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Foreword

Control systems and feedback loops are ubiquitous in engineering, in areas such

as aerospace control, manufacturing and robotics, active damping, climate control

of buildings, process control in chemical plants, electrical power systems, bioengi-

neering, consumer products, and active suspensions, automatic braking systems, and

engine timing in the automobile industry. One finds control and feedback in nature

as well, for example, in the homeostatic mechanisms that allow organisms to finely

tune their internal variables such as temperature, pressure, or chemical levels.

The field of mathematical control theory concerns itself with the basic theoretical

principles underlying the analysis of feedback and the design of control systems. It

differs from the more classical study of dynamical systems in its emphasis on in-

puts (or controls) and outputs (or measurements). Linearized analysis of systems is

the basic foundation of most practical control engineering and has been phenome-

nally successful. Nonetheless, linearization techniques can only deal with “small”

deviations from desired behavior. Thus, the development of tools appropriate to the

“global” study of systems with inputs and outputs has been the focus of a major

research effort since at least the early 1970s.

In the late 1980s, there emerged a novel paradigm for nonlinear system analysis,

based on the notions of “input-to-state stability” and several variants, which allow

a seamless integration of classical Lyapunov-like stability theory with input/output

operator approaches. The program of research that ensued has as its ultimate goal

a complete formulation of the foundations of nonlinear behavior in two dual ways:

the analysis of given systems in terms of these notions and the use of these notions

in the form of systematic design tools which assign desirable properties to feed-

back systems. This duality between analysis and design is well summarized by the

authors’ maxim: “for every method of proving global stability, there is a correspond-

ing method of nonlinear feedback design,” and the book systematically applies that

principle.

An original and very valuable aspect of this monograph is its treatment not only

of ordinary differential equation systems, but also of delay and more general func-

tional differential equations, as well as allowing a study of time-varying systems

through “nonuniform” stability notions. Another original feature of the book is that

vii



viii Foreword

ISS and its variants are extended to various important classes of interconnected sys-

tems using small-gain theorems. This duality between ISS (for single systems) and

small-gain (for coupled systems) plays a key role in addressing the problems of

robust stability and stabilization.

The field is still active and full of open problems, and this monograph should

encourage much further research and further development of applications, many of

which are discussed here. The authors of this volume have been two of the main

contributors to the program, and in this book they provide a detailed and rigorous

introduction, suitable for beginning graduate students as well as for more experi-

enced researchers who wish to transition to the field.

Eduardo SontagPiscataway, NJ



Preface

Phenomenal progress in nonlinear systems theory has been made during the last

decades. It has been reflected in two aspects. On the one hand, internal and external

global stability notions have been studied intensely for uncertain nonlinear systems.

On the other hand, the applications of these advanced stability results to control

engineering systems have led to numerous novel methodologies for the design of

nonlinear feedback controllers. It is fair to say that input-to-state stability (ISS),

a notion invented by E.D. Sontag in the late 1980s, plays an influential role in the

work of many researchers including the authors of this book. ISS has bridged the gap

which previously existed between the input–output and the state-space methods, two

popular approaches within the control systems community. Roughly speaking, the

importance of ISS for the study of nonlinear systems is reflected by the intriguing

fact that it captures two main stability notions: Lyapunov stability (i.e., the behavior

of the zero-input response with respect to nonzero initial conditions) and input–

output stability (i.e., the behavior of the zero-state response with respect to nonzero

external inputs).

Nonlinear systems are encountered frequently in almost all branches of science

and engineering. In fact, in engineering, physics, economics, and biology, nonlin-

earity is the rule, and linear systems are rare (which almost exclusively exist only in

our computer programs). Despite the importance of nonlinear system theory, grad-

uate students or researchers in mathematics, engineering, physics, economics, and

biology often have difficulties in taking advantage of recent advances in mathemat-

ical systems and control theories. There are several excellent textbooks that provide

nice introductions to nonlinear systems theory, but many recent stability results are

scattered in the vast literature. Motivated by this observation, we set our hands to

write this monograph about a year and half ago. The specific objectives of this book

are described in the following.

The first aim of the book is to provide the basic knowledge needed for a graduate

student in order to be able to understand the current research in nonlinear stability

theory and nonlinear control theory. A relatively high level of mathematical back-

ground is assumed: the reader is required of having basic knowledge in differen-

tial equations, calculus, and real analysis. Measure theory is not needed (although

ix



x Preface

measurable functions are met even in the first pages of the book): the reader can

replace “measurable” functions by “piecewise continuous” functions. The book is

self-contained in the sense that all results are proved in detail by using basic math-

ematical knowledge and other results presented in the book. Only global stability

notions are studied in the present book. It should be mentioned that there are many

important results about local or regional stability in the literature.

The second aim of the book is to give a perspective of nonlinear stability theory

and nonlinear control theory that is not frequently encountered in the literature. The

idea can be stated in the following (informal) way:

“for every method of proving global stability, there is a corresponding method of

nonlinear feedback design.”

Therefore, the book is designed to help the reader to understand this one-to-one

correspondence. In the first five chapters the reader is introduced to internal and

external stability notions and characterizations. Necessary and sufficient conditions

for each stability notion are provided, and a description of the various methods for

proving stability is presented. Finally, in Chaps. 6 and 7 of the book the reader is

introduced to the various methods of nonlinear feedback design. Each method aims

to design a feedback law such that the resulting closed-loop system is “stable.” The

proof of the stability properties of the closed-loop system is performed by using one

particular method of proving stability. We believe that this perspective can help the

reader to understand the proposed feedback design methodologies and can inspire

the reader to suggest new ones. However, for want of space, some methods of prov-

ing stability and feedback design are only briefly mentioned (e.g., the method of

using Matrosov’s theorem).

The third aim of the book is to show that the same mathematical tools, up to mi-

nor modifications, can be used for all kinds of systems. Working within an abstract

system-theoretic framework, one can see that systems described by Ordinary Differ-

ential Equations (ODEs), systems described by retarded functional differential equa-

tions (RFDEs), systems described by coupled retarded functional difference equa-

tions and retarded functional differential equations, and sampled-data systems can

be analyzed and studied using (almost) the same tools. We believe that this feature

is important: many recent contributions to nonlinear systems theory are developed

for complex dynamical systems other than those described by ODEs. Furthermore,

it has been recognized that feedback laws of new kinds (e.g., feedback laws with

delays, hybrid/switching feedback laws) can give rise to features for the closed-

loop system that cannot be encountered in systems described by ODEs. In such

cases, the closed-loop system in question becomes a system with different mathe-

matical description from the original open-loop system. Time-varying systems are

not excluded: the proposed system-theoretic framework can capture all features of

time-varying systems (e.g., nonuniform stability phenomena).

As the fourth and last aim of the book, it is the authors’ view that nonlinear

systems theory has reached a level of maturity which can provide interesting con-

tributions to other areas of applied mathematics. There are many results and exam-

ples in the book that illustrate the use of nonlinear systems theory to game theory,
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fixed-point theory, numerical analysis, and (only superficially) mathematical biol-

ogy. Some open problems are listed in the last Chap. 8 with a unique objective to

entice the reader, in particular graduate students, to develop their novel ideas and

techniques, which will contribute to the further development of modern mathemati-

cal control theory.

The list of people who must be acknowledged for their support and help to the au-

thors’ research is too long to be given. I.K. would like to thank Professor Panagiotis

Christofides for his help and good advice that he gave to him when he was a student.

Professor John Tsinias has been the academic mentor for Iasson Karafyllis; he owes

major gratitude to him that cannot be expressed in a few words. Professors Stelios

Kotsios, Eduardo D. Sontag, and Costas Kravaris helped I.K. very much in the first

steps of his academic career (each one in a different way). I.K. also owes gratitude

to Professor Zhong-Ping Jiang for being one of the first persons who believed in

him (and does not mind if it is not right for one author to write acknowledgments

for a coauthor!). Z.P.J. would like to thank all his coauthors for contributing to this

book, directly or indirectly. Special thanks go to his Ph.D. advisor Laurent Praly for

having introduced him to the field of nonlinear control and his two Australian men-

tors David Hill and Iven Mareels for their long-lasting influence in his career. Z.P.J.

also would like to thank Professors A. Isidori, P.V. Kokotović, and E.D. Sontag, and

President Jerry Hultin of the Polytechnic Institute of New York University, for the

high expectations they set on him, explicitly or implicitly. Yes, it is also a pleasure

to thank his nonlinear control friends Jie Huang, Miroslav Krstić, Andy Teel, and

Yuan Wang for the moral support over the past years. Finally, the authors would like

to thank their students, in particular Yu Jiang, for helping with the typesetting of the

book and the drawing of some figures. In the end, all possible errors and typos in

the book remain to be the sole responsibility of the authors.

Last but not least, both authors would like to thank their families (Christina,

Katerina, Olympia and Xiaoming, Jenny, Jack) for their understanding, support, and

patience during the long period when the book was written.

Iasson Karafyllis

Zhong-Ping Jiang

Chania, Greece

New York, USA
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Notations

ℜ The set of real numbers

ℜ+ The set of nonnegative real numbers

ℜn
+ The set of nth-order vectors of which each component is nonnegative

N The set of natural numbers

Z The set of integers

Z+ The set of nonnegative integers

|x| Euclidean norm of a vector x ∈ ℜn

x′ The transpose of a vector x ∈ ℜn

x−i The vector obtained by deleting the ith component of a vector x ∈ ℜn,

with n ≥ 2

ℜn×m The space of real matrices with dimensions n × m

A′ The transpose of a matrix A ∈ ℜn×m

A−1 The inverse of an invertible square matrix A ∈ ℜn×n

I Generic notation of an identity matrix

int(A) The interior of a set A ⊆ ℜn

K+ The class of positive continuous functions on ℜ+

N A function a : ℜ+ → ℜ+ is of class N if a is continuous and

nondecreasing with a(0) = 0

PrU (x) The projection of x ∈ ℜn on a convex set U ⊆ ℜn, i.e., the unique

vector y such that |x − y| = minu∈U |x − u|

p.d. A function f : A → ℜ+, where A ⊆ ℜn with 0 ∈ A, is positive definite

(p.d.) if f (0) = 0 and f (x) > 0 for all x ∈ A\{0}

r.u. A function f : A → ℜ+, where A ⊆ ℜn is a nonempty and unbounded

set, is said to be radially unbounded (r.u.) if, for every a ≥ 0, the level

set {x ∈ A : f (x) ≤ a} is bounded

supp(f ) The support of a function f : A → ℜ, where A ⊆ ℜn

x ≤ y For a pair of vectors x, y ∈ ℜn, we say that x ≤ y if and only if

(y − x) ∈ ℜn
+

Nn A function ρ : ℜn
+ → ℜ+ is of class Nn if ρ is continuous with

ρ(0) = 0 and such that ρ(x) ≤ ρ(y) for all x, y ∈ ℜn
+ with x ≤ y

xvii



xviii Notations

[V ][t0,t] For t ≥ t0 ≥ 0, let [t0, t] ∋ τ → V (τ) = (V1(τ ), . . . , Vn(τ ))′ ∈ ℜn be a

bounded map. We define

[V ][t0,t] := (supτ∈[t0,t]
V1(τ ), . . . , supτ∈[t0,t]

Vn(τ ))′

Γ (k) We say that Γ : ℜn
+ → ℜm

+ is nondecreasing if Γ (x) ≤ Γ (y) for all

x, y ∈ ℜn
+ with x ≤ y. For any positive integer k, we define

Γ (k)(x) = Γ ◦ Γ ◦ · · · ◦ Γ
︸ ︷︷ ︸

k times

(x). By convention, we set Γ (0)(x) = x, for

all x ∈ ℜn
+

1 We define 1 = (1,1, . . . ,1)′ ∈ ℜn. If u,v ∈ ℜ and u ≤ v, then 1u ≤ 1v

K A function α : ℜ+ → ℜ+ is of class K if α is continuous and increasing

with α(0) = 0

K∞ A function α : ℜ+ → ℜ+ is of class K∞ if it is of class K and satisfies

lims→+∞ α(s) = +∞

KL A function β : ℜ+ × ℜ+ → ℜ+ is of class KL if, for each t ≥ 0, the

mapping σ(·, t) is of class K , and, for each s ≥ 0, the mapping β(s, ·)

is nonincreasing with limt→+∞ β(s, t) = 0

E The set of nonnegative continuous functions µ : ℜ+ → ℜ+ with

limt→+∞ µ(t) = 0 and
∫ +∞

0 µ(t) dt < +∞

‖ · ‖X The norm of the normed linear space X

BU [0, r] The intersection of U ⊆ X with the closed sphere of radius r ≥ 0,

centered at 0 ∈ U , i.e., BU [0, r] := {u ∈ U ; ‖u‖X ≤ r}

‖(x, y)‖C Unless specified otherwise, the linear space C = X × Y , where X and

Y are normed linear spaces, is endowed with norm

‖(x, y)‖C =
√

‖x‖2
X

+ ‖y‖2
Y

, for all (x, y) ∈ C

M(U) The set of all functions u : ℜ+ → U

u0 The identically zero input, i.e., u0(t) = 0 ∈ U for all t ≥ 0

L∞(I ;A) The set of Lebesgue measurable and essentially bounded functions

u : I → A for an interval I ⊆ ℜ and a set A ⊆ ℜn

L∞
loc(I ;A) The set of Lebesgue measurable and locally essentially bounded

functions u : I → A for an interval I ⊆ ℜ and a set A ⊆ ℜn

{Ti}
∞
i=0 A partition π = {Ti}

∞
i=0 of ℜ+ that is an increasing sequence of times

with T0 = 0 and Ti → +∞. Its diameter is defined as

sup{Ti+1 − Ti; i = 0,1,2, . . .}

qπ (t) For every partition π = {Ti}
∞
i=0 of ℜ+, qπ (t) := min{T ∈ π; t < T }

C0(A;Ω) The class of continuous functions on a subset A of a normed linear

space X , taking values in a subset Ω of a normed linear space Y

Tr(t)x The “r-history” of a function x : [a − r, b) → ℜn at time t ∈ [a, b), for

constants b > a > −∞ and r > 0. That is, Tr(t)x maps θ ∈ [−r,0] to

x(t + θ)

‖x‖r For x : [−r,0] → ℜn, ‖x‖r := supθ∈[−r,0] |x(θ)|

q.c. A function f : (x,u) ∈ A × U → f (x,u) ∈ ℜ, where A ⊆ X , X is a

normed linear space and U ⊆ ℜm is a convex set, is said to be

quasi-convex (q.c.) with respect to u ∈ U if the inequality

f (x,αu1 + (1 − α)u2) ≤ max{f (x,u1), f (x,u2)} holds for all x ∈ A,

u1, u2 ∈ U , and α ∈ [0,1]
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c.c. A mapping f : (t, x) ∈ T × A → f (t, x) ∈ W , where T = Z+ or

T = ℜ+, A ⊆ X , and X and W are normed linear spaces, is said to be

completely continuous (c.c.) with respect to x ∈ A, written as

f ∈ CU(T × A;W), if for every pair of bounded sets I ⊂ T and

S ⊆ A, f maps I × S into a bounded set and, additionally, for every

ε > 0, there exists δ > 0 such that ‖f (t, x) − f (t, y)‖W < ε for all

t ∈ I and x, y ∈ S with ‖x − y‖X < δ

c.l.l. A mapping f : (x, d) ∈ X × A → f (x, d) ∈ W , where A ⊆ Y , and X ,

Y , and W are normed linear spaces, is said to be completely locally

Lipschitz (c.l.l.) with respect to x ∈ X if, for every pair of bounded sets

S ⊂ X and G ⊆ A, there exists L ≥ 0 such that

‖f (x, d) − f (y, d)‖W ≤ L‖x − y‖X for all x, y ∈ S and d ∈ G

Abbreviations

BIC Boundedness Implies Continuation

RFC Robust Forward Completeness

ODEs Ordinary Differential Equations

RFDEs Retarded Functional Differential Equations

FDEs Functional Difference Equations

PDEs Partial Differential Equations

RGAOS Robust Global Asymptotic Output Stability

URGAOS Uniform Robust Global Asymptotic Output Stability

RGAS Robust Global Asymptotic Stability

URGAS Uniform Robust Global Asymptotic Stability

WIOS Weighted Input to Output Stability

UWIOS Uniform Weighted Input to Output Stability

IOS Input-to-Output Stability

IOpS Input-to-Output practical Stability

UIOS Uniform Input-to-Output Stability

WISS Weighted Input-to-State Stability

UWISS Uniform Weighted Input to State Stability

ISS Input-to-State Stability

ISpS Input-to-State practical Stability

UISS Uniform Input-to-State Stability

ORCLF Output Robust Control Lyapunov Functional or Function

SRCLF State Robust Control Lyapunov Functional or Function

CLF Control Lyapunov Functional or Function

KSE Keep Supply at Equilibrium



Chapter 1

Introduction to Control Systems

1.1 Introduction

This chapter is devoted to the analysis of certain crucial notions in mathematical

control theory:

• the notion of a deterministic control system

• the notion of a robust equilibrium point

• the notion of the feedback connection of control systems

• the notion of the transformation of control systems.

The above notions are presented in a system-theoretic framework which allows

the study of various classes of systems that arise in physics, biology, economics, and

engineering. Then, it is shown that, under mild assumptions, the following important

classes of control systems:

• control systems described by ordinary differential equations

• control systems described by retarded functional differential equations

• control systems described by coupled retarded functional differential equations

and functional difference equations

• control systems described by functional difference equations

• control systems with variable sampling partition

satisfy our requirements of a deterministic control system with the Boundedness-

Implies-Continuation property and a robust equilibrium point. Finally, it is shown

that discrete-time systems can be cast in the proposed system-theoretic framework.

1.2 Examples of Control Systems

We next present some examples of control systems. The examples are qualitatively

different because the mathematical formulation of the model of each system is dif-

ferent. However, all examples show that there are common points, which can be used

in order to treat them in the same way. We begin with the first class of continuous-

time control systems described by ordinary differential equations.

I. Karafyllis, Z.-P. Jiang, Stability and Stabilization of Nonlinear Systems,

Communications and Control Engineering,
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2 1 Introduction to Control Systems

1.2.1 Control Systems Described by Ordinary Differential

Equations (ODEs)

Let U ⊆ ℜm, D ⊆ ℜl , with 0 ∈ U . Consider two locally bounded mappings f :

ℜ+ × ℜn × U × D → ℜn and H : ℜ+ × ℜn × U → ℜk with H(t,0,0) = 0 and

f (t,0,0, d) = 0 for all (t, d) ∈ ℜ+ × D that satisfy the following hypotheses:

(H1) The mapping (x,u, d) → f (t, x,u, d) is continuous for each fixed t ≥ 0, and

there exists a symmetric positive definite matrix P ∈ ℜn×n such that for every

bounded I ⊆ ℜ+ and for every bounded S ⊂ ℜn × U , there exists a constant

L ≥ 0 such that

(x − y)′P
(

f (t, x,u, d) − f (t, y,u, d)
)

≤ L|x − y|2

for all t ∈ I, (x,u, y,u) ∈ S × S, and d ∈ D.

(H2) The mapping t → f (t, x,u, d) is Lebesgue measurable and locally essentially

bounded for each fixed (x,u, d) ∈ ℜn × U × D.

(H3) There exist functions γ ∈ K+ and a ∈ K∞ such that |f (t, x,u, d)| ≤

γ (t)a(|x| + |u|) for all (t, x,u, d) ∈ ℜ+ × ℜn × U × D.

(H4) The mapping H : ℜ+ × ℜn × U → ℜk is continuous.

Remark 1.1 It is of interest to note that Hypothesis (H1) is equivalent to the exis-

tence of a continuous function L : ℜ+ × ℜ+ → ℜ+ such that, for each fixed t ≥ 0,

the mappings L(t, ·) and L(·, t) are nondecreasing, satisfying the following inequal-

ity:

(x − y)′P
(

f (t, x,u, d) − f (t, y,u, d)
)

≤ L
(

t, |x| + |y| + |u|
)

|x − y|2

for all (t, x, y, d,u) ∈ ℜ+ × ℜn × ℜn × D × U (1.1)

Let MU and MD denote the sets of Lebesgue measurable and locally essentially

bounded functions u : ℜ+ → U and d : ℜ+ → D, respectively.

Clearly, by virtue of Hypotheses (H1–3) above and Lemma 1 on p. 4 of [11],

for every (d,u) ∈ MD × MU , the composite map f (t, x,u(t), d(t)) satisfies the

Carathéodory conditions on ℜ+ × ℜn. Consequently, by application of Theorem 1

on p. 4 of [11], for every (t0, x0, u, d) ∈ ℜ+ × ℜn × MU × MD , there exist h > 0

and at least one absolutely continuous function x : [t0, t0 +h] → ℜn with x(t0) = x0

such that ẋ(t) = f (t, x(t), u(t), d(t)) almost everywhere on [t0, t0 + h].

Let x : [t0, t0 + h] → ℜn and y : [t0, t0 + h] → ℜn be two absolutely continu-

ous functions with initial conditions x(t0) = x0 and y(t0) = y0, respectively, that

satisfy ẋ(t) = f (t, x(t), u(t), d(t)) and ẏ(t) = f (t, y(t), u(t), d(t)) almost every-

where on [t0, t0 + h]. Evaluating the derivative of the absolutely continuous map

z(t) = (x(t) − y(t))′P(x(t) − y(t)) on [t0, t0 + h] in conjunction with Hypothesis

(H1) above, we obtain the integral inequality

∣
∣x(t) − y(t)

∣
∣
2
≤

K2

K1

∣
∣x(t0) − y(t0)

∣
∣
2
+

2

K1

∫ t

t0

L̃
∣
∣x(τ) − y(τ)

∣
∣
2
dτ

∀t ∈ [t0, t0 + h]
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where L̃ := L(t0 +h,a(x, y,u)), L(·, ·) is the function involved in (1.1), K1,K2 > 0

are constants that satisfy K1|x|2 ≤ x′Px ≤ K2|x|2 for all x ∈ ℜn, and a(x, y,u) :=

supt∈[t0,t0+h] |x(t)| + supt∈[t0,t0+h] |y(t)| + supt∈[t0,t0+h] |u(t)|. A direct application

of the Gronwall–Bellman inequality gives

∣
∣x(t) − y(t)

∣
∣ ≤

√

K2

K1
|x0 − y0| exp

(
L̃

K1
(t − t0)

)

for all t ∈ [t0, t0 + h] (1.2)

Thus, we conclude that under Hypotheses (H1–3), for every (t0, x0, d,u) ∈ ℜ+ ×

ℜn × MD × MU , there exist h > 0 and exactly one absolutely continuous function

x : [t0, t0 + h] → ℜn with x(t0) = x0 such that ẋ(t) = f (t, x(t), u(t), d(t)) almost

everywhere on [t0, t0 +h]. Using the fact that the mapping f : ℜ+ ×ℜn ×U ×D →

ℜn is locally bounded, Hypotheses (H1–3) above, and Theorem 3.2 in [14], we

conclude that, for every (t0, x0, u, d) ∈ ℜ+ × ℜn × MD × MU , there exists tmax ∈

(t0,+∞] such that the unique solution x(t) of ẋ(t) = f (t, x(t), u(t), d(t)) with

x(t0) = x0 is defined on [t0, tmax) and cannot be further continued. Moreover, if

tmax < +∞, then we must necessarily have lim supt→t−max
|x(t)| = +∞.

Thus, for every (t0, x0, u, d) ∈ ℜ+ ×ℜn ×MD ×MU , the unique solution x(t) of

ẋ(t) = f (t, x(t), u(t), d(t)) with x(t0) = x0 and the output trajectory Y(t) satisfy

the following equations a.e.:

ẋ(t) = f
(

t, x(t), u(t), d(t)
)

Y(t) = H
(

t, x(t), u(t)
)

x(t) ∈ ℜn, Y (t) ∈ ℜk, u(t) ∈ U,d(t) ∈ D (1.3)

We next provide an example of a biological system which takes the form (1.3) and

satisfies Hypotheses (H1–4). The example shows that it may be necessary to make

certain manipulations in order to be able to satisfy Hypotheses (H1–4).

Example 1.2.1 Consider the chemostat with one microbial species and one nutrient

(see [45]):

Ẋ(t) =
(

μ
(

s(t)
)

− D(t) − b
)

X(t)

ṡ(t) = D(t)
(

sin(t) − s(t)
)

− K
(

s(t)
)

μ
(

s(t)
)

X(t)

X(t) > 0, s(t) > 0 (1.4)

The concentration of the microbial species is denoted by X(t), s(t) denotes the con-

centration of the nutrient, sin(t) ≥ 0 denotes the inlet concentration of the limiting

nutrient, and D(t) ≥ 0 denotes the dilution rate. The specific growth rate μ(s) of the

microbial species is a locally Lipschitz, bounded function μ : [0,+∞) → [0,+∞)

with μ(0) = 0 and μ(s) > 0 for all s > 0. The constant b ≥ 0 is the mortality rate of

the microbial species, while the locally Lipschitz function K : [0,+∞) → (0,+∞)

is the (possibly varying) yield coefficient.

System (1.4) is a system described by ODEs. However, it does not satisfy all

requirements described by Hypotheses (H1–3). First of all, the set where the state

variables take values is not the Euclidean space ℜ2. In order to be able to recast
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system (1.4) to the form of a system which satisfies Hypotheses (H1–3), we assume

the existence of (X∗, s∗,D∗, s∗
in) ∈ (0,+∞)× (0,+∞)× (0,+∞)× (0,+∞) with

μ
(

s∗
)

= D∗ + b K
(

s∗
)

μ
(

s∗
)

X∗ = D∗
(

s∗
in − s∗

)

(1.5)

and we apply the transformation:

X = X∗ exp(x1) s = s∗ exp(x2) D = D∗(1 + u1) sin = s∗
in + s∗u2 (1.6)

It follows from (1.5) and (1.6) that system (1.4) is described by the following differ-

ential equations:

ẋ1 = D∗
(

g(x2) − u1

)

ẋ2 = D∗ exp(−x2)
[

M
(

1 − p(x2) exp(x1)
)

− RMp(x2)g(x2) exp(x1)

+ 1 − exp(x2) + u2 + u1

(

M + 1 + u2 − exp(x2)
)]

(1.7)

where g(x2) :=
μ(s∗ exp(x2))−μ(s∗)

D∗ , p(x2) :=
K(s∗ exp(x2))

K(s∗)
, R := D∗

D∗+b
, and M :=

s∗
in−s∗

s∗ . Notice that by virtue of (1.5) and previous definitions, the transformed sys-

tem (1.7) now satisfies Hypotheses (H1–3) with x = (x1, x2)
′ ∈ ℜ2, u = (u1, u2)

′ ∈

U = [−1,+∞) × [−M,+∞).

In this case, d(t) is irrelevant. Moreover, we define the output map Y =

(x1, x2)
′ = x to be the identity map.

Let φ : Aφ → ℜn be the mapping φ(t, t0, x0, u, d) := x(t) which for each

(t0, x0, d,u) ∈ ℜ+ × ℜn × MD × MU and t ∈ [t0, tmax) gives the value x(t) ∈ ℜn

of the unique solution of ẋ(t) = f (t, x(t), u(t), d(t)) with x(t0) = x0. The mapping

φ : Aφ → ℜn is defined on the set Aφ =
⋃

(t0,x0,u,d)∈ℜ+×ℜn×MU ×MD
[t0, tmax) ×

{(t0, x0, u, d)}. It should be clear from all the above that the mapping φ : Aφ → ℜn

is well defined and satisfies the following properties:

(1) Existence: For each (t0, x0, d,u) ∈ ℜ+ × ℜn × MD × MU , there exists t > t0
such that [t0, t] × {(t0, x0, u, d)} ⊆ Aφ .

(2) Identity Property: For each (t0, x0, d,u) ∈ ℜ+ × ℜn × MD × MU , it holds that

φ(t0, t0, x0, u, d) = x0.

(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈

MU × MD with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t], it holds that

(t, t0, x0, ũ, d̃) ∈ Aφ and φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) The “Boundedness-Implies-Continuation” (BIC) Property: For each quadruplet

(t0, x0, u, d) ∈ ℜ+ × ℜn × MU × MD , there exists a maximal existence time,

i.e., there exists tmax ∈ (t0,+∞] such that [t0, tmax) × {(t0, x0, u, d)} ⊆ Aφ , and

for all t ≥ tmax, it holds that (t, t0, x0, u, d) /∈ Aφ . In addition, if tmax < +∞,

then for every M > 0, there exists t ∈ [t0, tmax) with |φ(t, t0, x0, u, d)| > M .

(5) The Classical Semigroup Property: For each t ∈ [t0, tmax), it holds that, for all

τ ∈ [t0, t], φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d).
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1.2.2 Control Systems Described by Retarded Functional

Differential Equations (RFDEs)

Let D ⊆ ℜl be a nonempty set, and U ⊆ ℜm a nonempty set with 0 ∈ U . Also

consider locally bounded mappings f : ℜ+ × C0([−r,0];ℜn) × U × D → ℜn,

H : ℜ+ ×C0([−r,0];ℜn)×U → Y , where Y is a normed linear space, that satisfy

f (t,0,0, d) = 0, H(t,0,0) = 0 for all (t, d) ∈ ℜ+ × D and the following hypothe-

ses:

(S1) The mapping (x,u, d) → f (t, x,u, d) is continuous for each fixed t ≥ 0, and

there is a symmetric positive definite matrix P ∈ ℜn×n such that for every

bounded I ⊆ ℜ+ and every bounded S ⊂ C0([−r,0];ℜn) × U , there exists a

constant L ≥ 0 such that

(

x(0) − y(0)
)′
P

(

f (t, x,u, d) − f (t, y,u, d)
)

≤ L max
τ∈[−r,0]

∣
∣x(τ) − y(τ)

∣
∣
2

for all t ∈ I, (x,u, y,u) ∈ S × S, and d ∈ D.

(S2) There exist functions γ ∈ K+ and a ∈ K∞ such that |f (t, x,u, d)| ≤

γ (t)a(‖x‖r + |u|) for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × U × D,

where ‖x‖r denotes the sup-norm of the space C0([−r,0];ℜn), i.e., ‖x‖r :=

maxθ∈[−r,0] |x(θ)|.

(S3) There exists a countable set A ⊂ ℜ+, which is either finite or A = {tk; k =

1, . . . ,∞} with tk+1 > tk > 0 for all k = 1,2, . . . and lim tk = +∞, such that

the mapping (t, x,u, d) ∈ (ℜ+\A)×C0([−r,0];ℜn)×U ×D → f (t, x,u, d)

is continuous. Moreover, for each fixed (t0, x,u, d) ∈ ℜ+ ×C0([−r,0];ℜn)×

U × D, we have limt→t+0
f (t, x,u, d) = f (t0, x,u, d).

(S4) The mapping H : ℜ+ × C0([−r,0];ℜn) × U → Y is a continuous mapping

that maps bounded sets of ℜ+ × C0([−r,0];ℜn) × U into bounded sets of Y .

Remark 1.2 It is worth noting that Hypothesis (S1) is equivalent to the existence

of a continuous function L : ℜ+ × ℜ+ → ℜ+ such that for each fixed t ≥ 0, the

mappings L(t, ·) and L(·, t) are nondecreasing and satisfying the following inequal-

ity:

(

x(0) − y(0)
)′
P

(

f (t, x,u, d) − f (t, y,u, d)
)

≤ L
(

t,‖x‖r + ‖y‖r

)

‖x − y‖2
r

for all (t, x, y,u, d) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× C0
(

[−r,0];ℜn
)

× U × D
(1.8)

Let MU , MD denote the sets of Lebesgue-measurable and locally essentially

bounded functions u : ℜ+ → U and d : ℜ+ → D, respectively. By virtue of

Hypotheses (S1–3) above and Lemma 1 on p. 4 of [11], for every (d,u) ∈

MD × MU , the composite map f (t, x,u(t), d(t)) satisfies the Caratheodory con-

dition on ℜ+ × C0([−r,0];ℜn). Consequently, by virtue of Theorem 2.1 in [14]

and its extension given in Paragraph 2.6 of the same book, for every (t0, x0, d,u) ∈

ℜ+ × C0([−r,0];ℜn) × MD × MU , there exist h > 0 and at least one continuous
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function x : [t0 − r, t0 + h] → ℜn, which is absolutely continuous on [t0, t0 + h]

with Tr(t0)x = x0 and satisfies ẋ(t) = f (t, Tr(t)x,u(t), d(t)) almost everywhere

on [t0, t0 + h].

Let x : [t0 − r, t0 + h] → ℜn and y : [t0 − r, t0 + h] → ℜn be two continuous

functions, absolutely continuous on [t0, t0 + h] with Tr(t0)x = x0, Tr(t0)y = y0,

and ẋ(t) = f (t, Tr(t)x,u(t), d(t)), ẏ(t) = f (t, Tr (t)y,u(t), d(t)) almost every-

where on [t0, t0 + h]. Evaluating the derivative of the absolutely continuous map

z(t) = (x(t) − y(t))′P(x(t) − y(t)) on [t0, t0 + h] in conjunction with Hypothe-

sis (S1) above, we obtain the integral inequality:

∣
∣x(t) − y(t)

∣
∣
2
≤

K2

K1

∣
∣x(t0) − y(t0)

∣
∣
2
+

2

K1

∫ t

t0

L̃
∥
∥Tr(τ )x − Tr(τ )y

∥
∥

2

r
dτ

∀t ∈ [t0, t0 + h]

where L̃ := L(t0 + h,a(t0 + h)), L(·) is the function involved in (1.8), a(t) :=

supτ∈[t0−r,t] |x(τ)|+supτ∈[t0−r,t] |y(τ)|+supτ∈[t0,t]
|u(τ)|, and K1,K2 > 0 are con-

stants that satisfy K1|x|2 ≤ x′Px ≤ K2|x|2 for all x ∈ ℜn. Consequently, we obtain

∥
∥Tr(t)(x − y)

∥
∥

2

r
≤

K2

K1
‖x0 − y0‖

2
r +

2

K1

∫ t

t0

L̃
∥
∥Tr(τ )(x − y)

∥
∥

2

r
dτ

∀t ∈ [t0, t0 + h]

An immediate application of the Gronwall–Bellman inequality gives:

∥
∥Tr(t)(x − y)

∥
∥

r
≤

√

K2

K1
‖x0 − y0‖r exp

(
L̃

K1
(t − t0)

)

∀t ∈ [t0, t0 + h] (1.9)

Thus, we conclude that, under Hypotheses (S1–3), for every (t0, x0, d,u) ∈ ℜ+ ×

C0([−r,0];ℜn) × MD × MU , there exist h > 0 and exactly one continuous func-

tion x : [t0 − r, t0 + h] → ℜn, which is absolutely continuous on [t0, t0 + h] with

Tr(t0)x = x0 and ẋ(t) = f (t, Tr(t)x,u(t), d(t)) almost everywhere on [t0, t0 + h].

Using Hypothesis (S2) above and Theorem 3.2 in [14], we conclude that, for ev-

ery (t0, x0, d,u) ∈ ℜ+ ×C0([−r,0];ℜn)×MD ×MU , there exists tmax ∈ (t0,+∞]

such that the unique solution of ẋ(t) = f (t, Tr(t)x,u(t), d(t)) with Tr(t0)x = x0

is defined on [t0 − r, tmax) and cannot be further continued. Moreover, if tmax <

+∞, then we must necessarily have lim supt→t−max
|x(t)| = +∞, which implies

lim supt→t−max
‖Tr(t)x‖r = +∞.

Thus, for every (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];ℜn) × MD × MU , the unique

solution x(t) of ẋ(t) = f (t, Tr (t)x,u(t), d(t)) with Tr(t0)x = x0 and the output

trajectory Y(t) satisfy the following equations a.e.:

ẋ(t) = f
(

t, Tr(t)x,u(t), d(t)
)

Y(t) = H
(

t, Tr (t)x,u(t)
)

x(t) ∈ ℜn, d(t) ∈ D,Y(t) ∈ Y , u(t) ∈ U (1.10)

By allowing the output to take values in abstract normed linear spaces, we can con-

sider general outputs. More precisely, we may consider the following cases:



1.2 Examples of Control Systems 7

• outputs with no delays, e.g., Y(t) = h(t, x(t)) with Y = ℜk ,

• outputs with discrete or distributed delay, e.g., Y(t) = h(x(t), x(t − r)) or Y(t) =
∫ t

t−r
h(t, θ, x(θ)) dθ with Y = ℜk ,

• functional outputs with memory, e.g., (Y (t))(θ) = h(t, θ, x(t +θ)) for θ ∈ [−r,0]

or the identity output Y(t) = Tr(t)x with Y = C0([−r,0];ℜk).

We next provide an example of a biological system, similar to the one of Exam-

ple 1.2.1, which takes the form (1.10) and satisfies Hypotheses (S1–4). Again, the

example shows that it may be necessary to make certain manipulations in order to

be able to satisfy Hypotheses (S1–4).

Example 1.2.2 Consider the chemostat with one microbial species and one nutrient.

In this case, it is assumed that the specific growth rate of the microbial species

depends not only on the current value of the concentration of the nutrient s(t) but on

its past values as well. We thus obtain the following chemostat model with delays:

Ẋ(t) =
(

p
(

Tr(t)s
)

− D(t) − b
)

X(t)

ṡ(t) = D(t)
(

sin − s(t)
)

− K
(

s(t)
)

μ
(

s(t)
)

X(t)

X(t) ∈ (0,+∞), s(t) ∈ (0, sin),D(t) > 0 (1.11)

where (Tr(t)s)(θ) = s(t + θ) for θ ∈ [−r,0] is the r-history of s, b ≥ 0 is the cell

mortality rate, r ≥ 0 is the maximum delay, K(S) > 0 is a possibly variable yield

coefficient, and p : C0([−r,0]; (0, sin)) → (0,+∞) is a continuous functional that

satisfies

min
t−r≤τ≤t

μ
(

s(τ )
)

≤ p
(

Tr(t)s
)

≤ max
t−r≤τ≤t

μ
(

s(τ )
)

(1.12)

The functions μ : [0, sin] → [0,μmax], K : [0, sin] → (0,+∞) with μ(0) = 0,

μ(s) > 0 for all s > 0 are assumed to be locally Lipschitz functions. The chemostat

model (1.11) under (1.12) is very general, since it covers the following cases:

• p(Tr(t)s) = μ(s(t)), which gives a chemostat model similar to the chemostat

model (1.4) with no delays,

• p(Tr(t)s) = μ(s(t − r)), which gives the time-delayed chemostat model studied

in [45],

• p(Tr(t)s) = λ
∑n

i=0 wiμ(s(t − ri))+ (1−λ)
∫ t

t−r
h(τ + r − t)μ(s(τ )) dτ , where

λ ∈ [0,1], h ∈ C0([0, r]; [0,+∞)) with
∫ r

0 h(s) ds = 1, wi ≥ 0, ri ∈ [0, r] (i =

0, . . . , n) with
∑n

i=0 wi = 1.

As remarked in [45], the chemostat model (1.11) under (1.12) allows the ex-

pression of the effect of the time difference between consumption of nutrient and

growth of the cells (see the discussion on pp. 238–240 in [45]). Since the mapping

p : C0([−r,0]; (0, si)) → (0,+∞) is rarely known, we will consider the uncertain

chemostat model:
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Ẋ(t) =
(

min
t−r≤τ≤t

μ
(

s(τ )
)

+ d(t)
(

max
t−r≤τ≤t

μ
(

s(τ )
)

− min
t−r≤τ≤t

μ
(

s(τ )
)
)

− D(t) − b
)

X(t)

ṡ(t) = D(t)
(

sin − s(t)
)

− K
(

s(t)
)

μ
(

s(t)
)

X(t)

X(t) ∈ (0,+∞), s(t) ∈ (0, sin),D(t) > 0, d(t) ∈ [0,1] (1.13)

where d(t) ∈ [0,1] is the uncertainty.

System (1.13) is an uncertain system described by RFDEs. However, it does not

satisfy all requirements described by Hypotheses (S1–3). First of all, the set where

the state variables take values is not the Banach space C0([−r,0];ℜ2). In order to be

able to recast system (1.13) to the form of system (1.10) which satisfies Hypotheses

(S1–3), we assume the existence of (X∗, s∗,D∗) ∈ (0,+∞) × (0, sin) × (0,+∞)

such that

μ
(

s∗
)

= D∗ + b X∗ =
D∗(sin − s∗)

K(s∗)(D∗ + b)
(1.14)

It should be noted that the change of coordinates:

X = X∗ exp(x1) s =
sin exp(x2)

G + exp(x2)
(1.15)

where G := sin
s∗ − 1, and the input transformation

D = D∗ exp(u)

give the transformed control system:

ẋ1(t) = min
t−r≤τ≤t

μ̃
(

x2(τ )
)

+ d(t)
(

max
t−r≤τ≤t

μ̃
(

x2(τ )
)

− min
t−r≤τ≤t

μ̃
(

x2(τ )
)
)

− D∗ exp
(

u(t)
)

− b

ẋ2(t) = D∗
(

G exp
(

−x2(t)
)

+ 1
)

×
[

exp
(

u(t)
)

−
(

G + exp
(

x2(t)
))

g
(

x2(t)
)

exp
(

x1(t)
)]

(x1, x2) ∈ ℜ2, u(t) ∈ ℜ, d(t) ∈ [0,1] (1.16)

where

μ̃(x2) := μ

(
sin exp(x2)

G + exp(x2)

)

g(x2) :=
X∗

D∗sinG
K

(
sin exp(x2)

G + exp(x2)

)

μ

(
sin exp(x2)

G + exp(x2)

) (1.17)

Notice that by virtue of (1.14) and previous assumptions and definitions, sys-

tem (1.16) satisfies Hypotheses (S1–3) with Tr(t)x ∈ C0([−r,0];ℜ2), u(t) ∈ U =

ℜ, and d(t) ∈ D = [0,1].

We finally define the output mapping Y(t) = Tr(t)x to be the identity mapping

with Y = C0([−r,0];ℜ2).
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Let φ : Aφ → C0([−r,0];ℜn) be the mapping φ(t, t0, x0, u, d) := Tr(t)x, which

for each (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];ℜn) × MD × MU and t ∈ [t0, tmax)

gives the “r-history” Tr(t)x ∈ C0([−r,0];ℜn) of the unique solution of ẋ(t) =

f (t, Tr(t)x,u(t), d(t)) with Tr(t0)x = x0. The mapping φ : Aφ → C0([−r,0];ℜn)

is defined on the set Aφ =
⋃

(t0,x0,u,d)∈ℜ+×C0([−r,0];ℜn)×MU ×MD
[t0, tmax) ×

{(t0, x0, u, d)}. It should be clear from all the above that the mapping φ : Aφ →

C0([−r,0];ℜn) is well defined and satisfies the following properties:

(1) Existence: For each (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];ℜn) × MD × MU , there

exists t > t0 such that [t0, t] × {(t0, x0, u, d)} ⊆ Aφ .

(2) Identity Property: For each (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];ℜn) × MD × MU ,

it holds that φ(t0, t0, x0, u, d) = x0.

(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈

MU × MD with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t], it holds that

(t, t0, x0, ũ, d̃) ∈ Aφ and φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) The “Boundedness-Implies-Continuation” (BIC) Property: For each quadru-

plet (t0, x0, u, d) ∈ ℜ+ × C0([−r,0];ℜn) × MU × MD , there exists a max-

imal existence time, i.e., there exists tmax ∈ (t0,+∞] such that [t0, tmax) ×

{(t0, x0, u, d)} ⊆ Aφ and for all t ≥ tmax, it holds that (t, t0, x0, u, d) /∈ Aφ . In

addition, if tmax < +∞ then for every M > 0, there exists t ∈ [t0, tmax) with

‖φ(t, t0, x0, u, d)‖r > M .

(5) The Classical Semigroup Property: For each t ∈ [t0, tmax), it holds that, for all

τ ∈ [t0, t], φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d).

1.2.3 Control Systems Described by Coupled Retarded Functional

Differential Equations (RFDEs) and Functional Difference

Equations (FDEs)

Let D ⊆ ℜl be a nonempty set, and U ⊆ ℜm be a nonempty set with 0 ∈ U . Consider

the system described by the following equations:

ẋ1(t) = f1

(

t, d(t), Tr1
(t)x1, Tr2−τ(t)

(

t − τ(t)
)

x2, u(t)
)

(1.18)

x2(t) = f2

(

t, d(t), Tr1
(t)x1, Tr2−τ(t)

(

t − τ(t)
)

x2, u(t)
)

(1.19)

Y(t) = H
(

t, Tr1
(t)x1, Tr2

(t)x2, u(t)
)

∈ Y (1.20)

x1(t) ∈ ℜn1 , x2(t) ∈ ℜn2 , d(t) ∈ D,u(t) ∈ U, t ≥ 0

where r1, r2 ≥ 0, fi :
⋃

t≥0{t}×D×C0([−r1,0];ℜn1)×L∞([−r2 +τ(t),0];ℜn2)×

U → ℜni , i = 1,2, H : ℜ+ × C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) × U →

Y (with Y being a normed linear space) are locally bounded mappings with

fi(t, d,0,0,0) = 0, i = 1,2, H(t,0,0,0) = 0 for all (t, d) ∈ ℜ+ × D. The cou-

pled system is depicted in Fig. 1.1.

Specifically, we consider systems of the form (1.18), (1.19), (1.20) with initial

conditions x1(t0 + θ) = x10(θ), θ ∈ [−r1,0], and x2(t0 + θ) = x20(θ), θ ∈ [−r2,0],
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Fig. 1.1 Control systems

described by coupled RFDEs

and FDEs

with x10 ∈ C0([−r1,0];ℜn1) and x20 ∈ L∞([−r2,0];ℜn2), under the following hy-

potheses:

(P1) The function τ : ℜ+ → (0,+∞) is continuous with supt≥0 τ(t) ≤ r2.

(P2) There exist functions a ∈ K∞, β ∈ K+ such that
∣
∣fi

(

t, d, x1, Tr2−τ(t)

(

−τ(t)
)

x2, u
)∣
∣

≤ a
(

β(t)‖x1‖r1

)

+ a
(

β(t)
∥
∥Tr2−τ(t)

(

−τ(t)
)

x2

∥
∥

r2−τ(t)

)

+ a
(

β(t)|u|
)

for all (t, d, x1, x2, u) ∈ ℜ+ × D × C0
(

[−r1,0];ℜn1
)

× L∞
(

[−r2,0];ℜn2
)

× U.

(P3) For all x1 ∈ C0([−r1,+∞);ℜn1), d ∈ L∞
loc(ℜ

+;D), u ∈ L∞
loc(ℜ

+;U), and

x2 ∈ L∞
loc([−r2,+∞);ℜn2), the mappings t → fi(t, d(t), Tr1

(t)x1,

Tr2−τ(t)(t − τ(t))x2, u(t)), i = 1,2, are measurable. Moreover, for each fixed

(t, d, x2, u) ∈ ℜ+ × D × L∞([−r2,0];ℜn2) × U , the mapping f1(t, d, x1,

Tr2−τ(t)(−τ(t))x2, u) is continuous with respect to x1 ∈ C0([−r1,0];ℜn1).

(P4) There exists a symmetric positive definite matrix P ∈ ℜn1×n1 such that

for every pair of bounded sets I ⊂ ℜ+ and � ⊂ C0([−r1,0];ℜn1) ×

L∞([−r2,0];ℜn2) × U , there exists L := L(I,�) ≥ 0 such that

(

x1(0) − y1(0)
)′
P

(

f1

(

t, d, x1, Tr2−τ(t)

(

−τ(t)
)

x2, u
)

− f1

(

t, d, y1, Tr2−τ(t)

(

−τ(t)
)

x2, u
))

≤ L‖x1 − y1‖
2
r1

for all (t, d) ∈ I × D,(x1, x2, u) ∈ �, and (y1, x2, u) ∈ �. (1.21)

(P5) The mapping H : ℜ+ × C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) × U → Y

is continuous with H(t,0,0,0) = 0 for all t ≥ 0. Moreover, the image set

H(�) is bounded for each bounded set � ⊂ ℜ+ × C0([−r1,0];ℜn1) ×

L∞([−r2,0];ℜn2) × U .

For example, Hypotheses (P1), (P2), (P3) are satisfied if D ⊂ ℜl is compact

and there exist continuous functions τi : ℜ+ → (0,+∞) (i = 1, . . . , p), τ : ℜ+ →

(0,+∞) with 0 < τ1(t) < τ2(t) < · · · < τp(t) ≤ τ(t) for all t ≥ 0 and supt≥0 τ(t) ≤

r2, and continuous mappings gi : ℜ+ ×D ×C0([−r1,0];ℜn1)×ℜpn2 ×ℜk ×U →

ℜni , i = 1,2, h : ℜ+×[−r2,0]×ℜn2 → ℜk with gi(t, d,0,0,0,0) = 0, h(t, θ,0) =

0 for all (t, θ, d) ∈ ℜ+ × [−r − T ,0] × D, such that, for each i = 1,2,

fi

(

t, d, x1, Tr2−τ(t)

(

−τ(t)
)

x2, u
)

= gi

(

t, d, x1, x2(−τ1), x2(−τ2), . . . , x2(−τp),

∫ −τ(t)

−r2

h
(

t, θ, x2(θ)
)

dθ,u

)
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for all (t, d, x1, x2, u) ∈ ℜ+ × D × C0
(

[−r1,0];ℜn1
)

× L∞
(

[−r2,0];ℜn2
)

× U

Systems of the form (1.18), (1.19), (1.20) arise in many problems in Mathematical

Control Theory and Mathematical Systems Theory (see, for instance, [31, 35, 38,

39] and the references therein). For example, consider the stabilization problem for

the scalar system:

ẋ(t) = f
(

x(t)
)

+ u(t) + au(t − r)

x(t) ∈ ℜ, u(t) ∈ ℜ (1.22)

where f : ℜ → ℜ is a continuous function with f (0) = 0, and r > 0 and a ∈ ℜ are

constants. If the designer selects to apply the feedback linearization approach for

system (1.22), then we have

u(t) = −Kx(t) − f
(

x(t)
)

− au(t − r) (1.23)

where K > 0. Consequently, if a �= 0, the closed-loop system (1.22) with (1.23) is

described by the following system of coupled RFDEs and FDEs:

ẋ(t) = −Kx(t)

u(t) = −Kx(t) − f
(

x(t)
)

− au(t − r)

x(t) ∈ ℜ, u(t) ∈ ℜ (1.24)

Notice that system (1.24) has the form of system (1.18), (1.19), (1.20) with u(t) in

place of x2(t) and x(t) in place of x1(t). Moreover, Hypotheses (P1–4) are satisfied

for system (1.24).

However, the strongest motive for the study of systems of the form (1.18), (1.19),

(1.20) is that systems of the form (1.18), (1.19), (1.20) allow the consideration

of discontinuous solutions to systems described by Neutral Functional Differential

Equations. For example, consider the scalar system described by a Neutral Func-

tional Differential Equation

d

dt

(

x(t) − x(t − 2r)
)

= x(t − r) x(t) ∈ ℜ (1.25)

with initial condition T2r(t0) = x0 ∈ C0([−2r,0];ℜ). The solution of (1.25) for t ∈

[t0, t0 + r] is given by

x(t) = x(t − 2r) + x(t0) − x(t0 − 2r) +

∫ t−r

t0−r

x(s) ds (1.26)

It is clear from (1.26) that the solution of (1.25) can be defined even if the initial

condition is discontinuous, i.e., T2r(t0) = x0 ∈ L∞([−2r,0];ℜ). How to obtain such

a (weak) solution?

The following idea was proposed in [5] for linear systems (though it was ex-

pressed in a different way). First, define

x1(t) = x(t) − x(t − 2r)

x2(t) = x(t)
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Then, (1.25) is transformed into the following system of coupled RFDEs and FDEs

of the form (1.18), (1.19):

ẋ1(t) = x2(t − r)

x2(t) = x1(t) + x2(t − 2r)

x1(t) ∈ ℜ, x2(t) ∈ ℜ (1.27)

Notice that Hypotheses (P1–4) are satisfied for system (1.27) (Hypothesis (P5) is

irrelevant since there is no output). The solution of (1.27) for t ∈ (t0, t0 + r] is given

by:

x1(t) = x1(t0) +

∫ t−r

t0−r

x2(s) ds

x2(t) = x2(t − 2r) + x1(t0) +

∫ t−r

t0−r

x2(s) ds

(1.28)

Notice that x2(t) = x(t) does not coincide with the solution of (1.25) given by (1.26)

unless x1(t0) = x2(t0) − x2(t0 − 2r), the so-called “matching condition.” It should

be emphasized that, if the “matching condition” does not hold, then the solution

of (1.27), given by (1.28), is discontinuous, even if the initial condition is smooth.

Consequently, system (1.27) provides a generalized framework for the study of the

Neutral Functional Differential Equation (1.25). The idea described for the sim-

ple example (1.25) can be generalized for nonlinear control systems described by

Neutral Functional Differential Equations of the following form (special case of the

so-called Hale’s form, see [14]):

d

dt

(

x(t) − g
(

t, Tr−τ(t)

(

t − τ(t)
)

x
))

= f
(

t, d(t), Tr(t)x,u(t)
)

x(t) ∈ ℜn (1.29)

Without loss of generality, we may assume that the continuous function τ : ℜ+ →

(0,+∞) with supt≥0 τ(t) ≤ r is nonincreasing. If we define x1(t) = x(t) −

g(t, Tr−τ(t)(t − τ(t))x), x2(t) = x(t), and the operator

ℜ+ × C0
(

[−r,0];ℜn
)

× L∞
(

[−2r,0];ℜn
)

∋ (t, x1, x2)

→ G
(

t, x1, T2r−τ(t)

(

−τ(t)
)

x2

)

G
(

t, x1, T2r−τ(t)

(

−τ(t)
)

x2

)

:=

{

x2(θ) θ ∈ [−r,−τ(t)]

x1(θ) + g(t + θ,Tr−τ(t+θ)(θ − τ(t + θ))x2) θ ∈ (−τ(t),0)

then system (1.29) is associated with the following system described by coupled

RFDEs and FDEs:

ẋ1(t) = f
(

t, d(t),G(t, Tr (t)x1, T2r−τ(t)

(

t − τ(t)
)

x2), u(t)
)

x2(t) = x1(t) + g
(

t, Tr−τ(t)(t − τ(t))x2

) (1.30)

Notice that system (1.30) is in the form of (1.18), (1.19). The component x2

of the solution of (1.30) coincides with the solution x of (1.29) if and only if
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the initial data are continuous functions which satisfy the “matching condition”

G(t0, Tr(t0)x1, T2r−τ(t0)(t0 − τ(t0))x2) = Tr(t0)x2. However, notice that even if the

matching condition holds, the solution of (1.30) can be defined for discontinuous ini-

tial data. Consequently, if the matching condition holds and the initial data are dis-

continuous, then the component x2 of the solution of (1.30) is a discontinuous map-

ping which satisfies the differential equation d
dt

(x2(t)−g(t, Tr−τ(t)(t − τ(t))x2)) =

f (t, d(t), Tr(t)x2, u(t)) almost everywhere for t ≥ t0. Thus, if the matching condi-

tion holds, then system (1.30) provides “weak” solutions to the Neutral Functional

Differential Equation (1.29).

The approach described above is not restricted to Neutral Functional Differential

Equations of the form (1.29). We can also consider Neutral Functional Differential

Equations of the form (Bellman’s form, see [3])

ẋ(t) = f
(

t, d(t), Tr(t)x, Tr−τ(t)

(

t − τ(t)
)

ẋ, u(t)
)

x(t) ∈ ℜn (1.31)

In this case, the corresponding system of coupled RFDEs and FDEs is

ẋ1(t) = f
(

t, d(t), Tr(t)x1, Tr−τ(t)

(

t − τ(t)
)

x2, u(t)
)

x2(t) = f
(

t, d(t), Tr(t)x1, Tr−τ(t)

(

t − τ(t)
)

x2, u(t)
)

x1(t) ∈ ℜn, x2(t) ∈ ℜn, d(t) ∈ D,u(t) ∈ U, t ≥ 0 (1.32)

Notice that, if Tr(t0)x2 = Tr(t0)ẋ and Tr(t0)x1 = Tr(t0)x, then the component x1 of

the solution of (1.32) coincides with the solution x of (1.31) for all t ≥ t0.

Consequently, it should be emphasized that the study of coupled RFDEs and

FDEs offers a great advantage: Neutral Functional Differential Equations of the

form (1.29) and Neutral Functional Differential Equations of the form (1.31) can be

studied in the same way and in the same framework.

Another field which motivates the study of systems of the form (1.18), (1.19),

(1.20) is the field of control (or dynamical) systems described by hyperbolic partial

differential equations of the form

∂vi

∂t
(t, z) + ai

∂vi

∂z
(t, z) = fi

(

t, vi(t, z), ξ(t)
)

i = 1, . . . , p

vi(t, z) ∈ ℜni , ξ(t) ∈ ℜk, z ∈ [0,1] (1.33)

where ai > 0 (i = 1, . . . , p) are constants, along with boundary conditions of the

form

vi(t,0) = Fi

(

t, d(t), ξ(t), u(t), v(t, z); z ∈
[

τ(t),1
])

i = 1, . . . , p (1.34)

where v(t, z) = (v1(t, z), . . . , vp(t, z))′ and

ξ̇ (t) = g
(

t, d(t), ξ(t), u(t), v(t, z); z ∈
[

τ(t),1
])

(1.35)

The system of equations (1.33), (1.34), (1.35) is accompanied with initial conditions

vi(t0, z) = v0i(z) and ξ(t0) = ξ0 ∈ ℜk .

If we define x1(t) = ξ(t) and x2(t) = (v1(t,0), . . . , vp(t,0))′, then it can be

shown that the state variables x1(t), x2(t) satisfy a system of coupled RFDEs and

FDEs for any t ≥ t0 + maxi=1,...,p a−1
i . Consequently, the asymptotic behavior of
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system (1.33), (1.34), (1.35) is determined by the associated system of coupled

RFDEs and FDEs. The discontinuous solutions generated by the associated sys-

tem of coupled RFDEs and FDEs are important, since such solutions correspond to

“weak” solutions of the problem (1.33), (1.34), (1.35).

We next provide an example of a physical system, which is described by partial

differential equations and can be represented by equations (1.18), (1.19).

Example 1.2.3 (The linearized St. Venant equations) We consider the following sys-

tem of partial differential equations:

∂h

∂t
(t, z) +

∂v

∂z
(t, z) = 0

∂v

∂t
(t, z) +

∂h

∂z
(t, z) = −u(t)

(1.36)

where z ∈ [0,1] and u(t) ∈ ℜ. The above system of partial differential equations is

the linearization of the nonlinear system of partial differential equations describing

the height h(t, z) and the horizontal velocity v(t, z) of an inviscid incompressible

fluid contained in a tank at time t ≥ 0 and position within the tank z ∈ [0,1]. The

tank is constrained to move only in the horizontal direction, and the position and the

velocity of the tank are denoted by D(t) and s(t), respectively. Since u(t) ∈ ℜ is

the horizontal acceleration of the tank (i.e., the force acting on the tank), we have in

addition the following ordinary differential equations:

Ḋ(t) = s(t) ṡ(t) = u(t) (1.37)

Finally, the system is accompanied by the “no-flow” boundary conditions

v(t,0) = v(t,1) = 0 (1.38)

The reader should notice that the controllability and stabilizability problem of

system (1.36), (1.37) has attracted attention (see [8], p. 212, and [41]), since

it is known that system (1.36), (1.37) is uncontrollable (see [40]). By defin-

ing A(t, z) := h(t, z) + v(t, z), B(t, z) := h(t, z) − v(t, z), x2,1(t) := A(t,0), and

x2,2(t) := B(t,1), we obtain by direct integration on the characteristic lines:

A(t, z) =

⎧

⎨

⎩

h0(z − t) + v0(z − t) −
∫ t

0 u(τ) dτ for t ≤ z

x2,1(t − z) −
∫ t

t−z
u(τ) dτ for t > z

B(t, z) =

⎧

⎨

⎩

h0(z + t) − v0(z + t) +
∫ t

0 u(τ) dτ for t ≤ 1 − z

x2,2(t + z − 1) +
∫ t

t+z−1 u(τ) dτ for t > 1 − z

where h0(z) := h(0, z) and v0(z) := v(0, z). By defining x2,1(−w) := h0(w) +

v0(w) and x2,2(−w) := h0(1 − w) − v0(1 − w) for w ∈ [0,1] and using the re-

lations h(t, z) = 1
2
(A(t, z) + B(t, z)) and v(t, z) = 1

2
(A(t, z) − B(t, z)), we obtain

for all t ≥ 0:
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h(t, z) =
1

2
x2,1(t − z) +

1

2
x2,2(t + z − 1) +

1

2

∫ max(0,t−z)

max(0,t+z−1)

u(τ) dτ (1.39)

v(t, z) =
1

2
x2,1(t − z) −

1

2
x2,2(t + z − 1) −

1

2

∫ t

max(0,t+z−1)

u(τ) dτ

−
1

2

∫ t

max(0,t−z)

u(τ) dτ (1.40)

It should be noticed that the above equations give discontinuous solutions for sys-

tem (1.36), (1.37) if the initial conditions h0(z) := h(0, z) and v0(z) := v(0, z) are

discontinuous functions. Finally, we exploit the boundary conditions (1.38). Us-

ing (1.38) and (1.40), we obtain for all t ≥ 0:

x2,1(t) = x2,2(t − 1) +

∫ t

max(0,t−1)

u(τ) dτ

x2,2(t) = x2,1(t − 1) −

∫ t

max(0,t−1)

u(τ) dτ

Consequently, we are led to the study of the following linear autonomous control

system of coupled RFDEs and FDEs:

ẋ1,1(t) = x1,2(t)

ẋ1,2(t) = u(t)

x2,1(t) = x2,2(t − 1) + x1,2(t) − x1,2(t − 1)

x2,2(t) = x2,1(t − 1) − x1,2(t) + x1,2(t − 1)

x1(t) =
(

x1,1(t), x1,2(t)
)

∈ ℜ2, x2(t) =
(

x2,1(t), x2,2(t)
)

∈ ℜ2, u(t) ∈ ℜ (1.41)

where x1,1(t) is the position of the tank D(t), and x1,2(t) is the horizontal veloc-

ity of the tank s(t). Notice that system (1.41) gives weak solutions for the orig-

inal system (1.36) if x2,1(−w) := h(0,w) + v(0,w), x2,2(−w) := h(0,1 − w) −

v(0,1 − w), and x1,2(−w) = x1,2(0) for w ∈ [0,1] by means of the formulae

h(t, z) =
1

2
x2,1(t − z) +

1

2
x2,2(t + z − 1) +

1

2
x1,2(t − z) −

1

2
x1,2(t + z − 1)

v(t, z) =
1

2
x2,1(t − z) −

1

2
x2,2(t + z − 1) − x1,2(t) +

1

2
x1,2(t + z − 1)

+
1

2
x1,2(t − z)

Questions of controllability and stabilizability for system (1.36), (1.37) can be ad-

dressed by studying system (1.41).

The following theorem is the major tool for the existence of solutions of the

system of coupled RFDEs and FDEs of the form (1.18), (1.19), (1.20).

Theorem 1.1 Consider system (1.18), (1.19) under Hypotheses (P1–4). Then, for

every t0 ≥ 0, (x10, x20) ∈ C0([−r1,0];ℜn1)× L∞([−r2,0];ℜn2), d ∈ L∞
loc(ℜ

+;D),
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u ∈ L∞
loc(ℜ

+;U), there exist tmax ∈ (t0,+∞] and a unique pair of mappings

x1 ∈ C0([t0 − r1, tmax);ℜ
n1), x2 ∈ L∞

loc([t0 − r2, tmax);ℜ
n2) with Tr1

(t0)x1 = x10,

Tr2
(t0)x2 = x20, x1 ∈ C0([t0 − r1, tmax);ℜ

n1) being absolutely continuous on

[t0, tmax) such that (1.18) holds a.e. for t ∈ [t0, tmax) and (1.19) holds for all t ∈

(t0, tmax). In addition, if tmax < +∞, then for every M > 0, there exists t ∈ [t0, tmax)

with ‖Tr1
(t)x1‖r1

> M .

Theorem 1.1 guarantees that tmax ∈ (t0,+∞] is the maximal existence time for

the solution of (1.18), (1.19). The idea behind the proof of Theorem 1.1 is the

method of steps, used already in [35].

Proof of Theorem 1.1 Let t0 ≥ 0, (x10, x20) ∈ C0([−r1,0];ℜn1) × L∞([−r2,0];

ℜn2), d ∈ L∞
loc(ℜ

+;D), and u ∈ L∞
loc(ℜ

+;U) (arbitrary).

Define h := min(1;min{τ(t0 + s) : s ∈ [0,1]}). Notice that by virtue of the def-

inition of h > 0, it holds that t − τ(t) ≤ t0 for all t ∈ [t0, t0 + h]. By virtue of

Theorem 2.1 in [14] (and its extension for Caratheodory conditions in p. 58 of

the same book), there exists δ ∈ (0, h] and x1 ∈ C0([t0 − r1, t0 + δ);ℜn1) with

Tr1
(t0)x1 = x10 being absolutely continuous on [t0, t0 + δ) such that the differ-

ential equation ẋ1(t) = f1(t, d(t), Tr1
(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t)) is satisfied

a.e. for t ∈ [t0, t0 + δ). Moreover, Hypothesis (P4) guarantees that the mapping

x1 ∈ C0([t0 − r1, t0 + δ);ℜn1) is unique. Without loss of generality, we may as-

sume that δ is the maximal time of existence of the solution of differential equa-

tion (1.18) in the interval (0, h]. There exist two cases for the mapping x1 ∈

C0([t0 − r1, t0 + δ);ℜn1):

(a) For every M > 0, there exists t ∈ [t0, t0 + δ) with ‖Tr1
(t)x1‖r1

> M .

(b) ‖Tr1
(t)x1‖r1

is bounded for all t ∈ [t0, t0 + h). In this case, the mapping x1 ∈

C0([t0 − r1, t0 + δ);ℜn1) can be extended continuously in a unique way on

[t0 − r1, t0 + h].

Next, we consider the FDE x2(t) = f2(t, d(t), Tr1
(t)x1, Tr2−τ(t)(t −τ(t))x2, u(t)).

By (P2) and (P3), there exists a unique mapping x2 ∈ L∞
loc([t0 −r2, t0 +δ);ℜn2) with

Tr2
(t0)x2 = x20 such that x2(t) = f2(t, d(t), Tr1

(t)x1, Tr2−τ(t)(t − τ(t))x2, u(t))

holds for all t ∈ (t0, t0 + δ). Moreover, if the mapping x1 ∈ C0([t0 − r1, t0 + δ);ℜn1)

can be extended continuously in a unique way on [t0 − r1, t0 + h], then, similarly,

x2 ∈ L∞([t0 − r2, t0 + δ);ℜn2) can be extended on [t0 − r2, t0 + h] (notice that

Hypothesis (P2) implies that x2 is bounded as long as x1 is bounded).

If case (a) holds, the proof is completed by defining tmax = t0 + δ. If case (b)

holds, all arguments can be repeated with t0 + h in place of t0 (next step). We con-

tinue the same procedure of construction of the solution step-by-step. The procedure

may be stopped after some steps (if case (a) is encountered) or may be continued

indefinitely (if case (a) is never encountered). In the latter case, for each step i, we

obtain a pair of mappings x1 ∈ C0([t0 −r1, ti+1];ℜ
n1), x2 ∈ L∞([t0 −r2, ti+1];ℜ

n2)

with Tr1
(t0)x1 = x10, Tr2

(t0)x2 = x20, x1 ∈ C0([t0 − r1, ti+1];ℜ
n1) being absolutely
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continuous on [t0, ti+1] such that (1.18) holds a.e. for t ∈ [t0, ti+1] and (1.19) holds

for all t ∈ (t0, ti+1], where the sequence {ti}
∞
i=0 satisfies

ti+1 = ti + min
(

1;min
{

τ(ti + s) : s ∈ [0,1]
})

for all i = 0,1,2, . . . .

Notice that the sequence {ti}
∞
i=0 is increasing and consequently lim ti = sup ti .

The assumption that L = lim ti = sup ti < +∞ implies that ti+1 ≥ ti + μ for all

i = 0,1,2, . . . , where μ = min(1;min{τ(s) : s ∈ [0,L + 1]}), which gives the con-

tradiction ti ≥ t0 + (i −1)μ for all i = 1,2, . . . . It follows that lim ti = sup ti = +∞.

The proof is thus completed. �

Let MU and MD denote the sets of Lebesgue-measurable and locally es-

sentially bounded functions u : ℜ+ → U and d : ℜ+ → D, respectively. Let

φ : Aφ → C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) be the map φ(t, t0, x0, u, d) =

(Tr1
(t)x1, Tr2

(t)x2), which for each (t0, x0, d,u) ∈ ℜ+ × C0([−r1,0];ℜn1) ×

L∞([−r2,0];ℜn2) × MD × MU and t ∈ [t0, tmax) gives the “history” of the

unique solution of (1.18), (1.19) with Tr(t0)x = x0. The mapping φ : Aφ →

C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) is defined on the set

Aφ =
⋃

(t0,x0,u,d)∈ℜ+×C0([−r1,0];ℜn1 )×L∞([−r2,0];ℜn2 )×MU ×MD

[t0, tmax)
{

(t0, x0, u, d)
}

It should be clear from all the above that the mapping φ : Aφ → C0([−r1,0];ℜn1)×

L∞([−r2,0];ℜn2) is well defined and satisfies the following properties:

(1) Existence: For each (t0, x0, d,u) ∈ ℜ+ × C0([−r1,0];ℜn1) × L∞([−r2,0];

ℜn2) × MD × MU , there exists t > t0 such that [t0, t] × {(t0, x0, u, d)} ⊆ Aφ .

(2) Identity Property: For each (t0, x0, d,u) ∈ ℜ+ × C0([−r1,0];ℜn1) ×

L∞([−r2,0];ℜn2) × MD × MU , it holds that φ(t0, t0, x0, u, d) = x0.

(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈

MU × MD with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t], it holds that

(t, t0, x0, ũ, d̃) ∈ Aφ and φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) The “Boundedness-Implies-Continuation” (BIC) Property: For each (t0, x0,

d,u) ∈ ℜ+ ×C0([−r1,0];ℜn1)× L∞([−r2,0];ℜn2)×MD ×MU , there exists

a maximal existence time, i.e., there exists tmax ∈ (t0,+∞] such that [t0, tmax)×

{(t0, x0, u, d)} ⊆ Aφ and for all t ≥ tmax, it holds that (t, t0, x0, u, d) /∈ Aφ . In

addition, if tmax < +∞, then for every M > 0, there exists t ∈ [t0, tmax) with

‖Tr1
(t)x1‖r1

> M , where φ(t, t0, x0, u, d) := (Tr1
(t)x1, Tr2

(t)x2).

(5) The Classical Semigroup Property: For each t ∈ [t0, tmax), it holds that

φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t].

Again, the reason for allowing the output to take values in an abstract normed

linear space is that the case (1.18), (1.19), (1.20) allows the study of:

• outputs with no delays, e.g., Y(t) = h(t, x1(t), x2(t)) with Y = ℜk ,

• outputs with discrete or distributed delay, e.g., Y(t) = h(x(t), x(t − r)) or Y(t) =
∫ t

t−r1
h(t, θ, x1(θ)) dθ with Y = ℜk ,
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• functional outputs with memory, e.g., (Y (t))(θ) = h(t, θ, x1(t + θ)) for θ ∈

[−r1,0] or the identity output

Y(t) =

{

x1(t + θ) θ ∈ [−r1,0]

x2(t + θ) θ ∈ [−r2,0]

with

Y = C0
(

[−r1,0];ℜn1
)

× L∞
(

[−r2,0];ℜn2
)

.

1.2.4 Control Systems Described by Functional Difference

Equations (FDEs)

Consider the class of systems described by the following FDEs:

x(t) = f
(

t, d(t), Tr−τ(t)

(

t − τ(t)
)

x,u(t)
)

Y(t) = H
(

t, Tr(t)x,u(t)
)

x(t) ∈ ℜn, d(t) ∈ D,u(t) ∈ U, t ≥ 0 (1.42)

where D ⊆ ℜl is a nonempty set, U ⊆ ℜm is a nonempty set with 0 ∈ U , r > 0, f :
⋃

t≥0{t} × D × B(t) × U → ℜn, and B(t) denotes the set of all bounded mappings

x : [−r + τ(t),0] → ℜn under the following hypotheses:

(Q1) The function τ : ℜ+ → (0,+∞) is continuous with supt≥0 τ(t) ≤ r .

(Q2) There exist functions a ∈ K∞, β ∈ K+ such that |f (t, d, Tr−τ(t)(−τ(t))x,u)|

≤ a(β(t)‖Tr−τ(t)(−τ(t))x‖r−τ(t)) + a(β(t)|u|) for all (t, d, x,u) ∈ ℜ+ ×

D × X × U , where X is the normed linear space of bounded functions

x : [−r,0] → ℜn with norm ‖x‖X = sup−r≤τ≤0 |x(τ)|.

(Q3) The mapping H : ℜ+ × X × U → Y , where Y is a normed linear space, is

continuous with H(t,0,0) = 0 for all t ≥ 0. Moreover, the image set H(�) is

bounded for each bounded set � ⊂ ℜ+ × X × U .

Using the method of steps, exactly as in the proof of Theorem 1.1, we can obtain

the following result.

Proposition 1.1 Let MU and MD denote the sets of locally bounded functions

u : ℜ+ → U and d : ℜ+ → D, respectively, and consider system (1.42) under Hy-

potheses (Q1), (Q2). Then, for all t0 ≥ 0, x0 ∈ X , and (u, d) ∈ MU × MD , there

exists a unique locally bounded mapping x : [t0 − r,+∞) → ℜn with Tr(t0)x = x0

such that (1.42) holds for all t > t0.

Systems of the form (1.42) are important and arise in many situations. We next

provide an example, which shows that systems of the form (1.42) can be used for

the study of time behavior of dynamic games.
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Example 1.2.4 (The dynamic Cournot oligopoly) We consider the case of Cournot

oligopoly where n players produce quantities of a single homogeneous product. The

payoff function for each player is expressed by

πi = pqi − ciqi −
1

2
Kiq

2
i i = 1, . . . , n (1.43)

where Ki, ci , i = 1, . . . , n, are constants, qi ∈ [0,Qi], i = 1, . . . , n, is the quantity

of the commodity produced by the ith player, Qi > 0 is the maximum level of

production of the product for the ith player, and p ≥ 0 is the price of the commodity.

Assuming a linear demand function

p = b

(

a −

n
∑

i=1

qi

)

(1.44)

where a, b > 0 are constants satisfying a ≥
∑n

i=1 Qi and b > − 1
2

mini=1,...,n Ki ,

we obtain the best reply mapping for each one of the players:

qi = fi(q−i) := min

{

Qi,max

{

0,
ab − ci

2b + Ki

−
b

2b + Ki

∑

j �=i

qj

}}

i = 1, . . . , n (1.45)

We define

S := [0,Q1] × [0,Q2] × · · · × [0,Qn] ⊂ ℜn (1.46)

q = (q1, . . . , qn) ∈ S (1.47)

F(q) :=

⎡

⎢
⎣

f1(q−1)
...

fn(q−n)

⎤

⎥
⎦=

⎡

⎢
⎢
⎣

min
{

Q1,max
{

0,
ab−c1
2b+K1

− b
2b+K1

∑

j �=1 qj

}}

...

min
{

Qn,max
{

0, ab−cn

2b+Kn
− b

2b+Kn

∑

j �=n qj

}}

⎤

⎥
⎥
⎦

(1.48)

and we notice that the set S ⊂ ℜn as defined by (1.46) is compact and convex and

that the map F : S → S as defined by (1.48) is continuous. Consequently, Brouwer’s

fixed point theorem guarantees the existence of at least one Nash equilibrium q∗ ∈ S

with q∗
i = fi(q

∗
−i) = min{Qi,max{0,

ab−ci

2b+Ki
− b

2b+Ki

∑

j �=i q
∗
j }} for i = 1, . . . , n.

Next, we assume that the dynamics of the game are described in continuous time

as follows:

• every player forms an expectation for the behavior of all other players at each

time t ≥ 0: the expectation of the ith player for the production level of the j th

player at time t ≥ 0 will be denoted by q
exp
i,j (t) ∈ [0,Qj ] (j �= i,i, j = 1, . . . , n),

• every player determines her production level as a convex combination of a past

production level and the best reply response based on the expectations for the

behavior of all other players at each time t ≥ 0, i.e., for each i = 1,2, . . . , n,

qi(t) = θi(t)min
{

Qi,max
{

0, qi

(

t − τi(t)
)}}

+
(

1 − θi(t)
)

× min

{

Qi,max

{

0,
ab − ci

2b + Ki

−
b

2b + Ki

∑

j �=i

q
exp
i,j (t)

}}

(1.49)
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where θi : ℜ+ → [0,Θ] and τi : ℜ+ → [T , r] are in general unknown functions,

and 0 ≤ Θ < 1 and 0 < T ≤ r are constants (in general unknown).

The reader should notice that (1.49) is a model that evolves in continuous time, i.e.,

t ∈ ℜ+. If the expectation rules q
exp
i,j (t) (j �= i, i, j = 1, . . . , n) and the functions

θi : ℜ+ → [0,Θ], τi : ℜ+ → [T , r] (i = 1, . . . , n) were known, we would have an

accurate description of the dynamics of the Cournot oligopoly game. However, we

will not assume exact knowledge of the expectation rules but a specific consistency

condition. More specifically, we will assume thatYYYYYYYYY:

(H) All expectation rules q
exp
i,j (t) (j �= i, i, j = 1, . . . , n) are Consistent Backward-

looking expectations with respect to the Nash equilibrium point q∗ ∈ S, i.e.,

there exist constants 0 < T ≤ r such that, the following inequalities hold for all

j �= i, i, j = 1, . . . , n and for all t ≥ 0:
∣
∣q

exp
i,j (t) − q∗

j

∣
∣ ≤ sup

t−r≤τ≤t−T

∣
∣qj (τ ) − q∗

j

∣
∣ =

∥
∥qj − q∗

j

∥
∥

[t−r,t−T ]
(1.50)

In other words, the consistency condition (1.50) recognizes that it is not logical for

the ith player to expect that the production level of the j th manufacturer will deviate

from its equilibrium level more than the highest deviation she has experienced in the

past. Next, we present some examples of Consistent Backward-looking expectation

rules:

(1) q
exp
i,j (t) = ai,j (t)

∑m
l=1 wi,j,l(t)qj (t −τi,j,l(t))+(1−ai,j (t))q

∗
j , where ai,j (t) ∈

[0,1], r ≥ τi,j,l(t) ≥ T > 0, wi,j,l(t) ≥ 0 with 1 =
∑m

l=1 wi,j,l(t) for all

t ≥ 0 and l = 1, . . . ,m. In discrete-time models the case τi,j,l(t) = t +

l − [t], ai,j (t) ≡ 1, wi,j,l(t) ≡ wi,j,l ≥ 0 with 1 =
∑m

l=1 wi,j,l is the usual

backward-looking expectation, which gives q
exp
i,j (t) =

∑m
l=1 wi,j,lqj (k − l) for

t ∈ [k, k + 1).

(2) q
exp
i,j (t) = ai,j (t)

∫ −T

−r
hi,j (s)qj (t + s) ds + (1 − ai,j (t))q

∗
j , where 0 < T < r ,

ai,j (t) ∈ [0,1] for all t ≥ 0, hi,j : [−r,−T ] → ℜ is a Lebesgue-integrable func-

tion with hi,j (s) ≥ 0 for almost all s ∈ [−r,−T ] and 1 =
∫ −T

−r
hi,j (s) ds. Of

course, in this case it is additionally required that qj (t) must be Lebesgue inte-

grable and essentially bounded.

We notice the following important fact for consistent backward-looking expecta-

tions:

Fact q
exp
i,j (t) (where j �= i, i, j = 1, . . . , n) is a Consistent Backward-looking ex-

pectation with respect to the Nash equilibrium point q∗ ∈ S if and only if there exist

constants 0 < T ≤ r and a function di,j : ℜ+ → [−1,1] such that

q
exp
i,j (t) = min

{

Qj ,max
{

0, q∗
j + di,j (t)

∥
∥qj − q∗

j

∥
∥

[t−r,t−T ]

}}

for all t ≥ 0 (1.51)

Proof of Fact Assume first that q
exp
i,j (t) (where j �= i, i, j = 1, . . . , n) is a Consistent

Backward-looking expectation with respect to the Nash equilibrium point q∗ ∈ S,

i.e., that (1.50) holds. We distinguish the following cases.
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Case 1: If q
exp
i,j (t) = 0, then (1.50) implies that q∗

j ≤ ‖qj −q∗
j ‖[t−r,t−T ]. In this case

we define di,j (t) = −1, and equality (1.51) holds.

Case 2: If q
exp
i,j (t) = Qj , then (1.50) implies that Qj − q∗

j ≤ ‖qj − q∗
j ‖[t−r,t−T ]. In

this case we define di,j (t) = 1, and equality (1.51) holds.

Case 3: If q
exp
i,j (t) ∈ (0,Qj ) and ‖qj − q∗

j ‖[t−r,t−T ] > 0, then equality (1.51) holds

with di,j (t) = sgn(q
exp
i,j (t) − q∗

j )
|q

exp
i,j (t)−q∗

j |

‖qj −q∗
j ‖[t−r,t−T ]

. Inequality (1.50) implies that

|di,j (t)| ≤ 1.

Case 4: If q
exp
i,j (t) ∈ (0,Qj ) and ‖qj − q∗

j ‖[t−r,t−T ] = 0, then inequality (1.50) im-

plies that q
exp
i,j (t) = q∗

j . In this case equality (1.51) holds for arbitrary di,j (t) ∈

[−1,1].

On the other hand, if (1.51) holds, then q
exp
i,j (t) ∈ [0,Qj ] for all t ≥ 0. Moreover,

the reader can verify that inequality (1.50) holds. The proof is complete. �

The previous fact shows that Hypothesis (H) is equivalent to the existence of

constants 0 < T ≤ r and functions di,j : ℜ+ → [−1,1] (j �= i, i, j = 1, . . . , n) such

that the following equalities hold for all i = 1, . . . , n:

qi(t) = θi(t)min
{

Qi,max
{

0, qi

(

t − τi(t)
)}}

+
(

1 − θi(t)
)

min

{

Qi,max

{

0,
ab − ci

2b + Ki

−
b

2b + Ki

∑

j �=i

min
{

Qj ,max
{

0, q∗
j + di,j (t)

∥
∥qj − q∗

j

∥
∥

[t−r,t−T ]

}}
}}

(1.52)

In general, the functions θi : ℜ+ → [0,Θ], τi : ℜ+ → [T , r], di,j : ℜ+ → [−1,1]

(j �= i, i, j = 1, . . . , n) and the constants 0 ≤ Θ < 1, 0 < T ≤ r are unknown.

Therefore, the dynamical system (1.52) is an uncertain dynamical system de-

scribed by Functional Difference Equations (FDEs). In order to recast (1.52) to the

form (1.42) under Hypotheses (Q1), (Q2), we define the dimensionless deviation

variables xi(t) =
qi (t)−q∗

i

Qi
(i = 1, . . . , n), and we obtain from (1.45) and (1.52) for

i = 1, . . . , n:

xi(t) = θi(t)min
{

1 − Li,max
{

−Li, xi

(

t − τi(t)
)}}

+
(

1 − θi(t)
)

min

{

1 − Li,max

{

−Li,Mi − Li

− Ri

∑

j �=i

gi,j min
{

1,max
{

0,Lj + di,j (t)‖xj‖[t−r,t−T ]

}}
}}

(1.53)

where Li =
q∗
i

Qi
∈ [0,1], Mi = ab−ci

(2b+Ki )Qi
, Ri = b

2b+Ki
> 0, gi,j =

Qj

Qi
> 0

for j �= i, i = 1, . . . , n, are constants which satisfy Li = min{1,max{0,Mi −

Ri

∑

j �=i gi,jLj }} for all i = 1, . . . , n. The reader should notice that Hypotheses

(Q1), (Q2) hold for system (1.53) with τ(t) ≡ T .
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Finally, notice that

• All discrete-time models of the form (i = 1, . . . , n)

qi(k + 1) = θi(k)qi(k) +
(

1 − θi(k)
)

× min

{

Qi,max

{

0,
ab − ci

2b + Ki

−
b

2b + Ki

∑

j �=i

q
exp
i,j (k + 1)

}}

(1.54)

with

q
exp
i,j (k + 1) = ai,j (k)

m
∑

l=0

wi,j,l(k)qj (k − l) +
(

1 − ai,j (k)
)

q∗
j (1.55)

where k,m are nonnegative integers, ai,j (k) ∈ [0,1] (i, j = 1, . . . , n), θi(k) ∈

[0,Θ] (i = 1, . . . , n) with Θ ∈ [0,1), wi,j,l(k) ≥ 0 with 1 =
∑m

l=0 wi,j,l(k) for

all k ≥ 0 and l = 0, . . . ,m (i, j = 1, . . . , n), are immersed in the uncertain model

(1.52) and its equivalent expression (1.53) in the sense that for every model of the

form (1.54), (1.55) one can give functions θi : ℜ+ → [0,Θ], τi : ℜ+ → [T , r],

di,j : ℜ+ → [−1,1] (j �= i, i, j = 1, . . . , n) such that the solution of (1.52) coin-

cides with the solution obtained by the discrete-time model (1.54), (1.55).

• All continuous-time models of the form

q̇i(t) = μi min

{

Qi,max

{

0,
ab − ci

2b + Ki

−
b

2b + Ki

∑

j �=i

q
exp
i,j (t)

}}

− μiqi(t)

(1.56)

where, for each i = 1, . . . , n, μi > 0 are constants, and q
exp
i,j (t) (j �= i, j =

1, . . . , n) are Consistent Backward-looking expectations with respect to the Nash

equilibrium point q∗ ∈ S, are immersed in the uncertain model (1.52). Indeed,

for all i = 1,2, . . . , n and t ≥ r > 0, the solution of (1.56) implies the following

integral equations:

qi(t) = exp(−μir)qi(t − r) +

∫ t

t−r

exp
(

−μi(t − τ)
)

×

{

Qi,max

{

0,
ab − ci

2b + Ki

−
b

2b + Ki

∑

j �=i

q
exp
i,j (τ )

}}

dτ.

From the above expression under the assumption that the mappings t → q
exp
i,j (t)

(j �= i, i, j = 1, . . . , n) are continuous, we can conclude that for all t ≥ r and i =

1, . . . , n, there exist gi(t) ∈ [t − r, t], i = 1, . . . , n, such that

qi(t) = exp(−μir)qi(t − r) +
(

1 − exp(−μir)
)

× min

{

Qi,max

{

0,
ab − ci

2b + Ki

−
b

2b + Ki

∑

j �=i

q
exp
i,j

(

gi(t)
)
}}

.

The reader may verify that for Consistent Backward-looking expectations with re-

spect to the Nash equilibrium point q∗ ∈ S, the above model can be described by

the uncertain model (1.52) with θi(t) ≡ exp(−μir), τi(t) ≡ r , i = 1, . . . , n, and

Θ := maxi=1,...,n exp(−μir) < 1.
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We define the output mapping to be the identity mapping H(t, x,u) := x for all

x ∈ X . This example will be studied further in Chap. 5.

Let X be the normed linear space of bounded functions x : [−r,0] → ℜn with

norm ‖x‖X = sup−r≤τ≤0 |x(τ)|, φ : Aφ → X be the mapping φ(t, t0, x0, u, d) :=

Tr(t)x, which for each (t0, x0, d,u) ∈ ℜ+ × X × MD × MU and t ∈ [t0,+∞)

gives the “history” of the unique solution of (1.42) with Tr(t0)x = x0. The map-

ping φ : Aφ → X is defined on the set Aφ =
⋃

(t0,x0,u,d)∈ℜ+×X ×MU ×MD
[t0,+∞)×

{(t0, x0, u, d)}. It should be clear from all the above that the mapping φ : Aφ → X

is well defined and satisfies the following properties:

(1) Existence: For each (t0, x0, d,u) ∈ ℜ+ × X × MD × MU , there exists t > t0
such that [t0, t] × {(t0, x0, u, d)} ⊆ Aφ .

(2) Identity Property: For each (t0, x0, d,u) ∈ ℜ+ × X × MD × MU , it holds that

φ(t0, t0, x0, u, d) = x0.

(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈

MU × MD with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t], it holds that

(t, t0, x0, ũ, d̃) ∈ Aφ and φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) The “Boundedness-Implies-Continuation” (BIC) Property: For each (t0, x0,

d,u) ∈ ℜ+ × X × MD × MU , there exists a maximal existence time, i.e., there

exists tmax ∈ (t0,+∞], such that [t0, tmax)×{(t0, x0, u, d)} ⊆ Aφ and for all t ≥

tmax, it holds that (t, t0, x0, u, d) /∈ Aφ . In addition, if tmax < +∞, then for every

M > 0, there exists t ∈ [t0, tmax) with ‖Tr(t)x‖r = ‖φ(t, t0, x0, u, d)‖X > M .

(5) The Classical Semigroup Property: For each t ∈ [t0, tmax), it holds that

φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t].

The reader should notice that Proposition 1.1 guarantees that the “Boundedness-

Implies-Continuation” (BIC) Property and the Classical Semigroup Property hold

with tmax = +∞.

1.2.5 Control Systems with Variable Sampling Partition

Given a pair of sets D ⊆ ℜl and U ⊆ ℜm with 0 ∈ U a closed set, a positive function

h : ℜ+ × ℜn × U × D → (0, r] which is bounded by certain constant r > 0, and a

triplet of vector fields f : ℜ+ ×ℜ+ ×ℜn ×ℜn ×U ×U ×D ×D → ℜn, H : ℜ+ ×

ℜn ×U → ℜp , R : ℜ+ ×ℜn ×ℜn ×U ×U ×D ×D → ℜn, we consider the hybrid

system that produces, for each (t0, x0) ∈ ℜ+ × ℜn and for each pair of measurable

and locally bounded inputs u : ℜ+ → U and d : ℜ+ → D, the piecewise absolutely

continuous function t → x(t) ∈ ℜn, according to the following algorithm:

Step i:

(1) Given τi and x(τi), calculate τi+1 using the recursive equation

τi+1 = τi + h
(

τi, x(τi), u(τi), d(τi)
)

;
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(2) Compute the state trajectory x(t), t ∈ [τi, τi+1) as the solution of the differential

equation

ẋ(t) = f
(

t, τi, x(t), x(τi), u(t), u(τi), d(t), d(τi)
)

;

(3) Calculate x(τi+1) using the equation

x(τi+1) = R
(

τi, lim
t→τ−

i+1

x(t), x(τi), u(τi+1), u(τi), d(τi+1), d(τi)
)

;

(4) Compute the output trajectory Y(t), t ∈ [τi, τi+1] using the equation

Y(t) = H
(

t, x(t), u(t)
)

.

For i = 0, we take τ0 = t0 and x(τ0) = x0 (initial condition). Schematically, we

write

ẋ(t) = f
(

t, τi, x(t), x(τi), u(t), u(τi), d(t), d(τi)
)

t ∈ [τi, τi+1)

τ0 = t0, τi+1 = τi + h
(

τi, x(τi), u(τi), d(τi)
)

, i = 0,1, . . .

x(τi+1) = R
(

τi, lim
t→τ−

i+1

x(t), x(τi), u(τi+1), u(τi), d(τi+1), d(τi)
)

Y(t) = H
(

t, x(t), u(t)
)

(1.57)

with initial condition x(t0) = x0 ∈ ℜn.

We consider hybrid systems of the form (1.57) under the following hypotheses:

(A1) f (t, τ, x, x0, u,u0, d, d0) is measurable with respect to t ≥ 0 and continuous

with respect to (x, d,u) ∈ ℜn × D × U . Moreover, there exists a symmetric

positive definite matrix P ∈ ℜn×n such that for every bounded S ⊂ ℜ+ ×

ℜ+ × ℜn × ℜn × U × U , there exists a constant L ≥ 0 such that

(x − y)′P
(

f (t, τ, x, x0, u,u0, d, d0) − f (t, τ, y, x0, u,u0, d, d0)
)

≤ L|x − y|2

for all (t, τ, x, x0, u,u0, d, d0) ∈ S × D × D and y ∈ ℜn. (1.58)

(A2) There exist functions γ ∈ K+, a ∈ K∞ such that

∣
∣f (t, τ, x, x0, u,u0, d, d0)

∣
∣ ≤ γ (t)a

(

|x| + |x0| + |u| + |u0|
)

for all t ≥ τ, (τ, u,u0, d, d0, x, x0) ∈ ℜ+ × U × U × D × D × ℜn × ℜn

(1.59)
∣
∣R(t, x, x0, u,u0, d, d0)

∣
∣ ≤ γ (t)a

(

|x| + |x0| + |u| + |u0|
)

for all (t, u,u0, d, d0, x, x0) ∈ ℜ+ × U × U × D × D × ℜn × ℜn. (1.60)

(A3) H : ℜ+ ×ℜn ×U → ℜp is a continuous map with H(t,0,0) = 0 for all t ≥ 0,

(A4) There exists a partition b = {Ti}
∞
i=0 of ℜ+ (i.e., an increasing sequence of

time instants with T0 = 0 and Ti → +∞) such that for every bounded S ⊂

ℜ+ × ℜn × U × D, there exists s > 0 with h(t, x,u, d) ≥ min{qb(t) − t, s}

for all (t, x,u, d) ∈ S, where qb(t) := min{T ∈ b; t < T }.
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Occasionally, we will use the following stronger hypothesis:

(A5) There exist a positive, continuous, and bounded function hl : ℜ+ ×ℜn ×U →

(0, r] and a partition b = {Ti}
∞
i=0 of ℜ+ such that

h(t, x,u, d) ≥ min
{

qb(t) − t, hl(t, x,u)
}

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D (1.61)

where qb(t) := min{T ∈ b; t < T }.

Systems of the form (1.57) under Hypotheses (A1–4) arise frequently in certain

applications in mathematical control theory and numerical analysis. We mention

here two important applications:

(1) Application of “sampled-data” feedback: For example, consider the finite-

dimensional continuous-time control system ẋ(t) = f (t, x(t), v(t)), where

x(t) ∈ ℜn, v(t) ∈ ℜm, and the vector field f : ℜ+ × ℜn × ℜm → ℜn is con-

tinuous and locally Lipschitz in x ∈ ℜn. Suppose that there exists a fam-

ily of measurable and locally bounded controls t → v(t, t0, x0) parameter-

ized by (t0, x0) ∈ ℜ+ × ℜn with the following property: for every (t0, x0) ∈

ℜ+ ×ℜn, the unique solution of ẋ(t) = f (t, x(t), v(t, t0, x0)) with initial condi-

tion x(t0) = x0 exists for all t ≥ t0 and satisfies limt→+∞ x(t) = 0 ∈ ℜn. Then,

by application of the measurable and locally bounded controls t → v(t, t0, x0)

on the interval [t0, t0 + h(t0, x0)), where h : ℜ+ × ℜn → (0, r] is a positive

function bounded by certain constant r > 0, we obtain a control system that

produces for each (t0, x0) ∈ ℜ+ × ℜn and for each pair of measurable and lo-

cally bounded inputs u : ℜ+ → ℜm, e : ℜ+ → ℜn the absolutely continuous

function [t0,+∞) ∋ t → x(t) ∈ ℜn that satisfies a.e. the following differential

equation:

ẋ(t) = f
(

t, x(t), v
(

t, τi, x(τi) + e(τi)
)

+ u(t)
)

t ∈ [τi, τi+1)

τ0 = t0, τi+1 = τi + h
(

τi, x(τi) + e(τi)
)

, i = 0,1, . . .

Y (t) = H
(

t, x(t)
)

(1.62)

with initial condition x(t0) = x0. In this case, the measurable and locally

bounded inputs u : ℜ+ → ℜm and e : ℜ+ → ℜn represent the control actua-

tor error and the measurement error, respectively.

(2) Numerical solutions of ordinary differential equations: For example, consider

the finite-dimensional continuous-time dynamical system ẋ(t) = f (t, x(t)),

where x(t) ∈ ℜn. Let b = {Ti}
∞
i=0 be a partition of ℜ+, i.e., an increasing

sequence of time instants with T0 = 0 and Ti → +∞, and define qb(t) :=

min{T ∈ b; t < T }. Consider the explicit Euler discretization scheme with state-

dependent (adaptive) time step ℜ+ × ℜn ∋ (t, x) → h(t, x) > 0 that produces

for each (t0, x0) ∈ ℜ+ ×ℜn the absolutely continuous function [t0,+∞) ∋ t →

x(t) ∈ ℜn (Euler arc) satisfying the evolution equation with initial condition

x(t0) = x0,

ẋ(t) = f
(

τi, x(τi)
)

t ∈ [τi, τi+1)

τ0 = t0, τi+1 = min
{

qb(τi), τi + h
(

τi, x(τi)
)}

, i = 0,1, . . . (1.63)
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Clearly system (1.63) is a system of the form (1.57).

Consider system (1.57) under Hypotheses (A1–4). Clearly, under Hypothesis

(A1), for each pair of measurable and locally bounded inputs u : ℜ+ → U and

d : ℜ+ → D and for each (t0, x0) ∈ ℜ+ × ℜn, the piecewise absolutely continu-

ous function t → x(t) ∈ ℜn that satisfies (1.57) with initial condition x(t0) = x0 is

unique.

Standard arguments from the theory of existence of solutions of ordinary differ-

ential equations (see, for instance, [14]) show that if x(t) is defined for some t > t0,

then there exists ε > 0 such that the solution x(τ) is also defined for τ ∈ [t, t + ε).

Thus, for each (t0, x0, u, d) ∈ ℜ+ × ℜn × MU × MD , there exists a maximal exis-

tence time, i.e., there exists tmax ∈ (t0,+∞] for which the solution x(t) of (1.57) is

defined on [t0, tmax) and cannot be continued further.

We next show that if tmax < +∞, then the solution x(t) of (1.57) cannot be

bounded on [t0, tmax). The proof of this implication depends on the following claim.

Claim Let s > 0 be a constant. Every infinite sequence {τi}
∞
i=0 with τi+1 ≥

min{qb(τi), τi + s} for each i and τ0 ≥ 0 satisfies τi → +∞, where qb(t) equals

min{T ∈ b; t < T }, and b = {Ti}
∞
i=0 is the partition involved in Hypothesis (A4).

Proof of Claim Since qb(τi) > τi , it follows that {τi, i = 0,1, . . .} is an increas-

ing sequence. Consequently, we have τi → sup{τi, i = 0,1, . . .}. Suppose that

sup{τi, i = 0,1, . . .} < +∞. In this case, there exist N, Ñ > 0 such that TN , TN−1 ∈

π and TN−1 < τi < TN , i = Ñ, Ñ + 1, . . . . Thus, we obtain qb(τi) = TN , i =

Ñ, Ñ +1, . . . , and consequently τi+1 ≥ min{TN , τi + s}, i = Ñ, Ñ +1, . . . . Clearly,

since τi+1 < TN , i = Ñ, Ñ + 1, . . . , it follows that we must have τi + s =

min{TN , τi +s}, i = Ñ, Ñ +1, . . . , and this implies τi+1 ≥ τi +s, i = Ñ, Ñ +1, . . . .

Thus, we obtain τi ≥ TN−1 + (i − Ñ)s, i = Ñ, Ñ + 1, . . . , which shows that

sup{τi, i = 0,1, . . .} = +∞, a contradiction. The proof of the claim is complete. �

We are now ready to show the required implication. Suppose that tmax < +∞.

Let {t0 = τ0, τ1, . . .} be the sequence of time instants satisfying

τi+1 = τi + h
(

τi, x(τi), u(τi), d(τi)
)

i = 0,1,2, . . .

and R := max{sup{|u(t)|; t ∈ [t0, tmax]}, sup{|d(t)|; t ∈ [t0, tmax]}}. We consider the

following cases:

(1) The cardinal number of the set {τ0, τ1, . . .} is finite. Standard arguments from

the theory of existence of solutions of ordinary differential equations show that,

in this case, we have lim supt→t−max
|x(t)| = +∞.

(2) The cardinal number of the set {τ0, τ1, . . .} is infinite. In this case, we have

sup{τ0, τ1, . . .} ≤ tmax + r . However, if x(t) is bounded (say x(t) ∈ B[0, ρ]

for some ρ > 0), then we may define the bounded set S = [t0, tmax + r] ×

B[0, ρ] × BU [0,R] × BD[0,R]. By virtue of Hypothesis (A4), there exist a

partition b = {Ti}
∞
i=0 of ℜ+ and s > 0 with h(t, x,u, d) ≥ min{qb(t) − t, s}

for all (t, x,u, d) ∈ S. Consequently, it holds that τi+1 ≥ min{qb(τi), τi + s},
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i = 0,1, . . . , with τ0 ≥ 0. It follows from the above claim that τi → +∞, which

contradicts the fact that sup{τ0, τ1, . . .} ≤ tmax + r < +∞. Thus, we conclude

that the solution x(t) of (1.57) is not bounded.

In any case the hypothesis tmax < +∞ leads to the conclusion that the solution

x(t) of (1.57) is not bounded.

Let MU and MD be the sets of measurable and locally bounded inputs u :

ℜ+ → U and d : ℜ+ → D, respectively. Let φ : Aφ → ℜn be the mapping

φ(t, t0, x0, u, d) := x(t) which for each (t0, x0, d,u) ∈ ℜ+ × ℜn × MD × MU

and t ∈ [t0, tmax) gives the value x(t) ∈ ℜn of the unique solution of (1.57) with

x(t0) = x0 and τ0 = t0 ≥ 0. The mapping φ : Aφ → ℜn is defined on the set

Aφ =
⋃

(t0,x0,u,d)∈ℜ+×ℜn×MU ×MD

[

t0, tmax) ×
{

(t0, x0, u, d)
}

It should be clear from all the above that the mapping φ : Aφ → ℜn is well defined

and satisfies the following properties:

(1) Existence: For each (t0, x0, d,u) ∈ ℜ+ × ℜn × MD × MU , there exists t > t0
such that [t0, t] × {(t0, x0, u, d)} ⊆ Aφ .

(2) Identity Property: For each (t0, x0, d,u) ∈ ℜ+ × ℜn × MD × MU , it holds that

φ(t0, t0, x0, u, d) = x0.

(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈

MU × MD with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t], it holds that

(t, t0, x0, ũ, d̃) ∈ Aφ and φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) The “Boundedness-Implies-Continuation” (BIC) Property: For each (t0, x0,

u, d) ∈ ℜ+ ×ℜn ×MU ×MD , there exists a maximal existence time, i.e., there

exists tmax ∈ (t0,+∞] such that [t0, tmax) × {(t0, x0, u, d)} ⊆ Aφ and for all

t ≥ tmax, it holds that (t, t0, x0, u, d) /∈ Aφ . In addition, if tmax < +∞, then for

every M > 0, there exists t ∈ [t0, tmax) with |φ(t, t0, x0, u, d)| > M .

An important feature of systems of the form (1.57) under Hypotheses (A1–4) is

that they do not satisfy the classical “semigroup property”: for example, the solu-

tion x(t) of (1.57) with initial condition x(t0) = x0 does not coincide (in general)

for t ≥ t1 > t0 with the solution x̃(t) of (1.57) with initial condition x̃(t1) = x(t1)

corresponding to the same measurable and locally bounded inputs u : ℜ+ → U and

d : ℜ+ → D. The following example illustrates this point.

Example 1.2.5 Consider the following system:

ẋ(t) = −x(τi) t ∈ [τi, τi+1)

τi+1 = τi + 1

x(t) ∈ ℜ (1.64)

with initial condition x(t0) = x0 ∈ ℜ and τ0 = t0 ≥ 0. In this case we can determine

analytically the transition map for all t ≥ t0 (u,d in this example are irrelevant):

φ(t, t0, x0) =

{

(1 − t + t0)x0 for t ∈ [t0, t0 + 1)

0 for t ≥ t0 + 1



28 1 Introduction to Control Systems

It is clear that the state space is ℜ and that the classical semigroup property does not

hold for this system, i.e., the property

“for each t ∈ [t0, tmax), it holds that

φ(t, τ,φ(τ, t0, x0)) = φ(t, t0, x0) for all τ ∈ [t0, t]”

(Classical Semigroup Property)

does not hold. However, notice that the equality φ(t, τ,φ(τ, t0, x0)) =

φ(t, t0, x0) holds if τ ∈ π(t0, x0) = {t0, t0 + 1, t0 + 2, . . .}.

Let π(t0, x0, u, d) ⊆ [t0,+∞) be the set of the sampling instants, i.e.,

π(t0, x0, u, d) = {τi}
∞
i=0, where the sampling instants are generated by the recur-

sive relation τi+1 = τi + h(τi, x(τi), u(τi), d(τi)), i = 0,1, . . . , with τ0 = t0. Then

the following property holds:

(5) Weak Semigroup Property: There exists a constant r > 0 such that for each

t ≥ t0 with (t, t0, x0, u, d) ∈ Aφ :

(a) (τ, t0, x0, u, d) ∈ Aφ for all τ ∈ [t0, t],

(b) φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t] ∩ π(t0,

x0, u, d),

(c) if (t + r, t0, x0, u, d) ∈ Aφ , then it holds that π(t0, x0, u, d) ∩ [t, t + r] �= ∅,

(d) for all τ ∈ π(t0, x0, u, d) with (τ, t0, x0, u, d) ∈ Aφ , we have π(τ,φ(τ, t0,

x0, u, d), u, d) = π(t0, x0, u, d) ∩ [τ,+∞).

1.3 Deterministic Control Systems

Based on the examples of the previous section, we want to introduce the notion of

a deterministic control system. Notice that a more relaxed notion of a deterministic

control system will be adopted here than what has been widely used in past liter-

ature. This extension allows us to consider the important class of control systems

with variable sampling partition.

Definition 1.1 A deterministic control system Σ := (X , Y ,MU ,MD, φ,π,H)

with outputs consists of

(i) a set U (control set) which is a subset of a normed linear space U with 0 ∈ U

and a set MU ⊆ M(U) (allowable control inputs) which contains at least the

identically zero input u0 ∈ MU , (i.e., the input that satisfies u0(t) = 0 ∈ U for

all t ≥ 0);

(ii) a set D (disturbance set) and a set MD ⊆ M(D), which is called the “set of

allowable disturbances”;

(iii) a pair of normed linear spaces X and Y called the “state space” and the “output

space,” respectively;

(iv) a map H : ℜ+ × X × U → Y that maps bounded sets of ℜ+ × X × U into

bounded sets of Y , called the “output map”;
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(v) a set-valued map ℜ+ × X × MU × MD ∋ (t0, x0, u, d) → π(t0, x0, u, d) ⊆

[t0,+∞), with t0 ∈ π(t0, x0, u, d) for all (t0, x0, u, d) ∈ ℜ+ × X ×MU ×MD ,

called the set of “sampling times”; and

(vi) the map φ : Aφ → X , where Aφ ⊆ ℜ+ × ℜ+ × X × MU × MD , called the

“transition map,” which has the following properties:

(1) Existence: For each (t0, x0, u, d) ∈ ℜ+× X ×MU ×MD , there exists t > t0
such that [t0, t] × (t0, x0, u, d) ⊆ Aφ .

(2) Identity Property: For each (t0, x0, u, d) ∈ ℜ+ × X × MU × MD , it holds

that φ(t0, t0, x0, u, d) = x0.

(3) Causality: For each (t, t0, x0, u, d) ∈ Aφ with t > t0 and for each (ũ, d̃) ∈

MU × MD with (ũ(τ ), d̃(τ )) = (u(τ ), d(τ )) for all τ ∈ [t0, t], it holds that

(t, t0, x0, ũ, d̃) ∈ Aφ with φ(t, t0, x0, u, d) = φ(t, t0, x0, ũ, d̃).

(4) Weak Semigroup Property: There exists a constant r > 0 such that for each

t ≥ t0 with (t, t0, x0, u, d) ∈ Aφ :

(a) (τ, t0, x0, u, d) ∈ Aφ for all τ ∈ [t0, t],

(b) φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t] ∩

π(t0, x0, u, d),

(c) if (t + r, t0, x0, u, d) ∈ Aφ , then it holds that π(t0, x0, u, d) ∩

[t, t + r] �= ∅,

(d) for all τ ∈ π(t0, x0, u, d) with (τ, t0, x0, u, d) ∈ Aφ , we have

π(τ,φ(τ, t0, x0, u, d), u, d) = π(t0, x0, u, d) ∩ [τ,+∞).

A deterministic control system Σ := (X , Y ,MU ,MD, φ,π,H) with no external

inputs, i.e., U = {0}, is called a deterministic dynamical system.

A deterministic control system Σ := (X , Y ,MU ,MD, φ,π,H) with φ(t, t0,

x,u, d) = x for all (t0, x,u, d) ∈ ℜ+× X ×MU ×MD , t ≥ t0, and H : ℜ+×U → Y

(i.e., the output is independent of the state) is called a static map.

Definition 1.2 A deterministic control system Σ := (X , Y ,MU ,MD, φ,π,H)

with outputs is called T -periodic for some constant T > 0 if

(a) H(t + T ,x,u) = H(t, x,u) for all (t, x,u) ∈ ℜ+ × X × U ;

(b) for every (u, d) ∈ MU × MD and integer k, there exist inputs PkT u ∈ MU and

PkT d ∈ MD with (PkT u)(t) = u(t + kT ) and (PkT d)(t) = d(t + kT ) for all

t + kT ≥ 0;

(c) for each (t, t0, x0, u, d) ∈ Aφ with t ≥ t0 and for each integer k with

t0 − kT ≥ 0, it follows that (t − kT , t0 − kT , x0,PkT u,PkT d) ∈ Aφ and

π(t0 − kT , x0,PkT u,PkT d) =
⋃

τ∈π(t0,x0,u,d){τ − kT } with φ(t, t0, x0, u, d) =

φ(t − kT , t0 − kT , x0,PkT u,PkT d).

Definition 1.3 A deterministic control system Σ := (X , Y ,MU ,MD, φ,π,H)

with outputs is called time-invariant, or autonomous, if it is T-periodic for all T > 0.

Remark 1.3 (a) Section 1.2.1 shows that systems (1.3) described by ODEs under

(H1)–(H4) define deterministic control systems Σ := (X , Y ,MU ,MD, φ,π,H)

with X = ℜn and Y = ℜk . If the mappings f : ℜ+ × ℜn × U × D → ℜn and
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H : ℜ+ × ℜn × U → ℜk are T -periodic with respect to t , then system (1.3) is

T -periodic. Moreover, if the mappings f : ℜ+ × ℜn × U × D → ℜn and H :

ℜ+ × ℜn × U → ℜk are independent of t , then system (1.3) is autonomous.

(b) Section 1.2.2 shows that systems (1.10) described by RFDEs under Hypothe-

ses (S1–4) define deterministic control systems Σ := (X , Y ,MU ,MD, φ,π,H)

with X = C0([−r,0];ℜn). If the mappings f : ℜ+ × C0([−r,0];ℜn) × U × D →

ℜn and H : ℜ+ × C0([−r,0];ℜn) × U → Y are T -periodic with respect to t , then

system (1.10) is T -periodic. Moreover, if the mappings f : ℜ+ ×C0([−r,0];ℜn)×

U × D → ℜn and H : ℜ+ × C0([−r,0];ℜn) × U → Y are independent of t , then

system (1.10) becomes autonomous.

(c) Section 1.2.3 shows that systems (1.18), (1.19), (1.20) described by coupled

RFDEs and FDEs under Hypotheses (P1–5) define deterministic control systems

Σ := (X , Y ,MU ,MD, φ,π,H) with X = C0([−r1,0];ℜn1)× L∞([−r2,0];ℜn2).

If the mappings fi :
⋃

t≥0{t}×D×C0([−r1,0];ℜn1)× L∞([−r2 +τ(t),0];ℜn2)×

U → ℜni , i = 1,2, H : ℜ+ × C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) × U → Y ,

and τ : ℜ+ → (0,+∞) are T -periodic with respect to t , then system (1.18),

(1.19), (1.20) is T -periodic. Furthermore, if the mappings fi :
⋃

t≥0{t} × D ×

C0([−r1,0];ℜn1) × L∞([−r2 + τ(t),0];ℜn2) × U → ℜni , i = 1,2, H : ℜ+ ×

C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) × U → Y , and τ : ℜ+ → (0,+∞) are in-

dependent of t , then system (1.18), (1.19), (1.20) is autonomous.

(d) Section 1.2.4 shows that systems of the form (1.42) described by FDEs un-

der (Q1)–(Q3) define deterministic control systems Σ := (X , Y ,MU ,MD, φ,π,H)

with X being the normed linear space of bounded functions x : [−r,0] → ℜn with

norm ‖x‖X = sup−r≤τ≤0 |x(τ)|. If the mappings f :
⋃

t≥0{t} × D × B(t) × U →

ℜn, τ : ℜ+ → (0,+∞), and H : ℜ+ × X × U → Y , where B(t) denotes the set

of all bounded mappings x : [−r + τ(t),0] → ℜn, are T -periodic with respect to

t , then system (1.42) is T -periodic. Moreover, if the mappings f :
⋃

t≥0{t} × D ×

B(t) × U → ℜn, τ : ℜ+ → (0,+∞), and H : ℜ+ × X × U → Y are independent

of t , then system (1.42) is autonomous.

(e) Section 1.2.5 shows that systems of the form (1.57) described by ODEs under

(A1)–(A4) define deterministic control systems Σ := (X , Y ,MU ,MD, φ,π,H)

with X = ℜn and Y = ℜp . Notice that if h(τ + T ,x,u, d) = h(τ, x,u, d), f (t +

T , τ + T ,x, x0, u,u0, d, d0) = f (t, τ, x, x0, u,u0, d, d0), R(τ + T ,x, x0, u,u0,

d, d0) = R(τ, x, x0, u,u0, d, d0) and H(t + T ,x,u) = H(t, x,u) for certain T > 0

and for (t, τ, u,u0, d, d0, x, x0) ∈ ℜ+×ℜ+×U ×U ×D×D×ℜn×ℜn with t ≥ τ ,

then system (1.57) is T-periodic. Furthermore, if h(τ, x,u, d) = h(x,u, d) and if

f (t, τ, x, x0, u,u0, d, d0) = f (t − τ, x, x0, u,u0, d, d0), R(τ, x, x0, u,u0, d, d0) =

R(x, x0, u,u0, d, d0), and H(t, x,u) = H(x,u) for (t, τ, u,u0, d, d0, x, x0) ∈ ℜ+ ×

ℜ+ × U × U × D × D × ℜn × ℜn with t ≥ τ , then system (1.57) is autonomous.

We next give definitions of some important classes of control systems.

Definition 1.4 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with out-

puts. We say that system Σ :
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(1) satisfies the “Boundedness-Implies-Continuation” (BIC) property if for each

(t0, x0, u, d) ∈ ℜ+ × X × MU × MD , there exists a maximal existence time,

i.e., there exists tmax ∈ (t0,+∞] such that [t0, tmax) × {(t0, x0, u, d)} ⊆ Aφ and

for all t ≥ tmax, it holds that (t, t0, x0, u, d) /∈ Aφ . In addition, if tmax < +∞,

then for every M > 0, there exists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u, d)‖X > M ;

(2) is robustly forward complete (RFC) from the input u ∈ MU if it has the BIC

property and for every R ≥ 0, T ≥ 0, it holds that

sup
{∥
∥φ(t0 + s, t0, x0, u, d)

∥
∥

X
;u ∈ M

(

BU [0,R]
)

∩ MU , s ∈ [0, T ],

‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD

}

< +∞.

Remark 1.4 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with the

BIC property. It follows that Σ satisfies the (classical) semigroup property (see

[21, 22, 46]) if the weak semigroup property holds with π(t0, x0, u, d) = [t0, tmax),

where tmax ∈ (t0,+∞] is the maximal existence time of the transition map for Σ

that corresponds to (t0, x0, u, d) ∈ ℜ+ × X × MU × MD , i.e.,

“for each t ∈ [t0, tmax), it holds that

φ(t, τ,φ(τ, t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all τ ∈ [t0, t]”

(Classical Semigroup Property)

Notice that the RFC property is more demanding than the BIC property. All classes

of systems presented in the previous section satisfy the BIC property. However, only

for systems described by FDEs of the form (1.42) under Hypotheses (Q1), (Q2), we

can prove that the RFC property holds. Indeed, the following result guarantees the

RFC property for systems described by FDEs.

Theorem 1.2 Consider the control system Σ := (X , Y ,MU ,MD, φ,π,H) de-

scribed by (1.42) under Hypotheses (Q1), (Q2), where X is the normed linear space

of bounded functions x : [−r,0] → ℜn with norm ‖x‖X = sup−r≤τ≤0 |x(τ)|. For

every T ≥ 0, there exists GT ∈ K∞ such that the following estimate holds for all

R ≥ 0:

sup
{∥
∥φ(t0 + s, t0, x0, u, d)

∥
∥

X
;u ∈ M

(

BU [0,R]
)

∩ MU , s ∈ [0, T ],

‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD

}

≤ GT (R) (1.65)

Proof Let T ≥ 0, R ≥ 0 be given and define

s = min
{

τ(t) : t ∈ [0,2T + r]
}

(1.66)

By virtue of (Q1), it follows that s > 0. Consider the solution of (1.42) with initial

condition Tr(t0)x = x0 ∈ X corresponding to inputs u ∈ M(BU [0,R]) ∩ MU , d ∈

MD and such that ‖x0‖X ≤ R, t0 ∈ [0, T ]. Hypothesis (Q2), in conjunction with

definition (1.66), implies that, for all t ∈ [t0, t0 + T ],

sup
t0−r≤τ≤t+s

∣
∣x(τ)

∣
∣ ≤ ã

(

sup
t0−r≤τ≤t

∣
∣x(τ)

∣
∣

)

+ ã(R) (1.67)
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where ã(y) := a(y max0≤t≤2T +r β(t)), θ(y) := y + 2ã(y), and

max
{

R, sup
t0−r≤τ≤t+s

∣
∣x(τ)

∣
∣

}

≤ θ
(

max
{

R, sup
t0−r≤τ≤t

∣
∣x(τ)

∣
∣

})

(1.68)

Inequality (1.68) and induction arguments show that the following estimate holds

for all integers j ≥ 0 with js ≤ T :

max
{

R, sup
t0−r≤τ≤t0+(j+1)s

∣
∣x(τ)

∣
∣

}

≤ θ (j+1)(R) (1.69)

where θ (j) = θ ◦ · · · ◦ θ
︸ ︷︷ ︸

j times

. It follows from (1.69) that inequality (1.65) holds with

GT = θ (i), where i = [T
s
] + 1. The proof is complete. �

1.4 Equilibrium Points

The following definition clarifies the notion of an equilibrium point for control sys-

tems with outputs in the sense of Definition 1.1.

Definition 1.5 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) and let

u0 ∈ MU be the identically zero input, i.e., u0(t) = 0 for all t ≥ 0. Suppose that

H(t,0,0) = 0 for all t ≥ 0. We say that 0 ∈ X is a robust equilibrium point from the

input u ∈ MU for Σ if

(1) for every (t, t0, d) ∈ ℜ+ × ℜ+ × MD with t ≥ t0, it holds that φ(t, t0,0,

u0, d) = 0;

(2) for all ε > 0 and T ,h ∈ ℜ+, there exists δ := δ(ε, T ,h) > 0 such that for all

(t0, x,u) ∈ [0, T ]× X ×MU and τ ∈ [t0, t0 +h] with ‖x‖X +supt≥0 ‖u(t)‖U ≤

δ, it holds that (τ, t0, x,u, d) ∈ Aφ for all d ∈ MD and

sup
{∥
∥φ(τ, t0, x,u, d)

∥
∥

X
;d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]

}

≤ ε.

The reader should not be surprised by the previous definition of a robust equilib-

rium point. The usual definition of equilibrium point does not require property (2)

of Definition 1.5 to hold. However, in most cases the control systems studied satisfy

the property of continuous dependence on the input and initial conditions of the

transition map, i.e.,

for each (t, T , x0, u) ∈ ℜ+ × ℜ+ × X × MU with t ≥ T and for every ε >

0, there exists δ > 0 such that for every (x, v) ∈ X × MU with ‖x − x0‖X

+ supt≥0 ‖v(τ) − u(τ)‖U < δ and for every (t0, d) ∈ [0, T ] × MD with (t, t0, x0,

u, d) ∈ Aφ , it follows that (t, t0, x, v, d) ∈ Aφ and

sup
{∥
∥φ(τ, t0, x, v, d) − φ(τ, t0, x0, u, d)

∥
∥

X
; (t0, d) ∈ [0, T ] × MD,

τ ∈ [t0, t] with (t, t0, x0, u, d) ∈ Aφ

}

< ε
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It can be immediately verified that if the transition map depends continuously on

the input and initial conditions, then the usual definition of an equilibrium point is

equivalent to Definition 1.5 (since property (2) of Definition 1.5 is automatically

satisfied). Since our effort is to provide results for systems that do not necessarily

satisfy the property of continuous dependence on the initial conditions, we do not

assume this property.

Definition 1.5 clarifies the main reason for which there is a distinction of the

inputs acting on the system in Definition 1.1 of control systems (“inputs” and “dis-

turbances”). The inputs that belong to the “set of allowed disturbances” (MD ⊆

M(D)) do not alter the position of equilibrium points. On the other hand, inputs

that belong to the set of “allowable control inputs” (MU ⊆ M(U)) are allowed to

alter the position of equilibrium points. This reminds the difference between “addi-

tive” and “multiplicative” uncertainties in linear system theory.

Example 1.4.1 (Robust equilibrium points for control systems described by ODEs)

Consider system (1.3) under Hypotheses (H1–4). Since f (t,0,0, d) = 0 for all

(t, d) ∈ ℜ+ ×D, it follows that φ(t, t0,0, u0, d) = 0 ∈ ℜn for all (t0, d) ∈ ℜ+ ×MD

and t ≥ t0. Let ε > 0, T ,h ∈ ℜ+ (arbitrary), and let δ := δ(ε, T ,h) > 0 be the unique

solution of the equation

K2

K1
exp

(

h

(
L

K1
+ 1

))

δ2 +
K2

K1
exp

(

h

(
L

K1
+ 1

))
(

max
0≤t≤T +h

γ (t)
)2(

a(δ)
)2

=
ε2

4
(1.70)

where L := L(T + h, ε), L(·) is the function involved in (1.1), K1,K2 > 0 are

constants that satisfy K1|x|2 ≤ x′Px ≤ K2|x|2 for all x ∈ ℜn for the symmetric

positive definite matrix P ∈ ℜn×n involved in Hypothesis (H1), and γ ∈ K+ and

a ∈ K∞ are the functions involved in Hypothesis (H3). We next show that property

(2) of Definition 1.5 holds with δ := δ(ε, T ,h) > 0 defined by (1.70). Notice that

since system (1.3) under Hypotheses (H1–4) satisfies the BIC property, it suffices

to show that, for all (x0, u) ∈ ℜn × MU with |x0| + supt≥0 |u(t)| ≤ δ, it holds that

sup{|φ(τ, t0, x0, u, d)|;d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} ≤ ε.

The proof will be made by contradiction. Suppose that there exists (x0, u) ∈

ℜn × MU with |x0| + supt≥0 |u(t)| ≤ δ and

sup
{∣
∣φ(τ, t0, x0, u, d)

∣
∣;d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]

}

> ε

Consequently, there exist d ∈ MD , t0 ∈ [0, T ], and t ∈ [t0, t0 + h] with |x(t)| ≥ 3ε
4

(where x(t) = φ(t, t0, x0, u, d)). Consider the nonempty set A = {t ≥ t0 : |x(t)| >
5ε
8

}. Let t1 = infA. Notice that since |x0| ≤ δ ≤ ε
2

and |x(t)| ≥ 3ε
4

, it follows that

t1 > t0 and t1 ≤ t0 + h. Furthermore, by virtue of definition t1 = infA, we have

|x(t1)| = 5ε
8

and |x(t)| ≤ ε for all t ∈ [t0, t1]. In this case, we consider the abso-

lutely continuous function V (t) = x′(t)P x(t), which by (1.1) satisfies the following

inequality a.e. for t ∈ [t0, t1]:

V̇ (t) ≤ L
∣
∣x(t)

∣
∣
2
+ 2x′(t)Pf

(

t,0, u(t), d(t)
)

(1.71)
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With (1.71), using the inequalities 2x′Pf (t,0, u, d) ≤ x′Px +f ′(t,0, u, d)Pf (t,0,

u, d), K1|x|2 ≤ x′Px ≤ K2|x|2, and |f (t,0, u(t), d(t))| ≤ γ (t)a(|u|) ≤ γ (t)a(δ),

we conclude that the absolutely continuous function V (t) = x′(t)P x(t) satisfies the

following inequality a.e. for t ∈ [t0, t1]:

V̇ (t) ≤

(
L

K1
+ 1

)

V (t) + K2γ
2(t)

(

a(δ)
)2

(1.72)

The above differential inequality, in conjunction with the inequality K1|x|2 ≤

x′Px ≤ K2|x|2, implies that, for all t ∈ [t0, t1],

∣
∣x(t)

∣
∣
2
≤

K2

K1
exp

(

h

(
L

K1
+ 1

))

δ2

+
K2

K1
exp

(

h

(
L

K1
+ 1

))
(

max
0≤t≤T +h

γ (t)
)2(

a(δ)
)2

The previous inequality in conjunction with (1.70) implies |x(t1)| ≤ ε
2

, which con-

tradicts the fact that |x(t1)| =
5ε
8

.

Thus we conclude that 0 ∈ ℜn is a robust equilibrium point for system (1.3) under

Hypotheses (H1–4).

Example 1.4.2 (Robust equilibrium points for control systems described by RFDEs)

Consider system (1.10) under Hypotheses (S1–4). Since f (t,0,0, d) = 0 for all

(t, d) ∈ ℜ+ × D, it follows that φ(t, t0,0, u0, d) = 0 ∈ C0([−r,0];ℜn) for all

(t0, d) ∈ ℜ+ × MD and t ≥ t0. Let ε > 0, T ,h ∈ ℜ+ (arbitrary), and let δ :=

δ(ε, T ,h) > 0 be the unique solution of the equation

K2

K1
exp

(
L + K2

K1
h

)
(

δ2 + h
(

max
0≤t≤T +h

γ (t)
)2(

a(δ)
)2

)

=
ε2

4
(1.73)

where L := L(T + h, ε), L(·) is the function involved in (1.8), K1,K2 > 0 are

constants that satisfy K1|x|2 ≤ x′Px ≤ K2|x|2 for all x ∈ ℜn for the symmetric

positive definite matrix P ∈ ℜn×n involved in Hypothesis (S1), and γ ∈ K+ and a ∈

K∞ are the functions involved in Hypothesis (S2). We next show that property (2)

of Definition 1.5 holds with δ := δ(ε, T ,h) > 0 defined by (1.73). Notice that since

system (1.10) under Hypotheses (S1–4) satisfies the BIC property, it suffices to show

that for all (x0, u) ∈ C0([−r,0];ℜn) × MU with ‖x0‖r + supt≥0 |u(t)| ≤ δ, it holds

that sup{‖φ(τ, t0, x0, u, d)‖r ;d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]} ≤ ε.

The proof will be made by contradiction. Suppose that there exists (x0, u) ∈

C0([−r,0];ℜn) × MU with ‖x0‖r + supt≥0 |u(t)| ≤ δ and

sup
{∥
∥φ(τ, t0, x0, u, d)

∥
∥

r
;d ∈ MD, τ ∈ [t0, t0 + h], t0 ∈ [0, T ]

}

> ε

Consequently, there exists d ∈ MD , t0 ∈ [0, T ] and t ∈ [t0, t0 +h] with ‖Tr(t)x‖r ≥
3ε
4

(where Tr(t)x = φ(t, t0, x0, u, d)). By virtue of Lemma 2.1, p. 40 in [14],

we know that the mapping τ → ‖Tr(τ )x‖r is continuous on [t0, t]. Consider the

nonempty set A = {τ ≥ t0 : ‖Tr(τ )x‖ > 5ε
8

}. Let t1 = infA. Notice that since

‖x0‖r ≤ δ ≤ ε
2

and ‖Tr(t)x‖r ≥ 3ε
4

, it follows that t1 > t0 and t1 ≤ t0 + h. Further-

more, by the definition of t1 = infA, we have ‖Tr(t1)x‖r = 5ε
8

and ‖Tr(τ )x‖r ≤ ε
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for all τ ∈ [t0, t1]. In this case, we consider the absolutely continuous function

V (t) = x′(t)P x(t), which by (1.8) satisfies the following inequality a.e. for t ∈

[t0, t1]:

V̇ (t) ≤ L
∥
∥Tr(t)x

∥
∥

2

r
+ 2x′(t)Pf

(

t,0, u(t), d(t)
)

(1.74)

With (1.74), using the inequalities 2x′Pf (t,0, u, d) ≤ x′Px +f ′(t,0, u, d)Pf (t,0,

u, d), K1|x|2 ≤ x′Px ≤ K2|x|2, and |f (t,0, u(t), d(t))| ≤ γ (t)a(|u|) ≤ γ (t)a(δ),

we conclude that the following inequality holds for all t ∈ [t0, t1]:

∣
∣x(t)

∣
∣
2
≤

L + K2

K1

∫ t

t0

∥
∥Tr(τ )x

∥
∥

2

r
dτ +

K2

K1
‖x0‖

2
r + h

K2

K1

(

max
0≤t≤T +h

γ (t)
)2(

a(δ)
)2

The above integral inequality gives for all t ∈ [t0, t1]:

∥
∥Tr(t)x

∥
∥

2

r
≤

L + K2

K1

∫ t

t0

∥
∥Tr(τ )x

∥
∥

2

r
dτ +

K2

K1
‖x0‖

2
r

+ h
K2

K1

(

max
0≤t≤T +h

γ (t)
)2(

a(δ)
)2

(1.75)

Inequality (1.75) in conjunction with the Gronwall–Bellman lemma implies that

∥
∥Tr(t)x

∥
∥

2

r
≤

K2

K1
exp

(
L + K2

K1
h

)
(

‖x0‖
2
r + h

(

max
0≤t≤T +h

γ (t)
)2(

a(δ)
)2

)

for all t ∈ [t0, t1].

The previous inequality in conjunction with ‖x0‖r ≤ δ and (1.73) implies

‖Tr(t1)x‖r ≤ ε
2

, which contradicts the fact that ‖Tr(t1)x‖r = 5ε
8

.

Thus, 0 ∈ C0([−r,0];ℜn) is a robust equilibrium point from the input u ∈ MU

for system (1.10) under Hypotheses (S1–4).

Example 1.4.3 (Robust equilibrium points for control systems described by cou-

pled RFDEs and FDEs) For systems described by coupled RFDEs and FDEs of

the form (1.18), (1.19) under Hypotheses (P1–4), the fact that (0,0) ∈ C0([−r1,0];

ℜn1) × L∞([−r2,0];ℜn2) is a robust equilibrium point from the input u ∈ MU fol-

lows from the following result.

Theorem 1.3 Consider system (1.18), (1.19) under Hypotheses (P1–4). Then

for all ε > 0 and T ,h ∈ ℜ+, there exists δ := δ(ε, T ,h) > 0 such that for

all (t0, x10, x20) ∈ [0, T ] × C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) and (u, d) ∈

L∞
loc(ℜ

+;U) × L∞
loc(ℜ

+;D) with ‖x10‖r1
+ ‖x20‖r2

+ supt≥0 |u(t)| ≤ δ, there exist

tmax ∈ (t0 + h,+∞] and a unique pair of mappings x1 ∈ C0([t0 − r1, tmax);ℜ
n1),

x2 ∈ L∞
loc([t0 − r2, tmax);ℜ

n2) with Tr1
(t0)x1 = x10, Tr2

(t0)x2 = x20, x1 ∈ C0([t0 −

r1, tmax);ℜ
n1) being absolutely continuous on [t0, tmax), such that (1.18) holds a.e.

for t ∈ [t0, tmax), (1.19) holds for all t ∈ (t0, tmax), and

sup
{∥
∥Tr1

(t)x1

∥
∥

r1
+

∥
∥Tr2

(t)x2

∥
∥

r2
; t ∈ [t0, t0 + h]

}

≤ ε. (1.76)

For the proof of Theorem 1.3, we need the following technical lemma.
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Lemma 1.1 For all ε > 0 and T ∈ ℜ+, there exists δ̃ := δ̃(ε, T ) > 0 such that

for all (t0, x10, x20) ∈ [0, T ] × C0([−r1,0];ℜn1) × L∞([−r2,0];ℜn2) and (u, d) ∈

L∞
loc(ℜ

+;U) × L∞
loc(ℜ

+;D) with ‖x10‖r1
+ ‖x20‖r2

+ supt≥0 |u(t)| ≤ δ̃, there exist

tmax ∈ (t0 + h,+∞], where h := h(T ) = min(1;min{τ(s) : s ∈ [0, T + 1]}), and a

unique pair of mappings x1 ∈ C0([t0 −r1, tmax);ℜ
n1), x2 ∈ L∞

loc([t0 −r2, tmax);ℜ
n2)

with Tr1
(t0)x1 = x10, Tr2

(t0)x2 = x20 such that (1.18) holds a.e. for t ∈ [t0, tmax),

(1.19) holds for all t ∈ (t0, tmax), and (1.76) holds.

Proof Without loss of generality, we may assume that the function a ∈ K∞ involved

in Hypothesis (P2) satisfies a(s) ≥ s for all s ≥ 0 and that the function β ∈ K+

involved in Hypothesis (P2) is nondecreasing with β(t) ≥ 1 for all t ≥ 0. Let ε > 0,

T ∈ ℜ+, and define

δ̃(ε, T ) :=
1

β(T + 1)
a−1

(√

K1

K2

exp
(

− L̃(ε,T )+K2
K1

)

4β(T + 1)
a−1

(
ε

9

)
)

(1.77)

where L̃(ε, T ) is the constant that corresponds to the bounded sets I := [0, T +

1] ⊂ ℜ+, � ⊂ {x1 ∈ C0([−r1,0];ℜn1) : ‖x1‖r1
≤ ε} × {x2 ∈ L∞([−r2,0];ℜn2) :

‖x2‖r2
≤ ε} × {u ∈ U : |u| ≤ ε} and satisfies (1.21), and K1,K2 > 0 are constants

that satisfy K1|x|2 ≤ x′Px ≤ K2|x|2 for all x ∈ ℜn1 for the symmetric positive

definite matrix P ∈ ℜn1×n1 involved in Hypothesis (P4).

Let (t0, x10, x20) ∈ [0, T ]×C0([−r1,0];ℜn1)× L∞([−r2,0];ℜn2) and (u, d) ∈

L∞
loc(ℜ

+;U) × L∞
loc(ℜ

+;D) with ‖x10‖r1
+ ‖x20‖r2

+ supt≥0 |u(t)| < δ̃ (but oth-

erwise arbitrary). By Theorem 1.1, there exist tmax ∈ (t0,+∞] and a unique pair

of mappings x1 ∈ C0([t0 − r1, tmax);ℜ
n1), x2 ∈ L∞

loc([t0 − r2, tmax);ℜ
n2) with

Tr1
(t0)x1 = x10, Tr2

(t0)x2 = x20, x1 being absolutely continuous on [t0, tmax), such

that (1.18) holds a.e. for t ∈ [t0, tmax) and (1.19) holds for all t ∈ (t0, tmax). In

addition, if tmax < +∞, then for every M > 0, there exists t ∈ [t0, tmax) with

‖Tr1
(t)x1‖r1

> M .

Define the set

A =

{

t ∈ [t0, tmax) :
∥
∥Tr1

(t)x1

∥
∥

r1
>

1

β(T + 1)
a−1

(
ε

9

)}

(1.78)

We distinguish two cases:

(1) A ∩ [t0, t0 + h] = ∅;

(2) A ∩ [t0, t0 + h] �= ∅.

Case 1: We will show that (1.76) holds in this case with δ̃ := δ̃(ε, T ) > 0 as defined

by (1.77). If A ∩ [t0, t0 + h] = ∅, where h := h(T ) = min(1;min{τ(s) : s ∈ [0, T +

1]}), then x1 is bounded on [t0, t0 + h], and consequently we have tmax > t0 + h.

Moreover, by virtue of Hypothesis (P2), we have, for all t ∈ [t0, t0 + h],
∣
∣x2(t)

∣
∣ ≤ a

(

β(t)
∥
∥Tr1

(t)x1

∥
∥

r1

)

+ a
(

β(t)
∥
∥Tr2−τ(t)

(

t − τ(t)
)

x2

∥
∥

r2−τ(t)

)

+ a
(

β(t)
∣
∣u(t)

∣
∣
)

(1.79)

Since A∩[t0, t0 +h] = ∅ (which implies a(β(t)‖Tr1
(t)x1‖r1

) ≤ ε
9

for all t ∈ [t0, t0 +

h]; see (1.78)), ‖x20‖r2
≤ δ̃ (which implies a(β(t)‖Tr2−τ(t)(t − τ(t))x2‖r2−τ(t)) ≤
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ε
9

for all t ∈ [t0, t0 + h]; see (1.77)), and supt≥0 |u(t)| ≤ δ̃ (which implies

a(β(t)|u(t)|) ≤ ε
9

for all t ∈ [t0, t0 + h]; see (1.77)), from (1.79) we obtain

∣
∣x2(t)

∣
∣ ≤

ε

3
for all t ∈ [t0, t0 + h] (1.80)

Inequality (1.80), in conjunction with the fact that ‖x20‖r2
< δ̃ ≤ ε

3
and the assump-

tion A∩ [t0, t0 +h] = ∅ (which implies ‖Tr1
(t)x1‖r1

≤ a(β(t)‖Tr1
(t)x1‖r1

) ≤ ε
9

for

all t ∈ [t0, t0 + h]), shows that (1.76) holds in this case.

Case 2: We will show that this case cannot happen by contradiction. Assume

that A ∩ [t0, t0 + h] �= ∅ and define t1 = infA. By continuity of the mapping

t → ‖Tr1
(t)x1‖r1

and since ‖x10‖r1
≤ δ̃ < 1

β(T +1)
a−1( ε

9
), it follows that t1 > t0.

Hence, by continuity of the map t → ‖Tr1
(t)x1‖r1

and definition (1.78), we have

‖Tr1
(t1)x1‖r1

= 1
β(T +1)

a−1( ε
9
). Evaluating the derivative of the absolutely continu-

ous map V (t) = x′
1(t)P x1(t) on [t0, t1], in conjunction with Hypothesis (P4), gives

d

dt
V (t) = 2x′

1(t)Pf1

(

t, d(t), Tr1
(t)x1, Tr2−τ(t)

(

t − τ(t)
)

x2, u(t)
)

≤ 2L̃
∥
∥Tr1

(t)x1

∥
∥

2

r1

+ 2x′
1(t)Pf1

(

t, d(t),0, Tr2−τ(t)

(

t − τ(t)
)

x2, u(t)
)

(1.81)

where L̃ is the constant that corresponds to the bounded sets I := [0, T + 1] ⊂ ℜ+,

� ⊂ {x1 ∈ C0([−r1,0];ℜn1) : ‖x1‖r1
≤ ε} × {x2 ∈ L∞([−r2,0];ℜn2) : ‖x2‖r2

≤ ε}

×{u ∈ U : |u| ≤ ε} and satisfies (1.21). Inequality (1.81), in conjunction with

Hypothesis (P2), the inequality 2x′
1Pf1 ≤ K2|x1|

2 + K2|f1|
2 and the facts that

‖x20‖r2
< δ̃ (which implies

a
(

β(t)
∥
∥Tr2−τ(t)

(

t − τ(t)
)

x2

∥
∥

r2−τ(t)

)

≤

√

K1

K2

exp
(

− L̃(ε,T )+K2
K1

)

4β(T + 1)
a−1

(
ε

9

)

for all t ∈ [t0, t0 + h];

see (1.77)) and supt≥0 |u(t)| ≤ δ̃ (which implies

a
(

β(t)
∣
∣u(t)

∣
∣
)

≤

√

K1

K2

exp
(

− L̃(ε,T )+K2

K1

)

4β(T + 1)
a−1

(
ε

9

)

for all t ∈ [t0, t0 + h] see (1.77)), gives

V̇ (t) ≤ 2
(

L̃ + K2

)∥
∥Tr1

(t)x1

∥
∥

2

r1
+ K1

exp
(

−2 L̃+K2
K1

)

4β2(T + 1)

(

a−1

(
ε

9

))2

a.e.

on [t0, t1] (1.82)

Integrating both sides of (1.82) and using K1|x|2 ≤ x′Px ≤ K2|x|2, we get, for all

t ∈ [t0, t1],
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∣
∣x1(t)

∣
∣
2
≤

K2

K1

∣
∣x1(t0)

∣
∣
2
+ 2

L̃ + K2

K1

∫ t

t0

∥
∥Tr1

(s)x1

∥
∥

2

r1
ds

+
exp

(

−2 L̃+K2
K1

)

4β2(T + 1)

(

a−1

(
ε

9

))2

(1.83)

The following inequality is a direct consequence of (1.83) and holds for all t ∈

[t0, t1]:

∥
∥Tr1

(t)x1

∥
∥

2

r1
≤

K2

K1

∥
∥Tr1

(t0)x1

∥
∥

2

r1
+ 2

L̃ + K2

K1

∫ t

t0

∥
∥Tr1

(s)x1

∥
∥

2

r1
ds

×
exp

(

−2 L̃+K2
K1

)

4β2(T + 1)

(

a−1

(
ε

9

))2

(1.84)

Since the map t → ‖Tr1
(t)x1‖r1

is continuous and (1.84) holds on [t0, t1], we may

apply the Gronwall–Bellman lemma. We obtain, for all t ∈ [t0, t1],

∥
∥Tr1

(t)x1

∥
∥

r1
≤

√

K2

K1
exp

(
L̃ + K2

K1

)
∥
∥Tr1

(t0)x1

∥
∥

r1
+

1

2β(T + 1)
a−1

(
ε

9

)

(1.85)

Since ‖x10‖r1
≤ δ̃ (which implies ‖Tr1

(t0)x1‖r1
≤

√
K1
K2

exp(−
L̃+K2

K1
)

4β(T +1)
a−1( ε

9
)), from

(1.85) we get

∥
∥Tr1

(t1)x1

∥
∥

r1
≤

3

4β(T + 1)
a−1

(
ε

9

)

<
1

β(T + 1)
a−1

(
ε

9

)

(1.86)

Inequality (1.86) contradicts the equality ‖Tr1
(t1)x1‖r1

= 1
β(T +1)

a−1( ε
9
). Thus, the

case A ∩ [t0, t0 + h] �= ∅ cannot happen.

The proof is complete. �

We continue with the proof of Theorem 1.3.

Proof of Theorem 1.3 Consider the sequence {Ti}
∞
i=0 generated by the recursive

relation

T0 = T ≥ 0

Ti+1 = Ti + min
(

1;min
{

τ(s) : s ∈ [0, Ti + 1]
})

i = 1,2, . . .
(1.87)

A standard contradiction argument shows that limTi = supTi = +∞ for all T0 ≥

0. Consequently, given arbitrary T ,h ∈ ℜ+, there exists some nonnegative integer

l(T ,h) such that the sequence {Ti}
∞
i=0 defined by (1.87) with the initial condition

T0 = T satisfies Ti ≥ T + h for all i ≥ l(T ,h). The following fact exploits the

properties of the sequence {Ti}
∞
i=0 defined by (1.87).

Fact For all ε > 0, T ∈ ℜ+, and nonnegative integers i, there exists δi :=

δi(ε, T ) > 0 such that for all (t0, x10, x20) ∈ [0, T ] × C0([−r1,0];ℜn1) ×

L∞([−r2,0];ℜn2) and (u, d) ∈ L∞
loc(ℜ

+;U) × L∞
loc(ℜ

+;D) with ‖x10‖r1
+
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‖x20‖r2
+ supt≥0 |u(t)| ≤ δi , there exists tmax ∈ (t0 + h,+∞], where h := h(T ) =

Ti+1 −T , {Ti}
∞
i=0 is the sequence that satisfies (1.87), and a unique pair of mappings

x1 ∈ C0([t0 − r1, tmax);ℜ
n1), x2 ∈ L∞

loc([t0 − r2, tmax);ℜ
n2) with Tr1

(t0)x1 = x10,

Tr2
(t0)x2 = x20 such that (1.18) holds a.e. for t ∈ [t0, tmax), (1.19) holds for all

t ∈ (t0, tmax), and (1.76) holds.

The proof of the fact will be made by induction. By virtue of Lemma 1.1 it is clear

that the fact holds for i = 0. Suppose that the fact holds for a certain nonnegative

integer i. Let ε > 0, T ∈ ℜ+, and define

δi+1(ε, T ) := min

{

δi(ε, T ); δi

(
1

2
δ̃(ε, Ti+1), T

)

;
1

2
δ̃(ε, Ti+1)

}

> 0 (1.88)

Next consider the solution x1 ∈ C0([t0 − r1, tmax);ℜ
n1), x2 ∈ L∞

loc([t0 − r2, tmax);

ℜn2) of (1.18), (1.19) with Tr1
(t0)x1 = x10, Tr2

(t0)x2 = x20 corresponding to inputs

(u, d) ∈ L∞
loc(ℜ

+;U)× L∞
loc(ℜ

+;D) with ‖x10‖r1
+‖x20‖r2

+ supt≥0 |u(t)| ≤ δi+1.

Since δi+1 ≤ δi , from the assumption it follows that the fact holds for the nonnega-

tive integer i:

sup
{∥
∥Tr1

(t)x1

∥
∥

r1
+

∥
∥Tr2

(t)x2

∥
∥

r2
; t ∈ [t0, t0 + Ti+1 − T ]

}

≤ ε (1.89)

Moreover, since δi+1(ε, T ) ≤ δi(
1
2
δ̃(ε, Ti+1), T ), it follows from the assumption

that the fact holds for the nonnegative integer i:

∥
∥Tr1

(t0 + Ti+1 − T )x1

∥
∥

r1
+

∥
∥Tr2

(t0 + Ti+1 − T )x2

∥
∥

r2
≤

1

2
δ̃(ε, Ti+1) (1.90)

Furthermore, since ‖x10‖r1
+ ‖x20‖r2

+ supt≥0 |u(t)| ≤ δi+1 and δi+1(ε, T ) ≤
1
2
δ̃(ε, Ti+1), we obtain that supt≥0 |u(t)| ≤ 1

2
δ̃(ε, Ti+1). Combining (1.90) and the

previous inequality, we get
∥
∥Tr1

(t0 + Ti+1 − T )x1

∥
∥

r1
+

∥
∥Tr2

(t0 + Ti+1 − T )x2

∥
∥

r2
+ sup

t≥0

∣
∣u(t)

∣
∣ ≤ δ̃(ε, Ti+1)

(1.91)

Notice that since t0 ∈ [0, T ], we obtain that t0 + Ti+1 − T ∈ [0, Ti+1]. The solution

x1 ∈ C0([t0 − r1, tmax);ℜ
n1), x2 ∈ L∞

loc([t0 − r2, tmax);ℜ
n2) of (1.18), (1.19) with

Tr1
(t0)x1 = x10, Tr2

(t0)x2 = x20 corresponding to inputs (u, d) ∈ L∞
loc(ℜ

+;U) ×

L∞
loc(ℜ

+;D) with ‖x10‖r1
+ ‖x20‖r2

+ supt≥0 |u(t)| ≤ δi+1 coincides, over the

time interval [t0 + Ti+1 − T ,∞), with the solution x1 ∈ C0([t0 + Ti+1 − T −

r1, tmax);ℜ
n1), x2 ∈ L∞

loc([t0 + Ti+1 − T − r2, tmax);ℜ
n2) of (1.18), (1.19) with ini-

tial condition (Tr1
(t0 + Ti+1 − T )x1, Tr2

(t0 + Ti+1 − T )x2) corresponding to same

inputs (u, d) ∈ L∞
loc(ℜ

+;U) × L∞
loc(ℜ

+;D) satisfying (1.91). Using Lemma 1.1, in

conjunction with (1.91), definition (1.87), and the fact that t0 +Ti+1 −T ∈ [0, Ti+1],

we obtain

sup
{∥
∥Tr1

(t)x1

∥
∥

r1
+

∥
∥Tr2

(t)x2

∥
∥

r2
; t ∈ [t0 + Ti+1 − T , t0 + Ti+2 − T ]

}

≤ ε (1.92)

Combining (1.89) with (1.92), we may conclude that the fact holds for i + 1.

By virtue of the fact, it follows that Theorem 1.3 holds with δ(ε, T ,h) :=

δl(T ,h)(ε, T ) > 0, where l(T ,h) is the nonnegative integer with the property that the
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sequence {Ti}
∞
i=0 defined by (1.87) with initial condition T0 = T satisfies Ti ≥ T +h

for all i ≥ l(T ,h). The proof is complete. �

Example 1.4.4 (Robust equilibrium points for control systems described by FDEs)

Theorem 1.2 shows that 0 ∈ X is a robust equilibrium point from the input u ∈ MU

for system (1.42) under Hypotheses (Q1–3).

Example 1.4.5 (Robust equilibrium points for control systems with variable sam-

pling partition) The following proposition guarantees that system (1.57) under Hy-

potheses (A1–5) has a robust equilibrium point from the input u ∈ MU .

Proposition 1.2 0 ∈ ℜn is a robust equilibrium point from the input u ∈ MU for

system (1.57) under Hypotheses (A1–5).

Proof Since f (t, τ,0,0,0,0, d, d0) = 0 and R(τ,0,0,0,0, d, d0) = 0 for all

(τ, d, d0) ∈ ℜ+ × D × D and t ≥ τ , and H(t,0,0) = 0 for all t ≥ 0, it fol-

lows that property (1) of Definition 1.5 is automatically satisfied. It suffices to

show that for all ε > 0 and T ,T ′ ∈ ℜ+, there exists δ := δ(ε, T ,T ′) > 0 such

that for all (t0, x0, u, d) ∈ [0, T ] × ℜn × MU × MD and t ∈ [t0, t0 + T ′] with

|x0| + supt≥0 |u(t)| ≤ δ, it holds that the solution x(t) of (1.57) with initial con-

dition x(t0) = x0 corresponding to inputs (u, d) ∈ MU × MD exists and satisfies

sup{|x(t)|;d ∈ MD, t ∈ [t0, t0 + T ′], t0 ∈ [0, T ]} ≤ ε.

Claim 1 For all ε > 0 and T > 0, there exists δ := δ(ε, T ) > 0 such that if |x(t0)|+

supt≥0 |u(t)| ≤ δ, then the unique solution of (1.57) starting from x(t0) at time t0 ∈

[0, T ] and corresponding to inputs (u, d) ∈ MU × MD exists for all t ∈ [t0, τ1] and

satisfies |x(t)| ≤ ε for all t ∈ [t0, τ1], where τ1 = t0 + h(t0, x(t0), u(t0), d(t0)).

Proof of Claim 1 Let L > 0 be the constant that satisfies (1.58) for the bounded set

S := [0, T + r] × [0, T + r] × B[0, ε] × B[0, ε] × BU [0, ε] × BU [0, ε]. It follows

from (1.58), (1.59) that the following inequality holds for all x, x0 ∈ B[0, ε], u,u0 ∈

BU [0, ε], τ ∈ [0, T ], t ∈ [τ, τ + r], and d, d0 ∈ D:

2x′Pf (t, τ, x, x0, u,u0, d, d0)

≤ (2L + K2)|x|2 + MK2a
2
(

|x0| + |u| + |u0|
)

(1.93)

where M := max{γ 2(t); t ∈ [0, T + r]}, K1,K2 > 0 are constants that satisfy

K1|x|2 ≤ x′Px ≤ K2|x|2 for all x ∈ ℜn for the symmetric positive definite matrix

P ∈ ℜn×n involved in Hypothesis (A1), and γ ∈ K+ and a ∈ K∞ are the functions

involved in (1.59), (1.60). Let ρ > 0 be the unique solution of the equation

ε2
1 =

K2

K1
exp

(
(2L + K2)r

K1

)
(

ρ2 + rMa2(3ρ)
)

(1.94)

where r > 0 is the upper bound for h, and

ε1 := min

{
ε

2
,

1

4
a−1

(
ε

max{γ (t); t ∈ [0, T + r]}

)}

> 0 (1.95)
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Define

δ = min

{
ε1

2
, ρ

}

(1.96)

For arbitrary (x(t0), u, d) ∈ ℜn × MU × MD with |x(t0)| + supt≥0 |u(t)| < δ, con-

sider the unique solution x(t) ∈ ℜn of (1.57) starting from x(t0) and correspond-

ing to input (u, d) ∈ MU × MD . Since (1.96) implies δ < ε1, it follows that

|x(t0)| < ε1. Next, we show that |x(t)| < ε1 for all t ∈ [t0, τ1). The proof will

be made by contradiction. Suppose that there exists t1 ∈ (t0, τ1) with |x(t1)| ≥

ε1. Let tε the maximal time in the interval [t0, t1] such that |x(t)| < ε1 for all

t ∈ [t0, tε). By virtue of continuity of the solution with respect to time on the

interval [t0, τ1), the maximal time tε is well defined. By continuity of the solu-

tion with respect to time we must have |x(tε)| = ε1. On the other hand, inequal-

ity (1.93), in conjunction with the fact |x(t0)| + supt≥0 |u(t)| ≤ δ and definition

(1.96), implies that the absolutely continuous function V (t) = x′(t)P x(t) satis-

fies V̇ (t) ≤ (2L + K2)|x(t)|2 + K2Ma2(3ρ) for almost all t ∈ [t0, tε]. Using the

previous differential inequality and inequality K1|x|2 ≤ x′Px ≤ K2|x|2, we ob-

tain |x(t)|2 ≤ K2
K1

|x(t0)|
2 + 2L+K2

K1

∫ t

t0
|x(s)|2 ds + r

K2
K1

Ma2(3ρ) for all t ∈ [t0, tε].

The previous inequality, in conjunction with the Gronwall–Bellman lemma, im-

plies |x(t)|2 ≤ exp(
(2L+K2)r

K1
)
K2
K1

(|x(t0)|
2 + rMa2(3ρ)) for all t ∈ [t0, tε]. Again,

the previous inequality, in conjunction with (1.94), the fact that tε < τ1 ≤ t0 + r ,

and inequality |x(t0)| ≤ ρ, directly implies that |x(tε)| ≤
ε1
2

< ε1, which contradicts

|x(tε)| = ε1. We conclude that |x(t)| < ε1 for all t ∈ [t0, τ1).

By virtue of uniform continuity of the solution on the interval [t0, τ1) (notice that

by (1.59) ẋ(t) is bounded on [t0, τ1)), it follows that the limit limt→τ−
1

x(t) exists

and satisfies | limt→τ−
1

x(t)| ≤ ε1. Using (1.60) in conjunction with (1.95), (1.96),

the facts that t0 < τ1 ≤ t0 + r , |x(t0)| + supt≥0 |u(t)| < δ, and | limt→τ−
1

x(t)| ≤ ε1,

we conclude that |x(τ1)| ≤ ε. The previous inequality, combined with the facts that

ε1 ≤ ε and |x(t)| ≤ ε1 for all t ∈ [t0, τ1), implies that |x(t)| ≤ ε for all t ∈ [t0, τ1].

Consequently, Claim 1 is proved. �

Using induction, the fact that τi ≤ t0 + ir for all nonnegative integers i (where

r > 0 is the upper bound for h) and Claim 1, we may conclude that the following

claim holds.

Claim 2 For all ε > 0, T > 0, and integers N > 0, there exists δ := δ(ε, T ,N) > 0

such that if |x(t0)| + supt≥0 |u(t)| ≤ δ, then the unique solution of (1.57) starting

from x(t0) at time t0 ∈ [0, T ] and corresponding to inputs (u, d) ∈ MU × MD exists

for all t ∈ [t0, τN ] and satisfies |x(t)| ≤ ε for all t ∈ [t0, τN ], where τi+1 = τi +

h(τi, x(τi), u(τi), d(τi)), i = 1, . . . ,N − 1, with τ0 = t0.

Next, consider the continuous function hl involved in Hypothesis (A5). For this

function, we have the following claim.

Claim 3 For all ε > 0 and T > 0, there exists an integer N := N(ε,T ) > 0 such

that τN > T , where s := min{hl(t, x,u); (t, x,u) ∈ [0, T ] × B[0, ε] × BU [0, ε]},
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and the sequence {τi}
N
i=0 satisfies τi+1 ≥ min{qb(τi), τi + s}, i = 1, . . . ,N − 1,

with arbitrary initial condition τ0 ≥ 0, where qb(t) := min{T ∈ b; t < T }, and

b = {Ti}
∞
i=0 is the partition involved in Hypothesis (A5).

Proof of Claim 3 Let arbitrary ε > 0, T > 0. Since the set [0, T ] × B[0, ε] ×

BU [0, ε] is compact (U ⊆ ℜm is closed) and hl is continuous, we have s > 0.

Consider the infinite sequence {yi}
∞
i=0 which satisfies yi+1 = min{qb(yi), yi + s},

i = 1,2, . . . , with y0 = 0. Using a contradiction argument, we can show that

yi → +∞, and consequently for every T > 0, there exists an integer N > 0 such

that yN > T . Consider arbitrary τ0 ≥ 0 and an arbitrary sequence {τi}
N
i=0 that satis-

fies τi+1 ≥ min{qb(τi), τi + s}, i = 1, . . . ,N −1. By virtue of Theorem 1.6.1 in [33]

(Comparison principle), we have τi ≥ yi , i = 1, . . . ,N , which implies τN > T . The

proof of Claim 3 is complete. �

We are now ready to show the required property. Consider arbitrary ε > 0,

T ,T ′ ∈ ℜ+. Claim 3 implies that there exists an integer N := N(ε,T + T ′ + r) > 0

such that τN > T + T ′ + r , where s := min{hl(t, x,u); (t, x,u) ∈ [0, T + T ′ + r] ×

B[0, ε] × BU [0, ε]}, and the sequence {τi}
N
i=0 satisfies τi+1 ≥ min{qb(τi), τi + s},

i = 1, . . . ,N −1, with arbitrary initial condition τ0 ≥ 0. On the other hand, by virtue

of Claim 2, there exists δ := δ(ε, T ,N) > 0 such that if |x(t0)| + supt≥0 |u(t)| ≤ δ,

then the unique solution of (1.57) starting from x(t0) at time t0 ∈ [0, T ] and corre-

sponding to inputs (u, d) ∈ MU ×MD exists for all t ∈ [t0, τN ] and satisfies |x(t)| ≤

ε for all t ∈ [t0, τN ], where τi+1 = τi + h(τi, x(τi), u(τi), d(τi)), i = 1, . . . ,N − 1,

with τ0 = t0. Hypothesis (A5) implies that the sequence {τi}
N
i=0 satisfies the in-

equality τi+1 ≥ min{qb(τi), τi + s} for all integers i for which τi ≤ T + T ′ + r .

If we assume that τN ≤ T + T ′, then we obtain a contradiction, and thus we con-

clude that τN > T +T ′. It follows that if |x(t0)|+ supt≥0 |u(t)| < δ, then the unique

solution of (1.57) starting from x(t0) at time t0 ∈ [0, T ] and corresponding to in-

puts (u, d) ∈ MU × MD exists for all t ∈ [t0, t0 + T ′] and satisfies |x(t)| ≤ ε for all

t ∈ [t0, t0 + T ′]. �

Since our interest is focused on sampled-data systems of the form (1.62) or (1.63)

(with no impulses), we can use the following result.

Proposition 1.3 Consider system (1.57) under Hypotheses (A1–4) and suppose that

R(t, x, x0, u,u0, d, d0) = x for all (t, u,u0, d, d0, x, x0) ∈ ℜ+ ×U ×U ×D ×D ×

ℜn × ℜn. Then 0 ∈ ℜn is a robust equilibrium point from the input u ∈ MU for

system (1.57).

Proof Let ε > 0, T ,T ′ ∈ ℜ+, and let L > 0 be the constant that satisfies (1.58) for

the bounded set S := [0, T + T ′] × [0, T + T ′] × B[0, ε] × B[0, ε] × BU [0, ε] ×

BU [0, ε]. Let ρ > 0 be the unique solution of the equation

ε2 =
4K2

K1
exp

(
(2L + K2)(T + T ′)

K1

)
(

ρ2 +
(

T + T ′
)

Ma2(3ρ)
)

(1.97)



1.5 Feedback Interconnection of Systems 43

where r > 0 is the upper bound for h, and define

δ = min

{
ε

2
, ρ

}

(1.98)

The proof will be made by contradiction. Suppose that there exists (x0, u) ∈ ℜn ×

MU with |x0| + supt≥0 |u(t)| ≤ δ and

sup
{∣
∣φ(τ, t0, x0, u, d)

∣
∣;d ∈ MD, τ ∈

[

t0, t0 + T ′
]

, t0 ∈ [0, T ]
}

> ε

Consequently, there exist d ∈ MD , t0 ∈ [0, T ], and t ∈ [t0, t0 + T ′] with |x(t)| ≥ 3ε
4

(where x(t) = φ(t, t0, x0, u, d)). Consider the nonempty set A = {t ≥ t0 : |x(t)| >
5ε
8

} and let t1 = infA. Notice that since |x0| ≤ δ ≤ ε
2

and |x(t)| ≥ 3ε
4

, it follows that

t1 > t0 and t1 ≤ t0 + T ′. Furthermore, by the definition t1 = infA and the continuity

of x(t) (this holds only for the impulse-free case), we have |x(t1)| =
5ε
8

and |x(t)| ≤

ε for all t ∈ [t0, t1]. In this case, we consider the absolutely continuous function

V (t) = x′(t)P x(t), which by (1.93) satisfies the following inequality a.e. for t ∈

[t0, t1]:

V̇ (t) ≤ (2L + K2)
∣
∣x(t)

∣
∣
2
+ K2Ma2(3ρ) (1.99)

Using (1.99) and the inequality K1|x|2 ≤ x′Px ≤ K2|x|2, we obtain |x(t)|2 ≤
K2
K1

|x(t0)|
2 + 2L+K2

K1

∫ t

t0
|x(s)|2 ds + (T + T ′)

K2
K1

Ma2(3ρ) for all t ∈ [t0, t1]. The

previous inequality, in conjunction with the Gronwall–Bellman lemma, implies

∣
∣x(t)

∣
∣
2
≤ exp

(
(2L + K2)(T + T ′)

K1

)
K2

K1

(∣
∣x(t0)

∣
∣
2
+

(

T + T ′
)

Ma2(3ρ)
)

∀t ∈ [t0, t1]

The previous inequality, together with (1.97) and the inequality |x(t0)| ≤ ρ, directly

implies that |x(t1)| ≤
ε
2

, which contradicts |x(t1)| =
5ε
8

. The proof is complete. �

1.5 Feedback Interconnection of Systems

We next give the notion of the interconnection or feedback connection of control

systems. See Fig. 1.2 for an illustration.

Definition 1.6 Consider a pair of control systems

Σ1 =
(

X1,Y 1,MS2×U ,MD, φ̃1,π1,H1

)

Σ2 =
(

X2 Y2,MS1×U ,MD, φ̃2,π2,H2

)

Fig. 1.2 Configuration of

interconnected systems
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with outputs H1 : ℜ+ × X1 × Y2 × U → S1 ⊆ Y1, H2 : ℜ+ × X2 × Y1 × U →

S2 ⊆ Y2, and the BIC property and for which 0 ∈ Xi , i = 1,2, are robust equilib-

rium points from the inputs (v2, u) ∈ MS2×U and (v1, u) ∈ MS1×U , respectively.

Suppose that there exists a unique mapping φ = (φ1, φ2) : Aφ → X and a set-

valued map ℜ+ × X × MU × MD ∋ (t0, x0, u, d) → π(t0, x0, u, d) ⊆ [t0,+∞),

where Aφ ⊆ ℜ+ × ℜ+ × X × MU × MD and X = X1 × X2, such that, for ev-

ery (t, t0, x0, u, d) ∈ Aφ with t ≥ t0 and x0 = (x1,0, x2,0) ∈ X1 × X2, it holds

that there exists a pair of external inputs vi ⊆ M(Si), i = 1,2, with v1(τ ) =

H1(τ,φ1(τ, t0, x0, u, d), v2(τ ), u(τ )), v2(τ ) = H2(τ,φ2(τ, t0, x0, u, d), v1(τ ), u(τ ))

for all τ ∈ [t0, t], (vi, u) ∈ MSi×U , i = 1,2, so that π(t0, x0, u, d) = π1(t0, x1,0,

(v2, u), d)∩π2(t0, x2,0, (v1, u), d) and φ1(τ, t0, x0, u, d) = φ̃1(τ, t0, x1,0, (v2, u), d),

φ2(τ, t0, x0, u, d) = φ̃2(τ, t0, x2,0, (v1, u), d) for all τ ∈ [t0, t].

Moreover, let Y be a normed linear space, and H : ℜ+ × X × U → Y a con-

tinuous map that maps bounded sets of ℜ+ × X × U into bounded sets of Y with

H(t,0,0) = 0 for all t ≥ 0 and suppose that Σ := (X , Y ,MU ,MD, φ,π,H) is a

control system with outputs and the BIC property, for which 0 ∈ X is a robust equi-

librium point from the input u ∈ MU . Then, system Σ is said to be the feedback

connection or the interconnection of systems Σ1 and Σ2.

It should be emphasized that the feedback interconnection of two systems may

create a system which has different qualitative properties from each one of the sys-

tems connected. For example, if we connect a control system described by RFDEs

with a control system with impulses at fixed times, then the overall system will be

a system with both “memory” and impulses (discontinuous systems described by

RFDEs; see [49]).

The feedback interconnection of two systems is not always well defined. For

example, the uniqueness of the map φ = (φ1, φ2) : Aφ → X1 × X2 requires regular-

ity properties which must be satisfied. The nature of the additional properties that

guarantee that the feedback interconnection of two systems is well defined depends

heavily on the nature of the overall system. The following example illustrates this

point.

Example 1.5.1 Consider the following feedback interconnection of two systems de-

scribed by ODEs:

ẋ = f (t, d, x,u)

v = p(t, x,u)

x ∈ ℜn, u ∈ U ⊆ ℜm, d ∈ D ⊆ ℜl (1.100)

and

ẇ = g(t,w, v)

u = k(t,w, v)

w ∈ ℜk, v ∈ V ⊆ ℜq (1.101)
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where systems (1.100) and (1.101) satisfy Hypotheses (H1–4). In order the feed-

back interconnection of systems (1.100), (1.101) to be well defined, we must require

that for any given (t, x,w), there exists a unique pair of solutions u = k∗(t, x,w),

v = p∗(t, x,w) to the algebraic equations v = p(t, x,u) and u = k(t,w, v). For

example, this requirement is not fulfilled if k(t,w, v) := v ∈ ℜ and p(t, x,u) =

2u − u3 with u ∈ ℜ. If for any given (t, x,w), there exists a unique pair of so-

lutions u = k∗(t, x,w), v = p∗(t, x,w) to the algebraic equations v = p(t, x,u),

u = k(t,w, v) and if all maps (f,g,p∗, k∗) are assumed to be locally Lipschitz,

then the total interconnected system takes the following form:

ẋ = f
(

t, d, x, k∗(t, x,w)
)

ẇ = g
(

t,w,p∗(t, x,w)
)

x ∈ ℜn,w ∈ ℜk, d ∈ D ⊆ ℜl (1.102)

Indeed, if all maps (f,g,p∗, k∗) are assumed to be locally Lipschitz, then Hypothe-

ses (H1–4) automatically hold for system (1.102), and the feedback interconnection

of systems (1.100), (1.101) is well defined.

1.6 Transformation of Systems

Definition 1.7 Let X be a normed linear space. We say that a map Φ : ℜ+× X → X

with Φ(t,0) = 0 for all t ≥ 0 is a change of coordinates if:

(i) Φ(t, X ) = X for all t ≥ 0;

(ii) For every t ≥ 0, the following implication holds:

Φ(t, x1) = Φ(t, x2) ⇒ x1 = x2; (1.103)

(iii) there exist a continuous map (called the inverse map) Φ−1 : ℜ+ × X → X and

functions a ∈ K∞, β ∈ K+ such that

x = Φ
(

t,Φ−1(t, x)
)

= Φ−1
(

t,Φ(t, x)
)

for all (t, x) ∈ ℜ+ × X (1.104)
∥
∥Φ(t, x)

∥
∥

X
≤ a

(

β(t)‖x‖X

)

and
∥
∥Φ−1(t, x)

∥
∥

X
≤ a

(

β(t)‖x‖X

)

for all (t, x) ∈ ℜ+ × X . (1.105)

Definition 1.8 Let U,V be subsets of the normed linear spaces U1, U2, respectively,

with 0 ∈ U and 0 ∈ V . A continuous mapping q : ℜ+ × V → U with q(t,V ) = U

and q(t,0) = 0 for all t ≥ 0 for which there exist functions a ∈ K∞ and μ ∈ K+

such that ‖q(t, v)‖U1
≤ a(μ(t)‖v‖U2

) is called a transformation of V onto U .

The following lemma can be verified easily by the reader.

Lemma 1.2 Consider a deterministic control system Σ := (X , Y ,MU ,MD,

φ,π,H) with outputs satisfying the BIC property. Let Φ : ℜ+ × X → X be a

change of coordinates, and q : ℜ+ × V → U a transformation of V onto U . Then
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Σ ′ := (X , Y ,MV ,MD, φ′,π ′,H ′) is a deterministic control system satisfying the

BIC property, where MV is the set of all mappings v : ℜ+ → V with the prop-

erty that the mapping Qv : ℜ+ → U defined by (Qv)(t) = q(t, v(t)) for all t ≥ 0

satisfies Qv ∈ MU and φ′, π ′, H ′ are defined by the following equations:

φ′(t, t0, x0, v, d) = Φ
(

t, φ
(

t, t0,Φ
−1(t0, x0),Qv,d

))

(1.106)

π ′(t0, x0, v, d) = π
(

t0,Φ
−1(t0, x0),Qv,d

)

(1.107)

H ′(t, x, v) := H
(

t,Φ−1(t, x), q(t, v)
)

(1.108)

Moreover, if 0 ∈ X is a robust equilibrium point from the input u ∈ MU for Σ , then

0 ∈ X is a robust equilibrium point from the input v ∈ MV for Σ ′.

The system Σ ′ := (X , Y ,MU ,MD, φ′,H ′) provided by Lemma 1.2 is called the

transformed system Σ under the change of coordinates Φ : X → X and the input

transformation q : ℜ+ × V → U . Notice that if the weak semigroup property holds

for Σ , then the weak semigroup property holds for Σ ′.

Lemma 1.2 will help in the study of a given system, since very often it is possible

to find a change of coordinates Φ : X → X and an input transformation q : ℜ+ ×

V → U such that the study of the transformed system Σ ′ is easier than the study

of the original system Σ . Moreover, transformations of systems help us to study

systems which do not necessarily fall into one of the categories of systems studied

in Sect. 1.2. The following example illustrates the effect of the transformation for

systems described by ODEs.

Example 1.6.1 Consider system (1.3) under Hypotheses (H1–4). Let Φ : ℜ+ ×

ℜn → ℜn be a change of coordinates, and q : ℜ+ × V → U a transformation of

V ⊆ ℜl onto U ⊆ ℜm. Moreover, suppose that Φ : ℜ+ × ℜn → ℜn is continuously

differentiable. Then, the transformed system Σ ′ := (ℜn,ℜk,MV ,MD, φ′,H ′) un-

der the change of coordinates Φ : ℜ+ × ℜn → ℜn and the input transformation

q : ℜ+ × V → U is a control system described by the following equations:

ẋ(t) =
∂Φ

∂t

(

t,Φ−1
(

t, x(t)
))

+
∂Φ

∂x

(

t,Φ−1
(

t, x(t)
))

f
(

t,Φ−1
(

t, x(t)
)

, q
(

t, v(t)
)

, d(t)
)

Y(t) = H
(

t,Φ−1
(

t, x(t)
)

, q
(

t, v(t)
))

x(t) ∈ ℜn, Y (t) ∈ ℜk, v(t) ∈ V,d(t) ∈ D (1.109)

Notice that Hypotheses (H1–4) are not necessarily satisfied for system (1.109).

However, Lemma 1.2 guarantees that the system Σ ′ := (ℜn,ℜk,MV ,MD, φ′,H ′)

is a deterministic control system which satisfies both the classical semigroup prop-

erty and the BIC property. Moreover, 0 ∈ ℜn is a robust equilibrium point from the

input v ∈ MV for Σ ′. Finally, notice that although Hypothesis (H1) is not necessar-

ily satisfied for (1.109), if Φ−1 : ℜ+ × ℜn → ℜn is continuously differentiable, we

can guarantee that the initial value problem for (1.109) has a unique solution for all

(v, d) ∈ MV × MD .
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1.7 Discrete-Time Systems

Let X , Y , U be a triplet of normed linear spaces, D, U ⊆ U nonempty sets with

0 ∈ U , π = {τi}
∞
i=0 a partition of ℜ+ with diameter r > 0, i.e., an increasing se-

quence of times with τ0 = 0, sup{τi+1 − τi; i = 0,1,2, . . .} = r and τi → +∞, and

f : π × D × X × U → X , H : ℜ+ × X × U → Y mappings with f (t, d,0,0) = 0

and H(t,0,0) = 0 for all (t, d) ∈ π × D. We define pπ (t) = max{τ ∈ π : τ ≤ t}

and qπ (t) = min{τ ∈ π : τ > t}. We consider the system that produces for each

(t0, x0) ∈ ℜ+ × X and for each pair of piecewise constant, right-continuous map-

pings u : ℜ+ → U and d : ℜ+ → D which are continuous on ℜ+\π , the piecewise

constant function t → x(t) ∈ X , based on the following algorithm:

Step 0: Set x(t) = x0, for all t ∈ [t0, qπ (t0)) and x(qπ (t0)) = f (pπ (t0), d(pπ (t0)),

x0, u(pπ (t0))).

Step i: Given τi ∈ π and x(τi), set x(t) = x(τi) for all t ∈ [τi, τi+1) and x(τi+1) =

f (τi, d(τi), x(τi), u(τi)).

Schematically, we write

x(t) = x(τi) t ∈ [τi, τi+1)

x(τi+1) = f
(

τi, d(τi), x(τi), u(τi)
)

Y(t) = H
(

t, x(t), u(t)
)

(1.110)

with initial condition x(t0) = x0 ∈ X . We consider systems of the form (1.110)

under the following hypotheses:

(L1) There exist functions a ∈ K∞ and β ∈ K+ such that ‖f (t, d, x,u)‖X ≤

a(β(t)‖x‖X ) + a(β(t)‖u‖U ) for all (t, x, d,u) ∈ π × X × D × U .

(L2) For all (τi, x,u) ∈ π × X × U and t ∈ [τi, τi+1), it holds that H(t, x,u) =

H(τi, x,u). Moreover, for each fixed τi ∈ π , the mapping X × U ∋ (x,u) →

H(τi, x,u) is uniformly continuous on each bounded set in X × U .

(L3) For every pair of bounded sets I ⊂ π , S ⊂ X ×U , the set H(I ×S) is bounded.

Let MD be the set of piecewise constant, right-continuous mappings d : ℜ+ → D

that are continuous on ℜ+\π (i.e., mappings d : ℜ+ → D for which there exists

a sequence {di ∈ D}∞i=0 such that for every τi ∈ π , it holds that d(t) = di for all

t ∈ [τi, τi+1)). Similarly, let MU be the set of piecewise constant, right-continuous

mappings u : ℜ+ → U that are continuous on ℜ+\π .

Systems of the form (1.110) are called discrete-time systems and have been stud-

ied extensively in the literature for the case π = Z+. We next provide an example

of an economic system that can be modeled by means of a discrete-time system.

Example 1.7.1 (The Cobweb model with stocks) We consider the evolution of the

price of a certain commodity in a completely competitive market at discrete periods:

each period t +1 is characterized by the release in the market of S(t +1) units of the

commodity, which are supplied by certain agents and by the release G(t) units of the

commodity by the government. Let us denote by P(t) the price of the commodity
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at period t , and by Q(t) the quantity of the commodity stored by the government

at period t . When G(t) < 0, then the government actually buys and stores |G(t)|

commodity units at period t + 1. Let Qmax > 0 denote the storage capability for

the particular commodity. Consequently, the following intrinsic constraints must be

satisfied for all periods:

G(t) ≤ Q(t) and 0 ≤ Q(t) ≤ Qmax for all t (1.111)

Furthermore, the quantity of the commodity stored by the government must obey

the following difference equation for all periods:

Q(t + 1) = Q(t) − G(t) (1.112)

Since the quantity of the commodity stored by the government at period t +1 cannot

exceed Qmax > 0 (the storage capability), i.e., Q(t + 1) ≤ Qmax, it follows from

(1.112) that the following constraint for the quantity of the commodity released to

the market by the government at period t + 1 must be obeyed:

Q(t) − Qmax ≤ G(t) for all t (1.113)

We assume a linear strictly decreasing demand function

D(t) = a − bP (t) a, b > 0 (1.114)

and an S-shaped monotonic piecewise linear supply function:

S(t + 1) = g
(

P e(t + 1)
)

(1.115)

g(P ) = max
{

0;min{Smax;−c + dP }
}

c, d, Smax > 0 (1.116)

where P e(t + 1) is the expected price for the period t + 1, and Smax is the highest

supply level for the commodity. The total quantity of the product available in the

market at period t + 1 is given by S(t + 1) + G(t), and therefore the following

constraint must be obeyed in addition to the previous constraints:

G(t) ≥ −g
(

P e(t + 1)
)

for all t (1.117)

In a completely competitive market, market equilibrium is attained instantaneously:

D(t + 1) = S(t + 1) + G(t) (1.118)

Finally, we assume the so-called naïve (or myopic) expectation,

P e(t + 1) = P(t) (1.119)

which is met frequently in textbooks.

Taking into account (1.111)–(1.119), the unique solution of (1.118) gives the

following discrete-time control system:

P(t + 1) = b−1
(

a − G(t) − g
(

P(t)
))

Q(t + 1) = Q(t) − G(t)

max
{

Q(t) − Qmax;−g
(

P(t)
)}

≤ G(t) ≤ Q(t)

(1.120)
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We assume that a > Qmax + Smax and bc < ad (conditions for the viability of the

commodity). It is convenient to introduce the dimensionless variables

x1(t) := ba−1P(t − 1) − xeq x2(t) = a−1Q(t)

G(t) = min
{

Q(t);max
{

au(t);Q(t) − Qmax;−max
{

0;min
{

Smax;dP (t) − c
}}}}

(1.121)

and the dimensionless constants r := db−1 > 0, c1 := bc
ad

< 1, c2 := bSmax

ad
< b

d
,

c3 = a−1Qmax, and

xeq =

{
1+rc1
1+r

if c1 + c2 > 1 − c2r

1 − c2r if c1 + c2 ≤ 1 − c2r
(1.122)

Thus the control system (1.120) expressed in state space form and in dimensionless

coordinates is given by the following discrete-time control system:

x1(t + 1) = f1

(

x1(t)
)

− f2

(

x1(t), x2(t), u(t)
)

x2(t + 1) = L
(

x2(t)
)

− f2

(

x1(t), x2(t), u(t)
)

x(t) =
(

x1(t), x2(t)
)

∈ ℜ2, u(t) ∈ ℜ (1.123)

where

f1(x) := 1 − xeq − r max
{

0;min
(

c2;P(x + xeq) − c1

)}

f2(x, y,u) := min
{

L(y);max
{

u;L(y) − c3;f1(x) + xeq − 1
}}

P(x) := max
{

0;min(1;x)
}

L(y) := max
{

0;min(c3;y)
}

Notice that f1(0) = f2(0,0,0) = 0. Define X = ℜ2, Y = ℜ, and the output map

H(t, x,u) := x1. Hypotheses (L1), (L2), (L3) thus hold for system (1.123).

We denote by φ(t, t0, x0, u, d) := x(t) the solution of (1.110) with initial con-

dition x(t0) = x0 ∈ X , corresponding to inputs (u, d) ∈ MU × MD . It should

be clear that, by the previous definitions, we have defined the system Σ :=

(X , Y ,MU ,MD, φ,π,H) with Aφ ⊆ ℜ+ × ℜ+ × X × MU × MD given by the

set of points (t, t0, x0, u, d) ∈ ℜ+ × ℜ+ × X × MU × MD , where t ∈ [t0,+∞) and

π(t0, x0, u, d) = [t0,+∞) (notice that the classical semigroup property holds).

Notice that if f (t + T ,d, x,u) = f (t, d, x,u), H(t + T ,x,u) = H(t, x,u) and

π = {i T
l
}∞i=0 for certain T > 0 and certain integer l > 0 and for all (t, d,u, x) ∈

π × D × U × X , then system (1.110) is T -periodic.

It is worth noting the following important fact for system (1.110):

Lemma 1.3 System (1.110) under Hypothesis (L1) is Robustly Forward Complete

(RFC) from the input u ∈ MU .
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Concerning the proof of Lemma 1.3, we consider arbitrary R ≥ 0, T ∈ ℜ+ and

then define recursively the sequence of sets in X by A(k) := A(k − 1) ∪ f ((π ∩

[0,2T ]) × D × A(k − 1) × BU [0,R]) for k = 1, . . . , l, where l ∈ Z+ satisfies τl =

pπ (2T ), BU [0,R] := {u ∈ U ; ‖u‖U ≤ R}, and A(0) := {x ∈ X ; ‖x‖X ≤ R}, which

are bounded (by virtue of Hypothesis (L1)), and finally notice that

{

φ(t + s, t0, x0, u, d); ‖x0‖X ≤ R, t0 ∈ [0, T ], s ∈ [0, T ], d ∈ MD,

u ∈ M
(

BU [0,R]
)

∩ MU

}

⊆ A(l)

We end this section by showing the following fact.

Lemma 1.4 0 ∈ X is a robust equilibrium point from the input u ∈ MU for sys-

tem (1.110) under Hypothesis (L1).

The proof of Lemma 1.4 relies on the following result.

Lemma 1.5 Consider system (1.110) under Hypothesis (L1). For all i,N ∈ Z+ and

ε > 0, there exists δ(i,N, ε) > 0 such that the following implication holds:

∥
∥x(τi)

∥
∥

X
+ sup

t≥0

∥
∥u(t)

∥
∥

U
≤ δ(i,N, ε)

⇒ sup
{∥
∥x(τi+s)

∥
∥

X
: d ∈ MD, s ∈ {0, . . . ,N}

}

≤ ε (1.124)

Proof We prove the Lemma 1.5 by induction on N ∈ Z+. Notice that implication

(1.124) holds for N = 0 (select δ(i,0, ε) = ε > 0). Next, suppose that implication

(1.124) holds for certain N ∈ Z+. Define

δ(i,N + 1, ε) := min

{

δ(i,N, ε), δ

(

i,N,
1

β(τi+N )
a−1

(
ε

2

))}

(1.125)

where a ∈ K∞ and β ∈ K+ are the functions involved in Hypothesis (L1). By defi-

nition (1.125) and implication (1.124) it follows that

∥
∥x(τi)

∥
∥

X
+ sup

t≥0

∥
∥u(t)

∥
∥

U
≤ δ(i,N + 1, ε)

⇒ sup
{∥
∥x(τi+s)

∥
∥

X
: d ∈ MD, s ∈ {0, . . . ,N}

}

≤ ε (1.126)
∥
∥x(τi)

∥
∥

X
+ sup

t≥0

∥
∥u(t)

∥
∥

U
≤ δ(i,N + 1, ε)

⇒
∥
∥x(τi+N )

∥
∥

X
≤

1

β(τi+N )
a−1

(
ε

2

)

(1.127)

Inequality (1.127), in conjunction with Hypothesis (L1) and the fact that

‖u(τi+N )‖U ≤ 1
β(τi+N )

a−1( ε
2
) (which holds if ‖x(τi)‖X + supt≥0 ‖u(t)‖U ≤

δ(i,N + 1, ε); see definition (1.125), implies that

∥
∥x(τi)

∥
∥

X
+ sup

t≥0

∥
∥u(t)

∥
∥

U
≤ δ(i,N + 1, ε)

⇒ sup
{∥
∥x(τi+N+1)

∥
∥

X
: d ∈ MD

}

≤ ε (1.128)
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Combining (1.126) and (1.128), we conclude that implication (1.124) holds for

N + 1. The proof is complete. �

We are now ready to prove Lemma 1.4.

Proof of Lemma 1.4 It suffices to show that for all ε > 0, N ∈ Z+, and l ∈ Z+ with

N ≥ l, there exists δ := δ(ε,N, l) ∈ (0, ε] such that

‖x0‖X + sup
t≥0

∥
∥u(t)

∥
∥

U
≤ δ, t0 ∈ {τ0, . . . , τl}

⇒ sup
{∥
∥φ(τi, t0, x0, u, d)

∥
∥

X
; τi ∈ π ∩ [t0, τN ], d ∈ MD

}

≤ ε

The above implication holds with δ := δ(ε,N, l) = mini=0,...,l δ(i,N, ε), where

δ(i,N, ε) > 0 is provided by Lemma 1.5. The proof is complete. �

1.8 Bibliographical and Historical Notes

(1) Abstract definitions of control systems with outputs were presented in [21, 46].

A definition similar in spirit to the definitions given in [21, 46] was later pre-

sented in [22]. A qualitatively different definition of a control system (which

is adopted in the present text) was given in [26, 27]. The difference between

Definition 1.1 of a control system with outputs and Definition 2.1 in [22] lies

in property 4 (semigroup property). In the above definition we do not require

π(t0, x0, u, d) = [t0, tmax) (in contrast with Definition 2.1 in [22]). This modi-

fication allows us to study important classes of systems, which were excluded

by Definition 2.1 in [22].

(2) It should be emphasized that there are systems that do not satisfy the weak

semigroup property (e.g., systems described by integrodifferential equations

studied in [32], such as ẋ(t) = −x(t) +
∫ t

t0
sin(tx(s)) ds, x(t) ∈ ℜ with initial

condition x(t0) = x0 ∈ ℜ).

(3) Initial-value problems of the form (1.18), (1.19), (1.20) arise in electrical, ther-

mal, and hydraulic engineering (see, for instance, the model of combined heat

and electricity generation and other models reported in [35, 42] concerning

lossless transmission lines with electrical circuits and turbines under water-

hammer conditions).

(4) Other concepts of weak solutions for linear neutral functional differential

equations were given in [5, 17]. In recent works control-theoretic aspects for

linear neutral functional differential equations are studied (see [15, 16]).

(5) It should be noticed that recent contributions in the literature study systems of

coupled RFDEs and FDEs of the form (1.18), (1.19), (1.20) per se (see, for

instance, [35, 38, 39] and references therein). The difference between [35, 38,

39] and the recent work in [31] is that the matching condition is not assumed

to hold in [31]. This is the viewpoint adopted in the present work.
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(6) Sampled-data feedback (1.62) has been considered in [7, 13, 25, 34, 44, 47].

Particularly, Theorem 9.3.1 in [13] provides links to the classical results in

[7, 47]. Moreover, control systems under a hybrid feedback law with asyn-

chronous switching rules (as given in [43]) can be modeled as systems of the

form (1.57).

(7) Notice that there is a difference between Definition 1.6 and Definition 7.2.3

in [46]: we do not exclude interconnections of control systems that may have

finite escape time. Moreover, we can allow Σ2 = (X2, Y2,MS1×U ,MD, φ̃2,

π2,H2) to be just a continuous map from ℜ+ × Y1 into Y2 (a static map—this

is allowed as well by Definition 7.2.3 in [46]). Of course, usually the continuity

of a static map is not enough to guarantee that there is an interconnection

of two subsystems. More specifically, in order to guarantee the uniqueness

of the map φ = (φ1, φ2) : Aφ → X1 × X2, other regularity properties must

be satisfied as well depending on the nature of the overall system. The well-

posedness of the interconnection of two finite-dimensional systems described

by ordinary differential equations is addressed in [20]; see also [9] for the

description of feedback systems using input–output approaches.

(8) Discrete-time systems on normed linear spaces were studied in [23, 24].

Discrete-time systems with disturbances were studied in [18, 19].

(9) The chemostat model (1.4) with variable yield coefficients has been studied

recently (see [50, 51]) and has been proposed for the justification of experi-

mental results. The delayed chemostat model (1.11) has been studied in [29].

(10) The uncertain dynamic model for the Cournot oligopoly game (1.53) was stud-

ied in [28]. See also [1, 4, 6, 10, 12, 36, 37] for other studies for the dynamic

Cournot oligopoly game.

(11) The discrete-time model (1.123) for the cobweb model with stocks was pro-

posed in [2].

(12) The study of numerical schemes for ordinary differential equations by means

of hybrid systems was proposed recently in [26, 30]. Usually, numerical

schemes for ordinary differential equations were studied by means of discrete-

time systems (see, for instance, [33, 48]).
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Chapter 2

Internal Stability:
Notions and Characterizations

2.1 Introduction

This chapter is devoted to the analysis of internal global stability notions used in

mathematical control and systems theory. The stability notions presented are devel-

oped in the system-theoretic framework described in the previous chapter so that

one can obtain a wide perspective of the role of stability in various classes of deter-

ministic systems.

The stability notions developed in this chapter are referred to as “internal” be-

cause these notions are “uniform” with respect to the effect of external inputs (e.g.,

disturbances). Therefore, the notions are applicable to both certain and uncertain

systems, and can be regarded as direct extensions of the conventional stability no-

tions for systems with no external inputs, i.e., for the disturbance-free case.

A large part of this chapter is also devoted to the presentation of methods of

proving stability. For testing global stability properties, there exist at least seven

different methods in the literature, as shown below:

(1) The first method is based upon analytical solutions. It attempts to obtain basic

estimates for the solutions of the system by actually solving the differential (or

difference) equations (or inequalities).

(2) The second method is based upon transformation techniques. With this method

basic estimates for the solutions of the system are derived by transforming the

system into a different system with special properties.

(3) The third method is based on Lyapunov functions and functionals. With this

method basic estimates for the solutions are derived by means of one (or many)

Lyapunov functional(s) and comparison lemmas.

(4) The fourth method is based on small-gain techniques. With this method basic

estimates for the solutions of the system are derived by means of small-gain

arguments.

(5) The fifth method is based on Matrosov functions.

(6) The sixth method is based on fixed point theorems.

(7) Finally, one has the method based upon dissipative systems theory.
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Due to the intimate connection of small-gain results to external stability notions

(i.e., stability notions which are not uniform with respect to the effect of external

inputs), the small-gain methods of proving stability will be described separately in

the following chapters. However, the first three methods are explained in detail in

the present chapter. Finally, it should be emphasized that the different methods of

proving stability can be, and often are, combined. For example, one can use Lya-

punov functionals or analytical solutions to obtain basic estimates for the solutions

and use small-gain arguments for the stability proof.

In what follows, Σ := (X , Y ,MU ,MD, φ,π,H) will be a control system with

the BIC property, U = {0}, and for which 0 ∈ X is a robust equilibrium point

from the input u ∈ MU . Moreover, u0 ∈ MU will be the identically zero input, i.e.,

u0(t) = 0 ∈ U for all t ≥ 0. For the output map H : ℜ+ × X × U → Y , we as-

sume that either H : ℜ+ × X × U → Y is continuous or that there exists a partition

π = {τi}∞i=0 of ℜ+ with diameter r > 0 such that H : ℜ+ × X × U → Y satisfies

Hypothesis (L2) in Sect. 1.7 of the previous chapter.

2.2 Definitions of Robust Global Asymptotic Output Stability

(RGAOS)

Every stability notion must be defined for systems with solutions that are defined

for all times t greater than the initial time t0. Consequently, the following definition

plays an important role to the stability notions of the present chapter.

Definition 2.1 We say that a system Σ is Robustly Forward Complete (RFC) if it

has the BIC property and for all R ≥ 0 and T ≥ 0, it holds that

sup
{∥

∥φ(t0 +s, t0, x0, u0, d)
∥

∥

X
; s ∈ [0, T ],‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD

}

< +∞

We next provide the definitions of Robust Global Asymptotic Output Stability

(RGAOS) and Uniform Robust Global Asymptotic Output Stability (URGAOS).

Definition 2.2 We say that Σ is Robustly Globally Asymptotically Output Stable

(RGAOS) if Σ is RFC and the following properties hold:

P1. Σ is Robustly Lagrange Output Stable, i.e., for all ε > 0 and T ≥ 0, it holds

that

sup
{∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
; t ≥ t0,‖x0‖X ≤ ε, t0 ∈ [0, T ], d ∈ MD

}

< +∞
(Robust Lagrange Output Stability).

P2. Σ is Robustly Lyapunov Output Stable, i.e., for all ε > 0 and T ≥ 0, there exists

δ := δ(ε, T ) > 0 such that
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‖x0‖X ≤ δ t0 ∈ [0, T ]
⇒

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
≤ ε ∀t ≥ t0, ∀d ∈ MD.

(Robust Lyapunov Output Stability).

P3. Σ satisfies the Robust Output Attractivity Property, i.e., for all ε > 0, T ≥ 0,

and R ≥ 0, there exists τ := τ(ε, T ,R) ≥ 0 such that

‖x0‖X ≤ R t0 ∈ [0, T ]
⇒

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ ε ∀t ≥ t0 + τ,∀d ∈ MD.

Moreover, if H(t, x,u) ≡ x, then we say that Σ is Robustly Globally Asymptoti-

cally Stable (RGAS).

Definition 2.3 We say that Σ is Uniformly Robustly Globally Asymptotically Out-

put Stable (URGAOS) if Σ is RFC and the following properties hold:

P1. Σ is Uniformly Robustly Lagrange Output Stable, i.e., for every ε > 0, it holds

that

sup
{∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
; t ≥ t0,‖x0‖X ≤ ε, t0 ≥ 0, d ∈ MD

}

< +∞
(Uniform Robust Lagrange Output Stability).

P2. Σ is Uniformly Robustly Lyapunov Output Stable, i.e., for every ε > 0, there

exists δ := δ(ε) > 0 such that

‖x0‖X ≤ δ t0 ≥ 0

⇒
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ ε for all t ≥ t0 and d ∈ MD

(Uniform Robust Lyapunov Output Stability).

P3. Σ satisfies the Uniform Robust Output Attractivity Property, i.e., for all ε > 0

and R ≥ 0, there exists τ := τ(ε,R) ≥ 0 such that

‖x0‖X ≤ R t0 ≥ 0

⇒
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ ε ∀t ≥ t0 + τ,∀d ∈ MD.

Moreover, if H(t, x,u) ≡ x, then we say that Σ is Uniformly Robustly Globally

Asymptotically Stable (URGAS).

The following lemma shows that RFC and property P3 in Definition 2.2 are suffi-

cient for RGAOS. In other words, Robust Lagrange and Lyapunov Output Stability

are consequences of the Robust Output Attractivity property.
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Lemma 2.1 Suppose that Σ is Robustly Forward Complete (RFC) and satisfies

the Robust Output Attractivity Property (property P3 of Definition 2.2). Then Σ is

RGAOS.

The proof of Lemma 2.1 is based on the following fact, which exploits the prop-

erties of the output map.

Fact I For all T ≥ 0 and ε > 0, there exists δ := δ(ε, T ) > 0 such that

sup
{∥

∥H(t, x,0)
∥

∥

Y
: ‖x‖X ≤ δ, t ∈ [0, T ]

}

≤ ε.

Proof of Fact I Let T ≥ 0 and ε > 0. We consider the following cases:

Case 1: H : ℜ+ × X × U → Y is continuous.

In this case, the continuity of the map H : ℜ+ × X × U → Y and the fact that

H(t,0,0) = 0 for all t ≥ 0 imply that for every t ∈ [0, T ], there exists δ̃ :=
δ̃(t, ε) > 0 such that

sup
{∥

∥H(τ, x,0)
∥

∥

Y
: ‖x‖X ≤ δ̃, τ ≥ 0, |τ − t | ≤ δ̃

}

≤ ε (2.1)

Due to the fact that the interval [0, T ] is compact, there exists a finite number of

times ti ∈ [0, T ], i = 1, . . . ,N , with the property [0, T ] ⊆
⋃

i=1,...,N [max(0, ti −
δ̃(ti, ε)), ti + δ̃(ti, ε)]. By virtue of (2.1), the selection δ(ε, T ) =
mini=1,...,N δ̃(ti, ε) > 0 guarantees that the statement of Fact I holds.

Case 2: There exists a partition π = {τi}∞i=0 of ℜ+ with diameter r > 0 such that

H : ℜ+×X ×U → Y satisfies Hypothesis (L2) in Sect. 1.7 of the previous chapter.

In this case, notice that there exists a finite set {τ0, . . . , τN } = π ∩ [0, T ] with

τN+1 > T . Using the fact that for each fixed τi ∈ π , the mapping X ×U ∋ (x,u) →
H(τi, x,u) is continuous with H(τi,0,0) = 0, it follows that for every i = 0, . . . ,N ,

there exists δ̃i := δ̃i(ε) > 0 such that

sup
{∥

∥H(τi, x,0)
∥

∥

Y
: ‖x‖X ≤ δ̃i

}

≤ ε (2.2)

By virtue of (2.2) in conjunction with the fact that, for every (τi, x,u) ∈ π × X ×U

and t ∈ [τi, τi+1), it holds that H(t, x,u) = H(τi, x,u), the selection δ(ε, T ) =
mini=0,...,N δ̃i(ε) > 0 guarantees that Fact I holds. The proof is complete. �

We are now in a position to provide the proof of Lemma 2.1.

Proof of Lemma 2.1 It suffices to show that Σ is Robustly Lagrange and Lyapunov

Output Stable, i.e., it satisfies properties P1 and P2 of Definition 2.2. First, we show

that Σ is Robustly Lagrange Output Stable, by showing that a(T , s) < +∞ for all

T ≥ 0, s ≥ 0, where
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a(T , s) := sup
{∥

∥H
(

t,φ(t, t0, x0, u0, d),0
)∥

∥

Y
:

d ∈ MD, t ∈ [t0,+∞),‖x0‖X ≤ s, t0 ∈ [0, T ]
}

By virtue of Robust Output Attractivity Property we have, for every ε > 0,

a(T , s) ≤ ε + sup
{
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
:

d ∈ MD, t ∈
[

t0, t0 + τ(ε, T , s)
]

,‖x0‖X ≤ s, t0 ∈ [0, T ]
}

where τ := τ(ε, T , s) ≥ 0 is the time involved in the Robust Output Attractivity

Property of Definition 2.2. Also, by virtue of Robust Forward Completeness (which

implies that the set {φ(t, t0, x0, u0, d); t ∈ [t0, t0 + τ ],‖x0‖X ≤ s, t0 ∈ [0, T ], d ∈
MD} is bounded) and since H : ℜ+ × X × U → Y maps bounded sets of ℜ+ ×
X × U into bounded sets of Y , we obtain

sup
{
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
:

d ∈ MD, t ∈
[

t0, t0 + τ(ε, T , s)
]

,‖x0‖X ≤ s, t0 ∈ [0, T ]
}

< +∞

Combining the above inequalities, we obtain that a(T , s) < +∞ for all T ≥ 0,

s ≥ 0, or equivalently that Σ is Robustly Lagrange Output Stable.

Next, we show that Σ is Robustly Lyapunov Output Stable. Consider arbitrary

ε > 0 and T ≥ 0. By virtue of the Robust Output Attractivity Property, there exists

τ := τ(ε, T ) ≥ 0 such that, whenever ‖x0‖X ≤ ε and t0 ∈ [0, T ], it holds that

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ ε ∀t ∈ [t0 + τ,+∞),∀d ∈ MD. (2.3)

Moreover, by Fact I, there exists δ̃ := δ̃(ε, T ) > 0 such that

sup
{∥

∥H(t, x,0)
∥

∥

Y
: ‖x‖X ≤ δ̃, t ∈

[

0, T + τ(ε, T )
]}

≤ ε (2.4)

where τ := τ(ε, T ) ≥ 0 is the time involved in (2.3). Finally, since 0 ∈ X is a robust

equilibrium point from the input u ∈ MU for Σ , it follows that, for all ε > 0 and

T ≥ 0, there exists δ′ > 0 such that

sup
{∥

∥φ(τ, t0, x,u0, d)
∥

∥

X
;d ∈ MD, τ ∈

[

t0, t0 + τ(ε, T )
]

, t0 ∈ [0, T ]
}

≤ δ̃(ε, T )

provided that ‖x‖X ≤ δ′, where τ := τ(ε, T ) ≥ 0 is the time involved in (2.3), and

δ̃ := δ̃(ε, T ) > 0 is the positive number involved in (2.4). The above inequality in

conjunction with (2.4) gives

sup
{
∥

∥H
(

τ,φ(τ, t0, x,u0, d),0
)
∥

∥

Y
;d ∈ MD, τ ∈

[

t0, t0 + τ(ε, T )
]

, t0 ∈ [0, T ]
}

≤ ε

provided that ‖x‖X ≤ δ′.
It is clear from (2.3) and the above inequality that the Robust Lyapunov Output

Stability property is satisfied for δ(ε, T ) = min{ε, δ′}. The proof is complete. �
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The following lemma must be compared to Lemma 1.1, p. 131 in [17], and

Proposition 3.2 in [19]. It shows that, for periodic systems, RGAOS is equivalent

to URGAOS.

Lemma 2.2 Suppose that Σ := (X , Y ,MU ,MD, φ,π,H) is T-periodic. If Σ is

RGAOS, then Σ is URGAOS.

Proof The proof is a direct consequence of Definitions 2.2, 2.3 and from the fol-

lowing observation: if Σ := (X , Y ,MU ,MD, φ,π,H) is T -periodic, then for every

(t0, x0, u, d) ∈ ℜ+ × X × MU × MD , it holds that H(t,φ(t, t0, x0, u, d), u(t)) =
H(t − kT ,φ(t − kT , t0 − kT , x0,PkT u,PkT d), (PkT u)(t − kT )) and φ(t, t0,

x0, u, d) = φ(t − kT , t0 − kT , x0,PkT u,PkT d), where k := [t0/T ] denotes the in-

teger part of t0/T , and the inputs PkT u ∈ MU , PkT d ∈ MD are defined in Defini-

tion 1.2. �

Remark 2.1 Notice that Property P3 of Definitions 2.2, 2.3 is not equivalent to

limt→+∞ ‖H(t,φ(t, t0, x0, u0, d),0)‖Y = 0 for all (t0, x0, d) ∈ (ℜ+, X ,MD) (the

so-called “weak attractivity property”). In [16] (pp. 191–194) an example of an

autonomous finite-dimensional system described by ODEs is reported, where a ro-

bust equilibrium point satisfies the weak attractivity property, but it is not URGAS,

namely the planar system

⎧

⎪

⎨

⎪

⎩

ẋ = x2(y−x)+y5

(x2+y2)(1+(x2+y2)2)

ẏ = y2(y−2x)

(x2+y2)(1+(x2+y2)2)

where the right-hand sides are defined to be zero at x = y = 0 (and consequently

the right-hand sides are locally Lipschitz functions). The above system satisfies Hy-

potheses (H1–4) in Sect. 1.2 of the previous chapter and is RFC. Hence, by virtue

of Lemma 2.1, it follows that the above system cannot satisfy Property P3.

Remark 2.2 Obviously, if a system Σ := (X , Y ,MU ,MD, φ,π, I ) is RGAS,

where I denotes the identity mapping (i.e., I (t, x) := x and X = Y ) and the

output function is time-invariant, i.e., H(t, x) ≡ H(x), then the system Σ :=
(X , Y ,MU ,MD, φ,π,H) is RGAOS. However, this conclusion does not hold if

the output function actually depends on time. For example, consider the system

with identity output map,

ẋ = −x x ∈ ℜ

It is clear that the above system is URGAS. However, if we define the output

Y = H(t, x) = exp(4t)x

then it is obvious that the above system is not RGAOS.
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Remark 2.3 The need to impose the Robust Lagrange Stability Property and the

importance of this property are discussed in [57]. Particularly, in [57] the authors

present an example of a scalar time-varying system described by ODEs with identity

output map, where properties P2, P3 of Definition 2.3 hold, and the system is not

URGAS. Therefore, nonuniform notions of stability are needed for the study of

time-varying systems.

We stop at this point in order to emphasize the last phrase of the above comment.

Since nonuniform stability notions are seldom discussed in details in most books,

we present an example which illustrates the need for such notions in nonperiodic

time-varying systems.

Example 2.2.1 Consider the planar, linear, and time-varying system described by

the ODEs

ẋ1(t) = exp(t)x2(t)

ẋ2(t) = − exp(−t)x1(t) − 3x2(t)

x(t) =
(

x1(t), x2(t)
)

∈ ℜ2 (2.5)

The solution of system (2.5) with initial condition x(t0) = (x10, x20)
T ∈ ℜ2 is given

by the following equations for all t ≥ t0:

x1(t) = x10

[

1 + (t − t0)
]

exp
(

−(t − t0)
)

+ x20(t − t0) exp(t0) exp
(

−(t − t0)
)

x2(t) = −x10(t − t0) exp(−t0) exp
(

−2(t − t0)
)

+ x20

[

1 − (t − t0)
]

exp
(

−2(t − t0)
)

(2.6)

If the output Y of system (2.5) is the state component x2, then one can show the

URGAOS property. Indeed, in this case there exists a constant M > 0 such that the

solution of (2.5) satisfies |x2(t)| ≤ M|x0| exp(−(t − t0)) for all t ≥ t0.

However, if the output Y of system (2.5) is the state component x1, then one

cannot show URGAOS. To prove this, we notice that the Uniform Robust Output

Attractivity Property does not hold. If the Uniform Robust Output Attractivity Prop-

erty were valid, then for all ε > 0 and R ≥ 0, we would obtain the existence of

τ := τ(ε,R) ≥ 0 such that for every t0 ≥ 0, x20 ∈ ℜ with |x20| ≤ R and t − t0 ≥ τ ,

the following inequality would hold:

∣

∣x1(t)
∣

∣= |x20|(t − t0) exp(t0) exp
(

−(t − t0)
)

≤ ε (2.7)

Notice that we have considered the solution of (2.5) with x10 = 0. Clearly, (2.7)

holds for all t ≥ t0 if R exp(t0 − 1) ≤ ε and for all t ≥ t0 + A( ε
R

exp(−t0)) if

R exp(t0 − 1) > ε, where A := A( ε
R

exp(−t0)) > 1 is the unique solution of the

equation A exp(−A) = ε
R

exp(−t0). Notice that A( ε
R

exp(−t0)) > ln(R
ε

exp(t0)) and

therefore the assumption of Uniform Robust Output Attractivity Property leads to

contradiction, because we must have τ(ε,R) ≥ A( ε
R

exp(−t0)).
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Finally, it should be noted that the Robust Output Attractivity Property holds if

the output Y of system (2.5) is the state component x1. In this case, we can prove

RGAOS using (2.6) (but not URGAOS). Thus, nonuniform stability notions arise

naturally in the study of the simple system (2.5).

2.3 KL Characterizations

This section is devoted to the proof of two basic results, which provide characteri-

zations of the RGAOS and URGAOS in terms of KL functions.

Theorem 2.1 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with the

BIC property and for which 0 ∈ X is a robust equilibrium point from the input

u ∈ MU . Then the following statements are equivalent:

(i) Σ is RGAOS.

(ii) There exist functions μ,β ∈ K+ and σ ∈ KL such that for every (t0, x0, d) ∈
ℜ+ × X × MD , we have

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
+ μ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

≤ σ
(

β(t0)‖x0‖X , t − t0
)

for all t ≥ t0. (2.8)

(iii) There exist functions γ,β ∈ K+, a ∈ K∞, σ ∈ KL and a constant R ≥ 0 such

that for every (t0, x0, d) ∈ ℜ+ × X × MD , we have:

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
≤ σ

(

β(t0)
(

‖x0‖X + R
)

, t − t0
)

∀t ≥ t0 (2.9)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ γ (t)a

(

β(t0)
(

‖x0‖X + R
))

∀t ≥ t0. (2.10)

Theorem 2.2 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with the

BIC property and for which 0 ∈ X is a robust equilibrium point from the input

u ∈ MU . Then the following statements are equivalent:

(i) Σ is URGAOS.

(ii) Σ is RFC, and there exists a function σ ∈ KL such that for every (t0, x0, d) ∈
ℜ+ × X × MD , we have

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ

(

‖x0‖X , t − t0
)

for all t ≥ t0. (2.11)

For the proof of Theorems 2.1 and 2.2, we need some technical lemmas that

illustrate useful properties of the functions of classes K∞ and K+.

Lemma 2.3 Let a : ℜ+ ×ℜ+ → ℜ+ be a function with a(·,0) = 0 that satisfies the

following properties:

1. for each fixed t ≥ 0, the mapping a(t, ·) is nondecreasing,

2. for each fixed s ≥ 0, the mapping a(·, s) is nondecreasing,

3. lims→0+ a(t, s) = 0 for all t ≥ 0.
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Then there exists a pair of functions ζ ∈ K∞ and γ ∈ K+ such that

a(t, s) ≤ ζ
(

γ (t)s
)

for all (t, s) ∈
(

ℜ+)2
(2.12)

Proof of Lemma 2.3 Without loss of generality we may assume that a ∈ C0(ℜ+ ×
ℜ+). Indeed, otherwise we may consider the function

â(t, s) :=
{

1
s

∫ 2s

s

∫ t+1
t

a(τ, ξ) dτ dξ for s > 0

0 for s = 0

which by virtue of the inequality a(t, s) ≤ â(t, s) ≤ a(t + 1,2s) is in C0(ℜ+ ×
ℜ+) and satisfies â(·,0) = 0. Notice that â has the same Properties 1, 2, 3 of our

statement with a.

By invoking Property 3, for every t ≥ 0, there exists δ(t) in (0,1) such that

s ≤ δ(t) ⇒ a(t, s) ≤ 1

t + 1
(2.13)

Define the following function:

η̃(t) :=
(

[t] + 1 − t
)

δ
(

[t] + 1
)

+
(

t − [t]
)

δ
(

[t] + 2
)

t ≥ 0 (2.14)

where [t] denotes the integer part of t ≥ 0. Notice that by definition (2.14) it

follows that η̃(k) = δ(k + 1) and limt→(k+1)− η̃(t) = δ(k + 2) for all k ∈ Z+,

which implies that η̃ is continuous. Moreover, definition (2.14) gives 0 < η̃(t) ≤
max{δ([t] + 1); δ([t] + 2)} for all t ≥ 0, which in conjunction with (2.13) implies:

s ≤ η̃(t) ⇒
s ≤ δ([t] + 1) or

s ≤ δ([t] + 2)

}

⇒
a([t] + 1, s) ≤ 1

[t]+2
or

a([t] + 2, s) ≤ 1
[t]+3

}

The above inequality, combined with the fact that t ≤ [t] + 1 ≤ [t] + 2 and Prop-

erty 2 for a, gives:

s ≤ η̃(t) ⇒ a(t, s) ≤ 1

t + 1
(2.15)

Next, define the following function:

η(t) := exp(−t) min
0≤τ≤t

η̃(τ ) (2.16)

which is a C0 strictly decreasing function η : ℜ+ → (0,+∞) with limt→+∞ η(t)

= 0 and such that

s ≤ η(t) ⇒ a(t, s) ≤ 1

t + 1
(2.17)
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Let μ be the inverse function of η defined on (0, η(0)] being nonnegative, continu-

ous, and strictly decreasing with limt→0+ µ(t) = +∞. Define

µ̃(s) :=
{

µ(s) if s ∈ (0, η(0)]
0 if s > η(0)

(2.18)

It turns out that µ̃ : (0,+∞) → ℜ+ is nonincreasing, continuous, nonnegative, and

satisfies limt→0+ µ̃(t) = +∞. Additionally, define

β(s) := s +
{

0 if s = 0

sup0<τ≤s a(μ̃(τ ), τ ) if s > 0
(2.19)

We next show that β ∈ K∞. Indeed, by definition (2.19) it follows that β(0) = 0 and

β is strictly increasing with lims→+∞ β(s) = +∞. The continuity of β on (0,+∞)

follows from the fact that both a and μ̃ are C0 on (0,+∞). Furthermore, notice that

(2.17) and (2.18) imply

a
(

μ̃(τ ), τ
)

≤ 1

μ̃(τ ) + 1
for all τ ∈

(

0, η(0)
]

. (2.20)

Since lims→0+ μ̃(s) = +∞, it follows from (2.20) that lims→0+ β(s) = 0, and this

establishes the continuity of β at zero. Let ζ(s) := a(s, s) + β(s). Obviously, ζ(·)
is of class K∞. Moreover, when s ≥ t , by virtue of Property 2 for a, it holds that

a(t, s) ≤ a(s, s) ≤ ζ(s), which implies

sup
s≥t>0

ζ−1(a(t, s))

s
≤ 1 (2.21)

Also, when 0 < s ≤ η(t), it follows from (2.18) that μ̃(s) ≥ t , and hence, by Prop-

erty 2 for a and (2.19), a(t, s) ≤ a(μ̃(s), s) ≤ ζ(s). The latter implies that

sup
0<s≤η(t)

ζ−1(a(t, s))

s
≤ 1 (2.22)

Using Property 1, (2.21), and (2.22), we get

sup
s>0

ζ−1(a(t, s))

s
≤ 1 + sup

η(t)≤s≤t

ζ−1(a(t, s))

s
≤ 1 + ζ−1(a(t, t))

η(t)
(2.23)

Let, finally, γ be any function of class K+ which satisfies

γ (t) ≥ ζ−1(a(t, t))

η(t)
+ 1 for all t ≥ 0 (2.24)

The desired (2.12) is a consequence of (2.23) and (2.24). �
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Lemma 2.4 Let a : ℜ+ → ℜ+ be a locally bounded function with lims→0+ a(s) =
a(0) = 0. Then there exists a function ζ ∈ K∞ such that

a(s) ≤ ζ(s) for all s ≥ 0 (2.25)

Proof of Lemma 2.4 Define ã(s) := sup0≤τ≤s a(τ) and notice that ã is nondecreas-

ing with lims→0+ ã(s) = ã(0) = 0. Define ζ(s) := s + 1
s

∫ 2s

s
ã(ξ) dξ for s > 0 and

ζ(0) := 0. The desired (2.25) is a consequence of previous definitions. �

The following three technical lemmas provide essential estimates of the output

and state behavior for RGAOS systems.

Lemma 2.5 Suppose that the control system Σ := (X , Y ,MU ,MD, φ,π,H) with

outputs is RGAOS. Then there exist functions σ ∈ KL and β ∈ K+ such that the

following estimate holds for all (t0, x0, d) ∈ ℜ+ × X × MD and t ≥ t0:

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ

(

β(t0)‖x0‖X , t − t0
)

(2.26)

Proof of Lemma 2.5 Let ξ, T ≥ 0, s ≥ 0, and define:

a(T , s) := sup
{∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
: d ∈ MD, t ≥ t0,

‖x0‖X ≤ s, t0 ∈ [0, T ]
}

(2.27)

M(ξ,T , s) := sup
{
∥

∥H
(

t0 + ξ,φ(t0 + ξ, t0, x0, u0, d),0
)
∥

∥

Y
: d ∈ MD,

‖x0‖X ≤ s, t0 ∈ [0, T ]
}

(2.28)

First notice that by virtue of Robust Lagrange Output Stability a is well defined,

i.e., a(T , s) < +∞ for all T ≥ 0, s ≥ 0. Furthermore, notice that M is well defined,

since by definitions (2.27), (2.28) the following inequality is satisfied for all ξ, T ≥ 0

and s ≥ 0:

M(ξ,T , s) ≤ a(T , s) (2.29)

Notice that, a satisfies all hypotheses of the Lemma 2.3, namely, for each fixed

s ≥ 0, a(·, s) is nondecreasing, and for each fixed T ≥ 0, a(T , ·) is nondecreasing

and satisfies a(·,0) = 0. Furthermore, Robust Lyapunov Output Stability asserts that

for every T ≥ 0, lims→0+ a(T , s) = 0. It turns out from Lemma 2.3 that there exist

functions ζ1 ∈ K∞ and γ ∈ K+ such that

a(T , s) ≤ ζ1

(

γ (T )s
)

for all (T , s) ∈
(

ℜ+)2
(2.30)

Without loss of generality, we may assume that γ ∈ K+ is nondecreasing. Inequal-

ity (2.30) in conjunction with (2.29) implies

M(ξ,T , s) ≤ ζ1

(

γ (T )s
)

for all (ξ, T , s) ∈
(

ℜ+)3
(2.31)
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Moreover, the Robust Output Attractivity property guarantees that for all ε > 0,

T ≥ 0, and R ≥ 0, there exists τ = τ(ε, T ,R) ≥ 0 such that

M(ξ,T , s) ≤ ε for all ξ ≥ τ(ε, T ,R) and 0 ≤ s ≤ R (2.32)

Let

g(s) :=
√

s + s2 (2.33)

and let p be a nondecreasing function of class K+ with p(0) = 1 and

lim
t→+∞

p(t) = +∞ (2.34)

Define

μ(ξ) := sup

{

M(ξ,T , s)

p(T )g(ζ1(γ (T )s))
: T ≥ 0, s > 0

}

(2.35)

Obviously, by (2.31) and (2.35) the function μ : ℜ+ → ℜ+ is well defined and

satisfies μ(·) ≤ 1. We show that limξ→+∞ μ(ξ) = 0, or, equivalently, we establish

that for any given ε > 0, there exists a δ = δ(ε) ≥ 0 such that

μ(ξ) ≤ ε for ξ ≥ δ(ε) (2.36)

Notice first, that for any given ε > 0, there exist constants a := a(ε) and b := b(ε)

with 0 < a < b such that

x /∈ (a, b) ⇒ x√
x + x2

≤ ε (2.37)

We next recall (2.34), which asserts that, for the above ε for which (2.37) holds,

there exists c := c(ε) ≥ 0 such that p(T ) ≥ 1
ε

for all T ≥ c. This by virtue of (2.37)

and (2.31) yields

M(ξ,T , s)

p(T )g(ζ1(γ (T )s))
≤ ε for all ξ ≥ 0, when T ≥ c or ζ1

(

γ (T )s
)

/∈ (a, b) (2.38)

Hence, in order to establish (2.36), it remains to consider the case

a ≤ ζ1

(

γ (T )s
)

≤ b and 0 ≤ T ≤ c (2.39)

Since, for each fixed (ξ, s) ∈ (ℜ+)2, the mappings M(ξ, ·, s), M(ξ,T , ·), γ (·), and

p(·) are nondecreasing, we have

M(ξ,T , s)

p(T )g(ζ1(γ (T )s))
≤

M
(

ξ, c,
ζ−1

1 (b)

γ (0)

)

g(a)
(2.40)

provided that (2.39) holds. By using (2.32) with

ε := εg(a) T := c R :=
ζ−1

1 (b)

γ (0)
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it follows that

M

(

ξ, c,
ζ−1

1 (b)

γ (0)

)

≤ εg(a) for ξ ≥ δ(ε) := τ

(

εg(a), c,
ζ−1

1 (b)

γ (0)

)

(2.41)

By taking into account (2.38), (2.40), (2.41), and definition (2.35) of μ(·) it follows

that (2.36) holds with δ = δ(ε) as selected in (2.41). Since ε > 0 is arbitrary, we

conclude that limξ→+∞ μ(ξ) = 0. Define

μ̃(t) := sup
τ≥t

μ(τ) for t ≥ 0; μ̃(t) := sup
τ≥0

μ(τ) for t < 0 (2.42)

Clearly, μ̃(·) is a nonincreasing function with limξ→+∞ μ̃(ξ) = 0 and μ̃(t) ≥ μ(t)

for all t ≥ 0. Next define, for t ≥ 0,

μ̄(t) := exp(−t) +
∫ t

t−1

μ̃(w)dw (2.43)

Notice that μ̄ : ℜ+ → (0,+∞) is a continuous strictly decreasing function such

that μ̄(ξ) ≥ μ(ξ) for all ξ ≥ 0 and limξ→+∞ μ̄(ξ) = 0. Thus, by recalling defini-

tion (2.35) we obtain

M(ξ,T , s) ≤ μ̄(ξ)θ(T , s) for all (T , s) ∈
(

ℜ+)2
and ξ ≥ 0 (2.44)

where θ(T , s) := p(T )g(ζ1(γ (T )s)). Clearly, θ satisfies all hypotheses of Lem-

ma 2.3, and therefore there exist ζ ∈ K∞ and β ∈ K+ such that

θ(T , s) ≤ ζ
(

β(T )s
)

for all (T , s) ∈
(

ℜ+)2
(2.45)

The desired (2.26) is a consequence of (2.28), (2.44), and (2.45) with σ(s, t) :=
μ̄(t)ζ(s) (which is a KL function). �

Lemma 2.6 Suppose that the control system Σ := (X , Y ,MU ,MD, φ,π,H) with

outputs is URGAOS. Then there exists a function σ ∈ KL such that the following

estimate holds for all (t0, x0, d) ∈ ℜ+ × X × MD and t ≥ t0:

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ

(

‖x0‖X , t − t0
)

(2.46)

Proof of Lemma 2.6 Let ξ ≥ 0, s ≥ 0, and define

a(s) := sup
{
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
:

d ∈ MD, t ≥ t0,‖x0‖X ≤ s, t0 ≥ 0
}

(2.47)

M(ξ, s) := sup
{∥

∥H
(

t0 + ξ,φ(t0 + ξ, t0, x0, u0, d),0
)∥

∥

Y
:

d ∈ MD,‖x0‖X ≤ s, t0 ≥ 0
}

(2.48)

First notice that by virtue of Uniform Robust Lagrange Output Stability, a is well

defined, i.e., a(s) < +∞ for every s ≥ 0. Furthermore, notice that M is well defined,
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since by definitions (2.47), (2.48) the following inequality is satisfied for all ξ ≥ 0

and s ≥ 0:

M(ξ, s) ≤ a(s) (2.49)

Notice that a is nondecreasing (and consequently locally bounded). Moreover, Uni-

form Robust Lyapunov Output Stability asserts that lims→0+ a(s) = a(0) = 0. It

turns out from Lemma 2.4 that there exists a function ζ1 ∈ K∞ such that

a(s) ≤ ζ1(s) for all s ≥ 0 (2.50)

Inequality (2.50), in conjunction with (2.49), implies

M(ξ, s) ≤ ζ1(s) for all (ξ, s) ∈
(

ℜ+)2
(2.51)

Moreover, the Uniform Robust Output Attractivity property guarantees that for all

ε > 0 and R ≥ 0, there exists τ = τ(ε,R) ≥ 0 such that

M(ξ, s) ≤ ε for all ξ ≥ τ(ε,R) and 0 ≤ s ≤ R (2.52)

Let

g(s) :=
√

s + s2 (2.53)

and define

μ(ξ) := sup

{

M(ξ, s)

g(ζ1(s))
: s > 0

}

(2.54)

Working exactly as in the proof of Lemma 2.5 and using (2.51), (2.52), (2.53),

and definition (2.54), we may establish the existence of a continuous strictly

decreasing function μ̄ : ℜ+ → (0,+∞) with μ̄(ξ) ≥ μ(ξ) for all ξ ≥ 0 and

limξ→+∞ μ̄(ξ) = 0. Thus, by recalling definition (2.54) we obtain

M(ξ, s) ≤ μ̄(ξ)θ(s) for all ξ, s ≥ 0 (2.55)

where θ(s) := g(ζ1(s)). The desired (2.46) is a consequence of (2.48) and (2.55)

with σ(s, t) := μ̄(t)θ(s) (which is a KL function). �

Finally, the following lemma provides an estimate for the transition map, which

turns out to be a necessary and sufficient condition for Robust Forward Complete-

ness for systems which are not necessarily RGAOS.

Lemma 2.7 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with the

BIC property, U = {0}, and for which 0 ∈ X is a robust equilibrium point from

the input u ∈ MU . Σ is RFC from the input u if and only if there exist functions

μ,β ∈ K+ and σ ∈ KL such that for every (t0, x0, d) ∈ ℜ+ × X × MD , we have

μ(t)
∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ σ

(

β(t0)‖x0‖X , t − t0
)

for all t ≥ t0 (2.56)
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Proof of Lemma 2.7 Suppose first that Σ is RFC from the input u. Define

ω(T , s) := sup
{∥

∥φ(t0 + h, t0, x0, u0, d)
∥

∥

X
; ‖x0‖X ≤ s,

t0 ∈ [0, T ], h ∈ [0, T ], d ∈ MD

}

(2.57)

Notice that by virtue of Robust Forward Completeness from the input u, the function

ω : ℜ+ × ℜ+ → ℜ+ is finite valued and for each fixed t ≥ 0, the mappings ω(t, ·)
and ω(·, t) are nondecreasing. Moreover, definition (2.57) implies that for every

(t0, x0, d) ∈ ℜ+ × X × MD , the transition map satisfies

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ ω

(

t,‖x0‖X

)

for all t ≥ t0 (2.58)

Since for each fixed t ≥ 0, the mappings ω(t, ·) and ω(·, t) are nondecreasing, in-

equality (2.58) implies

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ ω(t, t) + ω

(

‖x0‖X ,‖x0‖X

)

for all t ≥ t0 (2.59)

Let γ ∈ K+ be a nondecreasing continuous function that satisfies 1+ω(s, s) ≤ γ (s)

for all s ≥ 0 (e.g., γ (s) := 1 +
∫ s+1
s

ω(ξ, ξ) dξ ) and define

a(s) := s +
{

s(1 + γ (0)) for 0 ≤ s < 1

1 + γ (s − 1) for s ≥ 1
and μ(t) := exp(−t)

γ (t)

with a ∈ K∞ and μ ∈ K+. It follows that the following inequalities hold for all

s, t ≥ 0:

ω(t, t) + ω(s, s) ≤ γ (t) + γ (s) ≤ γ (t)
(

1 + γ (s)
)

≤ γ (t)a(1 + s) (2.60)

Inequalities (2.59) and (2.60), in conjunction with (2.58) and definition of μ ∈ K+

above, imply that for every (t0, x0, d) ∈ ℜ+ × X × MD , the transition map satisfies

μ(t)
∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ exp(−t)a

(

‖x0‖X + 1
)

for all t ≥ t0 (2.61)

Consider the control system Σ ′ := (X , X ,MU ,MD, φ,π, H̃ ) with U = {0}, where

H̃ (t, x,0) := μ(t)x (2.62)

It can be immediately verified that Σ ′ := (X , X ,MU ,MD, φ,π, H̃ ) is a control

system with outputs and the BIC property and for which 0 ∈ X is a robust equi-

librium point. Moreover, by virtue of (2.61) and Lemma 2.1, it follows that Σ ′ is

RGAOS. Consequently, Lemma 2.5 guarantees the existence of functions σ ∈ KL

and β ∈ K+ such that (2.56) holds for all (t0, x0, d) ∈ ℜ+ × X × MD and t ≥ t0.

Conversely, suppose that (2.56) holds for the transition map of Σ . Clearly, by

virtue of the BIC property, for each (t0, x0, d) ∈ ℜ+ × X ×MD , there exists a maxi-

mal existence time, say, tmax ∈ ℜ+ ∪ {+∞}, such that [t0, tmax)×{(t0, x0, u0, d)} ⊆
Aφ and for all t ≥ tmax, it holds that (t, t0, x0, u0, d) /∈ Aφ . In addition, if tmax <
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+∞, then for every M > 0, there exists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u0, d)‖X >

M . Suppose that tmax < +∞ for some (t0, x0, d) ∈ ℜ+ × X × MD . Then there ex-

ists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u0, d)‖X > σ(β(t0)‖x0‖X ,0)maxt∈[0,tmax]
1

μ(t)
.

On the other hand, since (2.56) holds, we obtain

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ σ

(

β(t0)‖x0‖X ,0
)

max
t∈[0,tmax]

1

μ(t)

which is clearly a contradiction. Thus, since (2.56) holds, we must have tmax = +∞
for all (t0, x0, d) ∈ ℜ+ × X × MD . Moreover, using (2.56) for all ε ≥ 0 and T ≥ 0,

we obtain

sup
{
∥

∥φ(t0 + s, t0, x0, u0, d)
∥

∥

X
; s ∈ [0, T ],‖x0‖X ≤ ε, t0 ∈ [0, T ], d ∈ MD

}

≤ σ
(

ε max
t∈[0,T ]

β(t),0
)

max
t∈[0,2T ]

1

μ(t)
< +∞

i.e., the property of Robust Forward Completeness from the input u is satisfied. �

We are now in a position to prove the main results of the section.

Proof of Theorem 2.1 The implication (ii) ⇒ (iii) is obvious. The implication

(iii) ⇒ (i) follows immediately by applying the results of Lemma 2.1 and the def-

inition of RFC. To be more precise, notice that inequality (2.10) implies that Σ is

RFC and (by virtue of the properties of the KL functions) estimate (2.9) implies that

Σ satisfies the Robust Output Attractivity Property. Consequently, since 0 ∈ X is a

robust equilibrium point, it follows by virtue of Lemma 2.1 that Σ is RGAOS.

Next we prove implication (i) ⇒ (ii). Suppose that Σ is RGAOS. Then Lem-

mas 2.5 and 2.7 guarantee that there exist functions σ̄ ∈ KL, σ̃ ∈ KL, and β̄, β̃,μ ∈
K+ such that the following estimates hold for all (t0, x0, d) ∈ ℜ+ × X × MD and

t ≥ t0:

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ̄

(

β̄(t0)‖x0‖X , t − t0
)

(2.63)

μ(t)
∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ σ̃

(

β̃(t0)‖x0‖X , t − t0
)

(2.64)

Estimates (2.63) and (2.64) imply (2.8) for σ(s, t) := σ̃ (s, t) + σ̄ (s, t) and β(t) :=
max{β̄(t), β̃(t)}. The proof is complete. �

Proof of Theorem 2.2 The implication (i) ⇒ (ii) is a direct consequence of

Lemma 2.6. The implication (ii) ⇒ (i) follows directly from the properties of KL

functions. �

2.4 Transformations Preserving RGAOS

The method of verifying RGAOS using transformations is used frequently in Math-

ematical Control Theory and Stability Theory. Roughly speaking, we want to verify
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RGAOS for a system Σ which is the transformation of another system Σ ′ (in the

sense described in Sect. 1.6 of Chap. 1). Suppose that we can establish that Σ ′

is RGAOS (using another method, e.g., by solving the differential (or difference)

equations (or inequalities)). Then RGAOS for Σ is guaranteed under some addi-

tional technical assumptions that are presented below.

We start with the following elementary observation, which is a direct conse-

quence of Definitions 1.4, 1.7, and 1.8.

Lemma 2.8 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) which

is RFC from the input u. Let Φ : ℜ+ × X → X be a change of coordinates,

and q : ℜ+ × V → U a transformation of V onto U . Then system Σ ′ :=
(X , Y ,MV ,MD, φ′,π ′,H ′) defined by (1.106), (1.107), (1.108) is a control sys-

tem which is RFC from the input v ∈ MV .

Making use of the results of Lemma 1.2, Theorems 2.1, and 2.2, we are in a

position to show the following propositions.

Proposition 2.1 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with

U = {0}, which satisfies the classical semigroup property and the BIC property,

and for which 0 ∈ X is a robust equilibrium point from the input u ∈ MU . Suppose

that Σ is RGAOS. Let Φ : ℜ+ × X → X be a change of coordinates. Then, Σ ′ :=
(X , Y ,MU ,MD, φ′,π ′,H ′) defined by (1.106), (1.107), (1.108) with V = U = {0}
is RGAOS. Moreover, if Σ is URGAOS and there exists a ∈ K∞ such that

∥

∥Φ−1(t, x)
∥

∥

X
≤ a

(

‖x‖X

)

for all (t, x) ∈ ℜ+ × X (2.65)

then system Σ ′ := (X , Y ,MU ,MD, φ′,π ′,H ′) defined by (1.106), (1.107), (1.108)

with V = U = {0} is URGAOS.

Proof By virtue of Lemma 1.2, Σ ′ := (X , Y ,MV ,MD, φ′,π ′,H ′) is a determin-

istic control system which satisfies the classical semigroup property and the BIC

property. Moreover, 0 ∈ X is a robust equilibrium point from the input u for Σ ′. By

virtue of Lemma 2.8, system Σ ′ := (X , Y ,MU ,MD, φ′,π ′,H ′) is RFC from the

input u.

Finally, notice that by virtue of Lemma 2.5, there exist functions σ ∈ KL and

β ∈ K+ such that estimate (2.26) holds for all (t0, x0, d) ∈ ℜ+ × X × MD and

t ≥ t0. Definitions (1.106) and (1.108), in conjunction with (2.20), imply that the

following estimate holds for all (t0, x0, d) ∈ ℜ+ × X × MD and t ≥ t0:

∥

∥H ′(t, φ′(t, t0, x0, u0, d),0
)
∥

∥

Y
=
∥

∥H
(

t, φ
(

t, t0,Φ
−1(t0, x0), u0, d

)

,0
)
∥

∥

Y

≤ σ
(

β(t0)
∥

∥Φ−1(t0, x0)
∥

∥

X
, t − t0

)

(2.66)

Since Φ : ℜ+× X → X is a change of coordinates, there exists a ∈ K∞ and γ ∈ K+

such that ‖Φ−1(t, x)‖X ≤ a(γ (t)‖x‖X ) for all (t, x) ∈ ℜ+ × X . Consequently, we
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have

∥

∥H ′
(

t,φ′(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ

(

β(t0)a
(

γ (t0)‖x0‖X

)

, t − t0
)

(2.67)

The above inequality shows that properties P1, P2, and P3 of Definition 2.2 hold,

and consequently Σ ′ := (X , Y ,MU ,MD, φ′,π ′,H ′) is RGAOS. Moreover, if Σ is

URGAOS and inequality (2.65) holds, then we obtain

∥

∥H ′(t, φ′(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ̃

(

‖x0‖X , t − t0
)

(2.68)

where σ̃ (s, t) := σ(a(s), t) is a KL function. In this case, Theorem 2.2 guarantees

that Σ ′ := (X , Y ,MU ,MD, φ′,π ′,H ′) is URGAOS. The proof is complete. �

Example 2.4.1 Transformation methods were used in the early stages of Stability

Theory to derive conditions for asymptotic stability of linear systems described by

ODEs, i.e.,

ẋ = Ax x ∈ ℜn

Y = x
(2.69)

where the matrix A ∈ ℜn×n is constant. The Jordan theorem on canonical represen-

tation of matrices guarantees the existence of a nonsingular matrix P ∈ ℜn×n such

that

PAP −1 = Ã =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

J1 0 . . . 0 0

0 J2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Jr−1 0

0 0 . . . 0 Jr

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2.70)

where J1, . . . , Jr are the so-called Jordan blocks corresponding to the eigenvalues

λk = ak + iβk (k = 1, . . . , n) of the matrix A ∈ ℜn×n (here i denotes the imaginary

unit). Particularly, blocks Jk which correspond to real eigenvalues λk = ak ∈ ℜ have

the form

Jk = [ak] or Jk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ak γk . . . 0 0

0 ak . . . 0 0
...

...
. . .

...
...

0 0 . . . ak γk

0 0 . . . 0 ak

⎤

⎥

⎥

⎥

⎥

⎥

⎦

with γk �= 0 (2.71)
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and blocks Jk which correspond to complex eigenvalues λk = ak + iβk have the

form

Jk =

[

ak βk

−βk ak

]

or Jk =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Kk Lk . . . 0 0

0 Kk . . . 0 0
...

...
. . .

...
...

0 0 . . . Kk Lk

0 0 . . . 0 Lk

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2.72)

with

Kk =

[

ak βk

−βk ak

]

Lk =

[

γk 0

0 γk

]

Consider the linear system

żi = Jizi i = 1, . . . , r

Y = P −1z

z =
(

z′
1, . . . , z

′
r

)′ ∈ ℜn

(2.73)

where J1, . . . , Jr are the Jordan blocks of A ∈ ℜn×n that appear in (2.70), and P ∈
ℜn×n is the nonsingular matrix involved in (2.70). It should be clear from (2.70) that

system (2.69) is the transformation of system (2.73) corresponding to the change of

coordinates Φ(t, z) := P −1z. On the other hand, system (2.73) is the transforma-

tion of system (2.69) corresponding to the change of coordinates Φ(t, x) := Px.

Consequently, by virtue of Proposition 2.1, system (2.73) is URGAOS if and only

if system (2.69) is URGAS.

The reader should notice that the solution of system (2.73) can be found explicitly

(due to the simple structure of the Jordan blocks given in (2.71) and (2.72)). The

formulae for the solution of the solution of system (2.73) show that if Jk is one of

the blocks described in (2.71) and (2.72) and ak < 0, then the solution of żk = Jkzk

satisfies |zk(t)| ≤ Mk exp(−σk(t − t0))|zk(t0)| for all t ≥ t0, where Mk ≥ 1 and σk ∈
(0,−ak] are appropriate constants. Consequently, if all eigenvalues of the matrix

A ∈ ℜn×n have negative real parts, then we have, for all t ≥ t0,

∣

∣Y(t)
∣

∣≤ exp
(

−σ(t − t0)
)∣

∣z(t0)
∣

∣

∣

∣P −1
∣

∣

r
∑

k=1

Mk (2.74)

where σ := min{σk, k = 1, . . . , r}. Estimate (2.74) implies that system (2.73) is UR-

GAOS. Moreover, if Jk is one of the blocks described in (2.71) and (2.72) and

ak ≥ 0, then the solution of żk = Jkzk does not converge to zero for all initial con-

ditions. Thus if one of the real parts of the eigenvalues of A ∈ ℜn×n is nonnegative,

then system (2.73) is not URGAOS.

Thus, we have shown that system (2.69) is RGAS if and only if all eigenvalues

of the matrix A ∈ ℜn×n have negative real parts.
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2.5 Differential Inequalities and Comparison Lemmas

The purpose of this section is to present basic tools that enable us to handle differ-

ential inequalities. Differential inequalities can be used to obtain estimates of the

state of a control system. The derived estimates can be further utilized for the proof

of RGAOS (this is essentially the first method of proving stability, the method of

analytical solutions) or can be combined with the method of Lyapunov functionals

(as will be shown in the following section).

We start with two technical lemmas which show how one can obtain inequalities

for continuous functions using differential inequalities.

Lemma 2.9 Let y : [t0, t1) → ℜ be an absolutely continuous function, where t0 <

t1 ≤ +∞, and suppose that the following implication holds for certain constants

a > b:

“If b < y(t) < a for some t ∈ [t0, t1) and ẏ(t) exists, then ẏ(t) ≥ 0.”

Then, the following implication holds:

“If y(t0) ≥ a, then y(t) ≥ a for all t ∈ [t0, t1).”

Proof The proof is made by contradiction. Suppose that there exists t ∈ (t0, t1) such

that y(t) < a. Without loss of generality we may assume that y(τ) > b for all τ ∈
[t0, t), because if the set B := {τ ∈ [t0, t] : y(τ) ≤ b} is nonempty, then we may

define t̄ := infB , which satisfies t̄ > t0 and y(τ) > b for all τ ∈ [t0, t̄), and replace

t ∈ (t0, t1) by t̄ ∈ (t0, t1).

Since y(t0) ≥ a, by continuity of y : [t0, t1) → ℜ it follows that the set A := {τ ∈
[t0, t) : y(τ) = a} is nonempty and closed. Let T := supA and notice that by virtue

of continuity of y : [t0, t1) → ℜ and the fact y(t) < a, we get T < t . Consequently,

we have y(τ) �= a for all τ ∈ (T , t] and y(T ) = a. More specifically, we have y(τ) <

a for all τ ∈ (T , t] (since the existence of τ ∈ (T , t] with y(τ) > a would imply the

existence of certain ξ ∈ (τ, t) with y(ξ) = a and thus contradicting the definition of

T := supA). Consequently, the assumed implication gives ẏ(τ ) ≥ 0 for almost all

τ ∈ (T , t).

Since y(t) = y(T ) +
∫ t

T
ẏ(s) ds, we obtain y(t) ≥ y(T ) = a, which contradicts

the hypothesis y(t) < a. The proof is complete. �

Lemma 2.10 Let y : [t0, t1) → ℜ be a continuous function, where t0 < t1 ≤ +∞,

and suppose that the following implication holds for certain constant a ∈ ℜ:

“If y(t) = a for some t ∈ [t0, t1), then D+y(t) := lim sup
h→0+

y(t + h) − y(t)

h
> 0.”

Then, the following implication holds:

“If y(t0) ≥ a, then y(t) ≥ a for all t ∈ [t0, t1).”



2.5 Differential Inequalities and Comparison Lemmas 75

Proof The proof is made by contradiction. Suppose that there exists t ∈ (t0, t1) such

that y(t) < a. Since y(t0) ≥ a, by continuity of y : [t0, t1) → ℜ it follows that the

set A := {τ ∈ [t0, t) : y(τ) = a} is nonempty and closed. Let T := supA and notice

that by virtue of continuity of y : [t0, t1) → ℜ and the fact y(t) < a, we get T < t .

Consequently, we have y(τ) �= a for all τ ∈ (T , t] and y(T ) = a. More specifically,

we have y(τ) < a for all τ ∈ (T , t] (since the existence of τ ∈ (T , t] with y(τ) > a

would imply the existence of certain ξ ∈ (τ, t) with y(ξ) = a and thus contradicting

the definition of T := supA).

Thus, for sufficiently small h > 0, we obtain
y(T +h)−y(T )

h
< 0. Taking limits,

we get D+y(T ) := lim suph→0+
y(T +h)−y(T )

h
≤ 0, contradicting the hypothesis that

D+y(T ) := lim suph→0+
y(T +h)−y(T )

h
> 0. The proof is complete. �

We continue with a technical lemma which provides estimates involving KL

functions. The reader should recall that a function μ is of class E if μ ∈ C0(ℜ+;ℜ+)

with limt→+∞ μ(t) = 0 and
∫ +∞

0
μ(t) dt < +∞.

Lemma 2.11 For every pair of functions ρ : ℜ+ → ℜ+ being C0 positive definite

and μ being of class E with μ(t) > 0 for all t ≥ 0, there exists a KL function σ :
(ℜ+)2 → ℜ+ which satisfies the following property:

(P) If c ∈ [0,1] is a constant, t0 ≥ 0, and y : [t0,+∞) → ℜ+ is an absolutely

continuous function that satisfies the following differential inequality for almost

all t ≥ t0:

ẏ(t) ≤ −ρ
(

y(t)
)

+ cμ(t) (2.75)

then the following estimate holds:

y(t) ≤ σ

(

y(t0) + c

∫ +∞

t0

μ(s) ds, t − t0

)

for all t ≥ t0. (2.76)

Proof Let G(ρ,μ, c, t0) be the set of all absolutely continuous functions y :
[t0,+∞) → ℜ+ which satisfy differential inequality (2.75) a.e. for t ≥ t0 ≥ 0 and

c ∈ [0,1].
Define

g(s) :=
√

s + s2 (2.77)

v(ξ) := sup

{

y(t0 + ξ)

g(y(t0) + c
∫ +∞
t0

μ(s) ds)
;y ∈ G(ρ,μ, c, t0), c ∈ (0,1], t0 ≥ 0

}

(2.78)

We will next show that v(t) ≤ 1 for all t ≥ 0 and limt→+∞ v(t) = 0. Let v̄ : ℜ+ →
[0,+∞) be a nonincreasing C0 function with v(t) ≤ v̄(t) for all t ≥ 0 and such

that limt→+∞ v̄(t) = 0 (for example, take ṽ(t) := sups≥t v(s) for t ≥ 0 and ṽ(t) :=
ṽ(0) for t < 0, which is a nonincreasing function with v(t) ≤ ṽ(t) for all t ≥ 0
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and limt→+∞ ṽ(t) = 0, and define v̄(t) :=
∫ t

t−1 ṽ(s) ds for t ≥ 0). Define the KL

function

σ(s, t) := g(s)v̄(t) (2.79)

Then, definitions (2.78) and (2.79) imply that (2.76) is fulfilled for all y ∈
G(ρ,μ, c, t0) with c ∈ (0,1] and t0 ≥ 0. Finally, the case c = 0 is implied by the

continuity of σ(s, t) := g(s)v̄(t).

First, notice that (2.75) yields

y(t) ≤ y(t0) + c

∫ t

t0

μ(s) ds for all t ≥ t0 (2.80)

for all y ∈ G(ρ,μ, c, t0). Since limt→+∞ μ(t) = 0 for any constants r ≥ ε > 0,

there exists a time τ := τ(ε, r) ≥ 0 such that

t ≥ τ ⇒ μ(t) ≤ min

{

1

2
ρ(s); ε

2
≤ s ≤ r

}

(2.81)

Let 0 < ε < r . We now show the following implication for all y ∈ G(ρ,μ, c, t0):

If t1 ≥ τ(ε, r) and y(t1) ≤ ε, then y(t) ≤ ε, ∀t ≥ t1 (2.82)

To see this, notice that, when r ≥ y(t) ≥ ε
2

and t ≥ τ(ε, r), then by (2.75)

and (2.81) we have

ẏ(t) ≤ −ρ
(

y(t)
)

+ μ(t) ≤ −1

2
ρ
(

y(t)
)

< 0 (2.83)

Lemma 2.9 and the above inequality show that implication (2.82) holds. We next

establish that, if we define

T (ε, r) := τ(ε, r) + 2r

minε≤s≤r ρ(s)
(2.84)

then the following is fulfilled for all R ≥ 0 and ε > 0 with ε < R + M :

For all t ≥ t0 + T (ε,R + M) and y ∈ G(ρ,μ, c, t0) with y(t0) ≤ R ⇒ y(t) ≤ ε

(2.85)

where M :=
∫ +∞

0 μ(t) dt > 0. Indeed, otherwise, by implication (2.82), there

would exist R ≥ 0 and ε > 0 with ε < R + M , y ∈ G(ρ,μ, c, t0) with y(t0) ≤ R,

and t ≥ t0 + T (ε,R + M) such that y(t) > ε. Since t ≥ τ(ε,R + M), we would

have, by virtue of (2.80) and (2.82) with r = R + M ,

y(t) > ε for all t ∈
[

t0 + τ(ε,R + M), t0 + T (ε,R + M)
]

(2.86)

On the other hand, by (2.75), (2.80), (2.81), and (2.86) it follows that

ẏ(t) ≤ −1

2
min

ε≤s≤R+M
ρ(s), for all t ∈

[

t0 + τ(ε,R + M), t0 + T (ε,R + M)
]

(2.87)
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It turns out from (2.86) and (2.87) that

ε < y(t) ≤ R + M − 1

2
(t − t0 − τ) min

ε≤s≤R+M
ρ(s) (2.88)

for all t ∈ [t0 + τ(ε,R + M), t0 + T (ε,R + M)].
Using (2.88) and taking into account definition (2.84) of T (·), we get ε <

y(t0 + T ) ≤ 0, which is a contradiction. This establishes (2.85).

Implication (2.82), inequality (2.80), and property (2.85) guarantee that the fol-

lowing attractivity property holds:

For all (ε,R, t0, c) ∈ (0,+∞) × ℜ+ × ℜ+ × [0,1], y ∈ G(ρ,μ, c, t0)

with y(t0) ≤ R and t ≥ t0 + T (ε,R + M) ⇒ 0 ≤ y(t) ≤ ε (2.89)

We are now ready to establish that v(t) ≤ 1 for all t ≥ 0 and limt→+∞ v(t) = 0

for the function v defined by (2.78). Since c > 0 and μ(t) > 0 for all t ≥ 0, it follows

that the denominator in (2.78) is strictly positive and (2.77), (2.80) imply that v(t) ≤
1 for all t ≥ 0. Let ε > 0, and let a := a(ε), b := b(ε) be a pair of constants with

0 < a < b and being defined in such a way that x /∈ [a, b] ⇒ x√
x+x2 < ε. Then,

by (2.77) and (2.80), it follows that

y(t)

g
(

y(t0) + c
∫ +∞
t0

μ(s) ds
)

< ε for all t ≥ t0, y ∈ G(ρ,μ, c, t0)

provided that either y(t0) + c
∫ +∞
t0

μ(s) ds < a or y(t0) + c
∫ +∞
t0

μ(s) ds > b.

It remains to consider the case a ≤ y(t0) + c
∫ +∞
t0

μ(s) ds ≤ b. By (2.89) we get

y(t)

g
(

y(t0) + c
∫ +∞
t0

μ(s) ds
)

≤ y(t)

g(a)
≤ ε for all t ≥ t0 + T

(

εg(a), b + M
)

(2.90)

It turns out from (2.78) and (2.90) that

v(t) ≤ ε for all t ≥ T
(

εg(a), b + M
)

(2.91)

Since ε > 0 is arbitrary, (2.91) asserts that limt→+∞ v(t) = 0. The proof is thus

complete. �

The following comparison principle can be applied to lower semi-continuous

functions and will be useful for the derivation of estimates of values of Lyapunov

functionals.

Lemma 2.12 (Comparison principle) Consider the scalar differential equation

ẇ = f (t,w)

w(t0) = w0

(2.92)



78 2 Internal Stability: Notions and Characterizations

where f (t,w) is continuous with

sup

{

(x − w)(f (t, x) − f (t,w))

|x − w|2
: (t, x) ∈ S, (t,w) ∈ S,x �= w

}

< +∞

for every compact S ⊂ ℜ+ ×J , where J ⊆ ℜ is an open interval. Let T > t0 be such

that the unique solution w(t) of the initial-value problem (2.92) exists and satisfies

w(t) ∈ J for all t ∈ [t0, T ). Let v : [t0, T ) → ℜ be a lower semi-continuous function

that satisfies the differential inequality

D+v(t) := lim sup
h→0+

v(t + h) − v(t)

h
≤ f

(

t, v(t)
)

for all t ∈ [t0, T ) (2.93)

Suppose furthermore that

v(t0) ≤ w0 (2.94)

v(t) ∈ J for all t ∈ [t0, T ) (2.95)

and that one of the following holds:

(i) the mapping f (t, ·) is nondecreasing on J ⊆ ℜ for each fixed t ∈ [t0, T );

(ii) there exists φ ∈ C0(ℜ+) such that f (t,w) ≤ φ(t) for all (t,w) ∈ [t0, T ) × J ;

(iii) the function v : [t0, T ) → ℜ is right-continuous.

Then v(t) ≤ w(t) for all t ∈ [t0, T ).

Proof It suffices to show that v(t) ≤ w(t) on any interval [t0, t1] ⊂ [t0, T ). Consider

the scalar differential equation

ż = f (t, z) + λ

z(t0) = w0

(2.96)

where λ is a positive constant.

Claim On any compact interval [t0, t1] ⊂ [t0, T ) and for every ε > 0, there exists

δ > 0 such that if 0 < λ < δ, then (2.96) has a unique solution z(t, λ) defined on

[t0, t1] and satisfies

z(t, λ) ∈ J
∣

∣z(t, λ) − w(t)
∣

∣< ε for all t ∈ [t0, t1] (2.97)

Proof of Claim Since J ⊆ ℜ is an open interval and [t0, t1] is compact, we can find

ρ > 0 such that if x ∈ ℜ with |x − w(t)| ≤ ρ for some t ∈ [t0, t1], then x ∈ J . Let

S := [t0, t1] × [a, b], where a := mint∈[t0,t1] w(t) − ρ and b := maxt∈[t0,t1] w(t) + ρ

(notice that S ⊂ [t0, t1] × J ), L := sup{ (x−y)(f (t,x)−f (t,y))

|x−y|2 : (t, x) ∈ S, (t, y) ∈
S,x �= y} < +∞, and λ < δ := min{ ε

4
,

ρ
2
} exp(−L+1

2
(t1 − t0)). Clearly, there ex-

ists τ ∈ (t0, t1] such that the solution of (2.96) exists for t ∈ [t0, τ ] and satisfies
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(t, z(t,λ)) ∈ S for all t ∈ [t0, τ ]. Define v(t) := |z(t, λ) − w(t)|2. Using the above

definitions, we get v̇(t) ≤ 2(L + 1)v(t) + λ2 for all t ∈ [t0, τ ], which directly im-

plies that |z(t, λ)−w(t)| ≤ λ exp(L+1
2

(t1 − t0)) for all t ∈ [t0, τ ]. Using the fact that

λ < δ := min{ ε
4
,

ρ
2
} exp(−L+1

2
(t1 − t0)) and a standard contradiction argument, we

can show that |z(t, λ) − w(t)| ≤ min{ ε
4
,

ρ
2
} for all t ∈ [t0, t1]. �

Fact I v(t) ≤ z(t, λ), for all t ∈ [t0, t1).

Proof of Fact I This fact is shown by contradiction. Suppose that there exists t ∈
(t0, t1) such that v(t)− z(t, λ) > 0. For the lower semi-continuous function m(t) :=
v(t) − z(t, λ), define the set

A+ :=
{

τ ∈ (t0, t1) : m(τ) > 0
}

(2.98)

which by assumption is nonempty. The lower semi-continuity of m(t) := v(t) −
z(t, λ) implies that A+ is open. Let

t̃ := inf
{

t ∈ A+} (2.99)

Since A+ is open, we conclude that t̃ /∈ A+ or equivalently that v(t̃) ≤ z(t̃ , λ).

On the other hand, by definition (2.99) there exists a sequence {τi ∈ A+}∞i=1 with

τi → t̃ . Consequently, we obtain

v(τi) − v
(

t̃
)

≥ z(τi, λ) − z
(

t̃ , λ
)

(2.100)

This implies

D+v
(

t̃
)

≥ ż
(

t̃ , λ
)

= f
(

t̃ , z
(

t̃ , λ
))

+ λ (2.101)

We distinguish the following cases:

(i) If the mapping f (t, ·) is nondecreasing on J ⊆ ℜ, then the inequality

v(t̃) ≤ z(t̃ , λ) implies f (t̃, v(t̃)) ≤ f (t̃, z(t̃ , λ)). The latter inequality, com-

bined with (2.101), implies D+v(t̃) > f (t̃, v(t̃)), which contradicts (2.93).

(ii) If there exists a continuous function φ : [t0, T ) → ℜ such that f (t,w) ≤ φ(t)

for all (t,w) ∈ [t0, T )×J , then we may define the lower semi-continuous func-

tion ṽ(t) = v(t) −
∫ t

t0
φ(s) ds. This function satisfies the following differential

inequality:

D+ṽ(t) ≤ D+v(t) − φ(t) ≤ f
(

t, v(t)
)

− φ(t) ≤ 0

Consequently, by virtue of Lemma 6.3 in [3], ṽ(t) is nonincreasing. This im-

plies that ṽ(t + h) ≤ ṽ(t) for all h ≥ 0. Moreover, the lower semi-continuity

of ṽ(t) implies that for every ε > 0, the inequality ṽ(t + h) ≥ ṽ(t) − ε for

sufficiently small h ≥ 0. It follows that ṽ(t) is a right-continuous function on

[t0, t1]. By virtue of the right-continuity and definition (2.99), we must also

have v(t̃) ≥ z(t̃ , λ). Thus we must have v(t̃) = z(t̃ , λ), and in this case by

virtue of (2.101) we obtain D+v(t̃) > f (t̃, v(t̃)), which contradicts (2.93).
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(iii) By virtue of the right-continuity of the function v : [t0, T ) → ℜ and defini-

tion (2.99), we must also have v(t̃) ≥ z(t̃ ,λ). Thus we must have v(t̃) = z(t̃ , λ),

and in this case by virtue of (2.101) we obtain D+v(t̃) > f (t̃, v(t̃)), which con-

tradicts (2.93). �

Fact II v(t) ≤ w(t) for all t ∈ [t0, t1).

Proof of Fact II Again, this claim may be shown by contradiction. Suppose that

there exists a ∈ (t0, t1) with v(a) > w(a). Let ε = 1
2
(v(a) − w(a)) > 0. Further-

more, let λ > 0 be selected in such a way that (2.97) is satisfied with this particular

selection of ε > 0. Then we obtain

v(a) = v(a) − w(a) + w(a) = 2ε + w(a) − z(a,λ) + z(a,λ) > ε + z(a,λ)

which contradicts Fact I. �

Finally, notice that v(t1) = lim inft→t1 v(t) ≤ lim inft→t1 w(t) = w(t1) and con-

sequently the inequality v(t) ≤ w(t) holds for all t ∈ [t0, t1]. The proof is com-

plete. �

The following lemma exploits the results of the two previous lemmas and pro-

vides a sharper estimate to a subclass of the differential inequalities considered in

Lemma 2.11.

Lemma 2.13 For every continuous positive definite function ρ : ℜ+ → ℜ+ be-

ing locally Lipschitz on ℜ+\{0}, there exists a KL function σ : (ℜ+)2 → ℜ+ with

σ(s,0) = s and ∂σ
∂t

(s, t) = −ρ(σ (s, t)) for all t, s ≥ 0 which satisfies the following

property:

(P) If t1 > t0 ≥ 0 and y : [t0, t1] → ℜ+ is an absolutely continuous function that

satisfies the following differential inequality for almost all t ∈ [t0, t1]:

ẏ(t) ≤ −ρ
(

y(t)
)

(2.102)

then the following estimate holds:

y(t) ≤ σ
(

y(t0), t − t0
)

for all t ∈ [t0, t1]. (2.103)

Proof Consider the autonomous scalar differential equation

ẇ(t) = −ρ
(

w(t)
)

w(t0) = w0

(2.104)

where w0 > 0. We will next show that the above initial-value problem admits a

solution denoted by ζ(t − t0,w0) defined for all t ≥ t0 which has the following

properties:
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1. either ζ(t − t0,w0) > 0 for all t ≥ t0, or there exists tmax > t0 such that ζ(t −
t0,w0) > 0 for all t ∈ [t0, tmax) and ζ(t − t0,w0) = 0 for all t ≥ tmax,

2. the function σ : (ℜ+)2 → ℜ+ defined by σ(s, t) := ζ(t, s) for all t ≥ 0, s > 0

and σ(0, t) := 0 for all t ≥ 0 is a KL function with σ(s,0) = s and ∂σ
∂t

(s, t) =
−ρ(σ (s, t)) for all t, s ≥ 0.

Then property (P) is an immediate consequence of Lemma 2.12. Indeed, if

y : [t0, t1] → ℜ+ is an absolutely continuous function that satisfies differential in-

equality (2.102) for almost all t ∈ [t0, t1], we have y(t +h) = y(t)+
∫ t+h

t
ẏ(τ ) dτ ≤

y(t) −
∫ t+h

t
ρ(y(τ)) dτ for all t ∈ [t0, t1) and h > 0 sufficiently small. Therefore,

we get D+y(t) := lim suph→0+
y(t+h)−y(t)

h
≤ −ρ(y(t)) for all t ∈ [t0, t1). Apply-

ing Lemma 2.12 with J := (0,+∞) and T := sup{t ∈ [t0, t1] : y(t) > 0}, we get

(2.103) for all t ∈ [t0, T ) (notice that if tmax < T , where tmax > t0 is the time with

ζ(t − t0, y(t0)) > 0 for all t ∈ [t0, tmax) and ζ(t − t0, y(t0)) = 0 for all t ≥ tmax, we

obtain a contradiction, and consequently we must have tmax ≥ T ). If T < t1, by con-

tinuity and monotonicity of y : [t0, t1] → ℜ+ we obtain y(t) = 0 for all t ∈ [T , t1],
which shows that (2.103) holds for all t ∈ [t0, t1). Finally, by the continuity and

monotonicity of y : [t0, t1] → ℜ+ we obtain (2.103) for all t ∈ [t0, t1] and for the

case y(t0) = 0.

The theory of ordinary differential equations and the fact that ρ : ℜ+ → ℜ+ is

locally Lipschitz on ℜ+\{0} guarantees that for all w0 > 0, there exists tmax > t0
such that the unique solution of (2.104) ζ(t − t0,w0) is defined for t ∈ [t0, tmax)

and satisfies ζ(t − t0,w0) > 0 for all t ∈ [t0, tmax). By virtue of (2.104) it fol-

lows that 0 < ζ(t − t0,w0) ≤ w0 for all t ∈ [t0, tmax). Consequently, if tmax < +∞,

we have limt→t−max
ζ(t − t0,w0) = 0. If tmax = +∞, then Lemma 2.11 implies that

limt→+∞ ζ(t − t0,w0) = 0. Notice that the theory of ordinary differential equations

guarantees that for each fixed t ∈ [t0, tmax), the mapping w0 → ζ(t − t0,w0) is con-

tinuous. Moreover, for each fixed w0 > 0, the mapping [t0, tmax) ∋ t → ζ(t − t0,w0)

is nonincreasing. The solution is continuously extended by ζ(t − t0,w0) = 0 for all

t ≥ tmax. Using the above properties, it can be shown that the function σ : (ℜ+)2 →
ℜ+ defined by σ(s, t) := ζ(t, s) for all t ≥ 0 , s > 0 and σ(0, t) := 0 for all t ≥ 0 is

continuous and nonincreasing in t ≥ 0 with limt→+∞ σ(s, t) = 0 for all s ≥ 0. The

reader should also notice that the equalities σ(s,0) = s and ∂σ
∂t

(s, t) = −ρ(σ (s, t))

hold for all t, s ≥ 0.

The only thing that remains to be shown is that the mapping ℜ+ ∋ s →
σ(s, t) is nondecreasing. Let s1 > s2 > 0 arbitrary. Since ζ(0, s1) = s1 > s2

and limt→+∞ ζ(t, s1) = 0 < s2, it follows that there exists unique τ > 0 such

that ζ(τ, s1) = s2. For every t ≥ 0, the semigroup property implies ζ(t, s2) =
ζ(t, ζ(τ, s1)) = ζ(t + τ, s1). The fact that the mapping ℜ+ ∋ t → ζ(t, s1) is non-

increasing implies that ζ(t, s2) = ζ(t + τ, s1) ≤ ζ(t, s1). Therefore, the mapping

ℜ+ ∋ s → ζ(t, s) is nondecreasing; hence the mapping ℜ+ ∋ s → σ(s, t) is nonde-

creasing. The proof is complete. �

The following comparison lemma provides a “fading memory” estimate for an

absolutely continuous mapping.
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Lemma 2.14 For each C0 positive definite ρ : ℜ+ → ℜ+, there exists a function σ

of class KL, with the following property: if y : [t0, t1] → ℜ+ is an absolutely con-

tinuous function, u : ℜ+ → ℜ+ is a locally bounded mapping, and I ⊂ [t0, t1] a set

of Lebesgue measure zero such that ẏ(t) is defined on [t0, t1]\I and such that the

following implication holds for all t ∈ [t0, t1]\I :

y(t) ≥ u(t) ⇒ ẏ(t) ≤ −ρ
(

y(t)
)

(2.105)

then the following estimate holds for all t ∈ [t0, t1]:

y(t) ≤ max
{

σ
(

y(t0), t − t0
)

, sup
t0≤s≤t

σ
(

u(s), t − s
)

}

(2.106)

Moreover, if ρ : ℜ+ → ℜ+ is locally Lipschitz on (0,+∞), then σ(s,0) = s, and
∂σ
∂t

(s, t) = −ρ(σ (s, t)) for all t, s ≥ 0.

Proof Notice that by virtue of Lemma 2.11, for each positive definite continuous

function ρ : ℜ+ → ℜ+, there exists a continuous function σ of class KL with the

following property: if y : [t0, t1] → ℜ+ is an absolutely continuous function and

I ⊂ [t0, t1] a set of Lebesgue measure zero such that ẏ(t) is defined on [t0, t1]\I
and such that the following differential inequality holds for all t ∈ [t0, t1]\I :

ẏ(t) ≤ −ρ
(

y(t)
)

(2.107)

then, the following estimate holds for all t ∈ [t0, t1]:

y(t) ≤ σ
(

y(t0), t − t0
)

(2.108)

Indeed, we may consider the absolutely continuous function ỹ : ℜ+ → ℜ+ defined

as follows:

• for the case y(t1) > 0, ỹ(t) = y(t) for t ∈ [t0, t1], ỹ(t) = y(t1) −
(t − t1)max0≤w≤y(t1) ρ(w) for ξ ∈ [t1, t1 + y(t1)

max0≤w≤y(t1) ρ(w)
], and ỹ(t) = 0 for

t > t1 + y(t1)
max0≤w≤y(t1) ρ(w)

,

• for the case y(t1) = 0, ỹ(t) = y(t) for t ∈ [t0, t1], and ỹ(t) = 0 for t > t1.

The reader may verify that ỹ : ℜ+ → ℜ+ is an absolutely continuous function

which satisfies d
dt

ỹ(t) ≤ −ρ(ỹ(t)) for almost all t ≥ t0. Lemma 2.11 applied for

ỹ : [t0,+∞) → ℜ+ implies (2.108) for all t ∈ [t0, t1].
Notice that we may continuously extend σ by defining σ(s, t) := σ(s,0) exp(−t)

for t < 0. Moreover, notice that Lemma 2.13 guarantees that σ(s,0) = s and
∂σ
∂t

(s, t) = −ρ(σ (s, t)) for all t, s ≥ 0, provided that ρ : ℜ+ → ℜ+ is locally Lips-

chitz on (0,+∞).

Clearly, (2.106) holds for t = t0 and σ the function involved in (2.108). We next

show that (2.106) holds for arbitrary t ∈ (t0, t1].
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Let arbitrary t ∈ (t0, t1] and define the functions

ũ(τ ) =
{

u(τ) ∀τ ∈ [t0, t]
0 otherwise

ū(τ ) := lim sup
ξ→τ

ũ(ξ)

Notice that ū is upper semi-continuous on τ ∈ [t0, t], and consequently the function

p(τ) := y(τ) − ū(τ ) is lower semi-continuous on [t0, t]. Next define the set

Λ :=
{

τ ∈ [t0, t] : y(τ) ≤ ū(τ )
}

(2.109)

We distinguish the following cases:

(1) Λ = ∅. In this case we have y(τ) > ū(τ ) for all τ ∈ [t0, t]. Since ū(τ ) ≥ u(τ)

for all τ ∈ [t0, t], the previous inequality, in conjunction with (2.105), implies

that ẏ(τ ) ≤ −ρ(y(τ)) for all τ ∈ [t0, t]\I . Thus in this case Lemma 2.11 (or

Lemma 2.13) guarantees that estimate (2.108) holds.

(2) Λ �= ∅ and ξ := supΛ < t . In this case there exists a sequence τi ≤ ξ with τi →
ξ and y(τi) − ū(τi) ≤ 0. Since the function p(t) = y(t) − ū(t) is lower semi-

continuous, we obtain p(ξ) = lim infτ→ξ p(τ) ≤ 0, and consequently y(ξ) ≤
ū(ξ). Moreover, notice that by definition (2.109), implication (2.105), and since

ū(τ ) ≥ u(τ) for all τ ∈ [t0, t], the differential inequality ẏ(τ ) ≤ −ρ(y(τ)) holds

for all τ ∈ (ξ, t]\I . Consequently, Lemma 2.11 (or Lemma 2.13) implies y(t) ≤
σ(y(τ), t − τ) for all τ ∈ (ξ, t]. By virtue of the continuity of σ and y, we get

y(t) ≤ σ
(

y(ξ), t − ξ
)

which, combined with y(ξ) ≤ ū(ξ), directly implies

y(t) ≤ σ
(

ū(ξ), t − ξ
)

≤ sup
t0≤s≤t

σ
(

ū(s), t − s
)

(2.110)

(3) Λ �= ∅ and ξ := supΛ = t . In this case there exists a sequence τi ≤ t with τi → t

and y(τi) − ū(τi) ≤ 0. Since the function p(t) = y(t) − ū(t) is lower semi-

continuous, we obtain p(t) = lim infτ→t p(τ) ≤ 0, and consequently y(t) ≤
ū(t). Moreover, since σ(s,0) ≥ s for all s ≥ 0, it holds that

y(t) ≤ ū(t) ≤ σ
(

ū(t),0
)

≤ sup
t0≤s≤t

σ
(

ū(s), t − s
)

Combining all the above cases, we may conclude that

y(t) ≤ max
{

σ
(

y(t0), t − t0
)

, sup
t0≤s≤t

σ
(

ū(s), t − s
)

}

(2.111)

Let M := supt0≤s≤t u(s). For each ε > 0, there exists δ > 0 such that σ(s, τ − δ) −
σ(s, τ ) < ε for all (s, τ ) ∈ [0,M] × [0, t]. Notice that since

ū(τ ) := lim sup
ξ→τ

ũ(ξ) and ũ(τ ) =
{

u(τ) ∀τ ∈ [t0, t]
0 otherwise
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it follows that ū(s) ≤ sup{u(r) : max(s−δ, t0) ≤ r ≤ min(s+δ, t)} for all s ∈ [t0, t].
The previous inequalities imply that

σ
(

ū(s), t − s
)

≤ sup
{

σ
(

u(r), t − s
)

: max(s − δ, t0) ≤ r ≤ min(s + δ, t)
}

≤ sup
{

σ
(

u(r), t − r − δ
)

: max(s − δ, t0) ≤ r ≤ min(s + δ, t)
}

≤ sup
{

σ
(

u(r), t − r
)

: max(s − δ, t0) ≤ r ≤ min(s + δ, t)
}

+ ε

≤ sup
t0≤r≤t

σ
(

u(r), t − r
)

+ ε

The above inequality, in conjunction with (2.111), implies that for each ε > 0, it

holds that

y(t) ≤ max
{

σ
(

y(t0), t − t0
)

, sup
t0≤s≤t

σ
(

u(s), t − s
)

}

+ ε

Since ε > 0 is arbitrary, we conclude that the above estimate directly implies

(2.106). The proof is complete. �

Lemma 2.15 For every pair of functions ρ : ℜ+ → ℜ+ being locally Lipschitz and

positive definite and μ being of class E with μ(t) > 0 for all t ≥ 0, there exists a KL

function σ : (ℜ+)2 → ℜ+ which satisfies the following property:

(P) If c ∈ [0,1] is a constant, t0 ≥ 0, γ ∈ K+ with
∫ +∞

0 γ (t) dt = +∞, and y :
[t0, t1] → ℜ+ is an absolutely continuous function that satisfies the following

differential inequality for almost all t ∈ [t0, t1]:

ẏ(t) ≤ −γ (t)ρ
(

y(t)
)

+ cγ (t)μ

(∫ t

0

γ (s) ds

)

(2.112)

then the following estimate holds for all t ∈ [t0, t1]:

y(t) ≤ σ

(

y(t0) + c

∫ +∞

t0

μ

(∫ s

0

γ (w)dw

)

γ (s) ds,

∫ t

t0

γ (s) ds

)

. (2.113)

Proof Let φ(t, t0, y0) denote the solution of the scalar differential equation

ẏ(t) = −γ (t)ρ̃
(

y(t)
)

+ cγ (t)μ

(∫ t

0

γ (τ) dτ

)

y(t0) = y0 ∈ ℜ
(2.114)

where ρ̃(y) := ρ(y) for y ≥ 0 and ρ̃(y) := 0 for y < 0. Notice that ρ̃ : ℜ → ℜ+ is a

locally Lipschitz function which coincides with ρ : ℜ+ → ℜ+ on ℜ+. By perform-

ing the time-scaling τ =
∫ t

0 γ (s) ds it is clear that

φ(t, t0, y0) = ζ

(∫ t

0

γ (s) ds,

∫ t0

0

γ (s) ds, y0

)

(2.115)
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where ζ(τ, τ0, y0) denotes the solution of the scalar differential equation

d

dτ
y(τ) = −ρ̃

(

y(τ)
)

+ cμ(τ)

y(τ0) = y0 ∈ ℜ
(2.116)

Using a contradiction argument, it can be shown that ζ(τ, τ0, y0) exists for all τ ≥ τ0

and ζ(τ, τ0, y0) ≥ 0 for all τ ≥ τ0 if y0 ≥ 0. Moreover, Lemma 2.11 (applied to the

absolutely continuous function y(τ) := ζ(τ, τ0, y0), y0 ≥ 0) implies that there exists

a KL function σ : (ℜ+)2 → ℜ+ such that the following estimate holds for all y0 ≥ 0:

0 ≤ ζ(τ, τ0, y0) ≤ σ

(

y0 + c

∫ +∞

τ0

μ(s) ds, τ − τ0

)

for all τ ≥ τ0 (2.117)

It follows from (2.115) and (2.117) that the solution φ(t, t0, y0) with y0 ≥ 0 satisfies

the following estimate: for all t ∈ [t0, t1],

0 ≤ φ(t, t0, y0) ≤ σ

(

y0 + c

∫ +∞

t0

μ

(∫ s

0

γ (w)dw

)

γ (s) ds,

∫ t

t0

γ (s) ds

)

(2.118)

By applying Lemma 2.12 with f (t, y) = −γ (t)ρ̃(y) + cγ (t)μ(
∫ t

0 γ (τ) dτ) and

J := (−a,+∞), where a > 0 and T := t1, we obtain, for all t ∈ [t0, t1],

0 ≤ y(t) ≤ φ(t, t0, y0) (2.119)

The conclusion of the lemma follows by combining inequalities (2.118) and (2.119).

The proof is complete. �

Remark 2.4 It should be noted that if ρ : ℜ+ → ℜ+ is a continuous positive definite

function, then there exists ρ̃ : ℜ+ → ℜ+ which is globally Lipschitz on ℜ+ with

unit Lipschitz constant and positive definite, and satisfies 0 < ρ̃(s) ≤ ρ(s) for all

s > 0. Indeed, we may define ρ̃(s) := inf{ρ(y) + |y − s|;y ≥ 0}, which is globally

Lipschitz on ℜ+ with unit Lipschitz constant. To see this, first notice that ρ̃(s) :=
min{ρ(y) + |y − s|;0 ≤ y ≤ s + ρ(s)} for all s ≥ 0. Let s1, s2 ≥ 0 with ρ̃(s1) :=
ρ(y1) + |y1 − s1| and notice that

ρ̃(s2) ≤ ρ(y1) + |y1 − s2| ≤ ρ(y1) + |y1 − s1| + |s1 − s2| = ρ̃(s1) + |s1 − s2|

Consequently, Lemma 2.13 guarantees that for every continuous positive definite

function ρ : ℜ+ → ℜ+, there exists a KL function σ : (ℜ+)2 → ℜ+ with σ(s,0) = s

for all s ≥ 0 which satisfies Property (P) of Lemma 2.13. Moreover, Lemma 2.14

guarantees that for each C0 positive definite function ρ : ℜ+ → ℜ+, there exists

a function σ of class KL with σ(s,0) = s for all s ≥ 0, satisfying the property

described in the statement of Lemma 2.14.
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2.6 Lyapunov Functionals

One of the most important tools for establishing RGAOS for a control system is

the method of Lyapunov functionals. Lyapunov functionals are, roughly speaking,

nonnegative functionals of the state of the control system which tend to 0 as t →

+∞.

The following theorem shows that the existence of a Lyapunov functional is a

sufficient condition for RGAOS for systems that satisfy the following additional

hypothesis:

(HYP) There exists a constant r > 0, a bounded positive continuous function

h : ℜ+ × ℜ+ → (0, r], and a partition π = {Ti}∞i=0 of ℜ+ such that for every

(t0, x0, d) ∈ ℜ+ × X ×MD , it holds that π(t0, x0, u0, d)∩[b(t0,‖x0‖X ), t0 + r] �=
∅, where b(t, ρ) := min{qπ (t), t + h(t, ρ)}.

Remark 2.5 It is worth noting the following.

1. Hypothesis (HYP) holds for many classes of systems including systems de-

scribed by ordinary differential equations, systems with variable sampling parti-

tion, and systems described by retarded functional differential equations.

2. Hypothesis (HYP) guarantees the existence of τ ∈ (t0, t0 + r] such that τ ∈
π(t0, x0, u0, d) for all (t0, x0, d) ∈ ℜ+ × X × MD . Thus, for all (t0, x0, d) ∈
ℜ+× X ×MD , it follows that the set π(t0, x0, u0, d)∩(t0,+∞) cannot be empty.

Theorem 2.3 (Lyapunov functionals) Let Σ := (X , Y ,MU ,MD, φ,π,H) be a

control system with outputs satisfying Hypothesis (HYP) and the BIC property.

Assume that 0 ∈ X is a robust equilibrium point for Σ . Suppose that there exist

mappings V : ℜ+ × X → ℜ+, β,γ,μ ∈ K+ with
∫ +∞

0 γ (t) dt = +∞, ϕ ∈ E ,

a1, a2 ∈ K∞, and a locally Lipschitz positive definite function ρ : ℜ+ → ℜ+

such that for every (t0, x0, d) ∈ ℜ+ × X × MD , there exists τ ∈ π(t0, x0, u0, d) ∩
[b(t0,‖x0‖X ), t0 + r], where b(t, ρ) := min{qπ (t), t + h(t, ρ)} is the function

in (HYP), with (τ, t0, x0, u0, d) ∈ Aφ and the following properties:

a1

(
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
+ μ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

≤ V (t0, x0) ≤ a2

(

β(t0)‖x0‖X

)

for all t ∈ [t0, τ ] (2.120)

V
(

τ,φ(τ, t0, x0, u0, d)
)

≤ η
(

τ, t0,V (t0, x0)
)

(2.121)

where η(t, t0, η0) denotes the unique solution of the initial-value problem

η̇ = −γ (t)ρ(η) + γ (t)ϕ

(∫ t

0

γ (s) ds

)

η(t0) = η0 ≥ 0 (2.122)

Then, Σ is RGAOS. Particularly, if ϕ(t) ≡ 0, γ (t) ≡ 1 and if for every (t0, x0, d) ∈
ℜ+ × X × MD , we have, in addition, a1(‖H(t,φ(t, t0, x0, u0, d),0)‖Y ) ≤
V (t0, x0) ≤ a2(‖x0‖X ) for all t ∈ [t0, τ ], with τ ∈ π(t0, x0, u0, d) ∩ [b(t0,

‖x0‖X ), t0 + r] the time for which (2.120) and (2.121) hold, then Σ is URGAOS.
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Proof By virtue of Lemma 2.1, it suffices to show that Σ := (X , Y ,MU ,MD,

φ,π,H) is RFC and satisfies the Robust Output Attractivity Property (Property P3

of Definition 2.2). Notice that Lemma 2.15 implies that there exist a function

σ(·) ∈ KL and a constant M > 0 such that the following inequalities are satisfied

for all t0 ≥ 0:

0 ≤ η(t, t0, η0) ≤ σ
(

η0 + M,q(t, t0)
)

, for all t ≥ t0, for all η0 ≥ 0 (2.123)

where q(t, t0) :=
∫ t

t0
γ (s) ds. Furthermore, if ϕ(t) ≡ 0, γ (t) ≡ 1, it follows from

Lemma 2.11 that there exists σ(·) ∈ KL such that the following inequalities are

satisfied for all t0 ≥ 0:

0 ≤ η(t, t0, η0) ≤ σ(η0, t − t0) for all t ≥ t0, for all η0 ≥ 0 (2.124)

Pick arbitrary (t0, x0, d) ∈ ℜ+ × X × MD and let τ0 = t0. We consider the

sequence xi = φ(τi, τi−1, xi−1, u0, d), i ≥ 1, and τi ∈ π(τi−1, xi−1, u0, d) ∩
[b(τi−1,‖xi−1‖X ), τi−1 + r], i ≥ 1, for which (2.121) holds with (τi−1, xi−1) in

place of (t0, x0). By virtue of the weak semigroup property (Property 4 of Defi-

nition 1.1), we have τi ∈ π(t0, x0, u0, d), τi ≤ t0 + ir and xi = φ(τi, t0, x0, u0, d)

for all i ≥ 1. The semigroup property for η(t, t0, η0), in conjunction with inequal-

ity (2.120) and trivial induction arguments, implies that

a1

(
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
+ μ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

≤ V (τi−1, xi−1) ≤ η
(

τi−1, t0,V (t0, x0)
)

∀i ≥ 1, t ∈ [τi−1, τi] (2.125)

Combining (2.123) with (2.125) and using the fact that max{t0, t − r} ≤ τi−1 for

t ∈ [τi−1, τi], i ≥ 1, we obtain, for all i ≥ 1 and t ∈ [t0, τi],

a1

(
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
+ μ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

≤ σ
(

a2

(

β(t0)‖x0‖X

)

+ M,q
(

max{t0, t − r}, t0
))

(2.126)

which directly implies

a1

(
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y
+ μ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

≤ σ
(

a2

(

β(t0)‖x0‖X

)

+ M,0
)

for all i ≥ 1 and t ∈ [t0, τi] (2.127)

We next show that (t, t0, x0, u0, d) ∈ Aφ for all t ≥ t0. By virtue of estimate (2.127)

and the BIC property, it suffices to show that τi → +∞. Let arbitrary T > 0. Since

the set [0, T + r] × [0, ε] is compact, where ε := a−1
1 (σ (a2(β(t0)‖x0‖X )+M,0))

min{μ(t);t∈[0,T +r]} and h is

continuous, we have s := min{h(t, ρ); (t, ρ) ∈ [0, T + r]× [0, ε]} > 0. Consider the

infinite sequence {yi}∞i=0 which satisfies yi+1 = min{qπ (yi), yi + s}, i = 1,2, . . .,

with y0 = 0. By virtue of a standard contradiction argument we can show that yi →
+∞ (as in the proof of the Claim in Sect. 1.2.5), and consequently for every T > 0,

there exists an integer N > 0 such that yN > T + r . Clearly, the sequence {τi}∞i=0
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satisfies τi+1 ≥ min{qπ (τi), τi + s} for all integers i for which τi ≤ T + r . By virtue

of Theorem 1.6.1 in [34] (Comparison principle) we have τi ≥ yi for all integers i

for which τi ≤ T + r , which implies τN > T .

It follows that estimates (2.126) and (2.127) hold for all t ≥ t0. Robust Forward

Completeness is an immediate consequence of (2.127), and the Robust Output At-

tractivity Property (Property P3 of Definition 2.2) is an immediate consequence of

estimate (2.126).

Notice that if ϕ(t) ≡ 0, γ (t) ≡ 1, and if for every (t0, x0, d) ∈ ℜ+ × X ×MD , we

have, in addition, that a1(‖H(t,φ(t, t0, x0, u0, d),0)‖Y ) ≤ V (t0, x0) ≤ a2(‖x0‖X )

for all t ∈ [t0, τ ], then using (2.124) instead of (2.123), we obtain, in addition, the

following estimate for all t ≥ t0:

a1

(∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y

)

≤ σ
(

a2

(

‖x0‖X

)

,max{0, t − t0 − r}
)

The above estimate directly implies that Σ is URGAOS. The proof is complete. �

Theorem 2.3 is a general theorem that can be applied to all deterministic systems

of Definition 1.1 which satisfy property (HYP). However, the reader should note that

inequalities (2.120), (2.121) are prerequisites for the application of Theorem 2.3

and they must be shown by using another result. Notice that inequalities (2.120)

and (2.121) require a substantial amount of knowledge of the transition map of the

control system, which is usually not available. This is a serious disadvantage of the

method.

There are two ways to overcome the above disadvantage for systems which sat-

isfy the classical semigroup property:

(1) Lyapunov’s approach

(2) The “discretization approach”

Next, we describe the two approaches in an informal way.

(1) Lyapunov’s approach

For systems which satisfy the classical semigroup property, the above disadvantage

can be overcome in an elegant way: we let the constant r > 0 involved in Hypoth-

esis (HYP) to become sufficiently small. Then inequality (2.121) becomes a differ-

ential inequality,

V
(

τ,φ(τ, t0, x0, u0, d)
)

− V (t0, x0) ≤ η
(

τ, t0,V (t0, x0)
)

− V (t0, x0)

lim sup
h→0+

V (t0 + h,φ(t0 + h, t0, x0, u0, d)) − V (t0, x0)

h

≤ lim sup
h→0+

η(t0 + h, t0,V (t0, x0)) − V (t0, x0)

h

which implies
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lim sup
h→0+

V (t0 + h,φ(t0 + h, t0, x0, u0, d)) − V (t0, x0)

h

≤ −γ (t0)ρ
(

V (t0, x0)
)

+ γ (t0)ϕ

(∫ t0

0

γ (s) ds

)

Notice that an upper bound for the quantity

lim sup
h→0+

V (t0 + h,φ(t0 + h, t0, x0, u0, d)) − V (t0, x0)

h

can (usually) be computed without knowledge of the transition map φ(τ, t0, x0,

u0, d) of the control system Σ := (X , Y ,MU ,MD, φ,π,H). Moreover, letting

r > 0 to become arbitrarily small and assuming continuity with respect to time of

the transition map φ(τ, t0, x0, u0, d), inequality (2.120) requires no knowledge of

the transition map:

a1

(∥

∥H(t0, x0,0)
∥

∥

Y
+ μ(t0)‖x0‖X

)

≤ V (t0, x0) ≤ a2

(

β(t0)‖x0‖X

)

The above thoughts lead us to the production of specialized results for two kinds

of systems of Definition 1.1, systems described by ODEs and systems described by

RFDEs.

(2) The “discretization approach”

The idea in this approach is that we examine the value of the Lyapunov functional

only at discrete time instances. For the sequence of the chosen time instances, we

can show that the Lyapunov functional decreases in value. However, we do not

demand an explicit knowledge of the time instances, and we do not require that the

difference between two consecutive time instances must be bounded (by r).

The discretization approach has been developed mostly for systems described by

ODEs and has been applied successfully for the solution of difficult control prob-

lems. We will present specialized results for systems described by ODEs. However,

the method can be applied to various systems which satisfy the classical semigroup

property.

Due to the close relation of the discretization approach to the stability analy-

sis of discrete-time systems, we will describe the method in the section devoted to

discrete-time systems below. Here we describe Lyapunov’s approach.

2.6.1 Control Systems Described by Ordinary Differential

Equations

We start by presenting a general Lyapunov theorem for systems described by ODEs

of the form (1.3) under Hypotheses (H1–4).
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Let V : ℜ+ × ℜn → ℜ+ be a locally bounded function. We define the following

generalized Dini derivative for all (t, x) ∈ ℜ+ × ℜn, v ∈ ℜn:

V 0(t, x;v) := lim sup
h→0+

V (t + h,x + hv) − V (t, x)

h
(2.128)

Notice that if V : ℜ+ × ℜn → ℜ+ is locally Lipschitz, then the above derivative

is locally bounded.

Theorem 2.4 Consider system (1.3) under Hypotheses (H1–4) and suppose that it

is RFC. Furthermore, suppose that there exist functions V : ℜ+ × ℜn → ℜ+ being

locally Lipschitz, β,γ ∈ K+ with
∫ +∞

0 γ (t) dt = +∞, ϕ ∈ E , a1, a2 ∈ K∞, and

a locally Lipschitz positive definite function ρ : ℜ+ → ℜ+ such that the following

inequalities hold:

a1

(
∣

∣H(t, x,0)
∣

∣

)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

for all (t, x) ∈ ℜ+ × ℜn (2.129)

V 0
(

t, x;f (t, x,0, d)
)

≤ −γ (t)ρ
(

V (t, x)
)

+ γ (t)ϕ

(∫ t

0

γ (s) ds

)

for all (t, x, d) ∈ ℜ+ × ℜn × D (2.130)

Then system (1.3) is RGAOS. Particularly, if ϕ(t) ≡ 0, γ (t) ≡ 1, and β(t) ≡ 1,

then (1.3) is URGAOS. Moreover, if there exist functions a ∈ K∞, μ ∈ K+, and a

constant R ≥ 0 such that a(μ(t)|x|) ≤ V (t, x) + R for all (t, x) ∈ ℜ+ × ℜn, then

the requirement that (1.3) is RFC is not needed.

Proof By Lemma 2.1, it suffices to show that (1.3) is RFC and satisfies the Robust

Output Attractivity Property (Property P3 of Definition 2.2).

Consider a solution x(t) of (1.3) under Hypotheses (H1–4) corresponding to ar-

bitrary d ∈ MD with initial condition x(t0) = x0 ∈ ℜn. Clearly, the solution exists

for t ∈ [t0, tmax), where tmax ∈ (t0,+∞] is the maximal existence time of the solu-

tion. Notice that the mapping t → V (t, x(t)) is absolutely continuous on [t0, tmax),

and we have

d

dt
V
(

t, x(t)
)

= V 0
(

t, x(t);f
(

t, x(t),0, d(t)
))

a.e. on [t0, tmax) (2.131)

where V 0(t, x;v) := lim suph→0+
V (t+h,x+hv)−V (t,x)

h
. Indeed, notice that for all t ∈

[t0, tmax)\I , where I ⊂ [t0, tmax) is the set of zero Lebesgue measure such that either
d
dt

V (t, x(t)) is not defined on I , or D+x(t) := limh→0+ h−1(x(t + h) − x(t)) �=
f (t, x(t),0, d(t)), we get, for sufficiently small h > 0 and any t ∈ [t0, tmax)\I ,

x(t + h) − x(t) − hD+x(t) = hyh (2.132)

where

yh = x(t + h) − x(t)

h
− D+x(t)
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Since limh→0+
x(t+h)−x(t)

h
= D+x(t), we obtain that yh → 0 as h → 0+. Since

V : ℜ+ × ℜn → ℜ+ is locally Lipschitz, we have

V 0
(

t, x(t);D+x(t)
)

= lim sup
h→0+

V (t + h,x(t) + hD+x(t)) − V (t, x(t))

h

= lim sup
h→0+

V (t + h,x(t) + hD+x(t) + hyh) − V (t, x(t))

h

The above equality, in conjunction with (2.132) and the facts that d
dt

V (t, x(t)) =
lim suph→0+

V (t+h,x(t+h))−V (t,x(t))
h

and D+x(t) = f (t, x(t),0, d(t)) for all t ∈
[t0, tmax)\I , implies (2.131).

It follows from Lemma 2.15 and inequalities (2.130) and (2.131) that there exist

σ ∈ KL and a constant M > 0 such that

V
(

t, x(t)
)

≤ σ

(

V (t0, x0) + M,

∫ t

t0

γ (s) ds

)

for all t ∈ [t0, tmax) (2.133)

Next, we distinguish the following cases:

1. If (1.3) is RFC, then (2.133) holds for all t ≥ t0, then the Robust Output At-

tractivity Property (Property P3 of Definition 2.2) is a direct consequence of

inequalities (2.129) and (2.133) and from the fact that
∫ +∞

0 γ (t) dt = +∞.

2. If there exist functions a ∈ K∞, μ ∈ K+ and a constant R ≥ 0 such that

a(μ(t)|x|) ≤ V (t, x) + R for all (t, x) ∈ ℜ+ × ℜn, then (2.133), in conjunction

with (2.129), implies the following estimate:

∣

∣x(t)
∣

∣≤ 1

μ(t)
a−1

(

R+σ
(

a2

(

β(t0)|x0|
)

+M,0
))

for all t ∈ [t0, tmax). (2.134)

Estimate (2.134), in conjunction with the BIC property, implies that tmax = +∞.

Moreover, estimate (2.134), in conjunction with Definition 2.1, shows that sys-

tem (1.3) is RFC, since we have, for all r, T ≥ 0,

sup
{
∣

∣x(t0 + s)
∣

∣; s ∈ [0, T ], |x0| ≤ r, t0 ∈ [0, T ], d ∈ MD

}

≤ 1

min0≤t≤2T μ(t)
a−1

(

R + σ
(

a2

(

r max
0≤t≤T

β(t)
)

+ M,0
))

< +∞

The proof is complete. �

Remark 2.6 If for all (x, d) ∈ ℜn ×D, the mapping t → f (t, x,0, d) is continuous,

then inequality (2.130) is equivalent to the following inequality:

∂V

∂t
(t, x) + ∂V

∂x
(t, x)f (t, x,0, d) ≤ −γ (t)ρ

(

V (t, x)
)

+ γ (t)ϕ

(∫ t

0

γ (s) ds

)

(2.135)

for almost all (t, x) ∈ ℜ+ × ℜn and all d ∈ D.
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Indeed, using Corollary 8.2 in [11] (p. 95), we have, for all v ∈ ℜn and (t, x) ∈
ℜ+ × ℜn,

lim sup
h→0+,(τ,y)→(t,x)

V (τ + h,y + hv) − V (τ, y)

h

= lim sup
(τ,y)→(t,x)

{

∂V

∂t
(τ, y) + ∂V

∂x
(τ, y)v : (τ, y) /∈ Ω ∪ ΩV

}

where ΩV ⊂ ℜ+ × ℜn is the zero Lebesgue measure set such that V : ℜ+ × ℜn →
ℜ+ is not differentiable on ΩV , and Ω ⊂ ℜ+ × ℜn is an arbitrary set of zero

Lebesgue measure. Taking v = f (t, x,0, d) and using the facts that ∂V
∂x

(τ, y)

is bounded in a neighborhood of (t, x) ∈ ℜ+ × ℜn and that f (τ, y,0, d) →
f (t, x,0, d) for (τ, y) → (t, x), we get

lim sup
h→0+,(τ,y)→(t,x)

V (τ + h,y + hf (t, x,0, d)) − V (τ, y)

h

= lim sup
(τ,y)→(t,x)

{

∂V

∂t
(τ, y) + ∂V

∂x
(τ, y)f (τ, y,0, d) : (τ, y) /∈ Ω ∪ ΩV

}

The above equality, together with (2.135), implies that, for all (t, x) ∈ ℜ+ × ℜn,

d ∈ D,

lim sup
h→0+,(τ,y)→(t,x)

V (τ + h,y + hf (t, x,0, d)) − V (τ, y)

h

≤ −γ (t)ρ
(

V (t, x)
)

+ γ (t)ϕ

(∫ t

0

γ (s) ds

)

By means of the fact that

V 0
(

t, x, ;f (t, x,0, d)
)

≤ lim sup
h→0+,(τ,y)→(t,x)

V (τ + h,y + hf (t, x,0, d)) − V (τ, y)

h

(2.130) follows readily.

2.6.2 Control Systems Described by Retarded Functional

Differential Equations, RFDEs

We continue by presenting a general Lyapunov theorem for systems described by

RFDEs of the form (1.10) under Hypotheses (S1–4). The reader may think that all

arguments presented for the case of ODEs can be repeated in this case as well. This

is not true. There are many technical complications arising for systems described by

RFDEs. The following list presents some complications:
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1. the mapping t → V (t, Tr (t)x) is not absolutely continuous, even if the functional

V : ℜ+ × C0([−r,0];ℜn) → ℜ+ is completely locally Lipschitz (or even if it is

Fréchet differentiable),

2. it may not be required that the Lyapunov functional bounds a certain function of

the norm of the output.

We next show how all the above complications can be overcome. An important

class of functionals is presented next.

Definition 2.4 We say that a continuous functional V : ℜ+ × C0([−r,0];
ℜn) → ℜ+ is “almost Lipschitz on bounded sets” if there exist nondecreasing func-

tions M : ℜ+ → ℜ+, P : ℜ+ → ℜ+, and G : ℜ+ → [1,+∞) such that for all

R ≥ 0, the following properties hold:

(P1) For every x, y ∈ {x ∈ C0([−r,0];ℜn); ‖x‖r ≤ R}, it holds that

∣

∣V (t, y) − V (t, x)
∣

∣≤ M(R)‖y − x‖r for all t ∈ [0,R].

(P2) For every absolutely continuous function x : [−r,0] → ℜn with ‖x‖r ≤ R and

essentially bounded derivative, it holds that

∣

∣V (t + h,x) − V (t, x)
∣

∣≤ hP (R)
(

1 + sup
−r≤τ≤0

∣

∣ẋ(τ )
∣

∣

)

for all t ∈ [0,R] and 0 ≤ h ≤ 1

G(R + sup−r≤τ≤0 |ẋ(τ )|) .

Let x ∈ C0([−r,0];ℜn). By Eh(x;v), where 0 ≤ h < r and v ∈ ℜn, we denote

the following operator:

Eh(x;v) :=
{

x(0) + (θ + h)v for −h < θ ≤ 0

x(θ + h) for −r ≤ θ ≤ −h
(2.136)

For mappings V : ℜ+ ×C0([−r,0];ℜn) → ℜ that are almost Lipschitz on bounded

sets, we will use the following Dini derivative defined for all (t, x, v) ∈ ℜ+ ×
C0([−r,0];ℜn) × ℜn:

V 0(t, x;v) := lim sup
h→0+

V (t + h,Eh(x;v)) − V (t, x)

h

The reason for introducing the above derivative becomes apparent by the following

lemma.

Lemma 2.16 Let V : ℜ+ × C0([−r,0];ℜn) → ℜ be an almost Lipschitz on

bounded sets functional, and let x ∈ C0([t0 − r, tmax);ℜn) be a solution of (1.10)

under Hypotheses (S1–4) corresponding to certain (d,u) ∈ MD × MU , where
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tmax ∈ (t0,+∞] is the maximal existence time of the solution. Then it holds that

lim sup
h→0+

h−1
(

V
(

t + h,Tr (t + h)x
)

− V
(

t, Tr(t)x
))

≤ V 0
(

t, Tr(t)x;D+x(t)
)

(2.137)

for almost all t ∈ [t0, tmax), where D+x(t) = limh→0+ h−1(x(t + h) − x(t)).

Proof It suffices to show that (2.137) holds for all t ∈ [t0, tmax)\I , where I ⊂
[t0, tmax) is the set of zero Lebesgue measure such that D+x(t) = limh→0+ h−1(x(t +
h) − x(t)) is not defined on I . Let h > 0 and t ∈ [t0, tmax)\I . We define

Tr(t + h)x − Eh

(

Tr(t)x;D+x(t)
)

= hyh (2.138)

where

yh = h−1

{

x(t + h + θ) − x(t) − (θ + h)D+x(t) for −h < θ ≤ 0

0 for −r ≤ θ ≤ −h

and notice that yh ∈ C0([−r,0];ℜn) (as a difference of continuous functions,

see (2.138) above). Equivalently, yh satisfies

yh :=

⎧

⎨

⎩

θ+h
h

(

x(t+θ+h)−x(t)
θ+h

− D+x(t)
)

for −h < θ ≤ 0

0 for −r ≤ θ ≤ −h

with

‖yh‖r ≤ sup

{
∣

∣

∣

∣

x(t + s) − x(t)

s
− D+x(t)

∣

∣

∣

∣

;0 < s ≤ h

}

.

Since limh→0+ x(t+h)−x(t)
h

= D+x(t), we obtain that yh → 0 as h → 0+. Since V :
ℜ+ × C0([−r,0];ℜn) → ℜ is almost Lipschitz on bounded sets and since yh → 0

as h → 0+, it follows that

lim sup
h→0+

h−1
(

V
(

t + h,Eh

(

Tr(t)x;D+x(t)
)

+ hyh

)

− V
(

t, Tr(t)x
))

= V 0
(

t, Tr(t)x;D+x(t)
)

Moreover, definition (2.138) and the above equality imply

lim sup
h→0+

h−1
(

V
(

t + h,Tr(t + h)x
)

− V
(

t, Tr(t)x
))

= lim sup
h→0+

h−1
(

V
(

t + h,Eh

(

Tr(t)x;D+x(t)
)

+ hyh

)

− V
(

t, Tr(t)x
))

= V 0
(

t, Tr(t)x;D+x(t)
)

The proof is complete. �



2.6 Lyapunov Functionals 95

The reason for introducing the class of almost Lipschitz on bounded sets func-

tionals is the following result, which shows that the mapping t → V (t, Tr(t)x) is

absolutely continuous for a special class of initial conditions.

Lemma 2.17 Let V : ℜ+ × C0([−r,0];ℜn) → ℜ be a functional which is almost

Lipschitz on bounded sets, and let x ∈ C0([t0 − r, tmax);ℜn) be a solution of (1.10)

under Hypotheses (S1–4) corresponding to certain (d,u) ∈ MD × MU with initial

condition Tr(t0)x = x0 ∈ C1([−r,0];ℜn), where tmax ∈ (t0,+∞] is the maximal

existence time of the solution. Then for every T ∈ (t0, tmax), the mapping [t0, T ] ∋
t → V (t, Tr (t)x) is absolutely continuous.

Proof It suffices to show that for all T ∈ (t0, tmax) and ε > 0, there exists δ > 0 such

that
∑N

k=1 |V (bk, Tr(bk)x)−V (ak, Tr(ak)x)| < ε for every finite collection of pair-

wise disjoint intervals [ak, bk] ⊂ [t0, T ] (k = 1, . . . ,N ) with
∑N

k=1(bk − ak) < δ.

Let T ∈ (t0, tmax) and ε > 0 (arbitrary). Since the solution x ∈ C0([t0 − r, T ];ℜn)

of (1.10) under Hypotheses (S1–4) corresponding to certain (d,u) ∈ MD × MU

with initial condition Tr(t0)x = x0 ∈ C1([−r,0];ℜn) is bounded on [t0 − r, T ],
there exists R1 > 0 such that supt0≤τ≤T ‖Tr(τ )x‖r ≤ R1. Moreover, by Hypothe-

sis (S2) and since Tr(t0)x = x0 ∈ C1([−r,0];ℜn), there exists R2 > 0 such that

supt0−r≤τ≤T |ẋ(τ )| ≤ R2. The previous observations, in conjunction with prop-

erties (P1)–(P2) of Definition 2.4 imply, for every interval [a, b] ⊂ [t0, T ] with

b − a ≤ 1
G(R1+R2)

,

∣

∣V
(

b,Tr(b)x
)

− V
(

a,Tr(a)x
)∣

∣

≤ (b − a)P (R1)(1 + R2) + M(R1)
∥

∥Tr(b)x − Tr(a)x
∥

∥

r

In addition, the estimate supt0−r≤τ≤T |ẋ(τ )| ≤ R2 implies ‖Tr(b)x − Tr(a)x‖r ≤
(b − a)R2 for every interval [a, b] ⊂ [t0, T ]. Consequently, we obtain, for every

interval [a, b] ⊂ [t0, T ] with b − a ≤ 1
G(R1+R2)

,

∣

∣V
(

b,Tr(b)x
)

− V
(

a,Tr(a)x
)∣

∣≤ (b − a)
[

P(R1)(1 + R2) + M(R1)R2

]

The previous inequality implies that for every finite collection of pairwise dis-

joint intervals [ak, bk] ⊂ [t0, T ] (k = 1, . . . ,N ) with
∑N

k=1(bk − ak) < δ, where

δ = 1
2

min{ 1
G(R1+R2)

; ε
P (R1)(1+R2)+M(R1)R2

} > 0, it holds that

N
∑

k=1

∣

∣V
(

bk, Tr(bk)x
)

− V
(

ak, Tr(ak)x
)∣

∣< ε.

The proof is complete. �

The following technical lemma shows that, without loss of generality, we can

restrict our attention to continuously differentiable initial conditions.
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Lemma 2.18 Consider system (1.3) under Hypotheses (S1–4) and suppose that

there exist mappings β1 : ℜ+ × C0([−r,0];ℜn) → ℜ and β2 : ℜ+ × ℜ+ ×
C0([−r,0];ℜn) × A → ℜ, where A ⊆ MD × MU , with the following properties:

(i) for each (t, t0, d,u) ∈ ℜ+ × ℜ+ × A, the mappings x → β1(t, x), x →
β2(t, t0, x, d,u) are continuous,

(ii) there exists a continuous function M : ℜ+ × ℜ+ → ℜ+ such that

sup
{

β2(t0 + ξ, t0, x0, d,u); sup
t≥0

∣

∣u(τ)
∣

∣≤ s, ξ ∈ [0, T ], x0 ∈ C0
(

[−r,0];ℜn
)

,

‖x0‖r ≤ s, t0 ∈ [0, T ], (d,u) ∈ A
}

≤ M(T, s),

(iii) for every (t0, x0, d,u) ∈ ℜ+ × C1([−r,0];ℜn) × A, the solution x(t) of (1.10)

with initial condition Tr(t0)x = x0 corresponding to input (d,u) ∈ A satisfies

β1

(

t, Tr(t)x
)

≤ β2(t, t0, x0, d,u) for all t ≥ t0. (2.139)

Moreover, suppose that one of the following properties holds:

(iv)

c(T , s) := sup
{

∥

∥Tr(t0 + ξ)x
∥

∥

r
; sup

t≥0

∣

∣u(τ)
∣

∣≤ s, ξ ∈ [0, T ], x0 ∈ C0
(

[−r,0];ℜn
)

,

‖x0‖r ≤ s, t0 ∈ [0, T ], (d,u) ∈ A
}

< +∞,

(v) there exist functions a ∈ K∞, μ ∈ K+ and a constant R ≥ 0 such that

a(μ(t)|x(0)|) ≤ β1(t, x) + R for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn).

Then for all (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];ℜn) × A, the solution x(t) of (1.10)

with initial condition Tr(t0)x = x0 corresponding to input (d,u) ∈ A exists for all

t ≥ t0 and satisfies (2.139).

Proof We distinguish the following cases:

(a) Property (iv) holds.

The proof will be made by contradiction. Suppose on the contrary that there exist

(t0, x0, d,u) ∈ ℜ+ × C0([−r,0];ℜn) × A and t1 > t0 such that the solution x(t)

of (1.10) with initial condition Tr(t0)x = x0 corresponding to input (d,u) ∈ A sat-

isfies

β1

(

t1, Tr(t1)x
)

> β2(t1, t0, x0, d,u)

(1.9) and property (iv) implies that, for all x̃0 ∈ C0([−r,0];ℜn) with ‖x0 − x̃0‖r ≤ 1,

∥

∥Tr(t1)x − Tr(t1)x̃
∥

∥

r
≤
√

K2

K1
‖x0 − x̃0‖r exp

(

K−1
1 L(t1, c̄)(t1 − t0)

)

(2.140)
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where x̃(t) denotes the solution of (1.10) with initial condition Tr(t0)x = x̃0 cor-

responding to input (d,u) ∈ A, and c̄ = 2c(t1,‖x0‖r + 1 + supt0≤τ≤t1
|u(τ)|) +

supt0≤τ≤t1
|u(τ)|.

Let ε := β1(t1, Tr(t1)x) − β2(t1, t0, x0, u) > 0. Using property (iv), (2.140), the

fact that C1([−r,0];ℜn) is dense in C0([−r,0];ℜn), and the continuity of the

mappings x → β1(t1, x) and x → β2(t1, t0, x, d,u), we conclude that there exists

x̃0 ∈ C1([−r,0];ℜn) such that

‖x0 − x̃0‖r ≤ 1;
∣

∣β2(t1, t0, x0, d,u) − β2(t1, t0, x̃0, d,u)
∣

∣≤ ε

2
∣

∣β1

(

t1, Tr(t1)x
)

− β1

(

t1, Tr(t1)x̃
)
∣

∣≤ ε

2

where x̃(t) denotes the solution of (1.10) with initial condition Tr(t0)x = x̃0 corre-

sponding to input (d,u) ∈ A. Combining property (iii) for x̃(t) with the above in-

equalities and the definition of ε, we obtain β1(t1, Tr(t1)x) > β1(t1, Tr(t1)x), a con-

tradiction.

(b) Property (v) holds.

It suffices to show that property (iv) holds. Since there exist functions a ∈ K∞,

μ ∈ K+, and a constant R ≥ 0 such that a(μ(t)|x(0)|) ≤ β1(t, x) + R for all

(t, x) ∈ ℜ+ × C0([−r,0];ℜn), it follows that from property (iii) that for every

(t0, x0, d,u) ∈ ℜ+ × C1([−r,0];ℜn) × A, the solution x(t) of (1.10) with initial

condition Tr(t0)x = x0 corresponding to input (d,u) ∈ A satisfies

a
(

μ(t)
∣

∣x(t)
∣

∣

)

≤ R + β2(t, t0, x0, d,u) for all t ≥ t0

Moreover, making use of property (ii) and the above inequality, we obtain that for

every (t0, x0, d,u) ∈ ℜ+ × C1([−r,0];ℜn) × A, the solution x(t) of (1.10) with

initial condition Tr(t0)x = x0 corresponding to input (d,u) ∈ A satisfies, for all

t ≥ t0,

∥

∥Tr(t)x
∥

∥

r
≤ ‖x0‖r + 1 + 1

μ(t)
a−1

(

R + M
(

t,‖x0‖r + sup
t0≤τ≤t

∣

∣u(τ)
∣

∣

))

(2.141)

Notice that in order to obtain inequality (2.141), we have also used the causality

argument that the solution x(t) of (1.10) with initial condition Tr(t0)x = x0 cor-

responding to input (d,u) ∈ A depends only on the values of the input u on the

interval [t0, t].
We claim that estimate (2.141) holds for all (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];

ℜn) × A. Notice that this claim implies directly that property (iv) holds with

c(T , s) := s + 1 + 1

min0≤τ≤2T μ(τ)
a−1

(

R + max
0≤x≤2s,0≤τ≤2T

M(τ,x)
)

The proof of the claim will be made by contradiction. Suppose on the contrary

that there exists (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];ℜn) × A and t1 > t0 such that the
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solution x(t) of (1.10) with initial condition Tr(t0)x = x0 corresponding to input

(d,u) ∈ A satisfies, for all t ≥ t0,

∥

∥Tr(t1)x
∥

∥

r
> ‖x0‖r + 1 + 1

μ(t1)
a−1

(

R +M
(

t1,‖x0‖r + sup
t0≤τ≤t1

∣

∣u(τ)
∣

∣

))

(2.142)

Let B := supt0≤τ≤t1
‖Tr(τ )x‖ < +∞. Using (1.9) and (2.141), it follows that

(2.140) holds for all

x̃0 ∈ C1
(

[−r,0];ℜn
)

with
∥

∥x0 − x̃0

∥

∥

r
≤ 1

and

c̄ = B + ‖x0‖r + 2 + max

{

a−1(R + M(t, s))

μ(t)
;0 ≤ s ≤ ‖x0‖r + 1

+ sup
t0≤τ≤t1

∣

∣u(τ)
∣

∣, t0 ≤ t ≤ t1

}

+ sup
t0≤τ≤t1

∣

∣u(τ)
∣

∣

where x̃(t) denotes the solution of (1.10) with initial condition Tr(t0)x = x̃0 corre-

sponding to input (d,u) ∈ A. Let

ε :=
∥

∥Tr(t1)x
∥

∥

r
− ‖x0‖r − 1 − 1

μ(t1)
a−1

(

R + M
(

t1,‖x0‖r + sup
t0≤τ≤t1

∣

∣u(τ)
∣

∣

))

> 0

Using (2.140), (2.141), the denseness of C1([−r,0];ℜn) in C0([−r,0];ℜn), and

the continuity of the mapping

x → g(x) := ‖x‖r + 1 + 1

μ(t1)
a−1

(

R + M
(

t1,‖x‖r + sup
t0≤τ≤t1

∣

∣u(τ)
∣

∣

))

we conclude that there exists x̃0 ∈ C1([−r,0];ℜn) such that

∥

∥x0 − x̃0

∥

∥

r
≤ 1

∣

∣g(x0) − g
(

x̃0

)∣

∣≤ ε

2

∣

∣

∥

∥Tr(t1)x
∥

∥

r
−
∥

∥Tr(t1)x̃
∥

∥

r

∣

∣≤ ε

2

where x̃(t) denotes the solution of (1.10) with initial condition Tr(t0)x = x̃0 corre-

sponding to input (d,u) ∈ A. Combining (2.141) for x̃(t) with the above inequali-

ties and the definition of ε, we obtain ‖Tr(t1)x‖r > ‖Tr(t1)x‖r , a contradiction. The

proof is complete. �

Finally, we show how we can overcome the fact that it may not be required that

the Lyapunov functional bounds a certain function of the norm of the output. The

following definition introduces an important relation between output mappings. The

equivalence relation defined next will be used extensively in the following sections

of the present work.

Definition 2.5 Suppose that there exists a continuous mapping h : [−r,+∞) ×
ℜn → ℜp with h(t,0) = 0 for all t ≥ −r and functions a1, a2 ∈ K∞ such that
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a1(|h(t, x(0))|) ≤ ‖H(t, x)‖Y ≤ a2(supθ∈[−r,0] |h(t + θ, x(θ))|) for all (t, x) ∈
ℜ+ × C0([−r,0];ℜn). Then we say that H : ℜ+ × C0([−r,0];ℜn) → Y is equiv-

alent to the finite-dimensional mapping h.

For example, the identity output mapping H(t, x) = x ∈ C0([−r,0];ℜn) is

equivalent to finite-dimensional mapping h(t, x) = x ∈ ℜn.

We are now in a position to state the main Lyapunov sufficient condition for

RGAOS.

Theorem 2.5 Consider system (1.10) under Hypotheses (S1–4) and suppose that

system (1.10) is RFC. Moreover, suppose that there exist functions a1, a2 ∈ K∞,

β,γ ∈ K+ with
∫ +∞

0 γ (t) dt = +∞, ϕ ∈ E , a positive definite locally Lipschitz

function ρ : ℜ+ → ℜ+, and a mapping V : ℜ+ × C0([−r,0];ℜn) → ℜ+, which is

almost Lipschitz on bounded sets, such that

a1

(∥

∥H(t, x)
∥

∥

Y

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(2.143)

V 0
(

t, x;f (t, x,0, d)
)

≤ −γ (t)ρ
(

V (t, x)
)

+ γ (t)ϕ

(∫ t

0

γ (s) ds

)

for all (t, x, d) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× D (2.144)

Then system (1.10) is RGAOS. Furthermore,

(i) if H : ℜ+ × C0([−r,0];ℜn) → Y is equivalent to the finite-dimensional con-

tinuous mapping h : [−r,+∞) × ℜn → ℜp , then inequality (2.143) can be re-

placed by the following inequality:

a1

(∣

∣h
(

t, x(0)
)∣

∣

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(2.145)

(ii) if there exist functions a ∈ K∞, μ ∈ K+, and a constant R ≥ 0 such that

a(μ(t)|x(0)|) ≤ V (t, x) + R for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn), then the

requirement that (1.10) is RFC is not needed.

Finally, if ϕ(t) ≡ 0, γ (t) ≡ 1, and β(t) ≡ 1, then system (1.10) is URGAOS. In

this case, if H : ℜ+ ×C0([−r,0];ℜn) → Y is equivalent to the time-periodic finite-

dimensional continuous mapping h : [−r,+∞)×ℜn → ℜp , then inequality (2.143)

can be replaced by inequality (2.145).

Proof Case 1: (1.10) is RFC.

Consider a solution x(t) of (1.10) under Hypotheses (S1–4) corresponding to ar-

bitrary d ∈ MD and u ≡ 0 with initial condition Tr(t0)x = x0 ∈ C1([−r,0];ℜn). By

Lemma 2.17, for every T ∈ (t0,+∞), the mapping [t0, T ] ∋ t → V (t, Tr (t)x) is ab-

solutely continuous. It follows from (2.144) and Lemma 2.16 that d
dt

(V (t, Tr(t)x)) ≤
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−γ (t)ρ(V (t, Tr (t)x)) + γ (t)ϕ(
∫ t

0 γ (s) ds) a.e. on [t0,+∞). The previous differ-

ential inequality, in conjunction with the comparison Lemma 2.15, shows that there

exist σ ∈ KL and a constant M > 0 such that

V
(

t, Tr(t)x
)

≤ σ

(

V (t0, x0) + M,

∫ t

t0

γ (s) ds

)

for all t ≥ t0 (2.146)

It follows from Lemma 2.18 that the solution x(t) of (1.10) under Hypotheses

(S1–4) corresponding to arbitrary d ∈ MD and u ≡ 0 with arbitrary initial condition

Tr(t0)x = x0 ∈ C0([−r,0];ℜn) satisfies (2.146) for all t ≥ t0. Next, we distinguish

the following cases:

1. If (2.143) holds, then the Robust Output Attractivity Property (Property P3 of

Definition 2.2) is a direct consequence of (2.143) and the fact that
∫ +∞

0 γ (t) dt =
+∞. It follows from Lemma 2.1 that system (1.10) is RGAOS.

2. If (2.145) holds, then (2.146) implies the following estimate:

∣

∣h
(

t, x(t)
)∣

∣≤ a−1
1

(

σ

(

a2

(

β(t0)‖x0‖r

)

+ M,

∫ t

t0

γ (s) ds

))

for all t ≥ t0.

Since h : [−r,+∞) × ℜn → ℜp is continuous with h(t,0) = 0 for all t ≥ −r , it

follows from Lemma 2.3 with a(τ, s) := max{|h(t − r, x)| : t ∈ [0, τ ], |x| ≤ s} that

there exist functions ζ ∈ K∞ and δ ∈ K+ such that

∣

∣h(t − r, x)
∣

∣≤ ζ
(

δ(t)|x|
)

for all (t, x) ∈ ℜ+ × ℜn

Combining the two previous inequalities yields

sup
θ∈[−r,0]

∣

∣h
(

t + θ, x(t + θ)
)
∣

∣

≤ max
{

a−1
1

(

σ
(

a2

(

φ(t0)‖x0‖r

)

+ M,0
))

, ζ
(

φ(t0)‖x0‖r

)}

for all t ∈ [t0, t0 + r]

sup
θ∈[−r,0]

∣

∣h
(

t + θ, x(t + θ)
)
∣

∣

≤ a−1
1

(

σ

(

a2

(

β(t0)‖x0‖r

)

+ M,

∫ t−r

t0

γ (s) ds

))

for all t ≥ t0 + r

where φ(t) := β(t) + max0≤τ≤t+r δ(τ ). The above estimates, in conjunction with

the facts that
∫ +∞

0
γ (t) dt = +∞ and H : ℜ+ ×C0([−r,0];ℜn) → Y is equivalent

to the finite-dimensional mapping h (Definition 2.5), show that the Robust Output

Attractivity Property (Property P3 of Definition 2.2) holds. Hence, system (1.10) is

nonuniformly RGAOS.

Case 2: There exist functions a ∈ K∞, μ ∈ K+, and a constant R ≥ 0 such that

a
(

μ(t)
∣

∣x(0)
∣

∣

)

≤ V (t, x) + R for all (t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(2.147)
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Consider a solution of (1.10) under Hypotheses (S1–4) corresponding to arbi-

trary d ∈ MD and u ≡ 0 with initial condition Tr(t0)x = x0 ∈ C1([−r,0];ℜn).

By Lemma 2.17, for every T ∈ (t0, tmax), the mapping [t0, T ] ∋ t → V (t, Tr(t)x)

is absolutely continuous. It follows from (2.144) and Lemma 2.16 that for

every T ∈ (t0, tmax), it holds that d
dt

(V (t, Tr(t)x)) ≤ −γ (t)ρ(V (t, Tr(t)x)) +
γ (t)ϕ(

∫ t

0 γ (s) ds) a.e. on [t0, T ]. The previous differential inequality, in conjunc-

tion with the comparison Lemma 2.15, shows that there exist σ ∈ KL and a constant

M > 0 such that (2.146) holds for all t ∈ [t0, T ].
Combining (2.143), (2.146), and (2.147), we obtain

∣

∣x(t)
∣

∣≤ 1

μ(t)
a−1

(

σ

(

a2

(

β(t0)‖x0‖r

)

+ M,

∫ t

t0

γ (s) ds

)

+ R

)

for all t ∈ [t0, T ]
(2.148)

Estimate (2.148) shows that tmax = +∞, and consequently estimates (2.146)

and (2.148) hold for all t ≥ t0.

It follows from Lemma 2.18 that the solution x(t) of (1.10) under Hypotheses

(S1–4) corresponding to arbitrary d ∈ MD and u ≡ 0 with arbitrary initial condition

Tr(t0)x = x0 ∈ C0([−r,0];ℜn) satisfies (2.146) and (2.148) for all t ≥ t0. There-

fore, system (1.10) is RFC, and the Robust Output Attractivity Property (Property

P3 of Definition 2.2) is a direct consequence of (2.146) and (2.143) (or (2.145)), as

in the previous case.

Finally, notice that if ϕ(t) ≡ 0, γ (t) ≡ 1, then Lemma 2.13 shows that there

exists σ ∈ KL such that

V
(

t, Tr(t)x
)

≤ σ
(

V (t0, x0), t − t0
)

for all t ≥ t0 (2.149)

instead of (2.146). Utilizing (2.143) with β(t) ≡ 1 and (2.149), we obtain (2.11).

Therefore system (1.10) is URGAOS. If (2.145) holds, then (2.149) implies the

following estimate:

∣

∣h
(

t, x(t)
)
∣

∣≤ a−1
1

(

σ
(

a2

(

β(t0)‖x0‖r

)

, t − t0
))

for all t ≥ t0

Since h : [−r,+∞) × ℜn → ℜp is continuous and time-periodic (say, with period

T > 0) with h(t,0) = 0 for all t ≥ −r , it follows from Lemma 2.4 (applied to the

continuous function a(s) := max{|h(t − r, x)| : t ∈ [0, T ], |x| ≤ s}) that there exists

a function ζ ∈ K∞ such that
∣

∣h(t − r, x)
∣

∣≤ ζ
(

|x|
)

for all (t, x) ∈ ℜ+ × ℜn

Combining the previous two inequalities, we obtain

sup
θ∈[−r,0]

∣

∣h
(

t + θ, x(t + θ)
)
∣

∣≤ max
{

ζ
(

‖x0‖r

)

, a−1
1

(

σ
(

a2

(

‖x0‖r

)

,0
))}

for all t ∈ [t0, t0 + r]
sup

θ∈[−r,0]

∣

∣h
(

t + θ, x(t + θ)
)∣

∣≤ a−1
1

(

σ
(

a2

(

‖x0‖r

)

, t − t0
))

for all t ≥ t0 + r
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The above estimates, in conjunction with the fact H : ℜ+ × C0([−r,0];ℜn) → Y

is equivalent to the finite-dimensional mapping h (Definition 2.5), show that Prop-

erties P1, P2, and P3 of Definition 2.3 hold. Hence, system (1.10) is URGAOS. The

proof is complete. �

2.7 Examples of the Method of Lyapunov Functionals

In this section we present some examples of the use of Lyapunov functionals for

the proof of RGAOS. In all cases we will show RGAOS without assuming any

knowledge of the transition map; this is the advantage of the method of Lyapunov

functionals.

Example 2.7.1 Consider the system

ẋ1(t) = −2g1(t)x1(t) + d1(t)g2(t)x
2
1(t) − g3(t)x

3
1(t) + d2(t)b(t)

∣

∣x2

(

t − τ(t)
)
∣

∣

p

ẋ2(t) = c(t)x2(t)

Y (t) = x1(t) ∈ ℜ

x(t) =
(

x1(t), x2(t)
)′ ∈ ℜ2 d = (d1, d2) ∈ D := [−1,1] × [−1,1]

(2.150)

where g1 ∈ K+, g2 : ℜ+ → ℜ, g3 : ℜ+ → ℜ+, b : ℜ+ → ℜ, and c : ℜ → ℜ are

continuous functions, and p > 1
2

is a constant. We consider system (2.150) under

the following hypotheses:

(A1) There exist a continuous function g ∈ K+ with
∫ +∞

0 g(s) ds = +∞ and a

constant M > 0 such that Mg(t) ≤ g1(t) for all t ≥ 0. Moreover, g2
2(t) ≤

4g1(t)g3(t) for all t ≥ 0.

(A2) The function τ : ℜ+ → ℜ is continuously differentiable, nonnegative, and

bounded from above by a constant r > 0.

(A3) There exist constants K,m > 0 such that, for all t ≥ 0,

|b(t)|2
g1(t)

exp

(

2p

∫ t−τ(t)

0

c(s) ds

)

≤ K
(

1 − τ̇ (t)
)

exp

(

−mt −
∫ t

0

g(s) ds

)

.

(2.151)

For example, Hypotheses (A1–3) are satisfied for p = 2, τ(t) := 2+ 1
2

sin(t), c(t) ≡
1, b(t) ≡ 1, g1(t) = exp(6t), g2(t) = exp(t), g3(t) ≡ 1, with g(t) ≡ 1, M := 1,

K := 2, m := 1. We next show that system (2.150) under Hypotheses (A1–3) is

nonuniformly in time RGAOS. We consider the functional

V (t, x) := 1

2
x2

1(0) + exp

(

−p−1mt −
∫ t

0

(

p−1g(s) + 2c(s)
)

ds

)

x2
2(0)

+ K

2m
exp

(

−mt −
∫ t

0

(

g(s) + 2pc(s)
)

ds

)

∣

∣x2(0)
∣

∣

2p
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+
K

2
exp

(

−mt −

∫ t

0

g(s) ds

)

×

∫ 0

−τ(t)

exp

(

−ms − 2p

∫ t+s

0

c(ξ) dξ

)

∣

∣x2(s)
∣

∣

2p
ds (2.152)

Since p > 1
2

, it follows that the functional defined by (2.152) is almost Lipschitz on

bounded sets. Moreover, inequalities (2.143) hold with H(t, x) = x1(0) ∈ Y := ℜ,

a1(s) := 2−1s2, a2(s) := s2 + 2−1K(m−1 + r exp(mr))s2p , and β(t) := 1 +
max0≤ξ≤t exp(− m

2p
ξ − 1

2p

∫ ξ

0 g(s) ds)max−τ(ξ)≤s≤0 exp(−
∫ ξ+s

0 c(w)dw). Fur-

thermore, we obtain, for all (t, x, d) ∈ ℜ+ × C0([−r,0];ℜ2) × D,

V 0
(

t, x;−2g1(t)x1(0) + d1g2(t)x
2
1(0) − g3(t)x

3
1(0) + d2b(t)

∣

∣x2

(

−τ(t)
)
∣

∣

p
,

c(t)x2(0)
)

≤ −2g1(t)x
2
1(0) +

∣

∣g2(t)
∣

∣

∣

∣x1(0)
∣

∣

3 − g3(t)x
4
1(0) +

∣

∣b(t)
∣

∣

∣

∣x1(0)
∣

∣

∣

∣x2

(

−τ(t)
)∣

∣

p

− p−1
(

m + g(t)
)

exp

(

−p−1mt −
∫ t

0

(

p−1g(s) + 2c(s)
)

ds

)

x2
2(0)

− g(t)
K

2m
exp

(

−mt −
∫ t

0

(

g(s) + 2pc(s)
)

ds

)

∣

∣x2(0)
∣

∣

2p

− g(t)
K

2
exp

(

−mt −
∫ t

0

g(s) ds

)∫ 0

−τ(t)

× exp

(

−ms − 2p

∫ t+s

0

c(ξ) dξ

)

∣

∣x2(s)
∣

∣

2p
ds

− K

2

(

1 − τ̇ (t)
)

exp

(

−m
(

t − τ(t)
)

−
∫ t

0

g(s) ds − 2p

∫ t−τ(t)

0

c(s) ds

)

×
∣

∣x2

(

−τ(t)
)∣

∣

2p

Hypothesis (A1) implies that −g1(t)x
2
1 +|g2(t)||x1|3 − g3(t)x

4
1 ≤ 0 for all (t, x1) ∈

ℜ+ × ℜ. Using the inequality |b(t)||x1(0)||x2(−τ(t))|p ≤ 2−1g1(t)x
2
1(0) +

|b(t)|2
2g1(t)

|x2(−τ(t))|2p in conjunction with (2.151), we obtain:

V 0
(

t, x;−2g1(t)x1(0) + d1g2(t)x
2
1(0) − g3(t)x

3
1(0) + d2b(t)

∣

∣x2

(

−τ(t)
)∣

∣

p
,

c(t)x2(0)
)

≤ −1

2
g1(t)x

2
1(0) − p−1g(t) exp

(

−p−1mt −
∫ t

0

(

p−1g(s) + 2c(s)
)

ds

)

x2
2(0)

− g(t)
K

2m
exp

(

−mt −
∫ t

0

(

g(s) + 2pc(s)
)

ds

)

∣

∣x2(0)
∣

∣

2p
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− g(t)
K

2
exp

(

−mt −

∫ t

0

g(s) ds

)

×

∫ 0

−τ(t)

exp

(

−ms − 2p

∫ t+s

0

c(ξ) dξ

)

∣

∣x2(s)
∣

∣

2p
ds

for all (t, x, d) ∈ ℜ+ × C0([−r,0];ℜ2) × D.

Since Mg(t) ≤ g1(t) for all t ≥ 0, the above inequality, in conjunction with def-

inition (2.152), gives, for all (t, x, d) ∈ ℜ+ × C0([−r,0];ℜ2) × D,

V 0
(

t, x;−2g1(t)x1(0) + d1g2(t)x
2
1(0) − g3(t)x

3
1(0) + d2b(t)

∣

∣x2

(

−τ(t)
)
∣

∣

p
,

c(t)x2(0)
)

≤ −min
{

M,p−1,1
}

g(t)V (t, x)

Consequently, inequality (2.144) holds with

ρ(s) := s ϕ(t) ≡ 0 and γ (t) := min
{

M,p−1,1
}

g(t)

If system (2.150) were RFC, we would have showed all hypotheses of Theorem 2.5.

However, since the inequality a(μ(t)|x(0)|) ≤ V (t, x) + R holds for all (t, x) ∈
ℜ+ × C0([−r,0];ℜ2) with R := 0, a(s) := s2 and

μ(t) :=
(

min

(

2−1; exp

(

−m

p
t −

∫ t

0

(

p−1g(s) + 2c(s)
)

ds

)))
1
2

the requirement that system (2.150) were RFC is not needed. Thus we can conclude

that system (2.152) is RGAOS.

Moreover, if, in addition to Hypotheses (A1–3), the following hypothesis holds

as well:

(A4) There exist constants Ŵ,A > 0 such that g(t) ≥ Ŵ and

m

2p
t + 1

2p

∫ t

0

g(s) ds + min
−τ(t)≤w≤0

∫ t+w

0

c(s) ds ≥ −A for all t ≥ 0

then we can conclude that system (2.150) is URGAOS. Notice that if (A4)

holds, inequalities (2.143) and (2.144) hold with ρ(s) := min{M,p−1,1}Ŵs,

H(t, x) = x1(0) ∈ Y := ℜ, a1(s) := 2−1s2, a2(s) := exp(2A)s2 +2−1K(m−1 +
r exp(mr)) exp(2pA)s2p , ϕ(t) ≡ 0, γ (t) ≡ 1, and β(t) ≡ 1. Consequently, all

hypotheses of Theorem 2.5 hold (without the requirement that system (2.150)

is RFC).

Theorems 2.4 and 2.5 can be used for the proof of RFC (simply consider the

system with zero output map H(t, x) ≡ 0). The following example illustrates this

point.
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Example 2.7.2 Consider the following system described by ODEs:

ẋ = c1(t, d)x + c2(t, d)x2 + c3(t, d)x3

x ∈ ℜ, t ≥ 0, d ∈ D (2.153)

where D ⊂ ℜm is a compact set, ci(·) ∈ C0(ℜ+ × D), i = 1,2,3, are continuous

mappings for which there exists a function φ ∈ K+ such that

2φ(t)c3(t, d) ≤ −
∣

∣c2(t, d)
∣

∣ for all (t, d) ∈ ℜ+ × D (2.154)

We next prove that this system is RFC. Consider the Lyapunov function candidate

W(t, x) := exp

(

−
∫ t

0

(

1 + 2 max
d∈D

∣

∣c1(τ, d)
∣

∣+ φ(τ)max
d∈D

∣

∣c2(τ, d)
∣

∣

)

dτ

)

|x|2

(2.155)

Clearly, we have, for all (t, x, d) ∈ ℜ+ × ℜ × D,

∂W

∂t
(t, x) + ∂W

∂x
(t, x)

(

c1(t, d)x + c2(t, d)x2 + c3(t, d)x3
)

= −
(

1 + 2 max
d∈D

∣

∣c1(t, d)
∣

∣+ φ(t)max
d∈D

∣

∣c2(t, d)
∣

∣

)

W(t, x)

+
(

2c1(t, d)x2 + 2c2(t, d)x3 + 2c3(t, d)x4
)

× exp

(

−
∫ t

0

(

1 + 2 max
d∈D

∣

∣c1(τ, d)
∣

∣+ φ(τ)max
d∈D

∣

∣c2(τ, d)
∣

∣

)

dτ

)

(2.156)

It follows from inequality (2.154), in conjunction with the Young inequality

2c2(t, d)x3 ≤ φ(t)|c2(t, d)|x2 + |c2(t,d)|
φ(t)

x4, that the following inequality holds:

∂W

∂t
(t, x) + ∂W

∂x
(t, x)

(

c1(t, d)x + c2(t, d)x2 + c3(t, d)x3
)

≤ −W(t, x)

for all (t, x, d) ∈ ℜ+ × ℜ × D

The reader should notice that all hypotheses of Theorem 2.4 hold with

H(t, x) ≡ 0 a(s) = a2(s) := s2

μ(t) := exp

(

−1

2

∫ t

0

(

1 + 2 max
d∈D

∣

∣c1(τ, d)
∣

∣+ φ(τ)max
d∈D

∣

∣c2(τ, d)
∣

∣

)

dτ

)

β(t) = γ (t) ≡ 1 ρ(s) := s ϕ(t) ≡ 0 and R := 0

Thus system (2.153) with zero output map is URGAOS. Particularly, this implies

that system (2.153) is RFC.

Example 2.7.3 Consider system (1.7) which arises in the study of the chemostat

model (1.4) of Example 1.2.1 in Chap. 1. Here we assume that sin(t) ≡ s∗
in (i.e.,



106 2 Internal Stability: Notions and Characterizations

u2(t) ≡ 0 from (1.6)), D(t) ≡ D∗ (i.e., u1(t) ≡ 0 from (1.6)), b = 0 (i.e., R := 1),

and K(s) ≡ K (i.e., p(x2) ≡ 1). Therefore the transformed chemostat model (1.7)

takes the simple form

ẋ1 = D∗g(x2)

ẋ2 = D∗ exp(−x2)
[

M
(

1 − exp(x1)
)

− Mg(x2) exp(x1) + 1 − exp(x2)
]

x = (x1, x2) ∈ ℜ2 (2.157)

Moreover, we will assume that the specific growth rate μ(s) of the microbial species

is a nondecreasing, locally Lipschitz, bounded function μ : [0,+∞) → [0,+∞)

with μ(0) = 0, μ(s) �= D∗ for all s �= s∗, and μ(s) > 0 for all s > 0. Notice that

the previous requirements are automatically satisfied if μ : [0,+∞) → [0,+∞)

is strictly increasing, but here we will avoid to make such an assumption. Con-

sequently, the function g : ℜ → (−1,+∞) is a nondecreasing, locally Lipschitz,

bounded function with g(0) = 0, limx2→−∞ g(x2) = −1, and g(x2) �= 0 for all

x2 �= 0.

We will show that system (2.157) is URGAS (although in this case the adjective

“robust” does not apply since no disturbances appear in model (2.157)). To this end,

we will use the Lyapunov function

V (x) = exp(x1) − x1 − 1 + B(x2) + Q
(

1 − exp(x2) + M − M exp(x1)
)2

(2.158)

where B(x) := M−1
∫ x

0
g(w)

1+g(w)
exp(w)dw = 1

Ms∗
∫ s∗ exp(x)

s∗
μ(s)−D∗

μ(s)
ds, and Q > 0

is a constant. We first notice that the function V : ℜ2 → [0,+∞) is a continu-

ously differentiable function with V (0) = 0 and V (x) > 0 for all x �= 0. For ev-

ery a ≥ 0, the set {x ∈ ℜ2 : V (x) ≤ a} is compact. Indeed, this follows from the

equalities limx1→±∞(exp(x1) − x1 − 1) = +∞ and limx2→±∞ B(x2) = +∞. No-

tice that for all x2 ≥ 0, it holds that B(x2) ≥ 1
Ms∗

∫ s∗ exp(x2)

s∗
μ(s)−D∗

μmax
ds, where

μmax = sups>0 μ(s), which shows that limx2→+∞ B(x2) = +∞. The equality

limx2→−∞ B(x2) = +∞ follows from the fact that the function μ : [0,+∞) →
[0,+∞) is locally Lipschitz and thus there exist p,L > 0 with μ(s) ≤ Ls for all

0 ≤ s ≤ p. Consequently, for all x2 ≤ ln(
p
s∗ ), we obtain the following inequalities

which show that limx2→−∞ B(x2) = +∞:

B(x2) = 1

Ms∗

∫ s∗

s∗ exp(x2)

D∗ − μ(s)

μ(s)
ds ≥ 1

Ms∗

∫ p

s∗ exp(x2)

D∗ − μ(s)

μ(s)
ds

≥ D∗

Ms∗

∫ p

s∗ exp(x2)

ds

μ(s)
− p

Ms∗ ≥ D∗

Ms∗L

∫ p

s∗ exp(x2)

ds

s
− p

Ms∗

= D∗(ln(p) − ln(s∗) − x2)

Ms∗L
− p

Ms∗

The following proposition helps us at this point.
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Proposition 2.2 Let V : ℜn → [0,+∞) be a continuous function with V (0) = 0

and V (x) > 0 for all x �= 0. Moreover, assume that for every a ≥ 0, the set

{x ∈ ℜn : V (x) ≤ a} is compact. Then there exist functions a1, a2 ∈ K∞ such that

a1(|x|) ≤ V (x) ≤ a2(|x|) for all x ∈ ℜn. Furthermore, if P : ℜn → [0,+∞) is a

continuous function with P(0) = 0 and P(x) > 0 for all x �= 0, then there exists a

locally Lipschitz positive definite function ρ : ℜ+ → ℜ+ such that ρ(V (x)) ≤ P(x)

for all x ∈ ℜn.

Proof of Proposition 2.2 The function a(s) := max{V (x) : x ∈ ℜn, |x| ≤ s} is a

nondecreasing (and thus locally bounded) function with lims→0+ a(s) = a(0) = 0.

Therefore, Lemma 2.4 implies the existence of a2 ∈ K∞ such that a(s) ≤ a2(s) for

all s ≥ 0 and consequently, V (x) ≤ a2(|x|) for all x ∈ ℜ2. On the other hand, since

for every a ≥ 0, the set {x ∈ ℜ2 : V (x) ≤ a} is compact, it follows that the func-

tion β(s) := min{V (x) : x ∈ ℜn, |x| ≥ s} is a well-defined, nondecreasing function

with lims→+∞ β(s) = +∞, β(0) = 0 and β(s) > 0 for all s > 0. The reader should

verify all previous statements (which require knowledge of real analysis!). The func-

tion a1(s) := 1
s+1

∫ s

0 β(w)dw = s
s+1

∫ 1
0 β(λs) dλ defined for s ≥ 0 is a K∞ function

which satisfies all requirements.

Finally, consider ρ̃(s) := min{P(x) : x ∈ ℜn,1 ≤ V (x) ≤ s} for all s ≥ 1 and

ρ̃(s) := min{P(x) : x ∈ ℜn, s ≤ V (x) ≤ 1} for all 0 ≤ s ≤ 1, which is positive defi-

nite, nondecreasing on [0,1] and nonincreasing on [1,+∞). Define the constant

a := min

{

1

2

∫ 1

0

ρ̃(w)dw,

∫ 2

1

ρ̃(w)dw

}

and the function

ρ̄(s) := 2a

s + 1

∫ s

0 ρ̃(w)dw
∫ 1

0
ρ̃(w)dw

for 0 ≤ s ≤ 1

and

ρ̄(s) := a

∫ s+1
s

ρ̃(w)dw
∫ 2

1 ρ̃(w)dw
for s > 1

The function ρ̄ : ℜ+ → ℜ+ is continuous, positive definite, and satisfies ρ̄(s) ≤ ρ̃(s)

for all s ≥ 0. By virtue of Remark 2.4, the function ρ(s) := inf{ρ̃(y)+|y−s|;y ≥ 0}
satisfies all requirements. �

Therefore, by Proposition 2.2 it follows that there exist a1, a2 ∈ K∞ such that

(2.129) holds with β(t) ≡ 1 and H(t, x,0) := x.

It is a matter of easy manipulation to show that

V 0
(

x;f (x)
)

= −P(x)
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where

P(x) := M−1 g(x2)

1 + g(x2)
D∗
[

Mg(x2) + exp(x2) − 1
]

+ 2D∗Q
(

1 − exp(x2) + M − M exp(x1)
)2

,

f (x) := D∗
[

g(x2), exp(−x2)
(

M
(

1 − exp(x1)
)

− Mg(x2) exp(x1) + 1 − exp(x2)
)]′

Notice that P : ℜ2 → [0,+∞) is a continuous function with P(0) = 0 and P(x) >

0 for all x �= 0. It follows from Proposition 2.2 that (2.130) holds with ϕ(t) ≡ 0,

γ (t) ≡ 1, and appropriate locally Lipschitz positive definite function ρ : ℜ+ → ℜ+.

The proof that system (2.157) is URGAS is finished with the help of Theorem 2.4.

2.8 RGAOS for Discrete-Time Systems

In this section, the method of Lyapunov functionals is developed for discrete-time

systems of the form (1.110) under Hypotheses (L1–3). Particularly, we have the

following technical result.

Proposition 2.3 Consider system (1.110) under Hypotheses (L1–3). Suppose that

there exist functions V : π × X → ℜ+, a1, a2 ∈ K∞, a3 ∈ C0(ℜ+;ℜ+) being

positive definite with a3(s) ≤ s for all s ≥ 0, β ∈ K+, and q : π → ℜ+ with

limi→+∞ q(τi) = 0 such that, for all (i, x, d) ∈ Z+ × X × D,

a1

(
∥

∥H(τi, x,0)
∥

∥

Y

)

≤ V (τi, x) ≤ a2

(

β(τi)‖x‖X

)

(2.159)

V
(

τi+1, f (τi, d, x,0)
)

≤ V (τi, x) − a3

(

V (τi, x)
)

+ q(τi) (2.160)

Then system (1.110) is RGAOS if one of the following holds:

(i) a3 ∈ K , or

(ii)
∑∞

i=0 q(τi) < +∞.

Moreover, if, in addition, q ≡ 0 and β(t) ≡ 1, then system (1.110) is URGAOS.

For the proof of Proposition 2.3, we need the following technical result.

Lemma 2.19 Let a ∈ K with a(s) ≤ s for all s ≥ 0, M ∈ (0, 1
2

lims→+∞ a(s)), and

consider a sequence {Vi ∈ ℜ+}∞0 which satisfies the following inequality:

Vi+1 ≤ Vi − a(Vi) + M for all i ≥ k0 ∈ Z+ (2.161)

Then the following inequalities hold:

Vi ≤ Vk0
+ a−1(M) + M for all i ≥ k0 ∈ Z+ (2.162)

Vi < a−1(2M) + M for all i ≥ k0 + Vk0

M
(2.163)
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Proof of Lemma 2.19 We first prove (2.162) by induction. Notice that (2.162) holds

for i = k0. Suppose that (2.162) holds for some i ∈ Z+ with i ≥ k0. Consider the

cases:

• if a(Vi) ≥ M , then (2.161) implies Vi+1 ≤ Vi , and consequently (2.162) holds for

i + 1,

• if a(Vi) < M or equivalently if Vi < a−1(M), then (2.161) implies Vi+1 ≤ Vi +
M < a−1(M) + M , and consequently (2.162) holds for i + 1.

Next, we prove the following claim: if (2.163) holds for some i = k ∈ Z+ with

k ≥ k0, then (2.163) holds for all i ≥ k. Consider the cases:

• if a(Vi) ≥ M , then (2.161) implies Vi+1 ≤ Vi , and consequently (2.163) holds for

i + 1,

• if a(Vi) < M or equivalently if Vi < a−1(M), then (2.161) implies Vi+1 ≤ Vi +
M < a−1(M) + M ≤ a−1(2M) + M , and consequently (2.163) holds for i + 1.

The proof of inequality (2.163) is made by contradiction. Suppose that there ex-

ists k ∈ Z+ with k ≥ k0 + Vk0

M
such that Vk ≥ a−1(2M)+M . By virtue of the previ-

ous claim, this implies that Vi ≥ a−1(2M) + M for all i = k0, . . . , k. Consequently,

we have −a(Vi) + M ≤ −M for all i = k0, . . . , k. Thus, we obtain from (2.161):

Vi+1 ≤ Vi − M for all i = k0, . . . , k (2.164)

Clearly, (2.164) implies that Vk ≤ Vk0
− M(k − k0), and this estimate along with

k ≥ k0 + Vk0

M
gives Vk ≤ 0. Clearly, this implication is in contradiction with the

assumption Vk ≥ a−1(2M) + M > 0. The proof is complete. �

We are now in a position to provide the proof of Proposition 2.3.

Proof of Proposition 2.3 Notice that Lemma 1.3 implies that system (1.110) is RFC.

Thus, by virtue of Lemma 2.1, it suffices to show the Robust Output Attractivity

Property (property P3 of Definition 2.2). Let ε > 0, R,T ≥ 0 arbitrary and consider

the solution x(t) of (1.110) with initial condition x(t0) = x0 with |x0| ≤ R, t0 ∈
[0, T ] corresponding to d ∈ MD and u ≡ 0 ∈ MU . Let J (T ) ∈ Z+ with qπ (T ) :=
τJ (T ).

We distinguish the following cases:

Case of (i): Let M = M(ε) ∈ (0, 1
2

lims→+∞ a3(s)) with a−1
3 (2M) + M = a−1

1 (ε).

There exists N(ε) ∈ Z+ such that q(τi) ≤ M(ε) for all i ≥ N(ε). Notice that

(2.160) implies V (τi+1, x(τi+1)) ≤ V (τi, x(τi)) − a3(V (τi, x(τi))) + M for all

i ≥ N(ε) with τi ≥ τs = pπ (t0). Lemma 2.19 and the fact a−1
3 (2M) + M = a−1

1 (ε)

imply that V (τi, x(τi)) ≤ a−1
1 (ε) for all i ≥ j + V (τj ,x(τj ))

M(ε)
with j = j (ε, T ) :=

max{N(ε), J (T )}. Moreover, (2.160 implies that V (τj , x(τj )) ≤ V (τs, x0) +
∑j (ε,T )

k=0 q(τk). Using (2.159), in conjunction with previous inequalities, implies

that
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V
(

τi, x(τi)
)

≤ a−1
1 (ε)

for all i ≥ Ñ(ε, T ,R) := j (ε, T ) +
a2(R maxk=0,...,J (T ) β(τk)) +

∑j (ε,T )

k=0 q(τk)

M(ε)

with j = j (ε, T ) := max{N(ε), J (T )}. Therefore, inequality (2.159) gives

‖H(t, x(t))‖Y ≤ ε for all t ≥ t0 + τ(ε, T ,R) with τ(ε, T ,R) := τ
Ñ(ε,T ,R)

.

Case of (ii): Define B :=
∑∞

i=0 q(τi) < +∞. Notice that (2.160) implies

V
(

τi+1, x(τi+1)
)

≤ V
(

τi, x(τi)
)

+ q(τi) for all i ∈ Z+ with τi ≥ pπ (t0)

Consequently, we obtain (inductively) V (τi, x(τi)) ≤ V (τs, x0) + B for all i ∈ Z+

with τi ≥ τs = pπ (t0). This implies (using (2.159)) V (τi, x(τi)) ≤ G = G(T ,R) :=
a2(R maxk=0,...,J (T ) β(τk)) + B + 1 for all i ∈ Z+ with τi ≥ τs = pπ (t0). Also,

define

ρ(v) := exp(v − G) min
v≤y≤G

a3(y) (2.165)

which obviously is a strictly increasing, continuous, and positive definite function

on [0,G]. Clearly, there exists ρ̃ ∈ K with ρ̃(v) = ρ(v) for all v ∈ [0,G] (e.g.,

ρ̃(v) := ρ(G) + v − G for v > G). Notice that (2.160) and definition (2.165) im-

plies V (τi+1, x(τi+1)) ≤ V (τi, x(τi)) − ρ̃(V (τi, x(τi))) + q(τi) for all i ∈ Z+ with

τi ≥ pπ (t0). From this point the proof continues with the same procedure as in the

previous case.

Case of q ≡ 0 and β(t) ≡ 1: Notice that (2.160) implies V (τi+1, x(τi+1)) ≤
V (τi, x(τi)) for all i ∈ Z+ with τi ≥ pπ (t0). Consequently, we obtain (inductively)

V (τi, x(τi)) ≤ V (τs, x0) for all i ∈ Z+ with τi ≥ τs = pπ (t0). The previous inequal-

ity, in conjunction with (2.159) with β(t) ≡ 1, implies Uniform Robust Lagrange

and Lyapunov Output Stability. Thus we are left with the proof of the Uniform Ro-

bust Output Attractivity Property.

Notice that if V (τk, x(τk)) ≤ a−1
1 (ε) for some k ∈ Z+ with τk ≥ τs = pπ (t0),

then we get V (τi, x(τi)) ≤ a−1
1 (ε) for all i ≥ k.

Let S(ε,R) := {a3(y) : y ∈ [a−1
1 (ε), a−1

1 (ε) + a2(R)]} > 0. We claim that

V
(

τi, x(τi)
)

≤ a−1
1 (ε) for all i ≥ s + a2(R)

S(ε,R)

The proof is made by contradiction. Suppose that there exists k ∈ Z+ with k ≥
s + a2(R)

S(ε,R)
such that Vk > a−1

1 (ε). By virtue of the previous observation, this implies

that Vi > a−1
1 (ε) for all i = s, . . . , k. Consequently, we have Vi+1 ≤ Vi − S(ε,R)

for all i = s, . . . , k. Thus we obtain Vk ≤ Vs − S(ε,R)(k − s), and this estimate, in

conjunction with our assumption k ≥ s + a2(R)
S(ε,R)

≥ s + Vs

S(ε,R)
, gives Vk ≤ 0. Clearly,

this implication is in contradiction with the assumption Vk > a−1
1 (ε). The reader
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should verify that the inequality t ≥ t0 + r([ a2(R)
S(ε,R)

] + 2) implies that t ≥ τi with

i ≥ s + a2(R)
S(ε,R)

. The proof is complete. �

Example 2.8.1 Consider the nonlinear finite-dimensional discrete-time time-varying

system

x1(t + 1) = d(t)x1(t)

x2(t + 1) = 2−td(t)
∣

∣x1(t)
∣

∣

1
2

Y(t) = H
(

t, x(t)
)

:= x2(t)

x(t) :=
(

x1(t), x2(t)
)

∈ ℜ2, t ∈ Z+, d(t) ∈ [−2,2] (2.166)

with π = Z+. Consider the continuous function V (t, x) := exp(−t)|x1| + |x2|,
which clearly satisfies the following inequality:

|Y | = |x2| ≤ V (t, x) ≤ 2|x| for all (t, x) ∈ Z+ × ℜ2 (2.167)

Moreover, notice that for all (t, x, d) ∈ Z+ × ℜ2 × [−2,2], we obtain

V
(

t + 1, dx1,2−td|x1|
1
2
)

= exp(−t − 1)|d||x1| + 2−t |d||x1|
1
2

≤ 2e−1 exp(−t)|x1| + 2−t+1|x1|
1
2

≤ 2 + e

2e
exp(−t)|x1| +

2e

e − 2

(

e

4

)t

≤ λV (t, x) + q(t) (2.168)

where λ := 2+e
2e

∈ (0,1) and q(t) := 2e
e−2

( e
4
)t with limt→+∞ q(t) = 0. By virtue

of (2.167) and (2.168), it follows that statement (i) of Proposition 2.3 is satisfied

with β(t) ≡ 1, a1(s) := s, a2(s) := 2s, and a3(s) := (1 − λ)s. We conclude that

system (2.166) is RGAOS.

Example 2.8.2 Consider again the cobweb model (1.123) with buffer stocks. For the

case with no government intervention, the corresponding dynamical system (1.123)

with u(t) ≡ 0 is actually one-dimensional (the state variable x2(t) is constant and

irrelevant) and is given by the difference equation

x1(t + 1) = h
(

x1(t) + xeq

)

− xeq (2.169)

where

h(y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if y ≤ c1

1 + c1r − ry if c1 < y < c1 + c2

1 − c2r if y ≥ c1 + c2

(2.170)

We consider the following cases:
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Case 1: If c1 + c2 > 1 − c2r and r < 1, then we can show that system (1.123) with

u(t) ≡ 0 is URGAOS.

Indeed, we can prove this fact by using Proposition 2.3 and by considering the Lya-

punov function V (x1) := |x1|. It is a matter of simple but tedious calculations to

show that the following inequality holds:

V
(

h(x1 + xeq) − xeq

)

< V (x1) for all x ∈ ℜ, x1 �= 0 (2.171)

Define P(x1) := V (x1) − V (h(x1 + xeq) − xeq). Clearly, inequality (2.171) implies

that P : ℜ → [0,+∞) is a continuous function with P(0) = 0 and P(x) > 0 for all

x �= 0. By Proposition 2.2 there exists a locally Lipschitz positive definite function

a3 : ℜ+ → ℜ+ such that a3(V (x)) ≤ P(x) for all x ∈ ℜ. Consequently, inequali-

ties (2.159) and (2.160) hold with a1(s) = a2(s) := s, q ≡ 0, and β(t) ≡ 1.

Case 2: If c1 + c2 ≤ 1 − c2r (or Smax ≤ ad−bc
b+d

), then we notice that h(y) ≥ c1 + c2

for all y ∈ ℜ. Thus, for every initial condition x1(0) ∈ ℜ, we obtain

x1(t) = 0
(

or P(t) = b−1(a − Smax)
)

for all t ≥ 2. (2.172)

In this case, we can show that system (1.123) with u(t) ≡ 0 is URGAOS, by com-

bining Lemmas 1.3, 2.1, and 2.2 (notice that system (1.123) is autonomous). In fact,

in this case the phenomenon of finite-time stability appears as (2.172) shows (i.e.,

the equilibrium point is approached in finite time).

Thus, in any of the above two cases, system (1.123) with u(t) ≡ 0 is URGAOS.

The characterization of the set of the parameters for which URGAOS occurs is

sharp. Indeed, if c1 + c2 > 1 − c2r and r ≥ 1 (or Smax > ad−bc
b+d

and d ≥ b), the dy-

namics of system (1.123) present the well-known phenomenon of the “hog-cycles”

or nontrivial period-2 solutions, as described in the economic literature. For the

mildly nonlinear case (1.123), the “hog-cycles” can be given explicitly:

• If c1 + c2 > 1, a nontrivial period-2 solution is

x1,1 = 1 − xeq

x1,2 = 1 − r(1 − c1) − xeq ≤ c1 − xeq.

• If 1 ≥ c1 + c2 and c1 + rc2 ≥ 1, a nontrivial period-2 solution is

x1,1 = 1 − xeq

x1,2 = 1 − rc2 − xeq ≤ c1 − xeq.

• If c1 + rc2 < 1, a nontrivial period-2 solution is

x1,1 = 1 − r(1 − c1) + r2c2 − xeq ≥ c1 + c2 − xeq

x1,2 = 1 − rc2 − xeq < c1 + c2 − xeq.
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• If r = 1, there are infinite nontrivial period-2 solutions

x1,1 ∈
(

max{c1;1 − c2} − xeq,min{1; c1 + c2} − xeq

)

arbitrary

x1,2 = 1 + c1 − x1,1 − 2xeq.

Thus, we have performed a complete parametric stability analysis for sys-

tem (1.123).

As suggested previously, the stability analysis for discrete-time systems is

strongly related to the discretization approach for Lyapunov stability analysis of

systems described by ODEs.

The following result is the main result for the discretization approach for systems

described by ODEs.

Proposition 2.4 Consider system (1.3) under Hypotheses (H1–4) and suppose that

there exist a function V ∈ C0(ℜ+ ×ℜn;ℜ+) and functions a1, a2 ∈ K∞, and β,μ ∈
K+ satisfying (2.129) and the following inequality:

a1

(

μ(t)|x|
)

≤ V (t, x) for all (t, x) ∈ ℜ+ × ℜn (2.173)

Moreover, suppose that there exist a locally bounded function T : (0,+∞) →
(0,+∞), a positive definite function q ∈ C0(ℜ+;ℜ+), and a function a ∈ K∞
such that for all t0 ≥ 0, x0 ∈ ℜn\{0}, and d ∈ MD , the solution x(t, t0, x0;d)

of (1.3) with initial condition x(t0, t0, x0;d) = x0 corresponding to d ∈ MD exists

on [t0, t0 + T (V (t0, x0))] and satisfies the following inequalities:

V
(

t, x(t, t0, x0;d)
)

≤ a
(

V (t0, x0)
)

for all t ∈
[

t0, t0 + T
(

V (t0, x0)
)]

(2.174)

min
t∈[t0,t0+T (V (t0,x0))]

V
(

t, x(t, t0, x0;d)
)

≤ V (t0, x0) − q
(

V (t0, x0)
)

(2.175)

Then system (1.3) is RGAOS. Moreover, if β(t) ≡ 1, then system (1.3) is URGAOS.

Proof Let σ ∈ KL be the function with the following property.

(P) If {Vi ≥ 0}∞i=0 is a sequence with Vi+1 ≤ Vi − q(Vi), then Vi ≤ σ(V0, i) for all

i ≥ 0.

The existence of σ ∈ KL which satisfies property (P) is guaranteed by Lemma 4.3

in [19]. In order to present a complete proof, we notice that the function σ ∈ KL

can be constructed by following the procedure in the proof of Lemma 2.11 and

defining v(i) := sup{ Vi

g(V0)
: {Vi}∞0 ∈ G(V0),V0 > 0}, where g(s) = s2 + √

s, and

G(V0) denotes the set of all sequences {Vi ≥ 0}∞i=0 with Vi+1 ≤ Vi − q(Vi) for all

i ≥ 0. Then we show that v(i) → 0 and the function σ ∈ KL can be defined as

σ(s, i) := g(s)v(i) for all s > 0, i ∈ Z+ and σ(0, i) := 0 for all i ∈ Z+.



114 2 Internal Stability: Notions and Characterizations

Define T (0) = 1. Let t0 ≥ 0, x0 ∈ ℜn, and d ∈ MD arbitrary and define the fol-

lowing sequences:

xi+1 = x(τi + si, τi, xi;d) Ti = T
(

V (τi, xi)
)

τi+1 = τi + si Vi = V (τi, xi) i ≥ 0
(2.176)

with τ0 = t0, where si ∈ [0, Ti] satisfies

V
(

x(τi + si, τi, xi;d)
)

= min
s∈[0,Ti ]

V
(

x(τi + s, τi, xi;d)
)

(2.177)

for the case xi �= 0 and si = Ti = 1 for the case xi = 0. Notice that by virtue of the

semigroup property we obtain that xi = x(τi, t0, x0;d).

Inequality (2.175) and definitions (2.176), (2.177) imply that

Vi+1 ≤ Vi − q(Vi) (2.178)

for the case xi �= 0. For the case xi = 0, by the uniqueness of solution of (1.3)

we have xi+1 = 0, and consequently inequality (2.178) holds as well in this case.

Therefore, property (P) guarantees that

Vi ≤ σ(V0, i) for all i ≥ 0 (2.179)

where σ ∈ KL is the function involved in property (P).

Inequality (2.174), definitions (2.176) and the semigroup property guarantee

that V (x(t, t0, x0;d)) = V (x(t, τi, xi;d)) ≤ a(Vi) for all t ∈ [τi, τi+1] for the case

xi �= 0. By the uniqueness of solution of (1.3), it follows that V (x(t, t0, x0;d)) =
V (x(t, τi, xi;d)) ≤ a(Vi) for all t ∈ [τi, τi+1] for the case xi = 0 as well. Since

{Vi ≥ 0}∞i=0 is nonincreasing (a consequence of (2.178)), we obtain

V
(

x(t, t0, x0;d)
)

≤ a
(

V (t0, x0)
)

for all t ∈ [t0, sup τi) (2.180)

Next, we show that

V
(

x(t, t0, x0;d)
)

≤ a
(

V (t0, x0)
)

for all t ≥ 0 (2.181)

It should be noticed that Robust Forward Completeness, Robust Lyapunov and La-

grange stability follow directly from inequality (2.181) in conjunction with (2.129)

and (2.173). Moreover, if β(t) ≡ 1, then Uniform Robust Lyapunov and Uniform

Lagrange stability follows directly from inequality (2.181).

For the proof of inequality (2.181), we distinguish two cases:

Case 1: sup τi < +∞.

By virtue of inequality (2.179) we obtain that limVi = 0 and consequently

limt→(sup τi )
− V (x(t, t0, x0;d)) = 0. This implies that limt→(sup τi )

− x(t, t0,

x0;d) = 0, which implies x(t, t0, x0;d) = 0 for all t ≥ sup τi . Therefore inequal-

ity (2.181) is a consequence of (2.180) and the fact that V (x(t, t0, x0;d)) = 0 for all

t ≥ sup τi .
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Case 2: sup τi = +∞.

In this case inequality (2.181) is a direct consequence of inequality (2.180).

We next show Robust Attractivity. Let ε > 0, S ≥ 0, R ≥ 0, (t0, x0) ∈ ℜ+ × ℜn

with t0 ∈ [0, S], |x0| ≤ R, and d ∈ MD be arbitrary. By virtue of (2.129), (2.178),

and the semigroup property it follows that if Vi ≤ a−1(a1(ε)) for some i ≥ 0, then

we have |H(t, x(t, t0, x0;d),0)| ≤ ε for all t ≥ τi . Define J := min{i ≥ 0 : Vi ≤
a−1(a1(ε))}. Let Nε(S,R) ∈ Z+ such that σ(a2(R max0≤t≤S β(t)),Nε(S,R)) ≤
a−1(a1(ε)) and notice that inequalities (2.129) and (2.179) imply that J ≤
Nε(S,R).

Next suppose that J ≥ 1. Since Vi ≥ a−1(a1(ε)) for all i ≤ J −1 (a consequence

of definition J := min{i ≥ 0 : Vi ≤ a−1(a1(ε))}), we get from (2.176) and the facts

that {Vi ≥ 0}∞i=0 is nonincreasing, V (t0, x0) ≤ a2(R max0≤t≤S β(t)), and that

τi+1 = τi + si ≤ τi + Ti ≤ τi + T̃ε(S,R) for all i ≤ J − 1

where

T̃ε(S,R) := sup
{

T (V ) : a−1
(

a1(ε)
)

≤ V ≤ a−1
(

a1(ε)
)

+ a2

(

R max
0≤t≤S

β(t)
)}

Therefore τi+1 ≤ iT̃ε(S,R) for all i ≤ J −1, and therefore inequality J ≤ Nε(S,R)

implies τJ ≤ Nε(S,R)T̃ε(S,R). It follows that V (x(t, t0, x0;d)) ≤ a−1(a1(ε)) for

all t ≥ Nε(S,R)T̃ε(S,R).

The above conclusion holds as well in the case J = 0; namely we have

V
(

x(t, t0, x0;d)
)

≤ a−1
(

a1(ε)
)

for all t ≥ Nε(S,R)T̃ε(S,R)

Notice that, if β(t) ≡ 1, then Nε(S,R) ∈ Z+ and

T̃ε(S,R) := sup
{

T (V ) : a−1
(

a1(ε)
)

≤ V ≤ a−1
(

a1(ε)
)

+ a2

(

R max
0≤t≤S

β(t)
)}

are independent of S ≥ 0. The proof is complete. �

Remark 2.7 The reader should notice that the converse of Proposition 2.4 holds

for the case of Uniform Robust Global Asymptotic Stability (URGAS), i.e., if sys-

tem (1.3) is URGAS, then for every function V ∈ C0(ℜ+ × ℜn;ℜ+) which satis-

fies (2.129) for certain a1, a2 ∈ K∞ with β(t) ≡ 1, there exist a function a ∈ K∞
and a locally bounded function T : (0,+∞) → (0,+∞) such that for all t0 ≥ 0,

x0 ∈ ℜn\{0}, and d ∈ MD , the solution x(t, t0, x0;d) of (1.3) with initial con-

dition x(t0, t0, x0;d) = x0 corresponding to d ∈ MD exists on [0, T (V (t0, x0))]
and satisfies inequalities (2.173), (2.174), and (2.175). Notice that (2.173) with

μ(t) ≡ 1 is a direct consequence of (2.129) and the fact that H(t, x,0) := x for

all (t, x) ∈ ℜ+ ×ℜn. Moreover, since system (1.3) is URGAS, Theorem 2.2 implies

the existence of σ ∈ KL such that for all t0 ≥ 0, x0 ∈ ℜn, and d ∈ MD , the solu-

tion x(t, t0, x0;d) of (1.3) with initial condition x(t0, t0, x0;d) = x0 corresponding

to d ∈ MD satisfies (2.11) with H(t, x,0) := x. Without loss of generality, we may
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assume that for each s > 0, the mapping t → σ(s, t) is strictly decreasing (if not,

replace σ(s, t) by σ(s, t) + s exp(−t)).

Combining (2.129) and (2.11) with H(t, x,0) := x, we obtain

V
(

x(t, t0, x0;d)
)

≤ a2

(

σ
(

a−1
1

(

V (x0)
)

, t
))

for all t ≥ 0 (2.182)

Let q ∈ (0,1), and let T (s) > 0 be the unique solution of a2(σ (a−1
1 (s)T (s))) =

(1 − q)s for each s > 0. It can be shown that the mapping (0,+∞) ∋ s → T (s)

is bounded on every compact set S ⊂ (0,+∞). Therefore, by virtue of (2.182), we

conclude that inequalities (2.174) and (2.175) hold with a(s) := a2(σ (a−1
1 (s),0))

and q(s) := qs.

For the case of nonuniform RGAOS, we can present a result which is useful for

the solution of important control problems (see Chap. 6).

Proposition 2.5 Consider system (1.3) under Hypotheses (H1–4). Suppose that

there exists a function γ ∈ K+ satisfying

+∞
∑

j=0

γ (2j) < +∞ (2.183)

lim
t→+∞

γ (t) = 0 (2.184)

It is further assumed that there exist functions a, a1, a2 ∈ K∞, β,μ ∈ K+, ρ ∈
C0(ℜ+;ℜ+) being positive definite such that (2.129) and (2.173) hold and the fol-

lowing properties are fulfilled for all (t0, x0, d) ∈ ℜ+ × ℜn × MD and j ∈ Z+:

sup
t∈[t0,[t0]+2]

V
(

t, x(t, t0, x0;d)
)

≤ a
(

V (t0, x0)
)

+ γ (t0) (2.185)

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) − ρ
(

V (2j, x0)
)

+ γ (2j) (2.186)

where x(t, t0, x0;d) denotes the unique solution of (1.3) with initial condition

x(t0) = x0 corresponding to d ∈ MD . Then system (1.3) is RGAOS.

Proof Let (t0, x0, d) ∈ ℜ+ ×ℜn ×MD , and let j ∈ Z+ be the smallest integer which

satisfies t0 ≤ 2j . Inequality (2.186) implies that, for any pair of integers i ≥ j ,

V
(

2i, x(2i, t0, x0, d)
)

≤ V
(

2j, x(2j, t0, x0, d)
)

+
i

∑

k=0

γ (2k) (2.187)

Let M :=
∑+∞

k=0 γ (2k) and B := supt≥0 γ (t). Then, by (2.129), (2.185), and (2.186),

we get

V
(

t, x(t, t0, x0, d)
)

≤ a
(

a
(

a2

(

β(t0)|x0|
))

+ B + M
)

+ B for all t ≥ t0 (2.188)
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Inequality (2.188), in conjunction with (2.129), implies RFC and Robust Lagrange

Output Stability. Therefore, according to Lemma 2.1, in order to establish RGAOS,

it suffices to show that system (1.3) satisfies the property of Uniform Output At-

tractivity on compact sets of initial data. To establish this property, consider ar-

bitrary constants ε > 0, R ≥ 0, T ≥ 0 and let (t0, x0, d) ∈ ℜ+ × ℜn × MD with

t0 ∈ [0, T ] and |x0| ≤ R. Define K := a(a(a2(R maxt∈[0,T ] β(t)) + B + M) + B .

Then by (2.188) it holds that

V
(

t, x(t, t0, x0, d)
)

≤ K for all t ≥ t0 (2.189)

Also, define

ρ̃(s) := min
s≤y≤K

ρ(y) (2.190)

which obviously is a nondecreasing and continuous function, and let J ≥ 0 be an

integer with 1
2
ρ̃(K) ≥ γ (2i) for all integers i ≥ J , whose existence is guaranteed

from (2.184). Next, consider the sequence

qi := inf

{

s ∈ [0,K] : 1

2
ρ̃(s) ≥ γ (2i)

}

for i ≥ J (2.191)

By virtue of (2.184) and (2.191), qi → 0. Consequently, there exists an integer N :=
N(ε,K) ≥ J such that

qi + γ (2i) ≤ S(ε) and γ (2i) ≤ 1

2
a1(ε) for all i ≥ N (2.192)

where a1 ∈ K∞ is the function involved in (2.129), and

S(ε) := a−1

(

1

2
a1(ε)

)

(2.193)

Notice next that (2.186) asserts that for all integers i ≥ max(N, j), the following

holds:

V
(

2(i + 1), x
(

2(i + 1), t0, x0;d
))

≤ max

(

S(ε),V
(

2i, x(2i, t0, x0;d)
)

− 1

2
ρ
(

V
(

2i, x(2i, t0, x0;d)
))

)

(2.194)

Indeed, in order to establish (2.194), we consider two cases. For the first case,

assume that V (2i, x(2i, t0, x0, d)) ≥ qi . Then it follows from (2.190), (2.191),

and (2.192) that 1
2
ρ(V (2i, x(2i, t0, x0, d))) ≥ γ (2i), and this, in conjunction

with (2.186), implies (2.194). The other case is V (2i, x(2i, t0, x0, d)) ≤ qi . Then

the latter, in conjunction with (2.186) and (2.192), implies again (2.194).

The following property is a consequence of (2.194):

V
(

2i, x(2i, t0, x0, d)
)

≤ S(ε)

for all integers i ≥ max(N, j) + 2K

ρ̃(S(ε))
+ 1 (2.195)
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To show (2.195), suppose on the contrary that there exists integer i ≥ max(N, j) +
2K

ρ̃(S(ε))
+ 1 with V (2i, x(2i, t0, x0, d)) > S(ε). Then, (2.194) would imply

V
(

2k, x(2k, t0, x0, d)
)

> S(ε)

for all k = max(N, j), max(N, j) + 1, . . . ,max(N, j) + i (2.196)

By (2.189), (2.190), (2.194), and (2.196) we would have

V
(

2(k + 1), x
(

2(k + 1), t0, x0, d
))

≤ V
(

2k, x(2k, t0, x0, d)
)

− 1

2
ρ̃
(

S(ε)
)

for all k = max(N, j), max(N, j) + 1, . . . ,max(N, j) + i − 1

and therefore

V
(

2k, x(2k, t0, x0, d)
)

≤ K −
(

k − max
(

N,j
))1

2
ρ̃
(

S(ε)
)

for all k = max(N, j), max(N, j) + 1, . . . ,max(N, j) + i − 1

The previous inequality for k = i gives V (2i, x(2i, t0, x0, d)) ≤ S(ε), which is a

contradiction, and this establishes (2.195).

Finally, by (2.185) and (2.195) we obtain supt∈[2i,2i+2] V (t,φ(t, t0, x0;d)) ≤
a(S(ε)) + γ (2i) for all integers i ≥ max(N, j) + 2K

ρ̃(S(ε))
+ 1. This, in conjunction

with (2.192) and (2.193), gives

sup
t≥2i

V
(

t, φ(t, t0, x0, d)
)

≤ a1(ε)

for all integers i ≥ max(N, j) + 2K

ρ̃(S(ε))
+ 1 (2.197)

Using the inequality above and (2.129), we may conclude that the property of Uni-

form Output Attractivity on compact sets of initial data holds for system (1.3). This

completes the proof of Proposition 2.5. �

Propositions 2.4 and 2.5 show that the discretization approach extends the classi-

cal Lyapunov analysis, since it does not assume that a certain differential inequality

holds for all times. However, it is important to be able to estimate accurately the

value of the Lyapunov function along the trajectory of the solution. This disadvan-

tage can be overcome in certain cases.

2.9 Bibliographical and Historical Notes

1. For proving stability by means of Fixed Point Theorems, see [7] and references

therein. In our opinion this method of proving stability is flexible and in most

of the cases is very similar to small-gain arguments (that are presented later in

Chap. 5).
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2. The notion of RFC for systems described by ODEs was introduced in [22] and

was extended to general systems in [21, 26]. It should be noted that the notion

of RFC implies the standard notion of forward completeness, which requires

that for every initial condition the solution of the system exists for all times

greater than the initial time, or equivalently, the solutions of the system do not

present finite escape time. Conversely, an extension of Proposition 5.1 in [39] to

the time-varying case shows that every forward complete system described by

ODEs, whose dynamics are locally Lipschitz with respect to (t, x), uniformly

in d ∈ D, is RFC. A Lyapunov characterization for usual forward completeness

for systems described by ODEs is given in [2].

3. The notion of URGAOS for systems described by ODEs was used in [54, 55]

(see also [20, 36, 56, 59]). For recent results on uniform global asymptotic sta-

bility of nonlinear and time-varying switched systems, see [38] and references

therein. Particularly, for systems with identity output mapping, the notion of

URGAS was used in [32, 39]. Nonuniform notions for RGAOS (and RGAS)

were developed in [21–26, 29–31] in complete analogy with the uniform no-

tions. Many results of the present chapter have appeared in [4–8, 13, 18] For

systems described by RFDEs, similar notions have appeared in [4-07, [18]]

(see also [33]).

4. The notion of inf-convolutions (used in Remark 2.4) is studied in [11].

5. Differential inequalities are exploited in the book [34] (where vector differential

inequalities are used as well). A useful comparison lemma appears in [32]. The

reader should notice that the use of differential inequalities is a basic tool for

the derivation of useful results for systems (see, for example, the frequent use

of various differential inequalities in [15]).

6. The problem of the absolute continuity of the Lyapunov functional for systems

described by RFDEs was studied in [47, 48] (see also [24, 30, 31]). The problem

of using a Dini derivative for the Lyapunov functional which can be estimated

without knowledge of the solution is crucial for systems described by RFDEs:

many times the derivatives used depend on the knowledge of the solution (see

[17, 33, 46, 59]). We have decided to work with Dini derivatives which can be

estimated without knowledge of the solution (because this is the big advantage

of the Lyapunov method; see [24, 30, 31, 47, 48] as well as [13]).

7. Excellent introductions to the method of Lyapunov functions and functionals

for systems described by ODEs are given in [32, 53] and for systems described

by RFDEs in [17, 33]. The books [16, 33] are classical in stability studies.

8. Chemostat models, like the chemostat model (2.157) studied in Example 2.7.3,

are very frequently analyzed by means of monotone system theory (see [52]).

Usually, it is assumed that the specific growth rate for the microbial species

is a strictly increasing, continuously differentiable, bounded function μ :
[0,+∞) → [0,+∞) with μ(0) = 0.

9. The question of whether (U)RGAOS for a system implies the existence of a

Lyapunov functional is crucial: see [3, 22, 24, 29, 39, 55, 56]. The following

chapter is devoted to this important question.

10. The Lyapunov method for discrete-time systems is developed in [19, 23, 25,

35]; also see [37].
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11. The phenomenon of “hog cycles” or nontrivial period-2 solutions (which means

that the system is not RGAOS) for economic cobweb models like the model

studied in Example 2.8.4, are known for a long time; see, for instance, [14].

The “hog cycles” have interesting economic interpretations.

12. The “discretization approach” for Lyapunov functions was described in [1] (see

also [32, 44, 45, 49, 50], the Appendix in [12], and the proof of the main result in

[28]). Clearly, the discretization approach does not require a Lyapunov function

with a negative definite derivative. Instead, the discretization approach requires

that the difference of the values of the Lyapunov function at two consecutive

time instances is negative. Therefore, in this approach the Lyapunov function

can even have a positive derivative in certain regions of the state space. How-

ever, the main difficulty in the application of this approach is the estimation of

the difference of the values of the Lyapunov function at two consecutive time

instances. The application of this approach to feedback stabilization problems

gave very important results in [12] (see also recent extensions in [28]). The re-

cent work [27] attempts the application of the discretization approach in a way

that the difference can be estimated without knowledge of the solution map.

The analysis in [27] shows that the discretization approach can be utilized with

ideas that exploit higher derivatives of Lyapunov functions (see [9, 10, 60]) and

ideas from the original theorem of Matrosov (see [51]).

13. In the present book we will not study the Matrosov methodology of proving

stability (see [51]). However, it should be noted that the original result by Ma-

trosov has been generalized recently in various directions (see [40–43, 51, 58]).
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Chapter 3

Converse Lyapunov Results

3.1 Introduction

This chapter is devoted to the answer of the following question: do Lyapunov func-

tionals exist for a RGAOS system Σ? The previous chapter showed that one of

the most important ways of proving stability is the derivation of estimates which

guarantee appropriate stability properties by means of Lyapunov functionals. The

objective of this chapter is to show that such Lyapunov functionals always exist. For

future reference, the results demonstrating the existence of Lyapunov functionals

are referred to as converse Lyapunov results.

Under minimal regularity requirements, it will also be shown that the Lyapunov

functionals have desired regularity properties. This is crucial for systems described

by ODEs or systems described by RFDEs, since one can prove stability properties

without knowledge of the transition map of the system.

In what follows, Σ := (X , Y ,MU ,MD, φ,π,H) denotes a control system with

the BIC property, U = {0}, and for which 0 ∈ X is a robust equilibrium point

from the input u ∈ MU . Let u0 ∈ MU denote the identically zero input, i.e.,

u0(t) = 0 ∈ U for all t ≥ 0. Moreover, we assume that Hypothesis (HYP) of

Sect. 2.6 holds. For the output map H : ℜ+ × X × U → Y , we assume that ei-

ther H : ℜ+ × X × U → Y is continuous or that there exists a partition π =
{τi}∞i=0 of ℜ+ with diameter r > 0 such that H : ℜ+ × X × U → Y satisfies Hy-

pothesis (L2) in Sect. 1.7. Finally, it is assumed that for every (t0, x0, d1, d2) ∈
ℜ+ × X × MD × MD and for every T ∈ π(t0, x0, u0, d1) ∩ (t0,+∞), there ex-

ists d ∈ MD such that φ(t, T ,φ(T , t0, x0, u0, d1), u0, d2) = φ(t, t0, x0, u0, d) for all

t ≥ T and φ(t, t0, x0, u0, d1) = φ(t, t0, x0, u0, d) for all t0 ≤ t ≤ T . This assumption

holds:

• for systems described by ODEs under Hypotheses (H1–4),

• for systems described by RFDEs under Hypotheses (S1–4),

• for systems described by coupled RFDEs and FDEs under Hypotheses (P1–5),

• for systems described by FDEs under Hypotheses (Q1–3),
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• for systems with variable sampling partition of the form (1.57) under Hypotheses

(A1–4) for which the mappings f (t, τ, x, x0, u,u0, d, d0) and R(τ, x, x0, u,u0,

d, d0) are independent of d ∈ D and d0 ∈ D,

• for discrete-time systems under Hypotheses (L1–3).

3.2 Sontag’s Result on KL functions

In this section, we present a technical result which appeared in [25] as Proposition 7

and plays an important role in the construction of Lyapunov functionals. It is stated

below.

Theorem 3.1 For each σ ∈ KL, there exist a1, a2 ∈ K∞ such that a1(σ (s, t)) ≤
e−ta2(s) for all s, t ≥ 0.

The proof of Theorem 3.1 depends on two technical lemmas, which show im-

portant properties for the classes of KL and K∞ functions. The following lemma is

proved in the same way as in [25].

Lemma 3.1 For every σ ∈ KL, there exist a1, a2 ∈ K∞ such that

σ(s, t) ≤ a1

(

exp(−t)
)

a2(s) for all s, t ≥ 0.

Proof Without loss of generality we may assume that σ(s,0) ∈ K∞. Otherwise, we

may replace σ ∈ KL by σ̃ ∈ KL, where σ̃ (s, t) := σ(s, t) + s exp(−t). Define

a(t) := sup
s>0

σ(s, t)
√

σ(s,0) + σ 2(s,0)
(3.1)

First notice that a : ℜ+ → [0,1] is well defined and nonincreasing. For every

ε > 0, there exist 0 < a(ε) ≤ b(ε) such that x√
x+x2 ≤ ε for all x ∈ (0, a(ε)] or

x ∈ [b(ε),+∞). Therefore, from definition (3.1) we obtain, for all ε > 0,

a(t) ≤ max

{

ε, max
a(ε)≤s≤b(ε)

σ(s, t)
√

σ(s,0) + σ 2(s,0)

}

≤ max

{

ε,
σ (b(ε), t)

√
σ(a(ε),0) + σ 2(a(ε),0)

}

(3.2)

For every ε > 0, there exists T (ε) ≥ 0 such that

σ
(

b(ε), t
)

≤ ε
[

√

σ
(

a(ε),0
)

+ σ 2
(

a(ε),0
)]

for all t ≥ T (ε)

Consequently, by (3.2), for all ε > 0, it holds

a(t) ≤ ε for all t ≥ T (ε). (3.3)

Inequality (3.3) shows that limt→+∞ a(t) = 0. Definition (3.1) implies

σ(s, t) ≤ a(t)a2(s) ∀t ≥ 0, s > 0 (3.4)
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where a2(s) :=
√

σ(s,0) + σ 2(s,0). Notice that inequality (3.4) holds for s = 0 as

well. We next define

p(r) :=

⎧

⎪

⎨

⎪

⎩

0 for r = 0

a(− ln r) for r ∈ (0,1]
a(0) for r > 1

(3.5)

Notice that p : ℜ+ → [0,1] is nondecreasing with limr→0+ p(r) = 0. By Lemma 2.4,

there exists a1 ∈ K∞ such that p(s) ≤ a1(s) for all s ≥ 0. Inequality σ(s, t) ≤
a1(exp(−t))a2(s) for all s, t ≥ 0 is a direct consequence of definition (3.5) and

inequality (3.4). The proof is complete. �

The following technical lemma is proved using a different way from that in [25].

Lemma 3.2 For every a ∈ K∞, there exists p ∈ K∞ such that a(rs) ≤ p(r)p(s)

for all r, s ≥ 0.

Proof Define

γ (r) := sup
s>0

a(rs)

a(
√

s + s2) +
√

a(s) + a2(s)
for all r ≥ 0 (3.6)

Definition (3.6) gives γ (0) = 0. Moreover, for r ≤ 1, it holds that a(rs) ≤ a(s) ≤
a(

√
s + s2) for all s > 0. Consequently, we obtain sups>0

a(rs)

a(
√

s+s2)+
√

a(s)+a2(s)
≤

1 < +∞. For r > 1, we notice that a(rs) ≤ a(s2) for all s ≥ r and a(rs) ≤ a(
√

s)

for all s ≤ 1
r2 . Consequently, we have, for r > 1,

sup
s>0

a(rs)

a(
√

s + s2) +
√

a(s) + a2(s)

≤ max

{

1, max
r−2≤s≤r

a(rs)

a(
√

s + s2) +
√

a(s) + a2(s)

}

≤
a(r2)

a(r−1)
< +∞ (3.7)

Therefore, the function γ : ℜ+ → ℜ+ is well defined and locally bounded. The

monotonicity of a ∈ K∞ implies that γ : ℜ+ → ℜ+ is nondecreasing. For all r ≤ 1

and ε > 0, it holds that

a(rs)

a(
√

s + s2) +
√

a(s) + a2(s)
≤
√

a(s) ≤ ε for all s ≤ a−1
(

ε2
)

a(rs)

a(
√

s + s2) +
√

a(s) + a2(s)
≤

1

a(s)
≤ ε for all s ≥ a−1

(

ε−1
)

The above inequalities, in conjunction with definition (3.6), imply that, for all r ≤ 1

and ε ∈ (0,1), we have
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γ (r) ≤ max

{

ε, max
a−1(ε2)≤s≤a−1(ε−1)

a(rs)

a(
√

s + s2) +
√

a(s) + a2(s)

}

≤ max

{

ε,
a(ra−1(ε−1))

2ε2

}

(3.8)

It follows from (3.8) that, for all ε ∈ (0,1) and r ≤ a−1(2ε3)

a−1(ε−1)
, it holds that γ (r) ≤ ε.

This implies that limr→0+ γ (r) = 0. By Lemma 2.4, there exists ζ ∈ K∞ such that

γ (s) ≤ ζ(s) for all s ≥ 0. Define, for all s ≥ 0,

p(s) := max
{

ζ(s), a
(√

s + s2
)

+
√

a(s) + a2(s)
}

(3.9)

The desired inequality a(rs) ≤ p(r)p(s) for all r, s ≥ 0 is a consequence of defini-

tions (3.6), (3.9) and the fact that γ (s) ≤ ζ(s) for all s ≥ 0. The proof is complete. �

We are now in a position to prove Theorem 3.1. Again, the proof is different from

that in [25].

Proof of Theorem 3.1 By Lemma 3.1, for every σ ∈ KL, there exist p,q ∈ K∞ such

that σ(s, t) ≤ p(exp(−t))q(s) for all s, t ≥ 0. Moreover, by Lemma 3.2, there exists

b ∈ K∞ such that rs ≤ p−1(b(r)b(s)) for all r, s ≥ 0. Thus, we obtain, for all t ≥ 0,

s > 0,

p−1

(

σ(s, t)

q(s)

)

≤ exp(−t) ⇒ b−1
(

σ(s, t)
)

b−1

(

1

q(s)

)

≤ exp(−t) (3.10)

Define a1(s) := b−1(s), a2(s) := 1

b−1( 1
q(s)

)
for s > 0, and a2(0) := 0. The reader

should notice that a1, a2 ∈ K∞. The desired inequality a1(σ (s, t)) ≤ exp(−t)a2(s)

for all s, t ≥ 0 is a direct consequence of (3.10) and previous definitions. The proof

is complete. �

3.3 Construction of the Lyapunov Functional

The following results show that the existence of a Lyapunov functional is a neces-

sary and sufficient condition for Σ to be (U)RGAOS.

Theorem 3.2 (Lyapunov functionals) Let Σ := (X , Y ,MU ,MD, φ,π,H) be a

control system with outputs satisfying Hypothesis (HYP) and the BIC property with

0 ∈ X as a robust equilibrium point for Σ . System Σ is RGAOS if and only if

there exist mappings V : ℜ+ × X → ℜ+, β,γ,µ ∈ K+ with
∫ +∞

0 γ (t) dt = +∞,

ϕ ∈ E , a1, a2 ∈ K∞, and a locally Lipschitz positive definite function ρ : ℜ+ →
ℜ+ such that for every (t0, x0, d) ∈ ℜ+ × X × MD , there exists a constant τ ∈
π(t0, x0, u0, d) ∩ [b(t0,‖x0‖X ), t0 + r], where b(t, ρ) := min{qπ (t), t + h(t, ρ)} is

the function involved in Hypothesis (HYP) with (τ, t0, x0, u0, d) ∈ Aφ and the fol-

lowing properties:
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a1

(∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
+ µ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

≤ V (t0, x0) ≤ a2

(

β(t0)‖x0‖X

)

∀t ∈ [t0, τ ] (3.11)

V
(

τ,φ(τ, t0, x0, u0, d)
)

≤ η
(

τ, t0,V (t0, x0)
)

(3.12)

where η(t, t0, η0) denotes the unique solution of the initial-value problem

η̇ = −γ (t)ρ(η) + γ (t)ϕ

(∫ t

0

γ (s) ds

)

η(t0) = η0 ≥ 0 (3.13)

Particularly, if system Σ := (X , Y ,MU ,MD, φ,π,H) is RGAOS, then there ex-

ist mappings V : ℜ+ × X → ℜ+, µ,β ∈ K+, and a1, a2 ∈ K∞ such that, for all

(t0, x0, d) ∈ ℜ+ × X ×MD and τ ∈ π(t0, x0, u0, d), properties (3.11), (3.12), (3.13)

are satisfied with η(t, t0, s) := exp(−(t − t0))s, ρ(s) := s, γ (t) ≡ 1, and ϕ(t) ≡ 0.

Proof Suppose first that Σ := (X , Y ,MU ,MD, φ,π,H) is RGAOS. Then by state-

ment (ii) of Theorem 2.1, there exist functions µ,β ∈ K+ and σ ∈ KL such that for

every (t0, x0, d) ∈ ℜ+ × X × MD , we have

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
+ µ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

≤ σ
(

β(t0)‖x0‖X , t − t0
)

for all t ≥ t0 (3.14)

Moreover, by recalling Theorem 3.1, there exist functions a1, a2 of class K∞ such

that the KL function σ(s, t) is dominated by a−1
1 (exp(−2t)a2(s)). Combining the

previous observations with estimate (3.14), we obtain the following estimate for all

(t0, x0, d) ∈ ℜ+ × X × MD :

a1

(∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
+ µ(t)

∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

≤ exp
(

−2(t − t0)
)

a2

(

β(t0)‖x0‖X

)

for all t ≥ t0 (3.15)

We define, for all (t0, x0) ∈ ℜ+ × X ,

V (t0, x0) := sup
{

exp(t − t0)a1

(∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y

+ µ(t)
∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

; t ≥ t0, d ∈ MD

}

(3.16)

It is immediate to verify that definition (3.16), in conjunction with estimate (3.15),

guarantees that inequality (3.11) holds for all (t0, x0, d) ∈ ℜ+ × X × MD and

τ ∈ π(t0, x0, u0, d). Moreover, by virtue of definition (3.16) and the hypoth-

esis which guarantees that for every (t0, x0, d1, d2) ∈ ℜ+ × X × MD × MD

and for every T ∈ π(t0, x0, u0, d1) ∩ (t0,+∞), there exists d ∈ MD such that

φ(t, T ,φ(T , t0, x0, u0, d1), u0, d2) = φ(t, t0, x0, u0, d) for all t ≥ T and φ(t, t0, x0,

u0, d1) = φ(t, t0, x0, u0, d) for all t0 ≤ t ≤ T , it follows that inequality (3.12)

holds with η(t, t0, s) := exp(−(t − t0))s for all (t0, x0, d) ∈ ℜ+ × X × MD and

τ ∈ π(t0, x0, u0, d) (and consequently, (3.13) holds for ρ(s) := s, γ (t) ≡ 1, and

ϕ(t) ≡ 0).

The rest of the proof is a consequence of Theorem 2.3. The proof is complete. �
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Theorem 3.3 (Lyapunov functionals) Let Σ := (X , Y ,MU ,MD, φ,π,H) be a

control system with outputs satisfying Hypothesis (HYP) and the BIC property with

0 ∈ X as a robust equilibrium point for Σ . Moreover, suppose that Σ is RFC. Sys-

tem Σ is URGAOS if and only if there exist mappings V : ℜ+ × X → ℜ+, a1, a2 ∈
K∞, and a locally Lipschitz positive definite function ρ : ℜ+ → ℜ+ such that for

every (t0, x0, d) ∈ ℜ+ × X × MD , there exists τ ∈ π(t0, x0, u0, d) ∩ [b(t0,‖x0‖X ),

t0 + r], where b(t, ρ) := min{qπ (t), t + h(t, ρ)} is the function involved in Hypoth-

esis (HYP), with (τ, t0, x0, u0, d) ∈ Aφ and the following properties:

a1

(∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y

)

≤ V (t0, x0) ≤ a2

(

‖x0‖X

)

∀t ∈ [t0, τ ] (3.17)

V
(

τ,φ(τ, t0, x0, u0, d)
)

≤ η
(

τ, t0,V (t0, x0)
)

(3.18)

where η(t, t0, η0) denotes the unique solution of the initial-value problem

η̇ = −ρ(η), η(t0) = η0 ≥ 0. (3.19)

Particularly, if system Σ := (X , Y ,MU ,MD, φ,π,H) is URGAOS, then there exist

mappings V : ℜ+ × X → ℜ+ and a1, a2 ∈ K∞ such that for all (t0, x0, d) ∈ ℜ+ ×
X × MD and τ ∈ π(t0, x0, u0, d), properties (3.17), (3.18), (3.19) are satisfied with

η(t, t0, s) := exp(−(t − t0))s and ρ(s) := s.

Proof Suppose first that Σ := (X , Y ,MU ,MD, φ,π,H) is URGAOS. Then by

Theorem 2.2, there exists a function σ ∈ KL such that for every (t0, x0, d) ∈
ℜ+ × X × MD , we have

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ

(

‖x0‖X , t − t0
)

∀t ≥ t0 (3.20)

Moreover, by recalling Theorem 3.1, there exist functions a1, a2 of class K∞ such

that the KL function σ(s, t) is dominated by a−1
1 (exp(−2t)a2(s)). Combining the

previous observations with estimate (3.20), we obtain the following estimate for all

(t0, x0, d) ∈ ℜ+ × X × MD :

a1

(∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y

)

≤ exp
(

−2(t − t0)
)

a2

(

‖x0‖X

)

∀t ≥ t0 (3.21)

We define, for all (t0, x0) ∈ ℜ+ × X ,

V (t0, x0)

:= sup{exp(t − t0)a1

(∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y

)

: t ≥ t0, d ∈ MD

}

(3.22)

It is immediate to verify that definition (3.22), in conjunction with estimate (3.21),

guarantees that inequality (3.17) holds for all (t0, x0, d) ∈ ℜ+ × X × MD and τ ∈
π(t0, x0, u0, d). Moreover, by virtue of definition (3.22) and the hypothesis which

guarantees that for every (t0, x0, d1, d2) ∈ ℜ+ × X × MD × MD and for every T ∈
π(t0, x0, u0, d1) ∩ (t0,+∞), there exists d ∈ MD such that

φ
(

t, T ,φ(T , t0, x0, u0, d1), u0, d2

)

= φ(t, t0, x0, u0, d) for all t ≥ T

φ(t, t0, x0, u0, d1) = φ(t, t0, x0, u0, d) for all t0 ≤ t ≤ T

it follows that inequality (3.18) holds with η(t, t0, s) := exp(−(t − t0))s for all

(t0, x0, d) ∈ ℜ+ × X × MD and τ ∈ π(t0, x0, u0, d). Consequently, (3.19) holds

for ρ(s) := s.

The rest of the proof is a consequence of Theorem 2.3. The proof is complete. �
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Since Lemma 2.7 shows that RFC for Σ := (X , Y ,MU ,MD, φ,π,H) is

equivalent to RGAOS for system Σ := (X , Y ,MU ,MD, φ,π, H̃ ) with output

H̃ (t, x, u) := µ(t)x, where µ ∈ K+ is the function involved in inequality (2.56),

the following corollary follows readily from Theorem 3.2.

Corollary 3.1 Suppose that the control system Σ := (X , Y ,MU ,MD, φ,π,H)

with outputs satisfies Hypothesis (HYP) and the BIC property, and 0 ∈ X is

a robust equilibrium point for Σ . System Σ is RFC if and only if there exist

mappings V : ℜ+ × X → ℜ+, β,γ,µ ∈ K+ with
∫ +∞

0 γ (t) dt = +∞, ϕ ∈ E ,

a1, a2 ∈ K∞, and a locally Lipschitz positive definite function ρ : ℜ+ → ℜ+

such that for every (t0, x0, d) ∈ ℜ+ × X × MD , there exists τ ∈ π(t0, x0, u0, d) ∩
[b(t0,‖x0‖X ), t0 + r], where b(t, ρ) := min{qπ (t), t + h(t, ρ)} is the function

in (HYP), with (τ, t0, x0, u0, d) ∈ Aφ and the following properties:

a1

(

µ(t)
∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

)

≤ V (t0, x0) ≤ a2

(

β(t0)‖x0‖X

)

∀t ∈ [t0, τ ] (3.23)

V
(

τ,φ(τ, t0, x0, u0, d)
)

≤ η
(

τ, t0,V (t0, x0)
)

(3.24)

where η(t, t0, η0) denotes the unique solution of the initial-value problem

η̇ = −γ (t)ρ(η) + γ (t)ϕ

(∫ t

0

γ (s) ds

)

η(t0) = η0 ≥ 0 (3.25)

Particularly, if system Σ := (X , Y ,MU ,MD, φ,π,H) is RFC, then there exist

mappings V : ℜ+ × X → ℜ+, µ,β ∈ K+, and a1, a2 ∈ K∞ such that for every

(t0, x0, d) ∈ ℜ+ × X ×MD and τ ∈ π(t0, x0, u0, d), properties (3.23), (3.24), (3.25)

are satisfied with η(t, t0, s) := exp(−(t − t0))s, ρ(s) := s, γ (t) ≡ 1, and ϕ(t) ≡ 0.

Remark 3.1 Theorems 3.2, 3.3, and Corollary 3.1 are existence-type results which

do not provide ways of “finding” such a Lyapunov functional. Moreover, they do

not guarantee regularity properties for the Lyapunov functionals. On the other hand,

Sect. 2.6 showed that the existence of Lyapunov functionals with certain regularity

properties is crucial for establishing RGAOS without knowing the evolution map of

the system (for certain types of systems). Consequently, the question of the existence

of a Lyapunov functional with certain regularity properties becomes important, and

the following section is devoted to its answer.

3.4 Regularity Properties of the Lyapunov Functional

In this section we consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with

the BIC property and for which 0 ∈ X is a robust equilibrium point from the

input u ∈ MU . We assume that Hypothesis (HYP) of Sect. 2.6 holds and that

Σ := (X , Y ,MU ,MD, φ,π,H) is (U)RGAOS. Furthermore, we will employ one

of the following hypotheses:
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(REG1) For every pair of bounded sets I ⊂ ℜ+, S ⊂ X and for every ε >

0, there exists δ > 0 such that ‖H(t,φ(t, t0, x,u0, d),0) − H(t,φ(t, t0, x0,

u0, d),0)‖Y < ε for all t, t0 ∈ I , d ∈ MD , x, x0 ∈ S with ‖x − x0‖X < δ, t ≥ t0.

(REG2) For every pair of bounded sets I ⊂ ℜ+, S ⊂ X , there exists L ≥ 0 such

that ‖H(t,φ(t, t0, x,u0, d),0) − H(t,φ(t, t0, x0, u0, d),0)‖Y ≤ L‖x − x0‖X for

all t, t0 ∈ I , d ∈ MD , x, x0 ∈ S with t ≥ t0.

(REG3) There exist sets Xλ ⊆ X parameterized by λ ≥ 0 and a nondecreas-

ing function P : ℜ+ → [1,+∞) satisfying that for every pair of bounded

sets I ⊂ ℜ+, S ⊂ X , there exists a constant L ≥ 0 such that ‖H(t,φ(t, t0, x,

u0, d),0) −H(τ,φ(τ, t0, x,u0, d),0)‖Y +‖φ(t, τ, x,u0, d)−x‖X ≤ LP(λ)|t −τ |
for all t, τ, t0 ∈ I , d ∈ MD , x ∈ Xλ ∩ S with t ≥ τ ≥ t0. Moreover, for all

(t0, x0, d) ∈ ℜ+ × X × MD , it holds that π(t0, x0, u0, d) = [t0,+∞) (i.e., the

classical semigroup property holds).

It is clear that (REG2) implies (REG1). Later in this section we will show that

systems described by ODEs, systems described by RFDEs, and discrete-time sys-

tems satisfy some of the Hypotheses (REG1–3). We now proceed to the construction

of a Lyapunov functional which exploits Hypotheses (REG1–3).

By Theorem 2.1 (or Theorem 2.2) there exist functions β ∈ K+ and σ ∈ KL such

that for every (t0, x0, d) ∈ ℜ+ × X × MD , we have

∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ σ

(

β(t0)‖x0‖X , t − t0
)

∀t ≥ t0 (3.26)

The reader should notice that in the case of URGAOS we have β(t) ≡ 1. More-

over, by recalling Theorem 3.1 there exist functions ã1, ã2 of class K∞ such that the

KL function σ(s, t) is dominated by ã−1
1 (exp(−2t)ã2(s)). Thus, taking into account

estimate (3.26), we have, for all (t0, x0, d) ∈ ℜ+ × X × MD and t ≥ t0,

ã1

(
∥

∥H
(

t, φ(t, t0, x0, u0, d)
)
∥

∥

Y

)

≤ exp
(

−2(t − t0)
)

ã2

(

β(t0)‖x0‖X

)

(3.27)

Without loss of generality we may assume that ã1 ∈ K∞ is globally Lipschitz on ℜ+

with unit Lipschitz constant, namely, |ã1(s1) − ã1(s2)| ≤ |s1 − s2| for all s1, s2 ≥ 0.

To see this, notice that we can always replace ã1 ∈ K∞ by the function ā1(s) :=
inf{ã1(y)+|y−s|;y ≥ 0}, which is of class K∞, globally Lipschitz on ℜ+ with unit

Lipschitz constant, and satisfies ā1(s) ≤ ã1(s). Moreover, without loss of generality

we may assume that β ∈ K+ is nondecreasing.

We define for all q ∈ N, where N is the set of natural numbers:

Uq(t, x) := sup
{

max
{

0, ã1

(∥

∥H
(

τ,φ(τ, t, x,u0, d)
)∥

∥

Y

)

− q−1
}

exp
(

(τ − t)
)

: τ ≥ t, d ∈ MD

}

(3.28)

It should be noted that if Σ := (X , Y ,MU ,MD, φ,π,H) is T -periodic, then

Uq : ℜ+ × X → ℜ+ is T -periodic and if Σ := (X , Y ,MU ,MD, φ,π,H) is au-

tonomous, then Uq : ℜ+ × X → ℜ+ is independent of t ∈ ℜ+. Clearly, we obtain

from estimate (3.27) and definition (3.28) that
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max
{

0, ã1

(∥

∥H(t, x)
∥

∥

Y

)

− q−1
}

≤ Uq(t, x) ≤ ã2

(

β(t)‖x‖X

)

∀(t, x, q) ∈ ℜ+ × X × N (3.29)

Moreover, by virtue of definition (3.28), the weak semigroup property, and the hy-

pothesis which guarantees that for every (t0, x0, d1, d2) ∈ ℜ+ × X ×MD ×MD and

for every T ∈ π(t0, x0, u0, d1) ∩ (t0,+∞), there exists d ∈ MD such that

φ
(

t, T ,φ(T , t0, x0, u0, d1), u0, d2

)

= φ(t, t0, x0, u0, d) ∀t ≥ T

φ(t, t0, x0, u0, d1) = φ(t, t0, x0, u0, d) ∀t0 ≤ t ≤ T

we obtain, for all (t, x, q) ∈ ℜ+ × X × N, d ∈ MD , and τ ∈ π(t, x,u0, d),

Uq

(

τ,φ(τ, t, x,u0, d)
)

≤ exp
(

−(τ − t)
)

Uq(t, x) (3.30)

By estimate (3.27) it follows that for all (q,R) ∈ N × ℜ+, τ ≥ t + T̃ (R, q), (t, d) ∈
[0,R] × MD , and x ∈ X with ‖x‖X ≤ R, it holds that

ã1

(∥

∥H
(

τ,φ(τ, t, x,u0, d)
)∥

∥

Y

)

≤ exp
(

−2(τ − t)
)

ã2

(

β(t)‖x‖X

)

≤ q−1

where

T̃ (R, q) :=
1

2
log
(

1 + qã2

(

β(R)R
))

(3.31)

Thus, by virtue of definitions (3.28) and (3.31), we conclude that

Uq(t, x) = sup
{

max
{

0, ã1

(∥

∥H
(

τ,φ(τ, t, x,u0, d)
)∥

∥

Y

)

− q−1
}

exp
(

(τ − t)
)

:

t ≤ τ ≤ t + ξ, d ∈ MD

}

∀ξ ≥ T̃
(

max
{

t,‖x‖r

}

, q
)

(3.32)

Equality (3.32) implies the following inequalities for all t ∈ [0,R] and (x, y) ∈
X × X with ‖x‖X ≤ R, ‖y‖X ≤ R:

∣

∣Uq(t, y) − Uq(t, x)
∣

∣

=
∣

∣ sup
{

max
{

0, ã1

(∥

∥H
(

τ,φ(τ, t, y,u0, d)
)∥

∥

Y

)

− q−1
}

exp
(

(τ − t)
)

:

t ≤ τ ≤ t + T̄ (R, q), d ∈ MD

}

− sup
{

max
{

0, ã1

(
∥

∥H
(

τ,φ(τ, t, x,u0, d)
)
∥

∥

Y

)

− q−1
}

exp
(

(τ − t)
)

:

t ≤ τ ≤ t + T̄ (R, q), d ∈ MD

}∣

∣

≤ sup
{

exp
(

(τ − t)
)
∣

∣ã1

(
∥

∥H
(

τ,φ(τ, t, y,u0, d)
)
∥

∥

Y

)

− ã1

(∥

∥H
(

τ,φ(τ, t, x,u0, d)
)∥

∥

Y

)∣

∣ : t ≤ τ ≤ t + T̃ (R, q), d ∈ MD

}

≤ sup
{

exp
(

(τ − t)
)
∥

∥H
(

τ,φ(τ, t, y,u0, d)
)

− H
(

τ,φ(τ, t, x,u0, d)
)
∥

∥

Y
:

t ≤ τ ≤ t + T̃ (R, q), d ∈ MD

}

(3.33)

Notice that in the above inequalities we have used the facts that the functions

max{0, s − q−1} and ã1(s) are globally Lipschitz on ℜ+ with unit Lipschitz con-

stant.
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Thus we are ready to use inequality (3.33) in order to establish certain properties.

(1) If Hypothesis (REG1) holds, then for every pair of bounded sets I ⊂ ℜ+,

S ⊂ X and for all ε > 0, q ∈ N, there exists δ > 0 such that |Uq(t, y)−Uq(t, x)| < ε

for all t ∈ I and x, y ∈ S with ‖x − y‖X < δ. In this case, define

V (t, x) :=
∞
∑

q=1

2−qUq(t, x) (3.34)

Clearly, definitions (3.28), (3.34) and inequality (3.29) imply the existence of func-

tions a1, a2 ∈ K∞ such that, for all (t, x) ∈ ℜ+ × X , d ∈ MD ,

sup
τ≥t

a1

(
∥

∥H
(

τ,φ(τ, t, x,u0, d),0
)
∥

∥

Y

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖X

)

(3.35)

Particularly, we have a2(s) := ã2(s) and a1(s) :=
∑∞

q=1 2−q max{0, ã1(s) − q−1}
(the reader should notice that a1 ∈ K∞). Moreover, inequality (3.30), in conjunc-

tion with definition (3.34), implies that, for all (t, x) ∈ ℜ+ × X , d ∈ MD and

τ ∈ π(t, x,u0, d),

V
(

τ,φ(τ, t, x,u0, d)
)

≤ exp
(

−(τ − t)
)

V (t, x) (3.36)

Furthermore, if Σ := (X , Y ,MU ,MD, φ,π,H) is T -periodic, then V : ℜ+ × X →
ℜ+ is T -periodic, and if Σ := (X , Y ,MU ,MD, φ,π,H) is autonomous, then V :
ℜ+ × X → ℜ+ is independent of t ∈ ℜ+. Take arbitrary bounded sets I ⊂ ℜ+, S ⊂
X and ε > 0. Clearly, there exists an integer N > 1 such that ã2(β(t)‖x‖X )2−N < ε

4
for all t ∈ I , x ∈ S. It follows from (3.29) that

∞
∑

q=N+1

2−qUq(t, x) ≤ ã2

(

β(t)‖x‖X

)

∞
∑

q=N+1

2−q <
ε

4
for all t ∈ I, x ∈ S

Consequently, (3.34) implies that |V (t, x) − V (t, y)| ≤ ε
2

+
∑N

q=1 2−q |Uq(t, x) −
Uq(t, y)| for all t ∈ I and x, y ∈ S. Moreover, there exists δ > 0 such that

|Uq(t, y) − Uq(t, x)| < ε
2

for all t ∈ I , x, y ∈ S, q = 1, . . . ,N with ‖x − y‖X < δ.

Finally, we obtain the following property:

For every pair of bounded sets I ⊂ ℜ+, S ⊂ X and for every ε > 0, there exists

δ > 0 such that |V (t, y)−V (t, x)| < ε for all t ∈ I and x, y ∈ S with ‖x −y‖X < δ.

(2) If Hypothesis (REG2) holds, then there exists a function G : ℜ+ × N → ℜ+

with G(q,q) ≥ G(R,q) for all q ≥ R and such that for all R ≥ 0, t ∈ [0,R], q ∈ N,

and (x, y) ∈ X × X with ‖x‖X ≤ R, ‖y‖X ≤ R, it holds
∣

∣Uq(t, y) − Uq(t, x)
∣

∣≤ G(R,q)‖y − x‖X (3.37)

Particularly, if L(R) is a nondecreasing, nonnegative function satisfying the prop-

erty that ‖H(t,φ(t, t0, x,u0, d),0)−H(t,φ(t, t0, y,u0, d),0)‖Y ≤ L(R)‖x −y‖X

for all t, t0 ∈ [0,R], d ∈ MD , (x, y) ∈ X × X with ‖x‖X ≤ R, ‖y‖X ≤ R and t ≥ t0,

then we can define

G(R,q) := L
(

R + T̃ (R, q)
)

exp
(

T̃ (R, q)
)

(3.38)
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In this case, introduce

V (t, x) :=
∞
∑

q=1

2−qUq(t, x)

1 + G(q,q)
(3.39)

Clearly, definitions (3.28), (3.39) and inequality (3.29) imply the existence of func-

tions a1, a2 ∈ K∞ such that (3.35) holds (particularly, we have a2(s) := ã2(s) and

a1(s) :=
∑∞

q=1 2−q max{0,ã1(s)−q−1}
1+G(q,q)

). Moreover, inequality (3.30), in conjunction

with definition (3.39), implies that (3.36) holds for all (t, x) ∈ ℜ+ × X , d ∈ MD , and

τ ∈ π(t, x,u0, d). Furthermore, if Σ := (X , Y ,MU ,MD, φ,π,H) is T -periodic,

then V : ℜ+ × X → ℜ+ is T -periodic, and if Σ := (X , Y ,MU ,MD, φ,π,H) is au-

tonomous, then V : ℜ+ × X → ℜ+ is independent of t ∈ ℜ+. Finally, for all R ≥ 0,

t ∈ [0,R], and (x, y) ∈ X × X with ‖x‖X ≤ R, ‖y‖X ≤ R, it follows from (3.37)

that

∣

∣V (t, x) − V (t, y)
∣

∣≤
∞
∑

q=1

2−q |Uq(t, x) − Uq(t, y)|
1 + G(q,q)

≤ ‖y − x‖X

∞
∑

q=1

2−q G(R,q)

1 + G(q,q)

≤ ‖y − x‖X

([R]+1
∑

q=1

2−q G(R,q)

1 + G(q,q)
+ 1

)

Consequently, we have established the following property:

There exists a nondecreasing function M : ℜ+ → ℜ+ such that for all t ∈ [0,R] and

(x, y) ∈ X × X with ‖x‖X ≤ R, ‖y‖X ≤ R, it holds
∣

∣V (t, y) − V (t, x)
∣

∣≤ M(R)‖y − x‖X (3.40)

(3) If Hypotheses (REG2) and (REG3) hold, then there exists a function G :
ℜ+ × N → ℜ+ with G(q,q) ≥ G(R,q) for all q ≥ R and such that, for all R ≥ 0,

t ∈ [0,R], q ∈ N, and (x, y) ∈ X × X with ‖x‖X ≤ R, ‖y‖X ≤ R, inequality (3.37)

holds.

Let R,λ ≥ 0, q ∈ N arbitrary, t1, t2 ∈ [0,R] with t1 ≤ t2, and x ∈ Xλ with

‖x‖X ≤ R. Clearly, we have, for all d ∈ MD ,

∣

∣Uq(t1, x) − Uq(t2, x)
∣

∣≤
(

1 − exp
(

−(t2 − t1)
))

Uq(t1, x)

+
∣

∣exp
(

−(t2 − t1)
)

Uq(t1, x) − Uq

(

t2, φ(t2, t1, x,u0, d)
)∣

∣

+
∣

∣Uq

(

t2, φ(t2, t1, x,u0, d)
)

− Uq(t2, x)
∣

∣ (3.41)

Since Σ is RGAOS (and consequently RFC), Lemma 2.7 implies that there exist

functions µ ∈ K+ and ã ∈ K∞ such that for every (t0, x0, d) ∈ ℜ+ × X × MD , we

have
∥

∥φ(t, t0, x0, u0, d)
∥

∥

X
≤ µ(t)ã

(

‖x0‖X

)

∀t ≥ t0 (3.42)
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Without loss of generality, we may assume that µ ∈ K+ is nondecreasing. By virtue

of (3.37), (3.30), (3.41), and (3.42), we obtain, for all t1, t2 ∈ [0,R] with t1 ≤ t2 and

d ∈ MD ,

∣

∣Uq(t1, x) − Uq(t2, x)
∣

∣≤ (t2 − t1)Uq(t1, x) + exp
(

−(t2 − t1)
)

Uq(t1, x)

− Uq

(

t2, φ(t2, t1, x,u0, d)
)

+ G
(

µ(R)ã(R), q
)

L(R)P (λ)(t2 − t1) (3.43)

where L(R) ≥ 0 is a nondecreasing function satisfying ‖H(t,φ(t, t0, x,u0, d),0)−
H(τ,φ(τ, t0, x,u0, d),0)‖Y + ‖φ(t, τ, x,u0, d) − x‖X ≤ L(R)P (λ)|t − τ | for all

t , τ , t0 ∈ [0,R], d ∈ MD with t ≥ τ ≥ t0, and x ∈ Xλ with ‖x‖X ≤ R. Defini-

tion (3.28) implies that for every ε > 0, there exists dε ∈ MD with the following

property:

Uq(t1, x) − ε ≤ sup
{

max
{

0, ã1

(
∥

∥H
(

τ,φ(τ, t1, x,u0, dε)
)
∥

∥

Y

)

− q−1
}

exp
(

(τ − t1)
)

; τ ≥ t1
}

≤ Uq(t1, x) (3.44)

Thus, using definition (3.28) and (3.44), we obtain

exp
(

−(t2 − t1)
)

Uq(t1, x) − Uq

(

t2, φ(t2, t1, x,u0, dε)
)

≤ max
{

Aq(t1, t2, x),Bq(t1, t2, x)
}

− Bq(t1, t2, x) + ε exp
(

−(t2 − t1)
)

(3.45)

where

Aq(t1, t2, x) := sup
{

max
{

0, ã1

(∥

∥H
(

τ,φ(τ, t1, x,u0, dε)
)∥

∥

Y

)

− q−1
}

exp
(

(τ − t2)
)

; t2 ≥ τ ≥ t1
}

Bq(t1, t2, x) := sup
{

max
{

0, ã1

(∥

∥H
(

τ,φ(τ, t1, x,u0, dε)
)∥

∥

Y

)

− q−1
}

exp
(

(τ − t2)
)

; τ ≥ t2
}

(3.46)

Since the functions max{0, s − q−1} and ã1(s) are globally Lipschitz on ℜ+ with

unit Lipschitz constant, we have

Aq(t1, t2, x) − Bq(t1, t2, x)

≤ sup
{

max
{

0, ã1

(∥

∥H
(

τ,φ(τ, t1, x,u0, dε)
)∥

∥

Y

)

− q−1
}

exp
(

(τ − t2)
)

;

t2 ≥ τ ≥ t1
}

− max
{

0, ã1

(
∥

∥H
(

t2, φ(t2, t1, x,u0, dε)
)
∥

∥

Y

)

− q−1
}

≤ sup
{

max
{

0, ã1

(∥

∥H
(

τ,φ(τ, t1, x,u0, dε)
)∥

∥

Y

)

− q−1
}

; t2 ≥ τ ≥ t1
}

− max
{

0, ã1

(∥

∥H
(

t2, φ(t2, t1, x,u0, dε)
)∥

∥

Y

)

− q−1
}

≤ sup
{
∣

∣ã1

(
∥

∥H
(

τ,φ(τ, t1, x,u0, dε)
)
∥

∥

Y

)

− ã1

(
∥

∥H
(

t2, φ(t2, t1, x,u0, dε)
)
∥

∥

Y

)
∣

∣;

t2 ≥ τ ≥ t1
}

≤ sup
{∥

∥H
(

τ,φ(τ, t1, x,u0, dε)
)

− H
(

t2, φ(t2, t1, x,u0, dε)
)∥

∥

Y
; t2 ≥ τ ≥ t1

}

(3.47)
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Distinguishing the cases Aq(t1, t2, x) ≥ Bq(t1, t2, x) and Aq(t1, t2, x) ≤
Bq(t1, t2, x), it follows from (3.45) and (3.47) that

exp
(

−(t2 − t1)
)

Uq(t1, x) − Uq

(

t2, φ(t2, t1, x,u0, dε)
)

≤ L(R)P (λ)(t2 − t1) + ε

where L(R) ≥ 0 is a nondecreasing function satisfying ‖H(t,φ(t, t0, x,u0, d),0)−
H(τ,φ(τ, t0, x,u0, d),0)‖Y + ‖φ(t, τ, x,u0, d) − x‖X ≤ L(R)P (λ)|t − τ | for all

t , τ , t0 ∈ [0,R], d ∈ MD with t ≥ τ ≥ t0, and x ∈ Xλ with ‖x‖X ≤ R. Combining

the above inequality with (3.43) and the right-hand side of (3.29), we obtain
∣

∣Uq(t1, x) − Uq(t2, x)
∣

∣

≤ (t2 − t1)P (λ)
(

ã2

(

β(R)R
)

+ L(R) + L(R)G
(

µ(R)ã(R), q
))

+ ε (3.48)

Since (3.48) holds for all ε > 0, R,λ ≥ 0, q ∈ N, x ∈ Xλ with ‖x‖X ≤ R, and

t1, t2 ∈ [0,R] with t1 ≤ t2, it follows that for all R, λ ≥ 0, q ∈ N, x ∈ Xλ with

‖x‖X ≤ R, and t1, t2 ∈ [0,R],
∣

∣Uq(t1, x) − Uq(t2, x)
∣

∣≤ |t2 − t1|P(λ)Ḡ(R,q) (3.49)

where Ḡ(R,q) := ã2(β(R)R) + L(R) + L(R)G(µ(R)ã(R), q). Finally, we define

V (t, x) :=
∞
∑

q=1

2−qUq(t, x)

1 + G(q,q) + Ḡ(q, q)
(3.50)

Clearly, definitions (3.28), (3.50) and inequality (3.29) imply the existence of func-

tions a1, a2 ∈ K∞ such that (3.35) holds (particularly, we have a2(s) := ã2(s) and

a1(s) :=
∑∞

q=1 2−q max{0,ã1(s)−q−1}
1+G(q,q)+Ḡ(q,q)

). Moreover, inequality (3.30), in conjunction

with definition (3.50), implies that (3.36) holds for all (t, x) ∈ ℜ+ × X , d ∈ MD ,

and τ ≥ t . Furthermore, if Σ := (X , Y ,MU ,MD, φ,π,H) is T -periodic, then

V : ℜ+ × X → ℜ+ is T -periodic, and if Σ := (X , Y ,MU ,MD, φ,π,H) is au-

tonomous, then V : ℜ+ × X → ℜ+ is independent of t ∈ ℜ+. Similarly, as in

the previous case, we may establish that property (3.40) holds. Finally, by virtue

of (3.49) and definition (3.50), we obtain, for all R,λ ≥ 0, x ∈ Xλ with ‖x‖X ≤ R,

and t1, t2 ∈ [0,R],

∣

∣V (t2, x) − V (t1, x)
∣

∣≤
∞
∑

q=1

2−q |Uq(t2, x) − Uq(t1, x)|
1 + G(q,q) + Ḡ(q, q)

≤ |t2 − t1|P(λ)

∞
∑

q=1

2−qḠ(R,q)

1 + G(q,q) + Ḡ(q, q)

≤ |t2 − t1|P(λ)

([R]+1
∑

q=1

2−qḠ(R,q)

1 + G(q,q) + Ḡ(q, q)
+ 1

)

Therefore, we have shown almost all conclusions of the following theorem.

Theorem 3.4 (Lyapunov functionals) Suppose that Σ := (X , Y ,MU ,MD, φ,π,H)

is a control system with outputs satisfying Hypothesis (HYP) and the BIC property
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with 0 ∈ X as a robust equilibrium point for Σ . Moreover, suppose that system Σ is

RGAOS. Then there exist mappings V : ℜ+ × X → ℜ+, β ∈ K+, and a1, a2 ∈ K∞
such that for all (t0, x0, d) ∈ ℜ+ × X × MD and τ ∈ π(t0, x0, u0, d), the following

inequalities hold:

a1

(
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)
∥

∥

Y

)

≤ V (t0, x0) ≤ a2

(

β(t0)‖x0‖X

)

∀t ∈ [t0, τ ] (3.51)

V
(

τ,φ(τ, t0, x0, u0, d)
)

≤ exp
(

−(τ − t0)
)

V (t0, x0) (3.52)

Moreover, if system Σ is URGAOS, then (3.51) holds with β(t) ≡ 1. Furthermore,

(i) If Hypothesis (REG1) holds, then for every pair of bounded sets I ⊂ ℜ+, S ⊂
X and for every ε > 0, there exists δ > 0 such that |V (t, y) − V (t, x)| < ε for

all t ∈ I and x, y ∈ S with ‖x − y‖X < δ.

(ii) If Hypothesis (REG2) holds, then there exists a nondecreasing function M :
ℜ+ → ℜ+ such that for all R ≥ 0, t ∈ [0,R], and (x, y) ∈ X × X with ‖x‖X ≤
R, ‖y‖X ≤ R, it holds that

∣

∣V (t, y) − V (t, x)
∣

∣≤ M(R)‖y − x‖X . (3.53)

(iii) If Hypotheses (REG2) and (REG3) hold, then there exists a nondecreasing

function M : ℜ+ → ℜ+ such that for all R,λ ≥ 0, t1, t2 ∈ [0,R], and x ∈
Xλ ⊆ X with ‖x‖X ≤ R, it holds that

∣

∣V (t2, x) − V (t1, x)
∣

∣≤ M(R)P (λ)|t2 − t1|. (3.54)

Moreover, if the set
⋃

λ≥0 Xλ is dense in X , then V : ℜ+ × X → ℜ+ is contin-

uous.

Finally, if Σ := (X , Y ,MU ,MD, φ,π,H) is T -periodic, then V : ℜ+ × X → ℜ+

is T -periodic, and if Σ := (X , Y ,MU ,MD, φ,π,H) is autonomous, then V : ℜ+ ×
X → ℜ+ is independent of t ∈ ℜ+.

Proof We only have to show the continuity of V : ℜ+ × X → ℜ+ with respect

to t ∈ ℜ+ for the case where (REG2) and (REG3) hold and under the additional

hypothesis that the set
⋃

λ≥0 Xλ is dense in X . Let (t0, x0) ∈ ℜ+ × X , ε > 0, and

define R := ‖x0‖X + t0 + 2. Since the set
⋃

λ≥0 Xλ is dense in X , there exist λ ≥ 0

and x ∈ Xλ ⊆ X such that

‖x − x0‖X ≤ min

{

ε

4(1 + M(R))
,1

}

where M : ℜ+ → ℜ+ is the nondecreasing function involved in (3.53). Conse-

quently, using (3.53), (3.54), and the above inequality, we have, for all t ∈ ℜ+ with

|t − t0| ≤ 1,
∣

∣V (t, x0) − V (t0, x0)
∣

∣≤
∣

∣V (t, x0) − V (t, x)
∣

∣+
∣

∣V (t, x) − V (t0, x)
∣

∣

+
∣

∣V (t0, x) − V (t0, x0)
∣

∣

≤ 2M(R)‖x − x0‖X + M(R)P (λ)|t − t0|
≤

ε

2
+ M(R)P (λ)|t − t0|
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It follows that |V (t, x0) − V (t0, x0)| ≤ ε for all t ∈ ℜ+ with |t − t0| ≤
min{ ε

2(1+M(R)P (λ))
,1}. The proof is complete. �

The result of Theorem 3.4 can lead to the production of specialized results for

three kinds of systems of Definition 1.1.

3.4.1 Control Systems Described by ODEs

We start by presenting a general Lyapunov theorem for systems described by ODEs

of the form (1.3) under Hypotheses (H1–4). We assume that system (1.3) under

Hypotheses (H1–4) is RGAOS.

Clearly, inequality (1.2) guarantees that Hypothesis (REG2) holds if in addition

we further assume that H : ℜ+ × ℜn → ℜk is locally Lipschitz and independent of

u ∈ U . Moreover, the fact that

φ(t, t0, x,u0, d) = x +
∫ t

t0

f
(

s,φ(s, t0, x,u0, d),0, d(s)
)

ds

implies that |φ(t, t0, x,u0, d) − x| ≤ (t − t0)maxt0≤s≤t γ (s)a(µ(s)ã(|x0|)), where

γ ∈ K+ and a ∈ K∞ are the functions involved in Hypothesis (H4), and µ ∈ K+

and ã ∈ K∞ are the functions involved in (3.42). This observation combined with

the fact that H : ℜ+ ×ℜn → ℜk is locally Lipschitz implies that Hypothesis (REG3)

holds as well with Xλ = ℜn for all λ ≥ 0.

Therefore, we obtain the following:

Theorem 3.5 Consider system (1.3) under Hypotheses (H1–4) and suppose that

H : ℜ+ × ℜn → ℜk is locally Lipschitz and independent of u ∈ U . Furthermore,

suppose that (1.3) is RGAOS and that the following hypothesis holds:

(H5) There exists a countable set A ⊂ ℜ+, which is either finite or A = {tk; k =
1, . . . ,∞} with tk+1 > tk > 0 for all k = 1,2, . . . and lim tk = +∞, such that

the mapping (t, x,u, d) ∈ (ℜ+\A) × ℜn × U × D → f (t, x,u, d) is contin-

uous. Moreover, for each fixed (t0, x,u, d) ∈ ℜ+ × ℜn × U × D, we have

limt→t+0
f (t, x,u, d) = f (t0, x,u, d).

Then, there exist functions V : ℜ+ × ℜn → ℜ+, which is locally Lipschitz, β ∈ K+,

and a1, a2 ∈ K∞ such that the following inequalities hold:

a1

(∣

∣H(t, x)
∣

∣

)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ ℜ+ × ℜn (3.55)

V 0
(

t, x;f (t, x,0, d)
)

≤ −V (t, x) ∀(t, x, d) ∈ ℜ+ × ℜn × D (3.56)

where V 0(t, x;v) is defined in (2.128) for all v ∈ ℜn. Moreover, if (1.3) is URGAOS,

then β(t) ≡ 1. Finally, if (1.3) is T -periodic, then V : ℜ+ × X → ℜ+ is T -periodic,

and if (1.3) is autonomous, then V : ℜ+ × X → ℜ+ is independent of t ∈ ℜ+.
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Proof By Theorem 3.4, there exist mappings V : ℜ+ × ℜn → ℜ+, which is locally

Lipschitz, β ∈ K+, and a1, a2 ∈ K∞ such that for all (t, x, d) ∈ ℜ+ ×ℜn ×MD and

τ ≥ t , (3.55) holds and the following inequality holds:

V
(

τ,φ(τ, t, x,u0, d)
)

≤ exp
(

−(τ − t)
)

V (t, x) (3.57)

The conclusion of the theorem is a direct consequence of the following fact:

Fact limτ→t+
φ(τ,t,x,u0,d̃)−x

τ−t
= f (t, x,0, d̃(t)) for every continuous d̃ ∈ MD .

Indeed, by letting d̃(t) ≡ d ∈ D it follows from the above fact and (3.57) that

(3.56) holds for all (t, x, d) ∈ ℜ+ × ℜn × D.

The above fact is a direct consequence of Hypothesis (H5). It is clear that

for every continuous d ∈ MD , the composite map f (τ, x,0, d(τ )) is continuous

on (ℜ+\A) × ℜn. Applying repeatedly Theorem 2.1 (p. 43) in [9] on each one

of the intervals contained in [t,+∞)\A, we conclude that the solution x(τ) =
φ(τ, t, x,u0, d) of (1.3) satisfies ẋ(τ ) = f (τ, x(τ ),0, d(τ )) for all τ ∈ [t,+∞)\A.

Since the composite map τ → f (τ, x,0, d(τ )) is right-continuous on ℜ+, by virtue

of the mean value theorem, it follows that limh→0+
x(t+h)−x(t)

h
= f (t, x,0, d(t)) for

all τ ∈ [t,+∞).

The proof is complete. �

3.4.2 Control Systems Described by RFDEs

We continue by presenting a general converse Lyapunov theorem for systems de-

scribed by RFDEs of the form (1.10) under Hypotheses (S1–4). It is further assumed

that (1.10) is RGAOS and that the following hypothesis holds:

(S5) The mapping H(t, x,u) is independent of u ∈ U and Lipschitz on bounded

sets, in the sense that for every bounded I ⊆ ℜ+ and for every bounded S ⊂
C0([−r,0];ℜn), there exists a constant LH ≥ 0 such that

∥

∥H(t, x) − H(τ, y)
∥

∥

Y
≤ LH

(

|t − τ | + ‖x − y‖r

)

∀(t, τ ) ∈ I × I,∀(x, y) ∈ S × S

Hypothesis (S5) is equivalent to the existence of a continuous function LH : ℜ+ ×
ℜ+ → ℜ+ such that for each fixed t ≥ 0, the mappings LH (t, ·) and LH (·, t) are

nondecreasing, with the following property:
∥

∥H(t, x) − H(τ, y)
∥

∥

Y
≤ LH

(

max{t, τ },‖x‖r + ‖y‖r

)(

|t − τ | + ‖x − y‖r

)

∀(t, τ, x, y) ∈ ℜ+ × ℜ+ × C0
(

[−r,0];ℜn
)

× C0
(

[−r,0];ℜn
)

(3.58)

Inequality (1.9), in conjunction with Hypothesis (S5), implies that Hypothe-

sis (REG2) holds. Moreover, Hypothesis (REG3) holds as well with Xλ being the

set of absolutely continuous functions x : [−r,0] → ℜn with supθ∈[−r,0] |ẋ(θ)| ≤ λ.

Indeed, the fact that



3.4 Regularity Properties of the Lyapunov Functional 139

φ(t, t0, x,u0, d)

=
{

x(0) +
∫ t+θ

t0
f (s,φ(s, t0, x,u0, d),0, d(s)) ds for 0 ≥ θ ≥ t0 − t

x(t − t0 + θ) for t0 − t > θ ≥ t0 − t − r

implies that ‖φ(t, t0, x,u0, d) − x‖r ≤ (t − t0)(1 + λ)maxt0≤s≤t γ (s)a(µ(s)ã ×
(‖x‖r)), where γ ∈ K+ and a ∈ K∞ are the functions involved in Hypothesis (S2),

and µ ∈ K+ and ã ∈ K∞ are the functions involved in (3.42). This observation,

combined with Hypothesis (S5), implies that Hypothesis (REG3) holds as well.

Now, we are in a position to state the following:

Theorem 3.6 Consider system (1.10) under Hypotheses (S1–5). Suppose that

(1.10) is RGAOS. Then, there exist mappings V : ℜ+ × C0([−r,0];ℜn) → ℜ+,

which is almost Lipschitz on bounded sets, β ∈ K+, and a1, a2 ∈ K∞ such that the

following inequalities hold for (t, x, d) ∈ ℜ+ × C0([−r,0];ℜn) × D:

a1

(∥

∥H(t, x)
∥

∥

Y

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

(3.59)

V 0
(

t, x;f (t, x,0, d)
)

≤ −V (t, x) (3.60)

where V 0(t, x;f (t, x,0, d)) := lim suph→0+
V (t+h,Eh(x;f (t,x,0,d)))−V (t,x)

h
, and

Eh(x;v) is defined in (2.136) for all v ∈ ℜn. Moreover, if (1.10) is URGAOS, then

β(t) ≡ 1. Finally, if (1.10) is T -periodic, then V : ℜ+ × C0([−r,0];ℜn) → ℜ+ is

T -periodic, and if, additionally, (1.10) is autonomous, then V : ℜ+ × C0([−r,0];
ℜn) → ℜ+ is independent of t ∈ ℜ+.

Proof By Theorem 3.4 there exist mappings V : ℜ+ × C0([−r,0];ℜn) → ℜ+,

which is almost Lipschitz on bounded sets, β ∈ K+, and a1, a2 ∈ K∞ such that for

all (t, x, d) ∈ ℜ+ ×C0([−r,0];ℜn)×MD and τ ≥ t , (3.59) holds and the following

inequality holds:

V
(

τ,φ(τ, t, x,u0, d)
)

≤ exp
(

−(τ − t)
)

V (t, x) (3.61)

The reader should notice that the continuity of V : ℜ+ × C0([−r,0];ℜn) → ℜ+

results from the denseness of the set
⋃

λ≥0 Xλ in C0([−r,0];ℜn). The conclusion

of the theorem is a direct consequence of the following fact:

Fact limh→0+
φ(t+h,t,x,u0,d̃)−Eh(x;f (t,x,0,d̃(t)))

h
= 0 for every continuous d̃ ∈ MD .

Indeed, by letting d̃(t) ≡ d ∈ D it follows from the above fact and (3.61) that

(3.60) holds for all (t, x, d) ∈ ℜ+ × C0([−r,0];ℜn) × D.

The above fact is a direct consequence of Hypothesis (S3). It is clear that for

every continuous d ∈ MD , the composite map f (τ, x,0, d(τ )) is continuous on

(ℜ+\A) × C0([−r,0];ℜn). Applying repeatedly Theorem 2.1 (p. 43) in [9] on

each one of the intervals contained in [t,+∞)\A, we conclude that the solution

Tr(τ )x = φ(τ, t, x,u0, d) of (1.10) satisfies ẋ(τ ) = f (τ,Tr(τ )x,0, d(τ )) for all

τ ∈ [t,+∞)\A. Since the composite map τ → f (τ, x,0, d(τ )) is right-continuous
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on ℜ+, by virtue of the mean value theorem, it follows that limh→0+
x(t+h)−x(t)

h
=

f (t, x,0, d(t)) for all τ ∈ [t,+∞).

The proof is complete. �

3.4.3 Discrete-Time Systems

We consider discrete-time systems of the form (1.110) under Hypotheses (L1–3).

Particularly, we will further assume that (1.110) is RGAOS and that the following

additional hypothesis holds.

(L4) For all bounded sets S ⊂ X , I ⊂ π and for every ε > 0, there exists δ > 0

such that sup{‖f (t, d, x,0) − f (t, d, x0,0)‖X ;d ∈ D} < ε for all t ∈ I and

x, x0 ∈ S with ‖x − x0‖X < δ.

The following fact is an immediate consequence of Hypothesis (L4) for sys-

tem (1.110).

Fact System (1.110) satisfies the property of continuous dependence with respect

to the initial conditions, i.e., for every pair of bounded sets I ⊂ ℜ+, S ⊂ X and for

every ε > 0, there exists δ > 0 such that ‖φ(t, t0, x,u0, d) − φ(t, t0, x0, u0, d)‖X <

ε for all t, t0 ∈ I , d ∈ MD , x, x0 ∈ S with ‖x − x0‖X < δ, and t ≥ t0.

It follows that Hypothesis (REG1) holds. The following result is a direct conse-

quence of Theorem 3.4.

Proposition 3.1 Consider system (1.110) under Hypotheses (L1–4). Suppose that

(1.110) is RGAOS. Then there exist mappings V : ℜ+ × X → ℜ+, a1, a2 ∈ K∞, and

β ∈ K+ such that

a1

(∥

∥H(t, x)
∥

∥

Y

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖X

)

∀(t, x) ∈ ℜ+ × X (3.62)

V
(

τi+1, f (τi, d, x,0)
)

≤ exp(−1)V (τi, x) ∀(i, x, d) ∈ Z+ × X × D (3.63)

Moreover, if system (1.110) is URGAOS, then (3.62) holds with β(t) ≡ 1. Further-

more, for every pair of bounded sets I ⊂ ℜ+, S ⊂ X and for every ε > 0, there exists

δ > 0 such that |V (t, y)−V (t, x)| < ε for all t ∈ I and x, y ∈ S with ‖x − y‖X < δ.

Finally, if, additionally, (1.110) is T -periodic, then V : ℜ+ × X → ℜ+ is

T -periodic.

3.5 Bibliographical and Historical Notes

1. There is a large literature on converse Lyapunov theorems for the case of sys-

tems described by ODEs (see, e.g., [1–4, 7, 8, 12, 15, 18, 21–24, 26–28] and

references therein). The question of obtaining a smooth Lyapunov function is
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important, in particular, for design of feedback control systems. However, for

the purposes of the present work, we do not have to consider smooth Lyapunov

functions. In fact, we believe that most of the results obtained by working with

a smooth Lyapunov function can be also obtained by using a Lipschitz contin-

uous Lyapunov function. Therefore, Theorem 3.5 is a novel result which does

not assume the continuity of the right-hand sides of the differential equations or

Lipschitz continuity with respect to the state variables.

2. Theorem 3.2 appeared in [14]. As remarked earlier, the use of Theorem 3.2 is

restricted since no regularity properties are shown for the Lyapunov functional.

3. Converse Lyapunov theorems for discrete-time systems (with disturbances) have

appeared in [11, 13, 17]. Again, the question of obtaining a smooth Lyapunov

function is important.

4. Theorem 3.6 has appeared in [16] under the same hypotheses. The reader should

notice that there is a large literature for converse Lyapunov theorems for the case

of systems described by RFDEs (see [5, 6, 10, 19–21, 29] and references therein).

5. It should be emphasized that the result of Theorem 3.4 is novel and interest-

ing since it is a converse Lyapunov theorem for a large class of systems. Many

infinite-dimensional systems (e.g., described by partial differential equations)

can be handled by Theorem 3.4: Hypothesis (REG3) is satisfied for appropri-

ate (dense) subsets of the state space.

References

1. Angeli, D., Sontag, E.D.: Forward completeness, unbounded observability and their Lyapunov

characterizations. Systems and Control Letters 38, 209–217 (1999)

2. Bacciotti, A., Rosier, L.: Lyapunov stability and Lagrange stability: Inverse theorems for dis-

continuous systems. Mathematics of Control, Signals and Systems 11, 101–125 (1998)

3. Bacciotti, A., Rosier, L.: On the converse of first Lyapunov theorem: The regularity issue.

Systems and Control Letters 41, 265–270 (2000)

4. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory. Lecture Notes

in Control and Information Sciences, vol. 267. Springer, London (2001)

5. Bernfeld, S.A., Corduneanu, C., Ignatyev, A.O.: On the stability of invariant sets of functional

differential equations. Nonlinear Analysis: Theory Methods and Applications 55, 641–656

(2003)

6. Burton, T.A.: Uniform asymptotic stability in functional differential equations. Proceedings

of the American Mathematical Society 68, 195–199 (1978)

7. Grüne, L.: Input-to-state dynamical stability and its Lyapunov function characterization. IEEE

Transactions on Automatic Control 47, 1499–1504 (2002)

8. Hahn, W.: Stability of Motion. Springer, Berlin (1967)

9. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New

York (1993)

10. Ignatyev, A.O.: On the partial equiasymptotic stability in functional differential equations.

Journal of Mathematical Analysis and Applications 268, 615–628 (2002)

11. Jiang, Z.P., Wang, Y.: A converse Lyapunov theorem for discrete-time systems with distur-

bances. Systems and Control Letters 45, 49–58 (2002)

12. Karafyllis, I.: Non-uniform in time robust global asymptotic output stability. Systems and

Control Letters 54, 181–193 (2005)



142 3 Converse Lyapunov Results

13. Karafyllis, I.: Non-uniform in time robust global asymptotic output stability for discrete-time

systems. International Journal of Robust and Nonlinear Control 16, 191–214 (2006)

14. Karafyllis, I.: A system-theoretic framework for a wide class of systems I: Applications to

numerical analysis. Journal of Mathematical Analysis and Applications 328, 876–899 (2007)

15. Karafyllis, I., Tsinias, J.: A converse Lyapunov theorem for non-uniform in time global asymp-

totic stability and its application to feedback stabilization. SIAM Journal Control and Opti-

mization 42, 936–965 (2003)

16. Karafyllis, I., Pepe, P., Jiang, Z.-P.: Global output stability for systems described by retarded

functional differential equations: Lyapunov characterizations. European Journal of Control 14,

516–536 (2008)

17. Kellett, C.M., Teel, A.R.: Smooth Lyapunov functions and robustness of stability for differ-

ence inclusions. Systems and Control Letters 52, 395–405 (2004)

18. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, New York (1996)

19. Kharitonov, V.L.: Lyapunov–Krasovskii functionals for scalar time delay equations. Systems

and Control Letters 51, 133–149 (2004)

20. Kharitonov, V.L., Melchor-Aguilar, D.: On delay dependent stability conditions for time-

varying systems. Systems and Control Letters 46, 173–180 (2002)

21. Krasovskii, N.N.: Stability of Motion. Stanford University Press, Stanford (1963)

22. Kurzweil, J.: On the inversion of Lyapunov’s second theorem on stability of motion. Amer.

Math. Soc. Trans. 2(24), 19–77 (1956)

23. Lin, Y., Sontag, E.D., Wang, Y.: A smooth converse Lyapunov theorem for robust stability.

SIAM Journal on Control and Optimization 34, 124–160 (1996)

24. Rosier, L.: Smooth Lyapunov functions for discontinuous stable systems. Set-Valued Analysis

7, 375–405 (1999)

25. Sontag, E.D.: Comments on integral variants of ISS. Systems and Control Letters 34, 93–100

(1998)

26. Sontag, E.D., Wang, Y.: Lyapunov characterizations of input-to-output stability. SIAM Journal

on Control and Optimization 39, 226–249 (2001)

27. Teel, A.R., Praly, L.: A Smooth Lyapunov function from a class-KL estimate involving

two positive functions. ESAIM Control Optimisation and Calculus of Variations 5, 313–367

(2000)

28. Tsinias, J.: A converse Lyapunov theorem for non-uniform in time global exponential robust

stability. Systems and Control Letters 44, 373–384 (2001)

29. Yoshizawa, T.: Asymptotic behavior of solutions in nonautonomous systems. In: Lakshmikan-

tham, V. (ed.) Trends in Theory and Practice of Nonlinear Differential Equations, pp. 553–562.

Dekker, New York (1984)



Chapter 4

External Stability:
Notions and Characterizations

4.1 Introduction

This chapter is devoted to the analysis of external global stability notions used in

mathematical control and system theories. The presented stability notions are de-

veloped in the system-theoretic framework described in Chap. 1 so that one can

obtain a wide perspective of the role of stability in various classes of deterministic

systems. The results in this chapter are of both theoretic importance and practical

relevance since almost all engineering and natural systems are subject to external

input signals, which may take diverse forms as reference signals and actuator and

sensor disturbances.

Another feature that distinguishes the “external” stability notions developed in

this chapter from “internal” stability notions introduced in Chap. 2 is that the no-

tions are not uniform with respect to the effect of external inputs. Therefore, the

notions are not direct extensions of the corresponding stability notions for dynam-

ical systems with no external inputs, often referred to as the disturbance-free case.

More specifically, the notions presented in this chapter are variations of the no-

tion of Input-to-State Stability (ISS), introduced by E.D. Sontag in his seminal

work [22]. The ISS property has been proved to be very useful for the study of

nonlinear systems, since it captures two main stability notions: Lyapunov stabil-

ity (describing the behavior of zero-input response with respect to nonzero initial

conditions) and bounded-input bounded-state stability (describing the behavior of

zero-state response with respect to nonzero inputs); see [24] for further details.

A large part of this chapter is also devoted to the presentation of methods of

proving external stability properties. In this chapter, we focus mainly on Lyapunov

methods, although transformation methods and analytical solutions can be exploited

as in Chap. 2. However, Lyapunov methods have been proved to be much more

useful for the derivation of useful inequalities that show specific external stability

properties. Small-Gain methods will be the subject of the following chapter.

In what follows, Σ := (X , Y ,MU ,MD, φ,π,H) will be a control system with

the BIC property and for which 0 ∈ X is a robust equilibrium point from the input

u ∈ MU . Moreover, u0 ∈ MU will be the identically zero input, i.e., u0(t) = 0 ∈ U
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for all t ≥ 0. For the output map H : ℜ+ × X × U → Y , we assume that either

H : ℜ+ × X × U → Y is continuous or that there exists a partition π = {τi}∞i=0 of

ℜ+ with diameter r > 0 such that H : ℜ+ × X × U → Y satisfies Hypothesis (L2)

in Sect. 1.7 of Chap. 1.

4.2 Definitions

To begin with, consider a RGAOS system Σ . In other words, according to Theo-

rem 2.1, there exist functions σ ∈ KL and β,μ ∈ K+ such that the following esti-

mate holds for all (t0, x0, d) ∈ ℜ+ × X × MD and t ≥ t0:
∥
∥H

(

t,φ(t, t0, x0, u0, d),0
)∥
∥

Y
+ µ(t)

∥
∥φ(t, t0, x0, u0, d)

∥
∥

X

≤ σ
(

β(t0)‖x0‖X , t − t0
)

As control engineers, a natural question to ask is whether or not this RGAOS prop-

erty is robust in the face of nonzero external input u ∈ MU , i.e., u(t) 	≡ 0. While

“robustness” is mathematically interpreted as “structural stability,” the essence of

the question is to understand the impact of external inputs on the behavior of sys-

tem Σ , or more precisely the output variables of system Σ .

The answer to the above question is critically important for many practical prob-

lems, but the answer to the question in our context of general complex systems is

far from obvious. For example, there is this well-known phenomenon of “finite es-

cape” (i.e., solutions blow up in finite time) when Σ is a highly nonlinear system.

An elementary example of this kind is the scalar system ẋ = −x +x2u with external

input u. Clearly, the zero-input system ẋ = −x is globally exponentially stable, and

thus RGAOS. However, for any arbitrarily small constant input u = u∗ 	= 0, some

solutions blow up in finite time. Indeed, for any initial condition x(0) = x0 such that

u∗x0 > 1 and for t > 0, the associated solution x(t) = x0

et (1−u∗x0)+u∗x0
goes to +∞

as t → ln(
u∗x0

u∗x0−1
) < +∞.

Even in the absence of the finite escape phenomenon for every admissible

external input u ∈ MU , there is still no straightforward answer to the question

we ask. This is because, even when the solutions are defined for each posi-

tive time, it is still possible that certain inputs produce unbounded output re-

sponses, i.e., lim supt→+∞ ‖H(t,φ(t, t0, x0, u, d), u(t))‖Y = +∞. An interesting

question to ask is how to characterize the class of external inputs that do not

produce unbounded output responses. An even stronger requirement is the char-

acterization of the class of inputs for which the output response converges, i.e.,

limt→+∞ ‖H(t,φ(t, t0, x0, u, d), u(t))‖Y = 0.

It is reasonable to expect that the magnitude of the external input ‖u(t)‖U will

play a significant role. However, it is worth pointing out that the smallness of the

size of external inputs (except the trivial case where ‖u(t)‖U ≡ 0) does not make

the problem go away, as shown in the above-mentioned scalar example.

The notion of (Uniform) (Weighted) Input-to-Output Stability property allows us

to study the effect of the magnitude of the external input to the output response. This
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is the major reason that this stability notion has proved to be very useful in Math-

ematical Control Theory. Of course, it should be emphasized that the (Uniform)

(Weighted) Input-to-Output Stability property has a large number of theoretical and

practical applications.

Next, we present the (Uniform) (Weighted) Input-to-Output Stability property.

Definition 4.1 Suppose that Σ is RFC from the input u ∈ MU .

• If there exist functions σ ∈ KL, β, δ ∈ K+, and γ ∈ N such that the following

estimate holds for all u ∈ MU , (t0, x0, d) ∈ ℜ+ × X × MDm and t ≥ t0:

∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ σ
(

β(t0)‖x0‖X , t − t0
)

+ sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

(4.1)

then, we say that Σ satisfies the Weighted Input-to-Output Stability (WIOS) prop-

erty from the input u ∈ MU with gain γ ∈ N and weight δ ∈ K+. Moreover, if

β(t) ≡ 1, then we say that Σ satisfies the Uniform Weighted Input-to-Output

Stability (UWIOS) property from the input u ∈ MU with gain γ ∈ N and weight

δ ∈ K+.

• If there exist functions σ ∈ KL, β ∈ K+, and γ ∈ N such that the following

estimate holds for all u ∈ MU , (t0, x0, d) ∈ ℜ+ × X × MD , and t ≥ t0:

∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ σ
(

β(t0)‖x0‖X , t − t0
)

+ sup
t0≤τ≤t

γ
(∥
∥u(τ)

∥
∥

U

)

(4.2)

then, we say that Σ satisfies the Input-to-Output Stability (IOS) property from

the input u ∈ MU with gain γ ∈ N . Moreover, if β(t) ≡ 1, then we say that Σ

satisfies the Uniform Input-to-Output Stability (UIOS) property from the input

u ∈ MU with gain γ ∈ N .

• Finally, for the special case of the identity output mapping, i.e., H(t, x,u) := x,

the (Uniform) (Weighted) Input-to-Output Stability property from the input u ∈
MU is called (Uniform) (Weighted) Input-to-State Stability ((U)(W)ISS) property

from the input u ∈ MU .

Remark 4.1 Using the inequalities max{a, b} ≤ a +b ≤ max{a +ρ(a), b+ρ−1(b)}
(which hold for all ρ ∈ K∞ and a, b ≥ 0), it should be clear that the WIOS property

for Σ := (X , Y ,MU ,MD, φ,π,H) can be defined by using an estimate based on

“max,”

∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ max
{

σ
(

β(t0)‖x0‖X , t − t0
)

, sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)
}

(4.3)

instead of (4.1). Notice that the functions σ and γ involved in (4.1) and (4.3) are not

necessarily the same. Similarly, the IOS property for Σ := (X , Y ,MU ,MD, φ,π,H)

can be defined by using an estimate of the form:
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∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ max
{

σ
(

β(t0)‖x0‖X , t − t0
)

, sup
t0≤τ≤t

γ
(∥
∥u(τ)

∥
∥

U

)
}

(4.4)

instead of (4.2).

We call estimate (4.1) “a Sontag-like estimate,” because E.D. Sontag invented

the notion of ISS in [22] for finite-dimensional continuous-time systems, which is

expressed using an estimate of the form

∥
∥φ(t, t0, x0, u, d)

∥
∥

X
≤ max

{

σ
(

‖x0‖X , t − t0
)

, sup
t0≤τ≤t

γ
(∥
∥u(τ)

∥
∥

U

)
}

Moreover, Sontag and Wang formulated IOS in [27, 28] (see also [8]) for

continuous-time finite-dimensional systems using an estimate of the form (4.1) with

β(t) ≡ δ(t) ≡ 1.

Exactly as in the case of internal stability properties, for external stability notions,

we have found the following methods of proving the (U)(W)IOS property in the

literature:

(1) Analytical Solutions

For this line of research, basic estimates for the solutions of the system are

extracted by actually solving the differential (or difference) equations (or in-

equalities).

(2) Transformation Methods

In this case, basic estimates for the solutions of the system are derived by trans-

forming the system into a different system with special properties.

(3) The method of Lyapunov functions and functionals

Basic estimates for the solutions are derived by means of a (or many) Lyapunov

functional(s) and comparison lemmas.

(4) Small-Gain Methods

Basic estimates for the solutions of the system are derived by means of small-

gain arguments.

(5) Qualitative Methods

Certain qualitative properties of the solutions guarantee that the (U)(W)IOS

property holds. Working in this way, usually we cannot have an explicit ex-

pression for the gain functions or the weight functions.

All the above methods, with the exception of Small-Gain methods, will be ex-

plained in the present chapter. The Small-Gain methods will be explained in detail

in the following chapter. Again it should be emphasized that the methods of proving

external stability properties can be (and usually are) combined.

The following lemmas provide ε–δ characterizations of the WIOS and UWIOS

properties.

Lemma 4.1 Suppose that Σ is RFC from the input u ∈ MU . Furthermore, suppose

that there exist functions V : ℜ+ × X × U → ℜ+ with V (t,0,0) = 0 for all t ≥ 0,

γ ∈ N , and δ ∈ K+ such that the following properties hold:
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P1. For all s ≥ 0 and T ≥ 0, it holds that

sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

t ≥ t0,‖x0‖X ≤ s, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}

< +∞.

P2. For all ε > 0 and T ≥ 0, there exists a δ := δ(ε, T ) > 0 such that

sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

t ≥ t0,‖x0‖X ≤ δ, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}

≤ ε.

P3. For all ε > 0, T ≥ 0, and R ≥ 0, there exists τ := τ(ε, T ,R) ≥ 0 such that

sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

t ≥ t0 + τ,‖x0‖X ≤ R, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}

≤ ε.

Then, there exist functions σ ∈ KL and β ∈ K+ such that the following estimate

holds for all u ∈ MU , (t0, x0, d) ∈ ℜ+ × X × MD , and t ≥ t0:

V
(

t, φ(t, t0, x0, u, d), u(t)
)

≤ σ
(

β(t0)‖x0‖X , t − t0
)

+ sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

(4.5)

Moreover, if there exists a ∈ N such that ‖H(t, x,u)‖Y ≤ a(V (t, x,u)) for all

(t, x,u) ∈ ℜ+ × X × U , then for every ρ ∈ K∞, Σ satisfies the WIOS prop-

erty from the input u ∈ MU with gain γ̃ ∈ N and weight δ ∈ K+, where γ̃ (s) :=
a(γ (s) + ρ(γ (s))).

Lemma 4.2 Suppose that Σ is RFC from the input u ∈ MU . Furthermore, suppose

that there exist functions V : ℜ+ × X × U → ℜ+ with V (t,0,0) = 0 for all t ≥ 0,

γ ∈ N , and δ ∈ K+ such that the following properties hold:

P1. For every s ≥ 0, it holds that

sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

t ≥ t0,‖x0‖X ≤ s, t0 ≥ 0, d ∈ MD, u ∈ MU

}

< +∞.

P2. For every ε > 0, there exists δ := δ(ε) > 0 such that

sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

t ≥ t0,‖x0‖X ≤ δ, t0 ≥ 0, d ∈ MD, u ∈ MU

}

≤ ε.

P3. For all ε > 0 and R ≥ 0, there exists τ := τ(ε,R) ≥ 0 such that

sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

t ≥ t0 + τ,‖x0‖X ≤ R, t0 ≥ 0, d ∈ MD, u ∈ MU

}

≤ ε.
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Then, there exists a function σ ∈ KL such that estimate (4.5) holds for all u ∈ MU ,

(t0, x0, d) ∈ ℜ+ × X × MD , and t ≥ t0 with β(t) ≡ 1. Moreover, if there exists

a ∈ N such that ‖H(t, x,u)‖Y ≤ a(V (t, x,u)) for all (t, x,u) ∈ ℜ+ × X ×U , then

for every ρ ∈ K∞, Σ satisfies the UWIOS property from the input u ∈ MU with gain

γ̃ ∈ N and weight δ ∈ K+, where γ̃ (s) := a(γ (s) + ρ(γ (s))).

Remark 4.2 Notice that Lemmas 4.1 and 4.2 can be very useful for the demonstra-

tion of the (U)WIOS property, because in practice we show Properties (P1–3) for

some Lyapunov function V and not necessarily for the norm of the output map.

Moreover, notice that V is not required to be continuous. If V : ℜ+ × X ×U → ℜ+

is a continuous functional that maps bounded sets of ℜ+ × X × U into bounded

sets of ℜ+, then Lemmas 4.1 and 4.2 guarantee that Σ satisfies the WIOS and the

UWIOS properties with V as the output, respectively, from the input u ∈ MU with

gain γ ∈ N and weight δ ∈ K+.

Proof of Lemma 4.1 Let T , h ≥ 0, s ≥ 0, and define

a(T , s) := sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

‖x0‖X ≤ s, t ≥ t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}

(4.6)

M(h,T , s) := sup
{

V
(

t0 + h,φ(t0 + h, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t0+h

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

‖x0‖X ≤ s, t0 ∈ [0, T ], d ∈ MD, u ∈ MU

}

(4.7)

First, notice that, by virtue of Property P1, it holds that a(T , s) < +∞ for all T ≥ 0

and s ≥ 0. Moreover, notice that since 0 ∈ X is a robust equilibrium point from the

input u ∈ MU and V (t,0,0) = 0 for all t ≥ 0, we have a(T , s) ≥ 0 for all T ≥ 0,

s ≥ 0. Furthermore, notice that M is well defined, since by definitions (4.6), (4.7)

the following inequality is satisfied for all T ,h ≥ 0 and s ≥ 0:

0 ≤ M(h,T , s) ≤ a(T , s) (4.8)

Clearly, definition (4.6) implies that, for each fixed s ≥ 0, a(·, s) is nondecreasing

and, for each fixed T ≥ 0, a(T , ·) is nondecreasing. Furthermore, Property P2 as-

serts that for every T ≥ 0, lims→0+ a(T , s) = 0. Hence, the inequality a(T ,0) ≥ 0

for all T ≥ 0, in conjunction with lims→0+ a(T , s) = 0 and the fact that a(T , ·) is

nondecreasing, implies a(·,0) = 0. It turns out from Lemma 2.3 that there exist

functions ζ ∈ K∞ and q ∈ K+ such that

a(T , s) ≤ ζ
(

q(T )s
)

∀(T , s) ∈
(

ℜ+)2
(4.9)

Without loss of generality, we may assume that q ∈ K+ is nondecreasing. More-

over, Property P3 guarantees that for all ε > 0, T ≥ 0, and R ≥ 0, there exists

τ = τ(ε, T ,R) ≥ 0 such that

M(h,T , s) ≤ ε for all h ≥ τ(ε, T ,R) and 0 ≤ s ≤ R (4.10)
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Let

g(s) :=
√

s + s2 (4.11)

and let p be a nondecreasing function of class K+ with p(0) = 1 and

lim
t→+∞

p(t) = +∞ (4.12)

Define

µ(h) := sup

{
M(h,T , s)

p(T )g(ζ(q(T )s))
;T ≥ 0, s > 0

}

(4.13)

Obviously, by virtue of (4.8), (4.9), and (4.11), the function µ : ℜ+ → ℜ+ is well

defined and satisfies µ(·) ≤ 1. We show that limh→+∞ µ(h) = 0; equivalently, we

establish that for any given ε > 0, there exists δ = δ(ε) ≥ 0 such that

µ(h) ≤ ε for h ≥ δ(ε) (4.14)

Notice first that, for any given ε > 0, there exist constants a := a(ε) and b := b(ε)

with 0 < a < b such that

x /∈ (a, b) ⇒ x√
x + x2

≤ ε (4.15)

We next recall (4.12), which asserts that, for the above ε for which (4.15) holds,

there exists c := c(ε) ≥ 0 such that p(T ) ≥ 1
ε

for all T ≥ c. By virtue of (4.8), (4.9),

(4.11), and (4.15), this yields

M(h,T , s)

p(T )g(ζ(q(T )s))
≤ ε ∀h ≥ 0, when T ≥ c or ζ

(

q(T )s
)

/∈ (a, b) (4.16)

Hence, in order to establish (4.14), it remains to consider the case

a ≤ ζ
(

q(T )s
)

≤ b and 0 ≤ T ≤ c (4.17)

Since, for each fixed (h, s) ∈ (ℜ+)2, the mappings M(h, ·, s), M(h, s, ·), q(·), and

p(·) are nondecreasing, we have

M(h,T , s)

p(T )g(ζ(q(T )s))
≤

M
(

h, c,
ζ−1(b)
q(0)

)

g(a)
(4.18)

where (4.17) was used. By using (4.10) and (4.18) with

ε := εg(a) T := c R := ζ−1(b)

q(0)

it follows that

M

(

h, c,
ζ−1(b)

q(0)

)

≤ εg(a) for h ≥ δ(ε) := τ

(

εg(a), c,
ζ−1(b)

q(0)

)

(4.19)

By taking into account (4.16), (4.17), (4.18), (4.19) and definition (4.13) of µ(·) it

follows that (4.14) holds with δ = δ(ε) as selected in (4.19). Since ε > 0 is arbi-

trary, we conclude that limh→+∞ µ(h) = 0. Consequently, there exists a continuous
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strictly decreasing function µ̄ : ℜ+ → (0,+∞) such that µ̄(h) ≥ µ(h) for all h ≥ 0

and limh→+∞ µ̄(h) = 0. Thus, by recalling definition (4.13), we obtain

M(h,T , s) ≤ µ̄(h)θ(T , s) ∀(T , s) ∈
(

ℜ+)2
,∀h ≥ 0 (4.20)

where θ(T , s) := p(T )g(ζ(q(T )s)). Clearly, θ satisfies all hypotheses of Lemma 2.3,

and therefore there exist ζ2 ∈ K∞ and β ∈ K+ such that

θ(T , s) ≤ ζ2

(

β(T )s
)

∀(T , s) ∈
(

ℜ+)2
(4.21)

Thus, definition (4.7) implies that the following estimate holds for all u ∈ MU ,

(t0, x0, d) ∈ ℜ+ × X × MD , and t ≥ t0:

V
(

t, φ(t, t0, x0, u, d), u(t)
)

≤ µ̄(t − t0)ζ2

(

β(t0)‖x0‖X

)

+ sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

(4.22)

Estimate (4.22) implies (4.5) with σ(s, t) := µ̄(t)ζ2(s). �

Proof of Lemma 4.2 As in the proof of Lemma 4.1, let h ≥ 0, s ≥ 0, and define

a(s) := sup
{

V
(

t, φ(t, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

‖x0‖X ≤ s, t ≥ t0 ≥ 0, d ∈ MD, u ∈ MU

}

(4.23)

M(h, s) := sup
{

V
(

t0 + h,φ(t0 + h, t0, x0, u, d), u(t)
)

− sup
t0≤τ≤t0+h

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

;

‖x0‖X ≤ s, t0 ≥ 0, d ∈ MD, u ∈ MU

}

(4.24)

First notice that by Property P1 it holds that a(s) < +∞ for all s ≥ 0. Moreover,

notice that since 0 ∈ X is a robust equilibrium point from the input u ∈ MU and

V (t,0,0) = 0 for all t ≥ 0, we have a(s) ≥ 0 for all s ≥ 0. Furthermore, notice

that M is well defined, since by definitions (4.23), (4.24) the following inequality is

satisfied for all h ≥ 0 and s ≥ 0:

0 ≤ M(h, s) ≤ a(s) (4.25)

Clearly, (4.23) implies that a(·) is nondecreasing. Furthermore, Property P2 as-

serts that lims→0+ a(s) = 0. Hence, the inequality a(0) ≥ 0, in conjunction with

lims→0+ a(s) = 0 and the fact that a(·) is nondecreasing, implies a(0) = 0. It

turns out that a can be bounded from above by the K∞ function ã defined by

ã(s) := s + 1
s

∫ 2s

s
a(w)dw for s > 0 and ã(0) = 0. Define

µ(h) := sup

{
M(h, s)

g(ã(s))
; s > 0

}

(4.26)

where g is defined by (4.11). Working exactly as in the proof of Lemma 4.1,

we can show that the function µ : ℜ+ → ℜ+ is well defined and satisfies



4.2 Definitions 151

µ(·) ≤ 1 and limh→+∞ µ(h) = 0. Consequently, there exists a continuous strictly

decreasing function µ̄ : ℜ+ → (0,+∞) such that µ̄(h) ≥ µ(h) for all h ≥ 0 and

limh→+∞ µ̄(h) = 0. Thus, by recalling definition (4.26) we obtain

M(h, s) ≤ µ̄(h)g
(

ã(s)
)

∀h, s ≥ 0 (4.27)

Hence definition (4.24) implies that the following estimate holds for all u ∈ MU ,

(t0, x0, d) ∈ ℜ+ × X × MD , and t ≥ t0:

V
(

t, φ(t, t0, x0, u, d), u(t)
)

≤ µ̄(t − t0)g
(

ã
(

‖x0‖X

))

+ sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

(4.28)

Estimate (4.28) implies (4.5) with β(t) ≡ 1 and σ(s, t) := µ̄(t)g(ã(s)). �

Next, some useful observations for T-periodic control systems are provided. It

turns out that periodicity guarantees uniformity with respect to the initial time in-

stants.

Lemma 4.3 Suppose that Σ := (X , Y ,MU ,MD, φ,π,H) is T-periodic. If Σ satis-

fies the WIOS property from the input u ∈ MU , then Σ satisfies the UWIOS property

from the input u ∈ MU .

Lemma 4.4 Suppose that Σ := (X , Y ,MU ,MD, φ,π,H) is T-periodic. If Σ sat-

isfies the IOS property from the input u ∈ MU , then Σ satisfies the UIOS property

from the input u ∈ MU .

Proof of Lemmas 4.3 and 4.4 The proof is based on the following observation:

if Σ := (X , Y ,MU ,MD, φ,π,H) is T -periodic, then for all (t0, x0, u, d) ∈ ℜ+ ×
X × MU × MD , we have φ(t, t0, x0, u, d) = φ(t − kT , t0 − kT , x0,PkT u,PkT d)

and H(t,φ(t, t0, x0, u, d), u(t)) = H(t − kT ,φ(t − kT , t0 − kT , x0,PkT u,PkT d),

(PkT u)(t − kT )), with k := [t0/T ] denoting the integer part of t0/T and the inputs

PkT u ∈ MU and PkT d ∈ MD as defined in Definition 1.2.

Since Σ := (X , Y ,MU ,MD, φ,π,H) satisfies the WIOS property from the in-

put u ∈ MU , there exist functions σ ∈ KL, β, δ ∈ K+, and γ ∈ N such that (4.1)

holds for all (t0, x0, u, d) ∈ ℜ+ × X × MU × MD and t ≥ t0. Consequently, it fol-

lows that the following estimate holds for all (t0, x0, u, d) ∈ ℜ+ × X × MU × MD

and t ≥ t0:

∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ σ
(

β(t0 − kT )‖x0‖X , t − t0
)

+ sup
τ∈[t0−kT ,t−kT ]

γ
(

δ(τ )
∥
∥(PkT u)(τ)

∥
∥

U

)

Setting τ = s − kT and since 0 ≤ t0 − [ t0
T

]T < T for all t0 ≥ 0, we obtain

∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ σ̃
(

‖x0‖X , t − t0
)

+ sup
s∈[t0,t]

γ
(

δ(s − kT )
∥
∥(PkT u)(s − kT )

∥
∥

U

)

(4.29)
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where σ̃ (s, t) := σ(rs, t) and r := max{β(t);0 ≤ t ≤ T }. Estimate (4.29) and the

identity (PkT u)(s − kT ) = u(s) for all s ≥ 0 implies that the following estimate

holds for all (t0, x0, u, d) ∈ ℜ+ × X × MU × MD and t ≥ t0:

∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ σ̃
(

‖x0‖X , t − t0
)

+ sup
s∈[t0,t]

γ
(

δ̃(s)
∥
∥u(s)

∥
∥

U

)

(4.30)

where δ̃(t) := max{δ(s); s ∈ [0, t]}.
When Σ := (X , Y ,MU ,MD, φ,π,H) satisfies the IOS property from the input

u ∈ MU , all arguments above may be repeated with δ(t) ≡ 1. Thus we conclude that

(4.30) holds for all (t0, x0, u, d) ∈ ℜ+ × X × MU × MD and t ≥ t0 with δ̃(t) ≡ 1.

The proof is complete. �

Finally, we end this section by giving a simple example to show how analytical

expressions for the solutions can be exploited for the IOS (or ISS) property.

Example 4.2.1 Consider the scalar nonlinear system

ẋ = −xβ(x) + u x ∈ ℜ, u ∈ ℜ (4.31)

where β : ℜ → ℜ is a locally Lipschitz mapping that satisfies

inf
x∈ℜ

β(x) > 0 (4.32)

Although analytical expressions for the solution of (4.31) are not (in general) avail-

able, we know that the solution must satisfy the following integral equation (varia-

tions of constants) for all t ≥ t0 for which the solution exists:

x(t) = x(t0) exp

(

−
∫ t

t0

β
(

x(τ)
)

dτ

)

+
∫ t

t0

u(τ) exp

(

−
∫ t

τ

β
(

x(s)
)

ds

)

dτ (4.33)

Define L := infx∈ℜ β(x). Using (4.33) and (4.32), we obtain successively:

∣
∣x(t)

∣
∣ ≤

∣
∣x(t0)

∣
∣ exp

(

−
∫ t

t0

β
(

x(τ)
)

dτ

)

+
∫ t

t0

∣
∣u(τ)

∣
∣ exp

(

−
∫ t

τ

β
(

x(s)
)

ds

)

dτ

≤
∣
∣x(t0)

∣
∣ exp

(

−L(t − t0)
)

+ sup
t0≤τ≤t

∣
∣u(τ)

∣
∣

∫ t

t0

exp

(

−
∫ t

τ

β
(

x(s)
)

ds

)

dτ

≤
∣
∣x(t0)

∣
∣ exp

(

−L(t − t0)
)

+ sup
t0≤τ≤t

∣
∣u(τ)

∣
∣

∫ t

t0

exp
(

−L(t − τ)
)

dτ

=
∣
∣x(t0)

∣
∣ exp

(

−L(t − t0)
)

+ sup
t0≤τ≤t

∣
∣u(τ)

∣
∣
1 − exp(−L(t − t0))

L

≤
∣
∣x(t0)

∣
∣ exp

(

−L(t − t0)
)

+ 1

L
sup

t0≤τ≤t

∣
∣u(τ)

∣
∣

Consequently, it follows that system (4.31) satisfies the UISS property with gain

function γ (s) := L−1s.
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4.3 Consequences of the WIOS Property

The consequences of the WIOS property are numerous and various. In this section

we focus on certain consequences which will be used in the following sections.

More specifically, for a control system Σ := (X , Y ,MU ,MD, φ,π,H) which sat-

isfies the WIOS property, we will show that:

1. Σ satisfies the 0-GAOS property,

2. Σ satisfies the Bounded-Weighted-Input-Bounded-Output (BWIBO) property

and the Converging-Weighted-Input-Converging-Output (CWICO) property,

3. Σ satisfies the RFC property from the input u ∈ MU ,

4. there is a class of static maps for which the feedback interconnection with Σ

produces a RGAOS system.

(a) The 0-GAOS property.

It is clear from Definition 4.1 that if Σ := (X , Y ,MU ,MD, φ,π,H) satisfies the

WIOS property, then the system Σ ′ := (X , Y ,M ′
U ,MD, φ,π,H) with M ′

U = {u0}

is RGAOS. Notice that Σ ′ := (X , Y ,M ′
U ,MD, φ,π,H) is the original system

Σ := (X , Y ,MU ,MD, φ,π,H) for which the only allowable input is the zero in-

put u0. Moreover, if Σ := (X , Y ,MU ,MD, φ,π,H) satisfies the UWIOS property,

then the system Σ ′ := (X , Y ,M ′
U ,MD, φ,π,H) with M ′

U = {u0} is URGAOS.

However, the following example shows that there are systems which satisfy the 0-

GAOS property and do not satisfy the WIOS property.

Example 4.3.1 Consider the following scalar system:

ẋ = −x + x2u Y = x

x ∈ ℜ, u ∈ ℜ (4.34)

It is clear that the 0-GAS property holds for system (4.34), since for u ≡ 0, we

have ẋ = −x; the fact that ẋ = −x is URGAS can be shown by using the analytical

expression of the solution. On the other hand, the constant input u ≡ 1 gives the

scalar system ẋ = −x+x2 which is not RFC; indeed, using the analytical expression

for the solution of ẋ = −x + x2, it can be shown that for initial conditions greater

than 1, the solution cannot be defined for all times. It should be noticed that local

asymptotic stability for autonomous systems described by ODEs does imply a local

version of the Input-to-State Stability property (see [17], pp. 217–219).

(b) Bounded-Weighted-Input-Bounded-Output (BWIBO) and Converging-Weight-

ed-Input-Converging-Output (CWICO) Properties.

The BWIBO and CWICO properties are direct consequences of the following

proposition.

Proposition 4.1 Consider a system Σ := (X , Y ,MU ,MD, φ,H) and suppose that

Σ satisfies the WIOS property from the input u ∈ MU with gain γ ∈ N and weight

δ ∈ K+. Then the output trajectory t → H(t,φ(t, t0, x0, u, d), u(t)) is bounded



154 4 External Stability: Notions and Characterizations

for all inputs u ∈ MU with supt≥0 δ(t)‖u(t)‖U < +∞ (Bounded Weighted Input

Bounded Output property) and limt→+∞ H(t,φ(t, t0, x0, u, d), u(t)) = 0 for all in-

puts u ∈ MU with limt→+∞ δ(t)‖u(t)‖U = 0 (Converging Weighted Input Converg-

ing Output property).

Proof The fact that the output function t → H(t,φ(t, t0, x0, u, d), u(t)) is bounded

for all inputs u ∈ MU with supt≥0 δ(t)‖u(t)‖U < +∞ is an immediate consequence

of estimate (4.1). Next, we show that limt→+∞ H(t,φ(t, t0, x0, u, d), u(t)) = 0 for

all inputs u ∈ MU with limt→+∞ δ(t)‖u(t)‖U = 0 (Converging Weighted Input

Converging Output property). Consider arbitrary ε > 0, (t0, x0, d) ∈ ℜ+ × X ×MD ,

and input u ∈ MU with limt→+∞ δ(t)‖u(t)‖U = 0. Clearly, there exists T > t0 such

that γ (δ(t)‖u(t)‖U ) ≤ ε
2

for all t ≥ T . By virtue of the weak semigroup property

for Σ and since (T + r, t0, x0, u, d) ∈ Aφ , where r > 0 is the constant involved in

the weak semigroup property for Σ , there exists T̃ ∈ π(t0, x0, u, d) ∩ [T ,T + r] 	=
∅ with φ(t, T̃ , φ(T̃ , t0, x0, u, d), u, d) = φ(t, t0, x0, u, d) for all t ≥ T̃ . Inequal-

ity (4.1), in conjunction with the fact that γ (δ(t)‖u(t)‖U ) ≤ ε
2

for all t ≥ T̃ , implies,

for all t ≥ T̃ ,
∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

=
∥
∥H

(

t, φ
(

t, T̃ , φ
(

T̃ , t0, x0, u, d
)

, u, d
)

, u(t)
)∥
∥

Y

≤ σ
(

β
(

T̃
)∥
∥φ

(

T̃ , t0, x0, u, d
)∥
∥

X
, t − T̃

)

+ sup
T̃ ≤τ≤t

γ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

≤ σ
(

β
(

T̃
)∥
∥φ

(

T̃ , t0, x0, u, d
)∥
∥

X
, t − T̃

)

+ ε

2

The above implies that ‖H(t,φ(t, t0, x0, u, d), u(t))‖Y ≤ ε for sufficiently large

t ≥ T̃ . Since ε > 0 is arbitrary, we conclude that

lim
t→+∞

H
(

t, φ(t, t0, x0, u, d), u(t)
)

= 0. �

Each of the BWIBO and CWICO properties fails to be sufficient for the WIOS

property to hold. The following example illustrates this point.

Example 4.3.2 Consider the scalar system described by ODE

ẋ = −ux Y = x

x ∈ ℜ, u ∈ [0,+∞) ⊂ ℜ (4.35)

The reader should notice that for every measurable and locally essentially bounded

input u : ℜ+ → [0,+∞), the solution of (4.35) satisfies |x(t)| ≤ |x(t0)| for every

t ≥ t0. Therefore, the Bounded-Input-Bounded-State property holds. However, sys-

tem (4.35) does not satisfy the ISS property because the 0-GAS property does not

hold. For u ≡ 0, we have ẋ = 0.

Next, consider the scalar system described by ODE

ẋ = −x + dux

x ∈ ℜ, u ∈ ℜ, d ∈ [−1,1] (4.36)
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It is clear that the 0-GAS property holds for system (4.36), since for u ≡ 0, we

have ẋ = −x; the fact that ẋ = −x is URGAS can be shown by using the analyt-

ical expression of the solution. Moreover, the analytical expression of the solution

of (4.36) x(t) = x(t0) exp(−(t − t0) +
∫ t

t0
d(τ)u(τ) dτ) shows that the Converging-

Input-Converging-State property holds.

On the other hand, the constant inputs u ≡ 2, d ≡ 1 give the scalar system

ẋ = x for which the solutions are not bounded (unless x(t0) = 0). Consequently,

the Bounded-Input-Bounded-State property does not hold for system (4.36), and

therefore system (4.36) does not satisfy the ISS property.

However, the reader should notice that the UWISS property holds for sys-

tem (4.36). Indeed, for every p > 0, the expression for the solution of (4.36) gives

∣
∣x(t)

∣
∣ =

∣
∣x(t0)

∣
∣ exp

(

−(t − t0) +
∫ t

t0

d(τ)u(τ) dτ

)

≤
∣
∣x(t0)

∣
∣ exp

(

−(t − t0) + sup
t0≤τ≤t

(

exp(pτ)
∣
∣u(τ)

∣
∣
)
∫ t

t0

exp(−pτ)dτ

)

≤
∣
∣x(t0)

∣
∣ exp

(

−(t − t0) + p−1 sup
t0≤τ≤t

(

exp(pτ)
∣
∣u(τ)

∣
∣
)
)

≤
∣
∣x(t0)

∣
∣ exp

(

−(t − t0)
)

+
∣
∣x(t0)

∣
∣ exp

(

−(t − t0)
)

×
[

exp
(

p−1 sup
t0≤τ≤t

(

exp(pτ)
∣
∣u(τ)

∣
∣
)
)

− 1
]

Using the inequality ab ≤ 1
2
a2 + 1

2
b2, we obtain

∣
∣x(t)

∣
∣ ≤

∣
∣x(t0)

∣
∣ exp

(

−(t − t0)
)

+ 1

2

∣
∣x(t0)

∣
∣
2

exp
(

−2(t − t0)
)

+ 1

2

[

exp
(

p−1 sup
t0≤τ≤t

(

exp(pτ)
∣
∣u(τ)

∣
∣
)
)

− 1
]2

≤
∣
∣x(t0)

∣
∣ exp

(

−(t − t0)
)

+ 1

2

∣
∣x(t0)

∣
∣
2

exp
(

−2(t − t0)
)

+ 1

2
sup

t0≤τ≤t

[

exp
(

p−1 exp(pτ)
∣
∣u(τ)

∣
∣
)

− 1
]2

The above inequality shows that the UWISS property holds with gain γ (s) :=
1
2
[exp(p−1s) − 1]2 and weight δ(t) = exp(pt).

(c) The RFC property from an input.

It is clear that the RFC property from the input u ∈ MU is a necessary condition

of the WIOS property (a direct consequence of Definition 4.1. Here, we consider

control systems which satisfy the additional hypothesis:

(G) U is a cone, i.e., for all u ∈ U and λ ≥ 0, it follows that (λu) ∈ U . Furthermore,

for all u ∈ MU and λ ≥ 0, it follows that (λu) ∈ MU , where (λu)(t) = λu(t)

for all t ≥ 0.
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We next consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) with the BIC

property and for which 0 ∈ X is a robust equilibrium point from the input u ∈
MU . If Hypothesis (G) holds, then we are ready to consider the control system

Σ ′ := (X ′,Y,MU ′ ,MD′, φ′,π ′,H), where X ′ = X × ℜ, U ′ = {0}, D′ = D × {u ∈
U : ‖u‖U ≤ 1}, MD′ = {(d, v) ∈ MD × MU : supt≥0 ‖v(t)‖U ≤ 1}, and the fol-

lowing equalities hold for all (t0, x0, z0, d, v) ∈ ℜ+ × X × ℜ × MD × {v ∈ MU :
supt≥0 ‖v(t)‖U ≤ 1} and all t ∈ [t0, tmax):

φ′(t, t0, x0, z0, u0, (d, v)
)

:=
(

φ
(

t, t0, x0, |z0|v, d
)

, z0

)

∈ X × ℜ (4.37)

π ′(t0, x0, z0, u0, (d, v)
)

:= π
(

t0, x0, |z0|v, d
)

(4.38)

where (|z0|v)(t) = |z0|v(t) for all t ≥ 0. The reader can verify that the above defi-

nitions guarantee that Σ ′ := (X ′,Y,MU ′,MD′, φ′,π ′,H) is a control system with

the BIC property and for which 0 ∈ X ′ is a robust equilibrium point from the input

u ∈ MU ′ (notice that U ′ = {0}). Moreover, if Σ is RFC from the input u ∈ MU ,

then it follows that Σ ′ := (X ′,Y,MU ′ ,MD′, φ′,π ′,H) is RFC from the input

u ∈ MU ′ . Consequently, Lemma 2.7 implies that there exist functions µ,β ∈ K+

and σ ∈ KL such that, for every (t0, x0, z0, d, v) ∈ ℜ+ × X × ℜ × MD × {v ∈ MU :
supt≥0 ‖v(t)‖U ≤ 1} and all t ≥ t0, we have

µ(t)
∥
∥φ′(t, t0, x0, z0, u0, (d, v)

)∥
∥

X ′ ≤ σ
(

β(t0)
(

‖x0‖X + |z0|
)

, t − t0
)

(4.39)

The following observation is crucial: if Σ is RFC from the input u ∈ MU , then

for all (t0, x0, d,u) ∈ ℜ+ × X × MD × MU and t ≥ t0, there exists v ∈ MU with

supt≥0 ‖v(t)‖U ≤ 1 such that φ(t, t0, x0, u, d) = φ(t, t0, x0, |z0|v, d), where z0 =
supt0≤τ≤t ‖u(τ)‖U . Definition (4.37) and inequality (4.39) give, for all t ≥ t0,

µ(t)
∥
∥φ(t, t0, x0, u, d)

∥
∥

X
≤ σ

(

β(t0)
(

‖x0‖X + sup
t0≤τ≤t

∥
∥u(τ)

∥
∥

U

)

, t − t0

)

(4.40)

Using Lemma 3.2, Theorem 3.1, and inequality (4.40), we conclude that for every

pair of functions q, δ ∈ K+, there exist functions σ ∈ KL, p ∈ K∞, and c ∈ K+

such that, for all t ≥ t0,

c(t)
∥
∥φ(t, t0, x0, u, d)

∥
∥

X

≤ σ
(

q(t0)‖x0‖X , t − t0
)

+ sup
t0≤τ≤t

p
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

(4.41)

On the other hand, if inequality (4.41) holds for all (t0, x0, d,u) ∈ ℜ+ × X ×MD ×
MU , then Σ is RFC from the input u ∈ MU . Consequently, we obtain the following:

Proposition 4.2 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) satis-

fying Hypothesis (G) with the BIC property and for which 0 ∈ X is a robust equilib-

rium point from the input u ∈ MU . Σ is RFC from the input u if and only if for every

pair of functions q, δ ∈ K+, there exist functions c ∈ K+, p ∈ K∞, and σ ∈ KL

such that for every (t0, x0, d,u) ∈ ℜ+ × X × MD × MU , inequality (4.41) holds.

It is clear that Proposition 4.2 shows that a control system Σ := (X , Y ,MU ,

MD, φ,π,H) satisfying Hypothesis (G) with the BIC property and for which 0 ∈ X
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is a robust equilibrium point from the input u ∈ MU is RFC from the input u if

and only if there exists c ∈ K+ such that Σ := (X , Y ,MU ,MD, φ,π,H) satisfies

the (U)(W)IOS property from the input u ∈ MU for the output H(t, x) := c(t)x.

Moreover, the following corollary holds:

Corollary 4.1 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) satisfy-

ing Hypothesis (G) and the (U)WIOS property with weight δ ∈ K+. Then there ex-

ists a function µ ∈ K+ such that Σ with output Y = µ(t)‖x‖X + ‖H(t, x,u)‖Y

satisfies the (U)WIOS property with same weight δ ∈ K+, i.e., there exist func-

tions σ̃ ∈ KL and γ̃ ∈ N such that the following estimate holds for all u ∈ MU ,

(t0, x0, d) ∈ ℜ+ × X × MD , and t ≥ t0:

∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y
+ µ(t)

∥
∥φ(t, t0, x0, u, d)

∥
∥

X

≤ σ̃
(

β(t0)‖x0‖X , t − t0
)

+ sup
t0≤τ≤t

γ̃
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

(4.42)

where β ∈ K+ is the function involved in (4.1).

(d) A class of static maps for which the feedback interconnection with the system

produces an RGAOS system.

Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) which satisfies the

(U)WIOS property and the following hypothesis:

(G1) There exist functions P,µ ≥ 0 and a ∈ K∞ such that

µ(t)‖x‖X ≤ a
(∥
∥H(t, x,u)

∥
∥

Y

)

+ P(t) ∀(t, x,u) ∈ ℜ+ × X × U.

Without loss of generality, we may assume that the gain function γ ∈ N is of

class K∞. Next, consider an interconnected system comprised of Σ := (X , Y ,MU ,

MD, φ,π,H) and a static map H̃ : ℜ+ × X → U that satisfies

∥
∥H̃ (t, x)

∥
∥

U
≤ 1

δ(t)
γ −1

(

λ
∥
∥H

(

t, x, H̃ (t, x)
)∥
∥

Y

)

∀(t, x) ∈ ℜ+ × X (4.43)

for some constant λ ∈ (0,1). We denote by Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H), where

Ũ = {0}, the control system which results from the feedback interconnection of

the system Σ := (X , Y ,MU ,MD, φ,π,H) with the static map H̃ : ℜ+ × X → U .

Notice that here it is implied that the static map H̃ : ℜ+ × X → U satisfies (4.43)

and additional requirements so that the feedback interconnection is well defined (in

the sense explained in Chap. 1).

Using (4.1), (4.43), and the fact that u(t) = H̃ (t, x(t)), we get the following

estimate for all (t0, x0, d) ∈ ℜ+ × X × MD and t ∈ [t0, tmax):

∥
∥Y(t)

∥
∥

Y
≤ σ

(

β(t0)‖x0‖X , t − t0
)

+ λ sup
t0≤τ≤t

∥
∥Y(τ)

∥
∥

Y
(4.44)
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where x(t) := φ̃(t, t0, x0, u0, d), Y(t) := H(t, x(t), H̃ (t, x(t))), and tmax is the

maximal existence time. Inequality (4.43) implies that the following inequality

holds for all t ∈ [t0, tmax):

sup
t0≤τ≤t

∥
∥Y(τ)

∥
∥

Y
≤ 1

1 − λ
σ
(

β(t0)‖x0‖X ,0
)

(4.45)

The BIC property, in conjunction with (4.45) and Hypothesis (G1), implies that

tmax = +∞. Moreover, inequality (4.45) and Hypothesis (G1) imply that Σ̃ :=
(X , Y ,M

Ũ
,MD, φ̃, π̃ ,H) is RFC from the input u ∈ M

Ũ
(notice that Ũ = {0}).

It follows from (4.45) that the following inequality holds for all t ≥ t0:

∥
∥Y(t)

∥
∥

Y
≤ 1

1 − λ
σ
(

β(t0)‖x0‖X ,0
)

(4.46)

Inequality (4.46) shows that Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H) is Robustly Lagrange

Output Stable and Robustly Lyapunov Output Stable. Next, we show that Σ̃ :=
(X , Y ,M

Ũ
,MD, φ̃, π̃ ,H) satisfies the Robust Output Attractivity Property. Let

ε > 0, T ,R ≥ 0, and define, for h ≥ 0,

a(h,T ,R) := sup
{∥
∥Y(t0 + h)

∥
∥

Y
: t0 ∈ [0, T ],‖x0‖X ≤ R,d ∈ MD

}

(4.47)

Inequality (4.46) implies that a(h,T ,R) ≤ 1
1−λ

σ(max0≤t0≤T β(t0)R,0) for all

h ≥ 0. We define l(T ,R) := lim suph→+∞ a(h,T ,R). Clearly, there exists

τ(ε, T ,R) ≥ 0 such that a(h,T ,R) ≤ l(T ,R)+ε for all h ≥ τ(ε, T ,R). By virtue of

the weak semigroup property, for every (t0, x0, d) ∈ ℜ+ × X × MD with t0 ∈ [0, T ]
and ‖x0‖X ≤ R, there exists ξ ∈ π̃ (t0, x0, d) such that ξ ∈ [t0 + τ(ε, T ,R), r +
t0 + τ(ε, T ,R)]. It follows from (4.44) and the weak semigroup property that the

following inequality holds for all t ≥ ξ :
∥
∥Y(t)

∥
∥

Y
≤ σ

(

β(ξ)
∥
∥x(ξ)

∥
∥

X
, t − ξ

)

+ λ sup
ξ≤τ≤t

∥
∥Y(τ)

∥
∥

Y
(4.48)

Using Hypothesis (G1), (4.48), and the fact that a(h,T ,R) ≤ l(T ,R) + ε for

all h ≥ τ(ε, T ,R), we obtain for every (t0, x0, d) ∈ ℜ+ × X × MD with t0 ∈
[0, T ],‖x0‖X ≤ R, and h ≥ r + τ(ε, T ,R):

∥
∥Y(t0 + h)

∥
∥

Y
≤ Q(ε,T ,R,h) with

Q(ε,T ,R,h) := σ

[

max
ξ∈[0,r+T +τ(ε,T ,R)]

β(ξ)

µ(ξ)

(

P(ξ)

+ a

(
1

1 − λ
σ
(

max
0≤t0≤T

β(t0)R,0
)
))

, h − r − τ(ε, T ,R)

]

+ λl(T ,R) + λε (4.49)

It follows from definition (4.47) and inequality (4.49) that a(h,T ,R) ≤
Q(ε,T ,R,h) for all h ≥ r + τ(ε, T ,R). Therefore we must have l(T ,R) =
lim suph→+∞ a(h,T ,R) ≤ lim suph→+∞ Q(ε,T ,R,h) = λl(T ,R) + λε, which

implies l(T ,R) ≤ λ
1−λ

ε. This implies that Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H) satis-

fies the Robust Output Attractivity Property. Therefore, we have established the

following:
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Proposition 4.3 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) sat-

isfying Hypothesis (G1) and the WIOS property from the input u ∈ MU with

weight δ ∈ K+ and gain γ ∈ K∞. Consider Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H), where

Ũ = {0}, the control system which results from the feedback interconnection of the

system Σ := (X , Y ,MU ,MD, φ,π,H) with a static map H̃ : ℜ+ × X → U that

satisfies (4.43) for certain constant λ ∈ (0,1). Then Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π,H)

is RGAOS.

Next, assume that β ∈ K+ is bounded, i.e., the system Σ := (X , Y ,MU ,MD,

φ,π,H) satisfies the UWIOS property. Without loss of generality we may assume

that β(t) ≡ 1. Moreover, assume that the following hypothesis holds:

(G2) There exists a constant P ≥ 0 and a function a ∈ K∞ such that the inequality

‖x‖X ≤ a(‖H(t, x,u)‖Y ) + P holds for all (t, x,u) ∈ ℜ+ × X × U .

Then, the previous analysis in conjunction with (G2) implies that, for all (t0, x0, d) ∈
ℜ+ × X × MD and t ≥ t0, the following inequality holds:

∥
∥x(t)

∥
∥

X
≤ a

(
1

1 − λ
σ
(

‖x0‖X ,0
)
)

+ P (4.50)

Inequality (4.46) with β(t) ≡ 1 shows that Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H) is Uni-

formly Robustly Lagrange Output Stable and Uniformly Robustly Lyapunov Output

Stable.

Next, we show that Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H) satisfies the Uniform Robust

Output Attractivity Property. Let ε > 0, R ≥ 0, and define, for h ≥ 0,

a(h,R) := sup
{∥
∥Y(t0 + h)

∥
∥

Y
: t0 ≥ 0,‖x0‖X ≤ R,d ∈ MD

}

(4.51)

Inequality (4.46) with β(t) ≡ 1 implies that a(h,R) ≤ 1
1−λ

σ(R,0) for all h ≥ 0.

We define l(R) := lim suph→+∞ a(h,R). Clearly, there exists τ(ε,R) ≥ 0 such that

a(h,R) ≤ l(R) + ε for all h ≥ τ(ε,R). By virtue of the weak semigroup property,

for every (t0, x0, d) ∈ ℜ+ × X × MD with ‖x0‖X ≤ R, there exists ξ ∈ π̃(t0, x0, d)

such that ξ ∈ [t0 + τ(ε,R), r + t0 + τ(ε,R)]. It follows from (4.44) and the weak

semigroup property that the following inequality holds for all t ≥ ξ :
∥
∥Y(t)

∥
∥

Y
≤ σ

(∥
∥x(ξ)

∥
∥

X
, t − ξ

)

+ λ sup
ξ≤τ≤t

∥
∥Y(τ)

∥
∥

Y
(4.52)

Using (4.50), (4.52), and the fact that a(h,R) ≤ l(R) + ε for all h ≥ τ(ε,R), we

obtain, for every (t0, x0, d) ∈ ℜ+ × X × MD with t0 ∈ [0, T ],‖x0‖X ≤ R, and h ≥
r + τ(ε, T ,R),
∥
∥Y(t0 + h)

∥
∥

Y
≤ Q(ε,R,h),

Q(ε,R,h) := σ̃

(

a

(
1

1 − λ
σ
(

‖x0‖X ,0
)
)

+ P,h − r − τ(ε,R)

)

+ λl(R) + λε

(4.53)

It follows from (4.51) and (4.53) that a(h,R) ≤ Q(ε,R,h) for all h ≥ r + τ(ε,R).

Therefore we must have l(R) = lim suph→+∞ a(h,R) ≤ lim suph→+∞ Q(ε,R,h) =
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λl(R)+λε, which implies l(R) ≤ λ
1−λ

ε. Thus Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H) sat-

isfies the Uniform Robust Output Attractivity Property. Therefore, we have shown

the following:

Proposition 4.4 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) sat-

isfying Hypothesis (G2) and the UWIOS property from the input u ∈ MU with

weight δ ∈ K+ and gain γ ∈ K∞. Consider Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π̃ ,H), where

Ũ = {0}, the control system which results from the feedback interconnection of the

system Σ := (X , Y ,MU ,MD, φ,π,H) with a static map H̃ : ℜ+ × X → U that

satisfies (4.43) for certain constant λ ∈ (0,1). Then Σ̃ := (X , Y ,M
Ũ

,MD, φ̃, π,H)

is URGAOS.

Propositions 4.3 and 4.4 are important for two reasons:

(a) they allow us to obtain Lyapunov characterizations of external stability proper-

ties, and

(b) they allow us to prove (U)RGAOS by invoking the (U)WIOS property.

The following example illustrates how we can use (U)WIOS in order to prove

RGAOS.

Example 4.3.3 Consider the scalar system described by (4.36). In Example 4.3.2

we showed that system (4.36) satisfies the UWISS property with gain γ (s) :=
1
2
[exp(p−1s) − 1]2 and weight δ(t) = exp(pt) for every p > 0. Next, consider the

system

ẋ = −x + d
p

2
x exp(−pt) ln

(

1 + 2λ|x|
)

x ∈ ℜ, d ∈ [−1,1] (4.54)

where p > 0 and λ ∈ (0,1) are constants. The above system can be considered as

the feedback interconnection of system (4.36) with the static map

u = p

2
exp(−pt) ln

(

1 + 2λ|x|
)

(4.55)

Notice that inequality (4.43) holds. Moreover, Hypothesis (G2) holds. Therefore,

we can conclude that system (4.54) is URGAS.

4.4 External Stability Properties for Discrete-Time Systems

In this section we will restrict our attention to discrete-time systems for which the

output map is independent of the values of the input, i.e., H(t, x,u) = H(t, x). Fur-

thermore, we consider external stability properties for discrete-time systems (1.110)

under Hypotheses (L1–3) for which the partition π = {τi}∞i=0 is the set of nonnega-

tive integers Z+. This is a simplifying assumption, which allows an easier derivation
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of the results of this section. Consequently, a discrete-time system with π = Z+ will

be written as follows:

x(t + 1) = f
(

t, d(t), x(t), u(t)
)

Y(t) = H
(

t, x(t)
)

(4.56)

where (t, x, d,u) ∈ Z+ × X ×D ×U . We denote by x(t) the solution of (4.56) with

initial condition x(t0) = x0 corresponding to inputs (d,u) ∈ MD × MU .

The following proposition provides various characterizations of the WIOS prop-

erty for time-varying system (4.56), either under Hypotheses (L1–3) or under the

pair of Hypothesis (L1–3) and the following hypothesis:

(L5) For every pair of bounded sets S ⊂ X ×U , I ⊂ Z+ and for every ε > 0, the set

f (I ×D×S) is bounded, and there exists δ > 0 such that sup{‖f (t, d, x,u)−
f (t, d, y, v)‖X ;d ∈ D} < ε for all t ∈ I and (x,u), (y, v) ∈ S with ‖x −
y‖X + ‖u − v‖U < δ.

Remark about Hypothesis (L5) Hypothesis (L5) is “stronger” than Hypothesis (L4),

in the sense that the implication (L5) ⇒ (L4) holds. Hypothesis (L5) also implies

Hypothesis (L1). The proof of the implication (L5) ⇒ (L1) is made by defining the

following function:

a(T , s) := sup
{∥
∥f (t, d, x,u)

∥
∥

X
; t ∈ Z+, t ≤ T ,‖x‖X ≤ s, d ∈ D,‖u‖U ≤ s

}

which is well defined for all T , s ≥ 0. Moreover, for all T , s ≥ 0, the functions

a(·, s) and a(T , ·) are nondecreasing, and since f (t, d,0,0) = 0 ∈ X for all (t, d) ∈
Z+ × D, we also obtain a(T ,0) = 0 for all T ≥ 0. Finally, let ε > 0 and T ≥ 0. It

can be shown that Hypothesis (L5) guarantees the existence of δ := δ(ε, T ) > 0 such

that a(T , δ(ε, T )) < ε, and consequently we have lims→0+ a(T , s) = 0 for all T ≥ 0.

It turns out from Lemma 2.3 that there exist functions ζ ∈ K∞ and β ∈ K+ such that

a(T , s) ≤ ζ(β(T )s) for all T , s ≥ 0. Consequently, we obtain ‖f (t, d, x,u)‖X ≤
ζ(β(t)max{‖x‖X ,‖u‖U }) for all (t, x, d,u) ∈ Z+ × X × D × U , which directly

implies Hypothesis (L1).

Let X , Y be a pair of normed linear spaces. We denote by CU(Z+ × A;W),

where A ⊆ X , the set of all continuous mappings H : Z+ × A → W ⊆ Y with the

following property: “for every pair of bounded sets I ⊂ Z+, S ⊆ A and for every

ε > 0, the set H(I × S) is bounded, and there exists δ > 0 such that ‖H(t, x) −
H(t, x0)‖Y < ε for all t ∈ I and x, x0 ∈ S with ‖x − x0‖X < δ.” For example,

if Hypotheses (L1–4) hold for system (4.56) and system (4.56) is RGAOS, then

Proposition 3.1 implies that V ∈ CU(Z+ × X ;ℜ+).

Proposition 4.5 Consider system (4.56) under Hypotheses (L1–3) and (G). Then

the following statements are equivalent:

(i) There exist functions σ ∈ KL, β, δ ∈ K+, and ρ ∈ K∞ such that the following

estimate holds for all u ∈ MU , (t0, x0, d) ∈ Z+ × X × MD , and t ≥ t0:



162 4 External Stability: Notions and Characterizations

∥
∥H

(

t, x(t)
)∥
∥

Y

≤ max
{

σ
(

β(t0)‖x0‖X , t − t0
)

, sup
τ∈[t0,t]

σ
(

ρ
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

, t − τ
)
}

. (4.57)

(ii) System (4.56) satisfies the WIOS property.

(iii) There exist functions θ ∈ K∞ and p ∈ K+ such that the following system is

RGAOS:

x(t + 1) = f
(

t, d(t), x(t),p(t)θ
(∥
∥x(t)

∥
∥

X

)

d ′(t)
)

Y(t) = H
(

t, x(t)
)

x(t) ∈ X , Y (t) ∈ Y ,
(

d(t), d ′(t)
)

∈ D × BU [0,1], t ∈ Z+ (4.58)

where BU [0,1] := {u ∈ U ; ‖u‖U ≤ 1}.
(iv) There exist functions V : Z+ × X → ℜ+, a1, a2, a3 ∈ K∞, β,φ,µ ∈ K+ and

a constant λ ∈ (0,1) such that, for all (t, x, d,u) ∈ Z+ × X × D × U ,

a1

(∥
∥H(t, x)

∥
∥

Y
+ µ(t)‖x‖X

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖X

)

(4.59)

V
(

t + 1, f (t, d, x,u)
)

≤ λV (t, x) + a3

(

φ(t)‖u‖U

)

. (4.60)

Moreover, if Hypothesis (L5) holds, then V ∈ CU(Z+ × X ;ℜ+).

Proof (i) ⇒ (ii) By setting γ (s) := σ(ρ(s),0), the desired (4.1) is a consequence

of (4.57) and the previous inequality.

(ii) ⇒ (iii) By Corollary 4.1, there exist functions σ̃ ∈ KL, β, δ ∈ K+, and γ̃ ∈ N

such that the following estimate holds for all u ∈ MU , (t0, x0, d) ∈ ℜ+ × X × MD ,

and t ≥ t0:
∥
∥Y(t)

∥
∥

Y
+ µ(t)

∥
∥x(t)

∥
∥

X

≤ σ̃
(

β(t0)‖x0‖X , t − t0
)

+ sup
t0≤τ≤t

γ̃
(

δ(τ )
∥
∥u(τ)

∥
∥

U

)

(4.61)

By Lemma 3.2 there exists a ∈ K∞ such that γ̃ (rs) ≤ a(r)a(s) for all r, s ≥ 0. Let

λ ∈ (0,1) and define

θ(s) := a−1(s) and p(t) := a−1(λµ(t))

δ(t)
(4.62)

Notice that (4.62) guarantees that p(t)θ(‖x‖X ) ≤ 1
δ(t)

γ̃ −1(λµ(t)‖x‖X ). Moreover,

system (4.58) is the interconnection of the static map v(t) = p(t)θ(‖x(t)‖X ) with

the dynamic system

x(t + 1) = f
(

t, d(t), x(t), v(t)d ′(t)
)

Ỹ (t) =
(

H
(

t, x(t)
)

,µ(t)x
)

with x(t) ∈ X , Ỹ (t) ∈ Ỹ := Y × X , v(t) ∈ ℜ+, (d(t), d ′(t)) ∈ D × BU [0,1],
t ∈ Z+. Estimate (4.61) guarantees that the above system satisfies the WIOS prop-

erty from the input v ∈ Mℜ+ with gain γ̃ ∈ N and weight δ ∈ K+. Finally, no-

tice that (4.43) and Hypothesis (G1) hold for the output Ỹ (t) = (H(t, x(t)),µ(t)x).

Proposition 4.3 implies that system (4.58) is RGAOS.
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(iii) ⇒ (iv) Notice that since (4.56) satisfies Hypotheses (L1–3) (or (L1–3) and

(L5)), it follows that system (4.58) satisfies Hypotheses (L1–3) (or (L1–4)). Let

λ ∈ (0,1) and define c := − ln(λ). Theorems 2.1 and 3.1 imply the existence of

functions a1, a2 of class K∞ and β,µ of class K+ such that, for all t ≥ t0,

a1

(∥
∥Y(t)

∥
∥

Y
+ µ(t)

∥
∥x(t)

∥
∥

X

)

≤ exp
(

−2c(t − t0)
)

a2

(

β(t0)‖x0‖X

)

(4.63)

where x(t) denotes the solution of (4.58) with initial condition x(t0) = x0 corre-

sponding to inputs (d, d ′) ∈ MD ×MBU [0,1]. In case where (4.56) satisfies Hypothe-

ses (L1–3), we define

V (t0, x0) := sup
{

exp
(

c(t − t0)
)

a1

(∥
∥Y(t)

∥
∥

Y
+ µ(t)

∥
∥x(t)

∥
∥

X

)

:
t ≥ t0, (d, d ′) ∈ MD × MBU [0,1]

}

(4.64)

Definition (4.64), in conjunction with estimate (4.63), guarantees that inequal-

ity (4.59) holds. Moreover, exploiting the semigroup property, we obtain

V
(

t + 1, f (t, d, x,u)
)

≤ λV (t, x)

∀(t, x, d,u) ∈ Z+ × X × D × U with ‖u‖U ≤ p(t)θ
(

‖x‖X

)

(4.65)

In case where (4.56) satisfies Hypothesis (L5), Proposition 3.1 guarantees the ex-

istence of V ∈ CU(Z+ × X ;ℜ+) satisfying (4.59) and (4.65). Define, for all

(t, x,u) ∈ Z+ × X × U ,

ψ(t, x,u) := sup
{

V
(

t + 1, f (t, d, x,u)
)

;d ∈ D
}

(4.66)

Clearly, Hypothesis (L1) and inequality (4.59), in conjunction with Lemma 2.3,

imply the existence of functions ω ∈ K∞ and q ∈ K+ such that ψ(t, x,u) ≤
ω(q(t)‖x‖X ) + ω(q(t)‖u‖U ). Moreover, Lemma 2.3 guarantees the existence of

functions a3 ∈ K∞ and φ ∈ K+ such that ω(q(t)θ−1( s
p(t)

))+ω(q(t)s) ≤ a3(φ(t)s)

for all t, s ≥ 0. Combining the previous inequalities and definition (4.66), we obtain

sup

{

V
(

t + 1, f (t, d, x,u)
)

;d ∈ D,‖u‖U ≤ s,‖x‖X ≤ θ−1

(
s

p(t)

)}

≤ a3

(

φ(t)s
)

for all t, s ≥ 0 (4.67)

We next establish inequality (4.60), with a3 as previously, by considering the fol-

lowing two cases:

• ‖u‖U ≤ p(t)θ(‖x‖X ). In this case, inequality (4.60) is a direct consequence

of (4.65).

• ‖u‖U ≥ p(t)θ(‖x‖X ). In this case, inequality (4.60) is a direct consequence

of (4.67).

(iv) ⇒ (i) Consider the trajectory x(t) of (4.56) that corresponds to input (d,u) ∈
MD × MU with initial condition x(t0) = x0 ∈ X and define c := − log(λ) > 0,

V (t) = V (t, x(t)), and b(t) := exp(2ct)a3(φ(t)‖u(t)‖U ) for all t ≥ t0. Inequal-

ity (4.60) implies that V (t + 1) ≤ exp(−c)V (t) + exp(−2ct)b(t) for all t ≥ t0,

which, by an induction argument, yields
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V (t) ≤ exp
(

−c(t − t0)
)

V (t0) + exp(2c)

exp(c) − 1
exp

(

−c(t − t0)
)

× sup
t0≤τ≤t

(

exp(2cτ)a3

(

φ(τ)
∥
∥u(τ)

∥
∥

U

))

∀t ≥ t0 (4.68)

By Lemma 2.3, there exist functions ρ ∈ K∞ and δ ∈ K+ such that

a−1
2

(
exp(2c)

exp(c) − 1
exp(2ct)a3

(

φ(t)s
)
)

≤ ρ
(

δ(t)s
)

,

where a2 ∈ K∞ is the function involved in (4.59). The previous inequality, together

with (4.59), (4.68), and the definition σ(s, t) := 2a−1
1 (2 exp(−ct)a2(s)) ∈ KL, im-

plies (4.57). The proof is complete. �

The following proposition provides a sharper characterization of the IOS prop-

erty for the time-varying case (4.56), which holds only for discrete-time systems

with continuous dynamics. For continuous-time systems, the situation is more in-

volved since the finite escape time phenomenon can occur. Further research is re-

quired for the case of discrete-time systems with discontinuous dynamics.

Proposition 4.6 System (4.56) under Hypotheses (L1–3), (L5), and (G) satisfies the

WIOS property if and only if the “unforced” system

x(t + 1) = f
(

t, d(t), x(t),0
)

Y(t) = H
(

t, x(t)
) (4.69)

is RGAOS.

Proof Clearly, if system (4.56) satisfies the WIOS property, then the “unforced”

system (4.69) is RGAOS. Therefore it suffices to prove the converse statement.

Notice that by Hypothesis (L5) the “unforced” system (4.69) satisfies Hypothe-

sis (L4). Since the “unforced” system (4.69) is RGAOS, it follows by Proposition 3.1

that there exist functions V ∈ CU(Z+ × X ;ℜ+), a1, a2 of class K∞, and β̃ of class

K+ and constant c > 0 such that

a1

(∥
∥H(t, x)

∥
∥

Y

)

≤ V (t, x) ≤ a2

(

β̃(t)‖x‖X

)

∀(t, x) ∈ Z+ × X (4.70)

V
(

t + 1, f (t, d, x,0)
)

≤ exp(−c)V (t, x) ∀(t, x, d) ∈ Z+ × X × D (4.71)

Define the function

γ (r, s) := sup
{∣
∣V

(

t + 1, f (t, d, x,u)
)

− V
(

t + 1, f (t, d, x,0)
)∣
∣;

0 ≤ t ≤ r, d ∈ D,‖x‖X ≤ r,‖u‖U ≤ s
}

(4.72)

By virtue of the right-hand side of inequality (4.70) and Hypothesis (L1), it follows

that γ (r, s) < +∞ for all r, s ≥ 0. Moreover, definition (4.72) guarantees that for

all r, s ≥ 0, the mappings γ (r, ·) and γ (·, s) are nondecreasing with γ (r,0) = 0.

Finally, Hypothesis (L5), in conjunction with the fact that V ∈ CU(Z+ × X ;ℜ+),

guarantees that lims→0+ γ (r, s) = 0 for all r ≥ 0. Consequently, Lemma 2.3 guaran-

tees the existence of functions a3 ∈ K∞ and φ ∈ K+ such that γ (r, s) ≤ a3(φ(r)s)
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for all r, s ≥ 0. It follows by definition (4.72) that the following inequality holds for

all (t, x,u) ∈ Z+ × X × U :
∣
∣
∣ sup
d∈D

V
(

t + 1, f (t, d, x,u)
)

− sup
d∈D

V
(

t + 1, f (t, d, x,0)
)
∣
∣
∣

≤ a3

(

φ(t)‖u‖U

)

+ a3

(

φ
(

‖x‖X

)

‖u‖U

)

(4.73)

By Proposition 4.2 there exist functions µ ∈ K+ and a ∈ K∞ such that for every

(t0, x0, d,u) ∈ Z+ × X ×MD ×MU , the corresponding solution x(t) of (4.56) with

x(t0) = x0 satisfies

‖x(t)‖X

µ(t)
≤ max

{

a
(

‖x0‖X

)

, sup
τ∈[t0,t]

a
(∥
∥u(τ)

∥
∥

U

)
}

∀t ≥ t0 (4.74)

Using (4.71), (4.73), Lemmas 2.3, and 3.2, we obtain functions a5, a6 ∈ K∞ and

q ∈ K+ such that, for all (t, x, d,u) ∈ Z+ × X × D × U , it holds that

sup
d∈D

V
(

t + 1, f (t, d, x,u)
)

≤ exp(−c)V (t, x) + exp(−2ct)a5

(

q(t)‖u‖U

)

+ exp(−2ct)a6

(‖x‖X

µ(t)

)

a5

(

q(t)‖u‖U

)

(4.75)

Let (t0, x0, d,u) ∈ Z+ × X × MD × MU and consider the corresponding solution

x(t) of (4.56) with x(t0) = x0. Let V (t) := V (t, x(t)). By virtue of (4.74) and (4.75),

we obtain

V (t + 1) ≤ exp(−c)V (t) + exp(−2ct) sup
τ∈[t0,t]

a5

(

q(τ)
∥
∥u(τ)

∥
∥

U

)

+ exp(−2ct) sup
τ∈[t0,t]

(

a5

(

q(τ)
∥
∥u(τ)

∥
∥

U

))2

+ 1

2
exp(−2ct) sup

τ∈[t0,t]

(

a6

(

a
(∥
∥u(τ)

∥
∥

U

)))2

+ 1

2
exp(−2ct)

(

a6

(

a
(

‖x0‖X

)))2

or

V (t + 1) ≤ exp(−c)V (t) + exp(−2ct) sup
τ∈[t0,t]

ρ1

(

r(τ )
∥
∥u(τ)

∥
∥

U

)

+ exp(−2ct)ρ2

(

‖x0‖X

)

(4.76)

where ρ1(s) := a5(s)+ (a5(s))
2 + 1

2
(a6(a(s)))2, ρ2(s) := 1

2
(a6(a(s)))2, and r(t) :=

q(t)+1. Inequality (4.76), in conjunction with (4.70), directly implies, for all t ≥ t0,

a1

(∥
∥H

(

t, x(t)
)∥
∥

Y

)

≤ exp
(

−c(t − t0)
)

a2

(

β̃(t0)‖x0‖X

)

+ exp
(

−c(t − t0)
)

sup
τ∈[t0,t]

exp(2c)

exp(c) − 1
ρ1

(

r(τ )
∥
∥u(τ)

∥
∥

U

)

+ exp
(

−c(t − t0)
) exp(2c)

exp(c) − 1
ρ2

(

‖x0‖X

)

(4.77)
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Finally, (4.77) implies inequality (4.1) with σ(s, t) := 2a−1
1 (2 exp(−ct)a2(s) +

2 exp(−ct)
exp(2c)

exp(c)−1
ρ2(s)), β(t) := β̃(t) + 1, δ(t) := r(t), and γ (s) :=

2
exp(2c)

exp(c)−1
ρ1(s). The proof is complete. �

Example 4.4.1 Consider the following nonlinear, finite-dimensional, discrete-time,

time-varying system:

x1(t + 1) = d(t)x1(t)

x2(t + 1) = 2−td(t)
∣
∣x1(t)

∣
∣

1
2 + u(t)

Y (t) = H
(

t, x(t)
)

:= x2(t)

(4.78)

where x(t) := (x1(t), x2(t)) ∈ ℜ2, t ∈ Z+, d(t) ∈ [−2,2], and u(t) ∈ ℜ.

We next show that system (4.78) satisfies the WIOS property by showing that

system (4.78) with u ≡ 0 is RGAOS. Indeed, noticing that Hypotheses (L1–3), (L5),

and (G) are satisfied for system (4.78), the WIOS property is guaranteed by Propo-

sition 4.6.

Consider the trajectory x(t) of (4.78) with u ≡ 0 that corresponds to input d ∈
MD with initial condition x(t0) = x0 ∈ ℜ2. Since |d(t)| ≤ 2, it follows from (4.78)

that, for all t ≥ t0,
∣
∣x1(t + 1)

∣
∣ ≤ 2

∣
∣x1(t)

∣
∣ (4.79)

By induction and with (4.79), we obtain the following estimate for all t ≥ t0:
∣
∣x1(t)

∣
∣ ≤ 2t−t0

∣
∣x1(t0)

∣
∣ (4.80)

Using (4.78) with u ≡ 0, (4.80) and the fact that |d(t)| ≤ 2, we obtain, for all t ≥
t0 + 1,

∣
∣x2(t)

∣
∣ ≤ M exp

(

−c(t − t0)
)∣
∣x1(t0)

∣
∣
1/2

where c := ln(2)
2

and M := 2
√

2. Consequently, the following inequality holds for

all t ≥ t0:
∣
∣x2(t)

∣
∣ ≤ exp

(

−c(t − t0)
)

ρ
(∣
∣x(t0)

∣
∣
)

(4.81)

where ρ(s) := max{s,M√
s }. It follows from (4.81) that system (4.78) with u ≡ 0

is URGAOS.

It should be noted that although system (4.78) is guaranteed to satisfy the WIOS

property, we cannot determine the gain function or the weight function. This hap-

pens because we exploited the qualitative characterization of Proposition 4.6.

In order to be able to determine the gain and weight functions for the WIOS

property, one has to use comparison lemmas based on difference inequalities. The

following lemma illustrates this point.

Lemma 4.5 Suppose that there exist functions V : Z+ × X → ℜ+, W : Z+ × X ×
U → ℜ, β, δ ∈ K+, γ ∈ N , and a positive definite function ρ ∈ C0(ℜ+;ℜ+) such

that the following implications hold for all (k, x, d,u) ∈ Z+ × X × D × U :
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V (k, x) ≥ W(k,x,u) ⇒ V
(

k + 1, f (k, d, x,u)
)

≤ V (k, x) − ρ
(

V (k, x)
)

(4.82)

V (k, x) ≤ W(k,x,u) ⇒ V
(

k + 1, f (k, d, x,u)
)

≤ a
(

δ(k)‖u‖U

)

(4.83)

Then there exists σ ∈ KL such that, for all t ≥ t0,

V
(

t, x(t)
)

≤ max
{

σ
(

V
(

t0, x(t0)
)

, t − t0
)

, max
t0≤k≤t

σ
(

a
(

δ(k)
∥
∥u(k)

∥
∥

U

)

, t − k
)
}

Moreover, if there exist functions β ∈ K+ and a1, a2 ∈ K∞ such that

a1

(∥
∥H(t, x)

∥
∥

Y

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖X

)

∀(t, x) ∈ Z+ × X (4.84)

then, system (4.56) under Hypotheses (L1–3) satisfies the WIOS property with gain

γ (s) := a−1
1 (a(s)) and weight δ ∈ K+. Finally, if β(t) ≡ 1, then system (4.56) under

Hypotheses (L1–3) satisfies the UWIOS property with gain γ (s) := a−1
1 (a(s)) and

weight δ ∈ K+.

Proof Define, for all (k, s) ∈ Z+ × ℜ+ and t ∈ [k, k + 1),

g(s) := max
0≤y≤s

(

y − ρ(y)
)

(4.85)

σ̃ (s, k) := g(k)(s) := g ◦ · · · ◦ g
︸ ︷︷ ︸

k times

(s) and σ̃ (s,0) := s (4.86)

σ̃ (s, t) := (t − k)σ̃ (s, k + 1) + (k + 1 − t)σ̃ (s, k) (4.87)

Definition (4.85) implies that the function g ∈ N satisfies g(s) < s for all s > 0.

A simple contradiction argument shows that limk→+∞ g(k)(s) = 0 for all s ≥ 0.

Therefore, definitions (4.86) and (4.87) imply that σ̃ ∈ KL.

Consider the trajectory x(t) of (4.56) that corresponds to input (d,u) ∈ MD ×
MU with initial condition x(t0) = x0 ∈ X . First suppose that t ≥ t0 + 1. We distin-

guish the following cases:

Case 1: Assume that V (k, x(k)) ≥ W(k,x(k), u(k)) for all k = t0, . . . , t − 1. Then

using implication (4.82) and definitions (4.85), (4.86), we obtain, by using induc-

tion,

V
(

t, x(t)
)

≤ σ̃
(

V
(

t0, x(t0)
)

, t − t0
)

. (4.88)

Case 2: Assume that there exists k ∈ {t0, . . . , t − 1} with V (k, x(k)) < W(k, x(k),

u(k)). Let l := max{k ∈ {t0, . . . , t − 1} : V (k, x(k)) < W(k, x(k), u(k))}. If l <

t − 1, then it holds that V (k, x(k)) ≥ W(k,x(k), u(k)) for all k = l + 1, . . . , t − 1.

Therefore, by virtue of (4.88) we have

V
(

t, x(t)
)

≤ σ̃
(

V
(

l + 1, x(l + 1)
)

, t − l − 1
)

. (4.89)

On the other hand, (4.83) implies that V (l + 1, x(l + 1)) ≤ a(δ(l)‖u(l)‖U ).

Therefore, from (4.89) we obtain

V
(

t, x(t)
)

≤ σ̃
(

a
(

δ(l)
∥
∥u(l)

∥
∥

U

)

, t − l − 1
)

(4.90)
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Notice that inequality (4.90) holds for the case l = t − 1. Combining (4.89)

and (4.90), we obtain that, for all t ≥ t0 + 1,

V
(

t, x(t)
)

≤ max
{

σ
(

V
(

t0, x(t0)
)

, t − t0
)

, max
t0≤k≤t

σ
(

a
(

δ(k)
∥
∥u(k)

∥
∥

U

)

, t − k
)
}

where σ(s, t) := s for all (s, t) ∈ ℜ+×[0,1) and σ(s, t) := σ̃ (s, t −1) for all (s, t) ∈
ℜ+ ×[1,+∞). Finally, notice that the previous estimate holds for the case t = t0 as

well.

The rest of the proof is a direct consequence of the above estimate. �

Lemma 4.6 Suppose that there exist functions V : Z+ × X → ℜ+, W : Z+ ×
X → ℜ+, β, δ ∈ K+, and γ ∈ N and a constant λ ∈ (0,1) such that the solution

x(t) of (4.56) that corresponds to input (d,u) ∈ MD × MU with initial condition

x(t0) = x0 ∈ X satisfies the following inequality for all t ≥ t0:

V
(

t + 1, x(t + 1)
)

≤ λV
(

t, x(t)
)

+ λt−t0W(t0, x0) + a
(

δ(t)
∥
∥u(t)

∥
∥

U

)

(4.91)

Moreover, suppose that there exist functions β ∈ K+ and a1, a2 ∈ K∞ such that

a1(‖H(t, x)‖Y ) ≤ V (t, x)

V (t, x) + λ−1W(t, x) ≤ a2(β(t)‖x‖X )

}

∀(t, x) ∈ Z+ × X (4.92)

Then system (4.56) under Hypotheses (L1–3) satisfies the WIOS property with

gain γ (s) := a−1
1 ( 2

1−λ
a(s)) and weight β, δ ∈ K+. Finally, if β(t) ≡ 1, then sys-

tem (4.56) under Hypotheses (L1–3) satisfies the UWIOS property with gain γ (s) :=
a−1

1 (a(s)) and weight β, δ ∈ K+.

Proof Consider the trajectory x(t) of (4.56) that corresponds to input (d,u) ∈ MD ×
MU with initial condition x(t0) = x0 ∈ X . Using induction and (4.91), we obtain,

for all nonnegative integers k ≥ 0,

V
(

t0 + k, x(t0 + k)
)

≤ λkV
(

t0, x(t0)
)

+
k−1
∑

i=0

λk−1−i
(

λiW(t0, x0) + a
(

δ(t0 + i)
∥
∥u(t0 + i)

∥
∥

U

))

(4.93)

Using (4.93), we obtain, for all nonnegative integers k ≥ 0,

V
(

t0 + k, x(t0 + k)
)

≤ λk
(

V
(

t0, x(t0)
)

+ λ−1W(t0, x0)
)

+ 1

1 − λ
max

t0≤i≤t0+k−1
a
(

δ(i)
∥
∥u(i)

∥
∥

U

)

(4.94)

The rest of the proof is a direct consequence of the above estimate. �

Example 4.4.2 Again consider the nonlinear finite-dimensional discrete-time time-

varying system (4.78). In order to determine the gain and weight functions, we have

to consider the continuous function V (t, x) := exp(−t)|x1| + |x2|, which clearly

satisfies the following inequality for all (t, x, d,u) ∈ Z+ × ℜ2 × [−2,2] × ℜ:
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V
(

t + 1, dx1,2−td|x1|
1
2 + u

)

≤ exp(−t − 1)|d||x1| + 2−t |d||x1|
1
2 + |u|

≤ 2e−1 exp(−t)|x1| + 2−t+1|x1|
1
2 + |u| (4.95)

Let x(t) denote the solution of (4.78) initiated from x0 ∈ ℜ2 at time t0 ∈ Z+ and cor-

responding to (d,u) ∈ M[−2,2] × Mℜ. Notice that inequality (4.95), in conjunction

with (4.80), gives

V (t + 1) ≤ 2e−1V (t) + 2− t−t0
2 2|x0|

1
2 +

∣
∣u(t)

∣
∣ ∀t ≥ t0 (4.96)

Clearly, inequality (4.91) holds for λ = 2
e
, W(t, x) := 2|x|1/2, a(s) := s, and δ(t) ≡

1. Moreover, inequality (4.92) holds with a1(s) := s, β(t) ≡ 1, and a2(s) := 2s +
4
e
s1/2. We conclude from Lemma 4.6 that system (4.78) satisfies the UIOS property

with gain γ (s) := 2e
e−2

s.

Finally, we end this section by providing characterizations of the UIOS property

for system (4.56).

Proposition 4.7 Consider system (4.56) under Hypotheses (L1–3), (L5), (G),

and (G2). Suppose that (4.56) is T -periodic. Then the following statements are

equivalent:

(i) There exist functions σ ∈ KL and ρ ∈ N such that the following estimate holds

for all u ∈ MU , (t0, x0, d) ∈ Z+ × X × MD , and t ≥ t0:

∥
∥H

(

t, x(t)
)∥
∥

Y
≤ max

{

σ
(

‖x0‖X , t − t0
)

, sup
τ∈[t0,t]

σ
(

ρ
(∥
∥u(τ)

∥
∥

U

)

, t − τ
)
}

.

(4.97)

(ii) System (4.56) satisfies the UIOS property.

(iii) There exists a function θ ∈ K∞ such that the following system is URGAOS:

x(t + 1) = f
(

t, d(t), x(t), θ
(∥
∥H

(

t, x(t)
)∥
∥

Y

)

d ′(t)
)

Y(t) = H
(

t, x(t)
)

x(t) ∈ X , Y (t) ∈ Y ,
(

d(t), d ′(t)
)

∈ D × BU [0,1], t ∈ Z+ (4.98)

where BU [0,1] := {u ∈ U ; ‖u‖U ≤ 1}.
(iv) There exist functions V ∈ CU(Z+ × X ;ℜ+), which is T -periodic, and

a1, a2, a3 ∈ K∞ and a constant λ ∈ (0,1) such that, for all (t, x, d,u) ∈
Z+ × X × D × U ,

a1

(∥
∥H(t, x)

∥
∥

Y

)

≤ V (t, x) ≤ a2

(

‖x‖X

)

(4.99)

V
(

t + 1, f (t, d, x,u)
)

≤ λV (t, x) + a3

(

‖u‖U

)

. (4.100)

Proof (i) ⇒ (ii) The desired (4.1) is a consequence of (4.97) with γ (s) :=
σ(ρ(s),0).
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(ii) ⇒ (iii) Without loss of generality we may assume that the gain function γ

is of class K∞. Let λ ∈ (0,1) and define θ(s) := γ −1(λs). System (4.98) is the

feedback interconnection of the system

x(t + 1) = f
(

t, d(t), x(t), v(t)d ′(t)
)

Y(t) = H
(

t, x(t)
)

x(t) ∈ X , Y (t) ∈ Y , v(t) ∈ ℜ+,
(

d(t), d ′(t)
)

∈ D × BU [0,1], t ∈ Z+

with the static map v(t) = θ(‖H(t, x(t))‖Y ). Clearly, the above system satisfies the

UIOS property from the input v ∈ Mℜ+ . Finally, notice that (4.43) and Hypothe-

sis (G2) hold. Proposition 4.4 implies that system (4.98) is URGAOS.

(iii) ⇒ (iv) Since (4.56) satisfies Hypotheses (L1–3) and (L5), it follows that

system (4.98) satisfies Hypotheses (L1–4). Proposition 3.1 implies the existence

of mappings V ∈ CU(Z+ × X ;ℜ+),which is T -periodic, and a1, a2 ∈ K∞ and a

constant λ ∈ (0,1) such that inequality (4.99) holds and

V
(

t + 1, f (t, d, x,u)
)

≤ λV (t, x) ∀(t, x, d,u) ∈ Z+ × X × D × U

with ‖u‖U ≤ θ
(∥
∥H(t, x)

∥
∥

Y

)

(4.101)

Since the mappings f : Z+ × D × X × U → X and H : Z+ × X → Y are

T -periodic, from Hypotheses (L1), (L2), (L3), Fact I in Sect. 2.2, and Lemma 2.4,

there follows the existence of a ∈ K∞ such that

∥
∥f (t, d, x,u)

∥
∥

X
+

∥
∥H(t, x)

∥
∥

Y
≤ a

(

‖x‖X

)

+ a
(

‖u‖U

)

∀(t, x, d,u) ∈ Z+ × X × D × U (4.102)

Define, for all s ≥ 0,

ψ(s) := sup
{

V
(

t + 1, f (t, d, x,u)
)

− V
(

t + 1, f (t, d, x,0)
)

;
d ∈ D, t ≥ 0,‖u‖U ≤ s,

∥
∥H(t, x)

∥
∥

Y
≤ θ−1(s)

}

(4.103)

Clearly, Hypothesis (G2) and inequalities (4.99), (4.102) imply that the mapping

ψ : ℜ+ → ℜ+ is well defined, locally bounded, and nondecreasing. Moreover,

Hypotheses (L5), (G2) and the fact that V ∈ CU(Z+ × X ;ℜ+) guarantees that

lims→0+ ψ(s) = ψ(0) = 0. Consequently, Lemma 2.4 implies the existence of

a3 ∈ K∞ such that ψ(s) ≤ a3(s) for all s ≥ 0.

We next establish inequality (4.100), with a3 as previously, by considering the

following two cases:

• ‖u‖U ≤ θ(‖H(t, x)‖Y ). In this case inequality (4.100) is a direct consequence

of (4.101).

• ‖u‖U ≥ θ(‖H(t, x)‖Y ). In this case inequality (4.100) is a direct consequence

of (4.101) and (4.103).

(iv) ⇒ (i) Notice that inequalities (4.99), (4.100) guarantee that the assumptions

of Lemma 4.5 are satisfied with W(t, x,u) := 2
1−λ

a3(‖u‖U ), a(s) := 1+λ
1−λ

a3(s),

ρ(s) := 1−λ
2

s, and δ(t) ≡ 1. The proof is complete. �
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4.5 Transformations Preserving WIOS

The method of verifying external stability properties using transformations is used

frequently in Mathematical Control Theory and Stability Theory. Roughly speaking,

we want to verify the WIOS property for a system Σ which is the transformation of

another system Σ ′ (in the sense described in Sect. 1.6). Suppose that we can estab-

lish that Σ ′ satisfies the WIOS property (using another method, e.g., by solving the

differential (or difference) equations (or inequalities)). Then Σ satisfies the WIOS

property.

Proposition 4.8 Consider a control system Σ := (X , Y ,MU ,MD, φ,π,H) which

satisfies the BIC property and for which 0 ∈ X is a robust equilibrium point

from the input u ∈ MU . Suppose that Σ satisfies the WIOS property. Let Φ :
ℜ+ × X → X be a change of coordinates and q : ℜ+ × V → U be a transfor-

mation of V onto U , V ⊆ U . Then the system Σ ′ := (X , Y ,MV ,MD, φ′,π ′,H ′)

defined by (1.106), (1.107), (1.108) satisfies the WIOS property. Moreover, if Σ sat-

isfies the UWIOS property and there exists a ∈ K∞ such that (2.65) holds, then the

system Σ ′ := (X , Y ,MV ,MD, φ′,π ′,H ′) defined by (1.106), (1.107), (1.108) sat-

isfies the UWIOS property. Finally, if Σ satisfies the IOS property and there exists

ζ ∈ K∞ such that
∥
∥q(t, v)

∥
∥

U
≤ ζ

(

‖v‖U

)

∀(t, v) ∈ ℜ+ × V (4.104)

then, the system Σ ′ := (X , Y ,MV ,MD, φ′,π ′,H ′) defined by (1.106), (1.107),

(1.108) satisfies the IOS property.

Proof By Lemma 1.2, Σ ′ := (X , Y ,MV ,MD, φ′,π ′,H ′) is a deterministic con-

trol system which satisfies the BIC property. Moreover, 0 ∈ X is a robust equi-

librium point from the input v ∈ MV for Σ ′. By Lemma 2.8, the system Σ ′ :=
(X , Y ,MU ,MD, φ′,π ′,H ′) is RFC from the input v ∈ MV .

Finally, notice that by Definition 4.1, there exist functions σ ∈ KL, β, δ ∈ K+,

and γ ∈ N such that estimate (4.1) holds for all (t0, x0, d,u) ∈ ℜ+ × X ×MD ×MU

and t ≥ t0. Definitions (1.106) and (1.108), in conjunction with (4.1), imply that the

following estimate holds for all (t0, x0, d) ∈ ℜ+ × X × MD , v ∈ MV and t ≥ t0:

∥
∥H ′(t, φ′(t, t0, x0, v, d), v(t)

)∥
∥

Y

=
∥
∥H

(

t, φ
(

t, t0,Φ
−1(t0, x0),Qv,d

)

, q
(

t, v(t)
))∥

∥
Y

≤ σ
(

β(t0)
∥
∥Φ−1(t0, x0)

∥
∥

X
, t − t0

)

+ sup
t0≤τ≤t

γ
(

δ(τ )
∥
∥q

(

τ, v(τ )
)∥
∥

U

)

(4.105)

Since Φ : ℜ+ × X → X is a change of coordinates, it follows from Lemma 3.2

that there exist a ∈ K∞ and p ∈ K+ such that ‖Φ−1(t, x)‖X ≤ p(t)a(‖x‖X ) for

all (t, x) ∈ ℜ+ × X . Since q : ℜ+ × V → U is a transformation of V onto U , it

follows from Lemma 2.3 that there exist functions ζ ∈ K∞ and µ ∈ K+ such that

δ(t)‖q(t, v)‖U ≤ ζ(µ(t)‖v‖U ) for all (t, v) ∈ ℜ+ × V . Consequently, from (4.105)

we obtain
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∥
∥H ′

(

t, φ′(t, t0, x0, v, d), v(t)
)∥
∥

Y

≤ σ
(

β(t0)p(t0)a
(

‖x0‖X

)

, t − t0
)

+ sup
t0≤τ≤t

γ
(

ζ
(

µ(τ)
∥
∥v(τ)

∥
∥

U

))

(4.106)

The above inequality shows that the system Σ ′ := (X , Y ,MV ,MD, φ′,π ′,H ′) de-

fined by (1.106), (1.107), (1.108) satisfies the WIOS property.

All other cases are treated similarly. The proof is complete. �

Example 4.5.1 All linear time-varying systems described by ODEs

ẋ = A(t)x + B(t)u x ∈ ℜn, u ∈ U ⊆ ℜm (4.107)

where the matrices A(t) ∈ ℜn×n and B(t) ∈ ℜn×m have continuous components,

satisfy the UWISS property from the input u ∈ MU if and only if the system ẋ =
A(t)x, x ∈ ℜn, is URGAS. To see this, notice that if the system ẋ = A(t)x, x ∈ ℜn,

is URGAS then by Theorem 3.9, p. 143, in [17] there exist constants M,σ > 0 such

that the fundamental solution matrix of the system satisfies
∣
∣Φ(t, t0)

∣
∣ ≤ M exp

(

−σ(t − t0)
)

for all t ≥ t0 ≥ 0 (4.108)

The variations of constants formula for the solution of (4.107) implies that

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ )B(τ)u(τ) dτ (4.109)

Let δ ∈ K+ be a function that satisfies |B(t)| ≤ δ(t). Then by combining (4.109)

with (4.108) we obtain, for the solution of (4.107),
∣
∣x(t)

∣
∣ ≤ M exp

(

−σ(t − t0)
)∣
∣x(t0)

∣
∣ + Mσ−1 sup

t0≤τ≤t

(

δ(τ )
∣
∣u(τ)

∣
∣
)

(4.110)

Consequently, system (4.107) satisfies the UWISS property with gain function

γ (s) := Mσ−1s and weight δ ∈ K+.

By Proposition 4.8, it follows that the UWISS property holds for all nonlinear

systems of the form

ẋ = f (t, x,u) x ∈ ℜn, u ∈ U ⊆ ℜm (4.111)

which satisfy Hypotheses (H1), (H3), (H4) in Sect. 1.2 and for which there exist a

continuously differentiable change of coordinates Φ : ℜ+ × ℜn → ℜn satisfying
∣
∣Φ(t, x)

∣
∣ ≤ a

(

|x|
)

and
∣
∣Φ−1(t, x)

∣
∣ ≤ a

(

|x|
)

(4.112)

for all (t, x) ∈ ℜ+ × ℜn, for certain a ∈ K∞ and a continuous mapping p : ℜ+ ×
U → V with V ⊆ ℜm and p(t,0) = 0 for all t ≥ 0, for which the following system

of partial differential equations holds for all (t, x,u) ∈ ℜ+ × ℜn × U :

∂Φ

∂t
(t, x) + ∂Φ

∂x
(t, x)f (t, x,u) = A(t)Φ(t, x) + B(t)p(t, u) (4.113)

where the matrices A(t) ∈ ℜn×n and B(t) ∈ ℜn×m have continuous components,

and the system ẋ = A(t)x, x ∈ ℜn, is URGAS.
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4.6 Qualitative Characterizations of WIOS

Consider a system Σ := (X , Y ,MU ,MD, φ,π,H) with outputs H : ℜ+ ×
X → Y , which is Robustly Forward Complete from the input u ∈ MU and satis-

fies the following hypotheses:

(CON1) There exists a partition π = {Ti}∞i=0 of ℜ+with finite diameter such that

1. for each (t0, x0, u, d) ∈ ℜ+ × X × MU × MD , it holds that π ∩ (t0,+∞) ⊂
π(t0, x0, u, d), where π(t0, x0, u, d) is the set involved in Property 4 of Defini-

tion 1.1 (weak semigroup property),

2. for each bounded set S ⊂ X and for every (T ,R, ε) ∈ ℜ+ × ℜ+ × (0,+∞),

there exists δ > 0 such that sup{‖φ(τ, t0, x,u, d) − φ(τ, t0, x0,

v, d)‖X ;d ∈ MD, τ ∈ [t0, qπ (t0)]} < ε for all t0 ∈ [0, T ] ∩ π , x, x0 ∈ S, and

u,v ∈ M(BU [0,R]) ∩ MU with ‖x − x0‖X + supt0≤τ≤t ‖u(τ) − v(τ)‖U < δ,

3. for any sequences {di ∈ MD}∞i=0 and {ui ∈ MU }∞i=0, the mappings Pd : ℜ+ →
D and Pu : ℜ+ → U with Pd(t) := di(t), Pu(t) := ui(t) for all Ti ≤ t < Ti+1,

i = 0,1,2, . . ., belong to MD and MU , respectively.

(CON2) Complete Continuity of the Output Map: For every pair of bounded sets

I ⊂ ℜ+, S ⊂ X and for every ε > 0, there exists δ > 0 such that ‖H(t, x) −
H(t, x0)‖Y < ε for all t ∈ I and x, x0 ∈ S with ‖x − x0‖X < δ.

Hypothesis (CON2) is a standard continuity assumption, which can be verified

easily for a very wide class of systems. Hypothesis (CON1) is a technical hypothesis

that guarantees the following two properties:

(a) the continuity of the transition map with respect to the external input and the

initial state,

(b) the set of times that satisfies the semigroup property, i.e., the set π(t0, x0, u, d),

contains all members of the partition π = {Ti}∞i=0 greater than t0. Thus the par-

tition π = {Ti}∞i=0 can be used in order to discretize time for all initial con-

ditions and inputs. Notice that this requirement is automatically satisfied if

π(t0, x0, u, d) = [t0,+∞) (i.e., the case where the system is RFC from the input

u ∈ MU and satisfies the classical semigroup property).

Let us here remark one case where Hypothesis (CON1) is (generally) not satis-

fied, the case of control systems with variable sampling partition (1.57).

For systems satisfying Hypotheses (CON1), (CON2), the following result pro-

vides equivalent characterizations for the WIOS property.

Theorem 4.1 (Necessary and sufficient conditions for the WIOS property) Con-

sider a system Σ := (X , Y ,MU ,MD, φ,π,H) which is RFC from the input u ∈ MU

and satisfies Hypotheses (CON1), (CON2), (G). Moreover, suppose that 0 ∈ X is a

robust equilibrium point from the input u ∈ MU for Σ . The following statements are

equivalent:

(i) there exist functions σ ∈ KL, β,γ ∈ K+, and ρ ∈ K∞ such that the following

estimate holds for all u ∈ MU , (t0, x0, d) ∈ ℜ+ × X × MD , and t ≥ t0:
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∥
∥H

(

t, φ(t, t0, x0, u, d), u(t)
)∥
∥

Y

≤ max
{

σ
(

β(t0)‖x0‖X , t − t0
)

, sup
τ∈[t0,t]

σ
(

ρ
(

γ (τ)
∥
∥u(τ)

∥
∥

U

)

, t − τ
)
}

.

(4.114)

(ii) Σ satisfies the WIOS property from the input u ∈ MU .

(iii) Σ satisfies the 0-GAOS property.

Estimates of the form (4.114) (“fading memory estimates”) were first used by

Praly and Wang [21] for the formulation of exp-ISS and by Grüne [3, 4] for the

formulation of Input-to-State Dynamical Stability (ISDS) with H(t, x) = x and

β(t) ≡ γ (t) ≡ 1, which was proved to be qualitatively equivalent with (4.2) for

finite-dimensional continuous-time systems. It is clear that Theorem 4.1 shows that

for the WIOS property, the “fading memory” estimate (4.114) is qualitatively equiv-

alent to the “Sontag-like” estimate (4.1).

Proof of Theorem 4.1 Notice that the implications (i) ⇒ (ii) and (ii) ⇒ (iii) are

immediate. Thus we are left with the proof of the implication (iii) ⇒ (i).

By virtue of Proposition 4.2 and since (i) Hypothesis (G) holds, i.e., ũ ∈ MU for

all (u,λ) ∈ MU × ℜ+, where ũ is the input that satisfies ũ(t) = λu(t) for all t ≥ 0,

(ii) Σ is RFC from the input u ∈ MU , and (iii) 0 ∈ X is a robust equilibrium point

from the input u ∈ MU for Σ , there exist functions µ ∈ K+ and a ∈ K∞ such that

the following estimate holds for all (t0, x0, d,u) ∈ ℜ+ × X × MD × MU :

∥
∥φ(t, t0, x0, u, d)

∥
∥

X
≤ µ(t)a

(

‖x0‖X + sup
τ∈[t0,t]

∥
∥u(τ)

∥
∥

U

)

∀t ≥ t0 (4.115)

By virtue of Theorem 2.1 and since Σ := (X , Y ,MU ,MD, φ,π,H) satisfies the 0-

GAOS property, we guarantee the existence of functions σ ∈ KL and β ∈ K+ such

that the following estimate holds for all (t0, x0, d) ∈ ℜ+ × X × MD and t ≥ t0:
∥
∥H

(

t, φ(t, t0, x0, u0, d),0
)∥
∥

Y
≤ σ

(

β(t0)‖x0‖X , t − t0
)

(4.116)

Let π = {Ti}∞i=0 the partition of ℜ+ for which Hypothesis (CON1) is satisfied, and

let r > 0 be its diameter, i.e., r := sup{Ti+1 − Ti; i = 0,1,2, . . .} < +∞.

Let MU ⊆ MU be the cone of inputs u ∈ MU with supt≥0 ‖u(t)‖U < +∞, which

is a subset of the normed linear space MU of bounded functions u : ℜ+ → U with

norm ‖u‖MU := supt≥0 ‖u(t)‖U .

The proof is divided into two parts:

Part 1: We apply an abstract discretization technique, which provides an infinite-

dimensional discrete-time system satisfying the WIOS property.

Part 2: The solution of the discrete-time system obtained from the 1st part is related

to the solution of Σ , and we show that estimate (4.114) holds for all bounded inputs

u ∈ MU.

Since estimate (4.114) holds for all bounded inputs u ∈ MU, we conclude that Σ

satisfies the WIOS property.
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Part 1: Abstract Discretization

Define the normed linear space FX of bounded functions x : [0, r] → X with

norm ‖x‖FX := supθ∈[0,r] ‖x(θ)‖X . Let CMD and CMU denote the set of sequences

with values in MD and MU, respectively. For (i, x, d,u) ∈ Z+ × FX × MD × MU ,

where x(θ) ∈ X for θ ∈ [0, r], define

f (i, d, x,u) :=
{

φ(θ − r + Ti+1, Ti, x(r), u, d) θ ∈ [r − Ti+1 + Ti, r]
0 θ ∈ [0, r − Ti+1 + Ti]

(4.117)

a map, which is well defined and satisfies (see (4.115))

∥
∥f (i, d, x,u)

∥
∥

FX
≤ µ̃(i)a

(

‖x‖FX + sup
Ti≤s≤Ti+1

∥
∥u(s)

∥
∥

U

)

∀(i, x, d,u) ∈ Z+ × FX × MD × MU (4.118)

where µ̃(i) := maxTi≤t≤Ti+1
µ(t). By Hypothesis (CON1) and inequality (4.118) it

follows that f is completely continuous, i.e., satisfies the following hypothesis:

(CON3) For all bounded sets S ⊂ FX × MU and I ⊂ Z+ and for every ε > 0, the

set f (I × MD × S) is bounded, and there exists δ > 0 such that

sup
{∥
∥f (i, d, x,u) − f (i, d, x0, u0)

∥
∥

X
;d ∈ MD

}

< ε

for all i ∈ I , (x,u) ∈ S, and (x0, u0) ∈ S with ‖x − x0‖FX + ‖u − u0‖MU < δ.

Moreover, f (i, d,0,0) = 0 for all (i, d) ∈ Z+ × MD .

Define the normed linear space FY of bounded functions Y : [0, r] → Y with

norm ‖Y‖FY := supθ∈[0,r] ‖Y(θ)‖Y . Define the output map for (i, x) ∈ Z+ × FX:

H̃ (i, x) := H
(

max{0, Ti − r + θ}, x(θ)
)

θ ∈ [0, r] (4.119)

By virtue of Hypothesis (CON2) and the fact that the continuous map H : ℜ+ ×
X → Y maps bounded sets of ℜ+ × X into bounded sets of Y , it follows that H̃ is

completely continuous, i.e., satisfies the following hypothesis:

(CON4) For every pair of bounded sets I ⊂ Z+, S ⊂ FX and for every ε > 0, the set

H̃ (I × S) is bounded, and there exists δ > 0 such that ‖H̃ (i, x) − H̃ (i, x0)‖Y < ε

for all i ∈ I and x, x0 ∈ S with ‖x − x0‖X < δ. Moreover, H̃ (i,0) = 0 for all

t ∈ Z+.

Next consider the discrete-time system

xi+1 = f (i, di, xi, ui)

Yi = H̃ (i, xi)

(i, xi, Yi, di, ui) ∈ Z+ × FX × FY × MD × MU (4.120)

By virtue of all the above, the discrete-time system (4.120) satisfies Hypothe-

ses (L1–3) in Sect. 1.7. Using induction and the weak semigroup property for Σ , it

can be easily shown that, for every sequence {di}∞i=0 ∈ CMD , the solution of (4.120)
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with initial condition xi0 = x0 ∈ FX and corresponding to input {di}∞i=0 ∈ CMD and

ui ≡ 0 for all i ≥ i0 satisfies, for all i ≥ i0 + 1,

xi =
{

φ(θ − r + Ti, Ti0 , x0(r), u0,Pd) θ ∈ [r − Ti + Ti−1, r]
0 θ ∈ [0, r − Ti + Ti−1]

(4.121)

where Pd : ℜ+ → D with Pd(t) := di(t) for all Ti ≤ t < Ti+1, i = 0,1,2, . . . ,

which by Hypothesis (CON1) belongs to MD . Moreover, using (4.119) in conjunc-

tion with (4.121), we obtain, for all i ≥ i0 + 1,

‖Yi‖FY ≤ σ
(

β(Ti0)‖xi0‖FX,max{0;Ti − Ti0 − r}
)

(4.122)

Estimate (4.122) implies that system (4.120) satisfies the Robust Output Attractivity

Property (P3) of Definition 2.2. Thus by Lemmas 1.3, 1.4, and 2.1, system (4.120)

is RGAOS. Consequently, by virtue of Proposition 4.6 and Properties (CON3),

(CON4) above (which imply Hypotheses (L1–5) for (4.120)), we conclude that the

discrete-time system (4.120) satisfies the WIOS property.

Since the discrete-time system (4.120) satisfies the WIOS property, by Propo-

sition 4.5, there exist functions σ̃ ∈ KL, β̃, γ̃ ∈ K+, and ρ̃ ∈ K∞ such that for all

{ui ∈ MU}∞i=0 and (i0, x0, {di}∞i=0) ∈ Z+ ×FX×CMD , the following estimate holds

for all i ≥ i0 for the solution xi of (4.120) with initial condition xi0 = x0 and corre-

sponding to inputs {ui}∞i=0 ∈ CMU and {di}∞i=0 ∈ CMD :

∥
∥H̃ (i, xi)

∥
∥

FY
≤ max

{

σ̃
(

β̃(i0)‖x0‖FX, i − i0
)

,

sup
i0≤j≤i

σ̃
(

ρ̃
(

γ̃ (j) sup
τ≥0

∥
∥uj (τ )

∥
∥

U

)

, i − j
)}

(4.123)

Part 2: Proof of estimate (4.114)

Notice that definition (4.117) of the evolution map f of the discrete-time system

shows that the solution xi of (4.120) with arbitrary initial condition xi0 = x0 and

corresponding to arbitrary inputs {ui}∞i=0 ∈ CMU and {di}∞i=0 ∈ CMD coincides,

for all i ≥ i0 + 1, with the solution with arbitrary initial condition xi0 that satisfies

xi0(r) = x0(r) corresponding to inputs {di}∞i=0 ∈ CMD and {ũi}∞i=0 ∈ CMU with

ũj (t) = uj (t) for all t ∈ [Tj , Tj+1] and j = i0, i0 + 1, . . . , i − 1. Thus by (4.123)

it follows that for all {ui ∈ MU}∞i=0 and(i0, x0, {di}∞i=0) ∈ Z+ × FX × CMD , the

following estimate holds for all i ≥ i0 + 1 for the solution xi of (4.120) with initial

condition xi0 = x0 and corresponding to inputs {ui}∞i=0 ∈ CMU and {di}∞i=0 ∈ CMD :

∥
∥H̃ (i, xi)

∥
∥

FY
≤ max

{

σ̃
(

β̃(i0)
∥
∥x0(r)

∥
∥

X
, i − i0

)

,

sup
i0≤j≤i−1

σ̃
(

ρ̃
(

γ̃ (j) sup
Tj ≤s≤Tj+1

∥
∥uj (s)

∥
∥

U

)

, i − j
)}

(4.124)

Let arbitrary (d,u) ∈ MD × MU, (t0, x0) ∈ ℜ+ × X and consider the transition

map φ(t, t0, x0, u, d) of Σ . The definitions (4.117) and (4.119) of the evolution and

output maps f, H̃ of the discrete-time system (4.120) implies that the transition map

φ(t, t0, x0, u, d) of Σ satisfies the following identities for all i ≥ i0 + 1:
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x(t) = φ(t, t0, x0, u, d) = xi(t + r − Ti) ∀t ∈ [Ti−1, Ti]
Y(t) = H

(

t, φ(t, t0, x0, u, d)
)

= Yi(t + r − Ti) ∀t ∈ [Ti−1, Ti]

where Ti0 = qπ (t0), and xi denotes the solution of (4.120) with arbitrary initial

condition xi0 ∈ FX that satisfies xi0(r) = φ(Ti0 , t0, x0, u, d) and corresponding to

the constant inputs {ui ≡ u}∞i=0 ∈ CMU and {di ≡ d}∞i=0 ∈ CMD . Combining the

above identities with (4.125), we obtain, for all i ≥ i0 + 1,

sup
Ti−1≤t≤Ti

∥
∥Y(t)

∥
∥

Y
≤ max

{

σ̃
(

β̃(i0)
∥
∥xi0(r)

∥
∥

X
, i − i0

)

,

sup
i0≤j≤i−1

σ̃
(

ρ̃
(

γ̃ (j) sup
Tj ≤s≤Tj+1

∥
∥u(s)

∥
∥

U

)

, i − j
)}

(4.125)

Let β̄, γ̄ ∈ K+ be nondecreasing functions that satisfy β̄(Tj−1) ≥ β̃(j) and

γ̄ (Tj ) ≥ γ̃ (j) for all integers j ≥ 1. Estimate (4.125), in conjunction with the trivial

inequalities Ti0 − r ≤ t0 < Ti0 and the causality property for Σ (which shows that

Y(t) depends only on the values of u ∈ MU in the interval [t0, t]), implies (notice

that without loss of generality we may assume that σ(s, t) is of class K∞ for each

t ≥ 0)

∥
∥Y(t)

∥
∥

Y
≤ max

{

σ̃

(

β̄(t0)
∥
∥x(Ti0)

∥
∥

X
,
t − t0 − r

r

)

,

sup
t0≤τ≤t

σ̃

(

ρ̃
(

γ̄ (τ )
∥
∥u(τ)

∥
∥

U

)

,
t − τ

r

)}

∀t ≥ t0 + r (4.126)

Without loss of generality, we may assume that the function µ ∈ K+ involved

in (4.115) is nondecreasing. Inequality (4.115), in conjunction with (4.126), implies

the following estimate for all t ≥ t0 + r :

∥
∥Y(t)

∥
∥

Y
≤ max

{

σ̃

(

β̄(t0)µ(t0 + r)a
(

‖x0‖X + sup
t0≤τ≤t

∥
∥u(τ)

∥
∥

U

)

,
t − t0 − r

r

)

,

sup
t0≤τ≤t

σ̃

(

ρ̃
(

γ̄ (τ )
∥
∥u(τ)

∥
∥

U

)

,
t − τ

r

)}

(4.127)

It follows from Hypothesis (CON2) in conjunction with the fact that for every

bounded set S ⊂ ℜ+ × X , the set H(S) is bounded and Lemma 2.3 that there exists

a pair of functions ζ ∈ K∞ and δ ∈ K+ such that
∥
∥H(t, x)

∥
∥

Y
≤ ζ

(

δ(t)‖x‖X

)

∀(t, x) ∈ ℜ+ × X (4.128)

Without loss of generality we may assume that the function δ ∈ K+ involved

in (4.128) is nondecreasing. Combining the above inequality with estimate (4.115),

it follows that, for all t ∈ [t0, t0 + r],
∥
∥Y(t)

∥
∥

Y
≤ ζ

(

δ(t0 + r)µ(t0 + r)a
(

‖x0‖X + sup
t0≤τ≤t

∥
∥u(τ)

∥
∥

U

))

(4.129)
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Defining

ω(s, t) := exp(r − t)ζ(s) +
{

σ̃
(

s, t−r
r

)

if t > r

exp(r − t)σ̃ (s,0) if 0 ≤ t ≤ r
(4.130)

β̂(t) := β̄(t)
(

1 + µ(t + r)
)

+ δ(t + r)µ(t + r) (4.131)

and combining estimates (4.127) and (4.129), we obtain the following estimate for

all t ≥ t0:

∥
∥Y(t)

∥
∥

Y
≤ max

{

ω
(

β̂(t0)a
(

‖x0‖X + sup
t0≤τ≤t

∥
∥u(τ)

∥
∥

U

)

, t − t0

)

,

sup
t0≤τ≤t

ω
(

ρ̃
(

γ̄ (τ )
∥
∥u(τ)

∥
∥

U

)

, t − τ
)
}

(4.132)

Lemma 2.3 implies the existence of a pair of nondecreasing functions ã ∈ K∞ and

q ∈ K+ such that β̂(t)a(2s) ≤ ã(q(t)s) for all t, s ≥ 0. Since, for all t ≥ t0,

ω
(

β̂(t0)a
(

‖x0‖X + sup
t0≤τ≤t

∥
∥u(τ)

∥
∥

U

)

, t − t0

)

≤ max
{

ω
(

β̂(t0)a
(

2‖x0‖X

)

, t − t0
)

,ω
(

β̂(t0)a
(

2 sup
t0≤τ≤t

∥
∥u(τ)

∥
∥

U

)

, t − t0

)}

(4.133)

and β̂(t)a(2s) ≤ ã(q(t)s) for all t, s ≥ 0 with q ∈ K+ being nondecreasing,

from (4.133) we obtain

ω
(

β̂(t0)a
(

‖x0‖X + sup
t0≤τ≤t

∥
∥u(τ)

∥
∥

U

)

, t − t0

)

≤ max
{

ω̄
(

q(t0)‖x0‖X , t − t0
)

, sup
t0≤τ≤t

ω̄
(

q(τ)
∥
∥u(τ)

∥
∥

U
, t − τ

)
}

(4.134)

where ω̄(s, t) := ω(ã(s), t). Finally, let β(t) := 1+q(t)+ β̂(t), σ(s, t) := ω̄(s, t)+
ω(s, t), ρ(s) := s + ρ̃(s), and γ (t) := γ̄ (t)+ q(t). The previous definitions, in con-

junction with (4.132) and (4.134), imply estimate (4.114).

The proof is complete. �

It should be noticed that for systems satisfying Hypotheses (CON1), (CON2),

and (G), Theorem 4.1 gives qualitative characterizations for the WIOS property

which cannot be further weakened. On the other hand, Example 4.3.2 shows that

the result cannot be extended to the IOS property.

4.7 Lyapunov-Like Necessary and Sufficient Conditions for

WIOS

The main purpose of this section is to present necessary and sufficient Lyapunov-

like conditions for WIOS and IOS for certain types of systems. We start with the

finite-dimensional case.
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4.7.1 Control Systems Described by ODEs

In this section, we will restrict our attention to systems for which the output map is

independent of the values of the input, i.e., H(t, x,u) = H(t, x).

Theorem 4.2 Consider system (1.3) under Hypotheses (H1–5) and suppose that H :
ℜ+ × ℜn → ℜk is locally Lipschitz and independent of u ∈ U . Moreover, suppose

that the following hypotheses hold:

(H6) For every bounded I ⊆ ℜ+ and for every bounded S ⊂ ℜn × U , there exists a

constant L ≥ 0 such that
∣
∣f (t, x,u, d) − f (t, x, v, d)

∣
∣ ≤ L|u − v|

∀t ∈ I,∀(x,u, x, v) ∈ S × S,∀d ∈ D

(H7) U is a cone, i.e., for all u ∈ U and λ ≥ 0, it follows that (λu) ∈ U . Then, the

following statements are equivalent:

(a) System (1.3) is robustly forward complete (RFC) from the input u ∈ MU ,

and there exist functions σ ∈ KL, β, δ ∈ K+, and ζ ∈ K such that for all

(d,u) ∈ MD ×MU and (t0, x0) ∈ ℜ+ ×ℜn, the solution x(t) of (1.3) with

x(t0) = x0 corresponding to (d,u) ∈ MD × MU satisfies the following

estimate for all t ≥ t0:

∣
∣H

(

t, x(t)
)∣
∣

≤ max
{

σ
(

β(t0)|x0|, t − t0
)

, sup
t0≤τ≤t

σ
(

ζ
(

δ(τ )
∣
∣u(τ)

∣
∣
)

, t − τ
)
}

. (4.135)

(b) System (1.3) satisfies the WIOS property from the input u ∈ MU .

(c) There exist a locally Lipschitz function θ ∈ K∞ and functions φ,µ ∈ K+

such that the following system is RGAOS:

ẋ(t) = f

(

t, x(t),
θ(|x(t)|)

φ(t)
d ′(t), d(t)

)

Y(t) = H̃
(

t, x(t)
)

(4.136)

where ∆ := BU [0,1] × D, H̃ (t, x) := (H(t, x),µ(t)x) ∈ ℜk × ℜn.

(d) There exist a locally Lipschitz Lyapunov function V : ℜ+ × ℜn → ℜ+,

functions a1, a2, a3 of class K∞, and β, δ,µ of class K+ such that

a1

(∣
∣H(t, x)

∣
∣ + µ(t)|x|

)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ ℜ+ × ℜn (4.137)

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x) + a3

(

δ(t)|u|
)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D (4.138)

(e) System (1.3) is RFC from the input u ∈ MU , and there exist a locally Lip-

schitz Lyapunov function V : ℜ+ ×ℜn → ℜ+, functions a1, a2, ζ of class

K∞, β, δ of class K+, and a locally Lipschitz positive definite function
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ρ : ℜ+ → ℜ+ such that

a1

(∣
∣H(t, x)

∣
∣
)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ ℜ+ × ℜn (4.139)

V 0
(

t, x;f (t, x,u, d)
)

≤ −ρ
(

V (t, x)
)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D with ζ
(

δ(t)|u|
)

≤ V (t, x)

(4.140)

(f) System (1.3) is RFC from the input u ∈ MU , and system (1.3) with u ≡ 0

is RGAOS.

Moreover, if there exist functions p ∈ K∞ and µ ∈ K+ and a constant R ≥ 0 such

that p(µ(t)|x|) ≤ V (t, x) + R for all (t, x) ∈ ℜ+ × ℜn, then the requirement that

(1.3) is RFC from the input u ∈ MU is not needed in statement (e) above.

The proof of Theorem 4.2 relies on the following lemma, which shows how Lya-

punov functions can be used in order to prove the WIOS property and determine the

weight and gain functions.

Lemma 4.7 Consider system (1.3) under Hypotheses (H1–4) and suppose that it is

RFC from the input u ∈ MU . Furthermore, suppose that there exist locally Lipschitz

functions V : ℜ+ ×ℜn → ℜ+, a1, a2, ζ of class K∞, β, δ of class K+, and a locally

Lipschitz positive definite function ρ : ℜ+ → ℜ+ such that inequalities (4.139),

(4.140) hold.

Then, system (1.3) satisfies the WIOS property with gain γ (s) := a−1
1 (ζ(s)) and

weight δ. Furthermore, there exists σ ∈ KL such that statement (a) of Theorem 4.2

holds. Moreover, if β(t) ≡ 1, then (1.3) satisfies the UWIOS property with gain

γ (s) := a−1
1 (ζ(s)) and weight δ. Finally, if there exist functions a ∈ K∞ and µ ∈

K+ and a constant R ≥ 0 such that a(µ(t)|x|) ≤ V (t, x) + R for all (t, x) ∈ ℜ+ ×
ℜn, then, the requirement that (1.3) is RFC from the input u ∈ MU is not needed.

Proof Consider a solution x(t) of (1.3) under Hypotheses (H1–4) corresponding to

arbitrary (d,u) ∈ MD × MU with initial condition x(t0) = x0 ∈ ℜn. Clearly, the so-

lution exists for t ∈ [t0, tmax), where tmax ∈ (t0,+∞] is the maximal existence time

of the solution. Notice that the mapping t → V (t, x(t)) is absolutely continuous on

[t0, tmax) and we have

d

dt
V

(

t, x(t)
)

= V 0
(

t, x(t);f
(

t, x(t), u(t), d(t)
))

a.e. on [t0, tmax) (4.141)

where V 0(t, x;v) := lim suph→0+
V (t+h,x+hv)−V (t,x)

h
. Indeed, notice that, for all

t ∈ [t0, tmax)\I , where I ⊂ [t0, tmax) is the set of zero Lebesgue measure such

that D+x(t) = limh→0+ h−1(x(t + h) − x(t)), or d
dt

V (t, x(t)) is not defined on

I , or D+x(t) 	= f (t, x(t), u(t), d(t)), we get, for all sufficiently small h > 0 and all

t ∈ [t0, tmax)\I ,

x(t + h) − x(t) − hD+x(t) = hyh (4.142)
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where

yh =
x(t + h) − x(t)

h
− D+x(t)

Since limh→0+
x(t+h)−x(t)

h
= D+x(t), we obtain that yh → 0 as h → 0+. Notice

that since V : ℜ+ × ℜn → ℜ+ is locally Lipschitz, we have

V 0
(

t, x(t);D+x(t)
)

= lim sup
h→0+

V (t + h,x(t) + hD+x(t)) − V (t, x(t))

h

= lim sup
h→0+

V (t + h,x(t) + hD+x(t) + hyh) − V (t, x(t))

h

The above equality, in conjunction with (4.142) and the facts that d
dt

V (t, x(t)) =
lim suph→0+

V (t+h,x(t+h))−V (t,x(t))
h

and D+x(t) = f (t, x(t), u(t), d(t)) for all t ∈
[t0, tmax)\I , implies (4.141).

It follows from Lemma 2.14 and inequalities (4.140), (4.141) that there exists

σ̃ ∈ KL with σ̃ (s,0) = s for all s ≥ 0 such that, for all t ∈ [t0, tmax),

V
(

t, x(t)
)

≤ max
{

σ̃
(

V (t0, x0), t − t0
)

, sup
t0≤τ≤t

σ̃
(

ζ
(

δ(τ )
∣
∣u(τ)

∣
∣
)

, t − τ
)
}

(4.143)

Next, we distinguish the following cases:

1. If (1.3) is RFC, then (4.143) holds for all t ≥ t0. It follows from (4.143)

and (4.139) that (4.1) holds with γ (s) := a−1
1 (ζ(s)) (recall that σ̃ (s,0) = s for

all s ≥ 0). Moreover, it follows from (4.143) and (4.139) that statement (a) of

Theorem 4.2 holds with σ(s, t) := a−1
1 (σ̃ (a2(s), t)).

2. If there exist functions a ∈ K∞ and µ ∈ K+ and a constant R ≥ 0 such that

a(µ(t)|x|) ≤ V (t, x) + R for all (t, x) ∈ ℜ+ × ℜn, then (4.143), in conjunction

with (4.139) and the fact that σ̃ (s,0) = s for all s ≥ 0, implies the following

estimate:

∣
∣x(t)

∣
∣ ≤ 1

µ(t)
a−1

(

R + a2

(

β(t0)|x0|
)

+ sup
t0≤τ≤t

ζ
(

δ(τ )
∣
∣u(τ)

∣
∣
)
)

(4.144)

for all t ∈ [t0, tmax). Estimate (4.144), in conjunction with the BIC property,

implies that tmax = +∞. Moreover, (4.144) and Definition 1.4 show that sys-

tem (1.3) is RFC from the input u ∈ MU , since we have, for all r, T ≥ 0,

sup
{∣
∣x(t0 + s)

∣
∣; s ∈ [0, T ], |x0| ≤ r, t0 ∈ [0, T ], (d,u) ∈ MD × MU ,

sup
0≤t

∣
∣u(τ)

∣
∣ ≤ r

}

≤ 1

min0≤t≤2T µ(t)
a−1

(

R + a2

(

r max
0≤t≤T

β(t)
)

+ ζ
(

r max
0≤t≤2T

δ(t)
))

< +∞

The proof is complete. �

Proof of Theorem 4.2 We prove implications (a) ⇒ (b), (b) ⇒ (c), (c) ⇒ (d),

(d) ⇒ (e), and (e) ⇒ (a). The equivalence between (f) and (b) is a direct conse-

quence of Theorem 4.1.
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(a) ⇒ (b): Suppose that there exist functions σ ∈ KL, β, δ ∈ K+, ζ ∈ K∞ such

that the estimate (4.135) holds for all (d,u) ∈ MD × MU , (t0, x0) ∈ ℜ+ × ℜn and

t ≥ t0. If we set γ (s) := σ(ζ(s),0) (that obviously is of class N ), the desired (4.1)

is a consequence of (4.135) and the previous definition. Thus statement (b) holds.

(b) ⇒ (c): By virtue of Corollary 4.1 and Hypothesis (H7), it follows that the

system

ẋ(t) = f
(

t, x(t), v(t)d ′(t), d(t)
)

Y(t) = H̃
(

t, x(t)
)

(4.145)

where ∆ := BU [0,1] × D, H̃ (t, x) := (H(t, x),µ(t)x) ∈ ℜk × ℜn, and v ∈ Mℜ+

satisfies the WIOS property from the input v ∈ Mℜ+ . More specifically, there exist

functions µ,β, δ ∈ K+, σ̃ ∈ KL, and γ̃ ∈ N such that (4.42) holds for the solutions

of (4.145) for all v ∈ Mℜ+ , (t0, x0, (d
′, d)) ∈ ℜ+ × X × M∆, and t ≥ t0. Without

loss of generality we may assume that γ̃ ∈ K∞. By virtue of Lemma 3.2 we obtain

that there exists κ ∈ K∞ such that γ̃ (rs) ≤ κ(r)κ(s) for all (r, s) ∈ (ℜ+)2. Let

φ(t) := δ(t)κ−1(
µ(t)

2
), and let θ ∈ K∞ be a locally Lipschitz function that satisfies

θ(s) ≤ κ−1(s) for all s ≥ 0. The previous definitions imply that

θ(|x|)
φ(t)

≤ 1

δ(t)
γ̃ −1

(
µ(t)

2
|x|

)

∀(t, x) ∈ ℜ+ × ℜn (4.146)

Finally, the reader should notice that system (4.136) is the feedback interconnec-

tion of system (4.145) with the static map v(t) := θ(|x(t)|)
φ(t)

. The result follows from

Proposition 4.3 and inequality (4.146).

(c) ⇒ (d): Suppose that (4.136) is RGAOS. Hypotheses (H1–7) for system (1.3)

guarantee that Hypotheses (H1–5) hold for system (4.136). Therefore, Theorem 3.5

implies that there exists a locally Lipschitz mapping (t, x) ∈ ℜ+ × ℜn → V (t, x) ∈
ℜ+ with the following properties:

– There exist functions a1, a2 ∈ K∞ and β ∈ K+ such that (4.137) holds.

– It holds that

V 0

(

t, x;f
(

t, x,
θ(|x|)
φ(t)

d ′, d

))

≤ −V (t, x)

∀
(

t, x, d ′, d
)

∈ ℜ+ × ℜn × ∆. (4.147)

Notice that inequality (4.147) implies the following inequality:

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D with φ(t)|u| ≤ θ
(

|x|
)

(4.148)

Using definition (2.128) and Hypothesis (H6), we obtain, for all (t, x,u, d) ∈ ℜ+ ×
ℜn × U × D,

∣
∣V 0

(

t, x;f (t, x,u, d)
)

− V 0
(

t, x;f (t, x,0, d)
)∣
∣ ≤ M

(

t + |x| + |u|
)

|u| (4.149)

for certain nondecreasing function M : ℜ+ → ℜ+. Define

ψ(t, s) := sup
{

M
(

t + |x| + |u|
)

|u|; |x| ≤ θ−1
(

φ(t)s
)

, |u| ≤ s
}

(4.150)

Without loss of generality we may assume that the function φ ∈ K+ is nondecreas-

ing. Clearly, ψ : ℜ+ × ℜ+ → ℜ+ is a mapping with ψ(t,0) = 0 for all t ≥ 0 and

such that
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(i) for each fixed t ≥ 0, the mapping ψ(t, ·) is nondecreasing;

(ii) for each fixed s ≥ 0, the mapping ψ(·, s) is nondecreasing; and

(iii) lims→0+ ψ(t, s) = 0 for all t ≥ 0.

Hence, by employing Lemma 2.3 we obtain functions a3 ∈ K∞ and δ ∈ K+ such

that ψ(t, s) ≤ a3(δ(t)s).

We next establish inequality (4.138), with a3 as previously, by considering the

following two cases:

• θ−1(φ(t)|u|) ≤ |x|. In this case inequality (4.138) is a direct consequence

of (4.148).

• θ−1(φ(t)|u|) ≥ |x|. In this case, by virtue of inequalities (4.148), (4.149), defini-

tion (4.150), and the definition of a3, we have

V 0
(

t, x;f (t, x,u, d)
)

≤ V 0
(

t, x;f (t, x,0, d)
)

+ ψ
(

t, |u|
)

≤ −V (t, x) + a3

(

δ(t)|u|
)

which implies (4.138).

(d) ⇒ (e): Notice that (4.138) implies (4.140) with ζ(s) := 2a3(s) and ρ(s) :=
1
2
s. The fact that system (1.3) is RFC from the input u ∈ MU follows directly from

Lemma 4.7.

(e) ⇒ (a): Follows directly from Lemma 4.7.

The proof is complete. �

Next, we present necessary and sufficient conditions for the UIOS property.

Theorem 4.3 Consider system (1.3) under Hypotheses (H1–7) and suppose that

H : ℜ+ × ℜn → ℜk is locally Lipschitz and independent of u ∈ U . Moreover, sup-

pose that (1.3) is T -periodic and that Hypothesis (G2) holds. Then the following

statements are equivalent:

(a) System (1.3) is robustly forward complete (RFC) from the input u ∈ MU , and

there exist functions σ ∈ KL and ζ ∈ K such that for all (d,u) ∈ MD ×MU and

(t0, x0) ∈ ℜ+ × ℜn, the solution x(t) of (1.3) with x(t0) = x0 corresponding to

(d,u) ∈ MD ×MU satisfies estimate (4.135) with β(t) = δ(t) ≡ 1 for all t ≥ t0.

(b) System (1.3) satisfies the UIOS property from the input u ∈ MU .

(c) There exist a locally Lipschitz function θ ∈ K∞ and functions φ,µ ∈ K+ such

that the following system is RGAOS:

ẋ(t) = f
(

t, x(t), θ
(∣
∣H(t, x)

∣
∣
)

d ′(t), d(t)
)

Y(t) = H
(

t, x(t)
)

(4.151)

where ∆ := BU [0,1] × D.

(d) There exist a T -periodic locally Lipschitz Lyapunov function V : ℜ+ × ℜn →
ℜ+ and functions a1, a2, a3 of class K∞ such that

a1

(∣
∣H(t, x)

∣
∣
)

≤ V (t, x) ≤ a2

(

|x|
)

∀(t, x) ∈ ℜ+ × ℜn (4.152)

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x) + a3

(

|u|
)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D. (4.153)
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(e) There exist a locally Lipschitz Lyapunov function V : ℜ+ × ℜn → ℜ+, func-

tions a1, a2, ζ of class K∞, and a locally Lipschitz positive definite function

ρ : ℜ+ → ℜ+ such that

a1

(∣
∣H(t, x)

∣
∣
)

≤ V (t, x) ≤ a2

(

|x|
)

∀(t, x) ∈ ℜ+ × ℜn (4.154)

V 0
(

t, x;f (t, x,u, d)
)

≤ −ρ
(

V (t, x)
)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D with ζ
(

|u|
)

≤ V (t, x). (4.155)

Proof of Theorem 4.3 We prove implications (b) ⇒ (c), (c) ⇒ (d). All other impli-

cations are proved in exactly the same way as in the proof of Theorem 4.2.

(b) ⇒ (c): By Hypothesis (H7) it follows that the system

ẋ(t) = f
(

t, x(t), v(t)d ′(t), d(t)
)

Y(t) = H
(

t, x(t)
)

(4.156)

where ∆ := BU [0,1] × D and v ∈ Mℜ+ , satisfies the UIOS property from the input

v ∈ Mℜ+ . More specifically, there exist functions σ ∈ KL and γ ∈ N such that (4.2)

holds with β(t) ≡ 1 for the solutions of (4.156) for all v ∈ Mℜ+ , (t0, x0, (d
′, d)) ∈

ℜ+ × X ×M∆, and t ≥ t0. Without loss of generality we may assume that γ ∈ K∞.

Let θ ∈ K∞ be a locally Lipschitz function that satisfies θ(s) ≤ γ −1( 1
2
s) for all

s ≥ 0. The previous definitions imply that

θ
(∣
∣H(t, x)

∣
∣
)

≤ γ −1

(
1

2

∣
∣H(t, x)

∣
∣

)

∀(t, x) ∈ ℜ+ × ℜn (4.157)

Finally, notice that system (4.151) is the feedback interconnection of system (4.156)

with the static map v(t) := θ(|H(t, x(t))|). The result follows from Proposition 4.4

and inequality (4.157).

(c) ⇒ (d): Suppose that (4.151) is URGAOS. Hypotheses (H1–7) for system (1.3)

guarantee that Hypotheses (H1–5) hold for system (4.151). Therefore, Theorem 3.5

implies that there exists a T -periodic locally Lipschitz mapping (t, x) ∈ ℜ+ ×ℜn →
V (t, x) ∈ ℜ+ with the following properties:

– there exist functions a1, a2 ∈ K∞ such that (4.152) holds.

– it holds that, for all (t, x, d ′, d) ∈ ℜ+ × ℜn × ∆,

V 0
(

t, x;f
(

t, x, θ
(∣
∣H(t, x)

∣
∣
)

d ′, d
))

≤ −V (t, x). (4.158)

Notice that inequality (4.158) implies the following inequality:

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D with |u| ≤ θ
(∣
∣H(t, x)

∣
∣
)

(4.159)

Using definition (2.128), the facts that (1.3) is T -periodic and that V is T -periodic

and Hypothesis (H6), we obtain, for all (t, x,u, d) ∈ ℜ+ × ℜn × U × D,
∣
∣V 0

(

t, x;f (t, x,u, d)
)

− V 0
(

t, x;f (t, x,0, d)
)∣
∣ ≤ M

(

|x| + |u|
)

|u| (4.160)

for certain nondecreasing function M : ℜ+ → ℜ+. Define

ψ(s) := sup
{

M
(

|x| + |u|
)

|u|; |x| ≤ a
(

θ−1(s)
)

+ P, |u| ≤ s
}

(4.161)
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where a ∈ K∞ and P ≥ 0 are the function and constant, respectively, involved in

Hypothesis (G1). By employing Lemma 2.4, we obtain a function a3 ∈ K∞ such

that ψ(s) ≤ a3(s).

We next establish inequality (4.153), with a3 as previously, by considering the

following two cases:

• |u| ≤ θ(|H(t, x)|). In this case inequality (4.153) is a direct consequence

of (4.159).

• |u| ≥ θ(|H(t, x)|). In this case, by virtue of inequalities (4.159), (4.160), def-

inition (4.161), Hypothesis (G1), and the definition of a3, we have V 0(t, x;
f (t, x,u, d)) ≤ V 0(t, x;f (t, x,0, d)) + ψ(|u|) ≤ −V (t, x) + a3(|u|), which im-

plies (4.153).

The proof is complete. �

Using Proposition 4.2 and Theorem 4.2, we obtain the following characterization

for the RFC property from the input u ∈ MU .

Corollary 4.2 Consider system (1.3) under Hypotheses (H1–3) and (H5–7). Then

the following statements are equivalent:

(a) System (1.3) is robustly forward complete (RFC) from the input u ∈ MU .

(b) There exist a locally Lipschitz function V : ℜ+ × ℜn → ℜ+, functions a1, a2,

a3 of class K∞, and β, δ,µ of class K+ such that

a1

(

µ(t)|x|
)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ ℜ+ × ℜn (4.162)

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x) + a3

(

δ(t)|u|
)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D. (4.163)

(c) There exist a locally Lipschitz function V : ℜ+ × ℜn → ℜ+, functions a1, a2,

a3 of class K∞, and β, δ,µ,p,q of class K+ such that

a1

(

µ(t)|x|
)

− p(t) ≤ V (t, x) ≤ a2

(

β(t)|x|
)

+ p(t),

∀(t, x) ∈ ℜ+ × ℜn (4.164)

V 0
(

t, x;f (t, x,u, d)
)

≤
(

q(t) + a3

(

δ(t)|u|
))

V (t, x) + a3

(

δ(t)|u|
)

∀(t, x,u, d) ∈ ℜ+ × ℜn × U × D. (4.165)

Proof The equivalence between (a) and (b) is a direct consequence of Proposi-

tion 4.2 and Theorem 4.2. Implication (b) ⇒ (c) is obvious. We prove implication

(c) ⇒ (a).

Let T ,R ≥ 0 arbitrary and consider the solution x(t) of (1.3) corresponding to

arbitrary (d,u) ∈ MD × MU with initial condition x(t0) = x0 ∈ ℜn with t0 ∈ [0, T ]
satisfying |x0| ≤ R, supt≥0 |u(t)| ≤ R. Clearly, the solution exists for t ∈ [t0, tmax),

where tmax ∈ (t0,+∞] is the maximal existence time of the solution. Exactly as in

the proof of Lemma 4.7 and using (4.165), we may establish that, for almost all

t ∈ [t0, tmax),
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d

dt
V

(

t, x(t)
)

≤
(

q(t) + a3

(

δ(t)R
))

V
(

t, x(t)
)

+ a3

(

δ(t)R
)

(4.166)

For all t ∈ [t0, t0 + T ] ∩ [t0, tmax), it follows from (4.166) that

d

dt
V

(

t, x(t)
)

≤ A(T ,R)V
(

t, x(t)
)

+ B(T ,R) a.e. on [t0, tmax) (4.167)

where

A(T ,R) := max
0≤t≤2T

(

q(t) + a3

(

δ(t)R
))

and

B(T ,R) := max
0≤t≤2T

a3

(

δ(t)R
)

.

Using the absolutely continuous function W(t) := exp(−(t − t0)A(T ,R))V (t, x(t))

and (4.167), we establish that, for all t ∈ [t0, t0 + T ] ∩ [t0, tmax), it holds that

d

dt
W(t) ≤ exp

(

−(t − t0)A(T ,R)
)

B(T ,R) a.e. on [t0, tmax) (4.168)

Using the fact that W(t) := exp(−(t − t0)A(T ,R))V (t, x(t)) is absolutely continu-

ous and (4.168), we obtain

V
(

t, x(t)
)

≤ exp
(

T A(T ,R)
)

V (t0, x0) + exp
(

T A(T ,R)
)B(T ,R)

A(T ,R)

for all t ∈ [t0, t0 + T ] ∩ [t0, tmax) (4.169)

Finally, using (4.164) and (4.169), we obtain

a1

(

µ(t)
∣
∣x(t)

∣
∣
)

≤ p(t) + exp
(

T A(T ,R)
)

Q(T,R) + exp
(

T A(T ,R)
)B(T ,R)

A(T ,R)

for all t ∈ [t0, t0 + T ] ∩ [t0, tmax) (4.170)

where Q(T,R) := max0≤t≤T (p(t) + a2(β(t)R)). Using (4.170) and the BIC prop-

erty, we can establish that tmax = +∞. Moreover, using (4.170) and Definition 1.4,

we establish that (1.3) is robustly forward complete (RFC) from the input u ∈ MU .

The proof is complete. �

The following example shows how we can utilize Lemma 4.7 in order to prove

the UISS property.

Example 4.7.1 (The chemostat with time-varying dilution rate) Here we consider

again the chemostat with one microbial species and one nutrient, already studied in

Example 1.2.1 with Monod specific growth rate, i.e.,

µ(s) = as

k + s
(4.171)

where a, k > 0 are positive constants, zero mortality rate (i.e., b = 0), constant

yield coefficient (i.e., K(s) ≡ K > 0), and constant inlet nutrient concentration

(i.e., sin(t) ≡ s∗
in > 0). If 0 < D∗ <

as∗
in

k+s∗
in

, then there exists a unique vector

(X∗, s∗) ∈ (0,+∞) × (0,+∞) satisfying the equilibrium conditions (1.5). There-

fore, model (1.7) takes the form
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ẋ1 =
a

p + 1

[

p
exp(x2) − 1

p + exp(x2)
− v

]

ẋ2 =
a

p + 1
(1 + v) exp(−x2)

(

1 − exp(x2)
)

+
aM

p + 1
exp(−x2)

[

v + 1 −
(p + 1) exp(x1 + x2)

p + exp(x2)

]

x = (x1, x2) ∈ ℜ2, v ∈ [−1,+∞) (4.172)

where v = D−D∗
D∗ and p = k

s∗ . It should be noticed that the “unforced” sys-

tem (4.172) (i.e., system (4.172) with v ≡ 0) is URGAS in this case. The analysis

presented in Example 2.7.3 holds (because the Monod specific growth rate defined

by (4.171) is a strictly increasing function). More specifically, the Lyapunov func-

tion defined by (2.158) takes the simple form

V (x) = exp(x1) − x1 − 1 + p

M(p + 1)

(

exp(x2) − x2 − 1
)

+ Q
(

M exp(x1) + exp(x2) − 1 − M
)2

(4.173)

where Q > 0 is arbitrary. The derivative V̇ (x) of V along the trajectories of (4.172)

is given by the following expression:

p + 1

a
V̇ (x) = − p

p + 1

[
1 + v

M
+ p

p + exp(x2)

]

exp(−x2)
(

1 − exp(x2)
)2

+ p

p + 1

(

exp(x2) − 1
)

exp(−x2)v −
(

exp(x1) − 1
)

v

− 2Q(1 + v)
(

M exp(x1) + exp(x2) − 1 − M
)2

(4.174)

Here, we will study the robustness properties of system (4.172) with respect to the

external input v ∈ [−1,+∞). It should be noted that if v is allowed to take values

greater than p, then we obtain from (4.172) that ẋ1 ≤ − a(v−p)
p+1

. The previous dif-

ferential inequality shows that x1(t) can be unbounded for a constant input, which

shows that the UISS property from the input v ∈ [−1,+∞) cannot hold for sys-

tem (4.172).

Therefore, we will try to show that the uniform ISS property holds when v is

restricted to take values in an appropriate interval (−1 +A,B), where the constants

A ∈ (0,1) and B > 0 satisfy A(1 + p
p+1

) ≤ 1 and B ≥ Ap
p+1

. The following inequal-

ity is a direct consequence of (4.174) and the fact that v + 1 ≥ A:

p + 1

a
V̇ (x) ≤ − p

p + 1

[
A

M
+ p

p + exp(x2)

]

exp(−x2)
(

1 − exp(x2)
)2

+
[

p

p + 1
exp(−x2) + 1

M

]
(

exp(x2) − 1
)

v

−
(

M exp(x1) + exp(x2) − 1 − M
) v

M

− 2QA
(

M exp(x1) + exp(x2) − 1 − M
)2

(4.175)
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Define

c(x2) :=
p + 1

pM

(

p exp(−x2) + 1
)

[ Mp
p+1

+ exp(x2)
]2

(A + M)p + A exp(x2)
(4.176)

Using the inequalities

−
(

M exp(x1) + exp(x2) − 1 − M
) v

M

≤ QA
(

M exp(x1) + exp(x2) − 1 − M
)2 + 1

4M2QA
v2

[
p

p + 1
exp(−x2) + 1

M

]
(

exp(x2) − 1
)

v

≤ c(x2)

2
v2 + 1

2c(x2)

[
p

p + 1
exp(−x2) + 1

M

]2
(

exp(x2) − 1
)2

and definition (4.176), it follows from (4.175) that the following inequality holds:

p + 1

a
V̇ (x) ≤ − p

2(p + 1)

[
A

M
+ p

p + exp(x2)

]

exp(−x2)
(

1 − exp(x2)
)2

+ 1

2

(
1

2M2QA
+ c(x2)

)

v2

− QA
(

M exp(x1) + exp(x2) − 1 − M
)2

(4.177)

Define the functions

Φ(x2) := p

p + 1

(
1

2M2QA
+ c(x2)

)−1[
A

M
+ p

p + exp(x2)

]

× exp(−x2)
(

1 − exp(x2)
)2

(4.178)

P(x) = Φ(x2) + 2QA

(
1

2M2QA
+ c(x2)

)−1

×
(

M exp(x1) + exp(x2) − 1 − M
)2

(4.179)

and notice that definitions (4.176), (4.178) imply that limx2→+∞ Φ(x2) = A2p2

(p+1)2 >

0 and limx2→−∞ Φ(x2) = (A+M)2

M2 > 0. Moreover, notice that Φ(x2) > 0 for all

x2 	= 0 and P(x) > 0 for all x 	= 0.

Therefore, if a sequence {ξi ∈ ℜ2}∞i=0 satisfies P(ξi) → 0, then we must neces-

sarily have ξi → 0 ∈ ℜ2. It follows that

η(s) := inf
{√

P(x) : x ∈ ℜ2,V (x) ≥ s
}

(4.180)

is a nondecreasing function which satisfies η(0) = 0, η(s) > 0 for all s > 0,

and lims→+∞ η(s) = L ≤ Ap
p+1

. The reader should notice that definitions (4.178),

(4.180), in conjunction with inequality (4.177), show that the following implication

holds for every λ ∈ (0,1):
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|v| ≤ λη
(

V (x)
)

and v ∈ (−1 + A,B)

⇒ p + 1

a
V̇ (x) ≤ − (1 − λ2)

2

(
1

2M2QA
+ c(x2)

)

P(x) (4.181)

Since lims→+∞ η(s) = L ≤ Ap
p+1

, the inclusion v ∈ (−1+A,B) holds automatically

if |v| ≤ λη(V (x)), A(1 + λp
p+1

) < 1, and B > λ
Ap
p+1

.

Next, we consider the following input transformation:

v = λL
exp(u) − 1

1 + exp(u)
with u ∈ ℜ (4.182)

Implication (4.181) and definition (4.182) imply the following implication:

ζ
(

|u|
)

≤ V (x)

⇒ p + 1

a
V̇ (x) ≤ − (1 − λ2)

2

(
1

2M2QA
+ c(x2)

)

P(x) (4.183)

where ζ ∈ K∞ is defined by ζ(s) := η̃−1(L
exp(s)−1
1+exp(s)

), and η̃(s) := 1
s+1

∫ s

0 η(w)dw is

a strictly increasing, continuous function with lims→+∞ η̃(s) = L and η̃(s) ≤ η(s)

for all s ≥ 0.

Proposition 2.2, in conjunction with Lemma 4.7 and implication (4.183), shows

that the system

ẋ1 = a

p + 1

[

p
exp(x2) − 1

p + exp(x2)
− λL

exp(u) − 1

1 + exp(u)

]

ẋ2 = a

p + 1

(

1 + λL
exp(u) − 1

1 + exp(u)

)

exp(−x2)
(

1 − exp(x2)
)

+ aM

p + 1
exp(−x2)

[

λL
exp(u) − 1

1 + exp(u)
+ 1 − (p + 1) exp(x1 + x2)

p + exp(x2)

]

x = (x1, x2) ∈ ℜ2, u ∈ ℜ (4.184)

satisfies the UISS property from the input u ∈ ℜ.

4.7.2 Control Systems Described by RFDEs

We consider systems described by uncertain time-varying RFDEs of the form (1.10),

and we state characterizations for the WIOS property. We assume Hypotheses

(S1–5) as well as the following hypotheses:

(S6) The mapping u → f (t, x,u, d) is Lipschitz on bounded sets, in the sense that

for every bounded I ⊆ ℜ+ and for every bounded S ⊂ C0([−r,0];ℜn) × U ,

there exists a constant LU ≥ 0 such that
∣
∣f (t, x,u, d) − f (t, x, v, d)

∣
∣ ≤ LU |u − v|

∀t ∈ I, (x,u, x, v) ∈ S × S,d ∈ D
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Hypothesis (S6) is equivalent to the existence of a continuous function LU :
ℜ+ × ℜ+ → ℜ+ such that for each fixed t ≥ 0, the mappings LU (t, ·) and LU (·, t)
are nondecreasing, with the following property:

∣
∣f (t, x,u, d) − f (t, x, v, d)

∣
∣ ≤ LU

(

t,‖x‖r + |u| + |v|
)

|u − v|
∀(t, x, d,u, v) ∈ ℜ+ × C0

(

[−r,0];ℜn
)

× D × U × U (4.185)

(S7) U is a positive cone, i.e., for all u ∈ U and λ ≥ 0, we have (λu) ∈ U .

Theorem 4.4 The following statements are equivalent for system (1.10) under Hy-

potheses (S1–7):

(a) System (1.10) is robustly forward complete (RFC) from the input u ∈ MU ,

and there exist functions σ ∈ KL, β,φ ∈ K+, and ρ ∈ K such that for all

(d,u) ∈ MD × MU and (t0, x0) ∈ ℜ+ × C0([−r,0];ℜn), the solution x(t) of

(1.10) with Tr(t0)x = x0 corresponding to (d,u) ∈ MD × MU satisfies the fol-

lowing estimate for all t ≥ t0:
∥
∥H

(

t, Tr(t)x
)∥
∥

Y

≤ max
{

σ
(

β(t0)‖x0‖r , t − t0
)

, sup
t0≤τ≤t

σ
(

ρ
(

φ(τ)
∣
∣u(τ)

∣
∣
)

, t − τ
)
}

(4.186)

(b) System (1.10) satisfies the WIOS property from the input u ∈ MU .

(c) There exist a locally Lipschitz function θ ∈ K∞ and functions φ,µ ∈ K+ such

that the following system is RGAOS:

ẋ(t) = f

(

t, Tr(t)x,
θ(‖Tr(t)x‖r)

φ(t)
d ′(t), d(t)

)

Y(t) = H̃
(

t, Tr(t)x
)

(4.187)

where ∆ := BU [0,1] × D, H̃ (t, x) := (H(t, x),µ(t)x) ∈ Y × C0([−r,0];ℜn).

(d) There exist a Lyapunov functional V : ℜ+ × C0([−r,0];ℜn) → ℜ+, which is

almost Lipschitz on bounded sets, functions a1, a2, a3 of class K∞, and β, δ,µ

of class K+ such that

a1

(∥
∥H(t, x)

∥
∥

Y
+ µ(t)‖x‖r

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.188)

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x) + a3

(

δ(t)|u|
)

∀(t, x,u, d) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× U × D (4.189)

(e) System (1.10) is RFC from the input u ∈ MU , and there exist a Lyapunov func-

tional V : ℜ+ × C0([−r,0];ℜn) → ℜ+, which is almost Lipschitz on bounded

sets, functions a1, a2, ζ of class K∞, β, δ of class K+, and a locally Lipschitz

positive definite function ρ : ℜ+ → ℜ+ such that

a1

(∥
∥H(t, x)

∥
∥

Y

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.190)

V 0
(

t, x;f (t, x,u, d)
)

≤ −ρ
(

V (t, x)
)

∀(t, x,u, d) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× U × D with ζ
(

δ(t)|u|
)

≤ V (t, x)

(4.191)

(f) System (1.10) is RFC from the input u ∈ MU and satisfies the 0-GAOS property.
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Moreover,

(i) If H : ℜ+ × C0([−r,0];ℜn) → Y is equivalent to the finite-dimensional con-

tinuous mapping h : [−r,+∞) × ℜn → ℜp , then inequality (4.190) in the

above statement (e) can be replaced by the following inequality:

a1

(∣
∣h

(

t, x(0)
)∣
∣
)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

. (4.192)

(ii) If there exist functions a ∈ K∞ and µ,R ∈ K+ such that a(µ(t)|x(0)|) ≤
‖H(t, x)‖Y + R(t) for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn), then the require-

ment that (1.10) is RFC from the input u ∈ MU is not needed in statement (a)

above.

(iii) If there exist functions p ∈ K∞ and µ,R ∈ K+ such that p(µ(t)|x(0)|) ≤
V (t, x)+R(t) for all (t, x) ∈ ℜ+ ×C0([−r,0];ℜn), then the requirement that

(1.10) is RFC from the input u ∈ MU is not needed in statement (e) above.

In order to obtain characterizations of the UIOS property, we need an extra hy-

pothesis for system (1.10).

(S8) There exists a constant R ≥ 0 and a function a ∈ K∞ such that the inequality

‖x‖r ≤ a(‖H(t, x)‖Y ) + R holds for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn).

Hypothesis (S8) holds for the important case of the output map H(t, x) :=
d(x(θ),Γ ); θ ∈ [−r,0], where Γ ⊂ ℜn is a compact set which contains 0 ∈ ℜn,

and d(x,Γ ) denotes the distance of the point x ∈ ℜn from the set Γ ⊂ ℜn. Notice

that it is not required that Γ ⊂ ℜn is positively invariant for (1.10) with u ≡ 0.

Hypothesis (S8) is essentially Hypothesis (G2) and allows us to provide charac-

terizations for the UIOS property for periodic uncertain systems.

Theorem 4.5 Suppose that system (1.10) under Hypotheses (S1–8) is T -periodic.

The following statements are equivalent:

(a) There exist functions σ ∈ KL and ρ ∈ K∞ such that for all (d,u) ∈ MD × MU

and (t0, x0) ∈ ℜ+ × C0([−r,0];ℜn), the solution x(t) of (1.10) with Tr(t0)x =
x0 corresponding to (d,u) ∈ MD × MU satisfies the following estimate for all

t ≥ t0:
∥
∥H

(

t, Tr(t)x
)∥
∥

Y

≤ max
{

σ
(

‖x0‖r , t − t0
)

, sup
t0≤τ≤t

σ
(

ρ
(∣
∣u(τ)

∣
∣
)

, t − τ
)
}

. (4.193)

(b) System (1.10) satisfies the UIOS property.

(c) There exists a locally Lipschitz function θ ∈ K∞ such that 0 ∈ C0([−r,0];ℜn)

is URGAOS for the system:

ẋ(t) = f
(

t, Tr(t)x, θ
(∥
∥H

(

t, Tr(t)x
)∥
∥

Y

)

d ′(t), d(t)
)

,

Y (t) = H
(

t, Tr(t)x
) (4.194)

where ∆ := BU [0,1] × D.
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(d) There exist a T -periodic Lyapunov functional V : ℜ+ ×C0([−r,0];ℜn) → ℜ+,

which is almost Lipschitz on bounded sets, and functions a1, a2, a3 of class K∞
such that, for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × U × D,

a1

(∥
∥H(t, x)

∥
∥

Y

)

≤ V (t, x) ≤ a2

(

‖x‖r

)

(4.195)

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x) + a3

(

|u|
)

. (4.196)

(e) There exist a Lyapunov functional V : ℜ+ × C0([−r,0];ℜn) → ℜ+, which is

almost Lipschitz on bounded sets, functions a1, a2, ζ of class K∞, and a locally

Lipschitz positive definite function ρ : ℜ+ → ℜ+ such that

a1

(∥
∥H(t, x)

∥
∥

Y

)

≤ V (t, x) ≤ a2

(

‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.197)

V 0
(

t, x;f (t, x,u, d)
)

≤ −ρ
(

V (t, x)
)

∀(t, x,u, d) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× U × D with ζ
(

|u|
)

≤ V (t, x).

(4.198)

Finally, if H : ℜ+ × C0([−r,0];ℜn) → Y is equivalent to the finite-dimensional

continuous T -periodic mapping h : [−r,+∞) × ℜn → ℜp , then inequalities

(4.195) and (4.197) in the above statements (d) and (e), respectively, can be re-

placed by the following inequality:

a1

(∣
∣h

(

t, x(0)
)∣
∣
)

≤ V (t, x) ≤ a2

(

‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.199)

The following result provides sufficient Lyapunov-like conditions for the

(U)WIOS property. The proof of implications (e) ⇒ (a) of Theorem 4.4 and

(e) ⇒ (a) of Theorem 4.5 are based on the result of Theorem 4.6, which gives

quantitative estimates of the solutions of (1.10) under Hypotheses (S1–7). The gain

functions and the weights of the WIOS property can be determined explicitly in

terms of the functions involved in the assumptions of Theorem 4.6.

Theorem 4.6 Consider system (1.10) under Hypotheses (S1–7) and suppose that

there exist a Lyapunov functional V : ℜ+ ×C0([−r,0];ℜn) → ℜ+, which is almost

Lipschitz on bounded sets, functions a, ζ of class K∞, β, δ of class K+, and a

locally Lipschitz positive definite function ρ : ℜ+ → ℜ+ such that

V (t, x) ≤ a
(

β(t)‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.200)

V 0
(

t, x;f (t, x,u, d)
)

≤ −ρ
(

V (t, x)
)

∀(t, x,u, d) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× U × D with ζ
(

δ(t)|u|
)

≤ V (t, x)

(4.201)

Moreover, suppose that one of the following holds:

(a) system (1.10) is RFC from the input u ∈ MU ,

(b) there exist functions p ∈ K∞ and µ,R ∈ K+ such that p(µ(t)|x(0)|) ≤
V (t, x) + R(t) for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn).



4.7 Lyapunov-Like Necessary and Sufficient Conditions for WIOS 193

Then, system (1.10) is RFC from the input u ∈ MU , and there exists a function

σ ∈ KL with σ(s,0) = s for all s ≥ 0 such that for all (d,u) ∈ MD × MU and

(t0, x0) ∈ ℜ+ × C0([−r,0];ℜn), the solution x(t) of (1.10) with Tr(t0)x = x0 cor-

responding to (d,u) ∈ MD × MU satisfies the following estimate for all t ≥ t0:

V
(

t, Tr(t)x
)

≤ max
{

σ
(

a
(

β(t0)‖x0‖r

)

, t − t0
)

, sup
t0≤τ≤t

σ
(

ζ
(

δ(τ )
∣
∣u(τ)

∣
∣
)

, t − τ
)
}

(4.202)

Finally,

1. If there exists a function a1 of class K∞ such that a1(‖H(t, x)‖Y ) ≤ V (t, x) for

all (t, x) ∈ ℜ+ ×C0([−r,0];ℜn), then system (1.10) satisfies the WIOS property

from the input u ∈ MU with gain γ (s) := a−1
1 (ζ(s)) and weight δ. Moreover, if,

in addition, β(t) ≡ 1, then system (1.10) satisfies the UWIOS property from the

input u ∈ MU with gain γ (s) := a−1
1 (ζ(s)) and weight δ.

2. If H : ℜ+ × C0([−r,0];ℜn) → Y is equivalent to the finite-dimensional contin-

uous mapping h : [−r,+∞)×ℜn → ℜp and there exist functions a1, a2 of class

K∞ such that a1(|h(t, x(0))|) ≤ V (t, x), ‖H(t, x)‖Y ≤ a2(supθ∈[−r,0] |h(t +
θ, x(θ))|) for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn), then system (1.10) satisfies the

WIOS property from the input u ∈ MU with gain γ (s) := a2(a
−1
1 (ζ(s))) and

weight δ.

Proof of Theorem 4.4 We prove implications (a) ⇒ (b), (b) ⇒ (c), (c) ⇒ (d),

(d) ⇒ (e), (e) ⇒ (a). The equivalence between (f) and (b) is a direct consequence

of Theorem 4.1.

(a) ⇒ (b): Suppose that there exist functions σ ∈ KL, β,φ ∈ K+, and ρ ∈
K∞ such that the estimate (4.186) holds for all (d,u) ∈ MD × MU , (t0, x0) ∈
ℜ+ × C0([−r,0];ℜn), and t ≥ t0. If we set γ (s) := σ(ρ(s),0), the desired (4.1)

is a consequence of (4.186) and the previous definition. Thus statement (b) holds

if (1.10) is RFC from the input u ∈ MU . If the hypothesis that (1.10) is RFC

from the input u ∈ MU is not included in statement (a), then there exist func-

tions a ∈ K∞ and µ,R ∈ K+ such that a(µ(t)|x(0)|) ≤ ‖H(t, x)‖Y + R(t) for

all (t, x) ∈ ℜ+ × C0([−r,0];ℜn). It follows from (4.186) and previous definitions

that for all (t0, x0) ∈ ℜ+ ×C0([−r,0];ℜn) and (d,u) ∈ MD ×MU , the correspond-

ing solution x(t) of (1.10) with Tr(t0)x = x0 satisfies the following estimate for all

t ≥ t0:

a
(

µ(t)
∣
∣x(t)

∣
∣
)

≤ R(t) + max
{

σ
(

β(t0)‖x0‖r , t − t0
)

, sup
t0≤τ≤t

γ
(

δ(τ )
∣
∣u(τ)

∣
∣
)
}

The above estimate in conjunction with Definition 1.4 implies that (1.10) is RFC

from the input u ∈ MU .

(b) ⇒ (c): By virtue of Corollary 4.1 and Hypothesis (S7), it follows that the

system

ẋ(t) = f
(

t, Tr(t)x, v(t)d ′(t), d(t)
)

Y(t) = H̃
(

t, Tr(t)x
)

(4.203)

where ∆ := BU [0,1]× D, H̃ (t, x) := (H(t, x),µ(t)x) ∈ Y × C0([−r,0];ℜn), and

v ∈ Mℜ+ satisfies the WIOS property from the input v ∈ Mℜ+ . More specifically,
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there exist functions µ,β, δ ∈ K+, σ̃ ∈ KL, and γ̃ ∈ N such that (4.42) holds for the

solutions of (4.203) for all v ∈ Mℜ+ , (t0, x0, (d
′, d)) ∈ ℜ+ ×C0([−r,0];ℜn)×M∆,

and t ≥ t0. Without loss of generality we may assume that γ̃ ∈ K∞. By virtue of

Lemma 3.2 we obtain κ ∈ K∞ such that γ̃ (rs) ≤ κ(r)κ(s) for all (r, s) ∈ (ℜ+)2. Let

φ(t) := δ(t)κ−1(
µ(t)

2
), and let θ ∈ K∞ be a locally Lipschitz function that satisfies

θ(s) ≤ κ−1(s) for all s ≥ 0. The previous definitions imply that

θ(‖x‖r)

φ(t)
≤ 1

δ(t)
γ̃ −1

(
µ(t)

2
‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.204)

Finally, the reader should notice that system (4.187) is the feedback interconnection

of system (4.203) with the static map v(t) := θ(‖Tr (t)‖r )
φ(t)

. The result follows from

Proposition 4.3 and inequality (4.204).

(c) ⇒ (d): Suppose that (4.187) is RGAOS. Theorem 3.6 implies that there exists

a continuous mapping (t, x) ∈ ℜ+ × C0([−r,0];ℜn) → V (t, x) ∈ ℜ+, which is

almost Lipschitz on bounded sets, with the following properties:

– there exist functions a1, a2 ∈ K∞ and β ∈ K+ such that

a1

(∥
∥H(t, x)

∥
∥

Y
+ µ(t)‖x‖r

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.205)

– it holds that

V 0

(

t, x;f
(

t, x,
θ(‖x‖r)

φ(t)
d ′, d

))

≤ −V (t, x)

∀
(

t, x, d ′, d
)

∈ ℜ+ × C0
(

[−r,0];ℜn
)

× ∆ (4.206)

Notice that inequality (4.206) implies the following inequality:

V 0
(

t, x;f (t, x,u, d)
)

≤ −V (t, x)

∀(t, x,u, d) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× U × D with φ(t)|u| ≤ θ
(

‖x‖r

)

(4.207)

Using Property (P1) of Definition 2.4 for the continuous mapping (t, x) ∈ ℜ+ ×
C0([−r,0];ℜn) → V (t, x) ∈ ℜ+, we obtain, for all (t, x,u, d) ∈ ℜ+ ×
C0([−r,0];ℜn) × U × D,

∣
∣V 0

(

t, x;f (t, x,u, d)
)

− V 0
(

t, x;f (t, x,0, d)
)∣
∣

≤ M
(

t + ‖x‖r + 1
)∣
∣f (t, x,u, d) − f (t, x,0, d)

∣
∣

The above inequality, together with (4.185), implies that the following inequality

holds for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × U × D:
∣
∣V 0

(

t, x;f (t, x,u, d)
)

− V 0
(

t, x;f (t, x,0, d)
)∣
∣

≤ M
(

t + ‖x‖r + 1
)

LU

(

t,‖x‖r + |u|
)

|u| (4.208)

Define

ψ(t, s) := sup
{

M
(

t + ‖x‖r + 1
)

LU

(

t,‖x‖r + |u|
)

|u|;
‖x‖r ≤ θ−1

(

φ(t)s
)

, |u| ≤ s
}

(4.209)
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Without loss of generality we may assume that the function φ ∈ K+ is nondecreas-

ing. Clearly, ψ : ℜ+ × ℜ+ → ℜ+ is a mapping with ψ(t,0) = 0 for all t ≥ 0, such

that

(i) for each fixed t ≥ 0, the mapping ψ(t, ·) is nondecreasing;

(ii) for each fixed s ≥ 0, the mapping ψ(·, s) is nondecreasing; and

(iii) lims→0+ ψ(t, s) = 0 for all t ≥ 0.

Hence, by employing Lemma 2.3 we obtain functions a3 ∈ K∞ and δ ∈ K+ such

that ψ(t, s) ≤ a3(δ(t)s).

We next establish inequality (4.189), with a3 as previously, by considering the

following two cases:

• θ−1(φ(t)|u|) ≤ ‖x‖r . In this case inequality (4.189) is a direct consequence

of (4.207).

• θ−1(φ(t)|u|) ≥ ‖x‖r . In this case, by virtue of inequalities (4.207), (4.208), defi-

nition (4.209), and the definition of a3, we have

V 0
(

t, x;f (t, x,u, d)
)

≤ V 0
(

t, x;f (t, x,0, d)
)

+ ψ
(

t, |u|
)

≤ −V (t, x) + a3

(

δ(t)|u|
)

which implies (4.189).

(d) ⇒ (e): Notice that (4.189) implies (4.191) with ζ(s) := 2a3(s) and ρ(s) :=
1
2
s. The fact that system (1.10) is RFC follows directly from Theorem 4.6.

(e) ⇒ (a): Theorem 4.6 implies that system (1.10) is RFC from the input u ∈ MU

and that (4.202) holds. Next, we distinguish the following cases:

1. If (4.190) holds, then (4.186) is a direct consequence of (4.202) and (4.190).

2. If (4.192) holds, then (4.202) implies the following estimate for all t ≥ t0:

∣
∣h

(

t, x(t)
)∣
∣ ≤ max

{

a−1
1

(

σ
(

a2

(

β(t0)‖x0‖r

)

, t − t0
))

,

sup
t0≤s≤t

a−1
1

(

σ
(

ζ
(

δ(s)|u(s)|
)

, t − s
))

}

Since h : [−r,+∞) × ℜn → ℜp is continuous with h(t,0) = 0 for all t ≥ −r , it

follows from Lemma 2.3 that there exist functions p ∈ K∞ and φ ∈ K+ such that
∣
∣h(t − r, x)

∣
∣ ≤ p

(

φ(t)|x|
)

∀(t, x) ∈ ℜ+ × ℜn

Combining the two previous inequalities, we obtain, for all t ≥ t0,

sup
θ∈[−r,0]

∣
∣h

(

t + θ, x(t + θ)
)∣
∣

≤ max
{

ω
(

q(t0)‖x0‖r , t − t0
)

, sup
t0≤s≤t

ω
(

ζ
(

δ(s)
∣
∣u(s)

∣
∣
)

, t − s
)
}

where q(t) := β(t) + maxt≤τ≤t+r φ(τ) ω(s, t) := max{p(s), a−1
1 (σ (s + a2(s),0))}

for t ∈ [0, r), and ω(s, t) := max{exp(r − t)p(s), a−1
1 (σ (s + a2(s), t − r))} for t ≥

r . The above estimate, in conjunction with the fact that H : ℜ+×C0([−r,0];ℜn) →
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Y is equivalent to the finite-dimensional mapping h, shows that (1.10) satisfies in-

equality (4.186).

The proof is complete. �

Proof of Theorem 4.5 The proofs of implications (a) ⇒ (b), (d) ⇒ (e), and (e) ⇒ (a)

follow the same methodology as in the proof of Theorem 4.4. Particularly, in the

proof of implication (e) ⇒ (a), we use in addition the fact that since h : [−r,+∞)×
ℜn → ℜp is continuous and T -periodic with h(t,0) = 0 for all t ≥ −r , it follows

from Lemma 2.4 that there exists a function p ∈ K∞ such that
∣
∣h(t − r, x)

∣
∣ ≤ p

(

|x|
)

∀(t, x) ∈ ℜ+ × ℜn

The proof of implication (c) ⇒ (d) differs from the corresponding proof in Theo-

rem 4.4 in the definition of ψ . Specifically, we first notice that the fact that V is

T -periodic implies that V 0(t, x;f (t, x,u, d)) is T -periodic. Using Property (P1)

of Definition 2.4 for the continuous mapping (t, x) ∈ ℜ+ × C0([−r,0];ℜn) →
V (t, x) ∈ ℜ+, we obtain, for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × U × D,

∣
∣V 0

(

t, x;f (t, x,u, d)
)

− V 0
(

t, x;f (t, x,0, d)
)∣
∣

≤ M
(

T + ‖x‖r + 1
)∣
∣f (t, x,u, d) − f (t, x,0, d)

∣
∣

for certain nondecreasing function M : ℜ+ → ℜ+. The above inequality, in con-

junction with (4.185) and the fact that f is T -periodic, implies that the following

inequality holds for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × U × D:

∣
∣V 0

(

t, x;f (t, x,u, d)
)

− V 0
(

t, x;f (t, x,0, d)
)∣
∣

≤ M
(

T + ‖x‖r + 1
)

LU

(

T ,‖x‖r + |u|
)

|u|

We next define

ψ(s) := sup
{

M
(

T + ‖x‖r + 1
)

LU

(

T ,‖x‖r + |u|
)

|u|;
‖x‖r ≤ R + a

(

θ−1(s)
)

, |u| ≤ s
}

Notice that Hypothesis (S8) implies that ψ(s) ≤ a3(s) for all s ≥ 0, where a3(s) :=
M̃(T + R + 1 + a(θ−1(s)))LU (T ,R + a(θ−1(s)) + s)s, R ≥ 0 is the constant in-

volved in Hypothesis (S8), a ∈ K∞ is the function involved in Hypothesis (S8)

and M̃(s) is a continuous positive function which satisfies M̃(s) ≥ M(s) for all

s ≥ 0. From this point the proof of implication (c) ⇒ (d) is exactly the same

as in Theorem 4.4 (i.e., by distinguishing the cases θ−1(|u|) ≤ ‖H(t, x)‖Y and

θ−1(|u|) ≥ ‖H(t, x)‖Y ).

Finally, we continue with the proof of implication (b) ⇒ (c). By virtue of Hy-

pothesis (S7), it follows that the system

ẋ(t) = f
(

t, x(t), v(t)d ′(t), d(t)
)

Y(t) = H
(

t, x(t)
)

(4.210)

where ∆ := BU [0,1] × D and v ∈ Mℜ+ , satisfies the UIOS property from the in-

put v ∈ Mℜ+ . More specifically, there exist functions σ ∈ KL and γ ∈ N such

that (4.2) holds with β(t) ≡ 1 for the solutions of (4.210) for all v ∈ Mℜ+ ,
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(t0, x0, (d
′, d)) ∈ ℜ+ × C0([−r,0];ℜn) × M∆, and t ≥ t0. Without loss of gen-

erality we may assume that γ ∈ K∞. Let θ ∈ K∞ be a locally Lipschitz function

that satisfies θ(s) ≤ γ −1( 1
2
s) for all s ≥ 0. The previous definitions imply that

θ
(∥
∥H(t, x)

∥
∥

Y

)

≤ γ −1

(
1

2

∥
∥H(t, x)

∥
∥

Y

)

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(4.211)

Finally, noticing that system (4.194) is the feedback interconnection of sys-

tem (4.210) with the static map v(t) := θ(‖H(t, Tr(t)x)‖Y ), the result follows from

Proposition 4.4 and inequality (4.211).

The proof is complete. �

Proof of Theorem 4.6 Consider a solution of (1.10) under Hypotheses (S1–7) cor-

responding to arbitrary (u, d) ∈ MU × MD with initial condition Tr(t0)x = x0 ∈
C1([−r,0];ℜn). By Lemma 2.17, for every T ∈ (t0, tmax), the mapping [t0, T ] ∋
t → V (t, Tr (t)x) is absolutely continuous. It follows from (4.201) and Lemma 2.16

that there exists a set I ⊂ [t0, T ] of zero Lebesgue measure such that the following

implication holds for all t ∈ [t0, T ]\I :

V
(

t, Tr(t)x
)

≥ ζ
(

δ(t)
∣
∣u(t)

∣
∣
)

⇒ d

dt

(

V
(

t, Tr(t)x
))

≤ −ρ
(

V
(

t, Tr(t)x
))

Lemma 2.14 implies the existence of a continuous function σ of class KL, with

σ(s,0) = s for all s ≥ 0 such that

V
(

t, Tr(t)x
)

≤ max
{

σ
(

V
(

t0, Tr(t0)x
)

, t − t0
)

,

sup
t0≤s≤t

σ
(

ζ
(

δ(s)
∣
∣u(s)

∣
∣
)

, t − s
)
}

∀t ∈ [t0, T ] (4.212)

with T ∈ (t0, tmax). Notice that for the case where (1.10) is RFC from the input

u ∈ MU , tmax = +∞. For the case that there exist functions p ∈ K∞ and µ,R ∈
K+ such that p(µ(t)|x(0)|) ≤ V (t, x)+R(t) for all (t, x) ∈ ℜ+ ×C0([−r,0];ℜn),

combining the previous inequality and (4.212), we obtain, for every T ∈ (t0, tmax),

p
(

µ(t)
∣
∣x(t)

∣
∣
)

≤ R(t) + max
{

σ
(

V
(

t0, Tr(t0)x
)

, t − t0
)

, sup
t0≤s≤t

σ
(

ζ
(

δ(s)
∣
∣u(s)

∣
∣
)

, t − s
)
}

∀t ∈ [t0, T ] (4.213)

It follows from estimate (4.213) that tmax = +∞. An immediate consequence of

Lemma 2.18 is that estimate (4.212) holds for all (t0, x0, d,u) ∈ ℜ+ × C0([−r,0];
ℜn) × MD × MU and t ≥ t0. Moreover, if there exist functions p ∈ K∞ and µ,R ∈
K+ such that p(µ(t)|x(0)|) ≤ V (t, x)+R(t) for all (t, x) ∈ ℜ+ ×C0([−r,0];ℜn),

then Lemma 2.18 implies that (4.213) also holds for all (t0, x0, d,u) ∈ ℜ+ ×
C0([−r,0];ℜn) × MD × MU and t ≥ t0. In this case the fact that system (1.10)

is RFC from the input u ∈ MU is a consequence of (4.213) and Definition 1.4. No-

tice that (4.202) is a consequence of (4.212) and (4.200). Finally, (i) and (ii) are

direct consequences of (4.202). The proof is complete. �
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The following example presents an autonomous time-delay system which satis-

fies the UWIOS property and does not satisfy the UIOS property. The analysis is

performed with the help of Theorems 4.4 and 4.6.

Example 4.7.2 Consider the following autonomous time-delay system:

ẋ1(t) = d(t)x1(t)

ẋ2(t) = −x2(t) + x1(t − r)u(t)

Y (t) = x2(t)

(

x1(t), x2(t)
)′ ∈ ℜ2, d(t) ∈ D := [−1,1], u(t) ∈ U := ℜ, Y (t) ∈ ℜ (4.214)

Consider the functional:

V (t, x1, x2) := exp(−8t)x4
1(0)

+ exp(−4t)x2
1(0) +

1

2
x2

2(0) +
1

4
exp(−8t)

∫ 0

−r

x4
1(s) ds (4.215)

First notice that the functional V : ℜ+ × C0([−r,0];ℜ2) → ℜ+ defined by (4.215)

is almost Lipschitz on bounded sets. Moreover, inequalities (4.190), (4.200) are

satisfied for this functional with a(s) = a2(s) := (1 + r
4
)s4 + s2, a1(s) := 1

2
s2, and

β(t) ≡ 1. We next estimate an upper bound for the Dini derivative of the functional

V : ℜ+ × C0([−r,0];ℜ2) → ℜ+ along the solutions of system (4.214). We have,

for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜ2) × ℜ × [−1,1],

V 0
(

t, x1, x2;
(

dx1(0),−x2(0) + x1(−r)u
))

= −8 exp(−8t)x4
1(0) + 4d exp(−8t)x4

1(0) − 4 exp(−4t)x2
1(0)

+ 2d exp(−4t)x2
1(0) − x2

2(0) + x2(0)x1(−r)u

− 2 exp(−8t)

∫ 0

−r

x4
1(s) ds + 1

4
exp(−8t)x4

1(0) − 1

4
exp(−8t)x4

1(−r)

Using the inequalities |d| ≤ 1, x2(0)x1(−r)u ≤ 1
2
x2

2(0) + 1
2
x2

1(−r)u2, and
1
2
x2

1(−r)u2 ≤ 1
4

exp(−8t)x4
1(−r) + 1

4
exp(8t)u4, we are in a position to estimate,

for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜ2) × ℜ × [−1,1],

V 0
(

t, x1, x2;
(

dx1(0),−x2(0) + x1(−r)u
))

≤ −3 exp(−8t)x4
1(0) − 2 exp(−4t)x2

1(0) − 1

2
x2

2(0)

+ 1

4
exp(8t)u4 − 2 exp(−8t)

∫ 0

−r

x4
1(s) ds

Finally, using the above inequality and definition (4.215), we obtain, for all

(t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜ2) × ℜ × [−1,1],

V 0
(

t, x1, x2;
(

dx1(0),−x2(0) + x1(−r)u
))

≤ −V (t, x1, x2) + 1

4
exp(8t)u4 (4.216)
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Inequality (4.216) guarantees that (4.191) and (4.201) hold with ρ(s) := 1
2
s, ζ(s) :=

1
2
s4, and δ(t) := exp(2t). Definition (4.215) guarantees that there exist functions

p ∈ K∞ and µ ∈ K+ and a constant R ≥ 0 such that p(µ(t)|x(0)|) ≤ V (t, x) +
R for all (t, x) ∈ ℜ+ × C0([−r,0];ℜ2) (e.g., p(s) := 1

2
s2, µ(t) := exp(−2t), and

R := 0). It follows from Theorem 4.4 (statement (e)) that system (4.214) satisfies

the UWIOS property from the input u ∈ MU . In order to be able to determine the

gain and weight functions, we utilize the result of Theorem 4.6. Indeed, it follows

from Theorem 4.6 that system (4.214) satisfies the UWIOS property from the input

u ∈ MU with gain γ (s) := a−1
1 (ζ(s)) = s2 and weight δ(t) := exp(2t).

It should be emphasized that system (4.214) does not satisfy the UIOS property

from the input u ∈ MU . This can be shown by considering the solution of (4.214)

corresponding to inputs d(t) ≡ 1 and u(t) ≡ 1. It can be shown that, for x1(0) 	= 0,

the output of (4.214) is not bounded and satisfies limt→+∞ |Y(t)| = +∞. Con-

sequently, bounded inputs can produce unbounded outputs, which contradicts the

requirements of the UIOS property from the input u ∈ MU .

4.8 Bibliographical and Historical Notes

1. As remarked earlier, the ISS property was introduced for finite-dimensional sys-

tems described by ODEs in [22]. It was quickly generalized to ISpS (input-

to-state practical stability) and IOpS (input-to-output practical stability) in [8]

for finite-dimensional systems described by ODEs. The work [27, 28] presents

equivalent characterizations of IOS. The WIOS and WISS properties were intro-

duced in [13, 14] for a wide class of systems and were based on the work centered

around “nonuniform in time IOS” and “nonuniform in time ISS” in [10–12, 15,

19]. As it is pointed out in [24], the IOS and ISS properties have been proved

to be very useful in Mathematical Control Theory for a very important reason: it

combines features of internal stability properties (Lyapunov stability looking at

the effect of initial conditions for zero-input response) with features of external

stability properties (input-output stability looking at the effect of nonzero inputs

for zero-state response) proposed earlier in the literature; see the work of Zames,

Willems, and others [24].

2. There is still another variation of the ISS property that was not examined in this

chapter: the integral ISS (for short, iISS) property. This property was introduced

in [23] for finite-dimensional systems described by ODEs and, roughly speaking,

requires that there exist functions σ ∈ KL and γ ∈ N such that the following

estimate holds for all u ∈ MU , (t0, x0, d) ∈ ℜ+ × ℜn × MD , and t ≥ t0:

∣
∣x(t)

∣
∣ ≤ σ

(

|x0|, t − t0
)

+
∫ t

t0

γ
(∣
∣u(τ)

∣
∣
)

dτ (4.217)

where x(t) denotes the unique solution of (1.3) with initial condition x(t0) = x0

corresponding to inputs (d,u) ∈ MD × MU . The iISS property cannot be easily

generalized to other types of systems (notice that (4.217) implies that u ∈ MU
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is Lebesgue integrable which holds for finite-dimensional systems described by

ODEs but not necessarily for other systems). Using Lemma 2.3, we are in a

position to find functions δ ∈ K+ and γ̃ ∈ N such that exp(t)γ (s) ≤ γ̃ (δ(t)s) for

all t, s ≥ 0. Consequently, the integral on the right-hand side of (4.217) satisfies

∫ t

t0

γ
(∣
∣u(τ)

∣
∣
)

dτ =
∫ t

t0

exp(−τ) exp(τ )γ
(∣
∣u(τ)

∣
∣
)

dτ

≤
∫ t

t0

exp(−τ)γ̃
(

δ(τ )
∣
∣u(τ)

∣
∣
)

dτ ≤ sup
t0≤τ≤t

γ̃
(

δ(τ )
∣
∣u(τ)

∣
∣
)

Therefore, combining (4.217) with the above inequality, we easily obtain that

if the iISS property holds, then the WISS property holds as well with weight

δ ∈ K+. The Lyapunov characterizations in Sect. 4.7.A show that, if the ISS

property holds, then the iISS property necessarily holds (see also [2, 23]).

3. Various characterizations for the IOS and ISS properties for finite-dimensional

systems described by ODEs were provided in [6, 25–28]. Among them, we

should point out one characterization which was not given in the present chapter:

the so-called “asymptotic gain” characterization.

4. Another variation for the ISS property which is not studied in this book is the

“local ISS property”. See [9, 17].

5. For finite-dimensional discrete-time systems the ISS property was studied in [7].

In [7] one can find various characterizations of the ISS property for discrete-time

finite-dimensional systems.

6. For systems described by RFDEs, sufficient conditions for the ISS property were

provided in [20, 29]. Necessary and sufficient conditions were presented in [16]

(the results of Sect. 4.7.B are heavily based on the results in [16]).

7. As remarked earlier, estimates of the form (4.114) (“fading memory estimates”)

were first used by Praly and Wang [21] for the formulation of exp-ISS and by

Grüne [3, 4] for the formulation of Input-to-State Dynamical Stability (ISDS)

with H(t, x) = x and β(t) ≡ γ (t) ≡ 1, which was proved to be qualitatively

equivalent with (4.2) for finite-dimensional systems described by ODEs. It is

clear that Theorem 4.1 shows that for the WIOS property, the “fading memory”

estimate (4.114) is qualitatively equivalent to the “Sontag-like” estimate (4.1).

Applications of such “fading memory” estimates can be found in robust and

adaptive nonlinear control; see Jiang and Praly (1998).

8. Lemmas 4.3 and 4.4 should be compared with Lemma 1.1, p. 131, in [5]. The

results of Sects. 4.4 and 4.6 of the present chapter are heavily based on (and

slightly generalize) the results in [11, 13]. The invariance of the external stability

properties to system transformations was discussed in [24].

9. Lyapunov-like characterizations for forward completeness of finite-dimensional

systems described by ODEs were provided in [1]. It should be noted that certain

results in [18] imply that forward completeness is RFC, and consequently, all

characterizations given in Sect. 4.7.A hold as well.
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Chapter 5

Advanced Stability Methods and Applications

5.1 Introduction

The present chapter is devoted to the description of advanced analysis methods for

checking internal and external global stability properties introduced previously for

various important classes of nonlinear dynamic systems. We will particularly focus

attention on methods based upon

• small-gain techniques and

• vector Lyapunov functionals.

The method of proving stability by means of vector Lyapunov functionals is an

extension of the method of Lyapunov functionals described in previous chapters

and has a long history. However, proving stability by means of small-gain results is

a method radically different from all other methods of proving stability presented

previously. The obtained small-gain results permit the derivation of novel vector

Lyapunov characterizations of global stability notions. A special feature of small-

gain results is the utilization of estimates of the solutions: these estimates must be

proved by means of other methods (e.g., by means of Lyapunov methods or compar-

ison principles or analytical solutions). Another important feature of the small-gain

methods is that they can easily handle both static and dynamic uncertainties. In

Chap. 6, we will see that small-gain techniques play a tremendous role in the design

of nonlinear controllers with guaranteed robustness to static, parametric, input, and

state dynamic uncertainties.

An additional feature of the methods presented in this chapter is the capability

of dealing with large-scale systems. Large-scale systems are encountered frequently

in mathematical biology, engineering, and mathematical economics. Moreover, it is

known that (generally) it is more difficult to establish global stability notions for

large-scale systems than for systems described by a small number of (differential or

difference) equations. The stability analysis methods presented in this chapter can

exploit the structure of a given large-scale system in order to derive useful estimates

for the solutions.

Notice that sufficient conditions for global stability notions are developed in the

system-theoretic framework described in Chap. 1.
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In what follows, Σ := (X , Y ,MU ,MD, φ,π,H) will be a control system with

the BIC property and for which 0 ∈ X is a robust equilibrium point from the input

u ∈ MU . Moreover, u0 ∈ MU will be the identically zero input, i.e., u0(t) = 0 ∈ U

for all t ≥ 0. For the output map H : ℜ+ × X × U → Y , we assume that either

H : ℜ+ × X × U → Y is continuous or that there exists a partition π = {τi}∞i=0 of

ℜ+ with diameter r > 0 such that H : ℜ+ × X × U → Y satisfies Hypothesis (L2)

in Sect. 1.7 of Chap. 1.

5.2 The Small-Gain Theorem

The main purpose of this section is to state and prove our main small-gain results. In

order to develop the small-gain toolkit, we begin with certain notions of monotone

operators. The background materials on the theory of monotone operators are first

provided.

5.2.1 Results on Monotone Operators

The following technical definitions were used in [27] and are needed here.

Definition 5.1 Let x = (x1, . . . , xn)
′ ∈ ℜn and y = (y1, . . . , yn)

′ ∈ ℜn. We de-

fine z = MAX{x, y}, where z = (z1, . . . , zn)
′ ∈ ℜn satisfies zi = max{xi, yi} for

i = 1, . . . , n. Similarly, for u1, . . . , um ∈ ℜn, z = MAX{u1, . . . , um} is a vector

z = (z1, . . . , zn)
′ ∈ ℜn with zi = max{u1i, . . . , umi}, i = 1, . . . , n.

Definition 5.2 We say that Γ : ℜn
+ → ℜn

+ is MAX-preserving if Γ : ℜn
+ → ℜn

+ is

nondecreasing and for every x, y ∈ ℜn
+, the following equality holds:

Γ
(

MAX{x, y}
)

= MAX
{

Γ (x),Γ (y)
}

(5.1)

The above defined MAX-preserving maps enjoy the following important prop-

erty (see [27]).

Proposition 5.1 Γ : ℜn
+ → ℜn

+ with Γ (x) = (Γ1(x), . . . ,Γn(x))′ is MAX-preserv-

ing if and only if there exist nondecreasing functions γi,j : ℜ+ → ℜ+, i, j =
1, . . . , n, with Γi(x) = maxj=1,...,n γi,j (xj ) for all x ∈ ℜn

+, i = 1, . . . , n.

Proof Define γi,j (s) := Γi(sej ) for all s ≥ 0, where {ei}ni=1 denotes the standard

basis of ℜn. Let x ∈ ℜn
+, i.e., x = x1e1 + · · · + xnen with xi ≥ 0, i = 1, . . . , n.

Notice that x = MAX{x1e1, . . . , xnen} and consequently Γ (x) = MAX{Γ (x1e1),

. . . ,Γ (xnen)}. Therefore, Γi(x) = max{Γi(x1e1), . . . ,Γi(xnen)} =
maxj=1,...,n γi,j (xj ). The converse statement is a direct consequence of the defi-

nition Γi(x) = maxj=1,...,n γi,j (xj ). �
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The following class of MAX-preserving mappings plays an important role in

what follows.

Definition 5.3 Let Γ : ℜn
+ → ℜn

+ with Γ (x) = (Γ1(x), . . . ,Γn(x))′ be a MAX-

preserving mapping for which there exist functions γi,j ∈ N1, i, j = 1, . . . , n, such

that, for each i = 1,2, . . . , n, Γi(x) = maxj=1,...,n γi,j (xj ) for all x ∈ ℜn
+. We say

that Γ : ℜn
+ → ℜn

+ satisfies the cyclic small-gain conditions if the following in-

equalities hold:

γi,i(s) < s for all s > 0, i = 1, . . . , n (5.2)

and if n > 1, then for each r = 2, . . . , n, it holds that

(γi1,i2 ◦ γi2,i3 ◦ · · · ◦ γir ,i1)(s) < s for all s > 0 (5.3)

for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k.

The following proposition provides useful characterizations for MAX-preserving

mappings which satisfy the cyclic small-gain conditions.

Proposition 5.2 Suppose that Γ : ℜn
+ → ℜn

+ with Γ (x) = (Γ1(x), . . . ,Γn(x))′ is

MAX-preserving and there exist functions γi,j ∈ N1, i, j = 1, . . . , n, with Γi(x) =
maxj=1,...,n γi,j (xj ), i = 1, . . . , n. The following statements are equivalent:

(i) limk→∞ Γ (k)(x) = 0 for all x ∈ ℜn
+.

(ii) Γ : ℜn
+ → ℜn

+ satisfies the cyclic small-gain conditions.

(iii) The following implication holds: Γ (x) ≥ x ⇒ x = 0.

(iv) (iii) holds, and for all k ≥ 1 and x ∈ ℜn
+, it holds that Γ (k)(x) ≤ Q(x) =

MAX{x,Γ (x),Γ (2)(x), . . . ,Γ (n−1)(x)}.

Proof We prove implications (iv) ⇒ (i), (i) ⇒ (iii), (iii) ⇒ (ii), and (ii) ⇒ (iv).

(iv) ⇒ (i): Since Γ : ℜn
+ → ℜn

+ is MAX-preserving, we have

Γ
(

Q(x)
)

= MAX
{

Γ (x),Γ (2)(x), . . . ,Γ (n)(x)
}

for all x ∈ ℜn
+.

Moreover, since Γ (k)(x) ≤ Q(x) for all k ≥ 1 and x ∈ ℜn
+, it follows that

Γ (Q(x)) ≤ Q(x) for all x ∈ ℜn
+. Therefore, using induction, it follows that

0 ≤ Γ (k+1)(Q(x)) ≤ Γ (k)(Q(x)) for all k ≥ 0 and x ∈ ℜn
+. It follows that the

limit limk→∞ Γ (k)(Q(x)) exists and satisfies q := limk→∞ Γ (k)(Q(x)) ≥ 0. The

continuity of the mapping Γ : ℜn
+ → ℜn

+ shows that Γ (q) = q . By virtue of

implication (iii) it follows that q = 0. Using the fact x ≤ Q(x) for all x ∈ ℜn
+

(which implies 0 ≤ Γ (k)(x) ≤ Γ (k)(Q(x)) for all k ≥ 1 and x ∈ ℜn
+), we obtain

limk→∞ Γ (k)(x) = 0 for all x ∈ ℜn
+.

(i) ⇒ (iii): The proof of implication (iii) is made by contradiction. Sup-

pose that there exists x ∈ ℜn
+ with x 	= 0 such that Γ (x) ≥ x. Using induction,

we can show that Γ (k)(x) ≥ x for all k ≥ 1. Consequently, we must have 0 =
limk→∞ Γ (k)(x) ≥ x, which contradicts the assumption x 	= 0.
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(iii) ⇒ (ii): If there exist s > 0 and some integer i = 1, . . . , n such that

γi,i(s) ≥ s, then the nonzero vector x ∈ ℜn
+ with xi = s and xj = 0 for j 	= i will

violate (iii). Consequently, γi,i(s) < s for all s > 0 and i = 1, . . . , n.

Next suppose that n > 1. Suppose that there exist some s > 0, r ∈ {2, . . . , n},
indices ij ∈ {1, . . . , n}, j = 1, . . . , r , with ij 	= ik if j 	= k such that (γi1,i2 ◦ γi2,i3

◦ · · · ◦ γir ,i1)(s) ≥ s. Without loss of generality we may assume that ij = j for

j = 1, . . . , r , and consequently (γ1,2 ◦ γ2,3 ◦ · · · ◦ γr,1)(s) ≥ s. The nonzero vector

x ∈ ℜn
+ with x1 = s, xj = (γj,j+1 ◦ γj+1,j+2 ◦ · · · ◦ γr,1)(s) for j = 2, . . . , r , and

xj = 0 for j > r satisfies Γ (x) ≥ x, and consequently hypothesis (iii) is violated.

Therefore (ii) must hold.

(ii) ⇒ (iv): The proof of this implication is a direct consequence of the fact that

Γ
(k)
i (x) = max

{

(γi,j1
◦ γj1,j2

◦ · · · ◦ γjk−1,jk
)(xjk

) : (j1, . . . , jk) ∈ {1, . . . , n}k
}

for all k ≥ 1, x ∈ ℜn
+, and i = 1, . . . , n. Using (ii), it can be shown that

Γ (n)(x) ≤ Q(x) = MAX{x,Γ (x),Γ (2)(x), . . . ,Γ (n−1)(x)} for all x ∈ ℜn
+. Since

Γ : ℜn
+ → ℜn

+ is MAX-preserving, we have Γ (Q(x)) = MAX{Γ (x),Γ (2)(x), . . . ,

Γ (n)(x)} for all x ∈ ℜn
+. As a result, we obtain Γ (Q(x)) ≤ Q(x) for all x ∈ ℜn

+.

By induction, it follows that Γ (k)(Q(x)) ≤ Q(x) for all k ≥ 1 and x ∈ ℜn
+. Since

x ≤ Q(x), we obtain Γ (k)(x) ≤ Q(x) for all k ≥ 1 and x ∈ ℜn
+.

The fact that implication (iii) holds is shown by contradiction. Suppose that

there exists a nonzero x ∈ ℜn
+ with Γ (x) ≥ x. Consequently, for every i ∈

{1, . . . , n}, there exists p(i) ∈ {1, . . . , n} with γi,p(i)(xp(i)) ≥ xi . With these inequal-

ities in mind, there are at least one i ∈ {1, . . . , n} with xi > 0 and a closed cycle

(i, j1, . . . , jr , i) such that (γi,j1
◦ γj1,j2

◦ · · · ◦ γjr ,i)(xi) ≥ xi , which contradicts (ii).

Therefore the implication (ii) ⇒ (iv) holds.

The proof is thus completed. �

The following proposition provides a useful algebraic implication.

Proposition 5.3 Suppose that Γ : ℜn
+ → ℜn

+ with Γ (x) = (Γ1(x), . . . ,Γn(x))′ is

MAX-preserving and there exist functions γi,j ∈ N1, i, j = 1, . . . , n, with Γi(x) =
maxj=1,...,n γi,j (xj ), i = 1, . . . , n. Moreover, suppose that Γ : ℜn

+ → ℜn
+ satisfies

the cyclic small-gain conditions and that x ≤ MAX{a,Γ (x)} for certain x, a ∈ ℜn
+.

Then x ≤ Q(a), where Q(a) = MAX{a,Γ (a),Γ (2)(a), . . . ,Γ (n−1)(a)}.

Proof Suppose that x ≤ MAX{a,Γ (x)}. Then Γ (x) ≤ MAX{Γ (a),Γ (2)(x)} and

x ≤ MAX{a,Γ (a),Γ (2)(x)}. By an induction argument,

x ≤ MAX
{

a,Γ (a), . . . ,Γ (k)(a),Γ (k+1)(x)
}

for all k ≥ 1.

It follows from statement (iv) of Proposition 5.2 that x ≤ MAX{Q(a),Γ (k+1)(x)}
for all k ≥ 1. Since limk→∞ Γ (k)(x) = 0, we obtain x ≤ Q(a). �

We end this paragraph by providing a list of useful facts that are consequences of

the above definitions and propositions. The following facts will be used in the rest

of the chapter.
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Fact I If Γ : ℜn
+ → ℜn

+ satisfies the cyclic small-gain conditions, then

limk→+∞ Γ (k)(x) = 0 for all x ∈ ℜn
+, and Γ (k)(x) ≤ Q(x) for all k ≥ 1 and

x ∈ ℜn
+. Recall that Q(x) = MAX{x,Γ (x),Γ (2)(x), . . . ,Γ (n−1)(x)}.

Fact II If Γ : ℜn
+ → ℜn

+ is a MAX-preserving mapping, then the mapping Q(·) is

a MAX-preserving mapping.

Fact III If Γ : ℜn
+ → ℜn

+ satisfies the cyclic small-gain conditions, then

Γ (Q(x)) ≤ Q(x) and Q(x) ≥ x for all x ∈ ℜn
+.

Fact IV If p ∈ Nn and R : ℜn
+ → ℜn

+ are nondecreasing mappings, then

the following inequality holds for all s, r ∈ ℜ+: p(MAX{R(1s),R(1r)}) =
max(p(R(1s)),p(R(1r))).

Fact V If Γ : ℜn
+ → ℜn

+ satisfies the cyclic small-gain conditions and x, y ∈ ℜn
+

satisfy x ≤ MAX{y,Γ (x)}, then x ≤ Q(y).

5.2.2 Trajectory-Based Small-Gain Theorems

We consider an abstract control system Σ := (X , Y ,MU ,MD, φ,π,H) with the

BIC property for which 0 ∈ X is a robust equilibrium point from the input u ∈
MU . We suppose that there exists a set-valued map ℜ+ ∋ t → S(t) ⊆ X with 0 ∈
S(t) for all t ≥ 0, mappings Vi :

⋃

t≥0{t} × S(t) × U → ℜ+ (i = 1, . . . , n), L :
⋃

t≥0{{t}×S(t)} → ℜ+ with L(t,0) = 0, Vi(t,0,0) = 0 for all t ≥ 0 (i = 1, . . . , n)

and a MAX-preserving continuous map Γ : ℜn
+ → ℜn

+ with Γ (0) = 0 such that the

following hypotheses hold:

(SG1) (The “IOS-like” inequalities) There exist functions σ ∈ KL and ζ ∈ N1 such

that for every (t0, x0, u, d) ∈ ℜ+ × X × MU × MD with φ(t, t0, x0, u, d) ∈ S(t)

for all t ∈ [t0, tmax), the mappings t → V (t) = (V1(t, φ(t, t0, x0, u, d), u(t)), . . . ,

Vn(t, φ(t, t0, x0, u, d), u(t)))′ and t → L(t) = L(t,φ(t, t0, x0, u, d)) are locally

bounded on [t0, tmax) and the following estimates hold for all t ∈ [t0, tmax):

V (t) ≤ MAX
{

1σ
(

L(t0), t − t0
)

,Γ
(

[V ][t0,t]
)

1ζ
([

‖u‖U

]

[t0,t]
)}

(5.4)

where tmax is the maximal existence time of the transition map of Σ .

(SG2) (Estimates during and after the transient period) For every (t0, x0, u, d) ∈
ℜ+ × X × MU × MD , there exists ξ ∈ π(t0, x0, u, d) such that φ(t, t0, x0,

u, d) ∈ S(t) for all t ∈ [ξ, tmax). Moreover, there exist functions ν, c, c̃ ∈ K+,

a,η, η̃,pu, gu ∈ N1, and p ∈ Nn such that the following inequalities hold for every

(t0, x0, u, d) ∈ ℜ+ × X × MU × MD :
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L(t) ≤ max
{

ν(t − t0), c(t0), a
(

‖x0‖X

)

,p
(

[V ][ξ,t]
)

,pu
([

‖u‖U

]

[t0,t]
)}

for all t ∈ [ξ, tmax] (5.5)
∥

∥φ(t, t0, x0, u, d)
∥

∥

X
≤ max

{

ν(t − t0), c̃(t0), a
(

‖x0‖X

)

, η̃
([

‖u‖U

]

[t0,t]
)}

for all t ∈ [t0, ξ ] (5.6)

ξ ≤ t0 + a
(

‖x0‖X

)

+ c(t0) (5.7)
∥

∥H
(

t, φ(t, t0, x0, u, d), u(t)
)∥

∥

Y
≤ max

{

a
(

c(t0)‖x0‖X

)

, η
([

‖u‖U

]

[t0,t]
)}

for all t ∈ [t0, ξ ] (5.8)

L
(

ξ,φ(ξ, t0, x0, u, d)
)

≤ max
{

a
(

c(t0)‖x0‖X

)

, gu
([

‖u‖U

]

[t0,ξ ]
)}

. (5.9)

(SG3) (Bounds for the norm of the state and the norm of the output) There exist

functions b ∈ N1, q,g ∈ Nn, and µ,κ ∈ K+ such that the following inequalities

hold for all (t, x,u) ∈
⋃

t≥0{{t} × S(t) × U}:

µ(t)‖x‖X ≤ b
(

L(t, x) + g
(

V (t, x,u)
)

+ κ(t)
)

, (5.10)
∥

∥H(t, x,u)
∥

∥

Y
≤ q

(

V (t, x,u)
)

(5.11)

where V (t, x,u) = (V1(t, x, u), . . . , Vn(t, x,u))′.

Discussion of Hypotheses (SG1), (SG2), (SG3) It is of interest to note that The-

orem 5.1 is a new trajectory-based small-gain result for IOS because inequali-

ties (5.4), (5.5) are not assumed to hold for all times. By combining Hypothe-

ses (SG1) and (SG2) we can conclude that for each trajectory, there exists a time

ξ ∈ π(t0, x0, u, d) after which inequalities (5.4), (5.5) hold. On the other hand, in

order to be able to conclude IOS for the system, we have to assume additional in-

equalities which hold for the transient period t ∈ [t0, ξ ], i.e., inequalities (5.6), (5.7),

(5.8), (5.9) are required to hold. We next discuss each hypothesis in detail.

• Hypothesis (SG1) is the hypothesis made in every small-gain result: it deals with

the “IOS-like” inequalities, which are to be used and be combined, in order to

prove the desired estimates. Notice that since we are using a family of n func-

tionals, the “IOS-like” inequalities are given for each functional separately: this is

why (5.4) expresses n “IOS-like” inequalities (in vector notation). The difference

between Hypothesis (SG1) and similar hypotheses involved in other small-gain

results is that we do not assume that the “IOS-like” inequalities (5.4) hold for

every initial condition and every input: instead, we assume that (5.4) holds only

for those initial conditions and inputs for which the state φ(t, t0, x0, u, d) is in the

set S(t) for all times t ≥ t0 for which the state exists.

• Hypothesis (SG2) is the key hypothesis that guarantees that the state will neces-

sarily enter the set S(t). The time needed in order to enter the set S(t) is denoted

by ξ ∈ π(t0, x0, u, d). Estimates (5.6), (5.8), (5.9) are estimates for the evolution

of the state and the output during the transient period t ∈ [t0, ξ ], since during the

transient period, the “IOS-like” inequalities (5.4) do not hold. Estimate (5.7) is

an upper bound for the time needed in order to enter the set S(t): clearly, such

an estimate is needed because we have to guarantee that the transient period (for
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which the state can behave erratically) is not “too long.” Finally, estimate (5.5) is

a key estimate for the functional L :
⋃

t≥0{{t} × S(t)} → ℜ+ that appears in the

right-hand side of inequalities (5.4). Inequality (5.5) holds for all times after the

time needed in order to enter the set S(t) (after the transient).

• Hypothesis (SG3) is a hypothesis made in every small-gain result (explicitly or

implicitly): it provides the bound that allows us to guarantee that the state does not

“blow up” and the bound that allows us to conclude that the norm of the output

is related to the functionals Vi :
⋃

t≥0{{t} × S(t) × U} → ℜ+ (i = 1, . . . , n). The

reader should notice that for every small-gain result, such a hypothesis holds.

• Finally, it should be noted that the set-valued map S(t) ⊆ X is not assumed to

be positively invariant. Instead, the state may enter and leave this set during the

transient period t ∈ [t0, ξ ]. However, after the initial transient period, the state

never leaves the set S(t) ⊆ X .

We are now ready to state the small-gain results. The first result provides suffi-

cient conditions for the IOS property.

Theorem 5.1 (Trajectory-based small-gain result for IOS) Consider a system

Σ := (X , Y ,MU ,MD, φ,π,H) under the above hypotheses. Assume that the MAX-

preserving continuous map Γ : ℜn
+ → ℜn

+ with Γ (0) = 0 satisfies the cyclic small-

gain conditions. Then the system Σ satisfies the IOS property from the input u ∈ MU

with gain γ (s) := max{η(s), q(G(s))}, where G(s) = (G1(s), . . . ,Gn(s))
′ is de-

fined by:

G(s) = Q
(

1 max
{

σ
(

pu(s),0
)

, σ
(

gu(s),0
)

, σ
(

p
(

Q
(

1σ
(

gu(s),0
)))

,0
)

,

σ
(

p
(

Q
(

1ζ(s)
))

,0
)

, ζ(s)
})

(5.12)

with Q(x) = MAX{x,Γ (x),Γ (2)(x), . . . ,Γ (n−1)(x)} for all x ∈ ℜn
+. Moreover, if

c ∈ K+ is bounded, then the system Σ satisfies the UIOS property from the input

u ∈ MU with gain γ (s) := max{η(s), q(G(s))}.

When we seek to prove RGAOS for a given system, then some of the above

hypotheses may be relaxed further. We consider an abstract control system Σ :=
(X , Y ,MU ,MD, φ,π,H) with U = {0} and the BIC property for which 0 ∈ X

is a robust equilibrium point from the input u ∈ MU . Suppose that there exists

a set-valued map ℜ+ ∋ t → S(t) ⊆ X with 0 ∈ S(t) for all t ≥ 0, mappings Vi :
⋃

t≥0{t}×S(t) → ℜ+ (i = 1, . . . , n), L :
⋃

t≥0{{t}×S(t)} → ℜ+ with L(t,0) = 0,

Vi(t,0) = 0 for all t ≥ 0 (i = 1, . . . , n), and a MAX-preserving continuous map

Γ : ℜn
+ → ℜn

+ with Γ (0) = 0 such that the following hypotheses hold:

(SG4) (The “IOS-like” inequalities) There exists a function σ ∈ KL such that for

every (t0, x0, d) ∈ ℜ+×X ×MD with φ(t, t0, x0, u0, d) ∈ S(t) for all t ∈ [t0, tmax),

the mappings t → V (t) = (V1(t, φ(t, t0, x0, u0, d)), . . . , Vn(t, φ(t, t0, x0, u0, d)))′

and t → L(t) = L(t,φ(t, t0, x0, u0, d)) are locally bounded on [t0, tmax) and the
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following estimate holds:

V (t) ≤ MAX
{

1σ
(

L(t0), t − t0
)

,Γ
(

[V ][t0,t]
)}

∀t ∈ [t0, tmax) (5.13)

where tmax is the maximal existence time of the transition map of Σ .

(SG5) (Estimates during and after the transient period) For every (t0, x0, d) ∈ ℜ+ ×
X × MD , there exists ξ ∈ π(t0, x0, u0, d) such that φ(t, t0, x0, u0, d) ∈ S(t) for all

t ∈ [ξ, tmax). Moreover, there exist functions ν, c ∈ K+, a ∈ N1, and p ∈ Nn, such

that for every (t0, x0, d) ∈ ℜ+ × X × MD , the following inequalities hold:

L(t) ≤ max
{

ν(t − t0), c(t0), a
(

‖x0‖X

)

,p
(

[V ][ξ,t]
)}

∀t ∈ [ξ, tmax) (5.14)
∥

∥φ(t, t0, x0, u0, d)
∥

∥

X

≤ max
{

ν(t − t0), c(t0), a
(

‖x0‖X

)}

∀t ∈ [t0, ξ ] (5.15)

ξ ≤ t0 + a
(

‖x0‖X

)

+ c(t0) (5.16)

L(ξ) ≤ a
(

‖x0‖X

)

+ c(t0). (5.17)

Discussion of Hypothesis (SG5) Hypothesis (SG5) is almost the same with Hy-

pothesis (SG2) applied to the case U = {0}. Nonetheless, notice the difference that

the estimate for L(ξ) in inequality (5.17) is less tight than the estimate needed in

inequality (5.9) of Hypothesis (SG2). Indeed, when x0 = 0, estimate (5.17) does

not yield L(ξ) = 0, contrary to the estimate (5.9), which gives L(ξ) = 0. Finally,

the analogue of inequality (5.8) for U = {0} (estimation of the norm of the output

during the transient period) is not needed in Hypothesis (SG5).

Theorem 5.2 (Trajectory-based small-gain for Robust Global Asymptotic Out-

put Stability (RGAOS)) Consider a system Σ := (X , Y ,MU ,MD, φ,π,H) with

U = {0} under Hypotheses (SG3), (SG4), (SG5). Assume that the MAX-preserving

continuous map Γ : ℜn
+ → ℜn

+ with Γ (0) = 0 satisfies the cyclic small-gain condi-

tions. Then the system Σ is RGAOS. Moreover, if Σ := (X , Y ,MU ,MD, φ,π,H) is

T -periodic for some T > 0, then the system Σ is Uniformly RGAOS (URGAOS).

It is clear that Hypotheses (SG4), (SG5) are less demanding than Hypothe-

ses (SG1), (SG2). On the other hand, the conclusion of Theorem 5.2 is weaker

than the conclusion of Theorem 5.1: Theorem 5.2 only guarantees RGAOS, while

Theorem 5.1 guarantees IOS.

Proof of Theorem 5.1 The proof consists of four steps:

Step 1: We show that for every (t0, x0, u, d) ∈ ℜ+ × X × MU × MD , the following

inequality holds for all t ∈ [ξ, tmax):

V (t) ≤ MAX
{

Q
(

1σ
(

L(ξ),0
))

,Q
(

1ζ
([

‖u‖U

]

[ξ,t]
))}

(5.18)

where ξ ∈ π(t0, x0, u, d) is the time such that φ(t, t0, x0, u, d) ∈ S(t) for all t ∈
[ξ, tmax) (recall Hypothesis (SG2)).
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Proof of Step 1: Let (t0, x0, u, d) ∈ ℜ+ × X × MU × MD . By virtue of Hypothesis

(SG2), there exists ξ ∈ π(t0, x0, u, d) such that φ(t, t0, x0, u, d) ∈ S(t) for all t ∈
[ξ, tmax). Inequality (5.4) implies, for all t ∈ [ξ, tmax),

[V ][ξ,t] ≤ MAX
{

1σ
(

L(ξ),0
)

,Γ
(

[V ][ξ,t]
)

,1ζ
([

‖u‖U

]

[ξ,t]
)}

(5.19)

Fact V in conjunction with (5.19) implies (5.18) for all t ∈ [ξ, tmax).

Step 2: We show that for every (t0, x0, u, d) ∈ ℜ+ × X × MU × MD , it holds that

tmax = +∞.

Proof of Step 2: Suppose that tmax < +∞. Then by virtue of the BIC property

for every M > 0, there exists t ∈ [t0, tmax) with ‖φ(t, t0, x0, u, d)‖X > M . On the

other hand, estimate (5.18), in conjunction with the hypothesis tmax < +∞, shows

that there exists M1 ≥ 0 such that supξ≤τ<tmax
|V (τ)| ≤ M1. The fact that V (t) is

bounded for t ∈ [ξ, tmax), in conjunction with estimate (5.5), implies that there ex-

ists M2 ≥ 0 such that supξ≤τ<tmax
L(τ) ≤ M2. It follows from (5.6), (5.10) that

the transition map of Σ , i.e., φ(t, t0, x0, u, d), is bounded on [t0, tmax), and this

contradicts the requirement that for every M > 0, there exists t ∈ [t0, tmax) with

‖φ(t, t0, x0, u, d)‖X > M . Hence, we must have tmax = +∞.

Step 3: We show that Σ is RFC from the input u ∈ MU .

Proof of Step 3: Let arbitrary r ≥ 0, T ≥ 0 and arbitrary u ∈ M(BU [0, r]) ∩
MU ,‖x0‖X ≤ r, t0 ∈ [0, T ], d ∈ MD be given. Estimate (5.6) shows that there

exists M := M(r,T ) ≥ 0 such that supt0≤τ≤ξ ‖φ(τ, t0, x0, u, d)‖X ≤ M < +∞.

This provides an upper bound for sup{‖φ(t0 + s, t0, x0, u, d)‖X ; s ∈ [0, T ]} when

t0 + T ≤ ξ . We next assume that t0 + T > ξ . By (5.9) there exists M̃ := M̃(r, T ) ≥
0 such that L(ξ) ≤ M̃ < +∞. Estimate (5.18) shows that there exists M1 :=
M1(r, T ) ≥ 0 such that supξ≤τ<t0+T |V (τ)| ≤ M1 < +∞. Consequently, estimate

(5.5) implies that there exists M2 := M2(r, T ) ≥ 0 such that supξ≤τ≤t0+T L(τ) ≤
M2 < +∞. It follows from (5.10) that there exists M3 := M3(r, T ) ≥ 0 such that

supξ≤τ≤t0+T ‖φ(τ, t0, x0, u, d)‖X ≤ M3 < +∞. Hence,

sup
{
∥

∥φ(t0 + s, t0, x0, u, d)
∥

∥

X
;u ∈ M

(

BU [0, r]
)

∩ MU , s ∈ [0, T ],‖x0‖X ≤ r,

t0 ∈ [0, T ], d ∈ MD

}

< +∞

Therefore, we conclude that Σ is RFC from the input u ∈ MU .

Step 4: We prove the following claim.

Claim For all ε > 0, k ∈ Z+, and R,T ≥ 0, there exists τk(ε,R,T ) ≥ 0 such that

for every (t0, x0, u, d) ∈ ℜ+ × X × MU × MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R, the

following inequality holds for all t ≥ ξ + τk :

V (t) ≤ MAX
{

Q(1ε),Γ (k)
(

Q
(

1σ
(

L(ξ),0
)))

,G
([

‖u‖U

]

[t0,t]
)}

(5.20)
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where G is defined by (5.12). Moreover, if c ∈ K+ is bounded, then for all ε > 0,

k ∈ Z+, and R ≥ 0, there exists τk(ε,R) ≥ 0 such that for every (t0, x0, u, d) ∈
ℜ+ × X × MU × MD with ‖x0‖X ≤ R, inequality (5.20) holds.

Proof of Step 4: The proof of the claim will be made by induction on k ∈ Z+.

First, we show inequality (5.20) for k = 1.

Let arbitrary ε > 0, R,T ≥ 0, and (t0, x0, u, d) ∈ ℜ+ × X × MU × MD with

t0 ∈ [0, T ] and ‖x0‖X ≤ R be given. Inequality (5.4), in conjunction with inequal-

ity (5.18), gives, for all t ≥ ξ ,

V (t) ≤ MAX
{

1σ
(

L(ξ), t − ξ
)

,Γ
(

Q
(

1σ
(

L(ξ),0
)))

,

Γ
(

Q
(

1ζ
([

‖u‖U

]

[ξ,t]
)))

,1ζ
([

‖u‖U

]

[ξ,t]
)}

(5.21)

Since Γ (Q(x)) ≤ Q(x) and Q(x) ≥ x for all x ∈ ℜn
+ (see Fact III), inequality (5.21)

implies, for all t ≥ ξ ,

V (t) ≤ MAX
{

1σ
(

L(ξ), t − ξ
)

,Γ
(

Q
(

1σ
(

L(ξ),0
)))

,Q
(

1ζ
([

‖u‖U

]

[ξ,t]
))}

(5.22)

Inequality (5.22), in conjunction with (5.9), implies, for all t ≥ ξ ,

V (t) ≤ MAX
{

1σ
(

a
(

c(t0)‖x0‖X

)

, t − ξ
)

,1σ
(

gu
([

‖u‖U

]

[t0,ξ ]
)

,0
)

,

Γ
(

Q
(

1σ
(

L(ξ),0
)))

,Q
(

1ζ
([

‖u‖U

]

[ξ,t]
))}

(5.23)

Finally, inequality (5.23), in conjunction with the fact that Q(x) ≥ x for all x ∈ ℜn
+

and definition (5.12), implies the following estimate for all t ≥ ξ :

V (t) ≤ MAX
{

1σ
(

a
(

c(t0)‖x0‖X

)

, t − ξ
)

,Γ
(

Q
(

1σ
(

L(ξ),0
)))

,G
([

‖u‖U

]

[t0,t]
)}

(5.24)

Using the properties of the KL functions, we can guarantee that there exists

τ1(ε,R,T ) ≥ 0 such that σ(a(R max0≤t≤T c(t)), τ1) ≤ ε. Notice that if c ∈ K+ is

bounded, then τ1 ≥ 0 is independent of T . Then, it follows from (5.24) that we have

V (t) ≤ MAX{1ε,Γ (Q(1σ(L(ξ),0))),Q(1ζ([‖u(τ)‖U ][t0,t]))} for all t ≥ ξ + τ1.

Since Q(1ε) ≥ 1ε, we conclude that inequality (5.20) holds for k = 1.

Inequality (5.5), in conjunction with inequality (5.18) and Fact IV, gives, for all

t ≥ ξ ,

L(t) ≤ max
{

ν(t − t0), c(t0), a
(

‖x0‖X

)

,p
(

Q
(

1σ
(

L(ξ),0
)))

,

p
(

Q
(

1ζ
([

‖u‖U

]

[t0,t]
)))

,pu
([

‖u‖U

]

[t0,t]
)}

(5.25)

Next, suppose that for all ε > 0 and R,T ≥ 0, there exists τk(ε,R,T ) ≥ 0 such that

for every (t0, x0, u, d) ∈ ℜ+ × X × MU × MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R,

(5.20) holds for some k ∈ Z+. Let arbitrary ε > 0, R,T ≥ 0, and (t0, x0, u, d) ∈
ℜ+ × X × MU × MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R be given. Notice that the

weak semigroup property implies that π(t0, x0, u, d) ∩ [ξ + τk, ξ + τk + r] 	= ∅. Let

tk ∈ π(t0, x0, u, d) ∩ [ξ + τk, ξ + τk + r]. Then (5.4) implies that, for all t ≥ tk ,

V (t) ≤ MAX
{

1σ
(

L(tk), t − tk
)

,Γ
(

[V ][tk ,t]
)

,1ζ
([

‖u‖U

]

[tk,t]
)}

(5.26)
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Moreover, inequality (5.20) gives, for all t ≥ tk ,

[V ][tk ,t] ≤ MAX
{

Q(1ε),Γ (k)
(

Q
(

1σ
(

L(ξ),0
)))

,G
([

‖u‖U

]

[t0,t]
)}

(5.27)

Inequality (5.25) also implies

L(tk) ≤ max
{

ν(tk − t0), c(t0), a(R),p
(

Q
(

1σ
(

L(ξ),0
)))

,

p
(

Q
(

1ζ
([

‖u‖U

]

[t0,tk]
)))

,pu
([

‖u‖U

]

[t0,tk]
)}

(5.28)

Using (5.9) and (5.28), we obtain

L(tk) ≤ max
{

ν(tk − t0), c(t0), a(R),p
(

Q
(

1σ
(

a
(

c(t0)R
)

,0
)))

,

p
(

Q
(

1σ
(

gu
([

‖u‖U

]

[t0,tk]
)

,0
)))

,p
(

Q
(

1ζ
([

‖u‖U

]

[t0,tk]
)))

,

pu
([

‖u‖U

]

[t0,tk]
)}

(5.29)

Using (5.27) and the fact that Γ (G(s)) ≤ G(s) for all s ≥ 0, we obtain

Γ
(

[V ][tk,t]
)

≤ MAX
{

Q(1ε),Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))

,G
([

‖u‖U

]

[t0,t]
)}

for all t ≥ tk (5.30)

Inequality (5.30), in conjunction with inequality (5.26), the fact that G(s) ≥
Q(1ζ(s)) ≥ 1ζ(s) for all s ≥ 0, and the fact that tk ≤ ξ + τk + r , implies

V (t) ≤ MAX
{

1σ
(

L(tk), t − ξ − τk − r
)

,Q(1ε),Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))

,

G
([

‖u‖U

]

[t0,t]
)}

for all t ≥ ξ + τk + r (5.31)

Inequality (5.29), in conjunction with (5.7) and the facts that 1σ(pu(s),0) ≤ G(s),

1σ(p(Q(1ζ(s))),0) ≤ G(s), and 1σ(p(Q(1σ(gu(s),0))),0) ≤ G(s) for all s ≥ 0

(see definition (5.12)) and tk ≤ ξ + τk + r , t0 ∈ [0, T ], and ‖x0‖X ≤ R, implies that

1σ
(

L(tk), t − ξ − τk − r
)

≤ MAX
{

1σ
(

f (ε,T ,R), t − ξ − τk − r
)

,G
([

‖u‖U

]

[t0,t]
)}

for all t ≥ ξ + τk + r (5.32)

where

f (ε,T ,R) := max
{

max
0≤t≤a(R)+C(T )+τk(ε,R,T )+r

ν(t),C(T ), a(R),

p
(

Q
(

1σ
(

a
(

RC(T )
)

,0
)))

}

(5.33)

and

C(T ) := max
0≤t≤T

c(t) (5.34)

Notice that if c ∈ K+ is bounded and τk is independent of T , then f can be chosen

to be independent of T as well. By combining (5.31) and (5.32) we get

V (t) ≤ MAX
{

1σ
(

f (ε,T ,R), t − ξ − τk − r
)

,Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))

,

Q(1ε),G
([

‖u‖U

]

[t0,t]
)}

for all t ≥ ξ + τk + r (5.35)
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Clearly, there exists τ(ε,R,T ) ≥ 0 such that σ(f (ε,T ,R), τ ) ≤ ε. Define

τk+1(ε,R,T ) = τk(ε,R,T ) + r + τ(ε,R,T ) (5.36)

Again, notice that if f and τk are independent of T , then τk+1 is independent of T

as well. Since Q(1ε) ≥ 1ε, we obtain from (5.35)

V (t) ≤ MAX
{

Q(1ε),Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))

,G
([

‖u‖U

]

[t0,t]
)}

for all t ≥ ξ + τk+1 (5.37)

which shows that (5.20) holds for k + 1.

To finish the proof, let ε > 0, R,T ≥ 0, and (t0, x0, u, d) ∈ ℜ+ × X ×MU ×MD

be arbitrary and denote Y(t) = H(t,φ(t, t0, x0, u, d), u(t)) for t ≥ t0.

Using Fact IV, (5.11), and (5.18), we obtain, for all t ≥ ξ ,
∥

∥Y(t)
∥

∥

Y
≤ max

{

q
(

Q
(

1σ
(

L(ξ),0
)))

, q
(

Q
(

1ζ
([

‖u‖U

]

[ξ,t]
)))}

The above inequality, in conjunction with (5.9), implies that
∥

∥Y(t)
∥

∥

Y
≤ max

{

q
(

Q
(

1σ
(

a
(

c(t0)‖x0‖X

)

,0
)))

, q
(

Q
(

1ζ
([

‖u‖U

]

[t0,t]
)))

,

q
(

Q
(

1σ
(

gu
([

‖u‖U

]

[t0,t]
)

,0
)))}

for all t ≥ ξ (5.38)

Using (5.8) and (5.38), we conclude that the following estimate holds for all t ≥ t0:
∥

∥Y(t)
∥

∥

Y
≤ max

{

q
(

Q
(

1σ
(

a
(

c(t0)‖x0‖X

)

,0
)))

, a
(

c(t0)‖x0‖X

)

,

η
([

‖u‖U

]

[t0,t]
)

, q
(

Q
(

1σ
(

gu
([

‖u‖U

]

[t0,t]
)

,0
)))

,

q
(

Q
(

1ζ
([

‖u‖U

]

[t0,t]
)))}

(5.39)

Inequality (5.39) shows that Properties P1 and P2 of Lemma 4.1 hold for system Σ

with V = ‖H(t, x,u)‖Y , δ(t) ≡ 1, and γ (s) := max{η(s), q(G(s))}. Moreover, if

c ∈ K+ is bounded, then (5.39) implies that Properties P1 and P2 of Lemma 4.2 hold

for system Σ with V = ‖H(t, x,u)‖Y , δ(t) ≡ 1, and γ (s) := max{η(s), q(G(s))}.
Inequality (5.20), in conjunction with Fact III, (5.9), (5.34), and definition (5.12),

guarantees that for all ε > 0, k ∈ Z+, and R,T ≥ 0, there exists τk(ε,R,T ) ≥ 0 such

that for every (t0, x0, u, d) ∈ ℜ+ × X ×MU ×MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R,

the following inequality holds:

V (t) ≤ MAX
{

Q(1ε),Γ (k)
(

Q
(

1σ
(

a
(

RC(T )
)

,0
)))

,G
([

‖u‖U

]

[t0,t]
)}

for all t ≥ ξ + τk. (5.40)

Notice that Fact I guarantees the existence of k(ε, T ,R) ∈ Z+ such that Q(1ε) ≥
Γ (l)(Q(1σ(a(RC(T )),0))) for all l ≥ k. If c ∈ K+ is bounded, then k is inde-

pendent of T . Therefore, (5.40) implies that for all ε > 0 and R,T ≥ 0, there ex-

ists τ(ε,R,T ) ≥ 0 such that for every (t0, x0, u, d) ∈ ℜ+ × X × MU × MD with

t0 ∈ [0, T ] and ‖x0‖X ≤ R, it holds that

V (t) ≤ MAX
{

Q(1ε),G
([

‖u‖U

]

[t0,t]
)}

for all t ≥ ξ + τ (5.41)

If c ∈ K+ is bounded, then τ(ε,R,T ) ≥ 0 is independent of T . It follows from

inequalities (5.11), (5.41), definition (5.12), and Fact IV that for every ε > 0 and
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R,T ≥ 0, there exists τ(ε,R,T ) ≥ 0 such that for every (t0, x0, u, d) ∈ ℜ+ × X ×
MU × MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R, it holds that

∥

∥Y(t)
∥

∥

Y
≤ max

{

q
(

Q(1ε)
)

, q
(

G
([

‖u‖U

]

[t0,t]
))}

for all t ≥ ξ + τ (5.42)

Therefore, by virtue of (5.42) and (5.7), Property P3 of Lemma 4.1 holds for

system Σ with V = ‖H(t, x,u)‖Y , δ(t) ≡ 1, and γ (s) := max{η(s), q(G(s))}.
Moreover, if c ∈ K+ is bounded, then (5.42) and (5.7) imply that Property P3 of

Lemma 4.2 in Chap. 4 hold for system Σ with V = ‖H(t, x,u)‖Y , δ(t) ≡ 1 and

γ (s) := max{η(s), q(G(s))}.
The conclusions of Theorem 5.1 are direct consequences of Lemma 4.1 (or

Lemma 4.2 for the case of bounded c ∈ K+). �

Proof of Theorem 5.2 By virtue of Lemma 2.1 we have to show that Σ is Robustly

Forward Complete (RFC) and satisfies the Robust Output Attractivity Property, i.e.,

for every ε > 0, T ≥ 0, and R ≥ 0, there exists τ := τ(ε, T ,R) ≥ 0 such that

‖x0‖X ≤ R t0 ∈ [0, T ] ⇒
∥

∥H
(

t, φ(t, t0, x0, u0, d),0
)∥

∥

Y
≤ ε

for all t ∈ [t0 + τ,+∞) and all d ∈ MD . Moreover, Lemma 2.2 guarantees that the

system Σ = (X , Y ,MU ,MD, φ,π,H) is URGAOS if it is T -periodic for certain

T > 0.

The proof consists of four steps:

Step 1: We show that for every (t0, x0, d) ∈ ℜ+ × X ×MD , the following inequality

holds for all t ∈ [ξ, tmax):

V (t) ≤ Q
(

1σ
(

L(ξ),0
))

(5.43)

where ξ ∈ π(t0, x0, u0, d) is the time such that φ(t, t0, x0, u0, d) ∈ S(t) for all t ∈
[ξ, tmax) (recall Hypothesis (SG5)).

Proof of Step 1: Exactly the same as in Theorem 5.1.

Step 2: We show that for every (t0, x0, d) ∈ ℜ+ × X ×MD , it holds that tmax = +∞.

Proof of Step 2: Exactly the same as in Theorem 5.1.

Step 3: We show that Σ is RFC.

Proof of Step 3: Exactly the same as in Theorem 5.1.

Step 4: We prove the following claim.

Claim For all ε > 0, k ∈ Z+, and R,T ≥ 0, there exists τk(ε,R,T ) ≥ 0 such that

for every (t0, x0, d) ∈ ℜ+ × X ×MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R, the following

inequality holds:

V (t) ≤ MAX
{

Q(1ε),Γ (k)
(

Q
(

1σ
(

L(ξ),0
)))}

for all t ≥ ξ + τk (5.44)
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Proof of Step 4: The proof of the claim will be made by induction on k ∈ Z+.

First we show inequality (5.44) for k = 1.

Let arbitrary ε > 0, R,T ≥ 0, and (t0, x0, d) ∈ ℜ+ × X × MD with t0 ∈ [0, T ]
and ‖x0‖X ≤ R be given. Inequality (5.13), in conjunction with inequality (5.43),

gives, for all t ≥ ξ ,

V (t) ≤ MAX
{

1σ
(

L(ξ), t − ξ
)

,Γ
(

Q
(

1σ
(

L(ξ),0
)))}

(5.45)

Inequality (5.45), in conjunction with (5.17), implies, for all t ≥ ξ ,

V (t) ≤ MAX
{

1σ
(

a
(

‖x0‖X

)

+ c(t0), t − ξ
)

,Γ
(

Q
(

1σ
(

L(ξ),0
)))}

(5.46)

Using the properties of the KL functions, we can guarantee that there exists

τ1(ε,R,T ) ≥ 0 such that σ(a(R) + max0≤t≤T c(t), τ1) ≤ ε. Since Q(1ε) ≥ 1ε, we

conclude that inequality (5.44) holds for k = 1.

Inequality (5.14), in conjunction with inequality (5.43) and Fact IV, gives, for all

t ≥ ξ ,

L(t) ≤ max
{

ν(t − t0), c(t0), a
(

‖x0‖X

)

,p
(

Q
(

1σ
(

L(ξ),0
)))}

(5.47)

Next, suppose that for all ε > 0 and R,T ≥ 0, there exists τk(ε,R,T ) ≥ 0 such that

for every (t0, x0, d) ∈ ℜ+ × X × MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R, (5.44) holds

for some k ∈ Z+. Let arbitrary ε > 0, R,T ≥ 0, and (t0, x0, d) ∈ ℜ+ × X × MD

with t0 ∈ [0, T ] and ‖x0‖X ≤ R be given. Notice that the weak semigroup prop-

erty implies that π(t0, x0, u, d) ∩ [ξ + τk, ξ + τk + r] 	= ∅. Let tk ∈ π(t0, x0, u, d) ∩
[ξ + τk, ξ + τk + r]. Then (5.13) implies

V (t) ≤ MAX
{

1σ
(

L(tk), t − tk
)

,Γ
(

[V ][tk,t]
)}

∀t ≥ tk (5.48)

Moreover, inequality (5.44) gives

[V ][tk,t] ≤ MAX
{

Q(1ε),Γ (k)
(

Q
(

1σ
(

L(ξ),0
)))}

∀t ≥ tk (5.49)

Inequality (5.47) also implies:

L(tk) ≤ max
{

ν(tk − t0), c(t0), a(R),p
(

Q
(

1σ
(

L(ξ),0
)))}

(5.50)

Using (5.17) and (5.50), we obtain

L(tk) ≤ max
{

ν(tk − t0), c(t0), a(R),p
(

Q
(

1σ
(

a(R) + c(t0),0
)))}

(5.51)

Using (5.49) and the fact that Γ (Q(x)) ≤ Q(x) for all x ∈ ℜn
+, it holds

Γ
(

[V ][tk ,t]
)

≤ MAX
{

Q(1ε),Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))}

∀t ≥ tk (5.52)

Inequality (5.52), in conjunction with inequality (5.48) and the fact that tk ≤ ξ +
τk + r , implies

V (t) ≤ MAX
{

1σ
(

L(tk), t − ξ − τk − r
)

,Q(1ε),Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))}

for all t ≥ ξ + τk + r (5.53)

Inequality (5.51), in conjunction with (5.16) and the facts that tk ≤ ξ + τk + r ,

t0 ∈ [0, T ], and ‖x0‖X ≤ R, implies that, for all t ≥ ξ + τk + r ,

σ
(

L(tk), t − ξ − τk − r
)

≤ σ
(

f (ε,T ,R), t − ξ − τk − r
)

(5.54)
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where

f (ε,T ,R) := max
{

max
0≤t≤a(R)+C(T )+τk(ε,R,T )+r

ν(t),C(T ), a(R),

p
(

Q
(

1σ
(

a(R) + C(T ),0
)))

}

(5.55)

and

C(T ) := max
0≤t≤T

c(t) (5.56)

Combining (5.53) and (5.54) leads to

V (t) ≤ MAX
{

1σ
(

f (ε,T ,R), t − ξ − τk − r
)

,Q(1ε),Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))}

for all t ≥ ξ + τk + r (5.57)

Clearly, there exists τ(ε,R,T ) ≥ 0 such that σ(f (ε,T ,R), τ ) ≤ ε. Define

τk+1(ε,R,T ) = τk(ε,R,T ) + r + τ(ε,R,T ) (5.58)

Since Q(1ε) ≥ 1ε, it follows from (5.57) that

V (t) ≤ MAX
{

Q(1ε),Γ (k+1)
(

Q
(

1σ
(

L(ξ),0
)))}

∀t ≥ ξ + τk+1 (5.59)

which shows that (5.44) holds for k + 1.

To finish the proof, let ε > 0, R,T ≥ 0, and (t0, x0, d) ∈ ℜ+ × X × MD be

arbitrary and denote Y(t) = H(t,φ(t, t0, x0, u0, d),0) for t ≥ t0.

Inequality (5.44), in conjunction with Fact III, (5.17), and (5.56), guarantees that

for all ε > 0, k ∈ Z+, and R,T ≥ 0, there exists τk(ε,R,T ) ≥ 0 such that, for

every (t0, x0, d) ∈ ℜ+ × X × MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R, the following

inequality holds:

V (t) ≤ MAX
{

Q(1ε),Γ (k)
(

Q
(

1σ
(

a(R) + C(T ),0
)))}

∀t ≥ ξ + τk (5.60)

Notice that Fact I guarantees the existence of k(ε, T ,R) ∈ Z+ such that Q(1ε) ≥
Γ (l)(Q(1σ(a(R) + C(T ),0))) for all l ≥ k. Therefore, (5.60) implies that for all

ε > 0, and R,T ≥ 0, there exists τ(ε,R,T ) ≥ 0 such that for every (t0, x0, d) ∈
ℜ+ × X × MD with t0 ∈ [0, T ] and ‖x0‖X ≤ R, it holds that

V (t) ≤ Q(1ε) for all t ≥ ξ + τ (5.61)

It follows from inequalities (5.11) and (5.61) that for all ε > 0 and R,T ≥ 0, there

exists τ(ε,R,T ) ≥ 0 such that for every (t0, x0, d) ∈ ℜ+ × X ×MD with t0 ∈ [0, T ]
and ‖x0‖X ≤ R, it holds that

∥

∥Y(t)
∥

∥

Y
≤ q

(

Q(1ε)
)

for all t ≥ ξ + τ (5.62)

Therefore, by virtue of (5.62) and (5.16), the Robust Output Attractivity Property

holds for system Σ . The proof is complete. �

The small-gain conditions (5.3) for n = 2 are equivalent to the inequalities

γ1,2

(

γ2,1(s)
)

< s and γ2,1

(

γ1,2(s)
)

< s for all s > 0
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However, it should be noted that the second inequality above is implied by the first

one. For n = 3, conditions (5.3) are equivalent to the following twelve inequalities

for all s > 0:

γ1,2

(

γ2,1(s)
)

< s γ2,1

(

γ1,2(s)
)

< s

γ1,3

(

γ3,1(s)
)

< s γ3,1

(

γ1,3(s)
)

< s

γ2,3

(

γ3,2(s)
)

< s γ3,2

(

γ2,3(s)
)

< s

γ1,2

(

γ2,3(γ3,1(s))
)

< s γ3,1

(

γ1,2(γ2,3(s))
)

< s, γ2,3

(

γ3,1(γ1,2(s))
)

< s

γ2,1

(

γ1,3(γ3,2(s))
)

< s γ1,3

(

γ3,2(γ2,1(s))
)

< s γ3,2

(

γ2,1(γ1,3(s))
)

< s

Also notice that some of the above inequalities are equivalent. The following

five inequalities

γ1,2

(

γ2,1(s)
)

< s γ1,3

(

γ3,1(s)
)

< sγ2,3

(

γ3,2(s)
)

< s

γ1,2

(

γ2,3(γ3,1(s))
)

< s and γ2,1

(

γ1,3(γ3,2(s))
)

< s for all s > 0

imply all twelve inequalities that express conditions (5.3) in this case.

Finally, it should be noticed that if the norm of the input ‖u‖U appears in in-

equalities (5.4)–(5.9) “weighted” by certain δ ∈ K+, i.e., if [‖u‖U ][t0,t] is replaced

by supt0≤τ≤t δ(τ )‖u(τ)‖U , then the result of Theorem 5.1 will guarantee WIOS

with weight function δ ∈ K+, instead of IOS.

5.3 Vector Lyapunov Functionals

In this section, we will restrict our attention to the problem of the verification of

the assumptions of the small-gain results of the previous paragraph (Theorems 5.1

and 5.2) by means of Lyapunov functionals. The obtained results are termed as

results involving “vector Lyapunov functionals” due to the fact that a family of

Lyapunov functionals is used.

5.3.1 Vector Lyapunov Functions for Systems Described by ODEs

Consider systems described by Ordinary Differential Equations (ODEs) of the

form (1.3) under Hypotheses (H1–5). Moreover, we assume that the output map

H is independent of u ∈ U . Finally, we will assume that

(SG6) There exist functions Vi ∈ C1(ℜ+ × ℜn;ℜ+) (i = 1, . . . , k), W ∈ C1(ℜ+ ×
ℜn;ℜ+), a1, a2, a3, a4 ∈ K∞ µ,β, κ ∈ K+, ζ ∈ N1, g ∈ Nk ,γi,j ∈ N1, pi ∈ N1,

i, j = 1, . . . , k, a family of positive definite functions ρi ∈ C0(ℜ+;ℜ+) (i =
1, . . . , k), and a constant λ ∈ (0,1) such that the following inequalities hold for

all (t, x,u) ∈ ℜ+ × ℜn × U :
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a1

(∣

∣H(t, x)
∣

∣

)

≤ max
i=1,...,k

Vi(t, x) ≤ a2

(

β(t)|x|
)

(5.63)

a3

(

µ(t)|x|
)

− g
(

V1(t, x), . . . , Vk(t, x)
)

− κ(t) ≤ W(t, x) ≤ a4

(

β(t)|x|
)

(5.64)

sup

{

∂W

∂t
(t, x) +

∂W

∂x
(t, x)f (t, x,u, d) : d ∈ D

}

≤ −W(t, x) + λmax
{

ζ
(

|u|
)

, max
j=1,...,k

pj

(

Vj (t, x)
)

}

(5.65)

and, for all i = 1, . . . , k and (t, x,u) ∈ ℜ+ × ℜn × U , the following implication

holds:

“if max
{

ζ
(

|u|
)

, max
j=1,...,k

γi,j

(

Vj (t, x)
)

}

≤ Vi(t, x),

then
∂Vi

∂t
(t, x) + sup

d∈D

∂Vi

∂x
(t, x)f (t, x,u, d) ≤ −ρi

(

Vi(t, x)
)

” (5.66)

Our main result concerning systems of the form (1.3) is the following result,

which provides sufficient conditions for Theorem 5.1 to hold.

Theorem 5.3 (Vector Lyapunov function characterization of the IOS property)

Consider system (1.3) under Hypotheses (H1–5) and (SG6). Moreover, we assume

that the output map H is independent of u ∈ U . If the small-gain conditions (5.3)

hold, then system (1.3) satisfies the IOS property with gain γ = a−1
1 ◦ θ ∈ N1 from

the input u ∈ MU , where

θ(s) := max
i=1,...,k

ϕi

(

max
{

max
l=1,...,k

max
j=1,...,k

γl,j

(

ϕj

(

ζ(s)
))

,

max
j=1,...,k

pj

(

ϕj

(

ζ(s)
))

, ζ(s)
})

(5.67)

and

ϕi(s) := max
{

s, max
l=1,...,k−1

max
{

(γi,j1
◦ γj1,j2

◦ · · · ◦ γjl−1,jl
)(s);

(j1, . . . , jl) ∈ {1, . . . , n}l
}

}

i = 1, . . . , k (5.68)

Moreover, if β ∈ K+ is bounded, then system (1.3) with output Y = H(t, x) satisfies

the UIOS property with gain γ = a−1
1 ◦ θ ∈ N1 from the input u ∈ MU .

Proof We want to show that all hypotheses of Theorem 5.1 hold with S(t) ≡ ℜn

and

L(t, x) := max
{

W(t, x), max
i=1,...,k

Vi(t, x)
}

(5.69)

Notice that Hypothesis (SG3) of Theorem 5.1 is a direct consequence of inequal-

ities (5.64), definition (5.69), and inequality (5.63) with q(x) := a−1
1 (maxi=1,...,k xi)

for all x ∈ ℜn
+.

Finally, notice that since S(t) ≡ ℜn, we can select the time ξ involved in Hy-

pothesis (SG2) to be ξ = t0. Consequently, inequalities (5.6), (5.7), (5.8), and (5.9)
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are automatically satisfied for appropriate functions. Thus, we are left with the task

of proving inequalities (5.4) and (5.5).

Consider a solution x(t) of (1.3) corresponding to arbitrary (u, d) ∈ MU × MD

with arbitrary initial condition x(t0) = x0 ∈ ℜn. Clearly, there exists a maximal ex-

istence time for the solution denoted by tmax ≤ +∞. Define Vi(t) = Vi(t, x(t)),

i = 1, . . . , k, W(t) = W(t, x(t)) absolutely continuous functions on [t0, tmax), and

L(t) = L(t, x(t)). Moreover, let I ⊂ [t0, tmax) be the zero Lebesgue measure set

where x(t) is not differentiable or ẋ(t) 	= f (t, x(t), u(t), d(t)). By virtue of (5.66),

it follows that the following implication holds for t ∈ [t0, tmax)\I and i = 1, . . . , k:

Vi(t) ≥ max
{

ζ
(∣

∣u(t)
∣

∣

)

, max
j=1,...,k

γi,j

(

Vj (t)
)

}

⇒ V̇i(t) ≤ −ρi

(

Vi(t)
)

(5.70)

and by virtue of (5.65), we get, for t ∈ [t0, tmax)\I ,

Ẇ (t) ≤ −W(t) + λmax
{

ζ
(
∣

∣u(t)
∣

∣

)

, max
j=1,...,k

pj

(

Vj (t)
)

}

(5.71)

Lemma 2.14 in Chap. 2, in conjunction with (5.70), implies that there exists a family

of continuous functions σi (i = 1, . . . , k) of class KL, with σi(s,0) = s for all s ≥ 0

such that, for all t ∈ [t0, tmax) and i = 1, . . . , k, we have

Vi(t) ≤ max
{

σi

(

Vi(t0), t − t0
)

, sup
t0≤τ≤t

σi

(

max
j=1,...,k

sup
t0≤s≤τ

γi,j

(

Vj (s)
)

, t − τ
)

,

sup
t0≤τ≤t

σi

(

ζ
(

sup
t0≤s≤τ

∣

∣u(s)
∣

∣

)

, t − τ
)}

(5.72)

Moreover, inequality (5.71) directly implies that, for all t ∈ [t0, tmax),

W(t) ≤ W(t0) + λmax
{

ζ
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)

, max
j=1,...,k

pj

(

sup
t0≤s≤t

Vj (s)
)}

(5.73)

Let σ(s, t) := maxi=1,...,k σi(s, t), which is a function of class KL that satisfies

σ(s,0) = s for all s ≥ 0. It follows from (5.72), (5.73), and definition (5.69) that,

for all t ∈ [t0, tmax) and i = 1, . . . , k,

Vi(t) ≤ max
{

Vi(t0), max
j=1,...,k

γi,j

(

sup
t0≤s≤t

Vj (s)
)

, ζ
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)}

(5.74)

Vi(t) ≤ max
{

σ
(

L(t0), t − t0
)

, max
j=1,...,k

γi,j

(

sup
t0≤s≤t

Vj (s)
)

, ζ
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)}

(5.75)

W(t) ≤ max

{

1

1 − λ
W(t0), ζ

(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)

, max
i=1,...,k

pi

(

sup
t0≤s≤t

Vi(s)
)

}

(5.76)

Clearly, inequalities (5.75) show that (5.4) holds with Γ : ℜk
+ → ℜk

+, Γ (x) =
(Γ1(x), . . . ,Γn(x))′ with Γi(x) = maxj=1,...,k γi,j (xj ) for all i = 1, . . . , k and x ∈
ℜn

+. Furthermore, the small-gain conditions hold for the MAX-preserving mapping

Γ : ℜk
+ → ℜk

+ as well. Moreover, inequalities (5.74) and (5.76) imply that the fol-

lowing estimates hold, for all t ∈ [t0, tmax),
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max
i=1,...,k

Vi(t) ≤ max
{

max
i=1,...,k

Vi(t0), max
i=1,...,k

max
j=1,...,k

γi,j

(

sup
t0≤s≤t

Vj (s)
)

,

ζ
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)}

(5.77)

Define

pu(s) := ζ(s) ∀s ≥ 0 (5.78)

p(x) := max
{

max
i,j=1,...,k

γi,j (xj ), max
j=1,...,k

pj (xj )
}

∀x ∈ ℜn
+ (5.79)

Combining estimates (5.76), (5.77) and exploiting definitions (5.69), (5.78), and

(5.79), we get, for all t ∈ [t0, tmax),

L(t) ≤ max
{

h
(

L(t0)
)

,p
(

sup
t0≤s≤t

V1(s), . . . , sup
t0≤s≤t

Vk(s)
)

,pu
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)}

(5.80)

where h(s) := s
1−λ

. Inequality (5.5) is a direct consequence of (5.80), inequal-

ities (5.63), (5.64), and Lemma 3.2 in Chap. 3 with ν(t) ≡ 1, pu ∈ N1, and

p ∈ Nn as defined by (5.78), (5.79), and appropriate a ∈ N1 and c ∈ K+. The

reader should notice that if β ∈ K+ is bounded, then c ∈ K+ is bounded as

well.

Consequently, all hypotheses of Theorem 5.1 hold with σ(s, t) :=
maxi=1,...,k σi(s, t), which is a function of class KL that satisfies σ(s,0) = s for

all s ≥ 0. The rest of the proof is a consequence of (5.12) in conjunction with defi-

nitions (5.78), (5.79). The proof is complete. �

For the ISS case where H(t, x) = x, one can set W(t, x) ≡ 0 in Theorem 5.3

to arrive at a corollary on the vector Lyapunov function characterization of the ISS

property.

Corollary 5.1 (Vector Lyapunov function characterization of the ISS property)

Consider system (1.3) under Hypotheses (H1–5) and suppose that there exists a

family of functions Vi ∈ C1(ℜ+ × ℜn;ℜ+) (i = 1, . . . , k), functions a1, a2 ∈ K∞
β ∈ K+, ζ ∈ N1, γi,j ∈ N1, i, j = 1, . . . , k, and a family of positive definite func-

tions ρi ∈ C0(ℜ+;ℜ+) (i = 1, . . . , k) such that

a1

(

|x|
)

≤ max
i=1,...,k

Vi(t, x) ≤ a2

(

β(t)|x|
)

for all (t, x) ∈ ℜ+ × ℜn (5.81)

and implication (5.66) holds for every i = 1, . . . , k and (t, x,u) ∈ ℜ+ × ℜn × U .

If, additionally, the small-gain conditions (5.3) hold, then system (1.3) satisfies the

ISS property with gain γ = a−1
1 ◦ θ ∈ N1 from the input u ∈ MU , where θ ∈ N1 is

defined by (5.67), (5.68). Moreover, if β ∈ K+ is bounded, then system (1.3) satisfies

the UISS property with gain γ = a−1
1 ◦ θ ∈ N1 from the input u ∈ MU .

Finally, we present an additional result for autonomous systems for which the

set-valued map S(t) does not coincide with the whole state space. Consider the

following nonlinear system described by ODEs of the form:

ẋ = f (x, d,u) x ∈ ℜn, d ∈ D,u ∈ U (5.82)
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where D ⊆ ℜl , U ⊆ ℜm with 0 ∈ U , and f : ℜn × D × U → ℜn is a continuous

mapping with f (0, d,0) = 0 for all d ∈ D.

Theorem 5.4 Consider the autonomous system (5.82) under Hypotheses (H1),

(H3) and suppose that there exist functions h ∈ C1(ℜn;ℜ) with h(0) ≤ 0, Vi ∈
C1(ℜn;ℜ+) (i = 1, . . . , k), a radially unbounded function W ∈ C1(ℜn;ℜ+),

a function δ ∈ C0(ℜ+; (0,+∞)), a nondecreasing function K ∈ C0(ℜ+;ℜ+),

a1, a2 ∈ K∞, ζ ∈ N1, γi,j ∈ N1, i, j = 1, . . . , k, and positive definite functions

ρi ∈ C0(ℜ+;ℜ+) (i = 1, . . . , k) such that the following inequalities hold:

a1

(

|x|
)

≤ max
i=1,...,k

Vi(x) ≤ a2

(

|x|
)

for all x ∈ ℜn with h(x) ≤ 0 (5.83)

sup
d∈D

∇h(x)f (x, d,u) ≤ −δ
(

h(x)
)

for all (x,u) ∈ ℜn × U with h(x) ≥ 0 (5.84)

sup
d∈D

∇W(x)f (x, d,u) ≤ K
(

h(x)
)

W(x) + K
(

h(x)
)

ζ
(

|u|
)

for all (x,u) ∈ ℜn × U with h(x) ≥ 0 (5.85)

Moreover, for all i = 1, . . . , k and x ∈ ℜn with h(x) ≤ 0, the following implication

holds:

“if max
{

ζ
(

|u|
)

, max
j=1,...,k

γi,j

(

Vj (x)
)

}

≤ Vi(x),

then sup
d∈D

∇Vi(x)f (x, d,u) ≤ −ρi

(

Vi(x)
)

” (5.86)

Also suppose that the MAX-preserving mapping Γ : ℜk
+ → ℜk

+ with Γ (x) =
(Γ1(x), . . . ,Γk(x))′, Γi(x) = maxj=1,...,k γi,j (xj ) for all x ∈ ℜk

+, i = 1, . . . , k, sat-

isfies the cyclic small-gain conditions. Then the following statements hold:

• If W ∈ C1(ℜn;ℜ+) is positive definite, then system (5.82) satisfies the UISS prop-

erty from the input u ∈ U .

• If U = {0}, then system (5.82) is URGAS.

Proof of Theorem 5.4 Consider a solution x(t) of (5.82) corresponding to arbitrary

(u, d) ∈ MU × MD with arbitrary initial condition x(0) = x0 ∈ ℜn. Clearly, there

exists a maximal existence time for the solution denoted by tmax ≤ +∞. Suppose

that h(x(t)) ≤ 0 for all t ∈ [0, tmax) and let Vi(t) = Vi(x(t)), i = 1, . . . , k, be ab-

solutely continuous functions on [0, tmax). Moreover, let I ⊂ [0, tmax) be the zero

Lebesgue measure set where x(t) is not differentiable or ẋ(t) 	= f (x(t), d(t), u(t)).

By virtue of (5.86), it follows that the following implication holds for t ∈ [0, tmax)\I
and i = 1, . . . , k:

Vi(t) ≥ max
{

ζ
(∣

∣u(t)
∣

∣

)

, max
j=1,...,k

γi,j

(

Vj (t)
)

}

⇒ V̇i(t) ≤ −ρi

(

Vi(t)
)

(5.87)

Lemma 2.14 in Chap. 2, in conjunction with (5.87), implies that there exists a family

of continuous functions σi (i = 1, . . . , k) of class KL with σi(s,0) = s for all s ≥ 0

such that, for all t ∈ [0, tmax) and i = 1, . . . , k,



5.3 Vector Lyapunov Functionals 223

Vi(t) ≤ max
{

σi

(

Vi(0), t
)

, sup
0≤τ≤t

σi

(

max
j=1,...,k

sup
0≤s≤τ

γi,j

(

Vj (s)
)

, t − τ
)

,

sup
0≤τ≤t

σi

(

ζ
(

sup
0≤s≤τ

∣

∣u(s)
∣

∣

)

, t − τ
)}

(5.88)

Let σ(s, t) := maxi=1,...,k σi(s, t), which is a function of class KL that satisfies

σ(s,0) = s for all s ≥ 0. It follows from (5.88) that, if the solution x(t) of (5.82)

satisfies h(x(t)) ≤ 0 for all t ∈ [0, tmax), then the following inequalities hold for all

t ∈ [0, tmax) and i = 1, . . . , k:

Vi(t) ≤ max
{

σ
(

max
i=1,...,k

Vi(0), t
)

, max
j=1,...,k

γi,j

(

sup
0≤s≤t

Vj (s)
)

, ζ
(

sup
0≤s≤t

∣

∣u(s)
∣

∣

)}

(5.89)

Since system (5.82) is autonomous, we need to consider only the case where the

initial time is 0. Consequently, (5.89) implies that Hypothesis (SG1) holds with

Γ : ℜk
+ → ℜk

+, Γ (x) = (Γ1(x), . . . ,Γn(x))′ with Γi(x) = maxj=1,...,k γi,j (xj ) for

all i = 1, . . . , k and x ∈ ℜn
+, and

L(t, x) := max
i=1,...,k

Vi(x) for all (t, x) ∈ ℜ+ × ℜn and

S(t) := S =
{

x ∈ ℜn : h(x) ≤ 0
}

for all t ≥ 0
(5.90)

Furthermore, if U = {0}, then, inequality (5.89) and definitions (5.90) imply that

Hypothesis (SG4) holds. Definitions (5.90), in conjunction with (5.83), show that

Hypothesis (SG3) holds as well with q(x) := a−1
1 (maxi=1,...,k xi) for all x ∈ ℜk

+,

H(t, x) := x for all (t, x) ∈ ℜ+ × ℜn, g ≡ 0, κ(t) = µ(t) ≡ 1, and b(s) := a−1
1 (s)

for all s ≥ 0.

It should be noticed that inequality (5.84) guarantees that the set S = {x ∈ ℜn :
h(x) ≤ 0} is positively invariant for system (5.82) and for every applied input

(u, d) ∈ MU × MD .

We next consider the solution x(t) of (5.82) corresponding to arbitrary (u, d) ∈
MU × MD with arbitrary initial condition x(0) = x0 /∈ S. Define

ξ := sup
{

t ∈ [0, tmax) : h
(

x(t)
)

> 0
}

(5.91)

The continuity of h and the fact that x(0) = x0 /∈ S imply that ξ > 0. Defini-

tion (5.91) and positive invariance of the set S = {x ∈ ℜn : h(x) ≤ 0} implies that

(a) h(x(t)) > 0 for all t ∈ [0, ξ),

(b) Either ξ = tmax, or ξ < tmax and h(x(ξ)) = 0.

Therefore, inequalities (5.84), (5.85) imply that the following differential in-

equalities hold:

ḣ(t) ≤ −δ
(

h(t)
)

for almost all t ∈ [0, ξ) (5.92)

Ẇ (t) ≤ K
(

h(t)
)

W(t) + K
(

h(t)
)

ζ
(∣

∣u(t)
∣

∣

)

for almost all t ∈ [0, ξ) (5.93)

where h(t) := h(x(t)) and W(t) := W(x(t)). Inequality (5.92) implies that the map-

ping t → h(t) is nonincreasing on [0, ξ). Using the fact that K is nondecreasing, we
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obtain from (5.92) and (5.93) the following inequalities:

0 < h(t) ≤ h(x0) − δ̃t for all t ∈ [0, ξ) (5.94)

W(t) ≤ exp
(

K
(

h(x0)
)

t
)

[

W(x0) + sup
0≤τ≤t

ζ
(
∣

∣u(τ)
∣

∣

)

]

for all t ∈ [0, ξ) (5.95)

where δ̃ := min0≤s≤h(x0) δ(s) > 0.

We next show by contradiction that the case ξ = tmax cannot happen. Suppose

that ξ = tmax.

• If tmax < +∞, then necessarily lim supt→t−max
|x(t)| = +∞. Since W is radially

unbounded, we must have lim supt→t−max
W(x(t)) = +∞. On the other hand, in-

equality (5.95) shows that there exists a finite constant A > 0 such that W(x(t)) ≤
A for all t ∈ [0, tmax), a contradiction.

• If ξ = tmax = +∞, then inequality (5.94) shows that 0 < h(t) ≤ h(x0)− δ̃t for all

t ≥ 0, again a contradiction.

Therefore, we can conclude that ξ < tmax and h(x(ξ)) = 0. Inequality (5.94)

implies that ξ ≤ h(x0)

δ̃
.

Positive invariance of the set S = {x ∈ ℜn : h(x) ≤ 0} implies that, for all x(0) =
x0 ∈ ℜn and (u, d) ∈ MU ×MD , there exists ξ ∈ [0, tmax) with ξ ≤ Ξ(x0) satisfying

x(t) ∈ S for all t ∈ [ξ, tmax), where

Ξ(x) :=
max{0, h(x)}

min0≤s≤max{0,h(x)} δ(s)
(5.96)

It should be noticed that the function Ξ : ℜn → ℜ+ defined by (5.96) is a continuous

mapping with Ξ(0) = 0. Therefore, there exists A ∈ K∞ such that Ξ(x) ≤ A(|x|)
for all x ∈ ℜn. It follows from all the above that inequalities (5.7), (5.16) hold

with c(t) ≡ 1. Moreover, definition (5.90) and (5.95) implies that inequalities (5.5),

(5.14) hold with p(x) := maxi,j=1,...,k γi,j (xi) for all x ∈ ℜk
+, v(t) = c(t) ≡ 1,

pu ≡ 0, and arbitrary a ∈ K∞.

In order to finish the proof, we have to show the following.

• There exist a,η ∈ N1 such that (5.8) holds with H(t, x) := x, c(t) ≡ 1 for the

case that W ∈ C1(ℜn;ℜ+) is positive definite. Notice that inequalities (5.6), (5.9)

are direct consequences of (5.8) with H(t, x) := x, c(t) ≡ 1 and (5.83), (5.90) for

appropriate a, η̃, gu ∈ K∞ and c(t) ≡ 1. In this case the conclusion of the theorem

follows from Theorem 5.1.

• There exists a ∈ K∞ and R ≥ 0 such that (5.15) holds with ν(t) = c(t) ≡ 2(1 +
R) for the case U = {0}. Notice that inequality (5.17) is a direct consequence of

(5.15) with ν(t) = c(t) ≡ 2(1 + R) and (5.83), (5.90) for appropriate a ∈ K∞,

c ∈ K+. In this case the conclusion of the theorem follows from Theorem 5.2.

If W ∈ C1(ℜn;ℜ+) is positive definite and radially unbounded, then (Propo-

sition 2.2) there exist b1, b2 ∈ K∞ such that b1(|x|) ≤ W(x) ≤ b2(|x|) for all

x ∈ ℜn. Moreover, using the fact that ξ ≤ Ξ(x0), from (5.95) we obtain, for all
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x(0) = x0 ∈ ℜn, (u, d) ∈ MU × MD , and t ∈ [0, ξ ],

b1

(
∣

∣x(t)
∣

∣

)

≤ W(t),

W(t) ≤ exp
(

K
(

max
{

0, h(x0)
})

t
)

[

W(x0) + sup
0≤τ≤t

ζ
(
∣

∣u(τ)
∣

∣

)

]

≤ exp
(

K
(

max
{

0, h(x0)
})

Ξ(x0)
)

[

W(x0) + sup
0≤τ≤t

ζ
(∣

∣u(τ)
∣

∣

)

]

= exp
(

K
(

max
{

0, h(x0)
})

Ξ(x0)
)

W(x0) + sup
0≤τ≤t

ζ
(∣

∣u(τ)
∣

∣

)

+
(

exp
(

K
(

max
{

0, h(x0)
})

Ξ(x0)
)

− 1
)

sup
0≤τ≤t

ζ
(∣

∣u(τ)
∣

∣

)

≤ exp
(

K
(

max
{

0, h(x0)
})

Ξ(x0)
)

b2

(

|x0|
)

+ sup
0≤τ≤t

ζ
(∣

∣u(τ)
∣

∣

)

+
1

2

(

exp
(

K
(

max
{

0, h(x0)
})

Ξ(x0)
)

− 1
)2 +

1

2
sup

0≤τ≤t

ζ 2
(
∣

∣u(τ)
∣

∣

)

≤ max

{

2 exp
(

K
(

max
{

0, h(x0)
})

Ξ(x0)
)

b2

(

|x0|
)

+
1

2

(

exp
(

K
(

max
{

0, h(x0)
})

Ξ(x0)
)

− 1
)2

, sup
0≤τ≤t

A
(
∣

∣u(τ)
∣

∣

)

}

where A(s) := ζ 2(s) + 2ζ(s). Since the mapping

ℜn ∋ x → B(x) := 2 exp
(

K
(

max
{

0, h(x)
})

Ξ(x)
)

b2

(

|x|
)

+
1

2

(

exp
(

K
(

max
{

0, h(x)
})

Ξ(x)
)

− 1
)2

is nonnegative, continuous, and vanishing at zero, by virtue of Lemma 2.4, there

exists b3 ∈ K∞ such that B(x) ≤ b3(|x|) for all x ∈ ℜn. The above inequalities

show that (5.8) holds with H(t, x) := x, c(t) ≡ 1, η(s) := b−1
1 (A(s)), and a(s) :=

b−1
1 (b3(s)).

Finally, if U = {0}, then we can define the function P : ℜn → ℜ+ by

P(x) := max
{

|y| : y ∈ ℜn,W(y) ≤ exp
(

K
(

max
{

0, h(x)
})

Ξ(x)
)

W(x)
}

(5.97)

Notice that since W is continuous, nonnegative, and radially unbounded, the func-

tions P : ℜn → ℜ+ is locally bounded. Since P : ℜn → ℜ+ is locally bounded,

there exist b4 ∈ K∞ and R ≥ 0 such that P(x) ≤ R + b4(|x|) for all x ∈ ℜn.

From (5.95), (5.97), and the fact that P(x) ≤ R + b4(|x|) for all x ∈ ℜn, the fol-

lowing inequality holds for all x(0) = x0 ∈ ℜn, (u, d) ∈ MU × MD , and t ∈ [0, ξ ]:
∣

∣x(t)
∣

∣ ≤ max
{

2b4

(

|x0|
)

,2R
}

(5.98)

Therefore, inequality (5.15) holds with ν(t) = c(t) ≡ 2(1 + R) and a(s) := 2b4(s).

The proof is complete. �



226 5 Advanced Stability Methods and Applications

5.3.2 Vector Lyapunov Functionals for Systems Described

by RFDEs

Consider system (1.10) under Hypotheses (S1–4), where the output map H is inde-

pendent of u ∈ U . The following theorem provides sufficient Lyapunov-like con-

ditions for the (U)IOS property. The gain functions of the IOS property can be

determined explicitly in terms of the functions involved in the assumptions of the

theorem. The reader should recall at this point Definition 2.4 in Chap. 2 of the al-

most Lipschitz on bounded sets functionals and the definition of the Dini derivative

used in Lemma 2.16 in Chap. 2.

Theorem 5.5 Consider system (1.10) under (S1–4) and suppose that there exist

(almost Lipschitz on bounded sets) functionals Qi : [−r + ri,+∞) × C0([−ri,0];
ℜn) → ℜ+ with 0 ≤ ri ≤ r (i = 1, . . . , k), Q0 : [−r + r0,+∞) × C0([−r0,0];
ℜn) → ℜ+ with 0 ≤ r0 ≤ r , functions a1, a2, a3, a4 ∈ K∞ µ,β,κ ∈ K+,

ζ ∈ N1, g ∈ Nk ,γi,j ∈ N1, pi ∈ N1, i, j = 1, . . . , k, positive definite functions

ρi ∈ C0(ℜ+;ℜ+) (i = 1, . . . , k), and a constant λ ∈ (0,1) such that, for all

(t, x,u) ∈ ℜ+ × C0([−r,0];ℜn) × U , the following inequalities hold:

a1

(
∥

∥H(t, x)
∥

∥

Y

)

≤ max
i=1,...,k

Vi(t, x) ≤ a2

(

β(t)‖x‖r

)

(5.99)

a3

(

µ(t)‖x‖r

)

− g
(

V1(t, x), . . . , Vk(t, x)
)

− κ(t) ≤ W(t, x) ≤ a4

(

β(t)‖x‖r

)

(5.100)

sup
d∈D

Q0
0

(

t, Tr0
(0)x;f (t, x,u, d)

)

≤ −Q0

(

t, Tr0
(0)x

)

+ λmax
{

ζ
(

|u|
)

, max
j=1,...,k

pj

(

Vj (t, x)
)

}

(5.101)

where

Vi(t, x) := sup
θ∈[−r+ri ,0]

Qi

(

t + θ,Tri (θ)x
)

i = 1, . . . , k,

W(t, x) := sup
θ∈[−r+r0,0]

Q0

(

t + θ,Tr0
(θ)x

) (5.102)

and for all i = 1, . . . , k and (t, x,u) ∈ ℜ+ × C0([−r,0];ℜn) × U , the following

implication holds:

if max
{

ζ
(

|u|
)

, max
j=1,...,k

γi,j

(

Vj (t, x)
)

}

≤ Qi

(

t, Tri (0)x
)

,

then sup
d∈D

Q0
i

(

t, Tri (0)x;f (t, x,u, d)
)

≤ −ρi

(

Qi

(

t, Tri (0)x
))

(5.103)

Furthermore, suppose that the small-gain conditions (5.2), (5.3) hold.

Then, system (1.10) satisfies the IOS property with gain γ = a−1
1 ◦ θ ∈ N1 from

the input u ∈ MU , where θ ∈ N1 is defined by (5.67), (5.68). Moreover, if β ∈ K+

is bounded, then for every ρ ∈ K∞, system (1.10) satisfies the UIOS property with

gain γ = a−1
1 ◦ θ ∈ N1 from the input u ∈ MU .
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Proof of Theorem 5.5 We want to show that all hypotheses of Theorem 5.1 hold

with S(t) ≡ C0([−r,0];ℜn) and L(t, x) as defined by (5.69).

Notice that Hypothesis (SG3) of Theorem 5.1 is a direct consequence of in-

equalities (5.100), definitions (5.69), (5.102), and inequality (5.99) with q(x) :=
a−1

1 (maxi=1,...,k xi) for all x ∈ ℜn
+.

Finally, notice that since S(t) ≡ C0([−r,0];ℜn), we can select the time ξ in-

volved in Hypothesis (SG2) to be ξ = t0. Consequently, inequalities (5.6), (5.7),

(5.8), and (5.9) are automatically satisfied for appropriate functions. Thus, we are

left with the task of proving inequalities (5.4) and (5.5). The proof consists of two

steps:

Step 1: We show that inequalities (5.4) and (5.5) hold for arbitrary (t0, u, d) ∈ ℜ+ ×
MU × MD and Tr(t0)x = x0 ∈ C1([−r,0];ℜn).

Step 2: We show that inequalities (5.4) and (5.5) hold for arbitrary (t0, u, d) ∈ ℜ+ ×
MU × MD and Tr(t0)x = x0 ∈ C0([−r,0];ℜn).

Proof of Step 1: In this setup, consider the solution x(t) of (1.10) correspond-

ing to arbitrary (u, d) ∈ MU × MD with arbitrary initial condition Tr(t0)x =
x0 ∈ C1([−r,0];ℜn). Clearly, there exists a maximal existence time for the so-

lution denoted by tmax ≤ +∞. By virtue of Lemma 2.17 in Chap. 2, we can

guarantee that the functions Qi(t) = Qi(t, Tri (t)x), i = 1, . . . , k, and Q0(t) =
Q0(t, Tr0

(t)x) are absolutely continuous functions on [t0, tmax). Let Vi(t) =
Vi(t, Tr (t)x) = supθ∈[−r+ri ,0] Qi(t + θ), i = 1, . . . , k, W(t) = W(t,Tr (t)x) =
supθ∈[−r+r0,0] Q0(t +θ), and L(t) = L(t, Tr (t)x) be mappings defined on [t0, tmax).

By virtue of (5.101), (5.103) and Lemma 2.16, there exists a zero Lebesgue mea-

sure set I ⊂ [t0, tmax) such that the following equations hold for t ∈ [t0, tmax)\I and

i = 1, . . . , k:

Qi(t) ≥ max
{

sup
t0≤s≤t

ζ
(
∣

∣u(s)
∣

∣

)

, max
j=1,...,k

sup
t0≤s≤t

γi,j

(

Vj (s)
)

}

⇒ Q̇i(t) ≤ −ρi

(

Qi(t)
)

(5.104)

Q̇0(t) ≤ −Q0(t) + λmax
{

ζ
(∣

∣u(t)
∣

∣

)

, max
j=1,...,k

pj

(

Vj (t)
)

}

. (5.105)

Lemma 2.14 in Chap. 2, in conjunction with (5.104), implies that there exists a

family of continuous functions σ̃i (i = 1, . . . , k) of class KL with σ̃i(s,0) = s for all

s ≥ 0 such that, for all t ∈ [t0, tmax) and i = 1, . . . , k, we have

Qi(t) ≤ max
{

σ̃i

(

Qi(t0), t − t0
)

; sup
t0≤τ≤t

σ̃i

(

max
j=1,...,k

sup
t0≤s≤τ

γi,j

(

Vj (s)
)

, t − τ
)

sup
t0≤τ≤t

σ̃i

(

ζ
(

sup
t0≤s≤τ

∣

∣u(s)
∣

∣

)

, t − τ
)}

(5.106)

Moreover, inequality (5.105) directly implies that, for all t ∈ [t0, tmax),

Q0(t) ≤ Q0(t0) + λmax
{

ζ
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)

, max
j=1,...,k

pj

(

sup
t0≤s≤t

Vj (s)
)}

(5.107)

Using the fact that σ̃i(s,0) = s for all s ≥ 0, from (5.106) we obtain, for all t ∈
[t0, tmax) and i = 1, . . . , k,



228 5 Advanced Stability Methods and Applications

Qi(t) ≤ max
{

σ̃i

(

Qi(t0), t − t0
)

, max
j=1,...,k

γi,j

(

sup
t0≤s≤t

Vj (s)
)

, ζ
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)}

(5.108)

Let σi (i = 1, . . . , k) be functions of class KL defined by σi(s, t) = s for all s ≥ 0,

t ∈ [0, r] and σi(s, t) = σ̃i(s, t − r) for all s ≥ 0, t > r . Using the fact that Vi(t) =
Vi(t, Tr (t)x) = supθ∈[−r+ri ,0] Qi(t + θ), i = 1, . . . , k, it follows from (5.108) that,

for all t ∈ [t0, tmax) and i = 1, . . . , k,

Vi(t) ≤ max
{

σi

(

Vi(t0), t − t0
)

, max
j=1,...,k

γi,j

(

sup
t0≤s≤t

Vj (s)
)

, ζ
(

sup
t0≤s≤t

∣

∣u(s)
∣

∣

)}

(5.109)

Similarly, using (5.107) and the fact that W(t) = W(t,Tr(t)x) =
supθ∈[−r+r0,0] Q0(t + θ), we conclude that (5.73) holds for all t ∈ [t0, tmax). De-

fine σ(s, t) := maxi=1,...,k σi(s, t), which is a function of class KL that satisfies

σ(s,0) = s for all s ≥ 0. It follows from (5.109) and definition (5.69) that inequal-

ities (5.75), (5.76) hold for all t ∈ [t0, tmax) and i = 1, . . . , k. Clearly, (5.75) shows

that inequalities (5.4) hold with Γ : ℜk
+ → ℜk

+, Γ (x) = (Γ1(x), . . . ,Γn(x))′ with

Γi(x) = maxj=1,...,k γi,j (xj ) for all i = 1, . . . , k and x ∈ ℜn
+. Moreover, the small-

gain conditions hold for the MAX-preserving mapping Γ : ℜk
+ → ℜk

+ as well. De-

fine pu ∈ N1 and p ∈ Nn by (5.78) and (5.79). Combining estimates (5.75), (5.76)

and exploiting definitions (5.69), (5.78), and (5.79), we get inequality (5.80) for all

t ∈ [t0, tmax). Inequality (5.5) is a direct consequence of (5.80), inequalities (5.99),

(5.100), and Lemma 3.2 in Chap. 3 with ν(t) ≡ 1, pu ∈ N1, and p ∈ Nn as defined

by (5.78), (5.79) and appropriate a ∈ N1 and c ∈ K+. Notice that if β ∈ K+ is

bounded, then c ∈ K+ is bounded as well.

Proof of Step 2: Let (t0, x0, u, d) ∈ ℜ+ × C1([−r,0];ℜn) × MU × MD . Inequal-

ities (5.4), in conjunction with Proposition 5.3, imply that, for the solution x(t)

of (1.10) corresponding to (u, d) ∈ MU × MD with initial condition Tr(t0)x = x0 ∈
C1([−r,0];ℜn) and for all t ∈ [t0, tmax),

V (t) ≤ MAX
{

Q
(

1σ
(

L(t0),0
))

,Q
(

1ζ
([

∥

∥u(τ)
∥

∥

U

]

[t0,t]
))}

(5.110)

where Q(x) = MAX{x,Γ (x),Γ (2)(x), . . . ,Γ (n−1)(x)}. Using (5.99), (5.100),

(5.69), (5.80), and (5.110), we obtain functions ρ ∈ K+ and a ∈ K∞ such that,

for the solution x(t) of (1.10) corresponding to (u, d) ∈ MU × MD with initial

condition Tr(t0)x = x0 ∈ C1([−r,0];ℜn) and for all t ∈ [t0, tmax),

∥

∥Tr(t)x
∥

∥

r
≤ a

(

ρ(t) + ‖x0‖r + sup
t0≤s≤t

∣

∣u(s)
∣

∣

)

(5.111)

Lemma 2.18 in Chap. 2 and (5.111) imply that system (1.10) is RFC from the

input u ∈ MU and that inequalities (5.4) and (5.5) hold for all (t0, x0, u, d) ∈
ℜ+ × C0([−r,0];ℜn) × MU × MD and t ≥ t0. Consequently, all hypotheses of

Theorem 5.1 hold. The rest of proof is a consequence of (5.12) in conjunction with

definitions (5.78), (5.79). The proof is complete. �
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When H(t, x) = x, setting Q0(t, x) ≡ 0 in Theorem 5.5 leads to a result on the

ISS of system (1.10).

Corollary 5.2 Consider system (1.10) under Hypotheses (S1–4) and suppose that

there exists a family of (almost Lipschitz on bounded sets) functionals Qi : [−r + ri,

+∞) × C0([−ri,0];ℜn) → ℜ+ with 0 ≤ ri ≤ r (i = 1, . . . , k), functions a1, a2 ∈
K∞, β ∈ K+, ζ ∈ N1, γi,j ∈ N1, i, j = 1, . . . , k, and a family of positive defi-

nite functions ρi ∈ C0(ℜ+;ℜ+) (i = 1, . . . , k) such that, for all (t, x,u) ∈ ℜ+ ×
C0([−r,0];ℜn) × U , the following inequality holds:

a1

(

‖x‖r

)

≤ max
i=1,...,k

Vi(t, x) ≤ a2

(

β(t)‖x‖r

)

(5.112)

where

Vi(t, x) := sup
θ∈[−r+ri ,0]

Qi

(

t + θ,Tri (θ)x
)

i = 1, . . . , k (5.113)

and implication (5.103) holds for all i = 1, . . . , k and (t, x,u) ∈ ℜ+ × C0([−r,0];
ℜn)×U . If, moreover, the small-gain conditions (5.2), (5.3) hold, then system (1.10)

satisfies the ISS property with gain γ = a−1
1 ◦ θ ∈ N1 from input u ∈ MU , where

θ ∈ N1 is defined by (5.67), (5.68). Moreover, if β ∈ K+ is bounded, then sys-

tem (1.10) satisfies the UISS property with gain γ = a−1
1 ◦ θ ∈ N1 from input

u ∈ MU .

5.3.3 Vector Lyapunov Functions for Sampled-Data Systems

We consider autonomous systems of the form (1.57) under Hypotheses (A1–5),

where R is the identity mapping (no impulsive behavior), f and h are indepen-

dent of d(τi), and H is independent of u. More specifically, we consider systems of

the form

ẋ(t) = f
(

x(t), x(τi), d(t), u1(t), u1(τi)
)

t ∈ [τi, τi+1)

τ0 = t0, τi+1 = τi + exp
(

−u2(τi)
)

h
(

x(τi), u1(τi)
)

, i = 0,1, . . .

Y (t) = H
(

x(t)
)

x(t) ∈ ℜn, d(t) ∈ D,u(t) =
(

u1(t), u2(t)
)

∈ U := U1 × ℜ+ (5.114)

The following theorem provides sufficient Lyapunov-like conditions for the (U)IOS

property of system (5.114). The gain functions of the IOS property can be deter-

mined explicitly in terms of the functions involved in the assumptions of the theo-

rem.

Theorem 5.6 (Vector Lyapunov function characterization of UIOS for sampled-

data systems) Consider system (5.114) under Hypotheses (A1–5) and suppose that

there exist nonnegative functions Vi ∈ C1(ℜn;ℜ+) (i = 1, . . . , k), Q ∈ C1(ℜn;ℜ+),

a1, a2, a3, a4 ∈ K∞, ζ ∈ N1, g ∈ Nk ,γi,j ∈ N1, pi ∈ N1, i, j = 1, . . . , k, constants
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µ,κ ≥ 0, λ ∈ (0,1), and positive definite functions ρi ∈ C0(ℜ+;ℜ+) (i = 1, . . . , k)

such that the following inequalities hold for all (x, x0, u,u0) ∈ ℜn ×ℜn ×U1 ×U1:

a1

(
∣

∣H(x)
∣

∣

)

≤ max
i=1,...,k

Vi(x) ≤ a2

(

|x|
)

(5.115)

a3

(

|x|
)

− g
(

V1(x), . . . , Vk(x)
)

− κ ≤ Q(x) ≤ a4

(

|x|
)

(5.116)

sup
d∈D

∇Q(x)f (x, x0, d,u,u0)

≤ µQ(x) + λmax
{

ζ
(

|u|
)

, ζ
(

|u0|
)

, max
j=1,...,k

pj

(

Vj (x)
)

, max
j=1,...,k

pj

(

Vj (x0)
)

}

(5.117)

and for all i = 1, . . . , k and (x,u,u0) ∈ ℜn × U1 × U1, the following implication

holds:

“If max
{

ζ
(

|u|
)

, ζ
(

|u0|
)

, max
j=1,...,k

γi,j

(

Vj (x)
)

}

≤ Vi(x) and x0 ∈ Ai

(

h(x0, u0), x
)

,

then sup
d∈D

∇Vi(x)f (x, x0, d,u,u0) ≤ −ρi

(

Vi(x)
)

.” (5.118)

where the family of set-valued maps ℜ+ × ℜn ∋ (T , x) → Ai(T , x) ⊆ ℜn (i =
1, . . . , k) is defined by

Ai(T , x) =
⋃

0≤s≤T

{

x0 ∈ ℜn : ∃(d,u) ∈ MD × MU1
with φ(s, x0;d,u) = x,

ζ
(∣

∣u(t)
∣

∣

)

≤ Vi(x), γi,j

(

Vj

(

φ(t, x0;d,u)
))

≤ Vi(x)

for all t ∈ [0, s] and j = 1, . . . , k
}

(5.119)

and φ(t, x0;d,u) denotes the solution of ẋ(t) = f (x(t), x0, d(t), u(t), u(0)) with

initial condition x(0) = x0 corresponding to (d,u) ∈ MD × MU1
.

Furthermore, if the small-gain conditions (5.2), (5.3) hold, then system (5.114)

satisfies the UIOS property with gain γ = a−1
1 ◦ θ ∈ N1 from the input u1 ∈ MU1

and zero gain from the input u2 ∈ Mℜ+ , where θ ∈ N1 is defined by (5.67), (5.68).

For the ISS case where H(t, x) = x, one can set Q(x) ≡ 0 in Theorem 5.6 and

obtain a result on the vector Lyapunov characterization of UISS.

Corollary 5.3 (Vector Lyapunov function characterization of UISS for sampled-data

systems) Consider system (5.114) under Hypotheses (A1–5) and suppose that there

exists a family of functions Vi ∈ C1(ℜn;ℜ+) (i = 1, . . . , k), functions a1, a2 ∈ K∞,

ζ ∈ N1,γi,j ∈ N1, i, j = 1, . . . , k, and a family of positive definite functions ρi ∈
C0(ℜ+;ℜ+) (i = 1, . . . , k) such that the following inequality holds for all x ∈ ℜn:

a1

(

|x|
)

≤ max
i=1,...,k

Vi(x) ≤ a2

(

|x|
)

(5.120)

and implication (5.118) holds for all i = 1, . . . , k and (x,u,u0) ∈ ℜn × U1 × U1,

where the set-valued maps ℜ+ × ℜn ∋ (T , x) → Ai(T , x) ⊆ ℜn (i = 1, . . . , k)

are defined by (5.119), and φ(t, x0;d,u) denotes the solution of ẋ(t) =
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f (x(t), x0, d(t), u(t), u(0)) with initial condition x(0) = x0 corresponding to

(d,u) ∈ MD × MU1
.

Under the small-gain conditions (5.2), (5.3), system (5.114) satisfies the UISS

property with gain γ = a−1
1 ◦ θ ∈ N1 from the input u1 ∈ MU1

and zero gain from

the input u2 ∈ Mℜ+ , where θ ∈ N1 is defined by (5.67), (5.68).

Proof of Theorem 5.6 We want to show that all hypotheses of Theorem 5.1 hold

with S(t) ≡ ℜn, L(t, x) as defined by (5.69), and

W(t, x) := exp
(

−(µ + 1)t
)

Q(x) (5.121)

Notice that definition (5.121), in conjunction with inequalities (5.116), implies the

following inequality for all (t, x) ∈ ℜ+ × ℜn:

exp
(

−(µ + 1)t
)

a3

(

|x|
)

− g
(

V1(x), . . . , Vk(x)
)

− κ ≤ W(t, x) ≤ a4

(

|x|
)

Using Lemma 3.2 in Chap. 3, we can find functions ã ∈ K∞ and η ∈ K+ such that

a−1
3 (s exp((µ + 1)t)) ≤ 1

η(t)
ã(s) for all t, s ≥ 0. Consequently, we obtain

exp
(

−(µ + 1)t
)

a3(s) ≥ ã−1
(

η(t)s
)

for all t, s ≥ 0

Notice that Hypothesis (SG3) with β(t) ≡ 1 is a direct consequence of previ-

ous inequalities, definitions (5.69), (5.121), and inequality (5.115) with q(x) :=
a−1

1 (maxi=1,...,k xi) for all x ∈ ℜn
+.

Finally, notice that since S(t) ≡ ℜn, we can select the time ξ involved in Hy-

pothesis (SG2) to be ξ = t0. Consequently, inequalities (5.6), (5.7), (5.8), and (5.9)

are automatically satisfied for appropriate functions. Thus, we are left with the task

of proving inequalities (5.4) and (5.5).

Consider the solution x(t) of (5.114) under Hypotheses (A1–5) correspond-

ing to arbitrary (u1, d,u2) ∈ MU1
× MD × Mℜ+ with arbitrary initial condition

x(t0) = x0 ∈ ℜn. Notice that since system (5.114) is autonomous, it suffices to con-

sider the case t0 = 0. There exists a maximal existence time for the solution de-

noted by tmax ≤ +∞. Define Vi(t) = Vi(x(t)), i = 1, . . . , k, W(t) = W(t, x(t)),

and L(t) = L(t, x(t)), which are absolutely continuous functions on [0, tmax).

Moreover, let π := {τ0, τ1, . . .} be the set of sampling times (which may be fi-

nite if tmax < +∞), p(t) := max{τ ∈ π : τ ≤ t}, and q(t) := min{τ ∈ π : τ ≥ t}.
Let I ⊂ [0, tmax) be the zero Lebesgue measure set where x(t) is not differen-

tiable or where ẋ(t) 	= f (x(t), x(τi), d(t), u1(t), u1(τi)). Clearly, we have x(t) =
φ(t −p(t), x(p(t));Ptd,Ptu1) for all t ∈ [0, tmax), where (Ptu1)(s) = u1(p(t)+s),

(Ptd)(s) = d(p(t) + s), s ≥ 0. Next, we show that the following implication holds

for t ∈ [0, tmax)\I and i = 1, . . . , k:

Vi(t) ≥ max
{

ζ
(

sup
p(t)≤s≤t

∣

∣u1(s)
∣

∣

)

, max
j=1,...,k

γi,j

(

sup
p(t)≤s≤t

Vj (s)
)}

⇒ V̇i(t) ≤ −ρi

(

Vi(t)
)

(5.122)

In order to prove implication (5.122), let t ∈ [0, tmax)\I , i = 1, . . . , k, τ = p(t), and

suppose that

Vi(t) ≥ max
{

ζ
(

sup
p(t)≤s≤t

∣

∣u1(s)
∣

∣

)

, max
j=1,...,k

γi,j

(

sup
p(t)≤s≤t

Vj (s)
)}
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By virtue of the semigroup property, the previous inequality implies that ζ(|u1(τ +
s)|) = ζ(|(Ptu1)(s)|) ≤ Vi(x(t)),γi,j (Vj (φ(s, x(τ );Ptd,Ptu1))) ≤ Vi(x(t)) for all

s ∈ [0, t − τ ] and j = 1, . . . , k. In this case, by virtue of definition (5.119) and the

fact that t − τ ≤ h(x(τ), u1(τ )), it follows that x(τ) ∈ Ai(h(x(τ ), u1(τ )), x(t)).

Since ẋ(t) = f (x(t), x(τ ), d(t), u1(t), u1(τ )), we conclude from (5.118) that

V̇i(t) ≤ −ρi(Vi(t)).

Lemma 2.14 in Chap. 2 implies that there exists a family of continuous functions

σi of class KL (i = 1, . . . , k) with σi(s,0) = s for all s ≥ 0 such that, for all t ∈
[0, tmax) and i = 1, . . . , k, we have

Vi(t) ≤ max
{

σi

(

Vi(0), t
)

; max
j=1,...,k

sup
0≤τ≤t

σi

(

γi,j

(

sup
p(τ)≤s≤τ

Vj (s)
)

, t − τ
)

;

sup
0≤τ≤t

σi

(

ζ
(

sup
p(τ)≤s≤τ

∣

∣u(s)
∣

∣

)

, t − τ
)}

(5.123)

Let σ(s, t) := maxi=1,...,k σi(s, t), which is a function of class KL that satis-

fies σ(s,0) = s for all s ≥ 0. Inequalities (5.4) with Γ : ℜk
+ → ℜk

+, Γ (x) =
(Γ1(x), . . . ,Γn(x))′ with Γi(x) = maxj=1,...,k γi,j (xj ) for all i = 1, . . . , k and x ∈
ℜn

+, are direct consequences of the previous definition, estimates (5.123), defini-

tion (5.69), and the fact that σi(s,0) = s for all s ≥ 0 and i = 1, . . . , k.

Exploiting (5.117) and definition (5.121), we get, for t ∈ [0, tmax)\I ,

Ẇ (t) ≤ −W(t) + λmax
{

ζ
(

sup
p(t)≤s≤t

∣

∣u(s)
∣

∣

)

, max
j=1,...,k

pj

(

sup
p(t)≤s≤t

Vj (s)
)}

(5.124)

Inequality (5.124) directly implies that, for all t ∈ [0, tmax),

W(t) ≤ max

{

1

1 − λ
W(0), ζ

(

sup
0≤s≤t

∣

∣u(s)
∣

∣

)

, max
i=1,...,k

pi

(

sup
0≤s≤t

Vi(s)
)

}

(5.125)

Moreover, (5.123) and (5.125) imply that estimates (5.75), (5.76) with t0 = 0 hold

for all t ∈ [0, tmax). Define pu ∈ N1 and p ∈ Nn by (5.78) and (5.79). Combining

estimates (5.75), (5.76) with t0 = 0 and exploiting definitions (5.78), (5.79), and

(5.69), we obtain (5.80) for all t ∈ [0, tmax) with h(s) := s
1−λ

and t0 = 0. Inequality

(5.5) is a direct consequence of (5.80) with t0 = 0, inequalities (5.115), (5.116) with

ν(t) = c(t) ≡ 1, pu ∈ N1, p ∈ Nn as defined by (5.78), (5.79), and appropriate

a ∈ N1.

Consequently, all hypotheses of Theorem 5.1 hold with σ(s, t) :=
maxi=1,...,k σi(s, t), which is a function of class KL that satisfies σ(s,0) = s for

all s ≥ 0. The proof is complete. �

Remark 5.1 When we consider the special case of the feedback interconnection of

two subsystems, as illustrated in Fig. 1.2, the small-gain results of this chapter are

generalizations of the first nonlinear, ISS, small-gain theorem presented in [21]. In

this case, the cyclic small-gain conditions (5.2) and (5.3) reduce down to γ12 ◦γ21 <

Id, which is mathematically equivalent to γ21 ◦γ12 < Id. It is important to notice that

the original nonlinear small-gain theorem in [21] tackles interconnected systems

described by ODEs and naturally assumes that γ11 = γ22 ≡ 0.
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5.4 Examples and Applications

In this section, we present examples and applications of the results of the previous

sections. More specifically, the first two examples illustrate how we can use vec-

tor Lyapunov functions in order to prove global asymptotic stability of time-delay

systems.

Example 5.4.1 Consider the time-delay system of the form

ẋi(t) = −aixi(t) + gi

(

d(t), Tr(t)x
)

i = 1, . . . , n (5.126)

where d(t) ∈ D ⊆ ℜm, ai > 0 (i = 1, . . . , n) and gi : D × C0([−r,0];ℜn) → ℜ
(i = 1, . . . , n) are continuous mappings with

sup
d∈D

∣

∣gi(d, x)
∣

∣ ≤ max
j=1,...,n

ci,j‖xj‖r (5.127)

and

sup
d∈D

[(

xi(0) − yi(0)
)(

gi(d, x) − gi(d, y)
)]

≤ L‖x − y‖2
r i = 1, . . . , n

for certain constants L ≥ 0, ci,j ≥ 0 (i, j = 1, . . . , n), and for all x, y ∈
C0([−r,0];ℜn). We next show that 0 ∈ C0([−r,0];ℜn) is RGAS for (5.126) if

ci,i < ai for all i = 1, . . . , n and the following small-gain conditions hold for each

r = 2, . . . , n:

ci1,i2ci2,i3 · · · cir ,i1 < ai1ai2 · · ·air (5.128)

for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k.

First, we notice that Hypotheses (S1–4) hold for system (5.126) under hypothesis

(5.127) with output H(t, x) := x ∈ C0([−r,0];ℜn). Define the family of functions

Qi(x) = 1
2
x2
i (0) and Vi(x) := supθ∈[−r,0] Qi(x(θ)) = 1

2
‖xi‖2

r (i = 1, . . . , n) for x ∈
C0([−r,0];ℜn). These mappings satisfy inequality (5.112) and definition (5.113)

with a1(s) := 1
2n

s2, a2(s) := 1
2
s2, β(t) ≡ 1, and ri := 0, i = 1, . . . , n. Let λ ∈

(0,1) and notice that implication (5.103) holds with γi,j (s) :=
c2
i,j

λ2a2
i

s and ρi(s) :=
2(1 −λ)ais. Condition (5.128) and the fact that ci,i < ai for all i = 1, . . . , n implies

that the small-gain conditions (5.2), (5.128) hold for λ ∈ (0,1) sufficiently close

to 1. We conclude from Corollary 5.2 that 0 ∈ C0([−r,0];ℜn) is RGAS for (5.126).

It is important to notice that the conditions on the diagonal terms cannot be

avoided in general if Razumikhin-like functions are used. Such a situation occurs,

for example, when

ẋ1(t) = −a1x1(t) + c1,1d1(t)x1(t − r) + c1,2d2(t)x2(t − r)

ẋ2(t) = −a2x2(t) + c2,1d3(t)x1(t)

di(t) ∈ [−1,1], i = 1,2,3

with c1,1 > 0, c1,2 ≥ 0, and c2,1 ≥ 0. In this case, 0 ∈ C0([−r,0];ℜ2) is RGAS for

the above system if c1,1 < a1 and c1,2c2,1 < a1a2.
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Example 5.4.2 Consider the following biochemical control circuit model:

Ẋ1(t) = g
(

Xn(t − τn)
)

− a1X1(t)

Ẋi(t) = Xi−1(t − τi−1) − aiXi(t) i = 2, . . . , n

X(t) =
(

X1(t), . . . ,Xn(t)
)′ ∈ ℜn

+ (5.129)

where ai > 0 and τi ≥ 0 (i = 1, . . . , n) are constants, and g ∈ C1(ℜ+;ℜ+) is a

function with g(X) > 0 for all X > 0. This model has been studied in [46] (see

pp. 58–60 and 93–94). In this book it is further assumed that g ∈ C1(ℜ+;ℜ+) is

bounded and strictly increasing (a typical choice for g ∈ C1(ℜ+;ℜ+) is g(X) =
Xp

1+Xp with p being a positive integer or g(X) = µX
c+X

with µ,c > 0). It is shown

that if there is one equilibrium point for (5.129), then it attracts all solutions. If there

are two equilibrium points, then all solutions are attracted to these points. Here we

study (5.129) under the following assumption:

(H) There exist X∗
n > 0, K > 0, and λ ∈ (0,1) with aX∗

n = g(X∗
n) and such that

K + X∗
n

K + X
X ≤ a−1g(X) ≤ X∗

n + λ
∣

∣X − X∗
n

∣

∣ for all X ≥ 0 (5.130)

where a =
∏n

j=1 aj .

The reader should notice that Hypothesis (H) is automatically satisfied for the

case of Monod kinetics, i.e., g(X) = µX
c+X

with c > 0 and µ > ac. Indeed, in this

case inequality (5.130) holds with K = c and λ = c
X∗

n+c
, where X∗

n = µ−ac
a

. The

case of Monod kinetics is typical for biochemical models.

Using small-gain analysis arguments, we are in a position to prove:

“Consider system (5.129) under Hypothesis (H) and let r := maxi=1,...,n τi .

Then for every X0 ∈ C0([−r,0]; int(ℜn
+)), the solution of (5.129) with ini-

tial condition Tr(0)X = X0 satisfies limt→+∞ X(t) = X∗, where X∗ =
(X∗

1, . . . ,X∗
n)

′ ∈ int(ℜn
+) with (

∏i
j=1 aj )X

∗
i = g(X∗

n) for i = 1, . . . , n − 1.”

In sharp contrast to the analysis performed in [46] for (5.129) based on the

monotone dynamical system theory, we do not assume that g ∈ C1(ℜ+;ℜ+) is

bounded or strictly increasing, Moreover, even if there are two equilibrium points

(e.g., 0 ∈ ℜn
+ can be an equilibrium point, because (5.130) allows g(0) = 0), we

prove almost global convergence to the nontrivial equilibrium.

A typical analysis of the equilibrium points of (5.129) under Hypothesis (H)

shows that there exists an equilibrium point X∗ ∈ int(ℜn
+) satisfying

(

i
∏

j=1

aj

)

X∗
i = g

(

X∗
n

)

(5.131)

In order to be able to study solutions of (5.129) evolving in int(ℜn
+), we consider

the transformation

Xi = X∗
i exp(xi) (5.132)
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Therefore system (5.129) under transformation (5.132) is expressed by the follow-

ing set of differential equations:

ẋ1 = a1

(

g(X∗
n exp(xn(t − τn)))

g(X∗
n)

exp
(

−x1(t)
)

− 1

)

(5.133)

ẋi(t) = ai

(

exp
(

xi−1(t − τi−1) − xi(t)
)

− 1
)

i = 2, . . . , n (5.134)

x(t) =
(

x1(t), . . . , xn(t)
)′ ∈ ℜn

First, we notice that Hypotheses (S1–4) hold for system (5.133), (5.134) un-

der Hypothesis (H) with output H(t, x) := x ∈ C0([−r,0];ℜn) and that 0 ∈
C0([−r,0];ℜn) is an equilibrium point for (5.133), (5.134).

Define the family of functions Qi(x) = 1
2
x2
i (0) and Vi(x) :=

supθ∈[−r,0] Qi(x(θ)) = 1
2
‖xi‖2

r (i = 1, . . . , n) for x ∈ C0([−r,0];ℜn). These map-

pings satisfy inequality (5.112) and definition (5.113) with a1(s) := 1
2n

s2, a2(s) :=
1
2
s2, β(t) ≡ 1, and ri := 0, i = 1, . . . , n. Set γ1,j (s) ≡ 0 for j 	= n and γ1,n(s) :=

1
2
[log(1 + θ(exp(

√
2s) − 1))]2, where θ ∈ (max{ b

b+1
, λ},1), λ ∈ (0,1) being the

constant involved in Hypothesis (H), and b := K
X∗

n
. Notice that

Q0
1

(

x1(0);a1

(

g(X∗
n exp(xn(−τn)))

g(X∗
n)

exp
(

−x1(0)
)

− 1

))

= a1x1(0)

(

g(X∗
n exp(xn(−τn)))

g(X∗
n)

exp
(

−x1(0)
)

− 1

)

We consider the following cases:

(1) x1(0) < 0. In this case, the left-hand side of inequality (5.130) implies that

g(X∗
n exp(xn(−τn)))

g(X∗
n)

≥
b + 1

b + exp(xn(−τn))
exp

(

xn(−τn)
)

≥
b + 1

b + exp(−|xn(−τn)|)
exp

(

−
∣

∣xn(−τn)
∣

∣

)

with b :=
K

X∗
n

The inequality γ1,n(Vn(x)) ≤ Q1(x1(0)) implies ln(1 + θ(exp(|xn(−τn)|) −
1)) ≤ −x1(0), which combined with the previous inequalities, gives

Q0
1

(

x1(0);a1

(

g(X∗
n exp(xn(−τn)))

g(X∗
n)

exp
(

−x1(0)
)

− 1

))

≤ a1x1(0)
(b + 1 − bθ−1)(exp(−x1(0)) − 1)

b + 1 + bθ−1(exp(−x1(0)) − 1)
. (5.135)

(2) x1(0) ≥ 0. In this case, the right-hand side of inequality (5.130) implies that

g(X∗
n exp(xn(−τn)))

g(X∗
n)

≤ 1 + λ
∣

∣exp
(

xn(−τn)
)

− 1
∣

∣

≤ 1 + λ
(

exp
(
∣

∣xn(−τn)
∣

∣

)

− 1
)
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The inequality γ1,n(Vn(x)) ≤ Q1(x1(0)) implies ln(1 + θ(exp(|xn(−τn)|) −
1)) ≤ x1(0), which combined with the previous inequalities, gives

Q0
1

(

x1(0);a1

(

g(X∗
n exp(xn(−τn)))

g(X∗
n)

exp
(

−x1(0)
)

− 1

))

≤ a1x1(0)
(

λθ−1 − 1
)(

1 − exp
(

−x1(0)
))

(5.136)

Combining these two cases, we obtain from (5.135) and (5.136) that the follow-

ing implication holds:

γ1,n

(

Vn(x)
)

≤ Q1

(

x1(0)
)

⇒ Q0
1

(

x1(0);a1

(

g(X∗
n exp(xn(−τn)))

g(X∗
n)

exp
(

−x1(0)
)

− 1

))

≤ −ρ1

(

Q1

(

x1(0)
))

(5.137)

with

ρ1(s)

:= a1

√
2s min

{

(

1 − λθ−1
)(

1 − exp
(

−
√

2s
))

,
(b + 1 − bθ−1)(exp(

√
2s) − 1)

b + 1 + bθ−1(exp(
√

2s) − 1)

}

For i = 2, . . . , n, define γi,i−1(s) := 1
2
[log(1+µ(exp(

√
2s)−1))]2 and γi,j (s) ≡

0 for j 	= i − 1, where µ > 1 is to be selected. Working in a similar way as above,

we obtain, for i = 2, . . . , n,

γi,i−1

(

Vi(x)
)

≤ Qi

(

xi(0)
)

⇒ Q0
i

(

xi(0);ai

(

exp
(

xi−1(−τi−1) − xi(0)
)

− 1
))

≤ −ρi

(

Qi

(

xi(0)
))

(5.138)

with ρi(s) := (1 − µ−1)ai

√
2s

(1−exp(−
√

2s))

1+µ−1(exp(
√

2s)−1)
for i = 2, . . . , n.

Therefore, we conclude from (5.137) and (5.138) that implication (5.103) holds.

Finally, we check the small-gain conditions. Exploiting the previous definitions

of the functions γi,j (s), i, j = 1, . . . , n, we conclude that the small-gain condi-

tions (5.2), (5.3) hold if and only if (γn,n−1 ◦ γn−1,n−2 ◦ · · · ◦ γ1,n)(s) < s for all

s > 0. Since

(γn,n−1 ◦ γn−1,n−2 ◦ · · · ◦ γ1,n)(s) =
1

2

[

log
(

1 + µn−1θ
(

exp
(
√

2s
)

− 1
))]2

the small-gain conditions (5.2), (5.3) hold with µ ∈ (1, θ− 1
n−1 ). Thus, Corollary 5.2

implies that 0 ∈ C0([−r,0];ℜn) is Uniformly Globally Asymptotically Stable for

system (5.133), (5.134). Taking into account transformation (5.132), this implies

that for every X0 ∈ C0([−r,0]; int(ℜn
+)), the solution of (5.129) with initial con-

dition Tr(0)X = X0 satisfies limt→+∞ X(t) = X∗, where X∗ = (X∗
1, . . . ,X∗

n)
′ ∈

int(ℜn
+) with (

∏i
j=1 aj )X

∗
i = g(X∗

n) for i = 1, . . . , n − 1.

The following example indicates that the trajectory-based small-gain results of

the previous section can be used to study the feedback interconnection of systems

which do not necessarily satisfy the IOS property.
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Example 5.4.3 Consider the system

ẋ = f (d, x, y,u)

ẏ = g(d, x, y)

x ∈ ℜn, y ∈ ℜk, d ∈ D ⊂ ℜl, u ∈ ℜm (5.139)

where D ⊂ ℜl is a nonempty compact set, f : D × ℜn × ℜk × ℜm → ℜn, and

g : D × ℜn × ℜk → ℜk are locally Lipschitz mappings with f (d,0,0,0) = 0,

g(d,0,0) = 0 for all d ∈ D. Suppose that there exist positive definite, continuously

differentiable, and radially unbounded functions V1 : ℜn → ℜ+, V2 : ℜk → ℜ+,

a constant a ∈ [0,1], and a function k ∈ K∞ satisfying the following inequalities

for all (x, y,u) ∈ ℜn × ℜk × ℜm:

max
d∈D

∇V1(x)f (d, x, y,u)

≤ −(2 + a)
V1(x)

1 + V1(x)
+ (1 − a)

V2(y)

(1 + V1(x))(1 + V2(y))

+ a
k(|u|)

1 + k(|u|)
(5.140)

max
d∈D

∇V2(y)g(d, x, y) ≤ −2
V2(y)

1 + V2(y)
+ V1(x) (5.141)

It is clear that the subsystem ẏ = g(d, x, y) does not necessarily satisfy the ISS

property from the input x ∈ ℜn. Consequently, the classical small-gain theorem in

[21] cannot be applied because the y-subsystem in (5.139) is not ISS but integral

ISS with x ∈ ℜn as input. Recent small-gain approaches have been used for sys-

tem (5.139), where it is shown that 0 ∈ ℜn × ℜk is Globally Asymptotically Stable

(see [1, 15–18]) for the disturbance-free case with a = 0. Here we will show, by

making use of Theorem 5.4, that system (5.139) satisfies the UISS property from

the input u ∈ ℜm.

Take arbitrary ε ∈ (0,1) and define

h(x, y) := V1(x) −
1 + ε

2 − ε
W(x, y) := V1(x) + V2(y) (5.142)

Inequalities (5.140), (5.141) guarantee that if h(x, y) ≥ 0, then inequalities (5.84),

(5.85) hold with δ(s) ≡ ε, K(s) ≡ 1, and ζ(s) ≡ 0. Using (5.140), (5.141), (5.142),

and the inequality s + w ≤ max{(1 + µ)s, (1 + µ−1)w}, which holds for all µ > 0,

s,w ≥ 0, we can prove that, for all λ ∈ (0,1) and µ > 0 with µ ≥ a
2−λ

and ε ∈ (0,1)

with ε < 3−2λ
3−λ

, the following implications hold:

V1(x) ≥ max

{

(1 + a)(1 + µ)

2 + a − λ

V2(y)

1 + V2(y)
, k

(

|u|
)

}

⇒ max
d∈D

∇V1(x)f (d, x, y,u) ≤ −ρ
(

V1(x)
)

(5.143)

V2(y) ≥
V1(x)

2 − λ − V1(x)
and h(x, y) ≤ 0

⇒ max
d∈D

∇V2(y)g(d, x, y) ≤ −ρ
(

V2(y)
)

(5.144)
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where ρ(s) := λs
1+s

. Therefore, implications (5.86) hold with ζ(s) := k(|u|),
γ1,1(s) = γ2,2(s) ≡ 0, γ1,2(s) :=

(1−a)(1+µ)
2+a−λ

s
1+s

, γ2,1(s) := s
2−λ−s

for s ∈ [0, 1+ε
2−ε

],
and γ2,1(s) := 1+ε

(3−2λ)−(3−λ)ε
for s > 1+ε

2−ε
. Finally, since V1 : ℜn → ℜ+ and

V2 : ℜk → ℜ+ are radially unbounded, positive definite functions, it follows that

inequality (5.83) holds for appropriate functions a1, a2 ∈ K∞ (Proposition 2.2).

It follows from Theorem 5.4 that system (5.139) satisfies the UISS property from

the input u ∈ ℜm, provided that the small-gain inequalities hold. In this case the

small-gain inequalities are equivalent to the following inequality:

(1 − a)(1 + µ) < (2 − λ)(2 + a − λ)

Since a ∈ [0,1], the above inequality as well as the inequality µ ≥ a
2−λ2

holds for

µ = 2
3

, λ = 1
2

.

The following example deals with the robust global sampled-data stabilization of

a nonlinear planar system and shows how Theorem 5.1 can be applied to systems

with variable sampling partition.

Example 5.4.4 Consider the following planar system:

ẋ = −
(

1 + y2
)

x + y

ẏ = f (x) + g(x)y + u

(x, y) ∈ ℜ2, u ∈ ℜ (5.145)

where f,g : ℜ → ℜ are locally Lipschitz functions with f (0) = 0. We will show

that there exist a sufficiently large constant M > 0 and a sufficiently small constant

r > 0, so that system (5.145) in closed loop with the feedback law u = −My applied

with zero order hold, i.e., the closed-loop system

ẋ(t) = −
(

1 + y2(t)
)

x(t) + y(t)

ẏ(t) = −My(τi) + f
(

x(t)
)

+ g
(

x(t)
)

y(t) t ∈ [τi, τi+1)

τi+1 = τi + exp
(

−w(τi)
)

r, w(t) ∈ ℜ+ (5.146)

satisfies the UISS property with zero gain when w is considered as input.

First, notice that there exists a function σ ∈ KL such that, for all (x0, y) ∈ ℜn ×
L∞

loc(ℜ+;ℜ), the solution of ẋ = −(1 + y2)x + y with initial condition x(0) =
x0 corresponding to inputs y ∈ L∞

loc(ℜ+;ℜ) satisfies the following estimate for all

t ≥ 0:
∣

∣x(t)
∣

∣ ≤ max
{

σ
(

|x0|, t
)

, sup
0≤τ≤t

γ
(∣

∣y(τ)
∣

∣

)

}

(5.147)

with γ (s) :=
√

2s√
1+4s2

. Indeed, inequality (5.147) can be verified by using the Lya-

punov function V (x) = x2 which satisfies the following implication:

If V (x) = x2 ≥
2y2

1 + 4y2
, then V̇ ≤ −

1

4
V (x)

The above implication, in conjunction with Lemma 2.14 in Chap. 2, guarantees that

(5.147) holds for appropriate σ ∈ KL. Next, we show the following claim.



5.4 Examples and Applications 239

Claim For all ε, a > 0, there exist σ ∈ KL, sufficiently large M > 0, and sufficiently

small r > 0 such that for every (y0, x,w) ∈ ℜ× L∞
loc(ℜ+;B[0, a])× L∞

loc(ℜ+;ℜ+),

the solution of

ẏ(t) = −My(τi) + f
(

x(t)
)

+ g
(

x(t)
)

y(t), t ∈ [τi, τi+1)

τi+1 = τi + exp
(

−w(τi)
)

r, w(t) ∈ ℜ+ (5.148)

with initial condition y(0) = y0 corresponding to inputs (x,w) ∈ L∞
loc(ℜ+;

B[0, a]) × L∞
loc(ℜ+;ℜ+) satisfies the following inequality:

∣

∣y(t)
∣

∣ ≤ max
{

σ
(

|y0|, t
)

, ε sup
0≤τ≤t

∣

∣x(τ)
∣

∣

}

(5.149)

Proof of the Claim Let ε, a > 0 be arbitrary. Since f,g : ℜ → ℜ are locally Lips-

chitz functions with f (0) = 0, there exist constants P,Q > 0 such that
∣

∣f (x)
∣

∣ ≤ P |x| and
∣

∣g(x)
∣

∣ ≤ Q for all x ∈ B[0, a] (5.150)

Let M > 0 and r > 0 be chosen so that

M ≥ 2 + 2Q +
9P 2

2ε2
and 3(M + Q)r exp(Qr) ≤ 1 (5.151)

Consider a solution y(t) of (5.148) corresponding to arbitrary (x,w) ∈
L∞

loc(ℜ+;B[0, a]) × L∞
loc(ℜ+;ℜ+) with initial condition y(0) = y0 ∈ ℜ. There

exists a maximal existence time for the solution denoted by tmax ≤ +∞. More-

over, let π := {τ0, τ1, . . .} be the set of sampling times (which may be finite if

tmax < +∞), and mp(t) := max{τ ∈ π : τ ≤ t}. Let ‖x‖ := sup0≤s≤t |x(s)| and

τ = mp(t). Inequalities (5.150), (5.151) and the fact that t − τ ≤ r , in conjunction

with the Gronwall–Bellman inequality, implies

∣

∣y(t) − y(τ)
∣

∣ ≤
(M + Q)r exp(Qr)

1 − (M + Q)r exp(Qr)

∣

∣y(t)
∣

∣

+
Pr

1 − (M + Q)r exp(Qr)
exp(Qr)‖x‖ (5.152)

Define V (t) = y2(t) on [0, tmax). Let I ⊂ [0, tmax) be the zero Lebesgue mea-

sure set where y(t) is not differentiable or where ẏ(t) 	= −My(τi) + f (x(t)) +
g(x(t))y(t)). Using (5.150), (5.151), and (5.152), we obtain, for all t ∈ [0, tmax)\I ,

V̇ ≤ −2V (t) +
ε2

2
‖x‖2 for all t ∈ [0, tmax)\I (5.153)

Direct integration of the differential inequality (5.153) and the fact that V (t) = y2(t)

give
∣

∣y(t)
∣

∣ ≤ max
{
√

2 exp(−t)|y0|, ε‖x‖
}

for all t ∈ [0, tmax) (5.154)

Clearly, inequality (5.154) implies that as long as the solution of (5.148) exists,

y(t) is bounded. A standard contradiction argument, in conjunction with the BIC

property for (5.148), implies that tmax = +∞. Inequality (5.149) is a direct conse-

quence of (5.154). The proof is complete. �
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We select M > 0 sufficiently large and r > 0 sufficiently small such that inequal-

ity (5.149) holds with ε < 1/
√

2 and a = 1 +
√

2/2. The solution of the closed-loop

system (5.146) exists for all t ≥ 0. The existence of the solution is guaranteed by

the following claim.

Claim For all M > 0, r > 0, and (y0, x0,w) ∈ ℜ × ℜn × L∞
loc(ℜ+;ℜ+), the solu-

tion of (5.146) with initial condition (x(0), y(0)) = (x0, y0) corresponding to input

w ∈ L∞
loc(ℜ+;ℜ+) exists for all t ≥ 0. Moreover, for M > 0 sufficiently large and

r > 0 sufficiently small, there exist A ∈ K∞ and ξ ∈ π such that
∣

∣x(t)
∣

∣ +
∣

∣y(t)
∣

∣ ≤ A
(∣

∣(x0, y0)
∣

∣

)

for all t ∈ [0, ξ ] (5.155)
∣

∣x(t)
∣

∣ ≤ a for all t ≥ ξ (5.156)

ξ ≤ 1 + r + A
(

|x0|
)

(5.157)

where a = 1 +
√

2/2.

Proof of the Claim Let M > 0, r > 0, and (y0, x0,w) ∈ ℜ×ℜn × L∞
loc(ℜ+;ℜ+) be

arbitrary. Consider a solution (x(t), y(t)) of (5.146) corresponding to arbitrary w ∈
L∞

loc(ℜ+;ℜ+) with initial condition (x(0), y(0)) = (x0, y0). Denote by tmax ≤ +∞
the maximal existence time for the solution. Moreover, let π := {τ0, τ1, . . .} be the

set of sampling times (which may be finite if tmax < +∞), and mp(t) := max{τ ∈
π : τ ≤ t}. By virtue of (5.147), we have, for all t ∈ [0, tmax),

∣

∣x(t)
∣

∣ ≤ max
{

σ
(

|x0|,0
)

, a
}

(5.158)

Define

P := max
{∣

∣f (x)
∣

∣ : |x| ≤ max
{

σ
(

|x0|,0
)

, a
}}

and

Q := max
{
∣

∣g(x)
∣

∣ : |x| ≤ max
{

σ
(

|x0|,0
)

, a
}}

(5.159)

Using (5.158), (5.159) in conjunction with Gronwall–Bellman’s lemma, we obtain

the following inequality for all t ∈ [0, tmax):
∣

∣y(t)
∣

∣ ≤
∣

∣y(τ)
∣

∣ exp
(

(M + 2Q)(t − τ)
)

+ P(t − τ) exp
(

Q(t − τ)
)

(5.160)

where τ = mp(t). Using (5.160) and by induction, we can show the following in-

equality for all τi ∈ π :
∣

∣y(τi)
∣

∣ ≤ |y0| exp
(

(M + 2Q)τi

)

+ Pτi exp(Qr) exp
(

(M + 2Q)τi

)

(5.161)

where we have used the fact that τi+1 − τi ≤ r . Estimate (5.160), in conjunction

with (5.161), gives, for all t ∈ [0, tmax),
∣

∣y(t)
∣

∣ ≤
[

|y0| + P t exp(Qr)
]

exp
(

(M + 2Q)t
)

(5.162)

A standard contradiction argument, in conjunction with the BIC property for (5.146),

implies that tmax = +∞.

The existence of ξ ∈ π such that (5.156) holds is a direct consequence of (5.147)

and definitions γ (s) :=
√

2s√
1+4s2

, a = 1 +
√

2/2. By virtue of Theorem 3.1 in

Chap. 3, there exists β ∈ K∞ such that

ξ ≤ 1 + r + β
(

|x0|
)

(5.163)
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Finally, let M > 0 be sufficiently large and r > 0 sufficiently small so that (5.149)

holds for a = 1 +
√

2/2 and ε < 1/
√

2. For x0 ∈ ℜn with σ(|x0|,0) ≤ a, we obtain

from (5.147) and (5.149), for all t ≥ 0,
∣

∣x(t)
∣

∣ +
∣

∣y(t)
∣

∣ ≤
(

2 + ε + 2/
√

3
)(

σ
(

|x0|,0
)

+ σ
(

|y0|,0
))

(5.164)

Using (5.158), (5.159), (5.162), (5.163), and (5.164), we guarantee the existence of

β̃ ∈ K∞ such that
∣

∣x(t)
∣

∣ +
∣

∣y(t)
∣

∣ ≤ β̃
(∣

∣(x0, y0)
∣

∣

)

for all t ∈ [0, ξ ] (5.165)

The existence of A ∈ K∞ satisfying (5.155) and (5.157) is a direct consequence

of (5.163) and (5.165). The proof is complete. �

The fact that the robust global stabilization problem for (5.146) with sampled-

data feedback applied with zero-order hold is solvable with M > 0 being sufficiently

large and r > 0 being sufficiently small is a consequence from all the above and

Theorem 5.1. Indeed, we apply Theorem 5.1 with n = 2, V1 = |x|, V2 = |y|, L =
|x| + |y|, H = (x, y), S(t) := {(x, y) ∈ ℜ×ℜ : |x| ≤ a}, γ1,2(s) :=

√
2s, γ2,1(s) :=

εs, γ1,1 ≡ 0, γ2,2 ≡ 0, ζ ≡ 0, gu ≡ 0, η ≡ 0, η̃ ≡ 0, pu ≡ 0, c(t) = c̃(t) = ν(t) =
µ(t) = κ(t) ≡ 1 + r , g ≡ 0, and p(s,w) := s + w for appropriate a, b ∈ K∞, σ ∈
KL, and q ∈ N2. All Hypotheses (SG1–3) are satisfied by using the above definitions

and previous results. Therefore, we conclude that the closed-loop system (5.146)

with M > 0 being sufficiently large and r > 0 being sufficiently small satisfies the

UISS property from the input w with zero gain.

The following example is a large-scale system and shows how efficiently the

small-gain results of the present work can be applied to large-scale systems.

Example 5.4.5 Consider the following system described by ODEs:

ẋi(t) = −aixi(t) + gi

(

d(t), y(t), x(t)
)

i = 1, . . . , n (5.166)

ẏ(t) = −
(

ω + P
(

x(t)
))

y(t) + q
(

x(t)
)

(5.167)

where x(t) = (x1(t), . . . , xn(t)) ∈ ℜn, y(t) ∈ ℜ, d(t) ∈ D ⊆ ℜm, D ⊆ ℜm is com-

pact, ai > 0 (i = 1, . . . , n), ω > 0, and gi : D × ℜ × ℜn → ℜ (i = 1, . . . , n),

P : ℜn → ℜ+, and q : ℜn → ℜ are locally Lipschitz mappings with q(0) = 0 for

which there exist constants λ ∈ (0,1), ci,j ≥ 0 (i, j = 1, . . . , n), and R > 0 such that

|q(x)|
λω + P(x)

≤ R for all x ∈ ℜn (5.168)

sup
d∈D

∣

∣gi(d, y, x)
∣

∣ ≤ max
j=1,...,n

ci,j |xj | for all x ∈ ℜn and y ∈ ℜ with |y| ≤ R (5.169)

Moreover, we assume that there exists a nondecreasing function L : ℜ+ → ℜ+ such

that

sup
d∈D

[

xigi(d, y, x)
]

≤ L
(

|y|
)(

1 + |x|2
)

i = 1, . . . , n (5.170)

for all x, z ∈ ℜn and y ∈ ℜ.
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We will next show that system (5.166), (5.167) is URGAS if ci,i < ai for all

i = 1, . . . , n and the following small-gain conditions hold for each r = 2, . . . , n:

ci1,i2ci2,i3 · · · cir ,i1 < ai1ai2 · · ·air (5.171)

for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k.

Define the family of functions Vi(x, y) := 1
2
x2
i (i = 1, . . . , n), Vn+1(x, y) :=

1
2
y2, W(x,y) := 1 + 1

2
|x|2 + 1

2
y2, and h(x, y) := y2 − R2 for (x, y) ∈ ℜn × ℜ.

By direct computation,

yẏ ≤ −
(

ω + P(x)
)

y2 +
∣

∣h(x)
∣

∣|y|
≤ R

(

λω + P(x)
)

|y| −
(

λω + P(x)
)

|y|2 − ω(1 − λ)|y|2

= −|y|
(

λω + P(x)
)(

|y| − R
)

− ω(1 − λ)|y|2

It then implies that inequality (5.84) holds δ(s) ≡ 2ω(1−λ)R2. Moreover, by virtue

of (5.170) and the above inequality, we obtain

∇W(x,y)

[

ẋ

ẏ

]

≤ L
(

|y|
)(

1 + |x|2
)

Consequently inequality (5.85) holds with K(s) := 2L(
√

s + R2). Inequality (5.83)

holds with a1(s) := s2

2
√

n+1
and a2(s) := s2

2
. Finally, notice that, for all µ ∈ (0,1)

and i = 1, . . . , n, the following implication holds:

Vi(x) ≥
1

2µ2a2
i

∣

∣gi(d, y, x)
∣

∣

2

⇒ xi

(

−aixi + gi(d, y, x)
)

≤ −(1 − µ)aix
2
i (5.172)

It follows from (5.172) and (5.169) that implications (5.86) for i = 1, . . . , n hold

with

ρi(s) := 2(1 − µ)ais γi,j (s) :=
c2
i,j

µ2a2
i

s and γi,n+1(s) := 0

for s ≥ 0 and i, j = 1, . . . , n (5.173)

Since q : ℜn → ℜ is a continuous mapping with q(0) = 0, it follows that there exists

a function γ ∈ K∞ such that the following inequality holds:
∣

∣q(x)
∣

∣ ≤ γ
(

|x|
)

for all x ∈ ℜn (5.174)

Inequality (5.174) and the fact that P(x) ≥ 0 for all x ∈ ℜn (notice that P : ℜn →
ℜ+) imply that the following implication holds for every µ ∈ (0,1):

Vn+1(y) ≥ 1

2µ2ω2

(

γ
(

|x|
))2

⇒ y
[

−
(

ω + P(x)
)

y + q(x)
]

≤ −(1 − µ)ωy2 (5.175)

It follows from (5.175) that implication (5.86) holds for i = n + 1 with



5.5 Application to Stability Analysis in Uncertain Dynamic Games 243

γn+1,j (s) :=
1

2µ2ω2

(

γ
(
√

2ns
))2

and γn+1,n+1(s) := 0

for s ≥ 0 and j = 1, . . . , n (5.176)

Definitions (5.173) and (5.176), in conjunction with (5.171) and the fact that

ci,i < ai for all i = 1, . . . , n, guarantee that there exists µ ∈ (0,1) (sufficiently

close to 1) such that the MAX-preserving mapping Γ : ℜn+1
+ → ℜn+1

+ with Γ (x) =
(Γ1(x), . . . ,Γn+1(x))′, Γi(x) = maxj=1,...,n+1 γi,j (xj ) for all x ∈ ℜn+1

+ and i =
1, . . . , n + 1 satisfies the cyclic small-gain conditions. It follows from Theorem 5.4

that system (5.166), (5.167) is URGAS.

5.5 Application to Stability Analysis in Uncertain Dynamic

Games

Consider a strategic game with n players and Si ⊆ ℜki (i = 1, . . . , n) being the

action space for each one of the players. We assume that the best reply mapping for

each player is a function fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for 1 < i <

n, n ≥ 3, and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn, satisfying the

following inequalities:

πi(qi, q−i) < πi

(

fi(q−i), q−i

)

for all qi ∈ Si with qi 	= fi(q−i), i = 1, . . . , n (5.177)

where πi(qi, q−i) is the payoff function of the ith player. We assume the existence

of a Nash equilibrium q∗ ∈ S for the game, where S := S1 ×· · ·×Sn is the outcome

space for the game, i.e., there exists q∗ = (q∗
1 , . . . , q∗

n) ∈ S such that

q∗
i = fi

(

q∗
−i

)

i = 1, . . . , n (5.178)

The existence of a Nash equilibrium can be guaranteed by Brouwer’s fixed point

theorem when all action spaces Si ⊆ ℜki (i = 1, . . . , n) are compact and convex

and when all the best reply mappings fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si

for 1 < i < n, n ≥ 3, and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn are

continuous mappings.

Next, we assume that Si ⊆ ℜki (i = 1, . . . , n) are closed convex sets and that the

dynamics of the game are described in continuous time as follows:

• every player forms an expectation for the behavior of all other players at each

time t ≥ 0: the expectation of the ith player for the production level of the j th

player at time t ≥ 0 will be denoted by q
exp
i,j (t) ∈ Sj (j 	= i, i, j = 1, . . . , n),

• every player determines her action as a convex combination of a past action and

the best reply response based on the expectations for the behavior of all other

players at each time t ≥ 0, i.e.,
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q1(t) = θ1(t)PrS1

(

q1

(

t − τ1(t)
))

+
(

1 − θ1(t)
)

f1

(

q
exp

1,2 (t), . . . , q
exp

1,n (t)
)

...

qi(t) = θi(t)PrSi

(

qi

(

t − τi(t)
))

+
(

1 − θi(t)
)

fi

(

q
exp

i,1 (t), . . . , q
exp

i,i−1(t), q
exp

i,i+1(t), . . . , q
exp
i,n (t)

)

...

qn(t) = θn(t)PrSn

(

qn

(

t − τn(t)
))

+
(

1 − θn(t)
)

fn

(

q
exp

n,1 (t), . . . , q
exp

n,n−1(t)
)

(5.179)

where θi : ℜ+ → [0,Θ], τi : ℜ+ → [r, T ], i = 1, . . . , n, are in general unknown

functions, and 0 ≤ Θ < 1 and 0 < r ≤ T are constants (in general unknown),

• all expectation rules q
exp
i,j (t) ∈ Sj (j 	= i, i = 1, . . . , n) are Consistent Backward-

looking expectations (see Example 1.4.1 in Chap. 1) with respect to the Nash

equilibrium point q∗ ∈ S, i.e., there exist constants 0 < T ≤ r such that,

for all t ≥ 0,
∣

∣q
exp
i,j (t) − q∗

j

∣

∣ ≤ sup
t−r≤τ≤t−T

∣

∣qj (τ ) − q∗
j

∣

∣ =
∥

∥qj − q∗
j

∥

∥

[t−r,t−T ] (5.180)

Notice the following fact for consistent backward-looking expectations:

Fact Suppose that Sj ⊆ ℜkj is a closed convex set. q
exp
i,j (t) (j 	= i, i, j = 1, . . . , n)

is a Consistent Backward-looking expectation with respect to the Nash equilibrium

point q∗ ∈ S if and only if there exist constants 0 < T ≤ r and a function di,j :
ℜ+ → {d ∈ ℜkj : |d| ≤ 1} such that

q
exp
i,j (t) = PrSj

(

q∗
j + di,j (t)

∥

∥qj − q∗
j

∥

∥

[t−r,t−T ]
)

for all t ≥ 0 (5.181)

Proof of Fact Indeed, using the fact that |PrU (x) − PrU (y)| ≤ |x − y| for every

x, y ∈ ℜn, where U ⊆ ℜn is a closed convex set, one can verify that for every

di,j : ℜ+ → {d ∈ ℜkj : |d| ≤ 1}, the function q
exp
i,j (t) defined by (5.181) satisfies

(5.180) and q
exp
i,j (t) ∈ Sj for all t ≥ 0. Hence it is a Consistent Backward-looking

expectation with respect to the Nash equilibrium point q∗ ∈ S. On the other hand, if

q
exp
i,j (t) ∈ Sj is a Consistent Backward-looking expectation with respect to the Nash

equilibrium point q∗ ∈ S satisfying (5.180) for all t ≥ 0, then the function defined

by

di,j (t) = 1
‖qj −q∗

j ‖[t−r,t−T ]

(

q
exp
i,j (t) − q∗

j

)

if
∥

∥qj − q∗
j

∥

∥

[t−r,t−T ] > 0

di,j (t) = 0 if
∥

∥qj − q∗
j

∥

∥

[t−r,t−T ] = 0

satisfies di,j (t) ∈ {d ∈ ℜkj : |d| ≤ 1}. Moreover, (5.181) holds for all t ≥ 0.

The proof is complete. �

The above fact shows that if all action spaces Sj ⊆ ℜkj (j = 1, . . . , n) are closed

convex sets, then there exist constants 0 < T ≤ r , 0 ≤ Θ < 1 and functions θi :
ℜ+ → [0,Θ], τi : ℜ+ → [T , r], and di,j : ℜ+ → {d ∈ ℜkj : |d| ≤ 1} (j 	= i, i, j =
1, . . . , n) such that
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q1(t) = θ1(t)PrS1

(

q1

(

t − τ1(t)
))

+
(

1 − θ1(t)
)

f1

(

PrS2

(

q∗
2 + d1,2(t)

∥

∥q2 − q∗
2

∥

∥

[t−r,t−T ]
)

, . . . ,

PrSn

(

q∗
n + d1,n(t)

∥

∥qn − q∗
n

∥

∥

[t−r,t−T ]
))

...

qn(t) = θn(t)PrSn

(

qn

(

t − τn(t)
))

+
(

1 − θn(t)
)

fn

(

PrS1

(

q∗
1 + dn,1(t)

∥

∥q1 − q∗
1

∥

∥

[t−r,t−T ]
)

, . . . ,

PrSn−1

(

q∗
n−1 + dn,n−1(t)

∥

∥qn−1 − q∗
n−1

∥

∥

[t−r,t−T ]
))

(5.182)

In general, the constants 0 < T ≤ r , 0 ≤ Θ < 1 and the functions θi : ℜ+ → [0,Θ],
τi : ℜ+ → [T , r], and di,j : ℜ+ → {d ∈ ℜkj : |d| ≤ 1} (j 	= i, i, j = 1, . . . , n) are un-

known. Therefore, the dynamical system (5.182) is an uncertain dynamical system

described by Functional Difference Equations (FDEs). In order to study the behav-

ior of the solutions of (5.182), we define the deviation variables xi(t) = qi(t) − q∗
i

(i = 1, . . . , n), and from (5.182) we obtain

x1(t) = θ1(t)
(

PrS1

(

x1

(

t − τ1(t)
)

+ q∗
1

)

− q∗
1

)

+
(

1 − θ1(t)
)(

f1

(

PrS2

(

q∗
2 + d1,2(t)‖x2‖[t−r,t−T ]

)

, . . . ,

PrSn

(

q∗
n + d1,n(t)‖xn‖[t−r,t−T ]

))

− q∗
1

)

...

xn(t) = θn(t)
(

PrSn

(

xn

(

t − τn(t)
)

+ q∗
n

)

− q∗
n

)

+
(

1 − θn(t)
)(

fn

(

PrS1

(

q∗
1 + dn,1(t)‖x1‖[t−r,t−T ]

)

, . . . ,

PrSn−1

(

q∗
n−1 + dn,n−1(t)‖xn−1‖[t−r,t−T ]

))

− q∗
n

)

(5.183)

Finally, we assume that there exist functions γ̃i,j ∈ N (j 	= i, i, j = 1, . . . , n) such

that the following inequalities hold for all q ∈ S:
∣

∣fi(q−i) − q∗
i

∣

∣ ≤ max
j 	=i

γ̃i,j

(∣

∣qj − q∗
j

∣

∣

)

i = 1, . . . , n (5.184)

Using again the fact that |PrU (x) − PrU (y)| ≤ |x − y| for every x, y ∈ ℜn, where

U ⊆ ℜn is a closed convex set, and inequalities (5.184), we obtain from (5.183), for

all t ≥ 0, µ > Θ , and i = 1, . . . , n,

∣

∣xi(t)
∣

∣ ≤ max

{

µ‖xi‖[t−r,t−T ],max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

‖xj‖[t−r,t−T ]
)

}

(5.185)

Remarks and Examples about systems (5.182), (5.183)

(a) It is worth noting that system (5.183) is an infinite-dimensional dynamical sys-

tem with state space X being the normed linear space of bounded functions x :
[−r,0] → ℜN , where N = k1 + · · · + kn with norm ‖x‖X = sup−r≤τ≤0 |x(τ)|.
It is described by FDEs and satisfies Hypotheses (Q1), (Q2) of Sect. 1.2.4 in

Chap. 1. The Dynamic Cournot oligopoly game (Example 1.4.1 in Chap. 1)

satisfies all above hypotheses.
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(b) The equilibrium point 0 ∈ X of system (5.183) corresponds to the Nash equi-

librium point q∗ ∈ S, noting that the deviation variables have been defined by

xi(t) = qi(t) − q∗
i for i = 1, . . . , n.

(c) All discrete-time models of the form

q1(k + 1) = θ1(k)q1(k) +
(

1 − θ1(k)
)

f1

(

q
exp

1,2 (k + 1), . . . , q
exp

1,n (k + 1)
)

...

qi(k + 1) = θi(k)qi(k) +
(

1 − θi(k)
)

× fi

(

q
exp

i,1 (k + 1), . . . , q
exp

i,i−1(k + 1), q
exp

i,i+1(k + 1), . . . ,

q
exp
i,n (k + 1)

)

...

qn(k + 1) = θn(k)qn(k) +
(

1 − θn(k)
)

fn

(

q
exp

n,1 (k + 1), . . . , q
exp

n,n−1(k + 1)
)

(5.186)

with

q
exp
i,j (k + 1) = ai,j (k)

m
∑

l=0

wi,j,l(k)qj (k − l) +
(

1 − ai,j (k)
)

q∗
j (5.187)

where k,m are nonnegative integers, ai,j (k) ∈ [0,1] (i, j = 1, . . . , n), θi(k) ∈
[0,Θ] (i = 1, . . . , n) with Θ ∈ [0,1), wi,j,l(k) ≥ 0 with 1 =

∑m
l=0 wi,j,l(k)

for all k ≥ 0 and l = 0, . . . ,m (i, j = 1, . . . , n), are included in the uncertain

model (5.182) and its equivalent expression (5.183) in the sense that for every

model of the form (5.186), (5.187), one can give functions θi : ℜ+ → [0,Θ],
τi : ℜ+ → [T , r], and di,j : ℜ+ → {d ∈ ℜkj : |d| ≤ 1} (j 	= i, i, j = 1, . . . , n)

such that the solution of (5.182) coincides with the solution obtained by the

discrete-time model (5.186), (5.187).

(d) Similarly, as shown in Example 1.4.1, if Sj ⊆ [0,+∞) for all j = 1, . . . , n and

if all expectation rules q
exp
i,j (t) (j 	= i, i, j = 1, . . . , n) are Consistent Backward-

looking expectations with respect to the Nash equilibrium point q∗ ∈ S and

all mappings t → q
exp
i,j (t) (j 	= i, i, j = 1, . . . , n) are continuous, then all

continuous-time models

q̇1(t) = µ1

(

f1

(

q
exp

1,2 (t), . . . , q
exp

1,n (t)
)

− q1(t)
)

...

q̇n(t) = µn

(

fn

(

q
exp

n,1 (t), . . . , q
exp

n,n−1(t)
)

− qn(t)
)

where µi > 0 are constants, are included in the uncertain model (5.182).

(e) The reader should notice that no continuity assumption is made for the best reply

mappings of the players fi : S1 ×· · ·×Si−1 ×Si+1 ×· · ·×Sn → Si for 1 < i <

n, n ≥ 3, and f1 : S2 ×· · ·×Sn → S1, fn : S1 ×· · ·×Sn−1 → Sn. Moreover, we

have not assumed that the action spaces Sj ⊆ ℜkj (j = 1, . . . , n) are compact

sets: we simply require that the action spaces are closed convex sets. However,

we have assumed the existence of a Nash equilibrium point q∗ ∈ S and the

existence of functions γ̃i,j ∈ N (j 	= i, i = 1, . . . , n) satisfying (5.184).
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The crucial question that can be posed is the question of robust asymptotic stabil-

ity of the Nash equilibrium q∗ ∈ S for system (5.182) or equivalently the question of

robust asymptotic stability of 0 ∈ X for system (5.183). The following theorem is an

application of Theorem 5.2 and shows that robust global stability can be determined

by the functions γ̃i,j ∈ N (j 	= i, i = 1, . . . , n) satisfying (5.184).

Theorem 5.7 0 ∈ X is Robustly Globally Asymptotically Stable for system (5.183),

if there exists ω > 1 such that the following set of conditions holds for each p =
2, . . . , n:

(γi1,i2 ◦ γi2,i3 ◦ · · · ◦ γip,i1)(s) < s for all s > 0 (5.188)

for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k, where γi,j (s) := ωγ̃i,j (ωs).

In other words, if conditions (5.188) hold, then the Nash equilibrium point q∗ ∈ S

is robustly globally asymptotically stable with respect to all possible Consistent

Backward-looking expectation rules with respect to the Nash equilibrium point

q∗ ∈ S.

It should be noticed that for the Cournot oligopoly game studied in Exam-

ple 1.4.1, the best reply mappings fi (i = 1, . . . , n) are defined by (1.45). Conse-

quently, using the convexity of the sets Si = [0,Qi] (i = 1, . . . , n), we obtain the

following inequalities for i = 1, . . . , n:

∣

∣fi(q−i) − q∗
i

∣

∣ ≤
b

2b + Ki

∑

j 	=i

∣

∣qj − q∗
j

∣

∣ ≤
b

2b + Ki

(n − 1)max
j 	=i

∣

∣qj − q∗
j

∣

∣

The above inequalities imply that inequalities (5.188) hold with γ̃i,j (s) :=
Ri(n − 1)s, where Ri := b

2b+Ki
. Theorem 5.7 and the above definitions guaran-

tee robust global asymptotic stability of the Nash equilibrium, provided that there

exists ω > 1 such that the following set of conditions holds for each p = 2, . . . , n:

Ri1Ri2 · · ·Rip (n − 1)pω2p < 1

for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k. The conditions

Ri1Ri2 · · ·Rip (n − 1)p < 1 for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k (5.189)

are necessary and sufficient conditions for the existence of a (sufficiently small)

constant ω > 1 satisfying the above inequalities for each p = 2, . . . , n and for all

ij ∈ {1, . . . , n}, ij 	= ik if j 	= k. A more careful analysis similar to the above anal-

ysis reveals that the Nash equilibrium for the Cournot oligopoly game described in

Sect. 5.2 will be asymptotically stable, provided that there exist n sets of positive

real numbers Ai = {ai,j , j 	= i} (i = 1, . . . , n) with
∑

j 	=i xj ≤ maxj 	=i(ai,jxj ) for

all x = (x1, . . . , xn)
′ ∈ (ℜ+)n and i = 1, . . . , n such that the following set of condi-

tions holds for each p = 2, . . . , n:

ai1,i2ai2,i3 · · ·aip,i1Ri1Ri2 · · ·Rip < 1

for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k. The above conditions are less restrictive than

conditions (5.189); indeed, conditions (5.189) are implied by the above conditions
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for the special case ai,j = n − 1 for all i, j = 1, . . . , n with j 	= i. For example, for

n = 3, the above small-gain conditions are equivalent to the existence of ε1, ε2, ε3 >

0 such that

R1R2(1 + ε1)(1 + ε2) < 1

R1R3

(

1 + ε−1
1

)

(1 + ε3) < 1

R2R3

(

1 + ε−1
2

)(

1 + ε−1
3

)

< 1

R1R2R3(1 + ε1)
(

1 + ε−1
2

)

(1 + ε3) < 1

R1R2R3

(

1 + ε−1
1

)

(1 + ε2)
(

1 + ε−1
3

)

< 1

For the above inequalities, we have used a1,2 = 1+ε1, a1,3 = 1+ε−1
1 , a2,1 = 1+ε2,

a2,3 = 1 + ε−1
2 , a3,1 = 1 + ε3, and a3,2 = 1 + ε−1

3 . By selecting ε1 = ε2 = ε3 = 1,

we obtain inequalities (5.189).

It should be emphasized that the parameters r ≥ T > 0, which are involved in

the Consistent Backward-looking expectations, play no role in the small-gain con-

ditions. Consequently, the small-gain conditions can help us to decide whether the

Nash equilibrium point is robustly stable without any knowledge of the expectation

rules. The small-gain conditions (5.188) demand knowledge of the Nash equilib-

rium point q∗ ∈ S and the best reply mappings fi : S1 × · · · × Si−1 × Si+1 × · · · ×
Sn → Si for 1 < i < n, n ≥ 3, and f1 : S2 ×· · ·×Sn → S1, fn : S1 ×· · ·×Sn−1 → Sn

for which inequalities (5.184) hold.

Proof of Theorem 5.7 We first notice that system (5.183) is an autonomous dy-

namical system. By virtue of Theorem 1.2, 0 ∈ X is a robust equilibrium point for

system (5.183).

Let σ > 0 and define the family of functionals Vi : X → ℜ+, i = 1, . . . , n, by

Vi(x) = sup
−r≤τ≤0

∣

∣xi(τ )
∣

∣ exp(στ) (5.190)

Using definition (5.190) and (5.185), we obtain, for all h ∈ (0, T ), i = 1, . . . , n,

µ > Θ , and t ≥ 0,

Vi(xt+h)

= sup
−r≤τ≤0

∣

∣xi(t + h + τ)
∣

∣ exp(στ)

= sup
t+h−r≤s≤t+h

∣

∣xi(s)
∣

∣ exp
(

σ(s − t − h)
)

≤ max
{

sup
t+h−r≤s≤t

∣

∣xi(s)
∣

∣ exp
(

σ(s − t − h)
)

, sup
t≤s≤t+h

∣

∣xi(s)
∣

∣ exp
(

σ(s − t − h)
)

}

≤ max

{

exp(−σh)Vi(xt ), sup
t≤s≤t+h

µ‖xi‖[s−T ,s] exp
(

σ(s − t − h)
)

,

sup
t≤s≤t+h

max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

‖xj‖[s−T ,s]
)

exp
(

σ(s − t − h)
)

}
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= max

{

exp(−σh)Vi(xt ),

sup
t≤s≤t+h

µ sup
−r≤w≤0

∣

∣xi(w + s)
∣

∣ exp(σw) exp(−σw) exp
(

σ(s − t − h)
)

,

sup
t≤s≤t+h

max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

sup
−r≤w≤0

∣

∣xj (w + s)
∣

∣ exp(σw) exp(−σw)
)

× exp
(

σ(s − t − h)
)

}

≤ max

{

exp(−σh)Vi(xt ), sup
t≤s≤t+h

µ exp(σ r)Vi(xs),

sup
t≤s≤t+h

max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

exp(σ r)Vj (xs)
)

}

≤ max

{

exp(−σh)Vi(xt ),µ exp(σ r) sup
t≤s≤t+h

Vi(xs),

max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

exp(σ r) sup
t≤s≤t+h

Vj (xs)
)

}

where (xt )(τ ) = x(τ) for t − r ≤ τ ≤ t . Consequently, for all i = 1, . . . , n, σ > 0,

h ∈ (0, T ), µ > Θ , and t ≥ 0, it holds that

Vi(xt+h) ≤ max

{

exp(−σh)Vi(xt ),µ exp(σ r) sup
t≤s≤t+h

Vi(xs),

max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

exp(σ r) sup
t≤s≤t+h

Vj (xs)
)

}

(5.191)

Using induction and (5.191), we can show that, for all i = 1, . . . , n, σ > 0, h ∈
(0, T ), µ > Θ , and t ≥ 0 and for every nonnegative integer k ≥ 0, it holds that

Vi(xt+kh) ≤ max

{

exp(−σkh)Vi(xt ),µ exp(σ r) sup
t≤s≤t+kh

Vi(xs),

max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

exp(σ r) sup
t≤s≤t+kh

Vj (xs)
)

}

(5.192)

Therefore, (5.192) implies that, for all i = 1, . . . , n, µ > Θ , σ > 0, and t ≥ 0, the

following inequality holds:

Vi(xt ) ≤ max

{

exp(−σ t)Vi(x0),µ exp(σ r) sup
0≤s≤t

Vi(xs),

max
j 	=i

µ − µΘ

µ − Θ
γ̃i,j

(

exp(σ r) sup
0≤s≤t

Vj (xs)
)

}

(5.193)
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Notice that definition (5.190) implies that 2Vi(xt ) ≥ sup−r≤τ≤0 |xi(t + τ)| for σ ≤
r−1 ln(2) and, consequently,

‖xt‖X = ‖x‖[t−r,t] ≤
n
∑

i=1

sup
−r≤τ≤0

∣

∣xi(t + τ)
∣

∣ ≤ 2

n
∑

i=1

Vi(xt ) (5.194)

Without loss of generality we may assume Θ > 0. Define µ := ωΘ
ω−1+Θ

and let

the constant σ > 0 satisfy the inequalities σ ≤ r−1 ln(2), σ < r−1 ln(ω), and

σ < r−1 ln(ω−1+Θ
ωΘ

), where ω > 1 is the constant involved in the hypotheses of

the theorem. Notice that the hypothesis Θ < 1 and previous definitions imply that

µ exp(σ r) < 1, µ > Θ , exp(σ r) ≤ ω, and
µ−µΘ
µ−Θ

≤ ω. It follows from (5.193),

(5.194), and definition (5.190) (which implies Vi(xt ) ≤ ‖xt‖X ) that the following

inequalities hold for all i = 1, . . . , n and t ≥ 0:

Vi(xt ) ≤ max
{

exp(−σ t)L(x0),B sup
0≤s≤t

Vi(xs),max
j 	=i

ωγ̃i,j

(

ω sup
0≤s≤t

Vj (xs)
)}

(5.195)

L(xt ) ≤ max

{

2n‖x0‖X ,2

n
∑

i=1

max
j 	=i

ωγ̃i,j

(

ω sup
0≤s≤t

Vj (xs)
)

+ 2B

n
∑

i=1

sup
0≤s≤t

Vi(xs)

}

(5.196)

where L(x) := ‖x‖X and B := µ exp(σ r) < 1. It follows from (5.194), (5.195),

(5.196), and Theorem 5.2 that 0 ∈ X is Robustly Globally Asymptotically Sta-

ble for system (5.183), provided that the set of conditions (5.188) holds for each

p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k. The proof is complete. �

Theorem 5.7 may be used to derive conditions for uniqueness of a fixed point.

Indeed:

Corollary 5.4 Let Si ⊆ ℜki (i = 1, . . . , n) be closed convex sets, and let func-

tions fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for 1 < i < n, n ≥ 3, and

f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn for which there exists

q∗ = (q∗
1 , . . . , q∗

n) ∈ S, where S := S1 × · · · × Sn satisfies (5.178). Furthermore,

suppose that there exist functions γ̃i,j ∈ N (j 	= i, i, j = 1, . . . , n) such that in-

equalities (5.184) hold for all q ∈ S and that there exists ω > 1 such that con-

ditions (5.188) hold for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij 	= ik
if j 	= k. Then q∗ = (q∗

1 , . . . , q∗
n) ∈ S is the unique fixed point of the mapping

S ∋ q → F(q) := (f1(q−1), . . . , fn(q−n)) ∈ S.

It is worth noting that Corollary 5.4 does not guarantee the existence of a fixed

point for the mapping S ∋ q → F(q) := (f1(q−1), . . . , fn(q−n)) ∈ S. Corollary 5.4

can be used in conjunction with classical fixed-point theorems (e.g., Brouwer’s fixed

point theorem when all action spaces Si ⊆ ℜki (i = 1, . . . , n) are compact and con-

vex and when the mapping S ∋ q → F(q) := (f1(q−1), . . . , fn(q−n)) ∈ S is contin-

uous) in order to guarantee the uniqueness of the fixed point.
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Another issue, which is important for the economic literature, is the fact that the

hypothesis of the consistent backward-looking expectations does not allow rational

expectations. This point motivates the following definition for the strategic game

described above.

Definition 5.4 An expectation rule q
exp
i,j (t) (j 	= i, i, j = 1, . . . , n) is called a

Rational-Consistent Backward-looking expectation with respect to the Nash equi-

librium point q∗ ∈ S if there exists a constant 0 < r such that
∣

∣q
exp
i,j (t) − q∗

j

∣

∣ ≤ sup
t−r≤τ≤t

∣

∣qj (τ ) − q∗
j

∣

∣ =
∥

∥qj − q∗
j

∥

∥

[t−r,t] for all t ≥ 0 (5.197)

Clearly, rational expectations are Rational-Consistent Backward-looking expec-

tations with respect to the Nash equilibrium point q∗ ∈ S. Moreover, a Consistent

Backward-looking expectation is a Rational-Consistent Backward-looking expecta-

tion with respect to the Nash equilibrium point q∗ ∈ S.

Can we consider system (5.179) where all expectation rules q
exp
i,j (t) ∈ Sj (j 	= i,

i, j = 1, . . . , n) are Rational-Consistent Backward-looking expectations with re-

spect to the Nash equilibrium point q∗ ∈ S? The key mathematical problem that

arises in this case is whether we can obtain a well-defined dynamical system if Hy-

potheses (Q1) and (Q2) of Sect. 1.2.4 in Chap. 1 do not hold. However, we can

extend the analysis of the previous section under the following hypothesis:

(H′) There exist m index sets Jl ⊆ {1, . . . , n}, l = 1, . . . ,m, with Jl ∩ Jk = ∅ for

l 	= k and
⋃

l=1,...,m Jl = {1, . . . , n} such that the following statements hold:

• All players with i ∈ Jm are using Consistent Backward-looking expectations

with respect to the Nash equilibrium point q∗ ∈ S.

• For every k = 1, . . . ,m − 1, all players with i ∈ Jk are using Rational-

Consistent Backward-looking expectations, q
exp
i,j (t) ∈ Sj if j ∈ Jl with l > k

and Consistent Backward-looking expectations, and q
exp
i,j (t) ∈ Sj otherwise.

Indeed, if Hypothesis (H′) holds, then system (5.179) is expressed in deviation

variables xi(t) = qi(t) − q∗
i (i = 1, . . . , n) by the following equations:

x1(t) = θ1(t)
(

PrS1

(

x1

(

t − τ1(t)
)

+ q∗
1

)

− q∗
1

)

+
(

1 − θ1(t)
)

×
(

f1

(

PrS2

(

q∗
2 + d1,2(t)s1,2(t)

)

, . . . ,PrSn

(

q∗
n + d1,n(t)s1,n(t)

))

− q∗
1

)

...

xn(t) = θn(t)
(

PrSn

(

xn

(

t − τn(t)
)

+ q∗
n

)

− q∗
n

)

+
(

1 − θn(t)
)

×
(

fn

(

PrS1

(

q∗
1 + dn,1(t)sn,1(t)

)

, . . . ,

PrSn−1

(

q∗
n−1 + dn,n−1(t)sn,n−1(t)

))

− q∗
n

)

si,j (t) := ‖xj‖[t−r,t] if i ∈ Jk and j ∈ Jl with l > k

si,j (t) := ‖x2‖[t−r,t−T ] if i ∈ Jk and j ∈ Jl with l ≤ k

(5.198)
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where θi : ℜ+ → [0,Θ], τi : ℜ+ → [T , r], di,j : ℜ+ → {d ∈ ℜkj : |d| ≤ 1} (j 	= i,

i, j = 1, . . . , n).

Let us explain next why system (5.198) is an infinite-dimensional dynamical

system with state space X being the normed linear space of bounded functions

x : [−r,0] → ℜN , where N = k1 + · · · + kn with norm ‖x‖X = sup−r≤τ≤0 |x(τ)|.
Indeed, by using the method of steps, given an initial condition x0 ∈ X and functions

θi : ℜ+ → [0,Θ], τi : ℜ+ → [T , r], and di,j : ℜ+ → {d ∈ ℜkj : |d| ≤ 1} (j 	= i,

i, j = 1, . . . , n), one can in principle determine from (5.198) the solution x(t) =
(x1(t), . . . , xn(t))

′ ∈ ℜm for t ∈ (0, T ] with x(τ) = (x1(τ ), . . . , xn(τ ))′ = x0(τ ) for

all τ ∈ [−r,0] using the following procedure:

Step 1: First, determine the solution xi(t) for t ∈ (0, T ] and for all players with

i ∈ Jm that are using Consistent Backward-looking expectations with respect to the

Nash equilibrium point q∗ ∈ S. In this case, we are in a position to determine the

components of the solution xj (t) for j ∈ Jm and t ∈ (0, T ] by means of (5.198).

Furthermore, in this case inequality (5.185) holds for t ∈ (0, T ], i ∈ Jm, and conse-

quently there exists a function Gm ∈ N such that

sup
t∈[0,T ]

∣

∣xi(t)
∣

∣ ≤ Gm

(

‖x‖[−r,0]
)

for i ∈ Jm (5.199)

Step 2: Next, determine the solution xi(t) for t ∈ (0, T ] and for all players with i ∈
Jm−1 that are using Rational-Consistent Backward-looking expectations, q

exp
i,j (t) ∈

Sj if j ∈ Jm and Consistent Backward-looking expectations, and q
exp
i,j (t) ∈ Sj oth-

erwise. In this case, (5.184) implies that the following inequality holds for all

t ∈ (0, T ]:
∣

∣xi(t)
∣

∣ ≤ max
j 	=i,j /∈Jm

γ̃i,j

(

‖xj‖[t−r,t−T ]
)

+ max
j 	=i,j∈Jm

γ̃i,j

(

‖xj‖[t−r,t]
)

(5.200)

However, the components of the solution xj (t) for j ∈ Jm and t ∈ (0, T ] have been

determined by Step 1. Therefore, we are in a position to determine the components

of the solution xj (t) for j ∈ Jm−1 and t ∈ (0, T ] by means of (5.198). Using (5.199)

and (5.200), we obtain the existence of a function Gm−1 ∈ N such that

sup
t∈[0,T ]

∣

∣xi(t)
∣

∣ ≤ Gm−1

(

‖x‖[−r,0]
)

for i ∈ Jm ∪ Jm−1 (5.201)

Step k (3 ≤ k ≤ m): We determine the solution xi(t) for t ∈ (0, T ] and for all players

with i ∈ Jm+1−k that are using Rational-Consistent Backward-looking expectations,

q
exp
i,j (t) ∈ Sj if j ∈ Jl with l > m + 1 − k and Consistent Backward-looking expec-

tations, and q
exp
i,j (t) ∈ Sj otherwise. In this case, (5.184) implies that the following

inequality holds for all t ∈ (0, T ]:
∣

∣xi(t)
∣

∣ ≤ max
j 	=i,j∈Jl ,l≤m+1−k

γ̃i,j

(

‖xj‖[t−r,t−T ]
)

+ max
j 	=i,j∈Jl ,l>m+1−k

γ̃i,j

(

‖xj‖[t−r,t]
)

(5.202)

However, the components of the solution xj (t) for j ∈ Jl with l > m + 1 − k and

t ∈ (0, T ] have been determined by previous steps. Therefore, we are in a position
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to determine the components of the solution xj (t) for j ∈ Jm+1−k and t ∈ (0, T ]
by means of (5.198). Moreover, by virtue of previous steps, there exists a function

Gm+2−k ∈ N such that

sup
t∈[0,T ]

∣

∣xi(t)
∣

∣ ≤ Gm+2−k

(

‖x‖[−r,0]
)

for i ∈
⋃

l=m+2−k,...,m

Jl (5.203)

Using (5.202) and (5.203), we obtain the existence of a function Gm+1−k ∈ N such

that

sup
t∈[0,T ]

∣

∣xi(t)
∣

∣ ≤ Gm+1−k

(

‖x‖[−r,0]
)

for i ∈
⋃

l=m+1−k,...,m

Jl (5.204)

After the completion of the m steps, we have determined all components of the

solution xj (t) for j = 1, . . . , n and t ∈ (0, T ]. Moreover, we have also constructed

a function G ∈ N such that

sup
t∈[0,T ]

∣

∣x(t)
∣

∣ ≤ G
(

‖x‖[−r,0]
)

(5.205)

Without loss of generality, we may assume that G(s) ≥ s for all s ≥ 0. Moreover,

by using (5.205) we may establish that 0 ∈ X is a robust equilibrium point for sys-

tem (5.198) and conclude exactly as previously in that estimates (5.194), (5.195),

and (5.196) hold.

The proof of the following theorem is exactly the same with the proof of the

Theorem 5.7 and therefore is omitted.

Theorem 5.8 0 ∈ X is Robustly Globally Asymptotically Stable for system (5.198)

under Hypothesis (H′) if there exists ω > 1 such that the set of conditions (5.188)

holds for each p = 2, . . . , n and for all ij ∈ {1, . . . , n}, ij 	= ik if j 	= k, where

γi,j (s) := ωγ̃i,j (ωs).

It should be emphasized that the parameters r ≥ T > 0 that are involved in

the definition of the Consistent Backward-looking expectation play no role in the

small-gain conditions. Moreover, the number m of the index sets Jl ⊆ {1, . . . , n}
involved in Hypothesis (H′) or the particular members of each index set play ab-

solutely no role in the small-gain conditions (5.188). Furthermore, all these pa-

rameters are allowed to change with time: there is no need to assume that these

parameters remain constant. Consequently, the small-gain conditions can help

us to decide whether the Nash equilibrium point is robustly stable without any

knowledge of the expectation rules. Again, the small-gain conditions (5.188) de-

mand knowledge of the Nash equilibrium point q∗ ∈ S and the best reply map-

pings fi : S1 × · · · × Si−1 × Si+1 × · · · × Sn → Si for 1 < i < n, n > 3, and

f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn for which inequalities (5.184)

hold.

Finally, it should be noted that, for a specific strategic game, even less demand-

ing hypotheses than Hypothesis (H′) can be used in order to guarantee that sys-

tem (5.179) gives an infinite-dimensional dynamical system with state space X be-

ing the normed linear space of bounded functions x : [−r,0] → ℜN , where N =
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k1 + · · · + kn with norm ‖x‖X = sup−r≤τ≤0 |x(τ)|. This can be done by exploiting

special properties of the best reply mappings fi : S1 ×· · ·×Si−1 ×Si+1 ×· · ·×Sn →
Si for 1 < i < n, n > 3, and f1 : S2 × · · · × Sn → S1, fn : S1 × · · · × Sn−1 → Sn

(e.g., if some of the functions are independent of certain arguments).

5.6 Historical and Bibliographical Notes

1. The small-gain theorem has been widely recognized as an important tool for ro-

bustness analysis and robust controller design within the control systems com-

munity. For instance, classical small-gain theorems [9, 52, 53] have played a

crucial role for linear robust control of uncertain systems subject to dynamic

uncertainties [54]. As introduced in the framework of classical small-gain, an

essential condition for input–output stability of a feedback system is that the

loop gain is less than one. This condition relying upon on the concept of lin-

ear finite-gain was first relaxed by Hill [14] and then by Mareels and Hill [38]

using the notions of monotone gain and nonlinear operators. Quickly after the

birth of the notion of input-to-state stability (ISS) originally introduced by Son-

tag [47], a nonlinear, generalized small-gain theorem was developed in [21].

This nonlinear ISS small-gain theorem differs from classical small-gain theo-

rems and the nonlinear small-gain theorem of [14] and [38] in several aspects.

One of them is that both internal and external stability properties are discussed

in a single framework, while only input–output stability is addressed in previ-

ous small-gain theorems. As demonstrated in [21] and the subsequent work of

many others, nonlinear small-gain has led to new solutions of several challeng-

ing problems in robust nonlinear control, such as stabilization by partial-state

and output feedback, robust adaptive tracking, and nonlinear observers.

2. The nonlinear small-gain theory presented in [21] has stimulated the follow-up

research by several researchers (see [1, 4–8, 11, 15–20, 22, 25–28, 31, 37, 44,

48, 49, 51]).

Nonlinear small-gain theorems for discrete-time systems can be found in

[23, 24]. Extensions of small-gain results were presented recently in the lit-

erature. In [1, 15–18] less conservative small-gain conditions were presented

for finite-dimensional systems. In [5–8, 20, 27, 28] matrix gain functions were

used for the study of large-scale finite-dimensional systems. A nonuniform in

time small-gain theorem for continuous-time finite-dimensional systems was

presented in [31]. Moreover, in [25, 48] small-gain results for wide classes of

systems were provided. The classes of systems considered in [25, 48] satisfy

the classical “semigroup property.” The first small-gain result for systems sat-

isfying the weak semigroup property was presented in [26]. Small-gain results

for hybrid systems satisfying the classical “semigroup property” were recently

presented in [37].

3. It is of interest to note that this perspective of nonlinear small-gain has found

useful applications in monotone systems, an important class of systems in math-

ematical biology (see [2, 10]).
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4. One of the most important obstacles in applying nonlinear small-gain results is

the representation of the original composite system as the feedback interconnec-

tion of subsystems which satisfy the Input-to-Output Stability (IOS) property.

More specifically, sometimes the subsystems do not satisfy the IOS property:

there is a transient period after which the solution enters a certain region of

the state space. Within this region of the state space, the subsystems satisfy

the small-gain requirements. In other words, the essential inequalities, utilized

by small-gain results in order to prove stability properties, do not hold for all

times: this feature excludes almost all available small-gain results from possi-

ble application. Particularly, this feature is important in systems of Mathemati-

cal Biology and Population Dynamics. Indeed, the idea of developing stability

results which utilize certain Lyapunov-like conditions after an initial transient

period was used in [30, 34] with primary motivation from addressing robust

feedback stabilization problems for certain chemostat models. Small-gain re-

sults presented in this chapter can allow a transient period during which the

solutions do not satisfy the IOS inequalities. The obtained results are direct ex-

tensions of the recent vector small-gain result in [27], and if the initial transient

vanishes, then the results coincide with Theorem 3.1 in [27]. Notice that the

small-gain results presented here are included in [28]. To better position the

generality of the small-gain results of this chapter, some highlights are given

below.

• They can be applied to systems that satisfy the weak semigroup property

instead of the classical semigroup property.

• They can be applied to large-scale systems composed of multiple interacting

subsystems.

• They allow the explicit computation of the gain function for the composite

system.

• They allow for nonuniform in time stability phenomena.

• They allow nonzero diagonal gains for each interacting system. This gener-

ality is important for studying nonlinear uncertain and time-delay systems.

• They allow vector Lyapunov function (or functional) characterizations for

various stability properties.

• They allow the application of the small-gain perspective to various systems

which satisfy less demanding stability notions than ISS or IOS.

5. Hypotheses (SG1), (SG2) hold automatically when Hypotheses (H1–3) of The-

orem 3.1 in [27] hold (Hypotheses (H1–3) in [27] correspond to the special case

S(t) = X and ξ = t0). Consequently, Hypotheses (SG1), (SG2) are less restric-

tive than previous ones. Indeed, inequalities (5.4), (5.5) are not assumed to hold

for all times t ∈ [t0, tmax) but only after the solution map φ(t, t0, x0, u, d) has

entered the set S(t) ⊆ X .

6. It should be mentioned that alternative sampled-data feedback designs for sys-

tem (5.145) applied with zero-order hold and positive sampling rate can be

obtained by using the results [41, 42], which, however, achieve semiglobal

and practical stabilization. However, the feedback design obtained by using the
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trajectory-based small-gain results of the present chapter guarantee global and

asymptotic stabilization. Moreover, robustness to perturbations of the sampling

schedule is guaranteed (that is the reason for introducing the input w in the

closed-loop system (5.146)).

7. The advantage of vector Lyapunov function versus single Lyapunov function

in nonlinear stability analysis has been well documented in past literature [12,

36, 40]. Recent work in [29, 32] provides further evidence on the usefulness of

vector Lyapunov functions for the case of input-to-state stability.

8. The results on monotone operators of Sect. 5.2 are closely related to results

presented in [44, 45, 51].

9. It is worth noting that Theorem 4.1 and Corollary 4.3 in [29] can be eas-

ily derived from Theorem 5.6 and Corollary 5.3 with γi,j (s) = a(s) for all

i, j = 1, . . . , k and Q(x) ≡ 0, where a ∈ N1 with a(s) < s for s > 0. More-

over, it is assumed in [29] that there exist a constant R ≥ 0 and a function

p ∈ K∞ such that |x| ≤ R + p(|H(x)|). In the presented framework, such a

hypothesis is not needed. The interpretation of the family of set-valued maps

ℜ+ × ℜn ∋ (T , x) → Ai(T , x) ⊆ ℜn (i = 1, . . . , k) defined in (5.119) is the

following (the same with [29]): each Ai(T , x) ⊆ ℜn is the set of all states

x0 ∈ ℜn so that the solution of ẋ(t) = f (x(t), x0, d(t), u(t), u(0)) with ini-

tial condition x(0) = x0 can be controlled to x ∈ ℜn in time s less than or

equal to T by means of appropriate inputs (d,u) ∈ MD × MU1
that satisfy

ζ(supt∈[0,s] |u(t)|) ≤ Vi(x) and such that the trajectory of the solution sat-

isfies the constraint maxj=1,...,k supt∈[0,s] γi,j (Vj (x(t))) ≤ Vi(x). In general,

it is very difficult to obtain an accurate description of the set-valued maps

ℜ+ × ℜn ∋ (T , x) → Ai(T , x) ⊆ ℜn defined by (5.119). However, for every

g ∈ C1(ℜn;ℜ), we have Ai(T , x) ⊆ B
g

i (T , x) = {x0 ∈ ℜn : |g(x0) − g(x)| ≤
T b

g
i (x)} for all (T , x) ∈ ℜ+ × ℜn, where

b
g
i (x) := max

{

∣

∣∇g(ξ)f (ξ, x0, d,u,u0)
∣

∣ : d ∈ D,ζ
(

max
{

|u|, |u0|
})

≤ Vi(x),

max
j=1,...,k

γi,j

(

max
{

Vj (ξ),Vj (x0)
})

≤ Vi(x)
}

< +∞

and Vi ∈ C1(ℜn;ℜ+) (i = 1, . . . , k) are the functions involved in the hypothe-

ses of Theorem 5.6.

10. Examples 5.4.1 and 5.4.2 have appeared previously in [27]. Examples 5.4.3,

5.4.4, and 5.4.5 have appeared in [28]. The application of the small-gain results

to dynamic strategic games was presented in [35].

11. It should be noted that the method of proving stability by means of fixed-point

theorems developed by Burton (see [3]) is very closely related to the small-

gain methods. Another connection between small-gain methods and fixed-point

theorems is provided by Corollary 5.4.

12. It is of interest to note that some of the functionals Qi : [−r + ri,+∞) ×
C0([−ri,0];ℜn) → ℜ+ in Theorem 5.5 and Corollary 5.2 are allowed to be

functions (case of ri = 0). This reminds the case of Razumikhin functions,

which are used frequently for the proof of stability properties of systems de-

scribed by RFDEs (see [13, 33, 39, 43, 50]). Consequently, Theorem 5.5 and
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Corollary 5.2 allow the flexibility of using Lyapunov-like functionals with

Razumikhin-like functions in order to prove desired stability properties. Teel

[50] was the first to observe that Razumikhin results are essentially small-gain

results.

13. (Comparison of Theorem 5.3 and Corollary 5.1 with existing results): The

reader should compare the result of Corollary 5.1 with Theorem 3.4 in [32].

It is clear that Theorem 3.4 in [32] is a special case of Corollary 5.1 with

γi,j (s) = a(s) for all i, j = 1, . . . , k, where a ∈ N1 with a(s) < s for s > 0.

Alternative vector Lyapunov characterizations are based on the main results in

[5, 7, 8, 32] or on the cyclic small-gain condition in [51] (see, for example,

Theorem 2 in [20]). In order to demonstrate the applicability of our results to

large-scale interconnected systems, consider the case

ẋi = fi(d, x,u) i = 1, . . . , k

x = (x′
1, . . . , x

′
k)

′ ∈ ℜN , d ∈ D,u ∈ U

where xi ∈ ℜni , i = 1, . . . , k, N = n1 +· · ·+nk , D ⊂ ℜl is a nonempty compact

set, U ⊆ ℜm is a nonempty set with 0 ∈ U , fi : D×ℜN ×U → ℜ, i = 1, . . . , k,

are locally Lipschitz mappings with fi(d,0,0) = 0 for all d ∈ D, i = 1, . . . , k.

We assume that the UISS property holds for each subsystem ẋi = fi(d, x,u)

with input (u, x1, . . . , xi−1, xi+1, . . . , xk) (i = 1, . . . , k). Let Vi ∈ C1(ℜni ;ℜ+)

(i = 1, . . . , k) be ISS-Lyapunov functions for each of the subsystems, i.e., posi-

tive definite and radially unbounded functions for which the following inequal-

ities hold for i = 1, . . . , k:

sup
d∈D

{

∇Vi(xi)fi(d, x,u) : u ∈ U,x =
(

x′
1, . . . , x

′
k

)′ ∈ ℜN ,

max
{

ζ
(

|u|
)

,max
j 	=i

γi,j

(

Vj (xj )
)

}

≤ Vi(xi)
}

≤ −ρi

(

Vi(xi)
)

for all xi 	= 0

for certain functions ζ ∈ N1, γi,j ∈ N1, i, j = 1, . . . , k, and certain positive def-

inite functions ρi ∈ C0(ℜ+;ℜ+) (i = 1, . . . , k). Working with the Lyapunov-

like functions Vi ∈ C1(ℜni ;ℜ+) (i = 1, . . . , k) and exploiting Corollary 5.1,

we can guarantee that the UISS property holds for the above system if the

small-gain conditions (5.3) hold. It should be clear that the functions γi,j ∈ N1,

i, j = 1, . . . , k, are the actual gain functions, i.e., the following inequalities hold

for all i = 1, . . . , k, t ≥ 0, x(0) ∈ ℜN , and u ∈ MU :

Vi

(

xi(t)
)

≤ max
{

σi

(

Vi

(

xi(0)
)

, t
)

, ζ
(

sup
0≤τ≤t

∣

∣u(τ)
∣

∣

)

,max
j 	=i

γi,j

(

sup
0≤τ≤t

Vj

(

xj (τ )
)

)}

for certain σi ∈ KL (i = 1, . . . , k). Since γi,i(s) ≡ 0 for i = 1, . . . , k, then

the above inequalities are nothing else but the inequalities of the max-

formulation of the UISS property for each subsystem ẋi = fi(d, x,u) with

input (u, x1, . . . , xi−1, xi+1, . . . , xk) (i = 1, . . . , k) and Vi(xi) replacing |xi | for

i = 1, . . . , k.
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Chapter 6

Robust Output Feedback Stabilization

6.1 Introduction

This chapter is devoted to the analysis of the problem of the Robust Output Feedback

Stabilization Problem. In order to be able to pose the problem rigorously, we need

the notions described in previous chapters and particularly:

• the notion of a control system (see Chap. 1),

• the notion of the equilibrium point of a control system (see Chap. 1),

• the notion of the feedback interconnection of control systems (see Chap. 1),

• the internal and external stability notions for dynamical and control systems (see

Chaps. 2 and 4).

The emphasis is placed on systems described by ODEs and RFDEs. However, it

will be clear that most of the obtained results can be generalized to wider classes of

control systems with uncertainties.

Another issue which is important in this chapter is the introduction of errors.

Although feedback and control have been proved to be extremely useful for the sta-

bilization of many practical systems, it is also a well-known fact that the application

of feedback control does induce a variety of errors to the closed-loop system. Ex-

amples of such errors may take the form of measurement noise, actuator noise, and

parameter variations. Therefore the behavior of the system under feedback control

can be analyzed using the external stability notions developed in Chap. 4.

The existence of stabilizing feedback laws and the feedback design problem are

not yet fully understood for nonlinear systems. During the last decades, significant

progress has been made for the solution of these problems. The main idea of the

present chapter is that for every method of proving stability, there is a method of

stabilizing feedback design. The feedback design for linear control systems is pre-

sented as a method based on analytical solutions. The feedback linearization method

is presented as a method based on transformation results. The Control Lyapunov

Function (CLF) methodology is presented as a method based on Lyapunov function-

als. Finally, small-gain methods are also described for feedback systems. However,

as noted in previous chapters, since methods of proving stability can be (and usually
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are) combined, many methods of feedback design can be combined as well when

one confronts real-world control system design problems.

6.2 Description of the Robust Output Feedback Stabilization

Problems

In order to introduce the feedback stabilization problems, we start with an example

which illustrates all main issues in feedback stabilization.

Consider the chemostat with one microbial population and one nutrient described

by the system of ODEs (1.4) or its equivalent form (1.7). Clearly, there are two

inputs (u1, u2) ∈ [−1,+∞) × [−M,+∞) that correspond to the dilution rate D

and the inlet concentration of nutrient sin. As shown in Chap. 2 (Example 2.7.3), the

origin 0 ∈ ℜ2 is URGAS for (1.7) under the following three assumptions: (i) both

inputs are zero (i.e., the dilution rate D and the inlet concentration of the nutrient

sin assume constant values, equal to the nominal ones); (ii) the specific growth rate

µ(s) is an increasing, locally Lipschitz, bounded function, and (iii) the mortality

rate is zero, and the yield coefficient is constant.

However, in many cases, one of the above assumptions does not hold. For exam-

ple, there are situations where (see [38] and references therein) the specific growth

rate is not an increasing function: there is substrate inhibition in the growth of the

microbe. In such cases, system (1.4) may have two (or more) equilibrium points

except the trivial equilibrium point (s, x) = (sin,0). This implies that 0 ∈ ℜ2 is not

URGAS for (1.7). In fact, the region of attraction of 0 ∈ ℜ2 for (1.7) can be a very

“small” subset in ℜ2 (see [38] and references therein). Furthermore, the assumption

that the inlet concentration of the nutrient sin assumes a constant value, equal to the

nominal one, is usually an unrealistic assumption.

All the above considerations lead us to the conclusion that the operation of the

chemostat without control may drive the states to an operating point different from

the nominal point. How can we force the states of the system (1.7) to approach the

desired position 0 ∈ ℜ2?

Since the inlet concentration of the nutrient sin is usually determined by other

processes, we can think of the following idea: use the input u1 ∈ [−1,+∞) (or

the dilution rate D) in order to force the states of the system (1.7) to approach the

desired position 0 ∈ ℜ2. Mathematically, there are two ways of achieving such a

goal:

• Given the initial state x0 = (x1,0, x2,0) ∈ ℜ2 and assuming knowledge of the

input u2 ∈ [−M,+∞) on a time interval [0, T ], calculate an admissible input

u1 : [0, T ] → [−1,+∞) that will bring the states the system (1.7) “close” to the

desired position 0 ∈ ℜ2 in “an optimal way.”

• Given a continuous measurement of the state vector x(t) = (x1(t), x2(t)) ∈ ℜ2,

find a “law” which will adjust “automatically” the value of the input u1(t) ∈
[−1,+∞) depending on the current position of the state. The automatic “ad-

justment law” must guarantee that the states of system (1.7) will be “close” to
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the desired position 0 ∈ ℜ2 after an initial transient period. In other words, we

are looking for a function k : ℜ2 → [−1,+∞) such that the “adjustment law”

u1(t) = k(x1(t), x2(t)) for all t ≥ 0 will achieve the objective.

The first approach is the approach followed in the literature of Optimal Control.

The second approach is the robust feedback stabilization approach. The advantages

and disadvantages of each approach are discussed in many books (see the discussion

in [64]). In this chapter, we discuss the second approach.

The reader should notice that the function k : ℜ2 → [−1,+∞) that we have to

find in the feedback stabilization approach is called “the controller” or the “static

state-feedback stabilizer.” However, what we have described so far does not consti-

tute a well-posed problem. The following questions can be asked:

Question 1 What do we mean by “close” to the desired position 0 ∈ ℜ2?

The answer to the question is crucial and is strongly connected to the following

question:

Question 2 What about the input u2 ∈ [−M,+∞)?

There are two possible answers to the above questions:

(a) In the case where the input u2 is identically zero (i.e., the inlet concentration

of the nutrient sin assumes a constant value, equal to the nominal one), we can

seek a static state-feedback stabilizer k : ℜ2 → [−1,+∞) which will guarantee

that 0 ∈ ℜ2 is URGAS for the dynamical system

ẋ1 = D∗(g(x2) − k(x1, x2)
)

ẋ2 = D∗ exp(−x2)
[

M
(

1 − p(x2) exp(x1)
)

− RMp(x2)g(x2) exp(x1)

+ 1 − exp(x2) + k(x1, x2)
(

M + 1 − exp(x2)
)]

(6.1)

Notice that the dynamical system (6.1) is obtained by the substitution of

k(x1, x2) in place of u1: this is justified since the value of the input u1(t) ∈
[−1,+∞) follows the “adjustment law” u1(t) = k(x1(t), x2(t)) for all t ≥ 0.

System (6.1) is termed as “the closed-loop system” (1.7) with feedback law

u1 = k(x1, x2). Of course, system (6.1) is a system described by ODEs, and

consequently the function k : ℜ2 → [−1,+∞) must satisfy certain regularity

properties in such a way that system (6.1) is well defined.

(b) In the case where the input u2 may assume nonzero values and is unknown, we

have to take into account the effect of the external input u2. In this case it is

natural to search for a static state-feedback stabilizer which will guarantee that

the control system

ẋ1 = D∗(g(x2) − k(x1, x2)
)

ẋ2 = D∗ exp(−x2)
[

M
(

1 − p(x2) exp(x1)
)

− RMp(x2)g(x2) exp(x1) + 1 − exp(x2)
]

+ D∗ exp(−x2)
[

u2 + k(x1, x2)
(

M + 1 + u2 − exp(x2)
)]

(6.2)
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satisfies the (W)ISS property from the input u2. Notice that it may not be

possible to guarantee the (W)ISS property for all measurable and locally es-

sentially bounded inputs u2 : ℜ+ → [−M,+∞). However, it may be possi-

ble to guarantee the (W)ISS property for all measurable and locally essen-

tially bounded inputs u2 : ℜ+ → [−L,L], where L < M . Again, the func-

tion k : ℜ2 → [−1,+∞) must satisfy certain regularity properties so that sys-

tem (6.2) is well defined. In this case the feedback stabilization problem is

termed as “robust” since the (W)ISS property from the input u2 will guaran-

tee robustness properties for the solution of system (6.2) for all initial states

x0 = (x1,0, x2,0) ∈ ℜ2 and for all measurable and locally essentially bounded

inputs u2 : ℜ+ → [−L,L]. Finally, again system (6.2) is termed as “the closed-

loop system” (1.7) with the feedback law u1 = k(x1, x2).

An additional comment is needed at this point. We have described the con-

trol objective above as the satisfaction of the (W)ISS property from the in-

put u2. However, the weight function δ ∈ K+ involved in the WISS property

is important: if the weight function δ ∈ K+ is bounded from above, then the

closed-loop system will satisfy the Bounded-Input-Bounded-State property and

the Converging-Input-Converging-State property. In general it will be better to

be able to guarantee that the weight function δ ∈ K+ is as small as possible:

for example, if the weight function δ ∈ K+ is given by δ(t) = exp(−t), then

clearly the state will converge to zero even if the absolute value of the input u2

increases exponentially. Unfortunately, as one can imagine, this is not always

achievable.

We next continue with some other significant questions.

Question 3 Do we have accurate measurements of the full state vector x(t) =
(x1(t), x2(t)) ∈ ℜ2 at every time instant?

In many problems, it is impossible to measure accurately and continuously the

state variables. Instead, we can measure only some components of the state vec-

tor or more generally a function of the state vector denoted by y = h(x), where

h : ℜn → ℜk . In this case, the vector y = h(x) is called the “measured output,” or

simply the output.

More specifically, for the chemostat problem, we can measure the concentration

of the nutrient s and thus obtain x2. However, in many problems it is impossible (or

very expensive) to measure continuously the concentration of the microbial species.

Therefore, in such cases the “adjustment law” u1(t) = k(x1(t), x2(t)) for all t ≥ 0

cannot be implemented.

There are two possible ways to address the above challenge.

(a) Try to find a static output-feedback law which is independent of x1, i.e., try to

find a function k : ℜ → [−1,+∞) which will guarantee that the closed-loop

system (1.7) with u1 = k(x2) satisfies the (W)ISS property from the input u2.

(b) Instead of looking for a static output-feedback stabilizer, one can think of a

dynamic output feedback stabilizer. In this case, we are looking for functions
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f : ℜ2 → ℜ and k : ℜ2 → [−1,+∞) so that the “adjustment law” u1(t) =
k(w(t), x2(t)) for all t ≥ 0, where w(t) is the solution of the system

ẇ(t) = f
(

w(t), x2(t)
)

w(t) ∈ ℜ (6.3)

can guarantee the (W)IOS property for the closed-loop system (1.7), (6.3) with

u1 = k(w,x2) from the input u2 to the redefined output Y = (x1, x2) ∈ ℜ2. In

this case the controller is a control system with input x2 and output u1 which

has internal dynamics. The available information (the measurement of x2) is

fed to the controller which calculates the control action. Moreover, in this case

the state vector of the closed-loop system (1.7), (6.3) with u1 = k(w,x2) is

(x1, x2,w) ∈ ℜ3, and the control objective is the (W)IOS property from the

input u2 for the new output Y = (x1, x2) ∈ ℜ2.

Question 4 Can we adjust “continuously” the value of the input u1(t) ∈ [−1,+∞)?

In many cases the control mechanism cannot adjust the value of the input con-

tinuously: instead, we can only adjust the value of the input every T time units. For

the chemostat, the value of the input u1 is adjusted in practice by opening a valve.

It is possible to adjust the position of the valve by an automatic (analog) mecha-

nism. However, this strategy is impractical when the feedback law is intricate (e.g.,

dynamic). When this happens, the control action is computed by means of a digital

mechanism which determines the control action every T time units. Taking the non-

linear state-feedback k(x1, x2) as an example, the closed-loop system will become

ẋ1(t) = D∗(g
(

x2(t)
)

− k
(

x1(τi), x2(τi)
))

ẋ2(t) = D∗ exp
(

−x2(t)
)[

M
(

1 − p
(

x2(t)
)

exp
(

x1(t)
))

− RMp
(

x2(t)
)

g
(

x2(t)
)

exp
(

x1(t)
)

+ 1 − exp
(

x2(t)
)]

+ D∗ exp
(

−x2(t)
)[

u2(t) + k
(

x1(τi), x2(τi)
)(

M + 1 + u2(t)

− exp
(

x2(t)
))]

τi+1 = τi + T (6.4)

Notice that system (6.4) is a system with fixed sampling partition. The control input

u1(t) is kept constant during two consecutive members of the sampling partition,

i.e., is constant on [τi, τi+1). This is usually called “the application of the feedback

law u1 = k(x1, x2) with zero-order hold.”

Another issue that can lead to a closed-loop system with variable sampling parti-

tion is that the measurement of the state vector may not be available “continuously”

but rather every T time units. For the chemostat, we can only measure the concen-

tration of the nutrient s. It is possible that the measurement of the nutrient can be

given in an irregular manner: two consecutive measurements can be given in times

τi and τi+1 which satisfy τi+1 ≤ τi + T for a positive constant T > 0. In this case,

we are looking for functions f : ℜ2 → ℜ and k : ℜ2 → [−1,+∞) such that the

(W)IOS property from the input (u2, u3) holds for the control system
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ẋ1(t) = D∗(g
(

x2(t)
)

− k
(

w(τi), x2(τi)
))

ẋ2(t) = D∗ exp
(

−x2(t)
)[

M
(

1 − p
(

x2(t)
)

exp
(

x1(t)
))

− RMp
(

x2(t)
)

g
(

x2(t)
)

exp
(

x1(t)
)

+ 1 − exp
(

x2(t)
)]

+ D∗ exp
(

−x2(t)
)[

u2(t) + k
(

w(τi), x2(τi)
)(

M + 1 + u2(t)

− exp
(

x2(t)
))]

ẇ(t) = f
(

w(t), x2(τi)
)

τi+1 = τi + T exp
(

−u3(τi)
)

(6.5)

where the input u3 ∈ ℜ+ is introduced in order to represent the uncertainty of the

sampling instances.

There are many other questions which can be significant for this problem. For ex-

ample, the following questions are also important, and their answers may be crucial

for a given control problem:

Question 5 Are there any delays and measurement error in the measurement pro-

cess?

Question 6 Can we use the past values of the measured output?

From the above it is clear that the feedback stabilization problem is theoreti-

cally important and challenging, and practically relevant. Now, we are ready to state

mathematically the Robust Output Feedback Stabilization Problem.

The Robust Output Feedback Stabilization Problems

Consider

(i) a deterministic control system Σ1 = (X1,Y 1,MS2×U ,MD, φ̃1,π1, h) with out-

puts and the BIC property, for which h : ℜ+ × X1 × U → S1 ⊆ Y1, S2 ⊆ Y2,

Y2 being a normed linear space, and 0 ∈ X1 is a robust equilibrium point from

the input (v2, u) ∈ MS2×U ,

(ii) a normed linear space Y and a continuous map H : ℜ+ × X1 × S2 × U → Y

that maps bounded sets of ℜ+ × X1 × S2 × U into bounded sets of Y , with

H(t,0,0,0) = 0 for all t ≥ 0, called the “stabilized output map”.

For reasons that will become clear below, the output map H : ℜ+ × X1 × S2 ×
U → Y will be called the “stabilized output,” while the output h : ℜ+ × X1 × S2 ×
U → S1 ⊆ Y1 will be called the “measured output.”

The Robust Output Feedback Stabilization problems consist of:

(1) (The existence problem) Is there a deterministic control system of the form

Σ2 = (X2,Y 2,MS1×U ,MD, φ̃2,π2,H2), where H2 : ℜ+ × X2 × S1 × U →
S2 ⊆ Y2, with outputs and the BIC property for which 0 ∈ X2 is an equilib-

rium point such that the feedback connection Σ := (X , Y ,MU ,MD, φ,π, H̃ )
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of systems Σ1 and Σ2 with output H̃ : ℜ+ × X1 × X2 × U → Y defined by

H̃ (t, x1, x2, u) := H(t, x1,H2(t, x2, h(t, x1, u), u),u) is well defined and satis-

fies the IOS property from the input u ∈ MU ?

(2) (The feedback design problem) Design a deterministic control system Σ2 =
(X2,Y 2,MS1×U ,MD, φ̃2,π2,H2), where H2 : ℜ+ × X2 × S1 × U → S2 ⊆ Y2,

with outputs and the BIC property for which 0 ∈ X2 is an equilibrium point such

that the feedback connection Σ := (X , Y ,MU ,MD, φ,π, H̃ ) of systems Σ1

and Σ2 with output H̃ : ℜ+ × X1 × X2 × U → Y defined by H̃ (t, x1, x2, u) :=
H(t, x1,H2(t, x2, h(t, x1, u), u),u) is well defined and satisfies the IOS prop-

erty from the input u ∈ MU .

Particularly, the deterministic system Σ2 = (X2,Y 2,MS1×U ,MD, φ̃2,π2,H2) is

called the “feedback stabilizer” or “the controller.” If the deterministic system

Σ2 = (X2,Y 2,MS1×U ,MD, φ̃2,π2,H2) is required to be a static map, then we refer

to the corresponding feedback control stabilization problem as “static.” If the deter-

ministic system Σ2 = (X2,Y 2,MS1×U ,MD, φ̃2,π2,H2) is not required to be a static

map, then we refer to the corresponding feedback control stabilization problem as

“dynamic.”

It should be clear that the controller exploits the output h : ℜ+ × X1 ×S2 ×U →
S1 ⊆ Y1 as an input in order to produce the output H2 : ℜ+ × X2 × S1 × U → S2 ⊆
Y2. In practice, the controller can only take information of certain measurements of

the variables involved in the system Σ1 = (X1,Y 1,MS2×U ,MD, φ̃1,π1, h). This is

the reason that the output h : ℜ+ × X1 ×S2 ×U → S1 ⊆ Y1 is called the “measured

output.”

In general, the measured output and the regulated output do not coincide. How-

ever, special attention will be given to the problem where the measured output and

the regulated output coincide to the state of Σ1 = (X1,Y 1,MS2×U ,MD, φ̃1,π1, h).

In this case, the output feedback stabilization problem reduces down to the state

feedback stabilization problem.

6.3 Robustness with Respect to Errors

Every mathematical model of a physical system has a certain degree of accuracy.

Therefore, modeling errors are always present to every description of a process. The

effect of modeling errors can be detrimental for systems stability and performance

and must always be taken into account in control systems design. For example,

the chemostat stabilization problem described in the previous section is based on

the mathematical model (1.7). The input u2 represents the deviation of the inlet

concentration of the nutrient from its nominal value. In other words, the input u2

quantifies the effect of modeling errors with respect to the inlet concentration of the

nutrient.

When feedback control is applied to a system, two additional sources of errors

for the closed-loop system may arise, as stated previously:
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(1) Actuator errors

The actuator errors represent the deviation between the applied control action and

the nominal control action which is determined by the feedback law. Actuator er-

rors are often present to control mechanisms and must not be neglected. For exam-

ple, in order to quantify the effect of actuator errors for the closed-loop chemostat

model (6.2), we can introduce an additional input u4 : ℜ+ → ℜ so that the actual

control action u1(t) is determined by the equation

u1(t) = max
{

−1, k
(

x(t)
)

+ u4(t)
}

(6.6)

Notice the nonlinear character of (6.6): it reflects the fact that the input u1(t) must

always take values in the set [−1,+∞) or, equivalently, that the dilution rate D

must be nonnegative. Therefore, the closed-loop system (1.7) with the feedback law

(6.6) is described by the following nonlinear system:

ẋ1 = D∗(g(x2) − max
{

−1, k(x) + u4

})

ẋ2 = D∗ exp(−x2)
[

M
(

1 − p(x2) exp(x1)
)

− RMp(x2)g(x2) exp(x1) + 1 − exp(x2)
]

+ D∗ exp(−x2)
[

u2 + max
{

−1, k(x) + u4

}(

M + 1 + u2 − exp(x2)
)]

(6.7)

(2) Measurement errors

The measurement error, or sensor noise, represents the deviation between the ac-

tual value of a measured output and the value which is provided by a measurement

device. Unfortunately, measurement errors are always present to every measuring

mechanism and can significantly affect the behavior of the closed-loop system. For

example, in order to quantify the effect of measurement errors for the closed-loop

chemostat model closed-loop system, i.e., (1.7), (6.3) with u1 = k(w,x2), we can

introduce an additional input u5 : ℜ+ → ℜ so that the measured value of the out-

put x2(t) is corrupted by the additive error u5(t). Therefore, the closed-loop sys-

tem (1.7), (6.3) with u1 = k(w,x2) is described by the following nonlinear system:

ẋ1 = D∗(g(x2) − max
{

−1, k(w,x2 + u5) + u4

})

ẋ2 = D∗ exp(−x2)
[

M
(

1 − p(x2) exp(x1)
)

− RMp(x2)g(x2) exp(x1) + 1 − exp(x2)
]

+ D∗ exp(−x2)
[

u2 + max
{

−1, k(w,x2 + u5) + u4

}

×
(

M + 1 + u2 − exp(x2)
)]

ẇ = f (w,x2 + u5) (6.8)

Again, the input u4 : ℜ+ → ℜ is introduced in order to quantify the effect of the

actuator error. The control objective in this case is to find functions f : ℜ2 → ℜ and

k : ℜ2 → [−1,+∞) and constants L1 ∈ (0,M], Li > 0 (i = 2, . . . ,6) so that sys-

tem (6.8) satisfies the (W)IOS property from the inputs (u2, u4, u5) ∈ [−L1,L2] ×
[−L3,L4] × [−L5,L6] for the regulated output Y = (x1, x2).
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6.4 Analytical Solutions

In Chap. 2, we have already encountered the method of proving stability by means

of analytical expressions of the solutions of a system. This method is particularly

useful for linear systems. The usefulness of the method still holds for the feedback

stabilization problem.

A linear autonomous control system described by ODEs takes the form

ẋ = Ax + Bu

x ∈ ℜn, u ∈ ℜm (6.9)

where A ∈ ℜn×n and B ∈ ℜn×m are constant matrices. For linear systems of the

form (6.9), it can be shown that there exists a continuous stabilizing feedback that

guarantees that 0 ∈ ℜn is UGAS if and only if there exists a linear stabilizing feed-

back, i.e., there exists a matrix K ∈ ℜm×n such that (A+BK) is Hurwitz (see [64]).

In the latter case, the pair (A,B) is said to be stabilizable. Conditions for the pair

of matrices A ∈ ℜn×n and B ∈ ℜn×m to be stabilizable are given in the literature

(see [64]).

The same comments are applicable to the linear autonomous discrete-time case

x(t + 1) = Ax(t) + Bu(t)

x(t) ∈ ℜn, u(t) ∈ ℜm, t ∈ Z+ (6.10)

where the objective is the existence of a matrix K ∈ ℜm×n such that (A + BK) has

all its eigenvalues strictly inside the unit circle (see [64]).

A less obvious application of the method of analytical solutions is the control

design for homogeneous systems described by ODEs. A control system described

by ODEs of the form

ẋ(t) = f
(

x(t), u(t)
)

x(t) ∈ ℜn, u(t) ∈ ℜ (6.11)

where f : ℜn × ℜ → ℜn is locally Lipschitz with f (0,0) = 0, is characterized as

homogeneous if there exist numbers ri > 0 (i = 1, . . . , n), p > 0, and q ∈ ℜ such

that the equality

f (x,u) = δ−r
a

(

a−qf
(

δr
a(x), apu

))

(6.12)

holds for all (x,u) ∈ ℜn × ℜ and a > 0, where

δr
a(x) =

(

ar1x1, . . . , a
rnxn

)′ ∈ ℜn

δ−r
a (x) =

(

a−r1x1, . . . , a
−rnxn

)′ ∈ ℜn
(6.13)

Although the solution φ(t, x0;u) of system (6.11) at time t ≥ 0 with initial condition

x(0) = x0 ∈ ℜn and corresponding to a measurable and locally essentially bounded

input u : ℜ+ → ℜ cannot in general be computed by means of elementary functions,

it can be shown that the following equality holds:

δr
a

(

φ
(

aq t, δ−r
a (x0);a−pu

))

= φ(t, x0;u) (6.14)



270 6 Robust Output Feedback Stabilization

for all a > 0 and x0 ∈ ℜn, for all measurable and locally essentially bounded input

u : ℜ+ → ℜ, and for all t ≥ 0 for which φ(t, x0;u) and φ(aq t, δ−r
a (x0);a−pu) ex-

ist, where a−pu : ℜ+ → ℜ denotes the measurable and locally essentially bounded

input that satisfies (a−pu)(t) = a−pu(t) for almost all t ≥ 0.

Define N(x) := |x1|1/r1 + · · · + |xn|1/rn for x = (x1, . . . , xn) ∈ ℜn. Suppose that

we know the solution φ(t, x0;u) of system (6.11) at every time t ≥ 0 with ini-

tial condition x(0) = x0 ∈ ℜn satisfying N(x0) = 1 and corresponding to every

measurable and locally essentially bounded input u : ℜ+ → ℜ. Then, using formu-

lae (6.14), we can compute the solution φ(t, x0;u) of system (6.11) at every time

t ≥ 0 with initial condition x(0) = x0 ∈ ℜn and corresponding to every measurable

and locally essentially bounded input u : ℜ+ → ℜ. Indeed, formula (6.14) gives

φ(t, x0;u) = δr
N(x0)

(

φ
(

Nq(x0)t, δ
−r
N(x0)

(x0);N−p(x0)u
))

for all x0 �= 0

Since y = δ−r
N(x0)

(x0) satisfies N(y) = 1, φ(Nq(x0)t, δ
−r
N(x0)

(x0);N−p(x0)u) is

known by assumption.

Formula (6.14) is an essential feature of homogeneous systems which can be

utilized for the solution of the feedback stabilization problem (see [5, 10, 16, 17]

and references therein).

6.5 Transformation Methods: Feedback Linearization

One method for the design of stabilizing feedback for nonlinear autonomous sys-

tems described by ODEs is the method of feedback linearization (see [20, 52]).

Since the method is analyzed rigorously in many other books, we will only discuss

briefly the scope of the method and its relation to the transformation methods of

proving stability.

The problem studied by feedback linearization methods can be described as fol-

lows. Consider the nonlinear control system

ẋ = f (x) + g(x)u

x ∈ ℜn, u ∈ ℜm (6.15)

where f : ℜn → ℜn and g : ℜn → ℜn×m are locally Lipschitz mappings with

f (0) = 0. If we are in a position to find a diffeomorphism Φ : ℜn → ℜn and a

locally Lipschitz mapping k : ℜn → ℜm such that

DΦ(x)(f (x) + g(x)k(x)) = AΦ(x)

DΦ(x)g(x) = B
(6.16)

for all x ∈ ℜn, where A ∈ ℜn×n and B ∈ ℜn×m are constant matrices, then the

closed-loop system (6.15) with u = k(x) + v under the change of coordinates Φ :
ℜn → ℜn will be the linear control system

ż = Az + Bv

z ∈ ℜn, v ∈ ℜm (6.17)
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The design of a stabilizing feedback for the linear system (6.17) can be performed by

using linear control theory as long as the transformed system (6.17) is stabilizable.

Therefore, if the feedback law

v = Kz (6.18)

guarantees that 0 ∈ ℜn is GAS for the closed-loop system (6.17) with (6.18), then

Proposition 2.1 in Chap. 2 implies that 0 ∈ ℜn is GAS for the closed-loop sys-

tem (6.15) with

u = k(x) + KΦ−1(x) (6.19)

The theory of feedback linearization has dealt with necessary and sufficient con-

ditions for the existence of a diffeomorphism Φ : ℜn → ℜn, a locally Lipschitz

mapping k : ℜn → ℜm, and a stabilizable pair of constant matrices A ∈ ℜn×n and

B ∈ ℜn×m such that (6.16) holds.

In many cases we can guarantee the existence of a local diffeomorphism Φ :
ℜn → ℜn, a locally Lipschitz mapping k : ℜn → ℜm, and constant matrices A ∈
ℜn×n and B ∈ ℜn×m such that (6.16) holds locally. The theory of global feed-

back linearization is far from being complete. The interested reader should consult

the rich and mathematically sophisticated feedback linearization literature for many

deep and interesting results.

6.6 Lyapunov Functionals: The Control Lyapunov Functional

The feedback design methodology by means of a Control Lyapunov Functional

is the method that corresponds to the method of proving stability by means of

Lyapunov functionals. It should be noticed that the Control Lyapunov Functional

methodology has been developed mostly for control systems described by ODEs

and control systems described by RFDEs.

Exactly as the method of proving stability by means of Lyapunov functionals

admits two different approaches (the discretization approach and the Lyapunov ap-

proach, see Chap. 2), the feedback design methodology by means of a Control Lya-

punov functional admits two different approaches:

1. The Coron–Rosier approach

2. The Artstein–Sontag approach.

Next, we study each approach separately for systems described by ODEs.

6.6.1 Control Systems Described by ODEs: The Coron–Rosier

Approach

This methodology is based on the following idea: given a Control Lyapunov Func-

tion (CLF), design a feedback law so that the difference of the values of the CLF
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evaluated along the solutions of the closed-loop system at time instances which dif-

fer by a constant quantity becomes negative. Notice that this methodology does not

guarantee that the time derivative of the CLF along the solutions of the closed-loop

system is negative definite.

Using this methodology in their pioneering work [12], Coron and Rosier showed

that the existence of a time-independent CLF satisfying the “small-control” property

is a sufficient condition for the existence of a continuous time-periodic stabilizing

feedback for general nonaffine disturbance-free autonomous nonlinear control sys-

tems with U = ℜm and output Y being identically the state of the system (see also

[10]). The result has been generalized in [37], where it was shown that the existence

of a CLF is a necessary and sufficient condition for the existence of a continuous

time-varying stabilizing feedback for systems of the form (1.3) with U ⊆ ℜm being

a positive cone (not necessarily convex).

Here, we will only present results which allow the construction of locally Lip-

schitz feedback laws. We consider systems of the form (1.3) under the following

hypotheses:

(HH) The mappings f : ℜ+ × D × ℜn × U → ℜn and H : ℜ+ × ℜn → ℜk are

continuous, and for every bounded interval I ⊂ ℜ+ and every compact set

S ⊂ ℜn × U , there exists a constant L ≥ 0 such that
∣

∣f (t, d, x,u) − f (t, d, y, v)
∣

∣≤ L|x − y| + L|u − v|
∀(t, d) ∈ I × D,(x,u) ∈ S, (y, v) ∈ S

Moreover, the set D ⊂ ℜl is compact, and U is a closed positive cone, i.e.,

U ⊆ ℜm is a closed set, and if u ∈ U , then (λu) ∈ U for all λ ∈ [0,1].

Definition 6.1 We say that a function V ∈ C1(ℜ+ × ℜn;ℜ+) is an Output Robust

Control Lyapunov Function (ORCLF) for (1.3) under hypotheses (H1–4) and (HH)

if there exist functions a1, a2 ∈ K∞, µ,β ∈ K+, ρ ∈ C0(ℜ+;ℜ+) that are locally

Lipschitz and positive definite, and b ∈ C0(ℜ+ × (ℜn\{0});ℜ+) such that

1. for every (t, x) ∈ ℜ+ × ℜn,

a1

(
∣

∣H(t, x)
∣

∣+ µ(t)|x|
)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

, (6.20)

2. for every (t, x) ∈ ℜ+ × (ℜn\{0}),

min
u∈U,|u|≤b(t,x)

max
d∈D

(

∂V

∂t
(t, x) + ∂V

∂x
(t, x)f (t, d, x,u)

)

≤ −ρ
(

V (t, x)
)

. (6.21)

For the case H(t, x) := x, the corresponding V ∈ C1(ℜ+ × ℜn;ℜ+) is called State

Robust Control Lyapunov Function (SRCLF).

We are now in a position to state the main result that guarantees the existence of

a stabilizing feedback law.

Theorem 6.1 Consider system (1.3) under hypotheses (H1–4) and (HH) and as-

sume that (1.3) admits an ORCLF which satisfies (6.20), (6.21). Then there exists
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a continuous mapping K : ℜ+ × ℜn → U with K(t,0) = 0 for all t ≥ 0, which

is continuously differentiable with respect to x ∈ ℜn on ℜ+ × ℜn, such that the

closed-loop system (1.3) with u = K(t, x) is RGAOS.

If in addition we assume that there exist a function a ∈ K∞ and a function q ∈
C0(ℜ+ × ℜn;ℜ+) satisfying

0 < q(t, x) ≤ min

{

1,
|x|
2

}

∀(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.22)

such that, for all (t, x) ∈ ℜ+ × (ℜn\{0}),

max
{

b(τ, y) : (τ, y) ∈ ℜ+ × ℜn, |τ − t | + |y − x| ≤ q(τ, y)
}

≤ a
(

V (t, x)
)

(6.23)

where V ∈ C1(ℜ+ × ℜn;ℜ+) is the ORCLF for (1.3), and b ∈ C0(ℜ+ ×
(ℜn\{0});ℜ+) is the function involved in (6.21), then the closed-loop system (1.3)

with u = K(t, x) and output Ỹ = K(t, x) is RGAOS. Particularly, this implies that

for all (t0, x0, d) ∈ ℜ+ × ℜn × MD , the control action [t0,+∞) ∋ t → u(t) =
K(t, x(t)) ∈ U is bounded and converges to zero as t → +∞, where x(·) denotes

the solution of (1.3) with u = K(t, x), initial condition x(t0) = x0 ∈ ℜn, corre-

sponding to d ∈ MD .

The proof of Theorem 6.1 is based on three lemmas below. Particularly,

Lemma 6.1 is a preparatory result for the construction of the desired feedback sta-

bilizer. It constitutes a time-varying extension of Lemma 2.7 in [12], but its con-

structive proof differs from the corresponding proof of the previously mentioned

result.

Lemma 6.1 Consider system (1.3) under hypotheses (H1–4) and (HH) and assume

that (1.3) admits an ORCLF which satisfies (6.20), (6.21). Then, for every function

q ∈ C0(ℜ+ ×ℜn;ℜ+) satisfying (6.22), there exists a C1 function k : [0,1]×ℜ+ ×
(ℜn\{0}) → U with

k(0, t, x) = k(1, t, x) = 0 (6.24)

∂k

∂s
(0, t, x) = ∂k

∂t
(0, t, x) = 0; ∂k

∂x
(0, t, x) = 0 (6.25)

∂k

∂s
(1, t, x) = ∂k

∂t
(1, t, x) = 0; ∂k

∂x
(1, t, x) = 0 (6.26)

for all t ≥ 0, x ∈ ℜn\{0} and such that

∂V

∂t
(t, x) + ∂V

∂x
(t, x)

∫ 1

0

f
(

t, d(s), x, k(s, t, x)
)

ds ≤ −1

2
ρ
(

V (t, x)
)

(6.27)

for all (t, x) ∈ ℜ+ × (ℜn\{0}), d ∈ MD . Moreover, the following inequality holds

for all (t, x) ∈ ℜ+ × (ℜn\{0}):
max

s∈[0,1]

∣

∣k(s, t, x)
∣

∣≤ b̃(t, x) (6.28)

where, for all (t, x) ∈ ℜ+ × (ℜn\{0}),
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b̃(t, x) := max
{

b(τ, y) : (τ, y) ∈ ℜ+ × ℜn, |τ − t | + |y − x| ≤ q(τ, y)
}

(6.29)

with b(·, ·) the function involved in (6.21).

Proof Let q ∈ C0(ℜ+ × ℜn;ℜ+) satisfying (6.22), let b̃ : ℜ+ × (ℜn\{0}) → ℜ+ as

defined by (6.29), which is locally bounded on ℜ+ × (ℜn\{0}), and let ϕ : ℜ+ ×
(ℜn\{0}) → [1,+∞) be any smooth (C∞) function such that, for all (t, x) ∈ ℜ+ ×
(ℜn\{0}),

max
u∈U,|u|≤b̃(t,x)

max
d∈D

(

∂V

∂t
(t, x) + ∂V

∂x
(t, x)f (t, d, x,u)

)

≤ ϕ(t, x) (6.30)

Moreover, let ε : ℜ+ × (ℜn\{0}) → (0,1) be a smooth function such that

0 < ε(t, x) ≤ ρ(V (t, x))

4(ρ(V (t, x)) + ϕ(t, x))
∀(t, x) ∈ ℜ+ ×

(

ℜn\{0}
)

(6.31)

and define

Ψ (t, x,u) := max
d∈D

(

∂V

∂t
(t, x) + ∂V

∂x
(t, x)f (t, d, x,u) + 3

4
ρ
(

V (t, x)
)

)

for all (t, x,u) ∈ ℜ+ × ℜn × U (6.32)

Ψ (t, x,u) := Ψ (0, x,u) for all (t, x,u) ∈ (−1,0) × ℜn × U (6.33)

By virtue of (6.21), the continuity of Ψ , and compactness of D ⊂ ℜl , it follows

that for each (t, x) ∈ (−1,+∞) × (ℜn\{0}), there exist u = u(t, x) ∈ U with |u| ≤
b(t, x) and δ = δ(t, x) ∈ (0,1] with δ(t, x) ≤ q(t, x) such that

Ψ
(

τ, y,u(t, x)
)

≤ 0

∀(τ, y) ∈
{

(τ, y) ∈ (−1,+∞) × ℜn : |τ − t | + |y − x| < δ
}

(6.34)

Using (6.34) and standard partition of unity arguments, we can determine sequences

{(ti, xi) ∈ (−1,+∞) × (ℜn\{0})}∞i=1, {ui ∈ U}∞i=1, and {δi ∈ (0,1]}∞i=1 with |ui | ≤
b(max(0, ti), xi) and δi = δ(ti, xi) ≤ q(ti, xi) associated with a sequence of open

sets {Ωi}∞i=1 with

Ωi ⊆
{

(τ, y) ∈ (−1,+∞) × ℜn : |τ − ti | + |y − xi | < δi

}

(6.35)

forming a locally finite open covering of (−1,+∞) × (ℜn\{0}) and that

Ψ (τ, y,ui) ≤ 0 ∀(τ, y) ∈ Ωi (6.36)

Also, a family of smooth functions {θi}∞i=1 with θi(t, x) ≥ 0 for all (t, x) ∈
(−1,+∞) × (ℜn\{0}) can be determined with

supp θi ⊆ Ωi (6.37)

∞
∑

i=1

θi(t, x) = 1 ∀(t, x) ∈ (−1,+∞) ×
(

ℜn\{0}
)

(6.38)
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Next, define recursively the following mappings for each (t, x) ∈ ℜ+ × (ℜn\{0}):
Ti(t, x) = Ti−1(t, x) + θi(t, x) i ≥ 1

T0(t, x) = 0

(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.39)

Notice that definition (6.39) implies Tn(x) =
∑n

i=1 θi(t, x) for all n ≥ 1. Since

the open sets {Ωi}∞i=1 form a locally finite open covering of ℜ+ × (ℜn\{0}), it

follows from (6.37) and (6.39) that for every (t, x) ∈ ℜ+ × (ℜn\{0}) there exists

m = m(t, x) ∈ {1,2,3, . . .} such that

Ti(t, x) = 1 for i ≥ m (6.40)

Define the index set

J (t, x) :=
{

j ∈ N : θj (t, x) > 0
}

(6.41)

which by virtue of (6.40 ) is a nonempty finite set. It follows from definitions (6.39)

and (6.41) that
⋃

j∈J (t,x)

[

Tj−1(t, x), Tj (t, x)
)

= [0,1) ∀(t, x) ∈ [0,1] × ℜ+ ×
(

ℜn\{0}
)

(6.42)

Let h : ℜ → [0,1] be any smooth nondecreasing function with

h(s) = 0 for s ≤ 0 and h(s) = 1 for s ≥ 1 (6.43)

and let

gj (t, x) := 1

2
θj (t, x) + 1

2

(

ε(t, x)2−j−1 − θj (t, x)
)

× h

(

θj (t, x) − ε(t, x)2−j−2

ε(t, x)2−j−2

)

j = 1,2, . . . (6.44)

where ε(·, ·) is the function defined by (6.31). According to (6.43) and (6.44), it

holds

min

{

ε(t, x)2−j−2,
1

2
θj (t, x)

}

≤ gj (t, x) ≤ min
{

ε(t, x)2−j−2, θj (t, x)
}

(6.45)

gj (t, x) = ε(t, x)2−j−2 for θj (t, x) ≥ ε(t, x)2−j−1 (6.46)

We define the following map [0,1] × ℜ+ × (ℜn\{0}) ∋ (s, t, x) → k(s, t, x) ∈ ℜm:

k(s, t, x) = uj

(

gj (t, x)

ε(t, x)2−j−2

)2

h

(

s − Tj−1(t, x) − 1
5
gj (t, x)

1
5
gj (t, x)

)

for s ∈
[

Tj−1(t, x), Tj−1(t, x) + 1

2
θj (t, x)

)

, j ∈ J (t, x) (6.47)

k(s, t, x) = uj

(

gj (t, x)

ε(t, x)2−j−2

)2

h

(

Tj (t, x) − 1
5
gj (t, x) − s

1
5
gj (t, x)

)

for s ∈
[

Tj (t, x) − 1

2
θj (t, x), Tj (t, x)

)

, j ∈ J (t, x) (6.48)

k(1, t, x) = 0 (6.49)
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Notice that, because of (6.42), k(·, ·, ·) is well defined for all (s, t, x) ∈ [0,1] ×
ℜ+ × (ℜn\{0}). Furthermore, according to definitions (6.47), (6.48), and (6.49), hy-

pothesis (H2) guarantees that k(·, ·, ·) takes values in U ⊆ ℜm and is continuously

differentiable on the region (
⋃

j∈J (t,x)(Tj−1(t, x), Tj (t, x)))×ℜ+ × (ℜn\{0}). Fur-

thermore, it holds that

∂k

∂s
(s, t, x) → 0

∂k

∂t
(s, t, x) → 0

∂k

∂x
(s, t, x) → 0

as s → Tj (t, x) for all j = 0,1,2, . . . (6.50)

Next, we show that k(·, ·, ·) is continuously differentiable on the whole region

[0,1] × ℜ+ × (ℜn\{0}) and simultaneously that (6.24), (6.25), and (6.26) are ful-

filled. We distinguish the following cases:

Case 1: Let s ∈ (0,1), (t, x) ∈ ℜ+ × (ℜn\{0}), and suppose that there exists a

positive integer p with s = Tp(t, x). Then, there exist positive integers m, l with

l ≤ p ≤ m such that

θm+1(t, x) > 0 θl(t, x) > 0 (6.51)

s = Tm(t, x) = · · · = Tl(t, x) > 0 (6.52)

Equality (6.52), in conjunction with definition (6.39), means that

θm(t, x) = · · · = θl+1(t, x) = 0 if m ≥ l + 1 (6.53)

Notice that definition (6.47) and (6.51) imply that in our case,

k(s, t, x) = 0 (6.54)

By taking into account continuity of the mappings gl, gm+1, Tl, Tm and (6.45), it

follows that there exists δ > 0 such that

s′ ∈
(

Tl(τ, y) − 1

5
gl(τ, y), Tm(τ, y) + 1

5
gm+1(τ, y)

)

∀
(

s′, τ, y
)

∈ [0,1] × ℜ+ ×
(

ℜn\{0}
)

with
∣

∣s′ − s
∣

∣+ |τ − t | + |y − x| < δ

(6.55)

By virtue of definitions (6.47), (6.48), (6.54), and (6.55), it follows that for every

(s′, τ, y) ∈ [0,1] × ℜ+ × (ℜn\{0}) with |s′ − s| + |τ − t | + |y − x| < δ,

∣

∣k
(

s′, τ, y
)

− k(s, t, x)
∣

∣≤ max
v=l+1,...,m

|uv|
(

gv(τ, y)

ε(τ, y)2−v−2

)2

if m ≥ l + 1 (6.56)

k
(

s′, τ, y
)

= k(s, t, x) if m = l (6.57)

If m ≥ l +1, then by (6.45) and (6.53) we also get gv(t, x) = 0 for v = l +1, . . . ,m;

hence, since the mappings gv are continuously differentiable, there exists a constant

L > 0 such that

maxv=l+1,...,m gv(τ, y)

ε(τ, y)
≤ L|τ − t | + L|y − x|

∀(τ, y) ∈ ℜ+ × ℜn\{0} with |τ − t | + |y − x| < δ (6.58)
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It follows from (6.56), (6.57), and (6.58) that
∣

∣k
(

s′, τ, y
)

− k(s, t, x)
∣

∣≤ L′(|τ − t |2 + |y − x|2
)

(6.59)

for some constant L′ > 0 and for |s′ − s| + |τ − t | + |y − x| < δ. We con-

clude from (6.59) that the derivatives of k(·, ·, ·) exist for s = Tp(t, x) and that
∂k
∂s

(s, t, x) = ∂k
∂t

(s, t, x) = 0 and ∂k
∂x

(s, t, x) = 0 for s = Tp(t, x). The latter, in con-

junction with (6.50), implies that k(·, ·, ·) is continuously differentiable in a neigh-

borhood of (s, t, x) with s = Tp(t, x) ∈ (0,1).

Case 2: Let s = 0, (t, x) ∈ ℜ+ × (ℜn\{0}), and suppose that there exists an integer

p ≥ 0 with s = Tp(t, x) = 0. Clearly, there exists an integer m ≥ p such that

θm+1(t, x) > 0 (6.60)

s = Tm(t, x) = · · · = T0(t, x) = 0 (6.61)

(note again that equality (6.61) means that θm(t, x) = · · · = θ1(t, x) = 0 for the

case m > 0). By virtue of definition (6.47), it holds that k(s, t, x) = 0. The con-

tinuity of the mappings Tm and gm+1 implies that there exists δ > 0 such that

s′ ∈ [0, Tm(τ, y) + 1
5
gm+1(τ, y)) for all (s′, τ, y) ∈ [0,1] × ℜ+ × (ℜn\{0}) with

|s′ − s| + |τ − t | + |y − x| < δ. Then as in Case 1, it follows from (6.47), (6.48),

(6.49) that

∣

∣k
(

s′, τ, y
)

− k(s, t, x)
∣

∣≤ max
v=1,...,m

|uv|
(

gv(τ, y)

ε(τ, y)2−v−2

)2

if m > 0 (6.62)

k
(

s′, τ, y
)

= k(s, t, x) if m = 0 (6.63)

for every |s′ − s| + |τ − t | + |y − x| < δ, from which we get the desired conclusion,

namely, that k(·, ·, ·) is continuously differentiable in a neighborhood of (0, t, x) and

that (6.25) holds.

Case 3: Let s = 1, (t, x) ∈ ℜ+ × (ℜn\{0}), and let p be a positive integer with s =
Tp(t, x). Let {Ωi}∞i=1 be the locally finite open covering of (−1,+∞) × (ℜn\{0})
and the associated sequence of functions in such a way that (6.35), (6.36), (6.37),

and (6.38) hold. Let N ⊂ (−1,+∞)×(ℜn\{0}) be a neighborhood containing (t, x)

which intersects only a finite number of the open sets {Ωi}∞i=1 (see [18]). Conse-

quently, by (6.38) there exists an integer m > 1 such that N ∩ Ωi = ∅ for all i > m

and θi(τ, y) = 0 for all i > m and (τ, y) ∈ N . Clearly, there exists l ∈ {1, . . . ,m}
with

θl(t, x) > 0 (6.64)

s = Tl(t, x) = · · · = Tm(t, x) = 1 (6.65)

Without loss of generality, we may assume that m > l. By virtue of definition (6.49),

we have k(1, t, x) = 0. This, together with the continuity of the mappings Tl and gl ,

asserts the existence of a constant δ > 0 such that
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s′ ∈
(

Tl(τ, y) − 1

5
gl(τ, y),1

]

and (τ, y) ∈ N

∀
(

s′, τ, y
)

∈ [0,1] × ℜ+ ×
(

ℜn\{0}
)

with
∣

∣s′ − 1
∣

∣+ |τ − t | + |y − x| < δ

(6.66)

Using (6.47), (6.48), (6.49), and (6.66), we get

∣

∣k
(

s′, τ, y
)

− k(1, t, x)
∣

∣≤ max
v=l+1,...,m

|uv|
(

gv(τ, y)

ε(τ, y)2−v−2

)2

from which it follows that (6.59) holds for all |s′ − 1|+ |τ − t |+ |y −x| < δ and for

some constant L′ > 0. This implies that the derivatives of k(·, ·, ·) exist for s = 1,

and particularly, (6.26) holds. The latter, in conjunction with (6.50), implies that

k(·, ·, ·) is continuously differentiable in a neighborhood of (1, t, x).

We next establish (6.28). By virtue of (6.43), (6.45), and definition (6.47)–(6.49),

we have maxs∈[0,1] |k(s, t, x)| ≤ maxj∈J (t,x) |uj |, J (t, x) being the index set defined

by (6.41). For every j ∈ J (t, x), there exist (tj , xj ) ∈ (−1,+∞) × (ℜn\{0}) with

|uj | ≤ b
(

max(0, tj ), xj

)

(6.67)

for which (t, x) ∈ Ωj and in such a way that (6.35) holds with i = j . The choice

δj = δ(tj , xj ) ≤ q(tj , xj ), in conjunction with (6.67) and definition (6.29) of b̃(·, ·),
implies (6.28). Finally, we establish (6.27). Notice that by (6.41), (6.43), (6.46),

(6.47), and (6.48), for any (t, x) ∈ ℜ+ × ℜn\{0} and integer j ∈ J (t, x), it holds:

k(s, t, x) = uj ∀s ∈
[

Tj−1(t, x) + 2

5
gj (t, x), Tj (t, x) − 2

5
gj (t, x)

]

when θj (t, x) ≥ ε(t, x)2−j−1 (6.68)

Hence, the set I(t,x) := {s ∈ [0,1] : k(s, t, x) �= uj , j ∈ J (t, x)} has Lebesgue mea-

sure, say |I(t,x)|, satisfying

|I(t,x)| ≤
∑

j∈J (t,x)

ε(t, x)2−j−1 ≤ ε(t, x) (6.69)

Then, for any d ∈ MD , it follows by virtue of (6.32), (6.36), and (6.69) that

∂V

∂t
(t, x) + ∂V

∂x
(t, x)

∫ 1

0

f
(

t, d(s), x, k(s, t, x)
)

ds

≤ −3

4

(

1 − ε(t, x)
)

ρ
(

V (t, x)
)

+ ε(t, x) max
|u|≤b̃(t,x)

u∈U

max
d∈D

∂V

∂t
(t, x)

+ ∂V

∂x
(t, x)f (t, d, x,u)

Inequalities (6.30) and (6.31), in conjunction with the above inequality, imply

(6.27), and the proof is complete. �

The next lemmas constitute key results of the rest analysis and generalize Lem-

mas 2.8 and 2.9 in [12]. Their proofs are based on certain generalizations of the

technique employed in [12].
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Lemma 6.2 Consider system (1.3) under the same hypotheses as those imposed

in Lemma 6.1. For every function q ∈ C0(ℜ+ × ℜn;ℜ+) satisfying (6.22) and for

every pair of sets r = {ri : i ∈ Z} and a = {ai : i ∈ Z} with ri > 0 and ai > 0,

ri + 2ai < ri+1 − 2ai+1 for all i ∈ Z (6.70)

lim
i→+∞

ri = +∞ lim
i→−∞

ri = 0 (6.71)

there exists a continuous mapping kr,a : ℜ+ × (ℜn\{0}) → U , continuously differ-

entiable with respect to x ∈ ℜn\{0}, with

kr,a(j, x) = 0 and
∂kr,a

∂x
(j, x) = 0 for all (x, j) ∈

(

ℜn\{0}
)

× Z+ (6.72)

∣

∣kr,a(t, x)
∣

∣≤ b̃(t, x) ∀(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.73)

where b̃(·, ·) is defined by (6.29), and such that the following property holds for all

(t0, x0, d, i) ∈ ℜ+ × (ℜn\{0}) × MD × Z:

V (t0, x0) ∈ [ri−1, ri] ⇒ V
(

t, x(t, t0, x0;d)
)

≤ ri + 5

2
ai

for all t ∈
[

t0,min
(

[t0] + 1, tmax

))

(6.74)

where x(·, t0, x0;d) denotes the unique solution of

ẋ = f
(

t, d, x, kr,a(t, x)
)

(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.75)

with initial condition x(t0) = x0 ∈ ℜn\{0}, corresponding to d ∈ MD , and tmax :=
tmax(t0, x0, d) > t0 denotes its maximal existence time. Moreover, for each

(x0, j, i) ∈ (ℜn\{0}) × Z+ × Z, there exists a positive integer N ≥ 2 such that

V (j, x0) ≤ ri − 2ai

⇒ V

(

j + s

N
,x

(

j + s

N
, j, x0d

))

≤ max

(

ri−1 + 2ai−1,V (j, x0) − s

N
µi

)

for all d ∈ MD and s ∈ {0,1, . . . ,N} with j + s

N
< tmax (6.76)

where

µi := 1

4
min

{

ρ(s) : s ∈ [ri−1, ri]
}

(6.77)

Proof Let q ∈ C0(ℜ+ × ℜn;ℜ+) be a function satisfying (6.22), and k : [0,1] ×
ℜ+ × (ℜn\{0}) → U a C1 function which satisfies (6.24), (6.25), (6.26), (6.27),

and (6.28) and whose existence is guaranteed by Lemma 6.1. For i ∈ Z and j ∈ Z+,

define

Ωi,j =
{

(t, x) ∈ [j, j + 1] × ℜn : V (t, x) ∈ [ri−1, ri]
}

(6.78)

ρi := min(ai−2, ai−1, ai, ai+1) (6.79)

and select δi,j > 0 satisfying
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∣

∣

∣

∣

∂V

∂t
(t, x) −

∂V

∂t
(t0, x0)

∣

∣

∣

∣

+
∣

∣

∣

∣

∂V

∂x
(t, x) −

∂V

∂x
(t0, x0)

∣

∣

∣

∣

max
{∣

∣f (t, x, d,u)
∣

∣ : d ∈ D,u ∈ U, |u| ≤ b̃(t, x)
}

+
∣

∣

∣

∣

∂V

∂x
(t0, x0)

∣

∣

∣

∣

max
{
∣

∣f
(

t, d, x, k(s, t0, x)
)

− f
(

t0, d, x0, k(s, t0, x0)
)∣

∣ : s ∈ [0,1], d ∈ D
}

≤
1

4
ρ
(

V (t0, x0)
)

∀(t0, x0) ∈ Ωi,j ,∀(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

with t ∈ [t0, t0 + δi,j ], |x − x0| ≤ δi,j

(6.80)

Also, let Ni,j ∈ Z+ with Ni,j ≥ 2 be a family of integers which satisfies the follow-

ing inequalities:

4 max

{
∣

∣

∣

∣

∂V

∂t
(t, x) + ∂V

∂x
(t, x)f (t, d, x,u)

∣

∣

∣

∣

: t ∈ [j, j + 2],V (t, x) ∈ [ri−3, ri+2],

d ∈ D,u ∈ U, |u| ≤ b̃(t, x)

}

≤ ρiNi,j (6.81)

2 + 2 max
{∣

∣f (t, d, x,u)
∣

∣ : t ∈ [j, j + 2],V (t, x) ∈ [ri−3, ri+2],
d ∈ D,u ∈ U, |u| ≤ b̃(t, x)

}

≤ δi,jNi,j (6.82)

Consider next a smooth nondecreasing function h : ℜ → [0,1] with h(s) = 0 for

s ≤ 0 and h(s) = 1 for s ≥ 1 and define the desired kr,a : ℜ+ × (ℜn\{0}) → U as

follows:

kr,a(t, x)

:=

⎧

⎨

⎩

h
(

2
V (t,x)−ri−1

min(ai−1,ai )

)

k
(

Ni,j (t − j) − l, j + l
Ni,j

, x
)

V (t, x) ∈
[

ri−1,
ri+ri−1

2

)

h
(

2 ri−V (t,x)
min(ai−1,ai )

)

k
(

Ni,j (t − j) − l, j + l
Ni,j

, x
)

V (t, x) ∈
[ ri+ri−1

2
, ri
)

(t, x) ∈ Ωi,j , t ∈
[

j + l

Ni,j

, j + l + 1

Ni,j

)

for some l ∈ {0,1, . . . ,Ni,j − 1} (6.83)

Obviously, (6.73) is a consequence of (6.28), (6.29), and (6.83). Moreover, by tak-

ing into account (6.24), (6.25), (6.26), and (6.70) it follows that kr,a(·, ·) above is

continuous, continuously differentiable with respect to x ∈ ℜn\{0}, and satisfies

kr,a(j, x) = 0
∂kr,a

∂x
(j, x) = 0 ∀(x, j) ∈

(

ℜn\{0}
)

× Z+ (6.84)

Let (x0, d) ∈ (ℜn\{0}) × MD and t0 ∈ [j + l
Ni,j

, j + l+1
Ni,j

) for some l ∈ {0,1,

. . . ,Ni,j − 1} with

V (t0, x0) ∈ [ri−2, ri+1] (6.85)
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Then, by (6.81), (6.82), and (6.85), it can be easily established that, for all t ∈
[t0, j + l+1

Ni,j
], it holds

t − t0 +
∣

∣x(t, t0, x0;d) − x0

∣

∣≤ δi,j (6.86)

V (t0, x0) −
1

2
min(ai−1, ai)

≤ V
(

t, x(t, t0, x0;d)
)

≤ V (t0, x0) +
1

2
min(ai−1, ai) (6.87)

In fact, suppose on the contrary that there exist (x0, d) ∈ (ℜn\{0}) × MD , t0 ∈ [j +
l

Ni,j
, j + l+1

Ni,j
) for some l ∈ {0,1, . . . ,Ni,j −1} satisfying (6.85) and t̄ ∈ [t0, j + l+1

Ni,j
]

such that either (6.86) or (6.87) does not hold and consider the closed set

A :=
{

τ ∈
[

t0, j +
l + 1

Ni,j

]

: max

{

2|V (τ, x(τ, t0, x0;d)) − V (t0, x0)|
min(ai−2, ai−1, ai, ai+1)

,

τ − t0 + |x(τ, t0, x0;d) − x0|
δi,j

}

≥ 1

}

Notice that, since t̄ ∈ A, the set A is nonempty. Let t1 := minA. Clearly, since

t0 /∈ A, it holds that t1 > t0. Definition of the set A above, (6.70), and (6.85) imply

that V (τ, x(τ, t0, x0;d)) ∈ [ri−3, ri+2] for every τ ∈ [t0, t1). It follows from (6.73),

(6.81), and (6.82) that
∣

∣

∣

∣

d

dτ
V
(

τ, x(τ, t0, x0;d)
)

∣

∣

∣

∣

≤ 1

4
ρiNi,j and

2 + 2
∣

∣ẋ(τ )
∣

∣≤ δi,jNi,j a.e. for τ ∈ [t0, t1)

which, in conjunction with definition (6.79) and the fact that τ − t0 ≤ 1
Ni,j

, implies

that, for all τ ∈ [t0, t1], we would have

∣

∣V
(

τ, x(τ, t0, x0;d)
)

− V (t0, x0)
∣

∣

≤
∫ τ

t0

∣

∣

∣

∣

d

ds
V
(

s, x(s, t0, x0;d)
)

∣

∣

∣

∣

ds ≤ 1

4
min(ai−2, ai−1, ai, ai+1)

τ − t0 +
∣

∣x(τ, t0, x0;d) − x0

∣

∣≤ τ − t0 +
∫ τ

t0

∣

∣ẋ(s)
∣

∣ds ≤ 1

2
δi,j (6.88)

The previous inequalities for τ = t1 are in contradiction with the fact that t1 ∈ A.

In order to establish properties (6.74) and (6.76), we first need the following

properties: �

Property 6.1 Let d ∈ MD , and let

t0 = j + l

Ni,j

l ∈ {0,1, . . . ,Ni,j − 1} (6.89)

V (t0, x0) ∈ [ri−1 + ai−1, ri − 2ai] (6.90)
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Then the following inequality is fulfilled:

0 < V

(

j +
l + 1

Ni,j

, x

(

j +
l + 1

Ni,j

, j +
l

Ni,j

, x0;d
))

≤ V

(

j +
l

Ni,j

, x0

)

−
1

4Ni,j

ρ

(

V

(

j +
l

Ni,j

, x0

))

(6.91)

Proof Using (6.87) and definition (6.83), it follows that

kr,a

(

t, x(t, t0, x0;d)
)

= k

(

Ni,j (t − j) − l, j +
l

Ni,j

, x(t, t0, x0;d)

)

∀t ∈
[

j + l

Ni,j

, j + l + 1

Ni,j

]

(6.92)

For convenience, let us denote here h := 1
Ni,j

, x(·) = x(·, t0, x0;d) and d̃(t) :=
d(t0 + ht) (notice that d̃ ∈ MD). From (6.92) we have

V
(

t0 + h,x(t0 + h)
)

− V (t0, x0)

=
∫ t0+h

t0

[

∂V

∂t

(

τ, x(τ )
)

+ ∂V

∂x

(

τ, x(τ )
)

f

(

τ, d(τ ), x(τ ), k

(

τ − t0

h
, t0, x(τ )

))]

dτ

= h

∫ 1

0

[

∂V

∂t

(

t0 + hs, x(t0 + hs)
)

+ ∂V

∂x

(

t0 + hs, x(t0 + hs)
)

× f
(

t0 + hs, d(t0 + hs), x(t0 + hs), k
(

s, t0, x(t0 + hs)
))

]

ds

= h

∫ 1

0

[

∂V

∂t
(t0, x0) + ∂V

∂x
(t0, x0)f

(

t0, d̃(s), x0, k(s, t0, x0)
)

]

ds

+ h

∫ 1

0

[

∂V

∂t

(

t0 + hs, x(t0 + hs)
)

− ∂V

∂t
(t0, x0)

]

ds

+ h

∫ 1

0

[

∂V

∂x

(

t0 + hs, x(t0 + hs)
)

− ∂V

∂x
(t0, x0)

]

× f
(

t0 + hs, d̃(s), x(t0 + hs), k
(

s, t0, x(t0 + hs)
))

ds

+ h

∫ 1

0

∂V

∂x
(t0, x0)

[

f
(

t0 + hs, d̃(s), x(t0 + hs), k
(

s, t0, x(t0 + hs)
))

− f
(

t0, d̃(s), x0, k(s, t0, x0)
)]

ds (6.93)

Using (6.27), (6.28), (6.80), (6.86), (6.87), (6.89), (6.90), and (6.93), we get the

desired (6.91), and the proof of Property 6.1 is complete. �
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The next property is a consequence of Property 6.1:

Property 6.2 Suppose that

0 < V

(

j +
l

Ni,j

, x0

)

≤ ri − 2ai for some l ∈ {0,1, . . . ,Ni,j − 1} (6.94)

and assume that the solution of (6.75) with initial condition x(j + l
Ni,j

) = x0 ∈
ℜn\{0}, corresponding to some d ∈ MD , exists for t ∈ [j + l

Ni,j
, j + l+1

Ni,j
]. Then

0 < V

(

j +
l + 1

Ni,j

, x

(

j +
l + 1

Ni,j

, j +
l

Ni,j

, x0;d
))

≤ max

{

ri−1 + 2ai−1,V

(

j +
l

Ni,j

, x0

)

−
1

Ni,j

µi

}

(6.95)

where µi > 0 is defined by (6.77).

Proof Obviously, the desired (6.95) is a consequence of (6.91), provided that (6.90)

is fulfilled. Consider the remaining case

0 < V

(

j +
l

Ni,j

, x0

)

≤ ri−1 + ai−1 (6.96)

We show by contradiction that, when (6.96) holds, then

0 < V

(

j +
l + 1

Ni,j

, x

(

j +
l + 1

Ni,j

, j +
l

Ni,j

, x0;d
))

≤ ri−1 + 2ai−1

Indeed, suppose on the contrary that

V

(

j +
l + 1

Ni,j

, x

(

j +
l + 1

Ni,j

, j +
l

Ni,j

, x0;d
))

> ri−1 + 2ai−1 (6.97)

Then, there would exist t1 ∈ (j + l
Ni,j

, j + l+1
Ni,j

) such that

V

(

t1, x

(

t1, j +
l

Ni,j

, x0;d
))

= ri−1 +
3ai−1

2

Using (6.87), the latter implies

0 < V

(

j +
l + 1

Ni,j

, φ

(

j +
l + 1

Ni,j

, j +
l

Ni,j

, x0;d
))

≤ ri−1 + 2ai−1

which contradicts (6.97), and the proof of Property 6.2 is complete. �

The following property is a direct consequence of Property 6.2 and (6.70):

Property 6.3 Suppose that (6.94) holds and assume again that the solution of (6.75)

with initial condition x(j + l
Ni,j

) = x0 ∈ ℜn\{0} corresponding to some d ∈ MD
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exists for t ∈ [j + l
Ni,j

, j + l+s
Ni,j

] for certain s ∈ {0,1,2, . . . ,Ni,j − l}. Then

0 < V

(

j +
l + s

Ni,j

, x

(

j +
l + s

Ni,j

, j +
l

Ni,j

, x0;d
))

(6.98)

≤ max

{

ri−1 + 2ai−1,V

(

j +
l

Ni,j

, x0

)

−
s

Ni,j

µi

}

(6.99)

The desired (6.76) follows from Property 6.3 with l = 0, N = Ni,j . We next

proceed with the proof of (6.74). Combining Property 6.3 with (6.87), we obtain the

following:

Property 6.4 If (6.94) is fulfilled, then

0 < V

(

t, x

(

t, j +
l

Ni,j

, x0;d
))

≤ max

{

ri−1 + 2ai−1,V

(

j +
l

Ni,j

, x0

)}

+
1

2
min(ai−1, ai)

∀t ∈
[

j + l

Ni,j

,min(tmax, j + 1)

)

(6.100)

Proof Let s ∈ {0,1,2, . . . ,Ni,j − l − 1} with j + l+s
Ni,j

< tmax. By virtue of (6.98),

we distinguish the following two cases:

Case 1: Suppose that

V

(

j + l + s

Ni,j

, x

(

j + l + s

Ni,j

, j + l

Ni,j

, x0;d
))

≥ ri−1 (6.101)

Then by invoking (6.87), from (6.98) and (6.101) we get

0 < V

(

t, x

(

t, j + l

Ni,j

, x0;d
))

≤ max

{

ri−1 + 2ai−1,V

(

j + l

Ni,j

, x0

)}

+ 1

2
min(ai−1, ai)

∀t ∈
[

j + l + s

Ni,j

, j + l + s + 1

Ni,j

]

(6.102)

The desired (6.100) is a consequence of (6.102).

Case 2: Suppose that

0 < V

(

j + l + s

Ni,j

, x

(

j + l + s

Ni,j

, j + l

Ni,j

, x0;d
))

< ri−1 (6.103)

We show by contradiction that, when (6.103) holds, then

V

(

t, x

(

t, j + l

Ni,j

, x0;d
))

≤ ri−1 + 2ai−1 + 1

2
min(ai−1, ai)

∀t ∈
[

j + l + s

Ni,j

,min

(

tmax, j + l + s + 1

Ni,j

))

(6.104)
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If (6.104) were false, then there would exist t ∈ [j + l+s
Ni,j

,min(tmax, j + l+s+1
Ni,j

))

such that

V

(

t, x

(

t, j +
l

Ni,j

, x0;d
))

> ri−1 + 2ai−1 +
1

2
min(ai−1, ai) (6.105)

By (6.103) and (6.105), there would exist t1 ∈ [j + l+s
Ni,j

,min(tmax, j + l+s+1
Ni,j

)) such

that

V

(

t1, x

(

t1, j +
l

Ni,j

, x0;d
))

= ri−1 + 2ai−1

V

(

ξ, x

(

ξ, j +
l

Ni,j

, x0;d
))

≤ ri−1 + 2ai−1

∀ξ ∈
[

j + l + s

Ni,j

, t1

]

(6.106)

By (6.106) and (6.87) we get

0 < V

(

ξ, x

(

ξ, j + l

Ni,j

, x0;d
))

≤ ri−1 + 2ai−1 + 1

2
min(ai−1, ai)

∀ξ ∈
[

t1,min

(

tmax, j + l + s + 1

Ni,j

))

(6.107)

Combining (6.106) and (6.107), we obtain 0 < V (ξ, x(ξ, j + l
Ni,j

, x0;d)) ≤ ri−1 +
2ai−1 + 1

2
min(ai−1, ai) for all ξ ∈ [j + l+s

Ni,j
,min(tmax, j + l+s+1

Ni,j
)), which contra-

dicts hypothesis (6.105).

We conclude from (6.102) and (6.104) that in both cases above we have

0 < V

(

t, x

(

t, j + l

Ni,j

, x0;d
))

≤ max

{

ri−1 + 2ai−1,V

(

j + l

Ni,j

, x0

)}

+ 1

2
min(ai−1, ai)

for every t ∈ [j + l+s
Ni,j

,min(tmax, j + l+s+1
Ni,j

)) and for all s ∈ {0,1,2, . . . ,Ni,j −
l −1} with j + l+s

Ni,j
< tmax, and the latter implies the desired (6.100). This completes

the proof of Property 6.4. �

We are now in a position to establish (6.74). Let (x0, d) ∈ (ℜn\{0}) × MD

and t0 ∈ [j + l
Ni+1,j

, j + l+1
Ni+1,j

) for some l ∈ {0,1, . . . ,Ni,j − 1} with V (t0, x0) ∈
[ri−1, ri]. Then, exploiting inequality (6.87), we obtain

V (t0, x0) − 1

2
ai ≤ V

(

t, x(t, t0, x0;d)
)

≤ V (t0, x0) + 1

2
ai

∀t ∈
[

t0, j + l + 1

Ni+1,j

]

(6.108)



286 6 Robust Output Feedback Stabilization

Since ri + 1
2
ai < ri+1 − 2ai+1, by virtue of (6.108) and (6.101) of Property 6.4,

we get 0 < V (t,φ(t, t0, x0;d)) ≤ ri + 5
2
ai for all t ∈ [t0,min(tmax, j + 1)), and this

establishes (6.74). The proof is complete. �

Lemma 6.3 Under the same hypotheses imposed in Lemma 6.1 for system (1.3), for

every function q ∈ C0(ℜ+ × (ℜn;ℜ+) satisfying (6.22), there exists a continuous

mapping k̃ : ℜ+ × (ℜn\{0}) → U , continuously differentiable with respect to x ∈
ℜn\{0}, which satisfies

∣

∣k̃(t, x)
∣

∣≤ b̃(t, x) ∀(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.109)

where b̃(·, ·) is defined by (6.29), and such that the following property holds for all

(t0, x0, d) ∈ ℜ+ × (ℜn\{0}) × MD :

V
(

t, x(t, t0, x0;d)
)

≤ 9V (t0, x0) ∀t ∈
[

t0,min
(

[t0] + 2, tmax

))

(6.110)

where x(·, t0, x0;d) denotes the unique solution of

ẋ = f
(

t, d, x, k̃(t, x)
)

(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.111)

with initial condition x(t0) = x0 ∈ ℜn\{0}corresponding to d ∈ MD , and tmax :=
tmax(t0, x0, d) > t0 denotes its maximal existence time. Moreover, there exists posi-

tive definite ρ̃ ∈ C0(ℜ+;ℜ+) with ρ̃(s) ≤ s for all s ≥ 0 such that

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) − ρ̃
(

V (2j, x0)
)

for all (x0, d, j) ∈
(

ℜn\{0}
)

× MD × Z+ with 2j + 2 < tmax (6.112)

where tmax > 2j in (6.112) is the maximal existence time of the solution

x(·,2j, x0;d) of (6.111).

Proof Let q ∈ C0(ℜ+ ×ℜn;ℜ+) be a function satisfying (6.22) and let r = {ri : i ∈
Z} be a set with ri > 0 and such that

ri+1 ≤ 2ri and lim
i→+∞

ri = +∞ lim
i→−∞

ri = 0 (6.113)

Consider the set

r ′ =
{

r ′
i = ri + ri+1

2
: i ∈ Z

}

(6.114)

which by virtue of (6.114) satisfies r ′
i > 0 and, further,

r ′
i+1 ≤ 2r ′

i and lim
i→+∞

r ′
i = +∞ lim

i→−∞
r ′
i = 0 (6.115)

Define

µi := 1

4
min

{

ρ(s) : s ∈ [ri−1, ri]
}

µ′
i := 1

4
min

{

ρ(s) : s ∈
[

r ′
i−1, r

′
i

]}

(6.116)
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and let a = {ai : i ∈ Z}, a′ = {a′
i : i ∈ Z} be a pair of sets satisfying:

ai > 0 a′
i > 0 (6.117)

5

2
ai ≤ ri−1

5

2
a′
i ≤ r ′

i−1 (6.118)

ri + 2ai < ri+1 − 2ai+1 r ′
i + 2a′

i < r ′
i+1 − 2a′

i+1 (6.119)

ai + a′
i ≤ ri+1 − ri

8
ai + a′

i−1 ≤ ri − ri−1

8
(6.120)

ai ≤
µ′

i

8
a′
i ≤ µi+1

8
(6.121)

By Lemma 6.2, there exist continuous mappings kr,a : ℜ+ × (ℜn\{0}) → U and

kr ′,a′ : ℜ+ × (ℜn\{0}) → U , continuously differentiable with respect to x ∈ ℜn\{0},
with

kr,a(j, x) = kr ′,a′(j, x) = 0 ∀(x, j) ∈
(

ℜn\{0}
)

× Z+ (6.122)

∂kr,a

∂x
(j, x) = ∂kr ′,a′

∂x
(j, x) = 0 ∀(x, j) ∈

(

ℜn\{0}
)

× Z+ (6.123)

and such that properties (6.73), (6.74), and (6.76) hold . Finally, consider the map

k̃ : ℜ+ × (ℜn\{0}) → U defined as

k̃(t, x) =
{

kr,a(t, x) for t ∈ [2j,2j + 1), (j, x) ∈ Z+ × (ℜn\{0})
kr ′,a′(t, x) for t ∈ [2j + 1,2j + 2), (j, x) ∈ Z+ × (ℜn\{0})

(6.124)

By taking into account (6.122), (6.123), (6.124), and regularity properties of

kr,a(·, ·) and kr ′,a′(·, ·), it follows that k̃(·, ·) is continuous, continuously differen-

tiable with respect to x ∈ ℜn\{0}, and satisfies

k̃(j, x) = 0 ∀(j, x) ∈ Z+ ×
(

ℜn\{0}
)

(6.125)

Moreover, (6.109) is an immediate consequence of definition (6.123) and in-

equality (6.73). Also, by (6.74), (6.113), and (6.118) it follows that for every

(t0, x0, d, i) ∈ ℜ+ × (ℜn\{0}) × MD × Z, it holds:

V (t0, x0) ∈ [ri−1, ri] ⇒ V
(

t, xr,a(t, t0, x0;d)
)

≤ 3V (t0, x0)

for all t ∈
[

t0,min
(

[t0] + 1, t r,amax,
))

(6.126)

V (t0, x0) ∈ [ri−1, ri] ⇒ V
(

t, xr ′,a′(t, t0, x0;d)
)

≤ 3V (t0, x0)

for all t ∈
[

t0,min
(

[t0] + 1, t r
′,a′

max

))

(6.127)

where xr,a(·, t0, x0;d) denotes the (unique) solution of

ẋ = f
(

t, d, x, kr,a(t, x)
)

(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.128)

and xr ′,a′(·, t0, x0;d) is the (unique) solution of

ẋ = f
(

t, d, x, kr ′,a′(t, x)
)

(t, x) ∈ ℜ+ ×
(

ℜn\{0}
)

(6.129)

with same initial condition x(t0) = x0 ∈ ℜn\{0} and d ∈ MD , and t
r,a
max > t0 and

t
r ′,a′
max > t0, respectively, denote their maximal existence times. The desired inequal-

ity (6.110) is a direct consequence of (6.126), (6.127), definition (6.124), and the

following obvious fact.
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Fact The solution of (6.111) with initial condition x(t0) = x0 ∈ ℜn\{0} correspond-

ing to some d ∈ MD is identical for t ∈ [t0,min([t0] + 1, t
r,a
max)) to the solution

xr,a(t, t0, x0;d) of (6.128) if [t0] is even and is identical for t ∈ [t0,min([t0] +
1, t

r ′,a′
max )) to the solution xr ′,a′(t, t0, x0;d) of (6.129) if [t0] is odd.

In order to show (6.112), let (x0, d, j) ∈ (ℜn\{0}) × MD × Z+ be such that

the unique solution x(·,2j, x0;d) of (6.111) with initial condition x(2j) = x0 ∈
ℜn\{0}, corresponding to d ∈ MD is well defined on [2j,2j + 2]. Notice that, if

there is no such (x0, d, j) ∈ (ℜn\{0}) × MD × Z+, then property (6.112) trivially

holds for every positive definite function ρ̃ ∈ C0(ℜ+;ℜ+). Let i ∈ Z be the smallest

integer with

ri−1 − 2ai−1 < V (2j, x0) ≤ ri − 2ai (6.130)

whose existence is guaranteed by (6.113) and (6.119). By virtue of (6.76), (6.130),

and the previous fact, it follows that

V
(

2j + 1, x(2j + 1,2j, x0;d)
)

≤ max
(

ri−1 + 2ai−1,V (2j, x0) − µi

)

(6.131)

Notice that, by (6.120) we have V (2j + 1, x(2j + 1,2j, x0;d)) ≤ r ′
i − 2a′

i . Conse-

quently, there exists an integer k ≤ i with

r ′
k−1 − 2a′

k−1 < V
(

2j + 1, x(2j + 1,2j, x0;d)
)

≤ r ′
k − 2a′

k (6.132)

We distinguish the following cases:

Case 1: k < i

In this case it follows from (6.132) that V (2j + 1, x(2j + 1,2j, x0;d)) ≤ r ′
i−1 −

2a′
i−1. By virtue of (6.76) and the fact above, we then obtain

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ max
(

r ′
i−2 + 2a′

i−2,V (2j, x0) − µ′
i−1 − µi, ri−1 + 2ai−1 − µ′

i−1

)

(6.133)

We now take into account (6.120), which implies

r ′
i−2 + 2a′

i−2 ≤ ri−1 − 2ai−1 − ri−1 − ri−2

4
(6.134)

From (6.133), (6.134), and the left-hand side inequality in (6.130) we get

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) + max

(

− ri−1 − ri−2

4
,4ai−1 − µ′

i−1

)

(6.135)

which by (6.121) implies

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) − 1

4
min

(

ri−1 − ri−2,2µ′
i−1

)

(6.136)
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Case 2: k = i

Notice that, since r ′
i−1 − 2a′

i−1 > ri−1 + 2ai−1 (which is a consequence of (6.120)),

from (6.131) and using the left-hand side inequality (6.132) with k = i, we conclude

that

r ′
i−1 − 2a′

i−1 + µi < V (2j, x0) (6.137)

Also, by (6.76) and the fact above we get V (2j + 2, x(2j + 2,2j, x0;d)) ≤
max(r ′

i−1 + 2a′
i−1,V (2j, x0) − µ′

i − µi), which, in conjunction with (6.137), gives

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) + 4a′
i−1 − µi

which, in turn, by virtue of (6.131), implies

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) − 1

2
µi (6.138)

We conclude from (6.136) and (6.138) that in both cases we have

ri−1 − 2ai−1 < V (2j, x0) ≤ ri − 2ai

⇒ V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) − γi (6.139)

γi := 1

4
min

(

ri−1 − ri−2,2µ′
i−1,2µi

)

(6.140)

Now let

ρ̄(s) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(min(γi ,γi+1)−min(γi−1,γi ))(s−ri−1+2ai−1)

(ri−2ai−ri−1+2ai−1)
+ min(γi−1, γi)

for s ∈ (ri−1 − 2ai−1, ri − 2ai]
0 for s = 0

(6.141)

Notice that (6.116), (6.140), and (6.141) imply that 0 < min(γi−1, γi, γi+1) ≤
ρ̄(s) ≤ γi for s ∈ (ri−1 −2ai−1, ri −2ai] and further limi→−∞ µi = limi→−∞ µ′

i =
limi→−∞ γi = 0. Thus, we may easily verify that ρ̄ : ℜ+ → ℜ+ is positive definite

and continuous. Finally, define

ρ̃(s) := min
{

ρ̄(s), s
}

(6.142)

Property (6.139)–(6.140), in conjunction with (6.141), implies that the desired

(6.112) is satisfied, and the proof is complete. �

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1 According to the statement of Lemma 6.3, for every func-

tion q ∈ C0(ℜ+ × ℜn;ℜ+) satisfying (6.22), there exists a continuous mapping

k̃ : ℜ+ × (ℜn\{0}) → U , continuously differentiable with respect to x ∈ ℜn\{0},
which satisfies (6.109), (6.110), and (6.112). Define

K(t, x) := h

(

V (t, x) − exp(−t)

exp(−t)

)

k̃(t, x) for V (t, x) > exp(−t) (6.143)

K(t, x) := 0 for V (t, x) ≤ exp(−t) (6.144)
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where h : ℜ → [0,1] is a smooth nondecreasing function with h(s) = 0 for s ≤ 0

and h(s) = 1 for s ≥ 1. It can be easily verified that, according to definitions (6.143),

(6.144), and the properties of k̃ : ℜ+ × (ℜn\{0}) → U , the map K takes values in U

and satisfies K(t,0) = 0 for all t ≥ 0. Moreover, K : ℜ+ ×ℜn → U is a continuous

and continuously differentiable mapping with respect to x ∈ ℜnon ℜ+ × ℜn.

In order to prove Theorem 6.1, we will make use of Lemma 6.3 and three facts

below concerning certain properties of the solution of the closed-loop system (1.3)

with u = K(t, x). Let

T = T (t0, x0, d)

:=
{

inf{t ≥ t0 : exp(t)V (t, x(t)) < 2} if {t ≥ t0 : exp(t)V (t, x(t)) < 2} �= ∅
+∞ if{t ≥ t0 : exp(t)V (t, x(t)) < 2} = ∅

(6.145)

where x(·) = x(·, t0, x0;d) denotes the unique solution of the closed-loop sys-

tem (1.3) with u = K(t, x) and initial condition x(t0) = x0 ∈ ℜn corresponding to

some d ∈ MD . The following fact is an immediate consequence of (6.143), (6.144),

(6.145), and the continuity of the mapping t → V (t, x(t)).

Fact 1 The unique solution x(·) = x(·, t0, x0;d) of the closed-loop system (1.3)

with u = K(t, x), initial condition x(t0) = x0 ∈ ℜn\{0}, satisfying V (t0, x0) ≥
2 exp(−t0), corresponding to some d ∈ MD coincides with the unique solution

of (6.111) with the same initial condition and the same d ∈ MD on the interval

[t0, T ], where T = T (t0, x0, d) is defined by (6.145), and

V
(

T ,x(T )
)

= 2 exp(−T ) if
{

t ≥ t0 : exp(t)V
(

t, x(t)
)

< 2
}

�= ∅ (6.146)

Next, we prove the following:

Fact 2 For the closed-loop system (1.3) with u = K(t, x), the following property

holds for all (j, x0, d) ∈ Z+ × ℜn × MD :

V
(

2j + 2, x(2j + 2,2j, x0;d)
)

≤ V (2j, x0) − ρ̃
(

V (2j, x0)
)

+ 18 exp(−2j) (6.147)

Proof Obviously, the desired (6.147) holds for x0 = 0. Next, assume that x0 �= 0.

Let tmax > 2j be the maximal existence time of x(·,2j, x0;d). We distinguish two

cases. The first case is
{

t ∈
[

2j,min(tmax,2j + 2)
)

: exp(t)V
(

t, x(t,2j, x0;d)
)

< 2
}

= ∅ (6.148)

In this case, Fact 1, in conjunction with inequalities (6.110) and (6.112), guarantees

that tmax > 2j + 2 and that (6.147) holds. The second case is
{

t ∈
[

2j,min(tmax,2j + 2)
)

: exp(t)V
(

t, x(t,2j, x0;d)
)

< 2
}

�= ∅ (6.149)

Let

t1 := sup
{

t ∈
[

2j,min(tmax,2j + 2)
)

: exp(t)V
(

t, x(t,2j, x0;d)
)

< 2
}

(6.150)
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Clearly, from (6.150) we have

sup
t→t−1

exp(t)V
(

t, x(t,2j, x0;d)
)

≤ 2 (6.151)

which, by virtue of (6.20), implies tmax > t1. If t1 = 2j + 2, the desired (6.147)

follows from (6.151). If t1 < 2j + 2, (6.150) guarantees that exp(t)V (t, x(t,2j,

x0;d)) ≥ 2 for all t ∈ [t1,min(tmax,2j + 2)), and the latter, in conjunction

with (6.151), gives

exp(t1)V
(

t1, x(t1,2j, x0;d)
)

= 2 (6.152)

Using Fact 1 together with (6.110) and (6.152), we get V (t, x(t,2j, x0;d)) ≤
18 exp(−t1) for all t ∈ [t1,min(tmax,2j + 2)). By exploiting (6.20) we conclude

that tmax > 2j + 2, and therefore the estimate V (t, x(t,2j, x0;d)) ≤ 18 exp(−t1) is

fulfilled for every t ∈ [t1,2j + 2]. The latter implies (6.147), and this completes the

proof of Fact 2. �

Finally, we show the following fact.

Fact 3 The following property holds for the closed-loop system (1.3) with u =
K(t, x):

V
(

t, x(t, t0, x0;d)
)

≤ 9V (t0, x0) + 18 exp(−t0)

for all t ∈
[

t0, [t0] + 2
]

, (t0, x0, d) ∈ ℜ+ × ℜn × MD (6.153)

Proof Obviously, (6.153) holds for x0 = 0. Suppose next that x0 �= 0 and let us on

the contrary assume that there exists t̂ ∈ [t0, [t0] + 2] with

V
(

t̂ , x
(

t̂ , t0, x0;d
))

> 9V (t0, x0) + 18 exp(−t0) (6.154)

We distinguish two cases. First assume that
{

s ∈ [t0, t̂ ] : exp(s)V
(

s, x(s, t0, x0;d)
)

< 2
}

= ∅
In this case, (6.110) guarantees that V (t̂, x(t̂ , t0, x0;d)) ≤ 9V (t0, x0), which contra-

dicts (6.154). Consider the remaining case
{

s ∈ [t0, t̂ ] : exp(s)V
(

s, x(s, t0, x0;d)
)

< 2
}

�= ∅
and let t1 := sup{s ∈ [t0, t̂ ] : exp(s)V (s, x(s, t0, x0;d)) < 2}. If t1 = t̂ , we would

have V (t̂, x(t̂ , t0, x0;d)) ≤ 2 exp(−t0), which contradicts (6.154). If t1 < t̂ , then

we would have exp(s)V (s, x(s, t0, x0;d)) ≥ 2 for all s ∈ [t1, t̂ ] and exp(t1)V (t1,

x(t1,2j, x0;d)) = 2. Therefore (6.110) gives V (s,φ(s, t0, x0;d)) ≤ 18 exp(−t1) for

all s ∈ [t1, t̂ ], which again contradicts (6.154), and we conclude that (6.153) holds.

This completes the proof of Fact 3. �

Inequalities (6.147) and (6.153), in conjunction with Proposition 2.5 in Chap. 2,

show that the closed-loop system (1.3) with u = K(t, x) is RGAOS. By invoking

definition (6.143)–(6.144) we obtain
∣

∣K(t, x)
∣

∣≤
∣

∣k̃(t, x)
∣

∣ ∀(t, x) ∈ ℜ+ ×
(

ℜn\0
)

(6.155)
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where k̃ : ℜ+ × (ℜn\{0}) → U is the continuous mapping whose existence is guar-

anteed by Lemma 6.3. Combining definition (6.29) of b̃(·, ·), (6.109), and (6.155),

we get, for all (t, x) ∈ ℜ+ × (ℜn\0),

∣

∣K(t, x)
∣

∣≤ max
{

b(τ, y) : (τ, y) ∈ ℜ+ × ℜn, |τ − t | + |y − x| ≤ q(τ, y)
}

(6.156)

It follows from (6.23) and (6.156) that the following inequality holds for all (t, x) ∈
ℜ+ × ℜn:

∣

∣K(t, x)
∣

∣≤ a
(

V (t, x)
)

(6.157)

Define ã(s) := a(s) + a−1
1 (s), where a1 ∈ K∞ is defined in (6.20). Taking into

account inequalities (6.20) and (6.20), the following inequality holds:

ã−1
(
∣

∣K(t, x)
∣

∣+ µ(t)|x|
)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ ℜ+ × ℜn (6.158)

where a2 ∈ K∞ and µ,β ∈ K+are the functions involved in (6.20). Inequali-

ties (6.147), (6.153), (6.158), in conjunction with Proposition 2.5 in Chap. 2, guar-

antee that the closed-loop system (1.3) with u = K(t, x) and output Ỹ = K(t, x) is

RGAOS.

The proof is complete. �

6.6.2 Control Systems Described by ODEs: The Artstein–Sontag

Approach

This methodology is based on the following idea: given a CLF, design a feedback

law so that the time derivative of the CLF along the solutions of the closed-loop

system becomes negative definite.

Using this methodology in his pioneering work [2], Artstein studied the above

existence problem for affine autonomous control systems without disturbances,

U ⊆ ℜm being a closed convex set and output Y being identically the state of the

system, i.e., H(t, x) ≡ x (see also [67]). He showed in [2] that the existence of a

time-independent Control Lyapunov Function (CLF) satisfying the “small-control”

property is a necessary and sufficient condition for the existence of a continuous

stabilizing feedback. Sontag [62] extended the results by presenting an explicit for-

mula of the feedback stabilizer for affine autonomous control systems without dis-

turbances, U = ℜm and output Y being identically the state of the system. Sontag’s

formula was exploited recently in [29] for the uniform stabilization of time-varying

systems. Freeman and Kokotović [14] extended the idea of the CLF in order to

study affine control systems with disturbances, U ⊆ ℜm being a closed convex set

and output Y being identically the state of the system, i.e., H(t, x) ≡ x; they intro-

duced the concept of the Robust Control Lyapunov Function (RCLF). In [36] the

authors showed that the “small-control” property is not needed for nonuniform in

time robust global stabilization of the state (H(t, x) ≡ x) of control systems affine

in the control with U = ℜm. The result was extended in [35] for the general case
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of output stability. In all the above works the stabilizing feedback is constructed us-

ing a partition of unity methodology or Michael’s Theorem (when the continuity of

feedback laws suffices).

In this section, we consider control systems of the form (1.3) under the following

hypotheses:

(HH2) The vector fields f : ℜ+ × D × ℜn × U → ℜn, H : ℜ+ × ℜn → ℜk are

continuous, and for every bounded interval I ⊂ ℜ+ and every compact set S ⊂
ℜn × U , there exists L ≥ 0 such that

∣

∣f (t, d, x,u) − f (t, d, y, v)
∣

∣+
∣

∣H(t, x) − H(t, y)
∣

∣

≤ L|x − y| + L|u − v| for all (t, d) ∈ I × D,(x,u) ∈ S, (y, v) ∈ S

Moreover, the set D ⊂ ℜl is compact, and U ⊆ ℜm is a closed convex set.

We next give the definition of the Output Robust Control Lyapunov Function

for system (1.3). The definition is in the same spirit with the definition of the no-

tion of Robust Control Lyapunov Function given in [14] for continuous-time finite-

dimensional control systems. It should be noticed that the following definition of

an ORCLF is different from Definition 6.1. Recall the definition of the Dini deriva-

tive V 0(t, x;v) := lim suph→0+
V (t+h,x+hv)−V (t,x)

h
for all (t, x) ∈ ℜ+ ×ℜn, v ∈ ℜn

(see (2.128) in Chap. 2).

Definition 6.2 We say that (1.3) admits an Output Robust Control Lyapunov Func-

tion (ORCLF) if there exists a locally Lipschitz function V : ℜ+ ×ℜn → ℜ+ (called

the Output Robust Control Lyapunov Function) that satisfies the following proper-

ties:

(i) There exist a1, a2 ∈ K∞ and β,µ ∈ K+ such that (6.20) holds.

(ii) There exists a function Ψ : ℜ+ × ℜn × U → ℜ ∪ {+∞} with Ψ (t,0,0) = 0

for all t ≥ 0, a function q ∈ E , and a C0 positive definite function ρ : ℜ+ →
ℜ+such that for each u ∈ U , the mapping (t, x) → Ψ (t, x,u) is upper semi-

continuous, and the following inequality holds:

inf
u∈U

Ψ (t, x,u) ≤ q(t) ∀(t, x) ∈ ℜ+ × ℜn (6.159)

Moreover, for every finite set {u1, u2, . . . , up} ⊂ U and for every λi ∈ [0,1]
(i = 1, . . . , p) with

∑p

i=1 λi = 1, it holds that

sup
d∈D

V 0

(

t, x;f
(

t, d, x,

p
∑

i=1

λiui

))

≤ −ρ
(

V (t, x)
)

+ max
{

Ψ (t, x,ui), i = 1, . . . , p
}

∀(t, x) ∈ ℜ+ × ℜn

(6.160)

For the case H(t, x) ≡ x, we simply call V : ℜ+ × ℜn → ℜ+ a State Robust

Control Lyapunov Function (SRCLF).
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We are now ready to state and prove our main results for the finite-dimensional

case (1.3).

Theorem 6.2 Consider system (1.3) under hypotheses (H1–4) and (HH2). The fol-

lowing statements are equivalent:

(a) There exists a C∞ function k : ℜ+ ×ℜn → U with k(t,0) = 0 for all t ≥ 0 such

that the closed-loop system (1.3) with u = k(t, x) is RGAOS.

(b) There exists a C0 function k : ℜ+ × ℜn → U with f (t, d, x, k(t, x)) being

locally Lipschitz with respect to x and f (t, d,0, k(t,0)) = 0 for all (t, d) ∈
ℜ+ × D such that the closed-loop system (1.3) with u = k(t, x) is RGAOS.

(c) System (1.3) admits an ORCLF.

Theorem 6.3 Consider system (1.3) under hypotheses (H1–4) and (HH2). Assume

that system (1.3) admits an ORCLF, which satisfies inequality (6.20) with β(t) ≡ 1

and inequality (6.159) with q(t) ≡ 0 and that the following hypothesis holds:

(HH3) There exist functions η ∈ K+ and ϕ ∈ Cv(A;U), where v ∈ {1,2, . . .} and

A =
⋃

t≥0{t} × {x ∈ ℜn : |x| < 4η(t)}, with ϕ(t,0) = 0 for all t ≥ 0, such that

Ψ
(

t, x,ϕ(t, x)
)

≤ 0 for all (t, x) ∈ ℜ+ × ℜn with |x| ≤ 2η(t) (6.161)

Then, there exists a mapping k : ℜ+ × ℜn → U of class Cv(ℜ+ × ℜn;U) with

k(t,0) = 0 for all t ≥ 0 such that the closed-loop system (1.3) with u = k(t, x) is

URGAOS.

Finally, if the ORCLF V and the function Ψ involved in property (ii) of Defini-

tion 6.2 are time independent and the following hypothesis holds:

(HH4) There exist a constant η > 0 and a function ϕ ∈ Cv(A;U) with ϕ(0) = 0,

where v ∈ {1,2, . . .} and A = {x ∈ ℜn : |x| < 4η}, such that

Ψ
(

x,ϕ(x)
)

≤ 0 for all x ∈ ℜn with |x| ≤ 2η (6.162)

then, the mapping k is time invariant.

Proof of Theorem 6.2 Implications (a) ⇒ (b) is obvious, and we prove implications

(c) ⇒ (a) and (b) ⇒ (c).

(c) ⇒ (a) Suppose that (1.3) admits an ORCLF. Without loss of generality, we

may assume that the function q ∈ E involved in (6.159) is positive for all t ≥ 0.

Furthermore, define

Ξ(t, x,u) := Ψ (t, x,u) − 8q(t) (t, x, u) ∈ ℜ+ × ℜn × U (6.163)

Ξ(t, x,u) := Ξ(0, x,u) (t, x,u) ∈ (−1,0) × ℜn × U (6.164)

The definition of Ξ , given by (6.163), (6.164), guarantees that the function Ξ :
(−1,+∞) × ℜn × U → ℜ ∪ {+∞} with Ξ(t,0,0) = −8q(max{0, t}) for all t >

−1 is such that, for each u ∈ U , the mapping (t, x) → Ξ(t, x,u) is upper semi-

continuous. By virtue of (6.159) and the upper semi-continuity of Ξ , it follows that
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for each (t, x) ∈ (−1,+∞) × ℜn, there exist u = u(t, x) ∈ U and δ = δ(t, x) ∈
(0, t + 1) such that

Ξ
(

τ, y,u(t, x)
)

≤ 0

∀(τ, y) ∈
{

(τ, y) ∈ (−1,+∞) × ℜn : |τ − t | + |y − x| < δ
}

(6.165)

Using (6.165) and standard partition of unity arguments, we can determine se-

quences {(ti, xi) ∈ (−1,+∞) × ℜn}∞i=1, {ui ∈ U}∞i=1, and {δi}∞i=1 with δi =
δ(ti, xi) ∈ (0, ti + 1) associated with a sequence of open sets {Ωi}∞i=1 with

Ωi ⊆
{

(τ, y) ∈ (−1,+∞) × ℜn : |τ − ti | + |y − xi | < δi

}

(6.166)

forming a locally finite open covering of (−1,+∞) × ℜn such that

Ξ(τ, y,ui) ≤ 0 ∀(τ, y) ∈ Ωi (6.167)

Also, a family of smooth functions {θi}∞i=1 with θi(t, x) ≥ 0 for all (t, x) ∈
(−1,+∞) × ℜn can be determined with

supp θi ⊆ Ωi (6.168)
∞
∑

i=1

θi(t, x) = 1 ∀(t, x) ∈ (−1,+∞) × ℜn (6.169)

The facts that Ξ(t,0,0) = −8q(t) < 0 for all t ≥ 0 and that the mapping (t, x) →
Ξ(t, x,0) is upper semi-continuous imply that for every t ≥ 0, there exists δ(t) > 0

such that Ξ(τ, y,0) ≤ 0 for all (τ, y) ∈ ℜ+ ×ℜn with |τ − t |+ |y| ≤ δ(t). Utilizing

the compactness of [0, T ] for every T ≥ 0, we conclude that for every T ≥ 0, there

exists δ̃(T ) > 0 such that

(τ, y) ∈ [0, T ] × ℜn and |y| ≤ δ̃(T ) ⇒ Ξ(τ, y,0) ≤ 0 (6.170)

Define the following function:

η̃(t) := 1

2

(

[t] + 1 − t
)

δ̃
(

[t] + 1
)

+ 1

2

(

t − [t]
)

δ̃
(

[t] + 2
)

t ≥ 0 (6.171)

where [t] denotes the integer part of t ≥ 0. Notice that by definition (6.171) it fol-

lows that η̃(k) = 1
2
δ̃(k + 1), limt→(k+1)− η̃(t) = 1

2
δ̃(k + 2) for all k ∈ Z+, which

implies that η̃ is continuous. Moreover, definition (6.171) gives

0 < η̃(t) ≤ 1

2
max

{

δ̃
(

[t] + 1
)

; δ̃
(

[t] + 2
)}

for all t ≥ 0,

which, in conjunction with (6.170) and the inequality t ≤ [t] + 1 ≤ [t] + 2, implies

|x| ≤ 2η̃(t) ⇒ Ξ(t, x,0) ≤ 0 (6.172)

Let η̄ : ℜ+ → (0,+∞) be the positive, continuous, and nonincreasing function de-

fined by η̄(t) := min0≤τ≤t η̃(τ ). Let ϕ ∈ C∞(ℜ; [0,1]) be a smooth function with
∫ 1

0 ϕ(s) ds > 0, ϕ(s) = 0 for all s ≤ 0 and s ≥ 1. Define η(t) :=
∫ 1

0 ϕ(s)η̄(t + s) ds,

which is a C∞ positive function that satisfies η(t) ≤ η̃(t) for all t ≥ 0. Consequently,

by virtue of (6.172), we obtain

|x| ≤ 2η(t) ⇒ Ξ(t, x,0) ≤ 0 (6.173)
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Let h ∈ C∞(ℜ; [0,1]) be a smooth nondecreasing function with h(s) = 0 for all

s ≤ 0 and h(s) = 1 for all s ≥ 1. Define

k(t, x) := h

( |x|2 − 2η2(t)

2η2(t)

) ∞
∑

i=1

θi(t, x)ui (6.174)

Clearly, k as defined by (6.174) is a smooth function with k(t,0) = 0 for all t ≥ 0.

Moreover, since k(t, x) is defined as a (finite) convex combination of ui ∈ U and

0 ∈ U , we have k(t, x) ∈ U for all (t, x) ∈ ℜ+ × ℜn.

Let (t, x) ∈ ℜ+ × ℜn with |x| ≥ 2η(t) and define a finite set J (t, x) = {j ∈
{1,2, . . .}; θj (t, x) �= 0}. By virtue of (6.160) and definition (6.174), we get

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0

(

t, x;f
(

t, d, x,
∑

j∈J (t,x)

θj (t, x)uj

))

≤ −ρ
(

V (t, x)
)

+ max
j∈J (t,x)

{

Ψ (t, x,uj )
}

(6.175)

Notice that for each j ∈ J (t, x), we obtain from (6.168) that (t, x) ∈ Ωj . Conse-

quently, by virtue of (6.167) and definition (6.163), we have that Ψ (t, x,uj ) ≤ 8q(t)

for all j ∈ J (t, x). Combining the previous inequality with inequality (6.175), we

conclude that the following property holds for all (t, x, d) ∈ ℜ+ × ℜn × D with

|x| ≥ 2η(t):

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

≤ −ρ
(

V (t, x)
)

+ 8q(t) (6.176)

Let (t, x) ∈ ℜ+ × ℜn with |x| ≤
√

2η(t). Notice that by definition (6.174) we get

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0
(

t, x;f (t, d, x,0)
)

By virtue of (6.173), (6.163), and the above inequality, we conclude that (6.176)

holds as well for all (t, x) ∈ ℜ+ × ℜn with |x| ≤
√

2η(t). Finally, for the case

(t, x) ∈ ℜ+×ℜn with
√

2η(t) < |x| < 2η(t), let J (t, x) = {j ∈ {1,2, . . .}; θj (t, x) �=
0} and notice that from (6.160) we get

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0

(

t, x;f
(

t, d, x,h

( |x|2 − 2η2(t)

2η2(t)

)

∑

j∈J (t,x)

θj (t, x)uj

))

≤ −ρ
(

V (t, x)
)

+ max
{

Ψ (t, x,0),Ψ (t, x,uj ), j ∈ J (t, x)
}

(6.177)

Taking into account definition (6.163) and inequalities (6.167), (6.168), (6.173),

and (6.177), we conclude that (6.176) holds as well for all (t, x) ∈ ℜ+ × ℜn with√
2η(t) < |x| < 2η(t). Consequently, (6.176) holds for all (t, x) ∈ ℜ+ × ℜn.

It follows from (6.176) and Theorem 2.4 in Chap. 2 that system (1.3) with u =
k(t, x) is RGAOS.
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(b) ⇒ (c) Since system (1.3) with u = k(t, x) is RGAOS and since f (t, d, x,

k(t, x)) is Lipschitz with respect to x on each bounded subset of ℜ+ × ℜn × D, it

follows from Theorem 2.1 in Chap. 2 and Theorem 3.5 in Chap. 3 that there exists a

function V ∈ C0(ℜ+ × ℜn;ℜ+) being locally Lipschitz and functions a1, a2 ∈ K∞
and β,µ ∈ K+ such that

a1

(∣

∣

(

µ(t)x,H(t, x)
)∣

∣

)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ ℜ+ × ℜn (6.178)

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

≤ −V (t, x) ∀(t, x) ∈ ℜ+ × ℜn (6.179)

We next prove that V is an ORCLF for (1.3). Obviously, property (i) of Defini-

tion 6.2 is a consequence of inequality (6.178). Define, for all (t, x) ∈ ℜ+ × ℜn,

Ψ (t, x,u) := LV

(

t + |x|
)

LU

(

t + |x| + 2
∣

∣k(t, x)
∣

∣+
∣

∣u − k(t, x)
∣

∣

)∣

∣u − k(t, x)
∣

∣

(6.180)

where LU : ℜ+ → ℜ+ and LV : ℜ+ → ℜ+ are continuous nondecreasing functions

satisfying
∣

∣f (t, d, x,u) − f (t, d, x, v)
∣

∣≤ LU

(

t + |x| + |u| + |v|
)

|u − v|
∀(t, x, d,u, v) ∈ ℜ+ × ℜn × D × U × U (6.181)

and
∣

∣V (t, y) − V (t, x)
∣

∣≤ LV

(

t + |x| + |y|
)

|y − x| ∀(t, x) ∈ ℜ+ × ℜn (6.182)

Inequality (6.159) with q(t) ≡ 0 is an immediate consequence of definition (6.180).

Clearly, definition (6.180) implies Ψ (t,0,0) = 0 for all t ≥ 0.

Notice that for every (t, x) ∈ ℜ+×ℜn and all finite sets {u1, u2, . . . , up} ⊂ U and

λi ∈ [0,1] (i = 1, . . . , p) with
∑p

i=1 λi = 1, definition (6.180), in conjunction with

the fact |
∑p

i=1 λiui − k(t, x)| ≤
∑p

i=1 λi |ui − k(t, x)| ≤ maxi=1,...,p |ui − k(t, x)|,
implies that

Ψ

(

t, x,

p
∑

i=1

λiui

)

≤ max
i=1,...,p

Ψ (t, x,ui) (6.183)

By definition (2.128) in Chap. 2 and inequality (6.182) we get, for all (t, x, v,w) ∈
ℜ+ × ℜn × ℜn × ℜn,

V 0(t, x;v) ≤ LV

(

t + |x|
)

|v − w| + V 0(t, x;w)

Combining the above inequality with inequalities (6.179), (6.181) and defini-

tion (6.180), we obtain, for all (t, x,u) ∈ ℜ+ × ℜn × U ,

sup
d∈D

V 0
(

t, x;f (t, d, x,u)
)

≤ sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

+ LV

(

t + |x|
)

sup
d∈D

∣

∣f (t, d, x,u) − f
(

t, d, x, k(t, x)
)
∣

∣

≤ −V (t, x) + LV

(

t + |x|
)

LU

(

t + |x| +
∣

∣u − k(t, x)
∣

∣+ 2
∣

∣k(t, x)
∣

∣

)
∣

∣u − k(t, x)
∣

∣

≤ −V (t, x) + Ψ (t, x,u)
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The above inequality, in conjunction with (6.183), implies that inequality (6.160)

with ρ(s) := s holds.

The proof is complete. �

Proof of Theorem 6.3 Suppose that (1.3) admits an ORCLF which satisfies (6.159)

with q(t) ≡ 0. Define

Ξ(t, x,u) := Ψ (t, x,u) − 1

2
ρ
(

V (t, x)
)

(t, x,u) ∈ ℜ+ × ℜn × U (6.184)

Ξ(t, x,u) := Ξ(0, x,u) (t, x,u) ∈ (−1,0) × ℜn × U (6.185)

The definition of Ξ , given by (6.184) and (6.185), guarantees that the function

Ξ : (−1,+∞) × ℜn × U → ℜ ∪ {+∞} with Ξ(t,0,0) = 0 for all t > −1 is such

that, for each u ∈ U , the mapping (t, x) → Ξ(t, x,u) is upper semi-continuous.

By virtue of (6.159) with q(t) ≡ 0 and the upper semi-continuity of Ξ , it fol-

lows that for each (t, x) ∈ (−1,+∞) × (ℜn\{0}), there exist u = u(t, x) ∈ U and

δ = δ(t, x) ∈ (0,min(1, t + 1)) such that

Ξ
(

τ, y,u(t, x)
)

≤ 0

∀(τ, y) ∈
{

(τ, y) ∈ (−1,+∞) × ℜn : |τ − t | + |y − x| < δ
}

(6.186)

Using (6.186) and standard partition of unity arguments, we can determine se-

quences {(ti, xi) ∈ (−1,+∞) × (ℜn\{0})}∞i=1, {ui ∈ U}∞i=1, and {δi}∞i=1 with δi =
δ(ti, xi) ∈ (0,min(1, ti + 1)), associated with a sequence of open sets {Ωi}∞i=1 with

Ωi ⊆
{

(τ, y) ∈ (−1,+∞) × ℜn : |τ − ti | + |y − xi | < δi

}

(6.187)

forming a locally finite open covering of (−1,+∞) × (ℜn\{0}) and such that

Ξ(τ, y,ui) ≤ 0 ∀(τ, y) ∈ Ωi (6.188)

Also, a family of smooth functions {θi}∞i=1 with θi(t, x) ≥ 0 for all (t, x) ∈
(−1,+∞) × (ℜn\{0}) can be determined with

supp θi ⊆ Ωi (6.189)
∞
∑

i=1

θi(t, x) = 1 ∀(t, x) ∈ (−1,+∞) ×
(

ℜn\{0}
)

(6.190)

We define

k̃(t, x) :=
∞
∑

i=1

θi(t, x)ui for t ≥ 0, x �= 0 (6.191)

k̃(t,0) := 0 for t ≥ 0 (6.192)

k(t, x) :=
(

1 − h

( |x|2 − 2η2(t)

2η2(t)

))

ϕ
(

t,PrQ(t)(x)
)

+ h

( |x|2 − 2η2(t)

2η2(t)

)

k̃(t, x) (6.193)
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where η ∈ K+ and ϕ ∈ Cv(A;U) are the functions involved in hypothesis (HH3),

h ∈ C∞(ℜ; [0,1]) is a smooth nondecreasing function with h(s) = 0 for all s ≤ 0

and h(s) = 1 for all s ≥ 1, and Q(t) = {x ∈ ℜn : |x| ≤ 3η(t)}. Clearly, k as defined

by (6.193) is of class Cv(ℜ+ × ℜn;U) with k(t,0) = 0 for all t ≥ 0.

Next, we show that

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

≤ −1

2
ρ
(

V (t, x)
)

∀(t, x, d) ∈ ℜ+ × ℜn × D (6.194)

Let (t, x) ∈ ℜ+ × ℜn with |x| ≤
√

2η(t). Notice that by definition (6.193) we get

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0
(

t, x;f
(

t, d, x,ϕ(t, x)
))

The above inequality, in conjunction with inequalities (6.160), (6.161), implies that

inequality (6.194) holds for all (t, x) ∈ ℜ+ × ℜn with |x| ≤
√

2η(t). For (t, x) ∈
ℜ+ × (ℜn\{0}) with |x| ≥ 2η(t), define J (t, x) = {j ∈ {1,2, . . .}; θj (t, x) �= 0} (a fi-

nite set). Notice that by virtue of (6.160) and definitions (6.191), (6.193), we get

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0

(

t, x;f
(

t, d, x,
∑

j∈J (t,x)

θj (t, x)uj

))

≤ −ρ
(

V (t, x)
)

+ max
j∈J (t,x)

{

Ψ (t, x,uj )
}

(6.195)

Notice that for each j ∈ J (t, x), we obtain from (6.189) that (t, x) ∈ Ωj . Con-

sequently, by virtue of (6.188) and definition (6.184), we have that Ψ (t, x,uj ) ≤
1
2
ρ(V (t, x)), for all j ∈ J (t, x). Combining the previous inequality with inequal-

ity (6.195), we conclude that (6.194) holds.

In a similar way, we can show that inequality (6.194) holds for all (t, x) ∈ ℜ+ ×
ℜn with

√
2η(t) < |x| < 2η(t).

If the ORCLF V and the function Ψ involved in property (ii) of Definition 6.2 are

time-independent, then the partition of unity arguments used above may be repeated

on ℜn\{0} instead of ℜ+ × (ℜn\{0}). If in addition hypothesis (HH4) holds, then

the constructed feedback is time invariant.

The fact that system (1.3) with u = k(t, x) is URGAOS follows directly from

Theorem 2.4 in Chap. 2 and inequality (6.194). The proof is complete. �

6.6.3 Control Systems Described by ODEs: Remarks and Feedback

Design

The problem with Definition 6.2 of the ORCLF that might arise in practice is the as-

sumption of the knowledge of the function Ψ : ℜ+ ×ℜn ×U → ℜ∪{+∞} involved

in property (ii) of Definition 6.2. Particularly, the following problem arises:
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Problem (P) Consider system (1.3) under hypotheses (H1–4) and (HH2). Is the

function V : ℜ+ × ℜn → ℜ+ involved in the following hypothesis an ORCLF for

system (1.3)?

(HH5) The function V : ℜ+ × ℜn → ℜ+ is a C1 function which satisfies prop-

erty (i) of Definition 6.1, and there exist a function q ∈ E and a C0 positive definite

function ρ : ℜ+ → ℜ+ such that the following inequality holds:

inf
u∈U

{

∂V

∂t
(t, x) + sup

d∈D

(

∂V

∂x
(t, x)f (t, d, x,u)

)}

≤ −ρ
(

V (t, x)
)

+ q(t) ∀(t, x) ∈ ℜ+ × ℜn (6.196)

The proof of implication (b) ⇒ (c) of Theorem 6.2 gives insights for the solution to

Problem (P): If there exist a continuous function k : ℜ+ × ℜn → U with k(t,0) = 0

for all t ≥ 0, a function q̃ ∈ E , and a C0 positive definite function ρ̃ : ℜ+ → ℜ+such

that

∂V

∂t
(t, x) + sup

d∈D

(

∂V

∂x
(t, x)f

(

t, d, x, k(t, x)
)

)

≤ −ρ̃
(

V (t, x)
)

+ q̃(t) ∀(t, x) ∈ ℜ+ × ℜn (6.197)

then, V is an ORCLF for (1.3). Particularly, the function Ψ : ℜ+ × ℜn × U →
ℜ ∪ {+∞} involved in property (ii) of Definition 6.2 may be defined by

Ψ (t, x,u) := ρ̃
(

V (t, x)
)

+ sup

{

∂V

∂t
(t, x) + ∂V

∂x
(t, x)f (t, d, x, v) :

d ∈ D,v ∈ Uwith
∣

∣v − k(t, x)
∣

∣≤
∣

∣u − k(t, x)
∣

∣

}

(6.198)

It is easy to check that Ψ : ℜ+ × ℜn × U → ℜ ∪ {+∞} as defined by (6.198)

satisfies inequalities (6.159), (6.160) of Definition 6.2, following exactly the same

procedure as in the proof of implication (b) ⇒ (c) of Theorem 6.2. Moreover, by

virtue of Theorem 6.2, if V : ℜ+×ℜn → ℜ+ is an ORCLF for system (1.3), then the

proof of implication (c) ⇒ (a) of Theorem 6.2 shows that there exist a continuous

function k : ℜ+ × ℜn → U with k(t,0) = 0 for all t ≥ 0, a function q̃ ∈ E , and a

C0 positive definite function ρ̃ : ℜ+ → ℜ+such that (6.197) holds. Consequently,

V : ℜ+ × ℜn → ℜ+ is an ORCLF for (1.3) under hypotheses (H1–4) if and only if

there exist a continuous function k : ℜ+ × ℜn → U with k(t,0) = 0 for all t ≥ 0,

a function q̃ ∈ E , and a C0 positive definite function ρ̃ : ℜ+ → ℜ+such that (6.197)

holds.

The problem with the above solution to Problem (P) is that we can check if

V : ℜ+ × ℜn → ℜ+ is an ORCLF for (1.3) by constructing a feedback stabilizer

for (1.3). On the other hand, our goal in practice is to construct a desired feedback

stabilizer based on the mere knowledge of the Lyapunov function V : ℜ+ × ℜn →
ℜ+ under hypotheses (H1–4), (HH2), and (HH5). Consequently, the above solution

to Problem (P) cannot be helpful for feedback construction purposes.
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The rest of this paragraph provides sufficient conditions for establishing that

V : ℜ+ × ℜn → ℜ+ under hypotheses (H1–4), (HH2), and (HH5) is an ORCLF

for (1.3).

Indeed, if the mapping u → ∂V
∂ x

(t, x)f (t, d, x,u) is quasi-convex for each fixed

(t, x, d) ∈ ℜ+ × ℜn × D, then the mapping u → ∂V
∂t

(t, x) + supd∈D( ∂V
∂x

(t, x) ×
f (t, d, x,u)) is quasi-convex for each fixed (t, x) ∈ ℜ+ × ℜn. Thus, property

(ii) of Definition 6.2 is satisfied with Ψ (t, x,u) := ρ(V (t, x)) + ∂V
∂t

(t, x) +
supd∈D( ∂V

∂x
(t, x)f (t, d, x,u)). This is exactly the case arising in affine-in-control

systems: for affine-in-control systems, the mapping u → ∂V
∂x

(t, x)f (t, d, x,u) is

convex.

Example 6.6.1 For an autonomous affine-in-control system

ẋ = f (d, x) + g(d, x)u

x ∈ ℜn, u ∈ ℜ, d ∈ D (6.199)

where f,g : D × ℜn → ℜn are locally Lipschitz mappings with f (d,0) = 0 for all

d ∈ D, D ⊂ ℜl is a compact set, a SRCLF is a locally Lipschitz, positive definite

function V : ℜn → ℜ+, with {x ∈ ℜn : V (x) ≤ a} being a compact set for every

a ≥ 0, which satisfies

V 0
(

x;f (x) + g(x)u
)

≤ a(x) + b(x)u ∀(x,u) ∈ ℜn × ℜ (6.200)

for certain locally Lipschitz mappings a, b : ℜn → ℜ with a(0) = b(0) = 0 and such

that

b(x) = 0 and x �= 0 ⇒ a(x) < 0 (6.201)

a(x) + b(x)ϕ(x) < 0 for all x ∈ A\{0} (6.202)

where ϕ ∈ C0(A;ℜ) is a locally Lipschitz function with ϕ(0) = 0, A = {x ∈ ℜn :
|x| < 4η}, and η > 0 is a constant.

A locally Lipschitz version of the feedback law proposed by Sontag [53] is de-

fined, for x �= 0, by

k̃(x) :=

⎧

⎨

⎩

0 if b(x) = 0

− a(x)+
√

a2(x)+b4(x)

b(x)
if b(x) �= 0

(6.203)

k(x) :=
(

1 − h

( |x|2 − 2η2

2η2

))

ϕ
(

PrQ(x)
)

+ h

( |x|2 − 2η2

2η2

)

k̃(x) (6.204)

where h ∈ C0(ℜ; [0,1]) is a locally Lipschitz, nondecreasing function with h(s) = 0

for all s ≤ 0 and h(s) = 1 for all s ≥ 1, and Q = {x ∈ ℜn : |x| ≤ 3η}.
Using the arguments in [62], it can be shown that the mapping k : ℜn → ℜ as

defined by (6.203), (6.204) is a locally Lipschitz mapping. In fact, if the functions

a, b : ℜn → ℜ, h ∈ C0(ℜ; [0,1]), and ϕ ∈ C0(A;ℜ) are of class Cv , where v ∈
{1,2, . . .}, then k : ℜn → ℜ as defined by (6.203), (6.204) is also a mapping of

class Cv .
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Inequality (6.200) shows that V 0(x;f (x) + g(x)k(x)) ≤ −P(x) for all x ∈ ℜn,

where

P(x) := p(x) for all |x| ≥ 2η

P (x) := a(x) + b(x)ϕ(x) for all |x| ≤
√

2η

P (x) :=
(

1 − h

( |x|2 − 2η2

2η2

))

(

a(x) + b(x)ϕ(x)
)

+ h

( |x|2 − 2η2

2η2

)

p(x)

for all
√

2η < |x| < 2η

where

p(x) :=
{

a(x) if b(x) = 0

−
√

a2(x) + b4(x) if b(x) �= 0

By virtue of (6.202), P : ℜn → ℜ+ is continuous and positive definite. It follows

from Proposition 2.2 in Chap. 2 that V : ℜn → ℜ+ is a SRCLF for (6.199), which

satisfies property (ii) of Definition 6.2 with Ψ (x,u) := P(x) + a(x) + b(x)u.

The following lemma helps us to give sufficient conditions for a function satis-

fying hypothesis (HH5) to be an ORCLF.

Lemma 6.4 For a mapping f : A × U → ℜ, where U ⊆ ℜm is a closed convex set,

define the set-valued map

A × U ∋ (x,u) → U (x,u) := co
{

v ∈ U : f (x, v) ≤ f (x,u)
}

(6.205)

and the mapping ψ : A × U → ℜ ∪ {+∞} by

ψ(x,u) := sup
{

f (x, v) : v ∈ U (x,u)
}

(6.206)

Then for every finite set {u1, u2, . . . , up} ⊂ U and for every λi ∈ [0,1] (i = 1, . . . , p)

with
∑p

i=1 λi = 1, it holds that

f

(

x,

p
∑

i=1

λiui

)

≤ max
{

ψ(x,ui), i = 1, . . . , p
}

∀x ∈ A (6.207)

Proof Consider a finite set {u1, u2, . . . , up} ⊂ U and λi ∈ [0,1] (i = 1, . . . , p) with
∑p

i=1 λi = 1. Let u ∈ {u1, u2, . . . , up} be such that f (x,u) = maxi=1,...,p f (x,ui).

It follows from definition (6.205) that
∑p

i=1 λiui ∈ U (x,u), and consequently,

by definition (6.206), we get f (x,
∑p

i=1 λiui) ≤ ψ(x,u). The previous inequal-

ity combined with the fact that u ∈ {u1, u2, . . . , up} (which implies ψ(x,u) ≤
max{ψ(x,ui), i = 1, . . . , p}) establishes (6.207). The proof is complete. �

The following lemma is a direct consequence of the previous lemma.

Lemma 6.5 Let V : ℜ+ × ℜn → ℜ+ be a C1 function which satisfies the following

properties:
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(i) there exist functions q ∈ E and ρ : ℜ+ → ℜ+ being C0 positive definite such

that for all (t, x) ∈ ℜ+ × ℜn, there exists u ∈ U with U (t, x,u) ⊆ Ũ (t, x) �= ∅,

where

U (t, x,u) := co

{

v ∈ U : sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x, v)

)

≤ sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x,u)

)}

Ũ (t, x) :=
{

v ∈ U : ∂V

∂t
(t, x) + sup

d∈D

(

∂V

∂x
(t, x)f (t, d, x, v)

)

≤ −ρ
(

V (t, x)
)

+ q(t)

}

,

(ii) for each fixed u ∈ U , the mapping (t, x) → sup{supd∈D( ∂V
∂x

(t, x)f (t, d, x, v)) :
v ∈ U (t, x,u)} is upper semi-continuous.

Then, property (ii) of Definition 6.2 holds with Ψ (t, x,u) := ρ(V (t, x))+ ∂V
∂t

(t, x)+
sup{supd∈D( ∂V

∂x
(t, x)f (t, d, x, v)) : v ∈ U (t, x,u)}.

It should be noted that if the mapping u → ∂V
∂x

(t, x)f (t, d, x,u) is quasi-convex

for each fixed (t, x, d) ∈ ℜ+ × ℜn × D, then the set-valued map

U (t, x,u) := co

{

v ∈ U : sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x, v)

)

≤ sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x,u)

)}

in (i) of Lemma 6.5 satisfies

U (t, x,u) =
{

v ∈ U : sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x, v)

)

≤ sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x,u)

)}

Consequently, property (i) of Lemma 6.5 becomes equivalent to the existence of

u ∈ U with ∂V
∂t

(t, x) + supd∈D( ∂V
∂x

(t, x)f (t, d, x,u)) ≤ −ρ(V (t, x)) + q(t).

The following example illustrates the use of Lemma 6.5 for a special class of

nonlinear systems.

Example 6.6.2 Consider system (1.3) under hypotheses (H1–3) with m = 1, U = ℜ,

and a C1 function V : ℜ+ × ℜn → ℜ+ which satisfies property (i) of Definition 2.6

and

∂V

∂t
(t, x) + sup

d∈D

(

∂V

∂x
(t, x)f (t, d, x,u)

)

= a(t, x)u2 + b(t, x)u + c(t, x) (6.208)

inf
u∈ℜ

(

a(t, x)u2 + b(t, x)u + c(t, x)
)

≤ −ρ
(

V (t, x)
)

+ q(t) (6.209)

for all (t, x,u) ∈ ℜ+ × ℜn × U , appropriate continuous mappings a, b, c : ℜ+ ×
ℜn → ℜ with a(t,0) = b(t,0) = c(t,0) = 0 for all t ≥ 0, a function q ∈ E , and
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a C0 positive definite function ρ : ℜ+ → ℜ+. We next prove that V : ℜ+ × ℜn →
ℜ+ is an ORCLF for (1.3), provided that the following implications hold:

a(t, x) < 0 ⇒ −
b2(t, x)

4a(t, x)
+ c(t, x) ≤ −ρ

(

V (t, x)
)

+ q(t) (6.210)

For every sequence
{

(ti, xi)
}∞
i=0

with a(ti, xi) < 0

and (ti, xi) → (t, x) with a(t, x) = 0, it holds that
b2(ti, xi)

|a(ti, xi)|
→ 0 (6.211)

Following the notation of Lemma 6.5, define

U (t, x,u) = co
{

v ∈ ℜ : a(t, x)v2 + b(t, x)v ≤ a(t, x)u2 + b(t, x)u
}

Ũ (t, x) =
{

v ∈ ℜ : a(t, x)v2 + b(t, x)v + c(t, x) ≤ −ρ
(

V (t, x)
)

+ q(t)
}

Notice that

1. If a(t, x) > 0, then for every u ∈ ℜ, the set {v ∈ ℜ : a(t, x)v2 + b(t, x)v ≤
a(t, x)u2 + b(t, x)u} is closed and convex, and consequently, there exists u ∈
ℜ with U (t, x,u) ⊆ Ũ (t, x) (specifically, by virtue of (6.209), the inclusion

U (t, x,u) ⊆ Ũ (t, x) holds for u = − b(t,x)
2a(t,x)

).

2. If a(t, x) = 0, then for every u ∈ ℜ, the set {v ∈ ℜ : b(t, x)v ≤ b(t, x)u} is closed

and convex, and consequently, there exists u ∈ ℜ with U (t, x,u) ⊆ Ũ (t, x).

Specifically, if b(t, x) �= 0, then the inclusion U (t, x,u) ⊆ Ũ (t, x) holds for

u = − c(t,x)+ρ(V (t,x))
b(t,x)

. If b(t, x) = 0, then by (6.209) the inclusion U (t, x,u) ⊆
Ũ (t, x) holds for every u ∈ ℜ.

3. If a(t, x) < 0, then, for every u �= − b(t,x)
2a(t,x)

, the set {v ∈ ℜ : a(t, x)v2 +b(t, x)v ≤
a(t, x)u2 + b(t, x)u} is not convex, and there exist v1, v2 ∈ ℜ with v1 < v2 such

that
{

v ∈ ℜ : a(t, x)v2 + b(t, x)v ≤ a(t, x)u2 + b(t, x)u
}

= (−∞, v1] ∪ [v2,+∞)

On the other hand, if u = − b(t,x)
2a(t,x)

, then it holds that {v ∈ ℜ : a(t, x)v2 +
b(t, x)v ≤ a(t, x)u2 + b(t, x)u} = ℜ. Consequently, if a(t, x) < 0, then for ev-

ery u ∈ ℜ, it holds that U (t, x,u) = ℜ. However, in this case implication (6.210)

guarantees that Ũ (t, x) = ℜ and therefore the inclusion U (t, x,u) ⊆ Ũ (t, x)

holds for every u ∈ ℜ.

Thus, property (i) of Lemma 6.5 holds for the function V : ℜ+ × ℜn → ℜ+.

Since Ψ (t, x,u) := ρ(V (t, x)) + ∂V
∂t

(t, x) + sup{supd∈D( ∂V
∂x

(t, x)f (t, d, x, v)) :
v ∈ U (t, x,u)}, by virtue of all the above specifications for the set-valued map

U (t, x,u), we get

Ψ (t, x,u) := ρ
(

V (t, x)
)

+
{

a(t, x)u2 + b(t, x)u + c(t, x) if a(t, x) ≥ 0

− b2(t,x)
4a(t,x)

+ c(t, x) if a(t, x) < 0
(6.212)



6.6 Lyapunov Functionals: The Control Lyapunov Functional 305

Notice that implication (6.211) guarantees that property (ii) of Lemma 6.5 holds

and consequently property (ii) of Definition 6.2 holds with Ψ defined by (6.212). It

should also noticed that other choices for the mapping Ψ (t, x,u) are possible. For

example, the selection

Ψ (t, x,u) := ρ
(

V (t, x)
)

+
{

a(t, x)u2 + b(t, x)u + c(t, x) if a(t, x) ≥ 0

b(t, x)u + c(t, x) if a(t, x) < 0
(6.213)

guarantees that V : ℜ+ × ℜn → ℜ+ is an ORCLF for (1.3), provided that (6.208),

(6.209), and the following implication hold:

a(t, x) < 0 b(t, x) = 0 ⇒ c(t, x) ≤ −ρ
(

V (t, x)
)

+ q(t) (6.214)

Notice that if (6.214) holds then property (ii) of Definition 6.2 holds with Ψ de-

fined by (6.213). Moreover, notice that if implication (6.210) holds, then implication

(6.214) automatically holds.

The following lemma provides a “patchy” construction by combining the formula

provided by Lemma 6.5 and the knowledge of appropriate functions that can be used

in certain regions of ℜ+ × ℜn as feedback functions.

Lemma 6.6 Let V : ℜ+ × ℜn → ℜ+ be a C1 function and suppose that there exist

sets Ωi ⊆ ℜ+ × ℜn (i = 0, . . . , p) with Ωi ∩ Ωj = ∅ for i �= j and
⋃

i=0,...,p Ωi =
ℜ+ ×ℜn, functions ki : Ωi → U (i = 1, . . . , p), a function q ∈ E , and a C0 positive

definite function ρ : ℜ+ → ℜ+ such that

1. for every (t, x) ∈ Ω0, there exists u ∈ U with U (t, x,u) ⊆ Ũ (t, x) �= ∅, where

U (t, x,u) := co

{

v ∈ U : sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x, v)

)

≤ sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x,u)

)}

Ũ (t, x) :=
{

v ∈ U : ∂V

∂t
(t, x) + sup

d∈D

(

∂V

∂x
(t, x)f (t, d, x, v)

)

≤ −ρ(V (t, x)) + q(t)

}

,

2. for all i = 1, . . . , p and (t, x) ∈ Ωi , it holds that

∂V

∂t
(t, x) + sup

d∈D

(

∂V

∂x
(t, x)f

(

t, d, x, ki(t, x)
)

)

≤ −ρ
(

V (t, x)
)

+ q(t)
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Consider the function Ψ : ℜ+ × ℜn × U → ℜ ∪ {+∞} defined by

Ψ (t, x,u) := ρ
(

V (t, x)
)

+ ∂V

∂t
(t, x)

+ sup

{

sup
d∈D

(

∂V

∂x
(t, x)f (t, d, x, v)

)

: v ∈ U (t, x,u)

}

for (t, x) ∈ Ω0

(6.215)

Ψ (t, x,u) := ρ
(

V (t, x)
)

+ sup

{

∂V

∂t
(t, x) + ∂V

∂x
(t, x)f (t, d, x, v) : d ∈ D,v ∈ U

with
∣

∣v − ki(t, x)
∣

∣≤
∣

∣u − ki(t, x)
∣

∣

}

for (t, x) ∈ Ωi, i = 1, . . . , p (6.216)

and suppose that Ψ : ℜ+ × ℜn × U → ℜ ∪ {+∞} is upper semi-continuous.

Then property (ii) of Definition 6.2 holds with Ψ : ℜ+ × ℜn × U → ℜ ∪ {+∞}
defined by (6.215), (6.216).

The following example illustrates the efficiency of Lemma 6.6. It shows that the

knowledge of appropriate functions that can be used in certain regions of ℜ+ × ℜn

as feedback functions helps us to obtain less conservative results.

Example 6.6.3 Consider system (1.3) under hypotheses (H1–3) with m = 1, U = ℜ,

and a C1 function V : ℜ+ × ℜn → ℜ+ which satisfies property (i) of Definition 6.1

and (6.208), (6.209) for appropriate continuous mappings a, b, c : ℜ+ × ℜn → ℜ
with a(t,0) = b(t,0) = c(t,0) = 0 for all t ≥ 0, a function q ∈ E , and a C0 positive

definite function ρ : ℜ+ → ℜ+. We showed in Example 6.6.2 that V : ℜ+ × ℜn →
ℜ+ is an ORCLF for (1.3), provided that implications (6.210), (6.211) hold. In

this example, we show that implication (6.211) only is sufficient for guarantee-

ing that V : ℜ+ × ℜn → ℜ+ is an ORCLF for (1.3). Indeed, let Ω0 := {(t, x) ∈
ℜ+ × ℜn : a(t, x) ≥ 0} and Ω1 := {(t, x) ∈ ℜ+ × ℜn : a(t, x) < 0}. Moreover, de-

fine k1 : Ω1 → ℜ as follows: ∀(t, x) ∈ Ω1,

k1(t, x) :=
√

b2(t, x) + 4|a(t, x)c(t, x)| + 4|a(t, x)|ρ(V (t, x)) − b(t, x)

2a(t, x)
(6.217)

The specification of the set-valued map U (t, x,u) for (t, x) ∈ Ω0 has been given in

Example 6.6.2. Therefore, the function Ψ : ℜ+ × ℜn × U → ℜ ∪ {+∞} defined by

Ψ (t, x,u) := ρ
(

V (t, x)
)

+ a(t, x)u2 + b(t, x)u + c(t, x)

for (t, x) ∈ Ω0 (6.218)

Ψ (t, x,u) := ρ
(

V (t, x)
)

+ sup
{

a(t, x)v2 + b(t, x)v + c(t, x) :
∣

∣v − k1(t, x)
∣

∣≤
∣

∣u − k1(t, x)
∣

∣

}

for (t, x) ∈ Ω1 (6.219)
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Clearly, Ψ (t, x,u) as defined by (6.218) is continuous on the interior of Ω0. Fur-

thermore, it follows from the continuity of a(t, x), b(t, x), c(t, x), k1(t, x) on Ω1

and Theorem 1.4.16 in [7] that Ψ (t, x,u) as defined by (6.219) is upper semi-

continuous on Ω1. The reader should notice that implication (6.211) guarantees

that Ψ : ℜ+ × ℜn × U → ℜ ∪ {+∞} is upper semi-continuous (since Ψ (t, x,u) ≤
ρ(V (t, x)) − b2(t,x)

4a(t,x)
+ c(t, x) for all (t, x,u) ∈ Ω1 × ℜ). Consequently, Lemma 6.6

guarantees that property (ii) of Definition 6.2 holds with Ψ : ℜ+ × ℜn × U →
ℜ∪{+∞} as defined by (6.218), (6.219) and that V : ℜ+ ×ℜn → ℜ+ is an ORCLF

for (1.3).

6.6.4 Control Systems Described by RFDEs

In this paragraph we present the extension of the Artstein–Sontag methodology to

infinite-dimensional systems described by Retarded Functional Differential Equa-

tions (RFDEs). Particularly, we consider control systems of the form (1.10) under

hypotheses (S1–5) and the following additional hypothesis:

(SS) The mapping u → f (t, d, x,u) is Lipschitz on bounded sets, in the sense that

there exists a continuous, nondecreasing function LU : ℜ+ → ℜ+ with the

following property:
∣

∣f (t, d, x,u) − f (t, d, x, v)
∣

∣≤ LU

(

t + ‖x‖r + |u| + |v|
)

|u − v|

∀(t, x, d,u, v) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

× D × U × U (6.220)

Moreover, the set D ⊂ ℜl is compact, and U ⊆ ℜm is a closed convex set.

We next give the definition of the Output Robust Control Lyapunov Functional

for system (1.10). The definition is in the same spirit with Definition 6.2 of the

notion of ORCLF for finite-dimensional control systems.

Definition 6.3 We say that (1.10) under hypotheses (S1–5) and (SS) admits an Out-

put Robust Control Lyapunov Functional (ORCLF) if there exists an almost Lips-

chitz on bounded sets functional V : ℜ+ × C0([−r,0];ℜn) → ℜ+, referred to as

ORCLF, which satisfies the following properties:

(i) There exist functions a1, a2 ∈ K∞ and β,µ ∈ K+ such that the following in-

equality holds for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn):

max
{

a1

(∥

∥H(t, x)
∥

∥

Y

)

, a1

(

µ(t)‖x‖r

)}

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

(6.221)

(ii) There exists a function Ψ : ℜ+ × ℜp × U → ℜ ∪ {+∞} with Ψ (t,0,0) = 0

for all t ≥ 0 such that for each u ∈ U , the mapping (t, ϕ) → Ψ (t,ϕ,u)

is upper semi-continuous, a function q ∈ E , a continuous mapping ℜ+ ×
C0([−r,0];ℜn) ∋ (t, x) → Φ(t, x) ∈ ℜp being completely locally Lipschitz

with respect to x ∈ C0([−r,0];ℜn) with Φ(t,0) = 0 for all t ≥ 0, and a C0

positive definite function ρ : ℜ+ → ℜ+such that the following inequality holds:

inf
u∈U

Ψ (t,ϕ,u) ≤ q(t) ∀t ≥ 0, ∀ϕ = (ϕ1, . . . , ϕp)′ ∈ ℜp (6.222)
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Moreover, for every finite set {u1, u2, . . . , uN } ⊂ U and for all λi ∈ [0,1] (i =
1, . . . ,N ) with

∑N
i=1 λi = 1, it holds that

sup
d∈D

V 0

(

t, x;f
(

t, d, x,

N
∑

i=1

λiui

))

≤ −ρ
(

V (t, x)
)

max
i=1,...,N

{

Ψ
(

t,Φ(t, x), ui

)}

∀(t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

(6.223)

For the case H(t, x) ≡ x ∈ C0([−r,0];ℜn), we call V : ℜ+×C0([−r,0];ℜn) →
ℜ+ a State Robust Control Lyapunov Functional (SRCLF).

Remark 6.1 Clearly, in the finite-dimensional case, the continuous mapping

Φ(t, x) = (Φ1(t, x), . . . ,Φp(t, x))′ is replaced by the mapping Φ(t, x) := x ∈ ℜn

with p = n. The question of the construction of the mapping Ψ : ℜ+ × ℜp ×
U → ℜ ∪ {+∞} can be handled in exactly the same way as shown in the

previous section, provided that we can find appropriate continuous mappings

Φ(t, x) = (Φ1(t, x), . . . ,Φp(t, x))′, G : ℜ+ × ℜp × U → ℜ with ρ(V (t, x)) +
supd∈D V 0(t, x;f (t, d, x,u)) ≤ G(t,Φ(t, x), u) for all (t, x) ∈ ℜ+ ×
C0([−r,0];ℜn) and infu∈U G(t,ϕ,u) ≤ q(t) for all (t, ϕ) ∈ ℜ+ × ℜp . In this case

all constructions of Ψ : ℜ+ × ℜp × U → ℜ ∪ {+∞} given in the previous sec-

tion may be repeated with the quantity ∂V
∂t

(t, x) + supd∈D( ∂V
∂x

(t, x)f (t, d, x,u)) +
ρ(V (t, x)) replaced by the quantity G(t,ϕ,u).

We are now in a position to state and prove our main results for the infinite-

dimensional case (1.10).

Theorem 6.4 Consider system (1.10) under hypotheses (S1–5) and (SS). The fol-

lowing statements are equivalent:

(a) There exists a continuous mapping k : ℜ+ × C0([−r,0];ℜn) ∋ (t, x) →
k(t, x) ∈ U being completely locally Lipschitz with respect to x ∈
C0([−r,0];ℜn) with k(t,0) = 0 for all t ≥ 0 such that the closed-loop sys-

tem (1.10) with u = k(t, Tr(t)x) is RGAOS.

(b) System (1.10) admits an ORCLF.

Theorem 6.5 Consider system (1.10) under hypotheses (S1–5) and (SS). The fol-

lowing statements are equivalent:

(a) System (1.10) admits an ORCLF which satisfies inequalities (6.221), (6.222)

with β(t) ≡ 1 and q(t) ≡ 0. Moreover, there exist continuous mappings η ∈ K+

and A ∋ (t, ϕ) → K(t,ϕ) ∈ U , where A =
⋃

t≥0{t} × {ϕ ∈ ℜp : |ϕ| < 4η(t)},
which is locally Lipschitz with respect to ϕ with K(t,0) = 0 for all t ≥ 0, such

that

Ψ
(

t,Φ(t, x),K
(

t,Φ(t, x)
))

≤ 0

for all (t, x) ∈ ℜ+ × C0
(

[−r,0];ℜn
)

with
∣

∣Φ(t, x)
∣

∣≤ 2η(t) (6.224)
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where Φ = (Φ1, . . . ,Φp)′ : ℜ+ × C0([−r,0];ℜn) → ℜp and Ψ : ℜ+ × ℜp ×
U → ℜ ∪ {+∞} are the mappings involved in property (ii) of Definition 6.3.

(b) There exists a continuous mapping k : ℜ+ × C0([−r,0];ℜn) ∋ (t, x) →
k(t, x) ∈ U , completely locally Lipschitz with respect to x ∈ C0([−r,0];ℜn)

with k(t,0) = 0 for all t ≥ 0, such that the closed-loop system (1.10) with

u = k(t, Tr (t)x) is URGAOS.

Remark 6.2 From the proof of Theorem 6.5 it will become apparent that if state-

ment (a) of Theorem 6.5 is strengthened so that the ORCLF V , the mappings

Φ = (Φ1, . . . ,Φp)′ : ℜ+ × C0([−r,0];ℜn) → ℜp , Ψ involved in property (ii) of

Definition 6.3, and the mapping K : A → U are time independent, then the continu-

ous mapping k, whose existence is guaranteed by statement (b) of Theorem 6.5,

is time invariant. Moreover, the proof of Theorem 6.4 shows that the feedback

in statement (a) of Theorem 6.4 is actually a C∞ function of t and Φ(t, x); the

reader should notice the analogy with Theorem 6.2 (in the finite-dimensional case

Φ(t, x) := x and p = n).

Proof of Theorem 6.4 (b) ⇒ (a) Suppose that (1.10) admits an ORCLF. Without

loss of generality, we may assume that the function q ∈ E involved in (6.222) is

positive for all t ≥ 0.

Furthermore, define

Ξ(t,ϕ,u) := Ψ (t,ϕ,u) − 8q(t) for (t, ϕ,u) ∈ ℜ+ × ℜp × U (6.225)

Ξ(t,ϕ,u) := Ξ(0, ϕ,u) for (t, ϕ,u) ∈ (−1,0) × ℜp × U (6.226)

The definition of Ξ , given by (6.225), (6.226), guarantees that the function Ξ :
(−1,+∞) × ℜp × U → ℜ ∪ {+∞} with Ξ(t,0,0) = −8q(max{0, t}) for all t >

−1 is such that, for each u ∈ U , the mapping (t, ϕ) → Ξ(t,ϕ,u) is upper semi-

continuous. By virtue of (6.222) and the upper semi-continuity of Ξ , it follows that

for each (t, ϕ) ∈ (−1,+∞) × ℜp , there exist u = u(t, ϕ) ∈ U and δ = δ(t, ϕ) ∈
(0, t + 1) such that

Ξ
(

τ, y,u(t, ϕ)
)

≤ 0

∀(τ, y) ∈
{

(τ, y) ∈ (−1,+∞) × ℜp : |τ − t | + |y − ϕ| < δ
}

(6.227)

Using (6.227) and standard partition of unity arguments, we can determine se-

quences {(ti, ϕi) ∈ (−1,+∞) × ℜp}∞i=1, {ui ∈ U}∞i=1, and {δi}∞i=1 with δi =
δ(ti, ϕi) ∈ (0, ti + 1) associated with a sequence of open sets {Ωi}∞i=1 with

Ωi ⊆
{

(τ, y) ∈ (−1,+∞) × ℜp : |τ − ti | + |y − ϕi | < δi

}

(6.228)

forming a locally finite open covering of (−1,+∞) × ℜp and such that

Ξ(τ, y,ui) ≤ 0 ∀(τ, y) ∈ Ωi (6.229)

Also, a family of smooth functions {θi}∞i=1 with θi(t, ϕ) ≥ 0 for all (t, x) ∈
(−1,+∞) × ℜp can be determined with
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supp θi ⊆ Ωi (6.230)
∞
∑

i=1

θi(t, ϕ) = 1 ∀(t, ϕ) ∈ (−1,+∞) × ℜp (6.231)

Using exactly the same methodology as in the proof of Theorem 6.2 and the facts

that Ξ(t,0,0) = −8q(t) < 0 for all t ≥ 0 and that the mapping (t, ϕ) → Ξ(t,ϕ,0)

is upper semi-continuous, we may establish the existence of a C∞ positive function

η : ℜ+ → (0,+∞) with the following property:

|ϕ| ≤ 2η(t) ⇒ Ξ(t,ϕ,0) ≤ 0 (6.232)

Let h ∈ C∞(ℜ; [0,1]) be a smooth nondecreasing function with h(s) = 0 for all

s ≤ 0 and h(s) = 1 for all s ≥ 1. We define, for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn),

k(t, x) := h

( |Φ(t, x)|2 − 2η2(t)

2η2(t)

) ∞
∑

i=1

θi

(

t,Φ(t, x)
)

ui (6.233)

where Φ = (Φ1, . . . ,Φp)′ : ℜ+ × C0([−r,0];ℜn) → ℜp is the mapping involved

in property (ii) of Definition 6.3. Clearly, k as defined by (6.233) is a mapping

satisfying the property that for every bounded Ω ⊂ ℜ+ × C0([−r,0];ℜn), it holds

that

sup

{ |k(t, x) − k(t, y)|
‖x − y‖r

: (t, x) ∈ Ω,(t, y) ∈ Ω,x �= y

}

< +∞

with k(t,0) = 0 for all t ≥ 0. Moreover, since k(t, x) is defined as a (finite)

convex combination of ui ∈ U and 0 ∈ U , we have k(t, x) ∈ U for all (t, x) ∈
ℜ+ × C0([−r,0];ℜn).

Let (t, x) ∈ ℜ+ × C0([−r,0];ℜn) with |Φ(t, x)| ≥ 2η(t) and define the finite

set J (t, x) = {j ∈ {1,2, . . .}; θj (t,Φ(t, x)) �= 0}. By virtue of (6.223) and defini-

tion (6.233), we get

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0

(

t, x;f
(

t, d, x,
∑

j∈J (t,x)

θj

(

t,Φ(t, x)
)

uj

))

≤ −ρ
(

V (t, x)
)

+ max
j∈J (t,x)

{

Ψ
(

t,Φ(t, x), uj

)}

(6.234)

Notice that for each j ∈ J (t, x), we obtain from (6.230) that (t,Φ(t, x)) ∈
Ωj . Consequently, by virtue of (6.229) and definition (6.225), we have that

Ψ (t,Φ(t, x), uj ) ≤ 8q(t) for all j ∈ J (t, x). Combining the previous inequal-

ity with inequality (6.234), we conclude that the following property holds for all

(t, x, d) ∈ ℜ+ × C0([−r,0];ℜn) × D with |Φ(t, x)| ≥ 2η(t):

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

≤ −ρ
(

V (t, x)
)

+ 8q(t) (6.235)

Let (t, x) ∈ ℜ+ × C0([−r,0];ℜn) with |Φ(t, x)| ≤
√

2η(t). Notice that by defini-

tion (6.233) we get

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0
(

t, x;f (t, d, x,0)
)
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By virtue of (6.223), (6.232), (6.225) and the above inequality, we conclude that

(6.235) holds as well for all (t, x) ∈ ℜ+ ×C0([−r,0];ℜn) with |Φ(t, x)| ≤
√

2η(t).

Finally, for the case (t, x) ∈ ℜ+ × C0([−r,0];ℜn) with
√

2η(t) < |Φ(t, x)| <

2η(t), let J (t, x) = {j ∈ {1,2, . . .}; θj (t,Φ(t, x)) �= 0} and notice that from (6.223)

we obtain

sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

= sup
d∈D

V 0

(

t, x;f
(

t, d, x,h

( |x|2 − 2η2(t)

2η2(t)

)

∑

j∈J (t,x)

θj (t, x)uj

))

≤ −ρ
(

V (t, x)
)

+ max
{

Ψ
(

t,Φ(t, x),0
)

,Ψ
(

t,Φ(t, x), uj

)

, j ∈ J (t, x)
}

(6.236)

Taking into account definition (6.225) and (6.229), (6.230), (6.232), and (6.236),

we may conclude that (6.235) holds as well for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn)

with
√

2η(t) < |Φ(t, x)| < 2η(t). Consequently, (6.235) holds for all (t, x) ∈ ℜ+ ×
C0([−r,0];ℜn).

It follows from (6.235) and Theorem 2.5 in Chap. 2 that system (1.10) with u =
k(t, Tr(t)x) is RGAOS.

(a) ⇒ (b) Since system (1.10) with u = k(t, Tr(t)x) is RGAOS, and since for

every bounded Ω ⊂ ℜ+ × C0([−r,0];ℜn), we have

sup

{ |k(t, x) − k(t, y)|
‖x − y‖r

: (t, x) ∈ Ω,(t, y) ∈ Ω,x �= y

}

< +∞,

it follows that the closed-loop system (1.10) with u = k(t, Tr (t)x) satisfies hypothe-

ses (S1–5). Moreover, since system (1.10) with u = k(t, Tr(t)x) is RGAOS, it fol-

lows from Theorem 2.1 in Chap. 2 that there exists µ ∈ K+ such that the system

ẋ(t) = f
(

t, d(t), Tr(t)x, k
(

t, Tr(t)x
))

Y(t) =
∥

∥H(t, x)
∥

∥

Y
+ µ(t)‖x‖r

x(t) ∈ ℜn, Y (t) ∈ ℜ, d(t) ∈ D (6.237)

satisfies hypotheses (S1–5) and is RGAOS. Notice that system (6.237) is the

closed-loop system (1.10) with u = k(t, Tr(t)x) and output defined by Y(t) =
‖H(t, x)‖Y + µ(t)‖x‖r . It follows from Theorem 3.6 in Chap. 3 that there exist

functions a1, a2 ∈ K∞ and β ∈ K+ and a mapping V : ℜ+ × C0([−r,0];ℜn) →
ℜ+, which is almost Lipschitz on bounded sets, such that, for all (t, x, d) ∈ ℜ+ ×
C0([−r,0];ℜn) × D,

a1

(
∥

∥H(t, x)
∥

∥

Y
+ µ(t)‖x‖r

)

≤ V (t, x) ≤ a2

(

β(t)‖x‖r

)

(6.238)

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

≤ −V (t, x) (6.239)

We next prove that V is an ORCLF for (1.10). Obviously property (i) of Defini-

tion 6.3 is a consequence of inequality (6.238). Define, for all (t, ϕ) = (t, ϕ1, ϕ2)
′ ∈

ℜ+ × ℜ × ℜm,
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Ψ (t,ϕ1, ϕ2, u)

:= LV

(

t + |ϕ1|
)

LU

(

t + |ϕ1| + 2|ϕ2| +
∣

∣u − PrU (ϕ2)
∣

∣

)
∣

∣u − PrU (ϕ2)
∣

∣ (6.240)

and, for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn),

Φ(t, x) :=
[

‖x‖r

k(t, x)

]

∈ ℜm+1 (6.241)

where LU : ℜ+ → ℜ+ is the nondecreasing continuous function involved in (6.220),

and LV : ℜ+ → ℜ+ is a continuous, nondecreasing function that satisfies
∣

∣V (t, y) − V (t, x)
∣

∣≤ LV

(

t + ‖y‖r + ‖x‖r

)

‖y − x‖r

for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn). The reader should notice that Φ(t,0) = 0 for

all t ≥ 0 and that for every bounded Ω ⊂ ℜ+ × C0([−r,0];ℜn), it holds that

sup

{ |Φ(t, x) − Φ(t, y)|
‖x − y‖r

: (t, x) ∈ Ω,(t, y) ∈ Ω,x �= y

}

< +∞.

The convexity of the set U ⊆ ℜm implies that the mapping ℜm ∋ ϕ2 → PrU (ϕ2)

is continuous and consequently that the mapping ℜ+ × ℜm+1 ∋ (t, ϕ1, ϕ2) →
Ψ (t,ϕ1, ϕ2, u) is continuous for each fixed u ∈ U . Notice that for every ϕ =
(t, ϕ1, ϕ2)

′ ∈ ℜ+ × ℜ × ℜm and every finite set {u1, u2, . . . , uN } ⊂ U , λi ∈ [0,1]
(i = 1, . . . ,N ) with

∑N
i=1 λi = 1, definition (6.240), in conjunction with the in-

equalities
∣

∣

∣

∣

∣

N
∑

i=1

λiui − PrU (ϕ2)

∣

∣

∣

∣

∣

≤
N
∑

i=1

λi

∣

∣ui − PrU (ϕ2)
∣

∣≤ max
i=1,...,N

∣

∣ui − PrU (ϕ2)
∣

∣

implies that

Ψ

(

t, ϕ1, ϕ2,

N
∑

i=1

λiui

)

≤ max
i=1,...,N

Ψ (t,ϕ1, ϕ2, ui) (6.242)

By virtue of the definition of the Dini derivative V 0(t, x;v) and the properties of the

Lyapunov functional, we get, for all (t, x, v,w) ∈ ℜ+ ×C0([−r,0];ℜn)×ℜn ×ℜn,

V 0(t, x;v) ≤ LV

(

t + ‖x‖r

)

|v − w| + V 0(t, x;w) (6.243)

Combining inequalities (6.220), (6.239), and (6.243), we obtain, for all (t, x,u) ∈
ℜ+ × C0([−r,0];ℜn) × U ,

sup
d∈D

V 0
(

t, x;f (t, d, x,u)
)

≤ sup
d∈D

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

+ LV

(

t + ‖x‖r

)

sup
d∈D

∣

∣f (t, d, x,u) − f
(

t, d, x, k(t, x)
)
∣

∣

≤ −V (t, x) + LV

(

t + ‖x‖r

)

LU

(

t + ‖x‖r + |u| +
∣

∣k(t, x)
∣

∣

)
∣

∣u − k(t, x)
∣

∣

≤ −V (t, x) + LV

(

t + ‖x‖r

)

LU

(

t + ‖x‖r +
∣

∣u − k(t, x)
∣

∣

+ 2
∣

∣k(t, x)
∣

∣

)
∣

∣u − k(t, x)
∣

∣
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The above inequality, in conjunction with (6.242) and definitions (6.240), (6.241),

implies that inequality (6.223) with ρ(s) := s holds. Moreover, by definition (6.240),

for every (t, ϕ1, ϕ2) ∈ ℜ+ ×ℜ×ℜm, there exists u ∈ U (namely u = PrU (ϕ2)) such

that (6.222) holds with q(t) ≡ 0. The proof is complete. �

Proof of Theorem 6.5 (a) ⇒ (b) Suppose that (1.10) admits an ORCLF which satis-

fies (6.222) with q(t) ≡ 0. Without loss of generality we may assume that the map-

ping Φ = (Φ1, . . . ,Φp)′ : ℜ+ × C0([−r,0];ℜn) → ℜp involved in property (ii) of

Definition 6.3 satisfies Φ1(t, x) := V (t, x). Define

Ξ(t,ϕ,u) := Ψ (t,ϕ,u) − 1

2
ρ
(

c′ϕ
)

(t, ϕ,u) ∈ ℜ+ × ℜp × U (6.244)

Ξ(t,ϕ,u) := Ξ(0, ϕ,u) (t, ϕ,u) ∈ (−1,0) × ℜp × U (6.245)

c = (1,0, . . . ,0)′ ∈ ℜp (6.246)

The definition of Ξ , given by (6.244)–(6.246), guarantees that the function Ξ :
(−1,+∞) × ℜp × U → ℜ ∪ {+∞} with Ξ(t,0,0) = 0 for all t > −1 is such

that, for each u ∈ U , the mapping (t, ϕ) → Ξ(t,ϕ,u) is upper semi-continuous. Let

Θ := (−1,+∞) × {ϕ ∈ ℜp : c′ϕ �= 0}, which is an open set. By virtue of (6.222)

with q(t) ≡ 0 and the upper semi-continuity of Ξ , it follows that for each (t, ϕ) ∈ Θ ,

there exist u = u(t, ϕ) ∈ U with δ = δ(t, ϕ) ∈ (0,min(1, t +1)), δ(t, ϕ) ≤ |c′ϕ|
2

, such

that

Ξ
(

τ, y,u(t, ϕ)
)

≤ 0 ∀(τ, y) ∈
{

(τ, y) ∈ Θ : |τ − t | + |y − ϕ| < δ
}

(6.247)

Using (6.247) and standard partition of unity arguments, we can determine se-

quences {(ti, ϕi) ∈ Θ}∞i=1, {ui ∈ U}∞i=1, and {δi}∞i=1 with δi = δ(ti, ϕi) ∈
(0,min(1, ti + 1)), δi = δ(ti, ϕi) ≤ |c′ϕi |

2
, associated with a sequence of open sets

{Ωi}∞i=1 with

Ωi ⊆
{

(τ, y) ∈ Θ : |τ − ti | + |y − ϕi | < δi

}

(6.248)

forming a locally finite open covering of Θ and such that

Ξ(τ, y,ui) ≤ 0 ∀(τ, y) ∈ Ωi (6.249)

Also, a family of smooth functions {θi}∞i=1 with θi(t, ϕ) ≥ 0 for all (t, ϕ) ∈ Θ can

be determined with

supp θi ⊆ Ωi (6.250)
∞
∑

i=1

θi(t, ϕ) = 1 ∀(t, ϕ) ∈ Θ (6.251)

We define, for all (t, x) ∈ ℜ+ × C0([−r,0];ℜn),

k(t, x) :=
(

1 − h

( |Φ(t, x)|2 − 2η2(t)

2η2(t)

))

K
(

t,PrQ(t)

(

Φ(t, x)
))

+ h

( |Φ(t, x)|2 − 2η2(t)

2η2(t)

)

k̃(t, x) (6.252)
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where

k̃(t, x) :=
∞
∑

i=1

θi

(

t,Φ(t, x)
)

ui for t ≥ 0, x �= 0 (6.253)

k̃(t,0) := 0 for t ≥ 0 (6.254)

where h ∈ C∞(ℜ; [0,1]) is a smooth nondecreasing function with h(s) = 0 for all

s ≤ 0 and h(s) = 1 for all s ≥ 1, and Q(t) = {ϕ ∈ ℜp : |ϕ| ≤ 3η(t)}. It follows from

definition (6.252), (6.253), (6.254) and the facts that the continuous mapping Φ is

completely locally Lipschitz with respect to x ∈ C0([−r,0];ℜn) and that the con-

tinuous mapping ϕ → K(t,ϕ) is locally Lipschitz that k is completely locally Lips-

chitz with respect to x ∈ C0([−r,0];ℜn) with k(t,0) = 0 for all t ≥ 0. Moreover, it

should be noticed that, if the ORCLF V and the function Ψ involved in property (ii)

of Definition 6.3 are time independent, then the partition of unity arguments used

above may be repeated on Θ := {ϕ ∈ ℜp : c′ϕ �= 0} instead of Θ := (−1,+∞) ×
{ϕ ∈ ℜp : c′ϕ �= 0}. This implies that the constructed feedback is time invariant,

provided that the mappings Φ = Φ1, . . . ,Φp)′ : ℜ+ × C0([−r,0];ℜn) → ℜp and

K : A → U are time independent too.

Exploiting the properties of the mappings Ξ : (−1,+∞) × ℜp × U → ℜ ∪
{+∞} and Ψ : ℜ+ × ℜp × U → ℜ ∪ {+∞}, inequalities (6.224), (6.249), def-

initions (6.244), (6.252), and the fact that the mapping Φ = (Φ1, . . . ,Φp)′ :
ℜ+ × C0([−r,0];ℜn) → ℜp involved in property (ii) of Definition 6.3 satisfies

Φ1(t, x) := V (t, x), we may establish (exactly in the same way as in the proof of

Theorem 6.4) the following inequality:

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

≤ −1

2
ρ
(

V (t, x)
)

∀(t, x, d) ∈ ℜ+ × ℜn × D (6.255)

The fact that system (1.10) with u = k(t, Tr (t)x) is URGAOS follows directly from

Theorem 2.5 in Chap. 2 and inequality (6.255).

(b) ⇒ (a) Since for every bounded Ω ⊂ ℜ+ × C0([−r,0];ℜn),

sup

{ |k(t, x) − k(t, y)|
‖x − y‖r

: (t, x) ∈ Ω, (t, y) ∈ Ω, x �= y

}

< +∞

we have that the closed-loop system (1.10) with u = k(t, Tr(t)x) satisfies hy-

potheses (S1–5). For each (t0, x0, d) ∈ ℜ+ × C0([−r,0];ℜn) × MD , we denote

by x(t, t0, x0, d) the solution of (1.10) with u = k(t, Tr (t)x) and initial condition

Tr(t0)x = x0 corresponding to d ∈ MD .

Since system (1.10) with u = k(t, Tr(t)x) is RFC, it follows from Lemma 2.7 in

Chap. 2 that there exist µ̃, β ∈ K+ and ã ∈ K∞ such that the following inequality

holds for all (t0, x0, d) ∈ ℜ+ × C0([−r,0];ℜn) × MD :

µ̃(t)‖x‖r ≤ a
(

β(t0)‖x0‖r

)

∀t ≥ t0 (6.256)

Using Lemma 3.2 in Chap. 3, we can conclude that there exist µ̃, β̃ ∈ K+

and ã ∈ K∞ such that the following inequality holds for all (t0, x0, d) ∈ ℜ+ ×
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C0([−r,0];ℜn) × MD :

µ̃(t)‖x‖r ≤ β̃(t0)ã
(

‖x0‖r

)

∀t ≥ t0 (6.257)

Without loss of generality, we may assume that β̃ ∈ K+ is nondecreasing.

Since system (1.10) with u = k(t, Tr(t)x) is URGAOS, it follows from (6.257)

that the system
ẋ(t) = f

(

t, d(t), Tr(t)x, k
(

t, Tr(t)x
))

Y(t) =
∥

∥H(t, x)
∥

∥

Y
+ µ(t)‖x‖r

x(t) ∈ ℜn, Y (t) ∈ ℜ, d(t) ∈ D (6.258)

where µ(t) := exp(−t)
µ̃(t)

β̃(t)
, satisfies hypotheses (S1–5) and is URGAOS. Notice

that system (6.258) is the closed-loop system (1.10) with u = k(t, Tr(t)x) and output

defined by Y(t) = ‖H(t, x)‖Y + µ(t)‖x‖r . It follows from Theorem 3.6 in Chap. 3

that there exist functions a1, a2 ∈ K∞ and a mapping V : ℜ+ × C0([−r,0];ℜn) →
ℜ+, which is almost Lipschitz on bounded sets, such that

a1

(
∥

∥H(t, x)
∥

∥

Y
+ µ(t)‖x‖r

)

≤ V (t, x) ≤ a2

(

‖x‖r

)

(6.259)

V 0
(

t, x;f
(

t, d, x, k(t, x)
))

≤ −V (t, x) (6.260)

for all (t, x, d) ∈ ℜ+ × C0([−r,0];ℜn) × D. The rest of the proof is exactly

the same as the proof of implication (a) ⇒ (b) of Theorem 6.4. The only ad-

ditional thing that should be noticed is that the mappings Φ = (Φ1, . . . ,Φp)′ :
ℜ+ × C0([−r,0];ℜn) → ℜp , η ∈ K+, and A ∋ (t, ϕ) → K(t,ϕ) ∈ U may be

selected so that (6.241) holds, η(t) ≡ 1, and K(t,ϕ) := PrU (ϕ2) for all (t, ϕ) =
(t, ϕ1, ϕ2)

′ ∈ ℜ+ × ℜ × ℜm.

The proof is complete. �

6.6.5 Finite-Dimensional Discrete-Time Systems

In this section we consider discrete-time systems of the form (4.56) under hy-

potheses (L1–5) with X = ℜn, Y = ℜk , and U = ℜm, for which the control set

U ⊆ U = ℜm is a closed convex set.

We next give the definition of the notion of Output Robust Control Lyapunov

Function for discrete-time systems. The definition is in the same spirit with the def-

inition of the notion of Output Robust Control Lyapunov Functions for continuous-

time control systems.

Definition 6.4 We say that (4.56) under hypotheses (L1–5) with X = ℜn, Y = ℜk ,

and U = ℜm, for which the control set U ⊆ U = ℜm is a closed convex set, admits

an Output Robust Control Lyapunov Function (ORCLF) if there exists a continuous

function V : Z+×ℜn → ℜ+ (called the Output Robust Control Lyapunov Function)

which satisfies the following properties:

(i) There exist a1, a2 ∈ K∞ and β ∈ K+ such that

a1

(∣

∣H(t, x)
∣

∣

)

≤ V (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ Z+ × ℜn. (6.261)
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(ii) There exist functions ρ ∈ K with ρ(s) ≤ s for all s ≥ 0, q ∈ C0(Z+;ℜ+) with

limt→+∞ q(t) = 0, and an upper semi-continuous function Ψ : Z+×ℜn×U →
ℜ with Ψ (t,0,0) = 0 for all t ∈ Z+, which is quasi-convex with respect to

u ∈ U , such that the following inequalities hold:

sup
d∈D

V
(

t + 1, f (t, d, x,u)
)

≤ Ψ (t, x,u) ∀(t, x,u) ∈ Z+ × ℜn × U (6.262)

inf
u∈U

Ψ (t, x,u) ≤ V (t, x) − ρ
(

V (t, x)
)

+ q(t) ∀(t, x) ∈ Z+ × ℜn (6.263)

In the case H(t, x) ≡ x, we simply call V : Z+ × ℜn → ℜ+ a State Robust Control

Lyapunov Function (SRCLF).

Remark 6.3 If the mapping u → V (t + 1, f (t, d, x,u)) is (quasi-)convex for each

fixed (t, x, d) ∈ Z+ ×ℜn ×D, then the mapping u → supd∈D V (t +1, f (t, d, x,u))

is (quasi-)convex for each fixed (t, x) ∈ Z+ × ℜn. It follows that property (ii) of

Definition 6.4 is satisfied with Ψ (t, x,u) := supd∈D V (t + 1, f (t, d, x,u)).

The following results show how the existence of an ORCLF is related to the

existence of a stabilizing feedback for (4.56).

Proposition 6.1 Consider system (4.56) under hypotheses (L1–5) with X = ℜn,

Y = ℜk , and U = ℜm, for which the control set U ⊆ U = ℜm is a closed convex set.

Then the following statements are equivalent:

(a) System (4.56) admits an ORCLF.

(b) There exists k ∈ C∞(Z+ × ℜn;U) such that the closed-loop system (4.56) with

u = k(t, x) is RGAOS.

(c) There exists k ∈ C0(Z+ × ℜn;U) such that the closed-loop system (4.56) with

u = k(t, x) is RGAOS.

Proposition 6.2 Consider system (4.56) under hypotheses (L1–5) with X = ℜn,

Y = ℜk , and U = ℜm, for which the control set U ⊆ U = ℜm is a closed convex set.

Then the following statements are equivalent:

(a) System (4.56) admits an ORCLF, which satisfies (6.261) with β(t) ≡ 1

and (6.263) with q(t) ≡ 0. Moreover, there exist mappings η ∈ K+ and

K ∈ Cν(A;U), where ν ∈ Z+ and A =
⋃

t=0,1,...{t} × {x ∈ ℜn : |x| < 4η(t)},
with K(t,0) = 0 for all t ≥ 0 and such that

Ψ
(

t, x,K(t, x)
)

≤ V (t, x) − ρ
(

V (t, x)
)

for all (t, x) ∈ Z+ × ℜn with |x| ≤ 2η(t) (6.264)

where Ψ : ℜ+ × ℜn × U → ℜ is the mapping in property (ii) of Definition 6.4.

(b) There exist k ∈ Cν(Z+ × ℜn;U), ν ∈ Z+, such that the closed-loop sys-

tem (4.56) with u = k(t, x) is RGAOS.

From the proof of Proposition 6.2 it will become apparent that if statement (a) of

Proposition 6.2 is strengthened so that the ORCLF V , the mappings Ψ involved in
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property (ii) of Definition 6.4, and the mapping K : A → U are time independent,

then the continuous mapping k, whose existence is guaranteed by statement (b) of

Proposition 6.2, is time invariant.

Proof of Proposition 6.1 (a) ⇒ (b) Suppose that (4.56) admits an ORCLF. With-

out loss of generality, we may assume that the function q ∈ C0(Z+;ℜ+) with

limt→+∞ q(t) = 0 involved in (6.263) is positive for all t ∈ Z+. We proceed by

noticing some facts.

Fact I For all (t, x0) ∈ Z+ ×ℜn, there exist u0 ∈ U and a neighborhood N(t, x0) ⊂
ℜn such that

x ∈ N(t, x0) ⇒ Ψ (t, x,u0) ≤ V (t, x) − ρ
(

V (t, x)
)

+ 4q(t) (6.265)

Moreover, if x0 = 0, then we may select u0 = 0.

Proof of Fact I By virtue of (6.263) and since q(t) > 0 for all t ∈ Z+, it follows that

for all (t, x0) ∈ Z+ × ℜn, there exists u0 ∈ U such that

Ψ (t, x0, u0) ≤ V (t, x0) − ρ
(

V (t, x0)
)

+ 2q(t) (6.266)

If x0 = 0 (and since Ψ (t,0,0) = 0 for all t ∈ Z+), then we may select u0 = 0.

Since the mapping x → Ψ (t, x,u) is upper semi-continuous and the mapping x ∈
ℜn → V (t, x) − ρ(V (t, x)) is continuous, there exists a neighborhood N(t, x0) ⊂
ℜn around x0 such that, for all x ∈ N(t, x0),

Ψ (t, x,u0) ≤ Ψ (t, x0, u0) + q(t)

V (t, x0) − ρ
(

V (t, x0)
)

≤ V (t, x) − ρ
(

V (t, x)
)

+ q(t)
(6.267)

Inequalities (6.266) and (6.267) imply property (6.265).

Fact II For each fixed t ∈ Z+, there exists a family of open sets (Ω
(t)
j )j∈J (t) with

Ω
(t)
j ⊂ ℜn\{0} for all j ∈ J (t), which is a locally finite open covering of ℜn\{0},

and a family of points (u
(t)
j )j∈J (t) with u

(t)
j ∈ U for all j ∈ J (t) such that

x ∈ Ω
(t)
j ⇒ Ψ

(

t, x, u
(t)
j

)

≤ V (t, x) − ρ
(

V (t, x)
)

+ 4q(t) (6.268)

This fact is an immediate consequence of Fact I.

By virtue of Fact II and standard partition of unity arguments, it follows that for

each fixed t ∈ Z+, there exists a family of smooth functions θ
(t)
0 : ℜn → [0,1], θ

(t)
j :

ℜn → [0,1], with θ
(t)
j (x) = 0 if x /∈ Ω

(t)
j ⊂ ℜn\{0} and θ

(t)
0 (x) = 0 if x /∈ N(t,0),

where N(t,0) ⊂ ℜn is the neighborhood provided by Fact I for x0 = 0 and u0 = 0,

θ
(t)
0 (x)+

∑

j∈J (t) θ
(t)
j (x) being locally finite and such that θ

(t)
0 (x)+

∑

j θ
(t)
j (x) = 1

for all x ∈ ℜn. We define, for each fixed t ∈ Z+,

k(t, x) :=
∑

j∈J (t)

θ
(t)
j (x)u

(t)
j (6.269)
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Clearly, k as defined by (6.269) is a smooth function with k(t, x) ∈ U (since U is

convex and k(t, x) is equal to a convex combination of u
(t)
j ∈ U and u0 = 0 ∈ U ).

Notice that 0 /∈ Ω
(t)
j for all j ∈ J (t), and consequently by definition (6.269) we

have k(t,0) = 0 for all t ∈ Z+. From the fact that Ψ is quasi-convex with respect to

u ∈ U and from definition (6.269) it also follows that

Ψ
(

t, x, k(t, x)
)

= Ψ

(

t, x,
∑

j∈J ′(t,x)

θ
(t)
j (x)u

(t)
j

)

≤ max
j∈J ′(t,x)

{

Ψ
(

t, x, u
(t)
j

)}

(6.270)

where J ′(t, x) = {j ∈ J (t) ∪ {0}; θ (t)
j (x) �= 0} is a finite set. For each j ∈ J ′(t, x),

we obtain that x ∈ Ω
(t)
j or x ∈ N(t,0). Consequently, by (6.268) or (6.265) we have

that Ψ (t, x,u
(t)
j ) ≤ V (t, x)−ρ(V (t, x))+ 4q(t) for all j ∈ J ′(t, x). Combining the

previous inequality with inequality (6.262), we conclude that the following property

holds for all (t, x, d) ∈ Z+ × ℜn × D:

V
(

t + 1, f
(

t, d, x, k(t, x)
))

≤ Ψ
(

t, x, k(t, x)
)

≤ V (t, x) − ρ
(

V (t, x)
)

+ 4q(t) (6.271)

It follows from (6.271) and Proposition 2.3 in Chap. 2 that system (4.56) with u =
k(t, x) is RGAOS.

(b) ⇒ (c) Trivial.

(c) ⇒ (a) Since system (4.56) with u = k(t, x) is RGAOS and satisfies hypothe-

ses (L1–4), it follows from Proposition 3.1 in Chap. 3 that there exists a continuous

V : Z+ × ℜn → ℜ+ and functions a1, a2 ∈ K∞ and β ∈ K+ such that inequal-

ity (6.261) holds and, for all (t, x, d) ∈ Z+ × ℜn × D,

V
(

t + 1, f
(

t, d, x, k(t, x)
))

≤ exp(−1)V (t, x) (6.272)

We next prove that V is an ORCLF for (4.56). Obviously, property (i) of Defini-

tion 6.4 holds. Define

Ψ (t, x,u) := sup
{

V (t + 1,F (t, x, d, v);d ∈ D,v ∈ U,
∣

∣v − k(t, x)
∣

∣

≤
∣

∣u − k(t, x)
∣

∣

}

(6.273)

Inequalities (6.262), (6.263) with ρ(s) := (1− exp(−1))s and q(t) ≡ 0 are immedi-

ate consequences of inequality (6.272) and definition (6.273). Finally, we prove that

the function Ψ as defined by (6.273) is quasi-convex with respect to u ∈ U . Notice

that the continuous maps f : Z+ × D × ℜn × U → ℜn, k : Z+ × ℜn → U , and

V : Z+ × ℜn → ℜ+ can be continuously extended to f : ℜ × D × ℜn × U → ℜn,

k : ℜ×ℜn → U , and V : ℜ×ℜn → ℜ+, respectively. Under hypothesis (L5), it fol-

lows from the compactness of D ⊂ ℜl , the continuity of f : ℜ+ × D × ℜn × U →
ℜn, k : ℜ+ ×ℜn → U , and V : ℜ+ ×ℜn → ℜ+, and Theorem 1.4.16 in [4] that the

function Ψ as defined by (6.273) is continuous. Clearly, definition (6.273) implies

Ψ (t,0,0) = 0 for all t ∈ Z+. Let (t, x) ∈ Z+ ×ℜn, u1, u2 ∈ U , and λ ∈ [0,1]. Then

(6.273) implies
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Ψ
(

t, x, λu1 + (1 − λ)u2

)

≤ sup
{

V
(

t + 1,F (t, x, d, v);d ∈ D,v ∈ U
)

,
∣

∣v − k(t, x)
∣

∣≤ λ
∣

∣u1 − k(t, x)
∣

∣+ (1 − λ)
∣

∣u2 − k(t, x)
∣

∣

}

≤ sup
{

V
(

t + 1,F (t, x, d, v)
)

;d ∈ D,v ∈ U,

|v| ≤ max
{
∣

∣u1 − k(t, x)
∣

∣,
∣

∣u2 − k(t, x)
∣

∣

}}

If max{|u1 − k(t, x)|, |u2 − k(t, x)|} = |u1 − k(t, x)|, then the above inequality im-

plies Ψ (t, x,λu1 + (1 − λ)u2) ≤ Ψ (t, x,u1).

Similarly, if max{|u1 −k(t, x)|, |u2 −k(t, x)|} = |u2 −k(t, x)|, then Ψ (t, x,λu1 +
(1−λ)u2) ≤ Ψ (t, x,u2). Thus, in any case, it holds that Ψ (t, x,λu1 + (1−λ)u2) ≤
max{Ψ (t, x,u1),Ψ (t, x,u2)}. The proof is complete. �

Proof of Proposition 6.2 (a) ⇒ (b) Suppose that (4.56) admits an ORCLF which

satisfies (6.261) with β(t) ≡ 1 and (6.263) with q(t) ≡ 0. We proceed by noticing

some facts.

Fact I For all (t, x0) ∈ Z+ × (ℜn\{0}), there exists u0 ∈ U and a neighborhood

N(t, x0) ⊂ ℜn such that

x ∈ N(t, x0) ⇒ Ψ (t, x,u0) ≤ V (t, x) − 1

4
ρ
(

V (t, x)
)

(6.274)

Proof of Fact I By (6.263) it follows that for all (t, x0) ∈ Z+ × (ℜn\{0}), there

exists u0 ∈ U such that

Ψ (t, x0, u0) ≤ V (t, x0) − 3

4
ρ
(

V (t, x0)
)

(6.275)

Since the mapping x → Ψ (t, x,u) is upper semi-continuous and the mapping x ∈
ℜn → V (t, x) − ρ(V (t, x)) is continuous, there exists a neighborhood N(t, x0) ⊂
ℜn around x0 such that, for all x ∈ N(t, x0),

Ψ (t, x,u0) ≤ Ψ (t, x0, u0) + 1

4
ρ
(

V (t, x0)
)

V (t, x0) − 1

2
ρ
(

V (t, x0)
)

≤ V (t, x) − 1

4
ρ
(

V (t, x)
)

(6.276)

Inequalities (6.275) and (6.276) imply property (6.274).

Fact II For each fixed t ∈ Z+, there exists a family of open sets (Ω
(t)
j )j∈J (t) with

Ω
(t)
j ⊂ ℜn\{0} for all j ∈ J (t), which is a locally finite open covering of ℜn\{0},

and a family of points (u
(t)
j )j∈J (t) with u

(t)
j ∈ U for all j ∈ J (t) such that

x ∈ Ω
(t)
j ⇒ Ψ

(

t, x, u
(t)
j

)

≤ V (t, x) − 1

4
ρ
(

V (t, x)
)

(6.277)

This fact is an immediate consequence of Fact I.
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By virtue of Fact II and standard partition of unity arguments, it follows that

for each fixed t ∈ Z+, there exists a family of smooth functions θ
(t)
j : ℜn → [0,1]

with θ
(t)
j (x) = 0 if x /∈ Ω

(t)
j ⊂ ℜn\{0},

∑

j∈J (t) θ
(t)
j (x) being locally finite with

∑

j θ
(t)
j (x) = 1 for all x ∈ ℜn\{0}. We define, for each fixed t ∈ Z+,

k(t, x) :=
(

1 − h

( |x|2 − 2η2(t)

2η2(t)

))

K
(

t,PrQ(t)(x)
)

+ h

( |x|2 − 2η2(t)

2η2(t)

)

k̃(t, x)

(6.278)

where

k̃(t, x) :=
∑

j∈J (t)

θ
(t)
j (x)u

(t)
j for t ∈ Z+, x �= 0 (6.279)

k̃(t,0) := 0 for t ≥ 0 (6.280)

where h ∈ C∞(ℜ; [0,1]) be a smooth nondecreasing function with h(s) = 0 for

all s ≤ 0 and h(s) = 1 for all s ≥ 1, and Q(t) = {x ∈ ℜn : |x| ≤ 3η(t)}. Clearly, k

as defined by (6.278), (6.279), and (6.280) is a function of class Cν(Z+ × ℜn;U)

with k(t, x) ∈ U (since U is convex and k(t, x) is equal to a convex combination of

u
(t)
j ∈ U and u0 = 0 ∈ U ). It can be shown (by distinguishing cases) that

Ψ
(

t, x, k(t, x)
)

≤ V (t, x) − 1

4
ρ
(

V (t, x)
)

for all (t, x) ∈ Z+ ×ℜn. It follows from the above inequality and Proposition 2.3 in

Chap. 2 that system (4.56) with u = k(t, x) is URGAOS.

(b) ⇒ (a) Since system (4.56) with u = k(t, x) is URGAOS and satisfies hy-

potheses (L1–4), it follows from Proposition 3.1 in Chap. 3 that there exist a con-

tinuous V : Z+ ×ℜn → ℜ+ and functions a1, a2 ∈ K∞ such that inequality (6.261)

with β(t) ≡ 1 holds and

V
(

t + 1, f
(

t, d, x, k(t, x)
))

≤ exp(−1)V (t, x)

∀(t, x, d) ∈ Z+ × ℜn × D (6.281)

We next prove that V is an ORCLF for (4.56). Obviously, property (i) of Defi-

nition 6.4 holds. The reader can verify that the function Ψ as defined by (6.273) is

continuous and satisfies (6.262), (6.263) with q(t) ≡ 0. Moreover, the function Ψ as

defined by (6.273) is quasi-convex with respect to u ∈ U . The proof is complete. �

6.7 Backstepping

Backstepping is a methodology for constructing control Lyapunov functions or

functionals in parallel with the construction of stabilizing feedback laws. Backstep-

ping and its variants are described in detail in [41] and the references therein, and

share the common feature with the “adding an integrator” results (see [67]) that it is
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a very powerful tool for the systematic design of controllers for finite-dimensional

nonlinear systems with a lower triangular structure. Adaptive and robust backstep-

ping methods are also available in the past literature (see [14, 26, 41] and numerous

references therein).

We will describe in detail the backstepping method for a class of infinite-

dimensional nonlinear systems described by RFDEs and also for a class of finite-

dimensional discrete-time systems.

6.7.1 Backstepping for Control Systems Described by RFDEs

Here, we will study in detail a class of triangular time-delay nonlinear systems de-

scribed by RFDEs, i.e.,

ẋi(t) = fi

(

t, d(t), Tr(t)x1, . . . , Tr(t)xi

)

+ gi

(

t, d(t), Tr(t)x1, . . . , Tr(t)xi

)

xi+1(t)

i = 1, . . . , n − 1

ẋn(t) = fn

(

t, d(t), Tr(t)x
)

+ gn

(

t, d(t), Tr(t)x
)

u(t)

x(t) =
(

x1(t), . . . , xn(t)
)

∈ ℜn, d(t) ∈ D,u(t) ∈ ℜ, t ≥ 0 (6.282)

Lyapunov-based feedback design for various special cases of systems described by

RFDEs was used recently in [21, 22, 44, 46, 50, 72], including the input-delayed

case. More specifically, the stabilization problem for autonomous and disturbance-

free systems of the form (6.282) has been studied in [21, 22, 50, 72].

The following result shows that the construction of a stabilizing feedback law

for (6.282) proceeds in parallel with the construction of a State Robust Control

Lyapunov Functional. Moreover, sufficient conditions for the existence and design

of a stabilizing feedback law u(t) = k(x(t)), which is independent of the delay, are

given. The result covers the finite-dimensional case too.

Theorem 6.6 Consider system (6.282), where r > 0, D ⊂ ℜl is a compact

set, the mappings fi : ℜ+ × D × C0([−r,0];ℜi) → ℜ and gi : ℜ+ × D ×
C0([−r,0];ℜi) → ℜ (i = 1, . . . , n) are continuous with fi(t, d,0) = 0 for all

(t, d) ∈ ℜ+ × D, and each gi : ℜ+ × D × C0([−r,0];ℜi) → ℜ (i = 1, . . . , n)

is completely locally Lipschitz with respect to x ∈ C0([−r,0];ℜi). Suppose that

there exists a nondecreasing function ϕ ∈ C∞(ℜ+; (0,+∞)) such that for every

i = 1, . . . , n, it holds that

1

ϕ(‖x‖r)
≤ gi(t, d, x)

≤ ϕ
(

‖x‖r

)

∀(t, x, d) ∈ ℜ+ × C0
(

[−r,0];ℜi
)

× D (6.283)

Moreover, suppose that for every i = 1, . . . , n, it holds that

sup

{ |fi(t, d, x) − fi(t, d, y)|
‖x − y‖r

: (t, d) ∈ ℜ+ × D,x ∈ S,y ∈ S,x �= y

}

< +∞

for every bounded S ⊂ C0
(

[−r,0];ℜi
)

(6.284)
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Then, for every σ > 0, there exist functions µi ∈ C∞(ℜi; (0,+∞)) and ki ∈
C∞(ℜi;ℜ) (i = 1, . . . , n) with

k1(ξ1) := −µ1(ξ1)ξ1 (6.285)

kj (ξ1, . . . , ξj ) := −µj (ξ1, . . . , ξj )
(

ξj − kj−1(ξ1, . . . , ξj−1)
)

j = 2, . . . , n

(6.286)

such that the functional

V (x) := max
θ∈[−r,0]

exp(2σθ)

(

x2
1(θ) +

n
∑

j=2

∣

∣xj (θ) − kj−1

(

x1(θ), . . . , xj−1(θ)
)∣

∣

2

)

(6.287)

is a State Robust Control Lyapunov Functional (SRCLF) for (6.282). More-

over, the closed-loop system (6.282) with u(t) = kn(x(t)) is URGAS. More

specifically, the inequality V 0(x;v) ≤ −2σV (x) holds for all (t, x, d) ∈ ℜ+ ×
C0([−r,0];ℜn) × D with v = (f1(t, d, x1) + g1(t, d, x1)x2(0), . . . , fn(t, d, x) +
gn(t, d, x)kn(x(0)))′ ∈ ℜn.

Remark 6.4 It is worth noting that the feedback law u(t) = kn(x(t)) is delay-

independent. From the proof of Theorem 6.6, the functions µi ∈ C∞(ℜi; (0,+∞))

(i = 1, . . . , n) will be obtained by an algorithmic procedure similar to the backstep-

ping procedure used for finite-dimensional triangular control systems.

The proof of Theorem 6.6 is based on the following lemma.

Lemma 6.7 Let Q ∈ C1(ℜn;ℜ+), σ > 0, and consider the following functional:

V : C0
(

[−r,0];ℜn
)

→ ℜ+ with V (x) := max
θ∈[−r,0]

exp(2σθ)Q
(

x(θ)
)

(6.288)

The functional V : C0([−r,0];ℜn) → ℜ+ defined by (6.288) is Lipschitz on

bounded sets of C0([−r,0];ℜn) and satisfies

V 0(x;v) ≤ −2σV (x)

for all (x, v) ∈ C0
(

[−r,0];ℜn
)

× ℜn with Q
(

x(0)
)

< V (x) (6.289)

V 0(x;v) ≤ max
{

−2σV (x),∇Q
(

x(0)
)

v
}

for all (x, v) ∈ C0
(

[−r,0];ℜn
)

× ℜn with Q
(

x(0)
)

= V (x) (6.290)

Proof The fact that the functional V as defined by (6.288) is Lipschitz on bounded

sets of C0([−r,0];ℜn) is a direct consequence of the fact that Q ∈ C1(ℜn;ℜ+)

(details are left to the reader).
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Clearly, by (6.288) we have

V
(

Eh(x;v)
)

= max
{

max
θ∈[−r,−h]

exp(2σθ)Q
(

x(θ + h)
)

,

max
θ∈[−h,0]

exp(2σθ)Q
(

x(0) + (θ + h)v
)

}

= max

{

exp(−2σh) max
s∈[−r+h,0]

exp(2σs)Q
(

x(s)
)

,

max
θ∈[−h,0]

exp(2σθ)

[

Q
(

x(0)
)

+ (θ + h)∇Q
(

x(0)
)

v

+
∫ θ+h

0

(

∇Q
(

x(0) + sv
)

− ∇Q
(

x(0)
))

v ds

]}

≤ max
{

exp(−2σh)V (x), max
θ∈[−h,0]

exp(2σθ)
[

Q
(

x(0)
)

+ (θ + h)∇Q
(

x(0)
)

v
]

+ h|v| max
s∈[0,h]

∣

∣∇Q
(

x(0) + sv
)

− ∇Q
(

x(0)
)
∣

∣

}

(6.291)

If Q(x(0)) < V (x), then there exists h > 0 such that Q(x(0)) + s∇Q(x(0))v ≤
1
2
(V (x) + Q(x(0))) for all s ∈ [0, h]. Consequently, in this case it follows

from (6.291) that, for sufficiently small h > 0,

h−1
(

V
(

Eh(x;v)
)

− V (x)
)

≤ max

{

exp(−2σh) − 1

h
V (x), exp(−2σh)

1

2h

(

Q
(

x(0)
)

− V (x)
)

+ |v| max
s∈[0,h]

∣

∣∇Q
(

x(0) + sv
)

− ∇Q
(

x(0)
)∣

∣

}

The above inequality gives (6.289) for the case Q(x(0)) < V (x).

If Q(x(0)) = V (x) and ∇Q(x(0))v > −2σV (x), then it follows that, for suffi-

ciently small h > 0,

max
θ∈[−h,0]

exp(2σθ)
[

Q
(

x(0)
)

+ (θ + h)∇Q
(

x(0)
)

v
]

= Q
(

x(0)
)

+ h∇Q
(

x(0)
)

v.

Consequently, from (6.291) we obtain

h−1
(

V
(

Eh(x;v)
)

− V (x)
)

≤ max

{

exp(−2σh) − 1

h
V (x),

∇Q
(

x(0)
)

v + |v| max
s∈[0,h]

∣

∣∇Q
(

x(0) + sv
)

− ∇Q
(

x(0)
)∣

∣

}

The above inequality gives (6.290) for the case Q(x(0)) = V (x) and ∇Q(x(0))v >

−2σV (x).
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If Q(x(0)) = V (x) and ∇Q(x(0))v ≤ −2σV (x), then it follows that, for suffi-

ciently small h > 0,

max
θ∈[−h,0]

exp(2σθ)
[

Q
(

x(0)
)

+ (θ + h)∇Q
(

x(0)
)

v
]

= exp(−2σh)Q
(

x(0)
)

Consequently, from (6.291) we obtain

h−1
(

V
(

Eh(x;v)
)

− V (x)
)

≤ exp(−2σh) − 1

h
V (x) + |v| max

s∈[0,h]

∣

∣∇Q
(

x(0) + sv
)

− ∇Q
(

x(0)
)
∣

∣

The above inequality gives (6.290) for the case Q(x(0)) = V (x) and ∇Q(x(0))v ≤
−2σV (x).

The proof is complete. �

We are now in a position to provide the proof of Theorem 6.6.

Proof of Theorem 6.6 Inequality (6.284), in conjunction with the fact that

fi(t, d,0) = 0 for all (t, d) ∈ ℜ+ × D (i = 1, . . . , n), implies the existence of a

nondecreasing function L ∈ C∞(ℜ+; (0,+∞)) such that for every i = 1, . . . , n, it

holds
∣

∣fi(t, d, x)
∣

∣≤ L
(

‖x‖r

)

‖x‖r ∀(t, x, d) ∈ ℜ+ × C0
(

[−r,0];ℜi
)

× D (6.292)

Let σ > 0 be a given number. We next define functions µi ∈ C∞(ℜi; (0,+∞)), γi ∈
C∞(ℜ+; (0,+∞)), and bi ∈ C∞(ℜ+; (0,+∞)) (i = 1, . . . , n) using the following

algorithm.

Algorithm Step i = 1: Define

µ1(ξ1) :=
γ1(1 + ξ2

1 ) + nσ

b1(1 + ξ2
1 )

(6.293)

where

γ1(s) := exp(σ r)L
(

s exp(σ r)
)

+ ϕ
(

s exp(σ r)
)

(6.294)

b1(s) := 1

ϕ(s exp(σ r))
(6.295)

Step i ≥ 2: Based on the knowledge of the functions µj ∈ C∞(ℜj ; (0,+∞))

(j = 1, . . . , i − 1) from previous steps, we define the function µi ∈
C∞(ℜi; (0,+∞)). First define

k0 ≡ 0 k1(ξ1) := −µ1(ξ1)ξ1 (6.296)

kj (ξ1, . . . , ξj ) := −µj (ξ1, . . . , ξj )
(

ξj − kj−1(ξ1, . . . , ξj−1)
)

j = 2, . . . , i − 1

(6.297)

γj (s) := exp(σ r)L
(

s exp(σ r)Bj

(

s exp(σ r)
))

Bj

(

s exp(σ r)
)

+ ϕ
(

s exp(σ r)Bj

(

s exp(σ r)
))

j = 1, . . . , i (6.298)
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bj (s) :=
1

ϕ(s exp(σ r)Bj (s exp(σ r)))
j = 1, . . . , i (6.299)

where Bj ∈ C∞(ℜ+; (0,+∞)) (j = 1, . . . , i) are nondecreasing functions that sat-

isfy

B1(s) := 1

Bj (s) ≥ max

{

1 +
j−1
∑

l=1

µl(ξ1, . . . , ξl) : max
j=1,...,i

∣

∣ξl − kl−1(ξ1, . . . , ξl−1)
∣

∣≤ s

}

for all s ≥ 0 and j ≥ 2 (6.300)

Let ρj ∈ C∞(ℜ+; (0,+∞)) (j = 1, . . . , i) and δj ∈ C∞(ℜj ; (0,+∞)) (j =
0, . . . , i − 1) be functions such that the following inequalities hold:

bj

(

s′)− bj (s) + sγj (s) − s′γj

(

s′)≤
(

s − s′)ρj (s) ∀s ≥ s′ ≥ 0 (6.301)

δj (ξ1, . . . , ξj ) ≥
∣

∣∇kj (ξ1, . . . , ξj )
∣

∣

(

1 + µ1(ξ1) + · · · + µj (ξ1, . . . , ξj )
)

∀(ξ1, . . . , ξj ) ∈ ℜj (6.302)

Define

µi(ξ1, . . . , ξi) := b−1
i (p)

[

(n + 1 − i)σ + i − 1

4σ
a2(p, ξ1, . . . , ξj−1)

+ γi(p) + ci−1(p)δi−1(ξ1, . . . , ξj−1)

]

(6.303)

where

p := i

2
+ 1

2

i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

2

c0 ≡ 0 cj (s) :=
j
∑

k=1

γk(s) for j = 1, . . . , i (6.304)

a(s, ξ1, . . . , ξi−1)

:= ci−1(s)δi−1(ξ1, . . . , ξi−1) + ci(s)

+
(

1 +
i−1
∑

j=1

(

sµj (ξ1, . . . , ξj ) + δj−1(ξ1, . . . , ξj−1)
)

)

i−1
∑

k=1

ρk(s) (6.305)

It should be noticed that in every step i ≥ 2 of the above algorithm, we only

need to compute the functions γi(s), bi(s), Bi(s), ρi−1(s), δi−1(ξ1, . . . , ξi−1), and

µi(ξ1, . . . , ξi) (the functions γj (s), bj (s), Bj (s), ρj−1(s), δj−1(ξ1, . . . , ξj−1), and

µj (ξ1, . . . , ξj ) for j = 1, . . . , i − 1 have been computed in the previous steps). It

can be shown by induction that the following claim holds.
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Claim The following inequality holds for all (ξ1, . . . , ξi)
′ ∈ ℜi :

−
i
∑

j=1

(

ξj − kj−1(ξ1, . . . , ξj−1)
)2

bj (s)µj (ξ1, . . . , ξj )

+ s

i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣γj (s)

+ s

i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣cj−1(s)δj−1(ξ1, . . . , ξj−1)

≤ −(n + 1 − i)σ

i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

2
(6.306)

where

s =
i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

c0 ≡ 0

cj (s) :=
j
∑

k=1

γk(s) for j = 1, . . . , i

(6.307)

By Lemma 6.7 it follows that the functional V defined by (6.287) satisfies

V 0(x;v) ≤ −2σV (x) (6.308)

for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × ℜ × D with V (x) > x2
1(0) +

∑n
j=2 |xj (0)−kj−1(x1(0), . . . , xj−1(0))|2 and v = (f1(t, d, x1)+g1(t, d, x1)x2(0),

. . . , fn(t, d, x) + gn(t, d, x)u)′ ∈ ℜn, and

V 0(x;v) ≤ max
{

−2σV (x),2A(t, d, x,u)
}

(6.309)

for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × ℜ × D with V (x) = x2
1(0) +

∑n
j=2 |xj (0)−kj−1(x1(0), . . . , xj−1(0))|2 and v = (f1(t, d, x1)+g1(t, d, x1)x2(0),

. . . , fn(t, d, x) + gn(t, d, x)u)′ ∈ ℜn, where

A(t, d, x,u)

:=
n−1
∑

j=1

(

xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
))(

fi(t, d, x1, . . . , xi)

+ gi(t, d, x1, . . . , xi)xi+1(0)
)

−
n−1
∑

j=2

(

xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
))
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×
(

j−1
∑

l=1

∂kj−1

∂ξl

(

x1(0), . . . , xj−1(0)
)(

fl(t, d, x1, . . . , xl)

+ gl(t, d, x1, . . . , xl)xl+1(0)
)

)

+
(

xn(0) − kn−1

(

x1(0), . . . , xn−1(0)
))(

fn(t, d, x) + gn(t, d, x)u
)

−
(

xn(0) − kn−1

(

x1(0), . . . , xn−1(0)
))

n−1
∑

l=1

∂kn−1

∂ξl

(

x1(0), . . . , xn−1(0)
)

×
(

fl(t, d, x1, . . . , xl) + gl(t, d, x1, . . . , xl)xl+1(0)
)

(6.310)

By virtue of the previous claim, it can be shown that for all (t, x, d) ∈ ℜ+ ×
C0([−r,0];ℜn) × D with u = kn(x1(0), . . . , xn(0)) and V (x) = x2

1(0) +
∑n

j=2 |xj (0) − kj−1(x1(0), . . . , xj−1(0))|2, the following inequalities hold:

A(t, d, x,u) ≤ −σ

n
∑

j=1

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

2
(6.311)

max
θ∈[−r,0]

i
∑

j=1

∣

∣xj (θ)
∣

∣≤ sBi(s) (6.312)

with s = exp(σ r)
∑i

j=1 |xj (0) − kj−1(x1(0), . . . , xj−1(0))|.
Consequently, by virtue of (6.308), (6.309) and (6.311), we obtain

V 0(x;v) ≤ −2σV (x) (6.313)

for all (t, x, d) ∈ ℜ+ × C0([−r,0];ℜn) × D with v = (f1(t, d, x1) +
g1(t, d, x1)x2(0), . . . , fn(t, d, x) + gn(t, d, x)kn(x(0)))′ ∈ ℜn.

Notice that there exist functions a1, a2 ∈ K∞ such that

a1

(

|ξ |
)

≤ ξ2
1 +

n
∑

j=2

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

2

≤ a2

(

|ξ |
)

∀ξ = (ξ1, . . . , ξn)
′ ∈ ℜn (6.314)

Consequently, definition (6.287), in conjunction with (6.314), implies

exp(−2σr)a1

(

‖x‖r

)

≤ V (x) ≤ a2

(

‖x‖r

)

∀x ∈ C0
(

[−r,0];ℜn
)

(6.315)

It follows from inequalities (6.313), (6.315) and Theorem 2.5 in Chap. 2 that the

closed-loop system (6.282) with u(t) = kn(x(t)) is URGAS.

Finally, we show that V as defined by (6.287) is an SRCLF. Clearly, def-

inition (6.310), in conjunction with (6.311), implies, for all (t, x,u, d) ∈ ℜ+ ×
C0([−r,0];ℜn) × ℜ × D with V (x) = x2

1(0) +
∑n

j=2 |xj (0) − kj−1(x1(0),

. . . , xj−1(0))|2,
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A(t, d, x,u)

≤ −σ

(

x2
1(0) +

n
∑

j=2

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)
∣

∣

2

)

+
∣

∣xn(0) − kn−1

(

x1(0), . . . , xn−1(0)
)
∣

∣

∣

∣gn(t, d, x)
∣

∣

∣

∣u − kn

(

x1(0), . . . , xn(0)
)
∣

∣

(6.316)

By virtue of (6.283), (6.298), (6.308), (6.309), (6.312), and (6.316), we obtain

V 0(x;v)

≤ −2σV (x) + 2
∣

∣xn(0) − kn−1

(

x1(0), . . . , xn−1(0)
)∣

∣

∣

∣u − kn

(

x1(0), . . . , xn(0)
)∣

∣

× γn

(

∣

∣x1(0)
∣

∣+
n
∑

j=2

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)
∣

∣

)

(6.317)

for all (t, x,u, d) ∈ ℜ+ × C0([−r,0];ℜn) × ℜ × D with

v =
(

f1(t, d, x1) + g1(t, d, x1)x2(0), . . . , fn(t, d, x) + gn(t, d, x)u
)′ ∈ ℜn

Define

Φ(t, x) := x(0) ρ(w) := 2σw,

and

Ψ (t, z, u) := 2
∣

∣zn − kn−1(z1, . . . , zn−1)
∣

∣

× γn

(

|z1| +
n
∑

j=2

∣

∣zj − kj−1(z1, . . . , zj−1)
∣

∣

)

∣

∣u − kn(z1, . . . , zn)
∣

∣.

These definitions, in conjunction with inequalities (6.315) and (6.317), guarantee

that inequalities (6.221), (6.222), and (6.223) hold (with q(t) ≡ 0) for V as defined

by (6.287). Consequently, V as defined by (6.287) is an SRCLF. The proof is com-

plete. �

Proof of Claim in the proof of Theorem 6.6 The proof is made by induction. It

is straightforward to verify that definitions (6.293), (6.294), and (6.295) guarantee

that (6.306) holds for i = 1. We next assume that inequality (6.306) holds for i − 1

(i ≥ 2), i.e.,
i−1
∑

j=1

(

ξj − kj−1(ξ1, . . . , ξj−1)
)2

bj

(

s′)µj (ξ1, . . . , ξj )

+ s′
i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣γj

(

s′)

+ s′
i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣cj−1

(

s′)δj−1(ξ1, . . . , ξj−1)

≤ −(n + 2 − i)σ

(

i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

2

)

(6.318)
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where

s′ =
i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

c0 ≡ 0 (6.319)

cj (s) :=
j
∑

k=1

γk(s) for j = 1, . . . , i − 1

By virtue of inequalities (6.301), (6.318) and definitions (6.307), (6.319), we obtain,

for all (ξ1, . . . , ξi)
′ ∈ ℜi ,

−
i
∑

j=1

(

ξj − kj−1(ξ1, . . . , ξj−1)
)2

bj (s)µj (ξ1, . . . , ξj )

+ s

i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣γj (s)

+ s

i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣cj−1(s)δj−1(ξ1, . . . , ξj−1)

≤ −(n + 2 − i)σ

(

i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

2

)

−
(

ξi − ki−1(ξ1, . . . , ξi−1)
)2

×
(

bi(s)µi(ξ1, . . . , ξi) − γi(s) − ci−1(s)δi−1(ξ1, . . . , ξi−1)
)

+
∣

∣ξi − ki−1(ξ1, . . . , ξi−1)
∣

∣a(s, ξ1, . . . , ξi−1)

i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

(6.320)

where a(s, ξ1, . . . , ξi−1) is defined by (6.305). Using (6.320) in conjunction with

the inequality

∣

∣ξi − ki−1(ξ1, . . . , ξi−1)
∣

∣

i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣aj (s, ξ1, . . . , ξi−1)

≤ σ

i−1
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

2

+
∣

∣ξi − ki−1(ξ1, . . . , ξi−1)
∣

∣

2 i − 1

4σ
a2(s, ξ1, . . . , ξi−1)
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and the fact that the maps s → a(s, ξ1, . . . , ξi−1), s → bi(s) are nondecreasing and

nonincreasing, respectively, on ℜ+, it is not hard to verify that definition (6.303)

guarantees inequality (6.306). Notice that the following inequality is also used:

s =
i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣≤ p =
i

2
+

1

2

i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

2
.

The proof is complete. �

Proof of inequalities (6.310) and (6.311) Notice that by virtue of definitions (6.296)

and (6.297), for all i ≥ 1 and (ξ1, . . . , ξi)
′ ∈ ℜi , it holds:

i
∑

j=1

|ξj | ≤
i
∑

j=1

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣

+
i
∑

j=1

µj−1(ξ1, . . . , ξj−1)
∣

∣ξj−1 − kj−2(ξ1, . . . , ξj−2)
∣

∣ (6.321)

Inequality (6.321) implies

i
∑

j=1

|ξj | ≤
(

i−1
∑

j=1

(

1 + µj (ξ1, . . . , ξj−1)
)

)

max
j=1,...,i

∣

∣ξj − kj−1(ξ1, . . . , ξj−1)
∣

∣ (6.322)

Definition (6.287) implies that, for all x ∈ C0([−r,0];ℜn) with V (x) =
∑n

j=1 |xj (0) − kj−1(x1(0), . . . , xj−1(0))|2, we have

max
j=1,...,i
θ∈[−r,0]

∣

∣xj (θ) − kj−1

(

x1(θ), . . . , xj−1(θ)
)∣

∣

≤ exp(σ r)

n
∑

j=1

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣ (6.323)

Inequality (6.311) is a direct consequence of (6.300), (6.322), and (6.323). Con-

sequently, (6.283) and (6.292), together with (6.311), imply, for all i ≥ 1 and

(t, x, d) ∈ ℜ+ ×C0([−r,0];ℜn)×D with V (x) =
∑n

j=1 |xj (0)− kj−1(x1(0), . . . ,

xj−1(0))|2,
∣

∣fi(t, d, x1, . . . , xi)
∣

∣≤ L
(

s exp(σ r)Bi

(

s exp(σ r)
))

Bi

(

s exp(σ r)
)

s exp(σ r)

(6.324)

1

ϕ(s exp(σ r)Bi(s exp(σ r)))
≤ gi(t, d, x1, . . . , xi) ≤ ϕ

(

s exp(σ r)Bi

(

s exp(σ r)
))

(6.325)

where

s :=
n
∑

j=1

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣ (6.326)
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Using (6.324), (6.325), we obtain, by virtue of definitions (6.298), (6.299),

∣

∣fi(t, d, x1, . . . , xi)
∣

∣+
∣

∣gi(t, d, x1, . . . , xi)
∣

∣

∣

∣xi+1(0) − ki

(

x1(0), . . . , xi(0)
)
∣

∣

≤ sγi(s) i = 1, . . . , n − 1 (6.327)
∣

∣fn(t, d, x1, . . . , xn)
∣

∣≤ sγn(s) (6.328)

bi(s) ≤ gi(t, d, x1, . . . , xi) ≤ γi(s) i = 1, . . . , n (6.329)

where s is defined by (6.326). Definition (6.310), in conjunction with definitions

(6.296) and (6.297), gives, for u = kn(x1(0), . . . , xn(0)),

A(t, d, x,u)

≤ −
n
∑

j=1

gi(t, d, x1, . . . , xi)µj

(

x1(0), . . . , xj (0)
)

×
(

xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
))2

+
n−1
∑

j=1

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

×
∣

∣fj (t, d, x1, . . . , xj ) + gj (t, d, x1, . . . , xj )

×
(

xj+1(0) − kj

(

x1(0), . . . , xj (0)
))∣

∣

+
n−1
∑

j=2

∣

∣∇kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

×
j−1
∑

l=1

∣

∣fl(t, d, x1, . . . , xl) + gl(t, d, x1, . . . , xl)

×
(

xl+1(0) − kl

(

x1(0), . . . , xl(0)
))
∣

∣

+
n−1
∑

j=2

∣

∣∇kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

×
j−1
∑

l=1

∣

∣xl(0) − kl−1

(

x1(0), . . . , xl−1(0)
)
∣

∣

× µl

(

x1(0), . . . , xl(0)
)
∣

∣gl(t, d, x1, . . . , xl)
∣

∣

+
∣

∣xn(0) − kn−1

(

x1(0), . . . , xn−1(0)
)
∣

∣

∣

∣fn(t, d, x)
∣

∣

+
∣

∣∇kn−1

(

x1(0), . . . , xn−1(0)
)
∣

∣

∣

∣xn(0) − kn−1

(

x1(0), . . . , xn−1(0)
)
∣

∣

×
n−1
∑

l=1

∣

∣fl(t, d, x1, . . . , xl) + gl(t, d, x1, . . . , xl)

×
(

xl+1(0) − kl

(

x1(0), . . . , xl(0)
))
∣

∣

+
∣

∣∇kn−1

(

x1(0), . . . , xn−1(0)
)
∣

∣

∣

∣xn(0) − kn−1

(

x1(0), . . . , xn−1(0)
)
∣

∣
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×
n−1
∑

l=1

∣

∣xl(0) − kl−1

(

x1(0), . . . , xl−1(0)
)
∣

∣

× µl

(

x1(0), . . . , xl(0)
)
∣

∣gl(t, d, x1, . . . , xl)
∣

∣ (6.330)

Combining (6.330) with (6.326), (6.327), (6.328), and (6.329), we obtain, for u =
kn(x1(0), . . . , xn(0)),

A(t, d, x,u)

≤ −
n
∑

j=1

bj (s)µj

(

x1(0), . . . , xj (0)
)(

xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
))2

+ s

n
∑

j=2

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)
∣

∣γj (s)

+ s

n
∑

j=2

∣

∣∇kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

×
j−1
∑

l=1

(

1 + µl

(

x1(0), . . . , xl(0)
))

γl(s) (6.331)

Inequality (6.331), together with inequality (6.302), implies, for u = kn(x1(0),

. . . , xn(0)),

A(t, d, x,u)

≤ −
n
∑

j=1

bj (s)µj

(

x1(0), . . . , xj (0)
)(

xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
))2

+ s

n
∑

j=1

∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)
∣

∣γj (s)

+ s

n
∑

j=1

δj−1

(

x1(0), . . . , xj−1(0)
)∣

∣xj (0) − kj−1

(

x1(0), . . . , xj−1(0)
)∣

∣

×
j−1
∑

l=1

γl(s) (6.332)

Clearly, inequality (6.332), in conjunction with (6.306) for i = n, shows that (6.310)

holds. The proof is complete. �

The following example shows how the backstepping methodology can be used

for the stabilization of uncertain systems.
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Example 6.7.1 Consider the control system

ẋ1(t) = d1(t)

∫ t

t−r

x2
1(θ) dθ + x2(t)

ẋ2(t) = d2(t)
∥

∥Tr(t)x2

∥

∥

r
+ u(t)

(

x1(t), x2(t)
)

∈ ℜ2,
(

d1(t), d2(t)
)

∈ [−1,1]2, u(t) ∈ ℜ (6.333)

Clearly, system (6.333) is a control system described by RFDEs, which satisfies

the hypotheses of Theorem 6.6. More specifically, inequality (6.283) holds with

ϕ ≡ 1. In order to design a delay free stabilizing feedback for (6.333), we follow

the algorithm in the proof of Theorem 6.6. Notice that inequality (6.292) holds with

L(w) = 1 + rw. Let σ > 0 be given.

Step i = 1: We define

µ1(ξ1) := exp(σ r)
(

1 + r
(

1 + ξ2
1

)

exp(σ r)
)

+ 1 + 2σ (6.334)

γ1(s) := exp(σ r)
(

1 + rs exp(σ r)
)

+ 1 b1(s) ≡ 1 (6.335)

Step i = 2: We define

k1(ξ1) := −
(

exp(σ r)
(

1 + r
(

1 + ξ2
1

)

exp(σ r)
)

+ 1 + 2σ
)

ξ1 (6.336)

δ1(ξ1) :=
(

exp(σ r)
(

1 + r
(

1 + 3ξ2
1

)

exp(σ r)
)

+ 1 + 2σ
)

×
(

exp(σ r)
(

1 + r
(

1 + ξ2
1

)

exp(σ r)
)

+ 2 + 2σ
)

(6.337)

B2(s) := exp(σ r)
(

1 + r
(

1 + s2
)

exp(σ r)
)

+ 2 + 2σ (6.338)

γ2(s) := 1 + exp(σ r)
(

1 + sr exp(σ r)B2

(

exp(σ r)s
))

B2

(

exp(σ r)s
)

b2(s) ≡ 1 (6.339)

ρ1(s) := exp(σ r)
(

1 + 2rs exp(σ r)
)

+ 1 (6.340)

a(s, ξ1) := γ1(s)δ1(ξ1) + γ1(s) + γ2(s) +
(

1 + sµ1(ξ1)
)

ρ1(s) (6.341)

and

µ2(ξ1, ξ2) := σ + 1

4σ
a2(p, ξ1) + γ2(p) + γ1(p)δ1(ξ1) (6.342)

where

p := 1 + 1

2
ξ2

1 + 1

2

∣

∣ξ2 +
(

exp(σ r)
(

1 + r
(

1 + ξ2
1

)

exp(σ r)
)

+ 1 + 2σ
)

ξ1

∣

∣

2
(6.343)

The stabilizing feedback law is given by

u(t) = −µ2

(

x1(t), x2(t)
)(

x2(t)

+
(

exp(σ r)
(

1 + r
(

1 + x2
1(t)

)

exp(σ r)
)

+ 1 + 2σ
)

x1(t)
)

(6.344)

By virtue of Theorem 6.6, the functional

V (x) := max
θ∈[−r,0]

exp(2σθ)
(

x2
1(θ)

+
∣

∣x2(θ) +
(

exp(σ r)
(

1 + r
(

1 + x2
1(θ)

)

exp(σ r)
)

+ 1 + 2σ
)

x1(θ)
∣

∣

2)

(6.345)

is a SRCLF, and system (6.333) with (6.344) is URGAS.
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6.7.2 Backstepping for Finite-Dimensional Discrete-Time Systems

In this section we consider triangular discrete-time single input systems (i.e., u ∈ ℜ)

of the form (4.56) under hypotheses (L1–5) with X = ℜn, Y = ℜk , and U = U =
ℜ, for which we suppose that there exist continuous functions Fi : Z+ × ℜi+1 →
ℜ (i = 1, . . . , n) with fi(t,0) = 0 for all t ≥ 0 such that, for all (t, x,u) ∈ Z+ ×
ℜn × ℜ,

f (t,0, x,u) =
(

F1(t, x1, x2),F2(t, x1, x2, x3), . . . ,Fn(t, x1, . . . , xn, u)
)′

(6.346)

The following theorem is the main result of this section and provides sufficient

conditions for the robust stabilization of system (4.56).

Theorem 6.7 Consider system (4.56) under hypotheses (L1–5) with X = ℜn, Y =
ℜk , U = U = ℜ, and D ⊂ ℜl being compact with 0 ∈ D and suppose that there

exist continuous functions Fi : Z+ × ℜi+1 → ℜ (i = 1, . . . , n) with Fi(t,0) = 0 for

all t ∈ Z+ such that (6.346) holds. Furthermore, suppose that there exist continuous

functions ki : Z+ × ℜi → ℜ (i = 1, . . . , n) with ki(t,0) = 0 for all t ∈ Z+ such that

the following identities hold for all (t, x) ∈ Z+ × ℜn:

F1

(

t, x1, k1(t, x1)
)

= 0 (6.347)

Fi

(

t, x1, . . . , xi, ki(t, x1, . . . , xi)
)

= ki−1

(

t + 1,F1(t, x1, x2), . . . ,Fi−1(t, x1, . . . , xi)
)

for i = 2, . . . , n (6.348)

Consider the following vector fields defined on ℜ+ × ℜn:

F̃ (t, x) := f
(

t,0, x, kn(t, x)
)

(6.349)

F(0)(t, x) := x (6.350)

F(i)(t, x) := F̃
(

t + i − 1,F(i−1)(t, x)
)

for i ≥ 1 (6.351)

Let p ∈ C0(ℜn;ℜ+) be a positive definite function with p(0) = 0 that satisfies

p(x) ≥ K|x| for all x ∈ ℜn for certain constant K > 0, and let γ > 1 and λ ∈ (0,1)

be constants. Let D(γ,λ) ⊆ D the set of all d ∈ D that satisfy the following prop-

erty: ∀(t, x) ∈ Z+ × ℜn,

n−1
∑

i=0

γ ip
(

F(i)
(

t + 1, f
(

t, d, x, kn(t, x)
)))

≤ λ

n−1
∑

i=0

γ ip
(

F(i)(t, x)
)

(6.352)

Then the following statements hold:

(i) For every pair γ > 1, λ ∈ (0,1) with λγ ≥ 1, the set D(γ,λ) ⊆ D is a nonempty

compact set with 0 ∈ D(γ,λ).

(ii) For every pair γ > 1, λ ∈ (0,1) with λγ ≥ 1, the closed-loop system (4.56) with

u(t) = kn(t, x(t)) and d(t) ∈ D(γ,λ) is RGAS.
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The main idea that lies behind the proof of Theorem 6.7 is to construct a con-

tinuous feedback that guarantees the so-called “dead-beat property of order n” (see

[61]) for the nominal system (4.56) with d = 0. Then by making use of a Control

Lyapunov Function for the nominal closed-loop system, we establish RGAS for dis-

turbances that belong to an appropriate set, namely, the set D(γ,λ) ⊆ D. The proof

of Theorem 6.7 is based on the following lemma, which is similar to Theorem 3.2

in [61].

Lemma 6.8 (Finite-time stabilization and explicit construction of CLFs for triangu-

lar single-input systems) Consider the single-input discrete-time system

x(t + 1) = F
(

t, x(t), u(t)
)

u(t) ∈ ℜ, x(t) := (x1(t), . . . , xn(t)) ∈ ℜn, t ∈ Z+ (6.353)

where

F(t, x,u) =
(

F1(t, x1, x2),F2(t, x1, x2, x3), . . . ,Fn(t, x1, . . . , xn, u)
)′

(6.354)

for certain continuous mappings Fi : Z+ × ℜi+1 → ℜ (i = 1, . . . , n) with

Fi(t,0) = 0 for all t ∈ Z+. Suppose that there exist continuous functions ki :
Z+ × ℜi → ℜ (i = 1, . . . , n) with ki(t,0) = 0 for all t ∈ Z+ such that the iden-

tities (6.347), (6.348) hold for all (t, x) ∈ Z+ × ℜn. Then zero is RGAS for the

closed-loop system (6.353) with u(t) = kn(t, x(t)), namely, the system

x(t + 1) = F̃
(

t, x(t)
)

(6.355)

where

F̃ (t, x) := F
(

t, x, kn(t, x)
)

(6.356)

Moreover, the closed-loop system (6.353) with u(t) = kn(t, x(t)) (system (6.355)),

has the dead-beat property of order n, i.e., for every (t0, x0) ∈ Z+ × ℜn, the unique

solution x(t) of the closed-loop system (6.353) with u(t) = kn(t, x(t)) and initial

condition x(t0) = x0 satisfies

x(t) = 0 for all t ≥ t0 + n (6.357)

Furthermore, let p ∈ C0(ℜn;ℜ+) be a positive definite function with p(0) = 0 that

satisfies p(x) ≥ K|x| for all x ∈ ℜn for certain constant K > 0 and the vector

fields (t, x) ∈ Z+ ×ℜn → F(i)(t, x) ∈ ℜn defined by (6.350), (6.351) with F̃ defined

by (6.356). Then, for every γ > 1, the continuous function Vγ : Z+ × ℜn → ℜ+

defined by

Vγ (t, x) :=
n−1
∑

i=0

γ ip
(

F(i)(t, x)
)

(6.358)

is an SRCLF for (6.353). Particularly, for every γ > 1, there exist functions a2 ∈ K∞
and β ∈ K+ such that
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K|x| ≤ Vγ (t, x) ≤ a2

(

β(t)|x|
)

∀(t, x) ∈ Z+ × ℜn (6.359)

Vγ

(

t + 1,F (t, x,u)
)

≤ Ψγ (t, x,u) ∀(t, x,u) ∈ Z+ × ℜn × ℜ (6.360)

inf
u∈ℜ

Ψγ (t, x,u) ≤ Ψγ

(

t, x, kn(t, x)
)

≤ 1

γ
Vγ (t, x) ∀(t, x) ∈ Z+ × ℜn (6.361)

where the function Ψγ : ℜ+ × ℜn × ℜ → ℜ+ is quasi-convex with respect to u ∈ ℜ
with Ψγ (t,0,0) = 0 for all t ∈ Z+ and is defined by

Ψγ (t, x,u) := sup
{

Vγ (t + 1,F
(

t, x, kn(t, x) + v
)

; |v| ≤
∣

∣u − kn(t, x)
∣

∣

}

(6.362)

Proof By the definition of the vector fields F(i)(t, x), we notice that for every

(t0, x0) ∈ Z+ × ℜn, the solution of (6.355) with initial condition x(t0) = x0 sat-

isfies x(i + t0) = F(i)(t0, x0) for all i ≥ 0. In order to prove that system (6.355)

satisfies the dead-beat property of order n, it suffices to show that F(n)(t, x) ≡ 0 for

all (t, x) ∈ Z+ × ℜn. Using induction arguments, it is established that

F(i)
(

t + 1, F̃ (t, x)
)

= F(i+1)(t, x) and F(i)(t,0) := 0 for all i ≥ 0 (6.363)

The proof of the above relations is easy and is left to the reader. Define the sets

S(i)(t) ⊆ ℜn for t ∈ Z+ by the following formulas:

S(0)(t) := ℜn (6.364)

S(i)(t) :=
{

x ∈ S(i−1)(t) : xn−i+1 = kn−i(t, x1, . . . , xn−i)
}

for 1 ≤ i ≤ n − 1 (6.365)

S(i)(t) := {0} for i ≥ n (6.366)

where ki : ℜ+×ℜi → ℜ(i = 1, . . . , n) are the functions involved in (6.347), (6.348).

Notice that the definitions of the sets S(i)(t) above imply that, for 1 ≤ i ≤ n − 1,

S(i)(t) :=
{

x ∈ ℜn : xn = kn−1(t, x1, . . . , xn−1), . . . ,

xn−i+1 = kn−i(t, x1, . . . , xn−i)
}

(6.367)

Next, we make the following claim.

Claim F(i)(t, x) ∈ S(i)(t + i) for all i ≥ 0.

Clearly, definitions (6.350) and (6.364) imply that the above claim is true for

i = 0. In order to prove the above claim, by virtue of definition (6.351), it suffices

to prove the implication that F̃ (t + i, x) ∈ S(i+1)(t + i + 1) if x ∈ S(i)(t + i).

Since F̃ (t,0) = 0 for all t ≥ 0, it follows that the above implication is true for

i ≥ n. For the case 0 ≤ i ≤ n − 1, the above implication is an immediate conse-

quence of (6.363) and properties (6.347), (6.348).

Notice that the previous claim and definition (6.366) imply that

F(n)(t, x) ≡ 0 for all (t, x) ∈ Z+ × ℜn (6.368)

Thus, system (6.355) satisfies the dead-beat property of order n.
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Let γ > 1 and consider the function Vγ : ℜ+ × ℜn → ℜ+ defined by (6.358).

Since all vector fields F(i)(t, x) (i ≥ 0) defined by (6.350), (6.351) and p are con-

tinuous on ℜ+ × ℜn with F(i)(t,0) = 0 and p(0) = 0 for all t ≥ 0, by virtue of

Lemma 2.3 in Chap. 2, there exist a2 ∈ K∞ and β ∈ K+ such that the right-hand

side inequality (6.359) holds. The left-hand side inequality (6.359) is an immedi-

ate consequence of definitions (6.350), (6.358) and the fact that p(x) ≥ K|x| for

all x ∈ ℜn. Inequality (6.360) is an immediate consequence of definition (6.362).

We next prove inequality (6.361). Notice that by virtue of definition (6.358) and

property (6.363), we have, for all (t, x) ∈ Z+ × ℜn,

Vγ

(

t + 1, F̃ (t, x)
)

=
n−1
∑

i=0

γ ip
(

F(i)
(

t + 1, F̃ (t, x)
))

=
n−1
∑

i=0

γ ip
(

F(i+1)(t, x)
)

=
n
∑

i=1

γ i−1p
(

F(i)(t, x)
)

Consequently, from (6.368), definitions (6.356), (6.362), and the above equality it

follows that

Ψγ

(

t, x, kn(t, x)
)

= Vγ

(

t + 1, F̃ (t, x)
)

= 1

γ

n−1
∑

i=1

γ ip
(

F(i)(t, x)
)

≤ 1

γ

n−1
∑

i=0

γ ip
(

F(i)(t, x)
)

= 1

γ
Vγ (t, x)

We conclude that inequality (6.361) holds. The proof of the fact that the function

Ψγ (t, x,u) is quasi-convex with respect to u ∈ ℜ is identical to the proof of impli-

cation (c) ⇒ (a) of Proposition 6.1 and is omitted. It follows from Proposition 2.3 in

Chap. 2 that the closed-loop system (6.353) with u(t) = kn(t, x(t)) is RGAS. The

proof is complete. �

Proof of Theorem 6.7 Notice that for the case d = 0, it follows from (6.346)

that system (4.56) has the triangular structure (6.354). Thus Lemma 6.8 holds,

and (6.352) for d = 0 and 1/γ ≤ λ < 1 is a consequence of inequality (6.361).

This proves that D(γ,λ) ⊆ D is a nonempty set with 0 ∈ D(γ,λ). The compact-

ness of D(γ,λ) ⊆ D follows from the compactness of D and continuity of all map-

pings involved in (6.352) with respect to d . We next prove statement (ii). Let the

Lyapunov function Vγ : Z+ × ℜn → ℜ+ be defined by (6.358) and notice that in-

equality (6.352), in conjunction with definition (6.358), implies

Vγ

(

t + 1, f
(

t, d, x, kn(t, x)
)

≤ λVγ (t, x)

∀(t, x, d) ∈ Z+ × ℜn × D(γ,λ) (6.369)

From (6.359) and (6.369) in conjunction with Proposition 2.3 in Chap. 2 it follows

that the closed-loop system (4.56) with u(t) = kn(t, x(t)) and d(t) ∈ D(γ,λ) is

RGAS. The proof is complete. �
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Example 6.7.2 Consider the nonlinear planar autonomous system

x1(t + 1) =
(

1 + d(t)
)∣

∣x1(t)
∣

∣− x2
2(t)

x2(t + 1) = x2(t) + u(t)
(

x1(t), x2(t)
)

∈ ℜ2, u(t) ∈ ℜ, d(t) ∈ D := [−1,1], t ∈ Z+ (6.370)

Notice that the dynamics of system (6.370) satisfy (6.356) with f1(t, x1, x2) :=
|x1| − x2

2 and f2(t, x1, x2, u) := x2 + u. Moreover, (6.347) and (6.348) are satis-

fied for k1(t, x1) := |x1|
1
2 and k2(t, x1, x2) := −x2 + ||x1| − x2

2 | 1
2 . Consequently,

the vector fields F(i)(t, x) are defined by (6.350), (6.351):

F(0)(t, x) := (x1, x2)
′ F(1)(t, x) :=

(

|x1| − x2
2 ,
∣

∣|x1| − x2
2

∣

∣

1
2
)′

We select p(x1, x2) := |x1| + |x2|. Thus, inequality (6.352) is equivalent to the fol-

lowing inequality:

∣

∣(1 + d)|x1| − x2
2

∣

∣+
∣

∣|x1| − x2
2

∣

∣

1
2

+ γ
∣

∣

∣

∣(1 + d)|x1| − x2
2

∣

∣−
∣

∣|x1| − x2
2

∣

∣

∣

∣

+ γ
∣

∣

∣

∣(1 + d)|x1| − x2
2

∣

∣−
∣

∣|x1| − x2
2

∣

∣

∣

∣

1
2

≤ λ|x1| + λ|x2| + γ λ
∣

∣|x1| − x2
2

∣

∣+ γ λ
∣

∣|x1| − x2
2

∣

∣

1
2 (6.371)

Clearly, inequality (6.371) is satisfied for all (x1, x2) ∈ ℜ2 if λγ > 1 and |d| ≤
min{ λ

1+γ
, λ2

γ 2 ,
(γ λ−1)2

γ 2 }. Thus, we conclude that the closed-loop system (6.370) with

u(t) = −x2(t) + ||x1(t)| − x2
2(t)| 1

2 and d(t) ∈ D(γ,λ) for γ = exp(c) + 1 and λ =
exp(−c), i.e., for d(t) ∈ {d ∈ [−1,1] : |d| ≤ 1

exp(2c)(exp(c)+1)2 }, is RGAS. Notice that

larger values for the constant c > 0 (or equivalently, larger values for λ) give smaller

values for the radius of the disturbance set D(γ,λ).

6.8 Small-Gain Method

The purpose of this section is to briefly introduce the small-gain method arising

from modern nonlinear control design for dynamical systems with strong nonlin-

earities and intricate structures. Like previously presented synthesis methods, the

small-gain control method is also an efficient tool for the explicit design of non-

linear controllers. However, the small-gain method distinguishes itself from other

constructive feedback design approaches in that it is motivated by robust nonlinear

control design with dynamic uncertainties. When modeling a complex engineering

system, those unmodeled dynamics such as friction in mechanical systems are often

referred to as dynamic uncertainty. The state variables of the unmodeled dynam-

ics are not perfectly measurable and therefore pose serious technical challenges for

nonlinear control design. Other control problems also motivate us to consider the
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presence of dynamic uncertainty. For example, even when the complete mathemat-

ical model of a physical system is known, the controller design problem may be

intractable either because the exact model has an intricate structure or because there

is a large number of the states (measurable or not). To address these challenges,

we purposefully decompose the model into a simplified and tractable control sub-

system interacted with another subsystem which we will consider as the dynamic

uncertainty. The advantage of this trick in nonlinear control design will be seen

below, but it is important to stress that the small-gain method shares a design phi-

losophy radically different from other constructive design approaches. Nonetheless,

when combined with other methods such as backstepping, the small-gain methodol-

ogy turns out to be powerful for robust adaptive output-feedback control design [23]

and decentralized nonlinear control design [24, 27]. The reader should consult the

literature for other extensions to control design problems for discrete-time systems,

time-delay systems, and coupled differential-difference equations (see the review

article [32] and references therein), to name only a few.

6.8.1 What are Small-Gain Design Techniques?

The nonlinear small-gain control method consists of two crucial results:

• Gain assignment by feedback.

• Nonlinear small-gain theorem for the stability analysis of the closed-loop system.

Before describing the problem of gain assignment by feedback, let us recall the

nonlinear, ISS small-gain theorem for an interconnection of two ISS subsystems

ẋ1 = f1(x1, x2, u1) (6.372)

ẋ2 = f2(x1, x2, u2) (6.373)

where xi ∈ ℜni and ui ∈ ℜmi for i = 1,2. Assume that both f1 and f2 are locally

Lipschitz and vanish at the origin. See Fig. 1.2 for an illustration, where y1 = x1 and

y2 = x2.

It is shown in [28] that the interconnection of two ISS systems remains to be ISS,

provided that the loop gain is less than the identity. More precisely:

Theorem 6.8 Assume that each subsystem is ISS in the sense of Sontag, that is,

there exist βi ∈ KL and γi, γ
u
i ∈ K with i = 1,2 such that the solutions of each

xi -subsystem satisfy

∣

∣x1(t)
∣

∣≤ β1

(
∣

∣x1(0)
∣

∣, t
)

+ γ1

(

‖x2‖
)

+ γ u
1

(

‖u1‖
)

(6.374)
∣

∣x2(t)
∣

∣≤ β2

(∣

∣x2(0)
∣

∣, t
)

+ γ2

(

‖x1‖
)

+ γ u
2

(

‖u2‖
)

(6.375)

where ‖ · ‖ denotes the L∞-norm. If there exist functions ρi ∈ K∞, i = 1,2, such

that one of the following two equivalent small-gain conditions holds:
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(Id + ρ1) ◦ γ1 ◦ (Id + ρ2) ◦ γ2 ≤ Id, (6.376)

(Id + ρ2) ◦ γ2 ◦ (Id + ρ1) ◦ γ1 ≤ Id (6.377)

with Id standing for the identity mapping, then the total interconnected (x1, x2)-

system is ISS, that is, the solutions (x1(t), x2(t)) satisfy:
∣

∣

(

x1(t), x2(t)
)′∣
∣≤ β

(
∣

∣

(

x1(0), x2(0)
)′∣
∣, t
)

+ γ
(
∥

∥(u1, u2)
′∥
∥

)

(6.378)

for some functions β ∈ KL and γ ∈ K .

Remark 6.5 It is worth noting that a close-form expression for the (not necessarily

unique) gain function γ can be obtained on the basis of the functions γi , γ u
i , and

ρi , i = 1,2. Also, as shown in [28], Theorem 6.8 can be extended to more gen-

eral interconnected systems in the sense that one subsystem or both subsystems are

input-to-state practically stable (ISpS), input-to-output stable (IOS), or even input-

to-output practically stable (IOpS). The term “practical” is used to take into account

the case when the unforced subsystems do not have an equilibrium (e.g., when non-

vanishing disturbances occur).

At first sight, ISS may look a restrictive stability requirement for nonlinear sys-

tems. Surprisingly, Sontag [63] has shown that any nonlinear finite-dimensional sys-

tem of the form ẋ = f (x,u) can be made ISS by feedback (or feedback transforma-

tion) if and only if it is stabilizable. A refinement of this important result shows that,

for some special class of nonlinear systems, we may even assign somehow an arbi-

trary gain for the derived ISS system. This result is referred to as gain assignment

by feedback and plays a crucial role in nonlinear control design based on small-gain

theorems. To illustrate this point, let us consider an interconnected system com-

posed of an ISS subsystem with given gain γ1 ∈ K∞ (which may not be small) and

a controlled dynamical system which may not be ISS, as depicted in Fig. 6.1.

The objective of the gain assignment result is twofold: first, apply a pre-feedback

law à la Sontag [63] to render the non-ISS subsystem ISS. Then, redesign this con-

Fig. 6.1 Control of

interconnected systems via

partial-state feedback
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trol law to make the interconnection gain so small that the small-gain condition

in (6.376) or (6.377) holds. For example, such a gain to be assigned to the non-ISS

system can be εγ −1
1 with 0 < ε < 1.

In the next subsection, we describe this strategy in greater details. It should be

mentioned that it is a control design tool based on partial-state feedback.

6.8.2 Gain Assignment via Feedback

We begin with the robust stabilization of the following dynamically perturbed non-

linear system:

ż = q(z, y) (6.379)

ẏ = u + ω(z, y) (6.380)

where z ∈ ℜn0 is the (unmeasured) state of the dynamic uncertainty, y ∈ ℜ is the

(measured) state of the controlled system, and u is the control input. Assume that

the z-system (6.379) is ISS with a given gain γ1 ∈ K∞. It is also assumed that q and

ω are locally Lipschitz and vanish at the origin and that the nonlinear perturbation

ω(z, y) satisfies the following property:
∣

∣ω(z, y)
∣

∣≤ φ1

(

|z|
)

+ φ2

(

|y|
)

(6.381)

for two smooth positive semidefinite functions φ1 and φ2. Without loss of generality,

we may assume that φ1 is of class K∞ and φ2(|y|) = |y|φ3(|y|) with a smooth

function φ3.

To design a globally stabilizing control law u = α(y) for system (6.379)–(6.380),

we can apply the small-gain method as follows. First, pick a function γ2 ∈ K∞
that, together with γ1, satisfies the small-gain condition in (6.376) or (6.377). For

simplicity, pick γ2(s) = εγ −1
1 (s) for a constant ε in (0,1). This way, the small-

gain condition in (6.376) or (6.377) holds with linear ρ1 and ρ2. Then, we design a

partial-state feedback law u = α(y) that makes the y-subsystem ISS with gain γ2.

After this is done, a direct application of Small-Gain Theorem 6.8 yields the global

stability of the closed-loop system.

The following gain assignment result shows when γ2 can be assigned as the ISS-

gain for the y-subsystem by feedback.

Theorem 6.9 There always exists a continuous feedback law u = α(y) such that

the closed-loop y-system is ISS with gain γ2 when z is considered as the input.

Moreover, if the following condition holds:

φ1 ◦ γ −1
2 (s) is linearly bounded near the origin (6.382)

then, the feedback law u = α(y) can be made smooth.

Proof Consider the Lyapunov function candidate V = 1
2
y2. By direct computation,

its time derivative satisfies
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V̇ = y
(

u + ω(z, y)
)

≤ y
(

u + yφ3

(

|y|
))

+ |y|φ1

(

|z|
)

(6.383)

Take the control law

u = −yφ3

(

|y|
)

− kφ1 ◦ γ −1
2

(

|y|
)

sgn(y) (6.384)

for some constant k > 1.

From (6.383) and (6.384) it follows that

V̇ ≤ −k|y|φ1 ◦ γ −1
2

(

|y|
)

+ |y|φ1

(

|z|
)

(6.385)

which implies directly that the closed-loop y-system is ISS with gain γ2.

Clearly, the control law in (6.384) is continuous and can be made smooth under

assumption (6.382). The proof is complete. �

We borrow an example from the seminal work of Byrnes and Isidori [7] to illus-

trate our result. Consider the control system

ż = −z5 + y2

ẏ = u + z2
(6.386)

Clearly, (6.386) is a special member of the class of dynamically perturbed nonlinear

systems (6.379)–(6.380). A direct application of Theorem 6.9 yields a continuous

partial-state feedback of the form

u = −k|y|3/5y1/5 (6.387)

for any constant k > 1 that globally asymptotically stabilizes the system (6.386). As

it can be directly checked, assumption (6.382) fails to hold. Thus, the control law

(6.387) cannot be made smooth. In fact, Byrnes and Isidori have shown by means

of the center manifold theory that there is no continuously differentiable control law

of the form u = α(y) that even locally asymptotically stabilizes the system (6.386).

To establish a gain assignment result for higher-dimensional systems, consider a

chain of integrators subject to external inputs denoted as ω := (ω1, . . . ,ωn)
′:

ẋ1 = x2 + ω1

...

ẋn−1 = xn + ωn−1

ẋn = u + ωn

(6.388)

The following gain assignment result is a special case of [28, Theorem 2.2].

Theorem 6.10 For any function γ ∈ K∞, if γ −1 is linearly bounded near the ori-

gin, then there exists a feedback law of the form u = α(x) such that the closed-loop

system (6.388) is ISS with respect to the input ω and, in particular, IOS with the

assigned gain γ when y = x1 is taken as the output.
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With Theorem 6.10 at hand, the global stabilization problem by partial-state feed-

back is easily solvable, via the proposed small-gain method, for

ż = q(z, x1)

ẋ1 = x2 + ω1(z, x1)

...

ẋn−1 = xn + ωn−1(z, x1)

ẋn = u + ωn(z, x1)

(6.389)

where z is the unmeasured state of the dynamic uncertainty, x is the measured state

of the controlled system, and u is the control input.

6.9 Observers and Dynamic Feedback

Consider the following discrete-time system:

x(t + 1) = f
(

t, d(t), x(t), u(t)
)

x(t) ∈ X , d(t) ∈ D,u(t) ∈ U, t ∈ Z+ (6.390)

Y(t) = H
(

t, x(t)
)

Y(t) ∈ Y (6.391)

under hypotheses (L1–5). We consider the existence of a dynamic time-varying out-

put feedback law w(t + 1) = g(t, y(t),w(t)), u(t) = k(t, y(t),w(t)), w(t) ∈ W

(Dynamic ROFS problem), where y(t) denotes the measured output given by

y(t) = h
(

t, x(t)
)

y(t) ∈ Y ′ (6.392)

and Y ′,W are normed linear spaces. We will further assume:

(L6) For the output map h ∈ CU(Z+ × X ; Y ′) involved in (6.392) with h(t,0) = 0

for all t ∈ Z+, there exists a set S ⊆ Y ′ such that S = h(t, X ) for all t ∈ Z+.

We next give the notion of robust complete observability for discrete-time sys-

tems. The definition given here directly extends the corresponding notions given in

[15, 66], concerning autonomous continuous-time systems.

Definition 6.5 Consider the system (6.390) and let (di, ui) ∈ D × U , i = 0,1, . . . ,

and define recursively the following family of continuous mappings:

F0(t, x) = x F1

(

t, x, d(1), u(1)
)

= f (t, d0, x,u0)

Fi

(

t, x, d(i), u(i)
)

:= f
(

t + i − 1, di−1,Fi−1

(

t, x, d(i−1), u(i−1)
)

, ui−1

)

i ≥ 2

y0(t, x) = h(t, x) yi

(

t, x, d(i), u(i)
)

:= h
(

t + i,Fi

(

t, x, d(i), u(i)
))

i ≥ 1

where d(i) := (d0, . . . , di−1), u(i) := (u0, . . . , ui−1) for i ≥ 1. For an integer p ≥ 1,

define the continuous mapping for all (t, x, d(p), u(p)) ∈ ℜ+ × X × Dp × Up by

y(p)
(

t, x, d(p), u(p)
)

:=
(

y0(t, x), . . . , yp−1

(

t, x, d(p−1), u(p−1)
))
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We say that a continuous function k ∈ CU(Z+ × X ;W), where W is a normed

linear space, is robustly completely observable from the output y = h(t, x) with re-

spect to (6.390) if there exist an integer p ≥ 1 and a continuous function (called

the reconstruction map) Ψ ∈ CU(Z+ × S × (Y ′)p × U p;W) such that, for all

(t, x, d(p), u(p)) ∈ Z+ × X × Dp × Up , it holds that

k
(

t + p,Fp

(

t, x, d(p), u(p)
))

= Ψ
(

t + p,yp

(

t, x, d(p), u(p)
)

, y(p)
(

t, x, d(p), u(p)
)

, u(p)
)

(6.393)

We say that system (6.390) is robustly completely observable from the output y =
h(t, x) if the identity function k(t, x) = x is completely observable.

Remark 6.6

(a) Notice that for every input (d,u) ∈ MD ×MU and for every (t0, x0) ∈ Z+ × X ,

the unique solution x(t) of (6.390) corresponding to (d,u) and initiated from

x0 at time t0 satisfies the following relation: for all t ≥ t0 + p,

k
(

t, x(t)
)

= Ψ
(

t, y(t), y(t − p), y(t − p + 1), . . . , y(t − 1), u(t − p), . . . , u(t − 1)
)

Following the terminology in [64], if system (6.390) is robustly completely ob-

servable from the output y = h(t, x), then every control (d,u) ∈ MD × MU

final-state distinguishes between any two events in time p ∈ Z+.

(b) Notice that every continuous function of the measured output k(t, x) =
θ(t, h(t, x)), where θ : Z+ × S → W is a continuous function with the property

“for every pair of bounded sets I ⊂ Z+, A ⊆ S and for every ε > 0, the set

θ(I ×A) is bounded, and there exists δ > 0 such that ‖θ(t, y)− θ(t, y0)‖W < ε

for all t ∈ I and y, y0 ∈ A with ‖y − y0‖Y ′ < δ,”

is robustly completely observable from the measured output.

(c) Notice that since 0 ∈ X is an equilibrium point for (6.390) and h(t,0) = 0 for

all t ≥ 0, by setting x = 0 and u(p) = 0 in (6.393), we obtain

k(t,0) = Ψ (t,0,0) ∀t ≥ p.

Without loss of generality, we may assume that the reconstruction map Ψ is

continuously extended to Z+ × S × (Y ′)p × U p so that the above equality holds for

all t ∈ Z+.

The following proposition provides sufficient conditions for the solvability of the

ROFS problem for (6.390), (6.391), (6.392).

Proposition 6.3 Consider the ROFS problem for (6.390), (6.391) with measured

output given by (6.392) under hypotheses (L1–6). Suppose that:

(i) There exists a continuous function k ∈ CU(Z+×X ;U) with f (t, d,0, k(t,0)) =
0 for all (t, d) ∈ Z+ ×D such that the closed-loop system (6.390), (6.391) with

u(t) = k(t, x(t)) is RGAOS.
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(ii) The feedback function k ∈ CU(Z+ × X ;U) is robustly completely observable

from the output y = h(t, x) with respect to (6.390).

Then the continuous dynamic ROFS problem for (6.390), (6.391), (6.392) with

measured output y = h(t, x) and stabilized output Y = H(t, x) is globally solv-

able, i.e., there exist a normed linear space W and continuous functions k ∈
CU(Z+ × S × W ;U) and g ∈ CU(Z+ × S × W ;W) with f (t, d,0, k(t,0,0)) = 0

and g(t,0,0) = 0 for all (t, d) ∈ Z+ × D such that the following system with state

space X × W is RGAOS:

x(t + 1) = f
(

t, d(t), x(t), k
(

t, h
(

t, x(t)
)

,w(t)
))

w(t + 1) = g
(

t, h
(

t, x(t)
)

,w(t)
)

Y(t) = H
(

t, x(t)
)

(6.394)

Proof Since k ∈ CU(Z+ × X ;U) is robustly completely observable from the output

y = h(t, x) with respect to (6.390), there exist an integer p ≥ 1 and a reconstruction

map Ψ ∈ CU(Z+ × S × (Y ′)p × U p; U ) such that for all (t, x, d(p), u(p)) ∈ Z+ ×
X × Dp × Up (6.393), holds. Consider the following system:

w1(t + 1) = y(t)

w2(t + 1) = w1(t)

...

wp(t + 1) = wp−1(t)

wp+1(t + 1) = u(t)

wp+2(t + 1) = wp+1(t)

...

w2p(t + 1) = w2p−1(t)

u(t) = Ψ
(

t, y(t),P
(

w(t)
))

wi(t) ∈ Y ′ i = 1, . . . , p

wi(t) ∈ U i = p + 1, . . . ,2p

w(t) :=
(

w1(t), . . . ,w2p(t)
)

∈ W := (Y ′)p × U p t ∈ Z+

(6.395)

where

P(w) := (wp,wp−1, . . . ,w1,w2p,w2p−2, . . . ,wp+1) (6.396)

Clearly, for every (t0, x0,w0, d) ∈ Z+ × X × W × MD , the solution of (6.390),

(6.391), (6.392) with (6.395) and initial condition (x(t0),w(t0)) = (x0,w0) corre-

sponding to input d ∈ MD satisfies, for all t ≥ t0 + p,

wi(t) = y(t − i) i = 1, . . . , p

wp+i(t) = u(t − i) i = 1, . . . , p
(6.397)
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It follows from (6.397) and Remark 6.6(a) that

u(t) = k
(

t, x(t)
)

= Ψ
(

t, y(t),P
(

w(t)
))

∀t ≥ t0 + p (6.398)

Equality (6.398) shows that the implemented control law u(t) = Ψ (t, y(t),P (w(t)))

coincides with the control action given by the state feedback law u(t) = k(t, x(t))

after p time units. By virtue of Theorem 2.1 in Chap. 2 and since the closed-

loop system (6.390), (6.391) with u(t) = k(t, x(t)) is RGAOS, there exist func-

tions σ ∈ KL and β ∈ K+ such that for all d ∈ MD and (t0, x0) ∈ Z+ × X ,

the unique solution x(t) of (6.390), (6.391) with u(t) = k(t, x(t)) initiated from

x0 ∈ X at time t0 ∈ Z+ and corresponding to d ∈ MD satisfies (2.8). It follows

from (6.398) that for all d ∈ MD all (t0, x0,w0) ∈ Z+ × X × W , the unique so-

lution (x(t),w(t)) of (6.390), (6.391), (6.392) with (6.395) and initial condition

(x(t0),w(t0)) = (x0,w0) corresponding to input d ∈ MD satisfies

∥

∥H
(

t, x(t)
)∥

∥

Y
+ µ(t)

∥

∥x(t)
∥

∥

X

≤ σ
(

β(t0 + p)
∥

∥x(t0 + p)
∥

∥

X
, t − t0 − p

)

∀t ≥ t0 + p (6.399)

Notice that by virtue of Remark 6.6(c) and since f (t, d,0, k(t,0)) = 0 for all

(t, d) ∈ Z+ × D, we may conclude that 0 ∈ X × W is an equilibrium point for

system (6.390), (6.391), (6.392) with (6.395). Moreover, by hypotheses (L1–6)

it follows that system (6.390), (6.391), (6.392) with (6.395) satisfies hypotheses

(L1–5) and consequently, by virtue of Lemmas 1.3, 1.4 in Chap. 1, and Lemma 2.7

in Chap. 2, there exist functions µ ∈ K+ and a ∈ K∞ such that for all d ∈ MD and

(t0, x0,w0) ∈ Z+ × X × W , the unique solution x(t) of (6.390), (6.391), (6.392)

with (6.395) initiated from (x(t0),w(t0)) = (x0,w0) at time t0 ≥ 0 and correspond-

ing to d ∈ MD satisfies

∥

∥x(t)
∥

∥

X
+
∥

∥w(t)
∥

∥

W
≤ µ(t)a

(

‖x0‖X + ‖w0‖W

)

∀t ≥ t0 (6.400)

Combining estimates (6.399) and (6.400), we conclude that the closed-loop sys-

tem (6.390), (6.391), (6.392) with (6.395) satisfies the Robust Output Attractivity

Property (Property P3 of Definition 2.2 in Chap. 2). By Lemma 2.1 the closed-loop

system (6.390), (6.391), (6.392) with (6.395) is RGAOS. The proof is complete. �

An immediate consequence of Proposition 6.3 is the following proposition,

which provides a necessary and sufficient condition for the solvability of the dy-

namic ROFS problem for (6.390), (6.391), (6.392).

Proposition 6.4 (Separation principle) Consider the ROFS problem for (6.390),

(6.391) with measured output given by (6.392) under hypotheses (L1–6). The fol-

lowing statements are equivalent:

(a) There exist a normed linear space W ′ and continuous functions k ∈ CU(Z+ ×
X ×W ′;U) and g ∈ CU(Z+ × X ×W ′;W ′) with f (t, d,0, k(t,0,0)) = 0 and



6.9 Observers and Dynamic Feedback 347

g(t,0,0) = 0 for all (t, d) ∈ Z+ × D such that the following system with state

space X × W ′ is RGAOS:

x(t + 1) = f
(

t, d(t), x(t), k
(

t, x(t),w′(t)
))

w′(t + 1) = g
(

t, x(t),w′(t)
)

Y(t) = H
(

t, x(t)
)

(6.401)

Moreover, the functions k ∈ CU(Z+ × X × W ′;U) and g ∈ CU(Z+ × X ×
W ′;W ′) are robustly completely observable from the output y′ = (h(t, x),w′)
with respect to the system:

x(t + 1) = f
(

t, d(t), x(t), u1(t)
)

w′(t + 1) = u2(t)
(

x(t),w′(t)
)

∈ X × W ′, u(t) =
(

u1(t), u2(t)
)

∈ U × W ′, d(t) ∈ D, t ∈ Z+.
(6.402)

(b) The continuous dynamic ROFS problem for (6.390), (6.391), (6.392) with mea-

sured output y = h(t, x) and stabilized output Y = H(t, x) is globally solv-

able, i.e., there exist a normed linear space W and continuous functions k ∈
CU(Z+ ×S ×W ;U) and g ∈ CU(Z+ ×S ×W ;W) with f (t, d,0, k(t,0,0)) =
0 and g(t,0,0) = 0 for all (t, d) ∈ Z+ × D such that system (6.394) with state

space X × W is RGAOS.

Implication (a) ⇒ (b) of Proposition 6.4 is an immediate application of Proposi-

tion 6.3 to the control system (6.402) with input (u1, u2). Implication (b) ⇒ (a)

of Proposition 6.4 is an immediate consequence of Remark 6.6(b). We remark

that since the component x(t) of the solution of (6.402) does not depend on

the input u2, the requirement that the functions k ∈ CU(Z+ × X × W ′;U) and

g ∈ CU(Z+ × X × W ′;W ′) are robustly completely observable from the out-

put y′ = (h(t, x),w′) with respect to the system (6.402) implies the requirement

that, for every w′ ∈ W ′, the functions (t, x) ∈ Z+ × X → k(t, x,w′) ∈ U and

(t, x) ∈ Z+ × X → g(t, x,w′) ∈ W ′ are robustly completely observable from the

output y = h(t, x) with respect to the system (6.390), (6.391), (6.392).

Example 6.9.1 Consider the ROFS problem for the system

x1(t + 1) = x2(t)

x2(t + 1) = x2
2(t) + u(t)

x3(t + 1) = d(t)x3(t) + exp(t)x2(t)

Y (t) = x(t)

x := (x1, x2, x3) ∈ ℜ3, u(t) ∈ ℜ, t ∈ Z+, d(t) ∈ [−r, r] (6.403)

where r ∈ [0,1), with measured output y = x1. First notice that the feedback func-

tion k(t, x) := −x2
2 stabilizes system (6.403). We prove this claim by considering
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the Lyapunov function V (t, x) := |x1| + 3 exp(t)|x2| + |x3|, which clearly satisfies

the following inequalities:

|Y | = |x| ≤ V (t, x) ≤ 5 exp(t)|x| ∀(t, x) ∈ Z+ × ℜ3 (6.404)

V
(

t + 1, x2, x
2
2 + k(t, x), dx3 + exp(t)x2

)

≤
(

1 + exp(t)
)

|x2| + r|x3|

≤ max

{

2

3
, r

}

V (t, x) ∀(t, x, d) ∈ Z+ × ℜ3 × [−r, r] (6.405)

and since max{ 2
3
, r} < 1, by virtue of Proposition 2.3 in Chap. 2, we conclude that

the closed-loop system (6.403) with u(t) = k(t, x(t)) is RGAOS. Moreover, the

feedback function k(t, x) := −x2
2 is robustly completely observable from the output

y = x1. Particularly, we define the continuous mappings (following the notation of

Definition 6.5)

F0(t, x) = x,F1

(

t, x, d(1), u(1)
)

=

⎛

⎝

x2

x2
2 + u0

d0x3 + exp(t)x2

⎞

⎠

y0(t, x) = x1, y1

(

t, x, d(1), u(1)
)

:= x2

Clearly, we have

k
(

t + 1,F1

(

t, x, d(1), u(1)
))

= Ψ (t + 1, y1, y0, u0) := −
(

y2
1 + u0

)2

Consequently, the closed-loop system (6.403) with

w(t + 1) = u(t)

u(t) = −
(

y2(t) + w(t)
)2

w(t) ∈ ℜ, t ∈ Z+

is RGAOS.

6.10 Bibliographical and Historical Notes

1. A vast number of papers and books is devoted to the stabilization of linear

systems described by ODEs. The reader can use the reference list included in

[64], where many papers and books on linear system theory are cited. For time-

delay linear systems, one can consult [51].

2. The goal of solving the Robust Output Feedback Stabilization problem for non-

linear systems is highly nontrivial. The issue of robustness to modeling and

actuator errors and measurement noise makes the problem harder. There are

classes of nonlinear systems described by ODEs for which stabilizing feedback

laws can be designed which also take into account actuator errors and measure-

ment noise, e.g., triangular globally Lipschitz systems. For infinite-dimensional

systems, the Robust Output Feedback Stabilization problem is currently under

intensive research.
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3. Sampled-data globally stabilizing feedback laws for homogeneous systems

were proposed in [16].

4. Clearly, a necessary condition for the existence of a stabilizing state feedback

law is asymptotic controllability (see [64]). However, there are systems which

are asymptotically controllable and cannot be stabilized by a continuous state

feedback law, e.g., Artstein’s cycles (see, e.g., [5, 64]). The existence of a Con-

trol Lyapunov Function under the assumption of asymptotic controllability is

studied in [1, 59, 64] (see also references therein). The existence of feedback

stabilizers under the assumption under the assumption of asymptotic controlla-

bility is studied in [9, 16, 65].

5. The design of stabilizing feedback laws by means of the Artstein–Sontag ap-

proach for nonaffine control systems described by ODEs was recently studied

in [33, 47]. Recently, the Artstein–Sontag approach was extended in [39], so

that it can be applied under weaker hypotheses.

6. A comparison between the Artstein–Sontag approach and the Coron–Rosier

approach is provided next.

• the Artstein–Sontag methodology allows the use of Lipschitz RCLFs, while

the Coron–Rosier methodology requires continuously differentiable RCLFs;

this is exactly the reason why the Artstein–Sontag approach can be extended

to infinite-dimensional systems while the Coron–Rosier approach faces im-

portant difficulties with infinite-dimensional systems,

• the Artstein–Sontag approach can provide explicit formulas for stabilizing

feedback laws (see [36, 62]), while the Coron–Rosier approach leads mostly

to existential results,

• the Artstein–Sontag methodology can provide time-independent feedback

laws while the Coron–Rosier methodology always gives time-varying feed-

back laws,

• the Coron–Rosier approach does not require convexity assumptions; on the

other hand, the Artstein–Sontag approach requires that the control set is con-

vex and demands additional properties for the RCLF.

7. Backstepping, also called “adding an integrator” by European authors initially,

is a powerful method to recursively design adaptive and nonlinear controllers

for systems with a cascade structure or taking the strict-feedback form. As

stated in [41], the origin of this idea can be traced back at least to the year

1989 when several related schemes were presented by different authors. See the

excellent monograph [41] for the details. Also see [11, 13, 19, 26, 30, 34, 40, 44,

60, 69] for other recent extensions. Special results, which guarantee additional

properties for the constructed feedback (e.g., linearity), are given in [45, 68,

70]. The backstepping-based result provided in Sect. 6.7 for systems described

by RFDEs appeared in [33], and the backstepping-based result in Sect. 6.7 for

discrete-time systems appeared in [34].

8. Another method of proving stability that can be used for feedback design is

the use of Matrosov functions (see [43]). However, this approach is not studied

here.
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9. In many cases, the existence of a control Lyapunov function can lead to practical

and/or semiglobal stabilization: see [48, 49, 66].

10. The small-gain method for nonlinear feedback design was introduced in [28] for

important classes of dynamically perturbed nonlinear systems. It was quickly

generalized to nonlinear systems with (linear) input unmodeled dynamics

[42] and (nonlinear) input dynamic uncertainties [25]. Other interesting ex-

tensions for nonlinear decentralized systems, time-delay systems, and coupled

differential-difference equations can be found in [24, 32] and references therein.

11. The Output Feedback stabilization problem and the corresponding observer de-

sign problems for continuous-time systems have been studied by many authors

(see [6, 14, 35, 53–58, 71]). The separation principle holds for linear systems

described by ODEs. Recent results in [3, 8] have provided the extension of

the separation principle for nonlinear systems described by ODEs. The output

feedback stabilization results for discrete-time systems contained in the present

work first appeared in [31].
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Chapter 7

Applications

7.1 Introduction

This chapter aimed to demonstrate the wide applicability of the analysis and syn-

thesis tools presented in previous chapters. While there are many good control en-

gineering applications we may choose, a tough decision must be made for want of

space. We depart from practical application examples commonly adopted by con-

trol engineers and researchers, and will study three nonconventional, but challenging

and important, case studies from three different areas: mathematical biology, numer-

ical analysis, and mathematical economics. These emerging applications are driving

forces behind our search for new tools for nonlinear systems and control. The chap-

ter objective is to present novel solutions to the feedback stabilization problem by

means of the tools presented in previous chapters.

In the following, we describe in details these interesting control problems:

• The stabilization of a delayed chemostat model (Sect. 7.2). The application shows

how the small-gain results of Chap. 5 can be applied for the robust stabilization

of uncertain systems with delays. Moreover, the application illustrates the poten-

tial of the use of novel small-gain results to difficult problems in Mathematical

Biology and process control engineering.

• The stabilization of numerical schemes for the numerical solution of systems

described by ODEs (Sect. 7.3). This application shows how feedback stabiliza-

tion methodologies can be used for the solution of classical problems in areas of

applied mathematics different from mathematical control theory. A well-known

problem in numerical analysis is converted to an abstract feedback stabilization

problem and is solved by applying modern nonlinear feedback design method-

ologies.

• The stabilization of the price of a commodity by manipulation of buffer stocks

(Sect. 7.4). The application shows the efficiency of the proposed feedback stabi-

lization methodologies for the solution of problems in mathematical economics.

The application also shows how government policies may be driven by nonlin-

ear mathematical control theory (hence the term “cybernetics” was coined by the

I. Karafyllis, Z.-P. Jiang, Stability and Stabilization of Nonlinear Systems,

Communications and Control Engineering,
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mathematician N. Wiener from the greek word κυβǫρνω̃ = govern, to refer to

control theory and related areas).

It is clear that the list of potential applications of modern nonlinear control theory

in general, and the presented stability and stabilization results in particular, is long.

We would partially achieve our objective of writing this monograph if the reader

were inspired by the contents of the present chapter and were ready to tackle even

more challenging stabilization problems.

7.2 Stabilization of a Delayed Chemostat Model

The small-gain results presented in this book can allow a transient period during

which the solutions do not satisfy the IOS inequalities (Theorems 5.1 and 5.2 in

Chap. 5). Here, we show how the obtained small-gain results can be used for the

feedback stabilization of uncertain chemostat models (see also [4] for applications

of small-gain results to biological systems).

More specifically, we consider the robust global feedback stabilization problem

for the chemostat model with delays (1.13), where b ≥ 0 is the cell mortality rate,

r ≥ 0 is the maximum delay, and K(s) > 0 is a possibly variable yield coefficient.

The functions μ : [0, sin] → [0,μmax] with μ(0) = 0 and μ(s) > 0 for all s > 0

and K : [0, sin] → (0,+∞) are assumed to be locally Lipschitz functions. It should

be noted that the case of variable yield coefficients has been studied recently (see

[34, 35]) and has been proposed for the justification of experimental results. The

reader should notice that chemostat models with time delays were considered in

[32, 33]. By assuming the existence of a nontrivial equilibrium point for (1.13), i.e.,

the existence of (X∗, s∗,D∗) ∈ (0,+∞)×(0, sin)×(0,+∞) such that (1.14) holds,

and using the change of coordinates and input transformation (1.15) we obtain the

equivalent transformed system (1.16).

The stabilization problem for the equilibrium point (X∗, s∗,D∗) ∈ (0,+∞) ×
(0, sin)×(0,+∞) is crucial: in [30] it is shown that the equilibrium point is unstable

even if μ : (0, sin) → (0,μmax] is strictly monotone (e.g., the Monod specific growth

rate). Moreover, as remarked in [30], the chemostat model (1.11) under (1.12) allows

the expression of the effect of the time difference between consumption of nutrient

and growth of the cells (see the discussion on pp. 238–240 in [30]).

Here, we solve the feedback stabilization problem for the chemostat by providing

a delay-free feedback which achieves global stabilization (see Theorem 7.1 below).

The proof of the theorem relies on the small-gain results of the book. No knowledge

of the maximum delay r ≥ 0 is assumed. The stabilization is “global”: here the

adjective “global” refers only to “admissible states,” i.e., for all initial conditions

(X0, s0(·)) ∈ (0,+∞) × C0([−r,0]; (0, sin)).

In order to solve the robust feedback stabilization problem for the chemostat

model (1.16), we will assume that

(H) There exists sp ∈ (0, s∗) such that μ(s) > b for all s ∈ [sp, sin].
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Hypothesis (H) is automatically satisfied for the case of a monotone specific

growth rate. Hypothesis (H) can be satisfied for nonmonotone specific growth rates

(e.g., Haldane or generalized Haldane growth expressions). By using the trajectory-

based small-gain Theorem 5.2, we can prove the following theorem.

Theorem 7.1 Let a > 0 be a constant that satisfies

min
sp≤s≤sin

μ(s) − b > aD∗ s∗

sin
(7.1)

Then, the locally Lipschitz delay-free feedback law given by

D(t) =
K(s(t))μ(s(t))X(t) + aD∗(s∗ − min(s(t), s∗))

sin − min(s(t), s∗)
(7.2)

achieves the robust global stabilization of the equilibrium point (X∗, s(·)) ∈
(0,+∞) × C0([−r,0]; (0, sin)) with s(θ) = s∗ for all θ ∈ [−r,0], for the uncer-

tain chemostat model (1.13) under hypothesis (H).

In the new coordinates (see (1.15)), the feedback law (7.2) takes the form

u(t) = ln

(

g
(

x2(t)
)

exp
(

x1(t)
)

min
(

G + exp
(

x2(t)
)

,G + 1
)

+
a

G + 1
max

(

1 − exp
(

x2(t)
)

,0
)

)

(7.3)

The feedback law (7.3), or (7.2), is a delay-free feedback, which achieves global

stabilization of 0 ∈ ℜ × C0([−r,0];ℜ) for system (1.16) no matter how large the

delay is. Furthermore, no knowledge of the maximum delay r ≥ 0 is needed for

the implementation of (7.3). As a result, the proof of Theorem 7.1 is equivalent

to the proof of robust global asymptotic stability of the equilibrium point 0 ∈ ℜ ×
C0([−r,0];ℜ) for system (1.16).

Before we give the proof of Theorem 7.1, it is important to understand the intu-

ition that leads to the construction of the feedback law (7.3) and the ideas behind

the proof of Theorem 7.1. To explain the procedure, we follow the following argu-

ments:

1. For the stabilization of the equilibrium point 0 ∈ ℜ × C0([−r,0];ℜ), we first

start with the stabilization of the subsystem

ẋ2(t) = D∗(G exp
(

−x2(t)
)

+ 1
)

×
(

exp
(

u(t)
)

−
(

G + exp
(

x2(t)
))

g
(

x2(t)
)

exp
(

x1(t)
))

with x1 as the disturbance input and u as the control input. Any feedback law

which satisfies u(t) = ln(g(x2(t)) exp(x1(t))(G + 1)) for x2(t) ≥ 0 and u(t) >

ln(g(x2(t)) exp(x1(t))(G + exp(x2(t)))) for x2(t) < 0 achieves ISS stabilization

of the subsystem with x1 as the input.

2. In order to prove URGAS for the composite system by means of small-gain

arguments, one has to show the ISS property of the x1-subsystem ẋ1(t) =
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mint−r≤τ≤t μ̃(x2(τ )) + d(t)(maxt−r≤τ≤t μ̃(x2(τ )) − mint−r≤τ≤t μ̃(x2(τ ))) −
D∗ exp(u(t))−b with x2 as the input. Notice that the feedback selection from the

previous step gives ẋ1(t) = mint−r≤τ≤t μ̃(x2(τ ))+d(t)(maxt−r≤τ≤t μ̃(x2(τ ))−
mint−r≤τ≤t μ̃(x2(τ ))) − D∗g(x2(t)) exp(x1(t))(G + 1) − b for x2(t) ≥ 0 and

ẋ1(t) < mint−r≤τ≤t μ̃(x2(τ )) − D∗g(x2(t)) exp(x1(t))(G + exp(x2(t))) − b for

x2(t) < 0. The estimation of the derivative ẋ1(t) shows that the ISS inequality

for the x1-subsystem does not hold unless we have mint−r≤τ≤t μ̃(x2(τ )) > b for

all t sufficiently large. By virtue of hypothesis (H), there exists y < 0 such that

the ISS inequality for the the x1-subsystem holds if mint−r≤τ≤t x2(τ ) ≥ y for all

t sufficiently large.

3. The feedback law u(t) > ln(g(x2(t)) exp(x1(t))(G + exp(x2(t)))) for x2(t) < 0

is selected such that the inequality mint−r≤τ≤t x2(τ ) ≥ y holds for all initial

conditions after a transient period. Since the ISS inequalities will hold only after

this transient period, the trajectory-based small-gain result Theorem 5.2 must be

used for the proof of URGAS of the closed-loop system.

Proof of Theorem 7.1 Consider the solution (x1(t), x2(t)) ∈ ℜ2 of (1.16) with (7.3)

with arbitrary initial condition x1(0) ∈ ℜ, Tr(0)x2 ∈ C0([−r,0];ℜ) and correspond-

ing to arbitrary input d ∈ MD . The following equations hold for system (1.16)

with (7.3):

ẋ2(t) = aD∗ G exp(−x2(t)) + 1

G + 1

(

1 − exp
(

x2(t)
))

if x2(t) ≤ 0

ẋ2(t) = D∗g
(

x2(t)
)(

G exp
(

−x2(t)
)

+ 1
)

exp
(

x1(t)
)

×
(

1 − exp
(

x2(t)
))

if x2(t) > 0

(7.4)

Equations (7.4) imply that the function V (t) = x2
2(t) is nonincreasing, and conse-

quently, we obtain

∣

∣x2(t)
∣

∣≤
∥

∥Tr(0)x2

∥

∥

r
for all t ∈ [0, tmax) (7.5)

Using the fact that μ : (0, sin) → (0,μmax] and definition (1.17) of μ̃, we get that

μ̃(x2) ≤ μmax for all x2 ∈ ℜ. This implies the following differential inequality:

ẋ1(t) ≤ 2μmax − b

which by direct integration yields the estimate

x1(t) ≤ x1(0) + (2μmax − b)t for all t ∈ [0, tmax) (7.6)

Define κ(s) := (G + 1)D∗ max|y|≤s g(y). Inequalities (7.5) and (7.6) imply that the

following differential inequality holds:

ẋ1(t) ≥ −b −
aD∗

G + 1
− κ
(
∥

∥Tr(0)x2

∥

∥

r

)

exp
(

x1(0) + (2μmax − b)t
)

which by direct integration yields the following estimate for all t ∈ [0, tmax):
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x1(t) ≥ x1(0) −
(

b +
aD∗

G + 1

)

t

− κ
(
∥

∥Tr(0)x2

∥

∥

r

)

exp
(

x1(0)
)exp((2μmax − b)t) − 1

2μmax − b
(7.7)

Inequalities (7.5), (7.6), and (7.7) and a standard contradiction argument show that

system (1.16) with (7.3) is forward complete, i.e., tmax = +∞. Therefore, inequal-

ities (7.5), (7.6), and (7.7) hold for all t ≥ 0, and since system (1.16) with (7.3) is

autonomous, it follows that system (1.16) with (7.3) is Robustly Forward Complete.

Define W(t) = x2
2(t) if x2(t) ≤ 0 and W(t) = 0 if otherwise. Using (7.4), we

obtain the existence of a positive definite function ρ ∈ C0(ℜ+;ℜ+) such that

Ẇ (t) ≤ −ρ
(

W(t)
)

for all t ≥ 0 (7.8)

Lemma 2.13 in Chap. 2 implies the existence of σ ∈ KL such that, for all x1(0) ∈ ℜ,

Tr(0)x2 ∈ C0([−r,0];ℜ), and d ∈ MD , it holds that

W(t) ≤ σ
(

W(0), t
)

for all t ≥ 0 (7.9)

Inequality (7.9), in conjunction with Theorem 3.1 in Chap. 3, shows the existence

of a ∈ K∞ such that for all x1(0) ∈ ℜ, Tr(0)x2 ∈ C0([−r,0];ℜ), and d ∈ MD , there

exists ξ ≥ r with ξ ≤ r + a(|x2(0)|) satisfying

x2(t − r) ≥ −
c

2
for all t ≥ ξ (7.10)

where c := ln(
sin−sp
spG

) > 0, and sp < s∗ is the constant involved in hypothe-

sis (H). Define S := ℜ × C0([−r,0]; [−c/2,+∞)). Inequality (7.10) shows that

(x1(t), Tr(t)x2) ∈ S for all t ≥ ξ and that inequality (5.16) holds for appropriate

a ∈ K∞ and c(t) ≡ 1.

Notice that for (x1(t), Tr(t)x2) ∈ S, the functionals

V1(t) = max
θ∈[−r,0]

exp(2σθ)
∣

∣z(t + θ)
∣

∣

2
V2 =

∣

∣x1(t)
∣

∣

2
(7.11)

where σ > 0 and

x2(t) = c
(

exp
(

z(t)
)

− 1
)

(7.12)

are well defined. Moreover, by considering the differential equations

ż(t) = aD∗ G exp(c(1 − exp(z(t)))) + 1

c(G + 1)
exp
(

−z(t)
)(

1 − exp
(

c
(

exp
(

z(t)
)

− 1
)))

if z(t) ≤ 0

ż(t) = c−1D∗g
(

c
(

exp
(

z(t)
)

− 1
))(

G exp
(

c
(

1 − exp
(

z(t)
)))

+ 1
)

exp
(

x1(t) − z(t)
)

×
(

1 − exp
(

c
(

exp
(

z(t)
)

− 1
)))

if z(t) > 0,

we conclude from Lemma 2.14 in Chap. 2 and Lemma 6.7 in Chap. 6 that, for every

γ1,2 ∈ K∞, there exists σ1 ∈ KL such that

V1(t) ≤ max
{

σ1

(

V1(t0), t − t0
)

, sup
t0≤τ≤t

γ1,2

(

V2(τ )
)

}

for all t ≥ t0 ≥ 0 (7.13)
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Finally, using hypothesis (H) and definitions (7.11), we guarantee that there exists a

positive definite function ρ ∈ C0(ℜ+;ℜ+) such that the following holds for every

ε > 0:

“Whenever

(1 + ε) ln

(

(G + exp(c(exp(
√

V1(t)) − 1)))D∗ max|z|≤
√

V1(t) g(c(exp(z) − 1))

min|z|≤exp(σ r)
√

V1(t) μ̃(c(exp(z) − 1)) − b − a
G+1

D∗(1 − exp(c(exp(−
√

V1(t)) − 1)))

)

≤
∣

∣x1(t)
∣

∣,

(1 + ε) ln

(

max|z|≤exp(σ r)
√

V1(t)
μ̃(c(exp(z) − 1)) − b

(G + exp(c(exp(−
√

V1(t)) − 1)))D∗ min|z|≤
√

V1(t)
g(c(exp(z) − 1))

)

≤
∣

∣x1(t)
∣

∣

then 2x1(t)ẋ1(t) ≤ −ρ(x2
1(t)).”

Therefore, Lemma 2.14 in Chap. 2 implies that there exists σ2 ∈ KL such that

V2(t) ≤ max
{

σ2

(

V2(t0), t − t0
)

, sup
t0≤τ≤t

γ2,1

(

V1(τ )
)

}

for all t ≥ t0 ≥ 0 (7.14)

where

γ2,1(s) := (1 + ε)2(ln(max{g1(s), g2(s)}))2

g1(s)

:=
(G + exp(c(exp(

√
s) − 1)))D∗ max|z|≤

√
s g(c(exp(z) − 1))

min|z|≤exp(σ r)
√

s μ̃(c(exp(z) − 1)) − b − aD∗
G+1

(1 − exp(c(exp(−
√

s) − 1)))

g2(s) :=
max|z|≤exp(σ r)

√
s μ̃(c(exp(z) − 1)) − b

(G + exp(c(exp(−
√

s) − 1)))D∗ min|z|≤
√

s g(c(exp(z) − 1))

(7.15)

Inequalities (7.5), (7.6), (7.7), (7.13), and (7.14) guarantee that inequali-

ties (5.10), (5.11), (5.13), (5.14), (5.15), and (5.17) hold for appropriate σ ∈ KL,

ν ∈ K+, and a ∈ K∞ with c(t) ≡ 1, p ≡ 0, γ1,2(s) := γ2,1(
s
2
), γ1,1(s) = γ2,2(s) ≡

0, L := V1 + V2, and H(t, x1, x2) :=
√

x2
1 + ‖x2‖2

r . Finally, notice that the MAX-

preserving mapping Γ : ℜ2
+ → ℜ2

+ with Γi(x) = maxj=1,2 γi,j (xj ) (i = 1,2) satis-

fies the cyclic small-gain conditions.

By virtue of Theorem 5.2, we conclude that the autonomous system (1.16)

with (7.3) is URGAS. �

7.3 Applications to Numerical Analysis

It is well known that step size control can enhance the performance of a numeri-

cal scheme when applied to a system of Ordinary Differential Equations (ODEs).

In fact the use of the word “control” suggests that methods and techniques used in

Mathematical Control Theory can be (in principle) used in order to achieve cer-

tain objectives for the numerical solution of systems of ODEs. For example, in
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[10] the authors use a “Proportional-Integral” technique which is similar to the

“Proportional-Integral” controller used in Linear Control Theory in order to keep

the local discretization error within certain bounds (see also [8, 9, 12]). Theoretical

results on the behavior of adaptive time-stepping methods have been presented in

[22, 24], and the control theoretic notion of input-to-state stability (ISS) has been

successfully used in [6, 7] in order to explain the behavior of attractors under dis-

cretization.

In this section, we consider the problem of selecting the step size for numerical

schemes so that the numerical solution presents the same qualitative behavior as the

original system of ODEs. It is well known that any consistent and stable numeri-

cal scheme for ODEs inherits the asymptotic stability of the original equation in a

practical sense, even for more general attractors than equilibria; see, for instance, [6,

7] and [31] (Chap. 7). Practical asymptotic stability means that the system exhibits

an asymptotically stable set close to the original attractor, i.e., in our case a small

neighborhood around the equilibrium point, which shrinks down to the attractor as

the time step h tends to 0. In contrast to these results, here we investigate the case in

which the numerical approximation is asymptotically stable in the usual sense, i.e.,

not only practically.

We focus on nonlinear systems for which an equilibrium point is the global at-

tractor. First, we show how the problem of appropriate step size selection can be

converted to a rigorous abstract feedback stabilization problem for a particular hy-

brid system; see also [16]—the reader should notice that the standard stability anal-

ysis of numerical schemes uses the study of a discrete-time system, e.g., [11, 13, 15,

23, 31], not a hybrid system. Therefore, we are in a position to use all methods of

feedback design for nonlinear systems. Secondly, we apply small-gain methods for

the solution of the problem for a class of nonlinear systems.

7.3.1 Conversion to a Feedback Stabilization Problem

Consider the autonomous dynamical system

ż(t) = f
(

z(t)
)

z(t) ∈ ℜn (7.16)

where f : ℜn → ℜn is a locally Lipschitz vector field with f (0) = 0. For all z0 ∈ ℜn

and t ≥ 0, the solution of (7.16) with initial condition z(0) = z0 will be denoted by

z(t,0, z0), or z(t, z0) or simply z(t) if there is no confusion from the context. The

numerical approximation of system (7.16) will be the following system with variable

sampling partition:

ẋ(t) = F
(

hi, x(τi)
)

t ∈ [τi, τi+1)

τ0 = 0, τi+1 = τi + hi

hi = ϕ
(

x(τi)
)

exp
(

−u(τi)
)

x(t) ∈ ℜn, u(t) ∈ [0,+∞) (7.17)



362 7 Applications

where ϕ ∈ C0(ℜn; (0, r]), r > 0 is a constant, and F :
⋃

x∈ℜn([0, ϕ(x)] × {x}) →
ℜn is a (not necessarily continuous) vector field with F(h,0) = 0 for all h ∈
[0, ϕ(0)] and limh→0+ F(h, z) = f (z) for all z ∈ ℜn. Modelling numerical approx-

imations by hybrid systems instead of the usual discrete-time system enables us to

simultaneously investigate the qualitative behavior for all time steps h ∈ (0, ϕ(x)]
simultaneously.

We assume that there exists a continuous nondecreasing function M : ℜ+ → ℜ+

such that

∣

∣F(h,x)
∣

∣≤ |x|M
(

|x|
)

for all x ∈ ℜnand h ∈
[

0, ϕ(x)
]

(7.18)

It should be noticed that the hybrid system (7.17) under hypothesis (7.18) is an

autonomous system with variable sampling partition. Some remarks are needed in

order to justify the name “numerical approximation of system (7.16)” for the hybrid

system (7.17):

1. Notice that the condition limh→0+ F(h, z) = f (z) is a consistency condition for

the numerical scheme applied to (7.16).

2. The sequence {hi}∞0 is the sequence of step sizes used in order to obtain the nu-

merical solution. Notice that for the case ϕ(x) ≡ r , constant inputs u(t) ≡ u ≥ 0

will produce constant step sizes with hi ≡ r exp(−u). Moreover, notice that vari-

able step sizes can be represented easily by selecting in an appropriate way the

input u : ℜ+ → ℜ+.

3. The constant r > 0 is the maximum allowable step size.

4. The function ϕ ∈ C0(ℜn; (0, r]) determines the maximum allowable step size

ϕ(x(τi)) for each x(τi) ∈ ℜn. This is important for implicit numerical schemes

as shown below.

All consistent s-stage Runge–Kutta methods can be represented by the hybrid

system (7.17). More specifically, let x0 ∈ ℜn and consider a consistent s-stage

Runge–Kutta method for (7.16),

Yi = x0 + h

s
∑

j=1

aijf (Yj ) i = 1, . . . , s (7.19)

x = x0 + h

s
∑

i=1

bif (Yi) (7.20)

with
∑s

i=1 bi = 1. If the scheme is explicit, i.e., if aij = 0 for j ≥ i, then there

always exists a unique solution to (7.19). If the scheme is implicit, then in order

to be able to guarantee that (7.19) admit a unique solution, it may be necessary to

restrict the step size to h ∈ [0, ϕ(x0)] for some maximal step size ϕ(x0) depending

on the state x0 ∈ ℜn.

A suitable choice for ϕ(x) may be obtained in the following way. Let γ : ℜ+ →
ℜ+ be a continuous nondecreasing function with |f (x)| ≤ |x|γ (|x|) for all x ∈ ℜn
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(such a function always exists since f : ℜn → ℜn is a locally Lipschitz vector field

with f (0) = 0). Let Lλ : ℜn → (0,+∞) be a continuous function satisfying

Lλ(x0) ≥ sup

{

|f (x) − f (y)|
|x − y|

: x, y ∈ Bλ(x0), x �= y

}

for all x0 ∈ (ℜn\{0}), with Bλ(x0) := {x ∈ ℜn : |x − x0| ≤ λ|x0|}, λ ∈ (0,1). The

continuous function ϕ(x) := λ
|A|(Lλ(x)+γ (|x|)) , where |A| := maxi=1,...,s

∑s
j |aij |,

guarantees that for all x0 ∈ ℜn and h ∈ [0, ϕ(x0)] equations (7.19) have a unique

solution satisfying Yi ∈ Bλ(x0), i = 1, . . . , s. Note however that this bound may

be conservative. For instance, if we apply the implicit Euler scheme (s = 1, a11 =
b1 = 1) to an asymptotically stable linear ODE of the form ẋ = Jx with a Hurwitz

matrix J ∈ ℜn×n, then (7.19) becomes

Y1 = x0 + hJY1 ⇔ (I − hJ )Y1 = x0

which always has a unique solution because all eigenvalues of −J and thus of I −
hJ have positive real parts for all h ≥ 0; hence, I − hJ is invertible for all h ≥ 0.

We define

F(h,x0) := h−1(x − x0) =
s
∑

i=1

bif (Yi) (7.21)

A moment’s thought reveals that for every locally bounded u : ℜ+ → ℜ+ and for

every x0 ∈ ℜn, the solution of (7.17) with (7.21) coincides at each τi , i ≥ 0, with

the numerical solution of (7.16) with x(0) = x0 obtained by using the Runge–

Kutta numerical scheme (7.19), (7.20) and using the discretization step sizes hi =
ϕ(x(τi)) exp(−u(τi)), i ≥ 0. The reader should notice that other ways (besides

(7.21)) of defining the vector field F :
⋃

x∈ℜn([0, ϕ(x)] × {x}) → ℜn may be possi-

ble; here we have selected the simplest way of obtaining a piecewise linear numeri-

cal solution.

Moreover, the reader should notice that appropriate step size restriction can al-

ways guarantee that (7.18) holds for F :
⋃

x∈ℜn([0, ϕ(x)] × {x}) → ℜn as defined

by (7.21). For example, if ϕ(x) := λ
|A|(Lλ(x)+γ (|x|)) is the step size restriction de-

scribed above, then F :
⋃

x∈ℜn([0, ϕ(x)] × {x}) → ℜn as defined by (7.21) sat-

isfies |F(h,x)| ≤ |x|[1 + r(1 + λ)(
∑s

i=1 |bi |)γ ((1 + λ)|x|)] for all x ∈ ℜn and

h ∈ [0, ϕ(x)]. Thus, (7.18) holds with M(y) := 1+r(1+λ)(
∑s

i=1 |bi |)γ ((1+λ)y).

Assume next that 0 ∈ ℜn is Uniformly Globally Asymptotically Stable (UGAS)

for (7.16). Our goal is to be able to produce numerical solutions using the numerical

approximation (7.17) which have the correct qualitative behavior. More specifically,

we would like to be in a position to know a continuous function ϕ : ℜn → (0, r]
such that the numerical solution produced by (7.17) has a correct qualitative be-

havior (e.g., limt→+∞ x(t) = 0). However, we would like to be able to guarantee

that a correct behavior for the numerical solution can be obtained by using arbitrary

discretization step sizes smaller than ϕ(x(τi)) (i.e., if we obtain the correct quali-

tative behavior using the discretization step sizes hi = ϕ(x(τi)), i ≥ 0, we would

like to obtain a correct qualitative behavior using the smaller discretization step

sizes hi = ϕ(x(τi)) exp(−u(τi)), i ≥ 0, where u : ℜ+ → ℜ+ is an arbitrary locally
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bounded function). This is equivalent to requiring that 0 ∈ ℜn is Uniformly Robustly

Globally Asymptotically Stable (URGAS) for (7.17).

The reader should notice that continuity for the function ϕ : ℜn → (0, r] is essen-

tial: without assuming continuity, it may happen that lim infx→0 ϕ(x) = 0, and this

would require discretization step sizes of vanishing magnitude as t → +∞. More-

over, since we want to be able to determine a continuous function ϕ : ℜn → (0, r]
which “stabilizes” the hybrid system (7.17), we are essentially studying a feedback

stabilization problem for the hybrid system (7.17). Hence, we are in a position to

pose the problem rigorously. We consider the following feedback stabilization prob-

lems:

(P1) Existence Problem Is there a continuous function ϕ : ℜn → (0, r] such that

0 ∈ ℜn is URGAS for system (7.17)?

(P2) Design Problem Construct, if possible, a continuous function ϕ : ℜn → (0, r]
such that 0 ∈ ℜn is URGAS for system (7.17).

Here, we are looking for asymptotic stability with respect to the equilibrium

in question. This is a strong property which cannot in general be deduced from

practical stability (guaranteed by general results on attractors in [6, 7] and [31]). In

[31] (Chap. 5), several results for our problem focusing on specific classes of ODEs

are derived using classical numerical stability concepts like A-stability, B-stability,

and the like.

It should be emphasized that standard step size control algorithms do not solve

problem (P1). The following example illustrates this point.

Example 7.3.1 Consider the linear planar system

ẋ1 = −0.005x1 + x2 ẋ2 = −x1 − 0.005x2 (7.22)

Following the suggestions in [12] (pp. 167–169) based on the estimation of the local

discretization error, we have used the formula

hnew = hmin

{

P,0.8

√

1

err

}

(7.23)

where

err =

√

1

2

(

x1,EULER − x1,HEUN

sc1

)2

+
1

2

(

x2,EULER − x2,HEUN

sc2

)2

(7.24)

sci = Atol + Rtol max
{

|xi |, |xi,HEUN|
}

i = 1,2 (7.25)

Atol > 0 is the tolerance for absolute errors, Rtol > 0 is the tolerance for relative

errors, P ≥ 1 is a constant factor which determines the magnitude of a (possible)

increase of the step size, xi,EULER (i = 1,2) are the approximations of the compo-

nents of the solution by the explicit Euler scheme, and xi,HEUN (i = 1,2) are the

approximations of the components of the solution by Heun’s 2nd-order scheme.

Figure 7.1 shows the logarithm of the value of the squared Euclidean norm for the

numerical solution obtained by Heun’s 2nd-order scheme with Atol = Rtol = 10−2,
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Fig. 7.1 The value of the

logarithm of the squared

Euclidean norm

V (t) = |x(t)|2 for the

numerical solution of (7.22)

with Atol = Rtol = 10−2,

P = 2

Fig. 7.2 The value of the

applied step size for the

numerical solution of (7.22),

with Atol = Rtol = 10−2,

P = 2

Fig. 7.3 The phase portrait

for the numerical solution of

(7.22) with

Atol = Rtol = 10−2, P = 2

P = 2, and initial condition (x1, x2) = (1,0): the numerical solution exhibits an

asymptotically stable limit cycle of radius r = 0.17195, which is clearly shown in

the phase portrait in Fig. 7.3. Indeed, Fig.7.2 shows that the step size tends to take

values inside the interval [0.347,0.351] for large times. The limit cycle shrinks to

the origin as Atol,Rtol → 0, but exists for all Atol,Rtol > 0. Figure 7.4 shows the

logarithm of the value of the squared Euclidean norm for the numerical solution

obtained by Heun’s 2nd-order scheme with Atol = Rtol = 10−3, P = 2, and initial
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Fig. 7.4 The value of the

logarithm of the squared

Euclidean norm

V (t) = |x(t)|2 for the

numerical solution of (7.22)

with Atol = Rtol = 10−3,

P = 2

condition (x1, x2) = (1,0): the numerical solution exhibits an asymptotically stable

limit cycle of radius r = 0.015. It is clear that (standard) step size control based on

the local discretization error does not give the desired qualitative behavior.

7.3.2 Small-Gain Methods

Consider the following system described by ODEs:

ż = f0(z) (7.26)

ẋ1 = −a1(x1)x1 + f1(z)

ẋi = −ai(xi)xi + fi(z, x1, . . . , xi−1) i = 2, . . . , n (7.27)

where z ∈ ℜm, x = (x1, . . . , xn)
′ ∈ ℜn, f0 : ℜm → ℜm, f1 : ℜm → ℜ, fi : ℜm ×

ℜi−1 → ℜ (i = 2, . . . , n), and ai : ℜ → ℜ (i = 1, . . . , n) are locally Lipschitz map-

pings with f0(0) = 0, f1(0) = · · · = fn(0,0, . . . ,0) = 0. We assume that there exist

constants Li > 0 (i = 1, . . . , n) such that

ai(y) ≥ Li ∀y ∈ ℜ (7.28)

We also assume that 0 ∈ ℜm is UGAS for (7.26). Under the previous assumptions,

using the fact that system (7.26), (7.27) has a structure of systems in cascade, we

can prove by induction that for every j = 1, . . . , n, 0 ∈ ℜm × ℜj is UGAS for sys-

tem (7.26) with

ẋ1 = −a1(x1)x1 + f1(z)

ẋi = −ai(xi)xi + fi(z, x1, . . . , xi−1) i = 2, . . . , j (7.29)

The proof is based on the fact that for every xi,0 ∈ ℜ and for every measurable

u : ℜ+ → ℜ, the solution of ẋi = −ai(xi)xi + u with initial condition xi(0) = xi,0

satisfies the following estimate, which is obtained from the variations of constants

formula and (7.28):

∣

∣xi(t)
∣

∣≤ exp

(

−
Li

2
t

)

|xi,0| +
1

Li

sup
0≤s≤t

∣

∣u(s)
∣

∣ ∀t ≥ 0 (7.30)
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Consequently, the solution of ẋi = −ai(xi)xi +fi(z, x1, . . . , xi−1) satisfies |xi(t)| ≤
exp(−Li

2
t)|xi,0| + 1

Li
sup0≤s≤t |fi(z(s), x1(s), . . . , xi−1(s))|. Using the functions

V1(z, x) = |z|, Vi+1(z, x) = |xi | (i = 1, . . . , n) and the set S(t) := ℜm × ℜn, one

can show that hypotheses (SG3), (SG4), and (SG5) hold for system (7.26), (7.27)

with gains γi,j (s) (i, j = 1, . . . , n + 1) satisfying γi,j (s) ≡ 0 for j ≥ i. Therefore,

the cyclic small-gain conditions hold, and Theorem 5.2 guarantees UGAS for sys-

tem (7.26), (7.27).

Suppose that a stable numerical scheme is available for (7.26), i.e., there exist

ϕ ∈ C0(ℜm; (0, r]), r > 0, and F0 :
⋃

z∈ℜm([0, ϕ(z)] × {z}) → ℜm with F0(h,0) =
0 for all h ∈ [0, ϕ(0)] and limh→0+ F0(h, z) = f0(z) for all z ∈ ℜm such that 0 ∈ ℜm

is URGAS for the hybrid system

ż(t) = F0(hi, z(τi)) t ∈ [τi, τi+1)

τ0 = 0, τi+1 = τi + hi

hi = ϕ
(

z(τi)
)

exp
(

−u(τi)
)

x(t) ∈ ℜn, u(t) ∈ [0,+∞) (7.31)

We propose the following first-order numerical scheme for (7.27):

x1(t + h) = x1(t) − ha1

(

x1(t)
)

x1(t + h) + hf1

(

z(t)
)

xi(t + h) = xi(t) − hai

(

xi(t)
)

xi(t + h) + hfi

(

z(t), x1(t), . . . , xi−1(t)
)

i = 2, . . . , n (7.32)

The above scheme is a partitioned scheme which treats differently the state xi and

the states z, x1, . . . , xi−1 for each differential equation. The resulting hybrid system

is system (7.31) with

ẋ1(t) =
−a1(x1(τi))

1 + hia1(x1(τi))
x1(τi) +

1

1 + hia1(x1(τi))
f1

(

z(τi)
)

ẋj (t) =
−aj (xj (τi))

1 + hiaj (xj (τi))
xj (τi)

+
1

1 + hiaj (xj (τi))
fj

(

z(τi), x1(τi), . . . , xj−1(τi)
)

j = 2, . . . , n (7.33)

We have

Theorem 7.2 0 ∈ ℜm × ℜn is URGAS for system (7.31), (7.33).

The proof of the above theorem is based on the following technical lemma.

Lemma 7.1 Let a : ℜ → ℜ be a continuous function with L = infy∈ℜ a(y) > 0, and

let a constant r > 0. Then for every sequence {hi}∞0 with hi ∈ (0, r] for all i ≥ 0,
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for every locally bounded function v : ℜ+ → ℜ, and for every x0 ∈ ℜ, the solution

of

ẋ(t) =
−a(x(τi))

1 + hia(x(τi))
x(τi) +

1

1 + hia(x(τi))
v(τi) t ∈ [τi, τi+1)

τi+1 = τi + hi, hi ∈ (0, r], x(t) ∈ ℜ (7.34)

with initial condition x(0) = x0 ∈ ℜ, τ0 = 0 satisfies the following estimate:

∣

∣x(t)
∣

∣≤ exp(σ r)|x0| exp(−σ t) +
1

σL
sup

0≤s≤t

∣

∣v(s)
∣

∣ ∀t ∈
[

0, sup
i≥0

τi

)

(7.35)

where σ > 0 is any constant such that 1
1+s

≤ exp(−σs) for all s ∈ [0, rL], i.e.,

σ ≤ ln(1+rL)
rL

.

Proof Notice that for every i ≥ 0, it holds that

x(τi+1) = x0

i
∏

j=0

(

1 + hja
(

x(τj )
))−1

+
i
∑

j=0

[

hjv(τj )

(

i
∏

k=j

(

1 + hka
(

x(τk)
))−1

)]

(7.36)

and using the definition L = infy∈ℜ a(y) > 0, we obtain the following bound

from (7.36):

∣

∣x(τi+1)
∣

∣≤ |x0|
i
∏

j=0

(1 + hjL)−1

+ max
j=0,...,i

∣

∣v(τj )
∣

∣

i
∑

j=0

[

hj

(

i
∏

k=j

(1 + hkL)−1

)]

(7.37)

Let σ > 0 such that 1
1+s

≤ exp(−σs) for all s ∈ [0, rL]. It holds

i
∏

j=0

(1 + hjL)−1 ≤
i
∏

j=0

exp(−σLhj ) = exp(−σLτi+1)

and

i
∑

j=0

[

hj

(

i
∏

k=j

(1 + hkL)−1

)]

≤
i
∑

j=0

[

hj

(

i
∏

k=j

exp(−σLhk)

)]

=
i
∑

j=0

[

hj exp
(

−σL(τi+1 − τj )
)]

= exp(−σLτi+1)

i
∑

j=0

[

exp(σLτj )

∫ τj+1

τj

ds

]
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≤ exp(−σLτi+1)

i
∑

j=0

[

∫ τj+1

τj

exp(σLs)ds

]

= exp(−σLτi+1)

∫ τi+1

0

exp(σLs)ds

≤
1

σL

Using the above inequalities in conjunction with (7.37), we obtain, for all i ≥ 0,

∣

∣x(τi+1)
∣

∣≤ |x0| exp(−στi+1) +
1

σL
max

0≤j≤i

∣

∣v(τj )
∣

∣ (7.38)

Now, for all i ≥ 0 and t ∈ [τi, τi+1), it holds that
∣

∣x(t)
∣

∣≤ max
{
∣

∣x(τi)
∣

∣,
∣

∣x(τi+1)
∣

∣

}

(7.39)

Combining (7.38) and (7.39) finishes the proof. �

The proof of the Theorem 7.2 follows from Lemma 7.1, which guarantees that

|xi(t)| ≤ exp(σ r)|xi(0)| exp(−σ t) + 1
σLi

sup0≤s≤t |fi(z(s), . . . , xi−1(s))|, where

σ ∈ (0,
ln(1+rL)

rL
). Using the functions V1(z, x) = |z|, Vi+1(z, x) = |xi | (i =

1, . . . , n), and the set S(t) := ℜm ×ℜn, one can show that hypotheses (SG3), (SG4),

and (SG5) hold for system (7.31), (7.33) with gains γi,j (s) (i, j = 1, . . . , n+ 1) sat-

isfying γi,j (s) ≡ 0 for j ≥ i. Therefore, the cyclic small-gain conditions hold, and

Theorem 5.2 guarantees URGAS for system (7.31), (7.33).

Example 7.3.2 Consider the infinite-dimensional dynamical system described by

PDEs

∂x

∂t
(t, z) + c

∂x

∂z
(t, z) = b

(

x(t, z)
)

x(t, z) z ∈ (0,1]

x(t,0) = 0 (7.40)

with x(t, z) ∈ ℜ, b : ℜ → ℜ being locally Lipschitz, c > 0, and initial condition

x(0, z) = x0(z), where x0 ∈ C1([0,1];ℜ) with x0(0) = dx0

dz
(0) = 0, under the fol-

lowing hypothesis:

(H) There exists a constant K ≥ 0 such that b(x) ≤ K for all x ∈ ℜ.

Using the method of characteristics and hypothesis (H), it can be shown that

the infinite-dimensional dynamical system (7.40) admits a unique classical solution

x(t, ·) ∈ C1([0,1];ℜ) with x(t,0) = ∂x
∂z

(t,0) = 0 for all t ≥ 0. Moreover, the zero

solution is globally asymptotically stable, since for every x0 ∈ C1([0,1];ℜ) with

x0(0) = dx0

dz
(0) = 0, the unique classical solution x(t, ·) ∈ C1([0,1];ℜ) of (7.40)

with initial condition x(0, z) = x0(z) satisfies x(t, z) = 0 for all t ≥ c−1z (uniform

global attractivity).

Using a uniform space grid of n+1 points with space discretization step Δz = 1
n

,

setting xi(t) = x(t, iΔz), i = 0,1, . . . , n, and approximating the spatial derivative
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by the backward difference scheme ∂x
∂z

(t, iΔz) ≈ x(t,iΔz)−x(t,(i−1)Δz)
Δz

= xi (t)−xi−1(t)

Δz
for i = 1, . . . , n, we obtain the following set of ordinary differential equations:

ẋ1 = −
(

c

Δz
− b(x1)

)

x1

ẋi = −
(

c

Δz
− b(xi)

)

xi +
c

Δz
xi−1 i = 2, . . . , n

(7.41)

Clearly system (7.41) has the structure of system (7.27) with ai(xi) = c
Δz

− b(xi)

for i = 1, . . . , n. Moreover, if the space discretization step is selected so that

KΔz < c (7.42)

where K ≥ 0 is the constant involved in Hypothesis (H), then inequalities (7.28)

hold as well with Li = c
Δz

− K for i = 1, . . . , n. Theorem 7.2 allows us to conclude

that, for every h > 0, the numerical scheme

x1(t + h) =
x1(t)

1 + h
(

c
Δz

− b(x1(t))
)

xi(t + h) =
xi(t) + ch

Δz
xi−1(t)

1 + h
(

c
Δz

− b(xi(t))
) i = 2, . . . , n

(7.43)

will give the correct qualitative behavior. The reader should notice that for the case

b(x) ≡ 0, inequality (7.42) is automatically satisfied (with K = 0), and the numeri-

cal scheme (7.43) is related to the so-called implicit upwind numerical scheme for

the advection equation, which is unconditionally stable.

Small-gain arguments can also be used for the system

ẋi = −ai(xi)xi + fi(x−i) i = 1, . . . , n (7.44)

where x ∈ ℜn, fi : ℜn−1 → ℜ, and ai : ℜ → ℜ (i = 1, . . . , n) are locally Lipschitz

mappings with fi(0) = 0 (i = 1, . . . , n). Here x−i = (x1, . . . , xi−1, xi+1, . . . , xn) for

1 < i < n and x−1 = (x2, . . . , xn), x−n = (x1, . . . , xn−1).

Assume the existence of constants Li > 0 and Gi,j ≥ 0 (i, j = 1, . . . , n) such

that

ai(xi) ≥ Li and
∣

∣fi(x−i)
∣

∣≤ max
j �=i

Gi,j |xj | for all x ∈ ℜn (7.45)

Consider the following first-order numerical scheme for (7.44):

xi(t + h) = xi(t) − hai

(

xi(t)
)

xi(t + h) + hfi

(

x−i(t)
)

i = 1, . . . , n (7.46)

The resulting hybrid system with constant step-size selection is

ẋj (t) =
−aj (xj (τi))

1 + hiaj (xj (τi))
xj (τi) +

1

1 + hiaj (xj (τi))
fj (x−j (τi)) j = 1, . . . , n

τi+1 = τi + hi

hi = r exp
(

−u(τi)
)

x(t) ∈ ℜn, u(t) ∈ [0,+∞) (7.47)

where r > 0.
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Using Lemma 7.1 and Theorem 5.2, we are in a position to show the following:

Theorem 7.3 0 ∈ ℜn is URGAS for system (7.47), provided that for each p =
2, . . . , n, it holds that

Gi1,i2Gi2,i3 · · ·Gip,i1 <

(

ln(1 + r max(L1, . . . ,Ln))

r max(L1, . . . ,Ln)

)p

Li1Li2 · · ·Lip (7.48)

for all ij ∈ {1, . . . , n}, ij �= ik if j �= k.

Indeed, Lemma 7.1, in conjunction with (7.45), implies that, for all i = 1, . . . , n,

the following estimates hold:

∣

∣xi(t)
∣

∣≤ exp(σ r)
∣

∣xi(0)
∣

∣ exp(−σ t) +
1

σLi

max
j �=i

Gi,j sup
0≤s≤t

∣

∣xj (s)
∣

∣ ∀t ≥ 0

with σ = ln(1+r max(L1,...,Ln))
r max(L1,...,Ln)

. Using the functions Vi(x) = |xi | (i = 1, . . . , n) and

the set S(t) := ℜn, one can show that hypotheses (SG3), (SG4), and (SG5) hold for

system (7.47) with gains γi,j (s) := (1+ε)
Gi,j r max(L1,...,Ln)

ln(1+r max(L1,...,Ln))Li
s for all ε > 0, i, j =

1, . . . , n, i �= j , and γi,i(s) ≡ 0 for i = 1, . . . , n. Therefore, by (7.48) the cyclic

small-gain conditions hold for sufficiently small ε > 0, and Theorem 5.2 guarantees

UGAS for system (7.47).

7.4 Applications to Economics Problems

In this section, we study the discrete-time model

x(t + 1) = 1 − f1

(

x(t)
)

− f2

(

x(t), y(t), u(t)
)

y(t + 1) = y(t) − f2

(

x(t), y(t), u(t)
)

(

x(t), y(t)
)

∈ (0,+∞) × [0, c3], u(t) ∈ ℜ (7.49)

where

f1(x) := r max
{

0;min(c2;x − c1)
}

f2(x, y,u) := min
{

y;max
{

u;y − c3;−f1(x)
}}

and ci > 0 (i = 1,2,3), r ∈ (0, c−1
2 ), and c1 < 1 are constants. The discrete-time

model (7.49) is an equivalent form of model (1.123) studied in Example 1.7.1 in

Chap. 1 and expresses the evolution of the price of a certain commodity in a com-

pletely competitive market under the intervention of the government (buffer stocks).

Notice that f2(x, y,0) = 0 for all (x, y) ∈ (0,+∞) × [0, c3]. There exists an equi-

librium set for the case u(t) ≡ 0 given by

(x, y) = (xeq, y)

where y ∈ [0, c3] is arbitrary, and

xeq =
{

1+rc1
1+r

if c1 + c2 > 1 − c2r

1 − c2r if c1 + c2 ≤ 1 − c2r
(7.50)
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The variable u(t) is directly related, by means of (1.121), to the quantity of the

commodity released to the market by the government at period t + 1 and is the

control input of the system (i.e., u(t) can be manipulated in order to achieve a certain

control objective).

We next state the tracking control problem for (7.49).

The tracking control problem for (7.49) Let x∗ > 0 be the desired price. Is there a

static feedback law (or price stabilization policy)

u(t) = ϕ
(

x(t), y(t)
)

(7.51)

such that the solution of the closed-loop system (7.49) with (7.51) satisfies

limt→+∞ x(t) = x∗ for all initial conditions (x(0), y(0)) ∈ (0,+∞) × [0, c3]?

The following proposition provides an answer to the tracking control problem.

Proposition 7.1 (Necessary Condition for solvability of the tracking control prob-

lem for (7.49)) If the tracking control problem for (7.49) is solvable, then the fol-

lowing condition must hold:

x∗ = xeq

where xeq is the equilibrium price defined by (7.50).

Proof By virtue of (7.49) and the continuity of the function f1, it follows that the

limit limt→+∞ f2(x(t), y(t), ϕ(x(t), y(t))) exists and is given by

lim
t→+∞

f2

(

x(t), y(t), ϕ
(

x(t), y(t)
))

= 1 − x∗ + f1

(

x∗)

The above equality implies that limt→+∞(y(t + 1) − y(t)) = x∗ − 1 − f1(x
∗). If

x∗ − 1 − f1(x
∗) > 0, then we obtain limt→+∞ y(t) = +∞, which contradicts the

constraint y(t) ∈ [0, c3]. On the other hand, if x∗ − 1 − f1(x
∗) < 0, then we obtain

limt→+∞ y(t) = −∞, which again contradicts the constraint y(t) ∈ [0, c3]. Thus,

we must necessarily have x∗ − 1 − f1(x
∗) = 0, and consequently the desired price

x∗ > 0 coincides with xeq, the unique equilibrium price defined by (7.50). The proof

is complete. �

Proposition 7.1 indicates a major limitation imposed by the use of buffer stocks:

the price dynamics can only have a unique accumulation point, which is no other

than the equilibrium price. This important limitation may be used to explain the

failure of buffer stock stabilization policies: if the government tries to lead the com-

modity price to values different from the equilibrium values, the buffer stock stabi-

lization policy (no matter how smart) will fail.

Since the desired price must coincide with the equilibrium price, we may state

next the price stabilization problem for (7.49).

The price stabilization problem for (7.49) Is there a static feedback law (or price

stabilization policy) given by (7.51) with ϕ(xeq, y) = 0 for all y ∈ [0, c3] such that

the closed-loop system (7.49) with (7.51) and output Y = x − xeq is URGAOS?
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The price stabilization problem is particularly interesting when c1 + c2 > 1− c2r

and r ≥ 1: Example 2.8.2 in Chap. 2 showed us that in any other case system (7.49)

with u ≡ 0 and output Y = x − xeq is URGAOS.

Solution of the Price Stabilization Problem for (7.49) Set

u(t) = 1 − xeq − f1

(

x(t)
)

(7.52)

or equivalently, in the original coordinates (system (1.120)),

G(t) = min
{

Q(t);max
{

Seq − g
(

P(t)
)

;Q(t) − Qmax

}}

(7.53)

where Seq is the equilibrium supply that corresponds to the equilibrium price Peq =
a+c
d+b

, and g(P (t)) is the estimated commodity supply for the period t + 1.

The feedback law described by (7.52), (7.53) is particularly simple and attempts

to bring the total quantity of the product available in the market at period t + 1

(given by S(t + 1) + G(t)) as close as possible to the equilibrium supply Seq. For

this reason, we call this price stabilization policy as: “Keep Supply at Equilibrium”

(KSE) price stabilization policy.

Proposition 7.2 (Conditions for successful KSE policy) Consider the price stabi-

lization problem for (7.49) under the hypotheses c1 + c2 > 1 − c2r and r ≥ 1. If

c3 > R, where

R : = max{R1;R2;R3;R4} (7.54)

R1 := min
{(

1 − r−1
)

(1 − xeq); c1 + c2r − 1
}

R2 := (r − 1)min{xeq − c1; c1 + c2 − xeq} ≥ 0 (7.55)

R3 := min{c1 + c2r − 1;1 − c1 − c2}
R4 := (r + 1)−1 min

{

r(xeq + c2r − 1); (r − 1)(c1 + c2 + c2r − 1)
}

then the closed-loop system (7.49) with (7.52) and output Y = x − xeq is URGAOS.

Particularly, there exists T > 0 such that for every initial condition (x(0), y(0)) ∈
(0,+∞) × [0, c3], the solution of the closed-loop system (7.49) with (7.52) satisfies

x(t) = xeq ∀t ≥ T (7.56)

We call the quantity aR, where a > 0 is the constant involved in (1.114), the

“critical storage capability.” Clearly, Proposition 7.2 guarantees that if the stor-

age capability is larger than the critical storage capability, i.e., Qmax > aR, where

Qmax is the maximum storage capability involved in (1.111), then the “Keep Supply

at Equilibrium” (KSE) policy is successful. Moreover, the critical storage capabil-

ity can be computed analytically using (7.54), (7.55). The conclusions of Proposi-

tion 7.2 may be used in order to calculate the storage cost needed for a successful

buffer stock stabilization policy (since the storage cost is directly related to the stor-

age capability Qmax) and determine whether the cost of the buffer stock stabilization

policy is high or not. Notice that the result of Proposition 7.2 may be interpreted as
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a trade off between the efficiency of the price stabilization policy and the storage

cost. It should be noted here that the total cost of the buffer stock stabilization pol-

icy includes also the purchase cost, i.e., the cost of purchasing quantities of the

commodity.

Proposition 7.2 provides the sharpest characterization of the property of global

attractivity of the equilibrium point under the feedback law (7.52). Indeed,

• if 0 ≤ c3 ≤ R3, then a nontrivial period-2 solution exists:

(x1, y1) = (1 − c2r + c3, c3)

(x2, y2) = (1 − c3,0),

• if 0 < c3 ≤ R2, then a nontrivial period-2 solution exists:

(x1, y1) =
(

xeq − (r − 1)−1c3, c3

)

(x2, y2) =
(

xeq + (r − 1)−1c3,0
)

,

• if max{0; c1 + rc2 − 1} ≤ c3 ≤ R4, then a nontrivial period-2 solution exists:

(x1, y1) = (1 − c2r + c3, c3)

(x2, y2) =
(

1 + rc1 − r + r2c2 − c3 − rc3,0
)

,

• if max{0;1 − c1 − c2} ≤ c3 ≤ R1, then a nontrivial period-2 solution exists:

(x1, y1) = (1 − c3,0)

(x2, y2) = (1 + rc1 − r + c3 + rc3, c3).

A final remark for the tracking control problem for (7.49) must be given. Proposi-

tion 7.1 showed a major limitation of the buffer stock stabilization policy. However,

if government is allowed to change the tax coefficient of the commodity, then the

equilibrium price changes and can coincide with the desired price x∗. Then the KSE

buffer stock policy may be used to stabilize the price dynamics. Thus, we conclude

that the tracking control problem for (7.49) is indeed solvable by making simulta-

neous use of appropriate tax and buffer stock policies.

The proof of Proposition 7.2 is based on the spirit of Lemma 6.8 in Chap. 6,

where the “dead-beat” property was achieved.

Proof of Proposition 7.2 Notice that

f2

(

x, y,1 − xeq − f1(x)
)

= min
{

y;max
{

y − c3;1 − xeq − f1(x)
}}

1 − f1(x) − f2

(

x, y,1 − xeq − f1(x)
)

=

⎧

⎪

⎨

⎪

⎩

1 − f1(x) − y + c3 if y + f1(x) > 1 − xeq + c3

xeq if 1 − xeq ≤ y + f1(x) ≤ 1 − xeq + c3

1 − f1(x) − y if y + f1(x) < 1 − xeq
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y − f2

(

x, y,1 − xeq − f1(x)
)

=

⎧

⎪

⎨

⎪

⎩

c3 if y + f1(x) > 1 − xeq + c3

y − 1 + xeq + f1(x) if 1 − xeq ≤ y + f1(x) ≤ 1 − xeq + c3

0 if y + f1(x) < 1 − xeq

f1(x) =

⎧

⎪

⎨

⎪

⎩

0 if x ≤ c1

−c1r + rx if c1 < x < c1 + c2

c2r if x ≥ c1 + c2

Making use of the above equalities in conjunction with hypotheses y(t) ∈ [0, c3],
c1 + c2 > 1 − c2r , and r ≥ 1, it can be shown that

x(t + 1) = 1 + c1r − rx(t) + c3 − y(t) and y(t + 1) = c3

if
(

x(t), y(t)
)

∈ B1 :=
{

xeq + r−1(c3 − y) < x < c1 + c2

}

(7.57)

x(t + 1) = 1 − c2r + c3 − y(t) and y(t + 1) = c3

if
(

x(t), y(t)
)

∈ B2 := {x ≥ c1 + c2 and y > 1 − xeq + c3 − c2r} (7.58)

x(t + 1) = 1 − y(t) and y(t + 1) = 0

if
(

x(t), y(t)
)

∈ B3 := {0 < x ≤ c1 and y < 1 − xeq} (7.59)

x(t + 1) = 1 + c1r − rx(t) − y(t) and y(t + 1) = 0

if
(

x(t), y(t)
)

∈ B4 :=
{

c1 < x < xeq − r−1y
}

(7.60)

x(t + 1) = xeq

if
(

x(t), y(t)
)

∈ B5 = (0,+∞) × [0, c3]
∖

(

4
⋃

i=1

Bi

)

. (7.61)

Moreover, since c1 + c2 > 1 − c2r which directly implies c1 < xeq < c1 + c2 (notice

that c1 < 1), the following implications hold:

(

x(t), y(t)
)

∈ B1 ∪ B2 ⇒
(

x(t + 1), y(t + 1)
)

∈ B3 ∪ B4 ∪ B5 (7.62)
(

x(t), y(t)
)

∈ B3 ∪ B4 ⇒
(

x(t + 1), y(t + 1)
)

∈ B1 ∪ B2 ∪ B5 (7.63)
(

x(t0), y(t0)
)

∈ B5 ⇒ x(t) = xeq ∀t ≥ t0 + 1 (7.64)

In order to show (7.56), it suffices to show that for every initial condition

(x(0), y(0)) ∈ (0,+∞) × [0, c3], it holds that (x(T ), y(T )) ∈ B5, where

T = 2

[

1 − xeq − min{c3r
−1; c1 + c2 − xeq}
δ

]

+ 6

and δ > 0 is to be selected.

The proof will be made by contradiction. Suppose on the contrary that there ex-

ists initial condition (x(0), y(0)) /∈ B5 such that (x(t), y(t)) /∈ B5 for all t ∈ [0, T ].
Without loss of generality, we may assume that (x(0), y(0)) ∈ B1 ∪ B2 (since if

(x(0), y(0)) ∈ B3 ∪ B4, then by (7.63) we would have (x(1), y(1)) ∈ B1 ∪ B2 and

then consider the solution with initial condition (x(1), y(1)) ∈ B1 ∪ B2, which also
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satisfies (x(t), y(t)) /∈ B5 for all t ∈ [0, T − 1]). By virtue of implications (7.62)

and (7.63), we must have

(

x(t), y(t)
)

∈ B1 ∪ B2 if t is even and
(

x(t), y(t)
)

∈ B3 ∪ B4 if t is odd
(7.65)

Moreover, by virtue of (7.57), (7.58), (7.59), and (7.60), we obtain

y(t) = 0 if t ∈ [1, T ] is even and

y(t) = c3 if t ∈ [1, T ] is odd
(7.66)

By virtue of (7.57), (7.58), (7.59), (7.60), (7.65), and (7.66), we must also have

xeq < xeq + min
{

c3r
−1; c1 + c2 − xeq

}

≤ x(t) if t ∈ [2, T ] is even. (7.67)

Next, we show that there exists δ > 0 such that

x(t + 2) ≤ x(t) − δ for all even integers t ∈ [2, T ] (7.68)

Thus, we obtain a contradiction, since (7.67), in conjunction with (7.68) and the fact

that x(t) ≤ 1 for all t ∈ [1, T ], gives xeq + min{c3r
−1; c1 + c2 − xeq} ≤ x(2 + 2k) ≤

1−kδ for all integers k ≥ 1 with 2k+2 ≤ T , which cannot hold for k ≥ 1+δ−1[1−
xeq − min{c3r

−1; c1 + c2 − xeq}].
Consequently, the rest part of the proof is devoted to the determination of the

constant δ > 0 that satisfies (7.68). For all (x(t),0) ∈ B1 ∪B2, it can be shown that

Case I: If xeq + r−1(xeq + c3 − c1) ≤ x(t) < c1 + c2 and c3 < 1 − xeq, then

x(t + 2) = 1 − c3.

Case II: If xeq + (r + 1)r−2c3 < x(t) < c1 + min{c2; r−1(1 + c3 − c1)}, then

x(t + 2) = xeq + r2(x(t) − xeq) − (r + 1)c3.

Case III: If x(t) ≥ c1 + c2 and c3 < 1 − xeq and c3 ≤ c1 + c2r − 1, then x(t + 2) =
1 − c3.

Case IV: If x(t) ≥ c1 + c2 and c1 + c2r − 1 < c3 < r(r + 1)−1(xeq + c2r − 1), then

x(t + 2) = 1 + c1r − r + c2r
2 − (r + 1)c3.

Case V: If none of the above holds, then x(t + 2) = xeq.

In Case I (i.e., if c3 < 1 − xeq and c3 < c1 + rc2 − 1) by virtue of the inequality

c3 > R1, we must necessarily have c3 > (1− r−1)(1−xeq), and consequently (7.68)

holds with δ := (1 + r−1)(xeq + c3) − (1 + r−1c1) > 0.

In Case II (i.e., if c3 < r(xeq − c1) and c3 < r2(r +1)−1(c1 + c2 −xeq)) by virtue

of the inequality c3 > R2, we must necessarily have c3 > (r − 1)min{xeq − c1; c1 +
c2 − xeq}, and therefore (7.68) holds with δ = (1 + r)[c3 − (r − 1)min{c1 + c2 −
xeq; c1 + r−1(1 + c3 − c1) − xeq}] > 0.

In Case III (i.e., if c3 < 1 − xeq and c3 ≤ c1 + rc2 − 1) by virtue of the inequality

c3 > R3, we must necessarily have c3 > 1 − c1 − c2, and consequently (7.68) holds

with δ := c1 + c2 + c3 − 1 > 0.

In Case IV (i.e., if c1 + c2r − 1 < c3 < r(r + 1)−1(xeq + c2r − 1)) by virtue of

the inequality c3 > R4, we must necessarily have c3 > (r − 1)(r + 1)−1(c1 + c2 +
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c2r − 1), and consequently (7.68) holds with δ := (1 + r)c3 + (r − 1)(1 − c1 −
c2 − c2r) > 0.

The constant δ > 0 that satisfies (7.68) can be selected as the minimum of the cor-

responding constants given for each case. Thus property (7.56) is proved. The fact

that the closed-loop system (7.49) with (7.52) and output Y = x − xeq is URGAOS

follows from Lemmas 1.3, 1.4 in Chap. 1 and Lemmas 2.1 and 2.2 in Chap. 2.

The proof is complete. �

7.5 Historical and Bibliographical Notes

1. There are many results dealing with the stabilization of chemostat models (see

[1, 3, 5, 14, 17, 19–21, 25, 28, 29] also see [26, 27]). Delayed chemostat models

have been studied primarily for their dynamic behavior (see [30, 32, 33]). The

results in Sect. 7.2 first appeared in [19].

2. The conversion of the problem of the correct dynamic behavior of the numerical

approximation to a rigorous feedback stabilization problem was first given in

[16]. Lyapunov methods for the solution of the feedback design problem can be

used as well (see [18], where many more results are presented).

3. The results in Sect. 7.4 first appeared in [2]. However, the reader should notice

that the conclusion of Proposition 7.2 is slightly stronger than the conclusion of

Proposition 3.2 in [2].
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Chapter 8

Open Problems

In this chapter, we would like to give a list of open and unanswered problems in

Mathematical Control Theory. The solutions of these open problems will be very

important for the development of modern nonlinear control theory. Expectedly novel

mathematical analysis and synthesis tools need to be developed to address these

challenging problems. The interested reader should also consult the book [3] for

other significant and important open problems in Mathematical Control Theory.

Open Problem #1 Under what conditions WIOS implies IOS?

A qualitative characterization of the IOS property for abstract control systems as

discussed in this book has not been available yet. For systems described by ODEs,

many qualitative characterizations of the ISS and IOS properties are provided in

[21–23]. Moreover, Theorem 4.1 in Chap. 4 gives a complete qualitative character-

ization of the WIOS property:

“0-GAOS” + “RFC” + “the continuity with respect to initial conditions and

external inputs” implies WIOS

A similar qualitative characterization for the IOS property in a general context

of abstract dynamical systems as discussed in this book will be very important for

control designs and applications.

Open Problem #2 Development of small-gain techniques for dynamical systems

described by Partial Differential Equations (PDEs).

Small-gain results have been well studied for finite-dimensional nonlinear sys-

tems described by ordinary differential, or difference, equations (see, e.g., [8–10]

and references therein). However, as of today, there is little research devoted to the

development of small-gain techniques for nonlinear systems described by Partial

Differential Equations (PDEs). We believe that the small-gain results provided in

the present book (Theorems 5.1 and 5.2 in Chap. 5) will pave the road for the appli-

cation of small-gain results to systems described by PDEs.
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Open Problem #3 Formulas for the Coron–Rosier methodology.

Theorem 6.1 in Chap. 6 is an existence-type result. Although its proof is con-

structive, it cannot be easily applied for feedback design purposes. The creation of

formulas for the Coron–Rosier approach will be very significant for control pur-

poses, since the Coron–Rosier approach can allow nonconvex control sets and does

not require additional properties for the Control Lyapunov Function. The signifi-

cance of the solution of this open problem is also noted in [5].

Open Problem #4 When is a nonlinear, time-varying, time-delay system stabiliz-

able?

We have recently provided a positive answer to the above question when the sys-

tem only involves state-delay [13]. A complete answer to the question of when the

nonlinear time-varying system with both state and input delays is stabilizable re-

mains open and requires deeper investigation. Nonetheless, it should be mentioned

that sufficient, but not necessary, conditions for the solution of the stabilization prob-

lem with input delays are proposed in the recent work of Krstić [14–16] (also see

[11]). To our knowledge, a necessary and sufficient condition for stabilizability is

missing even for linear time-varying systems with input delays.

Open Problem #5 Application of small-gain results for distributed feedback design

of large-scale nonlinear systems.

Large-scale systems are abundant in various fields of science and engineering

and have gained increasing attention due to emerging engineering and biomedical

applications. Examples of these applications are from smart grids with green and re-

newable energy sources, modern transportation networks, and biological networks.

There has been some success with the use of decentralized control strategy for both

linear and nonlinear large-scale systems; see [7, 19] and many references therein.

Clearly more remains to be accomplished in this exciting field. We feel that small-

gain is a very appropriate tool for addressing some of these modern-day challenges.

The small-gain results of the present book (Theorems 5.1 and 5.2 in Chap. 5) make

a preliminary step forward toward studying some complex large-scale systems be-

yond the past literature of decentralized systems and control.

Open Problem #6 Extension of the discretization approach for autonomous sys-

tems.

The discretization approach for Lyapunov functionals was described in Chap. 2

(Propositions 2.4 and 2.5). However, as remarked in Chap. 2, the discretization ap-

proach requires good knowledge of some approximation of the solution map, and

its use has been restricted to time-varying systems with special structure (see [1, 17,

18]). An extension of the discretization approach for autonomous systems would



8 Open Problems 383

be an important contribution in stability theory because such a result would al-

low the use of positive definite functions with non sign-definite derivative. The re-

quired extension of the discretization approach must utilize appropriate differential

inequalities in the same spirit as the classical Lyapunov’s approach (without requir-

ing knowledge of the solution map or a system with special structure). The recent

work in [12] is an attempt in this research direction (see also references therein).

However, the problem is still completely “untouched.”

Open Problem #7 Application of feedback design methodologies to other mathe-

matical problems.

In this book, we have seen the applications of certain tools of modern nonlinear

control theory to problems arising from mathematics and economics. Particularly,

we have seen

• applications of small-gain results to game theory (see Sect. 5.5 in Chap. 5),

• applications to numerical analysis (see Sect. 7.3).

We believe that feedback design methodologies can be applied with success to

other areas of mathematical sciences. Fixed Point Theory (see [6]) and Optimization

Theory can be benefited by the application of certain tools of modern nonlinear con-

trol theory. Corollary 5.4 in Chap. 5 already shows that small-gain results can have

serious consequences in Fixed Point Theory. Further connections between Fixed

Point Theory and Stability Theory are provided by the work of Burton (see [4] and

references therein) but are in the opposite direction from what we propose, that is,

the work of Burton applies results from Fixed Point Theory to Stability Theory.

The efforts for the solution of problems in Game Theory, Numerical Analysis,

Fixed Point Theory, and Optimization Theory will necessarily demand the creation

of novel results in stability theory and feedback stabilization theory. Therefore, the

application of modern nonlinear control theory to other areas of applied mathe-

matics will result to a “knowledge feedback mechanism” between Mathematical

Control Theory and other areas in mathematics!

Open Problem #8 Integral input-to-state stability (for short, iISS) in complex dy-

namical systems.

The external stability results of this book are exclusively targeted at extensions of

Sontag’s ISS property and its variants to a very general context of complex dynamic

systems. That is, we want to address a wide class of dynamical systems which may

not satisfy the semigroup property, motivated by important examples of hybrid sys-

tems, switched systems, and time-delay systems. It remains an open and important,

but interesting, question to know how much we could do with the iISS property

introduced in [2, 20].
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E

Eigenvalue, 72, 269, 363

Errors (actuator, measurement, modeling), 267

Expectation rule, 20, 251

External stability, 143

F

FDEs, 9, 18

Feedback connection, 43, 266

Feedback linearization, 11, 270

Finite escape, 144

Fixed-point, 55, 243

Functional difference equations, 9, 18

Functional differential equations, 5, 9

G

Gain assignment, 339, 341

Gain function, 146

Game, 18, 243
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Homogeneous systems, 269, 349

Hybrid systems, 24

I

Input-to-Output Stability, 145

Input-to-State Stability, 143, 145

Integral ISS, 199, 383

Interconnected systems, 43

Interconnection, 43

Internal stability, 55

IOS, 146, 173, 183, 189, 219, 229, 381

ISpS, xvii, 199, 340

ISS, xvii, 143, 145, 146, 221, 230

J

Jordan block, 72

K

K∞ function, xvi

K function, xvi

KL characterization, 62

KL function, xvi

L

Lagrange stability, 56, 57

Large-scale systems, 203, 382

Linear systems, 11, 61, 72

Linearization, 14

Lyapunov approach, 88

Lyapunov function, 55, 146

Lyapunov functional, 55, 86, 123, 126, 146

Lyapunov output stability, 57

Lyapunov-like, 178

M

Matrosov function, 55

MAX-preserving, 204

Monotone, 204

N

Nash equilibrium, 20, 243

Neutral FDEs, 11, 12

Nonlinear small-gain, 254, 339

Nonlinear systems, 12, 152, 172, 321, 361

Numerical, 360
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Observable, 344

Observer, 343

ODEs, 2

Output feedback stabilization, 261, 266

Output stability, 56

P

Partition, 1, 24, 56, 58, 86

Partition of unity, 274, 293, 295, 298, 309,

314, 317, 320

Periodic, 29, 60, 191

Price, 19, 372

R

Razumikhin, 233, 256

Retarded functional differential equations, 9

RFC, 49, 56

RFDEs, 5, 92, 189, 226

Robust equilibrium, 1, 32

Robust forward completeness, 49, 56

Robustness, 144

S

Sampled-data, 25, 229

Semigroup property, 4, 9, 17, 23, 28

Separation principle, 346

Small-gain, 55, 146, 203, 381

Small-gain condition, 205

Small-gain method, 338, 366

Small-gain theorem, 209, 210, 339

Sontag, 124, 143, 146, 292

St. Venant, 14

Stability, 55, 143

Stabilization, 11, 238, 241, 254, 261, 262

Static feedback, 263, 264

T

Time-delay, 7, 17, 198, 233, 255, 321, 356, 382

Time-invariant, 29

Time-varying, 61, 111, 382

Transformation, 45, 55, 70, 146, 171, 270

Transition map, 123

Triangular systems, 321, 334

U

Uniform IOS, 145

Uniform stability, 57

V

Variable sampling, 23

Vector Lyapunov functional, 203, 218

W

Weak semigroup property, 28, 29, 87

Weighted, 144

Weighted IOS, 145

Weighted ISS, 145
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Zero-order hold, 265
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