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Chapter 1

Introduction

The history of Computational Fluid Dynamics, or CFD for short, started in
the early 1970’s. Around that time, it became an acronym for a combination
of physics, numerical mathematics, and, to some extent, computer sciences em-
ployed to simulate fluid flows. The beginning of CFD was triggered by the
availability of increasingly more powerful mainframes and the advances in CFD
are still tightly coupled to the evolution of computer technology. Among the
first applications of the CFD methods was the simulation of transonic flows
based on the solution of the non-linear potential equation. With the beginning
of the 1980’s, the solution of first two-dimensional (2-D) and later also three-
dimensional (3-D) Euler equations became feasible. Thanks to the rapidly in-
creasing speed of supercomputers and due to the development of a variety of
numerical acceleration techniques like multigrid, it was possible to compute in-
viscid flows past complete aircraft configurations or inside of turbomachines.
With the mid 1980’s, the focus started to shift to the significantly more de-
manding simulation of viscous flows governed by the Navier-Stokes equations.
Together with this, a variety of turbulence models evolved with different degree
of numerical complexity and accuracy. The leading edge in turbulence mod-
elling is represented by the Direct Numerical Simulation (DNS) and the Large
Eddy Simulation (LES). However, both approaches are still far away from being
usable in engineering applications.

With the advances of the numerical methodologies, particularly of the im-
plicit schemes, the solution of flow problems which require real gas modelling
became also feasible by the end of 1980’s. Among the first large scale applica-
tion, 3-D hypersonic flow past re-entry vehicles, like the European HERMES
shuttle, was computed using equilibrium and later non-equilibrium chemistry
models. Many research activities were and still are devoted to the numerical
simulation of combustion and particularly to flame modelling. These efforts are
quite important for the development of low emission gas turbines and engines.
Also the modelling of steam and in particular of condensing steam became a
key for the design of efficient steam turbines.

Due to the steadily increasing demands on the complexity and fidelity of

1



2 : Chapter 1

flow simulations, grid generation methods had to become more and more so-
phisticated. The development started first with relatively simple structured
meshes constructed either by algebraic methods or by using partial differential
equations. But with increasing geometrical complexity of the configurations,
the grids had to be broken into a number of topologically simpler blocks (multi-
block approach). The next logical step was to allow for non-matching interfaces
between the grid blocks in order to relieve the constraints put on the grid gen-
eration in a single block. Finally, solution methodologies were introduced which
can deal with grids overlapping each other (Chimera technique). This allowed
for example to simulate the flow past the complete Space Shuttle vehicle with
external tank and boosters attached. However, the generation of a structured,
multiblock grid for a complicated geometry may still take weeks to accomplish.
Therefore, the research also focused on the development of unstructured grid
generators (and flow solvers), which promise significantly reduced setup times,
with only a minor user intervention. Another very important feature of the
unstructured methodology is the possibility of solution based grid adaptation.
The first unstructured grids consisted exclusively of isotropic tetrahedra, which
was fully sufficient for inviscid flows governed by the Euler equations. How-
ever, the solution of the Navier-Stokes equations requires for higher Reynolds
numbers grids, which are highly stretched in the shear layers. Although such
grids can also be constructed from tetrahedral elements, it is advisable to use
prisms or hexahedra in the viscous flow regions and tetrahedra outside. This not
only improves the solution accuracy, but it also saves the number of elements,
faces and edges. Thus, the memory and run-time requirements of the simula-
tion are reduced. In fact, today there is a very strong interest in unstructured,
mixed-element grids and the corresponding flow solvers.

Nowadays, CFD methodologies are routinely employed in the fields of air-
craft, turbomachinery, car, and ship design. Furthermore, CFD is also applied
in meteorology, oceanography, astrophysics, in oil recovery, and also in architec-
ture. Many numerical techniques developed for CFD are used in the solution of
Maxwell equations as well. Hence, CFD is becoming an increasingly important
design tool in engineering and also a substantial research tool in certain physi-
cal sciences. Due to the advances in numerical solution methods and computer
technology, geometrically complex cases, like those which are often encountered
in turbomachinery, can be treated. Also, large scale simulations of viscous flows
can be accomplished within only a few hours on today’s supercomputers, even
for grids consisting of dozens of millions of grid cells. However, it would be
completely wrong to think that CFD represents a mature technology now, like
for example structural finite element methods. No, there are still inany open
questions like turbulence and combustion modelling, heat transfer, efficient so-
lution techniques for viscous flows, robust but accurate discretisation methods,
etc. Also the connection of CFD with other disciplines (like structural mechan-
ics or heat conduction) requires further research. Quite new opportunities also
arise in the design optimisation by using CFD.

The objective of this book is to provide university students with a solid foun-
dation for understanding the numerical methods employed in today’s CFD and
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to familiarise them with modern CFD codes by hands-on experience. The book
is also intended for engineers and scientists starting to work in the field of CFD
or who are applying CFD codes. The mathematics used is always connected
to the underlying physics to facilitate the understanding of the matter. The
text can serve as a reference handbook too. Each chapter contains an extensive
bibliography, which may form the basis for further studies.

CFD methods are concerned with the solution of equations of motion of
the fluid as well as with the interaction of the fluid with solid bodies. The
equations of motion of an inviscid fluid (Euler equations) and of viscous fluid
(Navier-Stokes equations), the so-called governing equations, are formulated in
Chapter 2 in integral form. Additional thermodynamic relations for a perfect
gas as well as for a real gas are also discussed. Chapter 3 deals with the princi-
ples of solution of the governing equations. The most important methodologies
are briefly described and the corresponding references are included. Chapter 3
can be used together with Chapter 2 to get acquainted with the fundamental
principles of CFD.

A series of different schemes was developed for an efficient solution of the
Euler and the Navier-Stokes equations. A unique feature of the present book
is that it deals with both structured (Chapter 4) as well as unstructured finite
volume schemes (Chapter 5), because of their broad application possibilities,
especially for the treatment of complex flow problems routinely encountered in
industrial environment. Attention is particularly devoted to the definition of
various types of control volumes together with spatial discretisation methodolo-
gies for convective and viscous fluxes. The 3-D finite volume formulations of
the most popular central and upwind schemes are presented in detail.

Within the framework of the finite volume schemes, it is possible either to
integrate the unsteady governing equations with respect to time (referred to as
time-stepping schemes) or to solve the steady-state governing equations directly.
The time-stepping can be split up into two classes. One class comprises explicit
time-stepping schemes (Section 6.1), and the other consists of implicit time-
stepping schemes (Section 6.2). In order to provide a more complete overview,
recently developed solution methods based on the Newton-iteration as well as
standard techniques like Runge-Kutta schemes are discussed.

Two qualitatively different types of viscous fluid flows are encountered in
general: laminar and turbulent. The solution of the Navier-Stokes equations
does not raise any fundamental difficulties in the case of laminar flows. However,
the simulation of turbulent flows continues to present a significant problem as
before. A relatively simple way of modelling the turbulence is offered by the so-
called Reynolds-averaged Navier-Stokes equations. On the other hand, Reynolds
stress models or LES allow considerably more accurate predictions of turbulent
flows. In Chapter 7, various well-proven and widely applied turbulence models
of varying level of complexity are presented in detail.

To take into account the specific features of a particular problem, and to
obtain an unique solution of the governing equations, it is necessary to specify
appropriate boundary conditions. There are basically two types of boundary
conditions: physical and numerical. Chapter 8 deals with both types for different
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situations like solid walls, inlet, outlel and farfield. Symmetry planes, periodic
and block boundaries are treated as well.

In order to shorten the time required to solve the governing equations for
complex flow problems, it is quite essential to employ numerical acceleration
technique. Chapter 9 deals extensively, among others, with approaches like
implicit residual smoothing and multigrid. Another important technique, which
is also described in Chapter 9 is preconditioning. It allows to use the same
numerical scheme for flows, where the Mach number varies between nearly zero
and transonic or higher values.

Each discretisation of the governing equations introduces a certain error —
the discretisation error. Several consistency requirements have to be fulfilled
by the discretisation scheme in order to ensure that the solution of the discre-
tised equations closely approximates the solution of the original equations. This
problem is addressed in the first two parts of Chapter 10. Before a particular
numerical solution method is implemented, it is important to know, at least
approximately, how the method will influence the stability and the convergence
behaviour of the CFD code. It was frequently confirmed that the Von Neumann
stability analysis can provide a good assessment of the properties of a numerical
scheme. Therefore, in the third part of Chapter 10 it is dealt with stability
analysis for various model equations.

One of the more challenging tasks in CFD is the generation of structured or
unstructured body-fitted grids around complex geometries. The grid is used to
discretise the governing equations in space. The accuracy of the flow solution
is therefore tightly coupled to the quality of the grid. In Chapter 11, the most
important methodologies for the generation of structured as well as unstructured
grids are discussed.

In order to demonstrate the practical aspects of different numerical solu-
tion methodologies, various source codes are provided on the accompanying
CD-ROM. Contained are the sources of quasi 1-D Euler as well as of 2-D Eu-
ler structured and unstructured flow solvers, respectively. Furthermore, source
codes of 2-D structured algebraic and elliptic grid generators are included to-
gether with a convertor from structured to unstructured grids. Additionally,
two programs are provided to conduct linear stability analysis of explicit and
implicit time-stepping schemes. The source codes are completed by a set of
worked out examples containing the grids, the input files and the results. All
source codes are written in standard FORTRAN-77. Chapter 12 describes the
contents of the CD-ROM and the capabilities of the particular programs.

The present book is finalised by the Appendix and the Index. The Appendix
contains the governing equations presented in differential form as well as their
characteristic properties. Formulations of the governing equations in rotating
frame of reference and for moving grids are discussed along with some simplified
forms. Furthermore, Jacobian and transformation matrices from conservative
to characteristic variables are presented for two and three dimensions. The
GMRES conjugate gradient method for the solution of linear equations systems
is described next. The Appendix closes with the explanation of the tensor
notation.
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Governing Equations

2.1 The Flow and its Mathematical Description

Before we turn to the derivation of the basic equations describing the behaviour
of the fluid, it may be convenient to clarify what the term ‘fluid dynamics’ stands
for. It is, in fact, the investigation of the interactive motion of a large number of
individual particles. In our case, these are molecules or atoms. That means, we
suppose the density of the fluid is high enough, so that it can be approximated
as a continuwum. It implies that even an infinitesimally small (in the sense of
differential calculus) element of the Auid still contains a sufficient number of
particles, for which we can specify mean velocity and mean kinetic energy. In
this way, we are able to define velocity, pressure, temperature, density and other
important quantities at each point of the fluid.

The derivation of the principal equations of fluid dynamics is based on the
fact that the dynamical behaviour of a fluid is determined by the following
conservation laws, namely:

1. the conservation of mass,
2. the conservation of momentum, and
3. the conservation of energy.

The conservation of a certain flow quantity means that its total variation inside
an arbitrary volume can be expressed as the net effect of the amount of the
quantity being transported across the boundary, any internal forces and sources,
and external forces acting on the volume. The amount of the quantity crossing
the boundary is called fluz. The flux can be in general decomposed into two
different parts: one duc to the convective transport and the other one due to
the molecular motion present in the fluid at rest. This second contribution is of
a diffusive nature - it is proportional to the gradient of the quantity considered
and hence it will vanish for a homogeneous distribution.

5
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The discussion of the conservation laws leads us quite naturally to the idea of
dividing the flow field into a number of volumes and to concentrate on the mod-
elling of the behaviour of the fluid in one such finite region. For this purpose,
we define the so-called finite control volume and try to develop a mathematical
description of its physical properties.

Finite control volume

Consider a general flow field as represented by streamlines in Fig. 2.1. An
arbitrary finite region of the flow, bounded by the closed surface 92 and fixed
in space, defines the control volume 2. We also introduce a surface element as
dS and its associated, outward pointing unit normal vector as 7i.
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Figure 2.1: Definition of a finite control volume (fixed in space).

The conservation law applied to an exemplary scalar quantity per unit volume
U now says that its variation in time within €, i.e.,

0
a./QUdQ

is equal to the sum of the contributions due to the convective fluz - amount
of the quantity U entering the control volume through the boundary with the
velocity ¥ - hence U7

- ¢ U®@-#)ds,
Q2
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due to the diffusive fluz — expressed by the generalised Fick’s gradient law

f kp[V(U/p) -7 dS
80

where & is the thermal diffusivity coefficient, and due to the volume as well as
surface sources, Qv, ¢s, i.e.,

/Qdem ﬁg@s'ﬁ)ds’

respectively. After summing the above contributions, we obtain the following
general form of the conservation law for the scalar quantity U

/UdQ+?{ [U(7-7) - kp(VU* -71)] dS

:/dean (@s ) dS (2.1)
7] a0

where UU* denotes the quantity U per unit mass, i.e., U/p.

It is important to note that if the conserved quantity would be a vector
instead of a scalar, the above Equation (2.1) would formally still be valid. But
in difference, the convective and the diffusive flux would become tensors instead
of vectors — FC the convective flur tensor and FD the diffusive flux tensor. The
volume sources would be a vector Qv, and the surface sources would change
into a tensor Q5. We can therefore write the conservation law for a general
vector quantity U as

d [ - = = 9w [ A =
a/QUdetém[(Fc—FD)-n] dS—/Qdethygg(Qs A)ds.  (2.2)

The integral formulation of the conservation law, as given by the Equations
(2.1) or (2.2), has two very important and desirable properties:

1. if there are no volume sources present, the variation of U depends solely
on the flux across the boundary 90 and not on any flux inside the control
volume ;

2. this particular form remain valid in the presence of discontinuities in the
flow field like shocks or contact discontinuities [1].

Because of its generality and its desirable properties, it is not surprising that
the majority of CFD codes is based today on the integral form of the governing
equations.

In the following section, we shall utilise the above integral form in order
to derive the corresponding expressions for the three conservation laws of fluid
dynamics.
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2.2 Conservation Laws

2.2.1 The Continuity Equation

If we restrict our attention to single-phase fluids, the law of mass conservation
expresses the fact that mass cannot be created in such a fluid system, nor can
disappear from it. There is also no diffusive flux contribution to the conti-
nuity equation, since for a fluid at rest, any variation of mass would imply a
displacement of fluid particles.

In order to derive the continuity equation, consider the model of a finite
control volume fixed in space, as sketched in Fig. 2.1. At a point on the control
surface, the flow velocity is ¥, the unit normal vector is % and dS denotes an
elemental surface area. The conserved quantity in this case is the density p. For
the time rate of change of the total mass inside the finite volume 2 we have

17

The mass flow of a fluid through some surface fixed in space equals to the
product of (density) x (surface area) x (velocity component perpendicular to
the surface). Therefore, the contribution from the convective flux across each
surface element dS becomes

p(7-7)dS.

Since by convection 77 always points out of the control volume, we speak of
inflow if the product (¥-7) is negative, and of outflow if it is positive and hence
the mass flow leaves the control volume.

As stated above, there are no volume or surface sources present. Thus, by
taking into account the general formulation of Eq. (2.1), we can write

g/de-F?{ p(T-7)dS =0. (2.3)
ot /g 80

This represents the integral form of the continuity equation — the conservation
law of mass.

2.2.2 The Momentum Equation

We may start the derivation of the momentum equation by recalling the partic-
ular form of Newton’s second law which states that the variation of momentum
is caused by the net force acting on an mass element. For the momentum of an
infinitesimally small portion of the control volume € (see Fig. 2.1) we have

prdQ.

The variation in time of momentum within the control volume equals

2 .
E/Q;rudﬂ.
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Hence, the conserved quantity is here the product of density times the velocity,
ie.,
= T
pv = [pu, pv, pw}".
The convective flux tensor, which describes the transfer of momentum across
the boundary of the control volume, consists in the Cartesian coordinate system
of the following three components

r—component: pud
y—component: pv¥

z—component: pwd.

The contribution of the convective flux tensor to the conservation of momentum
is then given by
- pU (U-7)dS.
aQ

The diffusive flux is zero, since there is no diffusion of momentum possible for
a fluid at rest. So, the remaining question is now, what are the forces the fluid
element is exposed to? We can identify two kinds of forces acting on the control
volume:

1. External volume or body forces, which act directly on the mass of the
volume. These are for example gravitational, buoyancy, Coriolis or cen-
trifugal forces. In some cases, there can be electromagnetic forces present
as well.

2. Surface forces, which act directly on the surface of the control volume.
They result from only two sources:

(a) the pressure distribution, imposed by the outside fluid surrounding
the volume,

(b) the shear and normal stresses, resulting from the friction between the
fluid and the surface of the volume.

From the above, we can see that the body force per unit volume, denoted as
pfe, corresponds to the volume sources in Eq. (2.1). Thus, the contribution of
the body (external) force to the momentum conservation is

/pf;dQ,
Q

The surface sources consist then of two parts — an isotropic pressure component
and a viscous stress tensor T (for tensors see, e.g., [2]), Le.,

Qs=-pl+7 (2.4)

with 7 being the unit tensor. The effect of the surface sources on the control
volume is sketched in Fig. 2.2. In Section 2.3, we shall elaborate the form of
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Figure 2.2: Surface forces acting on a surface element of the control volume.

the stress tensor in more detail, and in particular show how normal and shear
stresses are connected to the flow velocity.

Hence, if we now sum up all the above contributions according to the general
conservation law (Eq. (2.2)), we finally obtain the expression

Q/ pid0+ & pi(5-7)dS
ot Jq 80

:/ pf.dQ — pﬁd5+?f F-7)dS (2.5)
Q o0 a0

for the momentum conservation inside an arbitrary control volume Q which is
fixed in space.

2.2.3 The Energy Equation

The underlying principle that we will apply in the derivation of the energy
equation, is the first law of thermodynamics. Applied to the control volume
displayed in Fig. 2.1, it states that any changes in time of the total energy
inside the volume are caused by the rate of work of forces acting on the volume
and by the net heat flux into it. The total energy per unit mass F of a fluid
is obtained by adding its internal energy per unit mass, e, to its kinetic energy
per unit mass, |#]2/2. Thus, we can write for the total energy

12 2, .2 2
+v? +
E=e+%=e+%ﬂi—. (2.6)
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The conserved quantity is in this case the total energy per unit volume, i.e., pE.
Its variation in time within the volume 2 can be expressed as

0

Following the discussion in course of the derivation of the general conservation
law (Eq. (2.1)), we can readily specify the contribution of the convective flux as

—}{ pE (¥ - 1) dS.
6194

In contrast to the continuity and the momentum equation, there is now a dif-
fusive flux. As we have already seen, it is proportional to the gradient of the
conserved quantity per unit mass (Fick’s law). Since the diffusive flux Fp is
defined for fluid at rest, only the internal energy becomes effective and we obtain

Fp = —ypk Ve. (2.7)

In the above, vy = ¢p/¢, is the ratio of specific heat coefficients, and « denotes
the thermal diffusivity coefficient . The diffusion flux represents one part of the
heat flux into the control volume, namely the diffusion of heat due to molecular
thermal conduction — heat transfer due to temperature gradients. Therefore,
Equation (2.7) is in general written in the form of Fourier’s law of heat conduc-
tion, i.e.,

Fp=—~kVT, (2.8)
with k£ standing for the thermal conductivity coefficient and T for the absolute
static temperature.

The other part of the net heat flux into the finite control volume consists of
volumetric heating due to absorption or emission of radiation, or due to chemical
reactions. We will denote the heat sources — the time rate of heat transfer per
unit mass — as ¢,. Together with the rate of work done by the body forces f.,
which we have introduced for the momentum equation, it completes the volume
sources B

Qv =pfe U+ dn. (2.9)
The last contribution to the conservation of energy, which we have yet to deter-
mine, are the surface sources Qs. They correspond to the time rate of work done
by the pressure as well as the shear and normal stresses on the fluid element
(see Fig. 2.2)

Qs =-pi+T7 7. (2.10)

Sorting now all the above contributions and terms, we obtain for the energy
conservation equation the expression

2/ pEdQ+j[ pE(7-7)dS = ¢ k(VT-i)dS (2.11)
ot Jo Ele) a0

+/(pﬁ-ﬁ+qh)dﬂ—j{ p(ﬁ-ﬁ)dS’—kj{ (F-7)-7dS.
Q aQ aQ
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Usually, the energy equation (2.11) is written in a slightly different form. For
that purpose, we will utilise the following general relation between the total
enthalpy, the total energy and the pressure
12
Hent L _go P (2.12)
2 p
When we now gather the convective (pE ¥) and the pressure term (p¥) in the

energy conservation law (2.11) and apply the formula (2.12), we can finally write
the energy equation in the form

3/pEdQ+7f pH(5-7)dS = ¢ k(VT-7)dS
ot Jq a0 890

+/Q(pf:-a+q,,)do+?iﬂ(%.a).ﬁds. (2.13)

Herewith, we have derived integral formulations of the three conservation
laws: the conservation of mass (2.3), of momentum (2.5), and of energy (2.13).
In the next section, we shall work out the formulation of the normal and the
shear stresses in more detail.
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2.3 Viscous Stresses

The viscous stresses, which originate from the friction between the fluid and
the surface of an element, are described by the stress tensor 7. In Cartesian
coordinates the general form is given by

Tez Tzy Tzz
Tyz Tyy Tyz (2.14)
Tzx Tzy Tzz

alll

The notation 7;; means by convention that the particular stress component af-
fects a plane perpendicular to the i-axis, in the direction of the j-axis. The
components Tz, Tyy, and 7., represent the normal stresses, the other compo-
nents of 7 stand for the shear stresses, respectively. Figure 2.3 shows the stresses
for a quadrilateral fluid element. One can notice that the normal stresses (Fig.
2.3a) try to displace the faces of the element in three mutually perpendicular
directions, whereas the shear stresses (Fig. 2.3b) try to shear the element.

You may now ask, how the viscous stresses are evaluated. First of all, they
depend on the dynamical properties of the medium. For fluids like air or water,
Isaac Newton stated that the shear stress is proportional to the velocity gradient.
Therefore, medium of such a type is designated as Newtonian fluid. On the
other hand, fluids like for example melted plastic or blood behave in a different
manner - they are non-Newtonian fluids. But, for the vast majority of practical
problems, where the fluid can be assumed to be Newtonian, the components of
the viscous stress tensor are defined by the relations [3], [4]

_/\(@+@+8_w)+2@
Tex = A\ Bz dy Oz Hox
du v Ow v
Tyyz/\ a*‘b@*‘&* +2[t-8—y-
(2 ey o
ez = dx Oy Oz e

(2.15)
Oou v
=T =Gyt e

N
Ter =Tez = H\ 3, T Bz

Jv  Ow
Tyz = Tzy = K 5*’%

in which A represents the second viscosity coefficient, and i denotes the dynamic
viscosity coefficient. For convenience, we can also define the so-called kinematic
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Figure 2.3: Normal (a) and shear (b) stresses acting on a fluid element.
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viscosity coefficient, which is given by the formula

v=ulp. (2.16)

The expressions (Eq. (2.15)) were derived by the Englishman George Stokes in
the middle of the 19th century. The terms u(0u/dz), etc. in the normal stresses
(Eq. (2.15)) represent the rate of linear dilatation — a change in shape. On the
other hand, the term (Adivd) in Eq. (2.15) represents volumetric dilatation —
rate of change in volume, which is in essence a change in density.

In order to close the expressions for the normal stresses, Stokes introduced

the hypothesis [5] that
2
A+§,u=0. (2.17)
The above relation (2.17) is termed the bulk viscosity . Bulk viscosity represents
that property, which is responsible for energy dissipation in a fluid of uniform
temperature during a change in volume at finite rate.

With the exception of extremely high temperatures or pressures, there is
so far no experimental evidence that Stokes’s hypothesis (Eqg. (2.17)) does not
hold (see discussion in Ref. [6]), and it is therefore used in general to eliminate
A from Eq. (2.15). Hence, we obtain for the normal viscous stresses

0 1
Tez = 2;1. (% - —diV’U)

oz 3
ov 1 .
Tyy = 21 <8_y ~3 div v) (2.18)
ow 1
e =20 | — — =divd ) .
o3
It should be noted that the expressions for the normal stresses in Eq. (2.18)
simplify for an incompressible fluid (constant density) because of divé = 0

(continuity equation).

What remains to be determined are the viscosity coefficient u and the ther-
mal conductivity coefficient k as functions of the state of the fluid. This can
be done within the framework of continuum mechanics only on the basis of
empirical assumptions. We shall return to this problem in the next section.
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2.4 Complete System of the Navier-Stokes
Equations

In the previous sections, we have separately derived the conservation laws of
mass, momentum and energy. Now, we can collect them into one system of
equations in order to obtain a better overview of the various terms involved. For
this purpose, we go back to the general conservation law for a vector quantity,
which is expressed by Equation (2.2). For reasons to be explained later, we will
introduce two flux vectors, namely F. and F,. The first one, F’;, is related to
the convective transport of quantities in the fluid. It is usually termed vector of
convective fluzes, although for the momentum and the energy equation it also
includes the pressure terms pit (Eq. (2.5)) and p (¢-7) (Eq. (2.11)), respectively.
But, do not be confused by this. The second flux vector — vector of viscous fluzes
F‘v, contains the viscous stresses as well as the heat diffusion. Additionally, let
us define a source term Cj, which comprises all volume sources due to body
forces and volumetric heating. With all this in mind and conducting the scalar
product with the unit normal vector 7, we can cast Eq. (2.2) together with
Equations (2.3), (2.5) and (2.13) into

_a_/ de+f (fc—ﬁv)dS:/QdQ. (2.19)
ot Jq a0 Q

The vector of the so-called conservative variables W consists in three dimensions
of the following five components

1

(2.20)

-~
i

)
<

pE
For the vector of convective fluxes we obtain

pV
puV +ngp
FE. = | pvV +nyp (2.21)
pwV +n;p
pHV

with the contravariant velocity V' — the velocity normal to the surface element
dS — being defined as the scalar product of the velocity vector and the unit
normal vector, i.e.,

V=9-7=n,u+nyv+n,w. (2.22)
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The total enthalpy H is given by the formula (2.12). For the vector of viscous
fluxes we have with Eq. (2.14)

0
NgTez + NyToy + N Tz,
Fy = | naTye +nyTyy + 1.7y | (2.23)
NzTiz + NyToy + N7z,
n;0; +ny 0, +n.0;

where
oT
Op =UTyy + VTzy + WTes + k_ax
oT
Oy =uTyy + vy + w7y, + ka—y (2.24)
T
O, =ur,g + V75 + WTa; + kg—
z

are the terms describing the work of viscous stresses and the heat conduction
in the fluid. Finally, the source term reads

0
. ples
Q= pfey : (2.25)
ez
pfe U+ qn

In the case of a Newtonian fluid, i.e., if the relations Eq. (2.15) for the viscous
stresses are valid, the above system of equations (Egs. (2.19)-(2.25)) is called
the Navier-Stokes equations. They describe the exchange (flux) of mass, mo-
mentum and energy through the boundary 9 of a control volume 2, which is
fixed in space (see Fig. 2.1). We have derived the Navier-Stokes equations in in-
tegral formulation, in accordance with the conservation laws. Applying Gauss’s
theorem, Equation (2.19) can be re-written in differential form [7]. Since the
differential form is often found in literature, it is for completeness included in
the Appendix (A.1).

In some instances, for example in turbomachinery applications or geophysics,
the control volume is rotating (usually steadily) about some axis. In such a case,
the Navier-Stokes equations are transformed into a rotating frame of reference.
As a consequence, the source term @ has to be cxtended by the effects due
to the Coriolis and the centrifugal force [8]. The resulting form of the Navier-
Stokes equations may be found in the Appendix (A.3). In other cases, the
control volume can be subject to translation or deformation. This happens,
for instance, when fluid-structure interaction is investigated. Then the Navier-
Stokes equations have to be extended by a term, which describes the relative
motion of the surface element dS with respect to the fixed coordinate system
[9]. Additionally, the so-called Geometric Conservation Law (GCL) has to be
fulfilled [10]-[12]. In the Appendix (A.4) we show the appropriate formulation.
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The Navier-Stokes equations represent in three dimensions a system of five
equations for the five conservative variables p, pu, pv, pw, and pE. But they
contain seven unknown flow field variables, namely: p, u, v, w, E, p, and T.
Therefore, we have to supply two additional equations, which have to be thermo-
dynamic relations between the state variables, like for example the pressure as
a function of density and temperature, and the internal energy or the enthalpy
as a function of pressure and temperature. Beyond this, we have to provide the
viscosity coefficient g and the thermal conductivity coefficient k£ as a function of
the state of the fluid, in order to close the entire system of equations. Clearly,
the relationships depend on the kind of fluid being considered. In the follow-
ing, we shall therefore show methods of closing the equations for two commonly
encountered situations.

2.4.1 Formulation for a Perfect Gas

In pure aerodynamics, it is generally reasonable to assume that the working
fluid behaves like a calorically perfect gas, for which the equation of state takes
the form [13], [14]

p=pRT (2.26)

where R denotes the specific gas constant. The enthalpy results from
h=cT. (2.27)

It is convenient to express the pressure in terms of the conservative variables. For
that purpose, we have to combine Equation (2.12), relating the total enthalpy
to the total energy, together with the equation of state (2.26). Substituting
expression (2.27) for the enthalpy and using the definitions

R=cp—c¢y, ==, (2.28)

we finally obtain for the pressure

u? + v? + w?

- (2.29)

p=(y—1)p|L—

The temperature is then calculated with the help of the relationship Eq. (2.26).
The coefficient of the dynamic viscosity p is, for a perfect gas, strongly depen-
dent on temperature but only weakly dependent on pressure. Use is frequently
made of the Sutherland formula. The result for air in ST units is, for example,

_ 145732

SRS, —6
=T+ Y (2:30)

where the temperature T is in degree Kelvin (K). Thus, at T = 288K oue
obtains u = 1.78 - 1075 kg/ms. The temperature dependence of the thermal
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conductivity coefficient k£ resembles that of p in the case of gases. By contrast,
k is virtually constant in the case of liquids. For this reason, the relationship

k (2.31)

= CpP_,r’
is generally used for air. In addition, it is commonly assumed that the Prandtl
number Pr is constant in the entire flow field. For air, the Prandtl number
takes the value Pr = 0.72.

2.4.2 Formulation for a Real Gas

The matter becomes more complicated when one has to deal with a real gas.
The reason is that now we have to model a thermodynamic process and chemical
reactions in addition to the fluid dynamics. Examples for a real gas flow are the
simulation of combustion, the hypersonic flow past a re-entry vehicle, or the flow
in a steam turbine. In principle, two different methods can be pursued to solve
the problem. The first methodology is applicable in cases, where the gas is in
chemical and in thermodynamical equilibrium. This implies that there is unique
equation of state. Then, the governing equations (2.19) remain unchanged. Only
the values of pressure, temperature, viscosity, etc. are interpolated from lookup
tables using curve fits [15], [16], [17]. But in practice, the gas is morc often
in chemical and/or thermodynamical non-equilibrium and has to be treated
correspondingly.

Let us for illustration consider a gas mixture consisting of N different species.
For a finite Damkohler number, defined as the ratio of flow-residence time to
chemical-reaction time, we have to include finite-rate chemistry into our model.
It has to describe the generation/destruction of species due to chemical reac-
tions. In what follows, we will furthermore assume that the temporal and the
spatial scales of fluid dynamics and chemical reactions are much larger compared
to those of thermodynamics. Thus, we suppose the gas is thermodynamically
in equilibrium but chemically in non-equilibrium. In order to simulate the be-
haviour of such a gas mixture, the Navier-Stokes equations have to be augmented
by (N-1) additional transport equations for the N species [18]-[23]. Hence, we
obtain formally the same system like Eq. (2.19), but now with the vectors of
the conservative variables W, the flux vectors ﬁc and ﬁu, as well as with the
source term @ extended by (N-1) species equations. Recalling the expressions
(2.20) to (2.25), the vector of the conservative variables reads now

-
pu
pv

pw
oE |- (2.32)

'
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The convective and the viscous flux vectors transform into

r pV 7 r 0 7
puV + NP NzTzz + NyTzy +NTzz
oV + nyp Nz Tyz T NyTyy + Nz Ty
. pwV +mn,p . NgTaz T NyToy T NyTaz
Fe=\|" pgv |, Fv= 1,0z + 1,0y +1.6; , (2:33)
,DY1V na:(tz,l + 7'ly(ty,l + nzq)z,l
L pYn_1V anéz,N—l + 1y Py vo1 1P voy
where

N
aT aY,,
@z = UTgg + UTgy + WTgz + ka_:ll + pmgzl hmDma_.’lj

N
oT oY,
Oy = UTya + VTyy + WTy: + k oy +p E hmDm——ay

m=1
T aY,
m
O, = UTyg + VTyy + w3, + kg + me=:1 h’"DmW (2.34)
ay,
®rm =pDp a;:n
O
Qy,m = pD,, By
oY,
(ﬁz,m = po'a—: .
Finally, the source term becomes now
_ 0 ;
pfes
pley
~ _’pfe,z
C=1pf v+ n (2.35)
51
L Sn-1 J

In the above expressions (Eqgs. (2.32)-(2.35)), Y;, denotes the mass fraction, h,,
the enthalpy, and D,, the effective binary diffusivity of species m, respectively.
Furthermore, 3,, is the rate of change of species m due to chemical reactions.
Note that the total density p of the mixture is equal to the sum of the densities of
the species pYr,. Therefore, since the total density is regarded as an independent
quantity, there are only (N-1) independent densities pY, left. The remaining



Governing Equations 21

mass fraction Yy is obtained from

N-1
Yv=1-3 Y. (2.36)
m=1

In order to find an expression for the pressure p, we first assume that the
individual species behave like ideal gases, i.e.,

R
DPm = me W—r:. Ty (237)
with R, denoting the universal gas constant and W,, being the molecular weight,
respectively. Together with Dalton’s law,

N
P=)_ Pm, (2.38)
m=1
we can write
Ny,
p= pRuTmZ:l e (2.39)

It is important to notice that because the gas is in thermodynamical equilib-
rium, all species possess the same temperature T'. The temperature has to be
calculated iteratively from the expression [21], [24]

N T
e= Z [Ym <h0)m +/ Cpom dT)} - % (2.40)

m=1 Tre/

The internal energy of the gas mixture e is obtained from Eq. (2.6). The quanti-
ties h(},m, Cp.m, and T;..; denote the heat of formation, the specific heat at con-
stant pressure, and the reference temperature, respectively, of the m-th species.
Values of the above quantities as well as of the thermal conductivity k£ and of
the dynamic viscosity p of the species are determined from curve fits [19], [21],
(23].

The last part, which remains to be modelled, is the chemical source term §,,
in Eq. (2.35). The rate equations for a set of Ng elementary reactions involving
N species can be written in the general form

N N

K
S UCm & > ynCm for 1=1,2,--,Ng. (2.41)
m=1 Ky m=1

In the above Eq. (2.41), v/, and v/}, are the stoichiometric coefficients for species
m in the [-th forward and backward reaction, respectively. Furthermore, Cr,
stands for the molar concentration of species m (Cp = pY:n/Win), and finally
Ky and Ky, respectively, denote the forward and the backward reaction rate
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constants for the I-th reaction step. They are given by the empirical Arrhenius
formulae

K;=A;T? exp(-E; /R.T)
(2.42)

Ky = Ay TP exp(—E, /R.T),

where Ay and A, are the Arrhenius coefficients, £y and Ey represent the acti-
vation energies, and By as well as B, are constants, respectively. The rate of
change of molar concentration of species m by the [-th reaction is given by

N N
Cim = (" =) (Kﬂ e -ku]] c;m) : (2.43)

n=1 n=1

Hence, together with Eq. (2.43) we can calculate the total rate of change of

species m from
Ng

$m =Wm ¥ Cim . (2.44)
=1

More details can be found in the references cited above. A detailed overview of
the equations governing a chemically reacting flow, together with the Jacobian
matrices of the fluxes and their eigenvalues, can also be found in [24].

Another practical example of real gas is the simulation of steam or, which
is more demanding, of wet steam in turbomachinery applications [25]-[32]. In
the later case, where the steam is mixed with water droplets, so that we speak
of multiphase flow, it is either possible to solve an additional set of transport
equations, or to trace the water droplets along a number of streamlines. These
simulations have very important applications in the design of modern steam
turbine cascades. The analysis of flow past turbine blades can for instance help
to understand the occurrence of supercritical shocks by condensation and of
flow instabilities, responsible for an additional dynamic load on the bladings
resulting in loss of efficiency.

2.4.3 Simplifications to the Navier-Stokes Equations

Thin Shear Layer Approximation

When calculating flows around bodies for high Reynolds numbers (i.e., thin
boundary layer with respect to a characteristic dimension), the Navier-Stokes
equations (2.19) can be simplified. One necessary condition is that there is no
large area of separated boundary layer. It can then be anticipated that only
the gradients of the flow quantities in the normal direction to the surface of the
body (n-direction in Fig. 2.4) contribute to the viscous stresses [33], [34]. On
the other hand, the gradients in the other coordinate directions (£ in Fig. 2.4)
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Boundary layer

&

Body contour \

Figure 2.4: Representation of a thin boundary layer.

are neglected in the evalunation of the shear stress tensor (Egs. (2.14, 2.15)).
We speak here of the so-called Thin Shear Layer (TSL) approximation of the
Navier-Stokes equations. The motivation for the TSL modification is that the
numnerical evaluation of the viscous terms becomes computationally less expen-
sive, but, within the assumptions, the solution remains sufliciently accurate.
The TSL approximation can also be justified from a practical side. In the case
of high Reynolds number flows, the grid has to be very fine in the wall normal
direction in order to resolve the boundary layer properly. Because of the lim-
ited computer memory and speed, much coarser grid has to be generated in the
other directions. This in turn results in significantly lower numerical accuracy of
the gradient evaluation compared to the normal direction. The TSL equations
arce for completeness presented in the Appendix (A.5). Due to the fact that
secondary flow (e.g., like in a blade row) cannot be resolved appropriately, the
TSL simplification is usually applied only in external aerodynamnics.

Parabolised Navier-Stokes Equations

In cases, where the following three conditions are fulfilled:
e the flow is steady (i.e. 9W /9t=0),

o the fluid moves predominantly in one main direction (e.g., there must be
no boundary layer separation),

e the cross-flow components are negligible,

the governing equations (2.19)) can be simplified to a form called the Parabolised
Navier-Stokes (PNS) equations [8], [35]-[37]. The above conditions allow us to
set the derivatives of u, v, and w with respect to the streamwise direction to
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Z T

Figure 2.5: Internal flow in a duct — parabolised Navier-Stokes equations.

zero in the viscous stress terms (Eq. (2.15)). Furthermore, the components of
the viscous stress tensor 7, of the work performed by it (7 - #), and of the heat
conduction VT in the streamwise direction are dropped from the viscous flux
vector in Eq. (2.23). The continuity equation, as well as the convective fluxes
(Eq. (2.21)) remain unchanged. For details, the reader is referred to the Ap-
pendix (A.6). Cousidering the situation sketched in Fig. 2.5, where the main
flow direction coincides with the x coordinate, it can be shown that the PNS ap-
proximation leads to a mixed set of parabolic / elliptic equations. Namely, the
momentum cquation in the flow direction becomes parabolic together with the
energy cquation, and hence they can be solved by marching in the z-direction.
The momentum equations in the y- and in the z-direction are elliptic and they
have to be solved iteratively in each z-plane. Thus, the main benefit of the
PNS approach is in the largely reduced complexity of the flow solution - from
a complete 3-D field to a sequence of 2-D problems. A typical application of
the parabolised Navier-Stokes equations is the calculation of internal flows in
ducts and in pipes and also the simulation of steady supcrsonic flows using the
space-marching method [38]-[41].

Euler Equations

As we have seen, the Navier-Stokes cquations describe the behaviour of a vis-
cous fluid. In many instances, it is a valid approximation to neglect the viscous
effects completely, like for example for high Reynolds-number flows, where a
boundary layer is very thin compared to the dimensions of the body. In such
case, we can simply omit the vector of viscous fluxes, F,, from the Equations
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(2.19). Those will then reduce to

Q/der% ﬁcdsz/édn. (2.45)
ot Jq a0 Q

The remaining terms are given by the same relations (2.20)-(2.22) and Eq.
(2.25) as before. This simplified form of the governing equations is called the
Euler equations. They describe the pure convection of flow quantities in an
inviscid fluid. If the Euler equations are formulated in conservative way (like
above), they allow for accurate representation of such important phenomena
like shocks, expansion waves and vortices over delta wings (with sharp leading
edges). Furthermore, the Euler equations served in the past — and still do
— as the basis for the development of discretisation methods and boundary
conditions.

However, it should be noted that today, due to the computational power
of even workstations and due to the increased demands on the quality of the
simulations, the Euler equations are increasingly less employed for flow compu-
tations.
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Chapter 3

Principles of Solution of the
Governing Equations

In the previous chapter, we obtained the complete system of the Navier-Stokes/
Euler equations. We introduced additional thermodynamic relations for a per-
fect gas, and we also defined additional transport equations for a chemically
reacting gas. Hence, we are now ready to solve the whole system of governing
equations for the flow variables. As you can imagine, there exists a vast number
of solution methodologies. If we do not consider analytical methods, which are
applicable only to simplified flow problems, nearly all solution strategies follow
the same path. First of all, the space, where the flow is to be computed — the
physical space, is divided into a large number of geometrical elements called
grid cells. This process is termed grid generation (some authors use the term
mesh with identical meaning). It can also be viewed as placing first grid points
(also called nodes or vertices) in the physical space and then connecting them
by straight lines — grid lines. The grid normally consists in two dimensions of
triangles or quadrilaterals, and in three dimensions of tetrahedra, hexahedra,
prisms, or pyramids. The most important requirements placed on a grid gen-
eration tool are that there must not be any holes between the grid cells but
also that the grid cells do not overlap. Additionally, the grid should be smooth,
i.e., there should be no abrupt changes in the volume of the grid cells or in the
stretching ratio and the elements should be as regular as possible. Furthermore,
if the grid consists of quadrilaterals or hexahedra, there should be no large kinks
in the grid lines. Otherwise, numerical errors would increase significantly.

On the one hand, the grid can be generated to follow closely the boundaries
of the physical space, in which case we speak of body-fitted grid (Fig. 3.1a). The
main advantage of this approach is that the flow can be resolved very accurately
at the boundaries, which is essential in the case of shear layers along solid bodies.
The price to be paid is a high degree of complexity of the grid generation tools,
especially in the case of “real-life” geometries. On the other hand, the so-called
Cartesian grids [1], [2], where the edges of the grid cells are oriented in parallel
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to the Cartesian coordinates, can be generated very easily. Their advantage is
that the evaluation of the fluxes in Eq. (2.19) is much more simple then for
body-fitted grids. But, considering Fig. 3.1b it becomes clear that a general
and accurate treatment of the boundaries is hard to achieve [3]. Because of this
serious disadvantage, the body-fitted approach is preferred, particularly in the
industrial environment, where the geometrical complexity of a configuration is
usually very high.

Nowadays, the overwhelming number of numerical methods for the solution
of the Euler- and the Navier-Stokes equations employ a separate discretisation in
space and in time — the so-called method of lines [4]). Herewith, dependent on the
particular algorithm chosen, the grid is used either to construct control volumes
and to evaluate the flux integrals, or to approximate the spatial derivatives of
the flow quantities. In a further step, the resulting time-dependent equations
are advanced in time, starting from a known initial solution, with the aid of a
suitable method. Another possibility, when the flow variables do not change in
time, is to find the steady-state solution of the governing equations by means
of an iterative process.

The way we derived the governing equations (2.19), the continuity equa-
tion (2.3) contains a time derivative of the density. Since the density, as an
independent variable, is used to calculate the pressure (Eq. (2.29)), there is a
coupling between the time cvolution of the density and of the pressure in the
momentum equations. Solution methods employing discretisations of the gov-
erning equations (2.19) are for this reason called density-based schemes. The
problem with this formulation is that for an incompressible fluid the pressure
is no longer driven by any independent variable, because the time derivative of
the density disappears from the continuity equation. Another difficulty arises
from the growing disparity between acoustic and convective wave speeds with
decreasing Mach number, which makes the governing equations increasingly stiff
and hence hard to solve [5]. Basically, three approaches were developed to cope
with the problem. The first possibility is to solve a Poisson equation in pressure,
which can be derived from the momentum equations [6]-[8]. These mcthods are
denoted as pressure-based. The second approach, called the artificial compress-
1bility method, is based on the idea to substitute time derivative of the pressure
for that of the density in the continuity equation [9], [10]. In this way, velocity
and pressure field are directly coupled. The third solution, and the most gen-
eral one, is based on preconditioning of the governing equations [11]-[18]. This
methodology allows it to employ the same numerical scheme for very low as well
as high Mach number flows. We shall discuss this approach more extensively in
Section 9.5.

In the following, we shall learn more about the very basic principles of var-
ious solution methodologies for the numerical approximation of the governing
equations in space and in time, for the turbulence modelling, and also for the
boundary treatment.
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solid body

(b)

solid body

Figure 3.1: Body-fitted (a) and Cartesian grid (b) near a solid body (shown
here in two dimensions).
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3.1 Spatial Discretisation

Let us at the beginning turn our attention to the first step - the spatial dis-
cretisation of the Navier-Stokes equations, i.e., the numerical approximation of
the convective and viscous fluxes, as well as of the source term. Many different
methodologies were devised for this purpose in the past and the development
still continues. In order to sort them, we can at first divide the spatial discreti-
sation schemes into the following three main categories: finite difference, finite
volume, and finite element. All these methods rely on some kind of grid in order
to discretise the governing equations (2.19). There exist basically two types of
grids:

o Structured grids (Fig. 3.2) — each grid point (vertex, node) is uniquely
identified by the indices 7,7,k and the corresponding Cartesian coordi-
nates T;jk, ¥k, and z; ;x. The grid cells are quadrilaterals in 2-D and
hexahedra in 3-D. If the grid is body-fitted, we also speak of curvilinear
grid.

o Unstructured grids (Fig. 3.3) — grid cells as well as grid points have no par-
ticular ordering, i.e., neighbouring cells or grid points cannot be directly
identified by their indices (e.g., cell 6 adjacent to cell 119). In the past, the
grid cells were triangles in 2D and tetrahedra in 3D. Today, unstructured
grids usually consist of a mix of quadrilaterals and triangles in 2D and of
hexahedra, tetrahedra, prisms and pyramids in 3D, in order to resolve the
boundary layers properly. Therefore, we speak in this case of hybrid or
mized grids.

The main advantage of structured grids follows from the property that the
indices 1, j, k represent a linear address space — also called the computational
space, since it directly corresponds to how the flow variables are stored in the
computer memory. This property allows it to access the neighbours of a grid
point very quickly and easily, just by adding or subtracting an integer value to
or from the corresponding index (e.g., like (i+1), (k-3), etc. — see Fig. 3.2). As
one can imagine, the evaluation of gradients, fluxes, and also the treatment of
boundary conditions is greatly simplified by this feature. The same holds for
the implementation of an implicit scheme, because of the well-ordered, banded
flux Jacobian matrix. But there is also a disadvantage. This is the generation of
structured grids for complex geometries. As sketched in Fig. 3.4, one possibility
is to divide the physical space into a number of topologically simpler parts -
blocks - which can be more easily meshed. We therefore speak of multiblock
approach {19]-[23]. Of course, the complexity of the flow solver is increased,
since special logic is required to exchange physical quantities or fluxes between
the blocks. Additional flexibility is added, if the grid points at both sides of
an interface can be placed independently of each other, i.e., if the grid lines are
allowed not to meet at a block boundary (like inside C or F in Fig. 3.4). Those
grid points, which are located only on one side of a block interface are called
hanging nodes. The advantage of this approach is quite obvious - the number
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Figure 3.2: Structured, body-fitted grid approach (in two dimensions): (a)
shows the physical space; (b) shows the computational space; &, 1 represent a
curvilinear coordinate systermn.



34 Chapter 3

v,
AT

56
R
solid body

Figure 3.3: Unstructured, mixed grid approach; numbers mark individual cells.

of grid lines can be chosen separately for each block as required. The price
paid for the enhanced flexibility is an increased overhead for the conservative
treatment of the hanging nodes [24], [25]. The multiblock methodology also
offers interesting possibilities with respect to the implementation of the flow
solver on a parallel computer by means of domain decomposition. However,
very long times (weeks or months) are still required for the grid generation in
the case of complex configurations.

Another methodology, related to block structured grids, represents the so-
called Chimera technique [26]-[30]. The basic idea here is to generate first the
grids separately around each geometrical entity in the domain. After that, the
grids are combined together in such a way that they overlap each other where
they meet. The situation is depicted in Fig. 3.5 for a simple configuration. The
crucial operation is an accurate transfer of quantities between the different grids
at the overlapping region. Therefore, the extension of the overlap is adjusted
accordingly to the required interpolation order. The advantage of the Chimera
technique over the multiblock approach is tlie possibility to generate the partic-
ular grids completely independent of each other, without having to take care of
the interface between the grids. On the other hand, the problem of the Chimera
technique is that the conservation properties of the governing equations are not
satisfied through the overlapping region.

The second type of grids are the unstructured grids. They offer the largest
flexibility in the treatment of complex geometries [31]. The main advantage of
the unstructured grids is based on the fact that triangular (2D) or tetrahedral
(3D) grids can in principle be generated automatically, independent of the com-
plexity of the domain. In practice, it is of course still necessary to set some
parameters appropriately, in order to obtain a good quality grid. Furthermore,
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Figure 3.4: Structured, multiblock grid with conforming/non-conforming
inter-block interfaces; thick lines represent block boundaries.

in order to resolve the boundary layers accurately, it is advisable to employ
in 2D rectangular and in 3D prismatic or hexahedral elements near solid walls
[32])-[39]. Another benefit of such mixed grids is the reduction of the number
of grid cells, edges, faces and possibly also of grid points. But, one should
keep in mind that the generation of mixed grids is non-trivial for geometrically
demanding cases. However, the time required to construct an unstructured,
mixed grid for a complex configuration is still significantly lower than the one
required for a multiblock structured grid. Since nowadays, the geometrical fi-
delity of the flow simulations is rapidly increasing, the ability to generate grids
fast and withh minimum user interaction becomes more and more important.
This is particularly truc in industrial environment. Another advantage of the
unstructured grids is that solution dependent grid refincment and coarsening
can be handled in relatively native and seamless manuner. To mention also the
disadvantages of unstructured nethods, one of them is the necessity to employ
sophisticated data structures inside the flow solver. Such data structures work
with indirect addressing, which, depending on the computer hardware, leads to
more or less reduced computational efficiency. Also the meniory requirements
are in general higher as compared to the structured schemes. But despite all
problems, the capability to handle complex flow problems in short turn-around
tines still weights much more. From this point, it is not surprising that for
example nearly all vendors of commercial CFD software switched over to un-
structured flow solvers. A detailed review of various methodologies for spatial
and temporal discretisation on unstructured grids appeared recently in [40].
Having generated the grid, the next question is how to actually discretise
the governing equations. As we alrcady said, we can basically choose between
three methodologics: finite differences, finite volumes, and finite elements. We
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Figure 3.5: Ilustration of the Chimera technique (2-D example).

want to discuss all of them briefly in the next subsections.

3.1.1 Finite Difference Method

The finite difference method was among the first methods applied to the numer-
ical solution of differential equations. It was first utilised by Euler, probably in
1768. The finite difference method is directly applied to the differential form of
the governing equations. The principle is to employ a Taylor series expansion for
the discretisation of the derivatives of the flow variables. Let us for illustration
consider the following example.

Suppose we would like to compute the first derivative of a scalar function
U(x) at some point xg. If we develop now U(zg + Az) as a Taylor series in z,
we obtain

oU Az? 92U

Ulzg + Ax) = Ul Az— —_ 3.1
(wo + Ax) = Ulwo) + Az b (3.1)
With this, the first derivative of U can be approximated as
ou Ulzg + Az) — U(xo)
—_— = D . 3.
01 g Az +0(Az) (3:2)

The above approximation is of first order, since the truncation error (abbrevi-
ated as O(Ax)), which is proportional to the largest term of the remainder, goes
to zero with the first power of Az (for a discussion on the order of accuracy see
Chapter 10). The same procedure can be applied to derive more accurate finite
difference formulae and to obtain approximations to higher-order derivatives.
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An important advantage of the finite difference methodology is its simplicity.
Another advantage is the possibility to casily obtain high-order approximations,
and hence to achieve high-order accuracy of the spatial discretisation. On the
other hand, because the method requires a structured grid, the range of appli-
cation is clearly restricted. Furthermore, the finite difference method cannot
be directly applied in body-fitted (curvilinear) coordinates, but the governing
equations have to be first transformed into a Cartesian coordinate system -
or in other words — from the physical to the computational space (Fig. 3.2).
The problem herewith is that the Jacobian of coordinate transformation ap-
pears in the flow equations (see, e.g., Appendix A.1). This Jacobian has to be
consistently discretised in order to avoid the introduction of additional numer-
ical errors. Thus, the finite difference method can be applied only to rather
simple geometries. Nowadays, it is sometimes utilised for the direct numerical
simulation of turbulence (DNS), but it is only very rarely used for industrial ap-
plications. More details to the finite difference method can be found for example
in [41], or in textbooks on the solution of partial differential equations.

3.1.2 Finite Volume Method

The finite volume method directly utilises the conservation laws - the inte-
gral formulation of the Navier-Stokes/Euler equations. It was first employed
by McDonald [42] for the simulation of 2-D inviscid flows. The finite volume
method discretises the governing equations by first dividing the physical space
into a number of arbitrary polyhedral control volumes. The surface integral on
the right-hand side of Equation (2.19) is then approximated by the sum of the
fluxes crossing the individual faces of the control volume. The accuracy of the
spatial discretisation depends on the particular scheme with which the fluxes
are evaluated.

There are several possibilities of defining the shape and position of the control
volume with respect to the grid. Two basic approaches can be distinguished:

e Cell-centred scheme (Fig. 3.6a) - here the flow quantities are stored at the
centroids of the grid cells. Thus, the control volumes are identical to the
grid cells.

o Cell-verter scheme (Fig. 3.6b) — here the flow variables are stored at the
grid points. The control volume can then either be the union of all cells
sharing the grid point, or some volume centred around the grid point. In
the former case we speak of overlapping control volumes, in the second
case of dual control volumes.

We shall discuss the advantages and disadvantages of cell-centred and cell-vertex
formulations in both chapters on spatial discretisation.

The main advantage of the finite volume method is that the spatial discreti-
sation is carried out directly in the physical space. Thus, there are no problems
with any transformation between coordinate systems, like in the case of the finite
difference method. Compared to the finite differences, one further advantage
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(a) (b)

Figure 3.6: Control volume of cell-centred (a) and cell-vertex (b) scheme (dual
control volume).

of the finite volume method is that it is very flexible — it can be rather easily
implemented on structured as well as on unstructured grids. This renders the
finite volume method particularly suitable for the treatment of flows in complex
geometries.

Since the finite volume method is based on the direct discretisation of the
conservation laws, mass, momentum and energy are also conserved by the nu-
merical scheme. This leads to another important feature of the method, namely
the ability to compute weak solutions of the governing equations correctly. How-
ever, in the case of the Euler equations, one additional condition has to be ful-
filled. This is known as the entropy condition. It is necessary because of the
non-uniqueness of the weak solutions. The entropy condition prevents the oc-
currence of unphysical features like expansion shocks, which violate the second
law of thermodynamics (decrease the entropy). As a further consequence of the
conservative discretisation, the Rankine-Hugoniot relations, which must hold
across a solution discontinuity (such as a shockwave or a contact discontinuity),
are satisfied directly.

It is interesting to note that under certain conditions, the finite volume
method can be shown to be equivalent to the finite difference method, or to a
low-order finite element method. Because of its attractive properties, the finite
volume method is nowadays very popular and in wide use. It will be presented
in the following chapters.
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3.1.3 Finite Element Method

The finite element method was originally employed for structural analysis only.
It was first introduced by Turner et al. [43] in 1956. About ten years later,
researchers started to use the finite element method also for the numerical solu-
tion of field equations in continuous media. However, only with the beginning
of the 90’s, did the finite element method gain popularity in the solution of the
Euler and the Navier-Stokes equations. A good introduction into the classical
finite element methodology can be found in [44]. Applications to flow problems
are described in [45], [46], and more recently in [47].

The finite element method, as it is in general applied to the solution of
the Euler/Navier-Stokes equations, starts with a subdivision of the physical
space into triangular (in 2-D) or into tetrahedral (in 3-D) elements. Thus, an
unstructured grid has to be generated. Depending on the element type and the
required accuracy, a certain number of points at the boundaries and/or inside an
element is specified, where the solution of the flow problem has to be found. The
total number of points multiplied with the number of unknowns determines the
number of degrees of freedom. Furthermore, the so-called shape functions have
to be defined, which represent the variation of the solution inside an element. In
practical implementations, linear elements are usually employed, which use the
grid nodes exclusively. The shape functions are then linear distributions, whose
value is zero outside the corresponding element. This results in a second-order
accurate representation of the solution on smooth grids.

Within the finite element method, it is necessary to transform the governing
equations from the differential into an equivalent integral form. This can be
accomplished in two different ways. The first one is based on the variational
principle, i.e., a physical solution is sought, for which a certain functional pos-
sesses an extremum. The second possibility is known as the method of weighted
residuals or the weak formulation. Here, it is required that the weighted average
of the residuals is identically zero over the physical domain. The residuals can be
viewed as the errors of the approximation of the solution. The weak formulation
has the same advantage as the finite volume discretisation of the conservation
laws — it allows the treatment of discontinuous solutions such as shocks. There-
fore, the weak formulation is preferred over the variational methodology.

The finite element method is attractive because of its integral formulation
and the use of unstructured grids, which are both preferable for flows in or
around complex geometries. The method is also particularly suitable for the
treatment of non-Newtonian fluids. The finite element method has a very rig-
orous mathematical foundation, particularly for elliptic and parabolic prob-
lems. Although it can be shown in certain cases that the method is mathemati-
cally equivalent to the finite volume discretisation, the numerical effort is much
higher. This may explain why the finite volume method became more popular.
However, both methods are sometimes combined — particularly on unstructured
grids. So for example, the treatment of the boundaries and the discretisation of
the viscous fluxes is usually “borrowed” from the finite element method.
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3.1.4 Other Discretisation Methods

There are few other numerical schemes which are in general not used in practice,
but which are, in certain situations, superior to the methods discussed above.
Two particular approaches should be mentioned here briefly.

Spectral Element Method

The first is for example the Spectral Element Method [48]-[51]. The spectral ele-
ment method combines the geometric flexibility of the finite element technique
with the high-order spatial accuracy (e.g., 10th-order) and the rapid convergence
rate of the spectral schemes [52]. The method is based on a high-order polyno-
mial representation of the solution (usually Lagrangian interpolants), combined
with a standard Galerkin finite element method, or the method of weighted
residuals. The spectral element method is appropriate either for a particular
problem in which high-order regularity is guaranteed, or for which high-order
regularity is not the exception, like in incompressible fluid mechanics. It is espe-
cially suitable for vortical flows. The advantage of the spectral element method
is primarily its non-diffusive, non-dispersive approximation of the convection
operator, and its good approximation of convection-diffusion boundary layers.
The method can treat geometrically and physically complex problems, supposed
the condition of high-order regularity is fulfilled. Apart from the rather narrow
range of applications, the principal disadvantage of the spectral element method
is its very high numerical effort as compared for example to the finite volume
method.

Gridless Method

Another discretisation scheme, which gained recently some interest, is the so-
called Gridless Method [53], [54]. This method employs only clouds of points
for the spatial discretisation. It does not require that the points are connected
to form a grid as in conventional structured or unstructured grid schemes. The
gridless method is based on the differential form of the governing equations,
written in the Cartesian coordinate system. Gradients of the flow variables
are determined by a least-squares reconstruction, using a specified number of
neighbours surrounding the particular point. The gridless method is neither a
finite difference nor a finite volume or a finite element approach since coordinate
transformations, face areas or volumes do not have to be computed. It can be
viewed as a mix between the finite difference and the finite element method.
The principal advantages of the gridless method are its flexibility in solving
flows about complex configurations (similar to unstructured methods), and the
possibility to locate or cluster the points (or the clouds of points) where it is ap-
propriate. For example, it would be easily possible to select only the neighbours
in the characteristic directions when computing gradients. However, there is
one unresolved problem. Although the gridless method solves the conservation
law form of the Euler or the Navier-Stokes equations, it is not clear whether
conservation of mass, momentum and energy is really ensured.
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Whichever spatial discretisation scheme we might select, it is important to
ensure that the scheme is consistent, i.e., that it converges to the solution of the
discretised equations, when the grid is sufficiently refined. It is therefore very
important to check how much the solution changes, if the grid is refined (e.g.,
if we would double the number of grid points). If the solution improves only
marginally, we speak of grid converged solution. Another rather self-consistency
requirement is that the discretisation scheme possesses the order of accuracy,
which is appropriate for the flow problem being solved. This rule is sometimes
given up in favour of faster convergence, particularly in industrial environment
(bad solution is better than no solution). This is of course a very dangerous
practice. We shall return to the question of accuracy, stability and consistency
later in Chapter 10.

3.1.5 Central versus Upwind Schemes

So far, we discussed only the basic choices which exist for the spatial discreti-
sation. But within each of the above three main methods - finite difference,
finite volume and finite element — various numerical schemes exist to perform
the spatial discretisation. In this context, it is convenient to differentiate be-
tween the discretisation of the convective and the viscous fluxes (}7".C and ﬁv in
Eq. (2.19), respectively). Because of the physical nature of the viscous fluxes,
the only reasonable way is to employ central differences (central averaging) for
their discretisation. Thus, their discretisation on structured grids is straight-
forward. On unstructured triangular or tetrahedral grids, the viscous fluxes are
best approximated using the Galerkin finite element methodology, even in the
case of a finite volume scheme [55]. The situation becomes more complicated
for unstructured mixed grids, where a modified averaging of gradients is more
appropriate [56]-[60].

However, the real variety is found in the discretisation of the convective
fluxes. In order to classify the individual methodologies, we will restrict our
attention to schemes developed for the finite volume method, although most
of the concepts are also directly applicable to the finite difference or the finite
element method.

Central Schemes

To the first category we may count schemes, which are based solely on central
difference formulae or on central averaging, respectively. Those are denoted as
central schemes. The principle is to average the conservative variables to the
left and to the right in order to evaluate the flux at a side of a control volume.
Since the central schemes cannot recognise and suppress an odd-even decoupling
of the solution (i.e., the generation of two independent solutions of the discre-
tised equations), the so-called artificial dissipation {(because of its similarity to
the viscous terms) has to be added for stabilisation. The most widely known im-
plementation is due to Jameson et al. [61]. On structured grids, it is based on a
blend of 2nd- and 4th-differences scaled by the maximum eigenvalue of the con-



42 Chapter 3

vective flux Jacobian. A combination of an undivided Laplacian and biharmonic
operator is employed on unstructured grids [62]. The scheme can be improved
remarkably using different scaling factors for each equation. This approach is
known as the matriz dissipation scheme [63]. It should be mentioned that on un-
structured, mixed element grids the explicit Runge-Kutta time-stepping scheme
can become unstable, when combined with the conventional central scheme [64].

Upwind Schemes

On the other hand, there are more advanced spatial discretisation schemes,
which are constructed by considering the physical properties of the Euler equa-
tions. Because they distinguish between upstream and downstream influences
(wave propagation directions), they are termed upwind schemes. They can be
roughly divided into four main groups:

o fluz-vector splitting,

o fluz-difference splitting,

o total variation diminishing (TVD), and
o fluctuation-splitting schemes.

Each of these is described briefly in the following.

Flux-Vector Splitting Schemes

One class of the flux-vector splitting schemes decomposes the vector of the
convective fluxes into two parts according to the sign of certain characteristic
variables, which are in general similar to but not identical with the eigenvalues
of the convective flux Jacobian. The two parts of the flux vector are then discre-
tised by upwind biased differences. The very first flux-vector splitting schemes
of this type were developed in the beginning of the 1980’s by Steger and Warm-
ing [65]) and by Van Leer [66], respectively. A second class of flux-vector splitting
schemes decompose the flux vector into a convective and a pressure (an acoustic)
part. This idea is utilised by schcmes like AUSM (Advection Upstream Split-
ting Method) of Liou et al. [67], [68], or the CUSP scheme ( Convective Upwind
Split Pressure) of Jameson [69], [70], respectively. Further similar approaches
are the Low-Diffusion Fluz-Splitting Scheme (LDFSS) introduced by Edwards
{71], or the Mach number-based Advection Pressure Splitting (MAPS) scheme
of Rossow [72], [73]. The second group of flux-vector splitting schemes gained
recently larger popularity particularly because of their improved resolution of
shear layers, but only a moderate computational effort. An advantage of the
flux-vector splitting schemes is also that they can be quite easily extended to
real gas flows, as opposed to flux-difference splitting or TVD schemes. We shall
return to real gas simulations further below.
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Flux-Difference Splitting Schemes

The second group - flux-difference splitting schemes - is based on the solution
of the locally one-dimensional Euler equations for discontinuous states at an
interface. This corresponds to the Riemann (shock tube) problem. The values
on either side of the interface are generally termed as the left and right state.
The idea to solve the Riemann problem at the interface between two control vol-
umes was [irst introduced by Godunov {74] back in 1959. In order to reduce the
numerical effort required for an exact solution of the Riemann problem, epproz-
imate Riemann solvers were developed, e.g., by Osher et al. [75] and Roe {76].
Roe’s solver is often used today because of its excellent resolution of boundary
layers and a crisp representation of shocks. It can be easily implemented on
structured as well as on unstructured grids [77].

TVD Schemes

The idea of TVD schemes was first introduced by Harten {78] in 1983. The
TVD schemes are based on a concept aimed at preventing the generation of
new extrema in the flow solution. The principal conditions for a TVD scheme
are that maxima must be non-increasing, minima non-decreasing, and no new
local extrema may be created. Such a scheme is called monotonicity preserving.
Thus, a discretisation methodology with TVD properties allows it to resolve a
shock wave without any spurious oscillations of the solution. The TVD schemes
are in general implemented as an average of the convective fluxes combined with
an additional dissipation term. The dissipation term can either depend on the
sign of the characteristic speeds or not. In the first case, we speak of an upwind
TVD scheme [79], in the second case of a symmetric TVD scheme [80]. The ex-
perience shows that the upwind TVD scheme should be preferred since it offers
a better shock and boundary layer resolution than the symmetric TVD scheme.
The disadvantage of the TVD schemes is that they cannot be easily extended
to higher than second-order spatial accuracy. This limitation can be overcome
using the ENO (Essentially Non-Oscillatory) discretisation schemes [81]-[86].

Fluctuation-Splitting Schemes

The last group — the fluctuation-splitting schemes — provides for true multidi-
mensional upwinding. The aim is to resolve accurately also those flow features
which are not, aligned with the grid. This is a significant advantage over all above
upwind schemes, which split the equations according only to the orientation of
the grid cells. Within the fluctuation-splitting methodology, the flow variables
are associated with the grid nodes. Intermediate residuals are computed as flux
balances over the grid cells, which consists of triangles in 2D and of tetrahedra
in 3D. The cell-based residuals are then distributed in an upwind-biased man-
ner to the nodes. After that, the solution is updated using the nodal values. In
the case of systems of equations (Euler or Navier-Stokes), the cell-based resid-
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uals have to be decomposed into scalar waves. Since the decomposition is not
unique in 2D and in 3D, several approaches were developed in the past. The
variety reaches from the wave model of Roe [87], [88] over the algebraic scheme
of Sidilkover [89] to the most advanced characteristic decomposition method
[90]-[93]. Despite the above mentioned advantage over the dimensionally split
Riemann, TVD, etc. solvers, the fluctuation-splitting are so far used only in re-
search codes. This can be attributed to the complexity and the high numerical
effort, as well as to convergence problems.

Central versus Upwind Schemes

You may now ask, what are the benefits and the drawbacks of the individual spa-
tial discretisation methods. Generally speaking, central schemes require lower
numerical effort, and hence less CPU time per evaluation, compared to upwind
schemes. On the other hand, upwind schemes are able to capture discontinu-
ities much more accurately than central schemes. Furthermore, because of their
lower numerical diffusion, the upwind schemes can resolve boundary layers us-
ing less grid points. Particularly, Roe’s flux-difference splitting scheme allows a
very accurate computation of boundary layers. The negative side of the upwind
schemes emerges for second- or higher-order spatial accuracy. The problem is
that the so-called limiter functions (or simply limiters) have to be employed
in order to prevent the generation of spurious oscillations near strong discon-
tinuities. Limiters are known to stall the convergence of an iteration scheme,
because of accidental switching in smooth flow regions. A remedy was suggested
by Venkatakrishnan [94]-[96], which works satisfactorily for most practical cases.
But, small wiggles in the solution must be taken into account. Another disad-
vantage of the limiter functions is that they require high computational effort,
particularly on unstructured grids.

Upwind Schemes for Real Gas Flows

With respect to real gas simulations, and in particular to chemically reactiug
flows, several extensions of the upwind discretisation schemes were presented.
For the case of fluids in thermodynamic and chemical equilibrium, modifications
of the Van Leer flux-vector splitting [66] and of the Roe approximate Riemann
solver [76] were described in [97]-[99]. Formulations of the both upwind methods
for the more complex case of flows with non-equilibrium chemistry and thermo-
dynamics were provided in [100}-{105] and in the references cited therein. In
particular, the articles [99], [103] and [104], respectively, give a good overview
of the methodologies employed for the upwind discretisation schemes. Recently,
a summary of the governing equations together with Jacobian and transforma-
tion matrices, which may be required by an upwind scheme, was presented in
{106] for chemically reacting flows.
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3.2 Temporal Discretisation

As already mentioned at the beginning of this chapter, the prevailing number of
numerical schemes for the solution of the Euler and the Navier-Stokes equations
applies the method of lines, i.e., a separate discretisation in space and in time.
This approach offers the largest flexibility, since different levels of approximation
can be easily selected for the convective and the viscous fluxes, as well as for the
time integration — just as required by the problem solved. Therefore, we shall
follow this methodology here. For the discussion of other methods, where time
and space discretisation is coupled, the reader is referred to [41].

When the method of lines is applied to the governing equations (2.19), it
leads, written down for each control volume, to a system of coupled ordinary
differential equations in time

dQMW) 4
———=-k (3.3)

For clarity, we omitted any cell indices. In Eq. (3.3), 2 denotes volume of
the control volume and R stands for the complete spatial (finite volume) dis-
cretisation including the source term — the so-called residual. The residual is a
non-linear function of the conservative variables W. Finally, M represents what
is termed the mass matriz. For a cell-vertex scheme, it relates the average value
of W in the control volume to the point values at the associated interior node
and the neighbouring nodes [107], [108]. In the case of a cell-centred scheme, the
mass matrix can be substituted by an identity matrix, without compromising
the temporal accuracy of the scheme. The same holds for a cell-vertex scheme
applied on a uniform grid, since then the nodes coincide with the centroids of
the control volumes. The mass matrix is only a function of the grid and couples
the system of differential equations (3.3). For steady-state cases, where time
accuracy is not a concern, the mass matrix can be “lumped”, i.e., replaced by
the identity matrix. In this way, the expensive inversion of M can be avoided
and the system (3.3) is decoupled. In this respect, it is important to realise that
at the steady-state, the solution accuracy is determined solely by the approxi-
mation order of the residual. Thus, the mass matrix becomes only important
for cell-vertex schemes in unsteady calculations.

If we assume a static grid, we may take the volume  and the mass matrix
outside the time derivative. Then, we can approximate the time derivative by
the following non-linear scheme [41]

M 1-8 5, wQM

- B = .
— AW =R __E Ry — AW} 34
At W 1+wR 1+w +(1+UJ)At (3.4)

with .
AW? = WnrHl —pyn (3.5)

being the solution correction. The superscripts n and (n + 1) denote the time
levels (n means the current one). Furthermore, At represents the time step.
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The scheme in Eq. (3.4) is 2nd-order accurate in time if the condition

1
B=w+ 5 (3.6)
is fulfilled, otherwise the time accuracy is reduced to 1lst-order. Depending on
the settings of the parameters 8 and w, we can obtain either ezplicit (8 = 0) or
implicit time-stepping schemes. We shall discuss this two main classes briefly
in the following paragraphs, and in more detail later in Chapter 6.

3.2.1 Explicit Schemes

A basic explicit time-integration scheme is obtained by setting 8 =0andw =0
in Eq. (3.4). In this case, the time derivative is approximated by a forward
difference and the residual is evaluated at the current time level only (based on
known flow quantities), i.e.,

AW = —%f R™, (3.7)

where the mass matrix was lumped. This represents a single-stage scheme,
because a new solution W”*! results from only one evaluation of the residual.
The scheme Eq. (3.7) is of no practical value, since it is stable only if combined
with a first-order upwind spatial discretisation.

Very popular are multistage time-stepping schemes (Runge-Kutta schemes),
where the solution is advanced in several stages [61] and the residual is evaluated
at intermediate states. Coeflicients are used to weight the residual at each stage.
The coeflicients can be optimised in order to expand the stability region and
to improve the damping properties of the scheme and hence its convergence
and robustness [61], [109], [110]. Also, depending on the stage coefficients and
the number of stages, a multistage scheme can be extended to 2nd- or higher-
order accuracy in time. Special Runge-Kutta schemes were also designed to
preserve the properties of the TVD and ENO spatial discretisation methods,
while maximising the allowable time step [111].

Explicit multistage time-stepping schemes can be employed in connection
with any spatial discretisation scheme. They can be easily implemented on
serial, vector, as well as on parallel computers. Explicit schemes are numerically
cheap, and they require only a small amount of computer memory. On the
other hand, the maximum permissible time step is severely restricted because
of stability limitations. Particularly for viscous flows and highly stretched grid
cells, the convergence to steady state slows down considerably. Furthermore, in
the case of stiff equation systems (e.g., real gas simulation, turbulence models),
or stiff source terms, it can take extremely long to achieve the steady state. Or
even worse, an explicit scheme may become unstable or lead to spurious steady
solutions [112].

If we are interested in steady-state solutions only, we can select from (or
combine) several convergence acceleration methodologies. The first, and very
common, technique is local time-stepping. The idea is to advance the solution
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in each control volume with the maximum permissible time step. As a result,
the convergence to the steady state is considerably accelerated. However, the
transient solutions are no longer temporally accurate. Another approach is the
so-called characteristic time-stepping. Here, not only locally varying time steps
are used, but also each equation (continuity, momentum and energy equations)
is integrated with its own time step. The potential of this concept was presented
for 2-D Euler equations in Ref. [113]. A further acceleration technique, which is
similar to the characteristic time-stepping is Jacob: preconditioning [114], {115],
(116]. It is basically a point-implicit Jacobi relaxation, which is carried out at
each stage of a Runge-Kutta scheme. Jacobi preconditioning can be seen as a
time-stepping in which all wave components (eigenvalues of the flux Jacobian)
are scaled to have the same effective speed. It also adds an implicit component
to the basic explicit scheme.

An other very popular acceleration method is aimed at increasing the max-
imum possible time step by introducing a certain amount of implicitness in the
explicit scheme. It is termed implicit residual smoothing or residual averaging
[117), [118]. On a structured grid, the method requires the solution of a tridiag-
onal matrix for each conservative variable. In the case of unstructured grids, the
matrix is usually inverted by means of Jacobi iteration. The standard implicit
residual smoothing allows an increase of the time step by factor of 2-3. Several
other implicit residual smoothing techniques were developed. For example the
upwind implicit residual smoothing methodology [119}, which was designed to be
employed together with an upwind spatial discretisation. In comparison to the
standard technique, it allows for significantly larger time steps and it also im-
proves the robustness of the time-stepping process [120]. One further method is
the implicit-ezplicit residual smoothing [121], [122], which is intended to improve
the damping properties of the time discretisation at larger time steps.

The last and probably the most important convergence acceleration tech-
nique, which should be mentioned here, is the multigrid method. It was devel-
oped in the 1960’s in Russia by Fedorenko {123] and Bakhvalov [124]. They
applied multigrid for the solution of elliptic boundary-value problems. The
methodology was further developed and promoted by Brandt (125}, [126]. The
idea of multigrid is based on the observation that iterative schemes usually
eliminate high-frequency errors in the solution (i.e., oscillations between the
grid nodes) very effectively. On the other hand, they perform quite poor in
reducing low-frequency (i.e., global) solution errors. Therefore, after advancing
the solution on a given grid, it is transferred to a coarser grid, where the low-
frequency errors become partly high-frequency ones and where they are again
effectively damped by an iterative solver. The procedure is repeated recursively
on a sequence of progressively coarser grids, where each multigrid level helps
to annihilate a certain bandwidth of error frequencies. After the coarsest grid
is reached, the solution corrections are successively collected and interpolated
back to the initial fine grid, where the solution is then updated. This com-
plete multigrid cycle is repeated until the solution changes less than a given
threshold. In order to accelerate the convergence even further, it is possible
to start the multigrid process on a coarse grid, carry out a number of cycles
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Figure 3.7: Convergence history for inviscid transonic flow past NACA 0012
airfoil; R = density residual, ¢;, = lift coefficient.

and then to transfer the solution to a finer grid, where the multigrid cycles are
performed again. The procedure is then successively repeated until the finest
grid is reached. This methodology is known as Full Multigrid (FMG) [126].

As already mentioned, the multigrid method was originally developed for
the solution of elliptic boundary-value problems (Poisson equation), where it is
very efficient. Jameson proposed first to employ multigrid also for the solution
of the Euler equations [117], [127]. The approach was based on the so-called
Full Approzimation Storage (FAS) scheme [126], where multigrid is directly
applied to the non-linear governing equations. Nowadays, multigrid represents a
standard acceleration technique for the solution of the Navier-Stokes equations.
Examples of implementations can be found in Refs. [128]-[133]} for structured
grids, and in Refs. [134]-[143] for unstructured grids. Although not as fast
as in the case of elliptic differential equations, it was often demonstrated that
multigrid can accelerate the solution of the Euler or the Navier-Stokes equations
by a factor between 5 and 10. An example for transonic flow is shown in Fig.
3.7. Recent research also revealed that faster convergence can be achieved if
the governing equations are decomposed into hyperbolic and elliptic parts [144].
We shall return to the multigrid methodology again in Section 9.4.
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3.2.2 Implicit Schemes

A family of implicit time integration schemes is obtained from Eq. (3.4) by
setting 8 # 0. Very popular for the simulation of unsteady flows is the 3-point
implicit backward-difference scheme with 8 = 1 and w = 1/2, which is 2nd-order
accurate in time. In this case, the scheme is mostly employed within the so-
called dual time-stepping approach [145]-[147], [107], [108], where a steady-state
problem is solved in pseudo-time at each physical time step.

For the solution of stationary flow problems, a scheme with w = 0 is more
suitable, since it requires less computer storage. Herewith, if we linearise the
residual B**! in Eq. (3.4) about the current time level, we obtain the scheme

9 OR\ .. o
(ME +ﬂa—ﬁ> AW™ = —R". (3.8)

The term OR/OW is denoted as the flux Jacobian. It constitutes a large sparse
matrix. The expression enclosed in parenthesis on the left-hand side of Eq.
(3.8) is also referred to as the implicit operator. As already discussed above,
the mass matrix M can be replaced by the identity matrix, without influencing
the steady state solution. The parameter § in Eq. (3.8) is generally set to 1,
which results in a 1st-order accurate temporal discretisation. A 2nd-order time
accurate scheme is obtained for § = 1/2. However, this is not advised since the
scheme with 8 = 1 is much more robust, and the time accuracy plays no role
for steady problems anyway.

The principal advantage of implicit schemes as compared to explicit ones is
that significantly larger time steps can be used, without hampering the stability
of the time integration process. In fact, for At — oo the scheme (3.8) trans-
forms into standard Newton’s method, which allows for quadratic convergence.
However, the condition for quadratic convergence is that the flux Jacobian con-
tains the complete linearisation of the residual. Another important advantage
of implicit schemes is their superior robustness and convergence speed in the
case of stiff equation systems and/or source terms, which are often encountered
in real gas simulations, turbulence modelling, or in the case of highly stretched
grids (high Reynolds number flows). On the other hand, the faster (in terms of
time steps or iterations) and the more robust an implicit scheme is, the higher
is usually the computational effort per time step or iteration. Therefore, an
explicit scheme accelerated by multigrid can be equally or even more efficient.
Furthermore, implicit schemes are significantly more difficult to vectorise or to
parallelise than their explicit counterparts.

The implicit scheme (3.8), written for each grid point, represents a large
system of linear equations, which has to be solved for the update AW™ at each
time step At. This task can be accomplished using either a direct or an iterative
method.

The direct methods are based on the exact inversion of the left-hand side
of Eq. (3.8) using either the Gaussian elimination or some direct sparse ma-
trix method [148], {149]. Although quadratic convergence was demonstrated
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on structured [150]-[153] as well as on unstructured grids [154], direct methods
are not an option for 3-D problems because they require an excessively high
computational effort and a huge amount of computer memory.

Thus, the only practical method for larger grids or 3-D problems are itera-
tive methods. Here, the linear system is solved for AW™ at each time step using
some iterative matrix inversion methodology. In order to reduce the memory
requirements and also to increase the diagonal dominance, the flux Jacobian
aé/ AW is mostly based on linearisation of a 1st-order accurate spatial discreti-
sation of the right-hand side. The two main consequences of this approximation
are that the quadratic convergence of Newton’s scheme cannot be reached and
that the maximum time step becomes limited. On the other hand, the numerical
effort of an iteration step is significantly reduced, which leads to a numerically
highly efficient scheme.

In the case of structured grids, iterative methods like the Alternating Direc-
tion Implicit (ADI) scheme [155]-[158], the (line) Jacobi or the Gauss-Seidel re-
laxation scheme [159]-[163], and particularly the Lower-Upper Symmetric Gauss-
Seidel (LU-SGS; also referenced to as LU-SSOR — Lower-Upper Symmetric Suc-
cessive Overrelaxation) scheme [164]-[168] are mainly employed. All these meth-
ods are based on splitting of the implicit operator into a sum or product of parts,
which can be each more easily inverted. Because of the associated factorisation
error and also the simplification of the flux Jacobian, it does not pay off to solve
the linear system very accurately. In fact, only one iteration is carried out at
each time step of the ADI and the LU-SGS method.

Implicit iterative methods for unstructured grids are in the most cases based
on the Gauss-Seidel relaxation scheme [169]-[172]. In order to improve the
convergence, it is possible to use the red-black Gauss-Seidel methodology. Its
extension to unstructured grids was demonstrated in [173]-[175]. A particu-
larly interesting possibility is also offered by an implementation of the LU-SGS
scheme on unstructured grids [18], [176], [177], because of its very low memory
requirements and numerical effort.

Because of the success of the line-implicit methods on structured grids, a
few attempts were made to adopt this methodology on unstructured grids [178],
{179]. The approach was to construct continuous lines such that each grid point
or each grid cell (in the case of a cell-centred scheme) is visited only once - a
so-called Hamiltonian tour [180}. The lines were oriented primarily in coordi-
nate directions, but they were folded at the boundaries and where necessary
(therefore they were nicknamed “snakes”). A tri-diagonal solver was then em-
ployed to invert the left-hand side of Eq. (3.8). Later on, it was recognised that
folding the lines can slow down the convergence. To overcome this, each line
was broken into multiple linelets [181]. However, the performance on a vector
computer was rather poor. The idea of linelets was also employed to improve
the convergence of an explicit scheme on highly stretched viscous unstructured
grids using an implicit solver in the direction across the boundary layer [142].

More sophisticated iterative techniques, which treat the linear equation sys-
tem in a more global way, are the so-called Krylov subspace methods. Their
development was triggered by the introduction of an efficient iterative scheme
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for solving large, sparse linear systems — namely the conjugate gradient method
[182] by Hestenes and Stiefel. The original conjugate gradient method is re-
stricted to Hermitian positive definite matrices only, but for an n x n matrix it
converges in at most n iterations. Since then, a variety of Krylov subspace meth-
ods was proposed for the solution of arbitrary non-singular matrices, as they
occur in CFD applications. For example, there are methods like CGS (Conju-
gate Gradient Squared) [183], Bi-CGSTAB (Bi-Conjugate Gradient Stabilised)
(184], or TFQMR ( Transpose-Free Quasi-Minimum Residual) [183].

However, the most widely employed method is GMRES (Generalised Min:-
mal Residual) developed by Saad and Schultz [186]. If we rewrite the implicit
scheme (Eq. (3.8)) as

JAW™ = —R", (3.9)

then J represents a large, sparse, and non-symmetric matrix (the left-hand side).
Starting from an initial guess AWy, the GMRES(m) method seeks a solution
AW™ in the form AW™ = AW + 4., where ¥,,, belongs to the Krylov subspace

Kn = span{Fo, jFo, J? 7o, ** s jm—l,,—.*o}
o . (3.10)
7o = J AW + R,

such that the residual ||J AW”™ + R"|| becomes a minimum. The parameter m
specifies the dimension of the Krylov subspace, or in other words the number
of search directions (Ji7,). Since all directions have to be stored, m is usu-
ally chosen between 10 and 40, the higher number being necessary for poorly
conditioned matrices (which arise in the simulation of turbulent flows, real gas,
etc.). GMRES has to be restarted, if no convergence is achieved within m sub-
iterations. The GMRES method requires significantly more memory than, e.g.,
Bi-CGSTAB or TFQMR, but it is more robust, smoothly converging and usu-
ally also faster. A very detailed comparison of the various methodologies can
be found in {187].

Nevertheless, as with other conjugate gradient methods, preconditioning is
absolutely essential for CFD problems. Here, we solve

(PLJ)AW"™ = =P, B* ,or JPg(P7'AW™) = —R" (3.11)
R

instead of the system in Eq. (3.9). The matrices P, and Pr denote left and
right preconditioners, respectively. The preconditioner should approximate J~*
as close as possible, in order to cluster the eigenvalues near unity. On the
other hand, it should be of course easy to invert. One particularly efficient
preconditioner is the Incomplete Lower Upper factorisation method [188] with
zero fill-in (ILLU(0)). For the discussion of different preconditioning techniques
in connection with GMRES the reader is referred to [94], [189]-[192].

Since the GMRES method requires a considerable amount of computer mem-
ory for storing the search directions and possibly also the preconditioning ma-
trix, it is a good idea to circumvent an explicit formation and storage of the flux
Jacobian OR/8W . This is offered by the so-called matriz-free approach. The



52 Chapter 3

idea is based on the observation that GMRES (and some other Krylov subspace
methods) only employs matrix vector products of the form

which can be simply approximated by finite-differences as

R(W + ¢ AW™) — R(W)
€

OF \pm =
ow

: (3.12)

thus requiring only residual evaluations. The parameter ¢ has to be chosen
with some care, in order to minimise the numerical error (see, e.g., [193] or
[194]). Another, and even more important, advantage of the matrix-free ap-
proach is that (numerically) accurate linearisation of a high-order residual £»
can easily be utilised in the implicit scheme. Hence, the quadratic convergence
of Newton’s scheme can be achieved at moderate costs. In this case we speak of
Newton-Krylov approach [194]-[198], [107]. Practical experience indicates that
from all Krylov subspace methods, GMRES is best suited for the matrix-free im-
plementation [199]. An interesting possibility is to utilise the LU-SGS scheme
as a preconditioner for the matrix-free GMRES method. Since the LU-SGS
scheme does not also require an explicit storage of the flux Jacobian, the mem-
ory requirements can be reduced even further. The computational efficiency of
this approach was recently demonstrated for 3-D inviscid and laminar flows on
unstructured grids [200].

The convergence of an implicit scheme can also be enhanced by using multi-
grid. There are basically two possible ways. Firstly, we can employ multigrid
inside an implicit scheme ~ as a solver for the linear equation system (3.9)
arising at each time step, or as a preconditioner for one of the conjugate gra-
dient methods [201], [202]. Secondly, the implicit scheme itself can serve as a
smoother within the FAS multigrid method, which is applied directly to the
governing equations [203]-[206], [175]. Some investigations show that at least
for purely aerodynamic problems, rather “simple” implicit schemes (like Gauss-
Seidel) combined with multigrid result in computationally more efficient solvers
(in terms of CPU-time) than, e.g., GMRES [175], [195].
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3.3 Turbulence Modelling

The solution of the governing equations (2.19) does not raise any fundamental
difficulties in the case of inviscid or laminar flows. The simulation of turbulent,
flows, however, presents a significant problem. Despite the performance of mod-
ern supercomputers, a direct simulation of turbulence by the time-dependent
Navier-Stokes equations (2.19), called Direct Numerical Simulation (DNS), is
still possible only for rather simple flow cases at low Reynolds numbers (Re).
The restrictions of the DNS become quite obvious when recalling that the num-
ber of grid points needed for sufficient spatial resolution scales as Re®/* and the
CPU-time as Re®. This does not mean that DNS is completely useless. It is
an important tool for understanding the turbulent structures and the laminar-
turbulent transition. DNS also plays a vital role in the development and cali-
bration of new or improved turbulence models. However, in engineering appli-
cations, the effects of turbulence can be taken into account only approximately,
using models of various complexities.

The first level of approximation is reached for the Large-Eddy Simulation
(LES) approach. The development of LES is founded on the observation that the
small scales of turbulent motion posses a more universal character than the large
scales, which transport the turbulent energy. Thus, the idea is to resolve only
the large eddies accurately and to approximate the effects of the small scales by
relatively simple subgrid-scale models. Since LES requires significantly less grid
points than DNS; the investigation of turbulent flows at much higher Reynolds
numbers becomes feasible. But because LES is inherently three-dimensional
and unsteady, it remains computationally still very demanding. Thus, LES is
still far from becoming an engineering tool. However, LES is well suited for
detailed studies of complex flow physics including massively separated unsteady
flows, large scale mixing (e.g., fuel and oxidiser), aerodynamic noise, or for
the investigation of flow control strategies. LES is also very promising for more
accurate computations of flows in combustion chambers or engines, heat transfer
and of rotating flows. An overview of research activities in LES was recently
published in [207].

The next level of approximation is represented by the so-called Reynolds-
Averaged Navier-Stokes equations (RANS). This approach, which was presented
by Reynolds in 1895, is based on the decomposition of the flow variables into
mean and fluctuating parts followed by time or ensemble averaging [208] (see
also [209], [210]). In cases where the density is not constant, it is advisable
to apply the density (mass) weighted or Favre decomposition [211], [212] to
the velocity components. Otherwise, the averaged governing equations would
become considerably more complicated due to additional correlations involving
density fluctuations. It is common to assume that Morkovin’s hypothesis [213]
is valid, which states that the turbulence structure of boundary layers and wakes
is not notably influenced by density fluctuations for Mach numbers below 5.

By inserting the decomposed variables into the Navier-Stokes equations
(2.19) and averaging, we obtain formally the same equations for the mean vari-
ables with the exception of two additional terms. The tensor of the viscous
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stresses is extended by one term - the Reynolds-stress tensor [208]

Tij = —pvivy, (3.13)
where v;’, v} denote the density-weighted fluctuating parts of the velocity com-
ponents u,v,w; ~ and ~ stand for ensemble and density weighted averaging,
respectively. The Reynolds-stress tensor represents the transport of mean mo-
mentum due to turbulent fluctuations. Furthermore, the diffusive heat flux kVT
in the energy equation (cf. Eq. (2.8)) is enhanced by the so-called turbulent heat-
fluz vector [41]

FL = —phg" . (3.14)

Thus we can see that the solution of the Reynolds-averaged Navier-Stokes equa-
tions requires the modelling of the Reynolds stresses (3.13) and the turbulent
heat flux (3.14). The advantages of this approach are that considerably coarser
grids can be used compared to LES, and that stationary mean solution can be
assumed (at least for attached or moderately separated flows). Clearly, both
features significantly reduce the computational effort in comparison to LES or
even DNS. Therefore, the RANS approach is very popular in engineering appli-
cations. Of course, because of the averaging procedure, no detailed information
can be obtained about turbulent structures.

A large variety of turbulence models was devised to close the RANS equa-
tions and the research still continues. The models can be divided into first- and
second-order closures, respectively.

The most complex, but also the most flexible, are second-order closure mod-
els. The Reynolds-Stress Transport (RST) model, which was first proposed by
Rotta [214], solves modelled transport equations for the Reynolds-stress tensor.
The partial differential equations for the six stress components have to be closed
by one additional relation. Usually, an equation for the turbulent dissipation
rate is employed. The RST models are able to account for strong nonlocal and
history effects. Furthermore, they are able to capturc the influence of streamline
curvature or system rotation on the turbulent flow.

Closely related to the RST approach are the Algebraic Reynolds-Stress (ARS)
models. They can be viewed as a combination of lower level models and the
RST approach. The ARS models employ only two transport equations, mostly
for the turbulent kinetic energy and the dissipation rate. The components of
the Reynolds-stress tensor are related to the transport quantities by non-linear
algebraic equations [215]). The ARS approach is capable of predicting rotational
turbulent flows and secondary flows in channels with accuracy similar to the
RST models. Detailed overviews of the RST and ARS models can be found in
[216], [217).

Because of numerical problems with the RST and ARS models, which are
primarily caused by the stiffness of the RST and the non-linearity of the ARS
equations, first-order closures are more widely used in practice. In these mod-
els, the Reynolds stresses are expressed by means of a single scalar value, the
so-called turbulent eddy viscosity. This approach is based on the eddy viscosity
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hypothesis of Boussinesq [218], [219], which assumes a linear relationship be-
tween the turbulent shear stress and the mean strain rate, similar to laminar
flow. Herewith, the dynamic viscosity x in the viscous stress tensor (2.15) or
in the governing equations (2.19) is replaced by the sum of a laminar and a
turbulent component

K= pL+ pr. (3.15)

As described earlier, the laminar viscosity is calculated, for example, with the
aid of the Sutherland formula (2.30). In analogy, the turbulent heat-flux vector
(3.14) is modelled as

FL = —ky VT, (3.16)

where kr denotes the turbulent thermal conductivity coefficient. Hence, the
thermal conductivity coeflicient in Eq. (2.24) is evaluated as

k=kp+kr=c (PL:Z“L;TTT) . (3.17)

The turbulent Prandtl number is in general assumed to be constant in the flow
field (Prr = 0.9 for air). The coefficient of the turbulent eddy viscosity pur has
to be determined with the aid of a turbulence model. The limitations of the
eddy viscosity approach are given by the assumption of equilibrium between
the turbulence and the mean strain field, and by the independence on system
rotation. The accuracy of the eddy-viscosity based models can be significantly
improved either by using correction terms {220], [221], or by employing non-
linear eddy viscosity approaches [222]-{224].

The first-order closures can be categorised into zero-, one-, and multiple-
equation models, corresponding to the number of transport equations they
utilise. Within the zero-equation or, as they are also denoted, algebraic models,
the turbulent eddy viscosity is calculated from empirical relations, which employ
only local mean flow variables. Therefore, no history effects can be simulated,
whicli prevents a reliable prediction of separated flows. The most popular al-
gebraic model, which is still in use for some applications, was developed by
Baldwin and Lomax [225].

History effects are taken into account by the one- and two-equation mod-
els, where the convection and the diffusion of turbulence is modelled by trans-
port equations. The most widely used one-equation turbulence model is due to
Spalart and Allmaras {226], which is based on an eddy-viscosity like variable.
The model is numerically very stable and easy to implement on structured as
well as unstructured grids.

In the case of the two-equation models, practically all approaches employ
the transport cquation for the turbulent kinetic energy. Among a large number
of two-equation models, the K —¢ model of Launder and Spalding [227] and the
K —w model of Wilcox {228] are most often used in engineering applications.
They offer a reasonable compromise between computational effort and accuracy.
An interesting comparison between the Spalart-Allmaras model and various two-
equation turbulence models was recently published in [229].
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3.4 Initial and Boundary Conditions

Regardless of the numerical methodology chosen to solve the governing equa-
tions (2.19), we have to specify suitable initial and boundary conditions. The
initial conditions determine the state of the fluid at the time ¢ = 0, or at the
first step of an iterative scheme. Clearly, the better (the closer to the solution)
the initial guess will be, the faster the final solution will be obtained. Moreover,
the probability of breakdown of the numerical solution process will be reduced
correspondingly. Therefore, it is important that the initial solution satisfies at
least the governing equations and the additional thermodynamic relations. A
common practice in external aerodynamics consists of prescribing freestream
values of pressure, density and velocity components (given as Mach number,
angle of attack and sideslip angle) in the whole flow field. In turbomachinery,
it is important to specify the flow directions in the complete domain to one’s
best knowledge. The same holds also for the pressure field. It is therefore quite
worthwhile to employ lower-order approximations (like potential methods) to
generate a physically meaningful initial guess.

Any numerical flow simulation considers only a certain part of the physical
domain. The truncation of the computational domain creates artificial bound-
aries, where values of the physical quantities have to be specified. Examples
are the farfield boundary in external aerodynamics; the inlet, outlet and the
periodic boundary in the case of internal flows; and finally the symmetry plane.
The main problem when constructing such boundary conditions is of course
that the solution on the truncated domain should stay as close as possible to a
solution which would be obtained for the whole physical domain. In the case
of the farfield, inlet and outlet boundaries, characteristic boundary conditions
[230]-[232] are often used in order to suppress the generation of non-physical
disturbances in the flow field. But despite this, the farfield or the inlet and
outlet boundaries may still not be placed too close to the object under consid-
eration (wing, blade, etc.). Otherwise, the accuracy of the solution would be
reduced. For external flows, when a lifting body is considered, it is possible to
correct the flow variables at the farfield boundary using a single vortex centred
at the airfoil or the wing [232]-[234]. In this way, the distance between the body
and the farfield boundary can be significantly reduced without hampering the
solution accuracy, or improving the accuracy for a given outer boundary posi-
tion [157], [234], [235]. For internal flow problems, formulations for the inlet
and outlet boundaries based on linearised Euler equations and Fourier series
expansion of the perturbations were developed [236]-{238]. These formulations
allow for a very close placement of the inlet and outlet boundaries to a blade
without influencing the solution.

A different type of boundary condition is found when the surface of a body is
exposed to the fluid. In the case of inviscid flow governed by the Euler equations
(2.45), the appropriate boundary condition is to require the flow to be tangential
to the surface, i.e.,

v-1=0 at the surface.
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By contrast, for the Navier-Stokes equations no relative velocity between the
surface and the fluid immediately at the surface is assumed — the so-called noslip
boundary condition

u=v=w=0 at the surface.

The treatment of walls becomes more involved in cases, where, e.g., a specified
wall temperature distribution has to be met, or when the heat radiation has to
be taken into account (see, e.g., [239], [240]).

Furthermore, boundary conditions have to be defined for surfaces where
different fluids (e.g., air and water) meet together [241]-{244]. But apart from
the physical boundary conditions and those imposed by truncating the flow
domain, there can be boundaries generated by the numerical solution method
itself. These are for example coordinate cuts and block or zonal boundaries
[19]-[25].

The correct implementation of boundary condition is the crucial point of
every flow solver. Not only the accuracy of the solution depends strongly on a
proper physical and numerical treatment of boundaries, but also the robustuess
and the convergence speed are considerably influenced. More details of various
important boundary conditions are presented in Chapter 8.
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Chapter 4

Spatial Discretisation:
Structured Finite Volume
Schemes

As we already mentioned in the introduction to Chapter 3, the majority of
numerical schemes for the solution of the Euler- and the Navier-Stokes equations
employ the method of lines, i.e., a separate discretisation in space and time. By
consequence, it allows us to use numerical approximations of different accuracy
for the spatial and temporal derivatives, as it may be required by the problem to
be solved. Thus, we gain a lot of flexibility by this approach. For this reason, we
shall follow the method of lines here. A detailed discussion of numerical methods
based on coupled space and time discretisation, like the Lax-Wendroff family of
schemes (e.g., explicit MacCormack predictor-corrector scheme, implicit Lerat’s
scheme, etc.), may be found, c.g., in Ref. [1].

A general, structured, finite volume scheme is naturally based on the conser-
vation laws, which are expressed by the Navier-Stokes (2.19) or the Euler (2.45)
equations. In a pre-processing step, the physical space is subdivided into a num-
ber of grid cells — quadrilaterals in 2D, hexahedra in 3D. The grid generation is
done in such a way that:

e tlie domain is completely covered by the grid,
o there is no free space left between the grid cells,
e the grid cells do not overlap each other.

The resulting structured grid is uniquely described by the coordinates z,y, z of
the grid points (corners of the grid cells) and indices in the computational space
(see Fig. 3.2), let us call them ¢,j, k. Based on the grid, control volumes are
defined in order to evaluate the integrals of the convective and viscous fluxes
as well as of the source term. For simplicity, let us suppose that a particular
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control volume does not change in time (otherwise please refer to Appendix
A.4). Then, the time derivative of the conservative variables W can be cast in

the form .
0 - oW
5;/9 WdQ =Q e
Herewith, Eq. (2.19) becomes
oW 1 S o -
== L~ F,)dS — . 4.1
2 Q[ BQ(F F,)dSs /QQdQ] (4.1)

The surface integral on the right-hand side of Equation (4.1) is approximated by
a sum of the fluxes crossing the faces of the control volume. This approximation
is called spatial discretisation. It is usually supposed that the flux is constant
along the individual face and that it is evaluated at the midpoint of the face.
The source term is generally assumed to be constant inside the control volume.
However, in cases where the source term becomes dominant, it is advisable to
evaluate (:5 as the weighted sum of values from the neighbouring control volumes
(see [2] and the references cited therein). If we consider a particular volume
Q1,7,k, as displayed in Fig. 4.1b, we obtain from Eq. (4.1)

dW[y_],K - 1

dt Qrk

Nyg
Y (o= F)m ASm = (QQ)1,0k | - (4.2)

m=1

In the above expression, the indices in capital letters (I, J, K) reference the
control volume, since in general it does not necessarily coincide with the grid,
as we shall see later. Furthermore, Ng denotes the number of control volume
faces (which is Ng = 4 in 2D and Np = 6 in 3D). The variable AS,, stands
for the area of the face m. The term in square brackets on the right-hand side
of Eq. (4.2) is also generally termed the residual. It is denoted here by é1,1,1(.
Hence, we can abbreviate Eq. (4.2) as

dW] I K 1 o
= — . 4.
T TP Rk (4.3)

When we write down the relationship in Equation (4.3) for all control volumes
Q1,5,K, we obtain a system of ordinary differential equations of first order. The
equations are hyperbolic in time, that means we have to advance them in time
starting from a known initial solution. We have also to provide suitable bound-
ary conditions for the viscous and the inviscid fluxes, as they are described in
Chapter 8.

When numerically solving the system of discretised governing equations
(4.3), the first question is how to define the control volumes and where to locate
the flow variables with respect to the computational grid. In the framework of
structured finite volume schemes, three basic strategies are available:

e (ell-centred scheme — control volumes arc identical with the grid cells and
the flow variables are associated with their centroids (Fig. 4.3).
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(a)

(b)

Figure 4.1: Control volume () and associated face unit normal vectors (7,,)
for a structured grid in: (a) two dimensions, (b) three dimensions. In case
(a), the unit normal vectors 72 and 7y arc associated with the i-coordinate
(direction) in computational space, 7, and 73 with the j-coordinate. In case
(b), the unit normal vectors 77} and 77, are associated with the i-coordinate, 7i;
and 7ig with the j-coordinate, and i3, 714 with the k-coordinate, respectively.
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e (ell-vertex scheme with overlapping control volumes - flow quantities are
assigned to the grid points (vertices, nodes) and the control volumes are
defined as the union of all grid cells having the respective vertex in common
(4 cells in 2D, 8 cells in 3D — see Fig. 4.4). This means that the control
volumes associated with two neighbouring grid points overlap each other.

e Cell-vertex scheme with dual control volumes - flow variables are again
stored at the grid vertices, but the control volumes are now created by con-
necting the midpoints of the cells having the respective vertex in common
(Fig. 4.5). In this way, the grid points are surrounded by their correspond-
ing control volumes which do not overlap.

All three methodologies will be outlined in Section 4.2, which is devoted to
general concepts of discretisation schemes. At this point, it should be mentioned
that the cell-vertex scheme with overlapping control volumes is only seldom used
today. Nevertheless, it is included here for completeness,

It is important to notice that in our case all flow variables, i.e., the conser-
vative variables (p, pu, pv, pw and pE) and the dependent variables (p, T, ¢,
etc.), are associated with the same location — with the cell centre or with the
grid node. This approach is known as the co-located grid scheme. By contrast,
many older pressure-based methods (cf. Section 3.1) use the so-called staggered
grid scheme, where the pressure and the velocity components are stored at dif-
ferent locations in order to suppress oscillations of the solution which arise from
central differencing.

A wide range of choices exists with respect. to the evaluation of the convective
fluxes. The basic problem is that we have to know their values at all Vg faces
of a control volume, but the flow variables are not directly available there. This
neans, we have to interpolate either the fluxes or the flow variables to the face
of the control volume. This can be in principle done in two ways:

e by arithmetic averaging like in central discretisation schemnes;

e by some biased interpolation like in upwind discretisation schemes, which
take care of the characteristics of the flow equations.

Besides the description, we shall treat aspects such as accuracy, range of appli-
cability and numerical effort of the most widely used discretisation schemes for
the convective fluxes in Section 4.3.

A commonly applied methodology for the evaluation of the viscous fluxes
at a face of the control volume is based on arithmetic averaging of the flow
quantities. More involved is the calculation of the velocity and the temperature
gradients in Equations (2.15) and (2.24). We shall present the whole procedure
in Section 4.4.
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4.1 Geometrical Quantities of a Control Volume

Before we turn our attention to the discretisation methodologies, it is instructive
to consider the calculation of geometrical quantities of the control volume Q; ;
- its volume, the unit normal vector 7i,, (defined as outward facing) and the
area AS,, of a face m. The normal vector and the face area are also denoted as
the metrics of the control volume. In the following, we shall consider the 2-D
and the 3-D case separately for a general quadrilateral or hexahedral control
volume, respectively.

4.1.1 Two-Dimensional Case

In general, we consider flow in a plane as a special case of a 3-D problem, where
the solution is symmetric with respect to one coordinate direction (e.g., to the
z-direction). Because of the symmetry and in order to obtain correct physical
units for volume, pressure, etc., we set the depth of all grid cells and control
volumes equal to a constant value b. The volume of a control volume results
then in two dimensions from the product of its area with the depth b. The area
of a quadrilateral can be exactly calculated by the formula of Gauss. Hence, for
a control volume like that displayed in Fig. 4.1a, we get after some algebra

Qpr= g[(zl —z3)(y2 — ya) + (x4 — 22)(y1 — y3)] - (4.4)

In the above, we have assumed that the control volume is located in the z-
y-plane and that the z-coordinate is the symmetry axis. Since the depth b
is arbitrary, we may set b = 1 for convenience. In two dimensions, the faces
of a control volume are given by straight lines and therefore the unit normal
vector is constant along them. When we integrate the fluxes according to the
approximation of Eq. (4.2), we have to evaluate the product of the area of a
face AS and the corresponding unit normal vector 7 — the face vector g

S = [SI”"] = i AS, . (4.5)

Sy,m

Because of the symmetry, the z-component of the face vectors (and the unit
normal vector) is zero. It is therefore dropped from the expressions. The face
vectors of the control volume from Fig. 4.1a are given by the relations

S =b y2 =1 |
1 121—:1)-2_

§:b y:;—yz'
olme (46)
4.6
*'__b[y‘i—yz1
3 =
T3 — Ty |
_'4:b|:yl_y4
2?4—1‘1_
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The unit normal vector at face m is then obtained from Eq. (4.5) as

Mo = : (4.7)

AS'm - | Sm |: \/ ;:2:,171 + Sg,m .

In practice, usually only the face vectors S, and S, are computed and stored
for each control volume Qj ;. The face vectors 5'2 as well as 5_"3 are taken (with
reversed signs to become outward facing) from the appropriate neighbouring
control volumes in order to save memory and reduce the number of operations.

with

4.1.2 Three-Dimensional Case

As opposed to the previous 2-D case, the calculation of face vectors and volumes
poses some problems in three dimensions. The main reason for this is that,
in general, the four vertices of the face of a control volume may not lie in a
plane. Then, the normal vector is no longer constant on the face (Fig. 4.2). In

Figure 4.2: Face of a control volume with varying normal vector in 3D.

order to overcome this difficulty, we could decompose all six faces of the control
volume into two or more triangles each. The volume itself could then be built of
tetrahedra. Performing this subdivision in an appropriate manner would lead to
a discretisation scheme which is at least first-order accurate on arbitrary grids
[3]. Of course, the numerical effort would be increased substantially, because the
fluxes would have to be integrated over each partial triangle separately. Hence,
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the number of point operations would be at least doubled. However, in [3], [4]
it is shown that for reasonably smooth grids, where the control volume faces
approach parallelograms, the decomposition into triangles does not noticeably
improve the solution accuracy. Therefore, we shall employ a simplified treatment
of the quadrilateral faces in the following considerations, which is based on an
averaged normal vector.

A face vector S of an hexahedral control volume, like that rendered in Fig.
4.1b, is most conveniently computed using the same Gauss’s formula as em-
ployed in 2D for the area of a quadrilateral. Thus, e.g., for the face m = 1
(points 1, 5, 8 and 4 in Fig. 4.1b) we first define the differences

Aza=1x3 -1, Az =15—-14,
Aya=ys—v1, Ayp=ys—Y4, (4.8)
Azg =25 — 21, Azp=25-—24.

The face vector §1 = 1, AS; results then from

) AyaDzp - Azs Ayp
51 = 5 AZA AIL'B —A.’EA AZB . (49)
Azg Ayp — AysAzp

The five remaining face vectors are calculated in similar manner. It is again
very convenient to store only three of the six the face vectors (e. 8 Sl, S, and
Ss) for each control yolume Qr s k. The remaining face vectors S, Si as well
as Sg are obtained (with reversed signs to become outward facing) from the
appropriate neighbouring control volumes. The above expressions in Eq. (4.8)
and (4.9) deliver an average face vector. The approximation becomes exact
when the face approaches a parallelogram, i.e., when the vertices of the face lie
all in one plane. The unit normal vector is obtained from Eq. (4.7) with

ASm = \[S2y + 82 + 52 (4.10)

Various, more or less accurate formulae are available for the calculation
of the volume of a general hexahedron (see, e.g., {1]). One approach, which
performed very well in various applications, is based on the divergence theorem
(5]. This relates the volume integral of the divergence of some vector quantity
to its surface integral. The key idea is to use the location in space of some point
of the control volume §2, let us call it 7 = [rz,ry,rz]T, as the vector quantity.
Herewith, the divergence theorem reads

/mmm:%wmw. (4.11)
JQ 519

We can easily evaluate the left-hand side of Eq. (4.11) which gives us the volume



82 Chapter 4

of Q that we are looking for

Org Bry or,
/dxvf’)dﬂ /( 6y+6z)dﬂ

=3Q. (4.12)

If we now assume constant unit normal vector on all faces of the control volume,
we can solve the surface integral on the right-hand side of Eq. (4.11) as follows

m=6

j{ (7 7)dS ~ Y (Fia - D)m AS. (4.13)
a0N

m=1

In Eq. (4.13), 7inid,m denotes the midpoint of the control volume face m. For
example,

- 1. . L .
Tmid,1 = 4_(7'1 +75 + 78 +74),

where the vectors 7, 75, 7s, and 74 correspond to the vertices 1, 5, 8, and 4
of the face m=1 in Fig. 4.1b. Similar relations hold for the midpoints of the
remaining faces. The area AS,, of the face m in Eq. (4.13) is obtained from Eq.
(4.10). Combining Equations (4.12) and (4.13) together, and inserting the face
vector S for the product 77, AS,,, we finally have the relationship

1 m=6
Qs =3 Z Fimid -+ S)m (4.14)

for the volume of the control volume 2 j k.

The origin of the coordinate system can be in principle moved to any place
without affecting the volume calculation in Eq. (4.14). This leads us to the
advice to locate the origin in one vertex of the control volume (e.g., point 1 in
Fig. 4.1b), in order to achieve a better scaling of the numerical values. Thus,
we may replace 7 in the above expressions (4.11)-(4.14) by a transformed vector

nd 3

7*, which is defined as
=7 - Forigin .
It is important to note that the volume calculated with aid of Eq. (4.14) is
exact for a control volume with planar faces.
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4.2 General Discretisation Methodologies

In the introduction to Chapter 4, we already mentioned the three approaches for
the definition of the control volume and for the location of the flow variables.
Here, we shall present all three in more detail. We shall also discuss their
advantages and shortcomnings.

4.2.1 Cell-Centred Scheme

We speak of a cell-centred scheme if the control volumes are identical with the
grid cells and if the flow variables are located at the centroids of the grid cells
as indicated in Fig. 4.3. When we evaluate the discretised flow equations (4.2),
we have to supply the convective and the viscous fluxes at the faces of a cell [6].
They can be approximated in one of the three following ways:

1. by the average of fluzes computed from values at the centroids of the grid
cells to the left and to the right of the cell face, but using the same face
vector (generally applied only to the convective fluxes);

2. by using an average of variables associated with the centroids of the grid
cells to the left and to the right of the cell face;

3. by computing the fluxes from flow quantities interpolated separately to the
left and to the right side of the cell face (employed only for the convective
fluxes).

—

Figure 4.3: Control volume of a cell-centred scheme (in two dimensions).
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Thus, taking the cell face 771,25 in Fig. 4.3 as an example, the first approach
- average of fluxes — reads

-

1re o Lo
(Fe AS),H/QJ i [FC(WI,J) +FC(W1+1,J)] ASii1y2,g (4.15)

with ASy41/2,; computed from Egs. (4.6) and (4.7).
The second possible approach — average of variables — can be formulated as
follows . L.
(F AS)]+1/2’J ~ F(Wl+l/2,J) ASI+1/2,J1 (416)

where the conservative/dependent variables at the face 7iy 42,5 of the control
volume are defined as the arithmetic average of values at the two adjacent cells,
ie.,

. 1/ .
Wiij2,0 =5 (WI,J + W1+1,J) . (4.17)

The flux vector F in Eq. (4.16) stands either for the convective or for the viscous
fluxes.

The third methodology starts with an interpolation of flow quantities (being
mostly velocity components, pressure, density and total enthalpy) separately to
both sides of the cell face. The interpolated quantities — termed the left and the
right state (see the begin of Section 4.3) — differ in general between both sides.
The fluxes through the cell face are then evaluated from the difference of the
left and right state using some non-linear function. Hence,

(F; AS) i yay ™ frius (ﬁL, Un, A51+1/2,J) : (4.18)

where
UL = fI'n.terp ( Tty UI—I,J; UI,J, v )
) (4.19)
Ur = frnterp (, U1, Urss,a, )

represent the interpolated states. Of course, similar relations like (4.15)-(4.19)
hold also for the other cell faces.

The same approximations are employed in three dimensions. For example,
at the cell face 71412, 5,k (e.g., identical to 72 in Fig. 4.1b) the average of fluxes
in Eq. (4.15) becomes

- 17a -
(FeAS) 1 1muk ™ 3 [Fc(WI,J,K) + Fc(W1+1,J,K)] ASriiy20k  (4.20)

with ASyy,/2 5% being defined correspondingly to Equations (4.8) and (4.9).
The average of variables reads similarly to Eq. (4.16) as

(F AS) 1 paxe = FWiiay2,0k) AS1i 2,0k (4.21)
with

W1+1/2,J,1{ = (WI,J,K + WH—I,J,K) . (4.22)

N =
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The way over the interpolation of the flow variables results similarly to Eq.
(4.18) in

(F. AS) i1k ™ fFue (UL, Ur, ASI+1/2,J,K) : (4.23)

where U 1 and U r are the interpolated values at the cell face.

The last term in the discretised flow equations (4.2) which remains to be
evaluated is the source term §. As we already stated in the introduction, the
source term is usually supposed to be constant inside the control volume. For
this reason, it is calculated using the flow variables from the corresponding cell
centre. Hence, we may define

(G 1k = QWrisx) QK- (4.24)

Using the above relations, the fluxes through the faces can be computed
and the numerical integration over the boundary of Q; ; x may be performed
according to (4.2). In other words, the complete residual EI,J,K is obtained. In
Sections 4.3 and 4.4, we shall learn more about the details of the evaluation of
the convective and viscous fluxes.

4.2.2 Cell-Vertex Scheme: Overlapping Control Volumes

In a cell-vertex scheme, all flow variables are associated with the nodes of the
computational grid. Within the approach using overlapping control volumes,
the grid cells still represent the control volumes, just as in the case of the cell-
centred scheme. The difference is that now the residuals computed for the
control volumes have to be distributed to the grid points (4], [7], (8]. The
situation is sketched in Fig. 4.4.

Let us consider the control volume €17 ; in Fig. 4.4, which is defined by the
nodes

(¢,7) (i+1,7) F+1,5+1) (i, +1).

Note that the point (¢, §) is located at the lower left corner of 2y ;. The convec-
tive fluxes, e.g., for the face AS; ;_;/;, which is given by the points (i, ) and
(i+1,7), are approximated as

(ﬁc AS) ~ FC(WI,J—1/2)ASI,J-—I/2- (4.25)

1,J-1/2

The variables at the midpoint of the face are evaluated using an arithmetic
average of the variables at the nodes defining the face, i.e.,

. 1= .
Wiz = 3 [Wi,j + Wi - (4.26)

The face area AS; j_,/7 is computed from the relations (4.6) and (4.7).

The approach remains the same in three dimensions. For example, for the
face associated with the normal vector 773 in Fig. 4.1b, the averaged variables
read

. 1re e e
Wiak-172 = 3 [W1 + Wo + W5 + We| . (4.27)
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1+1, j+1

i+1, j-1

Tigure 4.4: Overlapping control volumes of a cell-vertex scheme (2-D); arrows
represent distribution of the residuals from cell centres to the common node i, j.

If we assume the edge 1-2 being oriented in the ¢-direction, edge 1-5 in the j-
direction, edge 1-4 in the k-direction, and if we finally associate the point (¢, 7, k)
with the corner 1 in Fig. 4.1b, the average in Eq. (4.27) can also be written as

. 1w . . .
Wisk-1/2 = 1 [Wi,j,k + Witk + Wijon + I/Vi+1,j+l,k] : (4.28)

The convective flux is then again obtained from

-

(F. AS) ~ F (Wi g k-1/2) DSt g k-2, (4.29)

1,J,K—1/2
where the face area AS; j k1, results from the formulae (4.8) and (4.9). The
viscous fluxes are normally computed employing the same approach as for the
dual control-volume scheme [9], {10], which results in a more compact scheme
(i.e., one which involves fewer nodal values).

Summing up all face contributions given by relations (4.25), (4.26) and
(4.28), (4.29), respectively, we obtain the intermediate residuals R}_LK for all
grid cells. In order to relate the cell-based to the node-based residuals, a fur-
ther approximation is made using a residual distribution formula. It is basically
a function, which evaluates the unknown node-based residual from a weighted
sum of all cells having the particular grid node in common. The following dis-
tribution formulae were devised:

e volume weighted sum due to Ni [7];
e non-weighted sum due to Hall [8];
e characteristic (upwind) weighting procedure of Rossow [11}, [12].
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Theoretical investigations of the truncation error [4] suggest that Ni’s scheme
is more accurate than Hall’'s approach. However, in practice Ni’s distribution
formula leads to problems in places, where the grid is strongly distorted and
stretched. For example, strong oscillations of the pressure field near the trail-
ing edge of an airfoil were observed when using O-grids {13}, [4]. Furthermore,
convergence could only be achieved when the numerical viscosity was increased
considerably. The underlying idea of the upwind weighting procedure [11], [12]
is quite similar to that of the fluctuation-splitting schemes [14]-[17] (cf. Subsec-
tion 3.1.5), but the implementation is numerically much simpler. Basically, the
residuals are sent only upstream in the characteristic direction.

Of the three approaches, Hall’s distribution scheme proved to be the most
robust. In Hall’s scheme, the residual at a particular node results from a simple
sum of all intermediate residuals I?'I, J.Ic, which cells share the node. Thus, in
the 2-D case rendered in Fig. 4.4, we get

Rij=Riy+Rios+Rioiy-1+Rroo. (4.30)

In three dimensions, in total eight cell-based residuals hayve to be summed up in
the same way. A close inspection of (4.30) reveals that R; ; is just the net flux
through the boundary of the supercell

Qij =g+ Q0+ + Qo (4.31)

due to the fact that the fluxes across the inner faces cancel each other. The
supercell also represents the “total” control volume, centred at the point (z, 7).
In the 3-D case, the total volume consists of the cells

Qe =Qrur+ Qo gk +Qr-10-1,5k Q151K
(4.32)

+Qruk-1+ Qo grk-1+Q-1g-1, k1 +Qry-1,xk-1-

As it can be seen from Fig. 4.4, the control volumes overlap by at least one cell,
which gave the scheme its name.

The source term is calculated using the flow variables from the corresponding
grid node, i.e.,

(@) ijk = QWijk) Qijik - (4.33)
With the above definitions, the time-stepping scheme in Eq. (4.2) becomes
d Wi]' k 1 -
25 = — R ix. 4.34
dt Ql,],k Zy])k ( )

This represents a system of ordinary differential equations, which has to be
solved in each grid point (, j, k) in the same way as for the cell-centred scheme.
Note that the total volume (4.31) or (4.32), respectively, is utilised in Eq. (4.34).
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4.2.3 Cell-Vertex Scheme: Dual Control Volumes

In this scheme, the control volumes are centred around the particular grid node
(vertex), where all flow variables are stored [18], [19]. As depicted in Fig. 4.5, in
the 2-D case the dual control volumes are constructed by joining the midpoints
of the four cells which share the node. In three dimensions, the centroids of
eight cells have to be connected in order to form the faces of the control volume.
Another possibility would be to join one cell centroid to the edge midpoint (in
two dimensions) and then to the neighbouring cell centroid again [20]. Thus,
the face of the control volume would consist of two parts with different normal
vectors, as it is common for unstructured grids (see next Chapter). However,
in the case of structured grids, such a definition of the control volume is jus-
tified only at boundaries, where the surface discretisation would be otherwise
changed. This is demonstrated in Fig. 4.6. Significant advantages with respect
to accuracy in the interior field cannot be expected from the second approach on
reasonably smooth grids. Therefore, in what follows, the simpler definition of
the dual control volume will be employed. The boundary treatment is discussed
in Chapter 8.

When we evaluate the discretised flow Equations (4.2), we have to compute
the convective and the viscous fluxes at the faces of the control volume. This
can be done according to one of the following three approaches:

1. by the average of fluzes computed from values at the nodes to the left
and to the right of the face of the control volume, but using the same face
vector (generally applied only to the convective fluxes);

2. by using an average of variables stored at the nodes to the left and to the
right of the face;

3. by computing the fluxes from flow quantities interpolated separately to
the left and to the right side of the face (employed only for the convective
fluxes).

Thus, for example at the cell face 77;,, 2 ; in Fig. 4.5 the first approach — average
of fluxes — reads
1

wjes &5 [FeWeg) + FeWirr )] ASivipny  (4.35)

(£, AS)
with AS;y,/2; being computed according to Eq. (4.6) and (4.7), respectively,
from the known coordinates of the cell centroids.

The second possible approach - average of variables — can be formulated as
follows .
(FAS)

ir1/2,5 ~ F(Wi+1/f_>vj) ASH_l/g,j B (436)

where the conservative (or the dependent) variables at the face ;4,2 ; of the

control volume result from arithmetic averaging of values at the two neighbour-
ing nodes. Hence,

-

1/.- o
Wi+1/‘2,j = 5 (I/VLJ + W‘H‘Lj) . (437)
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Figure 4.5: Dual control volume of a cell-vertex scheme in two dimensions.

.

- e

Figure 4.6: Definition of the dual control volume at a boundary (2D). Upper
part: by connecting edge midpoints. Lower part: by connecting edge midpoints
and the central node at the boundary.
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The flux vector F in Eq. (4.36) represents either the convective or the viscous
fluxes.

The third methodology utilises an interpolation of flow quantities (being
mostly velocity components, pressure, density and total enthalpy) separately to
both sides of the face. The interpolated quantities — termed the left and the
right state (see the begin of Section 4.3) — differ in general between both sides.
The fluxes through the face of the control volume are then evaluated from the
difference of the left and right state using some non-linear function. Thus,

(FeAS),,, 0, = frie (O, Un, ASiyipa;) | (4.38)

it+1/2.5

where
U1 = finters (s Oiry Uiy )
(4.39)
Up= fInt.erp ( ) Ui,jy Ui+l,ja v )

stand for the interpolated states. Of course, similar relations like (4.35)-(4.39)
apply in the same way to other faces of the control volume.

The same approximations are employed in three dimensions. For example,
at the cell face ;1,5 ; x (e.g., identical to 73 in Fig. 4.1b) the average of fluxes
in Eq. (4.35) becomes

- 17 - o

(FeAS) 1o ® 5 [FeWisa) + FelWirii0)] ASiiappgn,  (440)
where AS;1 1,2,k is obtained from the Equations (4.8) and (4.9). The average
of the flow variables results similarly to Eq. (4.36) in

(FAS)i+1/2,j,k ~ F(Wit1y2,50) DSis1),k (4.41)
with )
Wi+l/2,j,k =5 (Wi,j,k + W;‘+l,j,k) . (4.42)

Finally, the interpolation of the flow variables leads correspondingly to Eq.
(4.38) to

(F.AS) 11050 ~ frue (Un, Un, ASiijagn) (4.43)

where UL and UR denote the interpolated values at the face. A detailed de-
scription of several possible approaches will be presented in Section 4.3 for the
convective and in Section 4.4 for the viscous fluxes.

The last term in the discretised flow Equations (4.2) to be evaluated is
the source term Q As already stated in the introduction, the source term
is supposed to be constant inside the control volume. For this reason, it is
computed using the flow variables from the corresponding grid point. Hence,
we may define

(QQij = C@Wijn) Qujik . (4.44)
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Using the above relations, the fluxes through the faces can be computed
and the numerical integration over the boundary of €;; can be carried out
according to Eq. (4.2). In this way, we obtain the complete residual R’i’j'k
including the source term. The change in time of the conservative variables
follows then for each grid point from

AW 1 2
@ o Rk (4.45)

Suitable solution methods will be presented later in Chapter 6.

4.2.4 Cell-Centred versus Cell-Vertex Schemes

In the preceding three sections, both the cell-centred and the cell-vertex dis-
cretisation methodologies were outlined. The following paragraphs compare the
three schemes and give an overview of the at times controversial debate about
their relative merits.

First, let us consider the accuracy of the discretisations. It follows from
the discussion in [4], [21] that the cell-vertex scheme (either with overlapping
or dual control volumes) can be made first-order accurate on distorted grids.
On Cartesian or on smooth grids (i.e., where the volumes between adjacent
cells vary only moderately and which are only slightly skewed), the cell-vertex
scheme is second- or higher-order accurate [22], depending on the flux evaluation
scheme. In the opposite, the discretisation error of a cell-centred scheme depends
strongly on the smoothness of the grid. For example, for an arrangement of the
cells sketched in Fig. 4.7, an averaging does not provide the correct value at the
midpoint of a face even for a linearly varying function. The consequence is that
on a grid with slope discontinuity the discretisation error will not be reduced
even when the grid is infinitely refined. As demonstrated in {4], such zero-order
errors manifest themselves as oscillations or kinks in isolines, whereas a cell-
vertex scheme experiences no problems in the same situation. Nevertheless, on
Cartesian or on sufficiently smooth grids, the cell-centred scheme can also reach
second- or higher-order accuracy. A further analysis of the discretisation errors
were presented in [23]-[26].

Second, let us compare the three methods and their characteristics at bound-
aries. It is mainly at the solid wall boundary where the cell-vertex scheme with
dual control volumes faces difficulties. Recalling again Fig. 4.6, it is apparent
that only about one half of the control volume is left at the boundary. The
integration of fluxes around the faces results in a residual located inside ~ ide-
ally in the centroid - of the control volume. But, the residual is associated
with the node residing directly at the wall. This mismatch leads to increased
discretisation error in comparison to the cell-centred scheme. The definition
of the dual control volume causes also problems at sharp corners (like trailing
edges), which show up as unphysical peaks in pressure or density. Further com-
plications arise, e.g., at coordinate cuts or at periodic boundaries (see Chapter
8), where the fluxes from both parts of the control volume have to be summed
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I+1,7]

Figure 4.7: Cell-centred flux balance on a skewed grid; cross denotes the mid-
point of the cell face.

up correctly. All cell-vertex schemes also require additional logic, in order to
assure a consistent solution at boundary points shared by multiple blocks. No
such problems appear for cell-centred schemes.

The cell-vertex scheme with overlapping control volumes has an advantage
over the dual volume scheme in the treatment of wall boundaries, but it cannot
be combined with the popular upwind discretisation methods like TVD, AUSM,
or CUSP. The discretisation involves more points than those of the cell-centred
and the dual control-volume schemes (27 instead of 7 in 3D), which leads to
smearing of discontinuities and memory overhead in the case of an implicit time
discretisation.

The last main difference between the cell-centred and the cell-vertex schemes
appears for unsteady flow problems. As mentioned earlier in Section 3.2, the
cell-vertex schemes require at least an approximate treatment of the mass matrix
[27], [28]. On contrary, the mass matrix can be completely discarded in the case
of a cell-centred scheme, because the residual is naturally associated with the
centroid of the control volume.

In summary, the cell-vertex scheme with dual control volumes and the cell-
centred scheme are numerically very similar in the interior of a stationary flow
field. The main differences occur in the boundary treatment and for unsteady
flows. In both cases, the cell-centred approach shows advantages over the cell-
vertex schemes, which result in a more straightforward implementation in a flow
solver.
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4.3 Discretisation of Convective Fluxes

In the previous sections, we discussed the spatial discretisation methodologies in
general. In this part, we shall learn more about the details, how the convective
fluxes can be approximated.

As we could already see in Subsection 3.1.5, in the framework of the finite
volume approach, we have basically the choice between:

e central,

o flux-vector splitting,

o flux-difference splitting,

e total variation diminishing (TVD), and

o fluctuation-splitting
schemes. In order to keep the amount of material bounded, we will restrict
ourselves to the most important and popular methods. We will omit any de-
tailed description of all possible modifications to the basic schemes, but instead
reference the relevant literature.

Before we start to present the various discretisation schemes in detail, we
should explain what is meant by the designations left and right state, as well
as by stencil or computational molecule, respectively.

Certain cell-centred and dual control-volume schemes require an interpola-

tion of flow variables to the faces of the control volume. The situation is sketched
in Fig. 4.8 for a grid in the i-direction. One possibility, which is employed by the

—» L | R +—

—@ L @ i —e i—e——E—0—
I-2 I-1 I I+1 I+2 1+3

\ face of control volume

—> [, | R =—

@ L @
1+1 i+2 i+3

Figure 4.8: Left and right state at cell face I+1/2, resp. ¢+1/2. Upper part:
cell-centred scheme; lower part: cell-vertex scheme with dual control volumes.
Circles denote nodes, rectangles represent cell-centroids.
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central scheme (see next subsection), consists of linear interpolation using the
same number of values to the left and to the right of the face. In other words, the
interpolation is centred at the face. Discretisations based on the characteristics
of the Euler equations — upwind schemes — separately interpolate flow variables
from the left and the right side of the face using non-symmetric formulae. The
two values, named the left and the right state, are then utilised to compute the
convective flux through the face (see Eqs. (4.18), (4.23), (4.38), or (4.43)). The
interpolation formulae are almost exclusively (with the exception of the TVD
schemes) based on Van Leer’s MUSCL (Monotone Upstream-Centred Schemes
for Conservation Laws) approach [29]. They read for a general flow variable U

Uk = Ui = 7 [0+ RA- + (1= R)AL] Ury
. (4.46)
Uo=U; + 1 (1+R)A, +(1-R)A_]U.

The forward (A4) and the backward (A_) difference operators are defined as

A Ur=Ur - Uy

(4.47)
AU =U; - Ur_,.

The indices are shifted as appropriate. The above relationships remain valid for
a cell-vertex scheme with dual control volumes, if the node index ¢ is substituted
for I. The parameter € can be set equal to zero to obtain a first-order accu-
rate upwind discretisation. The parameter £ determines the spatial accuracy
of the interpolation. For ¢ = 1 and & = —1, the above interpolation formulae
(4.46) give a fully one-sided interpolation of the flow variables, which results
in a second-order accurate upwind approximation on uniformly spaced grid.
The case & = 0 corresponds to a second-order accurate, upwind-biased linear
interpolation. Furthermore, by setting & = 1/3, we obtain a three-point inter-
polation formula which constitutes (in a finite volume framework — cf. Ref. [30],
[48]) a second-order upwind-biased scheme with lower truncation error than the
k = —1 and & = 0 schemes. Finally, if we specify £ = 1, the MUSCL approach
reduces to a purely central scheme - the average of variables. The schemes with
k=0 and & = 1/3 are most often used in practice.

The MUSCL interpolation (4.46) has to be enhanced by the so-called limiter
function or limiter, if the flow region contains strong gradients. The purpose of
the limiter is to suppress non-physical oscillation of the solution. Limiters will
be discussed further in Subsection 4.3.5.

Stencil or computational molecule stands for the union of those cell-
centroids or grid points, which are involved in the computation of the residual,
the gradient, etc. For example, if we average the fluxes at the faces of the control
volume according to the Equations (4.15), (4.20), or (4.35), (4.40), respectively,
we obtain in two dimensions a 5-point stencil, consisting of the cells/points

(J) U+1,J) (I,J+1) (I-1,7) ,J—-1).
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(a) (b)

5
I+1,J,K

‘ LI-LK &
IJ-1 IJ,K-1

Figure 4.9: Stencil (computational molecule) of the central discretisation
scheme; (a) in 2-D, (b) in 3-D space.

In three dimensions, a 7-point stencil results, which involves the cells/points

(LJ Ky I+1,JK) (ILJ+LK) (I-1,J,K)
(I,J-1,K) (I,J,K-1) (I,JK+1).

Both stencils are displayed in Fig. 4.9. Note that on a Cartesian grid this
corresponds to the second-order accurate central-difference approximation of
the first derivatives in i-, j-, and k-direction. Thus, a finite difference scheme,
applied to the differential form of the governing equations and using the central
differences, would deliver the same result.

4.3.1 Central Scheme with Artificial Dissipation

The central scheme with artificial dissipation is very simple compared to other
discretisation methods. It is easy to implement with either the cell-centred
scheme or with both cell-vertex schemes. For these reasons the scheme became
very wide-spread.

The basic 1dea of the central scheme is to compute the convective fluxes at
a face of the control volume from the arithmetic average of the conservative
variables on both sides of the face. Since this would allow for odd-even decou-
pling of the solution (generation of two independent solutions of the discretised
equations) and overshoots at shocks, artificial dissipation (which is similar to
the viscous fluxes) has to be added for stability. The scheme was first imple-
mented for the Euler equations by Jameson et al. [6]. Because of the names of
the authors, it is also abbreviated as the JST scheme.
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The central scheme is generally less accurate in the resolution of discon-
tinuities and boundary layers than, say, the upwind schemes. However, it is
computationally considerably cheaper. Therefore, attempts were made to im-
prove the accuracy of the scheme, while still keeping the numerical effort low.
For example, improvements were devised to reduce the amount of the artifi-
cial dissipation in boundary layers [31], [32], or to enhance the shock resolution
[33]-[35]. Another idea, followed in [35], is to utilise the Jacobian matrix of the
convective fluxes, in order to scale the dissipation independently for each con-
servation equation. This successful approach is known as the matrix dissipation
scheme. It can be viewed as a compromise between the original scalar scheme
and the upwind schemes. The basic scheme also employs a single, pressure-
based sensor to switch from second- to first-order accuracy at discontinuities to
prevent non-physical oscillations of the flow variables. In [36], Jameson devel-
oped a concept called the SLIP (Symmetric Limited Positive) scheme, where a
limiter is applied separately for each conservation equation. A brief description
of the previous approaches and comparisons for inviscid and viscous 2-D flows
was presented in [37].

Scalar Dissipation Scheme

The convective fluxes (Eq. (2.21)) through a face of the control volume are
approximated using the average of variables, according to the Equations (4.16),
(4.21), (4.36), or (4.41), respectively. Artificial dissipation is then added to
the central fluxes for stability [6], [38]. Thus, the total convective flux at face
(I +1/2,J,K) reads

(F, AS)I+1/2,J,K ~ F(Wiiry206) AStv1j20x = Divijeax, — (4.48)

where the flow variables are averaged as (see also Fig. 4.8)

. 1/ .
Wis1/2,0k = 5 (WI,J,K + WH—I,J,K) . (4.49)

In the case of the cell-vertex scheme with dual control volumes, node indices
(4, 7, k) would be used instead. For simplicity, (I +1/2,J, K) will be abbreviated
as (I + 1/2) hereafter. The artificial dissipation flux consists of a blend of
adaptive second- and fourth-order differences which result from the sum of first-
and third-order difference operators

ﬁ1+1/2 = A§+1/2 [552721/2 (Wi — Wi)
(4.50)
- 5&21/2 (Wiga —3Wirg +3W, — W1_1)} .

From Eq. (4.50) we can see that the scheme possesses a compact 9-point stencil
in two dimensions and a 13-point stencil in three dimensions.

The dissipation is scaled by the sum of the spectral radii of the convective
flux Jacobians in all coordinate directions

Af+1/2 = (AD 11y + (AN iy + (AE) 1412 (4.51)
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The spectral radius at the cell face (I + 1/2), e.g., in I-direction (represented
by the superscript I), results from the average

. 1/ . .
(Ag)1+1/2 =3 ((Ai)z + (A£)1+1) . (4.52)

It is evaluated using the formula
Ae = (|V]+¢) AS, (4.53)

where V stands for the contravariant velocity (2.22) and ¢ for the speed of sound,
respectively.

A pressure-based sensor is used to switch off the fourth-order differences at
shocks, where they would lead to strong oscillation of the solution. The sensor
also switches off the second-order differences in smooth parts of the flow field,
in order to reduce the dissipation to the lowest possible level. Herewith, the
coefficients (2} and ) in Eq. (4.50) are defined as

6(1_21/,, =k max(Ty, Tre1)
" o (4.54)
51431/2 = max [0, (k®) — 1+1/2)]
with the pressure sensor given by
Y, = | Pryy — 2pr + pri| (4.55)

Pi+1 + 2p; +pr—

Typical values of the parameters are k() = 1/2 and 1/128 < k(%) < 1/64.
In order to reduce the amount of artificial dissipation across a viscous shear
layer, we can re-define the scaling factors in Eq. (4.50) as follows [31], [32]

A7q+1/2 [(‘151 Dr+(@'A )1+1]
851 = 3 [67ADs + 7R (4.56)

1 N .
Aic‘(+1/2 =5 [(d’KAf)K + (¢KA§)K+1] .

These are then employed instead of Eq. (4.51). The directionally dependent
coefficients ¢ are given by the relations

A :
¢ =14 max ([\—g) ([\g)}

AT AK
#’ = 1+ max (%) (ACJ)] (4.57)
-l

AK AK
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The parameter ¢ is usually set equal to 1/2 or 2/3. This formulation decreases
the scaling of the dissipation terms in the direction along the shorter side of ¢
control volume, whose longer side is aligned with the flow.

Matrix Dissipation Scheme

In order to improve the accuracy by reducing the numerical dissipation, the
above scheme can be modified to become more like an upwind scheme. The
idea is to use a matrix — the convective flux Jacobian - instead of the scalar
value AS to scale the dissipation terms [35]. In this way, each equation is scaled
properly by the corresponding eigenvalue. Hence, the Eq. (4.50) becomes

Dryiyz = Acisy [6(1221/2 (Wrer — Wr)
(4.58)
= €2y Wiss = 3Wp 0 +3W — W,-l)] .

The scaling matrix corresponds to the convective flux Jacobian (A, = 8F,/6W)
diagonalised with absolute values of the eigenvalues

|A.| =T A AS|T . (4.59)

The matrices of right (T) and left (7~!) eigenvectors as well as the diagonal
matrix of the eigenvalues A, can be found in the Appendix A.9. The eigenvalues
must be limited at stagnation points and sonic lines to prevent the dissipation
from becoming zero. An efficient way of computing the product of |4.| with W
is provided in [35]. It should be noted that by setting (®) = 1/2 and () = 0,
we obtain a first-order accurate, fully upwind scheme.

As it was already stated before, the idea here was to develop a scheme which
accuracy is close to that of upwind schemes, but which is still computationally
only slightly more expensive (about 15-20%) than the scalar dissipation ap-
proach. Results of comparisons with flux-vector splitting schemes (CUSP and
AUSM) were recently reported in [37].

4.3.2 Flux-Vector Splitting Schemes

The flux-vector splitting methods can be viewed as the first level of upwind
schemes, since they only account for the direction of wave propagation. The
flux-vector splitting schemes decompose the vector of the convective fluxes into
two parts — either according to the sign of certain characteristic variables, or
into a convective and a pressure part. The well-known Van Leer’s flux-vector
splitting scheme [39] belongs to the first category based on characteristic de-
composition. The second approach is followed by more recent methods like the
Advection Upstream Splitting Method (AUSM) of Liou et al. [40], [41], or the
Convective Upwind Split Pressure (CUSP) scheme of Jameson [42], [43], respec-
tively. T'urther similar approaches are the Low-Diffusion Flux-Splitting Scheme
(LDFSS) introduced by Edwards [44], or the Mach number-based Advection
Pressure Splitting (MAPS) scheme of Rossow [45], [46].
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The flux-vector splitting schemes can be implemented only in the framework
of the cell-centred scheme (Subsection 4.2.1), or the cell-vertex scheme with dual
control volumes (Subsection 4.2.3). Their advantage can be seen in only a mod-
erately increased numerical effort. but a much better resolution of shocks and
boundary layers, as compared to the central scheme with scalar artificial dissi-
pation. However, the matrix dissipation scheme (Eq. (4.58)), can also produce
results of comparable accuracy [37]. Because of certain numerical difficulties,
many modifications to the basic schemes (particularly to AUSM) were devised
by various researchers and the development still continues. In the following, we
shall present the basics of the Van Leer, AUSM and CUSP schemes, give some
hints with respect to the most important modifications, and provide references
to the corresponding literature.

Van Leer’s Scheme

Van Leer’s flux-vector splitting scheme [39] is based on characteristic decom-
position of the convective fluxes. An extension of the approach to body-fitted
grids was presented in [47], [48].

The convective flux is split into a positive and a negative part, i.e.,

F, = F’;’ + ﬁc_ , (4.60)

according to the Mach number normal to the face of the control volume (e.g.,
at (I+1/2) - see Fig. 4.8)

(Mn)141/2 = <K> ) (4.61)
€Jr+1/2

where V represents the contravariant velocity (2.22) and ¢ the speed of sound,

respectively. In the case of the cell-vertex scheme with dual control volumes,

the cell indices have to be changed to node indices.

The values of the flow variables p, u, v, w, and p, respectively, have to be
interpolated first to the faces of the control volume correspondingly to Eq. (4.19)
or Eq. (4.39). Then, the positive fluxes are computed with the left state and the
negative fluxes with the right state. The advection Mach number (Mp);41/2 is
obtained from the relation [39]

(Mp)14172 = M + Mg, (4.62)
where the split Mach numbers are defined as
My if My > +1
1 5
My = ML+ 1D? S IMLl <1 (4.63)

0 if My < -1
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and
0 if Mg > +1
Mg = %(Mn ~1)? if |[Mgl<1 - (4.64)
Mg if Mg < -1

The Mach numbers M; and Mg are evaluated using the left and right state,

respectively, i.e., y
Vi
M=%, Mp=-2.
Cr, CR
In the case of |M,| < 1 (subsonic flow), the positive and the negative flux

parts are given by

(4.65)

Fitvass

Y f,iass [nz(=V £ 2¢) /v + u]
Fr = f,;t,ass [[:,, ((:V i 22Cc)) //3 ::‘;}]] : (4.66)
mass ~
feﬁergy
The mass and energy flux components are defined as

My +1)?
fr':{ass:+ﬂLCL(—L4—)—

Mp — 1)2
Frmass = (_—R‘*—_) (4.67)
I (Cox e pae SR
e GRETCER 2 L

For supersonic flow, i.e., for [M,] > 1, the fluxes are evaluated from

Fr=F F-=0 if M,>+1

3 L (4.68)
Fr=0 F-=F ifM,<-1.

The evaluation of the left and right state follows generally the MUSCL ap-
proach [29], which is given by Eqgs. (4.46). The higher order schemes & = —1,
£ = 0 and & = 1/3, respectively, require a limiter if the flow field contains
discontinuities like shocks. More details are provided in Subsection 4.3.5.

The flux-vector splitting scheme of Van Leer performs very well in the case
of Euler equations. But several investigations {49], [50], carried out with the
Navier-Stokes equations revealed that splitting errors in the momentum and
the energy equations smear out the boundary layers and also lead to inaccurate
stagnation and wall temperatures. A modification to the momentum flux in
the direction normal to the boundary layer was therefore suggested in Ref.
[51]. A similar remedy for the energy flux was proposed in Ref. [52]. Both
modifications together remove the splitting errors, and hence they improve the
solution accuracy considerably [533].
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AUSM

The Advection Upstream Splitting Method (AUSM) was introduced by Liou
and Steffen {40], and Liou [54]. It was subsequently modified by Wada and Liou
[55] and renamed as AUSMD/V. Finally, an improved version termed AUSM™*
was presented by Liou [41], [56].

The underlying idea of the approach is based on the observation that the
vector of convective fluxes (2.21) consists of two physically distinct parts, namely
the convective and the pressure part

p 0

. pu nzp

Fo=V|pv |+ |nyp|. (4.69)
pw n.p
pH 0

The first term in Eq. (4.69) represents scalar quantities, which are convected
by the contravariant velocity V. By contrast, the pressure term is governed by
the acoustic wave speed. The idea now is to discretise the convective term in
purely upwind manner by taking either the left or the right state, depending on
the sign of V' (even for subsonic flow). On the other hand, the pressure term
includes both states in the subsonic case. It becomes fully upwind for supersonic
flow only.

Following the basic AUSM from [40], we introduce an advection Mach num-
ber (My);4+1/2 from Eq. (4.61). Herewith, we can recast the convective flux at
the face (I41/2), or (i+1/2) of the control volume, respectively, into

pe 0
. peu NP
(Fc)l+l/2 = (Mn)l+1/2 pcy + | nyp ) (4.70)
pcw n:p
pcH L/R 0 I+1/2

where
() if Myp220
(/R = . (4.71)
(¢)r otherwise

Stmilar to Van Leer’s flux-vector splitting scheme, the advection Mach number
is evaluated as a sum of the left and right split Mach numbers according to the
relations (4.62) and (4.63)-(4.65). The computation of the left and right state
(low quantities: p, u, v, w, p, H) i1s based again on a separate interpolation
to the faces of the control volume accordingly to Eq. (4.19) or Eq. (4.39). The
interpolation follows the MUSCL methodology [29], as it is given in Eq. (4.46).
All higher-order MUSCL schemes (i = —1, & = 0, and £ = 1/3) require a
limiter, if the flow field contains strong gradients like shocks. Please refer to
Subsection 4.3.5 for more details.
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The pressure at the face (I4+1/2) of the control volume is obtained from the
splitting [40]
Pr+1/2 = P}: + P (4.72)

with the split pressures given by [39]

( PL if Mg 2> +1
P} = ‘;—L(M,, +1)22 - M) i My <1, (4.73)
L0 if M, < -1
and
(0 if Mg > +1
PR = { %"i(MH 1224+ Mg) if |[Mg|<1 - (4.74)
\ pr if Mp< -1

It is also possible to use the following lower-order expansion for | M}, /p| < 1

Pf/n =— (1£Myg). (4.75)

pc pc 7 )
- 1 pcu pcu
(Fo)rije = 5 (Ma)r41/2 pev | + | pev |
pcw pcw

pcH 1, pcH 1 )

(T pc pc
1 pecu peu
3 [(Mn)14+1/2] ﬁ pcv ~ | pev (4.76)
pcw pew

\LpcH I chJL

0 )
nI(P}f +p;§)
+ ny(P+ +pR)
nz(pz,o+ PR)

The first term on the right-hand side of the above Eq. (4.76) represents a Mach
number-weighted average of the left and right state - similar to the average of
fluxes Eq. (4.15), (4.20) or Eq. (4.35), (4.40), respectively. The second term has
a dissipative character. It is scaled by the scalar value |(M,)41/2].
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AUSM proved to deliver a crisp resolution of strong shocks and accurate
results for boundary layers. However, the original AUSM [40], [54] was found
to generate local pressure oscillations at shocks and in cases where the flow is
aligned with the grid [57]. In [57], [58] it was therefore suggested to switch at
shocks to Van Leer’s scheme. When the advection Mach number (M) 41,2
tends to zero, the dissipation term in Eq. {(4.76) will approach zero as well.
Thus, any disturbances cannot be damped by the scheme. In order to solve the
flow alignment problem, it was proposed in [57] to modify the scaling of the
dissipation term as follows

|(Mn) 1412 if [(My)r41/21 >0

(Mn)1+1/2] = (M,)2, . +62 , (4.77)
n)1y1/2 .
;:5/ if |(Mn)r41/21 <0

where § is a small value (0 < § < 0.5). Hence, there will be always a sufficient
amount of numerical dissipation. In order to retain the accuracy of AUSM for
boundary layers, the parameter § could be reduced in the wall normal direction
using the same idea as given for the central scheme by Eq. (4.57).

Further improvements of the basic AUSM, with respect to better behaviour
in the vicinity of shocks, was presented in [41], [56] as AUSM*. The modifica-
tions consist of new Mach and pressure splittings, which replace the relations
{4.63), (4.64) and (4.73), (4.74), respectively.

CUSP Scheme

The concept of the Convective Upwind Split Pressure (CUSP) scheme is quite
similar to that of AUSM. But the CUSP approach has the advantage to be
formulated as an average of fluxes (but without weighting like within AUSM)
minus a dissipation term. This feature is crucial for the implementation in an
explicit, hybrid multistage scheme. Furthermore, because of the different scaling
factors compared to AUSM, the CUSP scheme behaves more favourably in the
case of flow alignment.

The CUSP scheme was introduced by Jameson [42], [59], {60], and subse-
quently modified by Tatsumi et al. [43], [61). It can be implemented either
within the cell-centred or the (cell-vertex) dual control-volume type of spatial
discretisation.

The convective fluxes (Eq. (2.21)) through a face of the control volume are
approximated using arithmetic average of fluxes, according to the Equations
(4.15), (4.20), (4.35), or (4.40), respectively. The dissipation term is then sub-
tracted from the central fluxes for stabilisation. Thus, the total convective fluxes
at the face (I+1/2) read

~

lrs, o o i
(Fivyz = 5 [Fe(Wr) + Fe(Wi)| = Braye. (4.78)

In the case of the dual control-volume discretisation, (i4+1/2) would apply in-
stead. The dissipation term, which is composed of a linear combination of the
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differences of the state and the flux vector, can be expressed as

p p
- 1 pu pu
Div1j2 = 5((1*0)1+1/2 pu - | pv
pw pw
pH1p pH I
(4.79)
pV pV
1 puV + ngp puV +nzp
+ 3 Bri1/2 pvV +nyp — | poV +nyp
pwV +n.p pwV +n,p
pHV R pHV L

This particular formulation is denoted the H-CUSP scheme, since it preserves
the total enthalpy [43]. The left (L) and right (R) state is evaluated similarly to
the MUSCL approach [29], using the limited interpolation (4.114)-(4.117). The
two parameters a* and 8 are defined as

(V] ifg=0
~-(1+/A" ifF>0and0< M, <1
a*e = (4.80)
+(1-8AT ifB<0and -1< M, <0
L 0 if | M, > 1
and
( - _
tmax [0, ZFATY o< M, <1
V-A-
B =< (4.81)

% +
Cmax [0 SFATY i e <o
VAt

\ sign(M,,)

if |M,| > 1

with M, = 17/5, correspondingly to Eq. (4.61). The positive and negative
eigenvalues AT and A~ in Egs. (4.80), (4.81) are given by [60]

y+1

, —1-\%
4/ -V -
2y v (27 ) +7

AE = (4.82)

where V' denotes the contravariant velocity at the face of the control volume
(4.83), «v is the ratio of specific heat coefficients and & stands for the speed of
sound.
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All flow variables in the above formulae (4.80)-(4.82) arc obtained at the
faces of the control volume using Roe averages [64], i.e.,

i _ UL\/P1, + UR\/PR
I+1/2 NN

5 v + VR/PR
i/ JPL + /PR

- _ WL/PL + WRVPR
Wryr/2 = JPL + VPR

_Hp/pL+ Hgr\/pr
VPL + /PR

- G242+ w2
(v—1) (H - u)
2 I+1/2

Visi2 = Grp1j2 e + 041720y + Wrg1/2 ns

(4.83)

H1+1/2

i

Cri1/2

The parameters o* and 3 are defined such that full upwinding of the con-
vective fluxes results for supersonic flow, i.e., a*¢c = 0 and 8 = sign(M,). On
the other hand, in subsonic flow (when 8 = 0) the dissipation is scaled by |V]|.
This is a desirable property for the computation of viscous layers. In cases of
large aspect ratio cells, explicit time-stepping schemes usually require increased
numerical dissipation in the direction of the longer cell side in order to stay ro-
bust. This can be accomplished by employing ratios of spectral radii similar to
Eq. (4.57). More details can be found in Ref. [37], which also contains compar-
isons between the CUSP scheme and the scalar as well as the matrix artificial
dissipation (Subsection 4.3.1) schemes.

4.3.3 Flux-Difference Splitting Schemes

The flux-difference splitting schemes evaluate the convective fluxes at a face of
the control volume from the (in general discontinuous) left and right state by
solving the Riemann (shock tube) problem. The idea was first introduced by
Godunov [62]. In contrast to the flux-vector splitting schemes, the flux-difference
splitting considers not only the direction of wave (information) propagation,
but also the waves themselves. In order to reduce the computational effort of
Godunov’s scheme for the exact solution of the Riemann problem, approximate
Riemann solvers were developed, e.g., by Osher et al. [63] and Roe [64]. In
particular, Roe’s method is applied quite often because of its high accuracy for
boundary layers and good resolution of shocks. Therefore, we shall present the
Roe solver in more detail in the following subsection.
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Roe Scheme

Roe’s approximate Riemann solver can be implemented either in the framework
of the cell-centred scheme or the dual control-volume scheme. It is based on
the decomposition of the flux difference over a face of the control volume into
a sum of wave contributions, while ensuring the conservation properties of the
Euler equations. On the face (I+1/2) or (i+1/2), respectively, the difference is
expressed as [64]

(ﬁc)n - (ﬁc)l, = (AHoe)[+l/2 (Wn - WL) . (4.84)

In the above Eq. (4.84), Ago. denotes the so-called Roe matriz, and L or R the
left and right state (see Fig. 4.8), respectively. The Roe matrix is identical to
the convective flux Jacobian A, (see Appendix A.7), where the flow variables
are replaced by the so-called Roe-averaged variables. These are computed from
the left and the right state by the formulae [64], [65]

P = \/PLPR

. urLy/PL +UR\pR
VPL *+ /PR

_ VL/PL + VUR+\/PR
VPL + /PR

0 = YLVPL + WR/PR
VPL + VPR (485)

e Hp\/pL + Hr\/PR
VPL + /PR

=/(r=1 (8- 2/2)
+in

<

We can make the decomposition into waves in Roe’s scheme clearer when
we insert the diagonalisation of the Roe matrix, i.e., Agoe = TA.T-!, into the
Eq. (4.84)

(FC)R - (F:C)L = TA:: (C;R - C_1"L) . (4.86)

The matrix of left (77!) and right (7) eigenvectors, as well as the diagonal
matrix of eigenvalues (A.) are evaluated using Roe’s averaging. In the above
Eq. (4.86), the characteristic variables C represent the wave amplitudes, the
eigenvalues A, are the associated wave speeds of the approximate Ricmann
problem, and finally the right eigenvectors are the waves themselves.
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Following from the previous discussion, the convective fluxes are evaluated
at the faces of a control volume faces corresponding to [64]

- 112 = oo _ o o
Frvje = 5 [FeWR) + FoW1) — 1 Anocliys Wr - W2)| . (487)

The product of |Ag,.| and the difference of the left and right state can be
evaluated as follows

|ARoe|(Wr — W1) = |AF| + |AFy3.4] + |AFS|, (4.88)

where

y (4.89)

L e (Ap— AV
|AF,|=|V—C|<—”—25”26—>

. - A
Aaad =714 (80- 2) (4.90)

SRR

/2
0 .
Au — AVng
+p Av — AVn,,
Aw — AVn, )
wAu + VAV + wAw - VAV |

~

s i+ ¢n
Ap + peAV | 4T e
*252—_) D+Cny | . (4.91)

lAﬁ5|=|V+é{<

The jump condition is defined as A(e) = (o) — (o), and the Roe-averaged
variables are given in Eq. (4.85), respectively.

The left and the right state are determined using the MUSCL scheme [29],
which is given in Eq. (4.46). All highcr-order schemes (k = ~1, £ = 0, and
£ = 1/3) have to be supplemented by limiters (Subsection 4.3.5), if the flow
field contains any discontinuities.

Because of the formulation in Eq. (4.84), Roe’s approximate Riemann solver
will produce an unplzysmal expansion shock in the case of stationary expansion,
for which (F.), = (F.)r but Wy, # Wg. Furthermore, the so-called “carbuncle
phenomenon” may occur, where a perturbation grows ahead of a strong bow
shock along the stagnation line [66], [67]. See also the discussion in Ref. [68].
The underlying difficulty is that the original scheme does not recognise the
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sonic point. In order to solve this problem, the modulus of the eigenvalues
|A¢| = [V % & can be modified using Harten’s entropy correction [69], [70]

Al if |Ao| > 6

|Ac] = (4.92)

Az 48
26

if [Ac] <6,

where ¢ is a small value, which can be conveniently set equal to some fraction
(e.g., 1/10) of the local speed of sound. In order to prevent the linear waves
|AF} 34| from disappearing for V — 0 (e.g., at stagnation points or for grid-
aligned flow), the above modification can also be applied to V.

A clear disadvantage of the Roe solver as compared to the central scheme or
to the flux-vector splitting schemes shows up for a real gas simulation. Namely,
the Roe matrix and averaging have to be changed correspondingly, which may
become quite complicated. The reader may find examples of formulations for
equilibrium as well as non-equilibrium real gas flows in [71]-[74] and in the
references cited therein.

4.3.4 Total Variation Diminishing Schemes

The idea of Total Variation Diminishing (TVD) schemes was first pursued by
Harten [75]). The TVD schemes are based on a concept aimed at preventing the
generation of new extrema in the flow solution. The principal condition for a
TVD scheme is that the total variation of the solution, defined as

TV=Y |Ury - Uil (4.93)
I

for a scalar conservation equation, decreases in time. This implies that ma-
xima in the solution must be non-increasing and minima non-decreasing. Hence
no new local extrema may be created during the time evolution. Thus, a dis-
cretisation methodology with TVD properties allows it to resolve strong shock
waves accurately, without any spurious oscillations of the solution, as they are
for example generated by the central scheme with scalar or matrix artificial
dissipation (Subsection 4.3.1).

The TVD schemes are implemented as an average of the convective fluxes
combined with an additional dissipation term (flux-limited dissipation), which
complies with the TVD conditions [75], [76]. If the dissipation term depends
on the sign of the characteristic speeds, we speak of a symmetric TVD scheme
(77], [78], otherwise of an upwind TVD scheme [79]-[83]. Experience shows
that the upwind TVD scheme offers higher accuracy than the symmetric TVD
scheme [84]. The upwind TVD scheme is particularly suitable for the simulation
of supersonic and hypersonic flow fields [85]. It is also capable of accurate
resolution of boundary layers [53], especially if the modification described in
Ref. [86] is applied.
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Upwind TVD Scheme

In this framework, the convective fluxes through the face (I+1/2) of the control
volume (see Fig. 4.8) can be expressed as

- 17 - 1. -
(Fr4172 = 3 [(Fc)l+l + (Fc)l] + §T1+1/2@1+1/2- (4.94)

In the case of the cell-vertex scheme with dual control volumes (Subsection
4.2.3), the indices would read (i+1/2), (i+1), etc. The matrix T contains the
right eigenvectors of the Jacobian A, = ch / 8W . The entries of the matrix can
be found in the Appendix A.9. In Equation (4.94), the term O takes account
of the direction of the characteristic speeds. It controls the upwind direction of
the difference operator. The I-th component of the vector © is defined as (cf.
(82])

1
G)11+1/2 = §¢(AII+1/2)(‘I’II+1 + ‘I’ll) - w(‘\llﬂ/z + X11+1/2)ACII+1/2) (4.95)

where A} represents the individual eigenvalues of the diagonal matrix A, (see
Appendix A.9), and ¥ the limiter function (Eq. (4.118)), respectively. Further-
more,

(\pll+l - \pll) . 1
1 ] if ACY 1y #0
Xll+1/2 = 5‘1’(1\[1“/2) : AC172 ) (4.96)
0 if ACH,, ), =0

and finally AC" are the elements of the difference of characteristic variables,

ie.,
ACryi2 = Ty o (Wi = Wi) (4.97)

with 7= being the matrix of left eigenvectors. The so-called entropy correction
of Harten [69], [70],

Y(z) = 2y 452 , (4.98)

prevents the value ¥(z) from vanishing for |z| - 0. The parameter 4, is best
formulated as function of the velocity components and the speed of sound [82]

(8) 15172 = 8 (lere1y2] + [vrgyel + lwig1yel -+ erg1yz) (4.99)

where 0.05 < § < 0.5. Values of the primitive variables at the face (/+1/2) are
obtained either from Roe’s (4.85) or from simple arithmetic averaging of the
states at I and (/+1). The limiter function ¥, which prevents the generation of
spurious solutions near strong gradients, will be presented in the next subsection.
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It should be stressed that the above upwind TVD scheme does not employ the
MUSCL approach to achieve higher order accuracy.

One can show that the upwind TVD method is precisely of first-order in
space when the limiter function ¥ in Eqs. (4.95), (4.96) is set equal to zero
[87], which happens at discontinuities. Otherwise, the upwind TVD scheme, as
presented above, is second-order accurate in smooth flow regions.

4.3.5 Limiter Functions

Second- and higher-order upwind spatial discretisations require the use of so-
called limiters or limiter functions in order to prevent the generation of os-
cillations and spurious solutions in regions of high gradients (e.g., at shocks).
Hence, what we are looking for is at least a monotonicity preserving scheme.
This means that maxima in the flow field must be non-increasing, minima non-
decreasing, and no new local extrema may be created during the time evolution.
Or in other words, if the initial data is monotone then the solution has to remain
monotone. The rather stringent conditions for monotonicity preserving schemes
(or the more rigorous ones for TVD schemes) are often given up in favour of the
Local Extremum Diminishing (LED) conditions [60]. Here, a local extremum
contained only within the stencil has to decrease.

However, due to Godunov’s theorem there is no possibility for a higher-order
linear scheme (such as the MUSCL approach) to be monotonicity preserving [88].
It is therefore necessary to employ non-linear limiter functions in order to con-
struct a monotonicity preserving or TVD discretisation. This is demonstrated
in Fig. 4.10, where the upwind TVD scheme of Eq. (4.94) was used with and
without a limiter to compute 2-D transonic flow past the NACA 0012 airfoil. It
can be clearly seen that without limiter, the solution exhibits large oscillations
in the neighbourhood of the shocks on the upper and the lower side of the air-
foil. On the other hand, away from the shocks, the limited and the unlimited
solutions become nearly identical.

The purpose of a limiter is to reduce the slopes (i.e., (Ur41 — Ur)/Ax)
used to interpolate a flow variable to the face of a control volume, in order to
constrain the solution variations. At strong discontinuities, the limiter has to
reduce slopes to zero to prevent the generation of a new extremum. This implies
for the MUSCL approach as well as for the TVD schemes that the (monotone)
first-order upwind scheme (¢ = 0 in Eq. (4.46)) is recovered in the immediate
vicinity of high gradients. The last requirement to be imposed on a limiter
is quite obvious — the original unlimited discretisation has to be obtained in
smooth flow regions, in order to keep the amount of numerical dissipation as
low as possible. The effect of a limiter on the interpolation of the left and right
states is sketched in Fig. 4.11. The example shows the slope reduction at the
local minimum at I and the change of the slope at the cells (I+1), (I+2) to
achieve a monotone solution. It is important to realise that a difference between
the left and right state at a face may (and generally will) still be present.

In the following, we shall describe four different limiter functions, which
are well-established and proven in practice. We shall consider limiters for the
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Figure 4.10: Comparison of inviscid transonic flow computation with and with-
out limiter. NACA 0012 airfoil, My, = 0.85, a = 1°.

second-order MUSCL, for the CUSP and for the upwind TVD scheme.

Limiter Functions for MUSCL Interpolation

Van Leer’'s MUSCL approach [29] is turned into a monotonicity preserving
scheme by employing a limiter function to reduce the differences A, Uy and
A _Ur in Eq. (4.47) when necessary. Herewith, the MUSCL interpolation for-
mulae in Eq. (4.46) are modified as follows (see also Fig. 4.8)

1 . Ay -
Urp=Urq1 - Z {(1 + n)(I>7+1/2A_ + (1 - K,)‘I>1+3/2A+] Ura
(4.100)

1 o N
Up=Ur +7[1+R®7, 000 + (1= R, ,0-| Ur,

where the parameter ¢ was set equal to unity. The slope limiters are functions
of ratios of consecutive solution variations, i.e., (I>1i+l/.2 = @(er/.z), with [1]

4 Urye = Ui
T =
I1+1/2 U1+l _ UI

Ur—-U;

Ty, 1,5 =7"7—),€tC.
I1+1/2 UI+1 — U, '

(4.101)
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Figure 4.11: Comparison of direct (left) and limited (right) interpolation to
the cell faces. Thick lines denote slopes AU/Ax, bars represent values at cell
centres.

If we substitute now r;, for 7'7_1/2 and rg for 7‘;+3/2, thus

U — U AL

=" - =——U
P U~ U Ay
(4.102)
. :U1+1'_U1_£U
L U[ _ (]1_1 - A_ I
we can write Eq. (4.100) in the form
1 R N
Ur=Up; — —[(1 +R)rr®(1/rg) + (1 — n)@(rg)] (Ury2 = Urgr)
4 (4.103)

UL=U; + i[(l T R)rL (1) + (1 — R)B(rL)] (Ur — Ury).

The above relationships Eq. (4.103) can be simplified if we consider only slope
limiters with the symmetry property

P(r)y=¢(1/r). (4.104)

With this definition, the limited MUSCL interpolation Eq. (4.100) becomes [89]

1
Up=Urs1 — §‘I’R (Ury2 = Urg)
(4.105)

1
U, =U; +;‘I’L(U1—U1_1)
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with the limiter function defined as
1 . .
‘I’L/R——-5[(1+K)TL/R+(1—K)]‘I)L/R (4106)

Different formulations of the slope limiter ® in Eq. (4.106) are now possible,
which can be tailored to specific values of & to give the most accurate but stable
and monotonicity preserving MUSCL scheme.

MUSCL scheme with £ =0

One particularly suitable combination for the second-order, upwind-biased sche-
me with £ = 0 is [90]

2r

In this case, the function ¥(r) corresponds to the Van Albada limiter [91]

r2 47

v =155

(4.108)
and we obtain with Eq. (4.105) the following expressions for the left and right
state

1
Ur =Urs1 —5511

) (4.109)
U,=U; + 2 oL
The function ¢ is formally identical for both states. It reads
_a(b® +€) + bla® +¢)

d = FERCRR (4.110)

The coeflicients a and b are defined for the left and right state as

ap =0 Uiy, br=A_Urp,

(4.111)

aL=A+U1, bLZA_UI

and the difference operators Ay are given by Eq. (4.47). The additional pa-
rameter ¢ in Eq. (4.110) prevents the activation of the limiter in smooth flow
regions due to small-scale oscillations {90]. This is sometimes necessary in order
to achieve a fully converged steady-state solution. The parameter ¢ is conve-
niently set proportional to the local grid scale, in 3D for example to 21/3 [90],
[92]. Additional scaling of the parameter ¢ is required if the particular state
variable U is given in physical units. It can be shown that the relations in
Eq. (4.109) are identical to the original (unlimited) MUSCL scheme (4.46) with
% = 0 in smooth regions. Thus, the accuracy of the solution is not influenced.
On the other hand, the function é becomes zero at local extrema, reducing the
accuracy to first order as desired.
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MUSCL scheme with & = 1/3

Another limiter function was devised for the three-point, second-order accurate
upwind-biased MUSCL scheme with & = 1/3. Here, the slope limiter is given
by

3r

B(r) = 0.
=g 2

(4.112)
In this case, the function ¥(r) corresponds to the limiter of Hemker and Koren
[93]. Following the same way as in the previous case, we obtain formulae for the
left and right state at the face (I+1/2) which are identical to Eq. (4.109), but
now with [90]

(2a% + €)b+ (b* + 2€)a
= : 4.11
0= +2b% — ab + 3¢ (4.113)

The definitions of the coeflicients a, b, and of the parameter ¢ are retained.

Limiter for CUSP Scheme

In the framework of the CUSP scheme (Subsection 4.3.2), the left (L) and right
(R) states are evaluated to second-order accuracy according to [43]

1
Up=Ury1 — §L (AUpta/2, AU_1/2)

X (4.114)
Uo=Ur + EL (AUpta/2, AUy /2)
where
AUrtr/2= U1 = Ur
(4.115)

AUjpyap=Urrz = Uy .

In the above Egs. (4.114) and (4.113), U represents a dependent variable and
L() the limited average

1
L(A], Ag) = -2- ‘I/(Al, Az) (A] -+ Ag), (4116)

respectively. The limiter itself is defined as

2

A — A
L ) (4.117)

(AL, Ag)=1— | L7282
(B, 82) l|A1|+|Az|+e

where o is a positive coefficient which is usually set equal to two. The constant
€ is required to prevent division by zero (e.g., € = 1072%). If A, and A, happen
to have opposite sign but the same magnitude, the limiter becomes ¥ = 0. This
means that we obtain only a first-order accurate approximation for the left and
the right state.
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Limiter for TVD Scheme

In comparison to the previous cases, the limiter here acts not on the conservative
or the primitive variables, but on the characteristic variables C'. One particularly
suitable limiter function is given by [82]

ol - AC)_, ,AC] 1y HIACT_ ACT 1118
1 — 1] ACI » ( . )
ACl—l/-z +A0,,teE

where the AC} /2 represents the difference of the characteristic variables at
face (I+1/2) of the control volume (Eq. (4.97)). The positive constant ¢ ~ 10~2°
in the denominator prevents division by zero. In regions with high gradients,
the limiter function becomes zero, which leads with Eq. (4.95) and (4.94) to
first-order accurate upwind scheme. The upwind TVD scheme (4.94) retains
second-order accuracy in areas of smooth flow, where ¥ = C} — C}_,.
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4.4 Discretisation of Viscous Fluxes

The control volume for the viscous fluxes is generally chosen to be the same as
for the convective fluxes in order to obtain a consistent spatial discretisation.
An exception is made only in the case of the cell-vertex scheme with overlapping
control volumes (Subsection 4.2.2), where the dual control volume (Subsection
4.2.3) is employed instead, primarily due to stability reasons [94]-[96]. The
viscous fluxes F, in the discretised governing equations (4.2) are, similar to
Egs. (4.17), (4.22), (4.37), (4.42), evaluated from variables averaged at the faces
of the control volume. This is in line with the elliptic nature of the viscous fluxes.
Thus, values of the velocity components (u,v,w), the dynamic viscosity u, and
of the heat conduction coefficient &, which are required for the computation of
the viscous terms (2.23), (2.24) and of the stresses (2.15), are simply averaged
at a face. In the case of the cell-centred scheme (Figs. 4.3 and 4.8), the values
at the face (/+1/2) of the control volume result from

1
Ury12 = §(U1 +Ur1), (4.119)

where U is any of the above flow variables. The same holds in the case of both
cell-vertex schemes for the face (i+1/2) — see Figs. 4.5 and 4.8, respectively.

The remaining task is the evaluation of the first derivatives (gradients) of
the velocity components in Eq. (2.15) and of temperature in Eq. (2.24). This
can be accomplished in one of two ways, i.e., by using

e finite differences, or
o Green’s theorem.

The first approach applies a local transformation from Cartesian coordinates
(z,y, z) to the curvilinear coordinates (£, 7, (), e.g.,

oU _oUdE  Udn . OUOC
5z~ 0¢dx | omox T acos O (4.120)

The derivatives Ug, U, and U, are obtained from finite difference approxima-
tions. More details can be found in Refs. [94]-[96]. See Appendix A.1 for the
derivatives of the coordinates and for the Jacobian of the transformation.

Here, we prefer the second approach, which is more in line with the finite
volume methodology treated in this book. However, it requires the construction
of an additional control volume for the computation of the derivatives. This
will be discussed below for the cell-centred and the cell-vertex scheme.

Once we obtained the values of the flow variables and of the first derivatives
at the faces of the control volume, we can sum up the contributions due to the
viscous fluxes according to Eq. (4.2). By adding the sum of the contributions
to the inviscid fluxes, we completed the spatial discretisation, and we can thus
integrate the approximated governing equations in time.
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(a)

I+1, J+1

(b)

i+1, j+1

Figure 4.12: Auxiliary control volume ' (filled) for evaluation of first deriva-
tives in two dimensions: (a) cell-centred scheme; (b) cell-vertex scheme. The
diamond symbol denotes location where first derivatives are to be evaluated.
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4.4.1 Cell-Centred Scheme

In order to apply Green’s theorem, which relates the volume integral of the
first derivative to the surface integral of U, we have to define a suitable control
volume first. Since we need the derivatives at the midpoints of the faces for the
summation in Eq. (4.2), we construct an auxiliary control volume centred at
the face by connecting the midpoints of the edges defining adjacent grid cells
[31], [19], [96] as shown in Fig. 4.12a. In order to evaluate the first derivative
at the face (/+1/2) — marked by a diamond symbol in Fig. 4.12a — we have to
integrate the corresponding flow variable U over the boundary of the auxiliary
control volume (denoted by the superscript ’ in the following). Thus, e.g., for
the derivative in the z-direction

NF
U 1 o1 ,
= — XN m , 4.
ox /39' Uds, Qo Z U Sz,m (4.121)

m=1

where Ng stands for the number of faces (Ng = 4 in 2D and Ng = 6 in 3D).
The volume € and the components of the face vector 57, = [SHA A,
respectively, are computed as already presented in Section 4.1. The face values
U, are obtained either directly as cell-centred values (i.e., U;; and Uiy, ; on
the left and the right face), or by averaging like on the upper and the lower face,

e.g., at J+1/2

1
Unisirge = Z(UI.J +Ur,g +Urg4 + U1+1.J+1) , etc. (4.122)

We can apply the same approach in three dimensions, where again four cell-
centred values can be utilised for the averaging. Hence,

U

M, J41/2.K (UI,J.K + U1+1,J,K + UI,J+1,K + U1+1,J+1,K) y

U (4.123)

M g2k (Unak +Ur sk +Ungsrk +Urse1,641)

[ N N

The above scheme is quite compact, with the computational stencil extend-
ing over only nine cells in two dimensions and over 15 in three dimensions. It
should be noted that this approach for computing the first derivatives cannot
suppress the generation of two types of spurious modes (decoupled solutions
at neighbouring cell centres) [97], [19]: the chequer-board mode, arising from
the form of the integral around the control volume, and a pair of corrugated
or washboard modes, arising from the averaging of values in neighbouring cells.
However, there are generally no difficulties with this in practice. A more seri-
ous problem would occur, if the gradients would be first evaluated for each cell
(similar to the convective fluxes) and then averaged at the cell faces. Although
this approach may appear more attractive than the current methodology, it is
not recommended since it leads to strong odd-even decoupling.
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A disadvantage of above scheme is a loss of accuracy if the grid is not uni-
form [96], [97]. Namely, for arbitrarily stretched grids the approximation of the
derivatives becomes inconsistent. Thus, the viscous fluxes are discretised with
second-order accuracy only for smoothly stretched grids.

Finally, it should be noted that the TSL approximation of the Navier-Stokes
equations (Subsection 2.4.3) can easily be realised by omitting the appropriate
contributions when computing the gradients. For example, if the boundary
layer would be oriented along the I-direction in Fig. 4.12a, contributions from
the left (I, .J) and the right side (I + 1, J) of the auxiliary control volume would
be dropped.

4.4.2 Cell-Vertex Scheme

As already mentioned, both types of cell-vertex schemes resort to the dual con-
trol volume (Subsection 4.2.3) for the discretisation of the viscous fluxes. Hence,
the question is how to evaluate the first derivatives at the faces of this control
volume. Considering Fig. 4.12b, one possible alternative is to calculate the gra-
dients at the cell centres first by integrating over the grid cells, which yields
first-order accuracy on arbitrarily stretched grids. In a next step, the cell-based
gradients are averaged at the faces of the control volume 2 [31], [98]. However,
this approach cannot prevent an odd-even decoupling of the solution.

Another possibility, similar to the cell-centred scheme, is to construct an
auxiliary control volume around the face by connecting the midpoints of the
edges defining adjacent grid cells [99], [100]. This is depicted in Fig. 4.12b. The
evaluation of the first differences proceeds along the same lines as discussed for
the cell-centred scheme, with averaged quantities where necessary. It should be
noted that this approach is formally identical to the finite difference approxi-
mation [94]-[96]. This scheme leads to first-order accurate discretisation of the
viscous fluxes on arbitrarily stretched grids and to second-order accuracy on
smooth grids [94], [96]. Another positive feature is that the computational sten-
cil is confined to only nine nodes in two dimensions and to 15 nodes in three
dimensions.

Finally, one further approach should be mentioned, where a more complex in-
tegration path was chosen, with averaging incorporating all neighbouring nodes
(20]. A serious disadvantage of this scheme is that it encompasses a 25-point
stencil even in two dimensions, which adds in general more numerical diffusion
than more compact stencils. Furthermore, if an implicit scheme would be en-
visioned for the time integration, the bandwidth of the flux Jacobian would
become prohibitively large. A detailed discussion of various methodologies for
the gradient evaluation can also be found in Ref. [101].
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Chapter 5

Spatial Discretisation:
Unstructured Finite
Volume Schemes

As we already noted in the introduction to Chapter 3, the majority of numerical
schemes for the solution of the Euler- and the Navier-Stokes equations employ
the method of lines, i.e., a separate discretisation in space and time. The main
advantage of this approach is that it allows us to select numerical approximations
of different accuracy for the spatial and temporal derivatives. This offers a
significantly larger flexibility as compared to methods based on coupled space
and time discretisation, like the Lax-Wendroff family of schemes (e.g., explicit
MacCormack predictor-corrector scheme, implicit Lerat’s scheme, etc. — details
may be found, e.g., in Ref. [1]). Because of the popularity of the method of
lines, we shall follow this approach here.

The finite volume schemes which are discussed in this chapter are based
on the conservation laws, as are represented by the Navier-Stokes (2.19) or
by the Euler equations (2.45). In a pre-processing step, the physical domain
is first subdivided into a number of elements (grid celis). In two dimensions,
the elements are triangles, sometimes combined with quadrilaterals. In three
dimensions, tetrahedra are most often employed {2]-{7]. However, an increasing
number of flow solvers uses a mix of tetrahedra, prisms, pyramids, and in some
cases also hexahedra (Fig. 5.1) for the simulation of high Reynolds number
viscous flows [8]-[16]. Unstructurced grids composed of various cell types are
referred to as mized grids. Examples are provided in Figs. 3.3 and 5.2. The
designation ‘mixed grids’ should not be confused with the term hybrid grids,
which means combined structured-unstructured grids (e.g., [17]-[19]).
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tetrahedron

prism hexahedron

Figure 5.1: Elements used for the generation of 3-D unstructured grids.

Figure 5.2: Planar cut through a 3-D unstruetured mixed grid around a com-
pressor blade. Grid was generated using CENTAUR™ [20], [21]. Note the
layers of quadrilateral faces around the surface which is due to the prisms. Ir-
regularity of the tetrahedral grid is caused by the planar cut.
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The grid generation has to be done in a way that preserves the conservation
properties of the governing equations, namely:

e the physical domain has to be completely covered by the grid,
o there must be no free space left between the elements,
o the elements may not overlap.

In addition to fulfilling the above requirements, the grid should be smooth, i.e.,
there should be no large differences in the volumes or in the stretching ratio of
adjacent grid cells and the elements should be as regular as possible. Otherwise,
the numerical errors could spoil the solution accuracy completely (22], [23].

Based on the grid, suitable control volumes are defined in order to evaluate
the integrals of the convective and viscous fluxes as well as of the source term.
For simplicity, let us assume that a particular control volume does not change in
time {otherwise see Appendix A.4). Then, the time derivative of the conservative
variables W can be cast in the form

o [ - oW

Herewith, Eq. (2.19) becomes

‘Z_‘j”z_é {ﬁn(ﬁc«fv)ds-/ﬂc}dn] . (5.1)

The surface integral on the right-hand side of Equation (5.1) is approximated by
a sum of the fluxes crossing the faces of the control volume. This approximation
is called spatial discretisation. It is usually supposed that the flux is constant
along the individual face and that it is evaluated at the midpoint of the face.
This treatment is sufficient for a second-order accurate scheme. The source term
is generally assumed to be constant inside the control volume. However, in cases
where the source term becomes dominant, it is advisable to evaluate Q as the
weighted sum of values from the neighbouring control volumes (see [24] and the
references cited therein). If we consider a particular volume €y, we obtain from
Eq. (5.1)

- Ng
d‘ I 1 = =3 -
awr _ 1 SO(F - m — (G0 . 2
o O m__l( ¢ — Fu)m AS QM) (5.2)

In the above expression, the index I in capital letters references the control
volume, since in general it does not necessarily coincide with the grid, as we
shall see later. Furthermore, Ng denotes the number of the faces of the control
volume €;, and the variable AS,, stands for the area of the face m, respectively.
The number of faces Nr depends of course on the cell-type but also on the
type of the control volume. In general, the number of faces changes between
the control volumes as well, which is one of the main differences as compared
to structured grids. However, numerical procedures and data structures were
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developed which avoid the a priori knowledge of Ngp. We shall return to this
point in later sections.

The term in square brackets on the right-hand side of Eq. (5.2) is usually
denoted as the residual. Thus, we may abbreviate Eq. (5.2) as

=-—Ry. (5.3)

Writing down the relationship in Equation (5.3) for all control volumes 1y, we
obtain a system of ordinary differential equations of first order. The equations
are hyperbolic in time, that means we have to advance them in time starting
from a known initial solution. We have also to provide appropriate bound-
ary conditions for the viscous and the inviscid fluxes, as they are described in
Chapter 8.

When numerically solving the system of discretised governing equations
(5.3), the first question is how to define the control volumes and where to locate
the flow variables with respect to the grid points. In the framework of finite
volume schemes, three basic strategies can be pursued:

o Cell-centred scheme [25], [26], [2], [16] - control volumes are identical with
the grid cells and the flow variables are associated with their centroids
(Fig. 5.6).

o Cell-vertex scheme with overlapping control volumes [27], [28] - flow quan-
tities are assigned to the grid vertex and the control volumes are defined
as the union of all grid cells having the respective node in common. This
means that the control volumes associated with two neighbouring vertices
overlap each other.

o Cell-vertex scheme with median-dual control volumes [29]-[33], [13], [15] -
flow variables are again stored at the grid vertices, but the control volumes
are now created by connecting the centroids of the surrounding elements,
face-centroids and edge-midpoints (Fig. 5.8). In this way, the grid points
are encapsulated by their corresponding control volumes — representing a
dual grid — which do not overlap.

Because the cell-vertex scheme with overlapping control volumes is no longer
used, we shall concentrate here on the cell-centred and on the median-dual
scheme. Both methodologies will be discussed in detail in Section 5.2.

It is important to notice that in our case all flow variables, i.e., the conser-
vative variables (p, pu, pv, pw and pE) and the dependent variables (p, T, c,
etc.), are associated with the same location — with the cell centre or with the
grid point. This approach is known as the co-located grid scheme. By contrast,
many older (structured) pressure-based methods (cf. Section 3.1) use the so-
called staggered grid scheme, where the pressure and the velocity components
are stored at different locations in order to suppress oscillations of the solution
which arise from central differencing.
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Many choices exist with respect to the evaluation of the convective fluxes.
The basic problem is that we have to know their values at all Nz faces of a con-
trol volume, but the flow variables are not directly available there. This means,
we have to interpolate either the fluxes or the flow variables to the faces of the
control volume. The interpolation of flow variables is known as reconstruction
of the solution from values inside the control volumes (see Subsection 5.3.3). In
principle, the interpolation can be conducted in one of two ways:

e by arithmetic averaging like in central discretisation schemes;

e by some biased interpolation like in upwind discretisation schemes, which
take care of the characteristics of the flow equations,

Besides the description, we shall treat aspects such as accuracy, range of appli-
cability and numerical effort of the most widely used discretisation schemes for
the convective fluxes in Section 5.3.

A commonly applied methodology for the evaluation of the viscous fluxes
at a face of the control volume is based on arithmetic averaging of the flow
quantities. More involved is the calculation of the velocity and the temperature
gradients in Equations (2.15) and (2.24), particularly in the case of mixed grids.
We shall present the whole procedure in Section 5.4.
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5.1 Geometrical Quantities of a Control Volume

Before we start to discuss the discretisation methodologies applied to the convec-
tive and viscous fluxes, it is important to consider the evaluation of geometrical
quantities of the control volume §2; - its volume, the unit normal vector 7.,
(defined as outward facing) and the area AS,, of a face m. The normal vector
and the face area are also denoted as the metrics of the control volume. In the
following, we shall consider the 2-D and the 3-D case separately.

5.1.1 Two-Dimensional Case

Generally, we think of the flow in a plane as being a special case of a 3-D problem,
where the solution is symmetric with respect to one coordinate direction (e.g.,
to the z-direction). Because of the symmetry and in order to obtain correct
physical units for volume, pressure, etc., we set the depth of all grid cells and
control volumes equal to a constant value b. The volume of a control volume
results then in 2D from the product of its area with the depth b. Since the depth
b is arbitrary, we may set b = 1 for convenience. In the following discussion,
we restrict ourselves to triangular and quadrilateral elements. Even though the
control volume of a median-dual scheme can have a rather complex shape, it
can always be decomposed into triangles and/or quadrilaterals.

Triangular element

The area of a general triangle can be most conveniently and exactly calculated
by the formula of Gauss. Thus, using a node numbering in accordance with Fig.
5.3a, the volume results from

Q= g[(zl — z2)(y1 + y2)
+ (72 — 23)(y2 +y3) (5.4)
+(zs —z1)(ys + 1) ] .

The nodes have to be numbered in the anti-clockwise direction in order to obtain
a positive value for the volume.

Quadrilateral element

The area of a general quadrilateral can be exactly calculated by Gauss’ formula,
which leads, after some algebra, to the expression

N = g[(ll —23)(y2 — ya) + (24 — 22) (11 — ys)] ) (5.5)

where the nodes are numbered according to Fig. 5.3b in the anti-clockwise di-
rection. In the above, we assumed that the control volume is located in the
z-y-plane and that the z-coordinate represents the symmetry axis.
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(a) (b)

Wy

Figure 5.3: Numbering of nodes and face vector of: (a) triangular element, (b)
quadrilateral element.

The edges of a control volume are given by straight lines in 2D and thereforc
the unit normal vector is constant along them. When we integrate the fluxes
according to the approximation of Eq. (5.2), we have to evaluate the product
of the area of a face AS and the corresponding unit normal vector @ which is
the face vector S. Considering Fig. 5.3, the outward pointing face vector, e.g.,
at the side 2-3 is given by

Sa3 = fig3 ASe3 = b [gz i zi] . (5.6)

Because of the symmetry, the z-component of the face vectors (and the unit

normal vector) is zero. It is therefore omitted in Eq. (5.6). The unit normal
vector can be obtained from Eq. (5.6) with

AS=|§|=/s2+852, (5.7)

where S;, S, denote the Cartesian components of the face vector.

5.1.2 Three-Dimensional Case

As opposed to the previous 2-D case, the computation of face vectors and vol-
umes poses in 3D some problems for elements or control volumes with quadri-
lateral faces. The main reason for this is that, in general, the four vertices of a
quadrilateral face of a control volume may not lie in a plane. Then, the normal
vector is no longer constant on such face (sce Fig. 4.2). In order to overcome
this difficulty, we could decompose each quadrilateral face into two or even more
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(a)

»y

Figure 5.4: Numbering of nodes and face vector of: (a) tetrahedral element,
(b) hexahedral element.

triangles. However, the gain in accuracy is hardly noticeable for a second-order
scheme on a smooth grid. The additional effort can only be justified — and in
fact it becomes necessary - for a third- and higher order spatial discretisations.
Therefore, we shall apply a simplified treatment of the quadrilateral faces in the
following considerations, which is based on an averaged normal vector.

Triangular face

The face vector S can be exactly computed for a triangular face using Gauss’
formula. Defining the nodes according to Fig. 5.4a, we obtain for the edge
differences of the triangle 1-2-3
Azya = (21 —22)(y1 +y2), Ayza = (y1 — y2)(21 + 22),
Azyp = (z2 — 23) (Y2 +¥3), Ayze = (y2 — y3)(22 + z),
Azyc = (z3 —z1)(ys + 1), Ayze = (y3 —y1)(z3 + 21), (5.5
Azx g = (Zl —22)(11,‘1 +£L'2), .
Azzp = (22 — 23)(z2 + z3),

Azzo = (z3 — Zl)(l's + 7).
The outward pointing face vector S = @AS results then from

. Ayza + Ayzp + Ayzc
S=z1Azra+ Azzp+ Azzc | . (5.9)
Azya + Azyp + Azye



Spatial Discretisation: Unstructured Finite Volume Schemes 137

Quadrilateral face

The averaged face vector S of a quadrilateral face, like that rendered in Fig.
5.4b, is most conveniently computed using the same Gauss’ formula as employed
in 2-D for the area of a quadrilateral. Thus, for the face given by the nodes 5,
6, 7 and 8 in Fig. 5.4b, we first define the differences

Azp =8 ~ 26, AzIp=1x7—725,
Aya=ys—ys, AYB=Y7—1Ys, (5.10)

Azg =28 — 26, Azp=27—25.
Then, we obtain the outward pointing face vector S = AAS from the relation

. AyaAzp — Aza Ayp
S== AZAAQ:B-—AQ:AAZB . (5.11)
Azs Ayp — Ayq Azp

The approximation becomes exact when the face approaches a parallelogram,
i.e., when the vertices of the face lie all in one plane.
The unit normal vector is obtained in both cases from 7 = S/AS with

AS = /2 + 82 + 52, (5.12)

where S;, S, and S, denote the Cartesian components of the face vector given
by Eq. (5.9) or Eq. (5.11), respectively.

Volume

As we already stated in the case of 3-D structured finite volume schemes, a very
convenient approach for the computation of volumes is based on the divergence
theorem [34]. The discussion in Subsection 4.1.2 led finally to the expression

NF

1 . .
0=3 > (Fia * S)m (5.13)

m=1

for the volume, where N denotes the number of the faces of the control vol-
ume, (Fmid)m the the midpoint of the control volume face m, and S, the face
vector {outward directed) at face m, respectively. The formula (5.13) is directly
applicable on unstructured grids. It is exact for a volume with triangular faces,
or a volume with planar quadrilateral faces.
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5.2 General Discretisation Methodologies

We already mentioned at the beginning of this chapter that there are two pop-
ular approaches for the definition of the control volume and for the location
of the flow variables. These are the cell-centred scheme and the median-dual
scheme. We shall present both in more detail in this section.

However, before we start, let us say a few words about the basic data struc-
ture which is needed for an unstructured flow solver. In fact, a flexible but in
terms of memory and operation count efficient data structure is the crucial point
of any unstructured scheme. You can say that the structure which is missing
in the grid has to be provided inside the solver. At least the following data is
required:

e coordinates of the grid nodes (vertices),
e pointers from elements to grid nodes,
e pointers from faces of elements located on a boundary to grid nodes.

Further data structures, which are required by the discretisation schemes, can
be generated from this information. In order to illustrate how the above data
could possibly be stored, let us consider for example the tetrahedron in Fig.
5.4a. If we further assume that the face 1-2-4 is on a boundary (wall, inlet,
farfield, etc.), we could employ the format:

# nodes (x, y, z):
Pi.x Pl.y Pl.z
P2.x P2.y P2.z
P3.x P3.y P3.z
P4.x P4.y P4.z

# tetrahedra:
P1 P2 P3 P4
# boundaries:

type P1 P4 P2

A similar format is also utilised by the 2-D unstructured code provided on the
accompanying CD-ROM.

It is important to realise the following two points related to the boundaries
of the computational domain. First, it is more convenient to store boundary
faces than just the nodes. This can be understood by considering the situation
depicted in Fig. 5.5. The problem is that node P, is shared by three, nodes
P, and P; by two boundaries of possibly physically different types. Therefore,
it can become very cumbersome to apply the correct boundary conditions. On
contrary, a face can belong to only one boundary, like P;-P,-P; to boundary 1.
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Figure 5.5: Three boundaries which meet at one corner - ambiguity of grid
points with respect to boundary type.

The second point concerns the numbering of the nodes of the boundary faces.
This has to be done in a consistent way — e.g., anti-clockwise when viewed from
outside the flow domain - in order to have all face vectors (Eqgs. (5.7), (5.9) or
(5.11)) either pointing outward or inward.

5.2.1 Cell-Centred Scheme

We speak of a cell-centred scheme if the control volumes are identical with the
grid cells and if the flow variables are associated with the centres of the grid cells
as sketched in Fig. 5.6. When we evaluate the discretised flow equations (5.2),
we have to supply the convective and the viscous fluxes at the midpoints of the
faces of the control volume, which is sufficient for a second-order accurate dis-
cretisation on smooth grids (averaged normal vector employed for quadrilateral
faces). The fluxes can be approximated in one of three ways:

1. by the average of flures computed from values at the centres of the grid
cells to the left and to the right of the cell face, but using the same unit
normal vector (generally applied only to the convective fluxes);

2. by using an average of variables associated with the centres of the grid
cells adjacent to the left and to the right side of the cell face;

3. by computing the fluxes from flow quantities reconstructed separately on
both sides of the cell face from values in the surrounding cells (employed
only for the convective fluxes).
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. iy C,
]

Figure 5.6: Control volume of a cell-centred scheme (in 2D). Grid nodes are
represented by circles, cell centres by rectangles (C).

Thus, considering for example the cell face with the unit normal vector 7ig; in
Fig. 5.6, the first approach — average of fluxes — reads in two dimensions

- lr= - -
(FeaS)y, ~ 3 [FC(WO, fo1) + F. (W1, ﬁm)] ASor (5.14)

with the face area ASy; computed from Egs. (5.6) and (5.7).
The second approach — average of variables — can be formulated as follows

(FAS),, ~ F(Woi, fior) ASor, (5.15)

where the conservative/dependent variables at the face with the unit normal
vector 7p; are defined as the arithmetic average of values at the two adjacent
cells. Thus,

Wo, = % (WO + vi‘/l) . (5.16)

The flux vector F' in Eq. (5.15) represents either the convective or the viscous
fluxes.

The third methodology starts with an interpolation of flow quantities (usu-
ally velocity components, pressure, density and total enthalpy) separately to
both sides of the cell face. The reconstructed quantities — termed the left and
the right state (see Subsection 5.3.3) - differ in general. The fluxes through the
cell face are then evaluated from the difference of the left and right state using
some non-linear function. Hence,

(FeA8)y, % frua (Us, Ur, ASar) (5.17)
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where B
Up = fRee (, s, Uy, )
(5.18)
On = free (- G, O, )

represent the reconstructed states.

Of course, similar relations hold for the other control volume faces as well.
The above approximations can be employed in the same way in three dimen-
sions. The face vector S is then evaluated using the formulae (5.9) or (5.11),
respectively.

As we already stated in the introduction to this section, the basic data
structure which describes the elements has to be extended in an appropriate
way to support the discretisation methodology. It is obvious from the previous
discussion that numerical operations are carried out using mainly the faces of the
elements (control volumes) together with values at the centres of the adjacent
cells. Tt is therefore quite natural to employ a face-based data structure for the
spatial discretisation. Such data structure stores for each particular face in the
grid:

e pointers to the two cells which share the respective face - this allows it to

access the flow variables associated with the two cells (Co, C1);

o the face vector (501 = 7151 ASp ) — must point consistently either outwards

or inwards;

e two vectors from each cell centre to the midpoint of the face My, i.e.,
(Co-Mo1), (C1-Mp)) — required for accurate interpolation of flow variables
to the face. This is not necessary for purely tetrahedral grids, where a
simple extrapolation formula can be used [26], (2] (see Eq. (5.40)).

Hence, the integration of the fluxes (e.g., according to Eq. (5.15)) would be
implemented as a loop over all (i.e., internal and boundary) faces contained in
the grid:
DO face = 1, nfaces
I = pointer_to_left_cell( face)
J = pointer_to.right_cell( face )
(FAS)IJ ~ ﬁ(W]J, ﬁ[J)AS]J
él =ﬁ1+ (FAS)IJ
Ry =R, - (FAS),,
ENDDO

After the loop is coanleted and the source term Q 101 is added, we obtain
the final residuals (R) in all cells. A less efficient approach would be to loop
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over elements because the face vectors would have to be stored twice and the
fluxes would be computed twice (with the exception of boundaries). Further-
more, because we use exactly the same face vector S;; in order to to evaluate
the partial fluxes into the volumes Q; and Q,, the conservation properties of
the governing equations are kept.

5.2.2 Median-Dual Cell-Vertex Scheme

Within the cell-vertex scheme, the flow variables are associated with the grid
nodes (vertices). Median-dual control volumes are formed by connecting the
centroids, face- and edge-midpoints of all cells sharing the particular node. This
is depicted in Fig. 5.7a for a tetrahedron and in Fig. 5.7b for a hexahedron. The
definition of a median-dual control volume results in a polyhedral hull around
each grid node, as it is sketched in Fig. 5.8 for a 2-D mixed grid. This polyhedra
can be viewed as a dual grid — hence the name of the scheme. It is interesting
to note that the median-dual finite volume discretisation is equivalent to the
Galerkin finite element scheme with linear elements (see, e.g., [35]).

In order to evaluate the discretised flow equations (5.2), we have to integrate
the convective and viscous fluxes over the surface of the control volume. Hence,
we would have to compute the fluxes for each partial face (e.g., F1-M,3-F>-C in
Fig. 5.7a) separately. However, this is only required for a third- or higher-order
accurate discretisations [36], [37). In the case of a second-order scheme, which
is most frequently employed, we may assume the flow variables to be constant
for all faces grouped around a particular edge. The fluxes are then evaluated at
the midpoint of the edge using the variables and the gradients from both nodes.
This approach allows us to define a mean unit normal vector and a total face
area associated with each edge. Thus referring to Fig. 5.8, the mean normal
vector, e.g., for the edge Fy-P; becomes

floy = 7L + 7R, (5.19)

and the total face area is given by: ASy = ASp + ASk. The same applies
also in 3D, where the mean normal vector results from a sum over all partial
faces having the particular edge-midpoint in common, as it is rendered in Fig.
5.9. The face vector (§ = @ AS) is computed in 2D from Eq. (5.6). In three
dimensions, where the partial faces are always quadrilaterals, we can either
divide them into triangles and use Eq. (5.9), or we can employ a simplified
treatment due to Eq. (5.11), which is sufficient for smooth grids.

The fluxes can then be evaluated according to one of the three following
methodologies:

1. by the average of fluzes computed from values at both nodes of an edge,
but using the same mean unit normal vector (generally applied only to
the convective fluxes);
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(a)

(b)

Figure 5.7: Partial control volume and faces (shaded) of a median-dual scheme
for tetrahedron (a) and hexahedron (b). P denotes grid nodes, C cell-centroids,
F face-centroids, and M stands for edge-midpoints. Shaded area represents one
part of the control volume face assigned to edge P-P; or Py-P;, respectively.
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P

C

P, P,

Figure 5.8: Control volume of a median-dual scheme (in 2D). C;, Ca, etc.
denote cell centres; Py, P,, etc. represent grid nodes. Face area associated with
edge Pp-P) is rendered by bold line.

Figure 5.9: Total face area and mean unit normal vector associated with some
edge ij of the 3-D median-dual cell-vertex scheme.
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2. by using an average of variables stored at the two nodes of an edge;

3. by computing the fluxes from flow quantities reconstructed separately on
both sides of the face of the control volume from values at the surrounding
nodes (employed only for the convective fluxes).

The computation of fluxes follows formally the same approaches as for the cell-
centred scheme. Thus, the formulae (5.14)-(5.18) are applicable also in the case
of the median-dual scheme. If we utilise the above approach which associates
each edge with a mean unit normal, the most efficient method is to employ an
edge-based data structure for the spatial discretisation. The edge-based data
structure stores for each particular edge in the grid (cf. Fig. 5.9):

e pointers to the two nodes which define the cdge - this allows it to access
the flow variables associated with the two control volumes Q; and Q;;

e the face vector (§j; = 71;;A8;;) - must point consistently either outwards
or inwards;

e the edge vector from node i to node j - required for the interpolation of
flow variables to the face (solution reconstruction). Alternatively, the edge
vector can be computed on the fly from coordinates of the nodes. This
is not required for the standard central scheme with artificial dissipation
(Subsection 5.3.1).

With this, the integration of the fluxes (e.g., according to Eq. (5.15)) would be
implemented as a loop over all edges in the grid:

DO edge = 1, nedges
i = pointer_to_left_node( edge )
j = pointer_to_right node( edge )
~ F(Wiy, i) AS;;

(FAS)..

i

After the loop is completed and the source term Q.Q; is added, we obtain
the final residuals (R) in all nodes. This approach is significantly more efficient
than summing up the fluxes over each control volume separately, because we
store each mean face vector only once and we also visit each edge only once
instead of twice. Furthermore, since we use exactly the same mean face vector
Si; in order to to evaluate the partial fluxes into the volumes €; and ;, mass,
momentum and energy remain conserved.
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5.2.3 Cell-Centred versus Median-Dual Scheme

The relative advantages and disadvantages of the cell-centred and the median-
dual scheme are the subject of controversial debates. The main reason is the
lack of fair comparisons of the two methodologies with respect to accuracy, com-
putational time and memory for realistic configurations. Our intention here is
to collect the most important arguments for and against each of the approaches
regarding:

e accuracy,

e computational work,

e memory requirements, and
o flexibility.

This should lead to a greater understanding of the problems inherent to each
scheme and should be of help in selecting the most suitable scheme for the
intended applications.

Accuracy

A cell-centred scheme on a triangular/tetrahedral grid leads to about twice/six
times as many control volumes and hence degrees of freedom as a median-dual
scheme [35]. On typical mixed grids, which consist of tetrahedra and prisms, a
cell-centred scheme gives roughly three times more unknowns than a median-
dual scheme. This suggests that cell-centred schemes are more accurate than
cell-vertex discretisations on an identical grid. However, the residual of a cell-
centred scheme results from a much smaller number of fluxes as compared to a
median-dual scheme (three versus approximately seven on a tetrahedral grid),
which may impair the accuracy. Thus, there is no clear evidence about which
scheme might be superior.

The median-dual scheme suffers from a particular problem on stretched tri-
angular and tetrahedral grids. Consider, for example, Fig. 5.10, which shows a
tessellation composed of right triangles, as it is often employed near solid walls
for viscous flows. We can see in Fig. 5.10a that the face AS;; becomes highly
skewed with respect to the edge ¢7. However, spatial discretisation schemes
mostly assume fluxes to be orthogonal to a face (especially Riemann solvers).
Thus, an error is introduced which is particularly significant for a first-order
scheme [37]. The situation can be improved using the so-called containment-
dual control volume [38]. As depicted in Fig. 5.11, the containment-dual ap-
proach employs the centres of the minimum spanning circles/spheres instead of
cell-centroids to define the faces. This leads to control volumes identical to those
on quadrilateral grids (Fig. 5.10b). Notice that there is no face area associated
with diagonal edges like 5j'. An additional effort is required for pre-processing,
but the solution accuracy can be improved noticeably [39]. Of course, another
possibility is to employ directly quadrilateral or hexahedral cells in boundary
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(a)

/ASU

(b)

i J

Figure 5.10: Comparison of median-dual (a) and containment-dual (b) control
volumes for stretched right triangulation.
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(a) (b) (c)

containment circle

Figure 5.11: Part of containment dual (dashed line) in the case of acute (a)
and obtuse (c) triangles [39]. The containment circle is the smallest circle which
contains the triangle. For obtuse triangles, it is centred on the longest edge.

layers. Further discussion of grid-induced errors can be found in Ref. [22] and
[23].

Another problem inherent to the median-dual scheme is the discretisation
at boundaries of the physical domain. What happens is that there is only
about one half of the control volume left at the boundary (cf. Fig. 4.6). The
integration of fluxes around the faces results in a residual located inside - ideally
at the centre — of the control volume. However, the residual is associated
with the node, residing directly on the boundary. This mismatch leads to
increased discretisation error in comparison to the cell-centred scheme, which
is particularly undesirable on solid walls. The definition of the dual control
volume causes also problems at sharp corners (like trailing edges), which show
up as unphysical peaks in pressure or density. Further complications arise at
periodic boundaries (see Chapter 8.7), where the fluxes from both parts of the
control volume have to be summed up correctly.

The mismatch between the centre of the control volume and the node where
the residual is stored has also a further implication for the median-dual scheme.
It arises as the mass matrix in the case of unsteady flows. We discussed this
point already at the beginning of Section 3.2. The advantage of the cell-centred
scheme is that the mass matrix can be eliminated from the equations, with-
out compromising the solution accuracy. By contrast, the median-dual scheme
requires a special treatment of the mass matrix [40], [41].



Spatial Discretisation: Unstructured Finite Volume Schemes 149

Computational Work

In order to judge the computational effort required for both schemes, we have
to consider primarily the integration of the fluxes. We know from the previous
discussion that the cell-centred scheme uses a loop over cell faces whereas the
median-dual scheme loops over edges. Since the evaluation of the fluxes at an
interface is quite similar for both schemes, the ratio of the number of cell faces
to the number of edges gives the ratio of the computational work. Thus, on
a tetrahedral grid, where the number cell faces (if counted only once for each
two cells) is approximately two times larger than the number of edges, the cell-
centred scheme is computationally twice as much expensive as the median-dual
scheme on an identical grid [35]. The cell-centred approach becomes however
more competitive on mixed grids containing prismatic elements. Apart from
boundary treatment, both methods are computationally equivalent on hexahe-
dral grids, where the number of faces equals the number of edges.

Memory Requirements

Considering the memory requirements, the cell-centred scheme has to store
about six times more flow variables on tetrahedral and about three times more
variables on usual mixed grids as compared to the median-dual scheme. Fur-
thermore, as we saw, both schemes require to store two integers and three reals
(pointers and face vector) per cell face or edge, respectively. Additionally, the
cell-centred scheme has to keep two vectors to the face-midpoint — 6 reals — per
cell face in memory. On contrary, the median-dual scheme can work with the
node coordinates only, which are considerably fewer values. Thus in summary,
the cell-centred scheme needs, on average, more than twice as much computer
memory as the median-dual method.

Grid Generation/Adaptation

One significant advantage of the cell-centred scheme appears in the case of non-
conforming cell interfaces, like those at the letter “F” in Fig. 3.4. In contrast to
the median-dual methodology, no special and expensive procedure is required
for the computation of the fluxes at the interface. This allows for an increased
flexibility in the grid generation and also in the grid adaptation.
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5.3 Discretisation of Convective Fluxes

In the previous sections, we considered general issues of possible spatial discreti-
sation methodologies including the necessary data structures. In what follows,
we shall learn more about the details, how the evaluation of the convective fluxes
can be implemented.

As we could already see in Subsection 3.1.5, in the framework of the finite
volume approach, we have basically the choice between:

central,

flux-vector splitting,

flux-difference splitting,
e total variation diminishing (TVD), and
o fluctuation-splitting

schemes. First of all, we shall present the central discretisation on unstructured
grids at some length, since it differs considerably from that on structured grids.
On contrary, the basics of the upwind schemes are identical on structured and
unstructured grids. Hence, the details can be found in Sections 4.3.2-4.3.4.
However, what is new on unstructured grids is the solution reconstruction, which
is required in order to obtain the values of the flow variables at a face of the
control volume. Therefore, we shall discuss the common approaches in some
detail in Subsection 5.3.3. Because of space limitations, we will not treat the
fluctuation-splitting approach here, which is still in research status. The reader
is referred to Subsection 3.1.5 for the bibliography related to fluctuation-splitting
schemes.

5.3.1 Central Schemes with Artificial Dissipation

The basic idea of the central scheme is to compute the convective fluxes at a face
of the control volume from the arithmetic average of the conservative variables
on both sides of the face according to Eq. {5.16). Since this would lead to
odd-even decoupling of the solution (generation of two independent solutions
of the discretised equations) and wiggles at shocks, artificial dissipation has to
be added for stability. The artificial dissipation is based on a blend of second-
and fourth-order differences. The scheme was first implemented for the Euler
equations on structured grids by Jameson et al. [42]. Because of the names of
the authors, it is also abbreviated as the JST scheme.

The implementation of the JST scheme on unstructured grids utilises the
Laplacian operator for the second-order differences and the Laplacian of Lapla-
cian for the fourth-order differences [43], [27]). In order to reduce the compu-
tational cost, pseudo-Laplacians are employed instead of true Laplacians. For
this purpose, a 2-D formulation was proposed first in [44] and then improved
in [45]. Later on, the scheme was extended to 3D in [2]. It makes use of a
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distance-weighting procedure. In this way, the scheme results in the pseudo-
Laplacian being zero for a linearly varying function on any grid. Applied to a
general scalar quantity U in cell I, the pseudo-Laplacian takes the form

N
L{U) = Z 015 (Uy ~Ur), (5.20)
J=1
where N4 stands for the number of adjacent control volumes. The cell indices
have to be substituted by node indices (7,j) in the case of the median-dual
scheme. The sum in Eq. (5.20) is best evaluated using either a loop over faces
(cell-centred scheme) or a loop over edges (median-dual scheme) similar to the
flux computation. The geometrical weights € are defined as

01y =1+ A6y (5.21)

and result from the solution of an optimisation problem [2]. The optimisation
problem is solved by means of Lagrange multipliers. Herewith, the the geomet-
rical weights are obtained from the expression

Abry =g (zg —zp) + ANy 1{ys —yr) + Az p(zy — z1), (5.22)

where z,y, z are the Cartesian coordinates of the cell centres (nodes in the case
of the median-dual scheme). The Lagrange multipliers A are computed for each
cell (node) and follow from [2]

_ Ryau+Ryain+ R:a3

Az
d
/\y _ R, ax + Ry az + R a3 (5'23)
d
R;a31 + Ryazx + R; a3
A =
d
with the coeflicients
ar :Iyylz: — I;z
Qa2 = Iz::]yz - I:vyI:z
ayz = I:c-nyz - IzZIyy
Q21 = Imz[yz - IzyIzz
Q22 = I:va;]z:: - 1121 (5 24)

azy = Ipyler — Ipely:
azy = Ipyly: — Lo Iy
a3z = Ipoloy — Ipolye
ags = Lslyy = I2,
d=TLolpyLs — I;I2, = Iy I2, = I, 12, + 2Ly LIy



152 Chapter 5

Written for a cell I, the first-order moments read

Na
Rey=) (z7 - 1)
J=1
Na
Ry =Y (ys-ur) (5.25)
J=1
Na
Roy=Y (25 —z)-

J=1
Furthermore, the second-order moments are given by

Na
I:ca:,I = Z(.’EJ — .’1:1)2
J=1
Na
Lyr =Y (ys —w)?
J=1
Na
Izz,I = Z(ZJ - 21)2
J=1
Na
lay,g = Z(W —z7)(ys —y1)
J=1
Na
II:,I = Z(IJ - I[)(2J — ZI)
J=1
NA
Iy1 = Z(yJ —yi)(zg —z1) .

J=1

(5.26)

The geometrical weights (5.21) can lead to a non-positive approximation of the
Laplacian and hence to a lost of stability on severely distorted grids. Therefore,
clipping the weights to the range (0, 2) was suggested in [44]. However, this
measure impairs the accuracy of the discretisation. See also the discussion in
Ref. [12] for further details.

The fourth-order differcnces are evaluated as the Laplacian of tlie Laplacian,
i.e., L(U) is substituted for U in Eq. (5.20). Hence, the final form of the artificial
dissipation term is for a cell

Dy = Z(AC)IJ 6(12J) 014 (WJ - WI)
J=
N,

—

(5.27)

>

(/A\c)]_] 6(13) 01J [L(V-I}J) — L(W{)] .

o
i
—
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With the artificial dissipation term added, the system of equations in Eq. (5.2)
becomes

dW{ e, =
Q== == E;thmmm% +Dr+ @i, (5.28)

where Nr denotes the number of the faces of the control volume (which may
differ from the number of adjacent control volumes, e.g., if a quadrilateral face
is divided into two triangles).

The second- and the fourth-order terms in Eq. (5.27) are scaled by the spec-
tral radius of the convective flux Jacobian. According to Ref. [28], the spectral
radius in cell I can be evaluated as

Np
(Ae)r =Y (IVinl + ) ASm, (5.29)

m=|

where V,,, represents the contravariant velocity (2.22) and ¢,, the speed of sound,
respectively. Both quantities are evaluated from flow variables averaged at the
face. The spectral radius at the face of the control volume is obtained from

" 17 - .
(R = 5 [Rar+Ro)] (5.30)
A pressure-based sensor is used to switch off the fourth-order differences at
shocks and the second-order differences in smooth portions of the flow field.

Herewith, the coefficients 5(13) and e(;f,) in Eq. (5.27) are defined as

6(12} = k@ max(Y;,Ty)

. (5.31)
4
) = max [0, (k) — e(”))]
with the pressure sensor given by
Na
> 61 (ps —pr)
_ =1
T, = N (5.32)
> (ps+p1)
J=1

Typical values of the parameters are k() = 1/2 and 1/128 < k(¥ < 1/64.

As we already discussed in Subsection 4.3.1, the accuracy of the above central
scheme can be improved when we substitute a matrix [46) for the spectral radius
(A.)7s in Bq. (5.27). The implementation of this so-called matriz dissipation
scheme on unstructured grids proceeds in the same way as on structured grids,
with the scaling matrix defined as in Eq. (4.59). Application of the matrix
dissipation scheme to 3-D mixed grids is discussed, e.g., in Ref. [47].

It is important to note that for elements other than triangles/tetrahedra,
the popular explicit Runge-Kutta type of temporal discretisation experiences
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severe stability problems when it is coupled to the central scheme [48]. The
reason is the representation of the fourth-order differences by the Laplacian of
the Laplacian. A remedy is to employ a difference of the left and the right state
(cf. Section 4.3) for the approximation of the fourth-order differences [48], i.e.,

A

MZ

Na
Dr=Y (A1 b1y (WJ - Wl) - 4(A) et (WL - WR) . (5.33)
J=1

[
1l

1

This approach leads on quadrilateral /hexahedral grids to the same stencil as the
corresponding structured scheme. The left and right state are computed using,
e.g., the linear reconstruction described in Subsection 5.3.3.

5.3.2 Upwind Schemes

Upwind schemes seem to have gained, at least for the moment, much more
popularity on unstructured grids than the above central scheme. In fact, the
flux-difference splitting scheme of Roe [49] is the most widely employed ap-
proach on unstructured grids. It is the considerably more accurate resolution of
boundary layers and the lower sensitivity to grid distortions in comparison to
the central scheme, which explains the attractivity of Roe’s scheme. However,
the price to be paid for the improved performance is the higher computational
effort, which becomes quite significant if a limiter has to be used to suppress
oscillations of the solution (Subscction 5.3.5).

Any of the upwind schemes presented in Section 4.3 for structured grids are
applicable to unstructured grids without modifications to the basic methodology.
Only the computation of the left and right state (Eq. (5.18)), which is denoted
as solution reconstruction, as well as the cvaluation of the limiting function
require new formulations. For this reason, only the solution reconstruction and
the limiters are discussed here. For details on the various upwind methods, the
reader is referred to Subsections 4.3.2-4.3.4. An example for the implementation
of Roe’s scheme on unstructured grids using the median-dual approach can be
found in Ref. [33].

5.3.3 Solution Reconstruction

As we saw in Subsections 4.3.2-4.3.4, upwind schemes require flow states to be
specified on the left and the right side of a control volume face. The same holds
also for the modified artificial dissipation scheme in Eq. (5.33).

As a first approach, we can assume that the solution is constant inside each
control volume. The left and right state are then simply the flow variables
computed for the left and the right control volume. For example, in the case of
the median-dual scheme (Fig. 5.9) we would set

Up=U;

(5.34
UR‘-: Uj )
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with U representing some scalar flow variable. This leads to a spatial discreti-
sation which is only first-order accurate. For viscous flows, first-order accurate
solution are too diffusive and lead to excessive growth of shear layers. Therefore,
more accurate methods are required for the computation of these flows.

We can achieve second- and higher-order accuracy if we assume the solution
to vary over the control volumes. For second-order accurate methods, which are
the most commonly employed higher-order methods, the solution is assumed
to vary in a linear fashion over the control volume. In order to compute the
left and right state, a reconstruction of the assumed solution variation becomes
necessary. In what follows, we shall discuss the most popular approaches for
the reconstruction of linear and quadratic variations. The interested reader is
referred to {37] for a comparison of various linear reconstruction techniques.

Reconstruction Based on MUSCL Approach

One possibility to achieve second-order accuracy consists of the extension of the
MUSCL approach [50] to unstructured grids. When applied to the median-dual
scheme, the method generates for each edge 7§ two “phantom” nodes i’ and j'
{51}-[55]. These phantom nodes are located at the endpoints of the line obtained
by extending the edge ij by its length in both directions as sketched in Fig. 5.12.
After the solution is interpolated from the surrounding elements (gray coloured
in Iig. 5.12) to the phantom nodes, we can evaluate the left and right state
using the MUSCL formutae Eq. (4.46). Hence,

Ug = U, - i [(14+R)A + (1 - &)As) U
(5.35)
U =Ui + 311+ R)A, + (1 -R)A] U

with forward (A4 ) and the backward (A_) difference operators defined as

AU =U;-U;, AU =U~Uys
(5.36)
AU =Up -U; AU =U;~Us.

The MUSCL interpolation (5.35) has to be enhanced by a limiter function (ac-
cording to Subsection 4.3.5) in the case of strong discontinuities. A disadvantage
of this methodology is the necessity to store for each edge the elements which
contain the phantom nodes. A further, conceptual, disadvantage is that no
unique gradient is reconstructed for a control volume. Furthermore, difficul-
ties can arise at boundaries, where one of the phantom points lies outside the
physical domain.



156 Chapter 5

Figure 5.12: Evaluation of the left and right state based on interpolation from
elements in the direction of an edge ij (median-dual scheme in 2D).

(a) (b)

Figure 5.13: Linear reconstruction for the cell-centred (a) and the median-dual
(b) scheme in 2D.
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Piecewise Linear Reconstruction

Barth and Jespersen presented in [30] a reconstruction method, which is closely
related to the finite element schemes. Here, it is assumed that the solution is
piecewise linearly distributed over the control volume. Then, we can find the
left and right state for a cell-centred scheme from the relations

UL =Uy +‘I’](VU1 -FL)
(5.37)
UR=U_]+‘I’_](VU_] 'FR),

where VU; is the gradient of U (= [0U/8z, U /8y, OU/82z]T) at the cell centre I
and ¥ denotes a limiter function (cf. Subsection 5.3.5), respectively. The vectors
71, and 7r point from the cell-centroid to the face-midpoint, as indicated in Fig.
5.13a.

The same approach applies to the median-dual scheme [30], i.e.,

UL = Ui + %‘I’,(VUI . ’I_’z])

. (5.38)
Up=U; - 5%;(VU; - 7).
According to Fig. 5.9 or Fig. 5.13b,
Ty =T — T3 (5.39)

represents the vector from node i to node 3.

It can be seen easily that the method of Barth and Jespersen corresponds
to a Taylor-series expansion around the neighbouring centres/nodes of the face,
where only the linear term is retained. The linear reconstruction is formally
second-order accurate on regular grids [37]. The scheme reconstructs a linear
function exactly on any grid, provided the gradient VU is evaluated without
an error. The linear reconstruction is likely the most popular one among the
reconstruction methods.

The above scheme requires the computation of gradients at cell centres or
at nodes, respectively. This can be accomplished either by the Green-Gauss
or the least-squares approach, which are presented below in Subsection 5.3.4.
Furthermore, the implementation of the limiter function on unstructured grids
is described in detail in Subsection 5.3.5.

Linear Reconstruction Based on Nodal Weighting Procedure

It was demonstrated by Frink [26] that for the cell-centred scheme the linear
reconstruction (5.37) does not require an explicit evaluation of the gradient on
purely triangular or tetrahedral grids. The reason are two invariant geometric
features of these elements. First, a line from a node through the cell-centroid will
always intersect the midpoint of the opposing face. Second, the distance from
the cell-centroid to the face-midpoint is one-fourth (one-third for a triangle) of
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that from the face-midpoint to the opposing node. Thus, the gradient at the
cell centre can be approximated by a simple finite difference [26]. For example,
if we were to reconstruct the solution at the face-midpoint F3 in Fig. 5.7a, the
formulae (5.37) would become

UL/R=U0+11’ZCL %(U1+U2+U4)—U3 (5.40)
with U¢g being the values at cell-centroid, Uy, Us, etc. denoting the nodal values,
and finally ¥ standing for a limiter.

Two different ways were devised by Frink in order to determine the nodal
values. The first approach is based on inverse distance weighting. Here, the
contribution to a node from the surrounding cells is inversely proportional to
the distance from the node to the cell-centroid [26], [56], i.e.,

Na Nay
U= (> 6Us) 1 (D 611), (5.41)
J=1 J=1

with the weights ;5 = 1/r;;. The distance is computed from

rig = V(@ = @)+ (ys — )2 + (20 — ). (5.42)

The subscripts J and ¢ refer to the cell-centroid and to the node, respectively.
The above methodology leads to a reconstruction which is less than second-
order accurate. However, Frink pointed out that no limiter is needed at least
for inviscid flows [26], which reduces the computational effort significantly.
The second approach is based on work of Holmes et al. [44] and Rausch et
al. [45] in 2D. It was later extended to 3D by Frink [2]. Here, the weights 6;;
in Eq. (5.41) are defined such that the nodal values are computed exactly if the
variation is linear. This leads to the same constraints as for the computation
of the pseudo Laplacian (5.20). Consequently, the weights are also the same
and follow from the Equations (5.21)-(5.26). The coordinates z;, ys, z; of the
cell-centroids are just replaced by the node coordinates z;, y;, z;. The scheme is
formally second-order accurate because the nodal values are computed exactly
for a linear function. In order to assure positivity on distorted grids, the weights
have to be restricted to the range (0, 2) [44]. Unfortunately, this reduces the
accuracy of the reconstruction. Frink et al. [4] also reported recently some
anomalous behaviour of the reconstruction for the Navier-Stokes equations.

Piecewise Quadratic Reconstruction

In order to achieve higher than second-order accuracy with a polynomial recon-
struction, we have to keep further terms in the truncated Taylor-series expansion
around the neighbouring cell-centres/nodes of the face. Based on the work of
Barth and Frederickson {57], Barth developed the concept of k-exact recon-
struction scheme [58], i.e., a reconstruction exact for a polynomial of degree k.

]

The polynomial in Barth’s method is defined in a way which guarantees the
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conservation of the mean, or in other words, the average of the reconstruction
polynomial is equal to the mean solution in the control volume. This property
assures the conservation of mass, momentum, and energy during the reconstruc-
tion. The method was implemented for £ = 3 in a median-dual scheme. The
coeflicients of the polynomial were computed using a least-squares approach.
Similar ideas were followed for the cell-centred scheme by Mitchell and Walters
[59], and by Mitchell [60]. However, these methods require a prohibitively high
numerical effort and a complicated data structure which prevented widespread
use.

Delanaye and Essers [61] and Delanaye [62] developed a particular form of
quadratic reconstruction for the cell-centred scheme which is computationally
more efficient than the method of Barth. The left and right state are approxi-
mated using Taylor series truncated after the quadratic term [61], [62]

1 _
Up=Us+ 9, (VU; - 7L) + 5\1:,,2(*[ H )
(5.43)

1 _
Up=Uj+ ¥, (VUJ -’f"R) + 5‘11‘]'2(1_"17{ Hy 1"'1{) .

In the above Eq. (5.43), A denotes the Hessian matrix, i.e.,

o2, U 0XU 82U
H=|8U U U\ , (5.44)
2.U 9:LU LU,

evaluated at the cell-centroid 7. The variables ¥y, and ¥;, represent two
different limiter functions for the linear and the quadratic term [61], respectively.
The quadratic reconstruction method is third-order accurate on regular grids
and at least second-order accurate on arbitrary grids due to cancellation of error
terms [62]. Necessary conditions for achieving these properties are, however,
that the gradient VU in Eq. (5.43) is evaluated at least with second-order and
the Hessian with first-order accuracy. This is accomplished by combining Green-
Gauss gradient evaluation with least-squares based approximation of the second
derivatives [61], [62], which leads to a numerically efficient scheme. But the
memory and time overheads are still quite significant in comparison to the linear
reconstruction. The method utilises a fixed stencil composed of face and node
neighbours. The stencil is shown in Fig. 5.14 together with the integration path
employed for the Green-Gauss gradient computation. In order to determine all
coefficients of the quadratic polynomnial, at least six (ten in 3D) values must be
provided by the stencil. To maintain the accuracy provided by the quadratic
reconstruction, it is necessary to consider a linear variation of the solution over
the face instead of a constant value. This implies that the solution must be
reconstructed at two points — so-called Gauss quadrature points (cf. Fig. 5.14)
- of a 2-D face (at three points of a triangular face) and that the fluxes have to
be integrated in a piecewise manner over the face of the control volume [36].
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Figure 5.14: Stencil of the quadratic reconstruction method due to Delanaye
[61], [62] in 2D (filled rectangles). Dashed line represents the integration path
of the Green-Gauss gradient evaluation (control volume ). Crosses denote the
quadrature points for integration of the fluxes.

5.3.4 Evaluation of Gradients

An open point which remains from the discussion of the piecewise linear and the
quadratic reconstruction is the determination of the gradient. Gradients of the
velocity components and the temperature are also required for the evaluation
of the viscous fluxes (Section 5.4). Two approaches will be presented in the
following: the first is based on the Green-Gauss theorem and the second utilises
the least-squares method.

Green-Gauss Approach

This method approximates the gradient of somne scalar function U as the surface
integral of the product of U with an outward-pointing unit normal vector over
some control volume ', i.e.,

1
VU~ [ UfdsS. (5.45)
Q BQI

Median-Dual Scheme

Barth and Jespersen [30] derived a particular discretisation of the Green-Gauss
approach from the Galerkin finite element method. Later on, the discretisation
was extended to 3D by Barth {63]. Barth and Jespersen applied Eq. (5.45) to
the region formed by the union of the elements meeting at a node. They proved
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that the approach can be formulated such that it becomes compatible with the
edge-based data structure. However, this works only for the median-dual scheme
on triangular/tetrahedral grids. The resulting formula reads

Np
1 1 o
VU; = 5 j=2 1 E(Uz + Uj) nijASij . (5.46)

Here, ' in Eq. (5.45) equals to the volume of the median-dual control volume
1. The summation extends over all Ny edges incident to node i. Furthermore,
7i;; denotes the average unit normal vector according to Eq. (5.19), and AS;; is
the total face area, respectively. The same formula (5.46) is applicable in two or
in three dimensions. It is important to mention that the summation has to be
changed at boundaries in order to obtain a consistent approximation [64] (see
also Section 8.9).

Cell-Centred Scheme

We can use the Green-Gauss method in the cell-centred scheme as well. Hence,
the gradient at some cell-centroid I can be obtained from

Np
1 1 -
VU = a JE=1 E(UI +Us)irsASyy, (5.47)

where the summation extends over all faces of the cell with the volume Q. In Eq.
(5.47), fi;; denotes the unit normal vector and ASy; the face area, respectively.

Mixed Grids

The main attractivity of the Green-Gauss gradient evaluation by Eq. (5.46) or
(5.47) is its similarity to the computation of the fluxes (e.g., Eq. (5.15)). This
means that no additional data structures are needed for the reconstruction of
gradients. The main disadvantage is that the approximation in Eq. (5.46) or
Eq. (5.47), respectively, fails on mixed grids. It was demonstrated in [48] that
the gradient can become highly inaccurate, particularly where different element
types meet. We can solve the problem in the case of the median-dual scheme
when we keep the volume ' in Eq. (5.45) identical to the union of all cells
incident to node 7. Referring to the situation sketched in Fig. 5.8, the gradient
results then in 2D from
1t
VUi R 5 > 5(Us + Ui A8 (5.48)
Jj=1
with ¢ = 0, the number of outer faces No = 6, and j+1 =1 for j = 6. Further-
more, 7i; and AS; stand for the unit normal vector and the area of the outer
cell faces. In 3D, we can use
a1
VUim & > 3WUst +Usp + Usg) A8, (5.49)

j=1
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when we assume all faces are triangles — either naturally or by decomposition.

The same remedy can be also employed for the cell-centred scheme. The sur-
face of the control volume ¥ is then defined by the centroids of the distant-one
and distant-two neighbouring cells [61], [62], as it is rendered in Fig. 5.14. The
gradient is computed correspondingly to Eq. (5.48) or (5.49) with cell instead
of node indices.

The clear disadvantage of such a cell-based approach is the necessity of an ad-
ditional data structure, which provides a link between the central node/centroid
and the outer faces of . Thus, the approach is no longer grid-transparent (i.e.,
independent of cell information) and an efficient gather-scatter loop is no longer
possible. This renders the least-squares technique, which is described below,
more attractive on mixed grids.

Using the edge-/face-based implementation (5.46) or (5.47) on triangular
or tetrahedral grids, and the cell-based methodology (5.48) or (5.49) on mixed
grids, the Green-Gauss approach is at least first-order accurate [62]. It is also
consistent, i.e., the gradient of a linear function is computed to roundoff error.
First-order accuracy is sufficient for the linear reconstruction. Second-order
accuracy on arbitrary grids, which is required for the quadratic reconstruction,
can be achieved by subtracting an estimate of the truncation error from the
first-order approximation of the gradient [62].

Least-Squares Approach

The evaluation of gradients by the least-squares approach was first introduced
by Barth [63], [35]. In order to illustrate the method, let us consider the median-
dual scheme. Herewith, the least-squares approach is based upon the use of a
first-order Taylor series approximation for each edge which is incident to the
central node i. The change of the solution along an edge ij can be computed
from

(VU:) -7 =U; = U, (5.50)

where 75; is given by Eq. (5.39) and represents the vector from node i to node
J (see Fig. 5.9 or Fig. 5.13b). When we apply the relation (5.50) to all edges
incident to node ¢, we obtain the following over-constrained system of linear
equations

[ Az Ay Az ] [ 6, (U, -U;) T
Azia Ayiz Az 02 (Us = U;)
: : : ;U .
) ’ ) o,U | = ’ .51
Amg Ayy Az | 0] T 6 wi-vy (5.51)
LATiN, AYin, AZiNAJ On, (Uny ~Us) |

with A(-)i; = (-); — (*); and 9, (-) = 8(-)/Om. Further, N4 denotes the number
of adjacent nodes j connected to ¢ by an edge and 6; stands for some weighting
coeflicient. The weights can depend on the geometry and/or on the solution
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(see, e.g., [39]). However, in practice 6; is usually set to unity. For convenience,
we abbreviate the above system (5.51) as

Az =15. (5.52)

Solving Eq. (5.52) for the gradient vector ¥ requires the inversion of the
matrix 4. To prevent problems with ill-conditioning (particularly on stretched
grids), Anderson and Bonhaus suggested to decompose A into the product of an
orthogonal matrix Q and an upper triangular matrix R using the Gram-Schmidt
process [65]. Their approach was recently extended to 3D in [48]. Hence, the
solution to Eq. (5.52) immediately follows from

F=R'Q%. (5.53)

Using a lower case letter with double subscripts to denote a matrix element, we
may write the Gram-Schmidt orthogonalisation of the matrix A = [@;, @, @3]

as Q = [(Tl) q’.'h q&]) where

o 1

q1=——a
™11

o 1 (. 712,

G=— (az -2 a1> (5.54)
T22 11

o 11, 1o, T3 T127T23 )\ .
3 =—— Q3 — —Qay— | — — —— J a1 .
Tag : 11 T11 722

The entries in the upper triangular matrix R are obtained from

Na
T2 = Z(Ayij)z ~ 11
=1
(5.55)
1 A
i3 = — Z A:rijAzij
T
=1
1 Na r Na
12
Toz = — Z Ay1]A4i] —_— Z A.’l‘ijAZ,'j
722 — T
I1= 7
Na
T33 = (Azij)* = (s +733) -
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Using Eqs. (5.53)-(5.55), the gradient at node ¢ follows from the weighted sum
of the edge differences

Na
VU; =% = Zu.;ij(Uj - U;) (556)
j=1
with the vector of weights uj;; defined as

T12
aij1 — — 0452 + Baijs
T11

0 — 23
Wy = ijz — —2 ija . (5.57)
2

Q53

The terms in the above Equation (5.57) are given by

A.’E,‘j
aij,l - T%
1
1 T2
Q352 = 5 Ay,-j - —A.’E,‘j (5.58)
22 711
1 Tag
@ij3 = - Az — T—Ayij + BAz; ),
33 22
where
g = 112723 7 st (5.59)

11722
The formulation of the least-squares approach remains for a cell-centred scheme
formally the same, only the nodes have to be substituted by cell-centroids. An
example may be found in Ref. [16].

The least-squares approach is first-order accurate [62] on general grids. It is
also consistent, 1.e., the gradient of a linear function is computed to roundoff er-
ror, regardless of the type of the elements. Therefore, the method is particularly
suited to mixed grids. The computational costs are comparable to those of the
Green-Gauss approach, since only a vector-scalar multiplication (Eq. (5.56)) is
needed within a single loop over faces/edges. However, we have to pre-compute
and store the six entries (Eq. (5.55)) of the upper triangular matrix R at each
node.

Experience shows that the least-squares approach requires some attention in
the case of the median-dual scheme if prismatic or hexahedral cells are employed
on a viscous wall. Consider Fig. 5.15 and assume that we want to compute the
gradients of the velocity components at node i. It may become obvious that
only the contribution from the edge ¢j is useful, since at other nodes connected
to 7 by an edge © = v = w = 0. To increase the support of the stencil, we can
insert so-called virtual edges (48], as they are rendered by dashed lines in Fig.
5.15. The virtual edges help to improve the accuracy and the robustness of the
discretisation scheme considerably. It should be stressed that they are employed
only for the gradient reconstruction but not for the Alux computation.
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(a) (b)

Figure 5.15: Virtual edges (dashed lines) used for the computation of gradients
at node 7 [48]. Shown for prismatic (a) and hexahedral cell (b) on boundary
(shaded).

5.3.5 Limiter Functions

Second- and higher-order upwind spatial discretisations require the use of so-
called Limiters or limiter functions in order to prevent the generation of os-
cillations and spurious solutions in regions of high gradients (e.g., at shocks).
Hence, what we want to achieve is at least a monotonicity preserving scheme.
This means that maxima in the flow field must be non-increasing, minima non-
decreasing, and no new local extrema may be created during the time evolution.
We discussed this point in Subsection 4.3.5 for the case of structured upwind
schemes.

On unstructured grids, the purpose of a limiter is to reduce the gradient
used to reconstruct the left and right state at the face of the control volume.
The limiter function must be zero at strong discontinuities, in order to obtain
a first-order upwind scheme which guarantees monotonicity. Setting the limiter
to zero leads to the constant reconstruction of Eq. (5.34). Of course, the original
unlimited reconstruction has to be retained in smooth flow regions, in order to
keep the amount of numerical dissipation as low as possible. In the following, we
shall describe two widely used limiter functions — namely the limiters of Barth
and Jespersen {30] and of Venkatakrishnan [66], [67].
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Limiter of Barth and Jespersen

The first implementation of a limiter function on unstructured grids was pre-
sented in [30]. In the case of the median-dual scheme, it is defined at node 4

® ( U U
min (1, LA;‘-—) if Ag >0
‘I’i = min; min (1, Umin - U;) if AQ <0 (560)
A,
1 if Az = 0

with the abbreviations
Ay =
Umax =

(VU: - 7%5)

1
2
max(U;, max;U;) (5.61)

Umin = min(U,-, minjUj) .

In Equations (5.60) and (5.61), min; or max; means the minimum or maximum
value of all direct neighbours j of node 7 (i.e., all nodes connected to ¢ by an
edge). Furthermore, the edge vector 7;, which is shown in Fig. 5.9 or in Fig.
5.13b, is defined according to Eq. (5.39). Finally, U; denotes a scalar quantity
at some neighbouring node j. Similar formulae to those above hold for the
cell-centred scheme with cell instead of node indices and with

Ay = VU -7y, (5.62)

where 77, denotes the vector from the cell-centroid to the midpoint of the corre-
sponding cell face. In order to avoid division by a very small value of A, in Eq.
(5.60), it is better to modify As as Sign(As)(JAz|+w), where w is approximately
the machine accuracy [66].

Barth’s limiter enforces a monotone solution. However, it is rather dissi-
pative and it tends to smear discontinuities. A further problem presents the
activation of the limiter due to nuinerical noise in smooth flow regions. This
usually prevents the full convergence to steady state [66], [37]. Therefore, the
limiter function due to Venkatakrishnan became more popular.
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Venkatakrishnan’s limiter

Venkatakrishnan's limiter [66], [67] is widely used because of its superior con-
vergence properties. The limiter reduces the reconstructed gradient VU at the
vertex 1 by the factor

( _1— (A.f,max + 62)A‘2 + 2A,”22Al,max A >0
A A%,max + 2A% + Al,maxAZ + €2 2
s =ming § 1 [ (A2 o+ €2)Ay + 2A2A0 min AL <0 (5.63)
B B ¥ <
Ay | AT ¥ 2AI+ Al te2| Ol
L 1 ifAy =0
where
Al,m.a\x = Umax — Ui
(5.64)

Al.min = Umin - Ui .

In the above Eq. (5.64), Umnax and Upi, stand for the minimum /maximum values
of all surrounding nodes j and including the node i itself. Definitions of Upay,
Umin and A; are given in Eq. (5.61). The parameter ¢ is intended to control
the amount of limiting. Setting ¢ to zero results in full limiting, but this may
stall the convergence. Contrary to that, if €2 is set to a large value, the limiter
function will return a value of about unity. Hence, there will be no limiting at
all and wiggles could occur in the solution. In practice, it was found that €2
should be proportional to a local length scale, i.e.,

€ = (K Ah)3, (5.65)

where K is a constant of O(1) and Ah is for example the cube-root of the
volume (square-root of the area in 2D) of the control volume. It is important
to notice that the limiter function (5.63) must be defined with non-dimensional
quantities. The influence of the coefficient K in Eq. (5.65) on the resolution of a
shock is demonstrated in Fig. 5.16. It can be seen that the fully limited (K = 0)
and the solution for K = 5 are identical. However, the explicit time-stepping
scheme converged only about three orders of magnitude for K = 0, whereas for
K = 5 it converged to machine zero (Fig. 5.17). Figure 5.16 also shows that
the solution becomes gradually unlimited with increasing values of K. This
manifests itself as an increasing overshoot at the shock.

The computational effort for the evaluation of one of the above limiter func-
tions is relatively high. Two loops over edges (faces in the case of the cell-centred
scheme) and one loop over nodes (cells) are necessary in order to compute Umax,
Uwmin as well as the limiter ¥ itself. Furthermore, Ujax, Umin and ¥ have to be
stored node-(cell-)wise separately for each flow variable.
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Figure 5.16: Effect of the constant K in Venkatakrishnan’s limiter, given by
Eq. (5.63), on the solution — inviscid flow past a circular arc.
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Figure 5.17: Effect of the constant K in Venkatakrishnan’s limiter on the
convergence - inviscid flow past a circular arc.
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5.4 Discretisation of Viscous Fluxes

In order to evaluate the diffusive fluxes F, in Eq. (5.2), flow quantities and
their first derivatives have to be known at the faces of the control volumes. The
control volume for the viscous fluxes is conveniently chosen to be the same as
for the convective fluxes in order to obtain a consistent spatial discretisation
and to simplify the data structure. Because of the elliptic nature of the viscous
fluxes, values of the velocity components (u, v, w), the dynamic viscosity g, and
of the heat conduction coefficient k, which are required for the computation of
the viscous terms (2.23), (2.24) and of the stresses (2.15), are simply averaged
at a face. Thus, in the case of the cell-centred scheme (Fig. 5.13a), the values
at the face IJ of the control volume result from

1
Uy = §(UI +Uy), (5.66)

where U is any of the above flow variables. A similar expression holds in the
case of the median-dual scheme for the face ¢j — see Fig. 5.13b.

The remaining task is the evaluation of the first derivatives (gradients) of
the velocity components in Eq. (2.15) and of temperature in Eq. (2.24). This
can be accomplished in one of two ways, i.e., by using

e element-based gradients, or

e average of gradients.

In the following, we shall learn more about both approaches.

5.4.1 Element-Based Gradients

A common feature of this type of gradient computation is the necessity to store
either information about the grid elements or some coeflicients related to the ge-
ometry of the elements. Hence, we have to extend the data structure beyond the
face-/edge-based formulation presented earlier for the convective fluxes. Below,
we discuss three well-established methods for the cell-centred and the median-
dual discretisation.

Face-Centred Control Volume

One possible way of evaluating the gradients at a face of the control volume
is to define an auxiliary control volume centred at the face and to employ the
Green-Gauss theorem. We already discussed this approach in Section 4.4 in the
framework of the structured finite volume discretisation. For example in the case
of the median-dual scheme, we can compute the gradient at the edge-midpoint
as the volume average of gradients for all elements which share the edge [68].
The element-based gradients are evaluated according to Eq. (5.45) by looping
over all grid cells and accumulating the gradients at edges. The values of U at
the cell-faces are obtained by averaging the nodal values, in a manner similar
to Eq. (5.49). This approach is quite costly in terms of memory and number of
operations. However, it can be implemented for any mix of grid elements.
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Approximate Galerkin Finite Element Approach

Another methodology, which is applicable to the median-dual scheme, was de-
rived from the Galerkin finite element method [31]. Basically speaking, the
approach transforms the integration of gradients over the surface of the control
volume into an evaluation of Hessian matrix (second derivatives) at the central
node. The viscous terms then follow the differential form of the Navier-Stokes
equations in Cartesian coordinates (Eq. (A.4) with £é = 2, n = y, { = z and
J~! = 1), which contains terms such as

0 (u0zu), etc.

with 0,,(-) = 9(-)/0m. Hence, no further integration of the viscous fluxes over
the faces of the control volume is required.

The original scheme was formulated for purely triangular/tetrahedral grids.
1t employs a union of all elements that contain the particular node. In order
to simplify the implementation, the dynamic viscosity coefficient is averaged
from the nodal values, which is a difference to the Galerkin method. Then, the
second derivatives can be evaluated at node ¢ as follows [69]

0z (n0;U) 0y(nd:U) 0:(n0;U)
8 (nd,U) 8,(nd,U) 8.(nd,U)
0:(p0.U) 0y(p0.U) 0,(10.U)

i

(5.67)
Na a [a% Oy
1 T zy rz Wi +
=0 Z Ayr  Qyy  Qyz —1—2_1 (Ui - UJ‘)
Jj=1 Qzp Ozy Oy

ij

The volume £’ contains all tetrahedra which share the node ¢. The coefficient
matrix & in Eq. (5.67) is symmetric about the diagonal [69], i.e., 0y = @y,
Qr; = Qg, and ay; = a,,y, respectively. Thus, it is necessary to store only six
coefficients for each edge. The coeflicients are given by [69]

Qg =y (ﬂ)—"ﬂ—(s—)‘ : (5.68)

where n, k denote the z, y, z subscripts, and (S?), (S?), represent components
of the outer face vectors §Z, .5-'2 displayed in Fig. 5.18. The summation is carried
out over all tetrahedra (with particular volumes (2.) which share the edge ij. If
the grid is stationary, the coefficients can be computed in a pre-processing step.
A desirable feature is that the same edge-based data structure can be employed
as for the convective fluxes.

The disadvantage of this approach is that the full viscous terms are retained
only on triangular or tetrahedral grids. For other elements like prisms or hexahe-
dra, this technique simplifies to a TSL-like approximation of the Navier-Stokes
equations in all three coordinate directions [8]. An extension to non-simplicial
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elements which conserves the full viscous terms was presented in [70]. However,
the efficient edge-based data structure can no longer be used since the stencil
involves also nodes which are not directly connected by an edge.

Average of Nodal Values

This scheme is intended for the cell-centred type of control volume and purely
tetrahedral grids. It employs a modified version {4] of the stencil introduced in
(60] to evaluate the gradients at the cell faces. The approach is based on an
average of the values at the three nodes which define the cell face, combined
with the quantities at the cell centroids. The first derivatives at a cell face result
from the solution of the linear equation system [4]

T]—T] YJ = Yr 2y — 2zl 0. U
Lmta)—m s tu) - (et )
g\T2t23) — 1 Sl2tys) —h Glztz) -z gU
1 1 1
glttas) —o Sytys) -y S(atzm)-=)|6U
(5.69)
Uy-U;
1
— §(U2+U3)—U1 ’
1
§(U1+U3)—U2

Referring to Fig. 5.19, the subscripts I, .J denote the cell-centroids, and the
subscripts 1,2, 3 stand for the nodes Py, P, and Pj, respectively. Flow variables
at the nodes can be determined either from inverse-distance weighting (Eq.
(5.41)) or by pseudo-Laplacian weighting [2] (similar to Eq. (5.20)).

5.4.2 Average of Gradients

If we already computed the gradients inside each control volume (e.g., using the
piecewise linear reconstruction, Eq. (5.37) or (5.38)), it would be tempting to
evaluate the gradient at the face-midpoint by the simple average [71]

S 1
VUL =5 [VU; + VU, ]. (5.70)

This approach is particularly attractive, because it requires only the basic face-
/edge-based data structure and no additional storage. However, as pointed out
in, e.g., [69], it leads to a wide stencil with an unfavourable weight distribu-
tion [48]. Furthermore, it was demonstrated in [48] that the stencil allows the
decoupling of the solution on quadrilateral or hexahedral grids.

The properties of the method can be improved and particularly the decou-
pling can be prevented by using the directional derivative along the connection
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Figure 5.18: Viscous terms at node i: tetrahedron with volume €2, and the
triangular faces involved in the computation of coeflicients associated with the
edge ij [69].

Figure 5.19: Cell-centred scheme: stencil for the computation of gradients on
tetrahedral grids [4]. Cross denotes location where the gradients are evaluated
in order to compute the viscous fluxes (face-midpoint Py P P3).
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between the cell-centroids (in the case of the cell-centred scheme), i.e.,

oU Uy—U;
P) Y 5.71
( T >” oy (5-71)

where ¢;; represents the distance between the both cell-centroids I and J
(dashed line in Fig. 5.19). A similar expression holds also for the median-dual
scheme with 7; being defined in Eq. (5.39). With the definition of the unit
vector iy along the line connecting I and J,

frg = 2L, (5.72)
L1y

the modified average may be written as [72], [73]

—

_ - - oU
VU1J=VU1J_|:VU1J‘t1J‘—<'57> ]t[] (5.73)
IJ

where VU, is given by Eq. (5.70). The modification leads to strongly coupled
stencils on tetrahedral as well as on prismatic or hexahedral grids [48]. The
modified approach is also still compatible with the face-/edge-based data struc-
ture and requires no additional storage. It is therefore more attractive than the
element-based methodology, provided the gradients inside control volumes are
utilised for the convective fluxes anyway.
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Chapter 6

Temporal Discretisation

The application of the method of lines, i.e., the separate spatial and temporal
discretisation of the governing equations (2.19), leads, written down for each
control volume, to a system of coupled ordinary differential equations in time

d(QMW _
(—EL‘—)I = -R,. (6.1)

In Eq. (6.1), §2 represents the volume, R the residual, M the mass matrix, and
the index I denotes the particular control volume. The system (6.1) has to be
integrated in time — either to obtain a steady-state solution (R; = 0), or to
reproduce the time history of an unsteady flow.

We briefly discussed the aspects of the solution of the equation system (6.1)
in Section 3.2. We saw that the various ezplicit and implicit methods can be
derived from a basic non-linear scheme. It reads for a stationary grid

QM)r - B oz 1-83 w (QM)r ooy
AWP = - Rl __CZRny 7 AW (6.2
At; ! 1+wR1 +o 9170 Aty I (6.2)
where . . .
AWPR = Wpt! —wp (6.3)

stands for the update (correction) of the solution. The superscripts  and (n+1)
denote the time levels. Hence, W™ means the flow solution at the present
time ¢t. Consequently, W™*! represents the solution at the time (¢ + At). The
parameters 3 and w determine the discretisation type (explicit or implicit) and
also the temporal accuracy. For example, the condition expressed by Eq. (3.6)
must be fulfilled to achieve second-order temporal accuracy.

In the following sections, we shall consider the most popular explicit and
implicit time-stepping methods in some detail. We shall also present how the
maximum allowable time step can be evaluated for a particular scheme. Fur-
thermore, we shall discuss the issues of the appropriate implementations on
structured as well as on unstructured grids. Finally, the last section will be
devoted to time-accurate solutions of unsteady flow problems.
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6.1 Explicit Time-Stepping Schemes

An explicit scheme starts from a known solution W™ and employs the corre-
sponding residual B” in order to obtain a new solution at time (¢ + At). In
other words, the new solution Wt depends solely on values already known.
This fact makes the explicit schemes very simple and easy to implement.

As we discussed it in Subsection 3.2.1, a basic explicit scheme can be derived
from Eq. (6.2) by setting 3 = 0 and w = 0. This results in

M; AW} = _au R?. (6.4)
Q
The mass matrix M can be lumped (i.e., substituted by the identity matrix) for
steady problems or for the cell-centred discretisation.
The most popular and widespread explicit methods by far are the multi-
stage (Runge-Kutta) time-stepping schemes and a variant, the hybrid multistage
schemes. Therefore, we shall describe both methods in the following.

6.1.1 Multistage Schemes (Runge-Kutta)

The concept of explicit multistage schemes was first presented by Jameson et
al. [1]. The multistage scheme advances the solution in a number of steps —
so-called steges — which can be viewed as a sequence of updates according to
Eq. (6.4). Applied to the discretised governing equations (6.1), where the mass
matrix was lumped, an m-stage scheme reads

W =wp

(1) _ (0 Atr =)

WI( ) = WI — WRI

- = by =

W — o QQ%_I AW (6.5)
I

- . - Atp sim—
W}H_l — W[(m) - WI(O) _ am_Q_tI_Rg‘m 1) )
I

In the above expressions (6.5), oy represents the stage coefficients. Furthermore,
the denotation R'(,k) means that the residual is evaluated with the solution W}k)
of the k-th stage.

Unlike in the classical Runge-Kutta schemes, only the zeroth solution and
the last residual are stored here in order to reduce the memory requirements.
The stage coeflicients can be tuned to increase the maximum time step and to
improve the stability for a particular spatial discretisation [2]-[4]. For consis-
tency, it is only required that a,, = 1. A consequence of the modification to the
Runge-Kutta scheme is that second-order time accuracy can be realised only if
¢&m—1 = 1/2. Otherwise, the multistage scheme is first-order accurate in time,
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i | first-order scheme || second-order scheme |
stages 3 4 ) 3 4 )
o 1.5 2.0 2.5 0.69 0.92 1.15

o 0.1481 | 0.0833 | 0.0533 || 0.1918 | 0.1084 | 0.0695
o 0.4000 | 0.2069 | 0.1263 || 0.4929 | 0.2602 | 0.1602
o3 1.0000 | 0.4265 | 0.2375 || 1.0000 | 0.5052 | 0.2898
oy 1.0000 | 0.4414 1.0000 | 0.5060
a5 1.0000 1.0000

Table 6.1: Multistage scheme: optimised stage coeflicients («) and CFL num-
bers (o) for first- and second-order upwind spatial discretisations.

central scheme || upwind scheme
o=36 c=20

stage a B8 a 8

1 0.2500 | 1.00 0.2742 1.00
0.1667 | 0.00 | 0.2067 | 0.00
0.3750 | 0.56 || 0.5020 | 0.56
0.5000 | 0.00 0.5142 | 0.00
1.0000 | 0.44 1.0000 | 0.44

T o DO

Table 6.2: Hybrid multistage scheme: optimised stage (o) and blending (8)
coefficients, as well as CFL numbers (o) for central and upwind spatial discreti-
sations.

The above multistage approach (6.5) is particularly suitable for upwind spa-
tial discretisation on structured as well as unstructured grids. Central discretisa-
tion schemes perform more efficiently with the hybrid multistage methodology,
which will be described next. Sets of optimised stage coefficients for first- and
second-order upwind schemes are presented in Table 6.1 for three- to five-stage
schemes [2]. Practical experience shows that the coefficients for the first-order
scheme should be preferred in cases, where the flow field contains strong shocks,
regardless of the order of the spatial discretisation. This can be explained by the
fact that every higher-order scheme switches to first order at shocks to prevent
oscillations of the solution. However, the residuals at strong shocks influence
the convergence to steady state most significantly.

The main disadvantage of every explicit scheme is that the time step (At) is
severely restricted by the characteristics of the governing equations as well as by
the grid geometry. We shall discuss the computation of the maximum allowable
time step in Subsection 6.1.4. Theoretical aspects of the determination of the
time step and the so-called CFL number will be considered in Section 10.3 on
stability analysis.
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6.1.2 Hybrid Multistage Schemes

The computational work of an explicit multistage scheme (6.5), applied to the
system (6.1), can be substantially reduced if the viscous fluxes and the dissi-
pation are not re-evaluated at each stage. Additionally, the dissipation terms
from different stages can be blended to increase stability of the scheme. Meth-
ods of this type were devised by Martinelli [5] and by Mavriplis et al. [6]. They
are known as hybrid multistage schemes. Provided the stage coefficients are
carefully optimised, the hybrid schemes are as robust as the basic multistage
schemes.

For illustration, let us consider a popular 5-stage hybrid scheme, where the
dissipative terms are evaluated at odd stages — generally denoted as the (5,3)-
scheme. First, we split the spatial discretisation into two parts, i.e.,

Ry = (Re)1 — (Ra)r . (6.6)

The first part, R, contains the central discretisation of the convective fluxes,
which can be either the average of variables or the average of fluxes. It also
includes the source term. The second part, Rd, is composed of the viscous
fluxes and the numerical dissipation. For example, in the case of the central
scheme with artificial dissipation (Subsections 4.3.1 or 5.3.1) we would set

(s = " [ERas], - @),
k=1

(éd)1 = % [ﬁv AS + ﬁ]k ,
k=1

where Wav represents the arithmetic average of flow variables from the left and
the right side of face k.

With the residual split according to Eq. (6.6), the (5,3)-scheme can be for-
mulated as

Wi =Wy

A0 1%{ [R*go) _}7510)]1

WP =W 0 2L (R - BY),

we o as%tll [R*Eg) R-l(i'z,o)]l (6.7)
WO <o 4%%1 [}igf‘) -'L(iz,o)]l

Wwrtl = Wvl(o) 5%_’511_ [-'((:4) _ R"(;t.z)]l ’
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where

B89 = g,R + (1 - 85)RY

B3 = g B+ (1 - ) RYY.

(6.8)

The stage coefficients a,, and the blending coefficients 8,, in the above relations
(6.7), (6.8) are given in Table 6.2 for central and upwind schemes. Both sets of
coefficients are particularly optimised for the multigrid method (Section 9.4).
We shall discuss the properties of the above hybrid multistage scheme later in
Section 10.3.

It should be mentioned that it is also popular to evaluate the dissipation
term Ry in the first two stages only, without any blending. A well-known (5,2)-
scheme, which is often employed with the central spatial discretisation, uses the
stage coefficients of Table 6.2. However, the (5,2)-scheme is less suitable for
multigrid than the above (5,3)-scheme.

6.1.3 Treatment of the Source Term

There are certain cases in which the source term @ in Eq. (4.2) or (5.2) becomes
dominant. Such situation is often encountered when chemistry or turbulence
models are employed. The problem is that a large source term changes the flow
variables rapidly in space and in time. The changes due to a strong source
term happen at much smaller time scales than those of the flow equations. This
increases the stiffness of the governing equations significantly. The stiffness is
defined as the ratio of the largest to the smallest eigenvalue of the Jacobian
matrix OK/OW. The stiffness can also be viewed as the ratio of the largest to
the smallest time scale.

When we apply one of the above explicit multistage schemes (or any other
purely explicit scheme) to a stiff system of equations, we will have to reduce
the time step considerably in order to stabilise the time integration. Hence,
the convergence to the steady state will become very slow. More seriously, an
explicit scheme can fail to find the correct solution [7]. A remedy suggested
by Curtiss et al. [8] is to treat the source term in an implicit way. In order to
demonstrate the approach, we rewrite the basic explicit scheme in Eq. (6.4) as
follows (cf. Eq. {4.2) or (5.2))

Nrp
X_’AW, = [ SoFr - P aS - u@pt | (6.9)
k=1

where the source term is now evaluated at the new time level (n4+1). For
simplicity, the mass matrix was omitted from Eq. (6.9). Since the value of the
source term at the time (n+1) is unknown, we have to approximate it. For this
purpose, we linearise the source term about the current time level n, resulting
in

g~ Qm + aQ AW, (6.10)
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If we insert Eq. (6.10) into Eq. (6.9) and rearrange the terms, we obtain the
following relation 9], [10]

T F;le] - 1 =
—_— | —= AWP = —— R}, 6.11
{Ah <3W)1J ! Q! (6.11)

where I represents the identity matrix. The formulation (6.11) is called point
implicit because the term in square brackets on the left-hand side — the implicit
operator — depends only on values in the control volume Qy itself. A com-
parison with Eq. (6.9) reveals that the scalar time step At changed now to a
matrix. Thus, each flow equation becomes scaled by an individual parameter,
corresponding to the associated eigenvalue. In this way, the disparity between
the time scales is offset and the time step restriction due to the source term is
alleviated.

When we apply the above point-implicit approach to the multistage scheme
in Eq. (6.5), we obtain for the k-th stage

<\ 7!
- . |1 oQ 3(k—1)
WwE e _ X L - hoal . 6.12

I ! Qr | Aty oW J, ! (6.12)

A similar expression holds also for the hybrid multistage scheme in Eq. (6.7).
The interested reader may find a detailed investigation of the influence of the
source term on stability in Refs. [11]-[13].

6.1.4 Determination of the Maximum Time Step

Every explicit time-stepping scheme remains stable only up to a certain value of
the time step At. To be stable, a time-stepping scheme has to fulfil the so-called
Courant-Friedrichs-Lewy (CFL) condition {14]. It states that the domain of
dependence of the numerical method has to include the domain of dependence of
the partial differential equation. The CFL condition means for the basic explicit
scheme (6.4) that the time step should be equal to or smaller than the time
required to transport information across the stencil of the spatial discretisation
scheme. Hence, in 1D the condition for the time step would read for the linear

convection equation
Az

At=o0 ™k (6.13)
where Az /|A.| represents the time necessary to propagate information over the
cell size Az with the velocity A.. The velocity A, corresponds to the maximum
eigenvalue of the convective flux Jacobian. The positive coefficient o denotes
the CFL number. The magnitude of the CFL number depends on the type and
the parameters of the time-stepping scheme, as well as on thec form of the spatial
discretisation scheme. We shall investigate the dependency of ¢ in Section 10.3
for two model problems. Tables 6.1 and 6.2 list the CFL numbers for various
multistage schemes and discretisations.
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The maximum time step can be determined for linear model equations with
the aid of Von Neumann stability analysis (Section 10.3). However, the max-
imum time step can be calculated only approximately in multiple dimensions
and for non-linear governing equations. In the following, we will present rela-
tions for the estimation of the time step on structured and unstructured grids
for inviscid as well as for viscous flows.

Time Step on Structured Grids

Euler Equations

On a structured grid, the time step At can be determined for a control volume
Q; from the approximate relation [15]-[17]

y
(AL+AJ +AK),"

At =0 (6.14)

The CFL number o can be obtained for multistage schemes from Table 6.1 and
for hybrid schemes from Table 6.2. The spectral radii of the convective flux
Jacobians (A.7) read for the three grid directions

AL = (7 7| +¢)Aas!
A = (|7 7] +¢) ASY (6.15)
AK = (|g- K| +¢) ASK.

The normal vectors and face areas in Eq. (6.15) are obtained by averaging the
corresponding values from the two opposite sides of the control volume in the
respective direction. For example, if a dual control volume (Subsection 4.2.3)
would be oriented as sketched in Fig. 4.1b, we would use in the I-direction

_1 1

k= %(ASl + AS,). (6.16)
Similar expressions hold for the J- and K-direction.

With Eq. (6.14), we obtain a local time step, which is valid for one control
volume only. If we are interested in a steady state solution, we may use the
local time step to accelerate the convergence (cf. Section 9.1). However, if time
accuracy is important, we have to employ one global time step for all volumes,
ie.,

At = min; (Aty), (6.17)

where a minimum over all control volumes is taken.
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Navier-Stokes Equations

For viscous flows, the spectral radii of the viscous flux Jacobians (A.8) have to
be included in the computation of At. They can severely limit the maximum
time step in boundary layers. The time step can be evaluated from (5], [16], [17]

1
(AL +AJ +AK) + C(Al + AJ + AK),~

Aty =0 (6.18)

The constant which multiplies the viscous spectral radii is usually set as C' = 4.
If we assume that an eddy-viscosity turbulence model is employed, the viscous
spectral radii are given by [16], [17]

4 v KL pr ) (AST)?
I _ _ =
Al = max <3p, p) <PTL + PTT) - (6.19)

and similarly for the other directions. In Equation (6.19), u; denotes the lami-
nar and pr the turbulent dynamic viscosity coefficient, respectively. Further-
more, Pr; and Pry are the laminar and the turbulent Prandtl numbers. The
CFL numbers in Tables 6.1 and 6.2 apply also for viscous flows. Particularly
efficient for viscous flows is the (5,3) hybrid scheme from Eq. (6.7).

Time Step on Unstructured Grids

Several approaches were suggested for the estimation of the maximum time step
on unstructured grids. We shall present two different approaches below.

Method 1

One proven method, which closely follows the implementation on structured
grids, reads (6]
4y

At] =0 =,
(Ac+ CAy)r

(6.20)

where f\c and f\v represent a sum of the convective and viscous spectral radii
over all faces of the control volume. As on structured grids, C' = 4 is usually
used. In the case of the cell-centred scheme, the spectral radii are defined as [6]

Nr
(A)r = Z(Wn “Airg| +crg) ASps
J=1
(6.21)

Nr
. 1 4 711) < LL pr ) }
A)r=— E max S (RE L KT As 2]
e U i [ <3P1J prs) \Pry ' Prp ”( 17)

The values of the flow variables at the faces of the control volume are obtained
by arithmetic averaging.
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Method 2

The spectral radii predicted by Eq. (6.21) are too large, particularly on mixed
element grids. This leads to smaller time step than necessary. The implemen-
tation in Ref. {18] offers a more accurate estimation of the time step, namely

Q

Aty =0 — - - = - = (6.22)
(AZ + A2+ AZ)r + C(AZ + AV + A3);
with the convective spectral radii
A2 = (Ju| + ¢) AS®
AY = (Jv| +c) ASY (6.23)
Az = (Jw| +¢) AS?

and with the viscous spectral radii (eddy-viscosity turbulence model assumed)

. 4 v\ ([ #e | pr \(AS®)
- 27 tc. ‘
AY = max <3p’ p) (PTL + PTT> q 0 ec (6.24)

The variables AS®, ASY and AS’, respectively, represent projections of the
control volume on the y-2-, z-z- and the z-y-plane. They are given by the
formulae

I BEAL
ASF =2 > 18als
J=1
1 Xk
ASY =2 ; 1Syl (6.25)

. 1 Nr
AZ:_ z )
5= 3 215D

where S;, Sy and S, denote the z-, y- and the z-component of the face vector

—

S=1i-AS.

The CFL numbers stay in general the same as on structured grids. Thus, the
values collected in Tables 6.1 and 6.2 still apply. Furthermore, the convergence
to steady state can also be accelerated by local time stepping, in the same way
as on the structured grids. A global time step, necessary for simulating unsteady
flows, can be obtained from Eq. (6.17) as before.
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6.2 Implicit Time-Stepping Schemes

Various implicit time integration schemes can be obtained by setting 8 # 0
in Eq. (6.2). An implicit scheme with w = 0 was found to be best suited for
the solution of stationary flow problems (for unsteady flows see Section 6.3).
Herewith, Eq. (6.2) simplifies to

(—‘ZEEAW," = -8R —(1-B)R}. (6.26)
tr

As we can see, the implicit formulation leads to a set of non-linear equations
for the unknown flow variables at the time (¢+At). The solution of Eq. (6.26)
requires the evaluation of the residual at the new time level, i.e., R, Since
we do not know W™*t1, this cannot be done directly. However, we can linearise
the residual £7%! in Eq. (6.26) about the current time level, i.e.,

Rt = B + (%?7) AW, (6.27)
I

where the term afé/avf/ is referred to as the flux Jacobian. We should mention
that the flux Jacobian is often derived from a rather crude approximation to
the spatial discretisation represented by R™. For example, in the case of higher-
order upwind discretisations, it is quite common to base the flux Jacobian solely
on a first-order upwind scheme. However, for best efficiency and robustness,
the flux Jacobian should still reflect the most important features of the spatial
discretisation.

If we substitute now the linearisation in Eq. (6.27) for E**! in Eq. (6.26),
we obtain the following implicit scheme

22005(2)

Aty oW ;
The term in square brackets on the left-hand side of Eq. (6.28) is referred to as
the implicit operator or the system matriz. Consequently, the right-hand side
of Eq. (6.28) is called the ezplicit operator. It is only the explicit operator that
determines the spatial accuracy of the solution.

The implicit operator constitutes a large, sparse, and non-symmetric matrix
with dimensions equal to the total number of cells (cell-centred scheme) or
grid points (cell-vertex scheme). Below we will discuss further the form of the
implicit operator for structured as well as for unstructured grids. As we already
saw in Section 3.2, the mass matrix M can be replaced by the identity matrix,
without influencing the steady state solution. The parameter 3 in Eq. (6.28) is
generally set to 1, which results in a Ist-order accurate temporal discretisation.
A 2nd-order time accurate scheme is obtained for 8 = 1/2. However, this is not
recommended since the scheme with # = 1 is much more robust, and the time
accuracy is of no importance for steady problems.

AW™ = —R}, (6.28)
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In the case of stiff governing equations, the source term has to be included
in the implicit operator. This happens quite naturally with the linearisation of
the residual in Eq. (6.27), which leads to a formulation identical to Eq. (6.10).
As demonstrated in Ref. {12], the above implicit scheme (6.28) remains stable
for any time step if the eigenvalues of 3@/3W are all negative or zero.

The solution of the linear equation system (6.28) requires the inversion of
the implicit operator, i.e., the inversion of a very large matrix. In principle, this
can be done in two ways. The first one consists of a direct matrix inversion,
using either the Gaussian elimination or some direct sparse matrix method {19],
[20]. However, because of the excessive amount of memory and a very high
computational effort, this approach is not suited for practical problems [21].

The second possibility of inverting the implicit operator represent iterative
methods. We mentioned the most widely used ones in Subsection 3.2.2. Itera-
tive methods can be divided roughly into two groups. The first one consists of
approaches which decompose the implicit operator into several parts — a process
called factorisation. The factors are constructed such that they can be more
easily inverted than the original implicit operator. To the second group belong
schemes, which employ a Krylov-subspace method for the inversion of the im-
plicit operator. In this case, the implicit time-stepping scheme (6.28) is usually
turned into Newton’s method by setting At — oo. The scheme is then named
Newton-Krylov method.

In the following, we shall discuss first the matrix structure of the implicit
operator. Then we shall investigate the possibilities of computing the flux Ja-
cobian afz/aﬁ/ in Eq. (6.28). Finally, we shall present the three most popular
iterative methods in detail.

6.2.1 Matrix Form of Implicit Operator

Referring to Eq. (6.27), we can write the linearisation of the residual R+l in
the form

Nr
B0 B 3 { o (- ) asn) ai ]
= oW
(6.29)
_290)  jim
ow

with Ng being the number of faces of the control volume © (cf. Eq. (4.2) or
(5.2)). Thus, the flux Jacobian reads

F l Nr l =
oF _ > el pg, - > W) pg, . A2 (6.30)
oW ow ow ow

It should be stressed that the flux Jacobian has to be conceived as an operator
which acts on the update AW. As stated above, the convective and viscous
fluxes in Eq. (6.30) do not necessarily need to be identical to the fluxes in the
explicit. operator.
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Because of significant differences between the implicit operator on structured
and unstructured grids, we shall treat each case separately.

Implicit Operator on Structured Grids

In order to derive the form of the system matrix in Eq. (6.28), let us consider
the 1-D grid in Fig. 6.1. Let us further assume that the cell-vertex scheme with
dual control volumes (Subsection 4.2.3) and a simple average of fluxes are used
for the spatial discretisation (cf. Fig. 4.8). In absence of viscous fluxes, the
residual is given by

B? = (F)ip172 ASiq1yz + (Fu)ic12 ASisys — G (6.31)

Furthermore, the derivative of the convective fluxes at the face m =i+ 1/2 in
Eq. (6.30) can be expressed as follows

a(ﬁc)i+l/2_ 0 {1

S - O [Rovn + Rovp]

(6.32)

[(Ad)it1 + (Ao)i]

N =

where A, denotes the convective flux Jacobian (Section A.7). Hence, according
to Eqgs. (6.29), (6.31), and (6.32), the residual at (t+At) is approximated as

— - 1 _ - _ N
Bt m Bt s [(Ac)m AWE | + (A AW,."] ASi1 /2

17, - - _ -
+ 5 [(Aims AWE | + (A0) AWF] AS, (6.33)
gy
oW

Finally, for 8 = 1 and a lumped mass matrix we can derive from Eq. (6.26) the
implicit scheme

Q. 1, ]
{ I+ 3 [(A0)i ASiy1/2 + (A)i ASi—1/2)

At;
8(91-91-) +
ow

[(Ad)ir1 ASit1y2] (6.34)

Nf—= N =

+ 2 [(Ae)i1 ASi_l/.z]} AW™ = —Rr |

where I stands for the identity matrix. It should be noted that the unit normal
vector in each matrix A. is evaluated at the same side of the control volume
as the associated area AS. As we can see, the implicit operator involves the
same 3-point stencil (nodes ¢ — 1, 4, and 7 + 1) as the spatial discretisation. In
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stencil implicit operator
D U
o— {O— ] r u 8X8
_ : ) DU . 0
i-1 i i+l LDU
LDU
LDU
LDU
' LDU
grid LDU
0 LD|

Figure 6.1: 1-D structured grid and the associated implicit operator matrix
for a 3-point stencil.

grid (8x4 points) .". R, e,
i I I H
|
1 1 — 8

Figure 6.2: 2-D structured grid (left) and the associated implicit operator ma-
trix for a 5-point stencil (right). Nonzero block matrices displayed as filled
rectangles.
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order to visualise the system matrix, we denote all terms in the implicit operator
associated with the central node ¢ as D, i.e.,

SRLE FR D A 8(0u4;)
D= AtiI + 3 [(Ae)i ASip12 + (Ac)i ASi—l/z] - W ’

with the downwind node (i + 1) as U, i.e.,

1 -
U= 3 (Ac)is1 ASiy1)2,

and with the upwind node (i — 1) as L, i.e.,
1
2

respectively. Writing down Eq. (6.34) for all eight nodes of the grid in Fig. 6.1,
we obtain the 8x8 block-tridiagonal matrix displayed on the right side of Fig.
6.1. Each of the blocks L, D, and U represents a 3x3 matrix in 1D (because of
the three conservation equations).

The same ideas carry over to multiple dimensions. For example, if the spatial
discretisation in 2D would involve the 5-point stencil sketched in Fig. 6.2, we
would obtain a block-pentadiagonal matrix. This is shown on the right side
of Fig. 6.2. The nodes were ordered such that the i-index runs faster than
the j-index (corresponds to mat(t,j) in FORTRAN). It should be noted that
the second off-diagonal is at the distance of eight (total number of nodes in
i-direction) elements from the main diagonal. Finally, the system matrix would
become block-septadiagonal in 3D, if we would employ the 7-point stencil of
Fig. 4.9b for the spatial discretisation.

In summary, we can state that the system matrix always possesses a regular,
sparse and banded form for structured grids. It should be further mentioned
that the term

L=z (A)ic1 ASizyy2,

(O8] At (6.35)

in Eq. (6.28), which is always located on the main diagonal, can cause difficulties.
Narmely, if the time step becomes large, some iterative matrix inversion schemes
(e.g., Gauss-Seidel) may fail due to reduced diagonal dominance of the implicit
operator.

Implicit Operator on Unstructured Grids

The appearance of the system matrix changes completely when we proceed from
structured to unstructured grids. This can be demonstrated with the aid of a
small unstructured grid sketched in Fig. 6.3. We want assume that the spatial
discretisation is given by the cell-centred scheme presented in Subsection 5.2.1,
which uses flow values only from the nearest neighbours (e.g., like a first-order
upwind scheme — see Subsections 5.3.2 and 5.3.3). Thus, for example, the stencil
for cell 2 includes the cells 18, 10, and 13. The resulting system matrix is
displayed on the right side of Fig. 6.3. It is obvious that since the grid cells
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(nodes in the case of a median-dual scheme) are in general numbered in an
arbitrary order, no regular pattern can be expected for the matrix. Only the
main diagonal, which contains at least the expression (6.35) and possibly the
derivative of the source term, is always present.

The quasi-random distribution of nonzero elements in the system matrix
is undesirable. It slows down the convergence of iterative inversion methods
like Gauss-Seidel. Furthermore, preconditioning techniques for Krylov-subspace
methods like ILU (Incomplete Lower-Upper) factorisation scheme cannot be
used efficiently. Therefore, strategies were developed where the cells (nodes)
are renumbered such that the bandwidth of the system matrix is considerably
reduced, i.e., the nonzero elements are clustered close to the main diagonal.
The best-known renumbering strategy is the Reverse-Cuthill-McKee (RCM) al-
gorithm [22], [23]. Figure 6.4 shows the resulting cell numbering and the system
matrix when the RCM algorithm is applied to the example grid of Fig. 6.3. As
we can see, the bandwidth of the matrix is significantly reduced and the matrix
obtains a more regular structure.

Several other renumbering strategies were developed in order to minimise
cache misses or to allow for vectorisation of the numerical scheme. An overview
can be found, e.g., in Ref. [24].

6.2.2 Evaluation of the Flux Jacobian

Depending on the type of the underlying spatial discretisation scheme, an ana-
lytical evaluation of the flux Jacobian OR/8W in Eq. (6.28) may become very
complex if not impossible. In order to make the concepts more clear, we shall
derive the flux Jacobian for inviscid flows and then discuss the extension to the
Navier-Stokes equations.

Central Scheme

The flux Jacobian is most easily formulated in the case of the central spatial
discretisation. As we already saw for the example in Fig. 6.1, E/OW consists
of convective flux Jacobians (cf. Eq. (6.34)), which can be derived analytically
(see Section A.7). Artificial viscosity is usually included in a simplified form,
without the non-linear pressure sensor (Eq. (4.55)). We shall return to this
below in Subsection 6.2.3.

Flux-Vector Splitting Scheme

The evaluation of the flux Jacobian becomes more involved when one of the
flux-vector splitting schemes (Subsection 4.3.2) is used as the basis for its deriva-
tion. Let us, for illustration, consider the scheme due to Steger and Warming
(25]. Previous investigations [26] revealed that the Steger-Warming splitting is
preferable over, e.g., the Van Leer’s flux-vector splitting scheme (Eq. (4.60)) for
various upwind discretisations of the explicit operator.
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Figure 6.3: 2-D unstructured grid (left) and the associated implicit operator
matrix for a nearest neighbour stencil (right). Nonzero block matrices displayed
as filled rectangles.
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Figure 6.4: Reduced bandwidth (from 18 to 5) of the implicit operator from
Fig. 6.3 with reverse-Cuthill-McKee ordering. Nonzero block matrices displayed
as filled rectangles.
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The basic idea of the Steger-Warming flux-vector splitting scheme is to split
the convective fluxes into a positive and negative part, i.e.,

F.=Fr + Fr (6.36)
with the fluxes defined as
FE= AL, W= (MA*M)W. (6.37)

In Eq. (6.37), Afw denotes the positive/negative Steger-Warming flux-splitting
Jacobian. Furthermore, M represents the matrix of right eigenvectors, M ™!
the matrix of left eigenvectors, and AT stands for the diagonal matrix of posi-
tive/negative eigenvalues, respectively (cf. Section A.9). The eigenvalue matri-
ces are defined as [25]

AF = S(Ac£ A, (6.38)

BN —

where A, is given by Eq. (A.63).
Using the splitting defined in Eq. (6.36), we obtain for the product of the
flux Jacobian with the update AW™ in Eq. (6.29)
= Np s . o
OR1 \ypm — S O AS)m e, O AS)m

Wi m b OWam

AWE .| . (6.39)

=

aI/V m=1
In the above Eq. (6.39), AWE_m and AWE,m denote the updates of the left and
right state at the face m, respectively. On structured grids, the left and right
state can be evaluated by the MUSCL approach (Eq. (4.46)). On unstructured
grids, the reconstruction methods discussed in Subsection 5.3.3 can be applied.
However, the stencil becomes wider with increasing accuracy, which leads to
larger bandwidth of the system matrix. Therefore, and in order to reduce the
numerical complexity, only first-order accurate approximation is usually em-
ployed in Eq. (6.39). As a compromise, we could reconstruct the left and right
state with higher accuracy but retain the stencil of the first-order scheme for
the evaluation of the derivatives [27].

To proceed with the discussion on the evaluation of the derivatives dF=/OW
in Eq. (6.39), let us consider, e.g., the positive flux at face m

O(F+AS)m

WL, m T Wim [(AEWW)L,m ASm]

which becomes with Eqgs. (6.37), (6.38)

AF+AS)m ASp, o - .
C-— = Ac m T+ Ac ,m
Vs 5 (Ao Lm + [(Ae)1,m]

) (6.40)

a(Ac)L,m +3|(A:-)L,ml an'
WL m WL m '
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An expression similar to Eq. (6.40) can also be found for the negative flux. As
we can see, the first term in Eq. (6.40) consists of convective flux Jacobians (see
Section A.7) and thus presents no difficulty. However, the second term involves
derivatives of matrix elements. Although it is possible to obtain the derivatives
analytically either by hand calculation or by using a symbolic algebra package,
this will produce a large, computationally inefficient code [28]. Alternatively, it
is possible to assume the matrix A, is locally constant so that the second term
in Eq. (6.40) can be neglected. However, depending on the type of the implicit
scheme, this may severely restrict the CFL number [29].

Other approaches that we could use to compute the derivatives dF/ W in
Eq. (6.39) would be the automatic differentiation of the source code (e.g., using
ADIFOR [30]) or the finite-difference method (see, e.g., [21], [28]). Herewith,
the derivative of the i-th component of a vector F' with respect to the j-th
component of a dependent variable X can be approximated as

0fi ., FilX +h&%) - fi(X)
3l‘j hj '

(6.41)

where €7 denotes the j-th standard basis vector. Dennis and Schnabel [31]
suggested a stepsize h; of the form

hj = /e max{|z;|, typz; } sign(z;) (6.42)

with ¢ being the machine accuracy and typ z; a typical size of z;.
The reader is also referred to [32] and [33] for hints on efficient numerical
evaluation of Jacobian matrices.

Flux-Difference Splitting Scheme

In the case of the flux-difference splitting scheme due to Roe (Subsection 4.3.3,
Eq. (4.87)), we can write the product of the flux Jacobian with the update in
Eq. (6.29) as

6R = ASp, - . ~ -
—L AW =Y T2 (A m AL + (A Rm AWE
ow m=1 2 ’ '
6 -~ fd - —
_ n _ n n 43
6WL,m [‘ARoe)m (WR,nl vVL,-m)] AI/Vl_',,m (6 )
0 n n n n }
- e [1ARoelm (Wi m = WE )| AWR 1 f -

Similar to flux-vector splitting, the expression (6.43) contains convective flux
Jacobians as well as derivatives of the Roe matrix Ag,.. The derivatives were
presented in {29]. Since the corresponding formulae are very complex (see also
Ref. [28]), it is a better idea to evaluate the term &F,/OW numerically, as



Temporal Discretisation 199

discussed above. However, we can also simplify Eq. (6.43) by assuming locally
constant Roe matrices [34]

ARy e SR ASw f - . i} .
LN 5" {(AC)L,mAW;j,m + (A RmAWE .
ow me (6.44)

- |ARoe|m(AWE,m - AWl’f,m)} :

In contrast to the Steger-Warming flux-vector splitting scheme, the above ap-
proximate linearisation (6.44) degrades the performance of the implicit scheme
only slightly [29].

Viscous Flows

For the Navier-Stokes equations, we have to account also for the viscous fluxes
in the implicit operator. The derivative 6ﬁ,,/3W, i.e., the viscous flux Jacobian
in Fq. (6.30) is in general not straightforward to obtain. Additional complexity
arises due to the fact that the viscous flux vector contains derivatives of flow
variables. For this reason, we either have to evaluate the viscous flux Jacobian
by finite differences (Eq. (6.41) or we have to use a simplified formulation.

In the case of the TSL approximation of the Navier-Stokes equations (cf.
Subsection 2.4.3 and Section A.5), it is possible to find the viscous flux Jaco-
bian analytically by assuming locally constant dynamic viscosity and thermal
conductivity coeflicients. Then, according to the discussion in Appendix A.8,
the term related to the viscous fluxes in Eq. (6.29) becomes

L%%Sl’l AW" = [(A;)R_mmf/,g'm - (A;)L,mmf/g,m] AS, .  (6.45)
In above Eq. (6.45), A¥ stands for the viscous flux Jacobian given by Eq. (A.50)
or Eq. (A.54) but without the spatial operators 9y () (cf. Egs. (A.53) and (A.58)).
The Jacobians are evaluated using either the left or the right state for all vari-
ables except for the dynamic viscosity, which is determined from an arithmetic
average. It should be mentioned that Eq. (6.45) leads to a second-order central
difference approximation in the implicit operator, supposed the left and right
state are computed with first-order accuracy.

6.2.3 ADI Scheme

The Alternating Direction Implicit (ADI) scheme was one of the first iterative
implicit schemes [35]. The ADI scheme can be implemented on structured grids
only. It is based on an approximate splitting (or, in other words, factorisation)
of the implicit operator in Eq. (6.28) into two (in 2D) or three (in 3D) factors.
Each factor contains the linearisation of the convective and viscous fluxces for
one particular direction in the computational space. In 3D, this leads to the
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formulation [35], [36]

O((F! — F))AS'] O((F! - F))AS']

ﬂf-f- i+1/2 N i—-1/2
At Y oW
;. O[(FY - F)as’) ., N ol(F) - FAas’], |,
At oW oW
(6.46)

ﬂf-f- 8[(FcK - uK)ASK]k—H/? + 6[(FCK _ FUK)ASK}’C—lﬂ
At oW 3%

_ 0O\ avn =

151%%

For clarity, the node indices 7,7,k were omitted from Eq. (6.46) where not
required. Furthermore, the superscripts I, J, K in Eq. (6.46) mark the flux
vector or of the face area associated with certain coordinate in the computational
space. For example, A.S’{H/?_j',c corresponds to AS; in Fig. 4.1b. By replacing
the node indices by cell indices, the scheme in Eq. (6.46) can be applied to a
cell-centred discretisation.

The derivatives of the convective and viscous fluxes in Eq. (6.46) can be
evaluated as discussed in the previous subsection. The ADI method is tradi-
tionally coupled to the central scheme with artificial dissipation. In such a case,
a formulation similar to that in Eq. (6.34) holds for each factor (of course, the
linearisation of the source term is included in one factor only). In order to ob-
tain a robust and efficient scheme, it is necessary to include a linearisation of the
artificial dissipation terms in the implicit operator [37]-[39]. The linearisation
is in general simplified by treating the spectral radii and the dissipation coeffi-
cients as independent of W. Hence, according to Eq. (4.48) the factor, e.g., in
the I-direction becomes

a0l - FHAs™,,,, Ol(F! -Fhas",_,,

At oW oW

_ a(D'fMASI)i+1/2 _ 6(1-j§MASI)¢_1/2
oW ow
with the implicit artificial dissipation term JST scheme, (cf. Eq. (4.50))

OBha)isrse yom _ _
’—~1/Awn ~ Afﬂ/z [(5521\)4)#1/2 (AW[, - AW)
ow (6.47)

- (533\)4)#1/2 (AW:,‘,7_1+_2 - 3AW{;1 + 3AVT/in _ AW?_I)] _
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The implicit dissipation terms in other directions are defined in similar way.
It is also possible to retain only the second-order differences in the implicit
operator [38], [39]. This reduces the matrix for each of the factors from block-
pentadiagonal to block-tridiagonal form (as sketched in Fig. 6.1). However, as
discussed in [39] this restricts the stability of the scheme.

The inversion of the implicit operator in Eq. (6.46) proceeds in three steps
(two steps in 2D), i.e.,

(D! + LY + UH) AW = —R»
(DY + L/ + U7)AW® = AWM (6.48)
(DX + LX + UK)AW™ = AW,

where D represents the diagonal, L the lower-diagonal and U the upper-diagonal
terms, respectively. Each step requires the inversion of a block-tridiagonal or a
block-pentadiagonal matrix (if 6(133, > 0 in Eq. (6.47)). This is done by a direct
solution method. In order to reduce the numerical effort, Pulliam and Chaussee
[40] suggested a diagonalised form of the ADI scheme. Herewith, the block
matrices (composed of convective and viscous flux Jacobians) are transformed
into diagonal matrices. Hence, only non-block tri- or pentadiagonal matrices
have to be inverted, which results in significant savings of computational work
and memory [38]. Although the diagonalisation is strictly valid only for Euler
equations; it can be employed for viscous flows as well [38]. The linearisation of
the viscous fluxes (e.g., like in Eq. (6.45)) is then either omitted in the implicit
operator, or it can be approximated by the viscous eigenvalue (Eq. (6.19)).

The splitting of the implicit operator introduces what is called the factorisa-
tion error. It is the difference between the implicit operator of the base scheme
in Eq. (6.28) and the factorised operator. In the case of the ADI scheme, this
error term is scaled by the factor (At)Y, where N denotes the number of space
dimensions. This term causes the ADI scheme to loose its unconditional stabil-
ity in 3D [41]. However, the stability is improved if the fourth-order differences
of the artificial viscosity are included in the implicit operator [39]. In fact, the
ADI scheme was successfully used for the solution of various 3-D problems [38],
[42]. An interesting implementation of the ADI scheme on multiblock grids,
which treats the block boundaries implicitly, was presented by Rosenfeld et al.
[43].

The time step At can be computed in the same way as presented in Sub-
section 6.1.4, using Eq. (6.14). The optimal CFL number lies between 20 and
50.
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6.2.4 LU-SGS Scheme

The implicit Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme, which is
also called the Lower-Upper Symmetric Successive Quverrelazation (LU-SSOR)
scheme, became widely-used because of its low numerical complexity and mod-
est memory requirements, which are both comparable to an explicit multistage
scheme. Furthermore, the LU-SGS scheme can be implemented easily on vec-
tor and parallel computers. It can also be used on structured as well as on
unstructured grids.

The LU-SGS scheme has its origins in the work of Jameson and Turkel [44],
who considered decompositions of the implicit operator into lower and upper di-
agonally dominant factors. The LU-SGS method itself was introduced by Yoon
and Jameson [45]-[47] as a relaxation method for solving the unfactored im-
plicit scheme in Eq. (6.28). It was further developed and applied to 3-D viscous
flow fields by Rieger and Jameson [48]. Since then, various researchers applied
the LU-SGS scheme to viscous flows on structured [49]-[55] and on unstruc-
tured grids [56]-[60]. The LU-SGS approach is used often for the simulation of
chemically reacting flows [61]-[65].

The LU-SGS scheme employs a simplification of the first-order accurate flux-
vector splitting approach due to Steger and Warming (see Subsection 6.2.2) for
the linearisation of the convective fluxes in Eq. (6.29). The linearisation is
always kept the same regardless of the discretisation of the explicit operator.
The LU-SGS scheme is further based on the factorisation of the implicit operator
in Eq. (6.28) into the following three parts

(D +L)D~'(D + U)AW™ = -R}. (6.49)

The factors are constructed such that L consists only of terms in the strictly
lower triangular matrix, U of terms in the strictly upper triangular matrix and
D of diagonal terms. It is important to remark that the number of factors
remains still the same independent of the number of space dimensions.

The system matrix of the LU-SGS scheme (Eq. (6.49)) can be inverted in
two steps — a forward and a backward sweep, i.e.,

(D + L)AWW) = —R7
(6.50)
(D +U)AW™ =D AW

with Wn+l = Wn + AW”". The operators L, D, and U and also the inver-
sion procedure differ on structured and unstructured grids, in some respects.
Therefore, we shall discuss below each case separately.
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LU-SGS on Structured Grids
On structured grids, the operators are defined as (see [45]-[47], and [62], [50])

L = (A*+4,),_, AS{_I/2 + (A + Av)j_l ASJ'J—l/z

+(A* +4,),_, ASK

U= (A" - A),, AL, + (A = 4,), ASI

i+1 J+1 SYi+1/2

+(A" - A,),.  ASK

k+1 k+1/2 (651)
Q A J
D= A—tI+(A A)AS p+ (A7 - A,)AS] ),
+(A7 = A) ASE , + (AT + 4,) AS]
o a(QQ)
+ (AT + A ASY y + (AT + A) ASE ), - -

For better readability, only those node indices (or cell indices in the case of
a cell-centred scheme) are shown in Eq. (6.51), which differ from 4,5, k. The
superscripts 4,7,k at AS indicate the direction in the computational space.
The unit normal vectors in the positive/negative flux Jacobians A* and in the
viscous flux Jacobians A, are evaluated at the same side of the control volume
like the associated face areas AS. Note that the unit normal vectors are assumed
to point outwards of the control volume. In contrast, in various references it is
supposed that the unit normal vectors from opposite sides of the control volume
point in the same direction.

The viscous flux Jacobians in Eq. (6.51) are either computed numerically,
or are replaced by their TSL approximation, corresponding to Eq. (6.45). It
is possible to apply the TSL approximation in all computational coordinates,
regardless of the actual orientation of the boundary layer(s). A further simplifi-
cation consists of substituting the viscous flux Jacobians by the viscous spectral
radii (Eq. (6.19)), i.e., 4,AS & A,, as suggested in [57].

The split convectlve ﬂux Jacobians A% are constructed in such a way that
the eigenvalues of the (4) matrices are all non-negative, and of the (—) matrices
are all non-positive. In general, the matrices are defined as [44]

ATAS = (A AS£7ral), ra=wA, (6.52)

N} =

where A, stands for the convective flux Jacobian (Section A.7) and A, repre-
sents the spectral radius of the convective flux Jacobian (given by Eq. (4.53) or
Eq. (6.15)), respectively. Note the similarity between the above approximation
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(6.52) and Eq. (6.40), when the derivatives of A. are neglected. The factor w
in Eq. (6.52) represents an overrelaxation parameter. It also determines the
amount of implicit dissipation and hence influences the convergence properties
of the scheme. The factor can be chosen in the range 1 < w < 2. Higher val-
ues of w increase the stability of the LU-SGS scheme, but may slow down the
convergence to steady state. The definition of the Jacobians AT in Eq. (6.52)
ensures a diagonally dominant system matrix, which is very important for the
efficiency and robustness of the iterative inversion procedure (6.50).

The splitting according to Eq. (6.52) together with averaged face vectors
allow a simplified evaluation of the diagonal operator D

(6.53)

+2(AIAST + AIAST + AKASK) - %‘3@ .

The spectral radii of the convective flux Jacobians A. are given in Eq. (6.15).
The face areas and normal vectors are averaged in the respective I-, J-, or K-
direction according to Eq. (6.16). As we shall see immediately, this approxima-
tion helps to reduce the operation count and memory requirements significantly.

A distinguishing feature of the LU-SGS method is how the forward and the
backward sweep in Eq. (6.50) are carried out. In 2D, the sweeps are accom-
plished along diagonal lines (¢ + j) = const. in computational space. This is
depicted in Fig. 6.5 for the forward sweep (first line of Eq. (6.50)). In this way,
the off-diagonal terms involved in the L and the U operator become known from
the previous part of a sweep (denoted by crosses in Fig. 6.5). In 3D, the implicit
operator is inverted on i + j + k = const. planes, as sketched in Fig. 6.6. Hence,
the LU-SGS scheme can be written as

DAW = —Rp, , ~ LAW®)
(6.54)

DAW  =DAWSY, —UAWw™.
As we can see from Eq. (6.54), the only term which needs to be inverted is the
diagonal term D. Thus, the LU-SGS methodology transforms the inversion of
a sparse banded matrix into the inversion of a block-diagonal matrix. Further-
more, if the viscous flux Jacobians in Eq. (6.53) are approximated by the viscous
spectral radii, the operator D becomes a purely diagonal matrix. Hence, the
LU-SGS scheme requires little computational effort compared to other implicit
schemes (e.g., the ADI scheme discussed previously). Furthermore, the inversion
of the diagonal operator can be carried out independently for each node (cell)
of the diagonal plane, which makes the scheme easy to vectorise. The indices
of the nodes/cells on the diagonal planes can be obtained with the following
pseudo-code [66):
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forward sweep

sweeping direction

% I
L
| ——
Figure 6.5: Sweeping direction of the LU-SGS scheme in computational space:

e denotes where the operator D is currently inverted (line 7 + j = const.); X
denotes the already updated values of L.

i+ j+ k =constant plane

Figure 6.6: Diagonal plane of sweep in computational space for the implicit
LU-SGS scheme in 3D.
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DO plane = 1, nplanes
DO k = 1, kmaz
DO j =1, jmaz
DO ¢ =1, imazx
IF (i+j+k = plane+2) store indices
ENDDO
ENDDO
ENDDO
ENDDO

The number of diagonal planes is: nplanes = imaz + jmaz + kmaz — 2. Obvi-
ously, the above code can be optimised for higher computational efficiency.

In order to avoid explicit evaluation and storage of the convective flux Ja-
cobians in L and U, the products ATAW™ can be substituted by Taylor series
expansion of the fluxes [48]. Using Eq. (6.52), we can write

- o 1 o .
(A£AS) A" ~ 5 (AFCAS + rAIAW") (6.55)
with the update of the convective fluxes
AF, = Frtl _ pn (6.56)

The simplification given by Eq. (6.55) is possible due to the sweeping along
diagonal planes, since F;"“ is then known. This leads to a further significant
decrease of the numerical effort of the LU-SGS scheme.

The time step At can be computed in the same way as presented in Sub-
section 6.1.4, using Eq. (6.14). However, it should be noted that the implicit
LU-SGS scheme in Eq. (6.49) represents an approximate Newton iteration in
the case of At — 0o as stated by Rieger and Jameson [48]. Thus in general,
CFL number in the order of 10 to 10° are used in practice for stationary flows.
The convergence is then controlled by the overrelaxation parameter w. For the
simulation of unsteady flows, we may employ the formulation presented below
in Section 6.3. Another possibility is to use the modified version of the LU-SGS
scheme described in Ref. [67).

LU-SGS on Unstructured Grids

Here, the operators read for a median-dual scheme [57]-[59]

L= Y [Af+(4);]AS;

JEL()

U= [A7 = (A,);] ASy;
et (6.57)
Dz Wiy LB a(9:G:)

D= A_tlI + 5(1\‘;)1 + Z(Au),-ASU — 6—W .



Temporal Discretisation 207

In Eq. (6.57), L(¢), and U(i) denote the nearest neighbours of node ¢ which
belong to the lower (upper) matrix, AS;; represents the face area associated
with the edge ij (see Fig. 5.9), and Ng stands for the number of faces of the
control volume (2;, respectively. The spectral radius of the convective fluxes
(A.); is computed by Eq. (6.21). The viscous flux Jacobian A, can be again
approximated by its spectral radius [57]. In this case, the diagonal operator

becomes -
Up w00
D=—T —\C‘ A)i— ——, 6.58
T+ g R+ (R - =2 (6.58)
where (A,); is evaluated according to Eq. (6.21). Formulae similar to Eq. (6.57)
and (6.58) can be obtained in the case of the cell-centred scheme. The major
difference is that the summation in the L and the U operator is conducted over
faces of the cell instead of incident edges.
The sets L(z) and U(%) in Eq. (6.57) should fulfil the same function as the
diagonal planes on structured grids. For this reason, it is necessary to arrange
the nodes (cells) into layers such that [57]:

e nodes i (cells I') of a current layer have connections to layers with previ-
ously updated flow variables - otherwise the LU-SGS scheme degenerates
to a Jacobi iteration,

e nodes (cells) in a layer are not connected to each other — otherwise the
scheme could not be vectorised.

The layers can be generated for the median-dual scheme with a procedure de-
scribed in Ref. [57]. Approaches for the cell-centred scheme were suggested in
[68], [69].

An appropriate definition of the sets L(z) and U(z) allows for the following
two-step inversion procedure [57]-[59]

DAWY = ~Fr - Z [ N;AS; + (1), 1 W]

JEL(i
(6.59)

DAW? =DaW - ¥ %[(AFC")jAS,-j—(1-1"4)]-I_AV17J?‘],
JEU()

where the viscous Jacobians were approximated by their spectral radii and where
the positive/negative Jacobians were linearised according to Eq. (6.55). Further-
more, the factor (r%); is defined as

(ry); = w (|75 - y] +¢j) ASy;

ASs; max(i ﬁ) (uL N ur)
TR =il 3pi" pj) \PrL ~ Prr);

with ||7; — 7;||2 being the length of the edge ¢j.

(6.60)
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The time step can be computed in the same way as for the explicit schemne
(Eq. (6.20)). However, the viscous eigenvalue should be omitted, since the
viscous terms are already contained in the implicit operator and hence do not
reduce the time step as in the case of an explicit scheme. The CFL number
can be chosen in the range from 10? to 108 for steady flows. The convergence
speed and the robustness of the LU-SGS scheme can then be tuned using the
overrelaxation parameter w.

6.2.5 Newton-Krylov Method

First of all, let us rewrite the implicit scheme given by Eq. (6.28) as
JAW™ = —R" | (6.61)

where J represents the implicit operator (system matrix). As we already saw,
J constitutes a large, sparse, and generally non-symmetric matrix. In the pre-
vious subsections, we discussed two methods that decompose J into several
factors which can be each more easily inverted than J itself. However, due to
the factorisation error (and approximate linearisation of ff’”“), only a linear
convergence to steady state can be achieved. In order to obtain the quadratic
convergence of Newton’s method for the solution of non-linear equations, four
conditions must be fulfilled:

e the linearisation of the residual must be exact,

o J must be accurately inverted,

e the time step has to be At — oo,

e initial solution must be, in some sense, close to the final solution.

Obviously, the main obstacles that have to be overcome are the linearisation
and the inversion of the full system matrix.

A particularly suitable class of iterative techniques for the solution of large
linear equation systems are the so-called Krylov-subspace methods. Several were
proposed for the inversion of matrices which arise in CFD. Examples are the
Conjugate Gradient Squared (CGS) method [70], the Bi-Conjugate Gradient
Stabilised (Bi-CGSTAB) scheme [71], or the Transpose-Free Quasi-Minimum
Residual (TFQMR) approach [72]. However, the most successful Krylov sub-
space method became the Generalised Minimal Residual (GMRES) technique,
which was originally suggested by Saad and Schulz [73], [74]. Since then, the
GMRES method was improved and augmented by several researchers. [75]-[78].
Because of its popularity, we shall focus on the GMRES approach in the fol-
lowing. Nevertheless, most of what we shall discuss also applies to the other
Krylov subspace methods.
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GMRES Method

As we mentioned in Subsection 3.2.2 (see also Appendix A.10), the GMRES
method minimises the norm of the global residual, i.e., [|J AW™+ R™|| over a set
of m orthonormal vectors (search directions), which span the Krylov subspace
Ko given by Eq. (3.10). The GMRES algorithm can be summarised as follows:

1. guess a starting solution W({‘ and evalnate the initial residual vector
7o = J AWE + R™,

2. generate the m search directions (by Gram-Schmidt orthogonalisation),
3. solve the minimisation problem,
4. form an approximate solution of Eq. (6.61) as AW™ = AWO" + Um-

Since the memory requirements increase linearly with the number of search
directions, m is restricted to values between 10 and 40 in practice. This might
not be sufficient for a converged solution AW™. Thus, the GMRES method has
to be restarted, i.e., we set AW&‘ = AW™, compute 7y and proceed with step
2. As pointed out in Ref. [79], instead of working with a constant number of
search directions, m should be reduced if the norm of the global residual drops
below a specified tolerance. In this way, a large number of operations can be
saved in later stages of the Newton iteration.

Computation of Flux Jacobian

GMRES and other Krylov subspace methods allow us to circumvent an explicit
computation and storage of the flux Jacobian dR/@W. The idea is based on
the observation that the methods rely only on matrix-vector products of the
form JAW™ and do not need the matrix J explicitly. The product of the
flux Jacobian with the solution update can be approximated by a simple finite
difference as L . .
R(W™ + hAW™) - R(W™)
h

which requires only two evaluations of the residual. The stepsize h has to be
chosen with some care, in order to minimise the numerical error [31]. One
particularly suitable formulation reads [80)]

Ok i n (6.62)
oW

Ve . . _
h=—Y%—max{|d, typ |[W"- |aW™|| } sign(d), (6.63)
Y o [ ]

where ¢ denotes the machine accuracy, d the scalar product wnr.AW™, |AW"[
is the vector AW™ with all elements set to their absolute values, and finally
typ U represents a typical size of U. Appart from saving memory and oper-
ations, there is an even more important advantage of the finite-difference ap-
proximation. Namely, numerically accurate linearisation of a high-order residual
Rn (including boundary conditions, limiters, source terms, etc.) can easily be
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achieved. Thus, the quadratic convergence of Newton’s scheme can be realised
at moderate costs. For this reason, we speak of such a scheme as of Newton-
Krylov approach [80]-[82).

Preconditioning

The efficiency of Krylov-subspace methods depends strongly on a good precon-
ditioner. Its purpose is to cluster the eigenvalues of the system matrix J around
unity. Thus, instead of Equation (6.61), the left- or right-preconditioned system
according to Eq. (3.11) is solved. Using Egs. (6.61) and (6.62) together with
the condition At — oo, the Newton-Krylov method becomes

_ B(Wn A_'n _ PB(1n .
p, RO WD “ROT) _ o 661

with left preconditioning, and

R(W™ + hPr AW*) — R(W?")
- =

—~R", PglAW™ = AW* (6.65)

in the case of right preconditioning, respectively. The main difference between
the two preconditioning methodologies is that left preconditioning scales the
residual R™ whereas right preconditioning does not. This has to be kept in
mind when the convergence of the Krylov method is monitored.

Obviously, the preconditioner should be as close as possible to the inverse
of the system matrix (P ~ J~!). But on the other hand, it should be invert-
ible with low numerical effort. Therefore, we have to find an optimal tradeoff
between the convergence speed of the Krylov method and the time spend for in-
verting the preconditioning matrix. One of the most successful preconditioners
is the Incomplete Lower Upper factorisation method [83], [84] with varying level
of fill-in {mostly zero, designated as ILU(0)). The ILU preconditioner is espe-
cially efficient in the case of viscous, turbulent flows, i.e., for stiff equations [85].
In order to obtain a good performance on unstructured grids, it is necessary to
reorder the elements of the system matrix such that the bandwidth is reduced.
We discussed the RCM renumbering strategy [22], [23] in Section 6.2.1 already.

A serious disadvantage of the ILU preconditioning scheme is that elements of
the matrix J have to be computed (see Subsection 6.2.2) and stored. Therefore,
some authors suggested to employ the LU-SGS scheme as a preconditioner [86],
[87]. Hence, when Eq. (6.62) is applied, the formation and storage of J is
completely avoided. However, it was demonstrated in [85] on behalf of several 2-
D cases that the GMRES method with LU-SGS is inferior to GMRES combined
with ILU(0) in terms of CPU-time. Nevertheless, the LU-SGS scheme (possibly
coupled with multigrid) still represents an attractive alternative, particularly in
3D.
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Start-Up Problem

The time step of the implicit Newton-Krylov method is infinitely large. However,
it is advisable to use small time steps at the beginning of the Newton iteration
process. The reason is that the flow solution is in general far from the steady
state at the beginning of the solution process, i.e., the root of the nonlinear
equation

RE(W)=0,

and this may cause a breakdown of the Newton iteration. One possible remedy
is the so-called Switched Fvolution Relazation (SER) technique [88]. Here, the
term /At is retained in Eq. (6.61). The time step is evaluated in the same way
as presented for the explicit scheme (Eq. (6.14) or Eq. (6.20) without the viscous
eigenvalue). The CFL number ¢ is increased starting from a small initial value
correspondingly to the reduction of the 2-norm of the residual, i.e.,

a,n+l = gh “R"i—d”? (666)
[PeAd15

Hence, the convergence of the iteration procedure (6.61) will be at first linear,
but it approaches the quadratic convergence of Newton’s method for large CFL
numbers. A further effect of the time term is the increased diagonal dominance
of J (inverse proportional to ©/At), which will help to stabilise the iteration.
In Ref. [82], it was suggested to clip o™t} in Eq. (6.66) such that it increases
by maximum factor of two and decreases less than factor of ten.

A further approach which can be used to overcome the start-up problems
of Newton’s method consist of grid sequencing, where the initial solution is ob-
tained on a sequence of coarser grids and interpolated onto finer grids. Another
possibility is to use a numerically cheap but robust iteration scheme for the
initial guess. For example, we could start with a multigrid scheme driven by the
LU-SGS method and then switch to GMRES with LU-SGS as preconditioner.
This might be particularly interesting for viscous turbulent flows, where the
convergence of a multigrid scheme usually slows down after the initial phase.
However, the global flow solution is then already close to the steady state.
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6.3 Methodologies for Unsteady Flows

The simulation of unsteady flow phenomena is becoming increasingly impor-
tant in many engineering disciplines. Examples are the interaction between
stationary and rotating parts in turbomachinery, piston engines, fluid-structure
interaction, helicopter aerodynamics, aeroacoustics, DNS or LES of turbulent
flows, detonations, etc. Clearly, the simulation has to be conducted efficiently
and with accuracy adequate for the problem being solved.

Explicit schemes represent the best choice for certain unsteady applications
when the time scales are comparable to the spatial scales over the eigenvalue, i.e.,
when the CFL number dictated by the physics is of the order of unity. This is for
example the case in aeroacoustics, DNS, and LES. For such applications, explicit
Runge-Kutta schemes are quite popular. Since the global physical phenomena
evolve much slower than the solution changes locally in these applications, it is
necessary to integrate over a long period of physical time. In order to do this
accurately, the temporal resolution of the explicit scheme has to be of 3rd or
higher order. This requires the use of Runge-Kutta methods different to that
we presented in Section 6.1 (see, e.g., [89], [90]).

In other cases, where the physical time scales are large in comparison to the
spatial scales divided by the eigenvalue (e.g., flutter, rotor-stator interaction,
etc.), the CFL number can be chosen in the order of several hundreds or even
thousands without impairing the accuracy of the simulation. Obviously, in such
cases an implicit scheme is more appropriate. In the following, we shall discuss
a particular technique known as the dual time-stepping approach, which is very
often employed for unsteady flows.

The dual time-stepping approach is based on the second-order time accurate
version of the basic non-linear scheme in Eq. (6.2). For this purpose weset 3 =1
and w = 1/2 in Eq. (6.2). Hence, we obtain

3OMYFIWP — 4(QM)FWR + (M) R
2At

= —RiH, (6.67)

where At denotes the global physical time step and M the mass matrix, re-
spectively. Equation (6.67) constitutes a 3-point backward-difference approx-
imation of the time derivative in Eq. (6.1). In order to solve the system of
non-linear equations given by Eq. (6.67), we can use either Newton’s method or
a time-stepping methodology. The latter can be written as

e}
ot

(Q}”“W;) = —Ry (W), (6.68)

where W* is the approximation to W"+! and ¢* denotes a pseudo-time variable.
Note that there is no mass matrix in the time derivative. The unsteady residual
is defined as

Rj (W) = By(W*) + o= (U)W - G5 (6.69)
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All terms which are constant during the time-stepping in Eq. (6.68) are gathered
in a source term, i.e.,

- 2 . _ -

Qi = (UMW} — ﬁ(QM)’,‘”W,"‘l : (6.70)
In the case of moving and/or deforming grids, the new size of the control volume,
ie, Q" in Eq. (6.68) has to satisfy the Geometry Conservation Law (see
Appendix A.4 for details and references).

The stationary solution of Eq. (6.68) corresponds to the flow variables at
the new time level, i.e., W* = Wntl. Since fi; = 0 at steady state in pseudo
time, Equation (6.67) is fulfilled. Any of the previously presented explicit or
implicit time-marching schemes can be employed for the solution of the sys-
tem of equations (6.68) in pseudo time. In the following, we shall discuss the
implementation of the dual time-stepping approach for explicit multistage and
implicit schemes.

6.3.1 Dual Time-Stepping for Explicit
Multistage Schemes

Jameson [91] first implemented the dual-time methodology using an explicit
multistage scheme accelerated by local time-stepping and multigrid. The signif-
icant advantage of this approach is that the physical time step is not restricted
as usual in explicit methods. It can be chosen based solely on the flow physics.
On the other hand, additional storage is needed only for the source term Q*,
which makes the approach very attractive. An m-stage explicit scheme for the
solution of the pseudo-time problem (6.68) reads

Ve =

- - a1 Aty =, =

WD = - SR )
I

- - DALY o o

W =W —%2;1—+—1’R;(W(”) (6.71)
I

- - Am AT 502 (e
(Wit =w® - g;lnﬂIRl(W( Yy,

I

where [ denotes the actual and (I + 1) the new pseudo-time level, respectively.
The time-marching process is started either with (W*)! = W™ or with a value
extrapolated from previous physical time steps, e.g., [92]

A S i
+ 5 .

It is continued until (T/’f/,")’+l approximates W,"H with sufficient accuracy (usu-
ally when the residual R; was reduced by two or three orders of magnitude).

Wi =wr (6.72)
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After that, the next physical time step is conducted. The pseudo time step
At* is computed in the same way that we saw in Subsection 6.1.4.

Arnone et al. [92] pointed out that the multistage scheme (6.71) becomes
unstable when the physical time step At is of the order of the pseudo time step
At* or smaller. Melson et al. [93] demonstrated that the instability is caused
by the term

3
2At
in Eq. (6.69), which becomes significant for small At. They suggested an implicit
treatment of this term. Thus, we have to modify the multistage scheme in Eq.
(6.71) such that the k-th stage becomes [93]

(M) W7

.3 _ -1
AL M

(k) _ (o) axAt]
I —WI —Qn-i-ll

1 (6.73)
(R - Gi]

The same methodology can also be applied to a hybrid multistage scheme (see
Subsection 6.1.2). The above formulation (6.73) is stable for any physical time
step At [93]. )

In the case of cell-centred schemes, the mass matrix M™*! in Eq. (6.73) can
be lumped (substituted by the identity matrix) without reducing the solution
accuracy. In this way, the term
3 -1

I+ ——a Aty M
in Eq. (6.73 is turned into a scalar value. However, we have to account for the
mass matrix in the case of a cell-vertex spatial discretisation schemes. Other-
wise, the multistage scheme will be unstable for small physical time steps. In
order to circumvent the expensive inversion of M™*!, Venkatakrishnan [94] and
Venkatakrishnan and Mavriplis [95] suggested the following modification of Eq.
(6.73)

- - ap At* 3 . -1
W =W - Q‘,;H’ [1+ 5 AtakAtIﬁ]
(6.74)
- 3 (ke
B (k=1 _ n+l (k—1)
[R,(W ) = 5 T AW ]

The parameter 4 can now be utilised to stabilise the time-stepping scheme. In
practice, setting 8 = 2 was found sufficient [94], [95].

The dual time-stepping approach, where the solution in pseudo time is ob-
tained by an explicit multistage scheme, is widely used. The highest compu-
tational efficiency results when the multistage scheme is accelerated by local
time-stepping (in t*) and multigrid. The reason is that the multigrid scheme
converges quickly to the stationary solution of Eq. (6.68). Examples of applica-
tions on structured grids can be found in Refs. [91])-[93] as well as in [96]-{98).
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Implementations of the methodology on unstructured grids were described, e.g.,
in [94], [95] and [99].

6.3.2 Dual Time-Stepping for Implicit Schemes

The implementation of an implicit scheme for the solution of Eq. (6.68) in pseudo
time ¢* proceeds in the same way as outlined in Section 6.2. First of all, we
formulate Eq. (6.68) as an nonlinear implicit scheme, i.e.,

0
ot*

(Q’;HW;) = —(Ry)+! (6.75)

with (I + 1) being the new pseudo-time level. Note again the absence of M in
time derivative. The unsteady residual, which is defined in Eq. (6.69), can be
linearised in pseudo time as follows

65* AW™, (6.76)

R’xl+lzR’¥l+
(E") (R") o

where AW* = (W*)"*1 — (W*)! and the flux Jacobian is defined as

)
oW* oW 24t

(QAT)™+1 (6.77)

If we insert the above linearisation into Eq. (6.75), we obtain the unfactored
implicit scheme [100]

1 3 “rynt1 aR U* — _(DP*\
<ZF;- + QAt) (QIM)I + (W)I‘l AW* = ( 1) . (678)

Any of the methodologies presented in Section 6.2 can be employed for the
solution of the system (6.78). A detailed discussion of time-accurate implicit
methods can be found in [101]. For recent examples of implementations, the
reader is referred to, e.g., [100] and [102].
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Chapter 7

Turbulence Modelling

The outstanding feature of a turbulent flow, in the opposite to a laminar flow,
is that the molecules move in a chaotic fashion along complex irregular paths.
The strong chaotic motion causes the various layers of the fluid to mix together
intensely. Because of the increased momentum and energy exchange between
the molecules and solid walls, turbulent flows lead at the same conditions to
higher skin friction and heat transfer as compared to laminar flows.

Although the chaotic fluctuations of the flow variables are of deterministic
nature, the simulation of turbulent flows still continues to present a significant
problem. Despite the performance of modern supercomputers, a direct sim-
ulation of turbulence by the time-dependent Navier-Stokes equations (2.19) -
known as the Direct Numerical Simulation (DNS) [1}-[10] - is applicable only to
relatively simple flow problems at low Reynolds numbers (Re). A more wide-
spread utilisation of the DNS is prevented by the fact that the number of grid
points needed for sufficient spatial resolution scales as Re®/4 and the CPU-time
as Re®. Therefore, we are forced to account for the effects of turbulence in
an approximate manner. For this purpose, a large variety of turbulence models
was developed and the research still goes on. There are five principal classes of
turbulence models:

e algebraic,

e one-equation,

multiple-equation,
second-order closures (Reynolds-stress models),
Large-Eddy Simulation (LES).

The first tree models belong to the so-called first-order closures. They are based
mostly on the eddy-viscosity hypothesis of Boussinesq {11], [12], but for certain
applications also on non-linear eddy-viscosity formulations. An overview of the
classes of turbulence models, which are sorted according to their decreasing level
of complexity, is displayed in Fig. 7.1.
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2nd-Order

1st-Order

0-Eq. 1-Eq. 2-Eq.

Level 0

Level 1

Level 2

Level 3

Figure 7.1: Hierarchy of turbulence models. Abbreviations:
DNS = Direct Numerical Simulation

LES = Large-Eddy Simulation

RANS = Reynolds-Averaged Navier-Stokes equations
1st-order = first-order closures

2nd-order = second-order closures

RST = Reynolds-Stress Transport models

ARS = Algebraic Reynolds-Stress models

0-, 1-, 2-Eq. = zero- (algebraic), one-, two-equations modcls.
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One should be aware of the fact that there is no single turbulence model,
which can predict reliably all kinds of turbulent flows. Each of the models has its
strengths and weaknesses. For example, if a particular model works perfectly in
the case of attached boundary layers, it may fail completely for separated fiows.
Thus, it is important always to ask whether the model includes all the significant
features of the flow being investigated. Another point which should be taken
into consideration is the computational effort versus the accuracy required by
the particular application. We mean by this that in many cases a numerically
inexpensive turbulence model can predict some global measures with the same
accuracy as a more complex model.

In the following, we first introduce the basic equations of turbulence as they
result from time and mass averaging of the governing equations. Then, we
present the Boussinesq's and the non-linear eddy-viscosity approaches. After
that, we briefly discuss the Reynolds-stress transport equation, which forms the
basis of the algebraic and differential Reynolds-stress models. In Section 7.2,
we present few wide-spread one- and two-equation first-order closures. Finally,
we discuss the LES approach in some detail because of the growing number of
engineering applications.
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7.1 Basic Equations of Turbulence

First of all, let us rewrite the governing equations (2.19) in differential form
(see Appendix A.1), since this is used very often in literature on turbulence
modelling. Furthermore, it allows for a compact and clear notation. However,
we will also provide examples of turbulence equations in integral form.

In the case of a compressible Newtonian fluid, the Navier-Stokes equations
read in absence of source terms in coordinate invariant formulation as

op 0 .
T éz_i(lwi) =0

0 0 N op %
5;(9111) + E;(pvjvl) - axi + 627] (71)

%(pE) + i(pv]H) = i(1),-7-,-]‘) + 9 <k BT) .

Oz; Oz; dz; \ Oz;

In above Eq. (7.1), v; denotes a velocity component (7 = [v},v4,v3]7), and z;
stands for a coordinate direction, respectively. An explanation of the compact
tensor notation can be found in Appendix A.11.

The components of the viscous stress tensor 745 in Eq. (7.1) are defined as

ka )

ka 2[.L
Tij = 2185 + A 5z—k§ij =2u S — (?) 52, 09 (7.2)
where we utilised the Stokes’s hypothesis (Eq. (2.17)). In Cartesian coordi-
nates, Eq. (7.2) is equivalent to Eq. (2.15). The second term in Eq. (7.2), i.e.,
v /0zy, which corresponds to the divergence of the velocity, disappears for

incompressible flows. The components of the strain-rate tensor are given by

1 v, ij
S‘] =3 <a$]_ + (9.’1:,') . (7.3)

In this connection, let us also definc the rotation-rate tensor (antisymmetric
part of the velocity gradient tensor) with the following components

o 1 a’Ui _ Bv]-
=3 <azj 32:,-) : (7:4)

The total energy E and the total enthalpy H in Eq. (7.1) are obtained from
the formulae

1 1
E=¢+ Uil H=h+ FVivi (7.5)

which correspond in Cartesian coordinate system to Eq. (2.6) and Eq. (2.12),
respectively.
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For incompressible flows, we can reduce Eq. (7.1) to the form

(9’Uz'

(91‘1'—0
0v; dv; _ 10p 2
5’{+U16—1:j——;'6—$i'+uv Vi (76)
or T _
‘5?+U]E—kVT

with v = p/p being the kinematic viscosity coefficient and V> denoting the
Laplace operator. In the absence of buoyancy effects, the equation for the
temperature T becomes decoupled from the mass conservation and momentum
equations.

7.1.1 Reynolds Averaging

The first approach for the approximate treatment of turbulent flows was pre-
sented by Reynolds in 1895. The methodology is based on the decomposition
of the flow variables into a mean and a fluctuating part. The governing equa-
tions (7.1) are then solved for the mean values, which are the most interesting
for engineering applications. Thus, considering first incompressible flows,; the
velocity components and the pressure in Eq. (7.1) are substituted by [13]

’Uizvi+v;7 p:5+p,a (77)

where the mean value is denoted by an overbar and the turbulent fluctuations
by a prime. The mean values are obtained by an averaging procedure. There
are three different forms of the Reynolds averaging:

1. Time averaging - appropriate for stationary turbulence (statistically steady
turbulence)

1 t+T
v; = lim —7—,,/ v; dt. (7.8)
t

As a consequence, the mean value T; does not vary in time, but only in
space. The situation is sketched in Fig. 7.2. In practice, T — 0o means
that the time interval T should be large as compared to the typical time-
scale of the turbulent fluctuations.

2. Spatial averaging — appropriate for homogeneous turbulence
v; = i ! dan (7.9)
R ) Q v '

with © being a control volume. In this case, T; is uniform in space, but it
is allowed to vary in time.
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!
-
=

—p time

t+T

Figure 7.2: Reynolds averaging - illustration of turbulent velocity fluctuations
v’ and statistical mean value 7.

3. Ensemble averaging — appropriate for general turbulence

N
~ 1
V; = A}gnoo —ﬁ T;:l Vi - (710)

Here, the mean value ; still remains a function of time and of space
coordinates.

For all three approaches, the average of the fluctuating part is zero, i.e., 1—)—: =0.
However, it can be easily seen that m # 0. The same is true for Tv;, if both
turbulent velocity components are correlated.

In cases where the turbulent flow is both stationary and homogeneous, all

three averaging forms are equivalent. This is called the ergodic hypothesis.

7.1.2 Favre (Mass) Averaging

In cases where the density is not constant, it is advisable to apply the den-
sity (mass) weighted or Favre decomposition {14], [15] to certain quantities in
Eq. (7.1) instead of Reynolds averaging. Otherwise, the averaged governing
equations would become considerably more complicated due to additional cor-
relations involving density fluctuations. The most convenient way is to employ
Reynolds averaging for density and pressure, and Favre averaging for other
variables such as velocity, internal energy, enthalpy and temperature. Favre av-
eraged quantities, for example the velocity components, are obtained from the
relation [14], [15]
i 1 1 [T
U; = 5 rlgr;of/t po; dt (7.11)
where p denotes the Reynolds-averaged density. Hence, the Favre decomposition
reads
vy = U; + vl (712)

1
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where #; represents the mean value and v/’ the fluctuating part of the velocity v;.

Again, the average of the fluctuating part is zero, i.e., v{ = 0. Furthermore, the
average of the product of two ﬂuctuat,iil/g quantities is not zero, if the quantities
are correlated. Hence, for example, v;'v{’ # 0 and in general v'v} # 0.

The following relationships can be derived for a mix between Favre and

Reynolds averaging
pv; =pd;, pvl =0, but v #£0. (7.13)

These equations will be utilised in later subsections.

7.1.3 Reynolds-Averaged Navier-Stokes Equations

If we apply either the time averaging Eq. (7.8) or the ensemble averaging Eq.
(7.10) to the incompressible Navier-Stokes equations (7.6), we obtain the fol-
lowing relations for the mass and momentum conservation

0v;
Bwi—o
(7.14)
ov - On_ 9 0 (7 - pui})
Pt TP, T oa, T an, VPN

These are known as the Reynolds-Averaged Navier-Stokes equations (RANS).
The equations (7.14) are formally identical to the Navier-Stokes equations (7.1)
or (7.6) with the exception of the additional term

'rg = —pyv; = —p (Biv; — ViY;) (7.15)
which constitutes the so-called Reynolds-stress tensor. It represents the transfer
of momentum due to turbulent fluctuations. The laminar viscous stresses are
evaluated according to Egs. (7.2) and (7.3) using Reynolds-averaged velocity
components, i.e.,

Ty = 2/.L S,‘j = (a;) + %) . (7-16)
J 1

The Reynolds-stress tensor cousists in 3D of nine components

2 (Y W]
plv1)?  pivy  puyvs

puv = | pvyv]  p(vh)?  puhuy | . (7.17)

I oy 1oyl 1\2
puzvy  puzvy  p(vy)

However, since v and v} in the correlations can be interchanged, the Reynolds-

stress tensor contains only six independent components. The sum of the normal
stresses divided by density defines the turbulent kinetic energy, i.e.,
1

K= 5@ = % [(”5)2 +(v3)? + (vg)z] : (7.18)
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As we can see, the fundamental problem of turbulence modelling based on the
Reynolds-averaged Navier-Stokes equations is to find six additional relations in
order to close the equations (7.14). We shall introduce the basic methodologies
in the Subsections 7.1.5-7.1.7.

7.1.4 Favre- and Reynolds-Averaged Navier-Stokes
Equations

In turbulence modelling, it is quite common to assume that Morkovin’s hypothe-
sis [16] is valid. It states that the turbulent structure of a boundary layer is not
notably influenced by density fluctuations if p’ « 5. This is generally true for
wall-bounded flows up to a Mach number of about five. However, in the case of
hypersonic flows or for compressible free shear layers, density fluctuations have
to be taken into account. The same holds also for flows with combustion or
significant heat transfer.

Application of the Reynolds averaging (Eq. (7.8) or (7.10)) to density and
pressure, and of the Favre averaging Eq. (7.11) to the remaining flow variables
in the compressible Navier-Stokes equations (7.1) yields [17]

o 8, .
a 61‘1( 'U,)—O
a __ d .. 0p 0 /.
6t(pvl)+6z1 (p J ‘l-) _azz 61,]( Ml 2K U])
) ) o (,of (719
Y (=K Y (ma Ty — _ II " _—T

+Bi—j [17,- (7’” pv” ”)] .

These are the Favre- and Reynolds- Averaged Novier-Stokes equations. Similarly
to the Reynolds averaging, the viscous stress tensor in the momentum (and
energy) equation is extended by the Favre-averaged Reynolds-stress tensor, i.e.,
'rg -p v;’v;’ . (7.20)
Its form is similar to Eq. (7.17) with Favre instead of Reynolds averaging. The
components of the laminar (molecular) viscous stress tensor 7;; are evaluated
by Eq. (7.2) using Favre-averaged velocity components.
If we employ the definition of the Favre-averaged turbulent kinetic energy,
ie.,

R |
K = 3 pv”v{’, (7.21)

we can express the total energy in Eq. (7.19) as

pis; +pK . (7.22)
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The total enthalpy is defined as

—

-~ ~ 1 1 -
pH =ph+ iﬁﬁiﬁz’ + iﬁvg’vé’ =ph+ §ﬁ6i6,- + pK . (723)

The individual parts of the Favre- and Reynolds-averaged Navier-Stokes
equations (7.19) have the following physical meaning [17]:

i (ka—T) —~ molecular diffusion of heat
(92:1' 6$j

) —
%(ﬁ vi/h"”) - turbulent transport of heat
J

o —

87(@-]'1;;') — molecular diffusion of K
J
d _ -
%( v;/K) - turbulent transport of K
Cj
o, .
%(viﬂrﬁ) — work done by the molecular stresses
Tj
O - F
g(vm ) - work done by the Favre-averaged Reynolds stresses
j

The molecular diffusion and turbulent transport of K are very often neglected.
This is a valid approximation for transonic and supersonic flows. In order to
close the Favre- and Reynolds-averaged equations (7.19), we also have to supply
six components of the Favre-averaged Reynolds-stress tensor (Eq. (7.20)) and
three components of the turbulent heat-flux vector. We shall discuss the three
basic approaches in the next subsections.

7.1.5 Eddy-Viscosity Hypothesis

One of the most significant contributions to turbulence modelling was presented
in 1877 by Boussinesq [11], [12]. His idea is based on the observation that the
momentum transfer in a turbulent flow is dominated by the mixing caused by
large energetic turbulent eddies. The Boussinesq hypothesis assumes that the
turbulent shear stress is related linearly to mean rate of strain, as in a laminar
flow. The proportionality factor is the eddy viscosity. The Boussinesq hypothesis
for Reynolds averaged incompressible flow (Eq. (7.14)) can be written as

—— _ 2 )
TiI; = ‘,DU;’U; = 2#’1"51_1‘ - §/)K()L'j, (724)

where S;; denotes the Reynolds-averaged strain-rate tensor (Eq. (7.3), cf. also
Eq. (7.16)), K is the turbulent kinetic energy (K = (1/2)@), and pr stands
for the eddy viscosity. Unlike the molecular viscosity g, the eddy viscosity pr
represents no physical characteristic of the fluid, but it is a function of the local
flow conditions. Additionally, ur is also strongly affected by flow history effects.
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In the case of the compressible Favre- and Reynolds-averaged Navier-Stokes
equations (7.19), the Boussinesq eddy-viscosity hypothesis reads

. — = 2 0] 2_-
’T',g = _ﬁvglv}’ = 2,UTSij — (%) 55%51‘]‘ — ngts,‘j s (7.25)

where g{j and K are the Favre-averaged strain rate and turbulent kinetic energy,
respectively. Note the similarity to Eq. (7.2). The term (2/3)pKd;; in Egs.
(7.24) and (7.25) is required in order to obtain the proper trace of ’rg or ’rf;.
This means that we must have

= 20K or rf =-2pK

in the case of S;; = 0 (continuity equation) or S;i = 0, in order to fulfil the
relations Eq. (7.18) or (7.21) for the turbulent kinetic energy. However, the term
(2/3)pK d;; is often neglected, particularly in connection with simpler turbulence
models (like algebraic ones).

The approximation, which is commonly used for the modelling of the tur-
bulent heat-flux vector, is based on the classical Reynolds analogy [18]. Hence,
we may write

—_— T
pUiR = ~kp— (7.26)
J 8xj
with the turbulent thermal conductivity coefficient kr being defined as
BT
kr =c¢c,——. 7.27
T CP PTT ( )

In Equation (7.27), ¢, denotes the specific heat coefficient at constant pressure
and Prr is the turbulent Prandtl number. The turbulent Prandtl number is in
general assumed to be constant over the flow field (Prr = 0.9 for air).

By applying the eddy-viscosity approach to the Reynolds- (and Favre-) aver-
aged form of the governing equations (2.19) or Eq. (7.1), the dynamic viscosity
coefficient p in the viscous stress tensor Eq. (2.15) or Eq. (7.2) is simply replaced
by the sum of a laminar and a turbulent component, i.e.,

u=pL+pr. (7.28)

The laminar viscosity pp is computed, for example, with the aid of the Suther-
land formula (2.30). Furthermore, according to the Reynolds analogy given by
Eq. (7.26), the thermal conductivity coefficient & in Eq. (2.24) or Eq. (7.2) is
evaluated as

KL ur
k=kp+kr= — . .
L+ kr=c¢ (P’I‘L + PTT> (7.29)

The eddy-viscosity concept of Boussinesq is, at least from engineering point
of view, very attractive since it requires “only” the determination of ur (the tur-
bulent kinetic energy K needed for the term (2/3)pKé;; in Eq. (7.24) or (7.25)
is either obtained as a by-product of the turbulence model or is simply omitted).



Turbulence Modelling 235

Once we know the eddy viscosity pr, we can easily extend the Navier-Stokes
equations (2.19) or (7.1) to simulate turbulent flow by introducing averaged flow
variables and by adding p7 to the laminar viscosity. Therefore, Boussinesq’s
approach became the basis for a large variety of first-order turbulence closures.
However, there are applications for which the Boussinesq hypothesis is no longer
valid (see, e.g., [17] p. 214 or {19] p. 111):

e flows with sudden change of mean strain rate,
o flows with significant streamline curvature,

flows with rotation and stratification,

secondary flows in ducts and in turbomachinery,

e flows with boundary layer separation and reattachment.

The limitations of the eddy-viscosity approach are caused by the assumption
of equilibrium between the turbulence and the mean strain field, as well as by
the independence on system rotation. The results can be notably improved by
using appropriate correction terms in the turbulence models [20], [21]. Further
increased accuracy of predictions can be achieved through the application of
non-linear eddy-viscosity models which are described next.

7.1.6 Non-Linear Eddy Viscosity

In order to remove the restrictions imnposed by the assumption of equilibrium
between the turbulence and the mean strain rate, Lumley [22], [23] proposed to
extend the linear Boussinesq approach by higher-order products of strain and
rotation tensors. This can viewed as a Taylor series expansion. Following the
idea of Lumley, numerous non-linear eddy-viscosity models were proposed, see,
for example, Refs. [24]-[27].

In the following, we shall present one recent approach proposed by Shih
et al. [25]. It includes up to third-order terms in the general eddy-viscosity
formulation and is particularly suited to swirling flows. As already pointed out
in [19], p. 194, cubic terms are essential for high accuracy. The Reynolds stresses

7{f can be expressed as (25], {28] (cf. Eq. (7.24))

—— 2 K? K3 o — =
pujv = EpK(sij - pT 28 ~ CBPE_QFikaj — Qi Sij]
K o e = =
— CoE [(5u)? iy — R (Sy)?) (7.30)

4

o 1— —
Qi SkmQmj — SleSlQOk(sij + 158}

63



236 Chapter 7

with S;j, Q;; according to Eqgs. (7.3) and (7.4). Furthermore,

I =1
Li=3
St =5y

[SkxSu — (Skx)?] S
(7.31)

gkkéij .

The values of the turbulent kinetic energy K and the dissipation rate € are
obtained from low-Reynolds K-¢ turbulence model (cf. Subsection 7.2.2). The
factors Cy to Cs in Eq. (7.30) are given in [25], [28

In comparison to the linear eddy-viscosity approach, the non-linear models
are computationally only slightly more expensive, but they offer a substantially
improved prediction capabilities for complex turbulent flows.

7.1.7 Reynolds-Stress Transport Equation

It is possible to derive exact equations for the Reynolds stresses by taking the
time average (second-order moment)

U; N(Uj) + U_;- N(’Ui) =0, (7.32)
where N (v;) denotes the Navier-Stokes operator, i.e.,
Oy dv; Op 2
N(v’)_p8t+ Vi B +a,_“v”" (7.33)

Using the average Eq. (7.32) together with Eq. (7.33), we obtain the following
Reynolds-stress transport equation [29]

67‘{} or, R

’Uk -

ot &vk

OC;k
=P+ —ei5 — —aﬁ + ;LVzrg (7.34)
for incompressible flow. The formulation for compressible flows can be found
in Ref. [17], p. 179, or in [30], [31]. The production of the turbulent kinetic
energy Pj;, the pressure-strain term II;;, the dissipation-rate term ¢;;, and the
third-order diffusion term Cjjx in Eq. (7.34) are defined as

9v; 07;
. R R i
b= "‘8 LY Ozk
o
I;; = p <%+ e ) = 2P,
Oz; Oz
(7.35)
v} OV
Eij = 2;! a_xka—z;’
ngk—p'U” X pv(s]k+pv ik -
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In Eq. (7.35), S}, denotes the fluctuating part of the strain-rate tensor. The first
part of Cjji, the triple velocity term, represents transport driven by fluctuating
convection, the two other parts are the pressure transport terms (pressure-
velocity correlations), respectively.

As we can see, the exact Reynolds-stress equation contains new unknown
higher-order correlations (e.g., vjvjv;). Therefore, Equation (7.34) can be closed
only by using empirical models. This is caused by the non-linear nature of
the Navier-Stokes equations. The second-order closures — the Reynolds-stress
models — provide the necessary framework for solving Eq. (7.34).
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7.2 First-Order Closures

The first-order closures represent the easiest way to approximate the Reynolds
stresses in the Reynolds-/Favre-averaged Navier-Stokes equations. They are
based on Boussinesq or non-linear eddy-viscosity models, which we discussed
in the Subsections 7.1.5 and 7.1.6, respectively. Consequently, the task of an
associated turbulence model is to compute the eddy viscosity p7.

From the large variety of first-order closure models, we selected three widely-
used approaches which represent the current state-of-the-art. All three models
can be implemented easily on structured as well as on unstructured grids. First,
we shall discuss the one-equation model due to Spalart and Allmaras. Second,
we shall present the well-known K-¢ two-equation model. Finally, we shall
consider the K-w SST (Shear-Stress Transport) two-equation model proposed
by Menter. A detailed comparison of this turbulence models for various cases
can be found in [32].

In the following, the density and the velocity components should be un-
derstood as Reynolds-/Favre-averaged, although the corresponding notation is
owmitted for convenience.

7.2.1 Spalart-Allmaras One-Equation Model

The Spalart-Allmaras one-equation turbulence model [33] employs transport
equation for an eddy-viscosity variable . It was developed based on empiricism,
dimensional analysis and Galilean invariance. It was calibrated using results for
2-D mixing layers, wakes and flat-plate boundary layers. The Spalart-Allmaras
model also allows for reasonably accurate predictions of turbulent flows with ad-
verse pressure gradients. Furthermore, it is capable of smooth transition from
laminar to turbulent flow at user specified locations. The Spalart-Allmaras
model has several favourable numerical features. It is “local” which means that
the equation at one point does not depend on the solution at other points.
Therefore, it can be readily implemented on structured multi-block or on un-
structured grids. It is also robust, converges fast to steady-state and requires
only moderate grid resolution in the near-wall region.

Differential Form

The Spalart-Allmaras turbulence model can be written in tensor notation as
follows [33]

ov

o & -
5" 67_j(uvj) =Cun(l - fi2) SV

+l i (l/ +g)ﬂ:| + C ﬂﬂ
2 6.’L'j L 61?]' b2 6.’11]' 61?]' (736)

Ch1 v 2 2
- [cwsn = D 1] (5) + alamp.
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The terms on the right-hand side represent eddy-viscosity production, conser-
vative diffusion, non-conservative diffusion, near-wall turbulence destruction,
transition damping of production, and transition source of turbulence. Further-
more, vi = pr/p denotes the laminar kinematic viscosity and d is the distance
to the closest wall. The turbulent eddy viscosity in Eq. (7.28) and (7.29) is
obtained from the formula

pr = fopi. (7.37)

The production term is evaluated with the following formulae

. 7
SzfvSS+va2>
X x\7°
for = NERGEA fo2 = (1 + Cu2> ) (7.38)
f — (1+val)(1_fv2) :i
o3 max(y, 0.001) VL

In Equation (7.38), S stands for the magnitude of the mean rotation rate, i.e.,
S = \/Q_QIJ_Q,—J,

where ;; is given by Eq. (7.4). Note that S differs from its original definition
in [33]. The modification was suggested by Spalart in order to prevent S from
reaching zero (cf. Ref. [34], p. 155).

The terms controlling the destruction of the eddy viscosity read

1+C8,\'/
fo=9{5—re)
g8 +C8y

124

T Sea’

(7.39)

g=17+Cua(r®-7), r

Functions used for modelling the laminar-turbulent transition are given by

2
fi1 = Crigrexp (—CtzAW—g'/z(d2 + gtzdzg)> )
(7.40)

fiz = Cisexp(—Cu x?), g = min[0.1, |AT]]2/(w; Azy)]

where w; represents the vorticity at the wall at the trip point (position has to
be specified by the user), {|A¥]|2 denotes the 2-norm of the difference between
the velocity at the trip point and the current field point, d; is the distance to
the nearest trip point, and Ax; stands for the spacing along the wall at the trip
point.
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Finally, the various constants in Eqs. (7.36)-(7.40) are defined as

Cor = 0.1355, Cip = 0.622,
Co=71, Cw=5, 0=2/3, k=041,
Cuwi =Co/KE+(1+Ch)/o, Cuw2=03, cu3=2,
Ch=1 Cpn=2 Cu=13, Cyuy=05.

(7.41)

As pointed out in [33], it is convenient to substitute the non-conservative
diffusion term in Eq. (7.36), i.e.,
10 ov ov ov
- A +0)—| + Crog—7—
v {azj [(”L ”)axj] "2 5z; axj}

by the following expression

1+Cyp O . Ov Chp2 N2~
. E [(VL + V)E‘;] - 7(1/[, + l/)v V. (742)

In this way, difficulties with the discretisation of the term (87/8z;)? are cir-
cumvented.
Integral Form

The Spalart-Allmaras turbulence model (Eq. (7.36)) reads after the transforma-
tion into a finite volume scheme as follows

2/ 5 df +?( (Fuq — F,7)dS = / Qr dQ, (7.43)
Ot Jq 30 Q

where §) represents the control volume, 9§ its surface, and dS is a surface
element of 2. The convective flux is defined as

Fog =0V (7.44)

with V being the contravariant velocity (see Eq. (2.22)). The convective flux is

in general discretised using first-order upwind scheme. The viscous flux is given
by
F,r= nzrg; + nyrg;, + n_,TZ; , (7.45)

where n., n,, and n; are the components of the unit normal vector. The normal
viscous stresses reads

(7.46)
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Finally, the source term in Eq. (7.43) becomes
= Cw |[(00\ [85\* [0\
Qr=Cun(l - f12)SP + zh2 @ + av + ov
o Ox dy Oz

Cy 7\*
— |Cut fur — E;m](-) + fullAd]3 .

(7.47)

d

Alternatively, the non-conservative diffusion can be formulated as suggested by
Eq. (7.42). The model constants are defined in Eq. (7.41).

Initial and Boundary Conditions

The initial value of 7 is usually taken as ¥ = 0.1v,. The same value is also
specified at inflow boundaries. At outflow boundaries, ¥ is simply extrapolated
from the interior of the computational domain. At solid walls, it is appropriate
to set ¥ = 0 and hence pr = 0.

7.2.2 K-¢ Two-Equation Model

The K-¢ turbulence model is the most widely employed two-equation eddy-
viscosity model. It is based on the solution of equations for the turbulent kinetic
energy and the turbulent dissipation rate. The historic roots of the K-¢ model
reach to the work of Chou [35]. During the 1970’s, various formulations of the
model were proposed. The most important contributions were due to Jones
and Launder [36], [37], Launder and Sharma [38] as well as due to Launder and
Spalding [39].

The K-¢ turbulence model requires addition of the so-called damping func-
tioms in order to stay valid through the viscous sublayer to the wall. The aim
of the damping functions is to assure proper limiting behaviour of K and £ at
the wall, i.e,, )

; 9 € v

K~y and 7N 7

where y represents the coordinate normal to the wall. Further, it can be shown
that the Reynolds shear stress behaves like (see, e.g., [17] pp. 138-139)

for y—0, (7.48)

THe~y®  for y—0,i#7. (7.49)

The K-z models with damping functions are also denoted as low Reynolds
number models. The most widely used formulations of the damping functions
were proposed by Jones and Launder [36], Launder and Sharma {38], Lam and
Bremhorst [40], and by Chien [41]. The reader my find a comparison of seven
different low Reynolds number K-¢ models in Ref. [42].

The K-¢ turbulence model is more difficult to solve numerically than the
previously discussed Spalart-Allmaras model (Subsection 7.2.1). Particularly,
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the damping functions lead to turbulence equations with stiff source terms.
This, and the necessary high grid resolution nearby walls (in order to resolve
the viscous sublayer), requires the utilisation of at least point-implicit or better
full-implicit time-stepping schemes. Reference [43] contains useful hints on the
explicit time discretisation of the K-¢ equations. Examples of implementations
of the K-¢ model on structured as well as on unstructured grids can be found,
e.g., in {44]-[52]. Finally, it is important to note that the accuracy of the K-¢
model degrades for flows with adverse pressure gradient [42], [17].

Differential Form

A low Reynolds number K-¢ model can be written as

OpK 03] _ 0 ur\ 0K Fo
e + Bz, (pv;K) = 3z, [(uL—ka) 6:::]-] + 733 Si5 — pe
Jpe* 0 “w_ 0 pur o¢* & Fo (7.50)
G oy )= g (s £) 35 + st
B (6*)2
Cg?fc"lp K + Pe .

The terms on the right-hand side represent conservative diffusion, eddy-viscosity
production and dissipation, respectively. Furthermore, ¢, denotes the so-called
explicit wall term. The Favre-averaged turbulent stresses T,g are given by Eq.
(7.25) and the strain-rate tensor S;; follows from Eq. (7.3). The turbulent eddy
viscosity in Eq. (7.28) and (7.29) results from

KZ
e’

pr =Cufup (7.51)
The turbulent kinetic energy is also employed for the evaluation of the eddy
viscosity according to Eq. (7.24) or Eq. (7.25). The quantity £* is related to the
turbulent dissipation rate € by

E=€y+e". (7.52)

The term ¢, is the value of the dissipation rate at the wall. The definition
in Eq. (7.52) greatly simplifies the application of wall-boundary conditions (see
further below).

The constants, the near-wall damping functions as well as the wall term
differ between the various K-¢ models. Here, we choose the Launder-Sharma
model because it gives good results for a wide range of applications [42]. For
the Launder-Sharma model, the constants and the turbulent Prandtl number
are given by [38]

C‘_,, = 009, 051 = ]..44, 052 = 1.92,
(7.53)
ok =10, o.=13, Prr=09.
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Furthermore, the near-wall damping functions read

P ~34
w = SPA (14002 Rer)?

fa=1 (7.54)
fea=1-03exp (Re%)
with Rer = pK*/(e* 1) being the turbulent Reynolds number.
Finally, the explicit wall term ¢. and the value ¢,, are defined as
9 2
wr [ 8%v, 2ur [ OVK -
= Qur== d == == 7.55
b =2 <3y%> mee = ow ) (7.85)

where v; stands for the wvelocity parallel to the wall, and y, represents the
coordinate normal to the wall. In order to avoid an explicit knowledge of wall
distance and orientation, it is common to compute the wall term and ¢, from
the following Cartesian tensor form [53], [50]

9 2
_ KL 8v; '\~ _ 2up [OVK
¢ = 2ur p <3zjazk> and ¢, = —p < 9z, (7.56)

instead of Eq. (7.55).

Integral Form

Written in time-dependent integral form for a control volume 2 with a surface
element dS, a low Reynolds number K-¢ turbulence model reads

9 / Wr dQ + ?{ (For — F,1)dS = / Qrdo. (7.57)
ot Jo 80 Q
The vector of conservative variables takes the form
- | pK
Wr = [pg*} . (7.58)

The vector of convective fluxes is defined

=~ | pKV

FC.T - {peivjl ) (759)
where V denotes the contravariant velocity (see Eq. (2.22)). The vector of

viscous fluxes is given by

K K K
~ NaTre + NyTyy + N7
For= [ S ] (7.60)

NgTey + NyThy + n,TE,
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with the normal turbulent viscous stresses

K _ pr\ 0K
Tzz—(ﬂL'*_o_K) 9z '

oo (7.61)
e — pry %
Tz — (pL + O > az )

T

In Eq. (7.60), ng, ny, n, represent the components of the outward-facing unit
normal vector of the surface 9. The source term is evaluated from

~ P —pe
= e* , 7.62
QT (Cclfslp"cﬁ2f52p5‘)f+¢s ( )
where P denotes the production term of the turbulent kinetic energy. It is

defined as

0 -0 0
=F 8y p 00 P OD

P= Tzza Tyya—y »

P(Ou, 00N e (Bu Ow) e (00 0w
ey 0y Oz T2\ 3z " 9z vz \ 52 Oy

with the Favre-averaged turbulent stresses Tg given by Eq. (7.25). The con-
stants, the near-wall damping functions as well as the wall term follow for the
Launder-Sharma model from the definitions in Egs. (7.52)-(7.56). The turbulent
eddy viscosity pr is obtained from Eq. (7.51).

+
(7.63)

Initial and Boundary Conditions

The simplest approach is to initialise K and * with their freestream values. A
better alternative consists of prescribing profiles for K and £* near solid walls.
The profiles can be obtained from analogy to turbulent flat-plate boundary layer
[44]. However, this requires the knowledge of wall distances which may not be
readily available like on unstructured grids.

The proper boundary conditions at solid walls are K = 0 and ¢* = 0,
provided the transformation in Eq. (7.52) is utilised. This also implies pu7 = 0
at walls. At inflow boundaries, K and €* can be computed from relations for
the turbulent intensity and length scale, i.e.,

)
-K 3/2
o0 C, K3

(L)oo = Y2 (Ip)oo = 2ET2 (7.64)

€%

where we assumed g%, = £,,. In turbomachinery, (I7)s is chosen between 103
and 1072 times the mean radial blade spacing [54]. The values of K and £* are
extrapolated from the interior at outflow boundaries.
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Wall functions

As we already noted, the low Reynolds number models require very fine grids
at walls. The standard condition is that the first node (or cell centroid) should
be located at the distance y* < 1 from the wall. In order to reduce the the
stiffness of the turbulence equations and to save the number of grid points/cells,
coarser grids with 10 < y* < 100 are sometimes employed. In such a case, the
K-¢ model Eq. (7.50) or Eq. (7.57) is applied without the damping functions
(fuo = fe1 = fe2 = 1; €4, = 0) and the wall term (¢. = 0). We speak here of
a high Reynolds number turbulence model. Apparently, the distance between
the first node (cell centroid) and the wall has to be bridged by the so-called
wall functions. The wall functions deliver the values of K and £* at the node
(cell centroid) adjacent to the wall. The turbulence equations are not solved
at the wall itself and at the first layer of nodes (cells). Various formulation of
the wall functions are used, in general based on the logarithmic wall-law. One
example is the function of Spalding [55], which models the viscous sublayer,
the transition region as well as the logarithmic layer. Implementations of high
Reynolds number models were described, e.g., in [56]-{60] or [51].

The application of the wall functions leads (provided the grid is not too
coarse) to reasonably accurate results for attached boundary layers. It also al-
lows the utilisation of purely explicit time-stepping schemes. However, the use
of wall functions becomes highly questionable for separated flows.

7.2.3 SST Two-Equation Model of Menter

The K-w Shear Stress Transport (SST) turbulence model of Menter (Refs. [61],
[62]) merges the K-w model of Wilcox [63], [17] with a high Reynolds number
K-¢ model (transformed into the K-w formulation). The SST model seeks to
combine the positive features of both models. Therefore, the K-w approach is
emploved in the sublayer of the boundary layer. The reason is that the K-w
model needs no damping function. This leads, for similar accuracy, to signifi-
cantly higher numerical stability in comparison to the K-¢ model. Furthermore,
the K-w model is also utilised in logarithmic part of the boundary layer, where
it is superior to the K- approach in adverse pressure flows and in compressible
flows. On the other hand, the K- model is employed in the wake region of the
boundary layer because the K-w model is strongly sensitive to the freestream
value of w [64]. The K-¢ approach is also used in in free shear layers since it
represents a fair compromise in accuracy for wakes, jets, and mixing layers.

Oune distinct feature of the SST turbulence model is the modified turbulent
eddy-viscosity function. The purpose is to improve the accuracy of prediction of
flows with strong adverse pressure gradients and of pressure-induced boundary
layer separation. The modification accounts for the transport of the turbulent
shear stress. It is based on the observation of Bradshaw that the principal shear
stress is proportional to the turbulent kinetic energy.

A certain disadvantage of the SST model is that distances to nearest wall
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have to be known explicitly. This requires special provisions on multiblock
structured or on unstructured grids. Examples for applications of the SST
turbulence model can be found in (65]-[(67].

Differential Form

The transport equations for the turbulent kinetic energy and the specific dissi-
pation of turbulence read in differential form [61]

OpK 15} _ 0 oK
ot + B_a:j(m)’K) = 9z [(,UL + o pr) Bz

: ] + 7'55,-,- - ,H*pr
J

opw 0, O 2wl Cup Fg
5 + 7z, (pvjw) = oz [(,UL + oupr) 89:]-] + oT TijSU

(7.65)
P02 OK _@J_

= Bpu® +2(1 - fi) 7. .
J J

The terms on the right-hand side of Eq. (7.65) represent conservative diffusion,
eddy-viscosity production and dissipation, respectively. Furthermore, the last
term in the w-equation describes the cross diffusion. The Favre-averaged tur-
bulent stresses 7'5 are given by Eq. (7.25) and the strain-rate tensor S;; follows
from Eq. (7.3). The turbulent eddy viscosity in Eq. (7.28) and (7.29) is obtained
from [61]
alpK

max(ayw, fa|lcurl @)

KT = (7.66)
This definition of the turbulent viscosity guarantees that in an adverse pressure
gradient boundary layer, where the production of K is larger than its dissipation
w (hence ajw < ljcurl ¥j|;), Bradshaw’s assumption, i.e., 7 = a; pK (shear stress
proportional to turbulent kinetic energy) is satisfied.

The function f) in Eq. (7.65), which blends the model coefficients of the K-w
model in boundary layers with the transformed K-e model in free-shear layers
and freestream zones, is defined as

f1 = tanh(arg?)

arg) = min {max VK 5004 4p0 0 K (7.67)
e 0.09wd’ pud® |’ CDk,d?|’

where d stands for the distance to the nearest wall and CDg,, is the positive
part of the cross-diffusion term in Eq. (7.65), i.e.,

CDpg. = max <2/)JW2 oK @— 10_20) .

. Ba (7.68)
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The auxiliary function f; in Eq. (7.66) is given by
fo = tanh(arg?)

oo [ 2VE 500 (7.69)
92= 0.09wd’ pwd® |

The model constants are as follows

ap =031, [*=0.09, k=041. (7.70)

Finally, the coefficients of the SST turbulence model 3, C,, ok, and o, are
obtained by blending the coefficients of the K-w model, denoted as ¢, with
those of the transformed K-¢ model (¢2). The corresponding relation reads

¢=fgr+ (1 - fi)ps. (7.71)
The coefficients of the inner model (K-w) are given by

oxg1 =085, 0, =05, B =0.075,

R (7.72)
Co1 = B/B* — o1k?//B* = 0.533.
The coefficients of the outer model (K-¢) are defined as
ox2 =10, o, =0.856, [ =0.0828,
(7.73)

Cu2 = B2/B* = 0wak?//B* = 0.440.

The integral formulation of the SST turbulence model corresponds, in prin-
ciple, to that of the K-¢ model from Subsection 7.2.2. Therefore, it is not
repeated here.

Boundary Conditions

The boundary conditions for the kinetic turbulent energy and the specific dis-
sipation at solid walls are

6uL
K=0 and w=10—"F"— 7.74
pBi(d1)? ( )
with d;, being the distance of the first node (cell centroid) from the wall. The
grid has to be refined such that y* < 3.
For the inflow boundaries, the following freestream values are recommended

Uool|2 _ -
o0 = Cl@: v (Br)eo = (#L)oolo ©2 y Koo = (I’TDL)OO'WOO s (7.75)
o>
where L denotes the length of the computational domain, 1 < € < 10 and

2 < Cy < 5, respectively. The values of K and w are extrapolated from the
interior at outflow boundaries.
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7.3 Large-Eddy Simulation

The Large-Eddy Simulation (LES) methodology was employed already in 1963
by Smagorinsky in meteorology [68] (circulation of the atmosphere). The first
engineering application of LES (turbulent channel flow) was presented by Dear-
dorff in 1970 [69]. His method was later extended and improved by Schumann
[70]. During 1980’s, the research focus in the simulation of turbulence shifted
from LES to Direct Numerical Simulation (DNS). However, some important
work was still conducted, e.g., by Bardina et al. [71], Moin and Kim [72]. The
interest in LES returned back at the beginning of 1990’s [73]-[79]. Nowadays,
LES is increasingly employed for physically and geometrically complex flows
of engineering relevance like, e.g., in combustion chambers. Examples can be
found in Refs. [80]-[91]. Certainly, this trend is supported by the availability
of low-cost, highly powerful computers. Additionally, today’s engineers are also
often faced with flow problems, for which the standard turbulence models fail.
Furthermore, in certain cases the mean flow frequencies are in the same order
as the turbulent fluctuations. Hence, the time averaging looses its sense and we
have to employ either LES or DNS.

LES is based on the observation that the small turbulent structures are more
universal in character than the large eddies. Therefore, the idea is to compute
the contributions of the large, energy-carrying structures to momentum and
energy transfer and to model the effects of the small structures, which are not
resolved by the numerical scheme. Due to the more homogeneous and universal
character of the small scales, we may expect that the so called subgrid-scale
models can be kept much simpler than the turbulence models for the RANS
equations.

LES represents a 3-D, time-dependent solution of the governing equations. In
comparison to turbulence modelling based on the RANS equations, LES requires
high grid resolution also in the streamwise (50 < z* < 150) and in the cross-
flow direction (15 < % < 40). However, LES is computationally considerably
cheaper than DNS. The number of grid points (cells) required to resolve the
outer layer is proportional to Re®* [92]. The resolution has to be increased like
Re!® in the viscous sublayer. Thus, if compared to Re®/* required by DNS, LES
can be applied at Reynolds numbers at least one order of magnitude higher. In
order to further reduce the requirements on grid resolution, LES can be used
in conjuction with approximate wall models (Subsection 7.3.4). This approach
allows for LES of engineering problems at reasonable computational costs.

An accurate resolution of high wave-number turbulent fluctuations requires
spatial discretisation schemes with corresponding properties in the wave-number
space (cf., e.g., [93] or [94]). Therefore, spectral methods are often employed.
However, spectral methods are applicable only to geometrically simple domains
with (quasi-)periodic boundaries. This is the reason why finite difference or
finite volume spatial discretisations are becoming increasingly popular. Central
differencing schemes proved to be more suitable than upwind schemes. The rea-
son is that upwind schemes (regardless of the order of accuracy) dissipate too
much energy over a significant portion of the turbulent spectra due to the inher-
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ent numerical damping [95], [96]. A discussion of numerical errors of spectral
and finite difference methods can be found in [97].

The implementation of LES methods on unstructured grids [98]-{102] rep-
resents a particular challenge. However, it allows for the treatment of highly
comiplex geometries, moving boundaries or for dynamic grid adaptation. The
research topic consists of the development of numerically efficient, high-order
spatial discretisation on mixed-element grids.

An introduction to LES can be found in Ref. [19], pp. 269-336, and in [103]-
[105] or [83]. An overview of the present state of LES was given in [106].

7.3.1 Spatial Filtering

LES is based on a spatial filtering operation, which decomposes any flow variable
U into a filtered (large-scale, resolved) part U and into a sub-filter (unresolved)
part U, i.e.,

U=U+U' (7.76)

The filtered variable at the location 7 in space is defined as
U7, t) = / U (7, t) G(7o, 7, A) dF, (7.77)
D

where 2 denotes the entire flow domain, G represents the filter function, and 7
is the position vector, respectively. The filter function determines the structure
and size of the small scales. The filter function depends on the difference 7 — 7
and on the filter width A = (A} Ay A3)/?, with A; being the filter width in
the i-th spatial coordinate. The following filter functions are the mostly used
ones (see Fig. 7.3):

1. the tophat filter:

1/A3 if [(zg); — xi| < A;/2
- / |( 0)1 z| = 1/ (7.78)
0 otherwise.

2. The sharp Fourier cut-off filter:

. H sin (Ali[(ro),- - m)

TP —— (7.79)

=1

3. The Gaussian filter:

3/2 _ S a2

The tophat and the Gaussian filter smooth the large-scale fluctuations as well
as the small scales below the filter width. The cut-off filter affects only the
scales below the cut-off wave-number. In practice, the Gaussian filter is always
employed in conjuction with a sharp Fourier cut-off. Filters suitable for grids
with varying cell sizes were proposed in Refs. {107], [108].
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(a) (b) (c)
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Figure 7.3: LES filter functions in physical space: tophat (a), cut-off (b), Gaus-
sian (c).

7.3.2 Filtered Governing Equations

The spatial filtering, defined by Eq. (7.76) and Eq. (7.77), has to be applied to
the Navier-Stokes equations in order to remove the small turbulent scales. The
filter width A as well as the filter function are considered as free parameters.
In fact, the governing equations are usually not explicitly filtered. Instead, the
grid as well as the discretisation errors are assumed to define the filter G. For
the discussion of explicit filtering see Refs. [109], [110].

Because of the differing treatment, we shall distinguish in the following be-
tween compressible (7.1) and incompressible (7.6) formulation of the Navier-
Stokes equations.

Incompressible Navier-Stokes Equations

For an incompressible flow of a Newtonian fluid, the filtered governing equations
(7.6) take the form

ov;

o~ 7.81
—HE+6(__) SR/ V2—~6T5 e
ot " bz T T pom YT b

where v denotes the kinematic viscosity coefficient. The equations (7.81) de-
scribe the temporal and spatial evolution of the large, energy-carrying scales of
motion. The non-linearity of the convective term leads to the appearance of the
so-called subgrid-scale stress (SGS) tensor

TS =05 — UiTj, (7.82)
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which describes the effects of the unresolved scales. The SGS tensor has to be
niodelled (see Subsection 7.3.3) in order to close the equations.
The SGS tensor can be decomposed into three parts [111], namely

Ts = L,;j + Cij + TSR . (7.83)

The individual parts have the following physical meaning:

Lij =,U; — U;T; (7.84)
is the so-called Leonard stress term and represents the interactions between
large-scale eddies which produce small-scale turbulence. This term only can be
evaluated explicitly from the filtered velocity field v;. Further, the cross-stress
term

Ci; = EiU;- + vU; (7.85)
describes interactions between large- and small-scale eddies. Finally,
7—5’{ = W (7.86)

is the so-called SGS Reynolds-stress tensor. It reflects interactions between the
small-scale structures. The above decomposition (7.83) is no longer used mainly
because L;; and C;; are not invariant with respect to Galilean transformation
(Galilean invariance means that all frames of reference which are translating
uniformly with respect to each other are equivalent).

Compressible Navier-Stokes Equations

If LES is to be applied to compressible flows, we have employ Favre averaging
(Subsection 7.1.2) together with the spatial filtering to the Equations (7.1).
Otherwise, the filtered Navier-Stokes equations would contain products between
density and other variables like velocity or temperature. Thus, the velocity
components, the energy and the temperature in Eq. (7.1) is decomposed as

U=U+U". (7.87)
The filtered variable at the location 7 in space is given by

~ pU 1
OGont) = 5 =< [ sEo UGG m ) ar,  (788)
p pJp
where the overbar denotes the filtering in Eq. (7.77). The Favre-filtered Navier-
Stokes equations (7.1) read [104], [106]

o . 0

Eri 5;}_(?”1) =0
opvs  O(pu;v;)  Op 06y _ or3t e
ot 8:1,']- Ox; 611-'j - (9:1:]- * 8:1:j (0-” UU) (7'89)

dpe  0(pv;e) 04  _« 5::8, = —A—B—
3t+ Ox; +3:L'j +PSkk — 6455 = —A-B-C+D
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with the terms

A= (9% [p(v;e — v;é)] - divergence of subgrid-scale heat flux
J
a9 . . S
B= 3z, [q]- - qj] — divergence of SGS heat diffusion
3
C= [PSkk - 1‘)5'“] - SGS pressure-dilatation

D= [aijS,-j — 5’,']'5',']'] — 8GS viscous dissipation

and

— 2
Gij = 2uSy + <#B - %) 84 Skk

p . 2 &
6ij = 2S5 + <#B - —#> 83 Sk

3
(7.90)
o _1(on o,
v 2 6.’1)]' Bzi
S A L/
%= dz;’ 4= oz; "

In the above equations (7.89)-(7.90), e denotes internal energy per unit mass,
Sij is the Favre-filtered strain-rate tensor, and Tgp = p(v;U; — ©;0;) represents
the Favre-averaged subgrid-scale stress. Furthermore, p, pp, and k stand for
the molecular viscosity, the bulk viscosity, and for the thermal conductivity,
respectively. Finally, g, fig, and k are the respective values at the filtered
temperature T.

The right-hand side of Eq. (7.89) contains terms which have to be modelled.
In the momentum cquation, the SGS stresses 7;;F are approximated, but the
second term, i.e., (Gij — ;) is usually neglected. In the energy equation, term
A can be expressed through the SGS stresses [112], term B can be neglected,
and terms C, D can be modelled as proposed in [113].

7.3.3 Subgrid-Scale Modelling

The main task of a subgrid-scale model is to simulate energy transfer between
the large and the subgrid scales. On the average, the energy is transported
from the large scales to the small ones (turbulent cascade process). Therefore,
a subgrid-scale model has to provide means of adequate energy dissipation.
However, in some instances the energy also flows from small to large scales -
a process called backscatter. Thus, the model should account for this effect as
well. Backscatter models are discussed, e.g., in [114].

Various subgrid-scale models were proposed in the past and the research still
continues. The majority of the present models is based on the eddy-viscosity
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concept, which is explained next. Furthermore, we shall present the Smagorin-
sky model, which forms the basis of all subgrid-scale models. We shall also briefly
discuss the basics of the so-called dynamic subgrid-scale models. A comparison
of six different subgrid-scale models was presented recently in [115].

Eddy-Viscosity Models

These models are able to represent the global dissipative effects of the small
scales, but they cannot reproduce the local details of the energy exchange. In the
case of incompressible flows, the eddy-viscosity models relate the SGS stresses
to the large-scale strain-rate S;; as follows

T - ‘sgirfk = —2urS,; . (7.91)
The strain-rate gi]- is obtained from Eq. (7.3) by using filtered velocity compo-
nents. The eddy viscosity vy is in general evaluated from algebraic relations in
order to save numerical costs. The isotropic part of the SGS stresses (7)) can
either be added to the filtered pressure [116], modelled [117] or neglected.

Relation similar to Eq. (7.91) applies also in the case of compressible Navier-
Stokes equations. The components of the Favre-averaged SGS stress tensor are
approximated as

8is .
5l = 3T = —2vrS; + (

QﬁUT> O (7.92)

3 )0 U
The components of the strain-rate tensor S’i]- are given in Eq. (7.90).

Smagorinsky SGS Model

The Smagorinsky model [68] is based on the equilibrium hypothesis which im-
plies that the small scales dissipate entirely and instantaneously all the energy
they receive from the large scales. The algebraic model takes the form

vr = (CyA)*[3], (7.93)

where |S| = (25;;5;;)!/? is the magnitude of the strain-rate tensor and Cj
denotes the Smagorinsky constant. The theoretical value found by Lilly [118]
is C; = 0.18. However, the Smagorinsky constant depends on the type of the
flow. For example, in shear flows C; has to be reduced to approximately 0.1.
The filter width A in Eq. (7.93) is usually chosen to be twice the average grid
size, i.e., A = 2 (Ax; Azy Axy)!/3.

In order to account for the reduced growth of the small scales near walls,
the value of the eddy viscosity vr has to be reduced. Thus, the Smagorinsky
model Eq. (7.93) is modified according to Van Driest damping as

2 __
vr = [Coa (1= e /)] 3], (7.94)

where y* represents the dimensionless wall distance.
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The Smagorinsky model is numerically cheap and easy to implement. How-
ever, it has several serious disadvantages:

e it is too dissipative in laminar regions with mean shear;

e it requires special provisions near walls and at laminar-turbulent transi-
tion;

e the parameter Cy is not uniquely defined;
e the process of energy backscatter is not modelled.

Because of these shortcomings, various other approaches were proposed (see,
e.g., [104]). Very popular are the dynamic models.

Dynamic SGS Models

The dynamic SGS models employ the same relation as Smagorinsky (Eq. (7.93)
for the evaluation of the eddy viscosity v in Eq. (7.91) or (7.92). The difference
is that the Smagorinsky constant (adjusted a priori) is replaced by a parameter,
which evolves dynamically in space and time. Hence,

vr = Cd(’l-", t) A2|§| . (795)

The parameter Cy is computed based on the energy content of the smallest
scale of turbulence. For this purpose, Germano et al. [119] proposed to employ
a second filter — the so-called test filter A. The width of the test filter has to
be larger than that of the filter A applied to the governing equations (usually
A = 2A). The application of the test filter to the filtered equations leads to the
ST

so-called subtest-scale stresses U

T{ST = ﬁ - %'i%j . (7.96)
The subtest-scale stresses are related to the SGS stresses ‘rg (Eq. (7.83)) via
the Germano identity [120]

— iﬂ}j - %ﬂ}j s (797)

where ﬁij denotes the Leonard stresses associated with the test filter. It rep-
resents the contribution to the Reynolds stresses by the scales whose length is
intermediate between the filter width A and the test filter width A.

If we express the subtest-scale and SGS stresses in Eq. (7.97) using the
eddy-viscosity approach Eq. (7.91) together with Eq. (7.95), we obtain

S
Li; - ‘3_Jka = —2Ca My; (7.98)

with . B
M,; = A?|S[S;; — [A?|5]5,]" . (7.99)
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The notation [[* means that the whole term enclosed in the brackets is test-
filtered. The parameter C; can be derived from Eq. (7.98) by using the least-
squares minimisation of Lilly [121]. This leads to

1 Lij 1\/[,']‘

i) = = W Bl
mn mn

(7.100)
The above formulation (7.100) is mathematically inconsistent since the parame-
ter Cy was taken outside the test filter in Eq. (7.98). In practice, the numerator
and denominator in Eq. (7.100) are therefore ensemble-averaged in the homo-
geneous directions, i.e.,

1 (Li; My)

Ca(r,t) = —5

2 Mo M) (7.101)

Improved dynamic SGS models were proposed, e.g., by Ghosal et al. [122],
Carati et al. [123], Piomelli and Liu {124], and Held [83].

7.3.4 Wall Models

The computational costs of LES of wall-bounded flows at high Reynolds num-
bers (e > 108) are still too high for enginecring purposes. The reason is the
excessively large number of grid points (cells) required to resolve the wall layer
appropriately. In order to reduce the costs, it is possible to model the wall layer
by specifying a correlation between the velocity in the outer flow and the stress
at the wall. This approach is quite similar to using wall functions in RANS sim-
ulations. The basic assumption is that there is only a weak interaction between
the near-wall and the outer region, which is supported by the investigations in
(125] and [126].

Earlier implementations of the wall models were based on the assumption
that the dynamics of the wall layer are universal and hence they can be ap-
proximated by a generalised law-of-the-wall. Basically, the models utilised the
logarithmic law (see [70] and [127]-[129]). Balaras et al. [130] proposed recently
a new zonal approach. Within the two-layer model, the filtered Navier-Stokes
equations (7.81) are solved up to the first grid point above the wall. From this
point to the wall 2-D boundary layer equation are solved on a refined embedded
grid. The solution on the embedded grid is then used to prescribe the wall shear
stress as a boundary condition for the LES. The zonal approach of Balaras et al.
[130] allows it to place the first point in a region 20 < y* < 100, which leads to
significantly reduced grid size and hence computational time. The methodology
was applied with success to turbulent flows in a plane channel, square duct and
rotating channel. Later on, it was also employed for the LES of separated flows
with encouraging results [131], [132].
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Chapter 8

Boundary Conditions

Any numerical simulation can consider only a part of the real physical domain
or system. The truncation of the domain leads to artificial boundaries, where we
have to prescribe values of certain physical quantities. Furthermore, walls which
are exposed to the flow represent natural boundaries of the the physical domain.
The numerical treatment of the boundary conditions requires a particular care.
An improper implementation can result in inaccurate simulation of the real
system. Additionally, the stability and the convergence speed of the solution
scheme can be negatively influenced.

The following types of boundary conditions are in general encountered in
the numerical solution of the Euler and the Navier-Stokes equations:

e solid wall,

o farfield in external and inflow/outflow in internal flows,
e symmetry,

e coordinate cut and periodic boundary,

e boundary betwecn blocks.

The numerical treatment of these boundary conditions is described in detail in
the following sections. For literature on further boundary conditions like heat
radiation on walls or like free surfaces, the reader is referred to Section 3.4.
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8.1 Concept of Dummy Cells

Before we proceed with the discussion of the boundary conditions, we should
mention the concept of dummy cells (also known as dummy points). This ap-
proach is very popular on structured grids. However, dummy cells offer some
advantages also on unstructured grids. The dummy cells are additional layers
of grid points outside the physical domain. This is sketched in Fig. 8.1 for the
case of a 2-D structured grid. As we can see, the whole computational domaiu is
surrounded by two layers of dummy cells (denoted by dashed line). The dummy
cells (points) are usually not generated as the grid inside the domain (except
on multiblock grids). Rather, the cells are only virtual, although therc are also
geometrical quantities like volume or face vector associated with them.

The purpose of the dummy cells is to simplify the computation of the fluxes,
gradients, dissipation, ete. along the boundaries. This is achieved by the pos-
sibility to extend the stencil of the spatial discretisation scheme beyond the
boundaries. As we can see in Fig. 8.1, the same discretisation scheme can be
cmployed at the boundaries like inside the physical domain. Thus, we can solve
the governing equations in the same way in all “physical” grid points. This
makes the discretisation scheme much easier to implement. Furthermore, all
grid points of a structured grid can be accessed in a single loop, which is of sig-
nificant advantage particularly on vector computers. The condition is of course
that the duinmy cells (points) contain appropriate values of the conservative
variables as well as of geometrical quantities. Clearly, the number of dummy

Figure 8.1: Two layers of dummy cells (dashed line) around the computational
domain (thick line) in 2D. Filled circles represent the standard stencil of a 2nd-
order cell-vertex (dual) scheme, filled rectangles outline the stencil of a 2nd-order
cell-centred scheme (see Section 4.3).
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cell layers must be such that the part of the stencil outside the physical domain
is completely covered. The conservative variables in the dummy cells (points)
are obtained from boundary conditions. The geometrical quantities are usually
taken from the corresponding control volume at the boundary. In the case of
boundaries between multiple grid blocks (Section 3.1), all flow variables and the
geometry are transferred from the neighbouring block.

The grey-shaded dummy cells in Fig. 8.1 represent a certain problem, since
it is not quite clear how to set their values (if there is no adjacent grid block).
The values are not required by the standard cross-type discretisation stencil.
However, they may become necessary for the computation of gradients (viscous
fluxes - see Section 4.4), or for transfer operators within multigrid (Section 9.4).
Usually, an averaging of the values from the adjacent “regular” dummy cells, as
indicated in Fig. 8.1 by arrows, is sufficient.
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8.2 Solid Wall
8.2.1 Inviscid Flow

In the case of an inviscid flow, the fluid slips over the surface. Since there is
no friction force, the velocity vector must be tangent to the surface. This is
equivalent to the condition that there is no flow normal to the surface, i.e.,

7-n=0 at the surface, (8.1)

where 77 denotes the unit normal vector at the surface. Hence, the contravariant
velocity V (Eq. (2.22)) is zero at the wall. Consequently, the vector of convective
fluxes Eq. (2.21) reduces to the pressure term alone, i.e,

0
. Nz Pw
(Fo)w = | nyPw (8.2)
Nz Pw
0

with p,, being the wall pressure.

Structured Cell-Centred Scheme

Within the cell-centred scheme, the pressure is evaluated at the centroid of the
cell. However, p,, in Eq. (8.2) is required at the face of the boundary cell. We
can obtain the wall pressure most casily by extrapolation from the interior of
the domain. Considering Fig. 8.2, we could simply set p,, = p>. Higher accuracy
is achieved by using either a two-point

1
Puw = 5(3132 - p3), (8.3)

or a three-point extrapolation formula

1
Pw = g(lSp-z — 10p3 + 3ps) . (8.4)

In order to account for grid stretching, distances to the wall could be employed
instead of the constant coefficients [1].

The above extrapolation formulae (8.3), (8.4) do not account for the grid
and the surface geometry. An alternative approach — the so-called normal-
momentum relation — was developed by Rizzi [2]. It is based on the fact that the
wall represents a streamline in inviscid flow. Diflferentiation of the zero normal-
flow condition in Eq. (8.1) along the surface streamline, and the substitution of
the result into the momentum equation yields

pv- (T-V)A =7-Vp. (8.5)

Equation (8.5) relates the density, the velocity and the wall geometry to the nor-
mal derivative of the pressure. It was demonstrated that the normal-momentum
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Figure 8.2: Solid wall boundary condition for the cell-centred scheme. Dummy

cells are denoted as 0 and 1. Location, where the convective fluxes Eq. (8.2) are
evaluated, is marked by a diamond.
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Figure 8.3: Solid wall boundary condition for the structured, cell-vertex dual
control-volume scheme. Dummy points are denoted as (i,0) and (i,1). Lo-
cations, where the convective fluxes Eqg. (8.2) are evaluated, are marked by
diamonds. Compare also to the sketch in Fig. 4.6.
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relation gives very accurate results [1]. However, in the case of complex ge-
ometries there can be problems with the numerical solution of the normal-
momentum relation. A detailed description of the implementation and accuracy
comparisons can be found in Ref. [1].

The values of the conservative variables in the dummy cells can be obtained
by linear extrapolation from the interior, i.e.,

Wy = 2W, — Ws
. - - (8.6)
Wo = 3Wy — 2W; .

The indices in Eq. (8.6) correspond to Fig. 8.2. If the dummy cells are to be
utilised within the spatial discretisation scheme (e.g., for the evaluation of the
dissipation operator), it is important that the calculation of the convective fluxes
is compatible to Eq. (8.2).

Structured Cell-Vertex Scheme

The implementation of the boundary condition Eq. (8.1) is straightforward for
the cell-vertex discretisation scheme with overlapping control volumes (Subsec-
tion 4.2.2). The convective fluxes at the wall faces are computed according to
Eq. (8.2). The wall pressure p,, is obtained by averaging the nodal values as
indicated in Eq. (4.26) for a 2-D, or in Eq. (4.27) for a 3-D case. The distri-
bution formula (Eq. (4.30) in 2D) accounts now for only two (four in 3D) cells
(compare Fig. 4.4 to Fig. 8.3).

Several different ways can be followed in the case of the cell-vertex scheme
with dual control volumes (Subsection 4.2.3). One approach is to apply the
condition in Eq. (8.2) separately for each face of the control volume which is on
the wall. Thus, according to Fig. 8.3, we can write

0 0
. (nz)i-12 (pw)i—1/4,2 (n:)i,Q (pw)i+1/4,2
(Few)iz = | (ny)i-1,2 (Pw)i-tya2 | + | (Ny)i2 (Pw)itr/a2 | - (8.7)
(nz)i-1,2 (Pw)i-1/4,2 (n2)i2 (Pw)iv1/a2

The pressures (py);-1/4,2 and (Pw)i+1/4,2 in Eq. (8.7) can be obtained by linear
interpolation, e.g.,

(Pw)it17a2 = l[3(;Dw)z‘,2 + (Pw)i+1,2] - (8.8)

4
The corresponding 3-D formula will be presented further below in the subsection
on unstructured grids.

Another possible implementation employs the condition in Eq. (8.2) directly
in the respective wall node (i.e., node 2 in Fig. 8.3). The wall pressure p,, is
simply set equal to po. The unit normal vector is computed as the average of the
normal vectors of all wall facets which share the node 2. This approach requires a
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correction of the velocity vector. After the solution update by the time-stepping
scheme, the velocity vector at the wall is projected onto the tangential plane
13}, [4], i.e.,

(Ti2)corr = Ti2 — [Ti2 - (Mav)i2] - (Fav)i2 (8.9)

with 77,, being the averaged unit normal vector. In this way, the flow will
become tangential to the wall.

In order to assign values to the dummy points, it is sufficient to extrapolate
the conservative variables (Eq. (2.20)) from the interior field by using relation
similar to Eq. (8.6).

Unstructured Cell-Centred Scheme

The wall boundary condition in Eq. (8.1) can be implemented for a cell-centred
unstructured scheme in a way similar to that on structured grids. If the bound-
ary cell is a quadrilateral, hexahedron or a prism (with triangular face on the
wall), the pressure can be extrapolated to the wall by using Eq. (8.3). The neigh-
bouring cell (number 3 in Fig. 8.2) is known from the face-based data structure
described in Subsection 5.2.1. For the case of a triangular or tetrahedral cell,
in Ref. {5] and [6] it was suggested to employ one layer of dummy cells. The
velocity components in the dummy cells were obtained by reflecting the velocity
vectors in the boundary cells at the wall. For example, in the dummy cell 1 in
Fig. 8.2, the velocity would become

U] = Uy —2Vart, (8.10)

where Vy = upn, +van, +wan, is the contravariant velocity and @i = [nz,ny,n;|7
stands for the wall unit-normal vector. The pressure and density in the dummy
cells were set equal to the values in the corresponding boundary cell (this implies

Puw = p2).

Unstructured Median-Dual Scheme

The boundary condition Eq. (8.1) requires more attention in the case of the
median-dual unstructured discretisation scheme. The situation is shown in Fig.
8.4 for the 2-D and in Fig. 8.5 for the 3-D case. The convective fluxes in
Eq. (8.2) are computed separately at each face of the control volume which is
located on the wall. This is identical to the first approach discussed above for
the structured cell-vertex scheme with dual control volumes. For quadrilateral
elements (like 1-3-4-5 in Fig. 8.4), the pressure is interpolated correspondingly
to Eq. (8.8). In the case of hexahedra, prisms or pyramids, where the face of the
control volume is quadrilateral (like face 1-4-3-6 in Fig. 8.5), the interpolation
formula reads

1
Dint = I‘é(gpl + 3ps + 3pg + ps) - (8.11)

If the boundary elements are tetrahedra (or triangles in 2-D), the pressure at
the wall face should be evaluated like in the finite element method [7]. At the
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Figure 8.4: Solid wall boundary condition for the 2-D unstructured, dual-
control volume mixed-grid schenie. Locations, where the convective fluxes Eq.
(8.2) are cvaluated, are marked by diamonds.

Figure 8.5: Solid wall boundary condition for the 3-D unstructured, mixed-
grid scheme. Locations, where the convective fluxes Eq. (8.2) are evaluated, are
marked by diamonds.
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wall segment 1-2 in Fig. 8.4 for example, the pressure at the face 1-2* would be
computed as

1
Pint = 6(5171 +p2). (8.12)

In the case of a tetrahedra with, e.g., the wall face 1-2-3 in Fig. 8.5, the pressure
is given by

Pint = < (6p1 + p2 +p3) . (8.13)

ol =

8.2.2 Viscous Flow

For a viscous fluid which passes a solid wall, the relative velocity between the
surface and the fluid directly at the surface is assumed to be zero. Therefore,
we speak of noslip boundary condition. In the case of a stationary wall surface,
the Cartesian velocity components become

v=v=w=0 at the surface. (8.14)

There are two basic consequences of the noslip condition. First, we do not need
to solve the momentum equations on the wall. This fact is utilised in the cell-
vertex scheme. Second, the convective fluxes through the noslip wall are given
again by Eq. (8.2), and the terms in Eq. (2.24) simplify to © = kVT. Hence, the
wall pressure in the convective fluxes is obtained in the same way as described
above for the inviscid flow. However, the dumiy cells (points) are treated in a
different way.

Cell-Centred Scheme

The implementation of the noslip boundary condition in Eq. (8.14) can be sim-
plified by the utilisation of dummy cells. In the case of an adiabatic wall (no
heat flux through the wall), we can set (see Fig. 8.2)

p=p2, E=Ek
(8.15)

Uy = —Uuz2, v =V, W =W

and likewise for the cells 0 and 3. The approach is applicable to both, structured
and unstructured schemes (cf. Ref. [6]).

If the wall temperature is given, the velocity components are still reversed
as in Eq. (8.15). The temperature is linearly extrapolated from the interior field
by using the specified wall temperature. Since the pressure gradient normal
to the wall is zero, the pressure in the boundary element is prescribed also in
the dummy cells (i.e., po = p1 = p2). The density and the total energy in the
dummy cells are evaluated from the interpolated values.
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Cell-Vertex Scheme

Since the momentum equations need not to be solved, there is no contribution
from the convective fluxes (Eq. (8.2)) at the wall. The viscous fluxes in Eq.
(2.23) contribute only the temperature gradient normal to the wall to the energy
equation. For an adiabatic wall, VT, - i is zero. Hence, we do not have to
compute any convective or viscous fluxes at the wall. The residuals of the
momentum equations should be set to zero, in order to prevent the generation
of nonzero velocity components at the wall nodes.

In the case of prescribed wall temperature, we can directly set the total
energy at the wall (e.g., node (4,2) in Fig. 8.3) using (perfect gas assumed)

(pE)ip2 = %ppi,-z Ty, (8-16)

where T, denotes the given wall temperature. The residuals of the momentum
and the energy equation have to be zeroed out. The same strategy is applicable
also to unstructured schemes.

Another approach, which seems to be more robust for some applications,
does not solve the governing equations at the wall at all. Both, the density and
the energy are directly specified

pi2 = 7’{:—’; and (pE)is = 3’7—’3. (8.17)
The relations in Eq. (8.17) assume that there is no pressure gradient normal to
the wall (therefore p» = p3). Since all conservative variables are prescribed, the
residuals of all equations should be set to zero. This technique can be utilised on
unstructured grids as well. However, the extrapolation of the pressure requires
additional operations on triangular or tetrahedral grids.
If the wall is adiabatic, the values in the dummy points are obtained as
follows
pin=pi3, B =E;
(8.18)

Uil = —U33, Vi1 = —Uiz, Wil = —W;3.

’

The same applies to the nodes 0 and 4. If the wall temperature is given, the
temperature in the dummy points is extrapolated from the interior, i.e.,

T,;yl = 2Tw - T,;,3 and Ti,O = 3Tw - 2T1;,3 (819)

with the indices according to Fig. 8.3. The velocity components are again re-
versed as in Eq. (8.18). The density and energy are computed with the inter-
polated temperature value and with the pressure p; 3.
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8.3 Farfield

The numerical simulation of external flows past airfoils, wings, cars and other
configurations has to be conducted within a bounded domain. For this rea-
son, artificial farfield boundary conditions become necessary. The numerical
implementation of the farfield boundary conditions has to fulfil two basic re-
quirements. First, the truncation of the domain should have no notable effects
on the flow solution as compared to the infinite domain. Second, any outgoing
disturbances must not be reflected back into the flow field [9]. Due to their
elliptic nature, sub- and transonic flow problems are particularly sensitive to
the farfield boundary conditions. An inadequate implementation can lead to
a significant slow down of convergence to the steady state. Furthermore, the
accuracy of the solution is likely to be negatively influenced. Various method-
ologies were developed which are capable of absorbing the outgoing waves at
the artificial boundaries [10]-[15]. An review of different non-reflecting boundary
conditions can be found in [16].

In the following two subsections, we shall discuss the concept of characteristic
variables as it was described by Whitfleld and Janus [12]. We shall also present
an extension of the farfield boundary conditions for lifting bodies.

8.3.1 Concept of Characteristic Variables

Depending on the sign of the eigenvalues of the convective flux Jacobians (Ap-
pendix A.9, Eq. (A.63) or (A.67)), the information is transported out of or into
the computational domain along the characteristics. For example, in the case of
subsonic inflow there are four incoming characteristics (in 3D) and one outgo-
ing (A5 in Eq. (A.67)). The situation reverses for subsonic outflow. According
to the one-dimensional theory of Kreiss [17], the number of conditions to be
imposed from outside at the boundary should be equal to the number of in-
coming characteristics. The remaining conditions should be determined from
the solution inside the domain.

The approach of Whitfield and Janus [12] is based on the characteristic
form of the one-dimensional Euler equations (2.45) normal to the boundary (cf.
Appendix A.9). The methodology was found to perform very well on structured
and unstructured grids in a variety of flow cases. It can be applied not only to
farfield boundaries but also to inviscid solid walls (Subsection 8.2.1).

The two basic flow situations at the farfield boundary are sketched in Fig.
8.6. The flow can either enter or it can leave the domain. Therefore, depending
on the local Mach number, four different types of farfield boundary conditions
have to be treated:

e supersonic inflow,
e supersonic outflow,

subsonic inflow, and

e subsonic outflow.
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Figure 8.6: Farfield boundary: inflow (a) and outflow (b) situation. Position
@ is outside, b on the boundary, and position d is inside the physical domain.
The unit normal vector 73 = [ng, ny, n,]7 points out of the domain.

Supersonic Inflow

For supersonic inflow, all eigenvalues have the same sign. Since the flow is
entering the physical domain, the conservative variables on the boundary (point
b in Fig. 8.6) are determined by freestream values only. Thus,

Wy, = W,. (8.20)

The values W, are specified based on the given Mach number M., and on two
flow angles (angle of attack, side-slip angle).

Supersonic Outflow

In this case, all eigenvalues have also the same sign. However, the flow leaves
now the physical domain and all conservative variables at the boundary must
be determined from the solution inside the domain. This can be accomplished
simply by setting

- -

Wy = Wy. (8.21)

Subsonic Inflow

Here, four characteristics enter and one leaves the physical domain. Therefore,
four characteristic variables are prescribed based on the freestream values. One
characteristic variable is extrapolated from the interior of the physical domain.
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This leads to the following set of boundary conditions [12]

1
P=3 {Pa + Pa — poco[naz(ua — ua) + ny(ve — va) + nz(ws — wa)]}

Pb = Pa + (P — Pa) /5
Uy = Uq = Nz (Pa — Pb)/(Poco) (8.22)
U = Va — Ny(Pa — Pb)/(Poco)

Wy = Wa — nz(pa — Ps)/(Poco),

where pp and ¢y represent reference state. The reference state is normally set
equal to the state at the interior point (point d in Fig. 8.6). The values in point
a are determined from the freestream state.

Subsonic Outflow

In the case of subsonic outflow, four flow variables (density and the three ve-
locity components) have to be extrapolated from the interior of the physical
domain. The remaining fifth variable (pressure) must be specified externally.
The primitive variables at the farfield boundary are obtained from [12]

Pb = Pa

po = pa+ (P — pa)/cj

up = ug + na(pa — ps)/(poco) (8.23)
Uy = va + ny(Pa — Pb)/(Poco)

wy = wg +n:(pa — Pb)/(pPoco)

with p, being the prescribed static pressure.
Physical properties in the dummy cells can be obtained by linear extrapola-
tion from the states b and d.

8.3.2 Modifications for Lifting Bodies

The above characteristic farfield boundary conditions assume zero circulation,
which is not correct for a lifting body in sub- or transonic flow. For this reason,
the farfield boundary has to be located very far away from the body. Other-
wise, the flow solution will be inaccurate. The distance to the farfield can be
significantly shortened (one order of magnitude), if the freestream flow includes
the effect of a single vortex (horse-shoe vortex in 3D). The vortex is assumed to
be centred at the lifting body. The strength of the vortex is proportional to the
lift produced by the body. In the following, we shall present implementations
of the vortex correction in 2D and in 3D.
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Vortex Correction in 2D

The approach, which we want to describe here, was suggested by Usab and
Murman {18]. The components of the corrected freestream velocity are given
by the expressions (compressible flow assumed)

o = + LV1- Mo, ! sin
Yoo = Uoo 2 d 1— M2 sin®*(0 — a)
(8.24)
r'v1- M2 1
C 6
Yoo = Yoo < 2rd > 1— M2 sin*(f - «) €08

with I’ being the circulation, (d,#) the polar coordinates of the farfield point, «
the angle of attack, and M, denoting the freestream Mach number, respectively.
The circulation is obtained from

L= il aCr (8.25)

by using the theorem of Kutta-Joukowsky. In Equation (8.23), a represents
the chord length of the airfoil and Cp is the lift coefficient evaluated by the
integration of the surface pressure. The polar coordinates in Eq. (8.24) are

calculated as
A= /(= Zref)? + (Y — Yres)?

B (8.26)
6 — tan (y_J_f) ,
T — Zref

where .5 and y,.s are the coordinates of the reference point (location of the
vortex — e.g., at 1/4 chord).
The modified freestream pressure pZ, is given by

L oo e oy YD)
o | (y=1)/y ¥ =1\ poo (1Tollz = [1751]3)

Poo = [poo + < ¥ ) 2péé-y (827)
with |52 = (u%,)? + (v5,)?. The corrected freestream density is obtained
from the equation of the state

px« 1/
= e °°) | (8.28)
P

*

The corrected quantities u%,, v5,, pi,, and pi, are inserted into Eq. (8.22) or
Eq. (8.23) instead of %q, Va, Pa, and pa.

The above vortex correction Eqs. (8.24)-(8.28) is strictly valid in subsonic
flow only. However, the modification of the freestream conditions proved to be
helpful in transonic flow as well. This is demonstrated in Fig. 8.7, where the
dependence of the lift coefficient on the distance to the farfield boundary was
investigated. The farfield radius was set to 5, 20, 50, and 99 chords. As we
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Figure 8.7: Effects of distance to the farfield boundary and of single vortex on
the lift coefficient. NACA 0012 airfoil, My, = 0.8, a = 1.25°.

can see, the simulation without the vortex correction experiences a strong de-
pendence on the farfield distance. On contrary, the calculations with the vortex
remain sufficiently accurate up to a distance of about 20 chords. This leads to a
significant reduction of the number of grid cells/points. It was demonstrated in
Ref. {19] that by using higher-order terms in the vortex correction, the farfield
boundary can be placed only about 5 chords away without loss of accuracy.

Vortex Correction in 3D

The effect of a wing on the farfield boundary can be approximated by a horse-
shoe vortex. In the case of compressible flow, the modified freestream velocity
components can be obtained from [20], [21]

F‘.Z
U;o=uoo+~—'-6—.A

27

r z+1 z—1 z3?
Uso = Voo = 5~ - 8.29
Voo = Voo o [(z+l)2 + y2 (Z‘l)2+y26+m2+y2ﬂ2 .A] ( )

. _ r y B y
“°°‘““°°+27r[<z+z>2+y25 <z—z)2+yzc]’
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where I denotes the circulation, (z, ¥, z) the Cartesian coordinates of the farfield
point, and [ stands for the half span, respectively. Furthermore, in Eq. (8.29)
it was assumed that the flow is in the positive z-direction with the wing being
oriented along the 2-axis. The terms A, B and C in Eq. (8.29) read

A= z+1 _ z—1
V¥+ VY-
B=1+ — (8.30)
Vi '
C=1+—

The abbreviations are given by
by =27 + B2z + 1) + 2B
Yo =22 + B2z — 1) + 262 (8.31)

B=+/1-MZ2

with M, being the freestream Mach number. The circulation I" is calculated
using Eq. (8.25), where a represents the mean chord. The corrected values of
pressure (ps,) and of density (p7,) are obtained from the formulae (8.27) and
(8.28), respectively. The quantities ug, Vs, Wq, Pa, and p, in Eq. (8.22) or Eq.
(8.23) are replaced by their corrected values u’,, vy, wZ,, ps,, and p} .

The expressions for the corrected velocity components v}, and w}, in Eq.
(8.29) becomes infinite at locations, where the vortex lines cross the outflow

boundary. These are the points
z=+l, y=0,

2:—1, y:07

and = %f,,5. In order to avoid the numerical singularity, in Ref. {21] it was
suggested to constrain the values of

in Eq. (8.29) to the 1/4 wingspan, i.e., {/2. This measure reduces the corrections
to the velocities vo and we, within the distance /2 around the vortex lines
z=1land z = —I.

The numerical results presented in [21] indicate a reduced sensitivity of the
lift and drag coefficient with respect to the farfield distance, if the vortex correc-
tion in Eq. (8.29) is applied. It was found that a distance of 7 - to the farfield
boundary is sufficient for accurate results.
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8.4 Inlet/Outlet Boundary

Various approaches were devised for the implementation of numerical inlet, and
in particular, of outlet (also named open) boundary conditions for the Navier-
Stokes equations [22]-[26]. Here, we will concentrate on methodologies, which
were developed for turbomachinery applications. Suitable non-reflecting inlet
and outlet boundary conditions were described, e.g., in {27]-[30]. Giles [31], and
Hirsch and Verhoff [32] suggested non-reflecting boundary conditions for the
Euler equations, which are intended for domains with a short distance between
the body and the inlet or the outlet plane.

In certain cases, the inlet and outlet boundary are additionally periodic with
respect to the velocity as well as the pressure and temperature gradient. This
type of flow is encountered, for example, in the simulation of heat exchangers
[33]. The implementation of periodic inlet and outlet boundary conditions was
presented in [34]-[36] for LES in channels.

Subsonic Inlet

A common procedure consists of the specification of the total pressure, total
temperature, and of two flow angles. One characteristic variable has to be
interpolated from the interior of the flow domain. One possibility is to employ
the outgoing Riemann invariant [30], which is defined as

(8.32)

where the index d denotes the state inside the domain (cf. Fig. 8.6a). The
Riemann invariant is used to determine either the absolute velocity or the the
speed of sound at the boundary. In practice, it was found that selecting the
speed of sound leads to a more stable scheme, particularly for low Mach-number
flows. Therefore, we set

R (v~ -1 20 + 2|k -
Cp = R(y-1 1+C089\/[(7 e ]00 1 (8.33)

(v — 1)cos?f + 2 (y—D(R? 2

with 8 being the flow angle relative to the boundary, and ¢y denoting the stag-
nation speed of sound. Hence,

cosf = — % r (8.34)
1Tall2
and .
e =+ To— |17}, (8.35)

where ||7;]|> denotes the total velocity at the interior point d (Fig. 8.6a). The
unit normal vector 77 in Eq. (8.34) was assumed to point outwards of the domain.
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Quantities like static temperature, pressure, density, or the absolute velocity
at the boundary are evaluated as follows

2
wn()
)

T, v/{v~1)
DPbs = Po (7—,0)

_ D
Py = _RTb

1Tsllz = /2 ¢p(To — T),

where Ty and pg are the given values of total temperature and pressure, R and ¢,
represent the specific gas constant and the heat coefficient at constant pressure,
respectively. The velocity components at the inlet are obtained by decomposing
ll]}2 according to the two (one in 2D) prescribed flow angles.

(8.36)

Subsonic Outlet

In turbomachinery, the static pressure is usually prescribed at the outlet. The
subsonic outlet boundary can be treated in a way quite similar to the outflow
condition in Eq. (8.23). Only the ambient pressure p, is replaced here by the
given static exit pressure.

Flow variables in the dummy cells can be obtained by linearly extrapolating
the states at the boundary and at the interior point d.
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8.5 Symmetry Plane

If the flow is to be symmetrical with respect to a line or a plane, the first con-
dition which must be met is that there is no flux across the boundary. This is
equivalent to the requirement that the velocity normal to the symmetry bound-
ary is zero. Furthermore, the following gradients have to vanish:

e gradient normal to boundary of a scalar quantity,
¢ gradient normal to boundary of a tangential velocity,
¢ gradient along the boundary of the normal velocity (since ¥ -7 = 0).

We can write these conditions as
0
i-V(@-£)=0 (8.37)
0

where U stands for a scalar variable and ¢ denotes a vector tangential to the
symmetry boundary.

Cell-Centred Scheme

The implementation of the symmetry boundary condition can be largely sim-
plified by employing dummy cells. The flow variables in the dummy cells are
obtained using the concept of reflected cells. This means that scalar quantities
like density or pressure in the dummy cells are set equal to the values in the
opposite interior cells, i.e.,

U] = U2 and U[) = Ug. (838)

The notation corresponds to that in Fig. 82. The velocity components are
reflected with respect to the boundary as indicated in Eq. (8.10). The normal
gradient of the normal velocity in the dummy cell equals to that in the opposite
interior cell, but it has reversed sign.

Cell-Vertex Scheme (Dual Control Volume)

Two different approaches can be followed. One possibility is to construct the
missing half of the control volume by mirroring the grid on the boundary. The
fluxes and the gradients are then evaluated like in the interior using reflected
flow variables (see above). The second methodology computes the fluxes for the
half control volume (but not across the boundary). The components normal to
the symmetry plane of the residual are then zeroed out. It is also necessary
to correct normal vectors of those faces of the control volume, which touch the
boundary (like at point 2* in Fig. 8.4). The modification consists of removing
all components of the face vector, which are normal to the symmetry plane.
The gradients have also to be corrected according to Eq. (8.37).
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8.6 Coordinate Cut

This type of boundary condition is encountered only in the case of structured
grids. The coordinate cut represents an artificial, not a physical, boundary. It
is a line (plane in 3D) composed of grid points with different computational
coordinate(s) but the same physical location. This means that the grid is folded
such that it touches itself. As we shall see in Subsection 11.1.1, the coordinate
cut appears for the so-called C- (Fig. 11.5) or O-grid topology (Fig. 11.9). The
flow variables and their gradients have to stay continuous across the cut.

The best way to implement the cut boundary condition is to employ dummy
cells (points). The situation is sketched in Fig. 8.8. As we can see, the duminy
layers here are not virtual, but they coincide with the grid on the oppasite side
of the cut. Hence, the values of physical quantities in the dummy cells (cell-
centred scheme), or in the dummy points (cell-vertex scheme), are obtained
directly from the opposite cells (points). In the casc of the ccll-centred scheme,
the fluxes across the faces of the boundary cell (shaded in Fig. 8.8a) are evaluated
cxactly like in the interior field.

The cut boundary can be treated in two different ways for the cell-vertex
scherme. One possibility is to generate a complete control volume at the cut
(the second part is denoted by a dashed line in Fig. 8.8b). Using the dummy
points, the fluxes can be calculated in the same way as inside the domain. If
the implementation is done correctly, the low quantities at the points 2 (upper
grid part) and 5 (lower part) will be equal. The second approach is to integrate
the fluxes separately for each half of the control volume. The residuals at the
points 2 and 5 in Fig. 8.8b are then added. It is important that the partial
control volumes at the points 2 and 5 are summed as well.

(a) (b)

‘4
m3
‘3
m?2
e
—
m =4 [ A
1=6
m 0=5
0=7

Figure 8.8: Coordinate cut (thick line): cell-centred scheme (a), dual control-
volume scheme (b). Dummy cells (points) are numbered as 0 and 1.
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8.7 Periodic Boundaries

There are certain practical applications where the flow field is periodic with
respect to one or multiple coordinate directions. In such a case, it is sufficient
to simulate the flow only within one of the repeating regions. The correct in-
teraction with the remaining physical domain is enforced via periodic boundary
conditions.

We can distinguish between two basic types of periodic boundaries. The first
one covers translational periodicity. This means that one periodic boundary can
be transformed into the other boundary by pure coordinate translation. The
second type represents periodic boundaries, which were generated by coordinate
rotation. Thus, we speak of rotational periodicity.

In the following, we shall describe the implementation of the periodic bound-
ary conditions for the cell-centred and the cell-vertex scheme. We shall also
consider the case of rotational periodicity. Further details of the treatment of
periodic houndaries can be found in Refs. {37], [38].

Cell-Centred Scheme

The utilisation of the dummy-cells concept enables a simple implementation of
the periodic boundary condition. Let us consider the example from turboma-
chinery in Fig. 8.9. The configuration is periodic in the vertical direction. The
shaded cells 1 and 2 are located on the lower and the upper periodic boundary,
respectively. Due to the periodicity condition, the first dummy-cell layer cor-
responds to the boundary cells at the opposite periodic boundary. The second
dummy-cell layer communicates with the second layer of the physical cells and
so on. Hence, all scalar quantities (density, pressure, etc.} in the dummy cells
are obtained directly from the corresponding physical cells, i.e,

U]/ = U1 and U2' = Ug . (839)

The same relations hold also for the vector quantities (velocity, gradients) in
the case of translational periodicity. Rotational-periodic boundaries require a
correction of the vector variables. This will be discussed further below.

Cell-Vertex Scheme (Dual Control Volume)

This situation is sketched in Fig. 8.10. One approach for the treatment of
periodic boundaries consists of the integration of the fluxes around the faces of
the shaded control volumes. The residuals at the points 1 and 2 in Fig. 8.10 are
then summed in order to obtain the complete net flux. Thus,

Rl,sum = él + R2’ a-nd R2,sum = R2 + él’ . (840)

The partial control volumes at the points 1 and 2 (shaded in Fig. 8.10) have
to be added up as well. In the case of translational periodicity, the residuals
from the opposite boundary remain unchanged, i.e., By = R, and Ry = R,.
This results in Rl sum = Rg sum- Rotationally penodlc boundaries require a
transformation of the momentum equations before Eq. (8.40) can be applied.
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Figure 8.9: Periodic boundaries (thick lines) in the case of 2-D un-/structured,
cell-centred scheme. Dummy cells (dashed line) are denoted by the (primed)
numbers of the corresponding physical cells.

K 44%/

Figure 8.10: Periodic boundaries (thick lines) in the case of 2-D un-
/structured, cell-vertex scheme with dual control volumes. The “dummy” parts
of the control volumes (dashed line) are denoted by the (primed) numbers of
the corresponding control volumes at the opposite boundary. The same holds
also for the dummy points 3’ and 4’.
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boundary A

boundary B

Figure 8.11: Rotationally periodic boundaries (A and B). The rotational axis
is assumed to coincide with the z-axis.

Rotational Pecriodicity

The rotational periodicity condition is based on a rotation of the coordinate
system. Therefore, all vector quantities like velocity or gradients of scalars have
to be transformed accordingly. Scalar quantities like pressure or density, which
are invariant with respect to coordinate rotation, remain unchanged. If we
assume the rotational axis is parallel to the z-axis (see Fig. 8.11), the rotation
matrix hecomes

B 1 O 0
R=1|0 cos¢ -—sing| , (8.41)
0 sin¢g cos¢

where the angle ¢ between the periodic boundaries A and B is positive in the
clockwise direction. Hence, for example, the velocity vector transformed from
boundary A to B (cells 1’, 2’ in Fig. 8.9 and points 1’-4’ in Fig. 8.10) reads

g =RTa. (8.42)

It is easy to show that the z-component of ¥4 (i.e., ua) is not changed by the
rotation. Thus, ug = u4. The gradients of all flow quantities are transformed
in similar way.

As stated above, in the case of the cell-vertex scheme the residuals of the
momentum equations must be corrected before the summation in Eq. (8.40) can
take place. The application of the rotation matrix Eq. (8.41) leads to

Rine = Ravo ¢ R RS (8.43)

B, sum

The superscript *¥* in Eq. (8.43) denotes the three momentum equations.
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8.8 Interface Between Grid Blocks

During the discussion of the spatial discretisation with structured grids in Sec-
tion 3.1, it became evident that it is usually not possible to generate a single
grid inside a geometrically complex domain (see Fig. 3.4). We mentioned two
possible methodologies how to solve the problem. The first one was the multi-
block approach and the second one was the Chimera technique. In the following,
we shall describe the basic implementation issues of the multiblock approach.
For more throughout discussion, the reader is referred to Refs. [39]-[45]. A very
helpful introduction to the multiblock methodology was presented in [46]. De-
tails of the Chimera technique, which is not treated here, can be found in Refs.
[47]-[51])-

Within the multiblock technique, the physical domain is split into a certain
number of virtual parts. Consequently, the computational domain becomes also
divided into the same number of blocks. In a general case, the physical solution
in a particular block will depend on the flow in one or multiple neighbouring
blocks. Therefore, we have to provide a data structure which allows for an
efficient exchange of information between the blocks. The structure is also re-
quired for communication, if different processors are used to solve the governing
equations in the blocks.

The first part of the data structure consists of the numbering of the block
boundaries. One particular numbering scheme is displayed in Fig. 8.12. The
numbering strategy in Fig. 8.12 can be summarised as follows:

boundary 1: ¢ =IBEG
boundary 2: i =IEND
boundary 3: j=JBEG
boundary 4: j=JEND
boundary 5: k= KBEG
boundary 6: k=KEND.

It is important that all blocks employ the same numbering scheme. The indices
i,j,k of the grid points in the computational space are defined in the ranges

IBEG <i < IEND
JBEG <j < JEND
KBEG <k < KEND.

The cell indices I, J, K, which are required by the cell-centred scheme are defined
in a similar way. Since the multiblock approach is usually implemented using
dummy cells/points, the physical cells/points will have a certain offset from the
start or the end of each range (see Fig. 8.1).

The boundary of each block is divided into a number of non-overlapping
patches. This allows the specification of different boundary conditions on the
same block boundary. The situation is depicted in Fig. 8.13. For a unique iden-
tification of each patch it is necessary to store the number of the corresponding
block and the number of the block boundary. Furthermore, the origin, the height
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k
A
4
KEND
. 2
I S 7_ JEND
j PS5
E
KBEG JBEG _ |
IBEG IEND

Figure 8.12: Numbering of the sides of the computational space and of the
block boundaries.

k
A
KEND
LIEND |--------- JEND
1,4 patch
LIBEG f--------- ! >
i h
KBEG | | IBEG .
IBEG L2BEG L2END  [END

Figure 8.13: Coordinates of a boundary patch in computational space. The
patch has its own local coordinate system [y, 5.
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step 1: A o B

step 2: A B

Figure 8.14: Exchange of flow variables (in shaded regions A’, B’) between two
blocks A and B. Dummy layers are denoted by a dashed line.

and the width of the patch must be stored. For this purpose, the coordinates
LIBEG, LI\END, L2BEG and L2END are used in Fig. 8.13. It is suggested
to orient the coordinate systein of the patch according to the cyclic directions.
This means, that if we consider the i-coordinate, j and k& will be the first and
the second cyclic direction. In the case of the j-coordinate, the cyclic directions
will become k& and i, respectively. Therefore, since the patch in Fig. 8.13 is on
the j = JBEG boundary, the [ -coordinate is oriented in the k-direction and [,
in the ¢-direction. The application of the cyclic directions allows for a unique
definition of the patch orientation.

The remaining part of the data structure makes sure that data can be ex-
changed between those patches, which represent interfaces between the blocks
(we assume that the blocks communicate only across their faces). For this pur-
pose, it is required to extend the above patch data structure by the numbers of
the adjacent block and patch.

The exchange of flow quantities between two blocks is sketched in Fig. 8.14.
The procedure consists of two steps. In the first step, variables from the part of
the domain, which is overlapped by the duminy layers of the adjacent patch are
written to the own dummy cells/points or to a temporary storage (A’ and B’ in
Fig. 8.14). This is done for all blocks. In the second step, the data in A" and B’
is exchanged between both blocks. This means that A’ is written to the dummy
layers of block B and B’ to the dummy layers of block A. If the two patches
have a different orientation, the data must be transformed accordingly. In cases
where the grid lines do not match at the block interface, further opcrations are
required as described, e.g., in [52], [53].
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8.9 Flow Gradients at Boundaries
of Unstructured Grids

We already stated in Subsection 5.3.4 that the evaluation of the flow gradients
requires some care in the case of the median-dual scheme. If the gradients are
calculated on triangular or tetrahedral grids using the Green-Gauss approach
in Eq. (5.46), the contributions from the boundaries of the domain (except at
symmetry or periodic boundaries) must be evaluated similar to Eq. (8.12) or
Eq. (8.13) instead of the arithmetic average. Otherwise, the gradient will not be
accurate. Considering the notation in Fig. 8.4, the contribution to the boundary
node 1 reads
AS),

1 .
6(5U1 +U2)TL12 5

where AS), is the length of the boundary face between node 1 and 2 (therefore
halved). Corresponding to Eq. (8.13), the contribution of the triangular face
1-2-3 to node 1 in Fig. 8.5 becomes

1 L AS
g(6U1 + Uz + Us) fiy23 3123

with ASy23/3 being the grey area in the triangle 1-2-3. On mixed grids, it is
more appropriate to employ the least squares approach with virtual edges [8]
(see Fig. 5.15).

The cell-centred scheme requires no special provisions at symmetry or peri-
odic boundaries. The implementation is identical to that discussed for the fluxes
in Section 8.5 or 8.7. This holds also for the median-dual scheme, if the gradi-
ents are evaluated using the least-squares approach. The only additional work
required is to set certain gradients to zero as described previously in Section 8.5
(cf. Eq. (8.37)).

If the Green-Gauss approach is employed within the median-dual scheme
(i.e., if Eq. (5.46) is applied), it is necessary to correct normal vectors of those
faces of the control volume, which touch the boundary (like at point 27 in Fig.
8.4). This is done by setting all components of the face vector to zero, which are
normal to the symmetry plane. Finally, the gradients are corrected as discussed
in Section 8.5. At periodic boundaries, the gradients and the volumes from both
sides of the boundary have to be summed up as presented in Section 8.7 for the
fluxes (Eq. (8.40)). In the case of rotational periodicity, the gradients needs to
be transformed by applying the rotation matrix in Eq. (8.41).
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Chapter 9

Acceleration Techniques

Various methodologies were developed in order to accelerate the solution of the
governing equations (2.19) for stationary problems. The acceleration techniques
are applicable also to the inner iteration of the dual-time stepping scheme (Sec-
tion 6.3). The following methods will be discussed in this Chapter:

1. local time-stepping,
2. enthalpy damping,
3. residual smoothing,

4. multigrid,

5. preconditioning.

The local time-stepping, enthalpy damping, and preconditioning are based on
a modification of the system of the ordinary differential equations (6.1), while
the two remaining techniques are improvements of the solution process. With
the exception of the residual smoothing, all methods can be applied to both
the explicit (Section 6.1) and the implicit (Section 6.2) time-stepping schemes.
Residual smoothing was developed especially for the explicit multistage schemes
(Subsections 6.1.1, 6.1.2). An overview of several acceleration techniques can
be found in Refs. [1] and [2].

9.1 Local Time-Stepping

In this case, the discretised governing equations (6.1) are integrated using the
largest possible time step for each control volume. The local time step Aty is
calculated according to one of the formulae (6.14), (6.18), (6.20), or (6.22). As
a result, the convergence to the steady state is strongly accelerated, but the
transient solution is no longer temporally accurate.
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9.2 Enthalpy Damping

In certain cases, the total enthalpy H (Eq. (2.12)) is constant in the whole flow
field. This situation occurs, for example, for external flows governed by the
Euler equations in absence of heat sources and external forces. We can take
advantage of this fact in order to reduce the computational effort.

The first possibility would be to prescribe the value of the total enthalpy in
the low domain. In consequence, the energy equation can be omitted from the
Euler equations (2.45). This saves memory and CPU time.

A different methodology — the so-called enthalpy damping — was suggested
by Jameson for the solution of the potential flow equation [3]. It employs the
difference between the total enthalpy H and its freestream value Ho, to define
an additional forcing term. With this, the convergence to the steady state can
be considerably accelerated. The application of the enthalpy damping to the
Euler equations (2.45) results in the following modification [4]

Q/der?{ ﬁcdS=/(Q—QED)dQ, (9.1)
ot Jq 89 Q
where the forcing term QED is given by
p(H - Hy)
- /)U(H'" Hoo)
Qep =19 |pv(H-Hy) | . (9.2)
pw (H - Hoo)
p(H — H)

The damping factor 9 is a small constant, which has to determined empirically.
The spatial discretisation scheme, and particularly the artificial dissipation has
to be implemented in such a way that H = H,, is a valid solution of the
discretised equations. Then, the addition of the source term QED does not
alter the final steady state.

The enthalpy damping is conducted as an additional step after each update of
the flow solution. For example, in the case of the explicit m-stage time-stepping
scheme (Subsection 6.1.1 or 6.1.2), the damping step reads

- 1 -
Wit = e 7 (0.3)
1+9(H™ — Hy)

with the exception of the energy equation which becomes

n 1 m m
B =15 (o)™ = op™] . (94)

In Eq. (9.3), WI("‘) denotes the final solution of the m-stage explicit time-
stepping scheme. Numerical experiments in Ref. [1], which were conducted
for a transonic flow past the NACA 0012 airfoil (My = 0.8, & = 1.25°), con-

firmed that the number of time steps to reach the steady state can be reduced
by about factor of two.
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9.3 Residual Smoothing

The maximum CFL number and the convergence properties of the explicit multi-
stage time-stepping scheme (Subsections 6.1.1 and 6.1.2) can be influenced by
optimising the stage coefficients [5}-[7]. Jameson and Baker [8] introduced the
residual smoothing technique with the aim to lend the explicit scheme an im-
plicit character and hence to increase the maximum allowable CFL number.
A further purpose of the residual smoothing is a better damping of the high-
frequency error components of the residual. This is of particular importance for
a successful application of the multigrid method.

The residual smoothing can be implemented in explicit, implicit or in mixed
manner [9], [10], respectively. The residual smoothing is usually applied in each
stage of the explicit time-stepping scheme (Eqs. (6.5), (6.7)). The previously
computed residuals R*) are replaced by the smoothed residuals R* before the
solution W(*) ig updated. In the following, we shall discuss the implementation
of the popular Implicit Residual Smoothing (IRS) on structured as well as on
unstructured grids.

9.3.1 Central IRS on Structured Grids
The standard formulation of the implicit residual smoothing reads in 3D

I Dx I\ D* I pDx D
~€ Ry g+ (1+2¢ )Ry ;¢ —€ Ryyy g =Rk
JR'u 1 9 J R’*x JR'u _ R’x (9 5)
—e" Rk + (1 +2)RY k — € Ry k= B] 5k .
K pxxx K\ prxx K pxx __ px
"Rk 1+ (L+ 2" )Rk —€" Ry ki =Ry ks

where ﬁ;,.l,m R‘;]'J,K, and R';‘jK denote the smoothed residuals in -, J-, and
K-direction, respectively. The parameters e/, ¢/, and € stand for the smooth-
ing coefficients in the three computational coordinates. The implicit operator in
Eq. (9.5) resembles second-order central difference. The term Centrel Implicit
Residual Smoothing (CIRS) is therefore used. The implicit system in Eq. (9.5)
is solved by the Thomas algorithm for the inversion of tridiagonal matrices.

The smoothing coefficients are usually defined as functions of spectral radii
of the convective flux Jacobians [11]. The purpose is to apply only as much
smoothing in each coordinate direction as it is necessary for stability and good
error damping. A suitable formula for 2D was suggested in [12]

“I:ma“x{i [(% 1+1‘~Ilr)2 - 1] ’0}
i[5 ) -] o}

Here, o* /o denotes the ratio of the CFL numbers of the smoothed and un-
smoothed scheme. The variable r stands for the ratio of the convective spectral

(9.6)
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radii (Eq. (4.53)), i.e., 7 = AJ/Al. The parameter ¥ =~ 0.125 ensures linear
stability of the smoothing operation.

In 3D, the smoothing coefficients can be evaluated using an expression similar
to Eq. (9.6) [12]

I'— ma L[ o 1 2_1 0
CTMENTI\ G T+ eI KT ’
[ 2
1 g* 1
J (= -1 9.7
‘ max{4 (al+‘ll(rKJ+r”)> ]’0} .

[ o 1 2
— -1(,0;,,
o 1+ 9(r1K 4 pJK)

where
P RUAL T AR
etc. The typical value of the parameter ¥ is 0.0625.
The maximum of the ratio of the CFL numbers ¢* /o depends on the value
of the smoothing coefficient and on the type of the spatial discretisation scheme.
In the case of the central scheme (Subsection 4.3.1), the ratio is given by

*

T < T+ de. (9.8)

a

In practice, value of 0* /o = 2 can be reached (¢ = 0.8). Higher ratios reduce
the damping of the time-stepping scheme. There is no such simple condition
like (9.8) for the upwind spatial discretisation (the maximum of ¢* /o depends
also on the stage coefficients). However, the CFL number (see Tables 6.1 and
6.2) can also be approximately doubled.

The limitation of the time step due to the viscous spectral radius A, in
Eq. (6.18) can be offset with the aid of the implicit residual smoothing. The
maximum time step is calculated according to the formula (6.14) without A,. In
flow regions where the viscous spectral radius dominates, smoothing is carried
out using higher coefficients ¢, ¢/, eX. Smoothing coefficients based on the
viscous spectral radii can be calculated from [12], [13]

J
v

AK
65 =C (J—) 'A——?v—A" ,
a ) Al + A +AK
where the constant C' = 5/4. The maximum of the coefficients from Eqs. (9.7)
and (9.9) is then taken as the resulting smoothing coefficient.
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9.3.2 Central IRS on Unstructured Grids

CIRS is implemented on unstructured grids by applying the Laplacian operator
(see Eq. (5.20)) to the residual. Thus, the smoothed residual R} in a control
volume [ is obtained from the implicit relation [14]

N -.
Z — Ry) =Ry, (9.10)

The sum includes all N4 adjacent control volumes. The relation (9.10) is solved
for R} using Jacobi iteration. Useful values of the smoothing coefficient are
0.5 < € < 0.8. With this values of ¢ it is possible to double the CFL number
(and hence the time step). Due to the diagonal dominance of the matrix, the
Jacobi iteration converges in about two steps.

9.3.3 Upwind IRS on Structured Grids

The previously discussed CIRS method works satisfactorily for subsonic and
transonic flows. It is also helpful in viscous dominated regions. However, CIRS
exhibits poor error-damping characteristics in conjuction with upwind spatial
discretisation schemes. Furthermore, the robustness of a multistage scheme
accelerated by CIRS suffers in the case of strong shocks. Therefore, the so-
called Upwind Implicit Residual Smoothing (UIRS) method was developed [15],
(16], which is particularly suited for high Mach-number flows.

By contrast to CIRS, the UIRS methodology takes the sign of the convective
eigenvalues A, into account. The idea is to smooth the residuals only in the di-
rection of the characteristic of the Euler equations (i.e., dx/dt = const. = A.).
This approach prevents unphysical influences on the upstream residuals. The
UIRS method requires transformation of the residuals into the characteristic
variables (cf. Appendix A.9). In this way, each component of the residual vec-
tor can be smoothed independently according to the sign of the corresponding
eigenvalue. For the [-th component of the residual, the implicit operator is
defined in 1D as [15], [16]

—el(RM)_ |+ (1 + )R = (R, if AL>0
(9.11)
(1+ (R — ' (R}, = (R} if AL <O,

where B¢ denotes the residual transformed into characteristic variables, i.e.,
Re=T7'R. (9.12)

The smoothed residuals B* are obtained by the solution of a tridiagonal (bidi-
agonal if A, does not change its sign) equation system using the Thomas algo-
rithm. Afterwards, the residuals R* are transformed back into the conservative
variables and the solution can be updated.
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The most desirable feature of UIRS is that it leads to very favourable damp-
ing properties of the multistage scheme, particularly in conjuction with an up-
wind spatial discretisation. The ability to damp solution errors remains or even
improves for high smoothing coeflicients. It was demonstrated for 1-D Euler
equations that values like € = 500 and ¢* = 1000 result in a stable and very fast
explicit multistage scheme [15], [16]. However, the problem is the implementa-
tion of UIRS in multiple dimensions. Since the convective flux Jacobians cannot
be diagonalised simultaneously in all coordinate directions (see Appendix A.9),
the transformation Eq. (9.12) and the smoothing Eq. (9.11) have to be carried
out separately for each computational coordinate. The effect of the coordinate
splitting is a reduced maximum smoothing coefficient to 2 < e < 6. Despite
this, the convergence to the steady state is strongly accelerated as compared to
CIRS [17], [16]. The largest improvements in terms of convergence speed and
robustness occur in combination with multigrid [18], [16].

The smoothing coefficients in multiple dimensions are scaled by the eigen-
values. For example, in 2D the following formula can be employed

I
e’:e-min[i\i l]

(9.13)

The relation between the CFL number of the smoothed scheme and the coeffi-
cient ¢ rcads

£

L <1+Ce. (9.14)

[2)
The constant C depends on the kind of the spatial discretisation. In the case of
the central scheme C = 1. For the 1st- or 2nd-order upwind scheme the value
isC =2,
In order to circumvent the numerical effort of the transformation to the
characteristic variables, a simplified version of the UIRS method was suggested
[17], (18}, [16]. Written in the I-direction it becomes

—lR;_ + (1 +e)R; =R, if M'>1
'Ry + (1 + 2Ry - !By, =R, if M| <1 (9.15)
(1+eNR;~€e'R;,, =R if MI<~1.
The Mach number M is based on velocity projected into the direction of the
particular computational coordinate (here: I). Due to the low operation count,
the simplified UIRS is especially suitable for 3-D flow problems. In Ref. [16] it

was demonstrated that the CPU time needed to reach the steady state can be
halved as compared to CIRS (hypersonic flow past a blunt cylinder, M, = 8).
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9.4 Multigrid

The multigrid methodology is a very powerful acceleration technique. It is
based on the solution of the governing equations on a series of successively
coarser grids. The solution updates from the coarse grid are then combined and
added to the solution on the finest grid. The technique was originally developed
by Brandt [19] for elliptic partial differential equations and later applied to
the Euler equations by Jameson [20]-[22]. After that, the multigrid scheme was
employed to solve the Navier-Stokes equations [11}-[13], [23]-[31]. The multigrid
method can be implemented for both the explicit and the implicit time-stepping
schemes [32]-[36]. The goal of the current research is the significant improvement
of the efficiency of multigrid for hyperbolic flow problems [37], [38].

The basic idea of the multigrid scheme is to employ coarse grids in order
to drive the solution on the finest grid faster to steady-state. Two effects are
utilised for this purpose:

1. larger time steps can be employed on the coarser grids (owing to a larger
control volume) in conjuction with a reduced numerical effort. Since the
work for determining a new solution is distributed mainly over the coarser
grids, a more rapid convergence and a reduction of the computing time
results.

2. The majority of the explicit and implicit time-stepping and iterative sche-
mes reduces efficiently mainly the high-frequency components of the solu-
tion error (see Section 10.3). The low-frequency components are usually
only hardly damped. This results in a slow convergence to the steady
state, after the initial phase (where the largest errors are eliminated) is
over. The multigrid scheme helps at this point — the low-frequency compo-
nents on the finest grid becomes high-frequency components on the coarser
grids and are successively damped. As a result, the entire error is very
quickly reduced, and the convergence is significantly accelerated.

Thus, as we can see, the success of the multigrid scheme depends heavily on
good damping of the high-frequency error components by the time-stepping or
iterative scheme.

An alternative to the geometrical multigrid is provided by the Algebraic
Multigrid (AMG) method [39]-[43]. The AMG technique was developed for
implicit schemes, where it operates directly on the system matrix (the left-hand
side operator). The basic idea of AMG is to apply a coarsening matrix in
order to reduce the dimension of the implicit operator and hence the number of
equations. The reduced system, which represents a coarse level, is then solved
to obtain the correction of the fine-level solution. The coarsening matrix is
constructed such that the equations with the strongest coupling (i.e., the largest
off-diagonals in the system matrix) are added together. Thus, the generation
of coarse levels is governed solely by the physics of the flow problem and not
by the grid. Therefore, the advantage of AMG is that no coarse grid topology
has to be constructed or stored, which is particularly beneficial on unstructured
grids.
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9.4.1 Basic Multigrid Cycle

Before the geometric multigrid scheme can be applied, the coarser grids have to
be generated. The standard way is to coarsen the grid evenly in all coordinate
directions. However, Mulder {44] proposed an approach called semicoarsening.
Here, the grid is coarsened only in one direction, which is changed from one
coarse level to another. The semicoarsening methodology is especially suited for
flow problems, where the governing equations are stiff in one spatial direction.
An example is the direction normal to the wall in boundary layers. Applications
of semicoarsening to the Navier-Stokes equations were reported, e.g., in Refs.
[26], [45], [46].
The discretised governing equations on the fine grid read in accordance with
the relationship (6.1) .
- 1
@ ="q,
In the following, the finest grid will be denoted by subscript h in reference to
the spacing of the grid lines (characteristic dimension of the control volume on
unstructured grids). The result, starting from a known solution W,{‘, is a new
solution W;‘“ after one time step with some suitable iterative scheme. A new

Ry . (9.16)

residual ﬁﬁ“ is evaluated with this solution. In order to improve the solution
W,{’“ using a coarse grid, the following three steps are carried out:

1. Transfer of the Solution and Residuals to the Coarser Grid

The solution is transferred to the coarse grid by means of interpolation
W) = IR W+t (9.17)

where the subscript 2h denotes the coarse grid ! and I?* is the interpolation
operator. The residuals have to be transferred to the coarse grid as well, so that
their low-frequency error components can be smoothed. A conservative transfer
operator is employed for this purpose. This means when the control volume
size increases, the value of the residual must increase by the same amount.
The residuals of the fine grid are also required in order to retain the solution
accuracy of the fine grid on the coarse grid. For this purpose, a source term,
the so-called forcing function [19], [22], is formed as the difference between the
residual transferred from the fine grid and the residual calculated using the
initial solution Wég) (Eq. (9.17)) on the coarse grid, i.e,

(@r)an = ZPRPH — R (9.18)

Here, I?" represents the restriction operator which transfers residuals from the
fine to the coarse grid. This type of multigrid scheme is known as the Full Ap-
prozimation Storage (FAS) method [19]. The FAS method is particularly suited

!The notation 2h must not be understood in strictly geometric sense. On unstructured
grids, the ratio of the characteristic dimensions of the control volumes on the fine and the
coarse grid will usually differ from two. The same holds also for semicoarsening
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for non-linear equations because the nonlinearities in the system are carried
down to the coarse levels through the re-discretisation.

2. Calculation of a New Solution on the Coarse Grid

The solution is evaluated on the coarse grid in the same way as on the fine grid.
The forcing function in Eq. (9.18) is added to the residual of the coarse grid,
i.e.,

(Rp)2n = Bon + (GF)2n - (9.19)

Hence, the time-stepping scheme can be written in the form

d - 1
GWan = =g (Redon = =g [Fon + (@ran] (9.20)
In the case of the explicit multistage scheme (Subsection 6.1.1), this results in

Aty
Qap

Wélﬁ) = WZ(I[:) - Ok [R(k b (@F)zh] , k=1,---;m (9.21)

Wn+l W(m

in accordance with Eq. (6.5). It has to be noted that during the first iteration
(stage in Eq. (9.21)), (Rp)2n is identical to the residual transferred from the
fine grid (i.e., (Bp)an = IZPR}*! from Eq. (9.18)). This guarantees that the
solution on the coarse grid depends on the residual of the fine grid and thus
retains the accuracy of the fine grid.

An important question is the accuracy of the spatial discretisation scheme
on coarse grids. Since the coarse grids do not influence the accuracy of the
fine-grid solution, first-order schemes are sufficient. The advantages of first-
order accurate discretisation on coarse grids are the increased robustness, better
damping properties, and lower numerical effort in comparison to higher-order
schemes.

3. Solution Interpolation from the Coarse to the Fine Grid

After one or several time steps (iterations) were carried out on the coarse grid,
the correction with respect to the initial — interpolated — solution (Eq. (9.17))
is calculated. This so-called coarse grid correction is given by

§Wan = Wi — Wi (9.22)

The coarse-grid correction is interpolated to the fine grid in order to improve
the solution there. Hence, the new solution on the fine grid reads

Wi = Wrtt + I8 6Wan (9.23)

where I}, is denoted as the prolongation operator.
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9.4.2 Multigrid Strategies

The basic multigrid scheme described above consists of one coarse grid only. If
multiple coarse grids are present, steps 1 and 2 are repeated until the coarsest
grid is reached. It is important to realize that the forcing function on the
coarse grids is formed from the restricted corrected residual of Eq. (9.19)).
For example, on the coarse grid 4h, the forcing function is obtained from

(@r)un = IR(Ee)p — B = Bf [+ (@p)an] - BS. (0.29)

In this way, the residual of the finest grid controls the accuracy of the solution
on all coarse grids. After a given number of time steps on the coarsest grid,
step 3 can be successively repeated until the finest grid is reached again. This
procedure is known as a saw-tooth or V-cycle (see Fig. 9.1a). However, it is
also possible to conduct more cycles on the coarse grids. This strategy termed
the W-cycle is displayed in Fig. 9.1b. It is employed particularly frequently
for transonic flows. In the case of supersonic and hypersonic flows, the V-cycle
proved to be more efficient.

Number of Time Steps

The optimum number of time steps before the restriction and after the pro-
longation depends on the type of the time-stepping scheme. In the case of the
explicit multistage scheme (Subsection 6.1.1 or 6.1.2), it is common to carry out
only one time step before the restriction of residuals and no time step after the
prolongation. However, the robustness of the multigrid scheme can be improved
by smoothing the coarse grid corrections (Eq. (9.22)) before adding them to the
fine grid solution W' (Eq. (9.23)). The same central implicit smoothing (with
constant coefficients) as described in Section 9.3 is utilised.

The other popular time-stepping method, the implicit LU-SGS scheme (see
Subsection 6.2.4), requires two iterations before the restriction for the best
multigrid efficiency [34]. The number of time steps after the prolongation de-
pends on the spatial discretisation. In the case of the central scheme (Subsec-
tion 4.3.1), no time step is necessary [34]-[36], but the solution correction can be
smoothed. On contrary, one time step should carried out after the prolongation
if an upwind spatial discretisation is used. This (2,1)- strategy proved to be
an optimum with respect to robustness and computing time for various flow
conditions [35], [36].

Starting Grid

It should be pointed out that in practice the multigrid scheme is not started
directly from the finest grid. Instead, several multigrid cycles are executed from
one of the coarse grids. The approximate solution is interpolated to the next
finer grid (using the same operator as for the prolongation), several cycles are
executed and so on, until the finest grid is reached. In this way, a good starting
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(a) V-cycle (b) W-cycle

— 4h —

— 8h —

Figure 9.1: Types of multigrid cycles. o denotes time steps before restriction;
o represents time steps after prolongation.

solution is obtained on the finest grid with only a low numerical effort. This
very efficient procedure is termed the Full Multigrid (FMG) method [19)].

Accuracy of Transfer Operators

The restriction (9.18) and the prolongation (9.23) operator must fulfil certain
accuracy requirements, namely [47]

mp+mp > mg, (9.25)

where m g and mp denote the degree plus 1 of the polynomial, which is exactly
interpolated by the restriction and the prolongation operator, respectively. For
example, mp or mp are equal to two in the case of linear interpolation. Fur-
thermore, mg represents the order of the governing equations. Thus, mg =1
for the Euler equations, and mg = 2 in the case of the Navier-Stokes equations.
If the condition (9.25) is violated, the additional errors introduced by the re-
striction and/or prolongation will disturb the fine-grid solution. Hence, such
multigrid scheme will converge slowly or it will even diverge.

9.4.3 Implementation on Structured Grids

The implementation of multigrid on structured grids is straightforward since
the coarse grids can be easily generated by deleting every second grid line in the
respective coordinate direction. The spacing of the grid lines is therefore 2h, 4h,
etc. This guarantees that the numerical effort on the coarse grids stays low as
compared to the finest grid. Several representative examples are provided in
Refs. {11]-[13], [20]-[22], [26], (32]-[36].
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o—=—eo—=B—0— =808 —-e— h

— o = —0 — —O 2h

—0— —i @ 4h

Figure 9.2: Representation of a fine (h) and of two coarse (2h,4h) 1-D grids.
Circles denote grid points, rectangles represent cell centres.

As we can conclude from Fig. 9.2, the operators for the solution interpolation,
the restriction of residuals and the prolongation of corrections have to be defined
differently for cell-centred and node-centred (cell-vertex) schemes. For example,
two successive grids have every second grid point in common. On contrary, the
cell centres are always at different locations. Therefore, we shall discuss the
standard forms of the transfer operators separately for the cell-centred and
node-centred (identical to cell-vertex) finite-volume schemes.

Apart from the symmetrical, purely geometrically defined restriction and
prolongation operators, which will be presented next, upwind-biased forms were
suggested in [16], Chapter 4. The upwind restriction and prolongation, which
accounts for the characteristics of the flow equations, improve the robustness
of the multigrid scheme for hypersonic flows. In order to save space, we shall
discuss the implementation of an upwind prolongation operator for the node-
centred discretisation scheme only.

Transfer Operators for the Cell-Centred Scheme

The solution is transfered from the fine to the coarse grid by using a volume
weighted interpolation. In 2D, Eq. (9.17) becomes (see Fig. 9.3a)

WY 10910 + W) 11,0 Qr,0 + WY L Qrum
Qrr+ Qg+ Q041 + Qo4

7 (0
(Wig =

_—
W) rv1,0+41Q141,0401
Qs+ Q4,0 +Q70+1 + Q1,041

(9.26)

Similar transfer operator is employed in 3D, where the summation is over the
eight fine-grid control volumes, which form one coarse-grid cell.

The restriction operator is defined as a sum of the residuals from all cells
which are contained in one coarse-grid control volume. Hence, in 2D we have
(cf. Fig. 9.3a)

(BRMBR )10 = (B o+ (B ) i o 4 (B o + (B ) a0 (9:27)

and likewise in 3D. Those residuals R";:“ in Eq. (9.27), which are located outside
the physical domain, should be set to zero.
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Figure 9.3: Solution interpolation and residual restriction (a), prolongation of
coarse-grid correction (b, c¢) for a structured cell-centred scheme in 2D. Filled
circle = grid point; filled rectangle = cell centre to which it is interpolated;
rectangle = cell centre from which it is interpolated; thick line = coarse grid,;
thin line = fine grid.
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The prolongation of the coarse-grid correction Eq. (9.23) can be conducted
in two different ways. First, a zeroth-order prolongation operator results, if
5W2h is equally distributed to all surrounding cell centres as indicated in Fig.
9.3b. Thus, for instance

(W:)I,J+l = (W,’:“)I,JH + (6Wan)r.s, etc. (9.28)

The second possibility, which leads to a faster_convergence of the multigrid
scheme, consists of two steps. In a first step, §Ws,, is interpolated to the grid
nodes like for the cell-vertex scheme (see below). In a second step, the nodal val-
ues are averaged to obtain the value in the centre of the fine-grid cell. Referring
to Fig. 9.3c, the following final relationship can be derived

- 1
(I3 0Wan) 10 = —

= [g(avfo,,),,J + 3(6Wan)1—1.s

” ) (9.29)
+3 (OWan)1,y-1 + (5W2h)1—1.J—1]

The corresponding expression in 3D can be found by a similar procedure. It
reads

- i - -
(I3, 6Wan) 1,0 = 61 [27(5W2h)1,J,K + 9(6Wan)r-1,0.K
+9(Wan)r,s—1,6 + 9(Wan)r 1.k -1
+3(6Wan)1-1,7-1,1 + 30Wan)1-1,7. k-1

3(0Wan)r,7-1,6-1 + (5W2h)1—1,J—1,K—1] .

(9.30)

Transfer Operators for the Cell-Vertex Scheme

Because of the common nodes between the fine and coarse grid, the solution
can be transfered simply by injection, i.e.,

(Wi)isk = (With)i s (9.31)

The standard central restriction operator represents a linear interpolation from
the nodes of all four (eight in 3D) fine-grid cells, which resemble one coarse-grid
cell. According to Fig. 9.4, the restricted residual is calculated in 2D as

2R B = 1r 5 ~
(TR )ig = (B i+ 5 [ iy + (Bt

+ (R + (ﬁ2+l)i,j+l]

]_ .

~4- [ st + (B )i
+ (R

s+ (R z+1,j+1] .

(9.32)
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Figure 9.4: Interpolation factors in the case of the restriction (a) and the
prolongation (b) for a structured cell-vertex scheme in 2D. Filled circle = point
to which it is interpolated; circle = point from which it is interpolated; thick
line = coarse grid; thin line = fine grid. Point (¢, ) is common to both grids.

In 3D, the fine-grid residuals are collected as follows

. — = 1 1 1
(PR )isn = (B )i + 5 A+ B+ 2C

with the factors
A= (ﬁz+l)i+l + (§Z+l)i—1 + (EZ+1)j+l

HEPY 2+ (B e + (B e

B= (ﬁ;f+l)i+1,j+1 + (ﬁ2+1)1~1,j+1 + (R;;H)iﬂ,j—l + (RZ+1)i—l,j—l

FRMY e + (B + (B ike1 + (B iciet

HEY) ke + (ﬁﬁ+l)j—1,k+1 + (R k1 + (R 1 5m1 (9:34)

C= Ry )ist e et + (B izt i e

+(ﬁz+l)i—l,j—l,k+l + (R Y i1 j-1.k41

+(RZ+1)i+l,j+l,k—l + (RPY)ic1 41,61

+(ﬁﬁ+l)i—l.j—l,k—l + (R g-16-1 -

(9.33)

In the above Eq. (9.34), only those indices are shown which are different from
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Figure 9.5: Upwind prolongation in 2D. Points A, B, C, D are common to the
coarse (thick line) and the fine grid. Points e, f, €', f', g belong the fine grid
(thin line) only.

i,J,k. It should be noted that the residuals ﬁ}:“ must be set to zero at all
boundary points of the physical domain before the restriction.

The prolongation of the coarse-grid correction can be implemented as a loop
over the points of the coarse grid. Within the loop, the values (5W2h),-,j,k are
distributed to the fine-grid points using the same weights as for the restriction
(cf. Fig. 9.4b). The particular contributions are summed up in order to obtain
the complete transfered correction at each point of the fine grid.

Upwind Prolongation (Cell-Vertex Scheme)

In principle, upwind prolongation can be formulated either in characteristic or in
conservative variables. A particularly efficient implementation in conservative
variables was proposed in [16]. The methodology employs upwind-biased inter-
polation of the corrections in Eq. (9.23) according to the Mach number and the
velocity direction. The numerical effort is very low, nevertheless the robustness
of the multigrid scheme can be significantly improved for high Mach-number
flows [16)].

The interpolation of the solution corrections 5W2h to the finer grid is ac-
complished in two steps. In the first step, the corrections at the points A4, B,
C, and D (see Fig. 9.5), which are common to both grids, are transferred di-
rectly to the finer grid. In the second step, the corrections are interpolated to
the points e, f, €', f' and g, which are contained only on the finer grid. The
interpolation depends on the sign and the absolute value of the Mach number
at the corresponding point. The Mach number in this case is calculated using
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the contravariant velocity. Thus, for example, at the point ¢ the formula

M, =Y (9.35)

c

is employed. The normal vector @ in Eq. (9.35) can be obtained either by
averaging the face vectors of the control volume (in the direction A-B), or
by normalising the vector from point A to point B. Then, the correction is
transferred to point e according to the rule

(6Woap) a i M, >1
- 1 . L )
(I3,6Wan)e = 5 [(6Won)a + (6Wan)s] if [M| <1 - (9.36)
(6Wan)p if M, < -1

The same procedure applies also to the points f to f'. The upwinding helps to
match the information exchange between the grids better to the real physics.
The interpolation to the point g is more difficult. In Ref. [16], the values at the
surrounding points A to D were simply averaged

. 1. - . . .
(I3, 6Wap)y = 1 [(6Wan)a + (6Wan)p + (6Wan)c + (6Wan)p] - (9.37)

However, some sort of upwind weighted interpolation would be more appropri-
ate. The upwind prolongation can be implemented in similar way also in 3D.
Despite the simplification, encouraging results were obtained in a number of
test cases [16].

9.4.4 Implementation on Unstructured Grids

As compared to the structured grids, the construction of the coarse grids is
much more involved in the case of unstructured grids. The problem is how to
construct an uniformly coarsened grid from a set of elements (grid cells) which
have no particular ordering. Additionally, the ratio of the cell volumes of the
coarse to the fine grid has to stay within a certain margins (about 4 in 2D
and 8 in 3D). One possibility how to solve this problem is to apply the AMG
methodology [39]-[43], which we briefly discussed at the beginning of Section
9.1. However, the geometric multigrid is still more widely used. Therefore, we
shall concentrate here on this approach.
Three main methods for the generation of coarse grids can be identified:

e nonnested-grids approach,
e topological methods, and

e agglomeration of control volumes.

Reviews of the above methods were presented in Refs. [48] and [49].
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The standard restriction and prolongation operators are based on purely
geometrically defined interpolation. Leclerq and Stoufflet [50] suggested upwind
transfer operators, which are particularly promising for flows with strong shocks.
Their upwind restriction/prolongation is based on the transformation of the
residuals/corrections into the characteristic variables. After an upwind-biased
interpolation, the restricted/prolongated values are transformed back into the
physical variables. Numerically much less expensive upwind multigrid method
was presented in [16] (see also Subsection 9.4.3, Eq. (9.36)).

Nonnested Grids

The most obvious idea is to generate a sequence of completely independent,
increasingly coarser grids [51}-[56]. It is not necessary that the grids contain
any common nodes. Therefore, we speak of nonnested grids. However, it is
important that the main geometrical features (leading and trailing edge, fuselage
nose, etc.) are retained on all coarse grids. This is not easy to accomplish,
particularly in the case of a geometrically complex configuration. Multigrid
based on nonnested grids is hardly used today.

Topological Methods

One particular approach applies graph-based algorithms in order to remove cer-
tain nodes from the fine grid. The remaining nodes are then re-triangulated
[57], [58]. On contrary to the nonnested-grids approach, the interpolation be-
tween the grids becomes easier, since the successive grids contain common nodes.
However, the method inherits the drawback of the nonnested grids with respect
to geometry conformance.

A further topological method employs grid refinement [59), [29], [60]. The
technique starts from a coarse grid and generates finer grids by element division.
The methodology can be applied either over the whole physical domain or only
locally (e.g., at boundary layers). The disadvantage of this approach is that
the quality of the finest grid strongly depends on the initial coarse grid and the
refinement procedure. The problem can be partially cured by edge swapping
[61], [62].

Another idea for the generation of coarse grids is based on edge collapsing
[63]. It was initially developed for inviscid flows on tetrahedral grids. The edge-
collapsing method was further extended to viscous flows on mixed-element grids
in [64].

Agglomeration Multigrid Method

A very efficient methodology for unstructured grids is the so-called agglomera-
tion multigrid. It was first presented by Lallemand [65], Lallemand et al. [66]
and by Koobus et al. [67]. Later on, the agglomeration multigrid was adopted
by various authors [68]-[72], [31]. The method generates a coarse grid by fusing
the control volumes of the finer grid with their neighbours. The resulting
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coarse grids consist of successively larger, irregularly shaped polyhedral cells.
This is depicted in Fig. 9.6. As we can see, the agglomeration technique retains
the full discretisation of the boundary surfaces. This represents a significant ad-
vantage over all previously discussed unstructured multigrid methods. However,
it should be mentioned that up to now, implementations of the agglomeration
multigrid were based mostly on the median-dual cell-vertex scheme (Subsection
5.2.2). The application of the agglomeration multigrid to a cell-centred scheme
(Subsection 5.2.1) was described in [68].

Generation of Coarse Grids by Volume Agglomeration

The volume agglomeration for a node-centred scheme proceeds in the following
steps:

1. build a list of the so-called seed points. Seed points are grid points selected
to agglomerate the surrounding control volumes. The list of seed points
can contain either those points which form an approximate maximal in-
dependent set [70], or simply all points of the current grid level.

2. Loop over all seed points.

3. If the seed point is unagglomerated, agglomerate all its nearest neighbours
(connected by an edge), which were not already agglomerated.

4. Check the coarsening ratio (i.e., how many fine-grid control volumes are
contained within a coarse-grid volume). If the ratio is less than four (eight
in 3D), the neighbours of the already agglomerated nearest neighbours
are added (if not associated with another seed point), until the optimum
coarsening ratio is achieved. In Ref. [27], it was proposed to agglomerate
those distance-two neighbours first, which are connected to at least two
(three in 3D) agglomerated nearest neighbours.

5. If there are still seed points in the list, goto step 2.

6. Eliminate singletons. These are single control volumes which could not be
agglomerated, because there were no unagglomerated neighbours. A sin-
gleton can be eliminated by agglomeration with such neighbouring control
volume, which has the smallest coarsening ratio. This leads to coarse-grid
levels with a more regular distribution of control-volume areas [31].

The above procedure is repeated until all coarse grids are generated.

The volume agglomeration has to start from the boundary in order to pre-
serve grid isotropy. In 3D, user intervention may be required to prescribe the
agglomeration direction depending on the shape of the boundary. To overcome
this difficulty, Okamoto et al. [72] proposed another algorithm denoted as global
coarsening. The method employs a global partitioning scheme, which is based
on edge colouring. The partitioning scheme is used to generate an independent
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Figure 9.6: Generation of coarse grids by the agglomeration multigrid (median-
dual scheme) in 2D. The sequence shows the finest grid and three coarse grids

(top to bottom).
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set of edges. In a second step, all control volumes, which share an edge of the in-
dependent set, are agglomerated. The procedure is repeated until the prescribed
coarsening ratio is achieved. The method does not require the specification of
an initial seed point or agglomeration direction. It can also treat any type of
grid cells.

Problems of Agglomeration Multigrid

The implementation of agglomeration multigrid presents little difficulty for in-
viscid flows. The Euler equations are in general discretised as fluxes over indi-
vidual control-volume faces. In this respect, it does not matter how complex is
the shape of the control volume (in fact, averaged face vectors are used). Fur-
thermore, a first-order accurate spatial scheme requires the knowledge of flow
quantities in the neighbouring control volumes ouly. This information is readily
available on the coarse grids.

In the case of viscous flows, the discretisation of the diffusive fluxes on arbi-
trary shaped control volumes is no longer straightforward. The problem is the
evaluation of gradients at face midpoints (see the discussion in [31]). Another,
and even more serious, difficulty is related to the required accuracy of the pro-
longation operator. The inequality in Eq. (9.25) suggests mp = 2, since the
common restriction operator (sum of residuals) leads to mg = 1 only. However,
the construction of a linear interpolation is not easy on the coarse grids.

In order to circumvent the construction of a first-order accurate prolongation
operator, Mavriplis [48] proposed to use constant prolongation (i.e., all points of
the fine grid contained within an agglomerated coarse-grid volume get the same
solution correction) and a scaling of the viscous fluxes. However, this approach
does not lead to optimum multigrid efficiency.

Haselbacher [31] suggested to retain the fine-grid discretisation of the viscous
fluxes also on the coarse grids and to enforce the boundary conditions like on
the finest grid. Moreover, he proposed a piecewise linear prolongation operator.
For a scalar quantity U, it can be written as

13,6Usn = (6Uan)i + Wi(V8Uap); . 755 - (9.38)

The gradient (VéUsp); in Eq. (9.38) is calculated by using the linear least-
squares reconstruction described in Subsection 5.3.4, Eq. (5.51). The values of
the limiter function ¥; are evaluated according to the Barth-Jespersen limiter
function presented in Subsection 5.3.5.
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9.5 Preconditioning for Low Mach Numbers

In the low subsonic Mach number regime, when the magnitude of the flow
velocity becomes small in comparison with the acoustic speed, the convective
terms of the governing equations (2.19) become stiff. We can demonstrate this
with the following example. In the 3-D case, we have the five eigenvalues

(A)123=V (convective modes)
(9.39)
(Ac)as =V e (acoustic modes),

where ¢ denotes speed of sound. The stiffness of the governing equations (when
marching in time) is determined by the characteristic condition number. This
number is defined as the ratio of the largest to the smallest eigenvalue

_ I(AC)maa:l _ |V| +c B M+1

N Rl ~ W~ M

(9.40)

The allowable local time step is limited by the fastest moving wave, i.e, (A.)4.
During one time step, the slowest wave moves only over a fraction of cell width:
ApinAt = (Amin/Amez)h = B/Cn. Thus, alarge condition number Cy (i.e., for
M - 0) reduces the efficiency of wave propagation — slows down the convergence
to steady state [73]. Furthermore, it was demonstrated in [74], [75] that schemes
for compressible flows have an amount of artificial dissipation which does not
scale correctly for Mach number approaching zero. Thus, the accuracy of such
spatial discretisation suffers at low Mach numbers [76].

If the velocity in the entire flow field is low (M < 0.2), than the compress-
ibility effects can be neglected and the incompressible equations can be utilised.
The incompressible Navier-Stokes equations can be solved by the well-known
pressure-based schemes [77]. The other possibility is the application of the ar-
tificial compressibility (or pseudo-compressibility) method [78]-[83]. However,
there are flow cases like the following ones:

o high-speed flows with large embedded regions of low velocity. An example
is the subsonic flow upstream of a strongly converging nozzle.

e Low-speed flows that are compressible due to deusity changes induced by
heat sources. This occurs for surface heat transfer or volumetric heat
addition {combustion simulation).

o Problems, where compressible and incompressible flow at varying Mach
numbers occur side by side — we speak of all-speed flows. Such situa-
tion arises, for instance, in propulsion, for high-lift configurations and in
V/STOL manoeuvring.

Such cases require the application of the compressible governing equations. In
order to solve them efficiently and accurately at low Mach numbers, precondi-
tioning can be employed. The advantage of preconditioning is that it enables a
solution method, which is applicable at all Mach numbers.
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Preconditioning consists of the multiplication of the time-derivative term
(OW /Ot) by a matrix. The purpose of the preconditioning matriz is to equalise
the eigenvalues as much as possible for M — 0. In this way, the stiffness repre-
sented by the condition number Eq. (9.40) is reduced and the convergence of the
time-stepping or iterative solution process is dramatically enhanced. The sec-
ond effect of preconditioning is the change of the independent variables. Thus,
the governing equations are solved for the pressure, the velocity components,
and for the entropy or the temperature instead of W = lp, pu, pv, pw, pE17.
Therefore, the pressure becomes strongly coupled to the other equations, which
is of great importance at low Mach numbers. The application of the precon-
ditioning matrix (and/or the altered eigenvalues) to the numerical dissipation
scheme [84] allows an accurate flow solution at vanishing Mach number.

The construction of a preconditioning matrix is relatively easy in the case of
the Euler equations. The formulation proposed by van Leer at al. [84] achieves
the lowest attainable condition number. The methodology was discussed in
detail in [74]. However, the preconditioning of the Navier-Stokes equations is
more involved. The reason is that the viscous terms lead to complex wave
speeds, which makes the preconditioned system difficult to analyse. The most
recognised preconditioners for viscous flows were proposed by Choi and Merkle
(85], [86], Turkel [87]-[89], Lee and van Leer [90], [91] and Lee [75], Jorgenson
and Pletcher [92], and by Weiss and Smith [93], [43], respectively. Examples of
applications can be found in Refs. [94]-[98].

The preconditioned Navier-Stokes equations (2.19), formulated in primitive
variables WP = [p,u,v,w, T]7, can be written as

fé/ W,,dn+f (ﬁc—ﬁu)dS:/QdQ, (9.41)
ot Jq 89 0

where T' denotes the preconditioning matrix. It is important to note that Eq.
(9.41) is not conservative for unsteady flows. Therefore, the dual time-stepping
approach (Section 6.3) has to be employed in order to obtain timc-accurate
solution.

The preconditioning matrix ' due to Weiss and Smith [93], [43] was found
to perform very well for various flow cases. It is defined as

i 0 0 0 0 T 1
fu p 0 0 pTU
I'= Bv 0 p O oTV , (9.42)
fw 0 0 p pPTW
LAH -6 pu pv pw prH+pcy |

where
PT = == . (9.43)
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In the case of ideal gas, pr = —p/RT? = —p/T. The parameter 6 in Eq. (9.42)
is given by

1

g=—_PT (9.44)

U  PCp
and § = 1 (6 = 0 for an incompressible fluid). The reference velocity u, has to
be defined such that the characteristic condition number remains bounded for
M — 0. In Ref. [43], it is suggested to determine u, from the relation

Uy = max <||17H2, v/Az, e\/Ap/p) (9.45)

with Az being the characteristic length of the control volume. Further, the
quantity Ap represents the pressure difference between adjacent control volumes
and ¢ is a small number (=~ 107%). As we can see from Eq. (9.45), u, is not
allowed to decrease below the local convective or diffusion velocity. In the case
of compressible flows, the maximum value of u, is limited by local speed of
sound [93]. The pressure difference Ap in Eq. (9.45) is employed to stabilise the
scheme near stagnation points.

The preconditioned Navier-Stokes equations (9.41) have the following con-
vective eigenvalues [93]

n

A. F—1<6€”)=[V, V,V,Vi+d, V' =c], (9.46)

oW,

where V = ¥ - 7 denotes the contravariant velocity and

Vi=V(I1l-a)
' =+/a2V? +u?
ao Lo Bu?
T2 (9.47)
8= (pp + ‘&7;)
PCp
op
P = 7
? 8]) T=const.

The changed eigenvalues and flux Jacobians have to be taken into account
when implementing the spatial discretisation scheme. The effect on the cen-
tral scheme with artificial dissipation (Subsection 4.3.1) is discussed, e.g., in
(88]. The necessary changes to Roe’s upwind scheme (Subsection 4.3.3) were
described, e.g., in Ref. [93] or [99].

An example of the application of the preconditioning method Eq. (9.41) and
(9.42) is presented in Fig. 9.7. We can clearly see that preconditioning not only
helps to accelerate the convergence, but also to find the correct solution of the
flow problem.
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Figure 9.7: Inviscid 3-D flow in a channel with bump. Unstructured hybrid
grid (prisms and tetrahedra), M;,.; = 1073, 2nd-order Roe’s upwind discreti-
sation, explicit multistage time-stepping scheme. Shown are (top to bottom)
the convergence history, the solution without and with preconditioning.
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Chapter 10

Consistency, Accuracy and
Stability

Within the finite-volume methodology, the surface integral in the Navier-Stokes
equations (2.19) is somehow approximated for each control volume. We con-
sidered various possible spatial discretisations in Chapters 4 and 5. This ap-
proximation of the fluxes across the boundaries of the control volume causes a
certain spatial discretisation error. This means that the discretised equations
differ from the exact equations by the discretisation error, which results from
the numerical scheme applied. Therefore, the important question is whether
and how fast the solution of the discretised equations converges to the exact so-
lution of the governing equations with increasingly finer grid. We shall discuss
this question in the next two sections on the consistency and accuracy.

The solution of the time-dependent governing equations (2.19) requires also
the discretisation of the time derivative of the conservative variables. We de-
scribed several temporal discretisation methods in Chapter 6. We mentioned
that each of the schemes has a specific order of accuracy and that there are
certain limitations on the maximum size of the time step. These limitations
can be assessed by means of the von Neumann stability analysis, which will be
presented in Section 10.3. In this section, we shall also investigate the ability of
the explicit multistage time-stepping scheme and of a generic implicit scheme
to damp solution errors. The damping properties decide about the robustness
of a particular scheme. They are also important for the success or failure of the
multigrid acceleration (Section 9.4).
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10.1 Consistency Requirements

A discretisation scheme is called consistent, if the discretised equations converge
to the given differential equations for both the time step and grid size tending to
zero. A consistent scheme gives us the security that we really solve the governing
equations and nothing else. This is quoted in Ref. [1] as “solving the equations
right” and is called verification. Verification should not be confused with the
term wvalidation. Validation means: do we solve “the right equations”? Thus
verification tries to quantify the numerical errors, whereas validation deals
with the modelling errors.

The consistency of a numerical scheme can be checked by expanding the
function values into Taylor series. The developments are then inserted back into
the discretised equations. If we subtract the differential equations, we obtain
terms which represent the numerical error — the so-called truncation error. For
a consistent scheme, the truncation error should go to zero with decreasing time
step and grid size.

We will now illustrate this concept on a simple example. Let us consider the
following 1-D scalar equation

ou  ou
ot or

A very simple but valid discretisation scheme would be

=0. (10.1)

U;H—l _ Uin Ul‘n — Uzn—l
At =0, (10.2)

where n denotes the time level and ¢ the node index, respectively. Expanding
the solution UP*! around the time level n gives

n At 2 2 n
UMt = Ul + At (%-?) + (—5)— (%) + o (10.3)

i i

where (- - -) represents the higher-order terms. The Taylor series for the solution
Ul | reads (cf. Eq. (3.1))

n_rrm U\* (Az)? (8*U\"
Ur, =Ur'- Az (a—x) + = (W) + oo (10.4)

i i

If we substitute Eq. (10.3) and (10.4) into the discretised equation (10.2), we

obtain yran -
U U\ At (9°U Az (0°U
(a * a—> =37 (?9?) + 5 (5‘) o (109)
A comparison with the differential equation (10.1) shows that the terms on the
right-hand side of Eq. (10.5) represent the truncation error, which is of the order
O(At, Az). The numerical scheme (10.2) is consistent, since the truncation error

tends to zero for At — 0, Az — 0.
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10.2 Accuracy of Discretisation

The accuracy of a discretisation scheme is connected to its truncation error.
If, for instance, the leading term of the truncation error is proportional to Az,
we speak of first-order accurate spatial scheme. If the leading term behaves
like (Az)?, the scheme is second-order accurate, and so on. Thus the example
scheme Eq. (10.2) is 1st-order accurate in space and in time (Eq. (10.5)). This
leads us to the condition that the numerical scheme must be at least 1st-order
accurate in order to be consistent. Otherwise, the truncation error cannot be
reduced by decreasing the values of At and Az.

The question is now, how can we assess the truncation error in practice.
Certainly, the expansion into the Taylor series is not adequate for complex
numerical schemes with non-linear switches, limiters, etc. The following are the
possible ways of error estimation [1]:

e additional solution(s) on different grid(s) — grid refinement or coarsening,
unrelated grid(s);

e additional solution(s) on the same grid — higher- or lower-order accurate
discretisation;

e solution of auxiliary PDE on the same grid;
» algebraic evaluations on the same grid.

The most common approach is to solve the governing equations on a series
of grids with different cell sizes. If we happen to know the exact solution, we
can easily quantify the error for each grid. The rate by which the truncation
error decreases determines the accuracy of the discretisation. For example, if we
halve the grid size in all coordinate directions and the error drops by a factor of
four, the scheme is 2nd-order accurate. However, very often the exact physical
solution is not known. In such a case, the order of accuracy can be estimated

using the formula (2]
In (fa - fz)
Lok (10.6)

P—*T(T—)—,

where p denotes the accuracy, r the refinement (coarsening) ratio and f the
numerical solution, respectively. Index 1 denotes the finest grid and index 3 the
coarsest grid. If the coarsening ratio is not constant between the grids, a more
general relation can be found in Ref. [1].

Besides the estimation of the truncation error, varying the grid resolution
is also used to obtain what is called grid converged solution. This is achieved
if the solution does not change (within a certain tolerance) with further grid
refinement. In this respect, we speak of grid convergence studies. Although the
grid convergence studies can be very time consuming, it is recommended always
to check if the solution is grid converged.
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10.3 Von Neumann Stability Analysis

Before a new discretisation method is implemented, it is important to know, at
least approximately, how the method will influence the stability and the conver-
gence behaviour of the numerical scheme. It was already frequently confirmed
that the von Neumann method of stability analysis can deliver reliable assess-
ment of the properties of a solution scheme. The methodology was developed
at Los Alamos during the Second World War. However, it was briefly described
first in 1947 by Cranck and Nicholson [3]. Later, it was also published in Ref.
[4]. A very helpful introduction to the von Neumann stability analysis can be
found in [3).

Von Neumann stability analysis is applicable to discretised linear partial
differential equations under the assumption of periodic boundary conditions. It
is based on the decomposition of the solution into a Fourier series. On the one
hand, this allows the investigation of the stability of a solution scheme. On
the other hand, the behaviour of the solution across the frequency spectrum
can be examined in detail. Precisely this is of fundamental importance for the
estimation of the convergence properties and robustiess of a scheme, since the
individual components (Fourier modes) of the solution error have to be reduced
(damped) as quickly as possible. Therefore, we speak of the damping properties
of a solution scheme.

Because the von Neumann analysis is limited to linear problems, the Euler
or the Navier-Stokes equations have to be substituted with a suitable model
equation. Two often employed 1-D model problems will be presented further
below. The first one describes pure convection of a disturbance, which models
the behaviour of the Euler equations. The second model equation contains
additionally a diffusion term in order to simulate the behaviour of the Navier-
Stokes equations.

10.3.1 Fourier Symbol and Amplification Factor

Before we proceed with the model problems, let us examine the von Neumann
analysis for a general 1-D scalar linear equation. After the spatial discretisation
of the fluxes, we obtain a system of ordinary differential equations in time (cf.

Eq. (4.3))
d At

where U; denotes a scalar variable at point i, R; stands for the residual, and
Az represents the grid size. Assuming periodic boundary conditions, we can
expand the solution U in Eq. (10.7) into a finite Fourier series [5], [6]

N
Ui= Y Upelmitn) (10.8)
k=—N

with the point index ¢ runming from 0 to N (z; = iAz), pr being the wave
number and I the imaginary unit. Due to the linearity of the model equation,
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it is sufficient to consider only an individual (I-th) Fourier mode, i.e.,
U elpiso) (10.9)

since the entire influence can be obtained by superposition. If we now insert the
Fourier mode Eq. (10.9) into the discretised model equation (10.7), we get

Atj—t (U e’m(zm)) = _%Ri = —% 2Ue!™® (10.10)
with the definition of the phase angle ® = p;Az. The complex function z in
Eq. (10.10) represents the so-called Fourier symbol of the spatial operator. Its
form depends on the discretisation type (central, upwind) and on the order of
accuracy.

An explicit or implicit time-stepping scheme used to solve Eq. (10.7) will
be linearly stable, if the amplitude of any harmonic (U') does not grow in time.
This means that the amplitude of the new solution must be equal or smaller
than the amplitude of the previous solution. Hence, the amplification factor is
defined as )

U‘n-+1
9= U" .
If we introduce the time-stepping operator f, we can write the amplification
factor in the general form

(10.11)

g=1- fz. (10.12)

The time-stepping scheme will be linearly stable if [g| < 1. In cases, where
the spatial and temporal discrctisations are separated (method of lines), the
domain of stability depends on the time-stepping scheme (f), not on the spatial
discretisation (z). The Fourier symbol of the spatial operator z must lie within
the domain of stability for all phase angles &. We speak of good damping
properties if |g| is well below unity. This means that the perturbations of the
numerical solution are rapidly damped in time. Consequently, the time-stepping
scheme converges faster to the steady-state solution than for |g| — 1.

10.3.2 Convection Model Equation

In this case, the scalar linear model equation takes the form

ou oU

— +A—=0. 10.13

ot Oz ( )
The convection velocity A (also the eigenvalue) is assumed to be constant and
positive. In the following, we shall consider different spatial discretisation

schemes applied to Eq. (10.7) and their corresponding Fourier symbols.

Central Scheme with Artificial Dissipation
According to Eqs. (4.48)-(4.50), the residual R; in Eq. (10.7) takes the form

R, = %(U,HLl —Uis) + AeD(Uipg — 4Uspy + 6U; — 4U;_; + Ui—)  (10.14)
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with €{*) denoting the dissipation coefficient. In order to simplify the analysis,
only the 4th-order differences were retained in Eq. (10.14). The Fourier symbol
of the spatial operator is obtained according to Eq. (10.10) by inserting the
harmonic Eq. (10.9) into Eq. (10.14)

z=A[Isin® +4eM(1 - cos 8)?]. (10.15)

Upwind Scheme
Using the 1st-order upwind scheme (see Eq. (4.46)), the residual R; becomes

Ri = A(U; = Ui) (10.16)
and the associated Fourier symbol reads
z=A[Isin® + (1 — cos B)] . (10.17)

In the case of the 2nd-order upwind spatial discretisation, the residual in
Eq. (10.7) is given by

A
R,’ = 5(3(],, e 4U-,;_1 + Ui_g) - (1018)

The corresponding Fourier symbols z of the spatial operator appears as

z=A[Isin® (2 —cos®) + (1 — cos ®)?] . (10.19)

10.3.3 Convection-Diffusion Model Equation

The combined convection-diffusion model equation can be written in the form

oU oU 82U
AN N A )
at + 5 =V a2 (10.20)
where v represent the viscosity coefficient. The diffusion term 82U/dz? is nor-
mally approximated by 2nd-order central differences. Thus,
8°U A
vaa A_;(Uz'+1 -2U; + Uiy) (10.21)
with
A, = 2 (10.22)

being the viscous eigenvalue.
The Fourier symbol of the spatial operator is now composed of the convective
and the diffusive part, i.e.,
Z2=2Zc— 2y, (10.23)

where

2y = 2A,(cos ® - 1) (10.24)
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and z. corresponds to one of the forms presented in Eq. (10.15), (10.17), or
(10.19), respectively.

As we can conclude from Eq. (10.24), the diffusion term changes only the
real part of the Fourier symbol. This is typical for any kind of diffusion or
artificial dissipation (cf. Eq. (10.15)). Furthermore, we can see from Eq. (10.17)
or (10.19) that the upwind discretisation of the convective term also causes
the Fourier symbol to have a real part (1 — cos®). Therefore, we speak of
upwind dissipation. Only the central discretisation of the convective term adds
no numerical dissipation, since the Fourier symbol is given by (I sin ®). However,
the central scheme allows for the unwanted odd-even decoupling of the solution.

10.3.4 Explicit Time-Stepping

The application of an m-stage explicit time-stepping scheme to the discretised
model problem Eq. (10.7) can be described in the following way (see Subsection
6.1.1)

0 .
Ul( ) — Uln
A -
0P —U® LR, km1eem (102)
xr
UZH_I — Uz(m) ,

where oy, denote the stage coefficients. If we substitute the variable U by its
Fourier representation Eq. (10.8) and the residual by the Fourier symbol z,
Equation (10.25) transforms to

O = gm

[ = {7 -—ak%zf](k_”, k=1 .m (10.26)
T

(= grtm)

The amplification factor of the above m-stage explicit scheme is given by Eq.
(10.12). Based on Eq. (10.26) it can be shown that the Fourier symbol of the
time-stepping operator f has the form [7]

At At
f= Az Ay — QG —1Um A‘ :IIZ
At m—1
R ¢-va) ]’

provided the convective and the dissipative part of z are evaluated at each stage
(so-called (m, m)-scheme). The derivation of f becomes more involved for the
hybrid multistage schemes (Subsection 6.1.2). In the case of the (5,3)-scheme

(10.27)
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(Eq. (6.7)), the Fourier symbol of the time-stepping operator reads [8]

At
f= s {as — asas(zr + Bszr)(1 — aszr)

—asaqaz(l — avzr)(zr + Bs2r) [aa(zr + Bazr)zr — Pazg)  (10.28)

—asaz(1 - B5)Bs(1 — ar2)zr}

with
At
Az
representing the real and the imaginary part of z. The stage coefficients a; and
the blending coefficients 8; are shown in Table 6.2.

The time step At can be determined with the aid of the Courant-Friedrichs-
Lewy (CFL) condition [9]. The following formula can be found for the convection
model equation (10.13)

- 2—5_ Real(z) and zr = = Imag(z) (10.29)

Az
=0—.

1Al
The parameter ¢ in Eq. (10.30) denotes the CFL number. Its magnitude de-
pends on the type and on the stage coefficients of the time-stepping scheme.

The derivation of Eq. (10.30) is presented in Subsection 10.3.6. In this case of
the convection-diffusion model equation (10.20), the relation

At (10.30)

Az
At =0 m (1031)

holds for the time step. The factor C in Eq. (10.31) varies with the spatial dis-
cretisation. For the central scheme Eq. (10.15), C = 4 results in good damping.
In the case of the lst-order upwind scheme Eq. (10.17), C = 2 guarantees that
the Fourier symbol of z = 2z, — 2z, (Eq. (10.23)) remains bounded by z.. In fact,
the Fourier symbol with the diffusion term is identical to the Fourier symbol of
z. for ® = m, regardless of the ratio A,/|A|. The same situation is encountered
for the 2nd-order upwind scheme Eq. (10.19) if one sets C = 1.

Examples of Fourier Symbols and Amplification Factors

In the following, we shall consider a few applications of the von Neumann stabil-
ity analysis to the convection and the mixed convection-diffusion model prob-
lems. The left-hand side of the figures below shows the locus of the Fourier
symbol of the spatial operator z (thick line) together with the isolines of the
magnitude of the amplification factor |g|. The boundary of the stability region
is represented by |g| = 1. The behaviour of |g| with respect to the phase angle ®
is displayed on the right-hand side. This allows the assessment of the damping
properties.

Fourier symbols and damping of upwind discretisation schemes are displayed
in Fig. 10.1 for the convection model equation. In both cases, a 3-stage scheme is
employed with optimised coefficients (Table 6.1). The behaviour of the 1st-order
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Figure 10.1: Convection model equation — Fourier symbol of the spatial oper-
ator (z) and the magnitude of the amplification factor (Jg|) in the case of the
explicit (3,3)-scheme:

(a) 1st-order upwind discretisation; o = 1.5; stage coefficients: 0.1481, 0.4, 1.0
(b) like above but ¢ = 2.5
(¢} 2nd-order upwind; o = 0.69; stage coefficients: 0.1918, 0.4929, 1.0.
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upwind scheme Eq. (10.16) is shown in Fig. 10.1a and 10.1b. As we can see, the
locus of the Fourier symbol passes all three minima of |g| (small circular areas
on the isoplot). This leads to very low magnitude of the amplification factor
for a phase angle ® > =/2, which is particularly important for an eflicient
multigrid scheme (® > /2 on coarse grid corresponds to ® < 7/2 on fine grid).
We can also observe that the damping properties are poor for ® < w/2. This
behaviour is typical for the multistage schemes. It explains their low asymptotic
convergence rate, which can be best improved by multigrid. It should be noted
that the range 0 < & < 7 represents the first half of the locus on the left-hand
side.

The next diagram (Fig. 10.1b), demonstrates what happens, if the CFL-
number o is increased too much. As expected, the Fourier symbol extends
behind the stability boundary. Consequently, the magnitude of g becomes larger
than unity (dashed line). This means that the solution errors are amplified for
the corresponding phase angles (frequencies). Such a time-stepping scheme will
clearly diverge. Part (c) of Fig. 10.1 shows the properties of the 2nd-order
upwind scheme Eq. (10.18). In principle, the behaviour is similar to that of the
1st-order upwind scheme.

The following plots in Fig. 10.2 display the loci of the Fourier symbols and
the damping properties of the hybrid (5,3)-scheme (Subsection 6.1.2) applied to
the convection model equation (10.13). The spatial discretisation utilises the
central scheme with artificial dissipation (Eq. (10.14)). In order to demonstrate
the influence of the dissipation coefficient (4, its value is varied from 1/16 (Fig.
10.2a) to 1/256 (Fig. 10.2c). We can conclude from the results that the locus is
contracted along the real axis with decreasing amount of artificial dissipation.
This effect is caused by down-sizing the term (1 — cos ®)? in Eq. (10.15). More
important is the fact that the damping properties deteriorate with reduced
artificial dissipation. This means in practice that the convergence speed and
the robustness of the scheme will degrade with lower dissipation level.

The properties of the hybrid (5,3)-scheme employed to solve the convection-
diffusion equation (10.20) are investigated next. At first, the schemec is coupled
to the Ist-order upwind spatial discretisation Eq. (10.16). In Fig. 10.3, com-
parison is made between A, = 0 (pure convection) and A,/A = 2 (denoted by
dashed line). As we can see, the locus of the Fourier symbol is contracted along
the imaginary axis due to the influence of the diffusion term z,, which has only
a real component. The extension of the Fourier symbol along the real axis is
kept, if the time step is calculated according to Eq. (10.31) with C' = 2. The
damping of the scheme remains on about the same favourable level as for pure
convection. This is caused by the optimised, flat minimum of |g| in the region
surrounded by the locus of z. (right-hand side of Fig. 10.3).

The behaviour of the hybrid (5,3)-scheme with central discretisation (Eq.
(10.14)) is displayed in Fig. 10.4. The dissipation coefficient was set to €4 =
1/64 and the ratio of the eigenvalues to A, /A = 2, respectively. We can observe
that the locus of the Fourier symbol changes its form completely as compared
to the convection equation. In the limit case A, — oo, the locus would degrade
to a line. Therefore, it is important that the time-stepping is optimised to have



Consistency, Accuracy and Stability

(a)

Imag(z)
N AW = O =N W a Wt

(b)

Imag(z)
h & O RN L o a N wa an

(c)

imag(z)
Lo g
N B W N = O = N W A

T VA T R A
9 8 -7 6 -5 -4 3210 1
Reai(z)

341

) L
1.5 2
phase angie

I i
2.5 3

i | 1
1.5 2
phase angie

Figure 10.2: Convection model equation - Fourier symbol of the spatial op-
erator (z) and the magnitude of the amplification factor (Jg!) in the case of
the explicit (5,3)-scheme with central spatial discretisation, o = 3.6, stage and
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(b) €*) =1/64

(c) e =1/256.



342 Chapter 10

1F ——— convection
ook \ @ - convection-diffusion
08fF
E
07F
0.6F
0.5 3
04F
03F
0.2F
01F

Imag(2)
Is!

SIS TS PN SO | A

1 L y " ~;-' — T
8 7 6 5 -4 -3 -2 -1 0 1 0 0.5 1 1.5 2 2.5 3
Real(z) phase angle

Figure 10.3: Convection-diffusion model equation —~ Fourier symbol of the spa-
tial operator (z) and the magnitude of the amplification factor (|g|) in the case of
the explicit (5,3)-scheme with 1st-order upwind spatial discretisation, ¢ = 2.0,
stage and blending coefficients from Table 6.2.

- convection
09k N\ e convection-diffusion

Imag(2)
loi
(=]
5]

sl 1 1 1
9 -8 -7 6 5 -4 -3 -2 -1 0 1 0 0.5 1 1.5 2 25

TN 0 1 b L L ._31

Real(z) phase angle

Figure 10.4: Convection-diffusion model equation — Fourier symbol of the spa-
tial operator (z) and the magnitude of the amplification factor (|g|) in the case
of the explicit (5,3)-scheme with central spatial discretisation, ¢ = 3.6, stage
and blending coefficients from Table 6.2.
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a shallow minimum of |g| along the real axis. It should be mentioned that the
time step was evaluated with Eq. (10.31) and C = 4.

Further examples related to the von Neumann stability analysis can be found
in the Refs. [7], and [10]-[16]. Program for the linear analysis of explicit multi-
stage schemes (with implicit residual smoothing) is provided on the CD-ROM.

10.3.5 Implicit Time-Stepping

According to Eq. (6.28) in Section 6.2, a general implicit scheme for the inte-
gration of the model equations can be formulated as

Az OR n_ _pn
[E +8 <W>J AU™ = -R}. (10.32)

We can rewrite the flux Jacobian R/OU as a sum of two difference operators
- one for the convection and one for the diffusion term in Eq. (10.20), i.e.,

Ax w R
{E +B[(D])e — (D)), } AU™ = -R}. (10.33)

The convection difference-operator can take various forms. For instance, in the
case of the central scheme with artificial dissipation it becomes (cf. Eq. (6.47))

(DH.AU™ = %( R — AUM ) + A (AUR | — 20U + AUR,), (10.34)

where €/ denotes the implicit dissipation coefficient. We do not include here
the 4th-differences, since those are only seldom used in practice (high numerical
effort). The 1st- or the 2nd-order upwind scheme in the implicit operator leads
to

(DD, AU™ = A(AUP — AU ), (10.35)
or N
(DD, AU™ = %(BAU{‘ —4AUR ) + AUR,), (10.36)

respectively. The diffusion difference-operator is usually of central type

(D1, AU™ = %"(AU;}H - 2AUP? + AUL)). (10.37)

The discretisation of the explicit operator can be conducted accordingly to one
of the relations (10.14), (10.18), or (10.18).
If we insert the Fourier mode Eq. (10.9) into the implicit scheme Eq. (10.33),
we obtain A
[T‘: + ,le] AU™ = —2807, (10.38)

where z/ = 2z — 2! denotes the Fourier symbol of the flux Jacobian and 2% =

zE — zE represents the Fourier symbol of the explicit operator. The forms of
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the Fourier symbols correspond to those derived in Sections 10.3.2 and 10.3.3.
The amplification factor results with Eq. (10.12) as

2 39
=1-—— 10.
g=1 Az P (10.39)
At
Thus, the Fourier symbol of the time-stepping operator is f = 1/[---]. A quick

inspection of Eq. (10.39) reveals that for At = oo, 8 = 1 and 2! = zE, the
amplification factor will be zero for phase angles ® > 0. This situation occurs
for the Newton scheme (see Subsection 6.2.5), if the flux Jacobian is exact. This
explains the very fast convergence of the exact Newton's method.

Examples of Amplification Factors

In the following, we shall investigate the damping properties of a few implicit
schemes with varying discretisations of the explicit and the implicit operator.
For further discussion, the interested reader is referred to Ref. [17], which con-
tains von Neumann analysis of the popular LU-SGS scheme in 2D (single grid
and multigrid). A program for the analysis of implicit schemes is also provided
on the accompanying CD-ROM.

In the first example, we consider a scheme which applies central spatial dis-
cretisation to the explicit (Eq. (10.14)) and the implicit operator (Eq. (10.34)).
This is similar to the standard ADI scheme as presented in Subsection 6.2.3.
We want to investigate the influence of parameter settings within the implicit
operator on the amplification factor. Three exemplary results are compared in
Fig. 10.5. The first curve (solid line) was generated with 8 = 1 and ¢/ = 1/20.
The value of €/ was chosen such that |g| = 0 at & = w. The following formulae
can be used to calculate €’

1_ 1 (4@ _ B2
ol =5 (1 - o) (10.40)

The second curve (dashed line) demonstrates that the artificial dissipation has
to be included in the implicit operator. For ¢/ = 0, the scheme becomes unstable
at high frequencies (& — 7). The last curve (dash-dotted) shows the magnitude
of g for B8 = 1/2, i.e., for second-order accuracy in time. As we can see, the
damping properties are much worser than for 3 = 1. Therefore, this value
should be preferred. Unsteady flows are more efliciently solved by dual-time
stepping (Section 6.3.2).

The effect of increasing CFL number is illustrated in Fig. 10.6. First-order
upwind scheme (Eqs. {10.16) and (10.35)) is employed on both sides. The
damping is very good due to the similarity between the explicit and the implicit
operator. This confirms our remark with respect to Newton’s scheme.

In the next diagram (Fig. 10.7), we compare the amplification factors for
two different discretisations of the implicit operator (the left-hand side — LHS).
The explicit operator is in both cases discretised using 2nd-order upwind scheme
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Eq. (10.18). It is evident that the exact representation of the explicit operator
on the LHS leads to significantly better damping properties and thus to faster
convergence. This observation was often confirmed in practice. The damping
properties of a mixed 1st-/2nd-order discretisation can be improved by increased
overrelaxation as demonstrated for the LU-SGS scheme [17], [18].

The last example in Fig. 10.8 deals with the convection-diffusion model equa-
tion (10.20). We want to compare two cases. In the first one, the discretisation
of the diffusion term is also contained in the implicit operator (solid line). We
can observe that the damping properties are very favourable — similar to those
found for the convection model problem. However, if the diffusion term is re-
moved from the implicit operator (dashed line in Fig. 10.8, the scheme becomes
unstable, even at this low ratio of viscous to convective eigenvalue (A, /A = 2).
Therefore, the viscous fluxes should be always included in the approximation of
the flux Jacobian to obtain a robust scheme.

In summary, we can state that the implicit operator should include at least
the most important features of the spatial discretisation and of the physical
problem. Rather crude approximations of the flux Jacobian 6[2’/611_17 can easily
lead to an unstable scheme. Therefore, it is very important to find a reasonable
compromise between the numerical effort and the accuracy of the numerical flux
Jacobian.

A comparison to the results of the explicit multistage scheme reveals that
the damping properties of a properly designed implicit scheme are significantly
better. This is especially true for the damping at low phase angles (frequencies).
Therefore, we can expect faster asymptotic convergence rates from an implicit
scheme as compared to a multistage scheme.

10.3.6 Derivation of the CFL Condition

Every explicit time-stepping scheme remains stable only up to a certain value of
the time step At. The necessary, but not sufficient, condition for stability of a
time-stepping scheme was formulated by Courant, Friedrichs and Lewy [9]. The
so-called CFL condition states that the domain of dependence of the numeri-
cal scheme has to include the domain of dependence of the partial differential
equation. In order to clarify this statcment, let us consider the 2-t diagram in
Fig. 10.9. The domain of dependence of the convection model equation (10.13)
is given by the characteristic dz/dt = A. This means that any information is
carried with this speed across the domain. Consequently, the exact solution
at the time (¢p + At) is equal to the solution at the time ¢y but at the space
coordinate z° = z; — AAt. In order to simulate the behaviour of the exact
solution correctly, the stencil of the spatial discretisation must enclose the point
x*. Thus, at least the point x;_, has to be included (if A > 0). The domain
of dependence of such a numerical scheme is represented by the shaded area in
Fig. 10.9. Hence, we can formulate the condition

AAt< Az or Atg%. (10.41)
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Figure 10.9: Domain of dependence of an explicit time-stepping scheme
(shaded area) versus domain of dependence of the convective equation (thick
line).

This leads us to the CFL condition
At
=|A]— < 1. 10.42
o=l 5 < (1042)

Of course, the explicit multistage scheme allows for CFL-numbers ¢ > 1, since
the new solution at the time (#p + At) is obtained in more than one step.

Based on the above arguiments, we can easily show that an implicit scheme
like in Eq. (10.32) always fulfils the CFL condition, since the numerical domain
of dependence extends over all grid points.

CFL Condition by von Neumann Analysis

The CFL condition in Eq. (10.42) can be also derived by the von Neumann

stability analysis. Let us consider for this purpose the convection model equation

(10.13) discretised using the Ist-order upwind scheme Eq. (10.16) and a one-

stage explicit scheme. The domain of dependence of this numerical scheme

corresponds to the shaded region in Fig. 10.9. According to Eq. (10.12), we
obtain the amplification factor g from the relationship

At

=1-—z, 10.43

g N (10.43)

since the Fourier symbol of the time-stepping operator reduces to f = At/Ax.

If we substitute Eq. (10.17) for z in Eq. (10.43), the amplification factor will

read At
g=1- A Allsin® + (1 —cos®)] . (10.44)

Az’
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Thus, the amplitude of ¢ is given by (we assume A > 0)

At At
2 - — — — —
gl = 2AzA (AzA 1) (1-cos®)+1. (10.45)

It is easy to show that the maximum of |g|? occurs at a phase angle ® = 7. If
we set & = 7 in Eq. (10.45), we obtain

A
19(® = m)2 = 4A—iA (gA - 1) 41 (10.46)

In order for the time-stepping scheme to be stable, it must hold that |g|> < 1.
This condition can only be fulfilled if

At

—A <1 .

Ah < (10.47)
and hence A

At < —Agi (10.48)

This corresponds exactly to Eq. (10.41).

It is important to note that the CFL condition (10.42) is not sufficient
(however necessary) to guarantee stability of the numerical scheme. Therefore,
the von Neumann analysis should be carried out as well.
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Chapter 11

Principles of Grid
(Generation

Prior to the numerical solution of the governing equations, we have to discretise
the surfaces of all boundaries and to generate a volume grid inside the flow
domain. As we discussed at the beginning of Chapter 3 (Section 3.1), we can
choose basically between:

e structured, and
o unstructured

grids. An example of structured grid for a civil aircraft [1], [2] is presented in
Fig. 11.1 and 11.2. For comparison, an unstructured surface and volume grid
for a similar configuration [3]-[6] is displayed in Fig. 11.3 and 11.4.

The structured as well as the unstructured grids have their specific advan-
tages and shortcomings, which we mentioned in Section 3.1. However, regardless
of the grid type, the main bottleneck is currently the quality of data being im-
ported from a CAD (Computer Aided Design) system into the grid generation
program. The surface description is usually transfered via a standard format like
IGES [7]. A direct transfer of CAD native data is rather rate [8]. The experi-
ence shows that this process can impair the accuracy of the data. Furthermore,
the surface representation in the CAD system itself is often imprecise. This
leads mostly to gaps, overlaps or discontinuities between neighbouring surface
patches. Such errors have to be eliminated before the surfaces can be discretised.
We speak in this respect of “CAD repair” [9], [10).

In the following, we shall present the basic methodologies applied to generate
structured (Section 11.1) as well as unstructured (Section 11.2) grids. Due to
the restricted space, we can provide here only a brief description. We refer the
reader to [11] or [12] for a deeper discussion of surface modelling, structured
and unstructured surface and volume grid generation.

353
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1

Figure 11.1: Structured surface and volume grid of a wing-body configuration.
(Courtesy O. Brodersen, DLR, Germany).

Figure 11.2: Structured surface and volume grid of a wing-body configuration
- detail of the pylon and the engine nacelle. (Courtesy O. Brodersen, DLR,
Germany).
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Figure 11.3: Unstructured surface grid of a wing-body configuration. (Cour-
tesy D. Mavriplis, ICASE, USA).

Figure 11.4: Unstructured grid of a wing-body configuration — detail of the
slats and rough-cut through the volume grid. (Courtesy D. Mavriplis, ICASE,
USA).
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11.1 Structured Grids

The distinguishing feature of structured grids is that the grid points in the
physical space are mapped in an unique way onto a continuous set of three
integers ¢, 7,k (one for each coordinate direction). The set of integers defines
what is called the computational space (see Fig. 3.2). The coordinates £, 0, ¢ in
the computational space are related to i, j, k as follows

ézi/imazy i:0)172y"'yimaz
n:j/jmaz» ]:01 11 2) "'7jmax (111)
C:k/kmaz: k:0,1r2"")kma1

This mapping implies that 0 < £ <1, 0 <n <1, and 0 £ { < 1. Neighbouring
grid points can be connected to form cubes in the computational and hexahedra
(quadrilaterals in 2D) in the physical space. Structured grid generation systems
discretise the boundary surfaces of the flow domain using quadrilaterals — termed
the surface grid — and fill the interior with hexahedra. The grid inside the
domain is named the volume grid.

The generation of a structured grid starts by distributing grid points along
boundary curves (boundaries of surface patches). The usual procedure is to
place the nodes more dense in regions with high curvature. Using the point
distribution on boundary curves, the surface grid can be generated. Based on
the surface grids which enclose the physical domain, we can finally construct
the volume grid. Thus, the common problem is to generate a grid inside the
domain based on known boundary discretisation. This can be solved by two
different approaches:

e algebraic grid generation, or
¢ grid generation using partial differential equations (PDE’s).

The application of PDE’s requires a valid initial grid (surface or volume), which
is mostly generated algebraically. Two different types of PDE’s are common:

s elliptic equations, and
e hyperbolic equations.

The algebraic grid generation (Subsection 11.1.2) employs a direct functional
description of the coordinate transformation between the computational and
the physical space. The most widely used algebraic technique is the so-called
Transfinite Interpolation (TFI). Given the point distribution on all boundaries,
it generates the grid points inside the physical domain by interpolation. Particu-
lar formulations of the TFI method allow for angle and grid spacing control at
the boundaries.

The methodology based on elliptic PDE’s (Subsection 11.1.3) is the most
popular one. It allows the user to prescribe the angle between a grid line and
boundary and to control the grid spacing and the expansion ratio near surfaces.
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Elliptic grid generation also guarantees a smooth grid in the entire domain.
Thus, high quality, boundary orthogonal grids can be generated. The downside
of the elliptic method is a much longer computing time as compared to alge-
braic or hyperbolic grid generation approaches. The method also suffers from
numerical difficulties.

Hyperbolic PDE’s can also be utilised for the grid generation (Subsection
11.1.4). This technique generates the volume grid by marching between two sur-
faces in the direction of one particular computational coordinate. The marching
procedure is explicit, i.e., based on a known surface point distribution a new
layer is generated. A natural restriction of the hyperbolic grid generation is
that the shape of the outer grid boundary cannot be fully controlled. However,
this may represent no real problem like in the case of external flows. The hy-
perbolic grid generation can provide approximate grid orthogonality over the
entire domain. It is also computationally inexpensive.

11.1.1 C-, H-, and O-Grid Topology

Before we can start to generate any grid, we have to think about its topology.
This means, we have to decide how many grid blocks are necessary and how the
blocks should be ordered with respect to each other (by the way, this work may
take weeks to months in the case of a complex geometry). For each grid block,
we have to assign boundaries (or their parts) in the computational domain to
particular boundaries in the physical space {e.g., solid wall, farfield, etc.). The
appearance of the grid in the physical space will depend strongly on this assign-
ment. In practice, three standard single-block grid topologies are established.
They are named as the C-, H-, or the O-grid topology because in a plane view
the grid lines resemble the corresponding capital letter. A grid in 3D can be
described as a combination of two topologies. For example, the grid around a
wing usually consists of a C-grid in the flow direction (cf. Fig. 11.2) and of an
O-grid (or an H-grid) in the spanwise direction. In this case, we speak of a
C-O-grid. In the following, we shall discuss all three topologies in more detail.

C-Grid Topology

In the case of the C-topology the aerodynamic body is enclosed by one family of
grid lines, which also form the wake region (if present). The situation is sketched
in Fig. 11.5. As we can see, the lines n = const. start at the farfield (¢ = 0),
follow the wake, pass the trailing edge (node b), wrap in clockwise dircction
round the body, and finally continue to the farfield again ({ = 1). The other
family of grid lines (£ = const.) emanates in normal direction from the body and
the wake. The part (segment) a—b of the grid line n = 0 represents a coordinate
cut. This means that the segment a-b in the physical space is mapped onto
two segments in the computational space, namely a < ¢ < band ¥’ < ¢ < a'.
Hence, the nodes on the upper (¥'-a’) and the lower part (a-b) of the cut are
hold separately in the computer memory. The appropriate boundary condition
was presented in Section 8.6.
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Figure 11.6: Partial view of a C-grid around NACA 0012 airfoil.
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H-Grid Topology

The H-grid topology is quite often employed in turbomachinery for grid genera-
tion in the bladed flowpath. The topology is displayed in Fig. 11.7. As one can
observe, the surface of the aerodynamic body is described here by two different
grid lines, i.e., 7 = 0 and 7 = 1. On contrary to the C-grid, one family of grid
lines (n = const.) closely follows the streamlines (inlet located at £ = 0, outlet
at £ =1).

At the first sight, there is no obvious coordinate cut. However, in turbo-
machinery the segments a-b and e-f are periodic (rotationally periodic in 3D)
to each other. The same is true for the segments ¢-d and g-h. This type of
boundary condition is treated in Section 8.7. Figure 11.8 shows an example of
a non-orthogonal H-grid between turbine blades.

O-Grid Topology

We can see from the rendering of the O-topology in Fig. 11.9 that one family of
grid lines (n = const.) forms closed curves around the aerodynamic body. The
second family of grid lines (£ = const.) is spanned in radial direction between
the body and the outer boundary (farfield in this case). The complete boundary
line 7 = O represents the contour of the body (from a to a’). The coordinate
cut is defined by the boundaries £ = 0 (nodes a—c) and £ = 1 (nodes a’'-¢') in
the computational space. The example in Fig. 11.10 shows a standard O-grid
used to simulate inviscid flow past an airfoil. A disadvantage of the O-topology
is the poor grid quality at a sharp trailing edge.

11.1.2 Algebraic Grid Generation

The most widely used algebraic techniques for surface or volume grid generation
from prescribed boundary point distribution is the Transfinite Interpolation
(TFI) method. It was first described by Gordon and Hall in 1973 [13]. The TFI
scheme utilises 1-D univariate interpolations in each of the coordinate directions
in the computational space. The general form of the univariate interpolation
functions reads
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In Eq. (11.2), U, V, and W denote the univariate interpolation functions in
the &-, -, and (-direction, respectively. Furthermore, a*(£), ﬂ;“(n), 74 (C) are
the blending functions, and 7 stands for the position of a grid point in the
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physical space. In order to cvaluate the interpolation functions, positions 7 and
derivatives 9"7/OE™, etc. have to be specified. Since we already discretised the
boundary curves or surfaces, we can insert these values into Eq. (11.2). With U,
V, W known, we can generate the grid inside the domain by using the Boolean
sum of the interpolation functions, i.e.,

F=UaeVeW=U+V+W-UV-UW-VW+0TVW. (11.3)
The approach in Eq. (11.3) guarantees that in 2D all four boundary curves and

in 3D all six boundary faces are matched. The tensor products in Eq. (11.3) are
evaluated as follows

amn'f'(giy 77_77 C)
nam
a; 'Bj anmagn

-

Il
MP"
M=
Me
M~

-
Il
—
<
Il
—_
3
s
1]
=}

)~ i
R
3
=

(=}

61”7:’(61') 7, CL)

<

=

i
<M“'
-MZ

R
i=1 k=1 1=0 n=0 6Cla€n (11 4)
M N R .
L o7 (€, mj, Ck)
_ m l b )
VW=3_22. 3 B%h —5agm

nam 6lmn7—:(£i, 75, CL)
a; ﬂj 7llc 6(‘67}"‘(;{"

<.

]L

T

T
M= iMe

U

<t

?x
MP"
.Mz
M=
Me
NE

i
LxY
[l
Eod
_I_I'
T
o
3
Il
o
3
i
o

More details on Boolean operators and tensor products related to grid generation
can be found in [14] or [15].

Various types of interpolation functions can be employed - linear, Lagrangian,
Hermite, spline, etc. The most widespread method is the linear TFI. It is ob-
tained by setting L = M = N =2and P = Q = R = 0 in Egs. (11.2) and
(11.4). With this, the volume grid can be generated based solely on the given
point distribution on the six bounding surfaces (we set & = 0, &, = 1, and
similarly for n; and (). The blending functions of the linear TFI read

a})=1-¢, a3(6)=¢
BEO=1-n, BE=n (11.5)
YO=1-¢, B =¢.

The linear TFI is computationally very efficient. An example of algcbraically
generated grid using the linear TFI is shown in Fig. 11.8.

The Hermite TFI with cubic blending functions allows it to prescribe addi-
tionally the slopes of the grid lines at the boundaries. The Hermite TFI results
ifweuse L=M =N =2and P=Q =R =1in Eq. (11.2) and Eq. (11.4).
However, it is also possible to mix linear and Hermite interpolations in different
computational coordinates. A description of the Hermite TFI and further ex-
tensions to the TFI technique (e.g., grid spacing control) can be found in [12],
Chapter 3.

v
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11.1.3 Elliptic Grid Generation

Grid generation methods based on elliptic PDE’s are known to produce grids
with smoothly varying cell sizes and slopes of the grid lines. Furthermore, el-
liptic grid generation methods offer the possibility to control the orthogonality
and the spacing near boundaries, which is particularly important for the simu-
lation of viscous flows. Elliptic PDE’s in grid generation were introduced first
by Thompson et al. [16] in 1974. A detailed description of the numerical im-
plementation in 2D was presented, e.g., in [17] and [18].

In 3D, the system of Poisson equations for the unknown Cartesian coordi-
nates 7 = [x,y, z]7 of the grid points can be written as
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where P, @ and R denote the control functions. The metric coefficients a are
given by the relations
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In Eq. (11.7), the terms in brackets represent scalar products. The inverse of
the determinant of the coordinate transformation Jacobian (J~1) is evaluated
according to Eq. (A.13). It should be noted that by setting P = Q = R =0, Eq.
(11.6) reduces to the Laplace equation. The inherent smoothing properties of
the Laplace equation can be utilised to improve the quality of an algebraically
generated grid. However, the point distribution in the interior field cannot be
controlled.
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Elliptic equations for the generation of 2-D or surface grids are easily derived
from Eq. (11.6). After the multiplication with J2 we obtain
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The metric coefficients in Eq. (11.8) become
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The generation of a boundary orthogonal grid requires the specification of
appropriate boundary conditions during the solution of Eq. (11.6) or Eq. (11.8).
Basically, we can apply either Neumann or Dirichlet conditions. Neumann
boundary conditions allow it to prescribe directly the intersection angle between
a grid line and the boundary. In this case, the control functions are not required
(P = @ = R = 0). However, the point distribution on the boundary and the
spacing cannot be controlled. In fact, the boundary nodes will be automatically
redistributed to match the given grid line skewness. Hence, the approach is not
suited for viscous wall boundaries. More details on the Neumann conditions in
elliptic grid generation are provided, e.g., in Ref. [12], Chapter 6.

Dirichlet boundary conditions are used in cases where the positions of the
boundary points have to stay fixed. The control functions are then employed to
achieve the desired intersection angles and spacing. The effects of the control
functions on the grid are presented in Fig. 11.11 for the 2-D case. As we can
see, negative values of P in Eq. (11.8) cause the lines n = const. to move in
the direction of decreasing £, whereas @ < 0 shifts the lines £ = const. to lower
n-values. Thus, since the boundary nodes are fixed, varying P changes the angle
between the grid lines 7 = const. and the boundary. The values of the control
functions are calculated first at the respective boundaries from the difference
between the prescribed and the actual skewness and grid spacing. Then, the
boundary values of P, @ and R are interpolated in the interior of the domain
and the system Eq. (11.6) or Eq. (11.8) is solved. The procedure is repeated
until the required grid properties are achieved. This approach based on Dirichlet
conditions was developed in 2D by Sorenson [17] and by Thomas and Middlecoff
[19]. Later it was extended to 3D by Sorenson {20] and Thompson [21].

The elliptic equations (11.6) or (11.8) are usually discretised using second-
order central finite differences. The resulting set of linear algebraic equations
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Figure 11.11: Effects of the control functions in 2-D elliptic grid generation.
P controls the skewness and @ the spacing.

can be solved by any standard technique, e.g., by the Gauss-Seidel relaxation
scheme accelerated by multigrid. The values of the control functions are updated
in an outer iteration. In order to increase the robustness of the procedure, it is
advisable to carry out several iterations with the Laplace equations (P = @ =
R = 0), in order to smooth the initial (usually algebraic) grid [22]. Examples
of elliptically generated grids are shown in Figs. 11.1, 11.2 and 11.6.

11.1.4 Hyperbolic Grid Generation

Hyperbolic PDE’s are suitable for grid generation in cases where the shape of
the outer boundary need not to be exactly controlled. In order to gencrate the
grid, an initial point distribution has to be prescribed. Then, the grid is build
by marching a given distance in the normal direction from a known to a new
layer of grid points. The application of hyperbolic PDE’s for grid generation was
proposed by Starius [23], and by Steger and Chaussee [24]. A recent discussion
of the hyperbolic grid generation methodology can be found in [12], Chapter 5.
Various extensions and improvements were described in Refs. [25]-[30].

The hyperbolic equations for the generation of a volume grid read

or or
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where 7 = [z,y, 2]7 denotes the Cartcsian coordinates of the grid points, &,7,¢
stand for the computational coordinates (Eq. (11.1)), and  is the user-specified
cell volume. Furthermore, we assumed in Eq. (11.10) that the surface { = const.
represents the initial state. The first two relations in Eq. (11.10) represent
orthogonality conditions (£ = const. and = const. orthogonal to { = const.
plane). The last relation in Eq. (11.10) guarantees that the cell volume becomes
equal to . This opens the possibility to control the spacing between the grid
layers.
The 2-D formulation of the hyperbolic equations can be written as

Oxdx  Oyody
€y " ocdy

(11.11)
0xdy Oyodz _

o€y 9Eam

where 2 denotes now the prescribed cell area. The initial point distribution is
given here on the curve n = 0.

The hyperbolic grid generation equations (11.10) or (11.11) are discretised
with respect to the £ and 1 coordinate (in 3D) or the £ coordinate (in 2D)
using second-order central differences. The marching in the (-direction (Eq.
(11.10)) or in the n-direction (Eq. (11.11)) is carried out by a first-order implicit
scheme (ADI scheme — see Subsection 6.2.3). In this way, the marching step
can be selected based only on the desired grid spacing. The implicit operator is
inverted using a standard tridiagonal solver. Artificial dissipation terms (second
differences) have to be added to the discretised equations in order to stabilise
the marching procedure. The solution of the hyperbolic equations (11.10) or
(11.11) is faster and usually also easier than that of the elliptic system from the
previous subsection.



Principles of Grid Generation 367

11.2 Unstructured Grids

Unstructured grids are typically composed of triangles in 2D and of tetrahedra
in 3D. However, nowadays it becomes increasingly popular to build unstruc-
tured grids from various element types. For example, hexahedra or prisms are
employed to discretise boundary layers. The rest of the flow domain is filled
with tetrahedra. Pyramids are used as transitional elements between the hexa-
hedra or the prisms and the tetrahedra. Hence the name mized element grids.
The advantages of structured hexahedral grids are the preserved accuracy in the
wall normal direction for highly stretched viscous grids as well as the reduced
number of elements, edges and faces as compared to a tetrahedral grid. On the
other hand, the desirable feature of unstructured tetrahedral grids is the capa-
bility to discretise complex geometries (like in Figs. 11.3, 11.4) fast and with
a minimum user intervention. Mixed grids seek to combine the advantages of
both approaches.

In the case of unstructured grids, nodes and grid cells are quasi randomly
ordered, i.e., neighbouring cells or grid points cannot be directly identified by
their indices (cf. Fig. 3.3). This leads to tremendous geometric flexibility of
unstructured grids, since the grid does not need to conform to any predetermined
topology. Furthermore, adaptation of the grid to the physical solution — grid
refinement or coarsening — is much easier to accomplish on unstructured than
on structured grids.

Unstructured grid generation methodologies for CFD applications are mostly
based on either an

e Delounay, or
e advancing-front

method. Both approaches can also be combined together. Depending on the
base methodology, we speak either of advancing-front Delaunay [31] or of frontal
Delaunay schemes [32]-[34]. Besides the both standard techniques, there are also
rather new and interesting methods like the so-called bubble packing algorithm
[35)-[37]. Here, we shall describe only the basic features of the Delaunay and
the advancing-front method. A survey of both approaches is contained, e.g., in
Refs. [38], [39] and [12].

The Delaunay approach primarily refers to a particular way of connecting
grid points to form triangles in 2D and tetrahedra in 3D. The most important
feature of the Delaunay triangulation is that the circumcircle (or the circum-
sphere in 3D) of any triangle (tetrahedron) contains no other grid point. The
consequence of the empty circumcircle criterion is that in 2D the minimum an-
gle is maximised for all triangles (maz-min triangulation). Thus, a high grid
regularity can be achieved.

The idea of the advancing-front method is to generate the grid sequentially
element by element starting from a known boundary discretisation (surface
grid). The open surfaces of the elements constitute the front. New triangles
(tetrahedra) are constructed by placing points ahead of the front. In this way,
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the front moves through the domain until all cavities are filled. The point
placement is controlled by the so-called background grid. The advancing-front
approach offers the advantages of smooth point distribution and implicitly as-
sured boundary integrity. However, it is slower than the Delaunay method.

11.2.1 Delaunay Triangulation

The Delaunay triangulation is based on a methodology proposed by Dirichlet
{40] in 1850 for the unique subdivision of space into a set of packed convex
regions. Given a set of points, each region represents the space around the par-
ticular point, which is closer to that point than to any other. The regions form
polygons (polyhedra in 3D) which are known as the Dirichlet tessellation or
the Voronoj diagram [41]. If we connect point pairs which share some segment
(face) of the Voronoj diagram by straight lines, we obtain the Delaunay trian-
gulation [42]. The triangulation defines a set of triangles (tetrahedra in 3D),
which cover the convex hull of the points. This is displayed in Fig. 11.12. The
Delaunay triangulation is the dual of the Voronoj diagram. The nodes of the
Voronoj polygons are in 2D the centres of circumcircles of the triangles. In 3D,
the nodes represent the centres of circumspheres of the tetrahedra. This im-
plies that the circumcircle of every triangle (circumsphere of every tetrahedron)
contains no point from the set in its interior.

As we already stated, the Delaunay method represents a particular way of
connecting grid points. The positions of the points must be determined by some
other technique. Therefore, one popular approach for the construction of a De-

Figure 11.12: The Delaunay triangulation (left) and the Voronoj diagram (left
as dashed line, right as solid line).
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(a) (b)

Figure 11.13: Possibilities for initial Delaunay grid in 2D: triangulation of
boundary nodes (a); quadrilateral divided into two triangles (b).

launay grid is to insert sequentially nodes into an initial triangulation. The grid
is then locally retriangulated in order to fulfil the empty circumcircle (circum-
sphere) criterion. The incremental point-insertion strategy can be described by
the following steps:

1.
2.

discretise the boundaries of the physical domain.

Generate an initial Delaunay grid which covers all boundary nodes. This
can be either a triangulation of the boundary nodes itself (Fig. 11.13a)
or a surrounding quadrilateral (hexahedron in 3D), which is decomposed
into triangles (tetrahedra) as displayed in Fig. 11.13b.

If not already done, insert all boundary nodes into the initial triangulation
using a Delaunay-conforming technique.

Build a list of all triangles (tetrahedra) in the grid which violate some size
or quality measure. Order the list to start with the worst element.

Place a new point at the circumcentre [43]-[45] (see Fig. 11.14) or at the
Voronoj segment [46], [47] of the first element in the list and locally retri-
angulate the grid. Check each new element and add it to the list if not in
accordance with the size/quality measure.

. If there are still elements in the list, go to step 5.
. Delete elements outside of the domain and recover the boundaries.

. Check the grid quality (Subsection 11.2.5). Smooth the grid and/or swap

edges if necessary.
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Alternatively, boundary recovery (step 7) can be carried out after the step 3.

As we can see, the core task of the Delaunay-grid generation is the insertion
of a new point into a valid triangulation (steps 3 and 5). Several algorithms
were proposed for this purpose. The most popular approaches are due to Green
and Sibson [48], Bowyer [49], and Watson [50]. We shall describe Watson’s
algorithm further below.

In order to accomplish the steps 4 and 5, we have to assess the elements
with respect to some appropriate measure. This can be either the quality of the
element (minimum angle, aspect ratio - see [51], [52]), or the size (volume, edge
length) of the element. The quality of an element can be assessed directly from
its geometry. However, the size measure has to be formulated as a function of
the spatial position within the domain. Several approaches are possible:

e specification of an analytical function (e.g., size is proportional to distance
from the body};

e interpolation of size distribution from boundaries using the initial trian-
gulation (see, e.g., [12], Ch. 1, pp. 17-20);

e interpolation on background grid based on quadtree (octree in 3D) struc-
ture [53]-[57];

o specification of sources (point, line, etc.) inside the domain (see, e.g., [12],
Ch. 1, pp. 20-22).

Furthermore, the points can be placed with the aid of the advancing-front tech-
nique [32]-[34].
Watson Algorithm

The point insertion and retriangulation method of Watson consists of the fol-
lowing steps [50]:

1. locate the element which contains the inserted point P (Fig. 11.14).

2. Find all elements whose circumcircle (circumsphere in 3D) is intersected
by point P. This situation is sketched on the left-hand side of Fig. 11.15.

3. Delete all intersected elements from the triangulation.

4. Form new elements by connecting the points on the boundary of the convex
cavity to the point P (right-hand side of Fig. 11.15).

Data structure particularly suitable for the algorithm of Watson results when
we store for each element:

¢ indices of the forming nodes;
e pointers to neighbours which share a common face with the element;

o circumcentre and radius of the circumcircle (circumsphere).
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Figure 11.14: Insertion of new node P into valid Delaunay triangulation. The
node is located at the centre of circumncircle.

Figure 11.15: Watson algorithm: deletion of invalid triangles (left) and retri-
angulation of the convex cavity (right).
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This data structure allows for an efficient search of intersected elements in the
step 2. We start the scarch with the neighbours of the clement which contains
the inserted point. Then, we proceed to the neighbours of these neighbours
and so on. We stop the scarch in a particular direction, if the circumcircle
(circumsphere) of the element is not intersected. The geometrical properties
of the Delaunay triangulation make sure that the neighbours of this element
are not intersected. It is also guaranteed that all elements being involved are
localised by this simple strategy [50], [68]. The numerical cffort of Watson’s
algorithm is of the order of Nlog(N), where IV is the number of grid points.
This results in a very fast grid generation methodology.

Constrained Delaunay Triangulation

The Delaunay triangulation does not automatically take care of prescribed cedges
and faces, like those on the boundaries of the physical domain. This is the pur-
pose of the so-called constrained Delaunay triangulation [59]. The restoration
of boundary edges in 2D is sketched in Fig. 11.16. Depending on the situation,
cither edge swapping or retriangulation is required. The constrained Delau-
nay triangulation leads in 2D always to a valid grid. However, this cannot be
guaranteed in 3D. The recovery of the boundary discretisation in 3D has to
be conducted in two steps - first for boundary edges and second for boundary
faces [39]. In some cases, additional points (so-called Steiner points) have to be
inserted on the boundaries [60]-[62]. Otherwise, the cavity cannot be retetra-
hedralised. After the boundary edges (and faces) are recovered, the elements
outside of the flow domain can be deleted.

(a) (b)

Figure 11.16: Insertion of missing boundary edge: by edge swapping (a); by
deleting intersected triangles and retriangulating the cavity (b). Swapped or
deleted edges are represented by dashed lines, new edges by thick solid lines.
The triangles outside of the domain (dash-dotted line) are removed.
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11.2.2 Advancing-Front Method

The advancing-front methodology was first introduced by Peraire et al. [63],
[64], and by Léhner et al. [65] by the end of the 1980’s. The individual steps of
this grid generation scheme can be summarised as follows:

1. discretise the boundaries of the physical domain (generate surface grids).

2. Generate a list of edges (faces in 3D) which represent the front. Initially,
these are the boundary edges (faces). Sort the list in the order of increasing
edge (face) size [38]. This strategy helps to generate smoothly varying
elements.

3. Select the first edge (face) of the list and place a new point Py in the
normal direction above the centre of the front edge (face). The situation
is displayed in Fig. 11.17. The distance d into the domain is governed by
the local values of the size-distribution function (see, e.g., [39]).

4. Define a circle (sphere) with radius r centred at the point Py. The radius
r depends on the local grid size.

5. Determine all points which are located within the circle (sphere).

6. If there are no intersected points, generate a new element with the point
Py. Otherwise, order the intersected points with respect to their distance
to Py (i.e., Py, P», P3). Form elements with the points and accept the first
one which does not intersect any other element and satisfies given quality
measure(s).

7. Delete the current front edge (face) and add the newly formed edges (faces)
to the list. Sort the list again.

8. Continue with step 3 until the list is empty.

9. Check the quality of the grid (see Subsection 11.2.5). Smooth the grid
and/or swap edges if required.

Different stages of the advancing-front process are shown in Fig. 11.18a-d for
an exemplary 2-D configuration.

The distribution of the element size in the domain is mostly governed by
the point density on the boundaries. Additionally, the distance d in step 3 can
be controlled by placing sources of various type — point, line, cylinder, etc. -
inside the domain (see, e.g., [12], Ch. 1, pp. 20-22). The local element size can
be obtained from a background grid based on the quadtree (octree in 3D) data
structure [53]-{57]. Another possibility is to interpolate the sizes by employing
the Delaunay triangulation of the boundary nodes [32]-[34], [66], or to use a
Cartesian background grid [67]. The quadtree (octree) data structure can also
be used to search efficiently for nearby points (step 5) as well as to check for
possible intersections between the elements. A simple test for the intersection
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Figure 11.17: Insertion of a new node P, in the 2-D advancing-front method.
The active edge is denoted by a thick line.

between fronts based on spring analogy was devised in [68] and [3]. A detailed
comparison of different search algorithms can be found, e.g., in [69].

The advantages of the advancing-front method as compared to the Delaunay
triangulation scheme are the implicitly retained boundary discretisation and
the better control over element size and grid smoothness. Furthermore, the
Delaunay approach is less robust (more sensitive to round-off errors) than the
advancing-front method. However, the point searching and intersection checking
algorithms require significant numerical effort. Today, a combination between
the advancing-front and the Delaunay methodology is often employed in CFD,
particularly in 3D [31]-[34], [70].

11.2.3 Generation of Anisotropic Grids

In the preceding Subsections 11.2.1 and 11.2.2, we described two methodolo-
gies for the generation of isotropie triangular or tetrahedral elements. This is
appropriate for the simulation of inviscid flows. However, an accurate solution
of the Reynolds-averaged Navier-Stokes equations requires high spatial resolu-
tion in the direction across boundary layers and wakes. Thus, in the case of
high Reynolds-number flows, isotropic grid would result in an excessively large
number of elements. Clearly, we have to employ anisotropic, high aspect-ratio
elements in the viscous flow regions. Basically, we can utilise quadrilaterals
(hexahedra or prisms in 3D), which allow quite naturally for stretching. This
leads to mixed-element grids which are very popular today (see next subsec-
tion). Of course, it is possible to decoinpose the hexahedra or prisms in order
to obtain a purely tetrahedral grid. On the other hand, we can generate di-
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Figure 11.18: Different stages of grid generated using the advancing-front tech-
nique. The actual front is represented by a thick solid line.
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(a) (b)

Figure 11.19: High aspect-ratio elements: obtuse triangle (a), right-angle tri-
angle (b), and right-angle tetrahedron (c).

rectly stretched triangular (tetrahedral) grids. In any case, the grid generation
scheme should prevent the creation of obtuse triangles (tetrahedra) of the form
sketched in Fig. 11.19a. It was demonstrated in [71] that such elements lead to
exceedingly high truncation error of the spatial discretisation. Therefore, it is
suggested to generate right-angle elements like those displayed in Fig. 11.19b
and 11.19¢. However, depending on the type of the control volume, right-angle
elements may also induce discretisation errors {72}, [73] (cf. Subsection 5.2.3).

Stretched Delaunay triangulation

The generation of stretched triangular (tetrahedral) elements requires the defini-
tion of the magnitude and the direction of the stretching in the physical domain.
Background grid has to be used for this purpose in the case of stretched Delau-
nay triangulation. The same point insertion techniques can be employed as for
the generation of isotropic Delaunay grids. However, the circumcircle (circum-
sphere) criterion is replaced by a condition of empty circumellipse (cirumellip-
soid). The ellipse (ellipsoid) is oriented in the local direction of the stretching
vector and the magnitude of stretching is reflected by the ratio of the axes
(74]-[76].

Advancing-Layers Method

The specification of the stretching vector in the anisotropic Delaunay trian-
gulation is quite involved for geometrically complex domains. Therefore, the
so-called advancing-layers method proposed by Pirzadeh [77], [78], [3], [4] and
others [79], [80], is more widely utilised. The advancing-layers method is similar
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to the hyperbolic structured grid generation technique (Subsection 11.1.4). It
can also be considered as a modified advancing-front technique.

The gencration of stretched triangular (tetrahedral) grids by the advancing-
layers approach proceeds according to the following steps (see Fig. 11.20):

1. triangulate all boundary surfaces.
2. Compute approximate normal vectors at boundary nodes.

3. Place grid points along the surface normals and form layers of quadrilateral
(prismatic in 3D) elements of increasing thickness.

4. Decompose each quadrilateral (prism) into two triangles (three tetrahe-
dra). The connectivity pattern requires particular attention in 3D.

Continue growing each stack of elements until the front intersects cither
itself or another front, or until the cell aspect-ratio becomes close to unity.

(<21

The rest of the flow domain is then filled with isotropic tetrahedra. Usually,
the advancing-front. methodology is employed, which starts from the surface
represented by the last layer of boundary cells. Figure 11.4 shows an example
of a grid generated using the above procedure.

In principle, two options exist for the evaluation of the normal vectors at
the boundary nodes (step 2). First, if the bounding surfaces are described by

(a)

layer:
123 4

(©)

Figure 11.20: Steps of the advancing-layer method: computation of boundary
normals (a), generation of a new layer and subdivision of the elements (b),
finished stretched grid (c¢), generation of isotropic clements in the rest of the
domain (d).
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analytical functions like NURBS (Non-Uniform Rational B-Splines) [81], the
normal derivatives are easily calculated. A grid generation method of this type
was described in Ref. [82]. However, care has to be taken at patch interfaces
(e.g., like at trailing edges).

The second, more widespread approach, is to use the surface triangulation.
This can be done quite easily in 2D, where it is sufficient to average the normals
of the boundary edges which join at the particular node. However, such simple
averaging is not appropriate in 3D. The reason is that the boundary node can be
shared by any number of triangular faces. Hence, the normal vector can become
biased depending on the triangulation. The problem is particularly severe at
sharp corners and bends. The necessary condition for an optimal normal vector
is given by the so-called visibility criterion [83], [84]. It states that a point placed
along the normal direction has to be equally visible from all triangular faces
sharing the boundary node. Various procedures based on the visibility criterion
were devised for the construction of the normal vectors. For details see, e.g.,
Refs. [83]-(86], [3]. The normal vectors are smoothed, in order to prevent abrupt
changes of the marching direction and crossing of the grid lines. In general,
weighted Laplacian type smoothing is employed [84], [85], i.e.,

(1-w) i

~(0)
m=wn,  + = —.
' MRV GH el 7]

(11.12)

In above Eq. (11.12), #; and r'ii(o) denote the new and the initial node-normals,
respectively. Furthermore, 7; represents the normal vectors at the adjacent
nodes and |7;;| is the distance between the nodes ¢ and j. The weighting factor
w depends on the surface curvature. It takes small values in concave regions
and large values in convex ones. The smoothing is applied separately for each
layer. A common procedure is to use the initial node-normals for the first few
layers and then to smooth increasingly the normal vector. The reason is that a
boundary orthogonal grid helps to reduce the numerical error.

The size of the marching step is calculated based on a uscr-specified thickness
of the first layer and on stretching rate in the normal direction. Hence, for
example, the spacing can be obtained from [3]

Ang = Ang [1+a(1 + b)F1]*" (11.13)

where Anj represents the spacing of the k-th layer, Ang is the given first-
layer thickness, and 0.04 < e € 0.2 and 0 < b <€ 0.07 stand for the stretching
parameters. The marching step An, can be additionally modified at convex
and concave corners [86]. It is also possible to increase Any in the direction of
growing boundary layer to keep y* constant.

Each stage of the advancing-layers algorithm generates in 2D a layer of
quadrilaterals and in 3D a layer of prisms. Whereas the quadrilaterals can be
easily divided into two triangles (along the shortest diagonal), the decomposition
of prisms into three tetrahedra requires some care. The point is that faces
between the prisms have to be divided in the same way. An integer based
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approach for the consistent decomposition of prisms was suggested in [3]. A
simpler scheme was presented in [87]. A further decomposition methodology
was reported in [88].

Combined Advancing-Normal/Delaunay Method

A further possibility for the generation of stretched triangular (tetrahedral) grids
is offered by a modified advancing-front method (called here edvancing-normal
point placement) combined with the Delaunay triangulation. Corresponding ap-
proach was proposed by Miiller [89] for 2-D grids. Marcum [90], [91] as well
as Sharov and Nakahashi [86] developed 3-D versions of the algorithm. The
procedure starts with the volume triangulation of the boundary nodes. The
triangulation is employed as a background grid. It also serves as an efficient
search structure. The boundaries can be recovered [86], but it is not necessary
at this stage [90], [91]. Next, points are inserted in regions of the stretched
grid using techniques similar to the advancing-layers method. The background
triangulation is utilised for determination of nearby fronts and for intersection
checking. In the last stage, the inflated surface is employed as a new boundary
for the generation of isotropic elements by any standard Delaunay technique.

Stretched Surface Grids

In regions, where the flow exhibits a strong directionality, anisotropic grids can
substantially reduce the number of triangular faces and hence volume elements
without impairing the solution accuracy (see Fig. 11.21). For example, a simu-
lation with RANS does not require high grid resolution in the spanwise direction
of a wing or a blade. The same holds for a fuselage in the axial direction. Savings
in the number of surface triangles between factor 2 and 6 were reported in {92},
[93]. However, as indicated in Fig. 11.21, it is important to orient the surface
elements properly, particularly in areas of high curvature. Otherwise, the true
surface contour becomes poorly represented and the flow solution will be falsi-
fied. Stretched surface grids can be generated by any of the above methodologies
for anisotropic grids (for a general discussion of surface grid generation see, e.g.,
[8], [94]). The stretching ratio and orientation is usually specified through a
line source. Another possibility consists of generating first an isotropic grid in
parametric coordinates. Then, the grid is transformed into the physical space
by using stretching functions.

11.2.4 Mixed-Element/Hybrid Grids

Nowadays, it becomes increasingly popular to discretise the flow domain by
using grids, which consist of different elements (prisms, tetrahedra, pyramids,
etc.). Such grids are referred to as mized grids or mized-element grids. Another
idea is to compose the grid of structured and unstructured zones [95]-(100]. In
this case we speak of hybrid grids. It should be noted that some authors use
the term “hybrid grids”, but in reality they mean mixed grids. The motivation
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Figure 11.21: Unstructured surface grid at leading edge: isotropic with no
specific orientation (top); stretched and oriented in spanwise direction (bottom).

beliind the use of either the mixed or the hybrid grids is to employ the best
suitable elements or grid topology in each flow region. The aims are to increase
the accuracy of the simulation and to reduce the computational time. However,
the constraint is that the generation of such a grid has to proceed in largely
automatic way. It has also to be sufficiently fast.

Hybrid grids are only seldom employed in practice. The problem is that two
different flow solvers arc needed - one structured and one unstructured, which
has to be coupled. The effort required not only to write, but primarily to update
and to maintain two codes is significant. The classical application of hybrid
grids consists of the discretisation of the near-wall regions using structured grids
(hexahedral or possibly semi-structured prismatic grids), which allow for an
easier implementation of higher-order spatial schemes, implicit methods [101],
or multigrid [102], [103]. The rest of the domain is filled with unstructured
grid, which offers considerable advantages in geometrically complex arcas. The
idea of hybrid grids can also be utilised in the case of rotor—stator interaction,
like encountered in turbomachinery. Here, the interface between the structured
grids around the rotor and the stator consists of a slice of unstructured grid
(similar to the idea in [104]). The unstructured grid is re-generated with cach
rotor moverment. In this way, the accuracy and the conservation propertics of
the discretisation scheme are retained across the interface.

Mixed grids offer a larger flexibility than the hybrid grids, especially for



Principles of Grid Generation 381

commplex geometries. Mixed grids can also be more easily generated and refined.
However, the challenge is to develop data structures and numerical schemes for
the flow solver, which can handle varying element types in a seamless way. We
discussed some of the associated problems in Chapter 5. In the following, we
briefly present methodologies for the generation of mixed prismatic/tetrahedral
and prismatic/Cartesian grids.

Mixed Prismatic/Tetrahedral Grids

A method for the generation of grids consisting of prismatic elements in the
ncar-wall region and of tetrahedral elements elsewhere was initially developed
by Nakahashi [105]-{107]. The methodology was further pursued by Kallinderis
(108], {109], and by Connell and Braaten [87]. The generation of the prismatic
cells is conducted using the same techniques as described previously for the
advancing-layer or the advancing-normal approach, respectively. The tetrahedra
are grown directly from the last layer of prisms. In cases where one of the
quadrilateral faces of a prism remained exposed, pyramid is used as transition
element to the tetrahedra.

Mixed Prismatic/Cartesian Grids

Cartesian grids are composed of squares (cubes in 3D}, which are aligned with
the Cartesian coordinate axes. Cartesian grids can be generated easily and with
low computational effort even for geometrically complex domains. However, the
weakness of the Cartesian methods is the accuracy of the flow solution at solid
boundaries, which are either curved or not oriented in the Cartesian coordi-
nates. This problem become especially serious in the case of RANS simulations,
where highly stretched and boundary orthogonal cells are required. Therefore,
various authors, e.g., Melton et al. [110}, Karman {111}, Smith and Leschziner
[112], Wang et al. [113], and Delanaye et al. {114], proposed to insert body-
conforming quadrilaterals (prisms) near wall surfaces. It is possible to create a
continuous interface between the inner layers and the outer Cartesian grid by
using pyramids and tetrahedra as transitional elements. On the other hand,
the grid generation procedure can be simplified by allowing for hanging nodes
and lines. This situation is displayed in Fig. 11.22. If correctly treated, the
interchange of fluxes at the interface can be kept conservative [115], [114].

11.2.5 Assessment and Improvement of Grid Quality

The quality of the grid strongly influences the accuracy of the simulation. This
is particularly true for unstructured grids. We mentioned this problem in var-
ious places of Chapter 5 (e.g., in Subsection 5.3.3 on solution reconstruction).
Therefore, it is important that the resulting grid consists of elements which are
as regular as possible. Furthermore, the cell size (and stretching in viscous re-
gions) should vary smoothly over the domain. Of course, the grid should also
be fine enough to resolve the relevant flow features.
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Figure 11.22: Mixed Cartesian/quadrilateral grid near boundary surface.

Figure 11.23 shows the shapes of tetrahedra, which should be avoided in
the grid: obtuse clements (see also Fig. 11.19a), slivers (elements with four
nearly co-planar points), needles and wedges. The ouly exception are wedge-
like stretehed tetrahedra in viscous regions. They can only be avoided by using
prisins. However, since the largest gradient of the flow is in the wall-normal
dircction (short side of the wedge), the numerical error is not disturbing.

Beyond the element angles [91], the following parameters can be employed
for tetrahedral grids as quality measures [116], [12] (number means value for an
cquilateral tetrahedron):

1. radius of circumscribed sphere / radius of inscribed sphere = 3.0

2. maximuin edge length / radius of inscribed sphere = 4.8990

3. radius of circumscribed sphere / maximum edge length = 0.6125

4. maximum edge length / minimum edge length = 1.0

5. (average clement edge length)?/ volume = 8.4797

6. (volurne)?/ (sum of arcas of all triangular faces)® = 4.585E-4 .

In order to improve the grid quality, the edge swapping algorithm due to

Lawson [117], {118] can be used. Edge swapping is particularly suitable for
removing sliver clements from the grid [34].
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A%‘

(a) obtuse (b) sliver (¢) needle (d) wedge
Figure 11.23: Undesirable shapes of tetrahedral elements.

Grid Smoothing

Another technique, which is used quite often in order to improve the grid reg-
ularity, is smoothing. Here, the grid nodes are moved by using an approximate

Laplacian operator
Ny

w
FRtl =7 4 m;(ﬂ- -7, (11.14)
where N4 denotes the number of nodes adjacent to 7 and w is the relaxation
factor (0.5-1.0 in the interior, 0.25 at points adjacent to boundaries, 0.0 at
boundary nodes — cf. Ref. [34]). The relation in Eq. (11.14) has to be solved
iteratively. The point Gauss-Seidel scheme was preferred in [33] over the point
Jacobi scheme because of the better control over negative volumes.
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Chapter 12

Description of the Source
Codes

The accompanying CD-ROM contains the source codes of several 1-D and 2-D
flow solvers and grid generators. Provided are also input datasets and grids
for various 1-D and 2-D examples of flow cases. Furthermore, there are two
programs for the von Neumann stability analysis of explicit and implicit time-
stepping schemes. In total, the CD-ROM comprises more than 17 MBytes of
source codes and data.

The aim of the software is to demonstrate how to translate the theoretical
principles of the computational fluid dynamics, which were presented in the
previous chapters, into a computer code. The programs should be conceived
as a basis for further experimentation and enhancements. The source codes
are provided under the terms of the GNU General Public License. See the file
LICENSE in one of the directories for more details.

The source codes are written in standard FORTRAN-77 language with the
exception of REAL*R statements and few inline comments (! ...). However, this
presents in general no problem to newer FORTRAN-77 or even FORTRAN-90
compilers. The programs do not contain any system calls or references to exter-
nal libraries. The source codes are kept as simple as possible, but still flexible
enough. No attempts were made to optimise for the execution speed or the
memory. Where applicable, vectors of major variables (conservative variables,
coordinates, metrics, residuals, etc.) are dimensioned in the main program
main.f and then passed to the subroutines via parameter lists. The same holds
also for the “dummy” vector dum, which is employed to store temporary vari-
ables. This means that the dimensions of the problem are to be set only in the
main program, which has then to be recompiled. With a few exceptions, the
source codes are organised in such a way that there is one subroutine or function
in a file.

All grid, solution and convergence files are stored in plain ASCII format.
The convergence and the solution files are written out in a form suitable for
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visualisation with Tecplot!. However, the convergence files as well as the 1-D
solution files can also be viewed using gnuplot?, if the header lines are removed.
The format of the convergence and solution files is always the same — there is one
column for each variable. The names of the variables are given in the header.
In the case of the solution files generated by the unstructured flow solver, the
indices of the nodes of each element are stored after the coordinates and flow
quantities. The first column represents node 1, the second one node 2, etc. The
number of nodes is stored in the last line of the header (starting with ZONE)
after “N=", the number of elements after “E=".

The directory structure on the CD-ROM consists of two highest-level direc-
tories: dos and unix. Both contain the same data, but in the first case formatted
for DOS or Windows, and in the second case for Unix (also Linux). The CD-
ROM itself is formatted according to the ISO-9660 file system with Rock Ridge
and Joliet extensions. The format is fully compatible to Unix, Linux, Windows,
and MS-DOS operating systems.

Within either the main dos or unix directory, you will find the following
subdirectories:

e analysis — von Neumann stability analysis of 1-D model equations

e gridld - 1-D grid generation (Laval nozzle)

e grid2ds — 2-D structured grid generation for external and internal flows
e grid2du - conversion of 2-D structured into unstructured triangular grids
e structld - solution of quasi 1-D Euler equations (nozzle flow)

e struct2d - solution of 2-D Euler equations on structured grids

e unstr2d - solution of 2-D Euler equations on unstructured triangular
grids.

The contents of the above subdirectories is further explained in the scctions
below. In general, the subdirectory of each program contains a README file
(always in the same place as the sources). It describes the particular files,
how to compile and to run the application, and how the results are stored.
Additionally, the README file explains the meaning of the main variables and of
the input parameters. In the case of the flow solvers (i.e., structid, struct2d
and unstr2d), the README file shows also the call tree. The subdirectories of
the flow solvers contain a directory run, where you can find input files, grids
and solutions for the various test cases.

!@©Amtec Engineering, Inc., PO Box 3633 Bellevue, WA 98009-3633, USA;
http://www.amtec.com

2freely available for DOS, Unix, Linux and VMS platforms;
http://www.cs.dartmouth.edu/gnuplot.info.html
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The last remark concerns the convergence history. The convergence of all
flow solvers provided here is measured as the 2-norm of the difference of the
density variable from two consecutive time steps, i.e.,

N

18002 = | S (05 — o2, (12.1)
I=1

where the summation is carried out over all N control volumes. It is convenient
to normalise the convergence measure in Eq. (12.1) with its value from the first
iteration. The programs store the convergence history directly in logarithmic
scale.

12.1 Programs for Stability Analysis

The directory dos\analysis or unix/analysis contains two programs for the
von Neumann stability analysis (Section 10.3) of linear 1-D model equations.
The first program calculates the Fourier symbol and the magnitude of the am-
plification factor for the explicit multistage time-stepping scheme (Subsection
6.1.1) and the hybrid scheme (Subsection 6.1.2). The source code is provided in
the subdirectory mstage. The second program analyses the damping properties
of a general implicit scheme (Section 6.2). It is contained in the subdirectory
implicit. Both programs can deal with either the 1-D convection or the 1-D
convection-diffusion model equation (Subsections 10.3.2 and 10.3.3). The spa-
tial discretisation can be conducted either by the central scheme with artificial
dissipation, by the lst-order upwind, or by the 2nd-order upwind scheme, re-
spectively. The same schemes can be also applied to the implicit operator. In
the case of the explicit scheme, the effect of the (central or upwind) implicit
residual smoothing (Section 9.3) can be investigated as well.

12.2 Structured 1-D Grid Generator

The directory dos\gridid or unix/gridid contains a program for the genera-
tion of 1-D structured grids. Each grid node is associated with a certain area.
The area distribution over the z-axis corresponds to the Laval nozzle. The area
of the nozzle is calculated using the relation

A(:c)=1+%(A1—1){1+cos(£%)} for 0 <z <0.35

(12.2)
A(z) =1+ %(A-z -1 {1 — cos {“—I(;——Ggm]} for 035 <z <1,
where the length of the nozzle is supposed to be equal to unity. Furthermore, in
Eq. (12.2) A) represents the inlet area and A, the outlet area (sce the sketch in
Fig. 12.1). The area of the throat results from Eq. (12.2) to A*(z=0.35) = 1.
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The grid generated by this program serves as an input to the quasi 1-D Euler
solver from Section 12.5.

12.3 Structured 2-D Grid Generators

The directory dos\grid2ds or unix/grid2ds contains three programs for the
generation of 2-D structured grids for external and internal flows. The first
program, which source code is provided in the subdirectory cgrid, generates a
C-type grid (see Subsection 11.1.1) around an airfoil. An example can be seen
in Fig. 11.6. The initial grid is generated algebraically by using the linear TFI
method Eq. (11.5). Afterwards, elliptic PDE’s (Subsection 11.1.3) are employed
to produce boundary-orthogonal grid with specified wall spacing. The airfoil
contour is approximated by a Bézier spline (see Refs. [1], [2] for an introduction
to Bézier splines).

The second program is intended for the generation of an algebraic grid inside
a channel with circular bump. The source code can be found in the subdirectory
channel.

The next program, which is located in the subdirectory hgrid, generates an
H-type grid (Subsection 11.1.1) in a cascade. An example of grid created by
the program is presented in Fig. 11.8. The linear TFI technique (Eq. (11.5)) for
algebraic grid generation is employed in this case. The contour of the blade is
described again by a Bézier spline.

The programs cgrid and hgrid rely on the library provided in the subdirec-
tory srccom. The library contains routines for spline interpolation, linear TFI,
elliptic grid generation and grid stretching.

12.4 Structured to Unstructured Grid
Converter

The directory dos\grid2du or unix/grid2du contains a program for the con-
version of 2-D structured grids into unstructured triangular grids. The program
divides each quadrilateral of the structured grid into two triangles by connecting
the diagonal nodes with the shortest distance. The triangulated grids can be
used as an input for the unstructured flow solver in Section 12.7.

12.5 Quasi 1-D Euler Solver

The directory dos\structid or unix/structid contains a program for the so-
lution of quasi 1-D Euler equations. The equations govern the inviscid flow in
a nozzle. They can be written in conservative, differential form as [3]

=q. (12.3)
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Figure 12.1: Grid and control volume for the 1-D Euler solver; points ¢ = 1
and i = irnar are dummy points.

The vectors of conservative variables, convective fluxes, and the source term
read

. pA . puA . 0
W=|pud |, F.=|(p*+pAd]|, Q= |pdd/dz]|, (12.4)
pEA pHuA 0

where 4 denotes thie nozzle arca. The total enthalpy H is given by the formula
(2.12), and the pressure results according to Eq. (2.29) from

p=H-Dp (E - u2—2> ~ (12.5)

The governing equations (12.3) are discretised on structured grid using the
dual control-volume methodology. A sketch of the grid and of the control vol-
ume is displayed in Fig. 12.1. Central scheme with scalar artificial dissipation
(Subsection 4.3.1), or optionally van Leer’s flux-vector splitting scheme (Subsec-
tion 4.3.2) are employed for the spatial discretisation. The discretised equations
arc advanced in time using the cxplicit multistage scheme (Subsection 6.1.1
or 6.1.2). The program uses local time-stepping (Section 9.1) and the central
implicit residual smoothing technique (Subsection 9.3.1) for convergence accel-
eration. The source code can be found in the subdirectory src.

The boundary conditions at the inlet and the outlet are implemented in
characteristic variables as presented in Section 8.4. The concept of dummy
points, described in Section 8.1, is utilised for this purpose (sec Fig. 12.1).
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12.6 Structured 2-D Euler Solver

The directory dos\struct2d or unix/struct2d contains a program for the
solution of 2-D FKuler equations on structured body-fitted grids. The spatial
discretisation is based on the cell-centred finite-volume approach described in
Subsection 4.2.1. It employs the central discretisation scheme with scalar arti-
ficial dissipation (Subsection 4.3.1). The governing equations are integrated in
time using an explicit multistage scheme (Subsection 6.1.1 or 6.1.2), accelerated
by local time-stepping (Section 9.1) and the central implicit residual smoothing
(Subsection 9.3.1). The source code is provided in the subdirectory src.

The program utilises the concept of dummy cells (Section 8.1) for the treat-
ment of the boundary conditions. Two layers of dummy cells are employed. A
sketch of the grid in the computational domain is displayed in Fig. 12.2 {cf.
Fig. 8.1). The program can deal only with single-block grids. However, it is
very flexible with respect to the specification and the type of the boundary
conditions. The following seven boundary types are implemented:

e coordinate cut,

o farfield (optionally with vortex correction),
e inflow,

e outflow,

e line periodic,

e solid wall, and

e symmetry.

The implementation of the above boundary conditions closely follows the dis-
cussion in Chapter 8.

The four boundaries of the computational space can be divided into an
arbitrary number of segments. Each of the segments can be associated with a
different boundary condition. This approach is quite similar to the description
of block interfaces presented in Section 8.8. In fact, the program could be
relatively easily extended to multiblock grids. Definitions of the segments are
stored separately from the grid in the topology file (extension .top).

The definition of the face vectors SI and SJ (i.e., @ - AS) employed in the
solver can be seen in Fig. 12.3. The face vectors are associated with the left and
the bottom face of the control volume VOL(I,J) (corresponds to §; 7). They
point outwards of the control volume. The face vectors of the remaining two
sides of the control volume are obtained as -SI(I+1,J) and -SJ(I,J+1). In
this way, we have to store only two face vectors for each control volume.
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Figure 12.2: Grid topology in the computational space for the structured 2-D
Euler solver. There are two layers of dummy cells at each boundary (dashed
line). Numbers in circles denote the sides of the computational domain.
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Figure 12.3: Control volume and face vectors for the structured 2-D Euler
solver. Indices (I, .J) denote the cell, indices (i, j) represent the grid node.
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12.7 Unstructured 2-D Euler Solver

The directory dos\unstr2d or unix/unstr2d contains a program for the solu-
tion of 2-D Euler equations on unstructured triangular grids. The source code
can be found in the subdirectory src. The median-dual cell-vertex scheme of
Subsection 5.2.2 is utilised for the spatial discretisation. The data structure is
edge oriented.

The convective fluxes are evaluated according to Roe's flux-difference split-
ting scheme (Subsection 4.3.3 and 5.3.2. The solution at the faces of the control
volume is obtained by piecewise linear reconstruction of the left and right states
as given by Eq. (5.38). The gradients of the flow variables are calculated with
the Green-Gauss approach (Egs. (5.45), (5.46)). The reconstructed solution
is limited using Venkatakrishnan’s limiter described in Subsection 5.3.5 (Eq.
(5.63)).

The discretised governing equations are integrated in time using the explicit
multistage scheme (Subsection 6.1.1 or 6.1.2), enhanced by local time-stepping
(Section 9.1) and the central implicit residual smoothing (Subsection 9.3.2).

The same boundary conditions as described previously for the structured
flow solver (except the coordinate cut) are implemented. The boundary condi-
tions are imposed on boundary faces and not on nodes, in order to avoid any
ambiguities (see the explanation at the beginning of Section 5.2). In principle,
each boundary face can have a different boundary condition. The implementa-
tion of the farfield, inlet and outlet boundary conditions employs the concept of
dummy nodes (one layer). All logical data related to the boundary conditions
is stored together with the grid in one file (extension .ugr).
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Appendix A

A.1 Governing Equations in Differential Form

Supposed the convective and viscous fluxes are continuous, the governing equa-
tions (2.19) can be transformed from integral to differential form by first apply-
ing Gauss’s theorem. This leads to

3/Wd9+/6-(i-ﬁ)dﬂ:/@'dﬂ, (A1)
ot Ja Q Q

where Fc and ?v denote the tensors of convective and viscous fluxes, respec-
tively. Equation (A.1) can then be written for an arbitrary control volume Q in

the differential form .
ow - = = =
In order to account for arbitrary body-fitted grids, we introduce a mapping
function between the Cartesian (z, y, z) and a curvilinear (£, 7, {) coordinate

system (cf. Fig. 3.2)

= f(z,yyz, t)
n=n(z,y,2,t) (A.3)
{={(z,y,2,1t).

With this, the differential form of the three-dimensional Navier-Stokes equations
(A.2) transforms into

OW* 8F., O0F., 0F., 08F,, 0F, 0F3;
’ : = = : : ’ . A4
3t+3f+3n+3( o 6"7+3C+Q (A.4)
The vector of the conservative variables is now given by
p
. ou
W*=J"1 pv (A.5)
pw
pE
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The vectors of the convective fluxes follow from the relationships

pVi pVa
. pViu+ &p . pVau + nzp
Fc,l =J! pVI'U‘}'ﬁyp H FL‘,2 =J! pV2U+T]yP y
pViw + &:p pVaw +n.p
Vi H pVoH

Vs
. pVSU +(:p
Fos=J71| pVau+(yp |,
pVBU) + Czp
pVaH

(A.6)

and the vectors of the viscons fluxes are defined as

r 0

. EaTea + fyT:cy + €Tz

Fv.l =J! szyz + fy"'yy + szyz ,

ExTor + fysz + &7

L €0, +§,0, +£:.0,;

i 0

NeTez + MyTzy + NeTaz

Fon=J71 NaTye + MyTyy + N2Tyz |, (A7)

NeTzx + MyTay + Moz

L 7.0z +10yOy + 1,0,

r 0

. (Tez + Cysz + (T

Fv,S =J! Ca:Tyz + CyTyy + CzTyz
(2Toz + Cysz + (2 T2z

L (zOz + (0, + (.0,

Finally, the source term transforms to

0
. pfex
Q*=J"! P;e,y . (A.8)
Ple,z
pfe U+ g

where ﬂ represents the vector of the body forces.

The contravariant velocities in the €, 7,  coordinate directions are given by
the formulae

Vi=Eu+&u+t&w
Vo =ngu +nyv + n.w (A.9)
Va=Cu+ Gu+ Gw.
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The components of the viscous stress tensor and the thermal fluxes read

. :2;1@-{-/\(%-{-@-{-0—“})
o Oz or 0Oy Oz
=l a2, 00 00)
v = Koy 9z 8y | 9z

re =22 2% 4 A 8u+8v+6£
== gy 8:5 3y " 92

31/.
Tay = Tyz = [

Trz = au—l— A.10
Tz = Tzz = 82 ( . )

(av )
Tyz = Tay =

orT
O = Tz + UTey + WTee + E5—
Oz
orT
Oy = uTys + UTyy + Wy, + ko
Oy
oT
O, = uryg + V7 +wry, + ka— .

In the above Eq. (A.10), k stands for the thermal conductivity coeflicient, u for
the coefficient of dynamic viscosity, and A denotes the second viscosity coefficient
(A = —(2/3)u according to Stokes’s hypothesis). The diffusive thermal fluxes
can also be written in the following modified form
orT dc?
ko= K8

oz (y-1)Pr bz

& oT _ u dc?

5y " G-1Pr oy (A1)

T a o
8z  (y—-1)Pr 0z

with ¢ representing the speed of sound and Pr the Prandtl number. The deriva-
tives of the velocity components u, v, w and the temperature T in Cartesian
coordinates z, y, z can be expressed with the aid of the chain rule as derivatives
of £, n and (. For example,

du_, ou  Ou . Ou
9z~ “Fog T an T o

6_u—§?£+ 6_u+<__
oy~ Tvag T Mam T A

(A.12)

etc.
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The inverse of the determinant of the coordinate transformation Jacobian
0(&,1,¢)/9(x,y, z) is defined as
-1 —QE@QZL%_ ?_{@?34_ Q:Ea_y% —
OEInd¢  OndCatE  OBC It on

(A.13)
0s0y0: 02040z _0s0y0:
BEHC Oy OndEDC O OndE”

Finally, the metric terms are specified through the relations
oma (20 22)
Ond¢ 9Con
=i (L0 20)
YU \ond¢ oo
oy (020 050y
Ond¢ 0¢on
(v dyos
=7 (55 a5
0z0x 0z0zx
=7 (5% o) (419
_ (‘9_30?2 _ 6_:1;6_1/)
7= \8¢oe ~ e a¢
T
0Eon  0&on
0z0x Oz 0Oz
o= (%5 5or)
_ (0 _oyos
€= 0By 0B€dn)

It is important to see how the above metric terms from Eqs. (A.13), (A.14)
are related to geometrical quantities like volume or face vectors. Let us for
this purpose consider a 2-D structured grid, as it is sketched in Fig. A.1. We
want further assume that the £-coordinate corresponds to the i-direction, and
the n-coordinate to the j-direction, respectively. Then, the derivatives of the
Cartesian coordinates with respect to the curvilinear coordinates in Eq. (A.14)
can be approximated at point (z, j) as

o [(Ii,j + Tit15) — (T4, + zi_u)] 1
<52)i,,-~ (t+1/2)—(t-1/2) - §(Ii+1,j —Ti—15)

DO =

(A.15)

Oy N % (Wi + Yir15) = (Wi +yiz1,;)] 1,
<a_§>i,j~ (l+1/2)—(z—1/2) - §(y1+1,3 —yi-l_j)
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i,j-1

Figure A.1: Geometrical representation of the metric terms in two dimensions.

and

5 (@i = Tij-1)

1
<0:L-> 3 ((ig + i) = (X + 20 5-1)] 1
4]

o j T =
! 1 (G+1/2) -0 -1/2) 2 )
8;1/) 2 [(‘.Uz‘,j +Yij+1) — (Wi +:Ui,j_1)] 1, -
<0_7/ ,-,jN J+1/2y—(—-1/2) _§(UW+1_U1,J—1)-

Thus, using the above approximations of Eqs. (A.15) and (A.16), the formulae
in Eq. (A.14) become

Jy
r= Jmm~JS]
&= 5 TS
Ox
=—J—=~JS!
S on e ;
oy (A.17)
e = — =~ .J SJ
), D€ Y
O J
Ny = J ()—E ~.J Sy s
where §7 = [SE, S;]T denotes the average face vector in i-direction, and §7 =

(S7, S;J’)T the vector in j-direction, respectively (cf. Fig. A.1). The relationships
in Eq. (A.17) can also be expressed in the form

§h=J! [” , =yt {” : (A.18)
Y y
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From the above we can sec that the metric terms correspond to the components
of face vectors in the finite volume scheme, divided by the determinant of the
coordinate transformation Jacobian J.
The question is now, what is the geometrical interpretation of J=17 Using
Eq. (A.13) which reads in two dimensions as
gt =920y _ a—l@ (A.19)
&gy On I
and insecrting the expressions Eq. (A.17) for the metric terms into Eq. (A.19),
it can be shown that
Jh=20= %Q‘ . (A.20)

The volumes © and Q* (with constant depth b=1) are displayed in Fig. A.1.
They arc defined by the points (i+1/2, j), (¢, 7+1/2), (i-1/2, 3), (¢, j-1/2) in
the case of 2, and by the grid nodes (4, j-1), (i+1, j), (i, 7+1), (-1, §) in the
case of *, respectively. It should be noted that on rectangular grid J=! equals
to the dual control volume which was presented in Subsection 4.2.3.

The same derivations for the metric terms as above can be conducted in three
dimensions. The results are shown in Fig. A.2. The inverse of the determinant
of the transformation Jacobian (J ') equals to twice the volume defined by the
grid nodes (¢, j, k-1/2), (i+1/2, J, k), (3, j, k+1/2), (i-1/2, 3, k), (i, j-1/2, k),
and (i, j4+1/2, k). On rectangular grid this again corresponds exactly to the
dual control volume of Subsection 4.2.3.

1-172, 5, k 1, j+1/2, k

i+1/2,j, k

Figure A.2: Geometrical representation of the metric terms in three dimen-
sions.
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A.2 Mathematical Character of the Governing
Equations

The mathematical character of the partial differential equations (PDE’s) is best
explained through the classical example of the quasi-linear second-order equa-
tion
02U b o*U o*U

522 T gy T By
where U represents a general scalar function. The coefficients a, b, ¢ and d may
be non-linear functions of the coordinates, of U and of its first derivatives, but
not of the second derivatives of U. Depending on the sign of the discriminant
function (b* — 4ac), three different classes of PDE’s can be defined [1], [2].
Namely, if the discriminant is positive the equation is said to be hyperbolic,
whereas if (b — 4ac) < 0 it becomes elliptic. Finally, if (b — 4ac) is zero the
PDE is denoted as parabolic.

The Navier-Stokes equations cannot be characterised in such an easy way.
In fact, they are in general a mixture of all three classes, depending on the
flow conditions and on the geometry of the problem. Nevertheless, it may be
worthwhile to illustrate the physical behaviour of hyperbolic, parabolic and
elliptic PDE’s which must be considered for proper mathematical formulation
of solution methods in fluid dynamics.

=d, (A.21)

a

A.2.1 Hyperbolic Equations

If the Equation (A.21) is of hyperbolic type, it has two real characteristics. The
situation is sketched in Fig. A.3). It is known from the theory that the informa-
tion at point P influences only the region between the advancing characteristics.
On the other hand, point P receives information only from the part of the do-
main between the characteristics AP and BP. Furthermore, the solution at
point P depends only on that part of the boundary which is intercepted by and
included within the two characteristic lines through point P, i.e., the interval
AB. For example, point P obtains no information from point C', since P is
not enclosed within the characteristics propagating from C. Therefore, we need
to specify conditions at only one part of the boundary in order to determine
the solution in a given region. Hence, the hyperbolic equations represent an
initial-value problem.

In fluid dynamics, the following are examples of flows which are governed by
hyperbolic partial differential equations:

1. Steady, inviscid supersonic flow:

if the flow is two-dimensional, the behaviour is like that already discussed
above. For a 3-D flow, there are characteristic surfaces in (x,y, z) space.
Information at P influences the volume within the advancing (down-
stream) characteristic surface. The characteristic surface corresponds to
the Mach cone in the case of linearised potential equation.
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/ zone of influence of point P

left-running _—"
characteristic
right-running characteristic

region of dependence of point P

boundary

Figure A.3: Domain of dependence and influence of hyperbolic PDE with two
characteristics per point [3].

characteristic ~a

zone of influence of point P

boundary

Figure A.4: Domain of influence of parabolic PDE [3].
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2. Unsteady flow:

the governing equations are in this case hyperbolic in time, no matter
whether the flow is locally subsonic or supersonic. Of course, the equa-
tions can be of different type in space. However, because of the (partial)
hyperbolic nature, it is necessary to specify an initial solution which is
then advanced in time.

A.2.2 Parabolic Equations

In this case, Equation (A.21) has only one real characteristic. Fig. A.4 shows
the characteristic together with the domain of influence. For parabolic equa-
tions, information at point P influences the entire region on one side of the
characteristic (BP in the sketch) and hence also the points C' and D. On the
other hand, the solution at point A is completely independent of that at point
P. Hence, the information is transfered in one direction only, like for hyperbolic
PDE’s. Furthermore, as we can see from Fig. A.4, for example the solution at
point D depends on conditions along the whole characteristic BP as well as on
those prescribed at the boundary segment BC. Thus, the parabolic equations
represent a mixed initial- and boundary-value problem.

One particular form of the simplified governing equations, namely the so-
called Parabolised Navier-Stokes (PNS) equations (see Subsection 2.4.3) exhibit
parabolic-type behaviour. In this case, the viscous stress terms involving the
derivatives with respect to the streamwise direction are ignored. The solution
of the PNS equations is started from some prescribed (initial) data at the in-
let boundary. The simulation then proceeds by marching downstream. Each
streamwise station represents a plane (line in 2-D) which is perpendicular to
the main flow direction and which is coupled in an explicit way to one or two
upstream planes. In each plane, the equations have to be solved iteratively.

A further simplification of the Navier-Stokes equations for the case of high
Reynolds numbers leads to the well-known boundary layer equations. These
are also of parabolic type and they can be solved by a similar explicit space
marching procedure.

A.2.3 Elliptic Equations

If the Equation (A.21) is of elliptic type, it has two complex characteristics. It
is known from the theory that the information at some point P influences all
other regions of the domain. On the other hand, the solution at point P depends
on the surrounding domain. The situation is sketched in Fig. A.5. For elliptic
equations, because point P has an effect on all points of the domain, then in turn
the solution at point P is influenced by the entire closed boundary (4, B, C).
Therefore, the elliptic PDE’s represent a boundary-value problem, where the
solution at point P must be carried out simultaneously with the solution at
all other points in the domain. This is in strong contrast to the space or time
marching procedures applied to parabolic and hyperbolic equations. In terms
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boundary

P depending on and influencing the whole region

Figure A.5: Domain of influence and dependence of elliptic PDE [3].

of Fig. A.5, boundary conditions must be prescribed over the entire boundary
(4, B,C). The conditions can take the following forms:

1. Specification of the dependent variables along the boundary. This type of
boundary condition is called the Dirichlet condition.

2. Specification of the derivatives of the dependent variables along the bound-
ary. This type of boundary condition is named the Neumann condition.

In fluid dynamics, for example, the steady subsonic/incompressible inviscid
flow is governed by elliptic equations. Hence, for such flows physical boundary
conditions must be applied to a surface which completely surrounds the flow
field.
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A.3 Navier-Stokes Equations in Rotating Frame
of Reference

In some instances, for example in turbomachinery applications, for propellers or
in geophysics, the computational domain is steadily rotating about some axis.
In such a case, it is convenient to transform the Navier-Stokes equations into a
rotating frame of reference. Let us consider the situation which is depicted in
Fig. A.6. Here, a point P rotates with the constant angular velocity & around a
fixed axis. For the sake of simplicity, we assume that the rotation axis coincides
with the z-coordinate axis. Thus, the angular velocity has the components
@ = [w1,0,0]T. The absolute velocity @, results from the sum of the relative
velocity v, and the entrainment velocity 7., i.e.,

Ty =0+ 00 =0y + 3 X 7. (A.22)

If we re-write the Navier-Stokes equations (2.19) in relative frame of refer-
ence, we have to account for the effects due to the Coriolis force as well as due
to the centrifugal force. The Coriolis force per unit mass is defined as

foorr = —2(F X T,). (A.23)

The centrifugal force per unit mass is given by

foen = =B X (@ X 7) =w?F,, (A.24)
where 7, denotes the position vector perpendicular to the rotation axis. In
consequence, the source term Q (Eq. (2.25)) has to be extended by the sum of the
Coriolis and the centrifugal forces for the momentum equations. Furthermore,
the energy equation has to be modified because of the centrifugal force (the
Coriolis force does not contribute to the energy balance). Only the continuity
equation stays unchanged since the mass balance is invariant to system rotation.
Hence, the Navier-Stokes equations formulated in relative frame of reference
which rotates with constant angular velocity about the z-axis reads

8 [ - L -
—/ WdQ+?{ (FC—Fv)dS:/QdQ. (A.25)
Ot Jo ) Q
The vector of the conservative variables W consists of the following components
p
| e
W=1pv], (A.206)
pw
pE

where p,u,v,w,E denote the density, the Cartesian velocity components in

relative frame, and the relative total energy per unit mass, respectively. The

relative total energy is given by

=12 =12 2 2 2 212 12
U vt 4+ w wi|r

EF=e+



412 Appendix

relative (rotating)
frame of reference

-

P
L
-
-
-

' 3 ~rotational
(“ / axis
. A

absolute frame
of reference

Figure A.6: Absolute and rotating frame of reference.

with |72 = y2 + z2. The vector of the convective fluxes F. is defined as

pV
puV + nzp
Fo=1puV+npl|, (A.28)
pwV +n;p
plV

with p being the static pressure, and n;,n,,n. representing the components
of the outward pointing unit normal vector of the surface J€, respectively.
Furthermore,
I =h+H_IE£:H_W_____f|Fn|2
2 2 2 (A.29)
V =nzu+nyv +nw,

where I stands for the rothalpy, H for the relative total enthalpy, and V for the
contravariant velocity, respectively. The rothalpy represents the total energy
content in a steadily rotating frame of reference.

The vector of the viscous fluxes F, takes the same form as presented in Eq.
(2.23). Also the components of the viscous stress tensor remain formally as
given by Eq. (2.15). However, the source term @ is extended by the Coriolis
and the centrifugal force to

0
. Pfex
Q= |pwi(yw +2w) + pfe,y (A.30)
P (z “'_{l - 2U) + pfe,:
pfe . Ur + qh
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with pf_; being the body force per unit volume (in addition to Coriolis and
centrifugal forces), and ¢, being the time rate of heat transfer per unit mass,
respectively.

The governing equations (A.25) are closed using thermodynamic relations
between the state variables. In the case of a perfect gas, the pressure is computed
from the formula

u? + 0% + w? — w7

p=(-Lp|E- 5 , (A.31)

where v denotes the ratio of specific heat coefficients. Additionally, viscosity
and thermal conductivity coefficients have to be supplied as a function of the
state of the fluid.
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A.4 Navier-Stokes Equations Formulated
for Moving Grids

In certain cases, where for instance the fluid-structure interaction is investigated
or where the store separation is simulated, it is necessary to solve the governing
equations on a moving and possibly also a deforming grid. The two most pop-
ular methodologies used to tackle such problems, are the Arbitrary Legrangion
Eulerian (ALE) formulation [4]-[6] and the dynamic grids [7]. Both approaches
are closely related and lead to the same modified form of the governing equations
which accounts for the relative motion of the grid with respect to the fluid.

Written in time-dependent integral form for a moving and/or deforming
control volume  with a surface element dS, the Navier-Stokes equations (2.19)
read

2/ WdQ +}£ (FM _F))dS = / Qdn. (A.32)
ot Jo a0 Q
The vector of the conservative variables W has the following components
p
_ | e
W=1|pv|, (A.33)
pw
oE

where p,u,v,w, E denote the density, the Cartesian velocity components and
the total energy per unit mass, respectively. The vector of the convective fluxes
FM becomes on dynamic grids

FM = F. _v,W (A.34)

with F, given by Eq. (2.21) and V; being the contravariant velocity of the face
of the control volume. Hence,
Or Jy 0z
Vi =n,— - —. A.35
L ey T T (4.35)
In Eq. (A.35), ny,ny, and n, denote the components of the outward facing unit
normal vector of the surface dQ. Using Eq. (2.21), the convective fluxes ﬁCM
can be written in the form

pVr
puVr + nep
FM = | poV, +nyp |, (A.36)
pwVe +n.p
pHV. + Vip

where H stands for the total enthalpy and p for the static pressure, respectively.
Furthermore, V, represents the contravariant velocity relative to the motion of
the grid, i.e.,

Vi=ngut+nuu+nw—-V, =V -V, (A.37)
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The vector of the viscous fluxes F, and the source term @ retain the same
forms as already presented in Eq. (2.23) and Eq. (2.25), respectively. The same
holds also for the components of the viscous stress tensor Eq. (2.15).

It was first pointed out by Thomas and Lombard [8] that besides the conser-
vation of mass, momentum and energy, the so-called Geometric Conservation
Law (GCL) must be satisfied in order to avoid errors induced by deformation
of control volumes [7], [9]-[11]. The integral form of the GCL reads

9/ - ¢ V,dS=0. (A.38)
ot Jo a0

The GCL results from the requirement that the computation of the control
volumes or of the grid velocities must be performed in such a way that the
resulting numerical scheme preserves the state of a uniform flow, independently
of the deformation of the grid [11]. It should be stressed that the GCL is
automatically satisfied for such moving grids, where the shapes of the control
volumes do not change in time.

Tt is essential that the GCT. in Eq. (A.38) is temporally discretised using
the same scheme as it is applied to the governing equations (A.32) in order
to obtain a self-consistent solution method. Furthermore, the GCL has to be
solved concurrently with the fluid equations. In fact, both requirements rep-
resent a condition for the spatial discretisation of Eq. (A.32). More details on
the numerical implementation of the governing equations for moving and/or de-
forming grids and on the discretisation of the GCL can be found in the above
cited references and also e.g. in [12]-[15]. A very detailed description of a scheme
for unstructured grids was presented in [16].
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A.5 Thin Shear Layer Approximation

In the case of high Reynolds numbers, the flow is influenced by the viscous
stresses only in a narrow region around the body. It can then be assumed
that only the gradients in the normal direction to the wall dominate, and the
gradients in the other directions can be neglected {17}, [18]. We speak then
of the so-called Thin Shear Layer (TSL) approximation of the Navier-Stokes
equations.

Let us consider for illustration the differential form of the Navier-Stokes
equations formulated for a general curvilinear grid (A.4). If we further assume
that, as rendered in Fig. 2.4, the wall is located at n = const., all derivatives in
the streamwise (0/9¢) and in the cross-flow direction (8/9¢) are omitted from
the diffusive terms. The 3-D TSL Navier-Stokes equations in differential form
then appear as follows in a curvilinear coordinate system (¢, n, ¢)

aW‘ 8F‘C,1 8ﬁc,2 aﬁc,3 _ aﬁv,? S *
ot T T an T ac - am T (439

The vectors of the conservative variables (W*), of the convective fluxes (ﬁc,l /2/3)s
and of the diffusive flux (ﬁv,g), respectively, are given by the relationships (A.5)-
(A.7). Furthermore, the source term (Q") also stays in the form given by Eq.
(A.8). However, the components of the viscous stress tensor (Eq. (A.10)) and
of the thermal fluxes transform to

Tom = 2 21.{4_/\ (9_u+ @4_ a_w
Tz = ¢4z an Tz an Ty an Mz an
T =9 a_v+/\ a_u+ @4_ a_w
vy = ﬁ”)yan Nz an nyan Nz an

Tyz = 2 a—w+/\ 8_u+ @+ @-
zz = 4HT) an Nz an Ty an Nz an

S Ou N ov

zy = Tyz = K\ Ny _‘97) Nz _‘977
0 1o}

Toz = Tzz = #(ﬁz 817: + N az) (A40)
Ov ow

Ty = Tey =g Ty an

oT
Op = uTyg + UTgy + WTg, + knz?ﬁ

oT
Oy =uTys +VTyy + Wy + knyo—
on
or
on

O, =ur; + UTyy + WTy, + kn.
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In the above formulae (A.40), the partial derivatives with respect to the Carte-
sian coordinates were approximated as

du ou

ax ~ 771’51'7'

(A.41)

etc.

accordingly to the TSL assumption.
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A.6 Parabolised Navier-Stokes Equations

In certain cases, where the following three conditions are met:
o the flow is steady (i.e., W /5t=0),

o the fluid moves predominantly in one main direction (there must be no
boundary layer separation),

o the cross-flow components are negligible,

the Navier-Stokes equations (2.19)) can be simplified to a form called the Parabo-
lised Navier-Stokes (PNS) equations [19]. Then, the derivatives of the velocity
components and of the temperature with respect to the streamwise direction
can be dropped from the viscous stress terms. Furthermore, the components of
the viscous stress tensor T and of its work (7 - ¥) in the streamwise direction can
be neglected in the viscous flux vector in Eq. (2.23).

In order to demonstrate the PNS approach, let us consider the differential
form of the Navier-Stokes equations written for a general curvilinear grid as
given by Eq. (A.4). Let us also assume that the streamwise direction corresponds
to the coordinate £ and the cross-flow directions to the coordinates n and (,
respectively. Then, the differential form of the 3-D PNS equations reads in a
curvilinear coordinate system (£, 7, ¢) as

W™ . OF, . OF, o . OF,3 OF,, . OF, 4
ot a¢ on ¢ —  ony ¢

+Q*. (A.42)

Hence, the viscous flux in the streamwise direction (F), ;) was assumed to be
zero. The partial derivatives of the Cartesian velocity components and of the
temperature, which appear in the viscous stress tensor and in the thermal fluxes
(A.10), are approximated as

8z an T EC

ou ou ou
o (243
ou ou ou

+ (=, etc

Eznz% ac’

within the PNS approach instead of using the exact formulae (A.12). The
definition of the conservative variables (A.5), the relations for the convective
fluxes (A.6), for the two remaining viscous fluxes (A.7) as well as for the source
term (A.8) stay all unchanged.
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A.7 Convective Flux Jacobian

The convective flux Jacobian represents the gradient of the convective fluxes
with respect to the conservative variables, i.e.,

A = @:i , (A.44)
ow

where F. is given by Eq. (2.21).

2-D Formulation

The Jacobian matrix of the convective fluxes takes in two dimensions the fol-
lowing form [20]

——‘/l Ng ny 0
| nep—uV V—-Vi—angu nyu—angv asng
4= ny¢ - vV Nz¥U — Q2NyU V =V, —asnyv aany , (A45)
Vip —a1) nga; —auV nyar —avV AV -V
where

ay=vE—-¢
as =77 — 1
asz = — 2 (A46)

V =ngu+nyv
¢ = %(’y— 1)(u2+v2)

and n,, n, denote the Cartesian components of the unit normal vector 7 (Fig.
2.1). Furthermore, ¥ stands for the ratio of specific heat coefficients and V
represents the contravariant velocity. The contravariant velocity of the face of
the control volume (V; - see Eq. (A.35)) is set to zero for stationary grids.

3-D Formulation

The expression for the convective flux Jacobian reads in three dimensions [20]

-V Ng Ny
ngp—uV V-V, —azn.u Nyl — Q2N V
A, =|ngp—vV  nguv—amyu V-V, —agnu
n.p—~wV  nyw-—an.u NyW — ANV
V(g ~a1) nga) —auV nya, — apvV
(A.47)
n, 0
N U — Q2N W asn,
NV — GNyw agny

V-V, —asn,w asn,
n.a; —awV YV =V
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with the abbreviations

a=vE-¢
a2='y—1
ag=-y—2 (A.48)

V =nzu+nyv+nw
¢ =3v-1D(u?+0?+w?).
In the above relations (A.47) and (A.48), respectively, ng, ny, and n, denote

the Cartesian components of the unit normal vector 7 (see Fig. 2.1). In the case
of stationary grids, we have to set V; = 0.
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A.8 Viscous Flux Jacobian

The viscous flux Jacobian represents the gradient of the viscous fluxes with
respect to the conservative variables, i.e.,

I oF,

v T A.49
P (A.49)

where F, is given by Eq. (2.23). In the following, we shall consider for simplic-
ity the Thin Shear Layer (TSL) approximation of the Navier-Stokes equations
only (cf. Subsection 2.4.3 and Section A.3). Furthermore, it is assumed that
the dynamic viscosity and the thermal conductivity coefficients are frozen with
respect to changes in the conservative variables and in space.

2-D Formulation

The 2-D viscous flux Jacobian reads in curvilinear coordinates for the TSL
approximation as [20]

0 0 0 0
7o B b ady(pTh) a204(p7t) 0
Au=_ - _ , A.50
T b @dy(p™)) ady(p™t) 0 (A.50)
b1 bs2 by3 asdy(p™")

where .J represents the determinant of the coordinate transformation Jacobian
correspondingly to Eq. (A.13). The coefficients a and b are given by

bar = ~a19y(u/p) ~ a20y(v/p)
b31 = —a20y(u/p) — azdy(v/p)

b = asdy [(u? +v2)/p — E/p] — 104 (u?/p) -
2a28y (uv/p) — azdy (v?/p)

baz = —asa0y(u/p) — b
bag = —a40y(v/p) — ba
a1 = (4/3)¢3 + ¢}

az = (1/3)¥zty

az =97 + (4/3)¥;

as = (v/Pr) (i +¢}) -

In the above relations, p stands for the dynamic viscosity coefficient, v for the
ratio of specific heat coefficients and Pr denotes the Prandtl number, respec-
tively.



422 Appendix

The terms 9y () = 8() /0% must be conceived as operators. Let us consider for
illustration the term a;8,(p™!) in Eq. (A.50). Within many implicit schemes,
the viscous flux Jacobian gv is multiplied by the change of the conservative
variables AW = Wn+l — W, Hence, the complete term would read

[J—l,u a18¢(p_1)] AWQ = A22 AWQ . (A52)

If we discretise now the above term on structured grid using backward differ-
ences, we obtain at the mid-point (i+1/2)

(AWQ) N (AWQ)
-1 P /i1 P/

[A22 AWz]i?Ll/2 = J 12 i1z (@1)i1)2 A - (A.53)

Jacobian matrices for specific coordinate directions result if we set ¥ = £ or
1 = n, respectively.

3-D Formulation

The 3-D viscous flux Jacobian takes in curvilinear coordinates the following
form for the TSL approximation [20]

0 0 0 0 0
o bar a18y(p7h) a8y (p™1) a3dyl(p™!) 0
szj bt a20y(p™!) asBy(p™") asdy(p?) 0 , (A54)
by as8y(p™') as0y(p™') agdy(p™") 0
bs1 bs2 bs3 bs4 a0y (p™")
where

ba1 = —a10y(u/p) — 420y (v/p) — a3dy(w/p)

b3y = ~a30y (u/p) ~ asdy(v/p) — as0y(w/p)

bar = —a30y(u/p) — asdy(v/p) — asdy(w/p)

bsy = a7y [(v? +v? +w?)/p— E/p]-
a18y (u*/p) ~ a8y (v?/ p) — agdy(w?/p)— (A.55)
2020y (uv/p) — 2030y (uw/p) — 2059y (vw/ p)

bsz = —az0y(u/p) — bz
bsz = —a70y(v/p) — b3

bsa = —a70y(w/p) ~ ba
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and
ar = (4/3)93 + 7 + 42

az = (1/3)z3py

a3 = (1/3)s9s

as = (1/3)yy¥- (A.56)
as =93 + (4/3)9; + 92

ag =Y + 3y + (4/3)92

ar = (v/Pr) (V2 + ¥ + ¥2) .

Again, the terms 9y() = 8()/9y have to be treated as operators. Jacobian
matrices for specific coordinate directions are obtained by setting 1 = £ or
¥ =1 or ¢ = (, respectively.

In the case of a finite volume discretisation, the metric terms v, ¥, and 9.,
can be transformed into the components of the face vector § = #AS according
to Eq. (A.17). Furthermore, the determinant of the Jacobian of the coordinate
transformation J is replaced by the inverse of the volume formed around the
face of the control volume as indicated by Fig. A.1 and by Eq. (A.20). Thus,
if we repeat the example of Eq. (A.52) for a finite volume scheme, the product
J7la; in Eq. (A.51) will read

_ 2 /4
It should be noted that the face area was included in Eq. (A.57) to reflect the
multiplication of the viscous fluxes with AS when the residual is computed — F,,

itself contains only the components of the unit normal vector. The discretisation
at the mid-point (i+1/2) then becomes

2[l.i+1/2 4 2 2 AW2> AWZ
2 2| = =9, - , (A58
[AQ_ AWZ] 1+1/2 Q,i.+l/2 351 + Sy p i1 p . ( )

where we assumed Ay = 1 due to the definition of $7 and 57 (see Fig. A.1 and
Fquations (A.15), (A.16)).
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A.9 Transformation from Conservative
to Characteristic Variables

The convective flux Jacobian (Section A.7) has real eigenvalues and a complete
set of eigenvectors. Therefore, the Jacobians can be diagonalised [21] as

A, =TAT!, (A.59)

where T~! denotes the matrix of left eigenvectors, T of right eigenvectors and A,
represents the diagonal matrix of eigenvalues, respectively. The transformation
from conservative (W) to characteristic variables (C) reads

C=T"'"W. (A.60)

The diagonalisation of the convective flux Jacobian can be viewed as a de-
composition into different waves. The right eigenvectors represent the waves,
the characteristic variables are the wave amplitudes, and finally the eigenvalues
are the associated wave speeds. In the context of the diagonalisation that will
be presented below, we differentiate between two types of waves. First, there
are convective or linear waves, which are connected to eigenvalues of the type
A, = 7-7i. Second, there are acoustic waves which are related to eigenvalues of
the type A. = U- 7 + ¢. It should be noted that the diagonalisation cannot be
conducted simultaneously in multiple spatial directions {22]. This is the reason
why the flux-difference splitting and the TVD schemes employ only 1-D wave
decomposition. Only the fluctuation-splitting schemes (see Subsection 3.1.5)
use an approximate multidimensional decomposition.

2-D Formulation

The matrix of the left eigenvectors of A, appears as follows in two dimensions
(20]

(1 —¢c™?) ajuc?
-1 —(ngu — nyv)p~? nyp~!
ax(¢ — cV) az(nzc — ayu)
az(¢ +cV) —as(ngc + au)
(A.61)
ave? —a;c?
—ngp~! 0
az(nyc —ayv) ayas
—as(nyc + ayv) ayasg
The matrix of the right eigenvectors takes the form [20]
1 0 as as
7 u Nyp az(u+ nge) az(u —nge) (A.62)

v —TNgp az(v +nyc) az(v —nyc)
part p(nyu—ngv) asz(as +cV) as(ag —cV)
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The diagonal matrix contains the real eigenvalues

AL 00 0
- Lo A 0 0
Ae=10 0 A o0

0 0 0 A

The following definitions apply in the above relationships

a =v-1
0 = 1
27 pev2
o

cV2

¢ +c?
a4 =

v-1
V =nzu+nyv
) =%(’y—1)(u2+v2)
A=A =V -V
Ay=V -V +¢
A4=V—V¢—C.
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(A.63)

(A.64)

Furthermore, v denotes the ratio of specific heat coefficients, ¢ the speed of
sound, 7 = [nz,ny]T the unit normal vector, and V the contravariant velocity,
respectively. Finally, V; represents the contravariant velocity of the face of the
control volume as given by Eq. {A.35). In the case of stationary grids, V, has

to be set to zero.

3-D Formulation

The matrix of the left eigenvectors of A, becomes in three dimensions [20]

ngajuc 2

-2 -
NyQLUC™* —Nyp

nzas — (n,v — nyw)p~*

nyas — (ngw — n u)p~! !

TV = | nsas — (nyu —nev)p™ ' nzaiuc™? +nyp?
as (¢ —cV) —az(aju — ngc)
ax(¢ +cV) —ax(a1u + nzc)

ngawe 2 —nyp~! —ngajc”?

nyaiwe ™2 —=ngp~t  —nyaje?

na we2 —n.a,c7?
~az(ajw — nzc) ai1as
—a2{aw + n,c) a1as

ngajve~2 +n,p”

—_ nxp_
—az(a1v — nye)
—as(a,v + nyc)

1

1

(A.65)
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The matrix of the right eigenvectors reads as [20]

TNy Ty T,

NzU NyU — NP nU + Nyp

T = NV +n,p Ny NV —Ngp
NgW — NypP NyW + Nz p W

nzag + p(n:v — nyw) nyas + p(new —nyu) nas + p(nyu — ngv)

as as
a3(u +nge) az(u—nge)
az(v +nye) ag(v—nyc)
s(w+ n.c) az(w—n;c)
az(as +cV) az(as —cV)
(A.66)
The diagonal matrix contains the real eigenvalues
A, 0 0 0 O
B 0 A, 0 0 O
Ac=10 0 A3 0 O (A.67)
0 0 0 Ay O
0 0 0 0 As
The following abbreviations were used
ay =79 — 1
o = 1
2 = P
0
a3 =
3 v
ag = o+
4= ~ -1
as =1— i
c? (A.G8)
ag = L
6 51

V =nzu+nyv + n,w

¢ =L(v-1)(u? +v? + w?)
A1=A2=A3=V—V¢
M=V -Vi+e
A5=V—V1,—C.

In the above relations Eqs. (A.65)-(A.68), v denotes the ratio of specific heat
coefficients, ¢ the speed of sound, 7@ = [nz, ny,n,]7 the unit normal vector, and V
the contravariant velocity, respectively. Finally, V, represents the contravariant
velocity of the face of the control volume as given by Eq. {(A.35). In the case of
stationary grids, V; has to be set to zero.
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A.10 GMRES Algorithm
Consider the system of linear equations
AZ=b. (A.69)
We are looking for an approximate solution of the form
E=do+7, (A.70)
where Ty represents an initial guess and 2 is a member of the Krylov subspace
7€Km, K =span{f, Af, A%, ..., AR (A.71)

with 7 = b ~ A%y, and m being the dimension of K. The parameter m is also
termed the number of search directions. The Generalised Minimal Residual
(GMRES) algorithm [23] determines Z in such a way that the 2-norm of the
residual, i.e.,

15— A +2) | (A.72)

is minimised. In the following, we present the particular steps of the GMRES
algorithm.
1. Computation of the orthonormal basis of K,,

We employ the modified Gram-Schmidt procedure

ENDDO

hivr =l By |l

Tip1 =041/ ki1
ENDDO

where h; ; denotes the coefficients of the upper Hessenberg matrix (i = line,
j = column). However, the matrix is extended by the elements hjy;1, ;. There-
fore, the dimensions becomes (m + 1) x m.
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2. Generation of the upper Hessenberg matrix

The matrix has the following almost triangular form

[h1,1 P2
hay h2a
_ 0 hs 2
H, =
0
0 0

hl,m—l
h2,m—l

hm—l,m—l

hm,m-—l

0

hl,m ]

h'Z,m

hm—l,m

hm,m

hm+1,m J

(m+1)xm

Appendix

(A.73)

It is used further below to formulate and solve the minimisation problem for

the residual (Eq. (A.72)).

3. Minimisation of the residual

The correction of the start solution Zp is defined as [23]

m
= y;i;,
=1

where y; are the components of the vector

:’7: [y17y27

Furthermore, it can be shown that

with

Vm = [61762’

being a matrix with ¥; as columns. Let us introduce the notation

y Ym

I

ATy = Vo 2,

 Um |

é=[I|F0 ”707"')017‘?

(A.74)

(A.75)

(A.76)

(A.77)

(A.78)

where € has (m+1) elements. Using the definition of Eq. (A.78), we observe
that 7o = b — AZy = Vin11€. Hence, we obtain for the residual Eq. (A.72)

| b— Ao+ 2) || =1l 7o — A( -, vs75) |

(A.79)
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We employed the orthonormality of Vi1 in the last step (this means 77 -4 = 0

for i # j and o7 - ¥; = 1 for i = j). Therefore, the problem of the minimisation
of the residual can be simplified as

in 15— A0 +2) ll= min || 8- A7) . .
min |5~ A@+2) | = min |6~ A7 (4.80)

The solution of the minimisation problem can be obtained with the help of the
Q-R algorithm which is described next.

4. Q-R algorithm

Let us define Ry, = Q. H}, with

Q_m déf FmFm—I"'FI (ASI)
being the product of the Givens rotation matrices
(m+1)x{(m+1)

P G 8
fi= [—31 Cj] ' (482

In Eq. (A.82), I; denotes the identity matrix of dimension j. Further, c; and 8
(c3+ s'J“’- = 1) represent the sine/cosine of the rotation angle. The rotations are

chosen such that I_{;l is transformed into an upper triangular matrix R,, which
has the dimensions (m + 1) x m and which last line contains only zeros. Since
QT Qm = I, we can write in Eq. (A.80)

| €—Hy gl =11 QL(QmE - Qmi §) |

=7~ Ruyll,

(A.83)

where § = Q€ denotes the transformation of the vector & (Eq. (A.78)). The
last line of R, consists of zeros, therefore only the term g, 1, is nonzero in the
row (m+1) of the vector (§ — R,, #). If we denote the first m-components of
(G- Rmy) aspj (j =1, -+, m), then the norm in Eq. (A.83) becomes

m
|G~ RmTll=,|g%0+ D 0% (A.84)
j=1
If we chose the components y; of i in such a way that p? =0forallj =1, -+, m,

we obtain for the minimisation problem in Eq. (A.80)

in [[§—Rn¥ll= : A.85
in 19— HEm |grm+1] (A.85)
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The components y; results from the solution of the following system of linear
equations

Rl,l e Rl,m—l Rl,m Y1 g1
o : l=] Pl (ase
: B Rm——l,m—l Rm—l,m Ym-1 gm-1
0 e 0 Rynm Ym gm

by back-substitution. The solution of the system of equations (A.69) is then
obtained with known y; from Eq. (A.74).
It is important to remark that

I 7 =115~ A + 2) |

=jle-H, 7|

i (A.87)
=[§-Endll
= |gm+1| :

This means that the actual residual can be easily determined as |gn,41]-
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A.11 Tensor Notation

Expressions like coordinate (z;) or velocity components (v;) represent first-order
tensors. They have three components and thus correspond to vectors. Hence,

z; = [z1, %2, 23] = [2,9,2] =7
(A.88)
v; = [v1,v2,v3] = [u,v,w]=7.

Second-order tensors consist of nine components and can be written as 3x3
matrices, e.g.,
V1V V1V VU3
ViVj = | v2U1 VU2 VU3 | . (A89)
V3Vy V3VU2 V3VU3

Similarly, the tensor of viscous stresses 7 = 73; reads

T11 T2 713
Tij = | T21 T22 Tog . (AQO)
731 732 733

The Kronecker symbol 4;; is a special second-order tensor. It corresponds to a
3x3 identity matrix. Thus, the relation holds

1 ifi=j
dij = (A.91)

0 ifi#£y.
The last important rule is the so-called Einstein summation convention. It
states that whenever two identical indices occur in an expression, it means a

sum over all three coordinate directions. With this, the scalar product between
the vectors « and ¥’ can be expressed as

WUV = U VU] + UV + ugv3 = - U. (A.92)

Furthermore, the divergence of the vector ¢ becomes in tensor notation

Ovi Ouy  Ove  Ovs =
ALt BTG AL S VAT T2 A
61?,; 6.’131 61’2 + 61‘3 Y ( 93)
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LU-SGS: Lower-Upper Symmetric Gauss-

Seidel, 50, 202
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Prandtl number, 19, 55, 234, 403
Preconditioning, 30, 320
Preconditioning matrix, 321
Pressure sensor, 97
Pressure-based schemes, 30, 320
Prolongation operator, 307
Pseudo-Laplacian, 151

Quadratic reconstruction, 158

RANS: Reynolds-Averaged Navier-
Stokes, 53, 231

RCM: Reverse Cuthill-McKee, 195,
210

Real gas, 19, 44

Reconstruction, 133, 139, 145, 150,
154, 160

Reflected cells, 285

Residual, 45, 76, 132, 181

Residual averaging, 47

Residual distribution, 86

Residual smoothing, 47, 301

Restriction operator, 306

Reynolds averaging, 53, 229

Reynolds-stress tensor, 54, 231, 232

Right state, 43, 84, 90, 93, 140

Roe average, 106

Roe matrix, 106

Roe scheme, 43, 106

Rotating frame of reference, 17, 411

Rotation-rate tensor, 228

Rotational periodicity, 287, 289

Rothalpy, 412

Rotor-stator interaction, 380

RST: Reynolds-Stress Transport, 54,
236

Runge-Kutta time-stepping scheme,
46, 182

Scalar dissipation scheme, 96
Search directions, 51, 209
Second viscosity coefficient, 13
Second-order closures, 54, 225
Seed points, 317
Semicoarsening, 306

SGS: Subgrid-Scale stress, 250



Index

Shape functions, 39

Sharp Fourier cut-off filter, 249

Single-stage time-stepping scheme,
46

Singletons, 317

SLIP: Symmetric Limited Positive,
96

Slope limiter, 111

Smagorinsky SGS model, 253

Smooth grid, 29, 131

Solution reconstruction, 139, 145, 150,
154, 160

Solution update, 181

Source term, 76, 131, 185, 190

Spalart-Allmaras model, 55, 238

Spatial averaging, 229

Spatial discretisation, 32, 76, 131

Spectral Element Method, 40

Spectral radius, 97, 153, 187-189

Stability, 331

Stability analysis, 334

Staggered grid scheme, 78

Steger-Warming flux-vector splitting,
195

Steiner point, 372

Stencil, 93

Stiffness, 185, 190

Stokes’s hypothesis, 403

Strain-rate tensor, 228

Structured grids, 32, 356

Structurcd scheme, 75

Subgrid-scale model, 53, 248, 252

Surface forces, 9

Surface grid, 356

Surface grid generation, 379

Sutherland formula, 18

Switched Evolution Relaxation, 211

Symmetric TVD scheme, 43, 108

System matrix, 190, 305

Tensor notation, 228, 431

TFI: Transfinite Interpolation, 356,
359

TFQMR: Transpose-Free Quasi-Minimum
Residual, 51, 208

Thermal conductivity coefficient, 11
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Thermal diffusivity coefficient, 7, 11

Time averaging, 229

Time step, 186

Time-stepping operator, 335

Tophat filter, 249

Total energy, 10, 411

Total enthalpy, 12, 412

Translational periodicity, 287

Truncation error, 36, 332

TSL: Thin Shear Layer, 23, 119, 199,
416

Turbulence modelling, 53, 225

Turbulent dissipation rate, 236

Turbulent eddy viscosity, 55, 233

Turbulent heat-flux vector, 54, 233,
234

Turbulent kinetic energy, 231, 232

Turbulent Prandtl number, 55, 234

Turbulent thermal conductivity co-
efficient, 55, 234

TVD: Total Variation Diminishing,
42, 43, 108

Two-equation models, 241

UIRS: Upwind Implicit Residual Smooth-
ing, 47, 303

Unit normal vector, 6, 16, 77, 79—
81, 134, 135, 137, 140, 144,
244, 412, 414

Unsteady flows, 49, 212

Unstructured grids, 32, 34, 367

Unstructured scheme, 129

Upwind prolongation, 310, 314, 316

Upwind restriction, 310, 316

Upwind scheme, 42, 154

Upwind TVD scheme, 43, 108, 109

V-Cycle, 308

Validation, 332

Van Albada limiter, 111

Van Leer’s flux-vector splitting, 99
Variational principle, 39

Vector of convective fluxes, 16
Vector of viscous fluxes, 16
Verification, 332

Virtual edges, 164
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Viscous flux Jacobian, 199, 421
Viscous fluxes, 16, 116, 169
Viscous stress tensor, 9, 228
Viscous stresses, 13

Visibility criterion, 378

Volume agglomeration, 317

Volume grid, 356

Von Neumann stability analysis, 334
Voronoj diagram, 368

Vortex correction, 280, 281

W-Cycle, 308

Wall functions, 245
Weak formulation, 39
Weak solutions, 38





















COMPUTATIONAL FLUID DYNAMICS:
PRINCIPLES AND APPLICATIONS

Computational Fluid Dynamics (CFD) is an important design tool in
engineering and also a substantial research tool in various physical
sciences.

The objective of this book is to provide a solid foundation for
understanding the numerical methods employed in today’s CFD and
to raise awareness of modern CFD codes through hands-on
experience. The book will be an essential reference work for
engineers and scientists starting to work in the field of CFD or those
who apply CFD codes.

The accompanying CD-ROM contains the sources of 1-D and
2-D) Euler solvers as well as grid generators.

Chapters

Introduction

Governing Equations

Principles of Solution of the Governing Equations

Spatial Discretisation: Structured Finite Volume Schemes
Spatial Discretisation: Unstructured Finite Volume Schemes
Temporal Discretisation

Turbulence Modelling

Boundary Conditions

Acceleration Techniques

10 Consistency, Accuracy and Stability

11 Principles of Grid Generation

12 Description of the Source Codes

© o0~ Oud UL =

ISBN 0 08 043009 0

Front cover image courtesy of “ I‘ "
0. Br G

rodersen, DLR, Germany 780080"4300



	Cover
	Frontmatter
	Half Title Page
	Title Page
	Copyright
	Table of Contents
	Acknowledgements
	List of Symbols
	Abbreviations

	Chapter 1: Introduction
	Chapter 2: Governing Equations
	2.1 The Flow and its Mathematical Description
	2.2 Conservation Laws 
	2.3 Viscous Stresses
	2.4 Complete System of the Navier-Stokes Equations

	Chapter 3: Principles of Solution of the Governing Equations
	3.1 Spatial Discretisation
	3.2 Temporal Discretisation
	3.3 Turbulence Modelling
	3.4 Initial and Boundary Conditions

	Chapter 4: Spatial Discretisation: Structured Finite Volume Schemes
	4.1 Geometrical Quantities of a Control Volume
	4.2 General Discretisation Methodologies
	4.3 Discretisation of Convective Fluxes
	4.4 Discretisation of Viscous Fluxes

	Chapter 5: Spatial Discretisation: Unstructured Finite Volume Schemes 
	5.1 Geometrical Quantities of a Control Volume 
	5.2 General Discretisation Methodologies 
	5.3 Discretisation of Convective Fluxes
	5.4 Discretisation of Viscous Fluxes

	Chapter 6: Temporal Discretisation
	6.1 Explicit Time-Stepping Schemes
	6.2 Implicit Time-Stepping Schemes
	6.3 Methodologies for Unsteady Flows

	Chapter 7: Turbulence Modelling
	7.1 Basic Equations of Turbulence
	7.2 First-Order Closures
	7.3 Large-Eddy Simulation

	Chapter 8: Boundary Conditions
	8.1 Concept of Dummy Cells
	8.2 Solid Wall
	8.3 Farfield
	8.4 Inlet/Outlet Boundary
	8.5 Symmetry Plane
	8.6 Coordinate Cut
	8.7 Periodic Boundaries
	8.8 Interface between Grid Blocks
	8.9 Flow Gradients at Boundaries of Unstructured Grids

	Chapter 9: Acceleration Techniques
	9.1 Local Time-Stepping
	9.2 Enthalpy Damping
	9.3 Residual Smoothing
	9.4 Multigrid
	9.5 Preconditioning for Low Mach Numbers

	Chapter 10: Consistency, Accuracy and Stability
	10.1 Consistency Requirements
	10.2 Accuracy of Discretisation
	10.3 Von Neumann Stability Analysis

	Chapter 11: Principles of Grid Generation
	11.1 Structured Grids
	11.2 Unstructured Grids

	Chapter 12: Description of the Source Codes
	12.1 Programs for Stability Analysis
	12.2 Structured 1-D Grid Generator
	12.3 Structured 2-D Grid Generators
	12.4 Structured to Unstructured Grid Converter
	12.5 Quasi 1-D Euler Solver
	12.6 Structured 2-D Euler Solver
	12.7 Unstructured 2-D Euler Solver

	Backmatter
	A Appendix
	Index

	Back Cover



