitudinal stresses in the fibers and in the matrix we 
get 

1/"C, C C ~ L  27.3 x lo-' 1/"C, 

t l l  -0.57 x IOp6 1/"C, CI?= 43.4 x I/"C, 

CII = -0.5 x I/"C, M? = 29.3 x IO-' 1/"C. 

where aI and a2 are specified by Eqs. (7.16). Thus, because thermal expansion 
coefficients of the fibers and the matrix are different from those of the material, there 
exist microstructural thermal stresses in the composite structural elements. These 
stresses are self-balanced. Indeed 
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Consider an orthotropic layer referred to coordinate axes x, y making angle Cp with 
the principal material coordinate axes (see Fig. 7.2). Using Eqs. (7.14) instead of 
Eqs. (4.56) and repeating the derivation of Eqs. (4.71) we arrive at 

where A,,l are specified by Eqs. (4.72) and the thermal terms are 

(7.17) 

(7.18) 

Here 

T
ET2 = E: + VI'S;, E;l E; + V Z l E ,  

and E:, E: are determined by Eqs. (7.13). The inverse form of Eqs. (7.17) is 

&.rT = 8.r + e.rT 7 ETT Ev + E,T , YxyT = y.r,v +rryT . (7.19) 

Here, E,, E,,, and yxy are expressed in terms of stresses a,, c,,,and z.~?with Eqs. (4.73, 
while the thermal strains are 

Introducing thermal expansion coefficients in xy coordinate frame with the 
following equations: 

and using Eqs. (7.13) we get 

(7.21) 

As follows from Eqs. (7.19), in an anisotropic layer, uniform heating induces not 
only normal strains, but also the shear thermal strain. As can be seen in Fig. 7.4, 
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Fig. 7.4. Calculated (lines) and experimental (circles)dependencies of thermal expansion coefficients on 
the ply orientation angle for unidirectional thermoplastic carbon composite (- ---, 0)  and a &4 angle-

ply layer (-, -). 

Eqs. (7.21) provide fair agreement with experimental results of Barnes et al. (1989) 
for composites with carbon fibers and thermoplastic matrix (broken line and light 
circles). 

angle-ply layer (see Section 4.5.1). This layer is 
orthotropic, and the corresponding constitutive equations of thermoelastisity have 
the form of Eqs. (7.17) in which A 1 4  =A41 = 0, ,424 =A 4 2  = 0, and AT2 = 0. The 
inverse form of these equations is 

E.,c~ = E? + E , ,  

Consider a symmetric 

T T 
&IT= 8.r + Ex , Y.~!T = Yxj, > 

where E . ~ ,E,., and y,,. are expressed in terms of stresses by Eqs. (4.128), while thermal 
strains are 

Using Eqs. (4.129), (7.13), (7.18) and (7.20), we arrive at the following expressions 
for apparent thermal expansion coefficients 

where 

(7.22) 
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Comparison of a,with experimental results of Barnes et al. (1989) for a thermo-
plastic carbon composite is presented in Fig. 7.4 (solid line and dark circles). As 
can be seen in this figure, there exists an interval (0 < 4 < 40") within which 
the coefficient ax of the angle-ply layer is negative. The same type of behavior is 
demonstrated by aramid epoxy angle-ply composites. Comparison of calculation 
with the aid of Eqs. (7.22) with experimental results of Strife and Prevo (1979) 
is presented in Fig. 7.5. Looking at Figs. 7.4 and 7.5 we can suppose that 
supplementing an angle-ply laminate with plies having small thermal elongations in 
the x-direction we can synthesize composite materials with zero thermal expansion 
in this direction. Such materials are important for space telescopes (Fig. 7.3), 
antennas, measuring instruments and other high precision, thermally stable 
structures (Hamilton and Patterson, 1993). 

Consider laminates with arbitrary structural parameters (see Chapter 5). 
Repeating the derivation of Eqs. (5.5) but using the thermoelasticity constitutive 
equations, Eqs. (7.17), instead of Eqs. (4.71) we arrive at 

These equations should be supplemented with Eqs. (5.15) for transverse shear 
forces, i.e. 

1o6ff ,I / "c 

Fig. 7.5. Calculated (line) and experimental (circles)dependencies of thermal expansion coefficient on the 
ply orientation angle for an aramid+poxy =kr$ angle-ply layer. 
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(7.24) 

Temperature terms entering Eqs. (7.23) have the following form 

-e -e 

where A:,, are specified by Eqs. (7.18). Performing transformation that was used in 
Section 5.1 to reduce Eqs. (5.6), (5.7), and (5 .8)  to Eqs. (5.28) and (5.29)we get 

where (see Fig. 5.8) 

J,$:= A;f;,t‘dt ,i0 
(7.26) 

where r = 0, 1 and mn = 11, 12, 22. 
For a laminate, the temperature governed by Eq. (7.6) is linearly distributed 

through the layers thicknesses (see Fig. 7.1). The same law can be, obviously, 
assumed for the temperature coefficients in Eqs. (7.18). i.e., for the ith layer in 
Fig. 5.10 

where (A:n)i-, =~I;f ; ,~( t= t i - l )  and 
the form 

=A;f;,(t= t i ) .  Then, Eq. (7.26) acquires 

If the temperature variation over the thickness of the ith layer can be neglected, we 
can introduce some average value 

and present Eq. (7.26) as 
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(7.27) 

Total (elastic and temperature) generalized strains ET, yT and KT entering Eqs. (7.23) 
and (7.24) can be expressed in terms of displacements and rotation angles of the 
laminate element with the aid of Eqs. (5.3) and (5.14), i.e. 

(7.28) 

(7.29) 

(7.30) 

As follows from Eqs. (7.23), in the general case, uniform heating of laminates 
induces in contrast to homogeneous materials, not only in-plane strains but also the 
changes of laminate curvatures and twist. Indeed, assume that the laminate is free 
from the edge and surface loads so that forces and moments in the left-hand sides of 
Eqs. (7.23) are equal to zero. Because CTE of the layers, in the general case, are 
different, thermal terms NT and MT in the right-hand sides of Eqs. (7.23) are not 
zero even for the uniform temperature field, and these equations allow us to find 
ET, yT and KT specifying the laminate in-plane and out-of-plane deformation. 
Moreover, using the approach described in Section 5.10 we can conclude that 
uniform heating of the laminate is accompanied, in the general case, by stresses 
acting in the layers and between the layers. 

As an example, consider the four-layered structure of the space telescope 
described in Section 7.1.1. 

First, we calculate the stiffness coefficients of the layers, Le.: 
0 for the internal layer of aluminum foil: 

0 for the inner skin: 

0 for the lattice layer: 

6 

Sr 

6 

A\:' = 2E,.Lcos4 4,. = 14.4 GPa, 

A$ = 2Er -sin4$r = 0.25 GPa, 

A\:' = 2E,.Lsin' $cos' $ = I .91 GPa , 

a,. 

a,. 

a r  
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0 for the external skin: 

A\:) = q cos44, + 
A g )  = sin44, + 
A$) = @JC, + [g+e- 2(qvT2+2q2)]sin' +c cos24c = 13.96 GPa . 

sin44c+2(J$Y2 + 2q,)sin2 4, cos24, = 99.05 GPa, 

cos44c + 2(qv:, + 2q2)sin24, cos24c = 13.39 GPa, 

Using Eqs. (7.18) we find the thermal coefficients of the layers (the temperature is 
uniformly distributed through the laminate thickness): 

(AT,), = (AT2), = EfafAT= 1715 x 

(AT,), = 

(AT,), = 2Er-gr cos2&AT = 4.46 x 10-'AT GPa/"C, 

(AT'), = 2Er'ar sin' &AT = 1.06 x AT GPa/"C, 

(AT,), = [q(aC + ~ ~ ~ a ~ ) c o s ~ ~ + l ? ! j ( a ~ + v ~ , a ~ ) s i n ~ ~ ] A T  

(AT2)4 = [q(aC + vF2a3sin24+q(aC,+ V;,IX:) cos' 4]AT 

AT GPa/"C, 
= E-i(l + v~-~)c~,LAT= 32.08 x lop6AT GPa/"C, 

6r  
a, 
6 
ar 

= 132.43 x lo-' AT GPa/"C, 

= 317.61 x 10-6AT GPa/"C . 

Because the layers are orthotropic, AT, = 0 for all of them. Specifyingcoordinates of 
the layers (see Fig. 5.10), i.e. 

to = 0, tl = 0.02, t2  = 1.02, t 3  = 10.02, t4 = 13.52 (mm) 

and applying Eq. (7.27) we calculate parameters .I:; for the laminate 

J!? = (AT,),(tI - t o )  + (AT,),(t2 - t l )  + (AT,),(t3 - t2) 
+ (,4TI),(t4 - t 3 )  = 570 x lop6AT GPa mm/OC, 

.I;:)= 1190 x IO-' AT GPa mm/OC, 
1( 1 )  -

J l l  - 2 [ (ATl ) I ( t :  - 6 )+ - $1 + (ATL)3(': - + ( A T l ) 4 ( f 2  - ti)] 
= 5690 x lo-' AT GPa mm2/OC, 

.I;;)= 13150 x 10-'AT GPa mm'/"C . 

To determine we need to specify the reference surface of the laminate. Assume 
that this surface coincides with the middle surface, i.e., that e = h/2 = 6.76 mm. 
Then, Eqs. (7.25) yield 

N: =J{p' = 570 x 

N& =J;:) = 1190 x 

AT GPa mm/'C, 

AT GPa mrn/OC, 
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M:, =Jif'-d;:)= 1840 x 10-'AT GPa mm'/"C, 

M?;__ = 5100 x AT GPa mm'/"C . 

Thus, the thermal terms entering costitutive equations of thermoplasticity, Eqs. 
(7.23), are specified. Apply the obtained results to determine the apparent 
coefficients of thermal expansion for the space telescope section under study (see 
Fig. 7.3). We can assume that under uniform heating the curvatures do not change 
in the middle part of the cylinder so that K,T = 0 and K,T = 0. Because there are no 
external loads, free body diagram allows us to conclude that N,  = 0 and N ,  = 0. As 
a result, the first two equations of Eqs. (7.23) for the structure under study become: 

BIIe:., +B I ~ E ~ ~=N: ,  

B', E!., +~ 2 2 . ~ : ~= N&-- . 

Solving these equations for thermal strains and taking into account Eqs. (7.20) we 
get 

1 
B 

Fo, IT  --- (BIIN,T,-B12N;I;)= CI~.AT. 

where B = B I I B ~ ~- B!?. For the laminate under study, calculation yields 

CI,. = 14.7 xCI, = -0.94 x 10.' 1/"C, l/"C . 

Return to Eqs. (7.13) and (7.20) based on the assumption that coefficients 
of thermal expansion do not depend on temperature. For moderate temperatures, 
this is a reasonable approximation. This conclusion follows from Fig. 7.6 in 
which experimental results of Sukhanov et al. (1990) (shown with solid lines) are 
compared with Eqs. (7.20), where AT = T - 20°C (broken lines) for carbon-poxy 
angle-ply laminates. However, for relatively high temperatures, some deviation from 
the linear behavior can be seen. In this case, Eqs. (7.13) and (7.20) for thermal 
strains can be generalized as 

cT = 1a(T)dT . 
77, 

Temperature action can result also in the change of material mechanical properties. 
As follows from Fig. 7.7 in which circles correspond to experimental data of Ha and 
Springer (1 987), elevated temperature causes higher or lower reduction of material 
strength and stiffness characteristics depending on whether the corresponding 
material characteristic is controlled mainly by the fibers or by the matrix. The curves 
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Fig. 7.6. Experimental dependencies of thermal strains on temperature (solid lines) for +4 angle-ply 
carbon-epoxy composite and the correspondinglinear approximations(broken lines). 

Om4 t 

O m 2 L0 0 50 100 150 200 T , o C  

Fig. 7.7. Experimental dependencies of normalized stiffness (solid lines) and strength (broken lines) 
characteristics of unidirectionalcarbon-epoxy composite on temperature. 

presented in Fig. 7.7 correspond to a carbon+poxy composite, but they are typical 
for polymeric unidirectional composites. Longitudinal modulus and tensile strength, 
being controlled by the fibers, are less sensitive to temperature than longitudinal 
compressive strength, transverse and shear characteristics. Analogous results for a 
more temperature sensitive thermoplastic composite studied by Soutis and Turkmen 
(1993) are presented in Fig. 7.8. Metal matrix composites demonstrate much higher 
thermal resistance, while ceramic and carbon-carbon composites are specially 
developed to withstand high temperatures. For example, carbon-carbon fabric 
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Fig. 7.8. Experimental dependencies of normalized stiffness (solid lines) and strength (broken lines) 
characteristics of unidirectional glass-polypropylene composite on temperature. 

composite under heating up to 2500°C demonstrates only 7% reduction of tensile 
strength and about 30% reduction of compressive strength without significant 
change of stiffness. 

Analysis of thermoelasticdeformation for materials whose stiffnesscharacteristics 
depend on temperature presents substantial difficulties because thermal strains 
are caused not only by material thermal expansion, but also by external forces. 
Consider, for example, a structural element under temperature TOloaded with some 
external force POand assume that the temperature is increased up to the level TI .  
Then, the temperature change will cause the thermal strain associated with material 
expansion, and the force PO,being constant, also induces additional strain because 
material stiffness at temperature TIis less than stiffness at temperature TO.To 
determine the final stress and strain state of the structure, we should describe the 
process of loading and heating using, e.g., the method of successive loading (and 
heating) presented in Section 4.1.2. 

7.2. Hygrothermal effects and aging 

Effects that are similar to temperature action, i.e., expansion and degradation 
of properties are also exerted by moisture. Moisture absorption is governed by 
equation analogous to Eq. (7.2) in which T should be changed for moisture 
concentration W and 1. - for moisture diffusion coefficient p. The principal 
difference that exists between temperature and moisture diffusion processes is 
associated with high differencebetween 1and p, the first being much higher than the 
second one. As shown by Shen and Springer (1976), the temperature increasing in 
time inside the surface-heated shell approaches the steady state temperature about 
lo6 times faster than the moisture content approaches the stable state under the 
same conditions. Moisture content in the material depends on environmental 
conditions, temperature, pressure, fiber and matrix materials, levels of porosity, and 
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material damage. Because the stable moisture content is rarely reached in real 
composite structures, its current distribution through the laminate depends on the 
laminate structure and thickness. Among the polymeric composites, the highest 
capacity for water absorption under room temperature is demonstrated by aramid 
composites (7 f0.25% by weight) in which both polymeric matrix and fibers are 
sensitive to moisture. Glass and carbon polymeric composites are characterized by 
moisture content 3.5& 0.2% and 2 & 0.75%, respectively. In real aramid-epoxy and 
carbon-epoxy composite structures moisture content is usually about 2% and 1%, 
respectively. The lowest sensitivity to moisture is demonstrated by boron compos-
ites. Metal matrix, ceramic, and carbon-carbon composites are not affected by 
moisture. 

As follows from Fig. 7.9 in which experimental data of Milyutin et al. (1989) and 
Perov and Kruzhkova (I991) are approximated, water absorption is dramatically 
influenced by temperature. While material absorbs water, it expands demonstrating 
the effects that are analogous to thermal effects and can be modeled using equations 
presented in Section 7.1.2 if we treat a1 ,a2 and a,, a,, as coefficients of moisture 
expansion and change AT for AW. Just as temperature, moisture reduces material 
strength and stiffness. For carbon-epoxy composites this reduction is about 12%, 
for aramid-epoxy composites - about E%, and glass+poxy materials - about 
35%. After drying up, the effect of moisture usually disappears. 

Cyclic action of temperature, moisture, and sun radiation results in material 
aging, i.e., in degradation of material properties in the process of material or 
structure storage. For some polymeric composites,exposure to elevated temperature 
which can reach 70°C and radiation whose intensity can be as high as 1 kW/m2 
can cause more complete curing of the resin and some increase of material strength 
in compression, shear, or bending. However, under long-term action of the 
aforementioned factors, material strength and stiffness decrease. To evaluate the 

W,% 

0 10 20 30 40 50 

Fig. 7.9. Moisture content as a function of the root of the immersion time and temperature for aramid-
epoxy (solid lines) and carbon-epoxy (broken line) composites. 
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0.4 

0.2 

effect of aging, test under transverse bending (see Fig. 4.95) is usually performed. 
Thus found flexural strength 

-

-

3Pl
ijf = -

2bh' 

allows for both fiber and matrix material degradation in the process of aging. 
Experimental results of G.M. Gunyaev et al. showing dependence of the normalized 
flexural strength on time for advanced composites are presented in Fig. 7.10. 

7.3. Time and timedependent loading effects 

7.3.I .  Viscoelastisity 

Polymeric matrices are characterized with pronounced viscoelastic properties 
resulting in time-dependent behavior of polymeric composites that manifests itself 
in creep (see Section ].I) ,  stress relaxation, and dependence of the stress-strain 
diagram on the rate of loading. It should be emphasized that in composite materials, 
viscoelastic deformation of the polymeric matrix is restricted by fibers that usually 
are linear elastic and do not demonstrate time-dependent behavior. The one 
exception to existing fibers is represented by aramid fibers that are actually 
polymeric themselves by their nature. Properties of metal matrix, ceramic, and 
carbon-carbon composites under normal conditions do not depend on time. 
Rheologic (time-dependent) characteristics of structural materials are revealed in 
creep tests allowing us to plot the dependence of strain on time under constant 
stress. Such diagrams are shown in Fig. 7. I 1 for aramid-poxy composite described 

1 
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4 

0.6 

o t,year 
0 1 2 3 4 5 

Fig. 7.10. Dependence of the normalized flexural strength on the time of aging for boron (I),carbon (2). 
aramid (3). and glass (4)epoxy composites. 
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Fig. 7.1 1 .  Creep strain response of unidirectional aramid-epoxy composite under tension in longitudinal 
direction with three constant stresses. 

by Skudra et al. (1989). An important characteristic of the material can be 
established if we plot the so-called isochrone stress-strain diagrams shown in 
Fig. 7.12. Three curves in this Figure are plotted for t = 0, t = 100, and t = 1000 
days, and the points on these curves correspond to points 1,2,3 in Fig. 7.1 1. As can 
be seen, the initial parts of the isochrone diagrams are linear which means that 
under moderate stress, material under study can be classified as linear-viscoelastic 
material. To characterize such a material, we need to have only one creep diagram, 
while the other curves can be plotted increasing strains in proportion to stress. For 
example, the creep curve corresponding to 5 1  = 450 MPa in Fig. 7.11 can be 
obtained if we multiply strains corresponding to cq = 300 MPa by 1.5. 

Linear-viscoelastic material behavior is described with reasonable accuracy by 
the hereditary theory according to which the dependence of strain on time is 
expressed as 

~ ( t )=- ~ ( t )+ C(t - T)CT(T)~T .4 ii 1 (7.31) 

0 0.5 1 1.5 

Fig. 7.12. Isochrone stress-strain diagrams corresponding to creep curves in Fig. 7.1 1 
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Here, t is the current time, z is some moment of time in the past (0 < z 6 t) at which 
stress a(z) acts and C(t  -z) is the creep compliance (or creep kernel) depending on 
time passing from the moment z to the moment t. Constitutive equation of the 
hereditary theory, Eq. (7.31), is illustrated in Fig. 7.13 from which it follows that 
the total strain ~ ( t )is composed of the elastic strain governed by the current stress 
a(t)  and the viscous strain cv depending on the loading process as if the material 
“remembers” this process. Within the frame work of this interpretation, the creep 
compliance C(8), where 8 = t - t can be treated as some “memory function” which 
should, naturally, be infinitely high at 8 = 0 and tend to zero while 8 --f m as in 
Fig. 7.14. 

H 

Fig. 7.13. Geometric interpretation of the hereditary constitutive theory. 

Fig. 7.14. Typical form of the creep compliance function. 
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The inverse form of Eq. (7.31) is 

R(t - r)&(r)dr .1 (7.32) 

Here, R(t - z) is the relaxation modulus or the relaxation kernel that can be 
expressed, as shown below, in terms of C(t - z). 

The creep compliance is determined using experimental creep diagrams. Passing 
to a new variable 0 = t - z we can write Eq. (7.31) in the following form: 

(7.33) 

For the creep test, stress is constant, so (T = go, and Eq. (7.32) yields 

(7.34) 

where EO = oo/E = ~ ( t= 0) is the instant elastic strain (see Fig. 7.1 1). Differenti-
ating this equation with respect to t we get 

1 dE(t) 
EO dt

C ( t )= -- . 

This expression allows us lo determine the creep compliance differentiating the 
given experimental creep diagram or its analytical approximation. However, for 
practical analysis, C(0) is usually determined directly from Eq. (7.34) introducing 
some approximation for C(0) and matching thus obtained function ~ ( t )with the 
experimental creep diagram. For this purpose, Eq. (7.34) is written in the form 

(7.35) 

Experimental creep diagrams for unidirectional glass-epoxy composite are presented 
in this form in Fig. 7.15 (solid lines). 

The simplest is the exponential approximation of the type 

(7.36) 

Substituting Eq. (7.36) into Eq. (7.35) we obtain 
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Fig. 7. IS. Creep strain diagrams for unidirectional glass-epoxy composite (solid lines) under tension in 
longitudinal direction ( E ,  / E : ) ,  transverse direction ( E Z / E ! ) ) .  and under in-plane shear and the 

correspondingexponential approximations(broken lines). 

For the curves presented in Fig. 7.15, calculation yields 
longitudinal tension: N = 1 ,  A1 = 0; 
transverse tension: N = 1, A I  = 0.04,cq = 0.06 l/day; 
in-plane shear: N = 2, A I  = 0.033, U I= 0.04 I/day, A? = 0.06, a2 = 0.4 l/day. 

The corresponding approximations are shown in Fig. 7.15 with broken lines. The 
main shortcoming of the exponential approximation in Eq. (7.36) is associated with 
the fact that, in contrast to Fig. 7.14, C(0) has no singularity at 0 = 0 which means 
that it cannot describe properly material behavior in the vicinity of t = 0. 

It should be emphasized that one-term exponential approximation corresponds 
to a simple rheological mechanical model shown in Fig. 7.16. The model consists 
of two linear springs simulating material elastic behavior in accordance with 
Hooke’s law 

01 = E I E I ,  01 =El82 (7.37) 

and one dash-pot simulating material viscous behavior obeying the Newton 
flow law 

de, 
dtr J v = q - .  

Equilibrium and compatibility conditions for the model in Fig. 7.16 are 

(7.38) 
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Fig. 7.16. Three-element mechanical model. 

Using the first of these equations and Eqs. (7.37) and (7.38) we get 

de,a =E m  +q -dt 

Taking into account that 

E2 = Ev = E --
E '  

we finally arrive at the following constitutive equation linking apparent stress a and 
apparent strain E 

(7.39) 

This equation allows us to introduce some useful material characteristics. Indeed, 
consider a very fast loading, i.e., such that stress a and strain E can be neglected in 
comparison with their rates. Then, integration yields a =E,&, where Ei =E1 is the 
instantaneous modulus of the material. Now assume that the loading is so slow that 
stress and strain rates can be neglected. Then, Eq. (7.39) yields Q = El&,where 

(7.40) 

is the long-time modulus. 

integrating Eq. (7.39) with initial condition eo(0) = ao/E we get 
Apply the model under study to describe material creep. Taking a = g o  and 
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The corresponding creep diagram is shown in Fig. 7.17. As follows from this figure, 
~ ( t-+ m) = oo/El, where E1 is specified by Fiq. (7.40). This means that there exists 
some limit for the creep strain, and materials that can be described with this model 
should possess the so-called limited creep. 

Now assume that the model is loaded in such a way that the apparent strain is 
constant, i.e., that E = EO. Then, the solution of Eq. (7.39) that satisfies condition 
o(0) = Eleo is 

The corresponding dependence is presented in Fig. 7.18 and illustrates the process 
of stress relaxation. Parameter t r  is called the time of relaxation. During this time the 
stress drops by the factor of e. 

Consider again Eq. (7.39) and express El,  E2, and q in terms of Ei, El, and t,.. The 
resulting equation is as follows 

(7.41) 

Fig. 7.17. Creep diagram corresponding to mechanical model in Fig. 7.16. 

Fig. 7.18. Relaxation diagram corresponding to mechanical model in Fig. 7.16. 
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This first-order differential equation can be solved for E in the general case. Omitting 
rather cumbersome transformations we arrive at the following solution: 

This result corresponds to Eq. (7.33) of the hereditary theory with one-term 
exponential approximation of the creep compliance in Eq. (7.36), where N = 1. 
Taking more terms in Eq. (7.36) we get more flexibility in approximation of 
experimental results with exponential functions. However, the main features of 
material behavior are, in principal the same that for the one-term approximation 
(see Figs. 7.16 and 7.17). Particularly, there exists the long-time modulus that 
follows from Eq. (7.34) if we pass to the limit for t + 00, i.e. 

o0 E
&(t)+ - ?  El = 

El 1 + J," C(8)d8 ' 

For the exponential approximation in Eq. (7.36), 

I = I C ( 8 ) d 8  = N A  

n=l0 

Because integral Z has a finite value, the exponential approximation of the creep 
compliance can be used only for materials with limited creep. There exist more 
complicated singular approximations, e.g. 

A A 
8" ' 8"

C(8) = - C(8) = -ee-P" 

for which Z + 00 and El = 0. This means that for such materials, creep strain can be 
infinitely high. 

Useful interpretation of the hereditary theory constitutive equations can be 
constructed with the aid of the integral Laplace transformation according to which 
function f ( t )  is associated with its Laplace transform f*(p)as 

n 

f* (p) = / f(t)ePP' dt 
0 

For some functions that we need to use for the examples presented below, we have 

1 1 
P E + P  

f ( t )= 1, f*(p) = -, f ( t )  =e-", .f*(p) =-. (7.42) 
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Importance of the Laplace transformation for the hereditary theory is associated 
with the existence of the so-called convolution theorem according to which 

l *  

Using this theorem and applying Laplace transformation to Eq. (7.33) we get 

1 
E * ( p )  = $*@) + C*(p)O*(p)]. 

This result can be presented in the form analogous to Hooke's law, i.e. 

&(p) = E " ( p ) E * ( p )  . (7.43) 

where 

Applying Laplace transformation to Eq. (7.32) we arrive at Eq. (7.43) in which 

E* = E[1 - R*(p)] . (7.44) 

Matching Eqs. (7.43) and (7.44) we can link together Laplace transforms of the 
creep compliance and the relaxation modulus, i.e. 

= 1 -R*(p)  . 1 
I+C'(p) 

With due regard to Eq. (7.43) we can formulate the elastic-viscoelastic analogy 
or the correspondence principle, according to which the solution of the linear 
viscoelasticity problem can be obtained in terms of the corresponding Laplace 
transforms from the solution of the linear elasticity problem if E is replaced with E* 
and all the stresses, strains, displacements, and external loads are replaced with 
their Laplace transforms. 

For an orthotropic material in the plane stress state, e.g., for a unidirectional 
composite ply or layer referred to the principal material axes, Eqs. (4.55) and (7.31) 
can be generalized as 
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Applying Laplace transformation to these equations we can reduce them to the 
form analogous to Hooke’s law, Eqs. (4.59, Le. 

(7.45) 

where 

For the unidirectional composite ply whose typical creep diagrams are shown in 
Fig. 7.15, the foregoing equations can be simplified neglecting material creep in the 
longitudinal direction (CII= 0) and assuming that Poisson’s effect is linear elastic 
and symmetric, i.e. that 

Then, Eqs. (7.45) acquire the form: 

E , @ )* =---a;@> v12a;@), 
El E2 

07 7 

* a;@) v21
E2@) =---

E; El 
(7.47) 

Supplementing constitutive equations, Eqs. (7.45) or (7.47), with strain-displace-
ment and equilibrium equations written in terms of Laplace transforms of stresses, 
strains, displacements, and external loads, and solving the problem of elasticity we 
can find Laplace transforms of all the variables. To write thus obtained solution in 
terms of time t ,  we need to take the inverse Laplace transformation, and this is the 
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most difficult stage of the problem solution. There exist exact and approximate 
analytical and numerical methods for performing inverse Laplace transformation 
discussed, e.g., by Schapery (1974). The most commonly used approach is based on 
approximation of the solution written in terms of transformation parameter p with 
some functions for which the inverse Laplace transformation is known. 

As an example, consider the problem of torsion for an orthotropic cylindrical 
shell similar to shown in Figs. 5.19 and 5.21. The shear strain induced by torque T 
is specified by Eq. (5.1 12). Using the elastic-viscoelastic analogy we can write the 
corresponding equation for the creep problem as 

(7.48) 

Here, BM@)=A&(p)h, where h is the shell thickness. 
Let the shell be made of glass+poxy composite whose mechanical properties are 

listed in Table 3.5 and creep diagrams are shown in Fig. 7.15. To simplify the 
analysis, we assume that for the unidirectional composite under study EZIEI = 0.22, 
GI?/EI = 0.06, vi2 = v 2 1  = 0 and introduce the normalized shear strain 

-I 

7 = ".(&) . 

Consider first a k45" angle-ply material discussed in Section 4.5 for which, with due 
regard to Eqs. (4.72), and (7.46) we can write 

Exponential approximation, Eq. (7.36), of the corresponding creep curve in 
Fig. 7.15 (the lower broken line) is 

where A I  = 0.04 and a1 = 0.06 l/day. Using Eqs. (7.42), we arrive at the following 
Laplace transforms of the creep compliance and the torque which is constant 

T
T*@)=- . AI 

+P' P
C2*2(p)= -

The final expression for the Laplace transform of the normalized shear strain is 

(7.49) 
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where E =EI/(EI+E2). 

the right-hand part of Eq. (7.49) as 
To use Eqs. (7.42) for the inverse Laplace transformation, we should decompose 

Applying Eqs. (7.42) we get 

This result is demonstrated in Fig. 7.19. As can be seen, there is practically no creep 
because the cylinder deformation is controlled mainly by fibers. 

Quite different behavior is demonstrated by the cylinder made of 0"/90" cross-ply 
composite material discussed in Section 4.4. In accordance with Eqs. (4.100) and 
(7.46), we have 

Exponential approximation, Eq. (7.36), of the shear curve in Fig. 7.15 (the upper 
broken line) results in the following equation for the creep compliance 

~ 1 2=Ale-'IU +~2e-'t' , 

where A I  = 0.033, 011 = 0.04 I/day, A2 = 0.06, u2 = 0.4 I/day. Omitting simple 
transformations we finally get 

r 

+45" 

0 0 
:150 I 0 0  150 t7Days(24Hours) 

Fig. 7.19. Dependencies of the normalized shear strain on time for 0°/900cross-ply and *45" angle-ply 
glass-epoxy composite cylinders under torsion. 



Chapter I .  Environmental, special loading, and manufacturing e-ecrs 33 I 

The corresponding creep diagram is shown in Fig. 7.19. 
Under relatively high stresses, polymeric composites demonstrate nonlinear 

viscoelastic behavior. The simplest approach to study nonlinear creep problems is 
based on experimental isochrone stress-strain diagrams of the type shown in 
Fig. 7.12. Using the curves corresponding to time moments tl < a? < t.3 etc. we can 
solve a sequence of nonlinear elasticity problems for these time moments and thus 
determine the change of strains and stresses in time. This approach sometimes 
referred to as the aging theory is approximate and can be used to study the 
structures loaded with forces that do not change in time or change very slowly. 

There exist also several variants of nonlinear hereditary theory described, e.g. by 
Rabotnov (1980). According to the most common versions, Eq. (7.31) is generalized 
as 

~ ( t )= - ~ ( t )+ CI( t  -Z)o(r)dz
El [  J0 

J J 
0 0  
r I k 

r I 1 

I 

In conclusion, it should be noted that properly designed composite structures (see 
the next chapter) in which material behavior is controlled by fibers usually do not 
exhibit pronounced time-dependent behavior. For example, consider a filament 
wound glass-epoxy pressure vessel studied in Section 6.3 (see Fig. 6.23 and the 
second row in Table 6.1 for parameters of the vessel). The vessel consists of $36" 
helical plies and circumferential plies, and has structural parameters that are close 
to optimal (see Section 8.1). Experimental dependence of circumferential strain on 
time for step-wise loading with internal pressure p presented in Fig. 7.20 does not 
indicate any significant creep deformation. It should be emphasized that this 
conclusion is valid for normal conditions only - under elevated temperature 
composite structures can exhibit significant creep deformation. 
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Fig. 7.20. Dependence of the circumferential strain on time for a glass-epoxy cylindrical pressure vessel 
loaded in steps with internal pressure p .  

7.3.2. Durability 

Composite materials, to be applied to structures with long service life, need to be 
guaranteed for the corresponding period of time from failure that is usually a result 
of an evolutionary process of material degradation in the service environment. To 
provide proper durability of the material, we need, in turn, to study its long-term 
behavior under load and its endurance limits. The most widely used durability 
criteria establishing the dependence of material strength on the time of loading are 
based on the concept of the accumulation of material damage induced by acting 
stresses and intensified by degrading influence of service conditions such as 
temperature, moisture etc. Particular criteria depend on the accepted models 
simulating the material damage accumulation. Though there exist a microstructural 
approach to the durability evaluation of composite materials (see, e.g. (Skudra 
et al., 1989)), for practical purposes, experimental dependencies of the ultimate 
stresses on the time of their action are usually attracted. Particularly, these 
experiments allow us to conclude that fibers that are the main load-carrying 
elements of composite materials possess some residual strength am= a(t -, 00) 

which makes from 50% to 70% of the corresponding static strength CO= a(t = 0 )  
depending on the fiber type. Typical dependencies of the long-term strength of 
composite materials on the time are presented in Fig. 7.21. As can be seen, time of 
loading dramatically affects material strength. However, being unloaded at any 
moment of time t composite materials demonstrate practically the same static 
strength that they had before long-term loading. 

Approximation of the curves shown in Fig. 7.21 can be performed using 
exponential functions as follows: 
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0 
0 100 200 300 400 500 

Fig. 7.21. Normalized long-term longitudinal strength of aramid-epoxy ( 1 )  and glass-epoxy (2) 
unidirectional composites. 

(7.50) 
n 

where e,, A,, and A,, are coefficients providing the proper approximation. Initial 
static strength is 

a(0) = i30 = ax + EA,,. 
n 

The simplest is one-term approximation 

~ ( t )= 0, + (00 -@,)e-”‘ . (7.51) 

To approximate the initial part of the curve, we can put 0, = 0 and arrive at the 
following simple equation: 

~ ( t )= ooe-”‘ . (7.52) 

Now assume that we can solve Eqs. (7.50), (7.51), or (7.52) for t and find material 
durability t d ( e ) ,  i.e., the time during which material can stand under stress e. 
Present the process of loading as a system of k stages such that the duration of each 
stage is ti and the stress acting at this stage is ci (i = 1,2,3,. ..,k). Then, the whole 
period of time during which material can stand under such step-wise loading can be 
calculated with the aid of the following equation 

k 

X & = l ,i= I 

where td(ci) is material durability corresponding to stress ci. 
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Strength criteria discussed in Chapter 6 can be generalized for the case of long-
term loading if we change the static ultimate stresses entering these criteria for the 
corresponding long-term strength characteristics. 

7.3.3. Cyclic loading 

Consider the behavior of composite materials under the action of loads 
periodically changing in time. For qualitative analysis, consider first the material 
that can be simulated with the simple mechanical model shown in Fig. 7.16. 
Applying stress acting according to the following law: 

a(t) = a0sin u t  , (7.53) 

where 00 is the amplitude of stress and w is the frequency we can solve Eq. (7.41) 
that describes the model under study for strain & ( t ) .The result is 

~ ( t )= Q sin(ot + 0) , (7.54) 

where 

(7.55) 

As follows from these equations, viscoelastic material is characterized with a phase 
shift of strain with respect to stress. Eliminating time variable from Eqs. (7.53) and 
(7.54) we arrive at the following relationship between stress and strain 

(-$+($-2coso-= a& sin2 e . 
a0Eo 

This is the equation of an ellipse shown in Fig. 7.22(a). The absolute value of the 
area A ,  inside this ellipse (its sign depends on the direction of integration along the 
contour) determines the energy dissipation per one cycle of vibration, i.e. 

AW = JAl = nao&olsin8). (7.56) 

Folowing Zinoviev and Ermakov (1994) we can introduce the dissipation factor as 
the ratio of energy loss in a loading cycle, A W ,  to the amplitude value of the elastic 
potential energy in a cycle, W, as 

AW$=- w ’  
where, in acccordance with Fig. 7.22(b), W = ( 1 / 2 ) 0 0 ~ .Transforming Eq. (7.56) 
with the aid of Eqs. (7.55) we arrive at 



Chapter 7. Environmental, special loading, and manufacturing e#kcts 335 

Fig. 7.22. Stress-strain diagrams for viscoelastic (a) and elastic (b)materials. 

*=-(l-$).271t,.O 

1 +t,?w? 

As follows from this equation, $ depends on the number of oscillations 
accomplished during the period of time equal to the material relaxation time, t,., 
and reaches the maximum value for trw = 1. 

As shown by Zinoviev and Ermakov (1994), for anisotropic materials, thc 
dissipation factor depends also on the direction of loading. Particularly, for a 
unidirectional composite ply, referred to axes x and y making angle 4 with the 
principal material axes 1 and 2 as in Fig. 4.18, the dissipation factors are 

t,bv = E, [(2cos' 4 - cos 24 + *45p12sin24 cos' 4 ,1 

where 

E,, E,, and Gx,,. are specified by Eqs. (4.76) and $,*, and $45 are the 
ply dissipation factors corresponding to loading along the fibers, across the fibers, 
under in-plane shear and at 45" with respect to principal material axes 1 and 2. As 
follows from Fig. 7.23, calculation based on the foregoing equations provides fair 
agreement with experimental results of Ni and Adams (1984). 

Energy dissipation in conjunction with relatively low heat conductivity of 
composite materials induces self-heating of them during the cyclic loading. 
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Fig. 7.23. Calculated (lines) and experimental (circles) dependencies of dissipation factor on the ply 
orientation for glass-epoxy (- 0 )  and carbon-epoxy (- --- o) unidirectional composites. 

Dependence of an aramid-epoxy composite material temperature on the number of 
cycles under tensile and compressive loading with frequency IO3 cycles per minute is 
shown in Fig. 7.24 (Tamuzh and Protasov, 1986). 

Under cyclic loading, structural materials experience a fatigue fracture caused by 
material damage accumulation. As was already noted in Section 3.2.4, heteroge-
neous structure of composite materials provides relatively high resistance of these 
materials to crack propagation resulting in their specific behavior under cyclic 
loading. As follows from Fig. 7.25 showing experimental results obtained by 
V.F. Kutinov, stress concentration in aluminum specimens practically does not 
affect material static strength due to plasticity of aluminum but dramatically reduces 
its fatigue strength. Conversely, static strength of carbon-poxy composites that 

T "C 
r 

1.10 2 .10 

Fig. 7.24. Temperature of an aramidxpoxy composite as a function of the number of cycles under 
tension (1) and compression (2). 
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Fig. 7.25. Typical fatigue diagrams for carbon-epoxy composite (solid lines) and aluminum alloy 
(broken lines) specimens without ( 1 )  and with (2) stress concentration (fatigue strength is normalized to 

sLalk strength of specimens without stress concentration). 

belong to brittle materials is reduced by stress concentration that practically does 
not affect the slope of the fatigue curve. On average, residual strength of carbon 
composites after lo6 loading cycles makes 7&80% of material static strength in 
comparison with 3WO% for aluminum alloys. Qualitatively, this comparative 
evaluation is true for all fibrous composites that are widely used in structural 
elements subjected to intensive vibrations such as helicopter rotor blades, airplane 
propellers, drive shafts, automobile leaf-springs, etc. 

A typical for composite materials fatigue diagram constructed with experimental 
results of Apinis et al. (1991) is shown in Fig. 7.26. Standard fatigue diagrams 
usually determine material strength for IO3 d N G lo6 and are approximated as 

(TR = a - hlog N . (7.57) 

t 

I logN 
0 1 2 3 4 5 6 7 8 

Fig. 7.26. Normalized fatigue diagram for fabric carbon-carbon composite material (@-staticstrength).. o experimental part of the diagram (loading frequency 6 Hz (a) and 330 H z  (0)). ---
extrapolation. 
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Here, N is the number of cycles to failure under stress OR,a and b are experimental 
constants depending on frequency of cyclic loading, temperature and other 
environmental factors, and on the stress ratio R = amitl/amax, where amax and amin 

are the maximum and minimum stresses. It should be taken into account that results 
of fatigue tests are characterized, as a rule with high scatter. 

Factor R specifies the cycle type. The most common bending fatigue test provides 
the symmetric cycle for which Omin = -a, amnx = a,and R = -1. Tensile load cycle 
(amin= 0, omt,,= a) has R = 0, while compressive cycle (amin= -a,ami,,= 0) has 
R + -00. Cyclic tension with a,,, > amin > 0 corresponds to 0 < R < 1, while 
cyclic compression with 0 > a,,, > omin corresponds to 1 < R < 00. Fatigue 
diagrams for unidirectional aramid-epoxy composite studied by Limonov and 
Anderson (1991) corresponding to various R-values are presented in Fig. 7.27. 
Analogous results (Anderson et al., 1991) for carbon-epoxy composites are shown 
in Fig. 7.28. 

Because only c-1 is usually available from standard test under cyclic bending, 
fatigue strength for other load cycles is approximated as 

where om= (amin+ omax) /2  is the mean stress of the load cycle and at is the material 
long-term strength (see Section 7.3.2) for the period of time equal to that of the 
cyclic loading. 

Fabric composites are more sensitive to cyclic loading than materials reinforced 
with straight fibers. This fact is illustrated in Fig. 7.29 showing experimental results 
of Schulte et al. (1987). The foregoing discussion deals with the high-cycle fatigue. 
Initial interval 1 <N < lo3 corresponding to the so-called low-cycle fatigue is 
usually studied separately, because the slope of the approximation in Eq. (7.57) can 

0 
*0° t 

3 4 5 6 

Fig. 7.27. Fatigue diagrams for unidirectional aramid-epoxy composite loaded along the fibers with 
various stress ratios. 
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Fig. 7.28. Fatigue diagrams for a unidirectional carbon-epoxy composite loaded along the fibers with 
various stress ratios. 

3 4 5 6 

Fig. 7.29. Tensile fatigue diagrams for a cross-ply ( I )  and fabric (2) carbon-epoxy composites. 

be different for high stresses. Typical fatigue diagram for this case is shown in 
Fig. 7.30 (Tamuzh and Protasov, 1986). 

Fatigue has also some effect on the stiffness of composite materials. This can be 
seen in Fig. 7.31 demonstrating reduction of the elastic modulus for a glass fabric-
epoxy-phenolic composite under low-cycle loading (Tamuzh and Protasov, 1986). 
This effect should be accounted for in application of composites to the design of 
structural members such as automobile leaf-springs which, being subjected to cyclic 
loading, are designed under stiffness constraints. 

Stiffness degradation can be used as an indication of material damage to predict 
its fatigue failure. The most sensitive characteristic of the stiffness change is the 
tangent modulus E, specified by the second equation in Eqs. (1 3).Dependence of E, 
on the number of cycles, N,normalized to the number of cycles that cause material 
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Fig. 7.30. Low-cycle fatigue diagram for unidirectional aramid-epoxy composite loaded along the fibers 
with R =0.1. 
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Fig. 7.31. Dependence of elastic modulus of glass fabric-epoxy phenolic composite on the number of 
cycles at stress D = 0.55 (if is the static ultimate stress). 

fatigue fracture under the pre-assigned stress is presented in Fig. 7.32 corresponding 
to f45"angle-ply carbon-epoxy laminate studied by Murakami et al. (1 991). 

7.3.4. Impact loading 

Thin-walled composite laminates possessing high in-plane strength and stiffness 
are rather sensitive to damage initiated by transverse impact loads that can cause 
fiber breakage, cracks in the matrix, delamination, and even material penetration by 
the impactor. Depending on the impact energy determined by the impactor mass 
and velocity and the properties of laminate impact loading can result in considerable 
reduction in material strength under tension, compression, and shear. One of the 
most dangerous consequences of the impact loading is an internal delamination of 
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Fig. 7.32. Dependence of the tangent modulus normalized to its initial value on the number of cycles 
related to the ultimate number correspondingto fatigue failure under stress umsx= 120 MPa and R = -1 

for f45"angle-ply carbon-epoxy laminate. 

laminates that sometimescan be hardly identified by visual examination. This type of 
the defect causesa dramatic reduction in the laminate compressivestrength and results 
in unexpected failure of the thin-walled composite structure due to microbucklingof 
fibers or local buckling of plies. As follows from Fig. 7.33 showing experimental 
results of Verpoest et al. (1989) for unidirectional and fabric composite plates, 
impact can reduce material strength in compression by the factor of 5 and more. 

To study the mechanism of material interlaminar delamination, consider a 
problem of wave propagation through the thickness of the laminate shown in 
Fig. 7.34. The motion equation has the following well-known form 

(7.58) 

Here, u, is the displacement in the z-direction, E, is material modulus in the same 
direction depending, in the general case on z, and p is the material density. For the 
laminate in Fig. 7.34, the solution of Eq. (7.58) should satisfy the following 
boundary and initial conditions 

r&(Z = 0,t )  = -p( t ) ,  az(z= h, t )  = 0 , (7.59) 

au,
uz(z,t = 0 )  = 0, - (z > 0 , t  = 0 )  = 0 

at 

in which 

(7.60) 

(7.61) 

is the interlaminar normal stress. 
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Fig. 7.33. Dependence of compression strength after impact normalized to the initial compressive 
strength on the impact energy related to the plate thickness for glass fabric-epoxy (I), and unidirectional 

glass-epoxy (2) and carbon-epoxy (3) composite plates. 

h 
I- - 1  

Fig. 7.34. Laminate under impact load. 

Consider first a homogeneous layer such that E, and p do not depend on z.  Then, 
Eq. (7.58) acquires the form 

where c2 = E,/p. Transform this equation introducing new variables, Le., XI = 
z + ct and x2 = z - ct. Performing traditional transformation we arrive at 
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a2u, 

ax, ax2 = o  

The solution for this equation can be readily found and presented as 

u2=4I(xl)+42(x2)  = 4 1 ( Z + C t ) + 4 2 ( Z - C t )  I 

where 41and 42 are some arbitrary functions. Using Eq. (7.61) we get 

0, = E, Fl (x+ct) +f2 (x- ct)] ] 

where 

Applying boundary and initial conditions, Eqs. (7.59) and (7.60), we arrive at the 
following final result: 

0, = E& + ct) - f ( x  - ct)] , (7.62) 

in which the form of function f is governed by the shape of the acting pulse. As 
can be seen, the stress wave is composed of two components having the opposite 
signs and moving in the opposite directions with one and the same speed c which is 
the speed of sound in the material. The first term in Eq. (7.62) corresponds to the 
acting pulse that propagates to the free surface z = h (see Fig. 7.35 demonstrating 
the propagation of the rectangular pulse), while the second term corresponds to the 
pulse reflected from the free surface z = h. It is important that for the compressive 
direct pulse (which is usually the case), the reflected pulse is tensile and can cause 
material delamination since the strength of laminated composites under tension 
across the layers is very low. 

Fig. 7.35. Propagation of direct and reflected pulses through the layer thickness. 
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1.5 

-1.5 

For laminates, such as in Fig. 7.34, the boundary conditions, Eqs. (7.59) should 
be supplemented with the interlaminar conditions u f )  = and cy)= cry-’). 
Omitting rather cumbersome solution that can be found elsewhere (Vasiliev and 
Sibiryakov, 1985) present some numerical results. 

Consider the two-layered structure the first layer of which has thickness 15 mm 
and is made of aramid-epoxy composite material with El’) = 4.2 GPa, p I  = 
1.4 g/cm3and the second layer is made of boron-epoxy composite material and has 
E!2) = 4.55 GPa, p2 = 2g/cm3, h2 = 12mm. The duration of a rectangular pulse of 
external pressure p acting on the surface of the first layer is tp = 5 x s. 
Dependenceof the interlaminar (z = 15 mm) stress on time is shown in Fig. 7.36. As 
can be seen, at t M 3tp the tensile interface stress exceeds the intensity of the pulse of 
pressure by the factor of 1.27. This stress is a result of interaction of the direct stress 
wave with the waves reflected from the laminate’s inner, outer, and interface 
surfaces. Thus, in a laminate, each interface surface generates elastic waves. 

For laminates consisting of more than two layers, the wave interaction becomes 
more complicated and, what is more important, can be controlled by the proper 
stacking sequence of layers. As an example, consider a sandwich structure shown in 
Fig. 7.37(a). The first (loaded) layer is made of aluminum and has hl = 1 mm, 
E!’) = 72 GPa, pI= 2.7g/cm3, the second layer is a foam core with h2 = 10 mm, 
E!*) = 0.28 GPa, pz = 0.25 g/cm3, and the third (load-carrying) aramid+poxy 
composite layer has h3 = 12 mm, Ei3)= 10 GPa, p 3  = l.4g/cm3. The duration of a 
rectangular pulse of external pressure is s. Maximum tensile stress occurs in the 
middle plane of the load-carrying layer (plane a - a in Fig. 7.37). Normal stress 
induced in this plane is presented in Fig. 7.38(a). As can be seen, at the moment of 
time t equal to about 1.75 x low5s this stress is tensile and can cause delamination 
of the structure. 
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Fig. 7.37. Structure of the laminates under study. 
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Fig. 7.38. Normal stress related to external pressure acting in section a-a of the laminates in 
Fig. 7.37(a)-(c). respectively. 
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Now introduce an additional aluminum layer in the foam core as shown 
in Fig. 7.37(b). As follows from Fig. 7.38(b) this layer suppresses tensile stress 
in section a - a. Two intermediate aluminum layers (Fig. 7.37(c)) working as 
generators of the compression stress waves eliminate the appearance of tensile stress 
in this section. Naturally, the effect under discussion can be achieved for a limited 
period of time. But actually, impact tensile stress is dangerous right after the pulse 
action. Damping capacity of real structural materials (it was not taken into account 
in the foregoing analysis) dramatically reduces the stress amplitude in time. 

A flying projectile with relatively high kinetic energy can penetrate through the 
laminate. As known, composite materials, particularly, high-strength aramid fabrics 
are widely used for protection against flying objects. To demonstrate the mechanism 
of this protection, consider a square composite plate clamped in the steel frame 
shown in Fig. 7.39 and subjected to impact of a rectangular plane projectile (see 
Fig. 7.39) simulating the blade of the turbojet engine compressor. The plate consists 
of the layers of thin aramid fabric impregnated with epoxy resin at a distance from 
the window in the frame (see Fig. 7.39) and co-cured together as shown in Fig. 7.40. 
The front (loaded) surface of the plate has a 1 mm thick cover sheet made of glass 
fabric-epoxy composite. Results of ballistic tests are presented in Table 7.2. Front 
and back views of plate No. 2 are shown in Fig. 7.39, and the back view of plate 
No. 3 can be seen in Fig. 7.40. Because mechanical properties of the aramid fabric 
used to make the plates are different in the warp and in the fill directions (see Section 
4.6), the plates consist of couples of mutually orthogonal layers of fabric that are 

C 

(b) 

Fig. 7.39. Plate no. 2 (see Table 7.2) after the impact test: (a) front view; (b) back view 
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Fig. 7.40. Back view of plate No. 3 (see Table 7.2) after the impact test 

Table 7.2 
Ballistic test of plates made of aramid fabric. 

Plate no. Projectile velocity (m/s) Test results 

1 
2 

3 

315 
320 

325 

No penetration 
The projectile is "caught" 
by the containment 
Penetration 

further referred to as 0"/90" layers. All the plates listed in Table 7.2 have n = 32 of 
such couples. 

To calculate the projectile velocity below which it fails to perforate the plate (the 
so-called ballistic limit) we use the energy conservation law according to which 

imp( q - yz) = n( w + T )  , (7.63) 

where K is the projectile striking velocity, V, is its residual velocity, mp = 0.25 kg is 
the projectile mass, n = 32 is the number of the 0"/90" layers, Wis the fracture work 
for the 0"/90" layers, and Tis  the kinetic energy of the layer. All the other factors 
and the fiberglass cover of the plate are neglected. 

Fracture work can be evaluated using the quasi-static test shown in Fig. 7.41. A 
couple of mutually orthogonal fabric layers is fixed along the plate contour and 
loaded with the projectile. The area under the force-deflection curve (solid line in 
Fig. 7.41) can be treated as the work of fracture which for the fabric under study has 
been found to be W = 120 Nm. 

To calculate T, the deformed shape of the fabric membrane has been measured. 
Assuming that the velocities of the membrane points are proportional to deflections 
.f and that df,/dt = K kinetic energy of the fabric under study (density of the layer 
unit surface is 0.2 kg/m') turn out to be T = 0.0006 v,'. 

To find the ballistic limit, we should take V, = 0 in Eq. (7.63). Substituting the 
foregoing results in this equation we get & = 190.5 m/s which is much lower than 
the experimental result (& = 320 m/s) following from Table 7.2. 
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Fig. 7.41. Fordeflection diagrams for square aramid fabric membranes -couple of layers with 
orthogonal orientations,---- superposition of the diagrams for individually tested layers. 

Let us change the model of the process and assume that the fabric layers fail one 
after another rather than all of them at once, as it is presented in Eq. (7.63). The 
result is expected to be different because the problem under study is not linear, and 
the principle of superposition is not valid for it. Bearing this in mind, we write 
Eq. (7.63) in the following incremental form: 

(7.64) 

Here, 6-1and F$ are the projectile velocities before and after the failure of the kth 
couple of fabric layers, W is, as earlier, the fracture work consumed by the kth 
couple of layers, G-1 = 0.0006 55, and the last term in the right-hand side of 
Eq. (7.64) means that we account for the kinetic energy of only those fabric layers 
that have been already penetrated by the projectile. Solving Eq. (7.64) for V, we 
arrive at 

I '1
L

V, = ,/[l -0.0048(k- l)]G%, -- W .  
mP 

(7.65) 

Fork = 1, we take V, = 320 m/s, in accordance with the experimental ballistic limit, 
and have f i  =318.5 m/s from Eq. (7.65). Taking k = 2 we repeat the calculation 
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and find that after the failure of the second couple of fabric layers fi = 316.2 m/s. 
This process is repeated until & = 0, and thus found number k determines the 
minimum number of 0"/90"layers that can stop the projectile with striking velocity 
V, = 320 m/s. The result of calculation is presented in Fig. 7.42 from which it 
follows that k = 32. This is exactly the same number of layers that have been used to 
construct the experimental plates. 

Thus, it can be concluded that the high impact resistance of aramid fabrics is 
determined by two main factors. First, by relatively high work of fracture which is 
governed not only by the high strength, but also by the interaction of the fabric 
layers. The broken line in Fig. 7.41 shows the fracture process constructed as a 
result of superposition of experimental diagrams for individual 0" and 90" layers. 
The solid line corresponds as was noted, to 0" and 90" layers tested together (the 
ratio of the fabric strength under tension in the warp and the fill direction is 1.3).As 
can be seen, the area under the solid line is much larger that under the broken one 
which indicates high contribution of the layers interaction to the work of fracture. If 
this conclusion is true, we can expect that for layers with higher anisotropy and for 
laminates in which the principal material axes of the adjacent layers are not 
orthogonal, the fracture work can be higher than for the orthotropic laminate under 
study. The second factor increasing the impact resistance of aramid fabrics is 
associated with a specific process of the failure during which the fabric layers fail 
one after another but not at once. Plates of the same number of layers but consisting 
of resin impregnated and co-cured layers that fail at once demonstrate much less 
impact resistance. 
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Fig. 7.42. Dependence of the residual velocity of the projectile on the number of penetrated layers. 
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7.4. Manufacturing effects 

As was already noted, composite materials are formed in the process of 
fabrication of a composite structure, and their properties are strongly dependent on 
the type and parameters of processing. This means that material specimens that are 
used to determine mechanical properties should be fabricated with the same 
manufacturing method that is expected to be used to fabricate the structure under 
study. 

To demonstrate direct correlation that can exist between processing and material 
properties, consider the process of circumferential winding on the cylindrical surface 
as in Fig. 7.43. As a rule, the tapes are wound with some overlap wo shown in 
Fig. 7.44(a). Introducing dimensionless parameter 

Fig. 7.43. Winding of a circumferential layer. Courtesy of CRISM. 

- 1 ....... mi 
C D 

- - - . - . . 

Fig. 7.44. Circumferential winding with (a) partial overlap wo < w and (b) complete overlap wg = w. 
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(7.66) 

we can conclude that for the case of complete overlap (Fig. 7.44(b)) we have R = 1. 
Initial position of the tape placed with overlap wo as in Fig. 7.44(a) is shown in this 
Figure with a broken line, while the final position of the tapes is shown with solid 
lines. Assume that after the winding and curing are over, the resulting structure is a 
unidirectionally reinforced ring which is removed from the mandrel and loaded with 
internal pressure, so that the ring radius being R before the loading becomes RI. 
Decompose the resultant force acting in the ring cross-section into two components, 
i.e. 

F=F’+F’’ (7.67) 

and introduce the apparent stress acting along the fibers of the ring as 

F 
A

G I = - ,  (7.68) 

where A = 2w6 is the cross-sectionalarea of the ring made from two tapes as shown 
in Fig. 7.44. Force F‘corresponds to part BC of the ring (Fig. 7.44(a)) and can be 
found as 

RI- R
F’ =A‘EI-

R ’ 

where A’ = (w+w0)6is the cross-sectional area of this part of the ring and El is the 
modulus of elasticity of the cured unidirectional composite. To calculate force F” 
that corresponds to part CD of the ring (Fig. 7.44(a)), we should take into account 
that the fibers start to take the load only when this part of the tape reaches the 
position indicated with broken lines, i.e. 

R1 - (R + S) 
R

F’’ = A”E, 
I 

where A” = (w - wo)6.With due regard to Eqs. (7.66), (7.67), and (7.68) we can 
write the result of the foregoing analysis in the following form: 

(7.69) 

Here, € 1  = (R1 -R)/R is the apparent strain in the fiber direction. For complete 
overlap in Fig. 7.44(b), /1 = 1, and o1 = Elel. It should be noted that there exists 
also the so-called tape-to-tape winding for which A = 0. This case cannot be 
described by Eq. (7.69) because of assumptions introduced in derivation, and the 
resulting equation for this case is 61= Elel. 
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As follows from Eq. (7.69), which is valid for winding without tension, overlap of 
the tape results in reduction of material stiffness. Because the levels of loading for 
the fibers of BC and CD parts of the ring (Fig. 7.44(a)) are different, reduction of 
material strength can also be expected. 

Filament winding is usually performed with some initial tension of the tape. This 
tension improves material properties because it straightens the fibers and densifies 
the material. However, high tension may result in fiber damage and reduction of 
material strength. For glass and carbon fibers, preliminary tension usually does not 
exceed 5% of the tape strength, while for aramid fibers that are less sensitive to 
damage the level of initial tension can reach 20% of the tape strength. Preliminary 
tension reduces the effect of the tape overlap discussed above and described by 
Eq. (7.69). However, this effect can show itself in reduction of material strength, 
because the initial stresses which are induced by preliminary tension in the fibers can 
be different, and some fibers can be overloaded or underloaded under external 
forces acting on the structure in operational conditions. Strength reduction of 
aramid+poxy unidirectional composites on the tape overlap observed in experi-
ments of Rach and Ivanovskii (1986) for winding on a 200 mm diameter mandrel is 
demonstrated in Fig. 7.45. 

The absence of the tape preliminary tension or low tension can cause the ply 
waviness shown in Fig. 7.46 which can occur in the filament wound laminates as a 
result of pressure exerted by the overwrapped plies on the undenvrapped plies or in 
flat laminates due to material shrinkage in the process of curing. 

The simplest for analysis is the regular waviness presented in Fig. 7.46(a). To 
determine the apparent modulus in the x-direction, we can use the expression 
similar to one presented in Eqs. (4.76), Le. 

I COS^^ sin4a 
Ex El E3 
---- +-+ (&-$) sin2crcos2cr . (7.70) 

0.2::L0 0 0.1 0.2 0.3 0.4 0.5 A 

Fig. 7.45. Dependence of the normalized longitudinal strength of unidirectional aramid-epoxy 
composite on the tape overlap. 
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a X 

2 

Fig. 7.46. Regular (a), through-the-thickness (b), and local (c) ply waviness. 

Then, because the structure is periodic 

Approximating the ply wave as 

. mz=as in- ,
1 

where a is the amplitude, we get 

(7.71) 

dz m 
dx 1

tana=-= f c o s - , 
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where f = m / l .  Substitution into Eqs. (7.70) and (7.71) and integration yield 
(Tarnopol’skii and Roze, 1969) 

where L = (1 +f2)3”.Simplifying this result under the assumption that f 2  << 1 we 
arrive at 

(7.72) 

For glass-, carbon-, and aramid-poxy composites with properties listed in Table 
3.5 dependencies corresponding to Eq. (7.72) are presented in comparison with 
experimental results of Tarnopol’skii and Roze (1969) in Fig. 7.47. 

If the ply waviness varies through the laminate thickness as in Fig. 7.46(b), 
Eq. (7.72) can be generalized as 

ElE:) = ~ . 
1 +g$ 

h 
dz 

0 

and finally, for the local waviness (see Fig. 7.46(c)) we get 

0.4 

0.2 

3 

0 
0 0.04 0.08 0.12 0.16 0.2 

(7.73) 

Fig. 7.47. Reduction of the normalized modulus with the ply waviness parameter, f. for (1) glass-, 
(2) carbon-, and (3) aramid*poxy composites. -Eqs. (7.72), o experiment for glass-epoxy 

composite. 
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where 

and Et’  is specified by Eq. (7.73). 
Even moderate ply waviness dramatically reduces material strength under 

compression along the fibers, as can be seen in Fig. 7.48 demonstrating experi-
mental results of V.F. Kutinov for unidirectional carbon-epoxy composite. The 
other strength characteristics of unidirectional composites are just slightly affected 
by the ply waviness. 

There exist also some specific for composites manufacturing operations that cause 
stresses and strains appearing in composite structural elements in the process of their 
fabrication. As an example, consider the problem of bending and warping of 
unsymmetric laminates during the fabrication. Assume that some laminated 
polymeric composite panel is cured under temperature T, and cooled to room 
temperature To. Under slow cooling, the temperature change, AT = TO- T,, is the 
same for all the layers. Because thus fabricated panel is free of loading (Le., no loads 
are applied to its edges and surfaces) the forces and moments in the left-hand sides 
of Eqs. (7.23) and (7.24) are zero, and these equations form a linear algebraic system 
for generalized strains ET, yT and K T .  Integration of strain-displacement equations, 
Eqs. (7.28), allows us to determine the shape of the fabricated panel. 

Analysis of Eqs. (7.25) and (7.26) similar to that performed in Section 5.6 shows 
that for symmetric laminates M:,, = 0. Because C,,, = 0 for such laminates, the 

0 
0 0.1 0.2 0.3 

Fig. 7.48. Experimental dependence of carbon-epoxy composite longitudinal compression strength 
related to the corresponding strength of material without ply waviness on the ratio of the waviness 

amplitude to the ply thickness. 
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last three equations of Eqs. (7.23) in which M, = M y  =Mxev= 0 form a set of 
homogeneous equations whose solution is K ~ T= K ~ T= x X y ~= 0. This means that a 
flat symmetricpanel does not acquire curvature in the process of cooling. Naturally, 
the in-plane dimensions of the panel become different from those that the panel had 
before cooling. The corresponding thermal strains &:T,~:T and y:yT can be found 
from the first three equations of Eqs. (7.23) in which N, = N, =Nxy  =0,  but 
N: ,N& and N& are not zero. 

However, for unsymmetric laminates, in general, A42n # 0, and these laminates 
experience bending and warping in the process of cooling. To demonstrate this, 
consider two antisymmetric laminates studied in Section 5.7. 

The first is a two-layered orthotropic cross-ply laminate shown in Fig. 5.13. 
Using stiffness coefficients calculated in Section 5.7, taking into account that for a 
cross-ply laminate N L  =MT2 = 0, and applying Eqs. (7.23) for Nxy and Mxy we get 
y:yT = 0 and K x y ~= 0. Thus, cooling of the cross-ply laminated panel does not 
induce its in-plane shear and twisting. The other four of Eqs. (7.23) acquire the 
form: 

where 

The solution of Eqs. (7.74) can be written as 

(7.74) 

(7.75) 

(7.76) 
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where 

As follows from Eqs. (7.75) and (7.76), E and K do not depend on x and y. 

the form 
To find the in-plane displacementswe should integrate Eqs. (7.28) which acquire 

Referring the panel to coordinates x and y shown in Fig. 7.49 and assuming that 
u(x = 0,y = 0) = 0 and v(x = 0,y = 0) = 0 we get 

u = 8-TrX,0 0 = &,.TY0 . (7.77) 

Now consider Eqs. (7.24) in which V, = 5.= 0. Thus, yxT = yJ,T = 0, and Eqs. (7.30) 
yield 8, = -&/ax, 8, = -aw/ay. The plate deflection can be found from 
Eqs. (7.29) which reduce to 

Assuming that w(x = 0,y = 0) = 0, &(x = 0,y = 0) = 0, 
write the result of integration as 

w = - + ( K ~ T ~+ K , T ~ ). 

= 0,y = 0) = 0 we can 

(7.78) 

To present thus obtained solution in an explicit form, consider, for the sake of 
brevity, material with zero Poisson’s ratios (v12 = v21 = 0). Then, Eqs. (7.75)-(7.78) 
yield 

X 

/ 
J Y  

Fig. 7.49. Deformed shape of a cross-ply antisymmetric panel. 
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The deformed shape of the panel is shown in Fig. 7.49. Note that displacements u 
and u correspond to the panel reference plane which is the contact plane of 0 and 90 
layers (see Fig. 5.13). 

Another typical antisymmetric structure is the two-layered angle-ply laminate 
shown in Fig. 5.14. Using stiffnesscoefficientsof this laminate found in Section 5.7 
and Eqs. (7.25) and (7.27), we can write Eqs. (7.23) in the following form: 

h 
A l l & : ~ + A 1 2 $ ! ~  - 4 A 1 4 K . x y ~  =AT,, 

A 1 2 & , ~+A 2 2 & , , ~- -A74KxyT = A l 2 9  . 4 -
0 o h 

o h
A44?xyT -4 (A14JGT $. A24K,T) = 0, 

o h
-A14?.r,,;r + T ( A l l K x T  + A 1 2 K v T )  = 0, 

-A24?:.~ +-(AIZK.XT +A22Ky-r) = 0, 

A I 4 E x ~+A 2 4 & $ ~- j A 4 4 K . r y T  = A T 2  , 

h 
3 

0 o h 

where 

The solution is 
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where A = A ~ I A ~ z  - A:2. 
Thus, the panel under study experiences only in-plane deformation and twisting. 

Displacements u and u can be determined with Eqs. (7.34), while the following 
equations should be used to find w 

The result is 

The deformed shape of the panel is shown in Fig. 7.50. 
Depending on the laminates structures and dimensions therc exist the whole class 

of stable and unstable laminate configurations studied by Hyer (1 989). 
Deformation and warping of laminates appearing after the manufacturing 

process is over can occur not only due to cooling of the cured composite but also as 
a result of material shrinkage due to release of fibers tension after the composite 
part is removed from the mandrel or chemical setting of the polymeric matrix. 

To demonstrate these effects, consider a thin unidirectional layer formed with 
circumferential plies wound on a metal cylindrical mandrel (see Fig. 7.51) under 
some tension. Because the stiffness of the mandrel is much higher than that of the 
layer, we can assume that under cooling from the curing temperature Tc to room 
temperature To the strains in the principal material coordinates of the layer are 
governed by the mandrel with which the cured layer is bonded, i.e. 

Fig. 7.50. Deformed shape of an angle-ply antisymmetric panel. 

Fig. 7.51. A unidirectional circumferential layer on a cylindrical mandrel. 
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& T _I - e 2T -- a o A T ,  (7.79) 

where a0 is the CTE of the mandrel material and A T = TO- T,. On the other hand, 
if the layer is cooled being preliminary removed from the mandrel, its strains can be 
calculated as 

The first terms in the right-hand sides of these equations are free temperature strains 
along and across the fibers (see Fig. 7.51), while E(: and E! correspond to the possible 
layer shrinkage in these directions. 

Using Eqs. (7.79) and (7.80) we can determine the strains that appear in the layer 
when it is removed from the mandrel, i.e. 

(7.81) 

These strains can be readily found if we measure the layer diameter and length 
before and after it is removed from the mandrel. Then, the shrinkage strains can be 
determined as 

For a glass-epoxy composite with the following thermo-mechanical properties: 

EI = 37.24 GPa, E2 = 2.37 GPa, Gl2 = 1.2 GPa, 

ltl2 =0.26, = 3.1 x lo-‘ 1/”C, ~ 1 2= 25 x I/OC , 

Morozov and Popkova (1987) found 8: = -93.6 x = -64. IO? Further 
experiments performed for different winding tensions and materials of the mandrel 
have shown that, while strain E(: strongly depends on these parameters, strain e! -
practically does not change. This supports the assumption that strain 6; is caused by 
the chemical shrinkage of the resin and depends only on its properties. 

For a cylinder in which fibers make angle 4 with the x-axis in Fig. 7.51, the 
strains induced by the removal of the mandrel can be found from Eqs. (4.70),i.e. 

EX = 11 cos24 + ~2 sin26, 
E,, = 11 sin24 + cos24, 
jJxy = ( E l  - E2) sin 2 4  , 

(7.82) 

where El and E2 are specified by Eqs. (7.81). Dependencies of E,, E.”, and +,, on 4 
plotted with the aid of Eqs. (7.82) are shown in Fig. 7.52 together with expenmental 
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Fig. 7.52. Dependence of residual strains in a glass-epoxy filament wound cylinder on the winding angle 
-calculation, o experiment. 

data of Morozov and Popkova (1987). As can be seen, the composite cylinder 
experiences in the general case not only the change in its length (E,) and diameter 
(E,.), but also twist (r,,). 

To study the h$ angle-ply layer, we should attract the thermoelasticity 
constitutive equations, Eqs. (7.23). Neglecting bending and coupling stiffness 
coefficients we can write for the case under study 

(7.83) 

Applying these equations to the angle-ply composite cylinder removed from the 
mandrel we should put N, = 0, N,, = 0 because the cylinder is free of loads and take 
E: = El, E$ = E2 in Eqs. (7.18), (7.25) and (7.26) that specify NIT and N ~ T .Then, 
Eqs. (7.83) yield the following expressions for strains that appear in the angle-ply 
cylinder after it is removed from the mandrel: 
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Fig. 7.53. Residual strains in a .tq5 angle-ply filament wound glass+poxy cylinder, -calculation, o 
experiment. 

where E1 and Z2 are given by Eqs. (7.81), B,, =A,,h, where A,, are specified by 
Eqs. (4.72), and h is the cylinder thickness. Results of calculation for experimental 
cylinder studied by Morozov and Popkova (1987) are presented in Fig. 7.53. 

As follows from Figs. 7.52 and 7.53, approach described above and based on 
constitutive equations for laminates, Eqs. (7.23), with shrinkage characteristics of a 
unidirectional ply or an elementary layer determined experimentally provides fair 
agreement of predicted results with experimental data. 
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Chapter 8 

OPTIMAL COMPOSITE STRUCTURES 

Advanced composite materials are characterized with high specific strength 
and stiffness and, in combination with automatic manufacturing processes, make 
it possible to fabricate composite structures with high level of weight and cost 
efficiency. The substitution of metal alloys by composite materials, in general, 
reduces the structure mass by 20-30%. However, in some special cases the number 
of which progressively increases, the combination of material directional properties 
with design conception utilizing these properties being supported by the possibilities 
of modern composite technology gives a qualitative improvement of the structure 
performance. Such efficiency is demonstrated by composite structures of uniform 
strength in which the load is taken by uniformly stressed fibers. 

To introduce composite structures of uniform strength, consider a laminated 
panel shown in Fig. 8.1 and loaded by in-plane forces Ny,Nv,  and Nxv uniformly 
distributed along the panel edges. Let the laminate consist of k unidirectional 
composite layers characterized with thicknesses hi and fiber orientation angles 
#( (i = 1,2,3,. . . ,k). For the plane stress state, the stacking sequence of the layers is 
not important. 

8.1. Optimal fibrous structures 

To derive the optimality criterion specifying the best structure of the panel 
in Fig. 8.1, we first use the simplest monotropic model of the unidirectional 
composite (see Section 3.3) assuming that forces N,,N, and Nxy are taken by the 
fibers only. For the problem of design, this is a reasonable model because 
transverse and shear strength of a unidirectional composite ply (stresses 8 2  and 712) 
are much lower than the ply strength in the longitudinal direction (stress 81). 
Using Eqs. (4.68) in which we put 0 2  = 0 and t l ~= 0 we can write the following 
equilibrium equations linking the acting forces with stresses a?)in the direction of 
the fibers of the ith layer: 

365 
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Fig. 8.1. A laminated plate in a plane state of stress. 

Strain E? in the fiber direction of the ith layer can be expressed in terms of strains in 
coordinates x,y with the aid of the first equation of Eqs. (4.69). Using constitutive 
equations for the monotropic model of the ply, Eqs. (3.61), we arrive at 

a? = E I  $) = E I  (Ex cos24i + cy sin24i + yxy sin 4;cos bi) . (8.2) 

It is assumed that the layers are made of one and the same material. 
Consider the design problem and assume that the best structure of the laminate is 

the one providing the minimum 

k 
h = x h i  

i= I 

for the given combination of 

total thickness 

(8.3) 

loads. Thus, we should minimize the laminate 
thickness in Eq. (8.3) under constraints imposed by Eqs. (8.1) and (8.2). To solve 
this problem we can use the method of Lagrange multipliers, according to which we 
should introduce multipliers A and minimize the following augmented function: 

k k 

i= 1 

k 

k 
- aj')hi cos24; 

i= I 

+Ax? (IVr,, - af'h; sin 4;cos 4i 
i= I 
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with respect to design variables hi, 4; and multipliers A, i.e. 

Minimization with respect to I gives, obviously, constraints in Eqs. (8.1) and (8.2), 
while the first two of Eqs. (8.4) yield 

of)().xcos24; + sin’ +i +A.~? sin 4;cos 4;)= I , (8.5) 

hiby)[(A,.- sin 24 i  + cos 2 4 ~= E I  A;[(&? - E,) sin 24;  + y.yy COS 24;1 . 
(8.6) 

The solution of Eq. (8.6) is 

where c is a constant. Substituting 
and taking into account Eq. (8.2) we get 

Ivy, and from these equations into Eq. (8.5) 

This equation has two solutions: oy)= f c .  

Eqs. (8.1) and taking into account Eq. (8.3) we have 
Consider the first case, Le., cy)= c. Adding up the first two equations of 

I
h = - ( N x + i y v )  . 

C 

Obviously, the minimum value of h corresponds to c = 51, where 81 is the ultimate 
stress. Thus, the total thickness of the optimal plate is 

Taking now o? = 81in Eqs. (8.1) and eliminating 81with the aid of Eq. (8.8) we 
arrive at the following two optimality conditions in terms of design variables and 
acting forces: 
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k 

hi(N,sin’ 4i -N,,cos24i)= 0 
i= 1 

k 
hi[ (N.+Ny)sin 4; COS 4; -Nx!,]= O . 

i= 1 

(8.10) 

Thus, 2k design variables, Le., k values of hi and k values of (pi, should satisfy three 
equations, Eqs. (8.8)-(8.10). All possible optimal laminates have the same total 
thickness in Eq. (8.8). As follows from Eq. (8.2), condition cy)= 81is valid, in the 
general case, if E . ~= = E and yX., = 0. Applying Eqs. (4.69) to determine the strains 
in the principal material coordinates of the layers we arrive at the following result 
el = 82 = E and yl2  = 0. This means that the optimal laminate is the structure of 
uniform stress and strain in which the fibers of each layer coincide with the 
directions of principal strains. An important feature of the optimal laminate follows 
from the last equation of Eqs. (4.150) which yields 4:. = 4i.Thus, the optimal angles 
do not change under loading. 

Introducing new variables 

and taking into account that 

k 
Xli;=l 
i= I 

(8.11) 

we can transform Eqs. (8.8)-(8.10) that specify the structural parameters of the 
optimal laminate to the following final forms: 

k k 
hicos2 qji = A, Chisin2qj; = Any 

i= I i= I 

hisin 4icos +i= in,y . 
i= I 

(8.12) 

(8.13) 

(8.14) 

For uniaxial tension in the x-direction, we have n,,= nxy =0, ,? = 1. Then, 
Eqs. (8.13) yield & = 0 (i = 1,2,3, . ..,k )  and Eq. (8.12) gives the obvious result 
h =N r / O .  

= 0. 
As follows from Eq. (8.14), the laminate structure in this case should be symmetric, 

To describe tension in two orthogonal directions x and y ,  we should put 
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i.e., each layer with angle +4i should be accompanied with the layer of the same 
thickness but with angle -4i. 

Consider, for example, the uniform tension such that iVr = N,. = N ,  N,. = 0, 
n, = 1 ,  n,. = 0, A = 0.5. For this case, Eqs. (8.12) and (8.13) yield 

(8.15) 

The natural structure for this case corresponds to the cross-ply laminate for which 
k = 2, 4, = 0", 42 = 90" (Fig. 8.2(a)). Then, the second equation of Eqs. (8.15) 
gives the evident result hl = 6 2 .  

Consider the first equation from which it follows that the total thickness of the 
optimal laminate is twice as high as the thickness of the metal plate under the same 
loading conditions. This result is quite natural because, in contrast to isotropic 
materials, the monotropic layer can work only in one direction - along the fibers. 
So, we need to have the 0"-layer to take N, = N and the same, but 90"-layer to take 
N,, = N .  From this we can conclude that the directional character of a composite ply 
stiffness and strength is actually the material shortcoming rather than its advantage. 
Real advantages of composite materials are associated with their high specific 
strength provided by thin fibers (see Section 3.2. l) ,  and if we had isotropic materials 
with such specific strength, no composites would be developed and implemented. 

Return to the second equation of Eqs. (8.15) which shows that in addition 
to a cross-ply laminate there exists an infinite number of optimal structures. 
For example, this equation is satisfied for a symmetric f45"angle-ply laminate 
(Fig. 8.2b). Moreover, all the quasi-isotropic laminates discussed in Section 5.5 and 
listed in Table 5.1 satisfy the optimality conditions for uniform tension. 

A loading case, important for applications, corresponds to a cylindrical pressure 
vessel considered in Section 6.3.  Winding of such a vessel is shown in Fig. 7.43. For 
this type of loading 

where N, and N,, are the circumferential and the axial stress resultants, respectively, 
p the internal pressure and R is the cylinder radius. Thus, we have n,, = 2 and 

Fig. 8.2. Cross-ply (a) and f45" angle-ply (b) optimal structures for uniform tension. 
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A = 1/3. Because Nxu = 0, the structure of the laminate is symmetric with respect to 
the cylinder meridian, and Eqs. (8.12)-(8.14) can be reduced to 

h = -3PR 
2a, ' 

k 
Ch i (3cos24 i- 1) = 0 . 
i= 1 

(8.16) 

(8.17) 

Comparing Eq. (8.16) with the corresponding expression for the thickness of the 
metal pressure vessel which is h, =pR/G we can see that the thickness of an optimal 
composite vessel is 1.5 times higher than h,. Nevertheless, because of higher 
strength and lower density, composite pressure vessels are significantly lighter than 
metal ones. To show this, consider pressure vessels with radius R = 100 mm made of 
different materials and designed for the burst pressure p = 20 MPa. The results are 
listed in Table 8.1. As can be seen, the thickness of the glass-poxy vessel is the same 
as that of the thickness of the steel vessel, because the factor 1.5 in Eq. (8.16) is 
compensated by the composite strength which is 1.5 times higher than the strength 
of steel. However, the density of a glass-epoxy composite is much lower than the 
density of steel, and as a result, the mass of the unit surface area of the composite 
vessel makes only 27% of the corresponding characteristic for a steel vessel. The 
most promising for pressure vessels are aramid composites having the highest tensile 
specific strength (see Table 8.1). 

Consider Eq. (8.17) which shows that there can exist an infinite number of 
optimal laminates with one and the same thickness specified by Eq. (8.16). 

The simplest is the cross-ply laminate having k = 2, Q,l = 0", hl =ha,  and 
+2 = 90",h2 = h90. For this structure, Eq. (8.17) yields h90 = 2ho. This result seems 
obvious because Ny/Nx = 2. For symmetric &+ angle-ply laminate, we should take 
k = 2, hl = h2 = h 4 / 2 ,  4, = +4, 42= -6. Then 

2cos Q, = 1 4 = 4 0  = 54"44' .3 '  

Table 8.1 
Parameters of metal and composite pressure vessels. 

Parameter Material 

Steel Aluminum Titanium Glass- Carbon- Aramid-
epoxy epoxy epoxy 

Strength, Z,5, (MPa) 1200 500 900 1800 2000 2500 
Density, p (g/cm3) 7.85 2.7 4.5 2.1 1.55 1.32 
Thickness of the vessel, 1.67 4.0 2.22 1.67 1.5 1.2 
h,, h (mm) 
Mass of the unit surface 13.1 I 10.8 10.0 3.51 2.32 1.58 
area, ph (kg/m2) 
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As a rule, helical plies are combined with circumferential plies as in Fig. 7.43. For 
this case, k = 3, hl = hl = h4/2,  = -& = 4, h3 = h90, c$3 = 90°, and Eq. (8.17) 
gives 

(8.18) 

Because the thickness cannot be negative, this equation is valid for 0 6 4 6 40.For 
Q 4 6 90", the helical layer should be combined with the axial one, i.e., we 

should put k = 3, hl  = hZ = hd/2,  4,  = = 4 and h3 = ho, 43= 0". Then 

(8.19) 

Dependencies corresponding to Eqs. (8.18) and (8.19) are presented in Fig. 8.3. As 
an example, consider a filament wound pressure vessel whose parameters are listed 
in Table 6.1. Cylindricalpart of the vessel shown in Figs. 4.14 and 6.23 consists of a 
f36" angle-ply helical layer and a circumferentiallayer whose thickness hl = hb and 
hZ = h90 are presented in Table 6.1. The ratio hyo/h&for two experimental vessels is 
0.97 and 1.01, while Eq. (8.18) gives for this case hyo/h&= 0.96 which shows that 
both vcsscls are close to optimal structures. Laminates reinforced with uniformly 
stressed fibers can exist under some restrictions imposed on the acting forces Ify,F,., 
and iVyy.Such restrictions follow from Eqs. (8.13) and (8.14) under the conditions 
that hi 2 0, 0 6 sin' 4i,cos' 4i6 1 and have the form 

2 

1.6 

1.2 

0.8 

0.4 

0 

Fig. 8.3. Optimal thickness ratios for a cylindrical pressure vessel consisting of i$helical plies combined 
with circumferential (90") or axial (0") plies. 
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Particularly, Eqs. (8.13) and (8.14) do not describe the case of pure shear for which 
only shear stress resultant, N,,, is not zero. This is quite natural because strength 
condition cry) = 51 under which Eqs. (8.12)-(8.14) were derived is not valid for 
shear inducing tension and compression in angle-ply layers. 

To study in-plane shear of the laminate, we should use both solutions of Eq. (8.7) 
and assume that for some layers, e.g., with i = 1,2,3,...,n- 1 ,  of)= 81 while 
for the other layers (i = n,n + I ,n  -t2,. ..,k),or) = -81. Then, Eqs. (8.1) can be 
reduced to the following forms: 

N, +N" = -h - )  (8.20) 

(8.21) 

(8.22) 

where 

n- I k 
hf = h- = Ch; 

i= I i=n 

are the total thicknesses of the plies with tensile and compressive stresses in the 
fibers, respectively. 

For the case of pure shear (N, =N, = 0), Eqs. (8.20) and (8.21) yield h+ = h-
and # j  = f45". Then, assuming that +i= +45" for the layers with hi = hi+, while 
q5i = -45" for the layers with hi = h i  we get from Eq. (8.22) 

The optimal laminate, as follows from the foregoing derivation, corresponds to 
4~45'angle-ply structure shown in Fig. 8.2b. 

8.2. Composite laminates of uniform strength 

Consider again the panel in Fig. 8.1 and assume that unidirectional plies or fabric 
layers, that form the panel are orthotropic, i.e., in contrast to the previous section, 
we do not neglect now stresses 02 and ~ 1 2in comparison with 01 (see Fig. 3.29). 
Then, constitutive equations for the panel in plane stress state are specified by the 
first three equations in Eqs. (5.35), i.e. 
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(8.23) 

where in accordance with Eqs. (4.72) and (5.28), (5.42) 

and 

In the general case, the panel can consist of layers made of different composite 
materials. Using the optimality criterion developed in the previous section for the 
fibrous structures we assume that the fibers in each layer are directed along the lines 
of principal strains, or principal stresses because $2 = G I ~ $  for an orthotropic 
layer and condition $3 = 0 is equivalent to condition = 0 (see section 2.4). 
Using the third equation in Eqs. (4.69) we can write these conditions as 

2(g. - E,) sin dicos di+y.rI- cos 24; = 0 . (8.25) 

This equation can be satisfied for all the layers if we take 

& . v = & Y - & ,  y,,=0 . (8.26) 

Then, Eqs. (8.23) yield 

Nv = ( B I I+B I ~ ) E ,Nv= (&I +B22)~,  Nry = (841 +B42)~ 
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These equations allow us to find strain, i.e. 

(8.27) 

and to write two relationships specifying the optimal structural parameters of the 
laminate 

Substitution of Bmnfrom Eqs. (8.24) results in the following explicit form of these 
conditions: 

(8.28) 

To determine the stresses that act in the optimal laminate, we use Eqs. (4.69) and 
(8.26) that specify the strains in the principal material coordinates of the layers 
as = ~2 = E, yI2  = 0. Applying constitutive equations, Eqs. (4.56), substituting E 

from Eq. (8.27) and writing the result in the explicit form with the aid of Eqs. (8.24) 
we arrive at: 

where 

(8.29) 

is the laminate stiffness coefficient. 

are simplified as 
If all the layers are made from one and the same material, Eqs. (8.28) and (8.29) 
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k 

375 

(8.30) 

(8.31) 

where 

Laminates of uniform strength exist under the following restrictions: 

For monotropic model of the unidirectional ply considered in the previous section, 
n = 0, m = I ,  and Eqs. (8.30) reduce to Eqs. (8.9) and (8.10). 

To determine the thickness of the optimal laminate, we should use Eqs. (8.31) 
in conjunction with one of the strength criteria discussed in Chapter 6. For the 
simplest case, using the maximum stress criterion in Eqs. (6.2), the thickness of 
the laminate can be found from the following conditions CTI = or 02 = a,, so 
that 

(8.32) 

Obviously, for the optimal structure, we would like to have hl = h2. However, this 
can happen only if material characteristics meet the following condition: 

(8.33) 

The results of calculation for typical materials whose properties are listed in Tables 
3.5 and 4.4 are presented in Table 8.2. As can be seen, Eq. (8.33) is approximately 
valid for fabric composites whose stiffness and strength in the warp and fill 
directions (see section 4.6) are controlled by the fibers of one and the same nature. 
However for unidirectional polymeric and metal matrix composites, whose 
longitudinal stiffness and strength are governed by the fibers and transverse 
characteristics are determined by the matrix properties, a?/al << n. In accordance 
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Table 8.2 
Parameters of typical advanced composites. 

Parameter Fabric-epoxy composites Unidirectional-epoxy composites Boron-AI 

Glass Carbon Aramid Glass Carbon Aramid Boron 

0.83 0.022 0.025 0.012 0.054 0.108 -
0~/8l 0.99 0.99 
n 0.85 1.0 1.O 0.28 0. I 0.072 0.11 0.7 

with Eqs. (8.32), this means that hl -Kh2, and the ratio h2/h1 varies from 12.7 for 
glass-epoxy to 2.04 for boron+poxy composites. Now, return to the discussion 
presented in section 4.4.2 from which it follows that in laminated composites 
transverse stresses 02 reaching their ultimate value, &, cause cracks in the matrix 
which do not result in the failure of the laminate whose strength is controlled by 
fibers. To describe the laminate with cracks in the matrix (naturally, if the cracks are 
admitted for the structure under design), we can use the monotropic model of the 
ply and, hence, results of optimization presented in Section 8.1. 

Consider again the optimality condition Eq. (8.25). As can be seen, this equation 
can be satisfied not only by strains in Eqs. (8.26), but also if we take 

Y.VJtan24i = -. 
Ex - E,. 

(8.34) 

Because the left-hand side of this equation is a periodic function with period 7c, 

Eq. (8.34) determines two angles, Le. 

(8.35) 

Thus, the optimal laminate consists of two layers, and the fibers in both layers are 
directed along the lines of principal stresses. Assume that the layers are made of the 
same composite material and have the same thickness, i.e. hl = h2 = h/2, where h is 
the thickness of the laminate. Then, using Eqs. (8.24) and (8.35) we can show that 
B I I= B22 and B24 = - B I ~for this laminate. After some transformation involving 
elimination of y.!,,. from the first two equations of Eqs. (8.23) with the aid of 
Eq. (8.34) and similar transformation of the third equation from which and E: are 
eliminated using again Eq. (8.34) we get 

Nx = ( B II +8 1 4  tan 2 4 ) ~ :+ (B12 - 8 1 4tan % ) E ! ,  

N,,= ( ~ 1 2-B14 tan 2414 + ( B I  1 +B14 tan 2 4 ) ~ : ~  

Nx?; = (B44 f B14 cot 24)$,. . 

Upon substitution of coefficients B,,, from Eqs. (8.24) we arrive at 
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Introducing average stresses a, = N,/h, 0,.= N,/h, and T.~.~.= N,,/h and solving 
these equations for strains we have 

I 
EE.: = - (O.r - V S V ) ,  

whcrc 

(8.36) 

(8.37) 

Changing strains for stresses in Eqs. (8.35) we can write the expression for the 
optimal orientation angle as 

(8.38) 

As follows from Eqs. (8.36), the laminate consisting of two layers reinforced along 
the directions of principal stresses behaves like an isotropic layer, and Eqs. (8.37) 
specify elastic constants of the corresponding isotropic material. For typical 
advanced composites, these constants are listed in Table 8.3 (the properties of 
unidirectional plies are taken from Table 3.5). Comparing elastic moduli of the 
optimal laminates with those for quasi-isotropic materials (see Table 5.1) we can see 
that for polymeric composites the characteristics of the first group of materials are 
about 40% higher than those for the second group. However, it should be 
emphasized that while the properties of quasi-isotropic laminates are the universal 

Table 8.3 
Effective elastic constants of an optimal laminate. 

Property Glass Carbon- Aramid- Boron- Boron- Carbon- A1203-
epoxy epoxy epoxy epoxy AI carbon AI 

Elastic modulus, E (GPa) 36.9 75.9 50.3 114.8 201.1 95.2 205.4 
Poisson’s ratio, Y 0.053 0.039 0.035 0.035 0.21 0.06 0.I76 
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material constants, the optimal laminates demonstrate characteristics shown in 
Table 8.3 only if the orientation angles of the fibers are found from Eqs. (8.35) or 
(8.38) and correspond to a particular distribution of stresses ox,cy,and zxy. 

As follows from Table 8.3, the modulus of a carbon-epoxy laminate is close to the 
modulus of aluminum, while the density of the composite material is less by the 
factor of 1.7. This is the theoretical weight-saving factor that can be expected if we 
change aluminum for carbon+poxy composite in a thin-walled structure. Because 
the stiffness of both materials is approximately the same, to find the optimal 
orientation angles of the structure elements, we can substitute in Eq. (8.38) the 
stresses acting in the aluminum prototype structure. Thus designed composite 
structure will have approximately the same stiffness as the prototype structure and, 
as a rule, higher strength because carbon composites are stronger than aluminum 
alloys. 

To evaluate the strength of the optimal laminate, we should substitute strains 
from Eqs. (8.36) into Eqs. (4.69) and thus found strains in the principal material 
coordinates of the layers - into constitutive equations, Eqs. (4.56), that specify 
stresses ol and o~ (z12 = 0)acting in the layers. Applying the proper failure criterion 
(see Chapter 6 )  we can evaluate the laminate strength. 

Comparing Tables 1.1 and 8.3 we can see that boron-epoxy optimal laminates 
have approximately the same stiffness that titanium (but is lighter by the factor of 
about 2) and boron-aluminum can be used to substitute steel with a weight-saving 
factor of about 3. 

For preliminary evaluation, we can use a monotropic model of unidirectional 
plies neglecting stiffness and load-carrying capacity of the matrix. Then, Eqs. (8.37) 
acquire the following simple forms: 

(8.39) 

As an example, consider an aluminum shear web with thickness h = 2 mm, elastic 
constants E, = 72 GPa, v, = 0.3 and density pa = 2.7 g/cm3. The panel is loaded 
with shear stress z. Its shear stiffness is Bg,= 57.6 GPa mm and the mass of a unit 
surface is ma= 5.4 kg/m2. For the composite panel, taking ox = = 0 in Eq. (8.38) 
we get 4 = 45". Thus, the composite panel consists of +45" and -45" unidirectional 
layers of the same thickness. The total thickness of the laminate is h = 2 mm, i.e., 
the same as for an aluminum panel. Substituting El = 140 GPa and taking into 
account that p = 1.55 g/cm3 for a carbon-epoxy composite that is chosen to 
substitute aluminum we get B& = 70 GPa mm and m, = 3.1 kg/m3. Stresses acting 
in the fiber directions of the composite plies are o;= f 2 z .  Thus, the composite 
panel has 21.5% higher stiffness and its mass makes only 57.4% of the mass of a 
metal panel. Composite panel has also higher strength because the longitudinal 
strength of unidirectional carbon-poxy composite under tension and compression 
is more than twice higher than the shear strength of aluminum. 

Possibilities of the composite structure under discussion can be enhanced if we use 
different materials in the layers with angles @, and @? specified by Eqs. (8.35). 
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According to the derivation of Obraztsov and Vasiliev (1989), the ratio of the layers’ 
thicknesses is 

and elastic constants in Eqs. (8.37) are generalized as 

Superscripts 1 and 2 correspond to layers with orientation angles 4I and 4:, 
respectively. 

8.3. Application to pressure vessels 

As an example of application of the foregoing results, consider filament wound 
membrane shells of revolution, that are widely used as pressure vessels, solid 
propellant rocket motor cases, tanks for gases and liquids, etc. (see Figs. 4.14 and 
7.43). The shell is loaded with uniform internal pressure p and axial forces T 
uniformly distributed along the contour of the shell cross-section Y = ro as in 
Fig. 8.4. Meridional, Nz,  and circumferential, Np, stress resultants acting in the shell 

Fig. 8.4. Axisymmetrically loaded membrane shell of revolution. 
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follow from the corresponding free body diagrams of the shell element and can be 
written as (see, e.g., Vasiliev, 1993) 

where z(r)specifiesthe form of the shell meridian, z’ = dz/dr, and 

Q = TPO+ E  (7’ -6 )  (8.41)
2 

Let the shell be made by winding an orthotropic tape a1 angles +4 and -4 with 
respect to the shell meridian as in Fig. 8.4. Then, N, and Np can be expressed in 
terms of stresses 61, 6 2  and 212, referred to the principal material coordinates of the 
tape with the aid of Eqs. (4.68), i.e. 

N, = h(ol cos24 + 6 2  sin24 - 2 1 2sin 2&), 

NF = h(o1 sin24 +a2 cos24 +q2sin 24) , 
(8.42) 

where h is the shell thickness. Stresses q , ~ ,and 212 are linked with the 
corresponding strains by Hooke’s law, Eqs. ( 4 2 9 ,  as 

while strains E ~ , E Z ,and yI2  can be expressed in terms of the meridional, E,, and 
circumferential, ~ p ,strains of the shell using Eqs. (4.69), i.e. 

E I  = E, cos24 + ~p sin24, ~2 = E, sin24 + cos24, y12 = ( ~ p-E,)sin 24 . 
(8.44) 

Because the right-hand side parts of these three equations include only two strains, 
E, and ES,there exists a compatibility equation linking E!,~2 and y12. This equation is 

(CI - ~ 2 )sin24 +yI2cos2r$= 0 . 

Writing this equation in terms of stresses with the aid of Eqs. (8.43) we get 

In conjunction with Eqs. (8.42), this equation allows us to determine stresses as 
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(8.45) 

where 

Now, assume that in accordance with results presented in the previous section the 
optimal shell is reinforced along the lines of principal stresses, i.e., in such a way that 
212 = 0. In accordance with the last equation of Eqs. (8.43), for such a shell y I 2  = 0 
and, as follows from Eqs. (8.44), E, = E/{  = E I  = ~ 2 .  

Putting 212 = 0 in the last equation of Eqs. (8.45) we can conclude that for the 
optimal shell 

Nil- 1 --- (1 - n)cos2 4 --
N ,  n+(1-n)cos224 ’ 

where as earlier 

(8.46) 

(8.47) 

Substituting N, and Np from Eqs. (8.40) into Eq. (8.46) we arrive at the following 
equation for the meridian of the optimal shell: 

(8.48) 

The first two equations of Eqs. (8.45) yield the following expressions for stresses 
acting in the tape of the optimal shell: 

(8.49) 

Taking into account that, in accordance with Eqs. (8.45) 
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1 
h61 + a 2 = - ( N , + N p )  , 

we arrive at the following relationships: 

which coincide with Eqs. (8.31). 
Substituting N, from the first equation of Eqs. (8.40) into Eq. (8.49) we get 

Q[l + ( ~ 7 ~ 1’I2 
clh = -

rzz’[n+ (1 - n)cos2 44 . (8.50) 

Assume that the optimal shell is the structure of uniform stress. Differentiating 
Eq. (8.50) with respect to r and taking into account that according to the foregoing 
assumption 01 = constunt, we arrive at the following equation in which 2’ is 
eliminated with the aid of Eq. (8.48): 

d-{rh[n+(l -
dr n ) C o s * ( b ] } - h [ l - ( 1 - n ) C o s * ( b ]  = o  . (8.51) 

This equation specifies either the thickness or the orientation angle of the optimal 
shell. 

Consider two particular cases. First, assume that a fabric tape of variable width 
w(r)  is laid up on the surface of the mandrel along the meridians of the shell of 
revolution to be fabricated. Then, 4 = 0 and Eq. (8.51) acquires the form 

d 
dr
- ( r h ) - n h = O .  

The solution for this equation is 

h = hR@n-‘ , (8.52) 

where hR = h(r =R) is the shell thickness at the equator r =R (see Fig. 8.4). 
Assuming that there is no polar opening in the shell (ro = 0)or that it is closed 
(T=pr0/2)  we have from Eq. (8.41) Q=$/2 .  Substituting this result in 
Eqs. (8.48) and (8.50) we obtain 

(8.53) 

(8.54) 
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Integrating Eq. (8.53) under the condition 1/z‘ = 0 for r = R which means that 
the tangent line to the shell meridian is parallel to axis z at r = R (see Fig. 8.4) we 
arrive at 

z‘ = - (8 .55)  

Further integration results in the following parametric equation for the shell 
meridian: 

Y 
-= ( I  - t )” ,
R 

Here, B, is the a-function (or the Euler integral of the first type). Constant of 
integration is found from the condition z(r =R)  = 0. Meridians corresponding to 
various n-numbers are presented in Fig. 8.5. For n = 1 the optimal shell is a sphere, 
while for n = 2 it is a cylinder. As follows from Eq. (8.52), the thickness of the 
spherical (n = 1) and cylindrical (n = 2, r = R )  shells is constant. Substituting 
Eqs. (8.52) and (8.55) into Eq. (8.54) and taking into account Eqs. (8.49) we have 
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Fig. 8.5. Meridians of optimal composite shells. 
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This equation allows us to determine the shell thickness at the equator (r =R), h R ,  
matching GIor rs2 with material strength characteristics. 

As was already noted, the shells under study can be made laying up fabric tapes of 
variable width, ~ ( r ) ,along the shell meridians. The tape width can be linked with 
the shell thickness, h(r) ,  as 

kw(r)S = 2nrh(r) , (8.56) 

where k is the number of tapes in the shell cross-section (evidently, k is the same for 
all the cross-sections) and 6 is the tape thickness. Substituting h(r) from Eq. (8.52) 
we get 

Consider the second special case - a shell made by winding of unidirectional 
composite tapes at angles * 4  with respect to the shell meridian. The tape width, WO, 
does not depend on r, and its thickness is 6. Then, equation similar to Eq. (8.56) can 
be written as 

where k is the number of tapes with angles +$ and -4. Thus, the shell thickness is 

kWO6 
2nrcos 4(r)  * 

h(r )  = 

It can be expressed in terms of the thickness value at the shell equator h~ = 
h(r  = R) as 

R COS (PR
h(r )  = hR 

rcos 4(r)  ' (8.57) 

where 4R= &(r=R). It should be noted that this equation is not valid for 
r < 1-0+WO,Le., in the shell area close to the polar opening where tapes are 
completely overlapped. 

Substituting h(r)  from Eq. (8.57) into Eq. (8.51) we arrive at the following 
equation for the tape orientation angle: 

d4  s in4[n- ( l  -n)cos2q5] 
d r  cos (b[ 1 - (1  - n)cos2 $1 = 

r - - .  



Chapter 8. Optimal composite StrucIures 385 

The solution of this equation that satisfies the boundary condition +(r= R) = 4Ris 
presented as follows: 

As has been already noted in the previous section, the simplest and rather adequate 
model of unidirectional fibrous composites for design problems is the monotropic 
model ignoring the stiffness of the matrix. For this model, we should take n = 0 in 
the foregoing equations. Particularly, Eq. (8.58) yields in this case 

r sin 4 ( r )  = R sin 4R . (8.59) 

This is the equation of a geodesic line on the surface of revolution. Thus, in the 
optimal filament wound shell the fibers are directed along the geodesic lines. This 
substantially simplifies the winding process because the tape placed on the surface 
under tension automatically acquires the form of the geodesic line if thcrc is no 
friction between the tape and the surface. 

As follows from Eq. (8.59), for 4 = 90”, the tape touches the shell parallel of 
radius 

r0 = R sin 4R (8.60) 

and the polar opening of this radius is formed in the shell (see Fig. 8.4). 
Transforming Eq. (8.48) with the aid of Eqs. (8.59) and (8.60) and taking n = 0 

we arrive at the following equation that specifies the meridian of the optimal 
filament wound shell: 

(8.61) 

where 

(8.62), , 2T 
P 

r0 .q- = r; --

Integrating Eq. (8.61) with due regard for the condition l/z’(R) = 0 which, 
as earlier, requires that for r = R the tangent to the meridian be parallel to z-axis, 
we get 

(8.63) 
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Using this equation to transform Eq. (8.50) in which we take n = 0 and substituting 
h from Eq. (8.57) we get the following equation for the longitudinal stress in the 
tape: 

p(R2 -4)+2roT 
61 = 

2 R h ~cos2&R 
(8.64) 

As can be seen, 01 does not depend on Y,  and the optimal shell is a structure 
reinforced with uniformly stressed fibers. 

Such fibrous structures are referred to as isotensoids. To study the types of 
isotensoids corresponding to loading shown in Fig. 8.4, factor the expression in the 
denominator of Eq. (8.63). The result can be presented as 

r ( 9  - q2)
z’ = -

J(R2 - r2)(r2- rf)(r2+r;2) ’ 

where 

6 . 2  = 

(8.65) 

(8.66) 

As follows from Eq. (8.65), quantities R and r-1 are the maximum and minimum 
distances from the meridian to the rotation axis. Meridians of isotensoids 
corresponding to various loading conditions are shown in Fig. 8.6. For p = 0, 
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Fig. 8.6. Isotensoid corresponding to various loading conditions. 
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i.e., under axial tension, a hyperbolic shell is obtained with the meridian determined 
as 

r' - 2 tan2 4R = R' . 

This meridian corresponds to line 1 in Fig. 8.6. For 4R = 0, the hyperbolic shell 
degenerates into a cylinder (line 2). Curve 3 corresponds to T = p r 0 / 2 ,  i.e., to a shell 
for which the polar opening of radius r0 is closed. For the special angle 
4R = 4o = 54"44', the shell degenerates into a circular cylindrical shell (line 2) 
discussed in section 8.1. For T = 0, Le., in case of an open polar hole, the meridian 
has the form corresponding to curve 4. The change in the direction of axial forces T 
yields a toroidal shell (line 5).  Performing integration of Eq. (8.65) and introducing 
dimensionless parameters 

we finally arrive at 

-7 

z=- - '- F(k, 0) + d=E(k, 0) , - 

d- 
where 

E(k, 0) = d1 - k2 sin' 0 de J 0 
F(k,B) = 

0 

are the first-kind and the second-kind elliptic integrals and 

kl 2 = 

(8.67) 

As an application of the foregoing equations, consider the optimal structure of the 
end closure of the pressure vessel shown in Fig, 4.14. The cylindrical part of the 
vessel consists of zk4R angle-ply layer with thickness  la^, that can be found from 
Eq. (8.64) in which we should take T = pr0/2, and a circumferential (4 = 90") layer 
whose thickness is specified by Eq. (8.18), i.e. 

h90 = h&cos2 4 R  - 1) . 

The polar opening of the dome (see Fig. 4.14) is closed. So T = pr0/2,  f j  = 0, and the 
dome meridian corresponds to curve 3 in Fig. 8.6. As has already been noted, upon 
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winding, an opening of radius ro is formed at the shell apex. However, the analysis 
of Eq. (8.65) for rl that determines the minimum distance from the meridian to the 
z-axis (see Fig. 8.7) shows that P I  is equal to ro only if a shell has an open polar hole 
(curve 4 in Fig. 8.6). For a pressure vessel whose polar hole is closed, T I  >ro and the 
equality takes place only for 4 = 0, Le., when T I  = ro = 0. In real vessels, polar holes 
are closed with rigid polar bosses shown in Fig. 8.8. The meridian of the shell under 
consideration can be divided into two segments. For R Z r > b ,  the meridian 
corresponds to curve 3 in Fig. 8.6 for which T =pr0/2 and q = 0. In Fig. 8.7 this 
segment of the meridian is shown with a solid line. The meridian segment b>r>ro, 
where the shell touches the polar boss, corresponds to curve 4 in Fig. 8.6 for which 
T = 0. In Fig. 8.7, this segment of the meridian is indicated with the dashed line. 
Radius b in Figs. 8.7 and 8.8 can be set as the coordinate of an inflection point of 
this curve determined by the condition z”(r = b) = 0. Differentiating Eq. (8.65) and 
taking q = 0 for the closed polar opening we get 

Because the segment (b  - ro) is relatively small, we can assume that the contact 
pressurePIbetween the shell and the boss is uniform. Then, from the condition of 
boss equilibrium (the hole in the boss is closed), we have 

Fig. 8.7. Combined meridian of the pressure vessel dome. 

Fig. 8.8. Isotensoid dome with a polar boss. 
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pb'
PI=-.b ' - 4  

(8.68) 

Constructingthe combined meridian we should take into account that functionsz (r )  
and z'(Y) must be continuous for Y = b. Finally, using Eqs. (8.65) and (8.67), we 
obtain: 

F o r R > r > b  ( T = p r o / 2 , ~ = 0 )  

and 

where 

and 

where 

(8.69) 

(8.70) 
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Meridians plotted in accordance with these equations and corresponding to various 
values of parameter FO specifying the radius of polar opening (which is closed) are 
presented in Fig. 8.9. The curve TO = 0 corresponds to the shell reinforced along the 
meridians and is the same as that of the curve n = 0 in Fig. 8.5. This isotensoid 
shape can be readily obtained experimentally if we load with internal pressure a 
balloon reinforced along the meridians as in Fig. 8.10. 

Stresses acting along the fibers of the shells whose meridians are presented in 
Fig. 8.9 are determined by Eq. (8.50) in which we should take n = 0. Substituting It 
from Eq. (8.57), 4 from Eqs. (8.59), (8.60) we should consider two segments of 
the meridian. For the first segment we take T =pro12 and z’ in accordance with 
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Fig. 8.9. Meridians of isotensoids. 

Fig. 8.10. A model isotensoid reinforced along the meridians. 
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L i , 
0 0.1 0.2 0.3 0.4 0.5 0.6 

Fig. 8.1 1.  Mass efficiency parameter p and the normalized internal volume P = V/RZof the isotensoid 
pressure vessel as functions of the polar opening radius. 

Eq. (8.69), while for the second one we substitute 1 from Eq. (8.70) and put T = 0, 
p =P I ,where P I  is specified by Eq. (8.68). For both segments, we arrive at one and 
the same result, i.e. 

The shell mass and internal volume can be found as 

where p is the density of the material. The mass of a composite pressure vessel is 
often evaluated by using the parameter p in the equation 

PUV 
01/ P

M = p - .  

Here, pu is the ultimate pressure, and @ l / p  is the specific strength of the material. 
The variation of the parameter p and the normalized internal volume v = V/R’ as 
function of the radius of the polar opening are shown in Fig. 8.11. Other 
applications of uniformly stressed composite structures can be found elsewhere 
(Obraztsov and Vasiliev, 1989). 



392 Mechanics and analysis of composite materials 

8.4. References 

Obraztsov. I.F. and Vasiliev, V.V. (1989). Optimal design of composite structures. In Handbook of 
Composites: Vol. 2, Structure and Design (C.T. Herakovich and Yu, M. Tarnopol’skii,eds.). Elsevier, 
Amsterdam, pp. 3-84. 

Vasiliev, V.V. (1993). Mechanics of Composite Structures. Taylor & Francis, Washington. 



AUTHOR INDEX 

[Plain numbers refer to text pages on which the author (or his/her work) is cited. 
Boldface numbers refer to the pages where bibliographic references are listed.] 

Abdel-Jawad, Y.A. 78 119 
Abu-Farsakh, G.A. 78 119 
Abu-Laila, Kh.M. 78 119 
Adams, R.D. 335 363 
Adkins, J.E. 124 222 
Aleksandrov, A.Ya. 239 269 
Alfutov, N.A. 200 222 
Anderson, J.A. 338 362 
Annin, B.D. 275 300 
Aoki, T. 87 120 
Apinis, R.P. 337 362 
Artemchuk, V.Ya. 315 363 
Ashkenazi, E.K. 284 300 
Ashton, J.E. 253 269 
Ami, V.D. 180 223 

Baev, L.V. 275 300 
Barbero, E.J. 283 300 
Barnes, J.A. 310-311 362 
Belyankin, F.P. 276 300 
Birger, LA. 134 222 
Bogdanovich, A.E. 15 27 91 119 
Broutman, L.J. 271 300 329 363 
Brukker, L.E. 239 269 
Bulavs, F.Ya. 95, 117 120 21 1 223 

272 300 320, 332 363 
Bulmanis, V.N. 318 362 
Buskel, N.C.R. 338 363 

Chamis, C.C. 156 222 
Chen, H.-J. 239 269 
Cherevatsky, A.S. 196 222 
Chiao, T.T. 77 119 181 222 
Chou, T.W. 15 27 338 363 
Crasto, AS. 112-1 13 119 
Curtis, A.R. 112 120 

Dow, N.F. 107 
Doxsee, L. 341 363 
Dudchenko, A.A. 169 223 
Dvorak, G.J. 340 363 

Elpatievskii, A.N. 174, 180 223 
Ermakov, Yu.N. 334335 363 

Farrow, G.J. 310-311 362 
Fukuda, H. 
Fukui, S. 205 222 

15 27 77 120 

Gere, J.M. 108 120 
Gilman, J.J. 59 120 
Gol'denblat, 1.1. 
Gong, X.J. 151, 156 223 
Goodey, W.J. 17 28 66 120 
Grakova, T.S. 318 362 
Green, A.E. 124 222 

Gudmundson, P. 180 223 
Gunyaev, G.M. 116 120 319 
Gurdal, Z. 41 53 
Gurvich, M.R. 95, 117 120 21 1 223 

Gutans, Yu.A. 63 120 

271, 277, 286, 291 300 

Griffith, A.A. 61-62 120 

272 300 320, 332 363 

Ha, S.K. 315 362 
Hahn, H.T. 
Hamilton, J.G. 311 362 
Haresceugh, R.I. 112 120 
Hashimoto, S. 205 222 
Hashin, Z. 
Herakovich, C.T. v, 142, 146, 162 222 

Hodgkinson, J.M. 338 363 

145, 180 222 271 300 

94 120 180 222 

271 300 359 362 379, 391 392 



394 Author index 

Hondo, A. 205 222 
Huber, M.T. 293 
Hyer, M.W. 359 362 

Ilyushin, A.A. 133, 139 223 
Ishida, T. 340 363 
Ivanovskii, V.S. 352 363 

Jackson, D. 310-311 362 
Jeong, T.H. 87 120 
Jones, R.M. 91, 96, 107 120 143 223 

278 300 

Kanagawa, Y. 340 363 
Kanovich, M.Z. 118-1 I9 120 
Karmishin, A.V. 253 269 
Karpinos, D.M. 20 28 
Katarzhnov, Yu.1. 279-280 300 
Kawata, K. 205 222 
Khonichev, V.I. 337 362 
Kim, H.G. 87 120 
Kim, R.Y. 112-113 119 
Kincis, T.Ya. 96, 113 120 
Kingston-Lee, D.M. 308 363 
KO,F.K. 15 27 
Kobayashi, R. 205 222 
Koltunov, M.A. 118-1 19 120 
Kondo, K. 87 120 
Kopnov, V.A. 271, 277, 286, 291 300 
Krock, R.H. 271 300 329 363 
Kruklinsh, A.A. 95, 1 17 120 21 1 223 

Kruzhkova, E.Yu. 318 363 
Kurshin, L.M. 239 269 
Kutinov, V.F. 336, 355 

272 300 320, 332 363 

Lagace, P.A. 96 120 186, 196 223 
Lapotkin, V.A. 315 363 
Lee, D.J. 87 120 
Li, L. 341 363 
Limonov, V.A. 338 362 
Lungren, J.-E. 180 223 

Margolin, G.G. 276 300 
Matthews, F.L. 338 363 
Mikelsons, M.Ya. 63, 337-338 362 
Mileiko, S.T. 79 120 
Milyutin, G.I. 318 362 
Mises, R. 293 

Miyazawa, T. 77 120 
Morozov, E.V. 222 223 277 300 

360-362 363 
Morton, J. 338 363 
Murakami, S. 340 363 

Nanyaro, A.P. 284 300 
Natrusov, V.I. 118-1 19 120 
Ni, R.G. 335 363 

Obraztsov, I.F. 

Otani, N. 205 222 

79 120 200 222 379. 
391 392 

Pagano, N.J. 150,221 223 
Pastore, C.M. 
Patterson, J.M. 311 362 
Perov, Yu.Yu. 318 363 
Peters, S.T. 9, 15, 27 28 
Phillips, L.M. 308 363 
Pleshkov, L.V. 118-1 19 120 
Polyakov, V.A. 
Popkova, L.K. 360-362 363 
Popov, N.S. 318 362 
Prevo, K.M. 311 363 
Prokhorov, G. 275 
Protasov, V.D. 336, 339 363 
Prusakov, A.P. 239 269 

15 27 91 119 

15 28 215-216 223 

Rabotnov, Yu.N. 331 363 
Rach, V.A. 352 363 
Reese, E. 338 363 
Reifsnaider, K.L. 180 223 
Rogers, E.F. 308 363 
Roginskii, S.L. 118-1 19 120 
Rosen, B.W. 94, 107 120 
Rowlands, R.E. 271 300 
Roze, A.V. 87, 354 363 
Rrenjie, W. 341 363 

Salov, O.V. 183 223 
Salov, V.A. 182-183 223 
Schapery, R.A. 329 363 
Schulte, K. 338 363 
Scott, M.L. 15 27 
Sendeckyj, G.P. 271 300 

Shen, S.H. 317 363 
Sibiryakov, A.V. 344 363 

329 363 



Author index 395 

Sih, G.C. 
Simms, 1.J. 310-311 362 
Skudra, A.M. 

272 300 320, 332 363 
Sobol’, L.A. 315 363 
Soutis, C. 316 363 
Springer, G.S. 315, 317 362-363 
Strife, J.R. 31 1 363 
Sukhanov, A.V. 315 363 

77 119 181 222 275 300 

95, 117 120 211 223 

Takana. N. 205 222 
Tamuzh, V.P. 77 119 156 222 275 300 

Taraschuch, 1.V. 338 362 
Tarnopol’skii, Yu.M. 

336, 338 362 339 363 

15,20 28 64, 87,96, 
113 120 215-216 223 354 362-363 
391 392 

Tatarnikov, O.V. 277 300 
Tennyson, R.C. 284 300 
Tikhomirov, P.V. 78 120 
Timoshenko, S.P. 108 120 
Toland, R.H. 271 300 
Tomatsu, H. 77 120 
Tsai, S.W. 

271,278 300 
Tsushima, E. 340 363 
Turkmen, D. 316 363 

145, 150, 180 222-223 239 269 

Van Fo Fy (Vanin), G.A. 88,91 120 
Varshavskii, V.Ya. 115 120 

Vasiliev, V.V. 20 28 41 53 64 120 157, 
169, 174, 180-181, 183, 215, 217 
222-223 254, 261 269 285, 294 300 
344 363 379-380, 391,392 

Verchery, G. 
253 269 

Verpoest, I. 341 363 
Vicario, A.A. Jr. 271 300 
Volkov, N. 275 
Vorobey, V.V. 277 300 

150-1 51, 156 223 

Wada, A. 15 27 
Wharram, G.E. 284 300 
Whitford, L.E. 221 223 
Whitney, J.M. 253 269 
Woolstencroft, D.H. I12 120 
Wostenholm, G. 310-31 1 362 
Wu, E.M. 271 300 

Yakushiji, M. 15 27 
Yates, B. 310-311 362 
Yatsenko, V.F. 276 300 
Yunshu, W. 341 363 
Yushanov. S.P. 78 120 

Zabolotskii, A.A. 115 120 
Zakrzhevskii, A.M. 3 18 362 
Zhenlong, G. 341 363 
Zhigun, I.G. 
Zinoviev, P.A. 200 222 334-335 363 

15 28 215-216 223 





SUBJECT INDEX 

absorption of moisture 180 
acting pulse 343 
active loading 132 
actual fiber distribution 56 
actual strength 58, 62 
adhesion 17 
adhesion failure 97, 102 
adhesion strength 119 
admissible kinematic field 41 
admissible static field 41 
admissible stress state 92 
advanced composites 9, 377 
aging 317, 319 
aging theory 331 
Al2O3-A1 composite 96, 167 
alumina (A1203) fibers 7, 13 
aluminum alloy 131-132, 138 
aluminum matrix composite materials 20 
aluminum shear web 378 
amplitude of stress 334 
angle of rotation 157, 226 
angle of rotation of a body element 40 
angle of rotation of the element 191 
angle of rotation of the normal 263 
angle-ply antisymmetric panel 359 
angle-ply carbon-epoxy laminate 340 
angle-ply composite cylinder 361 
angle-ply laminate 3I 1  
angle-ply layer 

angle-ply orthotropic layer 184 
angle-ply structure 248 
anisotropic layer 148, 309 
antisymmetric laminates 248, 356 
apparent coefficients of thermal 

apparent cross-sectional area 207 
apparent CTE of a unidirectional ply 308 
apparent (effective) mechanical charac-

apparent longitudinal modulus of the 

apparent material stiffness 142 

185, 187, 195-196, 201, 
260, 267 

expansion 315 

teristics I18 

PlY 86 

apparent modulus 92, 160, 207, 245, 

apparent modulus of an angle-ply 

apparent modulus of elasticity 207 
apparent shear modulus 86 
apparent strain 324 
apparent stress 324 
apparent thermal conductivity 302-303, 

apparent thermal expansion coeffi-

approach macrophenomenological 273 
approximation criterion 292-293 
approximation polynomial criteria 291 
approximation strength criteria 274, 281, 

aramid (aromatic polyamide) fibers 12 
aramid composite 370 
aramid epoxy angle-ply composites 311 
aramid fabric skin 306 
aramid fabric-epoxy composite 208, 304 
aramid fibers 6, 112 
aramid-epoxy composite layer 344 
aramid-epoxy composite material 8, 336, 

aramid<poxy composite 96, 167, 304, 

asbestos fibers 14 
asymptotic solutions for inhomogeneous 

solids 91 
atoms’ interaction curve 60 
automobile leaf-springs 337, 339 
average shear strains 231 
average strains 232 
average stresses 231-232, 243, 377 
averaging of stress and strain fields 91 
axial displacement 157, 263 

352 

specimen 204 

306 

cients 310 

293 

344 

319 

bagasse fibers 14 
balanced laminates 242 
ballistic limit 347 
ballistic test 346-347 

397 



398 Subject index 

bamboo fibers 14 
basalt fibers 6, 11 
bending 158, 227, 229,237, 355 
bending fatigue test 338 
bending moment 157 
bending stiffness coefficients of the 

laminate 239 
bending stiffness coefficients 229 
bending stiffnesses 239, 241, 253 
bending-stretching coupling 242 
biaxial braided fabrics 210 
biaxial compression of a unidirectional 

composite 118 
bismaleimide resin 6, 19 
blade of the turbojet engine compressor 

346 
body forces 29, 31, 42, 5 I 
boron carbide (B4C) fibers 7, 13 
boron fibers 7, 13, 21, 112 
boron nitride fibers 7 
boron-aluminum composite 20, 79, 96, 

boron-aluminum unidirectional 

boron-poxy composite 96,167,304,344, 

boron-epoxy optimal laminate 378 
Borsic 13 
boundary and initial conditions 341 
boundary and interface conditions 169 
boundary conditions 69,73 
boundary conditions for free longitudinal 

houndary-layer solution 266 
braided structures 210 
braiding 22-23, 215 
brittle and ductile metal alloys 79 
brittle materials 79 
brittle matrix 277 
bulk materials 214 
bulk modulus 124 
bundle of fibers 64 
burst pressure 179-180, 299-300 

162-163, 167 

composite 146 

376 

edges of the specimen 203 

capron fibers 6 
carbon composites 378 
carbon fabric tape 206 
carbon fabric-poxy composite 208 
carbon fibers 7, 11, 21, 112 

carbon matrix 21, 26, 277 
carbon-carbon composites 2 I ,  96, 167, 

carbon-carbon conical shell 27 
carbon-carbon fabric composite 316 
carbon-carbon unidirectional composite 

carbon-epoxy composite 25, 57, 96, 113, 
167, 304, 316, 336, 378 

carbon-epoxy cylindrical pressure 
vessel 177 

carbon-epoxy external skin 306 
carbon-epoxy lattice layer 306 
carbon-epoxy lattice spacecraft fit-

carbon+poxy layer 154, 161, 187 
carbon-poxy unidirectional ply 177, 197 
carbon-PEEK composite 96, I67 
carbon-phenolic composite 21 
carbon-epoxy ply 75 
Carbonic HM-85 fibers 12 
carbonization 11, 21, 301 
Cartesian coordinate frame 32, 138 
Cartesian coordinates 29-30 
Castigliano’s formulas 125-126 
ceramic composites 2 1, 30 I 
ceramic fibers 13, 21 
ceramic matrix 2 1, 277 
ceramic matrix composites 21 
change of the fibers orientation angles 

changes of curvatures of the laminate 256 
chemical shrinkage of the resin 360 
chemical vapor deposition 
circumferential crack 61 
circumferential plies 296 
circumferential unidirectional layer 140 
circumferential winding 25, 350 
circumferentially wound cylinder 96 
Clapeyron’s theorem 50 
coal pitch 12 
coefficient of moisture expansion 3I8 
coefficient of the strength variation 64 
coefficient of thermal expansion 

coefficients of the compliance matrix 219 
cohesion failure 97, 102 
coir fibers 14 
combined stress state 278 

301 

112, 277-278 

ting 213 

196 

13, 21, 24 

(CTE) 307 



Subject index 399 

Compatibility conditions 40 
compatibility conditions at fiber-matrix 

compatibility equations 40, 52, 69-70 
compatible deformation of the layers 255 
complementary elastic potential 125-126, 

compliance 1 
compliance coefficients 86, 152, 156, 230 
compliance matrix 45-46 
composite beam theory 157 
composite body of a space telescope 305 
composite bundles 66 
composite fibers 182 
composite laminate 121, 124 
composite laminates of uniform 

composite lattice shear web structure 214 
composite layer 121, 140 
composite materials 9, 21-22, 163 
composite panel 378 
composite pins 215 
composite pressure vessel 370, 391 
composite profiles 23 
composite section of a space telescope 306 
composite shell with radial reinforcement 

composite structures of uniform 

compression across the fibers 95, 200 
compression along the fibers 95 
compression failure modes 104 
compression molding 24 
compression strength of composites 112 
compressive cycle 338 
compressive direct pulse 343 
compressive stress 197 
concept of the accumulation of material 

damage 332 
constitutive equation 5, 324 
constitutive equation of the deformation 

theory 139 
constitutive equation of the hereditary 

theory 321 
constitutive equations 3, 41, 45, 48, 53, 

interfaces I10 

128, 143 

strength 372 

1 I9 

strength 365 

70, 81, 85, 92, 125, 127-128, 130, 136, 
140-141, 143-144, 146, 153, 164, 166, 
201, 21 1, 218, 229, 237, 242-244, 262, 
328, 362, 372 

constitutive equations for an angle-ply 
layer 186 

constitutive equations for an anisotropic 
layer 227 

constitutive equations for an anisotropic 
unidirectional layer 147, 149 

constitutive equations for the generalized 
layer 235 

constitutive equations for the monotropic 
model of the ply 84, 366 

constitutive equations for transverse 
shear 230, 232-233 

constitutive equations of the deformation 
theory of plasticity 132, 136 

constitutive equations of the flow 
theory 137 

constitutive equations of thermoelastisity 
310 

constitutive equations of thermoplasti-
city 315 

constitutive equations relating transverse 
shear stresses 186 

constitutive law 3 
convolution theorem 327 
coordinate of the reference plane 251 
coordinates of the layer 140 
cotton fibers 14 
coupling 248 
coupling coefficients 162, 241, 249 
coupling effects 229, 271 
coupling stiffness coefficients 253 
coupling stiffnesses 
coupling stiffness coefficients of the 

laminate 239 
crack 61, 168, 171 
crack induced by the fiber damage 67 
crack length 61 
crack propagation 336 
cracked cross-ply composite laminate 180 
cracks in the matrix 

cracks parallel to fibers 279 
creep 5, 8, 319 
creep compliance 321-322, 327, 329-330 
creep compliance function 32 1 
creep curve 320, 329 
creep deformation 5, 331 
creep diagram 320, 325, 331 
creep kernel 321 

151, 154, 239, 241 

176, 197-200, 205, 
297, 340, 376 



400 Subject index 

creep problem 329 
creep strain 8 
creep test 319, 322 
CRISM vi, 23, 25-27, 122-123, 148, 185, 

critical stress 62 
cross-ply antisymmetric panel 357 
cross-ply glass-epoxy layer 183 
cross-ply laminate 166, 369 
cross-ply layer 163, 166, 248 
cross-ply layer in a plane stress state 
cross-ply layer with a crack 
CTE 307, 313, 360 
cubic constitutive law 128 
cubic criterion 284 
curing 301, 318, 351 
curved composite pipe 196 
cycle of vibration 334 
cyclic loading 334-336, 338 

206, 213-214, 294, 306, 350 

175 
168 

dacron fibers 6 
damping capacity 346 
deflection 160, 263 
deformable epoxy matrix 182 
deformation theory of plasticity 128, 139 
degradation of material properties 318 
degraded ply 176 
delamination 77, 112, 172, 205, 285, 340, 

343-344 
differential equilibrium equations 32 
direct stress wave 344 
directions of principal strains 368 
directions of principal stresses 377 
displacement boundary conditions 48 
displacement formulation 48 
displacements 36, 39, 42, 73, 226 
dissipation factor 33&335 
dome meridian 387 
dry bundle of fibers 76 
ductile materials 79 
durability 332 

effect of aging 319 
effective (apparent) moduli 81 
effective (apparent) stiffnesses 213 
effective (apparent) transverse modulus 

effective elastic constants 84 
effective modulus 114 

88 

effective strength 66 
eight-sector test fixture 102 
elastic constants 47, 21 1, 222, 304, 

elastic constants of a unidirectional 
ply 81, 170 

elastic deformation 5 
elastic energy 3 
elastic material 3, 43 
elastic model 3-4 
elastic potential 4, 44, 46, 61, 125, 128, 

elastic potential energy 334 
elastic solid 41, 126 
elastic strains 128, 145, 307 
elastic volume deformation 129 
elastic waves 344 
elastic-plastic behavior of metal layer 
elastic-plastic material model 5, 162 
elastic-plastic material 133 
elastic-plastic Poisson’s ratio 129 
elastic-viscoelastic analogy 327, 329 
elasticity theory 145 
elastomers 124 
elementary cross-ply couples 240 
elementary layer 55 
elliptic integrals 387 
elongation 2 
energy criteria 49 
energy dissipation 334-335 
energy of buckled fibers 109 
engineering elastic constants 237 
environmental effects 301 
epoxy matrix 17 
epoxy resin 6, 17, 23, 100, 180 
equilibrium equations 30, 48, 51-53, 69, 

Euclidean space 41,49 
Euler integral 383 
experimental ballistic limit 348 
experimental creep diagram 322 
experimental isochrone stress-strain 

experimental material characteristics 272 
experimental stressstrain curve 138 
experimental stress-strain diagram 142, 

experimental thermal expansion 

307-308 

145 

128 

169, 202,262, 365 

diagram 331 

146 

coefficients 308 



Subject index 40 1 

exponential approximation 322 
extension-shear coupling coefficient 46 
extension-twisting coupling effect 249 

fabric carbon<arbon composite 337 
fabric composites 208, 209, 276-277, 304, 

338, 375 
fabric count 209 
fabric layers 205 
fabric weave 209 
fabric-epoxy composites 376 
facings 249-250 
failure criteria 293 
failure criteria for an elementary composite 

failure criteria of approximation type 273 
failure criterion 271, 282, 378 
failure envelope 27 I ,  275-276, 278, 

failure mechanism 95 
failure mode 

failure mode under longitudinal 
compression 106 

failure modes of the unidirectional com-
posite under in-plane pure shear 

failure modes of unidirectional rings 
failure of longitudinal plies 174 
failure of the fibers 
failure of the laminate 376 
failure of the matrix 179, 197, 297 
failure surface 271-275 
failure under compression along the 

fibers 103 
failure under transverse compression 
fatigue curve 337 
fatigue diagram 337, 339 
fatigue failure 339 
fatigue fracture 336, 340 
fatigue strength 80, 180, 336, 338 
fiber bending stiffness 112 
fiber buckling 107 
fiber defects 76 
fiber elasticity modulus 68 
fiber failure 97, 102 
fiber fraction 91 
fiber fragmentation test 77 
fiber ineffective length 77 
fiber modulus 82, 86 

layer/ply 271 

282-283 

113, 272-273, 278, 280, 
299-300 

100 
102 

115, 176, 179 

113 

fiber orientation angle after the 
deformation I94 

fiber placement technology 24 
fiber processability 15 
fiber properties 82 
fiber sensitivity to damage 66 
fiber strength 62, 82 
fiber strength deviation 64 
fiber strength in compression I12 
fiber volume fraction 55, 66, 79, 84, 91, 

96, 106,208, 304 
fiber with a crack 61 
fiber-matrix adhesion strength I19 
fiber-matrix interaction 58, 77 
fiber-matrix interface 80 
fiberglass composites I80 
fiberglass fabric 23 
fiberglass fabric composite 209 
fibcrs 9, 55 
fibers bending 107 
fibers for advanced composites 6, 10 
fibers microbuckling 107 
fibers orientation angles 365, 378 
fibrous technology 22 
filament winding 24, 26, 184, 256, 30 1, 

filament wound composite pressure 

filament wound fiberglass pressure 

filament wound glass-epoxy pressure 

filament wound membrane shells of 

filament wound pressure vessel 371 
fill direction 375 
fill yarns 207-208 
filled materials 9 
finite element method 135 
first-order micromechanical model 1 18, 

307 
first-order microstructural model of a 

hybrid unidirectional ply 114 
first order microstructural model 308 
first order model of a unidirectional 

first-order model of a ply 
fixture for transverse tension and com-

352 

vessel 121, 123, 140 

vessel 299-300 

vessel 331 

revolution 379 

PlY 85 
84, 90, 92, 304 

pression of unidirectional strips 104 



402 Subject index 

flexural strength 319 
flow theory of plasticity 136, 139 
flying projectile 346 
foam core 239, 249-250, 344, 346 
force boundary conditions 32, 48, 52 
force-deflection curve 347 
formation of cracks 174 
four-layered structure of the space 

telescope 313 
fourth-order criterion 284 
Fracture Mechanics 61-62 
fracture toughness 79 
fracture work 347 
free shear deformation 161 
free temperature strains 360 
free tension 158 
free-edge effect in an angle-ply specimen 

free-edge effects 201, 205 
furfural resin 21 

20 1 

generalized anisotropic layer 225 
generalized strains 227, 229 
geodesic line 385 
geodesic winding 26 
geometrically nonlinear problem of the ply 

glass fabric 208 
glass fabric-epoxy composite 208, 304 
glass fabric-epoxy-phenolic composite 

glass fibers 6, 10 
glass transition temperature 18-19 
glass-epoxy composite 77, 96, 167, 182, 

glass-epoxy composite material 1 18 
glass-epoxy fabric composite 275-276 
glass-epoxy fabric tape 294 
glass-epoxy sandwich layer 170 
glass-epoxy unidirectional composite 

glass-phenolic fabric composite 276 
global coordinate frame 121, 147 
global coordinates of the laminate 

27 1 
graphite fibers 1 1  
graphitization 11, 21 
Green’s formulas 44 
Green’s integral transformation 32, 50 

deformation 189 

339 

256, 304, 360, 370, 376 

183,278 

hand lay-up 24-25, 301 
heat transfer 303 
heat transfer in an orthotropic ply 304 
helical plies 296 
helicopter rotor blades 337 
hereditary theory 320, 326-327 
hereditary theory constitutive 

equations 326 
hexagonal array 58 
hexagonal fiber distribution 56 
high-cycle fatigue 338 
high-modulus carbon fibers 7, 11 
high-strength carbon fibers 7, 11 
higher-order microstructural models 90, 

highly deformable composite material 

high-modulus (HM) and high-strength 

high-modulus carbon-poxy composite 

history of loading 4-5, 136, 138 
homogeneous layer 225 
homogeneous model of the laminate 242 
homogeneous orthotropic layer 163 
honeycomb core 249 
Hooke’s law 4, 121, 128, 136, 149, 205, 

307, 380 
hoop layer 260,267 
Huber-Mises plasticity criterion 292 
hybrid composites 113-1 14 
hybrid composite elements I2 
hybrid thermoset-thermoplastic unidirec-

tional composite 183 
hybrid unidirectional composites 116 
hygrothermal effects 317 
hyperbolic shell 387 

304 

195 

(HS) carbon fibers 12 

308 

impact energy 340 
impact loading 340 
impact resistance 349 
impact tensile stress 346 
impregnation 22 
incompressible material 124, 129 
inflection point 388 
inhomogeneous microstructure 80 
initial static strength 333 
initial strains 134 
initial stresses 134 



Subject index 403 

initial tension of the tape 352 
in-plane contraction 229 
in-plane deformation 359 
in-plane displacements 357 
in-plane extension 229 
in-plane loading 243 
in-plane normal stress 80 
in-plane shear 95, 100,227, 229, 273, 278, 

in-plane shear of the laminate 372 
in-plane shear strength 96, 208 
in-plane shear stress 80 
in-plane stressed state of the layer 237 
in-plane stresses 143 
in-plane tension or compression 227 
in-plane thermal conductivities of the 

instant elastic strain 322 
instantaneous modulus of the material 

integral equilibrium equations 32 
interaction of fracture modes 112 
interaction of normal stresses 276 
interaction of stresses 276, 283 
interaction of the fabric layers 349 
interaction of the layers 262 
interlaminar delamination 341 
interlaminar fracture 284 
interlaminar normal stress 341 
interlaminar shear stiffness 204 
interlaminar shear strength 284-285 
interlaminar shear stress 201, 205 
interlaminar strength 284 
interlaminar stresses 255, 260 
interstage composite lattice structure 214 
invariant characteristics (invariants) of the 

invariant combination of stiffness 

invariant constitutive equations 126 
invariant of the strength tensor 290-291 
invariant stiffness characteristics 151 
inverse Laplace transformation 329-330 
isochrone stress-strain diagram 320 
isotensoid 386 
isotensoid shape 390 
isotropic layer 121, 377 
isotropic material 47 
isotropic polymeric material 128 

323, 356 

laminate 305 

324 

stressed state 35 

coefficients 151 

iteration methods I36 
iterative linearization 133 

jute fibers 14 

kinematic boundary conditions 48 
kinematically admissible field 4142, 

knitted fabrics 210 
knitting patterns 210 
K-number 15 

49-50 

Lagrange’s multipliers 52-53 
lamina 55 
laminate 238, 240, 271, 302-303, 318, 

365 
laminate characteristics 225 
laminate composed of angle-ply 

laminate composed of identical homoge-

laminate composed of inhomogeneous 

laminate curvatures 3I3 
laminate failure I67 
laminate in-plane deformation 313 
laminate out-of-plane deformation 313 
laminate load-carrying capacity 271 
laminate middle plane 245 
laminate reference surface 263 
laminate stiffness coefficient 374 
laminate strength 284, 293 
laminate structure 368 
laminate thickness 366 
laminate twist 313 
laminate under impact load 342 
laminated composite material 24 
laminated polymeric composite panel 355 
laminates of uniform strength 375 
Laplace transforms 326-327, 329 
Laplace transformation 326, 329 
large strains 194 
lattice layer 212 
lattice structure 212-213, 215 
layer 121, 255, 303 
layer failure 172 
layer fracture 271 
layer of aluminum foil 306 
layer shrinkage 360 

layers 242 

neous layers 240 

orthotropic layers 240 



404 Subject index 

layer stiffnesses 175, 229 
layer strength 272 
layer-wise array 58 
layer-wise fiber distribution 57, 87 
layer with cracks 172 
lay-up manufacturing 206 
lay-up method 206 
lay-up technology 24 
least-squares method 144 
limited creep 325-326 
linear elastic material model 44,127 
linear elastic model 4, 44,121, 140, 147, 

163, 185 
linear elastic solid 126, 128 
linear elasticity problem 327 
linear material structure 22 
linear strain-displacement equations 38 
linear viscoelasticity problem 327 
linear-viscoelastic material behavior 320 
linear-viscoelastic material 320 
linen fibers 14 
local buckling of fibers 107 
local buckling of plies 341 
local waviness 354 
longitudinal compression 103, 112-1 13, 

longitudinal compression of a unidirec-

longitudinal compressive strength 96, 

longitudinal conductivity 304 
longitudinal CTE 304 
longitudinal modulus 96-97, 208, 316 
longitudinal modulus of a ply 81 
longitudinal modulus of a unidirectional 

longitudinal stress 85 
longitudinal tensile strength 95-97, 208 
longitudinal tension 95, 273, 323 
long-term loading 332, 334 
long-term strength of composite materials 

long-time modulus 324, 326 
low-cycle fatigue 338 
low-cycle loading 339 
lower bound for the actual transverse shear 

stiffness 233, 235 
lower bound on the apparent transverse 

modulus 93 

273, 280 

tional ply 279 

208, 316 

composite 208 

332 

machine lay-up 24 
macroheterogeneity 22 
magnesium matrix 20 
mandrel 359-361 
manufacturing effects 301, 350 
mass fraction 55 
master curve 130 
material aging 318 
material anisotropy 46 
material coordinates 140 
material damage accumulation 332, 336 
material degradation 332 
material durability 333 
material failure 79, 118, 278 
material failure under transverse tension 

material fracture 60 
material hardening 200 
material long-term strength 338 
material macrostructure 22 
material microstructure 22 
material penetration 340 
material porosity 57 
material relaxation time 335 
material shrinkage 352, 359 
material stiffness 
material strength 

material strength characteristics 287 
material strength in compression 341 
material strength in shear 156 
material strength under compression 283, 

355 
material strength under tension and in 

shear 291 
matrix 9, 16, 55 
matrix cracking 196 
matrix degradation 180, 319 
matrix fraction 55, 91 
matrix material 9, 16 
matrix modulus 81, 86 
matrix of compliance coefficients 45 
matrix shear modulus 68, 77, 82 
matrix shear stiffness 77 
matrix stiffness 16, 67, 76 
matrix strength 8142  
matrix viscosity 17 
matrix volume fraction 55, 84, 304 
maximum bending stiffness 247 

97 

1-2, 16, 180, 318 
1 ,  16, 273, 277, 283, 

291, 308, 318, 340 



Subject index 405 

maximum shear stress 77 
maximum shear stress criterion 293 
maximum strain criterion 274, 279 
maximum strain failure criterion 278 
maximum stress criterion 274-278, 283, 

maximum stress strength criterion 197 
mean strength 65 
mean stress 123, 338 
mean value of the fiber strength 63 
mechanical characteristics of the fibers 81 
mechanical characteristics of the 

mechanical properties of a ply 95 
mechanics of laminates 225 
Mechanics of Materials 9 
Mechanics of Solids 8, 29, 48-49, 272 
mechanism of the crack stopping 80 
melts 22 
membrane stiffness coefficients 229, 239 
membrane stiffnesses 239, 241, 297-298 
membrane-bending coupling 242 
membrane-bending coupling coeffi-

cients 229, 236, 252 
memory function 321 
meridian of the optimal shell 381 
metal alloys 6 
metal fibers 13 
metal layer 124 
metal mandrel 23 
metal matrices 19 
metal matrix composites 
metal pins 215 
metal wires 6 
method of elastic solutions 133-135, 

method of elastic variables 134, 136 
method of Lagrange multipliers 366 
method of reduced bending stiffnesses 

method of reduced or minimum bending 

method of successive loading 134, 136, 

method of variable elasticity parameters 

microbuckling of fibers 341 
microcomposite material 82 
microcomposite strand 82 

285, 295, 375 

matrix 81 

13, 20, 316 

I89 

254 

stiffnesses 253 

197, 317 

134 

microcracking of the matrix 166 
microcracks 62 
microheterogeneity 22 
micromechanical analysis 95 
micromechanical models 83, 87, 91 
micromechanics 81 ,  9 1 
micromechanics of a ply 80 
microphenomenological approach 271 
microstructural approach 332 
microstructural model of the second-

microstructural model 272 
microstructural thermal stresses 308 
microstructure of the material 90 
middle plane of the layer 236 
mineral fibers 11 
mineral-fiber composites 301 
mixed variational principles 52 
mode of failure 281, 297 
model bundles 64 
model isotensoid 390 
model of a unidirectional ply with a broken 

modes of fiber local buckling 107 
modulus of an angle-ply layer 204 
modulus of elasticity 4, 46, 59, 123, 245 
modulus of the =t4angle-ply layer 
moisture 301 
moisture absorption 317 
moisture concentration 317 
moisture content 317 
moisture diffusion coefficient 317 
moisture diffusion process 317 
monotropic layer 369 
monotropic model 83, 385 
monotropic model of unidirectional ply 

multiaxial woven fabrics 209 
multi-dimensionally reinforced materials 

order 89 

fiber 67 

187 

298, 365, 375-376, 378 

216 

natural fibers 14 
natural silk fibers 14 
near net-shape manufacturing of tubes and 

profiles 210 
needle punching 215 
Newton’s method 134-1 35 
nickel matrix 20 
nitron fibers 6 



406 Subject index 

nonlinear behavior of isotropic polymeric 

nonlinear behavior of a cross-ply 

nonlinear behavior of an angle-ply 

nonlinear behavior of composite material 

nonlinear behavior of elastomers 124 
nonlinear constitutive equations 161, 188 
nonlinear constitutive theory 124, 142 
nonlinear deformation of an anisotropic 

nonlinear elastic behavior of a unidirec-

nonlinear elastic material 133 
nonlinear elastic material model 5, 124, 

nonlinear elastic models 126 
nonlinear elastic-plastic behavior of metal 

nonlinear hereditary theory 331 
nonlinear material behavior 5 
nonlinear models 124, 142, 161, 166, 188 
nonlinear phenomenological model of the 

nonlinear stress-strain diagram 17, 127, 

nonlinear viscoelastic behavior 331 
nonsymmetric laminate 257 
normal deflection 226 
normal element 226 
normal stress 29, 33, 72 
normalized strength 15-16 
number of layers 225 
nylon 6 

material 128 

layer 166 

layer 188 

145 

unidirectional layer 161 

tional layer 143 

I62 

layers 128 

cross-ply layer 174 

21 1 

oblique plane 33 
off-axis compression 278 
off-axis tension 278 
off-axis test 155-157 
off-axis test of a unidirectional 

one-term exponential approximation 323 
one-term exponential approximation of the 

optimal angles 368 
optimal composite structures 365 
optimal composite vessel 370 

composite 153 

creep compliance 326 

optimal filament wound shell 381-383, 

optimal laminate 368-370, 372, 374-377 
optimal orientation angles 377-378 
optimal structural parameters of the 

optimal structure of the end closure of 

optimal structures 369 
optimality conditions 367, 376 
optimality criterion 365, 373 
organic fibers 12 
organic resin 21 
organosilicone resin 6, 19 
orthogonally reinforced orthotropic 

orthotropic angle-ply *4 layer 187 
orthotropic core 250 
orthotropic homogeneous material 1 18 
orthotropic laminate 239 
orthotropic layer 140, 233, 271-272, 309, 

orthotropic material 4W7,  146,287,290, 

orthotropic ply 80, 271 

385 

laminate 374 

pressure vessel 387 

layer 163 

373 

327 

PA1 6, 19 
PAN-based carbon fibers 11 
parametric equation for the shell 

PEEK 6, 19 
periodical system of fibers 91 
permanent failure 174 
petroleum pitch 12 
phenol-formaldehyde resin 6 
phenolic resin 21 
phenomenological homogeneous model of 

a ply 117 
phenomenological model 217 
phenomenological model of a composite 

material 118 
phenomenological theory 29 
Physics of Solids 59 
pitch 21 
pitch-based carbon fibers 11 
plain weave 209 
plane laminated material structure 22, 24 
plane stress state 130, 143, 146, 163, 271, 

meridian 383 

372 



Subject index 407 

plastic behavior 130 
plastic deformation 5 
plastic Poisson’s ratio 132 
plastic potential 

145-146 
plastic strain 5,  8, 128-130, 137, 145 
plasticity criterion of maximum shear 

stress 293 
plasticity theory 130 

ply degradation 177, 197 
ply interaction 201 
ply longitudinal modulus 1 15 
ply microstructure 81, 83 
ply orientation 121 
ply stiffness across the fibers 91 
ply stiffness in shear 91 
ply strength 365 
ply thermal conductivity 305 
ply transverse stiffness 91 
ply waviness 353-355 
ply dissipation factor 335 
Poisson’s effect 279 
Poisson’s ratio 46, 86, 96-97, 123, 208, 

polar opening 388 
polyacrylonitrile (PAN) filaments I 1 
polyamide-imide (PAI) 6 
polyester 6 
polyester resin 6. 17 
polyetheretherketone (PEEK) 6 
polyethylene 6 
polyethylene fibers 7, 12 
polyimidc resin 6, 17, 19 
polymeric and metal matrices 99 
polymeric composites 18, 301, 318 
polymeric layer 124 
polymeric matrices 17-1 8, 318-3 19 
polynomial approximation 125 
polynomial criterion 28 1, 284 
polyphenylenesulfide (PPS) 6 
polypropylene fibers 6 
polystyrene 6 
polysulfone (PSU) 6, 19 
potential energy 3, 43 
potential energy of the body 
power approximation 130-133, 138 
power hardening law 132 
power law for the plastic potential 

128, 130, 137-1 38, 

ply 55, 121 

245, 252 

46 

146 

preimpregnated fiberglass fabric 25 
preliminary tension 24, 352 
prepreg 22-23 
pressure vessel 26, 140, 179,369-370,379, 

principal axes 34, 36 
principal coordinates 34, 36 
principal material axes 140,217,255,271, 

principal material coordinates 147, 

388 

291, 309, 335 

153-154, 161, 163, 166, 211, 218, 260, 
285-287, 295, 304, 368, 374, 380 

principal planes 35-36 
principal strains 373 
principal stresses 34-36, 293, 373, 376, 

principle of minimum strain energy 52, 

principle of minimum total potential 

process of the failure 349 
processing 21 
processing temperature 18-1 9 
projectile residual velocity 347 
projectile striking velocity 347 
properties of unidirectional composites 

proportional loading 138-1 39, 156 
protective coatings 21 
pultrusion 22-23, 301 
pure shear 35, 286, 372 
pure shear in a twisted tubular specimen 

103 
pure transverse shear of a cross-ply 

layer 165 
pyrolysis 11, 13, 21, 26 
pyrolytic carbon 21 
pyrolytic carbon matrix 24 

38 1 

91, 169, 234 

energy 51,93, 233 

96 

quadratic approximation strength 

quartz fibers 6, IO 
quasi-homogeneous laminates 240 
quasi-isotropic laminates 243, 245, 369, 

quasi-isotropic materials 377 
quasi-isotropic properties of the 

quasi-static test 347 

criterion 293 

377 

laminates 244 



408 Subject index 

radial compression 262 
radial displacement 263 
radius of polar opening 390 
rate of loading 5, 319 
rayon organic filaments 11  
rectangular pulse 343 
reference plane 225, 236, 252 
reference surface 267 
reference surface of the laminate 314 
reflected pulse 343 
regular inclusions 90 
regular system of cracks 
reinforced materials 9 
relaxation diagram 325 
relaxation kernel 322 
relaxation modulus 322, 327 
residual strain 5,8, 361 
resin transfer molding 26 
resultants of the shear stresses 230 
rheologic characteristics of structural 

rheological mechanical model 323 
rice fibers 14 
Riemannian (curved) space 41 
rotation 33, 226 
rotation angle 40-41, 194 
rule of mixtures 86 
Russian Composite Center - Central 

171 

materials 319 

Institute of Special Machinery 
(CRISM) vi 

safety factor 180 
sandwich laminate 230, 250 
sandwich structure 239, 249, 252, 344 
satin weave 209 
secant modulus 5, 7, 131-133, 143 
second-order model of a ply 87, 90, 98 
second-order polynomial approximation 

second-order polynomial criterion 285 
second-order tensor criterion 286 
sewing 215 
shear deformation 142, 156 
shear failure under compression 105 
shear mode of buckling 108 
shear mode of fracture 113 
shear modulus 46, 96, 123, 208 
shear modulus of a ply 81 
shear modulus of an angle-ply layer 

281 

188 

shear stiITness 142 
shear strain 38-39, 69, 85, 294 
shear strain in the matrix layer 69 
shear strength 365 
shear stress 29, 34, 72, 85, 197, 198 
shear stress concentration 77 
shear-shear coupling coefficient 46, 153 
shear-extension coupling 242 
shear-extension coupling coefficient 46, 

shear-twisting coupling 242 
short fibers 215 
shrinkage characteristics of a unidirectional 

ply 362 
shrinkage strains 360 
silicon carbide 13, 21 
silicon carbide (Sic) fibers 7, 13 
simplest approximation criterion 283 
simulation of pure shear in a square 

single fiber fragmentation test 77 
singular approximations 326 
sisal fibers 14 
sixth-order approximation 143 
small strains 39 
small variation of displacements 51 
small variation of strains 51 
space of stresses 271 
spatial (3D, 4D) structures 24 
spatial material structure 22, 215 
spatially reinforced composites 215, 217 
spatially reinforced layers 214 
spatially reinforced structure 217 
special loading effects 301 
specific elastic energy 4 
specific energy 60 
specific heat 302 
specific modulus 4, 6-7 
specific stiffness 365 
specific strain energy 44, 47 
specific strength 2, 6-7, 365, 369, 391 
specific surface energy 60 
specimen buckling I13 
specimens of matrix material 82 
spider silk fibers 14 
square array 58 
square fiber distribution 56 
stacking sequence 225, 252-253, 344, 365 
stacking-sequence notations 240, 247 

153 

frame 105 



Subject index 409 

standard types of specimens 95 
static boundary conditions 48 
static strength 79 
statically admissible stress field 49 
statically and kinematically admissible 

stress and strain fields 94 
Statics of Solids 230 
stiffness 1 
stiffness coefficients 45, 150-1 51, 164, 

217, 219, 225, 230, 232, 235, 237, 247, 
251, 313 

layer 236 
stiffness coefficients of a homogeneous 

stiffness coefficientsof a laminate 238 
stiffness coefficientsof an orthotropic 

stiffness degradation 339 
stiffness matrix 46, 218 
stiffness of composite materials 339 
stiffnessesof the degraded layer 176 
stitching 21 5 
strain 2, 37 
strain concentration factor 106 
strain energy 3, 129, 143, 234 
strain energy of fibers 109 
strain energy of the matrix 
strain intensity 129 
strain interaction 279 
strain transformation 39 
strain-displacement equations 38, 48, 53, 

strength analysis 271, 293 
strength criterion 271, 284, 287, 

strength deviation 63 
strength dispersion 64 
strength matrix 289 
strength of a composite bundle of 

strength of a dry bundle of fibers 66, 96 
strength of a unidirectional ply 64 
strength of laminates 271 
strength of the optimal laminate 378 
strength scatter 63 
strength tensor 285-286, 291 
strength variation 65 
stress 2, 29, 33 
stress analysis of the matrix in the vicinity 

layer 237 

109 

202, 230 

289-290 

fibers 66, 96 

of fibers 91 

stress concentration 77, 171, 201, 205, 

stress concentration in the matrix 96 
stress diffusion 16, 171 
stress diffusion in fibers 65 
stress diffusion in the vicinity of damaged 

or broken fibers 181 
stress formulation 48, 69 
stress function 69 
stress intensity 
stress invariants 126-1 27 
stress ratio 338 
stress relaxation 319, 325 
stress resultants and couples 227-229 
stress space 139, 272 
stress tensor 285 
stress transformation 32 
stress wave 343 
stress-strain curve 3, 5, 100, 124-125, 

144, 162, 200 
stress-strain diagram of the cross-ply 

layer 174 
stress-strain diagram 3-4, 7, 10, 12, 

17, 64, 79, 97, 99, 133, 182, 209. 
319 

336-337 

128, 130, 137, 292 

stresses in laminates 254 
stresses in the principal material coordi-

stretching ability 209 
structural failure criteria 273 
structural materials I 
structural nonlinearity 189 
structural strength criteria 274, 281 
structure of uniform stress 382 
structure of uniform stress and 

strain 368 
sun radiation 318 
surface cracks 62 
surface tractions 29, 31, 42, 51 
symmetric f45" angle-ply laminate 369 
symmetric kq5 angle-ply laminate 370 
symmetric &4 angle-ply layer 310 
symmetric angle-ply layer 186 
symmetric laminates 245, 247 
symmetric system of helical ribs 
symmetry conditions 143 
symmetry conditions for shear 

synthetic fibers 6 

nates 164 

212 

stresses 32 



410 Subject index 

system of circumferential ribs 212 
system of cracks parallel to fibers 168 

table rolling 22-23 
tangent modulus 
tape orientation angle 384 
tape overlap 352 
teflon 6 
teflon fibers 6 
temperature coefficients 312 
temperature effects 301 
temperature gradient 305 
temperature resistance 18 
tensile interface stress 344 
tensile load cycle 338 
tensile stiffnesses 151 
tensile strength 96-97, 100, 316 
tensile strength of unidirectional 

tensile test 153 
tension across the fibers 95 
tension along the fibers 95 
tension in two orthogonal directions 368 
tension of f45" angle-ply specimen 
tension of a cross-ply laminate 166 
tension of angle-ply specimens 204 
tensor criterion 290, 293 
tensor strength criterion 290 
tensor-polynomial criterion 292 
tensor-polynomial strength criteria 29I ,  

test fixtures for composite rings 101 
testing of a microcomposite specimen 83 
tex-number 15 
textile denier-numbers (den) 15 
theorem of proportional loading 139 
theoretical density 57 
theoretical prediction of material 

stiffness 197 
theoretical strength 58, 60, 62 
theoretical strength of glass 62 
theory of composite beams 217 
theory of elasticity 134 
theory of plasticity 
thermal coefficients of the layer 314 
thermal conductivity 301-302, 304 
thermal conductivity of the fiber 304 
thermal expansion coefficients 308-309 
thermal resistance 306, 316 

5,  7, 132, 138, 339 

composites 78 

188 

293 

128, 145, 292 

thermal strains 

thermal stresses 301, 307 
thermoelastic behavior of a unidirectional 

thermoelastic deformation 317 
thermoelasticity 301, 307 
thennoelasticity constitutive equations 

thermo-mechanical diagram 18 
thermoplastic carbon composite 31 1 
thermoplastic matrices 17-19, 183 
thermoplastic polymers 6, 121, 184 
thermoset matrices 17 
thermoset polymeric resins 6 
thermostable structures 1 14 
thick fiberglass rings 205 
thin-walled cylindrical drive shaft 294 
thin-walled tubular specimens 273 
three-dimensional constitutive 

three-dimensional stressed state of a 

three-dimensionally woven or braided 

three-dimensional weaving 215 
three-point beam bending test 217 
time of relaxation 325 
time-dependent behavior of polymeric 

composites 3I9 
Timoshenko energy method 108 
titanium carbide fibers 7 
titanium matrix 20 
Toray T-1000 carbon fibers 
total potential energy of the body 51 
total shear strain 165 
toughness 21 
tow 15-16, 55 
tow processability 15 
tow tex-number 57 
translational displacement 226 
transverse compression 113, 273 
transverse compressive strength 96, 208 
transverse conductivity 304 
transverse CTE 304 
transverse deformability 181 
transverse extension failure mode I05 
transverse force 157 
transverse impact loads 340 

301, 307, 309-310, 317, 
356 

composite ply 307 

311 

equations 217 

layer 124 

fabrics 215 

12 



Subject index 41 1 

transverse modulus 96, 100, 141, 208 
transverse modulus of a ply 81 
transverse normal stress 

transverse shear compliance 249 
transverse shear deformation 202, 260, 

transverse shear forces 230 
transverse shear modulus 142, 165 
transverse shear modulus of the ply 202 
transverse shear stiffness coefficients 247 
transverse shear stiffnesses 236, 239, 

transverse shear 237 
transverse shear stress 202, 262, 284 
transverse strains 85 
transverse strength 365 
transverse strength of a unidirectional 

transverse tensile strain 279 
transverse tensile strength 96, 100, 208 
transverse tension 84, 92, 97, 102, 168, 

273, 323 
transverse tension of a ply 91 
triaxial braid 210 
triaxial reinforcement 2 15 
tubular specimen for shear test 
tubular specimens 274 
twill weave 209 
twist 361 
twisting 227, 229, 237, 356, 359 
two-dimensional (2D) braiding 24 
two-layered angle-ply laminate 358 
two-layered orthotropic cross-ply 

two-matrix fiberglass composite 162, 182 
two-matrix fiberglass unidirectional 

two-matrix glass-epoxy composite 183, 

two-stage impregnation 181 

124, 198, 266, 
278, 284 

263 

249-250 

material 99 

105 

laminate 356 

composite 144 

189 

ultimate elongation 79, 95, 124, 168, 180 
ultimate elongation across the fibers 180 
ultimate elongation along the fibers 180 
ultimate elongations 1I5 
ultimate fiber volume fraction 58 
ultimate pressure 296, 391 
ultimate strain 16-17 

ultimate stress 2, 95, 274, 278 
ultimate tensile stress 6-7, 14 
ultimate theoretical stress 59 
uniaxial longitudinal loading 143 
uniaxial tension 
unidirectional anisotropic layer 147 
unidirectional aramid-epoxy composite 

unidirectional boron-aluminum 

unidirectional boron-epoxy composite 

unidirectional carbon-epoxy composite 

unidirectional carbon-epoxy layer 154 
unidirectional carbon-glass epoxy 

unidirectional composite 76, 142, 144, 

unidirectional composite ply 80, 303, 

unidirectional-epoxy composites 376 
unidirectional glass4poxy composite 

unidirectional layer 147, 297, 359 
unidirectional orthotropic layer 140 
unidirectional ply 5 - 5 6 ,  121, 255, 

unidirectional tape 55 
unidirectional tow (roving) 15 
unidirectional two-matrix composite 183 
unidirectional weave 209 
unidirectionally reinforced plates 96 
uniformly stressed composite struc-

uniformly stressed fibers 365, 371 
universal form of the polynomial criterion 

universal stress-strain curve 131 
universal stress-strain diagram 130 
upper bound for the actual transverse shear 

upper bound on the apparent transverse 

129, 131, 138, 175, 197 

material 99, 338 

composite 79 

material 100 

material 98, 335 

composite 117 

217, 287, 304, 329, 351 

327-328, 335, 365 

material 97, 322 

277-278, 304, 308 

tures 391 

282 

stiffness 233-234 

modulus 94 

variation of the strain energy 51 
variational equations 5 1 
variational principle of minimum strain 

energy 52 



412 Subject index 

variational principle of minimum total 
potential energy 51 

variational principles 49, 91 
viscoelastic deformation 319 
viscoelastic material 334 
viscoelastisity 319 
viscose fibers 6 
viscous strain 321 
volume deformation 123 
volume fraction 55, 57, 86, 95 
volume modulus 124 

warp direction 207, 221, 276, 375 
warp yarns 207 
warping 355 
warping of laminates 359 
water absorption 318 
wave interaction 344 
wave propagation 341 
weave patterns 209 
weight-saving factor 378 

wet process 22 
whiskers 60, 215 
winding 351-352, 380 
winding of a lattice layer 213 
winding of unidirectional composite 

wood compressed along the fibers 
105 

wood fibers 14 
wool fibers 14 
work of external forces 43 
work of fracture 80 
work of internal forces 43 
woven composites 206 
woven fabric composites 210 
woven structure 206-207 

tapes 384 

yarn 15 

zero thermal expansion 114, 31 1 
zero-order model of a ply 83 








	Cover
	Frontmatter
	Half Title Page
	Title Page
	Copyright
	Preface
	Table of Contents

	Chapter 1: Introduction
	1.1. Structural Materials
	1.2. Composite Materials
	1.3. References

	Chapter 2: Fundamentals of Mechanics of Solids
	2.1. Stresses
	2.2. Equilibrium Equations
	2.3. Stress Transformation
	2.4. Principal Stresses
	2.5. Displacements and Strains
	2.6. Transformation of Small Strains
	2.7. Compatibility Equations
	2.8. Admissible Static and Kinematic Fields
	2.9. Constitutive Equations for an Elastic Solid
	2.10. Formulations of the Problem
	2.11. Variational Principles
	2.12. References

	Chapter 3: Mechanics of a Unidirectional Ply
	3.1. Ply Architecture
	3.2. Fiber-Matrix Interaction
	3.3. Micromechanics of a Ply
	3.4. Mechanical Properties of a Ply under Tension, Shear, and Compression
	3.5. Hybrid Composites
	3.6. Phenomenological Homogeneous Model of a Ply
	3.7. References

	Chapter 4: Mechanics of a Composite Layer
	4.1. Isotropic Layer
	4.2. Unidirectional Orthotropic Layer
	4.3. Unidirectional Anisotropic Layer
	4.4. Orthogonally Reinforced Orthotropic Layer
	4.5. Angle-Ply Orthotropic Layer
	4.6. Fabric Layers
	4.7. Lattice Layer
	4.8. Spatially Reinforced Layers and Bulk Materials
	4.9. References

	Chapter 5: Mechanics of Laminates
	5.1. Stiffness Coefficients of a Generalized Anisotropic Layer
	5.2. Stiffness Coefficients of a Homogeneous Layer
	5.3. Stiffness Coefficients of a Laminate
	5.4. Quasi-Homogeneous Laminates
	5.5. Quasi-Isotropic Laminates
	5.6. Symmetric Laminates
	5.7. Antisymmetric Laminates
	5.8. Sandwich Structures
	5.9. Coordinate of the Reference Plane
	5.10. Stresses in Laminates
	5.11. Example
	5.12. References

	Chapter 6: Failure Criteria and Strength of Laminates
	6.1. Failure Criteria for an Elementary Composite Layer or Ply
	6.2. Practical Recommendations and Discussion
	6.3. Examples
	6.4. References

	Chapter 7: Environmental, Special Loading, and Manufacturing Effects
	7.1. Temperature Effects
	7.2. Hygrothermal Effects and Aging
	7.3. Time and Time-Dependent Loading Effects
	7.4. Manufacturing Effects
	7.5. References

	Chapter 8: Optimal Composite Structures
	8.1. Optimal Fibrous Structures
	8.2. Composite Laminates of Uniform Strength
	8.3. Application to Pressure Vessels
	8.4. References

	Backmatter
	Author Index
	Subject Index

	Back Cover



