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Preface 

This book was intentionally written to be different from other filter design books 
in two important ways. First, the most common analog and digital filter design and 
implementation methods are covered in a no-nonsense manner. All important 
derivations and descriptions are provided to allow the reader to apply them 
directly to his or her own filter design problem. Over forty examples are provided 
to help illustrate the fundamentals of filter design. Not only are the details of 
analog active and digital IIR and FIR filter design presented in an organized and 
direct manner, but implementation issues are discussed to alert the reader to 
potential pitfalls. An added feature to this text is the discussion of fast Fourier 
transforms and how they can be used in filtering applications. The simulation of 
analog filters is made easier by the generation of PSpice circuit description files 
that include R-C component values calculated directly from the filter coefficients. 
In addition, the testing of IIR and FIR filters designed for audio signals is 
enhanced by providing sample sound files that can be filtered by using the digital 
filter design coefficients. Anyone with a sound card on their computer can then 
play the original and processed sound files for immediate evaluation.  

The second difference between this book and others is that the text is 
accompanied by WFilter, a fully functional, Windows®-based filter design 
software package, and the source code on which it is based. The CD provides the 
reader with the ability to install WFilter with a few simple clicks of the mouse, 
and also supplies the reader with the well organized and clearly documented 
source code detailing the intricacies of filter design. No, the source code provided 
is not just a collection of fragmented functions, but rather a set of three organized 
programs that have been developed (with the addition of an easy-to-use graphical 
interface) into the organized structure of WFilter. 

A basic knowledge of C programming is expected of the reader, but the code 
presented in the text and the appendixes is thoroughly discussed and well 
documented. The text does assume the reader is familiar with the fundamental 
concepts of linear systems such as system transfer functions and frequency 
response although no prior knowledge of filter design is needed. 
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CHAPTER CONTENTS 

Chapter 1 introduces the reader to the filter design problem. An overview of 
WFilter is presented. Chapter 2 develops the normalized transfer functions for the 
Butterworth, Chebyshev, inverse Chebyshev, and elliptic approximation cases. 
Chapter 3 describes the conversion of the normalized lowpass filter to an 
unnormalized lowpass, highpass, bandpass, or bandstop filter. In addition, the 
calculation of the frequency response for analog filters is discussed. By the end of 
the third chapter, a complete analog filter design can be performed. In Chapter 4, 
the implementation of analog filters is considered using popular techniques in 
active filter design with discussion of real-world considerations. A PSpice circuit 
description file is generated to enable the filter developer to analyze the circuit. 
Chapter 4 completes the discussion of analog filters in this book. 

Chapter 5 begins the discussion of discrete-time systems and digital filter 
design in this book. Several key features of discrete-time systems, including the 
notion of analog-to-digital conversion, Nyquist sampling theorem, the z-transform, 
and discrete-time system diagrams, are reviewed. Similarities and differences 
between discrete-time and continuous-time systems are discussed. In Chapter 6, 
digital IIR (recursive) filters are designed. Three methods of designing IIR filters 
are considered. In addition, the frequency response calculations and related C code 
for the IIR filter are developed. Chapter 7 considers digital FIR (nonrecursive) 
filters using a variety of window methods and the Parks-McClellan optimization 
routine. The special techniques necessary for FIR frequency response calculation 
are discussed. The implementation of real-time and nonreal-time digital FIR and 
IIR filters is discussed in Chapter 8. Implementation issues such as which type of 
digital filter to use, accuracy of quantized samples, fixed or floating point 
processing, and finite register length computation are discussed. The reader can 
then hear the effects of filtering by replaying the original and processed sound 
files on a sound card. Chapter 9 completes the text with an introduction of the 
discrete Fourier transform and the more efficient fast Fourier transform (FFT). 
The reader will learn how to use the FFT in filtering applications and see the code 
necessary for this operation. 

For those readers who desire filter design references or further details of the C 
code for the design of analog and digital filters, nine separate appendixes provide 
that added information. 
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Chapter 1 

Introduction to Filters and Filter Design 
Software 

Everyone has probably come in contact with one type of filter or another in their 
lifetime. Maybe it was a coffee filter used to separate the grounds from the liquid, 
or perhaps an oil filter to remove contaminants from the oil of an engine. Anyone 
working in an office often filters the unimportant work from the important. In 
essence then the act of filtering is the act of separating desired items from 
undesired items. Of course when we discuss filters in this text, we are not talking 
about coffee, oil, or paperwork, but rather electronic signals. The electronic filters 
we will be designing will separate the desirable signal frequencies from the 
undesirable, or in other applications simply change the frequency content which 
then changes the signal waveform. 

There are many types of electronic filters and many ways that they can be 
classified. A filter's frequency selectivity is probably the most common method of 
classification. A filter can have a lowpass, highpass, bandpass, or bandstop 
response, where each name indicates how a band of frequencies is affected. For 
example, a lowpass filter would pass low frequencies with little attenuation 
(reduction in amplitude), while high frequencies would be significantly reduced. 
A bandstop filter would severely attenuate a middle band of frequencies while 
passing frequencies above and below the attenuated frequencies. Filter selectivity 
will be the focus of the first section in this chapter. 

Filters can also be described by the method used to approximate the ideal 
filter. Some approximation methods emphasize low distortion in the passband of 
the filter while others stress the ability of the filter to attenuate the signals in the 
stopband. Each approximation method has visible characteristics that distinguish it 
from the others. Most notably, the absence or presence of ripple (variations) in the 
passband and stopband clearly set one approximation method apart from another. 
Filter approximation methods will be discussed in further detail in the second 
section. 
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Another means of classifying filters is by the implementation method used. 
Some filters will be built to filter analog signals using individual components 
mounted on circuit boards, while other filters might simply be part of a larger 
digital system which has other functions as well. Several implementation methods 
will be described in the third section of this chapter as well as the differences 
between analog and digital signals. However, it should be noted that digital filter 
design and implementation will be considered in detail starting in Chapter 5, while 
the first four chapters concentrate on filter approximation theory and analog filter 
implementation. 

In the final section of this chapter we discuss WFilter, an analog and digital 
filter design package for Windows®, which is included on the software disk. 
WFilter determines the transfer function coefficients necessary for analog filters or 
for digital FIR or IIR filters. After the filter has been designed, the user can view 
the pole-zero plot, as well as the magnitude and phase responses. The filter design 
parameters or the frequency response parameters can also be edited for ease of 
use. In addition, for analog filters, the Spice circuit file can be generated to aid in 
the analysis of active filters. After digital filters have been designed, they may be 
used to filter wave files and the results can be played for comparison (a sound card 
must be present). Further discussion of WFilter and the C code supplied with this 
text can be found in Appendix B. 

1.1  FILTER SELECTIVITY 

 
As indicated earlier, a filter’s primary purpose is to differentiate between different 
bands of frequencies, and therefore frequency selectivity is the most common 
method of classifying filters. Names such as lowpass, highpass, bandpass, and 
bandstop are used to categorize filters, but it takes more than a name to completely 
describe a filter. In most cases a precise set of specifications is required in order to 
allow the proper design of a filter. There are two primary sets of specifications 
necessary to completely define a filter's response, and each of these can be 
provided in different ways. 

The frequency specifications used to describe the passband(s) and stopband(s) 
could be provided in hertz (Hz) or in radians/second (rad/sec). We will use the 
frequency variable f measured in hertz as filter input and output specifications 
because it is a slightly more common way of discussing frequency. However, the 
frequency variable ω measured in radians/second will also be used as WFilter’s 
internal variable of choice as well as for unnormalized frequency responses since 
most of those calculations will use radians/second. 

The other major filter specifications are the gain characteristics of the 
passband(s) and stopband(s) of the filter response. A filter's gain is simply the 
ratio of the output signal level to the input signal level. If the filter's gain is greater 
than 1, then the output signal is larger than the input signal, while if the gain is 
less than 1, the output is smaller than the input. In most filter applications, the gain 
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response in the stopband is very small. For this reason, the gain is typically 
converted to decibels (dB) as indicated in (1.1). For example, a filter's passband 
gain response could be specified as 0.707 or as −3.0103 dB, while the stopband 
gain might be specified as 0.0001 or −80.0 dB. 

 

 )gainlog(20gain dB ⋅=  (1.1) 

 
As we can see, the values in decibels are more manageable for very small 

gains. Some filter designers prefer to use attenuation (or loss) values instead of 
gain values. Attenuation is simply the inverse of gain. For example, a filter with a 
gain of 1/2 at a particular frequency would have an attenuation of 2 at that 
frequency. If we express attenuation in decibels we will find that it is simply the 
negative of the gain in decibels as indicated in (1.2). Gain values expressed in 
decibels will be the standard quantities used as filter specifications, although the 
term attenuation (or loss) will be used occasionally when appropriate. 

 

  (1.2) dB
1

dB gain)gainlog(20)gainlog(20attn −=⋅−=⋅= −

1.1.1  Lowpass Filters 

Figure 1.1 shows a typical lowpass filter’s response using frequency and gain 
specifications necessary for precision filter design. The frequency range of the 
filter specification has been divided into three areas. The passband extends from 
zero frequency (dc) to the passband edge frequency fpass, and the stopband extends 
from the stopband edge frequency fstop to infinity. (We will see later in this text 
that digital filters have a finite upper frequency limit. We will discuss that issue at 
the appropriate time.) These two bands are separated by the transition band that 
extends from fpass to fstop. The filter response within the passband is allowed to vary 
between 0 dB and the passband gain apass, while the gain in the stopband can vary 
between the stopband gain astop and negative infinity. (The 0 dB gain in the 
passband relates to a gain of 1.0, while the gain of negative infinity in the 
stopband relates to a gain of 0.0.) A lowpass filter's selectivity can now be 
specified with only four parameters: the passband gain apass, the stopband gain 
astop, the passband edge frequency fpass, and the stopband edge frequency fstop. 

Lowpass filters are used whenever it is important to limit the high-frequency 
content of a signal. For example, if an old audiotape has a lot of high-frequency 
“hiss,” a lowpass filter with a passband edge frequency of 8 kHz could be used to 
eliminate much of the hiss. Of course, it also eliminates high frequencies that were 
intended to be reproduced. We should remember that any filter can differentiate 
only between bands of frequencies, not between information and noise. 



4 Practical Analog and Digital Filter Design 

  
 
Figure 1.1  Lowpass filter specification. 

1.1.2  Highpass Filters 

A highpass filter can be specified as shown in Figure 1.2. Note that in this case the 
passband extends from fpass to infinity (for analog filters) and is located at a higher 
frequency than the stopband which extends from zero to fstop. The transition band 
still separates the passband and stopband. The passband gain is still specified as 
apass (dB) and the stopband gain is still specified as astop (dB). 

 
 

 
 
Figure 1.2  Highpass filter specification. 
 

Highpass filters are used when it is important to eliminate low frequencies 
from a signal. For example, when turntables are used to play LP records (some 
readers may remember those black vinyl disks that would warp in a car's back 
window), turntable rumble can sometimes occur, producing distracting low-



 Introduction to Filters and Filter Design Software 5 

frequency signals. A highpass filter set to a passband edge frequency of 100 Hz 
could help to eliminate this distracting signal. 

1.1.3  Bandpass Filters 

The filter specification for a bandpass filter shown in Figure 1.3 requires a bit 
more description. A bandpass filter will pass a band of frequencies while 
attenuating frequencies above or below that band. In this case the passband exists 
between the lower passband edge frequency fpass1 and the upper passband edge 
frequency fpass2. A bandpass filter has two stopbands. The lower stopband extends 
from zero to fstop1, while the upper stopband extends from fstop2 to infinity (for 
analog filters). Within the passband, there is a single passband gain parameter apass 
in decibels. However, individual parameters for the lower stopband gain astop1 
(dB) and the upper stopband gain astop2 (dB) could be used if necessary. 
 

 
 
Figure 1.3  Bandpass filter specification. 
 

A good example for the application of a bandpass filter is the processing of 
voice signals. The normal human voice has a frequency content located primarily 
in the range of 300–3,000 Hz. Therefore, the frequency response for any system 
designed to pass primarily voice signals should contain the input signal to that 
frequency range. In this case, fpass1 would be 300 Hz and fpass2 would be 3,000 Hz. 
The stopband edge frequencies would be selected by how fast we would want the 
signal response to roll off above and below the passband. 

1.1.4  Bandstop Filters 

The final type of filter to be discussed in this section is the bandstop filter as 
shown in Figure 1.4. In this case the band of frequencies being rejected is located 
between the two passbands. The stopband exists between the lower stopband edge 
frequency fstop1 and the upper stopband edge frequency fstop2. The bandstop filter 
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has two passbands. The lower passband extends from zero to fpass1, while the upper 
passband extends from fpass2 to infinity (for analog filters). Within the stopband, 
the single stopband gain parameter astop is used. However, individual gain 
parameters for the lower and upper passbands, apass1 and apass2 (in dB) respectively, 
could be used if necessary. 

 

 
 
Figure 1.4  Bandstop filter specification. 
 

An excellent example of a bandstop application would be a 60-Hz notch filter 
used in sensitive measurement equipment. Most electronic measurement 
equipment today runs from an AC power source using a 60-Hz input frequency. 
However, it is not uncommon for some of the 60-Hz signal to make its way into 
the sensitive measurement areas of the equipment. In order to eliminate this 
troublesome frequency, a bandstop filter (sometimes called a notch filter in these 
applications) could be used with fstop1 set to 58 Hz and fstop2 set to 62 Hz. The 
passband edge frequencies could be adjusted based on the other technical 
requirements of the filter. 

1.2  FILTER APPROXIMATION 

The response of an ideal lowpass filter is shown in Figure 1.5, where all 
frequencies from 0 to fo are passed with a gain of 1, and all frequencies above fo 
are completely attenuated (gain = 0). This type of filter response is physically 
unattainable. Practical filter responses that can be attained are also shown. As a 
filter's response becomes closer and closer to the ideal, the cost of the filter (time 
delay, number of elements, dollars, power consumption, etc.) will increase. These 
practical responses are referred to as approximations to the ideal. There are a 
variety of ways to approximate an ideal response based on different criteria. For 
example, some designs may emphasize the need for minimum distortion of the 
signals in the passband and would be willing to trade off stopband attenuation for 
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that feature. Other designs may need the fastest transition from passband to 
stopband and will allow more distortion in the passband to accomplish that aim. It 
is this engineering tradeoff that makes the design of filters so interesting. 

 

 
 
Figure 1.5  Practical and ideal filter responses. 
 

We will be discussing the primary approximation functions used in filter 
design today that can be classified both by name and the presence of ripple or 
variation in the signal bands. Elliptic or Cauer filter approximations provide the 
fastest transition between passband and stopband of any studied in this text. An 
illustration of the magnitude response of an elliptic filter is shown in Figure 1.1, 
where we can see that ripple exists in both the passband and stopband. What is not 
shown in that figure is the phase distortion that the elliptic filter generates. If the 
filter is to be used with audio signals, this phase distortion must usually be 
corrected. However, in other applications, for example the transmission of data, 
the elliptic filter is a popular choice because of its excellent selectivity 
characteristics. The elliptic approximation is also one of the more complicated to 
develop. (We will discuss all approximation methods in detail in Chapter 2.) 

The inverse Chebyshev response is another popular approximation method 
that has a smooth response in the passband, but variations in the stopband. On the 
other hand, the normal Chebyshev response has ripple in the passband, but a 
smooth, ever-decreasing gain in the stopband. The phase distortion produced by 
these filters is not as severe as for the elliptic filter, and they are typically easier to 
design. The inverse Chebyshev response is shown in Figure 1.2, and the normal 
Chebyshev response is illustrated in Figure 1.3. The Chebyshev approximations 
provide a good compromise between the elliptic and Butterworth approximation. 

The Butterworth filter is a classic filter approximation that has a smooth 
response in both the passband and stopband as shown in Figure 1.4. It provides 
the most linear phase response of any approximation technique discussed in this 
text. (The Bessel approximation provides better phase characteristics, but has very 
poor transition band characteristics.) However, as we will see in Chapter 2, a 
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Butterworth filter will require a much higher order to match the transition band 
characteristics of a Chebyshev or elliptic filter. 

1.3  FILTER IMPLEMENTATION 

After a filter has been completely specified, various numerical coefficients can be 
calculated (as described in Chapter 2). But after all the paperwork has been 
completed, the filter still has to be placed into operation. The first major decision 
is whether to use analog or digital technology to implement the filter. The 
differences between analog and digital filter design are based primarily on the 
differences between analog and digital signals themselves. Any signal can be 
represented in the time domain by plotting its amplitude versus time. However, the 
amplitude and time variations can be either continuous or discrete. If both the 
amplitude and time variations are continuous as shown in Figure 1.6, the signal is 
referred to as an analog signal. Most real-life signals are analog in nature; for 
example, sounds that we hear, electrocardiogram signals recorded in a medical 
lab, and seismic variations recorded on monitoring equipment. However, the 
problem with analog signals is that they contain so much information. The exact 
amplitude of the signal (with infinite precision) is available at every instant of 
time. Do we actually need all of that information? And how do we store and 
transfer that information? 

 

 
 
Figure 1.6  Comparison of analog and digital signals. 
 

As techniques for the storage and transmission of information in digital form 
are becoming more efficient and cost effective, it is increasingly advantageous to 
use signals that are in a digital form. The advantage of using the resulting digital 
signals is that the amount of information can be managed to a level appropriate for 
each application. An analog signal can be converted to a digital signal in two 
steps. First, the signal must be sampled at fixed time intervals, and then the 
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amplitude of the signal must be quantized to one of a set of fixed levels. Once the 
analog signal has been converted to a discrete-time and discrete-amplitude signal 
it is commonly referred to as a digital signal as shown in Figure 1.6. The operation 
of sampling and quantizing is accomplished by an analog-to-digital converter 
(ADC). After filtering the signal in the digital domain, a digital-to-analog 
converter (DAC) can be used to return the signal to analog form. (A more 
complete discussion of these operations will be given in Chapter 5 where digital 
filter design is introduced and in Chapter 8 where practical considerations of 
digital filter implementation are discussed.) Today the digital images and sound 
files on computers as well as the music on compact discs are examples of signals 
in digital form. 

If we choose to implement a filter in analog form, we still have further 
choices to make. We could choose to implement the filter with purely passive 
components such as resistors, capacitors, and inductors. This approach might be 
the best choice when high frequencies or high power is used. In other 
circumstances, analog active filters might be the best choice where either 
transistors or operational amplifiers are used to provide a gain element in the filter. 
The implementation of analog active filters is considered in Chapter 4. 

Digital filters will be implemented by using digital technology available 
today. Generally, the process will take place within a microprocessor system that 
could have other functions besides the filtering of signals. We discuss two basic 
types of digital filters in Chapters 6 and 7 of this text. The first is the infinite 
impulse response (IIR) digital filter that is based in a large part on the design 
methodology of analog filters. The second type is the finite impulse response 
(FIR) digital filter that uses a completely different method for its design. The 
implementation of digital filters is considered in Chapter 8. Chapter 9 introduces 
the fast Fourier transform (FFT) and discusses how it can be used in filtering. 

As we can now see, there is more to describing a filter than referring to it as a 
lowpass filter. For example, we might be designing an “analog active lowpass 
Butterworth filter” or a “digital IIR bandpass Chebyshev filter.” These names 
along with a filter's specification parameters will completely describe a filter. 

1.4  WFILTER - FILTER DESIGN SOFTWARE 

 
Although we haven’t discussed filter design in detail, it may be educational to see 
how to use a filter design software package. This book includes a filter design 
software package called WFilter that automates the design process and provides 
filter coefficients and frequency response characteristics for the filters, and other 
features as well. As a first example, we will choose an analog lowpass Chebyshev 
filter with passband and stopband gains of −1 dB and −30 dB, respectively. The 
passband and stopband edge frequencies will be 500 Hz and 1,000 Hz and the data 
files and frequency plots will be labeled with the title “Lowpass Chebyshev 
Filter.” (You will need to install WFilter on your computer before you can 
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duplicate the actions described below. Please see Appendix B for contents of the 
accompanying disc and installation instructions for WFilter.) 

After starting WFilter, you can begin the design of a new filter by selecting 
New from the File menu bar as shown in Figure 1.7. You can also Open a 
previously designed filter or seek Help from this startup screen. 

 
 

 
 
Figure 1.7  WFilter opening screen.  
 

After selecting New, you will be able to select the type of filter you want to 
design and specify a description as indicated earlier. The Filter Specification 
dialog box shown in Figure 1.8 includes sections for the different characteristics 
of the filter, as well as sampling frequency (for digital filters only) and a filter 
title.  

 

 
 
Figure 1.8  Filter Specification dialog box. 
 

After selecting the characteristics of the filter, you can select Next and the 
Lowpass Specification dialog box shown in Figure 1.9 will appear, allowing you 
to specify the gain and frequency characteristics. For a lowpass filter you must 
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enter the passband gain and edge frequency as well as the stopband gain and edge 
frequency as specified in our sample filter. You then have the option of designing 
the filter or returning to the previous dialog box to make changes. At each stage of 
this process you can cancel your actions or seek help determining proper actions. 

 

 
 
Figure 1.9  Lowpass Specification dialog box. 
 

After completing the specifications, you can select Design Filter and the 
following information will be displayed in the Filter Parameter text window as 
shown in Figure 1.10. (Pole-zero information will also be displayed, but is not 
shown in this example.) As indicated, our filter will be fourth-order (length is a 
term used with digital FIR filters) and will have an overall gain as indicated. The 
coefficients of the transfer function are given in the form of quadratics. Details 
concerning these values will be discussed in the next chapter. 

 
 

Lowpass Chebyshev Filter 
 
Selectivity:        Lowpass 
Approximation:      Chebyshev 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -30.0 
Passband freq (Hz): 500.0 
Stopband freq (Hz): 1000.0 
 
Filter Length/Order: 04 
Overall Filter Gain: 8.91250938134E-01 
 
Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  9.73641285912E+06 
02 0.0  0.00000000000E+00  2.75754865948E+06 
 
Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  8.76730519296E+02  9.73641285912E+06 
02 1.0  2.11661471023E+03  2.75754865948E+06 

 
 
Figure 1.10  Filter Characteristic screen. 
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We can now display the frequency response of our filter by selecting 
Magnitude Response from the View menu. As indicated in the Response 
Specification dialog box shown in Figure 1.11, the user can specify frequency 
limits of the display as well as the magnitude range. Both the frequency and 
magnitude axes can be scaled in a linear or logarithmic fashion. WFilter initializes 
the values with educated guesses that can be changed by the user. 

 
 

 
 
Figure 1.11  Response Specification dialog box. 
 

Selecting Display Response will bring up the graphics plots of the magnitude 
and phase responses. These graphs are shown in Figures 1.12 and 1.13. Notice 
that on the phase plot, the phase angle is always displayed as a value between 
+180 and −180 degrees. Therefore there is actually no discontinuity in the phase 
plot. 

 
 

 
 
Figure 1.12  Magnitude response screen. 
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Figure 1.13  Phase response screen. 
 

In addition, for analog and digital IIR filters, the pole-zero positions for a 
filter can be displayed by selecting Pole-Zero Plot from the View menu. (The 
significance of poles and zeros will be discussed in the next chapter.) The pole-
zero plot for our filter is shown in Figure 1.14.  
 

 
 
Figure 1.14  Pole-zero plot. 
 

Any or all of the information provided by WFilter can be printed by selecting 
Print from the File menu. The Print dialog box as shown in Figure 1.15 will be 
displayed and the user can choose from several options for printing. 

The details of this filter design can now be saved by selecting Save or Save 
As from the File menu. After saving the information, you can exit the program by 
selecting Exit from the File menu. Further details about the WFilter program will 
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be presented in the chapters to come. We will have many more chances to use this 
program as we develop the theory behind analog and digital filter design. 

 

 
 
Figure 1.15  Print dialog box. 

1.5  CONCLUSION 

At this point we have provided an introduction to filter design by providing the 
standard definitions used to describe filters. We have also introduced WFilter, a 
powerful filter design software package. But we still need to learn the theory 
behind filter design and how we can design and implement the filters. We’ll begin 
in the next chapter to study the design of analog filters. For those interested in the 
C code used in the design and implementation of filters, please refer to Appendix 
C–I.  
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Chapter 2 

Analog Filter Approximation Functions 

As indicated in the first chapter, an ideal filter is unattainable; the best we can do 
is to approximate it. There are a number of approximations we can use based on 
how we want to define “best.” In this chapter we discuss four methods of 
approximation, each using a slightly different definition. Four sections are devoted 
to the major approximation methods used in analog filter design: the Butterworth, 
Chebyshev, inverse Chebyshev, and elliptic approximations. In each of these 
sections we determine the order of the filter required given the filter’s 
specifications and the required normalized transfer function to satisfy the 
specifications. In the following section we discuss the relative advantages and 
disadvantages of using these approximation methods. But first we begin this 
chapter by describing analog filters mathematically in the form of linear system 
transfer functions. 

2.1  FILTER TRANSFER FUNCTIONS 

 
An analog filter is a linear system that has an input and output signal. This 
system’s primary purpose is to change the frequency response characteristics of 
the input signal as it moves through the filter. The characteristics of this filter 
system could be studied in the time domain or the frequency domain. From a 
systems point of view, the impulse response h(t) could be used to describe the 
system in the time domain. The impulse response of a system is the output of a 
system that has had an impulse applied to the input. Of course, many systems 
would not be able to sustain an infinite spike (the impulse) being applied to the 
input of the system, but there are ways to determine h(t) without actually applying 
the impulse. 

A filter system can also be described in the frequency domain by using the 
transfer function H(s). The transfer function of the system can be determined by 
finding the Laplace transform of h(t). Figure 2.1 indicates that the filter system 
can be considered either in the time domain or in the frequency domain. However, 
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the transfer function description is the predominant method used in filter design, 
and we will perform most of our filter design using it. 

 

 
 

Figure 2.1  The filter as a system. 

2.1.1  Transfer Function Characterization 

The transfer function H(s) for a filter system can be characterized in a number of 
ways. As shown in (2.1), H(s) is typically represented as the ratio of two 
polynomials in s where in this case the numerator polynomial is order m and the 
denominator is a polynomial of order n. G represents an overall gain constant that 
can take on any value. 
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Alternately, the polynomials can be factored to give a form as shown in (2.2). 
In this representation, the numerator and denominator polynomials have been 
separated into first-order factors. The zs represent the roots of the numerator and 
are referred to as the zeros of the transfer function. Similarly, the ps represent the 
roots of the denominator and are referred to as the poles of the transfer function. 
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Most of the poles and zeros in filter design will be complex valued and will 
occur as complex conjugate pairs. In this case, it will be more convenient to 
represent the transfer function as a ratio of quadratic terms that combine the 
individual complex conjugate factors as shown in (2.3). The first-order factors that 
are included will be present only if the numerator or denominator polynomial 
orders are odd. We will be using this form for most of the analog filter design 
material. 
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As an example of each expression, consider the three forms of a transfer 
function that have a second-order numerator and third-order denominator: 
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2.1.2  Pole-Zero Plots and Transfer Functions 

When the quadratic form of the transfer function is used, it is easy to generate the 
pole-zero plot for a particular transfer function. The pole-zero plot simply plots 
the roots of the numerator (zeros) and the denominator (poles) on the complex s-
plane. As an example, the pole-zero plot for the sample transfer function given in 
(2.4) is shown in Figure 2.2. 

 

 
 

Figure 2.2  Pole-zero plot for (2.4). 
 
A pole is traditionally represented by an X and a zero by an O. If the transfer 

function is odd, the first-order pole or zero will be located on the real axis. All 
poles and zeros from the quadratic factors are symmetrically located pairs in the 
complex plane on opposite sides of the real axis. The gain of the transfer function 
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must be indicated on the plot or the information would be incomplete. Note that 
there are only two zeros shown, but there is one located at infinity. We can verify 
this by observing that if we were to allow |s| to approach infinity, |H(s)| would 
approach zero. Transfer functions always have the same number of poles and 
zeros, but some exist at infinity. 

Conversely, we can also determine a filter’s transfer function from the pole-
zero plot. In general, any critical frequency (pole or zero) is specified by 
indicating the real (σ) and imaginary (ω) component. The transfer function would 
then include a factor of [s − (σ + jω)]. If the critical frequency is complex, we can 
combine the two complex conjugate factors into a single quadratic factor by 
multiplying them as shown in (2.5): 

  (2.5) )(2)]([)]([ 222 ωσσωσωσ ++⋅⋅−=−−⋅+− ssjsjs

Example 2.1  Generating a Transfer Function from a Pole-Zero Plot 

Problem: Assume that a pole-zero plot shows poles at (−3 ± j2) and (−4.5) 
and zeros at (−5 ± j1) and (−1). Determine the transfer function if its gain is 1.0 at 
s = 0. 

Solution: Using the technique of (2.5), the complex conjugate poles and 
zeros can be combined into quadratic factors as indicated. The first-order factors 
are handled directly and the gain is included in the numerator. The easiest method 
to use when given a gain requirement of 1.0 at s = 0 is to prepare each factor 
independently to have a gain of 1 at that frequency as shown in the first transfer 
function. Then the set of constants can be combined as shown in the second 
equation. 
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2.1.3  Normalized Transfer Functions 

In this chapter we concentrate on developing what is referred to as a normalized 
transfer function. A normalized lowpass transfer function is one in which the 
passband edge radian frequency is set to 1 rad/sec. Of course, this seems a rather 
unusual frequency, since seldom would a lowpass filter be required to have such a 
low frequency. However, the technique actually allows the filter designer 
considerable latitude in designing filters because a normalized transfer function 
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can easily be unnormalized to any other frequency. In the next chapter, we will 
discuss in detail the procedures used to unnormalize lowpass filters to other 
frequencies and even learn how to translate a lowpass filter to a highpass, 
bandpass, or bandstop filter. 

Before we begin the development of the approximation functions for analog 
filters, it may be helpful to go over the general approach taken in these sections. In 
each case, the general characteristics of the approximation method will be 
discussed, including its relative advantages and disadvantages. Next, a description 
of the transfer function for each approximation will be given. There will be no 
attempt to give an exhaustive derivation of each approximation method in this 
text; there are more than enough sources of theoretical developments already 
available. (A list of references for material presented in this chapter is given in 
Appendix A. The texts by Daniels, Van Valkenburg, and Parks/Burrus are 
particularly helpful when studying approximation theory.) We will then determine 
numerical methods to find the order and the coefficients of the transfer function 
necessary to meet the filter specifications. 

2.2  BUTTERWORTH NORMALIZED APPROXIMATION FUNCTIONS 

The Butterworth approximation function is often called the maximally flat 
response because no other approximation has a smoother transition through the 
passband to the stopband. The phase response also is very smooth, which is 
important when considering distortion. The lowpass Butterworth polynomial has 
an all-pole transfer function with no finite zeros present. It is the approximation 
method of choice when low phase distortion and moderate selectivity are required. 

2.2.1  Butterworth Magnitude Response 

Equation 2.6 gives the Butterworth approximation’s magnitude response where ωo 
is the passband edge frequency for the filter, n is the order of the approximation 
function, and ε is the passband gain adjustment factor. The transfer functions will 
carry subscripts to help identify them in this chapter. In this case, the subscript B 
indicates a Butterworth filter, and n indicates an nth-order transfer function. 
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where 

 110 pass1.0 −= ⋅− aε  (2.7) 
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If we set both ε = 1 and ωo = 1, the filter will have a gain of 1/2 or −3.01 dB 
at the normalized passband edge frequency of 1 rad/sec. 

The Butterworth approximation has a number of interesting properties. First, 
the response will always have unity gain at ω = 0, no matter what value is given to 
ε. However, the gain at the normalized passband edge frequency of ω = 1 will 
depend on the value of ε. In addition, the response gain decreases by a factor of 
−20n dB per decade of frequency change. That happens because for large ω, the 
transfer function gain becomes inversely proportional to ω, which increases by 10 
for every decade. (A decade in frequency is a ratio of 10. For example, the span of 
frequencies from 1 to 10 rad/sec and the span of frequencies from 1,000 to 10,000 
Hz are both referred to as one decade.) Therefore, if we design a fifth-order 
Butterworth filter, the gain will decrease 100 dB per decade for frequencies above 
the passband edge frequency. 

 

2.2.2  Butterworth Order 

The order of the Butterworth filter is dependent on the specifications provided by 
the user. These specifications include the edge frequencies and gains. The 
standard formula for the Butterworth order calculation is given in (2.8). In this 
formulation, note that it is the ratio of the stopband and passband frequencies 
which is important, not either one of these independently. This means that a filter 
with a given set of gains will require the same order whether the edge frequencies 
are 100 and 200 rad/sec or 100,000 and 200,000 Hz. The value of n calculated 
using this equation must always be rounded to the next highest integer in order to 
guarantee that the specifications will be met by the integer order of the filter 
designed: 
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2.2.3  Butterworth Pole Locations 

The poles for a Butterworth approximation function are equally spaced around a 
circle in the s-plane and are symmetrical about the jω axis. Plotting the poles of 
the magnitude-squared function |H(s)|2 shows twice as many poles as the order of 
the filter. We are able to determine the Butterworth transfer function from the 
poles in the left half plane (LHP) that produce a stable system. In order to 
determine the exact pole positions in the s-plane we use the polar form for 
specifying the complex location. For each of the poles, we must know the distance 
from the origin (the radius of the circle) and the angle from the positive real axis. 
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The radius of the circle for our normalized case is a function of the passband 
gain and is given in (2.9): 

  (2.9) nR /1−= ε

Once the radius of the circle is known, the pole positions are determined by 
calculating the necessary angles. Equation 2.10 can be used to determine the 
angles for those complex poles in the second quadrant: 
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It is important to remember that in this equation θm represents only the angles 
in the second quadrant that have complex conjugates in the third quadrant. In 
other words, θm does not include the pole on the real axis for odd-order functions. 
For this reason, (2.10b) is valid only for odd-order filters where n ≥ 3 since a first-
order filter would have no complex conjugate poles. (We’ll see that this definition 
allows a cleaner algorithm for the C code that is discussed in Appendix D.) The 
precise pole locations can then be determined from (2.11) and (2.12): 

 )cos( mm R θσ ⋅=  (2.11) 

 )sin( mm R θω ⋅=  (2.12) 

In the case of odd-order transfer functions, the first-order pole will be located 
at a position σR equal to the radius of the circle as indicated in (2.13): 

 RR −=σ  (2.13) 

2.2.4  Butterworth Transfer Functions 

The Butterworth transfer function can be determined from the pole locations in the 
LHP as we saw in the first section of this chapter. Since most of these poles are 
complex conjugate pairs (except for the possible pole on the real axis for odd 
orders), we can get all of the information we need from the poles in the second 
quadrant. The complete approximation transfer function can be determined from a 
combination of a first-order factor (for odd orders) and quadratic factors. Each of 
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these  factors  will  have a  constant  in the numerator to adjust the gain to unity at 
ω = 0 as illustrated in Example 2.1. We start by defining the form of the first-order 
factor in (2.14). Note that at this point the transfer function variables are 
represented by an uppercase S where prior to this we have been using a lowercase 
s. This is an attempt to distinguish between the normalized transfer function (using 
S) and the unnormalized functions (using s), which will be developed in the next 
chapter. 
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For each complex conjugate pole in the second quadrant, there will be the 
following quadratic factor in the transfer function: 
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The complete Butterworth transfer function can now be defined as shown in 
(2.18): 
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We have now reached a point where some examples are in order. First, we 
will consider some numerical examples, and then test the WFilter program on the 
same specifications. 

Example 2.2  Butterworth Third-Order Normalized Transfer Function 

Problem: Determine the order, pole locations, and transfer function 
coefficients for a Butterworth filter to satisfy the following specifications: 

 apass = −1 dB, astop = −12 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

Solution: First, we determine the fundamental constants needed from (2.7)–
(2.9): 

 ε = 0.508847  n = 2.92 (3rd order) R = 1.252576 

Next, we find the locations of the first-order pole and the complex pole in the 
second quadrant from (2.10)–(2.13). A graph of the pole locations (including 
those from the magnitude-squared function in the right-half plane) is shown in 
Figure 2.3. 

(1st order)  σR = −1.252576  ωR = 0.0 
θ0 = 2π/3  σ0 = −0.626288  ω0 = 1.084763 

Finally, we generate the transfer function from (2.14)–(2.18): 
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Figure 2.3  Pole locations for third-order Butterworth normalized filter. 
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In order to use WFilter to determine the normalized transfer functions, we 
will assume a passband edge frequency of 1 rad/sec (0.159154943092 Hz) and a 
stopband edge frequency of 2 rad/sec (0.318309886184 Hz). (We must enter the 
frequencies into WFilter using the hertz values and they must have more 
significant digits than we require in our answer.) Twelve significant digits were 
used to enter the edge frequencies, but they are displayed on the coefficient screen 
with only ten significant digits. Rest assured that they are stored internally with 
the higher accuracy, but the display is set for the more typical requirements of 
filter frequency. The coefficient values determined are shown in Figure 2.4. 
 

Butterworth 3rd-Order Normalized Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Butterworth 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -12.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 03 
Overall Filter Gain: 1.00000000000E+00 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  1.25257638818E+00 
02 0.0  0.00000000000E+00  1.56894760823E+00 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  1.00000000000E+00  1.25257638818E+00 
02 1.0  1.25257638818E+00  1.56894760823E+00 

 
Figure 2.4  Butterworth normalized third-order coefficients from WFilter. 

Example 2.3  Butterworth Fourth-Order Normalized Transfer Function 

Problem: Determine the order, pole locations, and transfer function 
coefficients for a Butterworth filter to satisfy the following specifications: 

 apass = −1 dB, astop = −18 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

Solution: First, we determine the constants needed from (2.7)–(2.9): 

 ε = 0.508847  n = 3.95 (4th order) R = 1.184004 

Next, we find the locations of the two complex poles in the second quadrant 
from (2.10)–(2.13). A graph of the pole locations is shown in Figure 2.5. 

θ0 = 5π/8  σ0 = −0.453099  ω0 = +1.093877 
θ1 = 7π/8  σ1 = −1.093877  ω1 = +0.453099 
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Finally, we generate the transfer function from (2.14)–(2.18). The coefficient 
values determined by WFilter are shown in Figure 2.6. 
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Figure 2.5  Pole locations for fourth-order Butterworth normalized filter. 
 

Butterworth 4th-Order Normalized Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Butterworth 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -18.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 04 
Overall Filter Gain: 1.00000000000E+00 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  1.40186544588E+00 
02 0.0  0.00000000000E+00  1.40186544588E+00 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  9.06197420862E-01  1.40186544588E+00 
02 1.0  2.18775410363E+00  1.40186544588E+00 

 
Figure 2.6  Butterworth normalized fourth-order coefficients from WFilter. 
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The associated magnitude and phase responses for the previous two examples 
are shown in Figures 2.7 and 2.8 and illustrate the difference between a third-
order and fourth-order filter. Notice that the magnitude response uses a different 
scale for the passband and stopband response. (WFilter does not put two different 
responses on the same graph or use different scales for passband and stopband. 
They are displayed here in that manner for ease of comparison. However, the 
magnitude scale of WFilter can be changed on different graphs to provide more 
detail.) 

 

 
 

Figure 2.7  Butterworth third-order and fourth-order magnitude responses. 
 

 
 

Figure 2.8  Butterworth third-order and fourth-order phase responses. 
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2.3  CHEBYSHEV NORMALIZED APPROXIMATION FUNCTIONS 

The Chebyshev approximation function also has an all-pole transfer function like 
the Butterworth approximation. However, unlike the Butterworth case, the 
Chebyshev filter allows variation or ripple in the passband of the filter. This 
reduction in the restrictions placed on the characteristics of the passband enables 
the transition characteristics of the Chebyshev to be steeper than the Butterworth 
transition. Because of this more rapid transition, the Chebyshev filter is able to 
satisfy user specifications with lower-order filters than the Butterworth case. 
However, the phase response is not as linear as the Butterworth case, and therefore 
if low phase distortion is a priority, the Chebyshev approximation may not be the 
best choice. 

 

2.3.1  Chebyshev Magnitude Response 

The magnitude response function for the Chebyshev approximation is shown in 
(2.19): 
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where the definition of ε is again 

 110 pass1.0 −= ⋅− aε  (2.20) 

and Cn(ω) is the Chebyshev polynomial of the first kind of degree n. The 
normalized Chebyshev polynomial (ωo = 1) is defined as 

  (2.21a) 0    ,] )(cos cos[)( 1 ≤⋅= − ωωω nCn

  (2.21b) 0 >   ,] )(cosh cosh[)( 1 ωωω −⋅= nCn

We can see that the mathematical description used for this approximation is 
more involved than the Butterworth case. We will be concerned with the 
expression where ω > 0, but the Chebyshev polynomial has many interesting 
features which are discussed in the references at the end of this text. 
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2.3.2  Chebyshev Order 

The order of the Chebyshev filter will be dependent on the specifications provided 
by the user. The general form of the calculation for the order is the same as for the 
Butterworth, except that the inverse hyperbolic cosine function is used in place of 
the common logarithm function. As in the Butterworth case, the value of n 
actually calculated must be rounded to the next highest integer in order to 
guarantee that the specifications will be met. 
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2.3.3  Chebyshev Pole Locations 

The poles for a Chebyshev approximation function are located on an ellipse 
instead of a circle as in the Butterworth case. The ellipse is centered at the origin 
of the s-plane with its major axis along the jω axis with intercepts of ± cosh(D), 
while the minor axis is along the real axis with intercepts of ± sinh(D). The 
variable D is defined as 

 
n

D )(sinh 11 −−

=
ε  (2.23) 

The pole locations can be defined in terms of D and an angle φ as shown in 
(2.24). The angles determined locate the poles of the transfer function in the first 
quadrant. However, we can use them to find the poles in the second quadrant by 
simply changing the sign of the real part of each complex pole. The real and 
imaginary components of the pole locations can now be defined as shown in 
(2.25) and (2.26): 
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 )cos()cosh( mm D φω ⋅=  (2.26) 

If the function has an odd-order, there will be a real pole located in the LHP 
as indicted by (2.27): 

 )sinh(DR −=σ  (2.27) 

2.3.4  Chebyshev Transfer Functions 

Using the results of (2.27), we know that an odd-order Chebyshev transfer 
function will have a factor of the form illustrated in (2.28): 
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The quadratic factors for the Chebyshev transfer function will take on exactly 

the same form as the Butterworth case, as shown below: 
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We are now just about ready to define the general form of the Chebyshev 
transfer function. However, one small detail still must be considered. Because 
there is ripple in the passband, Chebyshev even and odd-order approximations do 
not have the same gain at ω = 0. As seen in Figure 2.13 (a result of a future 
example), each approximation has a number of half-cycles of ripple in the 
passband equal to the order of the filter. This forces even-order filters to have a 
gain of apass at ω = 0. However, the first-order and quadratic factors we have 
defined are all set to give 0 dB gain at ω = 0. Therefore, if no adjustment of gain is 
made to even-order Chebyshev approximations, they would have a gain of 0 dB at 
ω = 0 and a gain of −apass (that is, a gain greater than 1.0) at certain other 
frequencies where the ripple peaks. A gain constant must therefore be included for 
even-order transfer functions with the value of 
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  (2.32) pass05.010 aG ⋅=

We are now ready to define a generalized transfer function for the Chebyshev 
approximation function as shown below: 
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It is again time to consider some numerical examples before using WFilter to 
determine the filter coefficients. 

 

Example 2.4  Chebyshev Third-Order Normalized Transfer Function 

Problem: Determine the order, pole locations, and coefficients of the transfer 
function for a Chebyshev filter to satisfy the following specifications: 

 apass = −1 dB, astop = −22 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

Solution: First, we determine the fundamental constants needed from (2.20), 
(2.22), and (2.23): 

ε = 0.508847  n = 2.96 (3rd order) 
D = 0.475992  cosh(D) = 1.115439 sinh(D) = 0.494171 

 
Next, we find the locations of the first-order pole and the complex pole in the 

second quadrant from (2.24)–(2.27). A plot of the poles is shown in Figure 2.9: 

(1st order)  σR = −0.494171  ωR = 0.0 
φ0 = 1π/6  σ0 = −0.247085  ω0 = +0.965999 

Finally, we generate the transfer function from (2.28)–(2.33). The results 
from WFilter are shown in Figure 2.10. 
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Figure 2.9  Pole locations for third-order Chebyshev normalized filter. 
 
 

Chebyshev 3rd-Order Normalized Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Chebyshev 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -22.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 03 
Overall Filter Gain: 1.00000000000E+00 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  4.94170604943E-01 
02 0.0  0.00000000000E+00  9.94204586790E-01 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  1.00000000000E+00  4.94170604943E-01 
02 1.0  4.94170604943E-01  9.94204586790E-01 

 
Figure 2.10  Chebyshev normalized third-order coefficients from WFilter. 
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Example 2.5  Chebyshev Fourth-Order Normalized Transfer Function 

Problem: Determine the order, pole locations, and transfer function 
coefficients for a Chebyshev filter to satisfy the following specifications: 

 apass = −1 dB, astop = −33 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

 
Solution: First, we determine the fundamental constants needed from (2.20), 

(2.22), and (2.23): 

ε = 0.508847  n = 3.92 (4th order) 
D = 0.356994  cosh(D) = 1.064402 sinh(D) = 0.364625 

 
Next, we find the locations of the two complex poles in the second quadrant 

from (2.24)–(2.27). A plot of the poles is shown in Figure 2.11. 

θ0= 1π/8   σ0 = −0.139536  ω0 = +0.983379 
θ1= 3π/8   σ1 = −0.336870  ω1 = +0.407329 

 
Finally, we generate the transfer function from (2.28)–(2.33). Note that in this 

even-order case, the gain constant of 0.891251 is included. The results from 
WFilter for this Chebyshev specification are shown in Figure 2.12. 
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Figure 2.11  Pole locations for fourth-order Chebyshev normalized filter. 
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The magnitude and phase responses for the third and fourth-order Chebyshev 
filters are shown in Figures 2.13 and 2.14. 

 
 

Chebyshev 4th-Order Normalized Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Chebyshev 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -33.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 04 
Overall Filter Gain: 8.91250938134E-01 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  9.86504875318E-01 
02 0.0  0.00000000000E+00  2.79398094130E-01 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  2.79071991811E-01  9.86504875318E-01 
02 1.0  6.73739387509E-01  2.79398094130E-01 

 
 
Figure 2.12  Chebyshev normalized fourth-order coefficients from WFilter. 

 
 

 
 
 

Figure 2.13  Chebyshev third-order and fourth-order magnitude responses. 
 



34 Practical Analog and Digital Filter Design 

 
 

Figure 2.14  Chebyshev third-order and fourth-order phase responses. 

2.4  INVERSE CHEBYSHEV NORMALIZED APPROXIMATION 
FUNCTIONS 

 
The inverse Chebyshev approximation function, also called the Chebyshev type II 
function, is a rational approximation with both poles and zeros in its transfer 
function. This approximation has a smooth, maximally flat response in the 
passband, just as the Butterworth approximation, but has ripple in the stopband 
caused by the zeros of the transfer function. The inverse Chebyshev 
approximation provides better transition characteristics than the Butterworth filter 
and better phase response than the standard Chebyshev. Although the inverse 
Chebyshev has these features to recommend it to the filter designer, it is more 
involved to design. 

 

2.4.1  Inverse Chebyshev Magnitude Response 

The development of the inverse Chebyshev response is derived from the standard 
Chebyshev response. We will discuss the methods needed to determine the inverse 
Chebyshev approximation function while leaving the intricate details to the 
reference works. The name “inverse Chebyshev” is well-deserved in this case 
since we will see that many of the computations are based on inverse or reciprocal 
values from the standard computations. Let’s begin with the definition of the 
magnitude frequency response function as shown in (2.34). 

The first observation concerning (2.34) is that it indeed has a numerator 
portion that allows for the finite zeros in the transfer function. Upon closer 
inspection, we find the use of εi in place of ε. Equation (2.35) indicates εi, the 
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inverse of ε, where apass is replaced with astop. Because of the differences, we will 
use the subscript to distinguish εi from the standard ε. Although Cn still represents 
the Chebyshev polynomial of the first kind of degree n as defined in (2.21), we 
notice that  the argument of the function  is the inverse of  the standard  definition 
(ωo/ω instead of ω/ωo). We will see a little later in this section how these 
differences affect our determination of the poles and zeros of the transfer function. 
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2.4.2  Inverse Chebyshev Order 

Because of the nature of the derivation of the inverse Chebyshev approximation 
function from the standard Chebyshev approximation, it should come as no 
surprise that the calculation of the order for an inverse Chebyshev is the same as 
for the standard Chebyshev. The expression is given in (2.36) and is the same as 
(2.22) except for the subscript I designating the calculation as the inverse 
Chebyshev order: 
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2.4.3  Inverse Chebyshev Pole-Zero Locations 

The determination of the pole locations for the normalized inverse Chebyshev 
approximation is based on techniques similar to those used for the standard 
normalized Chebyshev approximation. The pole positions for the inverse 
Chebyshev case are found using the same values of φm, but the value of εi is 
calculated differently. Once the pole positions are found, however, the inverse 
Chebyshev poles are the reciprocals of the standard poles. (There’s that inverse 
relationship again.) For example, if there exists a standard Chebyshev pole at 

 ωσ jp +=  (2.37) 
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then the reciprocal of p gives the inverse Chebyshev pole position as 
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Notice that if a pole’s distance from the origin is greater than one, the 
reciprocal’s distance will be less than one, and vice versa. In addition, the position 
of the pole is reflected across the real axis, so although the original pole position 
may be in the second quadrant, the reciprocal is located in the third quadrant. 
Consequently, if we are able to determine pole positions for the standard 
Chebyshev approximation function as discussed in the previous section, we should 
have little problem finding the inverse Chebyshev pole locations. 

Let’s derive the mathematical equations necessary to determine the pole 
locations for the inverse Chebyshev approximation function along the same lines 
as we did for the standard Chebyshev case. First, Di will be defined in terms of εi 
in (2.39). 
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Next, we can define the pole locations in the second quadrant in the manner 
of the previous section as shown in (2.40)–(2.42), remembering that these primed 
values must still be inverted. 
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We can determine the final pole locations by inverting these poles as 
indicated in (2.43) and (2.44): 
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If the approximation function is odd-order, then there will be a first-order 
pole on the negative real axis at σR as defined in (2.45): 

  (2.45) 1)][sinh( −−= iR Dσ

Next, we need to determine the placement of the finite zeros of the inverse 
Chebyshev approximation function, which are all purely imaginary complex 
conjugate pairs located on the jω axis. Because they only occur in pairs, the 
numerator of an inverse Chebyshev transfer function will always be even. If the 
order of the denominator is odd, then one zero of the transfer function will be 
located at infinity. The location of the zeros on the jω axis is determined by (2.46) 
and (2.47), where φm is as defined in (2.42). A z is used in the subscript to 
differentiate the zero locations from the pole locations. (By the way, did you 
notice that the secant function in (2.47) is the reciprocal of the cosine function 
used in the standard Chebyshev function?) 

 0.0=zmσ  (2.46) 

 )sec( mzm φω =  (2.47) 

2.4.4  Inverse Chebyshev Transfer Functions 

Now that we have located the necessary poles and zeros that are pertinent to the 
definition of the inverse Chebyshev approximation, we can define the various 
factors that describe the transfer function. First, for odd-order approximations, 
(2.48) describes the first-order factor: 
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Next, the quadratic components of the transfer function are described in 
(2.49)–(2.53). These are similar to the quadratic definition for the Chebyshev case, 
but we have added a numerator quadratic for the zeros as well. 

 
)(
)(

)(
21

2
2

21
2

2

mmm

mmm
m

BSBSA
ASASB

SH
+⋅+⋅

+⋅+⋅
=  (2.49) 



38 Practical Analog and Digital Filter Design 

where 

 mmB σ⋅−= 21  (2.50) 

  (2.51) 22
2 mmmB ωσ +=

 0.021 =⋅−= zmmA σ  (2.52) 

  (2.53) 222
2 zmzmzmmA ωωσ =+=

Although the value of A1m is zero, it is included to be consistent with the 
format used throughout the remainder of the text. 

We are now ready to define the generalized transfer function form for the 
inverse Chebyshev approximation function shown in (2.54). Since the inverse 
Chebyshev has a maximally flat response in the passband as the Butterworth, there 
is no need for a gain adjustment constant as in the standard Chebyshev case. 
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The following numerical examples should help to illustrate the process. 

Example 2.6  Inverse Chebyshev Third-Order Normalized Transfer Function 

Problem: Determine the order, pole and zero locations, and transfer function 
coefficients for an inverse Chebyshev filter to satisfy the following specifications: 

 apass = −1 dB, astop = −22 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 
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Solution: First, we determine the fundamental constants needed from (2.35), 
(2.36), and (2.39): 

εi = 0.079685 n = 2.96 (3rd order) 
Di = 1.074803 cosh(Di) = 1.635391 sinh(Di)  = 1.294026 

Next, we find the locations of the first-order pole, the complex pole in the 
second quadrant, and the second-order zeros on the jω axis from (2.40)–(2.47). A 
pole-zero plot is shown in Figure 2.15. 

(1st order) σR = −0.772782  ωR = 0.0 
φ0 = 1π/6 σ‘0 = −0.647013  ω‘0 = +1.416290 
  σ0 = −0.266864  ω0 = −0.584157 
(zeros)  σz0 = +0.0  ωz0 = +1.154701 

  
Finally, we generate the transfer function from (2.48)–(2.54): 
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Figure 2.15  Pole and zero locations for third-order inverse Chebyshev filter. 
 

There is a problem with the first transfer function above (shown with an 
asterisk *). It implements an inverse Chebyshev approximation function that is 
normalized to ωstop = 1 rad/sec instead of ωpass = 1 rad/sec. (This means that ωpass 
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would be at 0.5 rad/sec.) Therefore the entire frequency response is a factor of 2 
too low. The attenuation at ω = 0.5 rad/sec is    ~ 1 dB and the attenuation at ω = 1 
rad/sec is ~22 dB. The process we use to correct the problem is actually an 
unnormalization procedure that is covered in Chapter 3. This unnormalization will 
usually occur as part of the total filter design process, but we can make the 
adjustment manually in this particular case. The correct transfer function can be 
determined by substituting S/2 for S and then simplifying as indicated in the 
second transfer function above. This process is mentioned here so we understand 
the WFilter coefficients, which are shown in Figure 2.16. 

 
Inv. Chebyshev 3rd-Order Normal. Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Inv. Chebyshev 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -22.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 03 
Overall Filter Gain: 3.09341803036E-01 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  1.54556432589E+00 
02 1.0  0.00000000000E+00  5.33333333334E+00 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  1.00000000000E+00  1.54556432589E+00 
02 1.0  1.06745667061E+00  1.64982294953E+00 

 
 
Figure 2.16  Inverse Chebyshev normalized third-order coefficients from WFilter. 
 

Example 2.7  Inverse Chebyshev Fourth-Order Normalized Transfer 
Function 

Problem: Determine the order, pole and zero locations, and transfer function 
coefficients for an inverse Chebyshev filter to satisfy the following specifications: 

 apass = −1 dB, astop = −33 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

Solution: First, we determine the fundamental constants needed from (2.35), 
(2.36), and (2.39): 

εi = 0.022393 n = 3.92 (4th order)  
Di = 1.123072 cosh(Di) = 1.699781 sinh(Di) = 1.374502 
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Next, we find the locations of the two complex poles in the second quadrant 
and the second-order zeros from (2.40)–(2.47). A pole-zero plot is shown in 
Figure 2.17.  

φ0= 1π/8  σ‘0 = −0.525999  ω‘0 = +1.570393 
  σ0 = −0.191774  ω0 = −0.572549 
φ0= 3π/8  σ‘0 = −1.269874  ω‘0 = +0.650478 
  σ0 = −0.623801  ω0 = −0.319535 
(Zeros)  σz0 = +0.0  ωz0 = +1.082392 
(Zeros)  σz1 = +0.0  ωz1 = +2.613126 

 
Finally, we generate the transfer function from (2.48)–(2.54). (Refer to 

Example 2.6 for an explanation of the two transfer functions.) The WFilter 
coefficients are shown in Figure 2.18.  
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Figure 2.17  Pole and zero locations for fourth-order inverse Chebyshev filter. 
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Inv. Chebyshev 4th-Order Normal. Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Inv. Chebyshev 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -33.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 04 
Overall Filter Gain: 2.23872113857E-02 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  0.00000000000E+00  4.68629150102E+00 
02 1.0  0.00000000000E+00  2.73137084990E+01 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  7.67095479088E-01  1.45835864853E+00 
02 1.0  2.49520593780E+00  1.96492341597E+00 

 
Figure 2.18  Inverse Chebyshev normalized fourth-order coefficients. 
 
 

The magnitude and phase responses for the two inverse Chebyshev examples 
are presented in Figures 2.19 and 2.20. The same procedure was used as in the 
Butterworth and Chebyshev cases. 
 

 
 

Figure 2.19  Inverse Chebyshev third-order and fourth-order magnitude 
responses. 
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Figure 2.20  Inverse Chebyshev third-order and fourth-order phase responses. 

2.5  ELLIPTIC NORMALIZED APPROXIMATION FUNCTIONS 

The elliptic or Cauer approximation function provides the best selectivity 
characteristic of any of the approximation methods discussed thus far. No other 
approximation method will be able to provide a lower-order filter for the 
specifications provided. The elliptic filter combines ripple in the passband and 
stopband in order to accomplish this feat. However, the elliptic approximation is 
also the most difficult to design. It involves the most sophisticated mathematical 
functions of any of the methods discussed in this text. Luckily, many good minds 
have laid the foundation for this work and their results will be presented here so 
that we can put the design procedure into a workable algorithm. 

2.5.1  Elliptic Magnitude Response 

The elliptic approximation’s magnitude frequency response function is shown in 
(2.55), where Rn is the Chebyshev rational function of order n. Rn is composed of 
both numerator and denominator portions, which allow an equiripple response in 
both the passband and stopband. 

The Chebyshev rational function Rn and much of elliptic approximation 
theory is based on the elliptic integral and the Jacobian elliptic functions. These 
functions can be evaluated via advanced mathematical packages available for most 
computers and are discussed in Appendix D. The incomplete elliptic integral of 
the first kind is shown in (2.57), where k is referred to as the modulus and φ is the 
amplitude of the integral. The modulus k must be less than or equal to 1 for the 
elliptic integral to be real. The elliptic sine, cosine, tangent, and difference 
functions based on the elliptic integral are given in (2.58)–(2.61), respectively. 
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These functions are used in the calculation of the pole-zero locations in the next 
section. 
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where ε is as defined previously. 
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The complete elliptic integral of the first kind will be used more often than the 

incomplete integral and it is defined in (2.62). It should be noted at this point that 
there are various ways to define the elliptic integrals and elliptic functions. Some 
authors use the modulus k as we have in this text, while others use other 
parameters related to k. 
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2.5.2  Elliptic Order 

The order of the elliptic approximation function required to meet the 
specifications for a filter is given in (2.63): 
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where CEI refers to the complete elliptic integral, and the ratio rt and the kernel kn 
are defined as 

 stoppass /ωω=rt  (2.64) 

 )110/()110( stoppass 1.01.0 −−= −− aakn  (2.65) 

Example 2.8  Elliptic Order Calculation 

Problem: Determine the order of an elliptic filter required to satisfy the 
following specifications: 

 apass = −1 dB, astop = −34 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

Solution: In order to determine the order of the elliptic approximation, we 
first determine that rt = 0.5 and kn = 0.0101548. Then, using any appropriate math 
package, we can determine that 

 97.2
571.1157.2
976.5686.1

=
⋅
⋅

=En  

which indicates that a third-order filter will be required. Notice that the standard 
and inverse Chebyshev approximations require a fourth-order function to provide 
astop = −33 dB and a Butterworth approximation would require a seventh-order 
function to meet this specification. 

2.5.3  Elliptic Pole-Zero Locations 

The pole and zero locations for the elliptic approximation function are also 
dependent on the elliptic integral and the elliptic functions defined in the previous 
section. We’ll start by defining a variable vo, which is used in the calculation of 
the pole and zero locations. 
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Next, the pole’s real and imaginary components are determined as 
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where 
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Note the negative sign for σm, which effectively moves the pole location from the 
first quadrant to the second quadrant. 

 
In the case of odd-order approximations, the first-order denominator pole will 

be located on the negative real axis at 
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And finally, the location of the zeros that will be purely imaginary on the jω 

axis are given by 

 0.0=zmσ  (2.71) 
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 [ ]rtmfsnrtzm ),(
1

⋅
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Although the elliptic approximation requires a number of mathematical 
functions which aren’t in everyday usage, we have most of the hard work done in 
determining the transfer function we need. Our primary objective in this section is 
to develop an orderly manner to calculate the pole and zero locations. 

2.5.4  Elliptic Transfer Functions 

Now we are able to define the first-order and quadratic factors that will make up 
the elliptic approximation function. The first-order factor for the elliptic 
approximation is indicated in (2.73), where σR is as indicated in (2.70). Again, 
there is no matching finite zero for the first-order pole factor; it is located at 
infinity. 
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The form of the quadratic components of the transfer function will also be 
identical to the inverse Chebyshev case, as indicated below: 
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where 

 mmB σ⋅−= 21  (2.75) 

  (2.76) 22
2 mmmB ωσ +=

 0.021 =⋅−= zmmA σ  (2.77) 

  (2.78) 222
2 zmzmzmmA ωωσ =+=

We are now ready to define a generalized transfer function for the elliptic 
approximation function that is almost identical to the inverse Chebyshev case. The 
difference lies in the ripple in the passband as in the standard Chebyshev case. 
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Consequently, the even-order ripple adjustment factor is included in (2.79). The 
ratio of product factors is combined with this value to determine the total gain 
adjustment: 
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Example 2.9  Elliptic Third-Order Normalized Transfer Function 

Problem: Determine the order, pole and zero locations, and transfer function 
coefficients for an elliptic filter to satisfy the following specifications: 

 apass = −1 dB, astop = −34 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

Solution: First, we determine the fundamental constants needed from (2.56) 
and (2.63)–(2.66): 

ε = 0.508847   n = 2.97 (3rd order) 
rt = 0.50    kn = 0.0101549 
CEI(rt) = 1.685750   CEI(kn) = 1.570837 
CEI[sqrt(1 − rt2)] = 2.156516 CEI[sqrt(1 − kn2)] = 5.976226 
vo = 0.510786 

Next, we find the locations of the first-order pole, the complex pole in the 
second quadrant, and the second-order zeros on the jω axis from (2.67)–(2.72). A 
pole-zero plot is shown in Figure 2.21. 

(1st order)  σR = −0.539953  ωR = 0.0 
f(0) = 1.123834  σ0 = −0.217032  ω0 = +0.981574 
(Zeros)   σz0 = +0.0  ωz0 = +2.270068 

Finally, we generate the transfer function from (2.73)–(2.79). The WFilter 
coefficients are given in Figure 2.22. 
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Figure 2.21  Pole and zero locations for third-order elliptic normalized filter. 
 
 
 

Elliptic 3rd-Order Normalized Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Elliptic 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -34.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 03 
Overall Filter Gain: 1.96108842659E-01 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  5.39953773543E-01 
02 1.0  0.00000000000E+00  5.15320911642E+00 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  1.00000000000E+00  5.39953773543E-01 
02 1.0  4.34064063925E-01  1.01058987580E+00 

 
Figure 2.22  Elliptic normalized third-order coefficients from WFilter. 
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Example 2.10  Elliptic Fourth-Order Normalized Transfer Function 

Problem: Determine the order, pole and zero locations, and transfer function 
coefficients for an elliptic filter to satisfy the following specifications: 

 apass = −1 dB, astop = −51 dB, ωpass = 1 rad/sec, and ωstop = 2 rad/sec 

Solution: First, we determine the fundamental constants needed: 

ε = 0.508847   n = 3.95 (4th order) 
rt = 0.50    kn = 0.00143413 
CEI(rt) = 1.685750   CEI(kn) = 1.570797 
CEI[sqrt(1 − rt2)] = 2.156516 CEI[sqrt(1 − kn2)] = 7.933494 
vo = 0.383119 

Next, we find the locations of the two complex poles in the second quadrant 
and the second-order zeros on the jω axis from (2.67)–(2.72). A pole-zero plot is 
shown in Figure 2.23. 

f(0) = 0.421438  σ0 = −0.351273  ω0 = +0.442498 
f(1) = 1.264313  σ1 = −0.121478  ω1 = +0.989176 
(Zeros)   σz0 = +0.0  ωz0 = +4.922113 
(Zeros)   σz0 = +0.0  ωz0 = +2.143189 

Finally, we generate the transfer function from (2.73)–(2.79). Note that in this 
even-order case, the gain constant of 0.891251 is included. The WFilter 
coefficients are given in Figure 2.24. 
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Figure 2.23  Pole and zero locations for fourth-order elliptic normalized filter. 
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Elliptic 4th-Order Normalized Lowpass 
 
Selectivity:        Lowpass 
Approximation:      Elliptic 
Implementation:     Analog 
Passband gain (dB): -1.0 
Stopband gain (dB): -51.0 
Passband freq (Hz): 0.1591549431 
Stopband freq (Hz): 0.3183098862 
 
Filter Length/Order: 04 
Overall Filter Gain: 2.53911536581E-03 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  0.00000000000E+00  2.42272011683E+01 
02 1.0  0.00000000000E+00  4.59326052578E+00 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  7.02545661306E-01  3.19196825769E-01 
02 1.0  2.42956737746E-01  9.93226261783E-01 

 
 

Figure 2.24  Elliptic normalized fourth-order coefficients from WFilter. 
 
 
The magnitude and phase responses for the elliptic filters are presented in 

Figures 2.25 and 2.26.  
 
 
 

 
 
 

Figure 2.25  Elliptic third-order and fourth-order magnitude responses. 
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Figure 2.26  Elliptic third-order and fourth-order phase responses. 

2.6  COMPARISON OF APPROXIMATION METHODS 

Now that we have discussed the four approximation methods and displayed third-
order and fourth-order magnitude and phase plots, we are in a position to compare 
the results. First, we look at the magnitude plots of Figures 2.7, 2.13, 2.19, and 
2.25. Table 2.1 shows the gains achieved at the stopband edge frequency of 2 
rad/sec for each normalized filter type and order. (Each filter was designed with a 
passband gain of −1 dB.) Obviously, if attenuation characteristics in the stopband 
are the primary concern, an elliptic filter would have to be the choice.  

It provides 12 dB more attenuation than the Chebyshev types and 22 dB more 
attenuation than the Butterworth filter for the third-order case. In the fourth-order 
case, the differences increase to over 18 and 33 dB compared to the Chebyshev 
and Butterworth filters. The Chebyshev filter types themselves afford better 
stopband characteristics when compared to the Butterworth filter. They provide 10 
and 15 dB more attenuation for the third-order and fourth-order cases. Although 
the table only lists the gains for third-order and fourth-order filters, the same trend 
continues for higher-order filters. 

Although the Chebyshev and inverse Chebyshev filters provide the same 
gains at the passband and stopband edge frequencies, their responses are not 
identical. If we were to take a close look at the frequency response in the 
passband, we would find that the inverse Chebyshev provides a better 
approximation to the ideal response except at frequencies very near to 1 (the 
normalized passband edge frequency). In that case, the standard Chebyshev 
produces a tighter fit. In the transition band, the standard Chebyshev response 
provides a more rapid transition. And in the stopband, the standard Chebyshev’s 
response continues to increase the attenuation as the frequency increases, while 
the inverse Chebyshev’s response alternates between small gains and astop. In 
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some cases, the filter designer might trade the faster transition for the 
nondecreasing attenuation.  

Table 2.1   
Comparison of Filter Gains at 2 rad/sec

Filter Type 3rd Order 4th Order 

Butterworth −12.5 dB −18.3 dB 

Chebyshev −22.5 dB −33.8 dB 

Inverse Chebyshev −22.5 dB −33.8 dB 

Elliptic −34.5 dB −51.9 dB 

 
Although the magnitude characteristics of a filter are very important, the 

phase characteristics of a filter are also crucial in many projects. Whether in audio 
networks or data transmission systems, designers are looking for filters with linear 
phase response. Nonlinear phase response in an audio network will cause 
noticeable phase distortion for the listener that cannot be tolerated, especially in 
high-quality systems. In data transmission systems nonlinear phase response 
produces group delays that are functions of frequency. This produces distortion in 
the pulses sent over the system and can distort edges and levels to the point of 
causing errors in the received signal. We can compare the phase responses of 
Figures 2.8, 2.14, 2.20, and 2.26 to see the level of phase distortion for each 
approximation type. Remember that the transitions from −180 to +180 degrees are 
not discontinuities, but rather a function of the display method. (The phase 
response is written to a data file in its true form.) Table 2.2 shows the phase angles 
for the third-order and fourth-order filters at the passband and stopband edge 
frequencies.  

 
Table 2.2 

Comparison of Filter Phase at 1 and 2 rad/sec 

Filter Type 3rd @ 1 r/s 3rd @ 2 r/s 4th @ 1 r/s 4th @ 2 r/s 

Butterworth −104° −192° −146° −266° 

Chebyshev −154° −238° −230° −330° 

Inverse Chebyshev −94° −192° −133° −264° 

Elliptic −150° −238° −226° −330° 

 
As Table 2.2 and the phase plots indicate, the filters with the maximally flat 

response in the passband (Butterworth and inverse Chebyshev) provide the most 
linear response, although the inverse Chebyshev does have phase discontinuities 
in the stopband caused by the complex zeros. These are usually not critical 
because the filter’s magnitude response is very small at these frequencies and the 
distortion should be minimal. The phase responses of the standard Chebyshev and 
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elliptic are also matched very closely and can be judged equivalent except for the 
discontinuities in the stopband caused by the zeros for the elliptic case. 

A filter designer’s task is not always clear cut. It seems that every project 
requires as much stopband attenuation as possible while providing a phase 
response as linear as possible. The task becomes one of weighing the importance 
of each characteristic. If phase response is more critical than magnitude response, 
then the Butterworth filter is a better choice. If the opposite is true, the elliptic 
filter is a better choice. If magnitude and phase responses are nearly equal in 
importance, then one of the Chebyshev filters may be the best choice. Other 
alternatives are also possible. Elliptic filters can be used for their selectivity, with 
phase compensation filters added to make the phase more linear. (These filter 
types are not covered in this text, but references in the analog filter design section 
of Appendix A provide further information.) A designer must be careful when 
pursuing these alternatives, since in some cases the result may be no better than 
the equivalent Butterworth or Chebyshev filter. 

2.7  CONCLUSION 

In this chapter, we studied the core of analog filter design, the normalized 
approximation functions. By developing these functions, we have laid the 
foundation for the remainder of the chapters on analog filter design as well as a 
good bit of digital IIR filter design. By approaching each approximation function 
in the same manner, and developing methods for determining exact pole and zero 
placement, we have simplified the job of generating the C code necessary to 
implement these algorithms in a clean, efficient manner. (Those who are interested 
in seeing more on the development of the C code can turn to Appendix D.) In the 
next chapter, we will finish up the analog filter design calculations by determining 
a technique to unnormalize the transfer functions we have just developed. 
 



Chapter 3 

Analog Lowpass, Highpass, Bandpass, and 
Bandstop Filters 

In the last chapter, we were able to determine the normalized approximation 
functions for the most common types of analog filters. Our task in this chapter is 
to unnormalize those approximation functions in a manner to produce lowpass, 
highpass, bandpass, and bandstop filters at the desired frequencies. This 
unnormalization will be carried out in such a way that the design of the 
normalized approximation functions will be central to the development. Figure 3.1 
shows the three-step procedure used in the unnormalization. The simplicity of this 
procedure is the fact that the second step is the same for all filter design methods. 
 

 
 
Figure 3.1  Procedure for unnormalization. 

3.1  UNNORMALIZED LOWPASS APPROXIMATION FUNCTIONS 

Even though the normalized approximation functions determined in the previous 
chapter are lowpass functions, they still need to be unnormalized to the proper 
operational frequency. The first step in the unnormalization procedure, as 
indicated in Figure 3.1, is to determine the order of the approximation function 
from the unnormalized specifications. The order of approximation function 
depends only on the passband and stopband gains and frequencies. The gains for 
both the normalized and unnormalized approximation functions will be the same, 
the only specifications that change are the passband and stopband edge 
frequencies. However, as indicated in Chapter 2, it is not the individual 
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frequencies that determine the order of the approximation function, but rather the 
ratio of the frequencies. Therefore, we can define a frequency ratio variable in 
(3.1) that will be used for the lowpass filter type as indicated by the additional 
subscript L.  
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Each of the equations from Chapter 2 that were used to determine the order of 

a particular filter type can now be redefined in terms of Ωr, as indicated in (3.2)–
(3.6). 
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where 

 rrt Ω= /1  (3.5) 

 )110/()110( stoppass 1.01.0 −−= −− aakn  (3.6) 

It may appear that we are doing a lot of work just to change a variable name, 
but Ωr will be defined differently for each of the other types of filter selectivities 
as we will see in the next sections. For that reason (3.2)–(3.6) do not include the 
additional subscript L; however, in each section we will define Ωr with a subscript 
as in (3.1) for clarity. 
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So in this lowpass case, the first step in the unnormalization procedure 
doesn’t require any work at all. We simply determine the order of the filter as we 
have in the past. The second step of the unnormalization procedure, determination 
of the normalized approximation function, has already been developed in the 
previous chapter. It appears that we are ready to determine the third and final step 
of the procedure, which is to unnormalize the normalized approximation function. 
In the lowpass case, this simply requires a scaling of the frequency characteristic 
from 1 rad/sec to a more usable frequency. A simple substitution for the 
normalized variable S is all that is necessary, as shown in (3.7). (A subscript of L 
is used to indicate that this substitution is for lowpass filters only.) The frequency 
constant ωo will be ωstop for the inverse Chebyshev approximation, as discussed in 
Chapter 2, and ωpass for all other approximations. 
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3.1.1  Handling a First-Order Factor 

We will be developing code to implement the unnormalization process, so it is 
important to carefully describe the substitution process. For the first-order factor, 
the process begins with (3.8), where the B1 coefficient is typically 1: 

 
21

21

21

21

)(
)(

)(
BsB
AsA

BSB
ASA

sH
o

o

sS o
+⋅
+⋅

=
+⋅
+⋅

=
=

ω
ω

ω

 (3.8) 

In this equation, uppercase A and B represent the coefficients of the 
normalized approximation function. After simplification, (3.9) results in a new set 
of coefficients. In this equation, lowercase a and b represent the unnormalized 
coefficients that will be used in our final approximation function: 
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We can generalize these results for the first-order factor below: 
• The gain constant is unchanged. 
• The s-term coefficients become 
  a1 = A1, b1 = B1 
• The constant term coefficients become 
  a2 = A2 ωo, b2 = B2 ωo 
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3.1.2  Handling a Second-Order Factor 

In the case of the quadratic terms that are used to describe our coefficients, the 
unnormalization process is shown in (3.10) and (3.11): 
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The coefficient A0 will be 1 or 0. A value of 1 will be present only if an 

inverse Chebyshev or elliptic approximation is being unnormalized, while a 0 will 
be used for Chebyshev and Butterworth. A1 will normally be 0 for all 
approximations, but is included for completeness of the derivation in the event we 
want to use any of our work at a later time when complex conjugate zeros will 
occur off the jω axis. B0 will typically be 1 for all cases, but is retained for 
generality. By observation, we can determine the following relationships that can 
be used in our C code: 

 
• The gain constant is unchanged. 
• The s2-term coefficients become 
 a0 = A0, b0 = B0 
• The s-term coefficients become 
 a1 = A1 ωo, b1 = B1 ωo 
• The constant term coefficients become 
  a A b Bo o2 2

2
2 2

2= =ω ω,  
 
Complete numerical examples of the lowpass unnormalization process are 

now in order. 
 

Example 3.1  Unnormalized Inverse Chebyshev Lowpass Filter 

Problem: Determine the transfer function for an inverse Chebyshev lowpass 
filter to satisfy the specifications:  

 apass = −0.25 dB,  astop = −38.0 dB, 
 ωpass = 600 rad/sec,   ωstop = 1,000 rad/sec 
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Solution: Using the material of Section 2.4, the important values for this 
example and the normalized transfer function are listed below. The unnormalized 
transfer function is then determined by making the substitution S = s / ωo and 
using the relationships just developed: 

 

 Ωr = 1.667  n = 5.90 (6th order) ωo = 1000.0 rad/sec 

 
)034.1895.1()7142.09583.0()5455.02679.0(

)93.14()000.2()072.1(0.01259)( 222

222

6,
+⋅+⋅+⋅+⋅+⋅+

+⋅+⋅+⋅
=

SSSSSS
SSSSH I  

 

)10034.1895,1()102.7143.958()105.545679,2(
)1093.14()10000.2()10072.1(0.01259        

)(

623232

626262

6,

⋅+⋅+⋅⋅+⋅+⋅⋅+⋅+
⋅+⋅⋅+⋅⋅+⋅

=

ssssss
sss

sH I
 

Example 3.2  Unnormalized Butterworth Lowpass Filter 

Problem: Determine the transfer function for a Butterworth lowpass filter to 
satisfy the following specifications: 

apass = −0.5 dB,   astop = −21 dB, 
 fpass = 1,000 Hz,   fstop = 2,000 Hz 

Solution: Using the material of Section 2.2, the important values for this 
example and the normalized transfer function are listed below: 

 

 Ωr = 2.0  n = 5.00 (5th order) ωo = 6,283.19 rad/sec 
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The unnormalized transfer function is then determined by making the 
substitution S = s / ωo and using the relationships just developed: 
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We can also use WFilter to design either of the lowpass filters just described, 
but in this case we’ll pick the Butterworth filter. The coefficients and response of 
this filter are shown in Figures 3.2 and 3.3.  
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Butterworth Lowpass Filter 
 
Selectivity:        Lowpass 
Approximation:      Butterworth 
Implementation:     Analog 
Passband gain (dB): -0.5 
Stopband gain (dB): -21.0 
Passband freq (Hz): 1000.0 
Stopband freq (Hz): 2000.0 
 
Filter Length/Order: 05 
Overall Filter Gain: 1.00000000000E+00 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  0.00000000000E+00  7.75420567954E+03 
02 0.0  0.00000000000E+00  6.01277057205E+07 
03 0.0  0.00000000000E+00  6.01277057205E+07 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  1.00000000000E+00  7.75420567954E+03 
02 1.0  4.79236266571E+03  6.01277057205E+07 
03 1.0  1.25465683452E+04  6.01277057205E+07            

 
Figure 3.2  Filter coefficients for Example 3.2 from WFilter. 
 

 
 
Figure 3.3  Filter magnitude response for Example 3.2. 

3.2  UNNORMALIZED HIGHPASS APPROXIMATION FUNCTIONS 

The normalized lowpass approximation can also be used to generate the 
approximation function for a highpass filter. The calculation for the ratio 
frequency Ωr is based on the ratio of passband to stopband frequencies, as shown 
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in (3.12). This is the reciprocal of the lowpass case, but since ωpass > ωstop , the 
result still produces a value greater than 1. The Ωr ratio always produces a value 
greater than 1 (as we will see in later sections as well) and as the value gets larger 
and larger, the order of the filter will reduce as long as other characteristics remain 
the same. 
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 (3.12) 

Once the normalized lowpass approximation is determined based on the 
order, we can unnormalize the lowpass transfer function using an appropriate 
unnormalization substitution. In the case of the highpass filter, the 
unnormalization substitution is given in (3.13). As in the lowpass case, ωo will 
take on the value of ωpass except for the inverse Chebyshev approximation where 
it will have the value of ωstop. 
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3.2.1  Handling a First-Order Factor 

For the first-order case, we start with (3.14) and make the substitution of (3.13). 
The final result is then shown in (3.15). In this unnormalization case, we see that 
there is a gain adjustment (A2 / B2) that must be considered. 
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 (3.15) 

From careful observation we can draw the following information from these 
equations: 

 
• The gain constant is multiplied by A2 / B2. 
• The s-term coefficients become 
 a1 = 1, b1 = 1 
• The constant term coefficients become 
 a2 = (A1 / A2) ωo, b2 = (B1 / B2) ωo 
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3.2.2  Handling a Second-Order Factor 

In the case of this highpass unnormalization process, the second-order factors will 
be unnormalized in the manner shown in (3.16): 
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that can be simplified to produce 
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Notice that if A0 and A1 are both zero (which will be the case for Butterworth 
and Chebyshev approximations),  then a1 and a2 will be zero,  leaving  only  an  
s2-term in the numerator. A2 will never be zero in a normalized approximation 
function. We can summarize the results of the unnormalization below: 

 
 
• The gain constant is multiplied by A2 / B2. 
• The s2-term coefficients become 
 a0 = 1, b0 = 1 
• The s-term coefficients become 
 a1 = (A1 / A2) ωo, b1 = (B1 / B2) ωo 
• The constant term coefficients become 
   a A A b B Bo o2 0 2

2
2 0 2

2= =( / ) , ( / )ω ω 
 
 
Numerical examples of the highpass unnormalization process can now be 

used to better illustrate the process. 
 

Example 3.3  Unnormalized Elliptic Highpass Filter 

Problem: Determine the transfer function for an elliptic highpass filter to 
satisfy the following specifications:  

apass = −0.5 dB,   astop = −45.0 dB, 
 ωpass = 3,000 rad/sec,  ωstop = 2,000 rad/sec 



 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 63 

Solution: Using the material of Section 2.5, the important values for this 
example and the normalized transfer function are listed below: 

 Ωr = 1.5  n = 4.61 (5th order) ωo = 3,000.0 rad/sec 
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The unnormalized transfer function is then determined by making the 

substitution S = ωo / s and using the relationships just developed: 
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Example 3.4  Unnormalized Chebyshev Highpass Filter 

Problem: Determine the transfer function for a Chebyshev highpass filter to 
satisfy the following specifications: 

apass = −1.5 dB,   astop = −40 dB,  
fpass = 2,000 Hz,   fstop = 800 Hz 

 
Solution: Using the material of Section 2.3, the important values for this 

example and the normalized transfer function are listed below: 

 Ωr = 2.5  n = 3.66 (4th order) ωo = 12,566.4 rad/sec 
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The unnormalized transfer function is then determined by making the 
substitution S = ωo / s and using the relationships just developed: 
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The results of using WFilter to design the filter of Example 3.4 are illustrated 

in Figures 3.4 and 3.5, which show the coefficients and magnitude response.  
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3.3  UNNORMALIZED BANDPASS APPROXIMATION FUNCTIONS 

In the case of a bandpass unnormalization, Ωr will be defined in (3.18). Note that 
for this case, Ωr will be greater than 1, as has been the case for the lowpass and 
highpass unnormalization. 

 
 

Chebyshev Highpass Filter 
 
Selectivity:        Highpass 
Approximation:      Chebyshev 
Implementation:     Analog 
Passband gain (dB): -1.5 
Stopband gain (dB): -40.0 
Passband freq (Hz): 2000.0 
Stopband freq (Hz): 800.0 
 
Filter Length/Order: 04 
Overall Filter Gain: 8.41395141645E-01 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  0.00000000000E+00  0.00000000000E+00 
02 1.0  0.00000000000E+00  0.00000000000E+00 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  3.15012807725E+03  1.66143895400E+08 
02 1.0  2.97027255443E+04  6.48898535622E+08 

 
Figure 3.4  Filter coefficients for Example 3.4 from WFilter. 
 

 
 
Figure 3.5  Filter magnitude response for Example 3.4. 



 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 65 

 
pass1pass2

stop1stop2

pass1pass2

stop1stop2

ff
ff

rP −

−
=

−

−
=Ω

ωω
ωω

 (3.18) 

 
After determining the normalized lowpass approximation using the order we 

determined from the bandpass specifications, we can unnormalize the lowpass 
function into a bandpass function. To accomplish this we use the substitution 
given in (3.19): 
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where for all approximations except the inverse Chebyshev, 

 pass2pass1 ωωω ⋅=o  (3.20) 

 pass1pass2 ωω −=BW  (3.21) 

For the inverse Chebyshev case these values are defined as (another example 
of the opposite nature of this approximation) 

 stop2stop1 ωωω ⋅=o  (3.22) 

 stop1stop2 ωω −=BW  (3.23) 

In order to provide an accurate value of Ωr in (3.18), the stopband and 
passband edge frequencies must be symmetrically spaced on either side of ωo. The 
simplest way to test for this is to check to see that the relationship of (3.24) is 
satisfied. If this equation is not satisfied, the larger side must be reduced to form 
an equality by increasing ωstop1 or decreasing ωstop2. This will tighten the 
restrictions, so the original specifications will still be met, and an accurate order 
can be calculated. (If there is an extreme inequality, other measures can be used to 
implement the filter. For example, an additional lowpass or highpass filter can be 
added to provide the required selectivity.) 
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As indicated by (3.19), the unnormalization process will result in a bandpass 
approximation function that has twice the order of the lowpass function used to 
generate it. This seems reasonable when we consider that a bandpass filter must 
provide a transition from a stopband to a passband (like a highpass filter) and 
another transition from a passband to a stopband (like a lowpass filter). The 
resulting function must therefore be twice the order of the original lowpass 
function on which it is based. 

3.3.1  Handling a First-Order Factor 

For a first-order factor in the lowpass approximation function, (3.25) shows how 
the substitution of (3.19) is made: 
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And after some simplification we have the result in (3.26). The relationships 
between the coefficients are shown. Note that if A1 = 0, as will normally be the 
case, the numerator will only have an s-term present. 
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• The gain constant is unchanged. 
• The s2-term bandpass coefficients become 
 a0 = A1, b0 = B1 
• The s-term bandpass coefficients become 
 a1 = A2 BW, b1 = B2 BW 
• The constant term bandpass coefficients become 
  a A b Bo o2 1

2
2 1

2= =ω ω,  

3.3.2  Handling a Second-Order Factor 

Unnormalizing a second-order factor is a bit more of a challenge. When the 
substitution variable SP of (3.19) is inserted into a second-order lowpass 
approximation, a fourth-order factor results. What do we do with a fourth-order 
factor? All of our development to this point is based on quadratic factors and with 
good reason. They represent a complex conjugate pair and they will be used to 
efficiently implement the filters in later chapters. We could factor the fourth-order, 
but this would require a numerical algorithm that is time-consuming and not 
always accurate. There is another directed procedure that can be used. 
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If we factor the lowpass approximation quadratic into two complex conjugate 
factors before making the substitution of (3.19), the result after the substitution 
and simplification is two quadratic equations. However, each of these quadratics 
would have a complex coefficient that would mean they could not be implemented 
directly. However, if these two quadratics are again factored, we will find two sets 
of complex conjugate pairs within the set of four factors. These complex 
conjugate pairs could then be combined to produce two quadratics that have all 
real coefficients. 

Perhaps an easy example is in order. Consider the transfer function shown in 
(3.27) that has already been factored: 
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Now if we assume that ωo = 1 and BW = 1, we can substitute S = (s2 + 1) / s 
and simplify to produce the following: 
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The roots of the first quadratic can be determined to be 
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and the two roots of the second quadratic pair up with the first. 

 )53.1743.0( ),529.0257.0(4,3 jjs +−−−=  (3.29b) 

 
The resulting transfer function can then be written as (3.30) by combining the 

complex conjugate roots from each quadratic: 
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This algorithm for finding the two quadratics in the bandpass approximation 

from the single quadratic in the lowpass function will be used as the standard 
method in this section. Unfortunately, it is very difficult to define the final 
bandpass coefficients in terms of only the initial lowpass coefficients because of 
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the complexity of expressions. However, if we use a few intermediate variables, 
the process should be able to be demonstrated without too much confusion. 

We start with the general expression for the normalized lowpass second-order 
factor shown in (3.31) in normal and factored form. The A0 and B0 coefficients 
have been omitted for clarity since they will be assumed to be 1 in this case, and p 
and z represent the complex poles and zeros, respectively. (An asterisk indicates 
the complex conjugate value.) 
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After making the indicated substitution and simplifying, we have 
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Each one of the quadratic factors in (3.32) can now be factored into first-
order factors, as indicated in (3.33). Note that the constants from the z1 quadratic 
are labeled with an a and b, while the complex conjugates use c and d. The 
denominator uses the same designations. 
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Now, by matching the complex conjugate pairs, we can reconstruct two 

quadratics with real coefficients in both the numerator and denominator: 
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The results shown in (3.34) are valid for the inverse Chebyshev and elliptic 

approximation functions that use zeros on the jω axis. However, for the 
Butterworth and Chebyshev approximation functions, the result will be somewhat 
different. Equation (3.35) shows the starting point for this development. After 
substitution and simplification, (3.36) results. Then following the same basic steps 
as in the previous derivation, (3.37) eventually emerges. 
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Now, some examples illustrating the bandpass design process are in order. 

Example 3.5  Unnormalized Butterworth Bandpass Filter 

Problem: Determine the transfer function for a Butterworth bandpass filter to 
satisfy the following specifications: 

apass = −1.0 dB,  astop = −21 dB,   fpass1 = 300 Hz, 
 fpass2 = 3,000 Hz, fstop1 = 50 Hz,    fstop2 = 9,000 Hz 

Solution: Using the material of Section 2.2, the important values for this 
example and the normalized transfer function are listed below. In this case, fstop1 
must be changed to 100 Hz to provide symmetry. The function is shown with 
quadratics in factored form, as indicated by the (2) superscript. 

 Ωr = 3.3   n = 2.59 (3rd order)  

 ωo = 5,960.8 rad/sec BW = 16,965 rad/sec 
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After making the substitution of (3.19) and factoring again, the following 

equation emerges: 
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After simplification, the following transfer function results: 
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Example 3.6  Unnormalized Inverse Chebyshev Bandpass Filter 

Problem: Determine the transfer function for an inverse Chebyshev bandpass 
filter to satisfy the following specifications: 

apass = −0.5 dB,  astop = −33 dB,   fpass1 = 100 Hz, 
fpass2 = 200 Hz,  fstop1 = 50 Hz,   fstop2 = 400 Hz 

Solution: Using the material of Section 2.4, the important values for this 
example and the normalized transfer function are listed below. The transfer 
function is shown with quadratics in factored form, as indicated by the (2) 
superscript. 

 Ωr = 3.5   n = 2.88 (3rd order) 

 ωo = 888.58 rad/sec BW = 2,199.1 rad/sec 
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After making the substitution of (3.19) and factoring again, the following 
equation emerges: 
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After simplification, the following transfer function results: 
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We can use WFilter to design the inverse Chebyshev bandpass filter of 
Example 3.6. The coefficients for this design are shown in Figure 3.6 with the 
magnitude response shown in Figure 3.7. Notice that two of the numerator 
coefficients are quite small (approximately 10−16 or smaller) and should be 
interpreted as zero since these quadratics represent complex zeros located on the 
jω-axis.  
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Inverse Chebyshev Bandpass Filter 
 
Selectivity:        Bandpass 
Approximation:      Inv. Chebyshev 
Implementation:     Analog 
Passband gain (dB): -0.5 
Stopband gain (dB): -33.0 
PB freq-lower (Hz): 100.0 
PB freq-upper (Hz): 200.0 
SB freq-lower (Hz): 50.0 
SB freq-upper (Hz): 400.0 
 
Filter Length/Order: 06 
Overall Filter Gain: 1.42635925362E-01 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 0.0  1.03573607270E+03  0.00000000000E+00 
02 1.0  1.52838376237E-16  7.84287312832E+04 
03 1.0 -1.51816114564E-17  7.94884951494E+06 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  1.03573607270E+03  7.89568352087E+05 
02 1.0  2.48367370656E+02  3.06585558034E+05 
03 1.0  6.39635528883E+02  2.03342318737E+06 

 
 
Figure 3.6  Filter coefficients for Example 3.6 from WFilter. 
 
 
 

 
 
Figure 3.7  Filter magnitude response for Example 3.6. 
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3.4  UNNORMALIZED BANDSTOP APPROXIMATION FUNCTIONS 

We will find that the unnormalization of the lowpass normalized function into a 
bandstop approximation is very similar to the bandpass case. The first step in the 
procedure is to determine the order required from the lowpass approximation 
based on the bandstop specifications. The value of Ωr to use in the bandstop case 
is shown in (3.38), which is the reciprocal of the bandpass case. We notice again 
that Ωr will be greater than 1: 

 stop1stop2

pass1pass2

stop1stop2

pass1pass2

ff
ff

r −

−
=

−

−
=Ω

ωω
ωω

 (3.38) 

As in the bandpass case, (3.24) must be satisfied in order to get an accurate 
value of Ωr, except in this case either ωpass1 must be increased or ωpass2 must be 
decreased to achieve equality. After finding the order, we can unnormalize the 
lowpass function into a bandstop function using the substitution given in (3.39): 
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As before, all approximations except the inverse Chebyshev will define 
 

 pass2pass1 ωωω ⋅=o  (3.40) 

 pass1pass2 ωω −=BW  (3.41) 

while for the inverse Chebyshev case 

 stop2stop1 ωωω ⋅=o  (3.42) 

 stop1stop2 ωω −=BW  (3.43) 

 
The resultant bandstop approximation function will be twice the order of the 

normalized lowpass function just as in the bandpass case. The bandstop filter is in 
effect implementing both a lowpass and highpass filter and therefore requires 
twice the order. 



 Analog Lowpass, Highpass, Bandpass, and Bandstop Filters 73 

3.4.1  Handling a First-Order Factor 

Equation (3.44) shows how a first-order factor is unnormalized into a second-
order factor using the substitution of (3.39): 
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Equation (3.45) shows the result after simplification followed by the 
observations that can be made for this case: 
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• The gain constant is multiplied by A2 / B2. 
• The s2-term bandstop coefficients become 
  a0 = 1, b0 = 1 
• The s-term bandstop coefficients become 
  a1 = (A1 / A2) BW, b1 = (B1 / B2) BW 
• Constant term bandstop coefficients become 
   a bo o2

2
2

2= =ω ω,  

3.4.2  Handling a Second-Order Factor 

In order to unnormalize a second-order factor we experience the same problems as 
in the bandpass case. A direct substitution would give us a fourth-order transfer 
function, which is not what we want. However, the methodology used in the 
bandpass case does work in this case as well. The procedure is outlined below for 
the bandstop case that has a few differences due to a different substitution factor. 

Starting at the same point as with the bandpass case, (3.46) shows the result 
of the factoring of the initial quadratics: 
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Equation (3.47) results after the substitution and simplification: 
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The initial gain factor of (3.47) can be shown to be A2 / B2. The quadratic 
factors can be factored into first-order factors, as indicated in (3.48): 
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We then reconstruct two quadratics in the numerator and denominator by 

matching the complex conjugate pairs: 
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This result is valid for the rational approximation functions (inverse 

Chebyshev and elliptic), but for the all-pole approximations (Butterworth and 
Chebyshev), we must develop a slightly different version. Equations (3.50) and 
(3.51) show the factoring and substitution of (3.39). After the quadratics of (3.51) 
are factored and the matching complex conjugate terms are combined, the final 
form is (3.52) . 

 

 
)()(

*
11

2

21
2

2

22))((
)(

ω+⋅=++
=

+⋅+
=

ssBWSpSpS
A

BSBS
AsH  (3.50) 

 
])/([])/([

)()( 2*
1

22
1

2

222

*
11

2

oo

o

spBWsspBWs
s

pp
AsH

ωω
ω

+⋅+⋅+⋅+
+

⋅
⋅

=  (3.51) 

 
))((

)(
)(

54
2

21
2

222

2

2

bsbsbsbs
s

B
A

sH o

+⋅++⋅+

+
⋅=

ω
 (3.52) 

 
 
Complete numerical examples of the bandstop unnormalization process are 

given next. 
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Example 3.7  Unnormalized Chebyshev Bandstop Filter 

Problem: Determine the transfer function for a Chebyshev bandstop filter to 
satisfy the following specifications: 

ωpass1 = 3,000 rad/sec,       ωpass2 = 24,000 rad/sec,       ωstop1 = 6,000 rad/sec, 
ωstop2 = 12,000 rad/sec,       apass = −1.0 dB,              astop = −35 dB 

 
Solution: Using the material of Section 2.3, the important values for this 

example and the normalized transfer function are listed below. The transfer 
function is shown with quadratics in factored form as shown by the (2) 
superscript. 

 Ωr = 3.5   n = 2.80 (3rd order) 

 ωo = 8485.3 rad/sec BW = 21,000 rad/sec 
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After making the substitution of (3.39) and factoring again, the following 
equation emerges, which can be simplified into the final result: 
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Example 3.8  Unnormalized Elliptic Bandstop Filter 

Problem: Determine the transfer function for an elliptic bandstop filter to 
satisfy the following specifications: 

apass = −0.3 dB,   astop = −50 dB,   fpass1 = 50 Hz, 
  fpass2 = 72 Hz,   fstop1 = 58 Hz,   fstop2 = 62 Hz 

 
Solution: Using the material of Section 2.5, the important values for this 

example and the normalized transfer function are listed below. In this case, fpass2 
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must be changed to 71.92 Hz to provide symmetry. The transfer function is shown 
with quadratics in factored form as shown by the (2) superscript. 

 Ωr = 3.3   n = 2.75 (3rd order)  

 ωo = 376.78 rad/sec BW = 137.73 rad/sec 

 )93390.035753.0()73880.0(
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After making the substitution of (3.39) and factoring again, the following 
equation emerges: 
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After simplification, the following transfer function results: 
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We can also use WFilter to design the bandstop elliptic filter of Example 3.8. 
The results of this filter design are shown in Figures 3.8 and 3.9 that show the 
coefficients and magnitude response, respectively. Again, as in the bandpass case, 
a couple of the numerator coefficients are very small and can be considered zero.  

3.5  ANALOG FREQUENCY RESPONSE 

Up to this point we have developed the necessary foundation to design a variety of 
analog filters. We have calculated the coefficients and are ready to implement the 
filter in hardware. But before we address the implementation issues in the next 
chapter, we need to check our design by determining the frequency response of 
the filter and comparing it to our design specifications. We will discuss the 
calculation of the frequency response of our filters and also view the C code for 
the frequency response calculation.  

3.5.1  Mathematics for Frequency Response Calculation 

The filter approximation function, which we have just determined by the 
calculation of the unnormalized coefficients, represents a transfer function of a 
linear system in the s-domain. In order to determine the frequency response of the 
transfer function, we must substitute jω for each of the s-variables in that transfer 
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function. For example, (3.53) shows a transfer function with one quadratic factor, 
while (3.54) shows the frequency response for that transfer function: 

 
 

Elliptic Bandstop Filter 
 
Selectivity:        Bandstop 
Approximation:      Elliptic 
Implementation:     Analog 
Passband gain (dB): -0.3 
Stopband gain (dB): -50.0 
PB freq-lower (Hz): 50.0 
PB freq-upper (Hz): 71.92 
SB freq-lower (Hz): 58.0 
SB freq-upper (Hz): 62.0 
 
Filter Length/Order: 06 
Overall Filter Gain: 1.00000000000E+00 
 
            Numerator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  0.00000000000E+00  1.41964389705E+05 
02 1.0  2.10251277992E-17  1.33980657885E+05 
03 1.0 -1.98427257744E-17  1.50423861642E+05 
 
           Denominator Coefficients 
QD [S^2 +       S         +        1       ] 
== ========================================= 
01 1.0  1.86421021332E+02  1.41964389705E+05 
02 1.0  3.26004384421E+01  1.04584515861E+05 
03 1.0  4.42522615272E+01  1.92704319359E+05 

 
Figure 3.8  Filter coefficients for Example 3.8 from WFilter. 
 
 

 
 
Figure 3.9  Filter magnitude response for Example 3.8. 
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After simplification, the frequency response H(jω) is shown as a frequency 
dependent complex number in (3.55). This complex number can be represented in 
either rectangular form or polar form. However, when we deal with a frequency 
response, the polar form is the more natural form because the standard frequency 
response is composed of both a magnitude and phase response portion. Equation 
(3.56) shows the result of converting (3.55) into polar form: 
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Of course, if the original transfer function has multiple quadratic terms, as our 
approximation functions do, the total frequency response is dependent on all of the 
quadratics. The total magnitude result will be the product of the individual 
magnitudes and the total phase result will be the sum of the individual phases as 
shown in (3.57), where q represents the number of quadratic factors: 
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The total frequency response Ht(jω) can then be described as shown in (3.58), 
where the total magnitude is the numerator magnitude divided by the denominator 
magnitude, and the total phase angle is the denominator phase subtracted from the 
numerator phase: 

 ttt MjH Φ∠=)( ω  (3.58) 
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Example 3.9  Frequency Response of a Highpass Filter 

Problem: Determine the frequency response (both magnitude and phase) at 
the passband edge frequency of 2,000 Hz and the stopband edge frequency of 800 
Hz for the Chebyshev highpass filter designed in Example 3.4. Determine if the 
gain specifications of apass = −1.5 dB and astop = −40 dB are met. The transfer 
function is shown below: 
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Solution: We first make the substitution of s = jω into the transfer function to 
obtain the frequency response H(jω). Then after collecting the real and imaginary 
terms and arranging them, the following equation for the frequency response 
results: 
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This frequency response equation can first be used to determine the frequency 
response at the stopband frequency of 800 Hz. 
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This indicates a gain of −44.57 dB at the stopband frequency, which exceeds 
the specification, and a phase shift of −19.9° or 340.1°. In the case of the passband 
frequency of 2,000 Hz, similar calculations can be made as shown below: 
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This indicates a gain of −1.50 dB at the stopband frequency, which meets the 
specification, and a phase shift of −115.5° or 244.50°. 

 

3.5.2  C Code for Frequency Response Calculation  

We are now ready to develop the C code for determining the frequency response 
of an analog filter. In order to properly determine the frequency response, we need 
to know the starting and stopping frequencies for our calculations. We also need 
to know whether to space the frequencies in a linear or logarithmic fashion, and 
whether to calculate the magnitude in decibels or not. This, as well as other, 
information is stored in a frequency response structure called Resp_Params. 
All of the functions that actually perform the frequency response calculations are 
contained in the F_RESPON.C module that has a header file of F_RESPON.H in 
which Resp_Params is defined.  
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The primary function for the calculation of the analog frequency response is 
Calc_Analog_Resp, which is shown in Listing 3.1. (The set of frequencies 
used to evaluate the filter have already been calculated and stored in RP->freq.)  

 
/*==================================================== 
  Calc_Analog_Resp() - calcs response for analog filts 
  Prototype:  int Calc_Analog_Resp(Filt_Params *FP, 
                                    Resp_Params *RP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
              RP - ptr to struct holding respon params 
====================================================*/ 
int Calc_Analog_Resp(Filt_Params *FP,Resp_Params *RP) 
{ int     c,f,q;        /*  loop counters */ 
  double  rad2deg,      /*  rad to deg conversion */ 
          omega,omega2, /*  radian freq and square */ 
          rea,img;      /*  real and imag part */ 
 
  rad2deg = 180.0 / PI; /*  set rad2deg */ 
  /*  Loop through each of the frequencies */ 
  for(f = 0 ;f < RP->tot_pts; f++) 
  { /*  Initialize magna and angle */ 
    RP->magna[f] = FP->gain; 
    RP->angle[f] = 0.0; 
    /*  Pre calc omega and omega squared */ 
    omega = PI2 * RP->freq[f]; 
    omega2 = omega * omega; 
    /*  Loop through coefs for each quadratic */ 
    for(q = 0 ;q < (FP->order+1)/2; q++) 
    { /*  c is coef index = 3 * quad index */ 
      c = q * 3; 
      /* Numerator values */ 
      rea = FP->acoefs[c+2] - FP->acoefs[c] * omega2; 
      img = FP->acoefs[c+1] * omega; 
      RP->magna[f] *= sqrt(rea*rea + img*img); 
      RP->angle[f] += atan2(img,rea); 
      /* Denominator values */ 
      rea = FP->bcoefs[c+2] - FP->bcoefs[c] * omega2; 
      img = FP->bcoefs[c+1] * omega; 
      RP->magna[f] /= sqrt(rea*rea + img*img); 
      RP->angle[f] -= atan2(img,rea); 
    } 
    /* Convert to degrees */ 
    RP->angle[f] *= rad2deg; 
  } 
  /*  Convert magnitude response to dB if indicated */ 
  if(RP->mag_axis == LOG) 
  { for(f = 0 ;f < RP->tot_pts; f++) 
    { /* Handle very small numbers */ 
      if(RP->magna[f] < ZERO) 
      { RP->magna[f] = ZERO;} 
      RP->magna[f] = 20 * log10(RP->magna[f]); 
    } 
  } 
  return ERR_NONE; 
} 

 
Listing 3.1  Calc_Analog_Resp function. 
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After calculating the constant rad2deg for converting radians to degrees, 
the primary work of the function is performed within two nested for loops. The 
outer loop controls the frequency at which the response is being calculated, while 
the inner loop  steps  through the  number of  quadratics  in the approximation 
function. As we start the calculation for a new frequency, the magnitude value 
(RP->magna[f]) is initialized to the overall gain value of the filter, while the 
phase value (RP->angle[f]) is set to 0. We then convert to radian frequencies 
and make the calculation of the radian frequency squared outside the quadratic 
loop. That saves time by not repeatedly making those calculations inside the loop 
where there is no change in their value. 

Once we reach the inner quadratic loop, which is controlled by the variable q, 
we define a value c that is based on q to help access the individual coefficients of 
each quadratic. We first handle the numerator portion of the quadratic by 
determining the real and imaginary parts of the complex number. Then the total 
magnitude is multiplied by the magnitude of the complex number, and the total 
angle is incremented by the angle of the complex number.  

A similar process is performed for the denominator portion of the quadratic 
except that the total magnitude is divided by the denominator’s magnitude, and the 
denominator’s phase is subtracted from the total phase. This inner loop process is 
repeated for all of the quadratic terms, and then the phase value is converted to 
degrees outside the quadratic loop. 

If the magnitude of the response was specified to be in decibels, each of the 
magnitude values is converted to decibels before leaving the function. Since the 
logarithm of zero is undefined, an artificial value ZERO is defined in 
F_RESPON.H so that no math error will be produced by the compiler if values 
become too small. Since we are using type double to describe the magnitude 
values, a value of 1E-30 was chosen for ZERO that is still within the limits of 
expression for doubles. This value will produce a gain value of −600 dB, which is 
well beyond the normal levels of gain we expect in filter design, so our definition 
of ZERO should have no effect on the normal operation of the program. 

3.6  SAVING THE FILTER PARAMETERS 

Once a filter has been designed, WFilter can save it. The saved file can then be 
used by other software programs to identify the values of the filter gain, 
coefficients, and other characteristics of the filter, or the filter can be reloaded into 
WFilter for continued work. The structure of this WFilter binary data file is 
therefore included below. 

A binary file has a number of advantages over a text file in this situation. 
First, the binary file will be easier to read if the data is needed by another program. 
There is a very good chance that the filter designer will want to transfer the filter 
coefficients that have been determined by WFilter to another program for testing 
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or implementation. Second, the coefficients and data can be stored with more 
accuracy than they can be displayed. 

In order to better understand the binary file structure, the format of the file is 
shown below. The first 4 bytes in the file will be an acronym for Analog and 
Digital Filter Design. The next byte is a w to indicate that the file was created by 
WFilter. The next 3 bytes are characters indicating the implementation, 
approximation, and selectivity types. The next 40 bytes are dedicated to the text 
description for the filter. The next 8 bytes are separated into 6 bytes of reserved 
space to allow for future indicators, and 2 bytes used to store the order of the 
filter. The filter order is placed into the binary buffer in such a manner that it 
could be read as an integer if desired. (The PC format for disk storage dictates that 
the low-order byte is written before the high-order byte for an integer. Other 
machines may use other methods, but will be consistent between read and write 
operations.) Next, 10 variables of size double are stored, which includes the 
sampling frequency, the gains and frequencies in the order indicated in the listing, 
and the gain of the filter. Finally, the acoefs and bcoefs variables are written 
as type double in the order that they were stored by the program. 

 
 
Header (8 bytes) — Contains the identification “ADFDw” followed by three 

characters indicating the implementation, approximation, and selectivity types, 
respectively.  

 
The implementation options and values are:  

0 - analog, 1 - digital FIR and 2 - digital IIR.  
 
The approximation options and values for analog and digital IIR filters are: 

0 - Butterworth, 1 - Chebyshev, 2 - inverse Chebyshev, and  
3 - elliptic.  

 
The approximation (or window) options and values for digital FIR filters are: 

4 - rectangular, 5 - Barlett, 6 - Blackman, 7 - Hamming, 8 - von Hann,  
9 - Kaiser, and 10 - Parks-McClellan. (Discussion of the digital 
approximations will be given later in the text.)  

 
The selectivity options and values are: 0 - lowpass, 1 - highpass, 2 - bandpass,  

and 3 - bandstop. 
 
Description (40 bytes) — Contains the text description of the filter and is 

filled by nulls at the end of the description to make exactly 40 characters. 
 
Reserved (6 bytes) — Reserved for future use. 
 
Order (2 bytes) — The order can be read as an integer. 
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Specifications (10 doubles) — Contains the sampling frequency in hertz, 
followed by the gains and frequencies from the specifications, and finally the 
overall filter gain. The gains are specified in decibels and are in the order of apass1, 
apass2, astop1, and astop2. The frequencies are specified in hertz and are in the order 
of fpass1, fpass2, fstop1, and fstop2. 

 
A coefficients (variable) — The acoefs written as doubles. 
 
B coefficients (variable) — The bcoefs written as doubles. 

3.7  CONCLUSION 

We have now completed the design of a number of analog approximation types 
and are able to calculate the frequency response and save the filter parameters for 
future use. In the next chapter we’ll see how to implement these functions as 
active filters. For those interested in the C code used to unnormalize the filter 
transfer functions, please turn to Appendix E. 
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Chapter 4 

Analog Filter Implementation Using  
Active Filters 

In this chapter, we will discuss the implementation of the analog approximation 
functions that we developed and verified in previous chapters. There are several 
methods that could be used to allow the successful implementation of an analog 
filter. Unfortunately, an entire book could be devoted to this topic (and several 
have), so we will concentrate on active filters. Using active filters to implement 
the transfer functions is a very popular method today because of the natural 
correspondence between the analog circuit and the mathematical function. We will 
not discuss the derivation of the transfer functions for active filters because the 
development of such circuit analysis techniques is beyond the scope of this text. 
However, a number of suitable references are given in the analog active filter texts 
of Appendix A for those who are interested in the derivations. Instead, the circuit 
topology and transfer function for several common active filters will be presented 
before determining the component values for each circuit. We will develop 
implementation procedures for each of the filter selectivities discussed in previous 
chapters as well as discuss other options for implementation and some of the 
important implementation issues.  

4.1  IMPLEMENTATION PROCEDURES FOR ANALOG FILTERS 

There are many choices when it comes to implementing our continuous-time 
analog filters. For example, we could describe our single-input and single-output 
system by means of state variables and use a state-space approach to the problem. 
This method has the advantage of being very general and it puts the problem in a 
convenient mathematical form that allows manipulation in terms of matrix 
algebra. However, the development of this theory is beyond the scope of this text, 
but several references in Appendix A provide insight to this method. 

When considering the method of implementation, two key factors of 
frequency range and the power handling capability of the filter also come into 
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question. Generally speaking, high power and high frequency dictates that passive 
filters be used. Active filters (with op-amps) have a maximum frequency range 
and power range where they can be used successfully. (Section 4.7 discusses the 
frequency issue in more detail.) Passive filters are also a bit more of a challenge to 
design because they do not exhibit the near ideal qualities of input and output 
impedances that op-amps have.  

Another choice for filter implementation is the transconductance-C (Gm-C) 
filter that extends the effective frequency range beyond that of the typical active 
filter. Finally, switched-capacitor (SC) filters, like the Gm-C filters, use MOSFET 
technology and switching signals to implement analog filters. In that way the SC 
filter uses technology that bridges the gap between continuous-time and discrete-
time systems. 

However, it is not possible to treat the complete field of analog filter design in 
one chapter. Instead, we will concentrate on a more traditional approach to 
implementing our transfer functions using a single form of active filter. The 
Sallen-Key filter, which will be discussed in more detail in the following sections, 
has the advantage of implementing a second-order factor with a single op-amp 
stage. There are many other topologies (circuit configurations) that could be 
chosen, but the Sallen-Key is a tried and true configuration. It is important to see 
one method of implementing our continuous-time transfer function before 
beginning the discussion of discrete-time systems. 

Each of the active filters discussed will be composed of several stages of 
electronic circuitry consisting of a single operational amplifier (op-amp) and a 
number of electronic components called resistors (Rs) and capacitors (Cs). The 
fact that active filters can implement complex poles without the use of inductors 
(Ls) is a key point in their favor. Inductors have the disadvantages of being large, 
heavy, costly, and generators of spurious magnetic fields. Therefore, being able to 
implement an active filter with components that can be miniaturized is a big 
advantage. 

Each of these stages of electronic filtering will have a transfer function that 
characterizes the relationship of the output voltage to the input voltage, as 
indicated in (4.1). More specifically, each quadratic factor of the transfer function 
will have the form as shown in (4.2), where each A and B in the transfer function 
will be a function of the R and C used in the circuit. (The subscript c is used to 
indicate that these transfer functions are describing the circuit response.) 

 
 

 )()()( sVsVsH ioc =  (4.1) 

 21
2

21
2

)(
BsBsB
AsAsA

sH
o

o
c

+⋅+⋅

+⋅+⋅
=

 (4.2) 



 Analog Filter Implementation Using Active Filters 87 

We also have the approximation function that we derived to meet a specific 
set of frequency and attenuation characteristics. The general form of each 
quadratic factor in the approximation function is shown in (4.3), where the 
subscript a is used to designate this quadratic factor as an approximation function. 
The as and  bs used as coefficients have already been determined and are 
numerical constants. 
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 (4.3) 

The implementation process then becomes a matter of equating the two 
transfer function factors as shown below. Each A and B of the circuit transfer 
function are equated to the respective a and b of the approximation function and 
results in several equations which must be solved for appropriate R and C values. 

 )()( sHsH ac =  (4.4) 

We will see this common procedure used throughout the next four sections as 
we determine the component values needed to implement each of the active filters. 

4.2  LOWPASS ACTIVE FILTERS USING OP-AMPS 

There are a number of active filter topologies (circuit configurations) that could be 
used to implement a lowpass filter. We will limit ourselves to the popular Sallen-
Key filter (shown in Figure 4.1) with a transfer function as described in (4.5). As 
indicated by the transfer function, this active filter stage can implement one 
second-order factor of a lowpass filter function. This form is very convenient 
since it naturally implements the quadratic factor that we have been using for the 
description of the approximation function. Of course, several of these circuit 
stages in cascade can be used to implement higher-order functions, and with the 
addition of a single first-order stage, odd-order filters can be implemented as well. 
 

 
 
Figure 4.1  Sallen-Key lowpass active filter stage. 
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where 

 )/(1 AB RRK +=  (4.6) 

In comparison to the transfer function of (4.5), (4.7) shows the general form 
of an all-pole lowpass approximation function such as the Butterworth and 
Chebyshev functions. (Inverse Chebyshev and elliptic filter approximations will 
use a different active filter to implement them since they require zeros in the 
complex plane.) The numerator value a2 in (4.7) will always be equal to b2, and G 
will have a value of unity except for the even-order Chebyshev case. 
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If we equate (4.5) and (4.7) as indicated in the previous section, we would 
generate one equation for b1 and one equation for b2 (or a2). However, we have 
five unknowns (R1, R2, C1, C2, and K) in our circuit. Since there are more 
unknowns than equations, we cannot uniquely determine the values of the 
components required for the active filter. This allows us to select values for three 
of the components. For example, we could select the values of R1, R2, and C2 if 
we wanted or the values of C1, C2, and K. Another method that we will use is to 
let R1 = R2 and C1 = C2, which effectively eliminates two of the unknowns. In 
addition, we will pick a common value for the capacitors since they have far fewer 
available values than resistors. This method of picking the R and C values has the 
advantage of reducing the number of different component values needed to 
implement the active filter. The disadvantage of this method is that the value of K, 
which represents the gain for the active filter, will not be unity. However, we will 
find that this problem can be easily solved. 

 If we select common values for the primary resistors and capacitors, the 
transfer function for the active filter then becomes 

 
[ ] 222

22

,
/1/)3(

/1)(
CRsRCKs

CRKsH Lc
+⋅−+

⋅=  (4.8) 

By considering the denominators of (4.7) and (4.8), we can determine the two 
relationships as shown below: 
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 RCKb )3(1 −=  (4.10) 

Since we have already picked the value of C, we can solve for the resistor 
values needed to implement the filter. The results are 

 
2

2/1 CbR =  (4.11) 

 ( )21 /3 bbK −=  (4.12) 

and then using (4.6) 

 ( )21 /2/ bbRR AB −=  (4.13) 

 
Usually, RA will be picked as some convenient value and RB will then be 
calculated. 

The only adjustment remaining is to equate the numerator terms of the two 
transfer functions. Notice that in this case, there exists a gain of K at ω = 0, while 
the approximation function has a gain of G. The value of G will always be less 
than or equal to one, while the value K will always be greater than or equal to one. 
Thus, it is always necessary to reduce the gain of the active filter to match the gain 
of the approximation function. The amount of this gain adjustment factor is 

 tottot / GKGA =  (4.14) 

where Ktot and Gtot represent the products of all the Ks and Gs in the total circuit 
and approximation functions, respectively. This gain adjustment factor can be 
implemented by a simple voltage divider at the output of the active filter stage. 
There are two conditions placed on this voltage divider. The inverse of the voltage 
divider ratio must match the gain adjustment factor, and the equivalent resistance 
of the voltage divider as seen by the output load must equal the required filter 
output resistance. Therefore, assuming an output resistance Rout, and a voltage 
divider network made up of Rx and Ry, 

 
)/(out yxyx RRRRR +⋅=

 (4.15) 

 yyx RRRGA /)( +=
 (4.16) 
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which means that 

 outRGARx ⋅=  (4.17) 

 
)1/(out −⋅= GARGARy  (4.18) 

The circuit of Figure 4.2 shows one stage of the new configuration with the 
voltage divider output.  If the input signal level is very high, we might choose to 
use the voltage divider on the first stage of the filter in order to reduce distortion 
in the filter. 

 
 
 

 
 
Figure 4.2  Active filter with voltage divider output. 

 
Before we consider how to implement an odd-order approximation function, 

we need to consider whether the gain adjustment technique is appropriate for all 
applications. In many cases, amplification is a required part of the filtering system, 
and therefore the differences in gain can be factored into the overall gain 
requirement. For example, if the overall system gain required is 60 dB, and the 
filter is producing a gain of 20 dB in the passband, a more efficient solution would 
be to design the remaining amplifiers to provide 40 dB of gain. This design would 
be more power efficient, use fewer components, and have better dynamic range. 
However, the preceding technique can be used if an exact gain is required from 
the filter. 

If an odd-order approximation factor is to be implemented, an odd-order stage 
as shown in Figure 4.3 can be used as the first stage of the active filter. This  
simple  RC filter is followed  by a buffer  amp  so that the  output impedance of 
the RC combination will not affect the input to the next active filter stage. 
However, if an op-amp is going to be required to implement this first-order factor, 
we might consider adding a few more components and implementing a second-
order stage instead. In many cases, additional attenuation in the stopband would 
be welcome, and the additional cost is slight. 
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Figure 4.3  First-order lowpass filter with buffer amp. 
 

The transfer function for the first-order stage is given in (4.19). This transfer 
function must match a first-order approximation function as given in (4.20): 
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Again, the values of a2 and b2 will be identical and G will have a value of 1. 
Then using the value of C that has already been picked, 

 CbR 2/1=  (4.21) 

Example 4.1 illustrates how to use the information presented in this section to 
design an active lowpass filter. 

Example 4.1  Butterworth Lowpass Active Filter Design 

Problem: Determine the resistor and capacitor values to implement a 
Butterworth lowpass active filter to meet the following specifications: 

 apass = −1 dB, astop = −50 dB, fpass = 1000 Hz, and fstop = 4000 Hz 

Solution: First, we find that a fifth-order filter is required. The resulting 
unnormalized approximation function can then be determined to be 
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The three factors in the denominator can now be matched to three active filter 
stages. By picking C = 0.01 µF and RA = 10 kΩ, the remaining values for each 
stage can be calculated from (4.11)–(4.13) and (4.21). The first-order stage does 
not require an RB value. 
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m Rm Km RBm 
0 13.90 kΩ — — 
1 13.90 kΩ 2.3820 13.82 kΩ 
2 13.90 kΩ 1.3820 3.820 kΩ 

 
In order to achieve a gain of exactly 1 at ω = 0, we can use a voltage divider 

at the output. First, we determine Ktot 
 

 
2919.3tot ==∏

m
mKK

 

This value along with the fact that Gtot has a value of 1 allows us to determine 
that GA = 3.2919. The following resistor divider values can then be determined 
assuming a required output impedance of 10 kΩ. (The gain adjustment could be 
factored into the overall gain of the system instead of using the voltage divider.) 

 Ω=Ω= k 36.14   ,k 92.32 yx RR  

The resulting active filter is shown in Figure 4.4. We will generate the C code 
for the determination of these component values in a later section of this chapter. 

 
 

 
 
Figure 4.4  Butterworth lowpass active filter for Example 4.1. 

4.3  HIGHPASS ACTIVE FILTERS USING OP-AMPS 

We will also use a Sallen-Key circuit configuration for implementing a highpass 
filter. The circuit for implementing a second-order factor is shown in Figure 4.5, 
with the transfer function for the stage shown in (4.22). We can see that this 
highpass configuration is the same as the lowpass case except that the primary Rs 
and Cs have changed positions, although RA and RB remain in their original 
positions. 
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Figure 4.5  Sallen-Key highpass active filter stage. 
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where again 

 )/(1 AB RRK +=  (4.23) 

We can use the same procedure in selecting the component values as we used 
in the lowpass case by letting R1 = R2 and C1 = C2. The result is shown in (4.24), 
where we see that the denominator is identical to the lowpass case in (4.8): 
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This equation can then be matched to the quadratic factors from the 
approximation functions that have the form shown in (4.25) 

 

 21
2

2

, )(
bsbs

sGsH Ha
+⋅+

⋅
=

 (4.25) 

When the equation for the approximation function is compared to the 
equation for the active filter stage, we see that the relationships between terms are 
identical to those of the lowpass case. Therefore, if we pick the same value of 
capacitor, the resistor values will be identical to those of the lowpass case, as 
shown below: 

 
2

2/1 CbR =  (4.26) 



94 Practical Analog and Digital Filter Design 

 ( )21 /2/ bbRR AB −=  (4.27) 

The adjustment of gain for the highpass case is handled in a similar manner to 
the lowpass case. As (4.24) indicates, the K value of each stage can be determined 
by allowing the frequency to approach infinity, as opposed to zero in the lowpass 
case. Ktot can then be easily determined, and with the approximation function 
gain, the gain adjustment factor GA can be determined as shown previously in 
(4.14). A resistive voltage divider is used at the output of the last stage of the 
active filter. If necessary, a buffer amplifier can be used after this voltage divider 
if the impedance of the network being driven by the filter is too small. 

If an odd-order highpass approximation factor is to be implemented, an active 
filter stage as shown in Figure 4.6 can be used as the first stage of the active filter. 
The only difference between this stage and the lowpass first-order stage is the 
interchange of R and C values. 

 
 
Figure 4.6  First-order highpass filter with buffer amp. 
 

The transfer function for this stage is given in (4.28), while the approximation 
function for a first-order highpass factor is shown in (4.29): 
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As in the second-order case, the resistor value will be the same as the lowpass 
value assuming that the same value of capacitor is picked. 

 CbR 2/1=  (4.30) 

Example 4.2  Chebyshev Highpass Active Filter Design 

Problem: Determine the resistor and capacitor values to implement a 
Chebyshev highpass active filter to meet the following specifications: 
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 apass = −0.5 dB, astop = −30 dB, fpass = 1000 Hz, and fstop = 400 Hz 

Solution: A fourth-order transfer function as shown below is required. Since 
this is an even-order Chebyshev, there is an adjustment factor of 0.94406 included 
in the numerator. 
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The two quadratic terms can be matched to two active filter stages by again 
picking C = 0.01 µF and RA = 10 kΩ. The other circuit values can be calculated as 
shown below: 
 

m Rm Km RBm 
0 16.41 kΩ 2.6599 16.6 kΩ 
1 9.502 kΩ 1.5818 5.82 kΩ 

 
 
In order to achieve a gain of exactly 1 at ω = ∞, we can use a voltage divider 

at the output. First, we determine the gain adjustment factor for the filter that in 
this case includes not only the Km factors for each quadratic, but also the 
approximation function’s gain of 0.94406: 

 
4567.494406.0/)( == ∏

m
mKGA

 

 

 
 
Figure 4.7  Chebyshev highpass active filter for Example 4.2. 
 

Assuming an equivalent resistance of 10 kΩ, the resistor divider values can be 
determined with the resulting filter shown in Figure 4.7. (The gain adjustment 
could be factored into the overall gain of the system instead of using the voltage 
divider.) 

 R Rx y= =44 57 12 89. . k ,     kΩ Ω  
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4.4  BANDPASS ACTIVE FILTERS USING OP-AMPS 

Figure 4.8 shows a Sallen-Key active filter stage that implements a second-order 
bandpass transfer function. The transfer function for this bandpass stage is given 
in (4.31). 
 

 
 
Figure 4.8  Sallen-Key bandpass active filter stage. 
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 (4.31) 

where again 

 )/(1 AB RRK +=  (4.32) 

We can simplify this function by letting R1 = R2 = R3 and C1 = C2. This 
simplified function is given in (4.33): 
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This bandpass transfer function can now be matched to the general form of 
the approximation factor, as shown in (4.34): 
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After matching equivalent denominator terms, the following equations emerge, 
 



 Analog Filter Implementation Using Active Filters 97 

 RCKb )4(1 −=  (4.35) 
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which leads to 

 
2

22 CbR =  (4.37) 

 2
2
124 bbK −=  (4.38) 

 2
2
123 bbRR AB −=  (4.39) 

 
After these calculations are made, the overall gain of the active filter must be 

determined. This is a more difficult task than for the lowpass and highpass cases 
since the gain adjustment must be determined at the center frequency of the 
passband ωo. If we refer again to (4.33) and (4.34), we see that they will have 
identical denominator coefficients since we have just derived the equations to 
guarantee that. However, the numerators differ by the constants that are present. 
The gain adjustment factor for each stage is then the ratio of the two numerator 
constants, as shown in (4.40). The total gain adjustment is then the product of 
these stage gain adjustments: 

 
∏=

m
mmmm CRaKGA )/( 1

 (4.40) 

Once the total gain adjustment has been determined, a voltage divider stage at 
the output of the active filter can be used for compensation. 

Example 4.3  Butterworth Bandpass Active Filter Design 

Problem: Determine the resistor and capacitor values to implement a 
Butterworth bandpass active filter to meet the following specifications: 

apass = −1.5 dB,   astop = −28 dB,  fpass1 = 1,000 Hz, 
fpass2 = 2,000 Hz,  fstop1 = 500 Hz, and   fstop2 = 4,000 Hz 



98 Practical Analog and Digital Filter Design 

Solution: A third-order equivalent lowpass filter is needed, which indicates 
that a sixth-order bandpass function will result as shown below: 
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By picking C = 0.01 µF and RA = 10 kΩ, the remaining values can be 
determined by matching the three quadratic terms: 
 

m Rm Km RBm GAm 
0 15.92 kΩ 2.8410 18.41 kΩ 2.4512 
1 22.68 kΩ 3.4550 24.55 kΩ 2.0919 
2 11.17 kΩ 3.4550 24.55 kΩ 4.2481 

 
The combined gain produced by the active filter stages at ω = ωo is 

determined to be 21.783, which can be compensated by a voltage divider at the 
output of the filter. If the output resistance is to be 10 kΩ, the voltage divider 
resistor values are given below. (Note that in this case, if a voltage divider were 
used, a gain of over 21 (over 40 dB) would be sacrificed. It would be better to 
include this in the system gain.) 

 Ω=Ω= k 10.5   ,k 218 yx RR  

The resulting bandpass filter is shown in Figure 4.9. 
 

 
 
Figure 4.9  Butterworth bandpass active filter for Example 4.3. 

4.5  BANDSTOP ACTIVE FILTERS USING OP-AMPS 

Figure 4.10 shows a twin-tee bandstop active filter stage that can implement a 
variety of second-order functions. The admittance labeled Y can represent a 
conductance G, or a susceptance sC, or can have zero value (not be present at all). 
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Figure 4.10  Twin-tee bandstop active filter stage. 
 

 
The general form of the transfer function for this filter is given in (4.41): 
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where again 

 )/(1 AB RRK +=  (4.42) 

Equation (4.43) rewrites this equation in terms of the pole frequency ωp and the 
zero frequency ωz: 
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The transfer function of (4.43) must be matched to the general form of a 
bandstop approximation function, as shown in (4.44): 
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Depending on the value of Y selected, ωz may be greater than, equal to, or less 
than ωp. This will affect the matching of the respective terms in (4.43) and (4.44). 
The responses for the transfer function will also change, as indicated in Figure 
4.11. Let’s look at how the transfer function changes for the three cases. 
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Figure 4.11  Bandstop filter responses. 
 

First, we consider the case where no Y element is present (Y = 0), in which 
case the transfer function can be simplified as shown in (4.45). Note that this 
function has the condition that ωz = ωp (a2 = b2), which will produce a bandstop 
response as shown in Figure 4.11(a). Notice that the response has the condition 
that the upper and lower passbands have equal gain. 
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 (4.45) 

 
The selection of components to implement this type of response is relatively 

easy as we match the terms of (4.44) and (4.45). By first picking a value of C, the 
results are 
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Next, in the case where Y = Go = 1/Ro, the resulting transfer function is given 
in (4.49). Note that this function has ωz < ωp (a2 < b2), which will produce a 
bandstop response as shown in Figure 4.11(b). This is sometimes referred to as a 
“highpass notch” filter because the gain of the upper passband is larger than that 
of the lower passband. 
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 (4.49) 

The selection of components to implement this type of response is again 
determined by matching terms and by first picking a value of C; the results are 

 2
21 CaR =  (4.50) 

 ( )[ ]1/2 22 −= abRRo  (4.51) 

 )2()(2 22122 aababK −−+=  (4.52) 

 )2()(1 22122 aababRR AB −−+=  (4.53) 

 
Finally, in the case where Y = sCo, the resulting transfer function is given in 

(4.54). Note that this function has ωz > ωp (a2 > b2), which will produce a 
bandstop response as shown in Figure 4.11(c). This is sometimes referred to as a 
“lowpass notch” filter. 
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The selection of components to implement this type of response is again 
determined by matching terms and by first picking a value of C; the results are 
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2

21 CaR =  (4.55) 

 [ ] 2 1)/( 22 −⋅= baCCo  (4.56) 

 )2()(2 22122 babbaK −−+=  (4.57) 

 )2()(1 22122 babbaRR AB −−+=  (4.58) 

After these calculations are made, the overall gain of the active filter can be 
determined by evaluating the transfer function at ω = 0 or ω = ∞. If the gain of the 
circuit is to be determined at ω = 0, then the value of K for that stage is used 
except for the highpass notch stage.  In that case, an additional multiplication 
factor of   Ro / (Ro + 2R) should be included as seen from (4.49). If the gain is to 
be determined at an infinite frequency, then the lowpass notch stage will have a 
gain that must be increased by a value of C / (C + 2Co), as indicated by (4.54). 
These values will be the same and can be included in the circuit using a voltage 
divider. 

Example 4.4  Chebyshev Bandstop Active Filter Design 

Problem: Determine the resistor and capacitor values to implement a 
Chebyshev bandstop active filter to meet the following specifications: 

apass = −1 dB,   astop = −40 dB,  fpass1 = 666.67 Hz, 
fpass2 = 1,500 Hz,  fstop1 = 909.09 Hz, and  fstop2 = 1,100 Hz 

Solution: A third-order lowpass equivalent function is required, which 
indicates that a sixth-order unnormalized bandstop approximation function will be 
necessary, as shown below: 
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By picking C = 0.01 µF and RA = 10 kΩ, the remaining values can be 
calculated by matching terms. Note that there are three denominator quadratics 
with three different values of constant terms. One of these values is larger than the 
numerator constant term, one is equal to the numerator constant term, and one is 
smaller than the numerator constant term. This indicates that one of the stages will 
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have an Ro value, one will have no Y element, and one will have a Co value, 
respectively.  

 
 

m Rm Km RBm Ym 
0 15.92 kΩ 1.1569 1.569 kΩ — 
1 15.92 kΩ 2.4619 14.62 kΩ Co = 6.045 nF 
2 15.92 kΩ 2.4619 14.62 kΩ Ro = 26.33 kΩ 

 
The combined gain produced by the active filter stages at ω = 0 or at infinity 

is 3.17422, which includes the product of the three K values and either the 
capacitor or resistor ratio of 0.45269. The voltage divider resistor values can be 
calculated accordingly. The resulting bandstop filter is shown in Figure 4.12. 

 R Rx y= =3174.  k ,    14.60 kΩ Ω  

 
 
 
Figure 4.12  Chebyshev bandstop active filter for Example 4.4. 

4.6  IMPLEMENTING COMPLEX ZEROS WITH ACTIVE FILTERS 

Up to this point in the chapter, we have not discussed the implementation of 
rational functions such as the inverse Chebyshev and elliptic approximations. In 
previous chapters, we discovered that the primary difference between all-pole and 
rational approximation functions was that the rational functions required complex 
zeros on the jω axis in the s-plane. The general form of a rational function 
quadratic factor is shown below. If the a1 coefficient is zero (as it is for zeros on 
the jω axis), the quadratic factor is identical to the form of a bandstop function 
derived for the all-pole response in the last section. 
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Therefore, we have already developed an active filter form to implement the 
inverse Chebyshev and elliptic approximations. It is the twin-tee filter presented in 
the previous section. We can use that form for any of the selectivities (lowpass, 
highpass, bandpass, or bandstop) when designing inverse Chebyshev or elliptic 
filters. 

However, there are a few special concerns that must be considered when 
implementing filter approximation functions with complex zeros. If a lowpass or 
highpass approximation function has an odd-order, the first-order factor should 
still be implemented by the appropriate first-order stage discussed previously. In 
addition, for the case of a bandpass approximation, if the function was derived 
from an odd-order lowpass function, then the quadratic factor associated with the 
first-order factor should be implemented by a Sallen-Key bandpass active filter 
section. The other quadratic factors of the bandpass function and the quadratic 
factors of the lowpass and highpass functions are then implemented by the twin-
tee notch filter. Of course, all stages of a bandstop filter of any approximation use 
the twin-tee configuration. Two examples will now be used to demonstrate the 
procedure of implementing inverse Chebyshev and elliptic approximations. 

Example 4.5  Inverse Chebyshev Lowpass Active Filter Design 

Problem: Determine the resistor and capacitor values to implement an 
inverse Chebyshev lowpass active filter to meet the following specifications: 

 apass = −1 dB, astop = −60 dB , fpass = 100 Hz, and fstop = 300 Hz 

Solution: In this case, a fifth-order filter will be used. We can determine the 
required approximation function to be 
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The two quadratic terms must be matched to two twin-tee active filter stages 
while the first-order factor can be implemented by a simple RC stage. By again 
picking C = 0.01 µF and RA = 10 kΩ, the remaining values can be calculated. Note 
that in this lowpass case, both twin-tee sections employ a capacitor as the 
additional admittance element. 

 
 

m Rm Km RBm Ym 
0 115.5 kΩ — — — 
1 50.46 kΩ 3.9129 29.13 kΩ Co = 26.20 nF 
2 31.18 kΩ 5.8634 48.63 kΩ Co = 68.60 nF 

 
We determine the gain adjustment factor by finding Ktot, as shown below. 
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K Km

m
tot = =∏ 22 943.

 

If the desired output resistance is 10 kΩ, the following values result for the 
voltage divider with the final filter shown in Figure 4.13. 

 R Rx y= =229 4 10 46. . k ,     kΩ Ω  

 

 
 
Figure 4.13  Inverse Chebyshev active lowpass filter for Example 4.5. 
 

Example 4.6  Elliptic Bandpass Active Filter Design 

Problem: Determine the resistor and capacitor values to implement an elliptic 
bandpass active filter to meet the following specifications: 

apass = −1 dB,   astop = −60 dB,   fpass1 = 250 Hz, 
fpass2 = 400 Hz,   fstop1 = 100 Hz, and  fstop2 = 1,000 Hz 

 
Solution: The order of the equivalent lowpass filter is 3, which indicates that 

a sixth-order bandpass approximation function will be necessary. The transfer 
function is shown below: 

 )10227.66.281)(10503.25.178)(10948.38.469(
)103.311()1007.50(8.4691082.20)( 626262
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These three quadratic terms must be matched to three active filter stages. The 
stage related to the first-order factor in the normalized LP filter is implemented by 
the standard Sallen-Key bandpass filter. The other two stages are implemented 
using the twin-tee filters. By picking C = 0.01 µF and RA = 10 kΩ, the remaining 
values can be calculated as shown below. One of the twin-tee stages will have a   
Ro = 18.86 kΩ and the other will have Co = 95.04 nF.  
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m Rm Km RBm Ym 
0 71.18 kΩ 3.6656 26.66 kΩ — 
1 14.13 kΩ 11.251 102.5 kΩ Co=95.04 nF 
2 179.2 kΩ 11.251 102.5 kΩ Ro=18.86 kΩ 

 
The combined gain produced by the active filter stages at ω = 0 is 4.4406 and 

that can be compensated by a voltage divider after the last stage. The voltage 
divider resistor values are shown below and are calculated to provide an output 
impedance of 10 kΩ. The resulting bandstop filter is shown in Figure 4.14. 

 R Rx y= =44 4.  k ,    12.9 kΩ Ω  

 
 
Figure 4.14  Elliptic bandpass active filter for Example 4.6. 

4.7  ANALOG FILTER IMPLEMENTATION ISSUES 

In the previous sections, we determined component values necessary to implement 
our analog filter designs in the form of active filters. These active filters make use 
of electronic components that can be manufactured only to a finite accuracy. The 
components are not perfect when they are first manufactured and can change 
value because of aging or exposure to heat, chemicals, or humidity. Therefore, it is 
important to select the best type of component for our purpose (active filter 
implementation). Although we can buy precision components that resist changes, 
the cost of such components can be expensive. It is most cost effective to specify 
precision components only for those positions that actually require it. We can 
determine which components are in critical positions by performing a sensitivity 
analysis.  
 

4.7.1  Component Selection 

Each active filter stage is made up of a combination of resistors, capacitors, and 
op-amps. There are important issues in the selection of each of these components. 
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We start with a discussion of the active device in our design and then discuss 
capacitors and resistors in turn. 

The op-amp is the amplifying device in our design and the response of the 
filter is based on the assumption that the op-amp is ideal. We assume that the input 
impedance is infinite (actually 1 M–100 MΩ depending on device), the output 
impedance is zero (actually 100–1,000 Ω), and that the op-amp can amplify 
frequencies up to infinity (actually the bandlimit is usually 1 M–10 MHz). This 
later characteristic is specified by the op-amp’s gain-bandwidth product (GBP). 
This number provides a reference that can be used to determine the open loop gain 
of the op-amp at any frequency (or vice versa). For example, the GBP of a 741 op-
amp is 106, which indicates that this amplifier has an open loop gain of 1,000 at a 
frequency of 1,000 Hz. Alternatively, we could use this GBP to predict that an 
upper frequency limit of 20,000 Hz was available with an open loop gain of 50. 
The important point to remember, however, is that the transfer functions of the 
active filters were derived assuming that the gains of the op-amps used were very 
large for all frequencies of interest in the design. Therefore, whether or not the 
active filter is a lowpass, highpass, bandpass, or bandstop filter, the open loop 
gain of the op-amp must be large for all frequencies of interest. These frequencies 
of interest include not only the passbands, but also the stopbands. Luckily, there 
are many options (other than 741s) when it comes to specifying the active device 
to be used.   

Capacitors represent the reactive elements in our active filter because they 
have a reactance that changes with frequency (unlike resistors). There are many 
types of capacitors manufactured today including electrolytic, ceramic, poly, film, 
and others. Each capacitor type has a place and is manufactured to serve a specific 
purpose in the electronics world. For example, electrolytic capacitors are generally 
used in power applications where large values (up to 10,000 uF) are important and 
variations in value are not the most important criterion for selection. They are the 
farthest from ideal of any of the capacitor types and should not be used in active 
filter design. Ceramic capacitors generally have very small values (in the pF 
range) and are used most often in applications operating in the megahertz range. 
Generally, active filters will not be operating at that frequency because of the 
limitation of the op-amp. The most commonly used capacitors for active filters are 
referred to as “poly” capacitors. There are a number of types that fall into this 
category (polystyrene, polypropylene, polycarbonate, and polyester), where the 
different names indicate the dielectric used in their construction. There are trade-
offs with regard to tolerance, cost, and characteristics, but in general you will find 
these types effective in active filter design. 

In the case of resistors, there are a variety of types, including carbon 
composition, carbon film, metal film, wire-wound, and others. Wire-wound 
resistors are rarely used except in power applications, and carbon composition 
resistors generate excessive amounts of noise. Therefore, in our application, either 
metal film or carbon film resistors are usually used. You will find carbon film 
devices used for 5% tolerance values (meaning that the value of the resistor could 
be ±5% of its nominal value). The metal film device will have a lower temperature 
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coefficient (meaning that it will display less variation with changes in 
temperature) and is generally manufactured to 1% tolerance. Values are typically 
available from 10 Ω to 10 MΩ. Because of the nature of the active devices used 
(op-amps) it is best to keep the resistor values used in a filter between 1 kΩ and 
100 kΩ, if possible, and certainly between 100 Ω and 1 MΩ. Otherwise, the 
assumptions about the impedances of the op-amp being ideal are no longer valid 
and the response of the filter may not be as expected.  

Hopefully, this brief discussion will get you started in the implementation of 
your active filter. For further information, consult the references given in the 
analog filter design section of Appendix A. 

4.7.2  Sensitivity Analysis 

After selecting the best components for the active filter, it is important to identify 
which of these components has the most effect on the overall performance of the 
filter. Since no component is perfect, and they all will change with age, 
temperature, and other influences, these effects on the filter response can be 
minimized by selecting the most critical components to have the lowest tolerances 
to change. We can determine the most critical components in a design by 
performing a sensitivity analysis.  A sensitivity analysis is the process of finding 
out how any or all of the characteristics of a filter are affected by each and every 
component that makes up the filter. 

For example, the sensitivity of a function F with respect to x is defined in 
(4.60). Note that sensitivity not only considers the change in F as a function of x, 
but also the nominal values of F and x. Therefore, the sensitivity considers the per 
unit change of the function with respect to the per unit change of the parameter. 
Using the definition of (4.60), other common sensitivity relationships can be 
determined as shown in (4.61)–(4.66). (The value c is considered a constant and G 
is another function of x.) 
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In each of the preceding sections, a transfer function for an active filter was 

given in terms of the resistor and capacitor values used to make up the circuit. In 
general, those functions can be specified in terms of the pole and zero frequencies 
and quality factors (Qs) as shown in (4.67): 
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If we consider the lowpass active filter of Section 4.2, which has a transfer 

function as indicated in (4.68), we can easily match terms to identify the pole 
frequency and Q in terms of the component values as shown in (4.69) and (4.70): 
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The sensitivity of either one of the parameters listed above to any one of the 
resistor or capacitor values can now be determined. For example,  

  (4.71) 
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which indicates that for every 1.0% increase in R1 there is a 0.5% decrease in ωp. 
Likewise, we find that 

 11
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 (4.72) 

which for equal resistor and capacitor values becomes 

  (4.73) p
Q
R QS p +−= 5.0

1

Equation (4.73) indicates that the sensitivity of Qp with respect to R1 can be 
quite high since Q values can reach 50 to 100. Therefore, the selection of R and C 
values for the active filters plays an important part in the overall sensitivity of the 
circuit. We do not have space for a full treatment of sensitivity analysis in this 
text. However, references in Appendix A provide further details on sensitivity and 
on methods of selecting component values that yield low sensitivities. The text by 
Daryanani provides a particularly good presentation. In fact, that text presents a 
different choice for the component values for a Sallen-Key active filter as listed 
below. By making those selections, it can be shown by substitution into (4.70) that 
Qp is no longer a function of R at all and therefore would have a sensitivity of zero 
with respect to changes in resistance value: 
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A sensitivity analysis provides us with valuable information about the 

component values used in the circuit. With that information, we can determine 
which components are critical in controlling variation in key filter parameters. 
However, it is also very important to perform a worst-case analysis on the circuit. 
This analysis of the circuit would use the sensitivities that have already been 
determined to set each component to the extreme limit of its tolerance in order to 
see the effect on the overall circuit performance. For example, all components 
with negative sensitivities would be set to their lower tolerance limit while all 
components with positive sensitivities would be set to their upper limits. The 
circuit would then be analyzed to see if it still met the specifications. Next, all 
component values would be set to the opposite limit and the test would be 
repeated. If a circuit passed this test, it should perform up to specifications with 
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the randomly chosen values used when it is assembled. An example of a worst-
case analysis using PSpice is given in Section 4.8.  

Another type of statistical test that is less rigorous than a worst-case test, but 
probably more typical of what will happen in real life, is the Monte Carlo 
simulation. In this test, component values are selected randomly within their 
tolerance range and the circuit is tested to see if it meets the required 
specifications. In most software packages, the values can be characterized as 
having a Gaussian or uniform distribution. A number of Monte Carlo tests are 
usually run to simulate the variation of component values that will be seen in the 
normal assembly process. 

4.8  USING WFILTER IN ANALOG FILTER IMPLEMENTATION 

In order to see how WFilter helps in analog filter implementation, we generate the 
component values and PSpice data file for the problem given in Example 4.5. 
After we enter the filter specifications and design the filter, we can specify the 
common component values and frequency specification in the Circuit 
Specification dialog box shown in Figure 4.15. This dialog box is displayed by 
selecting Options and then Generate Spice File from the menu bar. 

 
 

 
 

 
Figure 4.15  Circuit specification dialog box. 
 

We have entered a common capacitor value of 0.1 µF and common resistor 
value of 10 kΩ.   In addition, we have specified the frequency analysis range to be 
from 10 Hz to 1 kHz. After pressing the Show File button, the PSpice text file 
shown in Listing 4.1 is displayed. Notice that the first stage is first-order with an 
RB value of one ohm (most circuit analysis tools do not accept zero ohms), while 
the other two stages describe twin-tee notch filters. The original calculated values 
are shown in the listing and should be used in a test analysis of the circuit to 
determine if the specifications have been met. If the specifications are not met 
with these “ideal” values, either the op-amp model is not adequate or an error has 
been encountered in the design steps.  
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Example 4.5 and PSpice Example 
*    Specify input source: 
Vs   11   0  AC   1   0 
*     Stage Number   1  (Practical Values) 
R11  11  12  1.155E+04  (1.15E+04) 
C11  12   0  1.000E-07  (1.00E-07) 
Rb1  13  21  1.000E+00  (1.00E+00) 
X1   12  13  21  OPAMP 
*    Stage Number   2 
C21  21  22  1.000E-07  (1.00E-07) 
C22  22  24  1.000E-07  (1.00E-07) 
C23  23   0  2.000E-07  (2.00E-07) 
R21  21  23  5.046E+03  (4.99E+03) 
R22  23  24  5.046E+03  (4.99E+03) 
R23  22  31  2.523E+03  (2.49E+03) 
Ra2  25   0  1.000E+04  (1.00E+04) 
Rb2  25  31  2.913E+04  (2.94E+04) 
Co2  24   0  2.620E-07  (2.70E-07) 
X2   24  25  31  OPAMP 
*    Stage Number   3 
C31  31  32  1.000E-07  (1.00E-07) 
C32  32  34  1.000E-07  (1.00E-07) 
C33  33   0  2.000E-07  (2.00E-07) 
R31  31  33  3.118E+03  (3.09E+03) 
R32  33  34  3.118E+03  (3.09E+03) 
R33  32  41  1.559E+03  (1.54E+03) 
Ra3  35   0  1.000E+04  (1.00E+04) 
Rb3  35  41  4.863E+04  (4.87E+04)  
Co3  34   0  6.860E-07  (6.80E-07) 
X3   34  35  41  OPAMP 
*     Voltage divider section 
Rx   41  42  2.294E+05  (2.32E+05) 
Ry   42   0  1.046E+04  (1.05E+04) 
*     Sub-circuit model for op-amp 
.SUBCKT OPAMP  1  2  6 
Ri    1   2   1.000E+08 
E1    3   0   1   2  1.000E+03 
Rx    3   4   1.000E+03 
Cx    4   0   1.000E-09 
E2    5   0   4   0  1.000E+03 
Ro    5   6   1.000E+00 
.ENDS 
*     Analysis modes 
.AC   DEC    100     1.000E+01  1.000E+03 
.PROBE 
.END 

 
Listing 4.1  Circuit analysis data file for Example 4.5. 
 

The next step in the testing of the active filter is to replace the ideal 
components with practical values. For this exercise, we will use 1% resistor and 
2% capacitor values. (The selected values are shown in italics and parentheses in 
the listing.) A worst-case analysis can then be run on the circuit that involves 
adding tolerance information for the component values. (You need access to the 
PSpice program to make this run.) During the worst-case analysis, sensitivities for 
each component are determined, and as the final step, each component is set to its 
worst-case extreme. Figure 4.16 shows both the worst-case and nominal response. 
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If the two frequency responses were carefully compared, we would see that there 
is a +2.5 dB “bump” in the passband, and we lose over 2 dB in the stopband 
attenuation. These changes should represent the “worst” that can happen due to 
the unfortunate selection of the worst possible combination of components. (A 
worst-case analysis was also run with 5% resistor values and 10% capacitor values 
and the “bump” increased to 15 dB.) A Monte Carlo analysis can also be run on 
the circuit to indicate the more typical extremes that might be encountered.  

Depending on the nature of the application, we can live with the resulting 
variations, select even more precise (expensive) components, or redesign the filter 
to more stringent specifications than actually desired. This redesigned filter would 
then be able to vary to some degree while still satisfying the real specifications. 
However, this filter may also require a higher order, which will add cost to the 
project. 

 

 
 
Figure 4.16  Frequency responses for Example 4.5. 

4.9  CONCLUSION 

We have reached the end of the first part of this text. We were able to design a 
variety of analog filters, view their frequency responses, and implement them in 
an active filter form. Of course, we have left a good deal of material uncovered. 
There are other filter types that could have been discussed. There are other 
features that could have been included in the frequency response calculation and 
display. Moreover, there are other implementation techniques available for analog 
filters. However, it is now time to move into the realm of digital filters. We will 
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see that our work in the area of analog filters will prove valuable, since one form 
of a digital filter uses much of what we have learned so far. For those who are 
interested in seeing the code used to generate the PSpice circuit file, please turn to 
Appendix F. 
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Chapter 5 

Introduction to Discrete-Time Systems 

Although most naturally occurring signals are of the analog variety (continuous-
amplitude and continuous-time variation), we are finding that conversion of these 
signals to a digital form (discrete-time and discrete-amplitude variations) provides 
many advantages. For example, digital signals can be stored on computer floppy 
or hard disks. They can be compressed to save space, converted to other formats, 
or transmitted in combination with other signals. Digital forms of signals are truly 
becoming the standard in everyday use as compact discs (CDs) for audio and 
multimedia applications can attest. Therefore, the remainder of this text is devoted 
to the application of filtering techniques to digital signals. 

The material in this chapter should provide a review of the basic principles of 
discrete-time systems that are necessary to understand the material presented in 
the remainder of the text. In the first section of this chapter we will discuss the 
process of converting analog signals into a digital form. Next, we will develop 
methods of dealing with discrete-time signals in both the time domain and 
frequency domain. We will also learn how to find the frequency response of a 
discrete-time system as well as how to play digitized waveforms on a computer 
equipped with a sound card. 

5.1  ANALOG-TO-DIGITAL CONVERSION 

As indicated in the introduction, most of the signals that we deal with every day 
are known as analog signals. This type of signal has a continuous variation in both 
time and amplitude, as shown in Figure 5.1(a). In order to convert this analog 
signal to a digital signal with discrete-time and discrete-amplitude, as shown in 
Figure 5.1(b), several steps must be performed. 

First, the frequency spectrum of the analog signal must be strictly band-
limited. Second, the signal must be sampled at the proper sampling rate. Third, the 
sampled value must be quantized to an acceptable level of accuracy. When it is 
time to convert the digital signal back to analog form, there are a number of 
methods that can be used, but one simple method requires only two steps. The first 
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step is to output the digital value of the signal and hold it for the duration of the 
sample period. The second step is to pass that signal through a lowpass filter. In 
order to understand the reasons why these steps are necessary for analog and 
digital conversion, we need to study the frequency spectrum of a sampled signal 
and the requirements placed on the sampling rate. 

 

 
 
Figure 5.1  Comparison of analog and digital signals. 

5.1.1  Frequency Spectrum and Sampling Rate 

When an analog signal x(t) is sampled, as shown in Figure 5.1, the samples are 
usually taken at equal intervals of time. This sampling period Ts is the inverse of 
the sampling frequency fs. The resulting digitized waveform xs(nT) can be 
specified with an argument indicating the sampling period Ts, as shown in (5.1): 

 
snTts txnTx

=
= )()(  (5.1) 

For example, if we had an analog signal x(t) as specified in (5.2), the sampled 
version of the signal xs(nTs) as shown in (5.3) would result: 

  (5.2) )200cos(50)( 100 tetx t ⋅⋅⋅= ⋅−

  (5.3) )200cos(50)( 100
s

nT nTenTx s ⋅⋅⋅= ⋅−

If we assume that the analog signal is sampled at a frequency of 1,000 
samples per second, then we can calculate the values of xs(nTs) with Ts = 0.001 
second. The values that result can be stored as a sequence of numbers, as shown 



 Introduction to Discrete-Time Systems 117 

below. This is an important point: once an analog signal has been digitized, it is 
nothing more than a sequence of numbers that can be stored, manipulated, 
transmitted, or processed in any way we see fit. 

 … ,1 ,0 },... 16.4, 23.4, 30.6, 37.7, 44.3, 50.0,{)( == nnTx s  (5.4) 

Since the sampling period seldom changes, discrete-time equations usually 
drop the sampling period Ts from the expressions to produce an expression such as 
(5.5). The sampling period will not be needed again until the digitized waveform 
is converted back to analog form. 

  (5.5) )100cos(25)( 10 nenx n ⋅⋅⋅= ⋅−

Although it doesn’t appear that much has changed in the representation of the 
signal in the time domain, a great deal has changed in the frequency domain. The 
frequency spectrum of a signal is shown in Figure 5.2(a) before sampling. If this 
signal were sampled at a frequency of fs, the spectrum of the sampled signal would 
be as shown in Figure 5.2(b). The original analog spectrum is replicated 
throughout the spectrum at intervals of fs (although only one instance of that is 
shown). Because of this replication, it is feasible that there will be corruption of 
the frequency components of the original signal by components of the replicated 
signals. This corruption is referred to as aliasing, and the offending frequencies 
are alias frequencies. (Further details of aliasing and the upcoming Nyquist 
criteria can be found in most of the digital filter design references in Appendix A.) 
 

 
 
Figure 5.2  Spectrum of signal (a) before and (b) after sampling. 
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When digitizing a signal, it is very important to capture most, if not all, of the 
information present in the original analog signal without generating alias 
frequencies. For this reason, a good deal of study has gone into the conditions 
necessary to faithfully convert an analog signal into a digital form. We can see by 
closely observing Figure 5.2(b) that if we are to eliminate the effect of aliasing, 
the sampling frequency must be at least twice as high as the highest frequency in 
the original signal. This relationship, as shown in (5.6), is known as the Nyquist 
criteria, and is a well-known requirement in sampling theory: 

 

 hs ff ⋅> 2  (5.6) 

In order to guarantee that this requirement is met at all times, it is normal 
procedure to band-limit the input signal to one-half of the sampling frequency 
once the sampling frequency has been set. This is a prudent measure, since 
frequencies beyond those which are normally expected can occasionally occur in 
all systems. The band-limiting process can be implemented by sending the analog 
signal through an analog lowpass filter prior to sampling. (What an excellent use 
of our analog filter theory!) 

 

5.1.2  Quantization of Samples 

Once the analog signal has been sampled, it is a discrete-time signal since values 
of the signal exist only at particular moments of time, but the amplitude of the 
signal is still continuous. Then, the next step in the analog-to-digital conversion 
(ADC) is to quantize the continuous-amplitude signal to one of many discrete 
values of amplitude. The number of possible values allowed for the amplitude is 
determined by the size of the variable chosen to store the values. For example, if a 
single byte of memory (8 bits) is chosen to store the information, then the 
amplitude can take on one of 28 or 256 different values. If the original signal had a 
range of amplitudes from +1 volt to −1 volt, then the difference between adjacent 
amplitudes would be approximately 7.8 ⋅ 10−3 volts. On the other hand, if two 
bytes of memory (16 bits) were used to store each sample, there would be 216 or 
65,536 different values to represent the signal. With this many values, the ±1 volt 
signal would have adjacent amplitudes separated by only 3.05 ⋅ 10−5 volts. 
Obviously, the larger the variable used to store the sampled data, the more closely 
we can approximate the analog signal with the digital representation. (In the 
previous discussion it is assumed that uniform sampling was used where all levels 
would be equally spaced. There are also techniques that use nonuniform spacing 
to place more levels at lower levels and wider spacing for larger signals.) 

However, the drawback of using larger and larger variables is twofold. First, 
the storage requirements to store the digitized waveform are proportional to the 
number of bits used to quantize the samples. For example, suppose we decide to 
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sample a speech signal that contains signal frequencies from 300 to 3,000 Hz at a 
frequency of 8,000 Hz (which satisfies Nyquist’s criteria). The waveform would 
need a file size of 480,000 bytes (480 kilobytes) to store one minute’s worth of 
data using only 1 byte per sample. On the other hand, if we stored one minute of 
stereo music using 2 bytes of data for each channel (left and right), the file size 
would need to be over 10 million bytes (10 megabytes). This large file size is 
necessary to accommodate a sampling rate of 44 kHz, which is the normal rate 
used for high-fidelity audio signal with frequencies up to 20 kHz. 

The second drawback is the speed of conversion from analog-to-digital form. 
Although ADC chips are very fast these days, obtaining more accuracy requires 
more time for conversion. Eventually, a limit on accuracy will be reached because 
the conversion cannot be made in the allotted sample interval. This limitation is 
more common when processing video signals that have bandwidths in the millions 
of hertz (MHz). 

It is important to note at this point that theoretically the sampling of an analog 
waveform does not normally produce any error. (This assumes that the sample 
clock does not introduce error because of timing jitter.) It is the quantization of the 
sample that produces the error in a digital system. If the samples could be stored in 
their original continuous-amplitude form, they could be used to regenerate the 
original signal with no error (assuming the Nyquist criteria is met). The maximum 
amount of error introduced into the system by this quantization is equal to one-
half of the difference between amplitude levels. As we can see, selecting a method 
for the digitization of an analog signal is a compromise between conversion speed, 
waveform accuracy, and storage or transmission size. 

 
 

5.1.3  A Complete Analog-to-Digital-to-Analog System 

Figure 5.3 shows a block diagram of a complete system that first converts an 
analog signal to digital form for processing, transmission, or storage. Then the 
conversion is undone by converting the digital signal back to analog form at 
another time and/or place using a digital-to-analog converter (DAC). As shown in 
Figure 5.2(b), the process of sampling a signal produces replicas of the original 
analog spectrum at intervals of the sampling frequency. In order to recover the 
original analog signal we simply have to eliminate the frequencies higher than fs/2. 
This filtering is accomplished by a high-order lowpass filter. 

A good example of such a complete procedure is the processing of audio 
signals for a music CD. The original sounds of the music are supplied by 
instruments or voices and are then recorded on tape in analog form. At some later 
time, these analog signals are digitized and encoded on the compact disc. We can 
then buy this CD and take it home and play it on our stereo system where the 
musical data is first converted from digital to analog form and then reproduced for 
us. In this example, the data is processed, stored, and reproduced at a later time 
and different place. 
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Figure 5.3  Complete analog-to-digital-to-analog system. 

5.2  LINEAR DIFFERENCE EQUATIONS AND CONVOLUTION 

In our study of discrete-time systems, we need to be able to describe them in a 
number of different ways. In this section we will learn how to describe a discrete-
time system by using a difference equation and the system’s impulse response. 
The impulse response of a system is simply its response to the discrete impulse 
function δ(n), as defined in (5.7). This function is the discrete-time equivalent to 
the Dirac delta function δ(t) used in continuous-time system theory. The impulse 
function is a very useful function because any input signal sequence can be 
described by summing weighed and delayed versions of the impulse function. 
Likewise, a discrete-time system’s response can be described by combining the 
responses to the input sequence.  
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In addition, we will use the unit step function u(n) in many of our 
expressions, so its definition is shown in (5.8). This function is the equivalent of 
the continuous-time step function u(t): 
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Just as u(t) can be defined as the integral of δ(t), u(n) and δ(n) have a 
relationship built on the infinite summation as described in (5.9): 
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5.2.1  Linear Difference Equations 

Continuous-time systems often require the solution of one or more linear 
differential equations. In this case, values of the input and output signals and their 
derivatives are used. The discrete-time equivalent to this analysis uses linear 
difference equations that make use of past and present values of the input and past 
values of the output. Note that instead of using derivatives, we are using past 
values of the signals.  

One classic example of a discrete-time system that can be easily described by 
a difference equation is the bank account balance. Let y(n) reflect the balance in a 
savings account where x(n) dollars are deposited at the beginning of each month. 
We can assume that the account earns interest at a monthly percentage rate of I. If 
we let Ts, the sample period of the system, be one month, then the difference 
equation shown in (5.10) reflects the balance in the account at the beginning of 
each month: 

 )()1()100/()1()( nxnyInyny +−⋅+−=  (5.10) 

If we assume that we deposit $100 each month and the interest is 1% per 
month, we can replace x(n) with 100⋅u(n) in (5.10) to produce the following result: 

 )(100)1()01.1()( nunyny ⋅+−⋅=  (5.11) 

Table 5.1 shows the balance of the account for six months, assuming that we 
just opened the account and the balance was zero. 

Table 5.1   
Balance in Savings Account 

Month Balance 

0 $100.00 
1 $201.00 
2 $303.01 
3 $406.04 
4 $510.10 
5 $615.20 

 
Although manual techniques for the solution of this difference equation are 

acceptable for six months’ time, other methods will need to be employed for 
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longer periods of time. Let’s see if we can determine a general formula for the 
balance of this account. Starting with the first month we find that 

 

 100)0( =y  (5.12) 

 )01.11(100100)0(01.1)1( +⋅=+⋅= yy  (5.13) 

  (5.14) )01.101.11(100100)1(01.1)2( 2++⋅=+⋅= yy

or in general 

  (5.15) 
∑
=

⋅=
n

k

kny
0

01.1100)(

Although this expression is compact, it still would require the calculation of 
the sum of n + 1 terms in order to determine the value. What we really need is a 
closed form solution. (Of course I wouldn’t have mentioned such a thing if one 
didn’t exist.) We can define what is referred to as a finite geometric sum, as 
shown below: 
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Then, with some ingenious mathematics, we can define a difference that 
cancels most of the terms: 
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Finally, we can determine the value of the FGS, as shown below. (The value 
of FGS when a = 1 is determined directly from (5.16): 
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We can now write the equation for the balance of our savings account in a 
closed form, as shown below.  This  expression  does  not  need the  calculation of 
n + 1 terms in order for us to evaluate it. 
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 (5.19) 

We can also define the value of the infinite geometric sum, as shown below: 
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By simply allowing n in (5.18) to approach infinity, we can see that IGS can 
be specified as 
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One way to completely define a discrete-time system is by using its difference 
equation. In general, the difference equation describing the output for a discrete-
time system can be written as 
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We would have complete knowledge of the system if we know the 

coefficients ak and bk. As indicated in (5.22), the output y(n) is a function of past 
and present values of the input x(n) and past values of the output. A system such 
as this is a recursive system. A system that has its output described only by past 
and present values of the input is a nonrecursive system. We will see in the 
chapters to come that these definitions effectively divide the types of digital filters 
to be designed into two groups as well. 

Notice that we have defined the output of our system in terms of only past and 
present values of the input. Such a system is referred to as a causal system. Any 
real-time system, of course, must be causal since we cannot determine the output 
of a system based on input or output values we have not yet seen. However, 
systems that are not real-time can be noncausal. For example, any system that can 
draw its input from stored data can determine the output of the system at time n by 
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using input values at n + m. These “future” values are known since they already 
have been stored. 

5.2.2  Impulse Response and Convolution 

Another way to completely describe a discrete system is to specify the impulse 
response h(n) of the system. The impulse response of a system can be determined 
from the difference equation by substituting the impulse function δ(n) for the 
input x(n) and determining the output y(n). 

Example 5.1  Determination of Impulse Response 

Problem: Assume that a discrete-time system is described by the difference 
equation shown below. Determine the first five values of the impulse response, 
and then formulate an analytic expression for the impulse response. 

 )()1()( 1 nxnybny +−⋅=  

Solution: First, the equation is modified to reflect the fact that the output will 
be the impulse response h(n) if the input is δ(n). 

 )()1()( 1 nnhbnh δ+−⋅=  

Next, the set of the first five values of the impulse response are determined 
using Table 5.2. 

Table 5.2 
Results of Impulse Response 

n δ(n) h(n − 1) h(n) 

0 1 0 1 

1 0 1 b1

2 0 b1 b1 
2

3 0 b1 
2 b1 

3

4 0 b1 
3 b1 

4

 
From these results we can see that there is a general form to the impulse 

response, as shown below: 

  )()( 1 nubnh n ⋅=

When the impulse response of a system is known, the complete characteristics 
of the system are known. The reaction of the system to any other input can then be 
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determined by using convolution (similar to the operation in continuous systems). 
The output of the system can be defined as in (5.23) where the ∗ indicates 
convolution, not multiplication. In that expression, we see that the output of the 
system y(n) is determined by computing a sum of products of the impulse 
response coefficients h(n) and past values of the input x(n − k). Convolution has 
the commutative property so the order of the functions in the convolution 
definition is not important. From a practical standpoint however, the simpler 
function is typically specified in the time-shifted format. This is the predominant 
method used to implement an FIR filter, which is discussed in detail in Section 
8.3. In addition, a number of the texts listed in the digital filter design section of 
Appendix A cover discrete-time convolution. 
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Example 5.2  System Response by Convolution 

Problem: Determine the output of the system described in Example 5.1 if the 
input is the signal shown below: 

  )()( 1 nuanx n ⋅=

Solution: Since we already have the impulse response of the system, we can 
use convolution to determine the output of the system. The equation for the output 
of the system is 
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Note that the limits on the convolution summation are adjusted by the 

functions u(k) and u(n − k). The step function u(k) has zero value for negative 
values of k and therefore the lower limit of the summation is set to zero. The step 
function u(n − k) will have zero value for all k values greater than n, and therefore 
the upper limit of the summation is set to n. We can use the form of a finite 
geometric sum to simplify the result into a closed form solution, as shown below: 
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5.3  DISCRETE-TIME SYSTEMS AND Z-TRANSFORMS 

It is also important to be able to understand a discrete-time system’s 
characteristics in the frequency domain as well as the time domain. For linear 
systems, the Laplace transform can be used to transform time domain 
characteristics to the frequency domain. For discrete-time systems, we will use the 
z-transform as defined in (5.24): 
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The z-transform of a weighted impulse function, for example, results in a 
single term because the impulse function has only one nonzero value. 
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The z-transform of a weighted step function can also be determined using the 

definition. In this case, the result can be simplified by using the definition of the 
infinite geometric sum. Some of the more common z-transform pairs are shown in 
Table 5.3. 
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The z-transform also has a set of useful properties, as shown in Table 5.4. 

First and foremost is the property that the z-transform of the impulse response is 
the system’s transfer function in the z-domain. We’ll use that property in the next 
example. The second property in Table 5.4 shows that convolution in the time 
domain can be represented as simple multiplication in the z-domain. The third 
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property listed shows that time delay of k units of time can be represented by 
multiplication by z-k in the z-domain. And finally, multiplication by n in the time 
domain can be represented by differentiation in the z-domain. For further 
discussion of these and other properties of the z-transform or for a more 
comprehensive list of z-transform pairs, please refer to one of the reference texts 
listed in Appendix A. 

 

Table 5.3   
Common z-Transform Pairs 

Time Domain Function Frequency Domain Function 
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Table 5.4   
Common z-Transform Properties 

Time Domain Function Frequency Domain Function 
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Example 5.3  Determining the Transfer Function 

Problem: Determine the transfer function of the system described in Example 
5.1, which has an impulse response of 

  )()( 1 nubnh n ⋅=

Find the location of the poles and zeros of the transfer function as well as the 
difference equation of the system from the transfer function. 

Solution: Using the fourth entry in the table of z-transform pairs, we can 
determine that the transfer function of the system described is 
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We see that there is a single pole (denominator root) at z = b1 and a single 
zero (numerator root) at z = 0. By cross-multiplication, the following equation 
results: 

  )()()( 1
1 zXzYzbzY =⋅⋅− −

By taking the inverse z-transform of this equation and applying the time shift 
property of the z-transform, we can determine the same difference equation, as in 
Example 5.1: 

 )()1()( 1 nxnybny +−⋅=  

Another way that a discrete-time system can be described is by drawing a 
system diagram to represent a general difference equation. Figure 5.4 shows the 
system diagram for (5.21). In the figure, delays are represented by z-1 and 
multiplication by triangular symbols. Of course, if a nonrecursive filter was being 
represented, the lower half of the system diagram would be eliminated since the 
output of such a system does not depend on past values of the output. 

In this system diagram, we see that each time the signal moves through a 
delay element the output is delayed by one sample interval. Although the system 
diagram is correct and will produce the correct output relationship, there is a more 
efficient description of the system. First, if we transform the general difference 
equation of (5.22), we have 
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Figure 5.4  System diagram of general discrete-time system. 

 
From this description, we can determine the transfer function H(z) to be 
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We can represent (5.28) in a slightly different way to allow for further 
development: 
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This representation leads to two separate relationships, as shown below: 
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These two equations in the z-domain can be written in their equivalent form in 
the time domain by recognizing that z−k in the z-domain represents a delay of k 
sample periods in the time domain. 
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The result of this derivation is that the general form of a discrete-time system 
diagram can be drawn with more efficient use of the delay units by defining w(n) 
in the diagram. Since these delay units must be implemented in hardware or 
software, the fewer used the better. Figure 5.5 shows the preferred method of 
drawing the system diagram with fewer delays. 

 
 
Figure 5.5  System diagram with fewer delay units. 

5.4  FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS 

The frequency response is one of the most important characteristics of a discrete-
time system. Although it does not completely describe the system as the difference 
equation, impulse response, or transfer function does (it does not convey the 
transient behavior of the system), the frequency response does provide  important  
information  about  the steady-state behavior of the system. We can begin by 
considering an analog sinusoidal signal and the sampled signal using a sampling 
period of Ts. 
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 )cos()( tAtx ⋅⋅= ω  (5.34) 

 )cos()cos()( nAnTAnTx s ⋅Ω⋅=⋅⋅= ω  (5.35) 

where we have defined 

 sss ffTfT / 2 2 ππω =⋅=⋅=Ω  (5.36) 

Equation (5.36) provides us with a method of comparing the analog frequency 
f to the digital frequency Ω. The range of analog frequencies acceptable for a 
discrete-time system does not extend from zero to infinity as would be the case in 
a normal analog system. We must remember that the upper limit of acceptable 
analog frequencies in discrete-time systems is governed by the Nyquist criteria, 
and therefore the range is defined as shown below. Note that a subscript of d is 
appended to the frequency variable to indicate we are talking about an equivalent 
analog frequency within a discrete-time system. 

 2/0 sd ff <≤  (5.37) 

Combining this condition with (5.36) results in the following range of digital 
frequencies 

 π<Ω≤0  (5.38) 

Although a sine or cosine function is usually used to determine the frequency 
response of a hardware system, both of these functions can be described by 
complex exponentials, as shown below: 
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In fact, all periodic functions can be represented by these exponentials and 
even constants can be represented as exponentials with zero frequency. Therefore, 
when determining the frequency response of a discrete system, it is common to 
consider the driving function as the complex exponential, as shown below: 
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The output of a discrete-time system can then be determined by convolving 
this input signal with the system’s impulse response. The output is then 
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Or, we can rewrite the result as 
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where H(e jΩ) is defined as the frequency response of the system. 
If we compare the definition of the frequency response, as shown in (5.44), 

and the definition of the transfer function for a system, as shown in (5.45), we see 
a striking similarity: 
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We can take advantage of this convenient similarity by defining the frequency 
response of a system in terms of the transfer function by simply allowing z to be 
replaced by e jΩ. That is, 

 Ω=
Ω = jez

j zHeH )()(
 (5.46) 

Example 5.4  Determining the Frequency Response 

Problem: Determine the frequency response of the system described in 
Example 5.3, which has a transfer function of 
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Assume that b1 has a value of 0.8 for this system. 
 
Solution: The frequency response can be found from the transfer function by 

simply making the substitution of z = e jΩ: 
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The values for the frequency response can then be calculated by allowing the 
frequency Ω to range from 0 to π, as shown in Table 5.5. Note that the complex 
exponential e jΩ can be converted to a complex number in the rectangular form of 
cos(Ω) + j sin(Ω) using Euler’s relationship or converted to polar form as 1∠ Ω. 

Table 5.5 
Frequency Response 

Frequency Magnitude Phase (deg) 

0 5.00 0.00 
π/4 1.42 −52.5 
π/2 0.78 −38.7 
3π/4 0.60 −19.9 
π 0.56 0.00 

 
Example 5.4 shows that the frequency response of a system is nothing more 

than a complex valued function of frequency. At any particular frequency, the 
complex value of the function can be determined and converted to polar form, as 
shown below: 

  (5.47) )()()( ΩΦ∠Ω=Ω MeH j

In this expression, M(Ω) represents the adjustment in magnitude that a signal 
will experience as it passes through the system, and Φ(Ω) represents the 
adjustment in phase that the input signal will experience. For instance, if a digital 
signal 
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was applied to the system of Example 5.4, the output signal could be determined 
by multiplying the magnitude of the input by the magnitude of the frequency 
response at Ω = π/2, and by shifting the phase of the input by the phase of the 
frequency response at Ω = π/2. The result could be written as 

 [ ]°−°+⋅⋅⋅= 38.730)2(cos78.020)( nny π  (5.49) 

or 

 [ ]°−⋅⋅= 7.8)2(cos62.15)( nny π  (5.50) 

Using a digital frequency of Ω = π/2 may not be comfortable for analog filter 
designers who are used to working with much larger frequencies. Therefore it is 
important to note that this digital frequency does relate to some analog frequency 
through the formula expressed in (5.36). That equation is restated here in terms of 
the equivalent analog frequency fd. We see that this frequency is a function of 
both the digital frequency and the sampling frequency for the system, as discussed 
earlier: 

 
sd ff ⋅

Ω
=

π2  (5.51) 

Therefore, if we are dealing with a system with a sampling frequency of 
10,000 samples/second, it may be more natural to think of the input signal above 
as being an analog signal of 2,500 Hz that has been converted to a digital 
frequency: 

 Hz 500,2000,10
2

2/
=⋅=

π
π

df  (5.52) 

Working with discrete-time systems will require us to be able to use all the 
material discussed thus far in this chapter. Some problems will be better expressed 
in the time domain, while others will be easier to work with in the frequency 
domain. Some system analysis or design will be easier using the system’s impulse 
response, while others will require the use of the system’s transfer function. As 
filter designers, we will definitely need to determine the frequency response of our 
system, and if we are to implement these filters, a system diagram will be handy. 
So before we leave this section, let’s work an example that uses all the facets of 
discrete systems discussed so far. 
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Example 5.5  Complete Discrete-Time System Example 

Problem: Consider the difference equation for a discrete-time system shown 
below. Determine the impulse response, transfer function, and frequency response 
of the system. 

 )3(0.1)2(0.3)1(0.3)(0.1+          
)3(68.0)2(81.1)1(0.2)(

−⋅+−⋅+−⋅+⋅
−⋅+−⋅−−⋅=

nxnxnxnx
nynynyny

 

Also, find the location of the poles and zeros for the system as well as draw the 
system diagram. Finally, determine the output of the system if the input is the 
analog signal x(t) shown below. Assume that the sampling frequency is 20,000 
samples per second. 

 )30000,82sin(20)60000,22cos(510)( °+⋅⋅+°−⋅⋅+= tttx ππ  

Solution: We begin the solution of the problem by transforming the 
difference equation to determine the transfer function for the system such that 
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After we convert H(z) to positive powers of z, we factor the transfer function 
in order to determine the pole and zero locations. From the expression, we see that 
there are three zeros at z = −1.0 and three poles at z = 0.8 and 0.6 ± j0.7: 
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The frequency response can now be easily determined from the transfer 
function, as indicated below: 
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If we are to determine the response of our system to the sampled analog 
signal, we need to convert the critical analog frequencies to digital frequencies. 
The DC term is zero frequency in either case, while the analog frequency of 2,000 
Hz converts to a digital frequency of π/5, and the analog frequency of 8,000 Hz 
converts to a digital frequency of 4π/5. The magnitude and phase responses for 
this H(e jΩ) are shown in Table 5.6. 

Table 5.6 
Frequency Response 

Frequency Magnitude Phase (deg) 

0.0 61.54 0 
π/5 37.82 −88 
2π/5 6.14 −249 
3π/5 0.63 −261 
4π/5 0.05 −266 
π 0.00 −270 

 
By applying the magnitude and phase adjustments indicated in Table 5.6 for 

frequencies of 0, π/5, and 4π/5, we can determine the output of the system as: 

 )236000,82sin(00.1)148000,22cos(189615)( °−⋅⋅⋅+°−⋅⋅⋅+= ttty ππ  

The impulse response of the system can be determined by finding the inverse z-
transform of the transfer function. The most commonly used method for finding 
the inverse transform is by using partial fraction expansion of H(z)/z and then 
matching the resulting terms to ones in the transform table. 
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After using the standard methods for evaluation of coefficients, we find 
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then we write H(z) as the sum of three terms 
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The first two terms can be easily inverse transformed by matching terms in 
the z-transform table. However, the third term relates to a damped sinusoid and 
requires some manipulation before it can be inverse transformed. 
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By comparing denominator terms, we find that a = 0.92195 and Ω = 0.86217, 
while the numerator terms provide A = 11.337 and φ = 0.09677. With these values, 
the transfer function can be inverse transformed to 

  )()09677.086217.0cos()92195.0(337.11          
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There was a good deal of algebra and trigonometry required to find the 
impulse response. If we need only a few of the first terms of the impulse response, 
or if we want to verify the correctness of our work, there is a useful method that 
can be applied. If we return to the original H(z) function and perform long 
division on the fraction, we will obtain a series of terms as shown: 
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By inverse transforming this sequence, we have h(n) represented as a series of 
delayed impulse functions. This will tell us explicitly what the value of the 
impulse response is for the first few values of the sequence. These values indeed 
check with those given by the general expression above for h(n): 

 ⋅⋅⋅+−⋅+−⋅+−⋅+= )3(01.15)2(19.11)1(00.5)()( nnnnnh δδδδ  

5.5  PLAYING DIGITIZED WAVEFORMS ON A COMPUTER SYSTEM 

In order to get the full benefit of the work we will be doing in the remainder of 
this text, a computer sound card should be available. Certainly, the C code in this 
text for the design and implementation of analog and digital filters is the primary 
incentive for obtaining a copy of this text, but without a sound card to play the 
sound files that we will process in the next few chapters, an important experience 
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will be missed. We will be using several sound files to illustrate the effects 
produced by the digital filters which we will be designing. These sound files have 
been included on the software disc with this text in the \C_CODE\SOUND 
directory. 

In addition to sound file formats, there are other variations that must be 
considered when playing sound files. First, the sampling frequency must be 
considered. The standard sampling frequency for studio-quality audio signals is 
44,100 Hz. This frequency is high enough to allow audio frequencies in the 
20,000 Hz range to be included in the signal information. These frequencies 
represent the upper limit in the human hearing range. However, not all 
applications require this level of frequency response. Therefore, sampling rates of 
22,050 and 11,025 Hz are also common. These lower frequencies provide 
attractive alternatives for signals without high frequency components or signals 
including only speech. The sound cards automatically include an antialiasing filter 
set to the correct frequency based on the sampling rate. Most sound cards also 
include the option of selecting the quantization to be used when the signal is 
sampled. Either 8-bit (1 byte) or 16-bit (2 bytes) resolution can be selected. (Other 
options are common for industrial applications.) Table 5.7 provides a look at the 
size of sound files as a function of sampling rate, number of channels, and 
quantization method. 

Table 5.7   
Comparison of Sound File Size for 1 Minute of Recording 

Quantization Channels Sample Rate  File Size 

8 bits Mono (1) 11,025 Hz 0.662 MB 
8 bits Mono (1) 22,050 Hz 1.323 MB 
8 bits Mono (1) 44,100 Hz 2.646 MB 
8 bits Stereo (2) 11,025 Hz 1.313 MB 
8 bits Stereo (2) 22,050 Hz 2.646 MB 
8 bits Stereo (2) 44,100 Hz 5.292 MB 
16 bits Mono (1) 11,025 Hz 1.323 MB 
16 bits Mono (1) 22,050 Hz 2.646 MB 
16 bits Mono (1) 44,100 Hz 5.646 MB 
16 bits Stereo (2) 11,025 Hz 2.646 MB 
16 bits Stereo (2) 22,050 Hz 5.646 MB 
16 bits Stereo (2) 44,100 Hz 10.58 MB 

 
Obviously, the size of audio files can grow very large! That is why it is 

important to select the sampling rate, number of channels, and quantization 
method carefully to provide the level of accuracy appropriate to the project. Of 
course today there are many options for the compression of this data, but there is 
still a direct correlation between file size and sampling options. There are two 
different files included with the software disc. The first file, SPEECH, is a 
monaural file that uses a sampling rate of 11,025 samples per second with 8 bits 
per sample. The second selection, MUSIC, is also a monaural signal recorded by 
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sampling at 22,050 samples per second with 16 bits per sample. Since most sound 
cards will also record signals, other test signals can be captured and tested on the 
computer system as desired. 

At this point, it is time to check out the sound card on the computer by 
playing the sound files mentioned above. It is recommended that the sound files be 
copied to the hard disk for faster access. We’ll be using them as input samples to 
be designed in the next two chapters. 

5.6  CONCLUSION 

We have reached the end of our review of discrete-time systems. In this chapter, 
we found that the complete characteristics of a discrete-time system could be 
determined by knowing the system’s difference equation, impulse response, 
transfer function, or system diagram. We learned ways to determine any one of 
these descriptions from any of the others. In addition, we learned how to find the 
frequency response of a system by direct substitution into the system’s transfer 
function. We will use the material presented in this chapter to design and 
implement digital filters in the next two chapters. The remainder of this text will 
be presented in a manner emphasizing application rather than theory, but if the 
need arises, we can use the material in this chapter to better understand any 
problems that we might encounter. 
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Chapter 6 

Infinite Impulse Response Digital Filter 
Design 

 
There are a variety of methods that can be used to design digital filters as we will 
see in this chapter and the next. One commonly used method is to use the analog 
filter approximation functions that have already been developed and simply 
translate them in a way that will make them usable for discrete-time systems. This 
method, which will be studied in this chapter, makes use of the large backlog of 
filter design theory and tables of transfer functions that are readily available. Most 
of the filters designed using this method will be recursive in nature. That is, the 
output of the filter will depend on previous values of the output (as well as past 
and current values of the input). These types of filters can theoretically have 
impulse responses that continue forever and therefore are commonly referred to as 
infinite impulse response (IIR) filters. 

Another method of designing discrete-time filters will be discussed in the next 
chapter. That method does not depend on analog filter theory, but rather uses the 
frequency response of the desired filter to directly determine the digital filter 
coefficients. The method generally yields nonrecursive filters that have outputs 
depending only on past and current values of the input. These types of filters 
generally have an impulse response containing only a finite number of values and 
thus are commonly called finite impulse response (FIR) filters. As we are about to 
see, both the IIR and FIR design methods will differ from the analog filter design 
techniques studied in the first part of the text. (A more complete comparison of 
IIR and FIR filters will be given in Section 8.1.) 

In the first three sections of this chapter, we will investigate different methods 
of translating an analog filter’s characteristics into those of a digital filter. As we 
will see, there is no perfect digital equivalent to an analog filter at all frequencies; 
however, we can develop filters that closely match the important filter 
characteristics. In the final section of this chapter, we will develop the C code 
necessary to evaluate the frequency response characteristics of IIR digital filters. 
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6.1  IMPULSE RESPONSE INVARIANT DESIGN 

The impulse response invariant design method (or impulse invariant 
transformation) is based on creating a digital filter with an impulse response that is 
a sampled version of the impulse response of the analog filter. We first start with 
an analog filter’s transfer function H(s), and by using the inverse Laplace 
transform, we determine the system’s continuous impulse response h(t). We next 
sample that response to determine the system’s discrete-time impulse response 
h(nT). We then take the z-transform of this sampled impulse response to find the 
discrete-time transfer function H(z). As an illustration, consider the following 
example. 

Example 6.1  Impulse Response Invariant Transformation 

Problem: Assume that we wish to convert the following continuous-time 
transfer function to a discrete-time transfer function using the impulse invariant 
transformation method: 
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Solution: We first use basic partial fraction expansion techniques to write the 
transfer function in a form suitable for inverse transformation: 
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Then recognizing the Laplace transform pair 
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we can easily find the impulse response as 

  )()44()( 52 tueeth tt ⋅⋅−⋅= −−

If we then sample this impulse response at intervals of T, we will have the 
discrete-time impulse response. Effectively, we simply replace every t with nT to 
denote the nth sample at intervals of T: 

  )()44()( 52 nTueenTh nTnT ⋅⋅−⋅= −−
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This expression can be rewritten in a form that more clearly indicates the 
exponential relationship of n: 

  )(])(4)(4[)( 52 nTueenTh nTnT ⋅⋅−⋅= −−

Now we use the z-transform table as developed in Chapter 6 to find the 
transfer function in the z-domain: 
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And, finally, we can combine the terms over a common denominator to 
produce the final result, which can be simplified once a value of the sampling 
period T is chosen: 
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Although Example 6.1 clearly indicates the steps required to translate an 

analog transfer function to a digital transfer function, we can skip some of the 
steps by recognizing the common relationship between H(s) and H(z). As can be 
verified in the example, for every term in the analog transfer function of the form 
shown in (6.1), there is a term created in the digital transfer function of the form 
shown in (6.2): 
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This matching technique can also be applied to quadratic terms that have 
complex roots, where each factor is simply treated individually. For example, if 
we have a quadratic of the form (6.3), the resulting discrete-time equivalent could 
then be written and simplified as shown in (6.3) to (6.6): 
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Example 6.2  Butterworth Impulse Invariant Filter Design 

Problem: Determine the impulse invariant digital filter for a second-order 
Butterworth approximation function, as shown below. Notice that H(s) is 
normalized and therefore has a passband edge frequency of 1 rad/sec or (1/2π Hz). 
Determine the differences that result from choosing sampling periods of T = 1.0 
sec and T = 0.1 sec. 
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Solution: We can first factor the analog transfer function and use partial 
fraction expansion to determine 
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The digital transfer function can then be determined by using the results indicated 
in (6.3) to (6.6): 
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We can now make the substitution of the different sampling periods in the 
general form to find the two distinct transfer functions: 
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It is interesting to compare the two transfer functions of Example 6.2. We 
notice first that the gains and pole positions are different solely from the selection 
of the sampling period (or frequency). We can also get a quick indication of the 
magnitudes of these transfer functions by determining the response at zero 
frequency. We can do that easily letting z = ej0 = 1: 
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With this quick check, we see that the response at zero frequency seems to be 
proportional to 1/T. Although using only two values of sampling frequency hardly 
makes a case, it is true in general that the magnitude is proportional to 1/T. For 
this reason, most impulse invariant designs scale the transfer function by an 
amount equal to the sampling period. As we can see, if that scaling were used in 
the previous example, the responses at zero frequency would be very close to 
unity. 

The complete frequency responses for both transformations are shown in 
Figure 6.1 (with the T scaling factor applied). The responses are notably different 
as we would expect since the two transfer functions have different gains and pole 
locations. It is important to notice how this variation in transfer function form and 
frequency response is due solely to the value of sampling period (or sampling 
frequency) that has been selected. 

In order to see why this selection produces the variations, we must remind 
ourselves of the relationship between the digital and equivalent analog 
frequencies. As described in Section 6.4, the digital frequency Ω extends from 0 
to π where π is analogous to the analog frequency of fs/2 as dictated by the 
Nyquist criteria. Each point on the frequency axis can be referenced in terms of Ω, 
which extends from 0 to π, or in terms of fd, which extends from 0 to fs/2. This 
relationship can be written in either of the two forms shown in (6.7) and (6.8): 

 sd ff /2 ⋅=Ω π  (6.7) 

 π2
Ω

= sd ff
 (6.8) 
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Figure 6.1  Frequency responses for Example 6.2. 
 

 
Now we are able to see more clearly why the responses are so different. 

Although the frequency axis extends from 0 to π, it represents different analog 
frequencies for the two responses. In the case of the T = 1 sec response (fs = 1 Hz), 
the digital frequency range extends from 0 to 0.5 Hz, and the passband edge 
frequency of 0.159 Hz is clearly visible at a point approximately one-third of the 
way along the frequency axis. However, in the case of the T = 0.1 second response 
(fs = 10 Hz), the digital frequency range is actually from 0 to 5 Hz. Therefore, the 
break frequency of 0.159 Hz occurs at a point much closer to the zero frequency 
point. 

Clearly then from this example it is important to pick the sampling frequency 
for an impulse invariant design carefully. The frequency range of the input signal 
must be considered as well as the desired overall response. In general, the impulse 
invariant design method is best for matching low-frequency system responses. 

6.2  STEP RESPONSE INVARIANT DESIGN 

 
Another common method of converting an analog transfer function to the digital 
domain is to match the step response of both systems. The step response invariant 
design procedure is much the same as the impulse invariant design, except that we 
must determine the step response of the analog transfer function before it is 
sampled and z-transformed. We can determine the analog system’s step response 
simply by multiplying H(s) by the transform of the step input, which is 1/s. In 
(6.9) we defined the system’s step response as G(s): 
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Once we have determined G(s), we can find the time domain response to the 
step input g(t) by using the inverse Laplace transform: 

 { })()( 1 sGLtg −=  (6.10) 

Then, the discrete-time step response can be determined by sampling the 
continuous-time version: 

 nTttgnTg
=

= )()(
 (6.11) 

Next, the discrete-time system response to the step input can be determined 
by using the z-transform: 
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As shown in (6.12), G(z) is the product of the discrete-time transfer function 
H(z) and the z-transform of the step input. Therefore, in order to find H(z), we 
simply multiply G(z) by (1 − z−1), as shown: 
 

 ( )11)()( −−⋅= zzGzH  (6.13) 

 
As we review this procedure, we can see that the primary steps are the same 

as for the impulse invariant transformation, except that we have added one step at 
the beginning and one step at the end. The new initial step requires that we divide 
the analog transfer function by s, and the new final step requires that we multiply 
the digital transfer function by (1 − z−1). 

Example 6.3  Step Response Invariant Transformation 

Problem: Assume that we wish to convert the continuous-time transfer 
function of Example 6.1 to a discrete-time transfer function, but this time we want 
to use the step response invariant transformation method. 
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Solution: We need to determine the system’s response to a step input by 
multiplying H(s) by the Laplace transform of the step input 1/s. 
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We can then easily find the time domain response to the step input by finding 
the inverse Laplace transform of G(s) as 

  )()8.00.22.1()( 52 tueetg tt ⋅⋅+⋅−= −−

If we sample this response at intervals of T, we will have the discrete-time 
response, as shown below: 

  )(])(8.0)(0.22.1[)( 52 nTueenTg nTnT ⋅⋅+⋅−= −−

Then, using the z-transform table in Chapter 5, we can find the z-transform of 
g(nT) as 
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And by combining the terms over a common denominator, we find that 
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where G(z) represents the output of the system to a step input. In order to 
determine the transfer function of the system, we must remove the effects of the 
step input 1 / (1 − z−1). 
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Although the result of the previous example looks quite involved, all of the 

exponential terms will become constants once the sampling period for the system 
is selected. We can also use the step invariant design method on the Butterworth 
filter of Example 6.2. 
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Example 6.4  Butterworth Step Invariant Filter Design 

Problem: Determine the step invariant digital filter for a second-order 
normalized Butterworth approximation function, as shown below. Determine the 
differences that result for sampling periods of T = 1.0 sec and T = 0.1 sec. 
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Solution: Again, we first determine the output of the analog system to an 
input step function and then use partial fraction expansion to determine the 
individual terms. 
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The step response can then be determined by finding the inverse Laplace 
transform of G(s), as indicated below: 
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Then, after sampling at intervals of T, the discrete-time step response is 
determined to be 
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The discrete-time response to the step input can then be determined by using 
the z-transform. 
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Now, by combining these terms over a common denominator (and performing 
a considerable amount of complex algebra), we have the system response to a step 
input: 
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The discrete-time transfer function H(z) can now be determined by removing 
the (1 − z−1) factor relating to the step input, and we can make the substitution of 
the different sampling periods in the general form to find the two distinct transfer 
functions: 
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Note that the pole locations are the same as for the impulse invariant design 
but that the zero locations have changed. We can compare the frequency responses 
of these two discrete-time filters as shown in Figure 6.2.  
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Figure 6.2  Frequency responses for Example 6.4. 

 
As we can see, there is significant difference between the two 

implementations, but the differences are again a result of the frequency axis 
having two different scales. In the step invariant design method, there is no need 
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to scale the magnitude as was the case for the impulse invariant design method. By 
comparing this frequency response to that of Figure 6.1, we see a significant 
difference. The reason for the difference is the different criteria placed on the 
design. In the previous section, the emphasis was placed on matching an impulse 
like input signal, while in this section the aim was to match a step like input 
signal. As indicated in the figures, the different criteria produce filters with quite 
different frequency responses. As in the previous section, this method of IIR filter 
design is best suited to match low-frequency system responses. 

6.3  BILINEAR TRANSFORM DESIGN 

Both the impulse invariant and step invariant design methods provide good 
approximations for lowpass and some bandpass analog filter responses. However, 
they cannot provide good matching of high-frequency responses, which makes it 
impossible to use them for highpass or bandstop filter design. In fact, they do not 
provide the best methods for matching analog filter responses when a good match 
is required throughout a wide range of frequencies. In addition, without careful 
selection of the sampling frequency and strict band-limiting of the input signal, 
distortion from aliasing can occur. Therefore, in this section we will discuss the 
bilinear transformation that endeavors to make a reasonable match over the entire 
filter frequency range. Of course, that provides a challenge since the analog 
frequency range extends from zero to infinity and the digital frequency range 
extends only from zero to π. However, a transformation from the analog s-domain 
to the digital z-domain has been developed (as described in more detail in the 
technical references provided at the end of the text). In this method, the 
relationship between the s and z complex variables can be described by the 
following equation, where T is the sampling period: 
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To better understand this relationship, we can represent the complex variable 
z in the exponential form R⋅ e jΩ 
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This representation can be written in rectangular form as 
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and finally simplified to 
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By referring to (6.17) and observing the s-plane and z-plane in Figure 6.3, we 
can see that there are three distinct regions in the s-domain that relate to three 
distinct regions in the z-domain. In the first case, any point in the z-domain that 
lies outside of the unit circle (R > 1) is associated with a point in the right-half 
plane (RHP) of the s-plane (σ > 0). In the second case, a point in the z-domain 
located inside the unit circle (R < 1) is associated with a point in the left-half plane 
(LHP) of the s-domain (σ < 0). Finally, a point on the unit circle (R = 1) is 
associated with a point in the s-plane that lies on the jω axis (σ = 0). In fact, in this 
last case, the positive jω axis relates to the top half of the unit circle as the angle 
travels from 0 to π, while the negative jω axis relates to the bottom half of the unit 
circle with angles from 0 to −π. 
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Figure 6.3  Comparison of s-plane and z-plane using bilinear transform. 
 

Although there does exist a one-to-one relationship between the positive jω 
axis and the upper part of the unit circle, it is a nonlinear one. If we look more 
closely at the imaginary portion of (6.17) when R = 1 (and therefore σ = 0), we 
see that 
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or, in terms of the z-domain frequency variable, 
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Equations (6.18) and (6.19) are important to the bilinear transformation 
process because they are necessary to determine the proper mapping between the 
analog and digital domains. This mapping of analog frequencies to digital 
frequencies is fairly linear for low frequencies, but becomes very nonlinear as 
higher frequencies are mapped. This mapping of frequencies is often referred to as 
“warping” to describe how the higher frequencies are warped into their proper 
place on the unit circle. The reason that this warping is so important is that 
although we will specify the frequency characteristics of the digital filter by digital 
frequencies, the filter will be derived from an analog filter transfer function. 
Therefore, it is necessary to properly determine the analog frequencies to use in 
the analog design by warping the specified digital frequencies as shown in 
Example 6.5. 

After determining the frequencies necessary for the analog filter design, the 
filter can be designed using the process described earlier in this text. Once the 
analog transfer function has been determined, we can use the bilinear transform 
substitution given in (6.14). Since we will be developing code to implement this 
transformation process, it is important to carefully describe this substitution. In the 
case of a first-order factor, the transformation process begins with (6.20). 

 

Example 6.5  Determining Analog and Digital Critical Frequencies 

Problem: Assume we wish to design a lowpass digital filter (with sampling 
frequency of 20 kHz) based upon a Butterworth analog filter. The required 
characteristics of the digital filter are 

 apass = −1 dB, astop = −20 dB, fpass = 1 kHz, and fstop = 5 kHz 

What parameters should we use to design the analog filter upon which our digital 
filter will be based? 

 
Solution: We first recognize that the digital frequency axis can be labeled in 

two different ways, as discussed earlier. Then using (6.7), we can determine 
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Once these frequencies have been determined they can be warped using 
(6.18) to produce the equivalent analog frequencies necessary for the analog filter 
design. 
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Note the slight warping of the lower passband edge frequency (from 1,000 to 
1,008 Hz) and the more significant warping of the higher stopband edge frequency 
(from 5,000 to 6,366 Hz). The attenuations of the filter do not change; therefore, 
we have enough information to proceed with the design of the analog filter, which 
will be the subject of the next example. 
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In this equation, uppercase A and B represent the coefficients of the analog 
filter function. After simplification, (6.21) and (6.22) result with a new set of 
coefficients where 2/T has been replaced with 2·fs. In these equations, lowercase a 
and b represent the digital filter coefficients that will be used, and G represents the 
gain adjustment for this first-order term: 
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In the case of the quadratic terms that are used to describe our coefficients, 
the transformation process is shown in (6.23) to (6.25). Again, G represents the 
gain adjustment necessary for each of the quadratic factors for the filter. 
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where 
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Example 6.6  Butterworth Bilinear Transform Filter Design 

Problem: Determine the digital filter to meet the specifications given in 
Example 6.5 using the bilinear transformation. 

Solution: By entering the attenuations and the prewarped analog frequencies 
in WFilter for analog filter design, we determine the following analog transfer 
function: 
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Then, by using the bilinear substitution for s, we can determine the transfer 
function in the digital domain. 
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The transfer function can be simplified by using (6.23) to (6.25) to produce 
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The frequency response of the digital filter designed in Example 6.6 can be 
determined in the manner discussed in the previous chapter (and is shown in 
Figure 6.4).  
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Figure 6.4  Frequency response for Example 6.6. 

 
For a general quadratic factor of the form shown below: 
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the frequency response can be determined by letting z = ejΩ as shown: 
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The numerator and denominator factors can then be converted.  
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We see in Figure 6.4 that   the   specifications   have   been   met  (at 1,000 Hz  
the −1 dB gain = 0.89125, and at 5,000 Hz the −20 dB gain = 0.1). 

Example 6.7  Chebyshev Bilinear Transform Filter Design 

Problem: Use WFilter to completely design a Chebyshev digital IIR filter 
and display the magnitude response. The specifications for this filter are 

apass = −1 dB,   astop = −60 dB,    
fpass = 10 kHz,   fstop = 20 kHz, and  fsamp = 50 kHz 

 
Solution: We can supply these values to WFilter and WFilter will calculate 

the magnitude response of the filter, as shown in Figure 6.5. The digital IIR 
coefficients and the pole and zero locations are shown in Figure 6.6.  

In Figure 6.5 we see the effect of sampling on the frequency response. In 
particular, we see the lowpass response replicated in mirror image form at the 
sampling frequency of 50 kHz. In addition, we see the lower half of the reflection 
at twice the sampling frequency of 100 kHz. If we had chosen a larger-frequency 
scale, we would see these replications reproduced at all multiples of the sampling 
frequency. Of course, in the typical discrete-time system, the antialiasing filter 
will be set to one-half of the sampling frequency (25 kHz in this case), and the 
user would not see the effects of the higher-frequency components. 
 

 
 
Figure 6.5  Magnitude response from WFilter. 
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Example 6.7 - Chebyshev Lowpass Filter 
 
Selectivity:        Lowpass 
Approximation:      Chebyshev 
Implementation:     IIR (digital) 
Passband gain (dB): -2.0 
Stopband gain (dB): -60.0 
Passband freq (Hz): 10000.0 
Stopband freq (Hz): 20000.0 
Sampling freq (Hz): 50000.0 
 
Filter Length/Order: 04 
Overall Filter Gain: 1.86714451145E-02 
 
            Numerator Coefficients 
QD [ 1 +      z^-1       +       z^-2      ] 
== ========================================= 
01 1.0  2.00000000000E+00  1.00000000000E+00 
02 1.0  2.00000000000E+00  1.00000000000E+00 
 
           Denominator Coefficients 
QD [ 1 +      z^-1       +       z^-2      ] 
== ========================================= 
01 1.0 -6.20696688131E-01  8.14430976062E-01 
02 1.0 -1.18935540161E+00  5.04413209263E-01 
 
                     Zeros 
QD [       Real       ] [       Imag       ] 
== ========================================= 
01  -1.00000000000E+00    0.00000000000E+00 
02  -1.00000000000E+00    0.00000000000E+00 
03  -1.00000000000E+00    0.00000000000E+00 
04  -1.00000000000E+00    0.00000000000E+00 
 
                     Poles 
QD [       Real       ] [       Imag       ] 
== ========================================= 
01   3.10348344066E-01    8.47416592590E-01 
02   3.10348344066E-01   -8.47416592590E-01 
03   5.94677700806E-01    3.88293241542E-01 
04   5.94677700806E-01   -3.88293241542E-01 

 
 
Figure 6.6  Design values from WFilter. 
 

6.4  C CODE FOR IIR FREQUENCY RESPONSE CALCULATION 

To verify that all requirements have been met, we must calculate the frequency 
response of our filter. In this case, the Calc_DigIIR_Resp function shown in 
Listing 6.1 would be called to perform the frequency response calculations. 
Computations are made in the same manner as in Calc_Analog_Resp except 
the real and imaginary values are calculated using (6.28). 
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/*==================================================== 
  Calc_DigIIR_Resp() - calcs response for IIR filters 
  Prototype:  int Calc_DigIIR_Resp(Filt_Params *FP, 
                                    Resp_Params *RP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
              RP - ptr to struct holding respon params 
====================================================*/ 
int Calc_DigIIR_Resp(Filt_Params *FP,Resp_Params *RP) 
{ int     c,f,q;        /*  loop counters */ 
  double  rad2deg,      /*  rad to deg conversion */ 
          omega,omega2, /*  radian freq and square  */ 
          rea,img;      /*  real and imag part */ 
 
  rad2deg = 180.0 / PI; /*  set rad2deg */ 
  /*  Loop through each of the frequencies */ 
  for(f = 0 ;f < RP->tot_pts; f++) 
  { /*  Initialize magna and angle */ 
    RP->magna[f] = FP->gain; 
    RP->angle[f] = 0.0; 
    /*  Pre calc omega and omega squared */ 
    omega = PI2 * RP->freq[f] / FP->fsamp; 
    omega2 = 2 * omega; 
    /*  Loop through coefs for each quadratic */ 
    for(q = 0 ;q < (FP->order+1)/2; q++) 
    { /*  c is coef index = 3 * quad index */ 
      c = q * 3; 
      /* Numerator values */ 
      rea = FP->acoefs[c] + FP->acoefs[c+1]*cos(omega) 
                      + FP->acoefs[c+2]*cos(omega2); 
      img = -FP->acoefs[c+1]*sin(omega) 
                      - FP->acoefs[c+2]*sin(omega2); 
      RP->magna[f] *= sqrt(rea*rea + img*img); 
      RP->angle[f] += atan2(img,rea); 
      /* Denominator values */ 
      rea = FP->bcoefs[c] + FP->bcoefs[c+1]*cos(omega) 
                      + FP->bcoefs[c+2]*cos(omega2); 
      img = -FP->bcoefs[c+1]*sin(omega) 
                      - FP->bcoefs[c+2]*sin(omega2); 
      RP->magna[f] /= sqrt(rea*rea + img*img); 
      RP->angle[f] -= atan2(img,rea); 
    } 
    /* Convert to degrees */ 
    RP->angle[f] *= rad2deg; 
  } 
  /*  Convert magnitude response to dB if indicated */ 
  if(RP->mag_axis == LOG) 
  { for(f = 0 ;f < RP->tot_pts; f++) 
    { /* Handle very small numbers */ 
      if(RP->magna[f] < ZERO) 
      { RP->magna[f] = ZERO;} 
      RP->magna[f] = 20 * log10(RP->magna[f]); 
    } 
  } 
  return ERR_NONE; 
} 
 

Listing 6.1  Calc_DigIIR_Resp function. 
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6.5  CONCLUSION 

In this chapter we investigated three different methods of generating digital IIR 
filters from analog transfer functions. In each case we found that there is no 
perfect match to the original analog function, primarily because there is a strict 
limit on the frequency range of a digital filter. However, the bilinear transform 
method does provide good overall response characteristics, and for that reason it 
was chosen to be implemented in C code. (Details of this code are provided in 
Appendix G.) The frequency response characteristics of the IIR filter were also 
considered, and the calculation of the response was implemented in C code. 
Finally, we used WFilter to design an IIR filter and display the complete 
magnitude response including the multiple replications of the original response. 
The implementation of IIR filters is discussed in Chapter 8. 
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Chapter 7 

Finite Impulse Response Digital Filter 
Design 

In the last chapter, we considered the design of digital filters based on the 
approximation methods for analog filters. We investigated a number of ways that 
the transfer functions in the analog domain could be converted to transfer 
functions in the digital domain. In this chapter, we will develop methods that deal 
with the digital filter as a unique filter type, not based on analog filter 
approximation methods. The focus of this chapter will be on finite impulse 
response (FIR) filters that have only a finite number of terms in their impulse 
response. These filters have a number of advantages over the IIR filter types. An 
FIR filter is always stable, realizable, and provides a linear phase response under 
specific conditions. These characteristics make FIR filters attractive to many filter 
designers. However, the major disadvantage of FIR filters is that the number of 
coefficients needed to implement a specific filter is often much larger than for IIR 
designs. A more complete comparison of IIR and FIR filters is given in Section 
8.1. 

We will begin this chapter with a standard method of designing FIR digital 
filters using the Fourier series description of the desired frequency response. This 
method will then be modified and improved by using a windowing technique to 
improve the shape of the responses. In addition, the Parks-McClellan optimization 
technique will be discussed as a technique of reducing the length of the resultant 
FIR filters. Finally, the C code for determining the frequency response of FIR 
filters will be developed. 

7.1  USING FOURIER SERIES IN FILTER DESIGN 

There are a number of methods that could be used to design FIR filters. We will 
investigate one of the most popular in this section. Other methods are described in 
the references listed in Appendix A for digital filter design. 
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7.1.1  Frequency Response and Impulse Response Coefficients 

In the process of filter design, the designer begins with the frequency response 
characteristics. The critical band edge frequencies and the gains within each band 
are determined to meet certain specifications. We have found that the frequency 
response for digital filters is actually periodic in the frequency domain with a 
period of the sampling frequency. For example, a typical lowpass filter 
specification is shown in Figure 7.1, which clearly indicates the periodic nature of 
the frequency response. Since this response is periodic, it can be described by a 
Fourier series of the form shown in (7.1). In this formulation, the complex 
frequency exponential is allowed to take on all possible frequency values. 

  (7.1) ∑
∞

−∞=

Ω−Ω ⋅=
k

jkj ekheH )()(

 

 
 
Figure 7.1  Periodic digital frequency response. 
 

The coefficients within the summation are the impulse response coefficients 
that describe the digital FIR filter. The procedure for determining the impulse 
response coefficients from the frequency response is straightforward and provided 
in the digital filter design reference texts listed in Appendix A. The final result of 
the derivation is shown in (7.2). As indicated by the limits of the integral, the 
integration must include only one full period of the frequency response. 
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 (7.2) 

We will not be able to implement an infinite number of coefficients as (7.2) 
indicates. The number of coefficients we retain is a compromise between how 
well we want our design to approximate the ideal, and how many coefficients can 
be retained because of time delay, implementation cost, or other constraints. We 
can assume that the indices are limited to the range −M ≤ n ≤ +M, which limits the 
number of coefficients retained to N = 2 M + 1. By making this selection, we are 
in effect setting all other coefficients to zero. Figure 7.2 shows the effect of 
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limiting the number of coefficients by graphing the frequency response using a 
finite number of coefficients. The frequency response can be determined by using 
a modified form of (7.1), as shown in (7.3): 

  (7.3) 
∑
−=

Ω−Ω ⋅=
M

Mn
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As we increase the number of coefficients in the FIR filter approximation, we 
can see that a ripple concentrates near the passband edge frequency. This ripple 
cannot be eliminated, even by increasing the number of impulse response 
coefficients; it simply concentrates at the transition. This effect is known as 
Gibbs’s phenomenon and results whenever a discontinuity is modeled with a 
series. However, as we will see in the next section, there are methods we can use 
to reduce this effect. 

 

 
 
Figure 7.2  Approximated responses to lowpass filter. 
 

Figure 7.2 also shows a more common method of specifying passband and 
stopband gain for FIR filters. The errors within the passband and stopband are 
specified as δp and δs, respectively. As we can see, the frequency response is 
allowed to fluctuate both positively and negatively within these error limits. We 
can translate these specifications into the decibel gain specifications with which 
we are familiar by using (7.4) and (7.5). Alternatively, we can convert our decibel 
gains into these error values using (7.6) and (7.7). 

 

 
)1log(20pass pa δ−=

 (7.4) 

 
)log(20stop sa δ=

 (7.5) 
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  (7.6) 
pass05.0101 a

p
⋅−=δ

  (7.7) 
stop05.010 a

s
⋅=δ

As indicated earlier, the phase response of an FIR filter can be a linear function of 
frequency under certain conditions. For example, if we assume that frequency 
response within the passband of an FIR filter is as shown in (7.8), we are 
specifying that the gain must be unity, while the phase angle changes linearly with 
frequency: 

  (7.8) 
Ω−∠=⋅= Ω−Ω ττ 11)(passband

jj eeH

The necessary conditions that allow for this linear phase shift (or constant group 
delay) are that the impulse  response  coefficients  be  either  symmetric  or  
antisymmetric  and  that τ take on the value in (7.9) where N is the number of 
coefficients or the length of the filter. The filter coefficients are symmetric if they 
satisfy (7.10) and antisymmetric if they satisfy (7.11). 

 2
1−

=
Nτ

 (7.9) 

 )()( nhnh −=  (7.10) 

 )()( nhnh −−=  (7.11) 

 
Perhaps it is time to say a few words about the difference between filter 

length and filter order. Analog and digital IIR filters use the order of the filter as a 
measure of the filter’s “size.” The order refers to the highest-order term in the 
polynomial equation used to describe the filter. On the other hand, digital FIR 
filters typically use the number of impulse response coefficients required to 
describe it as its “size.” This is probably because most FIR filters are implemented 
using convolution where the number of coefficients directly affects the length of 
the processing. Once the FIR coefficients are substituted into a difference equation 
(a little later in this section), we will see that the length of an FIR filter will simply 
be one larger than its order. 
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7.1.2  Characteristics of FIR Filters 

When we consider symmetric and antisymmetric coefficients combined with even 
and odd filter lengths, four different types of FIR filters can be designed. Each of 
the four types has unique characteristics that can be described briefly as follows. 

Type 1 FIR filters. The type 1 FIR filters, which have symmetric coefficients 
and odd length, also have a frequency response that has even symmetry about both 
Ω = 0 and Ω = π. This even symmetry allows the frequency response to take on 
any value at these two critical frequencies, and thus lowpass, highpass, bandpass, 
and bandstop filters can be implemented using this FIR type. 

Type 2 FIR filters. The type 2 FIR filters, which have symmetric coefficients 
and even length, have a frequency response that is even about Ω = 0 and odd 
about Ω = π. This condition dictates that the response at Ω = π be zero and thus 
type 2 FIR filters are not recommended for highpass or bandstop filters. 

Type 3 FIR filters. The type 3 FIR filters, which have antisymmetric 
coefficients and odd length, have a frequency response that has odd symmetry at 
both Ω = 0 and Ω = π. Because of the odd symmetry, the frequency response of 
this filter type must be zero at both of these two critical frequencies. Thus, this 
filter type is not recommended for lowpass, highpass, or bandstop filters. 
However, this type of filter does provide a 90° phase shift of the output signal 
with respect to the input and therefore can be used to implement a differentiator or 
Hilbert transformer. This type of filter has other characteristics that make it the 
best choice for Hilbert transformation, while the differentiator is usually 
implemented using a type 4 filter. 

Type 4 FIR filters. The type 4 FIR filters, which have antisymmetric 
coefficients and even length, have a frequency response that has odd symmetry 
about Ω = 0 and even symmetry about Ω = π. The odd symmetry condition makes 
this type of filter a poor choice to implement either lowpass or bandstop filters. 
But, just as in the type 3 case, this filter provides a 90° phase shift that makes it 
able to implement differentiators and Hilbert transformers. This type of filter has 
better characteristics (in most cases) for implementing a differentiator than type 3, 
but the type 3 filter has some advantages over this filter type for implementing the 
Hilbert transform. 

Since the type 1 FIR filter can be used to implement any of the filters we need 
to design, we will discuss only that type of filter from this point forward in this 
text. Further information concerning the other filter types can be found in a 
number of the digital filter design references listed in Appendix A. 

The filter coefficients derived from (7.2) will not produce a causal filter. This 
means that the system could not be implemented in real time. We can verify this if 
we consider the output of a discrete-time system produced by the convolution of 
the input signal with the impulse response coefficients as shown in (7.12). Notice 
that the output y(n) becomes only a function of the input x(n) and does not include 
any past values of the output as in the IIR filter case. 
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  (7.12) 
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As we see, using the impulse response coefficients directly will result in y(n) 
being determined by future values of the input. For example, when k = −M, the 
summation includes a term x(n + M) that refers to an input value M sampling 
periods ahead of y(n)’s reference time. The problem can be handled by shifting all 
coefficient values to the right on the time axis so that only positive values of n 
produce coefficients, as shown in Figure 7.3. The disadvantage of this action is to 
increase the time delay between system input and output by M sampling periods. 

 

 
 
Figure 7.3  (a) Noncausal and (b) causal coefficients. 

 
The causal coefficients can be determined from the noncausal coefficients by 

making the following index adjustments. As the noncausal coefficients indices 
take on values from −M to +M, the causal coefficient indices will take on values 
from 0 to 2 M, as shown in (7.13): 

 MnnhMnh ±±=+  ,  ,1 ,0 = , )()( noncausalcausal …  (7.13) 

7.1.3  Ideal FIR Impulse Response Coefficients 

We can now determine the ideal coefficients for various filter types by using the 
integral formula of (7.2). In each case, figures depicting ideal lowpass, highpass, 
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bandpass, and bandstop filters along with equations for determining the 
coefficients based on the parameters of the particular filter are given. The 
frequency response in the passband of each filter is as defined in (7.8) and allows 
us to determine causal coefficients directly. We will be assuming that the desired 
passband magnitude response is 1, while the stopband response is 0. We will be 
using δp and δs (or apass and astop) later to help determine the required length of 
the filter. 

In the first case, Figure 7.4 illustrates the lowpass filter specification with the 
resulting derivation of the lowpass filter coefficients shown in (7.14) and (7.15). 
The highpass, bandpass, and bandstop filter cases are portrayed respectively in 
Figures 7.5 to 7.7 with the appropriate derivations in (7.16) to (7.21).  In each 
case, τ = M as determined from (7.9). 

 

Example 7.1  Determining Ideal Coefficients for an FIR Filter 

Problem: Determine the ideal impulse response coefficients for a lowpass 
filter of length 21 to satisfy the following specifications: 

 ωpass = 2π⋅3,000 rad/sec, ωstop = 2π⋅4,000 rad/sec, and fs = 20 kHz 

Solution: We first need to determine Ωc, the cutoff frequency for the ideal 
filter. This frequency can be set in the middle of the transition band and converted 
to a digital frequency: 

 
sec/rad 0996.1)2/()( passstop =⋅+=Ω sc fωω

 

Using this value along with τ = 10 in (7.15), we can determine the following ideal 
causal coefficients: 
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Figure 7.4  Lowpass filter specification. 
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Figure 7.5  Highpass filter specification. 
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Figure 7.6  Bandpass filter specification. 
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Figure 7.7  Bandstop filter specification. 
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7.2  WINDOWING TECHNIQUES TO IMPROVE DESIGN 

As indicated in the previous section, we are not able to include the infinite number 
of coefficients necessary to implement an ideal filter. We will have to reduce the 
number of coefficients used based on the constraints of our design. In the previous 
section, we simply truncated all noncausal coefficients beyond the indices ±M and 
kept the rest. (We will use the noncausal description of the filter coefficients for 
mathematical simplicity at this point. After the windowing process has been 
completed, we can shift the resulting coefficients to produce a causal filter.) This 
procedure can be compared to placing a window of width N = 2 M + 1 over all of 
the ideal coefficients, as shown in Figure 7.8. All of the coefficients within the 
window are retained and all coefficients outside of the window are discarded. In 
effect we have produced a rectangular “window” function in which all window 
coefficients with indices within the range of the window have a value of 1 and all 
other coefficients have a value of 0. The retained values of the filter coefficients 
would then be determined by performing a coefficient-by-coefficient 
multiplication of the ideal coefficients and the window coefficients, as indicated in 
(7.22): 

 Mnnwnhnh ±±⋅=  ,  ,1 ,0= ,)()()( ideal …  (7.22) 

The rectangular window coefficients can be formally defined in (7.23). 
However, the abrupt truncation of the filter coefficients has an adverse effect on 
the resulting filter’s frequency response. Therefore, a number of other window 
functions have been proposed which smoothly reduce the coefficients to zero. For 
example, a simple triangular window (also called the Bartlett window) as shown 
in Figure 7.9 would smooth the truncation process. An expression for these 
window coefficients is given in (7.24), where M = (N − 1 ) / 2. 

 
 

 
 
Figure 7.8  Window selection of coefficients. 
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Many window functions have been based on the raised cosine function 
including the von Hann, Hamming, and Blackman windows. Graphs of those 
windows are also shown in Figure 7.9 with the method of coefficient calculation 
for each window function provided in (7.25) to (7.27). 

 

 
 
Figure 7.9  Bartlett, Blackman, Hamming, and von Hann windows. 
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As more time was spent trying to improve the window functions used in FIR 
filter design, it became apparent for a fixed length of filter that there was a trade-
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off between transition band roll-off and attenuation in the stopband. One of the 
window functions that developed because of this fact was the Kaiser window 
function, as shown in Figure 7.10. The expression for the window coefficients as 
given in (7.28) is based on the modified Bessel function of the first kind Io. The 
value β generally ranges from 3 to 9 and can be used to control the trade-off 
between the transition band and stopband characteristics. 

 
 

 
 
Figure 7.10  Kaiser windows with various β values. 
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A reasonable estimate of β in the equation above has been determined 
empirically by Kaiser, as shown in (7.29): 
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In (7.29), the variable A represents the larger of the band errors (δp or δs) 
expressed as attenuation, as shown in (7.30): 
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 )],log[min(20 spA δδ⋅−=  (7.30) 

In addition, Kaiser developed empirical estimates of the filter length required 
to satisfy a given set of filter specifications, as indicated in (7.31). It should be 
emphasized here that FIR filter design is not as precise as IIR design. The 
truncation/modification of coefficients results in responses that may or may not 
meet the requirements. Therefore, the N value of (7.31) is just an estimate and the 
filter responses must be checked carefully to determine if all requirements are met. 
If they are not, the value on N should be adjusted (usually up, but sometimes 
decreasing N can result in a better filter). 
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In (7.31), ∆Ω represents the normalized radian transition band for lowpass 
and highpass filters and the smaller of the two normalized transition bands in the 
case of bandpass and bandstop filters. 

 sf/passstop ωω −=∆Ω  (7.32) 

Once the desired window function has been selected and the adjustments 
made to the ideal coefficients, the causal coefficients can be determined as 
indicated in the previous section. 

 

Example 7.2  Determining Hamming Coefficients for an FIR Filter 

Problem: Determine the coefficients for a lowpass filter using a Hamming 
window of length 21 to satisfy the specifications shown below: 

ωpass = 2π⋅3,000 rad/sec, ωstop = 2π⋅4,000 rad/sec, and fs = 20 kHz 

Solution: The ideal coefficients have been determined in Example 7.1. We 
can use (7.24) to determine the noncausal Hamming window coefficients as 
shown. After multiplication and shifting the coefficients by 10 sampling periods, 
the causal windowed coefficients result. 

Figure 7.11 shows the frequency response for both Examples 7.1 and 7.2. The 
rectangular window produces a filter that emphasizes transition band roll-off over 
ripple in the stopband. On the other hand, the filter produced by using Hamming 
coefficients has no noticeable ripple, but does not have a rapid roll-off in the 
transition band. 
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Figure 7.11  Magnitude responses for Examples 7.1 and 7.2. 
 
 

Example 7.3  Determining Kaiser Coefficients for an FIR Filter 

Problem: Determine the impulse response coefficients for a bandpass filter 
using a Kaiser window to satisfy the following specifications: 

fpass1 = 4 kHz, fpass2 = 5 kHz, fstop1 = 2 kHz, fstop2 = 8 kHz, 
apass1 = −0.5 dB, astop1 = astop2 = −50 dB, and fsamp = 20 kHz 

Solution: The solution to this problem begins with the determination of the 
passband and stopband errors δp and δs by using (7.6) and (7.7). 
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  055939.0101 025.0 =−= −
pδ

  0031623.010 5.2 == −
sδ

We can then use (7.29), (7.30), and (7.32) to find A = 50, β = 4.53351, and ∆Ω, 
where 
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Equation (7.31) can then be used to estimate the smallest odd filter length as 

N = 31. Equation (7.17) can be used to determine the ideal filter coefficients after 
finding the values of τ = 15 and calculating Ωc1 and Ωc2, as shown below. 
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The Kaiser window coefficients can be determined by using (7.28). The final 

coefficients can be calculated by multiplying the ideal coefficients by the 
respective window coefficients and  shifting  all coefficient  indices by a value of 
M = 15. 

Rather than perform all of the numerical calculations by hand, we can use 
WFilter to finish the design of this filter. One addition to the design process for 
FIR filters is the indication of the filter length and an option to change the length 
if desired. Since the determination of filter length is not an exact calculation, this 
option allows the user to increase or decrease the length as necessary to satisfy the 
design. Figure 7.12 shows the FIR Estimated Length dialog box, which includes 
an estimate of the filter length and the value of β. 
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Figure 7.12  FIR Estimated Length dialog box. 
 

Figure 7.13 shows the coefficient screen with the final filter coefficients 
displayed. They are displayed in causal form, and are symmetric about the center 
value. The magnitude response of the filter is shown in Figure 7.14 and verifies 
that the specifications have been satisfied. 

 
 

FIR Bandpass with Kaiser Window 
 
Selectivity:        Bandpass 
Approximation:      Kaiser 
Implementation:     FIR (digital) 
Passband gain (dB): -0.5 
Stopband gain (dB): -50.0 
PB freq-lower (Hz): 4000.0 
PB freq-upper (Hz): 5000.0 
SB freq-lower (Hz): 2000.0 
SB freq-upper (Hz): 8000.0 
Sampling freq (Hz): 20000.0 
 
Filter Length/Order: 31 
Overall Filter Gain: 1.00000000000E+00 
 
                 Coefficients 
 N  [      N + 0              N + 1     ] 
=== ===================================== 
000 -2.01201050092E-03 -2.01616077587E-03 
002  4.85062961990E-03  2.08877721763E-03 
004  2.97741355116E-03  1.17872058678E-02 
006 -2.03738740194E-02 -3.33459478620E-02 
008  1.95330807169E-02  1.06179366366E-02 
010  1.48522876861E-02  1.06004616317E-01 
012 -4.55615841929E-02 -2.70313807850E-01 
014  2.58671686944E-02  3.50000000000E-01 
016  2.58671686944E-02 -2.70313807850E-01 
018 -4.55615841929E-02  1.06004616317E-01 
020  1.48522876861E-02  1.06179366366E-02 
022  1.95330807169E-02 -3.33459478620E-02 
024 -2.03738740194E-02  1.17872058678E-02 
026  2.97741355116E-03  2.08877721763E-03 
028  4.85062961990E-03 -2.01616077587E-03 
030 -2.01201050092E-03 

 
Figure 7.13  Coefficient values for Example 7.3. 
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7.3  PARKS-MCCLELLAN OPTIMIZATION PROCEDURE 

As we can see in Figure 7.14 for the filter using the Kaiser window, the stopband 
has ripple that generally decreases. In fact, if the passband characteristic were 
magnified, we would see ripple there as well. Both the passband and stopband 
ripple (error) tend to be larger near the transition bands and then taper off as the 
response moves away from the band edge. This type of response is not optimum. 
An optimum filter would have ripple in the passband and stopband with a constant 
maximum magnitude. The error would still be present but would be distributed 
equally throughout the bands. 
 

 
 
Figure 7.14  Magnitude response for Example 7.3. 
 

 
In this section, we discuss a method for designing FIR filters with this 

characteristic. The Parks-McClellan algorithm, as it is generally known, was first 
presented over 20 years ago. Although the basic procedure has remained the same, 
a number of implementation techniques have changed. A detailed description of 
the Parks-McClellan (PM) algorithm is beyond the scope of this text, but a general 
overview of the procedure is appropriate. In addition, a review of the commented 
filter design code (as introduced in the next section) provides further 
implementation details. (Several of the texts listed in the digital filter design 
section of Appendix A provide more detailed descriptions of the PM algorithm, 
with the text by Antoniou providing a particularly detailed description.) 

7.3.1  Description of the Problem 

A primary component of the PM algorithm is a technique called the Remez 
exchange algorithm. But before we can use the power of the Remez algorithm to 
optimize our FIR filter coefficients, we must redefine our problem in such a way 
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that the solution requires the minimization of an error function. To that end, we 
first define the frequency response of an odd-order FIR filter with symmetrical 
coefficients h(n), as shown in (7.33): 

  (7.33) 
∑∑
=

−
−

=

− ⋅=⋅=
M

m

Mj
N

n

njj mmceenheH
0

1

0
)cos()()()( ωωωω

where M = (N − 1) / 2 and 

  (7.34) 
⎩
⎨
⎧

⋅
=

MmmMh
mMh

mc
 ,  ,2 ,1=for   ),-(2

               ,0=for      ,)(
)(

…

We can then define the summation component of (7.33) as 
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which is used to formulate the error function that will be the object of the 
minimization.  As shown in (7.36), the error function can be described in terms of 
the  desired  frequency  response e−jωM D(ω),  the  actual frequency response 
e−jωM C(ω), and a weighting function W(ω) that can be used to adjust the amount 
of error in each filter band: 
 

 [ ])()()()( ωωωω CDWE −⋅=  (7.36) 

 
The desired frequency response function D(ω) is usually defined as being 1 

within the passband of the filter and 0 within the stopband, although other values 
can be assigned. The weighting function W(ω) can be defined equivalently 
throughout the filter band, or it can be assigned a value of 1 within the passband 
and 10 within the stopband if a smaller error value δ is desired in the stopband. 
This result occurs because the minimization algorithm will produce equal amounts 
of error throughout the defined frequency range, and since the stopband error has 
been artificially increased by 10, the actual error will be 10 times smaller. 

The optimum error function will produce variations within the passband and 
stopband similar to those shown in Figure 7.2 (except that all ripple will be of the 
same magnitude). The actual error function will alternate between positive and 
negative δ values because of the summation of cosine functions. If we pick a set of 
frequencies (x = M + 1) at which the extremes of the error occur, (7.36) can be 
written as  
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Equation (7.37) can be expanded into a matrix equation by considering these 
x+1 frequencies, which are typically called extremals and play a crucial role in the 
optimization process.  
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In (7.38), ω0 – ωx represents the extremal frequencies and δ is the error. With 
this expression the filter design problem has been set into a form that can be 
manipulated by the Remez exchange algorithm. 

7.3.2  The Remez Exchange Algorithm  

The Remez exchange algorithm is a powerful procedure that uses iteration 
techniques to solve a variety of minimax problems. (A minimax problem is one in 
which the best solution is the one that minimizes the maximum error that can 
occur.) Before initiating the process, a set of discrete frequency points is defined 
for the passband and stopband of the filter. (Transition bands are excluded.) This 
dense grid of frequencies is used to represent the continuous frequency spectrum. 
Extremal frequencies will then be located at particular grid frequencies as 
determined by the algorithm. The basic steps of the method as it is applied to our 
filter design problem are shown below. 

 
Remez Exchange Algorithm 

 I. Make an initial guess as to the location of x + 1 extremal 
  frequencies, including an extremal at each band edge. 
 II. Using the extremal frequencies, estimate the actual frequency 
  response by using the Lagrange interpolation formula. 
 III. Locate the points in the frequency response where maximums 
  occur and determine the error at those points. 
 IV. Ignore all new extremals beyond the number initially set in I. 
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 V. If the difference between the maximum and minimum error 
  at the remaining extremal is small enough, continue to VI. 
  Otherwise return to II using the retained extremals. 
 VI. Estimate the final frequency response and determine the c(m)  

values from it. Then determine the impulse response 
coefficients. 

 
Each step in the procedure can be implemented in a variety of ways. These 

variations can produce differences in the speed of executing the algorithm, but 
usually little difference in accuracy is noticed. The simplest method of 
implementing step I is to assign the x + 1 extremal frequencies such that they are 
equally spaced throughout the bands of interest. Extremals are usually placed at all 
band edges that are adjacent to transition bands. The initial band and final band 
may not have extremals located at their terminal edges. The barycentric form of 
the Lagrange interpolation formula (as described in the mathematical references in 
Appendix A) is then used to determine the frequency response on the dense grid 
of frequencies. This method is much more efficient and accurate than the 
alternative method of finding the c(m) values in (7.37) by matrix inversion. Once 
the frequency response has been determined, the true extrema can be located and 
the error at these locations calculated. (Various methods can be used to locate the 
extrema, usually differing in speed and complexity.) These new frequency points 
will be used as the new extrema in the next iteration. 

It is not unusual to find more extrema in the frequency response than will be 
needed to characterize the final frequency response. Therefore, some means is 
necessary to reduce the number of retained frequencies to x + 1. Again, there are 
variations on this procedure, but the general consensus is to retain the extremals 
that produce the largest error. In step V, we check the difference between the 
largest and smallest error produced at the retained extremals. By using this value 
as a progress indicator, we can set some threshold to indicate when the procedure 
has produced the required level of optimization. If the differences between the 
minimum and maximum errors have not been reduced enough, the algorithm 
continues from step II. When the optimization procedure has reached the desired 
threshold, the extremal frequencies can be used to determine the c(m) values in 
(7.37) and therefore the impulse response coefficients h(n) from (7.34). 

7.3.3  Using the Parks-McClellan Algorithm 

The general algorithm has great flexibility in designing any of the four types of 
FIR filters discussed earlier. The code that is included with this text will design 
lowpass, highpass, bandpass, and bandstop type 1 filters (with an odd number of 
symmetrical coefficients). The code is written so that other filter types can be 
implemented by adding to the program structure. In order to use the general 
algorithm, we must first convert our filter specifications into those needed by the 
algorithm. This amounts to converting gain requirements for decibels to absolute 
error and some redefinition of frequencies. 
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As in the Kaiser window case, an empirical formulation of the required length 
of an FIR filter designed using the PM algorithm has been developed, as shown in 
(7.39). Although somewhat extensive in its presentation, it does provide an 
accurate estimate of the required length. 
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Example 7.4  Determining Parks-McClellan Coefficients for FIR Filter 

Problem: Determine the impulse response coefficients for a bandpass filter 
using the same specifications as in Example 7.3 (as indicated below), except use 
the Parks-McClellan algorithm for coefficient determination. 

fpass1 = 4 kHz, fpass2 = 5 kHz, fstop1 = 2 kHz, fstop2 = 8 kHz, 
apass = −0.5 dB, astop1 = astop2 = −50 dB, and fsamp = 20 kHz 

Solution: We will use the WFilter program for this example. The same input 
parameters as in the previous example are specified, except the approximation 
type  has been changed to Parks-McClellan. Using the specified parameters, the 
first design attempt resulted in an estimated length of 19, which produced a filter 
with passband edge gains of −0.54 dB and stopband edge gains of −49.38 dB. 
These values are certainly very close to the design specifications and might be 
acceptable in many designs. However, for comparison purposes, the filter was 
redesigned using a filter length of 21 and produced passband gains of −0.23 dB 
and stopband gains of −56.70 dB. The resulting coefficients and frequency 
response curve are shown in Figures 7.15 and 7.16. 

We should notice the equal ripple in the stopbands for the PM filter and the 
fact that it is implemented in one-third fewer coefficients than the Kaiser filter. As 
a comparison to IIR filters, a sixth-order elliptic or an eighth-order Butterworth 
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filter would be required to satisfy the same specifications, but without linear 
phase. 
 

FIR Bandpass using Parks-McClellan Procedure 
 
Selectivity:        Bandpass 
Approximation:      Parks-McClellan 
Implementation:     FIR (digital) 
Passband gain (dB): -0.5 
Stopband gain (dB): -50.0 
PB freq-lower (Hz): 4000.0 
PB freq-upper (Hz): 5000.0 
SB freq-lower (Hz): 2000.0 
SB freq-upper (Hz): 8000.0 
Sampling freq (Hz): 20000.0 
 
Filter Length/Order: 21 
Overall Filter Gain: 1.00000000000E+00 
 
                 Coefficients 
 N  [      N + 0              N + 1     ] 
=== ===================================== 
000  1.25270567042E-02  1.19473087473E-03 
002 -3.33680410407E-02 -4.33317885804E-03 
004  1.22816612467E-02  8.32245424391E-03 
006  1.02738836518E-01 -8.97234696493E-03 
008 -2.68080507538E-01  4.01012968419E-03 
010  3.48822141957E-01  4.01012968419E-03 
012 -2.68080507538E-01 -8.97234696493E-03 
014  1.02738836518E-01  8.32245424391E-03 
016  1.22816612467E-02 -4.33317885804E-03 
018 -3.33680410407E-02  1.19473087473E-03 
020  1.25270567042E-02 

 
Figure 7.15  Coefficient values for Example 7.4. 
 

 
 
Figure 7.16  Magnitude response for Example 7.4. 
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7.3.4  Limitations of the Parks-McClellan Algorithm 

The Parks-McClellan algorithm is certainly an attractive FIR filter design method, 
but it does have certain limitations in comparison to window-based design 
methods. The Kaiser window design is basically a one-pass system, although 
some variation of filter length may be necessary to attain the desired specification 
(as is also the case for the Parks-McClellan procedure). The computational 
intensity of the PM method is far greater than for any of the window methods, but 
computational power is also more readily available than it was 10 years ago. 
Probably the biggest problem with the PM algorithm is that it does not always lead 
to a solution. In some cases, the iteration sequence will not converge, which 
makes it necessary to place an upper limit on the number of iterations allowed. 
The algorithm can be modified to allow the frequency grid to be made more dense 
and to initiate the algorithm again if this happens. Nonetheless, there will be 
occurrences when the problem statement will need to be redefined in order to 
attain convergence. For example, if the two stopbands of a bandpass filter are not 
of approximately equal size, one can be artificially reduced to help the 
convergence process. Occasionally, the error constraints on the filter must be 
adjusted to allow more freedom in the optimization process. Even if the process 
converges, the frequency response of the resulting filter must be checked 
carefully. Since no requirements are placed on the frequency within the transition 
bands, strange results can sometimes occur. 

7.4  C CODE FOR FIR FREQUENCY RESPONSE CALCULATION 

Our last task is to determine the frequency response of the filter. As determined in 
Chapter 5, the frequency response of a digital filter can be determined from the 
transfer function, as shown in (7.43): 

 Ω=
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For a causal FIR filter, the transfer function can be described in (7.44), which 
then leads to the description for the frequency response shown in (7.45): 
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Equation (7.45) can also be expressed as a sum of the real and imaginary 
portions of the exponential as in (7.46). The Calc_DigFIR_Resp function 
implements (7.46) directly, as shown in Listing 7.1. 
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/*==================================================== 
  Calc_DigFIR_Resp() - calcs response for FIR filters 
  Prototype:  int Calc_DigFIR_Resp(Filt_Params *FP, 
                                    Resp_Params *RP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
              RP - ptr to struct holding respon params 
====================================================*/ 
int Calc_DigFIR_Resp(Filt_Params *FP,Resp_Params *RP) 
{ int     f,i;          /*  loop counters */ 
  double  rad2deg,      /*  rad to deg conversion */ 
          omega,i_omega,/*  radian freq and incrmnt */ 
          mag,          /*  magnitude of freq resp */ 
          rea,img;      /*  real and imag part */ 
  rad2deg = 180.0 / PI; /* set rad2deg */ 
  /*  Loop through each of the frequencies */ 
  for(f = 0 ;f < RP->tot_pts; f++) 
  { /* Initialize magna and angle */ 
    RP->magna[f] = FP->gain; 
    RP->angle[f] = 0.0; 
    /* Pre calc adjusted omega, rea and img */ 
    omega = PI2 * RP->freq[f] / FP->fsamp; 
    rea = 0.0; img = 0.0; 
    /* Loop through all the coefs */ 
    for(i = 0 ;i < FP->order; i++) 
    { i_omega = i * omega; 
      rea += FP->acoefs[i] * cos(i_omega); 
      img += FP->acoefs[i] * sin(i_omega); 
    } 
    /* Calc final result and conv to degrees */ 
    mag = sqrt(rea*rea + img*img); 
    RP->magna[f] *= mag; 
    /*  Guard against atan(0,0) */ 
    if(mag > 0) 
    { RP->angle[f] += atan2(img,rea);} 
    RP->angle[f] *= rad2deg; 
  } 
  /*  Convert magnitude response to dB if indicated */ 
  if(RP->mag_axis == LOG) 
  { for(f = 0 ;f < RP->tot_pts; f++) 
    { /* Handle very small numbers */ 
      if(RP->magna[f] < ZERO) 
      { RP->magna[f] = ZERO;} 
      RP->magna[f] = 20 * log10(RP->magna[f]); 
    }  
  } 
  return ERR_NONE;  
} 
 

Listing 7.1  Calc_DigFIR_Resp function. 
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The magnitude variable is initialized to the value of the gain constant, and the 
angle variable is set to zero. Then, the response at each frequency is determined by 
evaluating the effect of each filter coefficient. The angle is converted to degrees, 
and after all calculations have been made, the magnitude is converted to decibels 
if the user requested that format. 

7.5  CONCLUSION 

By completing this chapter, we have completed the material on digital filter 
design. We investigated two of the most popular methods of FIR filter design: the 
Fourier series method using window functions and the Parks-McClellan 
optimization method. We can also determine and display the magnitude and phase 
response of the FIR filters we design. In the next chapter we will investigate the 
implementation of both the FIR and IIR digital filters we have designed. For those 
interested in the C code for FIR filter design, please refer to Appendix H. 
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Chapter 8 

Digital Filter Implementation Using C 

In the previous three chapters we discussed the nature of digital filter design. We 
are now ready to discuss the implementation of these digital filters. We begin this 
chapter with a discussion of several important issues in digital filter selection and 
implementation. These issues include the differences between real-time and 
nonreal-time implementation, as well as the effects of finite precision 
representation of input signals and filter coefficients. Then, we discuss the C code 
for implementing IIR and FIR filters. Efficient algorithms will be developed to 
increase the speed of execution. Each filter type will use a different technique 
appropriate to the specific filter’s representation. Finally, we conclude with a 
discussion of the format for a popular sound file on the PC. We will consider how 
we can use sound files to investigate the characteristics of the filters we have 
designed. 

8.1  DIGITAL FILTER IMPLEMENTATION ISSUES 

 
The first decision to make when designing a system with a digital filter is whether 
an IIR or FIR filter should be used. Some of the advantages and disadvantages of 
each type have been discussed in the previous two chapters, so we will summarize 
those points here. First, and foremost, the correct filter type must be determined by 
the requirements of the application. IIR (recursive) filters have the advantages of 
providing higher selectivity for a particular order and a closed form design 
technique that doesn’t require iteration. The design technique also provides for the 
rather precise solution to the specifications of gain and edge frequencies. 
However, IIR filters also have the disadvantages of nonlinear phase characteristics 
and possible instability due to poor implementation. FIR (nonrecursive) filters, on 
the other hand, can provide a linear phase response (constant group delay) that is 
important for data transmission and high-quality audio systems. Also, they are 
always stable because they are implemented using an all-zero transfer function. 
Since no poles can fall outside the unit circle, the filter will always be stable. But 
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because of this, the order of the filter is much higher than the IIR filter, which has 
a comparable magnitude response. This higher order leads to longer processing 
times and larger memory requirements. In addition, FIR filters must be designed 
using an iterative method since the required filter length to satisfy a given filter 
specification can only be estimated. 

Therefore, the filter designer must weigh the requirements placed on the 
digital filter. If great importance is placed on magnitude response with much less 
importance on phase response, then an IIR filter would seem the better choice. If 
phase response is far more important than magnitude response, then an FIR filter 
is in order. If both magnitude and phase response seem to be of equal concern, 
then the processing time constraints and memory requirements must be 
considered. The FIR filter, even when designed using the Parks-McClellan 
method, will require more processing time and more memory to implement, but 
always will be stable. If all else fails, both an FIR and IIR filter (with some phase 
correction) can be designed to meet the specifications and they both can be tested 
to evaluate the results. 

Once the choice of filter type has been made, there are still a number of 
decisions to make. For example, is the system to operate in real-time or can it be a 
nonreal-time system? A real-time system is one in which input samples are 
provided to the digital filter and must be processed to provide an output sample 
before the next input sample arrives. Obviously, this puts a very precise time 
constraint on the amount of processing available to the system. The higher the 
sampling frequency, the less time is available for processing. On the other hand, 
some systems are afforded the luxury of being able to operate in nonreal time. For 
example, signals can be recorded on tape or other media and processed at a later 
time. In this type of system, extensive processing can take place because there is 
no fixed time interval that marks the end of the processing time. In nonreal-time 
applications, high-precision floating-point representation for the coefficients and 
signal can usually be used since speed is not the critical factor. However, the 
majority of digital filter applications will be real-time applications. In these 
applications there will inevitably be a battle to obtain the highest accuracy, the 
fastest speed, and the lowest-cost system. One of the first decisions to make is 
whether the system will be a fixed-point or a floating-point system. This deals not 
only with the input and output signal streams, but also the representation of the 
coefficients and intermediate results within the processing unit. 

8.1.1  Input and Output Signal Representation 

 

Fixed point systems represent a large market in today’s digital signal processing 
arena. Many analog-to-digital (A/D) converters are available to provide output in 
a fixed-point representation. Although many input and output digital signals use 
fixed-point representation, there are several ways in which the same signals can be 
interpreted. Most people are familiar with the base 10 system that humans use, but 
the digital computers of the world use a binary or base 2 system. In that system, 
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each digit represents a multiplier of a power of 2 just as each digit in the decimal 
or base 10 system represents a multiplier of a power of 10. Let’s start with an 8-bit 
binary number shown below: 

  (8.1) 10
347

2 15221212110011000 =⋅+⋅+⋅=

 
This binary number is equivalent to 15210 only when we assume that the 

number is unsigned (represents only positive numbers). If we had considered the 
binary number as signed, the leftmost 1 would have indicated a negative sign, and 
the value would have been interpreted differently. Using two’s complement 
arithmetic, we can determine the value of the number in (8.1) by first negating 
every digit in the number and then adding one to the result. That value is then 
considered a negative value, as shown in (8.2): 

 

 10222 10401101000)101100111(10011000 −=−=+−=  (8.2) 

We can even interpret the original binary number in a different way if we 
assume that the placement of the binary point (equivalent to the decimal point) is 
located at a position other than to the right of the right-most digit. For example, if 
we place the binary point in the middle of the eight binary digits, the number takes 
on another value entirely. (In the representation shown below, it is considered an 
unsigned number, but it could just as well be considered a signed number as 
described before.) 

  (8.3) 10
103

2 5.92121211000.1001 =⋅+⋅+⋅= −

There are advantages and disadvantages to each of the binary representations. 
The use of signed numbers is required in most digital filters, and the two’s 
complement representation provides easier methods for addition and subtraction, 
but multiplication requires special consideration. The signed fractional arithmetic 
illustrated in (8.3) provides great efficiency in multiplication even though addition 
and subtraction do require some special steps. By using fractional notation, as 
most commercial digital signal processing (DSP) chips do, we can guarantee that 
the result of a multiplication will still be less than one and therefore cause no 
overflow. However, the addition of two fractional numbers can provide a result 
larger than one and therefore must be handled carefully. Techniques for dealing 
with potential errors in calculations are considered further in Section 8.1.3.  

Before we leave the area of input and output data representation completely, 
we must consider the effect of the number of bits per sample on the signal-to-noise 
ratio (SNR) of a digital system. It is shown in a number of the digital filter design 
references listed in Appendix A that the SNR for a digital signal processing 
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system will be directly proportional to the number of quantization bits used. To be 
specific, the equation is 

 8.10)/log(2002.6SNR maxdB +⋅+⋅= AB xσ  (8.4) 

In (8.4), B represents the number of bits used to represent the magnitude of 
the digitized signal, while σx and Amax represent the input signal’s standard 
deviation and the quantizer’s maximum input signal. Usually, the input signal’s 
amplitude is adjusted such that σx/Amax is approximately 1/4. If this condition is 
met, and we assume that the input signal has a Gaussian distribution (which is a 
valid assumption for many signals), then the quantizer’s limits will be exceeded 
only 0.064% of the time. (If a smaller number is chosen for the ratio, the dynamic 
range of the system would be sacrificed. If a larger number is chosen, the 
frequency of overflow would increase.) Using the value of 1/4 gives 

 2.102.6SNR dB −⋅= B  (8.5) 

An important realization drawn from this expression is that the SNR can be 
improved by 6 dB for every bit added to the quantized representation. For 
example, if a particular filtering application requires a signal-to-noise ratio of 80 
dB, then a D/A converter with at least 14 bits of magnitude quantization must be 
available. 

8.1.2  Coefficient Representation 

When it comes to the internal processing of data for a digital filter system, there is 
more of an even mix between fixed-point and floating-point systems. The market 
has a variety of DSP microprocessor chips from a number of manufacturers. These 
DSP systems include a wide selection of fixed-point and floating-point systems. 
The fixed-point systems generally provide higher processing speed at lower cost 
than do the floating-point systems. However, the floating-point systems provide 
accuracy that many fixed-point systems cannot achieve. The representation for the 
coefficients does not have to be the same as the representation selected for the 
input signal. Even if both are fixed-point numbers, the coefficient representation 
can use a higher precision representation (more bits). It is up to the digital filter 
designer to determine the system characteristics such that sufficient accuracy is 
achieved with adequate processing speed at the lowest possible cost. 

The representation of the filter coefficients within the DSP system is of prime 
concern. Enough accuracy is required in the representation of the filter 
coefficients (which determine the pole and zero locations) to guarantee that the 
specifications of the filter are met by the implementation. If the accuracy of the 
coefficients is compromised, the response of the filter may be severely distorted, 
and in some cases, the stability of IIR filters can be jeopardized. FIR filters will 
always be stable because they are represented by transfer functions with all zeros. 
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However, their frequency response can still be affected by the lack of accuracy of 
their coefficients. As an example, we consider the case of the Parks-McClellan 
filter designed in Example 7.4. The coefficients for that example have been 
truncated to signed 16-bit, 12-bit, and 8-bit numbers as shown in Table 8.1. 

Table 8.1 
Comparison of Original and Truncated Coefficients 

Coefs Original 16-bit 12-bit 8-bit 

h(10)   0.348822   0.348822   0.348822   0.348822 
h(9), h(11)   0.004010   0.004013   0.004090   0.002747 
h(8), h(12)  -0.268081  -0.268076  -0.268049  -0.269170 
h(7), h(13)  -0.008972  -0.008974  -0.009032  -0.008240 
h(6), h(14)   0.102739   0.102740   0.102755   0.101625 
h(5), h(15)   0.008322   0.008325   0.008350   0.008240 
h(4), h(16)   0.012282   0.012285   0.012269   0.010987 
h(3), h(17)  -0.004333  -0.004333  -0.004260  -0.005493 
h(2), h(18)  -0.033368  -0.033363  -0.033400  -0.032960 
h(1), h(19)   0.001195   0.001192   0.001193   0.000000 
h(0), h(20)   0.012527   0.012530   0.012610   0.013733 

 
 

Equation (8.6) shows the procedure for determining the truncated values. The 
calculation within the Round function actually indicates the procedure of 
converting the floating-point coefficient to a signed fraction representation for use 
in fixed-point processors. The multiplication outside of the Round function 
converts the signed fraction back to a truncated decimal: 
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As we would expect, as the number of bits is reduced, the error in the 

coefficients increases. The frequency response generated from the 16-bit 
coefficients was virtually identical to the original response. However, the 
responses due to the 12-bit and 8-bit coefficients were noticeably degraded, as 
shown in Figure 8.1. In that figure, the passband response was virtually 
unchanged in all cases, but the stopband characteristics did not match those of the 
original coefficients (shown as −56.7 dB). The 12-bit coefficients did produce a 
response that satisfied the original design specifications of −50 dB. The 8-bit 
coefficients, however, caused the frequency response to degenerate completely, 
providing as little as 32 dB of attenuation. The reason for this degradation, of 
course, is that the truncation has moved the pole and zero locations from their 
original positions. 
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Figure 8.1  FIR filter frequency response using truncated coefficients. 

8.1.3  Retaining Accuracy and Stability 

There is no effective way to directly relate the accuracy of the coefficients to the 
degree of degradation of the frequency response. At this time, trial and error 
techniques are all that can be offered when determining the necessary accuracy of 
coefficients. However, there are some helpful practices that can be observed when 
dealing with the implementation of these coefficients to reduce the effects of 
truncation. The following suggestions relate to IIR filters unless stated otherwise 
since they have some unique problems due to their recursive nature. The fact that 
IIR filters are implemented using feedback leads to special problems that the FIR 
filter does not experience. 

Probably the most important implementation rule when dealing with IIR 
filters is that it is much better to implement the filter as a cascade of quadratic 
factors (as we have done) than to combine the transfer function into a quotient of 
high-order polynomials. (Even some experimentation has been done with this idea 
for FIR filters.) This technique provides better control of the stability of the filter. 
By quantizing the coefficients that represent the filter, we are actually specifying a 
fixed number of positions within the unit circle where the poles can be located. 
The fewer bits used for quantization, the fewer the positions for the poles. In 
addition, these pole locations are not uniformly distributed within the unit circle. 
However, by choosing different topologies for the implementation (such as a 
coupled form of quadratic), more uniformly distributed pole locations can be 
achieved. Also, it has been shown that those poles which either lie close to the unit 
circle or to each other are the most critical to represent properly, and therefore 
may need some special implementation method. Another technique that can be 
used to reduce errors caused by computations using finite accumulators is to pair 
poles and zeros located near each other in the same quadratic factor to reduce 
large fluctuations. In addition, sections with poles closest to the unit circle can be 
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moved to the end of the evaluation process to help eliminate overflows. The 
digital filter design references in Appendix A provide further information on other 
structures than the quadratic form, including those for representing poles located 
extremely close to the unit circle. Antoniou’s, Oppenheim/Shafer’s (1975), and 
Proakis/Manolakis’s texts provide valuable and detailed material. 

Several other points can be made when discussing the coefficients and 
internal processing of the filter calculations. In both FIR and IIR filter 
implementation, the final output values are stored in a register that gradually 
accumulates the value of the final output. This accumulator should normally be 
allocated as many bits of representation as possible because it controls the ultimate 
accuracy of the processor. Overflow and underflow are potential problems for the 
accumulator since it is hard to predict the exact nature of incoming signals. Most 
present dedicated DSP chips provide some form of scaling that can be applied to 
the input so that temporary large variations can be accommodated without 
incurring a great deal of error. This scaling bit can effectively be used as a 
temporary additional bit of accuracy for accumulated values to prevent overflow. 
However, if overflow is inevitable, it is better to have a processor that will simply 
saturate at its maximum level than to allow an overflow that can be interpreted as 
a swing from positive to negative value. 

In recursive systems that use finite precision representations, a troublesome 
problem called limit cycle oscillation can occur. There are actually two types of 
limit cycles: overflow and quantization. Overflow limit cycles (also called large-
signal limit cycles) are due to the unmanaged overflow of the accumulator during 
processing. Most overflow limit cycles can be effectively eliminated by the proper 
use of signal scaling at the input of the system and saturation arithmetic in the 
accumulator. Many DSP processors include some scaling feature within the 
processor unit that allows the input signal to be reduced in size. However, a 
reduction in the size of the input signal also reduces the SNR of the system, 
although this is usually better than the distortion produced by an overflow. 
Another useful feature on many DSP systems today is the use of saturation 
arithmetic within the processing unit. This feature will saturate the value to its 
positive or negative limit rather than overflow the accumulator. Again, this will 
result in distortion, but usually less than the overflow would produce. Of course, 
another way to help control overflow limit cycles is to increase the size of the 
accumulator, if the processing system allows the accumulator to be larger than the 
standard coefficient storage size. 

The quantization limit cycles (also called small-signal limit cycles) generally 
result from the handling of quantization within the system and are noticeable when 
the output should be constant or zero. This problem is the result of the input signal 
changes being less than the quantization level. Two methods have been developed 
to combat this type of limit cycle. The first, which may not be a practical 
alternative, is to increase the number of bits assigned to the representation of the 
signal values in order to reduce the quantization error. By reducing the 
quantization error, the limit cycles can either be eliminated altogether, or reduced 
to a tolerable level. The second method suggests that the products produced by 



194 Practical Analog and Digital Filter Design 

finite precision multiplication be truncated, rather than rounded, as they are 
accumulated. Other, more detailed, analysis of limit cycles is included in the 
references. 

8.2  C CODE FOR IIR FILTER IMPLEMENTATION 

When discussing the implementation of IIR filters, we assume that the filter is 
described by a set of quadratic coefficients of the form determined in Chapter 7. 
As we have seen in the previous section, a cascaded sequence of quadratic 
structures is the recommended method of implementation. The basic quadratic 
building block is shown in the system diagram of Figure 8.2. 
 

 
 
Figure 8.2  System diagram for a single quadratic factor. 
 

We can generate the transfer function for this section by determining the 
expressions for the intermediate signal w(n) and the output signal y(n). 

 )2()1()()( 21 −⋅+−⋅+= nwbnwbnxnw  (8.7) 

 )2()1()()( 21 −⋅+−⋅+= nwanwanwny  (8.8) 

These equations can be z-transformed to give 
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Equations (8.9) and (8.10) can be rewritten and combined to determine the 
transfer function for this section of the filter, as shown in (8.11). This formulation 
matches the quadratic terms we developed for IIR filters. We will be able to match 
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equivalent terms if we recognize two characteristics. First, the ao coefficient is 
always one, and second, the b coefficients in the system diagram will be the 
negative of their value in the transfer function equation. 
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As an example, consider the fourth-order transfer function for a Chebyshev 
highpass filter shown in (8.12). This filter can be implemented by using the 
system diagram shown in Figure 8.3. As we see in the diagram, the input signal is 
first multiplied by the gain constant and is then processed through two quadratic 
factors. The multiplication by the gain constant could occur at the end of the 
process or be distributed throughout the diagram as well. Notice the sign 
difference on the b coefficients between the transfer function of (8.12) and the 
system diagram of Figure 8.3. (Of course, the coefficients will be represented with 
higher precision than indicated here.) 
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Figure 8.3  System diagram for fourth-order IIR filter. 
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After determining the system diagram for a filter, we can use the diagram as a 
guide to implementing the filter. For every quadratic factor, we can calculate an 
intermediate signal w(n) and an output signal y(n). Besides x(n), w(n), and y(n), 
every quadratic section also requires the values w(n − 1) and w(n − 2) (as shown 
in Figure 8.2) to be retained. We can rewrite (8.7) and (8.8) as 

 2211 mbmbxw ⋅+⋅+=  (8.13) 

 2211 mamawy ⋅+⋅+=  (8.14) 

where we have defined 

 )1(1 −= nwm  (8.15) 

 )2(2 −= nwm  (8.16) 

The names m1 and m2 are picked to reflect the fact that these values are the 
memory states of the quadratic factor. Each quadratic structure must keep track of 
the previous values that have been present in the structure. 

The IIR filtering process can be implemented by first multiplying the input 
signal by the gain and then implementing (8.13) to (8.16) for each of the 
quadratics. Then, before progressing to the evaluation of the next quadratic factor, 
the values of m1 and m2 are updated. A section of code that will implement this 
process is shown in Listing 8.1. In the listing, it is assumed that there are m1 and 
m2 arrays with sizes equal to the number of quadratics, and that the a and b 
coefficients for the filter are stored in the usual manner. (That is, the three 
coefficients a0, a1, and a2 for the first quadratic are followed by the three 
coefficients for the second quadratic, and so on. The same organization is assumed 
for the b coefficients.) Note that the a0 and b0 coefficients are not used since they 
are assumed to be one. We have also substituted the output variable o for the input 
variable x to let the output value accumulate through several quadratic sections. 

 
 

o = x * gain; 
for(j = 0; j < numb_quads ;j++) 
{ jj = j*3; 
  w = o - m1[j] * b[jj+1] - m2[j] * b[jj+2]; 
  o = w + m1[j] * a[jj+1] + m2[j] * a[jj+2]; 
  m2[j] = m1[j]; 
  m1[j] = w; 
} 

 
Listing 8.1  Segment of code for IIR filter implementation. 
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Although the algorithm in Listing 8.1 will make the correct computations, it 
could be slow because of all of the index calculations that must be made. 
(Actually, compilers will differ in terms of how much optimization can be made 
with speed-critical code such as we are discussing.) The speed of this loop can 
usually be increased by using pointers to the coefficients and memory values. In 
order to take advantage of this pointer efficiency we must store the filter 
coefficients in an orderly manner, which will allow them to be accessed 
sequentially in the exact order that they are needed. We can define a new array C 
that will store all of the needed coefficients as well as the filter gain constant. The 
first element in the array will be the gain constant followed by the coefficients b1, 
b2, a1, and a2 for each quadratic factor. The structure of the C array then has the 
following form: 
 

  C[0] = gain  C[5] = b1 (quad 2) 
  C[1] = b1 (quad 1) C[6] = b2 (quad 2) 
  C[2] = b2 (quad 1) C[7] = a1 (quad 2) 
  C[3] = a1 (quad 1) C[8] = a2 (quad 2) 

C[4] = a2 (quad 1) ... 
 

In addition, an M array must be created to store the memory states of the IIR 
filter. The size of the array is equal to twice the number of quadratic factors with 
the m1 states stored in the first half of the array and the m2 states in the last half. 
Initially, all of the memory states are set to zero (unless we know some predefined 
state exists for the filter). Thus, the M array has the following structure where N is 
the number of quadratics: 
 

  M[0] = m1 (quad 1) M[N] = m  (quad 1) 2
  M[1] = m1 (quad 2) M[N + 1] = m2 (quad 2) 
  M[2] = m  (quad 3) M[N + 2] = m  (quad 3) 1 2
  ...    ... 

 
Listing 8.2 shows the Dig_IIR_Filter function used in the DIGITAL 

program discussed later in this chapter. (All of the functions discussed in this 
chapter can be found in the \DIGITAL\DIGITAL.C module on the software disc 
that accompanies this text.) The function takes as arguments pointers to arrays of 
input values (X), output values (Y), memory states (M), and coefficient values (C), 
as well as the number of quadratic factors and number of values in the input and 
output arrays. Notice that since we will be progressing through the X, Y, C, and M 
arrays, we have defined indexing pointers x, y, c, and m, which can take on 
changing values. (Never use the array name itself as an index or the address of the 
array will be lost.) The notation may look a little foreign so let’s take a look at the 
code on a line-by-line basis. (The line numbers shown are to help with this 
discussion and are not part of the normal code.) The process of using pointers is 
very efficient for computational purposes because it fits the nature of the 
computer. However, it can be a bit confusing to follow. Therefore, in order to 
provide a more descriptive analysis of the IIR filter code, the code has been 
annotated with the status of primary arrays and variables. For this illustration, it is 
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assumed that there are two quadratic factors and sample values have been entered 
for the C and M arrays. At each step of the process, the particular values to which 
c, m1, or m2 are pointing within the arrays are shown in bold. Only the first time 
through the inner loop is illustrated, but we can see from this how the pointers 
progress through the arrays, and how the memory state array is changed. 

In lines 1 and 2 of Listing 8.2, the addresses of the input and output arrays are 
transferred to temporary variables x and y that can change without affecting the 
addresses stored in X and Y. Then, line 4 begins a for loop to process every value 
in the input array. Lines 6 to 8 set up pointers to the memory states and coefficient 
arrays. The m1 pointer is set to start at the beginning of the M array where the m1 
states are stored, while the m2 pointer is set midway through the M array since the 
m2 states are stored in the second half of the array. The initial value of the output, 
indicated by o, is calculated by multiplying the input value by the first value in the 
coefficient array, which is the gain constant. 

 
/*==================================================== 
  Dig_IIR_Filter() - filters input array using IIR 
              coefs and mem values to generate output 
  Prototype:  void Dig_IIR_Filter(int *X,int *Y, 
            double *M,double *C,int numb_quads,int N); 
  Return:     error value. 
  Arguments:  X - ptr to input array 
              Y - ptr to output array 
              M - ptr to memory array 
              C - ptr to coefs array 
              numb_quads - number of quadratics 
              N - number of values in array 
====================================================*/ 
void Dig_IIR_Filter(int *X,int *Y,double *M,double *C, 
                                 int numb_quads,int N) 
{ int     *x,*y,    /*  ptrs to in/out arrays */ 
          i,j;      /*  loop counters */ 
  double  *c,*m1,*m2, /*  ptrs to coef/memory arrays*/ 
          w,o;      /*  intermed & output values */ 
  /*  Make copies of input and output pointers */ 
01  x = X; 
02  y = Y; 
   x: 3,4,5,6,7,... 
   y: 0,0,0,0,0,... 
03  /*  Start loop for number of data values */ 
04  for(i = 0; i < N ;i++) 
05  { /*  Make copies of pointers and start calcs */ 
06    m1 = M; 
07    m2 = M + numb_quads; 
08    c = C; 
   C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0 
   M: 1.0,3.0,2.0,4.0 
09    o = *x++ * *c++; 
   C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0 
   x: 3,4,5,6,7,... 
   o: 0.60 

 
Listing 8.2  Dig_IIR_Filter function. 
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10    /*  Start loop for number of quad factors */ 
11    for(j = 0; j < numb_quads ;j++) 
12    { w = o - *m1 * *c++; 
   C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0 
   M: 1.0,3.0,2.0,4.0 
   w: -0.40 
13      w -= *m2 * *c++; 
   C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0 
   M: 1.0,3.0,2.0,4.0 
   w: 1.20 
14      o = w + *m1 * *c++; 
   C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0 
   M: 1.0,3.0,2.0,4.0 
   o: -0.80 
15      o += *m2 * *c++; 
   C: 0.20,1.0,-0.80,-2.0,-1.0,0.05,-0.20,-2.0,-1.0 
   M: 1.0,3.0,2.0,4.0 
   o: -2.8 
16      *m2++ = *m1; 
   M: 1.0,3.0,1.0,4.0 
17      *m1++ = w; 
   M: 1.2,3.0,1.0,4.0 
18    } 
19    /*  Convert output to int and store */ 
20    *y++ = (int)ceil(o-0.5); 
   y: -3,0,0,0,0,... 
21  } 
} 

 
Listing 8.2  Continued. 
 

Notice that the method used to access the gain constant is by using the *c 
notation, which can be read as “the value at which c is pointing.” Since c has just 
been initialized to the start of the C array, and since the first element in C is the 
gain constant, then c is pointing at the gain constant. The “++” notation after c 
instructs the computer to increment the value of c by one after the equation has 
been evaluated. (This is referred to as post-incrementing as opposed to ++c, 
which is called preincrementing.) At this point, we are performing pointer 
arithmetic,  which is a special type of arithmetic. Remember that the variable c 
(and C) contains a number that is an address of where coefficients are stored in 
memory. When we increment a pointer we are incrementing an address and 
therefore must do so in a meaningful way. In this case, the coefficients are stored 
as doubles, which take up 8 bytes of memory on a PC. It would be meaningless 
to increment the address of an array containing doubles by 1 byte, or 2, or 
anything but 8 bytes. Therefore, when we tell the machine to increment c, it 
increments the number stored in c by 8. (This is what is meant by special 
arithmetic.) The compiler keeps track of how to increment pointer variables based 
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on how the variables are initially declared. For example, if the variables are 
double, the increment is 8; if they are int, the increment is 2. 

Now, returning to our discussion of Listing 8.2, we next enter a for loop 
(line 11) used to calculate the effects of each quadratic factor on the ultimate 
output value. Lines 12–13 compute the value of w and increment the pointer in the 
C array as each value is used. Lines 14–15 then make the calculations representing 
the right half of Figure 8.2 to determine the output value. The pointer c is now 
pointing to the b coefficients for the next quadratic section. Lines 16–17 update 
the values of the memory states and increment m1 and m2 to point to the memory 
states of the next quadratic section. The final step in the determination of the 
output value is the conversion of the floating-point value of o to the fixed point 
value of *y. The method used in converting the floating point value to an integer 
value insures that both positive and negative values will be rounded correctly. The 
pointer y is then incremented and the process repeats for the next value in the 
input array. We should note that by the end of the outer for loop, the c, m1, and 
m2 pointers will be pointing to values that do not belong to them. That’s all right 
as long as we don’t try to access them. The next time an input value is filtered, 
lines 6–8 will reset the pointers to the correct positions. 

One advantage of the algorithm we have just developed is that it can be used 
effectively for either real-time or nonreal-time applications. The value x can be 
taken from either an input port of a DSP system, or from an array of values to be 
processed (as illustrated). Likewise, the value y can be fed to an output port of a 
DSP system or placed in an output array (as we have done). We will see a 
program for a complete filtering system in Section 8.4. 

8.3  C CODE FOR FIR FILTER IMPLEMENTATION 

An FIR filter has no feedback and thus its system diagram can be displayed as 
shown in Figure 8.4. This configuration represents a convolution involving N 
coefficients, as described by (8.17). 
 

 
 
Figure 8.4  System diagram for general FIR filter implementation. 
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8.3.1  Real-Time Implementation of FIR Filters 

Although the algorithm would appear to be very simple for such an 
implementation, the fact that we require N − 1 values to store the memory states 
(past values of the input) of the filter complicates the procedure somewhat. We 
will begin by discussing the real-time implementation problem, and then later we 
will see that significant time savings can be made with nonreal-time 
implementations. First, we can generate C code to implement (8.17). We will need 
to update each memory state after each convolutional sum, which we can do 
within the same loop if we perform the convolution in reverse order. The simplest 
way to handle this reverse order is to reverse the coefficients and memory states in 
their respective arrays, as shown in (8.18) (the coefficient array) and (8.19) (the 
memory state array). Note that the gain constant is stored as the last entry in the C 
array: 

  (8.18) } , , , . . . , ,{  :array 012-1 gainaaaaC NN−

  (8.19) } , , . . . , ,{ :array 01-)2-(-)1(- xxxxM NN−

The segment of code given in Listing 8.3 shows the basic implementation. 
We start the process by placing the current value of input x[0] into the last 
position of the memory array M. The initial value of the output o is calculated 
using the initial values of the memory state and the coefficient arrays. Then we 
enter the for loop to compute the rest of the convolution sum. Each time through 
the loop, the memory states are updated so that by the end of the loop all of the 
memory states occupy the correct position for the next input value. The final step 
in the process is to multiply the output value by the gain constant of the filter. 
 

m[N-1] = x; 
o = a[0] * m[0]; 
for(k = 1; k <= N ;k++) 
{ m[k-1] = m[k]; 
  o += a[k] * m[k]; 
} 
o *= gain; 

 
Listing 8.3  Segment of code for FIR filter implementation. 
 

The code of Listing 8.3 will correctly compute the output value but the 
execution will be slow because of the need for so many index calculations. Listing 
8.4 shows the Dig_FIR_Filt_RT function for implementing a real-time (RT) 
digital FIR filter that makes use of pointers to speed the process. In this case, we 
will need an M array of a size equal to the length of the filter (N) and a C array that 
is one larger (N + 1) to accommodate the gain constant. Initially, the M array is 
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filled with zeros (unless we know the state of the filter), and the C array is filled 
with the FIR coefficients in reverse order. The final value of the C array is the 
filter’s gain constant. We will use movable pointers within the M and C arrays. The 
m1 and m2 pointers are initially set to the start of the array and then incremented 
toward the end. By using two movable pointers, we can transfer memory states 
without any need for address computation. The final step in the process (before 
converting the output variable back to an integer) is to multiply the accumulated 
value in o by the gain constant of the filter. Although for this code, we obtain the 
value of input from an array, it could just as well be coming from an input port on 
a DSP system. Likewise, the output value could be written to an output port 
instead of an array. 

 
 
/*==================================================== 
  Dig_FIR_Filt_RT() - filters input array using FIR 
              coefs (uses real-time code) 
  Prototype:  void Dig_FIR_Filt_RT(int *X,int *Y, 
            double *M,double *C,int numb_coefs,int N); 
  Return:     error value. 
  Arguments:  X - ptr to input array 
              Y - ptr to output array 
              M - ptr to memory array 
              C - ptr to coefs array 
              numb_coefs - number of coefficients 
              N - number of values in array 
====================================================*/ 
void Dig_FIR_Filt_RT(int *X,int *Y,double *M,double *C 
                                ,int numb_coefs,int N) 
{ int     *x,*y,    /*  ptrs to in/out arrays */ 
          i,j;      /*  loop counters */ 
  double  *c,*m1,*m2, /*  ptrs to coef/memory array */ 
          o;        /*  output value */ 
 
  /*  Make copies of input and output pointers */ 
  x = X; 
  y = Y; 
  /*  Start loop for number of data values */ 
  for(i = 0; i < N ;i++) 
  { /*  Make copy of pointers and start loop */ 
    M[numb_coefs-1] = *x++; 
    c = C; 
    m1 = m2 = M; 
    o = *m1++ * *c++; 
    /*  Use convolution method for computation */ 
    for(j = 1; j < numb_coefs ;j++) 
    { *m2++ = *m1; 
      o += *m1++ * *c++; 
    } 
    /*  Multiply by gain, convert to int and store */ 
    o *= *c; 
    *y++ = (int)ceil(o-0.5); 
  } 
} 

 
Listing 8.4  Dig_FIR_Filt_RT function.  
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This implementation of the FIR filter is slow because of the constant memory 
state shuffle. Note that most sophisticated DSP processors have handled this 
shuffle by implementing what is referred to as a circular buffer. A circular buffer 
is one in which the last entry is magically connected to the first entry. In other 
words, if a pointer that is pointing to the last entry in the buffer is incremented, the 
processor automatically adjusts the pointer to point to the first entry of the buffer. 
This helps tremendously, because with a circular buffer, no memory states need to 
be moved. The newest input value is simply written into the circular buffer over 
the oldest memory state. The starting point of the convolution is then adjusted to 
the proper value and the process continues in the normal manner. Although a 
circular buffer can be simulated on a PC, it requires special coding beyond the 
scope of this text. In the next section we will discuss a much faster nonreal-time 
method that we can use instead. We will leave the real-time circular buffer 
implementation to the DSP chip programmers since DSP systems are usually used 
for this type of work. 

 

8.3.2  Nonreal-Time Implementation of FIR Filters 

The implementation of the FIR filter under nonreal-time conditions can be made 
much more efficient because we will have available as many of the input values as 
we would like (and that memory will hold). The input values not only represent 
the input for the system, but also the memory states of the system. The need for 
the constant shuffle of past memory states will be removed (to a great degree) as 
we will see. To understand the efficiency of the nonreal-time process, it may be 
helpful to view the convolution process graphically. Figure 8.5 shows an array of 
input values and an array of coefficient values. We can visualize the convolution 
process as the generation of the sum of products as the coefficients slide past the 
input values. 

In part (a) of Figure 8.5, we see the initial position of the convolution process 
where x0 is the first input value to be processed. If previous values of the input are 
not available then x−1 through x−(N−1) would be set to zero. After the convolution 
sum of products is calculated, the value of y0 can be determined. The array of 
coefficients can then be effectively moved one position to the right and the 
convolution performed again for y1. This procedure will continue until we reach 
the end of the input array, processing the last value of the array xL−1, as shown in 
part (b). Note that since we have a very large array of input values, we can 
perform many convolution sums without shuffling the past values of input. 
However, there is usually a limit to how large an input array can be brought into 
memory. Therefore, we will eventually need to bring in a new array of L input 
values and start the convolution again from the start of the new array. But in order 
for the initial convolution sums on this new array to be correct, the values 
immediately preceding the xL value must be available at the beginning of the input 
array, as shown in part (c) of the figure. Consequently, we will need to move the 
last N − 1 values of the initial input array to the beginning on the array. This 
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movement process will have to be accomplished at the end of processing each 
segment of the input array. If we make the input array buffer much larger than the 
length of the FIR filter, this amount of processing should be insignificant. 
 

 
 
Figure 8.5  Graphical interpretation of convolution. 
 

Listing 8.5 shows the Dig_FIR_Filt_NRT function for implementing the 
nonreal-time (NRT) form of the FIR filter. In this function, the pointers to the 
input, output, and coefficient arrays are passed as arguments as well as the number 
of coefficients and number of values to be processed in the input array. Notice that 
a separate array of memory states is not necessary since the input array also 
represents the memory states. The function starts by assigning the address of the 
first input value to the pointer variable x, which will march through the array 
keeping track of the starting point of the convolution. A temporary pointer to the 
proper output array value is also initialized. The pointer to the coefficient array c 
is initialized within the first for loop, which controls the processing of all input 
values. The convolution sum is then calculated moving the x and c pointers 
progressively through the respective arrays accumulating products. After the 
summation is complete, the next step is to multiply the accumulation by the filter’s 
gain constant, which has been stored at the last entry in the C array. The process is 
completed by converting the output floating-point value to a fixed-point value and 
resetting the starting point in the x array to the correct position for the calculation 
of the next output value. After all values in the input array have been processed, 
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the last N − 1 values in the array are copied to the beginning of the X array for the 
processing of the next input segment. As we will see in the next section, when 
input values are stored in the X array, they are not placed at the beginning of the 
array (which would overwrite the memory states of the filter), but rather placed at 
an advanced position in the array based on the length of the filter. 

 
/*==================================================== 
  Dig_FIR_Filt_NRT() - filters input array using FIR 
              coefs (uses nonreal-time code) 
  Prototype:  void Dig_FIR_Filt_NRT(int *X,int *Y, 
                      double *C,int numb_coefs,int N); 
  Return:     error value. 
  Arguments:  X - ptr to input array 
              Y - ptr to output array 
              C - ptr to coefs array 
              numb_coefs - number of coefficients 
              N - number of values in array 
====================================================*/ 
void Dig_FIR_Filt_NRT(int *X,int *Y,double *C, 
                                 int numb_coefs,int N) 
{ int     *x,*y,    /*  ptrs to in/out arrays */ 
          i,j;      /*  loop counters */ 
  double  *c,       /*  ptrs to coefficient array */ 
          o;        /*  output value */ 
 
  /*  Make copies of input and output pointers */ 
  x = X; 
  y = Y; 
  /*  Start loop for number of data values */ 
  for(i = 0; i < N ;i++) 
  { /*  Make copy of coefs pointer and start loop */ 
    c = C; 
    o = *x++ * *c++; 
    /*  Use convolution method for computation */ 
    for(j = 1; j < numb_coefs ;j++) 
    { o += *x++ * *c++;} 
    /*  Multiply by gain, convert to int and store */ 
    o *= *c; 
    *y++ = (int)ceil(o-0.5); 
    /*  Reset the pointer in input data */ 
    x -= (numb_coefs - 1); 
  } 
  /*  Copy last values to front of buffer */ 
  memcpy(X,&X[CHUNK_SIZE],2*(numb_coefs-1)); 
} 

 
Listing 8.5  Dig_FIR_Filt_NRT function. 

8.4  FILTERING SOUND FILES 

We have now developed several ways to implement the digital filters that we 
designed in the previous chapters. It is now time to actually implement them and 
listen to the results. Dedicated DSP processors may not be available to us, but 
many of us do have sound cards in our computers, so we can at least implement 
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the nonreal-time versions of the filters. The manner in which this will be 
accomplished is the following. Two sound files have been included on the 
software disc included with this text, and we can record other sound files using 
our sound cards. These sound files can be filtered using WFilter, which has been 
included with this text. After filtering the sound files, we can compare the results 
using the sound card to play the original and filtered versions of the sound files. 
(Please read the documentation for your sound card to determine how to record 
and play sound files.) To get further information on sound file formats and the C 
code used in filtering the files, please refer to Appendix I.  

To demonstrate the ease of filtering waveforms, we’ll design a digital filter 
and use it to filter one of the waveforms on the software disc in our next example.  

Example 8.1  IIR Digital Filtering of Waveform 

Problem: Determine the effects on music.wav (available on the CD) when it 
is filtered by a digital Butterworth IIR filter with the following characteristics: 

apass = −0.5 dB, astop = −60 dB, fpass = 800 Hz, and fstop = 1,600 Hz 

Solution: First, we design the filter using WFilter. Since we will be filtering a 
file sampled at 22,050 Hz, we use that value as the sampling frequency. After 
designing the filter, we can select Filter Wave File from the Options menu. The 
following dialog box will be shown. 
 

 
 
Figure 8.6  Filter Wave File dialog box. 
 

We can identify the file to be filtered by typing directly into the dialog box or 
by using the browse button to locate the file. After specifying the input and output 
file names, simply press the Filter button and the filtering action will take place. 
You will be able to tell when the filtering has finished by the play buttons being 
enabled. Now we can compare the two sound files by playing each file 
individually. Notice that the lowpass filter was successful in eliminating the 
chimes from the original version.  
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Other filters can be created and other sound files can be filtered. If you use 
the speech.wav file on the accompanying disc be aware that it has a sampling 
frequency of 11,025 Hz. It is also captured as an 8-bit file. 

8.5  CONCLUSION 

We have reached the end of this chapter where the implementation of FIR and IIR 
filters has been developed. We have developed a fully functional program to filter 
sound files, which can be mono or stereo, and 8-bit or 16-bit files. Other file 
formats can be added to the program with minimum effort by writing functions to 
read and write the file headers and passing the required information to our 
functions. Compressed files can be handled by implementing a decompression 
function between the reading of the data and its filtering. Further information on 
sound file formats and C code for filtering can be found in Appendix I. 
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Chapter 9 

Digital Filtering Using the FFT 

At this point we have discussed the design and implementation of digital filters. In 
the process we have investigated the characteristics of the input and output signals 
in both the time and frequency domains. It is time now to investigate a more direct 
relationship between the time domain and frequency domain for discrete time 
systems. We will begin by discussing the discrete time version of the Fourier 
transform. After the discrete Fourier transform (DFT) discussion, we will learn 
about the more computational efficient version called the fast Fourier transform 
(FFT). The C code for the FFT will be developed, and finally, we will take a look 
at one method of using the FFT in linear filtering. 

9.1  THE DISCRETE FOURIER TRANSFORM (DFT) 

The Discrete Fourier Transform (DFT) can be used to compute the frequency 
content of any discrete time signal. Consider first (9.1), where ω is periodic with a 
period of 2π. (Remember that a radian frequency of 2π in the z-plane is equivalent 
to the sampling frequency (Fs) in the s-plane.) In (9.1), x(n) represents the time 
domain signal, which has an infinite number of samples. The spectrum that will 
result from sampling an analog signal will actually be many replicas of the analog 
spectrum spaced at multiples of the sampling frequency, as shown in Figure 5.2 in 
Chapter 5. We will be able to select just one of these spectrums by using a filter at 
the output of our discrete time system.  

  (9.1) ∑
∞

−∞=

−⋅=
n

njenxX ωω )()(

We see that although (9.1) correctly defines the Fourier transform for a 
discrete time signal, it is impossible to implement for two reasons. First, we will 
never be able to obtain all of the time domain samples, and second, we will never 
be able to evaluate the equation at all values of the frequency variable ω. 
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Therefore, the first adjustment we make to our strict definition is to modify (9.1) 
to reflect the fact that we will have only a finite number of samples of x(n) with 
which to work. Equation (9.2) shows the definition when we assume that we have 
only N samples of the signal data: 

  (9.2) ∑
−

=

−⋅=
1

0
)()(

N

n

njenxX ωω

Truncating the signal sequence as in (9.2) is effectively applying a rectangular 
window to the time domain sequence. This causes problems in the resulting 
frequency domain description which can be lessened by applying a different 
window such as one used in Chapter 7 dealing with FIR filter coefficients. The 
impact of such a window will be discussed very soon. 

If we further assume that we’ll only need to evaluate the frequency response 
data at a finite number of equally spaced frequencies from 0 – 2π, we have the 
definition of the K-point DFT of an N-point signal. 
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Example 9.1  Calculation of DFT with Rectangular Window 

Problem: Determine the DFT of an audio signal containing three distinct 
frequencies of F1 = 2 kHz, F2 = 3 kHz, and F3 = 4 kHz. Assume that the sampling 
frequency is Fs = 20 kHz and that we make use of either 20 or 40 samples of the 
waveform. Use a rectangular window (in other words, simply truncate the 
sequence). 

Solution: First, we generate a waveform containing the three frequencies. 
 

 )/2sin()/2sin()/2sin()( 321 sss FnFFnFFnFnx πππ ++=  

 
Then, we calculate the DFT using (9.3) letting K = 1,000 points. (This gives us a 
near continuous frequency response.) The results are shown in Figure 9.1. 
Although not shown, if we had used a large number of data points (N = 1,000), the 
DFT graphs would have shown six very distinct spikes in the frequency domain 
with far less “clutter” at other frequencies. (There are six major responses in the 
spectrum because the content from 10 kHz to 20 kHz is a mirror reflection of the 
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content from 0 Hz to 10 kHz. We need only to concern ourselves with the first 
half of the spectrum.) As it is, we can see that the three major spikes in the first 
half of the spectrum generally reflect the three frequencies of our waveform. As N 
increases, the position will become more and more precise. However, we should 
be concerned about the clutter at other frequencies and why it is reduced as N 
increases. 
 
 

 
 

 
 
Figure 9.1  DFT of three frequencies with rectangular window. 

The explanation of the numerous extraneous lobes contained in the DFT 
responses goes back to the time domain and our truncation of x(n). By truncating 
the sequence, we effectively multiplied two time domain functions together, as 
shown in (9.4). (The rectangular window function w(n) in our example will have 
20 or 40 values of one and zeros for all other values.) 

 )()()( nwnxnxtrun ⋅=  (9.4) 
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When two waveforms are multiplied in the time domain, their frequency 
spectrums are convolved in the frequency domain. Although the frequency 
spectrum of the signal will be three spikes, the frequency spectrum of the 
rectangular window will be a sinc function shown in Figure 9.2. Notice all of the 
side lobes produced. When convolved with the three spikes representing the three 
signal frequencies, these side lobes will create the extraneous side lobes shown in 
Figure 9.1. By contrast, when viewing the response of the transform of the 
Hamming window, we see no annoying side lobes, but a smaller and wider main 
lobe. The results of using a Hamming window is shown in Example 9.2. 

 
 
Figure 9.2  DFT of rectangular and Hamming windows. 

Example 9.2  Calculation of DFT with Hamming Window 

Problem: Repeat Example 9.1, but use a Hamming window on the truncated 
input sequence. 

Solution: The input sequence x(n) is formed the same way as in Example 9.1, 
but the window function w(n) takes on the following values: 

 ))1/(2cos(46.054.0)( −⋅−= Nnnw π  

After calculating the DFT of the product x(n)·w(n), the results are displayed in 
Figure 9.3 with a number of interesting comparisons to Figure 9.1. First, we notice 
that the clutter of the side lobes of Figure 9.1 has been reduced to a great degree. 
However, we also notice that for the 20-point signal case, there are no longer 
three, nearly equal spikes in the first half of the spectrum. Even in the 40-point 
case, the three spikes are no longer as clearly distinct. These results derive from 
the fact that the transform of the Hamming window is approximately twice as 
wide as the main lobe of the rectangular window transform. The resulting 
resolution of the transform is therefore not as crisp as in the rectangular case.  
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Figure 9.3  DFT of three frequency lengths with Hamming window. 

 
It can be shown that the frequency resolution ∆f of the DFT is improved by 

increasing the number of time domain samples, as shown in (9.5). As N increases, 
the ability to see smaller frequency details improves regardless of window type 
used. The coefficient mw is a windowing factor that takes on a value of 1 for a 
rectangular window, approximately 2 for a Hamming window, and other values 
for Kaiser based on the β value chosen. (See Orfanidis’ text for further details.)  
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Example 9.3  Determine Resolution for DFT System 

Problem: Determine the number of time domain samples needed to resolve 
the three frequencies of Examples 9.1 and 9.2. 
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Solution: In each case, the resolution ∆f required is 1 kHz in order to clearly 
see the three frequencies. In Example 9.1, mw will be 1, and for Example 9.2, we 
will use a value of 2. Equation (9.3) can then be used to determine that the number 
of time samples N needed would be 20 for Example 9.1 and 40 for Example 9.2. 
Figures 9.1 and 9.3 seem to support these values.  

 
 
From the previous examples we see that we must choose N carefully to get the 

resolution required for our system. It seems obvious that the more time domain 
samples available, the clearer the picture of the frequency spectrum will be, and 
that is true. But once the minimum number of data samples is determined, is there 
any advantage to increasing the number of frequency points computed? It may not 
be clear at this point, but providing more frequency points does not improve the 
resolution, it simply provides a more continuous graph of the spectrum. This is 
seen in Figure 9.4, which shows the Hamming window case with N = 20 and K = 
20. Comparing this to the 20-point graph in Figure 9.3, we note that the 3-kHz 
component is obscured in either case. Increasing the number of frequency data 
points 50-fold did nothing to improve the resolution of the DFT.  

In a similar argument, if you have available many time samples, but compute 
far fewer frequency points, you are losing valuable frequency information. 
Therefore, a general rule of thumb is to let N = K as a starting point in the design 
of a DFT system. On occasion, it may be necessary to allow K to increase to find a 
more exact value of the frequency of a maximum. 

 

9.2  THE FAST FOURIER TRANSFORM (FFT) 

 
While the computation of the DFT may be straightforward, it is not without 
computational cost. For an N-point DFT, each frequency point will require N 
multiplications of the real valued x(n) times the complex valued exp(–jωkn). (This 
operation effectively requires two real multipliers.) Then, assuming there are N 
different frequency points, there will be N2 complex multiplications necessary for 
the computation of the DFT. This can produce large numbers very quickly. 

The fast Fourier transform (FFT) had its beginnings in 1965, long before the 
DSP chip was even a dream of engineers. However, it took the computational 
power of computers to bring its importance to the attention of designers. It is 
sometimes thought that the FFT produces a different result than the DFT, but it 
does not. The FFT is simply a faster method of computing the DFT. Derivations of 
the FFT algorithm can be found in the references in Appendix A, but it is 
worthwhile to see a simple illustration of how computational savings can be made 
using the FFT. 
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Figure 9.4  DFT with Hamming window and K = 20. 

9.2.1  The Derivation of the FFT 

To begin, consider (9.6), which is a streamlined version of (9.2). In it we replace 
ωk with the index k, and let WN replace the cumbersome exp(–j2π/N). (These WN

kn 
terms are often referred to as “twiddle factors.”)  
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We can now look at a simple 4-point DFT example. If we expand (9.6) into 
four separate equations representing the four frequency points, we have 
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Using the values of the twiddle factors in this special case we can represent 
this process as a matrix multiplication as follows: 
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Another popular method describing the mathematical process, and one that 
better describes the computational efficiency we are looking for, is to use signal 
flow graphs, as shown in Figure 9.5. In this description, all branches of the graph 
have a weight (or multiplier) of 1 except as noted.  

 

 
 

Figure 9.5  Four point decimation-in-time FFT. 
 
It is clear from this illustration that few multiplications are necessary and also 

that samples are combined at intermediate points along the path. For example, in 
the middle of the diagram we see that combinations of x0 and x2 as well as x1 and 
x3 are made. These combinations are then processed as a unit that saves individual 
computations. So instead of x0 being involved in four multiplications as shown in 
(9.7), it is involved only in two. This efficiency is continued for larger FFTs. For 
example, if an 8-point DFT were required, two 4-point DFTs would be used with 
an additional butterfly stage. (The distinctive cross-linked structure in Figure 9.5 
is called a butterfly because if you rotate it 90° that is what it looks like.) As the 
length of the DFT increases, the number of butterfly stages increases as well, 
which produces the efficiency. The net effect is that the FFT algorithm would 
require N·log2(N) complex multiplications instead of N2 as in the DFT case. The 
resulting efficiency can be seen in Table 9.1. 

One interesting feature of the process shown in Figure 9.5 is that the 
frequency points along the right side of the graph are in sequence, while the time 
points are in shuffled order. This particular ordering is described as the 
decimation-in-time (DIT) transform. There is also a decimation-in-frequency 
(DIF) algorithm in which the time-domain samples remain in sequence, but the 
frequency components are shuffled. Although the shuffled sequence may look 
arbitrary, we will see that the ordering can be exploited with a novel addressing 
mode available in most DSP processors. As an example, consider an 8-point FFT 
looking only at the input sequence as shown in Table 9.2. Column 1 shows the 
shuffled order of x(n) as being x(0), x(4), x(2), and so forth. Column 2 shows the 
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binary equivalent of the index. Column 3 shows the result of reversing the bits of 
column 2. Finally, the last column shows that the indices are in order if viewed as 
bit-reversed values. This feature is exploited in DSP chips and is a common 
addressing mode used for FFTs, one of the many efficiencies built into DSP chips.  

Table 9.1 
Comparison of DFT and FFT Computations 

N DFT FFT Ratio (DFT/FFT) 

16 256 64 4 
64 4,096 384 10.7 
256 65,536 2,048 32 

1,024 1.05E06 10,240 102 
4,096 16.8E06 49,152 341 

16,384 268.E06 229,380 1,170 
65,536 4.29E09 1.05E06 4,096 

 

Table 9.2 
Bit-Reversed Addressing 

DIT order Index as binary Bit-reversed index Bit-reversed order 
0 000 000 0 
4 100 001 1 
2 010 010 2 
6 110 011 3 
1 001 100 4 
5 101 101 5 
3 011 110 6 
7 111 111 7 

9.2.2  The Inverse FFT 

Once the FFT has been computed, we have information about the frequency 
content of the signal. There are many cases when we will need to process this 
frequency information in some way and then want to transform the frequency 
content back to the time domain. For that we will need the inverse FFT. Because 
of the symmetry of the transform, it can be shown that the inverse FFT can be 
based on the FFT with simple operations both before and after the FFT, as shown 
in (9.9). As indicated, the inverse FFT of a sequence can be found by finding the 
FFT of the conjugate of the sequence, and then conjugating the result and dividing 
by N (the length of the FFT). We will make use of this fact in Section 9.4. At this 
point we are ready to discuss the C code necessary to implement the FFT 
algorithm. 
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9.3  C CODE FOR THE FFT 

As we begin the discussion of the C code for computation of the FFT, it is 
important to note the differences between programming for a general purpose 
processor and a DSP chip. The DSP chip is a microprocessor designed to 
implement the types of computations that are commonplace in digital signal 
processing applications. These include complex arithmetic, convolution, and fast 
Fourier transforms. DSP processors have multiple data and control buses and 
highly efficient instructional commands. For example, most DSP processors will 
be able to accomplish a multiply-add instruction in only one instruction cycle 
while general purpose processors would require many more.  

Another major difference is the fact that DSP chips have an addressing mode 
that includes bit-reversed addressing. This eliminates the shuffling of data points 
(either time-domain or frequency-domain) that we need in our general purpose 
code. As well, DSP processors have dual memories to hold the real and imaginary 
parts of complex numbers, while we have to implement a complex data type to 
handle the FFT computations. Therefore, it is recommended that if your project 
will be implemented on a DSP chip, you use the features of the software for that 
chip to most efficiently implement your project. But if you have a need to 
implement the FFT on a general purpose processor, we will develop that code 
now. 

There are a number of FFT algorithms discussed in the available references, 
but we will discuss the common decimation-in-time radix-2 algorithm. A radix-2 
implementation requires that the number of input data points be equal to a power 
of two, as shown in (9.10), where B is an integer. Although this may first appear 
to be a limitation, it is not. Any input sequence can simply be increased to the 
required size by adding zeros to the end of the sequence. This operation is referred 
to as “padding” the sequence and in no way affects the computation of the FFT.  

  (9.10) BN 2=

Listing 9.1 shows FastFT, a function to compute the DIT implementation 
of the FFT. This function has been adapted from Orfanidis’ text listed in 
Appendix A and is similar to others described in the literature. The input signal 
has been placed into a complex array X since this particular algorithm will perform 
an “in-place” computation of the FFT. That means that after the FFT has been 
completed, the resulting complex valued FFT will reside in the array X. This will 
make the use of memory more efficient. In addition to the input array, the function 
also receives the length of the FFT and the number of bits required to describe 
each index.  

The first step in the procedure is to swap the values in the input array as 
required in a DIT implementation. This is accomplished in the first loop and 
makes use of the RevBits function shown in Listing 9.2 (also adapted from the 
Orfanidis text). After the input values have been swapped, the FFT is computed by 
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means of sequential calculation of the butterfly stages with the required twiddle 
factors computed first.  

 
/*============================================================ 
  FastFT() - radix-2 decimation-in-time Fast Fourier Transform 
  Prototype:  void FastFT(short Length, short Bits, complex *X); 
  Arguments:  Length - length of FFT  
     Bits - Length = 2^Bits 
              X - ptr to array of complex numbers 
  Return:     none (conversion done in place) 
============================================================*/ 
void FastFT(short Length, short Bits, complex *X) 
{ long     k, i, p, q,       /*  counters and indices */ 
           M;     /*  stage of FFT */ 
  complex  A, B, V, W, Tmp;  /*  complex constants */ 
  short n,        /* counter */  
  RIndex;     /*  reversed ndex */ 
 
  /* Swap the values in x */ 
  for(n = 0; n < Length; n++)  
  { RIndex = RevBits(n,Bits); /*  get reversed index */ 
 if (RIndex < n) continue; /*  only need to swap half */ 
    Tmp = *(X+n); *(X+n) = *(X+RIndex); *(X+RIndex) = Tmp; 
  } 
   
  /* Implement the butterfly in stages */ 
  M = 2; 
  while (M <= Length)  /* while loop controls stages of FFT */ 
  { W.re = cos(2*PI / M);  /* twiddle factors */ 
    W.im = sin(2*PI / M); 
    V.re = 1; 
    V.im = 0; 
    for(k = 0; k < M/2; k++) /* index through stages */ 
    { for(i = 0; i < Length; i += M) 
      { p = k + i; 
        q = p + M / 2; 
        A = X[p]; 
        B = cmul(X[q],V); 
        X[p] = cadd(A,B);  /* butterfly operations */ 
        X[q] = csub(A,B); 
      } 
      V = cmul(V,W); 
    } 
    M = 2 * M; 
  } 
} 
 

Listing 9.1  FastFT function. 
 

These two functions can now be used to compute the FFT of any input 
sequence. All that is required is that the sequence be adjusted to a length that is a 
power of two by padding the end of the sequence with zeros. The function can 
then be provided with the pointer to the sequence, the length of the sequence, and 
the number of bits in the indices. After the function has completed its work, the 
array X will hold the complex valued FFT. These values will be stored as the real 
and imaginary values of the transform, but can be better interpreted as the 
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magnitude and phase angle of the transform. The conversion from one form to 
another is shown in (9.11)–(9.12). When computing the phase angle you should 
use the atan2 function that takes both the real and imaginary values as 
arguments. This guarantees that the angle will be placed in the correct quadrant. 

 
 
/*============================================================ 
  RevBits() - reverses the bits in an integer 
  Prototype:  short RevBits(short Input, short NumBits); 
  Arguments:  Input - integer to reverse 
              NumBits - number of bits used 
  Return:     integer with bits reversed 
============================================================*/ 
/* Adapted from Orfanidis - Intro. to Signal Processing */ 
short RevBits(short Input, short NumBits) 
{ short i,  /*  loop counter */ 
          RevInput; /*  interger with reversed bit values */ 
  RevInput = 0; 
  /* Loop through Input, bit by bit. If bit is set, set  
  appropriate bit in RevInput, and clear bit in Input.*/ 
  for(i = NumBits-1; i >= 0 ;i--) 
  { if ((Input >> i) == 1) 
    { RevInput += (1 << (NumBits-1-i)); 
      Input -= (1 << i); 
    } 
  } 
  return RevInput; 
} 
 
 

Listing 9.2  RevBits function. 
 

 22 )Im()Re( XXMagnitude +=  (9.11) 

  ))Re(/)arctan(Im( XXAngle =  (9.12) 

 
The interpretation of the resulting frequency response is easy as long as we 

remember that the values of the FFT will be spread from zero frequency up to the 
sampling frequency. Therefore, if we had a 1,024-point FFT computed on a 
sequence that had been sampled at a frequency of 20 kHz, the values in the 
transformed sequence would be spaced every 19.53 Hz (20 kHz ÷ 1024). This 
would mean that the first sample was the response at 0 Hz (or the DC value), and 
the last value would represent the response at 19,980.47 Hz. Remember that the 
last half of the response will be a mirror image of the first half. Therefore, for this 
particular case, only the first half of the FFT values would need to be analyzed. 
The others will simply be duplicates.  
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9.4  APPLICATION OF FFT TO FILTERING 

There are many applications for the FFT. Frequency analysis, spectral densities, 
and filtering are among the more popular. Since this is a text about filtering, we 
discuss how the FFT can be used in filtering applications. To begin this 
discussion, we review the process of FIR filtering first. Once FIR filter 
coefficients have been determined, the output signal of the filter can be 
determined from the input signal by convolving the filter coefficients and the input 
signal, as shown in (9.13). We learned in Chapter 5 that convolution in the time 
domain was equivalent to simple multiplication in the frequency domain, as 
shown in (9.14).  
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Since we now have a fast algorithm for determining the transform of a time-
domain signal, it may be useful to consider the alternative presented by (9.14). 
Let’s consider the steps involved in using transforms to implement the filtering 
process: 

 
1. Transform the filter coeffients: H(z) = FFT [ h(n) ]. 
2. Transform the input signal: X(z) = FFT [ x(n) ]. 
3. Multiply the two complex sequences: Y(z) = H(z)·X(z). 
4. Inverse transform to find the output: y(n) = FFT -1 [ Y(z) ]. 
 
The process outlined above may or may not prove to be faster than the 

convolution of (9.13). It all depends on the number of filter coefficients and the 
number of points in the FFT. The text by Proakis and Manolakis mentioned in 
Appendix A offers a detailed comparison that will be discussed further at the end 
of this section. Listing 9.3 shows Dig_FFT_Filt that performs steps 2 through 
4 above. Note that it is assumed that the filter coefficients have already been 
transformed and stored in H. The function first transforms the input signal X, then 
multiplies the coefficients times the transform of X, and finally computes the 
inverse FFT. Note that the results of each of these steps are stored in X. 

There are many cases when the length of the input signal exceeds the size of 
the FFT that can be applied. In that case, the signal must be broken into smaller, 
more manageable, sections and the FFT filtering algorithm applied to each section. 
Unfortunately, it is not as simple as taking each N-point group of input samples 
and generating an output group. The resulting patched-together sequence would 
undoubtedly have discontinuities at the combination points. This problem can be 
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alleviated by keeping some processed samples from each grouping and using them 
as the initial points in the next sequence. This is exactly what was done in the FIR 
filtering code described in Section 8.3.2 and represents providing initial conditions 
to the filtering process. When applied in FFT filtering this process is often called 
the overlap-and-save method.  

 
/*============================================================ 
  Dig_FFT_Filt() - performs FFT filtering 
  Prototype:  void Dig_FFT_Filt(complex *X, complex *H, 
  short numb_coefs, short FFT_size, short Bits); 
  Return:     error value. 
  Arguments:  X - input data  
     H - transform of filter coefs 
     numb_coefs - number of filter coefs 
     FFT_size - number of pts in FFT 
     Bits - FFT_size = 2^Bits 
============================================================*/ 
void Dig_FFT_Filt(complex *X, complex *H,    

     short FFT_size, short Bits) 
{ short i; 
 /* Perform FFT on X */ 
 FastFT(FFT_size,Bits,X); 
 
 /* Multiply X and H */ 
 for (i = 0; i < FFT_size; i++) 
 { X[i] = cmul(X[i],H[i]);} 
 
 /* Get inverse FFT of X */ 
 /* Conjugate input */ 
 for (i = 0; i < FFT_size; i++) 
 { X[i] = cconj(X[i]);} 
 
 /* Perform FFT */ 
 FastFT(FFT_size,Bits,X); 
 
 /* Conjugate again */ 
 for (i = 0; i < FFT_size; i++) 
 { X[i] = cconj(X[i]);} 
 
 /* X now holds the filtered data */ 
  return; 
} 

 
Listing 9.3  Dig_FFT_Filt function. 

 
Figure 9.6 shows the process. The input signal is padded with M–1 initial 

zeros (assuming there are M filter coefficients). Then, the remaining signal is 
broken into sections containing L values where L is defined in (9.15). As pictured 
in the diagram, there will be N samples transformed in each operation, but the first 
M–1 will be the values saved from the last M–1 values of the previous operation 
(except for the initial grouping, which will have M–1 zeros.) Once the FFT 
filtering has been completed on the grouping, the last L values of the sequence are 
saved, discarding the first M–1 values. This operation will result in an error-free 
result when the y groupings are reassembled.  
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 )1( −−= MNL  (9.15) 

 
 
 
Figure 9.6  Using the overlap-and-save method for linear FFT filtering. 

 
 

WFilter does have an option for FFT filtering available if an FIR filter has 
been designed. Once the filter has been designed, the user can elect to filter a 
WAV file by selecting Options->Filter Wave File. The Filter Wave File dialog 
box will appear, as shown in Figure 9.7, and will provide the user the option of 
filtering the waveform via the more traditional method of convolution as discussed 
in Chapter 7, or using the FFT techniques discussed in this chapter.  

 

 
 
Figure 9.7  Filter Wave File dialog box. 
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Unfortunately, the true speed of the FFT technique cannot be realized on a 
general-purpose processor that many users will be using to filter waveforms. As 
mentioned previously, the general-purpose processor will not have the option of 
bit-reversed addressing or manipulation of complex numbers in two memory 
locations. Therefore, the true efficiency of the FFT algorithm cannot be 
demonstrated on a general-purpose processor. 

However, Proakis and Manolakis have discussed the theoretical efficiencies 
of this process that we can review at this point. They have determined that the 
number of complex multiplications required per output point can be determined by 
(9.16). Recognizing that there are four real multiplications needed for each 
complex multiplication, and also recognizing that for convolution there are M real 
multiplications needed for each output point, a comparison can be made in Table 
9.3. In the table, the left-hand column represents the number of data points N in 
the FFT. The top row gives the various numbers of filter coefficients used M. 
Within the table are given the number of real multiplications per output point 
necessary for the calculation of the FFT. These numbers should be compared to 
the M value, which represents the number of calculations per output point for the 
convolution method. Not all filter applications should consider the FFT approach 
as depicted in column 2 (M = 32). In the best case, the FFT approach would 
require 41 real multiplications to the convolution approach of 32. However, it is 
apparent that as the number of filter coefficients increase, the FFT approach can 
provide real efficiencies. A second point to recognize is that the number of points 
in the FFT should also be considered when setting up the filtering system. In 
general, it appears that the size of the FFT should be set to approximately 8 times 
the number of coefficients used in the filter. 
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Table 9.3 
Number of Real Multiplications per Output Point 

N=FFT size M=32 M=64 M=128 M=256 M=512 

64 54 - - - - 
128 43 64 - - - 
256 41 48 72 - - 
512 43 46 54 80 - 

1,024 46 47 51 59 88 
2,048 49 50 52 55 64 
4,096 53 53 54 56 60 
8,192 57 56 57 58 60 
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9.5  CONCLUSION 

This completes our chapter on the FFT and its application to linear filtering. The 
FFT is a valuable function that provides a link from the time domain to the 
frequency domain. We have found that FFT will find application to linear filtering 
when the number of coefficients is large enough to warrant the more complex 
computations.  

This is also the conclusion for the text. Along the way, we have developed 
some of the most time-honored methods used in analog and digital filter design. 
By no means have we explored every nuance of filter design, and we see new 
techniques being developed every day. However, we have developed the key 
approximation techniques used today. The methods used can serve as a template 
in the development of other approximations. We have been able to adjust 
normalized functions for use in a variety of selectivities. We have shown one 
method of implementing analog filters and discussed some of the potential pitfalls 
that must be considered.  

After the introduction of some principles of discrete-time theory, we learned 
how to design both FIR and IIR digital filters using two entirely different 
techniques. C code for the implementation of these filter types was developed and 
analyzed. And finally, we finished with the discussion of the FFT in filtering 
applications. I hope this text and the accompanying software disc will serve as a 
starting point for your journey into the exciting field of filter design. 



226 Practical Analog and Digital Filter Design 

 



227 

Appendix A 

Technical References 

This appendix includes a list of references appropriate for the study of analog and 
digital filter design methods using C.  

ADVANCED MATHEMATICS REFERENCES 

Abramowitz, Milton, and Stegun, Irene, eds., Handbook of Mathematical 
Functions, Dover Publications, Inc., New York, 1965. 

Morris, John L., Computational Methods in Elementary Numerical Analysis, 
John Wiley & Sons, New York, 1983.  

Rice, John R., Numerical Methods, Software, and Analysis, 2nd ed., 
Academic Press, Inc., San Diego, CA, 1993. 

Spiegel, Murray R., Mathematical Handbook of Formulas and Tables, 
Schaum’s Outline in Mathematics, McGraw-Hill Book Co., New York, 1968. 

ANALOG FILTER DESIGN REFERENCES 

Daniels, Richard W., Approximation Methods for Electronic Filter Design, 
McGraw-Hill Book Company, New York, 1974. 

Daryanani, Gobind, Principles of Active Network Synthesis and Design, John 
Wiley & Sons, New York, 1976. 

Johnson, D. E., Johnson, J. R., and Moore, H. P., A Handbook of Active 
Filters, Prentice Hall, Inc., Englewood Cliffs, NJ, 1980.  

Moschytz, G. S., and Horn, P.,  Active Filter Design Handbook, John Wiley 
& Sons, New York, 1981. 

Sedra, Adel S., and Brackett, Peter O., Filter Theory and Design: Active and 
Passive, Matrix Publishers, Inc., Champaign, IL, 1978. 
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Schaumann, R., Ghausi, Mohammed S., and Laker, Kenneth R., Design of 
Analog Filters: Passive, Active RC and Switched Capacitor, Prentice Hall, Inc., 
Englewood Cliffs, NJ, 1990. 

Schaumann, R., and Van Valkenburg, M. E., Design of Analog Filters, 
Oxford University Press, New York, 2001. 

C PROGRAMMING REFERENCES 

Bronson, Gary, C for Engineers and Scientists, West Publishing Co., New 
York, 1993. 

Deitel, H. M., and Deitel, P. J., C How to Program, 2nd ed., Prentice Hall, 
Inc., Englewood Cliffs, NJ, 1994. 

Hanly, J. R., Koffman, E., and Friedman, F., Problem Solving and Program 
Design in C, Addison-Wesley Publishing Co., Reading, MA, 1993.  

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming 
Language, Prentice Hall, Inc., Englewood Cliffs, NJ, 1978. 

Maguire, Steve, Writing Solid Code, Microsoft Press, Redmond, WA, 1993. 
McConnell, Steve, Code Complete, Microsoft Press, Redmond, WA, 1993. 
Waite, Mitchell, and Prata, Stephen, The Waite Group’s New C Primer Plus, 

Howard W. Sams & Co., Carmel, IN, 1990. 

DIGITAL FILTER DESIGN REFERENCES 

Antoniou, Andreas, Digital Filters: Analysis, Design and Applications, 2nd 
ed., McGraw-Hill, Inc., New York, 1993. 

Embree, Paul M., and Kimble, Bruce, C Language Algorithms for Digital 
Signal Processing, Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. 

Oppenheim, Alan V., and Schafer, Ronald W., Digital Signal Processing, 
Prentice Hall, Inc., Englewood Cliffs, NJ, 1975. 

Orfanidis, Sophocles J., Introduction to Signal Processing, Prentice Hall, Inc., 
Englewood Cliffs, NJ, 1996. 

Parks, T. W., and Burrus, C. S., Digital Filter Design, John Wiley & Sons, 
New York, 1987. 

Proakis, John G., and Manolakis, Dimitris G., Digital Signal Processing: 
Principles, Algorithms, and Applications, 2nd ed., Macmillan Publishing Co., 
New York, 1992. 

Programs for Digital Signal Processing, edited by Digital Signal Processing 
Committee of IEEE ASSP Society, IEEE Press, New York, 1979. 

Roberts, Richard A., and Mullis, Clifford T., Digital Signal Processing, 
Addison-Wesley Publishing Co., Reading, MA, 1987. 
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Appendix B 

Filter Design Software and C Code 

WFILTER FILTER DESIGN SOFTWARE 

WFilter is an analog and digital filter design package for Windows. To install 
WFilter on your computer, simply run the SETUP.EXE file in the \WFILTER 
directory on the accompanying CD.  

WFilter determines the transfer function coefficients necessary for analog 
filters, and for digital FIR and IIR filters. The user is allowed to make choices of 
lowpass, highpass, bandpass, or bandstop filters for frequency selectivity as well 
as choices of approximation. For digital IIR and analog filters, the approximation 
choices are Butterworth, Chebyshev, inverse Chebyshev, and elliptic. For digital 
FIR filters, the rectangular, Barlett, Blackman, Hamming, von Hann, and Kaiser 
windows are available, as well as the Parks-McClellan optimization technique. 
The order of FIR filters based on design specifications cannot be predicted as 
accurately as for IIR and analog filters, therefore the user is given the option of 
changing the filter length during the design process. 

After the filter has been designed, the user can view the pole-zero plot, as 
well as the magnitude and phase frequency responses. The filter design parameters 
or the frequency response parameters can also be edited for ease of use. Filter 
parameters can be saved and printed, and all plots can be printed or included in 
other documents by copying to the clipboard.  

In addition, for analog filters, the Spice circuit file can be generated to aid in 
the analysis of active filters. After WFilter generated the file, it can be saved or 
printed. Digital filters may be used to filter wave files. After specifying an input 
wave file, a filtered output file can be generated, and both input and output files 
can be played (sound card must be present). In the case of an FIR filter, the user is 
given the option of filtering the sound file using convolution or the FFT. 
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C COMPUTER CODE 

All of the C code discussed in the first eight chapters of this text (and much more) 
is included in the \C_Code directory on the CD that accompanies this text. The 
three short FFT functions discussed in Chapter 9 are listed in the text. The C code 
files originally accompanied the text Analog and Digital Filter Design Using C by 
Les Thede. There are three DOS executables that have been compiled by 
Microsoft Corp's Visual C++ compiler. The majority of WFilter is based on these 
files but with a GUI interface added for convenience. 
 
 
    FILTER.EXE  - designs analog and digital filters. 
    ANALOG.EXE  - implements analog active filters. 
    DIGITAL.EXE - implements digital IIR/FIR filters. 
  

Three subdirectories have also been created on this disc to hold the source 
(.C), header (.H), and information (.TXT) files. In addition, sample sound files 
have been included to be used with the DIGITAL program. 

Appendixes C through I discuss various C functions that are important parts 
of the filter design software. 

FEEDBACK 

I would appreciate any feedback you care to share about the text and software. 
Errors, problems, suggestions for improvement, and general comments can be 
forwarded to me via e-mail or the more traditional means. Thank you. 
 
Les Thede - ECCS Department 
Ohio Northern University 
525 S. Main Street 
Ada, Ohio  45810 
       
Email: l-thede@onu.edu 
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Appendix C 

Filter Design Using C 

 
Although learning analog and digital filter design techniques is the first objective 
of this text, many readers may be interested in the use of C in the design and 
implementation of analog and digital filters. Therefore, supplementary material 
dealing with these programming issues is included in this and succeeding 
appendixes. All of the C code discussed in the first eight chapters of this text (and 
much more) is also included on the CD in the directory called \C_Code. The three 
short FFT functions in Chapter 9 are provided in the text. 

The C programming language (and its successor C++) is a predominant force 
in engineering and computer science. In particular, C is the primary language used 
in digital filter design (with the possible exception of hardware-specific assembly 
language). C provides the combination of higher-level constructs while producing 
fast, compact executables. Other languages are available, and could be used in 
filter design, but C provides the best combination of efficiency and effectiveness. 
Several C language references are listed in Appendix A. 

The primary data elements describing our filter will be used by a number of 
the design functions and therefore should be made available in a neat package. An 
array would be nice, but arrays require that all elements are of the same data type. 
Therefore the only reasonable choice is a structure.  

We will store our filter data elements in a structure called Filt_Params. We 
can assume that we will need all of the filter specifications discussed in the first 
chapter. These will include the passband and stopband edge frequencies (wpass1, 
wpass2, wstop1, and wstop2) and gains (apass1, apass2, astop1, and 
astop2). We will also need indicators of the filter selectivity, the approximation 
method, and the implementation type (select, approx, and implem). The 
sampling frequency (fsamp) is an additional element that will be necessary for 
digital filters, but will not be used by analog filters. All of these variables 
represent the input specification for the filter design and are shown in the 
Filt_Params structure below.  
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typedef struct 
{ double  apass1,apass2,  /*  passband gain's */ 
          astop1,astop2,  /*  stopband gain's */ 
          wpass1,wpass2,  /*  passband edge freq's */ 
          wstop1,wstop2,  /*  stopband edge freq's */ 
          fsamp,        /*  samp freq for dig filt */ 
          gain,         /*  gain multiplier */ 
          *acoefs,*bcoefs;  /*  ptr's to coefs */ 
  int     order;    /*  order or length of filter */ 
  /* selectivity, approximation and implementation */ 
  char    select,approx,implem; 
} Filt_Params; 
 
In addition to the input specifications, there will also be a need for another set 

of filter data once the filter has been designed. The filter's order (order) indicates 
the size of the filter's transfer function. The filter's gain constant (gain) and 
pointers to two sets of filter coefficients (acoefs and bcoefs) will completely 
describe the filter's transfer function and will be stored in the structure as type 
double.  

It is impossible to determine the number of coefficients necessary to describe 
a filter before the filter is designed. We will design some filters with fewer than 10 
coefficients, but other designs may require more than 200 coefficients. For that 
reason we will use pointers to the arrays instead of simply defining acoefs and 
bcoefs as large arrays. Using large arrays would make the structure 
unnecessarily large, and there would still be no guarantee that these fixed arrays 
would be large enough to store every filter that might be designed. It will be far 
more efficient to determine the size of the array necessary for the individual 
design, then allocate memory dynamically for the coefficient array, and finally 
store the pointer (address) to the array in the structure. That way only a pointer 
variable needs to be stored in the structure, not an entire array. 

As it is, our Filt_Params structure is fairly large, and since we will be using 
this structure with most of the functions that we develop, it would be much more 
efficient to transfer a pointer (address) to the structure instead of the structure 
itself. Actually, there is another reason for doing this. In C all arguments of 
functions are “called by value,” which means that a copy of the argument is 
transferred to the function. This practice does not allow the transferred variable to 
be changed by the function. (Technically, we can change the variable all we want 
within the function, but when we leave the function the original value of the 
variable within the calling function remains unchanged.) Since our filter design 
functions will need to make changes to the data values stored in the structure, 
sending a copy of the structure to the function without allowing data values to 
change would be unacceptable. However, if we send a pointer to the structure (or 
actually a copy of the address), we will be able to access the actual memory 
locations of the data stored in the structure. In this way, our filter design functions 
will be able to enter values into the structure as necessary. 
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Appendix D 

C Code for Normalized Approximation 
Functions 

In the main file of the FILTER program on the CD, we called 
Calc_Filter_Coefs (as shown in Listing D.1) in order to calculate the 
necessary filter coefficients for the user-specified design. That function in turn 
called one of three other functions named Calc_Analog_Coefs, 
Calc_DigFIR_Coefs, or Calc_DigIIR_Coefs.  
 

/*==================================================== 
  Calc_Filter_Coefs() - determines implementation and 
  calls appropriate calculation function 
  Prototype:  int Calc_Filter_Coefs(Filt_Params *FP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Calc_Filter_Coefs(Filt_Params *FP) 
{ int Error;                /*  error value */ 
  /*  Call correct calc function for analog, 
      digital FIR or IIR filters. */ 
  switch(FP->implem) 
  { case 'A': 
      Error = Calc_Analog_Coefs(FP); 
      if(Error) { return 10*Error+1;} 
      break; 
    case 'F': 
      Error = Calc_DigFIR_Coefs(FP); 
      if(Error) { return 10*Error+2;} 
      break; 
    case 'I': 
      Error = Calc_DigIIR_Coefs(FP); 
      if(Error) { return 10*Error+3;} 
      break; 
    default: 
      return ERR_FILTER; 
  } 
  return ERR_NONE; 
} 
 

Listing D.1  Calc_Filter_Coefs function. 
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The implementation type for the filter is stored in the FP->implem variable 
and is used to select an analog, digital FIR, or digital IIR filter implementation. In 
each case the user’s specifications are transferred to the next appropriate function 
via FP, the pointer to the Filt_Params structure discussed in Appendix C. In 
this function, as well as others we will discuss, a simple error reporting system is 
used. Most of the functions used will return an integer value that will be zero if no 
error occurred and nonzero if an error did occur. At each new level of the 
program, the error value is multiplied by 10 and a single digit value is added. The 
result of this practice will be a multidigit error value where each digit represents a 
different level in the program. This can be used to trace the error to a particular 
function. 

The Calc_Analog_Coefs function is given in Listing D.2. It is designed 
primarily to organize the calculation process, not to perform the calculations 
explicitly. The first function called is Calc_Filter_Order, which determines 
the filter order from the user specifications in FP. Next the normalized filter 
coefficients are determined using Calc_Normal_Coefs, which stores the 
coefficients in the Filt_Params structure. Finally, the coefficients are 
unnormalized to lowpass, highpass, bandpass, or bandstop coefficients at the user-
specified frequencies via the Unnormalize_Coefs function.  

 
 
 
/*==================================================== 
  Calc_Analog_Coefs() - calcs normal analog coefs 
  Prototype:  int Calc_Analog_Coefs(Filt_Params *FP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Calc_Analog_Coefs(Filt_Params *FP) 
{ int Error;                /*  error value */ 
 
  /*  Determine filter order, then normal coefs, 
      then unnormalize them. */ 
  Error = Calc_Filter_Order(FP); 
  if(Error) { return 10*Error+1;} 
  Error = Calc_Normal_Coefs(FP); 
  if(Error) { return 10*Error+2;} 
  Error = Unnormalize_Coefs(FP); 
  if(Error) { return 10*Error+3;} 
  return ERR_NONE; 
} 
 

Listing D.2  Calc_Analog_Coefs function. 
 
 
In the case of the Calc_Normal_Coefs function, as shown in Listing D.3, 

we must allow for individual functions to carry out the actual coefficient 
calculation. However, before we actually make the coefficient calculations, we 
allocate memory for the storage of the coefficients. By taking care of this 
necessary task in Calc_Normal_Coefs, we eliminate the need to handle it in 
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each of the four individual functions. It is important to remember that by simply 
reserving a place in the Filt_Params structure for the pointers acoefs and 
bcoefs, we have not reserved any memory for the coefficients themselves. The 
pointers were originally set to zero or NULL by the calloc command we used to 
allocate memory for the Filt_Params structure. This effectively says that there 
is no memory available for coefficient storage, and if we try to access a coefficient 
while in this state, we would get an error. In fact, we hope we get an error to let us 
know that there is a problem in our algorithm. It would be far worse to have the 
pointers hold a nonzero value that is pointing to some random address in memory. 
In that case, we would get no error, but the values we would be accessing would 
be random nonsense. 

 
 
 
/*==================================================== 
  Calc_Normal_Coefs() - allocates memory for coefs and 
              calls proper function to calc coefs 
  Prototype:  int Calc_Normal_Coefs(Filt_Params *FP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Calc_Normal_Coefs(Filt_Params *FP) 
{ int Number_Coefs,   /*  Number of coefs in array */ 
      Error;          /*  error value */ 
 
  /*  Allocate memory for coefs.  There are 3 coefs 
      for each quadratic. First-order factors are 
      considered as quadratics. */ 
  Number_Coefs = 3 * ((FP->order + 1) / 2); 
  FP->acoefs = (double *) 
                malloc(Number_Coefs * sizeof(double)); 
  if(!FP->acoefs) { return ERR_ALLOC;} 
  FP->bcoefs = (double *) 
                malloc(Number_Coefs * sizeof(double)); 
  if(!FP->bcoefs) { return ERR_ALLOC;} 
  /*  Calculate coefs based on approximation. */ 
  switch (FP->approx) 
  { case 'B': Error = Calc_Butter_Coefs(FP); 
              if(Error) { return 10*Error+1;} 
              break; 
    case 'C': Error = Calc_Cheby_Coefs(FP); 
              if(Error) { return 10*Error+2;} 
              break; 
    case 'E': Error = Calc_Ellipt_Coefs(FP); 
              if(Error) { return 10*Error+3;} 
              break; 
    case 'I': Error = Calc_ICheby_Coefs(FP); 
              if(Error) { return 10*Error+4;} 
              break; 
    default:  return ERR_FILTER; 
  } 
  return ERR_NONE; 
} 

 
Listing D.3  Calc_Normal_Coefs function. 
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Up to this point in the program, we did not have the necessary information to 
determine the number of coefficients in each of the acoefs and bcoefs arrays. 
But since we now have the order of the filter, we can determine the number of 
coefficients exactly in the following manner. Each quadratic factor of the 
approximation function will require three coefficients (the s2-term coefficient, the 
s-term coefficient, and the constant term coefficient). In addition, we will treat any 
odd-order approximation first-order factor as a quadratic. We can make use of the 
integer math in C to simplify the calculation for the number of coefficients based 
on the order of the filter.  

Once the correct number of coefficients has been determined, malloc is 
used to allocate memory for that number of doubles, and if an error occurs, we 
leave the function. The coefficient arrays are organized in the following manner. 
The acoefs array stores the coefficients for the numerator factors while the 
bcoefs array will store the coefficients for the denominator factors. (acoefs 
and bcoefs will take on different meanings in the digital filter design so for now 
we can remember A for above the line and B for below the line.) If the 
approximation function has an odd-order, the first-order coefficients are stored as 
a quadratic in the first three coefficients of each array with the s2-term set to zero. 
The next three coefficients are for the first true quadratic, and then all other 
quadratics follow. If the approximation function has an even-order, then the first 
three coefficients are for the first quadratic, the next three coefficients for the 
second quadratic, and so on. Within the three coefficients, the first coefficient 
always refers to the s2-term, the second refers to the s-term coefficients, and the 
last coefficient is the constant term in the quadratic factor. 

The Calc_Butter_Coefs function shown in Listing D.4 is an example of 
the approximation calculation function. The function first checks for valid pointers 
and order values, and then proceeds to make the calculations outlined in Section 
D.2. If the order is odd, the first order coefficients are calculated followed by all 
coefficients for quadratic factors. The other individual functions for calculating 
the normalized coefficients for the four approximation methods can be found on 
the software disc in the \C_CODE\FILTER\F_DESIGN.C module. They all 
determine the coefficients in a manner consistent with our development earlier in 
this chapter. 

There are a number of advanced math functions required by our 
approximation functions. These functions are not contained in F_DESIGN.C as 
are the rest of the functions discussed in this appendix, but are instead a part of the 
\C_CODE\FILTER\ADV_MATH.C module. These include the asinh and acosh 
functions used in the Chebyshev functions as well as the elliptic integral and 
Jacobian elliptic functions necessary to define the elliptic approximation. The 
values of these functions are typically calculated by the arithmetic-geometric mean 
method of iteration. A detailed discussion of this method and the elliptic functions 
in general is beyond the scope of this text, but references have been provided in 
the analog and digital filter design sections of Appendix A. 
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/*==================================================== 
  Calc_Butter_Coefs() - calcs normal Butterworth coefs 
  Prototype:  int Calc_Butter_Coefs(Filt_Params *FP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Calc_Butter_Coefs(Filt_Params *FP) 
{ int     m,a,b;        /*  Loop counter and indices*/ 
  double  R,epsilon,    /*  Intermediate values */ 
          theta,        /*  Angle location of poles */ 
          sigma,omega;  /*  Real/imag pos of poles */ 
 
  /*  Check for NULL ptrs and zero order. */ 
  if( !FP->acoefs) 
  { return ERR_NULL;} 
  if( !FP->bcoefs) 
  { return ERR_NULL;} 
  if(FP->order <= 0) 
  { return ERR_VALUE;} 
  /*  Make calculations of necessary constants. */ 
  epsilon = sqrt( pow(10.0,-0.1*FP->apass1) - 1.0 ); 
  R = pow(epsilon,-1.0/FP->order); 
  /*  Initialize gain to 1.0. Start indices at 0 */ 
  FP->gain = 1.0; 
  a = 0; b = 0; 
  /*  Handle odd order if necessary. */ 
  if(FP->order % 2) 
  { FP->acoefs[a++] = 0.0; 
    FP->acoefs[a++] = 0.0; 
    FP->acoefs[a++] = R; 
    FP->bcoefs[b++] = 0.0; 
    FP->bcoefs[b++] = 1.0; 
    FP->bcoefs[b++] = R; 
  } 
  /*  Handle all quadratic terms. */ 
  for(m = 0;m < FP->order/2;m++) 
  { /*  Calc angle first, then real and imag pos. */ 
    theta = PI*(2*m + FP->order +1) / (2 * FP->order); 
    sigma = R * cos(theta); 
    omega = R * sin(theta); 
    /*  Set the quadratic coefs. */ 
    FP->acoefs[a++] = 0.0; 
    FP->acoefs[a++] = 0.0; 
    FP->acoefs[a++] = sigma*sigma+omega*omega; 
    FP->bcoefs[b++] = 1.0; 
    FP->bcoefs[b++] = -2 * sigma; 
    FP->bcoefs[b++] = sigma*sigma+omega*omega; 
  } 
  return ERR_NONE; 
} 
 

Listing D.4  Calc_Butter_Coefs function. 
 
The Ellip_Integral function is shown in Listing D.5 and uses the 

arithmetic-geometric mean method of determining the complete elliptic integral, 
as defined in (2.62). It takes as an argument the modulus k and returns the value of 
the complete elliptic integral. MAX_TERMS and ERR_SMALL have been defined 
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as 100 and 1E-15, respectively, in the ADV_MATH.H include file. Of course 
these values could be changed as necessary. 

 
/*==================================================== 
  Ellip_Integral() - calcs complete elliptic integral 
              using arithmetic-geometric mean method 
  Prototype:  void Ellip_Integral(double k); 
  Return:     complete elliptic integral value 
  Arguments:  k - the modulus of the integral 
====================================================*/ 
double Ellip_Integral(double k) 
{ int     i;      /*  Loop counter. */ 
  double  A[MAX_TERMS],B[MAX_TERMS], 
          C[MAX_TERMS]; /* Array storage values. */ 
 
  /*  Square the modulus as required by this method.*/ 
  k = k * k; 
  /*  Initialize the starting values. */ 
  A[0] = 1; 
  B[0] = sqrt(1-k); 
  C[0] = sqrt(k); 
  /*  Iterate until error is small enough. */ 
  for(i = 1; i < MAX_TERMS ;i++) 
  { A[i] = (A[i-1] + B[i-1])/2; 
    B[i] = sqrt(A[i-1]*B[i-1]); 
    C[i] = (A[i-1] - B[i-1])/2; 
    if(C[i] < ERR_SMALL) 
    { break;} 
  } 
  return PI / (2 * A[i]); 
} 
 

Listing D.5  Ellip_Integral function. 
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Appendix E 

C Code for Unnormalized Approximation 
Functions 

 
The Unnormalize_Coefs, which is given in Listing E.1, first determines the 
variables used for unnormalization. The unnormalization frequency freq for 
lowpass and highpass, as well as the center frequency Wo and the bandwidth BW 
for bandpass and bandstop cases are determined differently for the inverse 
Chebyshev case as compared to the other approximation methods. After these 
calculations, the appropriate unnormalization function is chosen based on the 
selectivity of the filter. Each of the specific functions called uses the 
Filt_Params structure pointer FP as well as the appropriate unnormalization 
variables. Any errors that occur in the functions are handled in the manner 
described in Appendix D to allow easy identification of the location of the 
problem. 

Listing E.2 contains the Unnorm_LP_Coefs, which handles the lowpass 
unnormalization. The function first determines whether there is a first-order factor 
by determining if the order of the approximation is odd. Remembering our 
technique of always placing first-order factors in the coefficient arrays first, we 
can safely refer to the constant term coefficients using the index of 2. (The 
coefficients are arranged with the s2-term coefficient first, then the s-term 
coefficient, and finally the constant term coefficient.) Each additional quadratic 
factor then follows in the same order. The coefficients within the loop are adjusted 
as we determined in Section 3.1. Proper indexing is accomplished by using cf to 
index individual coefficients based on qd, the quadratic indicator. Using this 
technique, any coefficient using cf as an index is referring to an s2-term 
coefficient, while if the coefficient has an index of cf+1, it is an s-term 
coefficient, and cf+2 will be the index for the constant term of a quadratic 
expression. Note that we are using the efficient C style where a *= b; is 
equivalent to a = a * b;. 
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The Unnorm_HP_Coefs function is very similar to the previous function 
and therefore will not be discussed here. That function can be found in the 
\C_CODE\FILTER\F_DESIGN.C module. 

 
/*==================================================== 
  Unnormalize_Coefs() - converts normal lowpass coefs 
              to unnormalized LP/HP/BP/BS. 
  Prototype:  int Unnormalize_Coefs(Filt_Params *FP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Unnormalize_Coefs(Filt_Params *FP) 
{ int     Error;    /*  error value */ 
  double  freq, /*  unnormalizing freq for LP & HP  */ 
          BW,   /*  unnormal. bandwidth for BP & BS */ 
          Wo;   /*  unnormal. ctr freq for BP & BS  */ 
 
  /*  Calc freq, Wo and BW based on approx method */ 
  switch(FP->approx) 
  { case 'B': 
    case 'C': 
    case 'E': 
      freq = FP->wpass1; 
      Wo = sqrt(FP->wpass1 * FP->wpass2); 
      BW = FP->wpass2 - FP->wpass1; 
      break; 
    case 'I': 
      freq = FP->wstop1; 
      Wo = sqrt(FP->wstop1 * FP->wstop2); 
      BW = FP->wstop2 - FP->wstop1; 
      break; 
    default: 
      return ERR_FILTER; 
  } 
  /*  Call unnormal. function based on selectivity  */ 
  switch(FP->select) 
  { case 'L': 
      Error = Unnorm_LP_Coefs(FP,freq); 
      if(Error) { return 10*Error+1;} 
      break; 
    case 'H': 
      Error = Unnorm_HP_Coefs(FP,freq); 
      if(Error) { return 10*Error+2;} 
      break; 
    case 'P': 
      Error = Unnorm_BP_Coefs(FP,BW,Wo); 
      if(Error) { return 10*Error+3;} 
      break; 
    case 'S': 
      Error = Unnorm_BS_Coefs(FP,BW,Wo); 
      if(Error) { return 10*Error+4;} 
      break; 
    default: 
      return ERR_FILTER; 
  } 
  return ERR_NONE; 
} 

 
Listing E.1  Unnormalize_Coefs function. 
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/*==================================================== 
  Unnorm_LP_Coefs() - converts normal lowpass coefs to 
              unnormal LP coefs at a specific freq. 
  Prototype:  int Unnorm_LP_Coefs(Filt_Params *FP, 
                                        double freq); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
              freq - unnormalization frequency 
====================================================*/ 
int Unnorm_LP_Coefs(Filt_Params *FP,double freq) 
{ int qd,cf,          /*  quad and coef number */ 
      qd_start;       /*  starting quad for loop */ 
 
 
  /*  Handle first-order, if odd; set qd_start */ 
  if(FP->order % 2) 
  { FP->acoefs[2] *= freq; 
    FP->bcoefs[2] *= freq; 
    qd_start = 1; 
  } 
  else 
  { qd_start = 0;} 
 
 
  /*  Handle quadratic factors, qd indexes through 
      quadratic factors, cf converts to coef number */ 
  for(qd = qd_start; qd < (FP->order + 1)/2; qd++) 
  { cf = qd * 3; 
    FP->acoefs[cf+1] *= freq; 
    FP->acoefs[cf+2] *= (freq * freq); 
    FP->bcoefs[cf+1] *= freq; 
    FP->bcoefs[cf+2] *= (freq * freq); 
  } 
  return ERR_NONE; 
} 
 
 

Listing E.2  Unnorm_LP_Coefs function. 
 
 
Listing E.3 shown below gives the Unnorm_BP_Coefs function. This 

function and the Unnorm_BS_Coefs function are more complicated than the 
lowpass and highpass functions. One of the ways that these functions are more 
complicated is that the coefficient arrays must be resized to hold the larger number 
of coefficients for a bandpass function. (Remember that for bandpass and 
bandstop filters, the final order will be twice the original lowpass normalized 
order.) Thus, early in this function, variables from the original lowpass function 
are stored as well as the new order of the bandpass function. Then new pointers to 
the larger arrays of bandpass coefficients are assigned while leaving the original 
pointers unchanged. Throughout this function new_num, new_den, org_num 
and org_den are used to identify the new and original numerator and 
denominator coefficients, respectively. As in previous functions, we handle the 
first-order factors before the second-order factors. The values assigned to the new 
coefficients are the same as we determined in Section 3.3. 
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/*==================================================== 
  Unnorm_BP_Coefs() - converts normal lowpass coefs to 
              unnormal BP coefs at a specific freq. 
  Prototype:  int Unnorm_BP_Coefs(Filt_Params *FP, 
                                double BW,double Wo); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
              BW - bandwidth for unnormalization 
              Wo - center freq for unnormalization 
====================================================*/ 
int Unnorm_BP_Coefs(Filt_Params *FP, 
                                  double BW,double Wo) 
{ int     qd,ocf,ncf,qd_start,/* loop cntrs, indexes*/ 
          numb_coefs,         /* num coefs in array */ 
          org_quads,          /* orig num of quads  */ 
          org_order;          /* original order     */ 
  double  *org_num,*org_den,  /* orig num, den ptrs */ 
          *new_num,*new_den;  /* new num, den  ptrs */ 
  complex A,B,C,D,E;          /* temp cmplx vars    */ 
 
  /*  Store orig number of quads and order, 
      new order will be twice original.  */ 
  org_order = FP->order; 
  org_quads = (org_order + 1)/2; 
  FP->order = org_order * 2; 
  /*  For clarity, assign ptrs to temp variables  */ 
  org_num = FP->acoefs; 
  org_den = FP->bcoefs; 
  /*  Three coefs for each new quad=3*(new_order+1)/2, 
      but new_order will be even, so its simplified */ 
  numb_coefs = 3 * org_order; 
  /*  Allocate memory for new arrays with more coefs*/ 
  new_num=(double *)malloc(numb_coefs*sizeof(double)); 
  if(!new_num)  { return ERR_ALLOC;} 
  new_den=(double *)malloc(numb_coefs*sizeof(double)); 
  if(!new_den)  { return ERR_ALLOC;} 
  /*  If org_order odd, convert first-order factor to 
      quadratic, qd_start indic start pt for loop */ 
  if(org_order % 2) 
  { new_num[0] = org_num[1]; 
    new_num[1] = BW * org_num[2]; 
    new_num[2] = org_num[1] * Wo * Wo; 
    new_den[0] = org_den[1]; 
    new_den[1] = BW * org_den[2]; 
    new_den[2] = org_den[1] * Wo * Wo; 
    qd_start = 1; 
  } 
  else 
  { qd_start = 0;} 
  /*  Each orig quad term will be converted to two new 
      quads via complex quadratic factoring. */ 
  for(qd = qd_start;qd < org_quads;qd++) 
  { /*  ocf indexes org coefs, 3 coefs per org quad 
        ncf indexes new coefs, 6 coefs per org quad 
        ncf also adjusts for first-order factor */ 
    ocf = qd * 3; 
    ncf = qd * 6 - qd_start * 3; 
    /*  For numers which DON'T have s^2 or s terms. */ 
    if(org_num[ocf] == 0.0) 
    { new_num[ncf] = 0.0; 
      new_num[ncf+1] = sqrt(org_num[ocf+2]) * BW; 
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      new_num[ncf+2] = 0.0; 
      new_num[ncf+3] = 0.0; 
      new_num[ncf+4] = sqrt(org_num[ocf+2]) * BW; 
      new_num[ncf+5] = 0.0; 
    } 
    /*  For numers which DO have s^2 and s terms. */ 
    else 
    { /*  Convert coefs to complex, then factor */ 
      A = cmplx(org_num[ocf],0); 
      B = cmplx(org_num[ocf+1],0); 
      C = cmplx(org_num[ocf+2],0); 
      cQuadratic(A,B,C,&D,&E); 
      /*  Make required substitutions, factor again */ 
      A = cmplx(1,0); 
      B = cmul(cneg(D),cmplx(BW,0)); 
      C = cmplx(Wo*Wo,0); 
      cQuadratic(A,B,C,&D,&E); 
      /*  Determine final values for new coefs. */ 
      new_num[ncf] = 1.0; 
      new_num[ncf+1] = -2.0 * creal(D); 
      new_num[ncf+2] = creal(cmul(D,cconj(D))); 
      new_num[ncf+3] = 1.0; 
      new_num[ncf+4] = -2.0 * creal(E); 
      new_num[ncf+5] = creal(cmul(E,cconj(E))); 
    } 
    /*  Denoms will always have nonzero s^2 term. */ 
    /*  Convert coefs to complex, then factor */ 
    A = cmplx(org_den[ocf],0); 
    B = cmplx(org_den[ocf+1],0); 
    C = cmplx(org_den[ocf+2],0); 
    cQuadratic(A,B,C,&D,&E); 
    /*  Make required substitutions, factor again */ 
    A = cmplx(1,0); 
    B = cmul(cneg(D),cmplx(BW,0)); 
    C = cmplx(Wo*Wo,0); 
    cQuadratic(A,B,C,&D,&E); 
    /*  Make required substitutions, factor again */ 
    new_den[ncf] = 1.0; 
    new_den[ncf+1] = -2.0 * creal(D); 
    new_den[ncf+2] = creal(cmul(D,cconj(D))); 
    new_den[ncf+3] = 1.0; 
    new_den[ncf+4] = -2.0 * creal(E); 
    new_den[ncf+5] = creal(cmul(E,cconj(E))); 
  } 
  /*  Free the memory allocated to original coefs. */ 
  free(FP->acoefs); 
  free(FP->bcoefs); 
  /*  Assign the new ptrs to old array ptrs. */ 
  FP->acoefs = new_num; 
  FP->bcoefs = new_den; 
  return ERR_NONE; 
} 
 

Listing E.3  Unnorm_BP_Coefs function. 
 
Before we begin the discussion of the unnormalization of second-order 

factors within the for loop, we need to make a slight excursion into the use of 
complex numbers in C. The C language does not support complex numbers as a 
standard data type as it does ints, floats, and doubles. Therefore, if we are 
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to use them in the solution of the unnormalization of bandpass and bandstop 
coefficients, we will have to define our own complex number definition. A 
complex number can easily be defined with a structure using a real and imaginary 
member as shown below. 

 
typedef struct 
{ double  re,   /*  Real part of complex number */ 
          im;   /*  Imag part of complex number */ 
}   complex; 
 

Using this complex struct will allow us to define any variables we like as 
type complex. For example, in the variable declaration section of the function 
we are studying now, the variables A, B, C, D, and E are defined as complex as 
shown below. 

 
complex A,B,C,D,E;          /* temp cmplx vars    */ 

 
Within the \C_CODE\FILTER\COMPLEX.C module there are a number of 

complex functions defined to implement standard mathematical functions for 
complex numbers. A list of the functions is shown below. We do not have space 
to study them here, but the full module is contained on the software disc included 
with this text. 

 
 
cadd() — adds complex numbers and returns result. 
cang() — returns angle (radians) of a complex number. 
cconj() — returns complex conjugate of a complex number. 
cdiv() — divides complex numbers and returns result. 
cimag() — returns imaginary part of a complex number. 
cmag() — returns the magnitude of a complex number. 
cmplx() — returns complex number made from two doubles. 
cmul() — multiplies complex numbers and returns result. 
cneg() — returns the negative of a complex number. 
cprt() — prints the value of a complex number. 
cQuadratic() — factors quadratic eqn. with complex coefficients. 
creal() — returns real part of a complex number. 
csqr() — returns the square root of a complex number. 
csub() — subtracts complex numbers and returns result. 
 

 
As an example of one of these complex functions, cadd is shown in Listing 

E.4. As indicated in the listing, cadd takes two complex numbers as arguments 
and adds their respective real and imaginary parts. The new complex number x is 
then returned to the calling function. 

Another complex function is shown in Listing E.5 below. cQuadratic 
takes five arguments, all of which are complex or point to complex numbers. The 
first three arguments, a, b, and c, are the coefficients of a quadratic equation, 
while d and e are the addresses where the factors of the quadratic equation are to 
be stored. Each line of the function makes a partial calculation of the quadratic 
formula, but using complex functions. The final results are then stored where the 
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variables d and e point. Remember this advanced version of the quadratic 
equation solver is necessary because some of the coefficients of the quadratic 
equation are complex, unlike the typical situation where they all would be real. 

 
/*==================================================== 
  cadd() - adds complex numbers (a+b), returns result 
====================================================*/ 
complex cadd(complex a,complex b) 
{ complex x; 
  x.re = a.re + b.re; 
  x.im = a.im + b.im; 
  return x; 
} 
 

Listing E.4  cadd function. 
 
/*==================================================== 
  cQuadratic() - solves quadratic equation with cmplx 
    coefficients. Equation form is a*x^2 + b*x + c, 
    solutions will be placed in cmplx numbers d and e, 
    whose addresses are sent to cQuadratic. 
====================================================*/ 
void cQuadratic(complex a,complex b,complex c, 
                                complex *d,complex *e) 
{ complex a2,ac4,sq;  /*  intermediate values */ 
 
  a2 = cmul(a,cmplx(2,0));          /*  2*a         */ 
  ac4 = cmul(cmul(a,c),cmplx(4,0)); /*  4*a*c       */ 
  sq = csqr(csub(cmul(b,b),ac4)); /* sqrt(b*b-4*a*c)*/ 
  *d = cdiv(cadd(cneg(b),sq),a2);   /*  first root  */ 
  *e = cdiv(csub(cneg(b),sq),a2);   /*  second root */ 
} 
 

Listing E.5  cQuadratic function. 
 
Now we can return to the discussion of the Unnorm_BP_Coefs. 

qd_start is again used to control the starting point of the for loop, and 
org_quads controls the ending point. Once we enter the loop to unnormalize the 
original second-order factors we first define indexing variables to control the 
location within the original coefficient array and the new coefficient array. The 
variable ocf controls the position within the original coefficient array by indexing 
three positions for each original quadratic factor. The variable ncf controls the 
position within the new coefficient array by indexing six positions for each of the 
original quadratics. The six positions are necessary because for each original 
quadratic there will be two new quadratics produced. In addition ncf must adjust 
for the unnormalized first-order factor if there is one. Therefore, ncf starts at 0 if 
the original order was even, but starts at 3 if the order was odd. Thereafter, it 
increments by a value of 6. 

The numerator unnormalization can be of two different types. In the 
Butterworth and Chebyshev cases, there will be no s2-term or s-term, while the 
inverse Chebyshev and elliptic approximations will have an s2-term present for the 
complex zeros. Therefore, an if statement is used to determine the appropriate 
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method to use for a particular case. In the first case, only s-term coefficients take 
on the nonzero values we determined in Section 3.3. In the second case, all 
coefficients take on nonzero values, which are dependent on a number of complex 
calculations. 

In this second, more complicated case, we must first convert the original 
coefficients into complex numbers using the cmplx function. Then the roots of 
the quadratic are determined by the cQuadratic function and stored in the 
variables D and E. (We will not be dealing with the E root of this first quadratic 
because we know that it is the complex conjugate of the D root.) We are then 
ready to define another quadratic as we found in Section 3.3. The appropriate 
values from this quadratic are loaded into A, B, and C, and then cQuadratic is 
called again. The roots of this second quadratic are then stored in D and E again. 
Each of these roots will define one quadratic, just as one pole location in Chapter 
2 was enough to determine a quadratic. For example, if D = α + jβ and E = δ + jλ, 
then the D root will produce a quadratic of the forms s2 − 2 α s + (α2 + β2) and 
the E root will produce s2 − 2 δ s + (δ2 + λ2). These representations are mirrored 
in the C code. Note that the sum of squares is calculated by multiplying the root 
by its complex conjugate. The denominator quadratics are calculated in just the 
same manner as this numerator case. 

Once we leave the loop, all of the new coefficients have been calculated and 
put in place. All we have left to do is to reassign the array pointers in the 
Filt_Params structure. We are now finished with the original coefficients from 
the lowpass normalized approximation, so we can free the memory allocated to 
them by using the free command. Next, we take the pointers for the new, larger 
arrays and put them into FP. Now the pointers in FP point to areas in memory that 
store the larger arrays of bandpass coefficients, and the areas in memory that 
stored the original coefficients have been freed for future use. 

At this point, we have covered all of the necessary description for 
Unnorm_BS_Coefs as well. There are really no significant differences in the 
bandstop unnormalization function. It can be found in the \C_CODE\FILTER\ 
F_DESIGN.C module. 
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Appendix F 

C Code for Active Filter Implementation 

In order to aid in the implementation and evaluation of analog active filters, we 
will now develop the code necessary for the calculation of component values and 
the generation of PSpice text files. These text files will serve as input to PSpice 
that will analyze the active filters.  

We will use two structures to pass information to the various functions in this 
project. The first structure is the familiar Filt_Params structure, discussed 
previously. The second is a new structure used to hold the component values for 
the active filters to be designed. This RC_Comps structure is shown below and 
includes the voltage divider resistors Rx and Ry as well as the number of stages in 
the filter. The other variables contained in the structure are pointers to arrays 
because these variables will be present in each stage of the filter and we will not 
know at the time of the program execution how many stages will be present. The 
components included are the primary R and C values, the gain control resistors RA 
and RB, and the bandstop parameters Ro and Co. 
 

typedef struct 
{ double  Rx,Ry,    /*  Voltage divider values */ 
          *R,*C,    /*  Primary R-C values */ 
          *Ra,*Rb,  /*  Feedback resistors */ 
          *Ro,*Co;  /*  Twin-tee addl components */ 
  int     stages;   /*  Number of stages */ 
} RC_Comps; 

 
Once we have the common values of capacitor CO and resistor RA to use in 

each of the filter’s stages, as well as the frequency information, we can calculate 
the other circuit values using the Calc_Components function. (This function, 
as well as others associated with analog filter implementation, can be found in 
\C_CODE\ANALOG\ANALOG.C.) Calc_Components will in turn call an 
appropriate function based on the selectivity of the desired filter. For example, if a 
lowpass filter is being implemented, then the Calc_LP_Comps function will be 
called, while if a bandpass filter is being implemented, the Calc_BP_Comps 
function will be called. However, no matter which function is to be called, 
memory must be allocated for the arrays of component values in the structure. 



248 Practical Analog and Digital Filter Design 

This memory allocation can be done prior to calling the individual functions and 
thereby eliminate the requirement of memory allocation in each of the individual 
functions. 

The component calculation functions are very similar to one another although 
the equations for component values are somewhat different. For that reason, only 
the Calc_LP_Comps function shown in Listing F.1 will be discussed here. The 
work within the function begins by initializing the variable K_Total, which will 
store the product of all stage Ks. Then, if a first-order stage is required, the R and 
C values for it are calculated and start is set to 1. Then, the component values 
for the stages implementing the quadratic factors are calculated within the for 
loop, which has a starting index of start. The coefficients from the 
Filt_Params structure are retrieved, and the common values of C and RA are 
placed in the RC_Comps structure. Then a determination has to be made within a 
switch statement as to whether a filter with complex conjugate zeros will be 
required. If the zeros are not required, the calculations are made and the process 
continues. However, if complex conjugate zeros are required, it must be decided 
whether a resistor, capacitor, or no additional value is necessary. 

The loop will continue its iterations until all stage components have been 
determined. Once the loop finishes, the gain adjustment factor can be determined 
and the voltage divider components can be calculated. If the gain adjustment is 
exactly 1, no values are calculated since a division by zero would result. 

 
/*==================================================== 
  Calc_LP_Comps() - calculates the component values 
  for lowpass analog active filter. 
  Prototype:  int Calc_LP_Comps(Filt_Params *FP, 
         RC_Comps *RC,double C,double Ra); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
              RC - ptr to struct holding RC components 
              C -  capacitor value for all stages 
              Ra - feedback resistor for all stages 
====================================================*/ 
int Calc_LP_Comps(Filt_Params *FP,RC_Comps *RC, 
                                   double C,double Ra) 
{ int     i,start;    /* Loop counter and start pt*/ 
  double  K,K_Total,  /* K value and total */ 
          Gain_Adj,   /* Gain adjustment factor */ 
          a2,a2r,     /* Numerator constants */ 
          b1,b2,b2r;  /* Denominator constants */ 
 
  /*  Initialize K total */ 
  K_Total = 1; 
  /*  If order is odd, determine R & C values for 
      first-order stage and set start to 1 */ 
  start = 0; 
  if(FP->order % 2) 
  { RC->C[0] = C; 
    RC->R[0] = 1 / (C * FP->bcoefs[2]); 
    RC->Ra[0] = Ra; 
    start = 1; 
  } 
  /*  Determine values for second-order stages */ 
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  for(i = start; i < RC->stages ;i++) 
  { /*  Determine coefficients and roots */ 
    a2 = FP->acoefs[i*3 + 2]; 
    a2r = sqrt(a2); 
    b1 = FP->bcoefs[i*3 + 1]; 
    b2 = FP->bcoefs[i*3 + 2]; 
    b2r = sqrt(b2); 
    /*  Set standard values in structure */ 
    RC->C[i] = C; 
    RC->Ra[i] = Ra; 
    /*  Calculate values based on approx type 
        B,C use Sallen-Key, E,I use Twin-Tee */ 
    switch(FP->approx) 
    { case 'B': 
      case 'C': 
        RC->R[i] = 1 / (C * b2r); 
        K = 3 - (b1/b2r); 
        break; 
      case 'E': 
      case 'I': 
        RC->R[i] = 1 / (C * a2r); 
        /*  Find K, Ro, Co dependent on a2,b2 */ 
        if(a2 > b2) 
        {       K = 2 + ((a2-b2-b1*a2r)/(2*b2)); 
          RC->Co[i] = (((a2/b2) - 1) * C) / 2; 
        } 
        else if(a2 < b2) 
        {       K = 2 + ((b2-a2-b1*a2r)/(2*a2)); 
          RC->Ro[i] = 2 * RC->R[i] / ((b2/a2) - 1); 
        } 
        else 
        { K = 2 - (b1/(2*a2r));} 
        break; 
      default: 
        return ERR_FILTER; 
    } 
    /*  If Co = 0, K_Tot only increases by K */ 
    K_Total *= ( (K * C) / (C + 2*RC->Co[i]) ); 
    RC->Rb[i] = Ra * (K - 1); 
  } 
  /*  Make final adjustment of gain and 
      calculate voltage divider values */ 
  Gain_Adj = K_Total / FP->gain; 
  if(Gain_Adj == 1.000) 
  { return ERR_NONE;} 
  RC->Rx = Gain_Adj * R_OUT; 
  RC->Ry = Gain_Adj * R_OUT / (Gain_Adj - 1); 
  return ERR_NONE; 
} 
 

Listing F.1  Calc_LP_Comps function. 
 

After an analog active filter has been designed and the component values 
have been calculated, the next logical step is to test the circuit. Testing usually 
includes both computer analysis, where a circuit simulation is performed, and 
laboratory analysis, where the circuit is built from components and tested with 
electronic equipment. We can help in the computer evaluation of the filter circuit 
by preparing the analysis data file necessary for PSpice tool.  
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The Write_Circ_File function contained in ANALOG.C is used to 
coordinate the generation of the circuit analysis text file. After all of the filter 
sections have been written, the final voltage divider section is appended, and an 
appropriate model for the op-amp circuit is specified. Finally, the analysis modes 
are specified using the starting and ending frequencies provided by the user. As an 
example of one of the functions that generates circuit analysis data files, Listing 
F.2 shows Write_LP_Section.  

 
/*==================================================== 
  Write_LP_Section() - writes a lowpass filter 
  section to the circuit data file. 
  Prototype:  void Write_LP_Section(int stage, 
                              RC_Comps *RC,FILE *CF); 
  Return:     none 
  Arguments:  stage - section number of filter 
              RC - ptr to struct holding RC components 
              CF - ptr to output file 
====================================================*/ 
void Write_LP_Section(int stage,RC_Comps *RC, 
                                            FILE *CF) 
{ int     s,t;        /* Stage related variables */ 
  double  R,C,Ra,Rb;  /* Component values */ 
 
  /*  Simplify some variables */ 
  t = stage + 1;                        s = 10 * t; 
  R = RC->R[stage];   C = RC->C[stage]; 
  Ra = RC->Ra[stage]; Rb = RC->Rb[stage]; 
  /*  Rb == 0 if first-order stage, otherwise 
      generate circuit text for second-order */ 
  if(Rb == 0) 
  { fprintf(CF,"\n*    Stage Number %d",stage+1); 
    fprintf(CF,"\nR%d\t%d\t%d\t%8.3E",s+1,s+1,s+2,R); 
    fprintf(CF,"\nC%d\t%d\t%d\t%8.3E",s+1,s+2,0,C); 
    fprintf(CF,"\nRb%d\t%d\t%d\t1",t,s+3,s+11); 
    fprintf(CF, 
        "\nX%d\t%d\t%d\t%d\tOPAMP",t,s+2,s+3,s+11); 
  } 
  /*  Generate circuit text for second-order stage 
      If Ro and Co != 0, then use BS stage to 
      generate elliptic or inv Chebyshev approx, 
      otherwise use standard BP configuration */ 
  else 
  {if( (RC->Co[stage] != 0) || (RC->Ro[stage] != 0) ) 
   { Write_BS_Section(stage,RC,CF);} 
   else 
   {fprintf(CF,"\n*    Stage Number %d",stage+1); 
    fprintf(CF,"\nR%d\t%d\t%d\t%8.3E",s+1,s+1,s+2,R); 
    fprintf(CF,"\nR%d\t%d\t%d\t%8.3E",s+2,s+2,s+3,R); 
    fprintf(CF,"\nC%d\t%d\t%d\t%8.3E",s+1,s+3,0,C); 
    fprintf(CF,"\nC%d\t%d\t%d\t%8.3E",s+2,s+2,s+11,C); 
    fprintf(CF,"\nRa%d\t%d\t%d\t%8.3E",t,s+4,0,Ra); 
    fprintf(CF,"\nRb%d\t%d\t%d\t%8.3E",t,s+4,s+11,Rb); 
    fprintf(CF,"\nX%d\t%d\t%d\t%d\tOPAMP",t,s+3,s+4,s+11); 
   } 
  } 
} 
 

Listing F.2  Write_LP_Section function. 
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This function begins by simplifying the form of the components for each 
stage and then writes a section based on the order of the filter stage and the 
implementation of the filter stage. If the stage is implementing a first-order factor 
as indicated by RB having a value of zero, the necessary component values are 
written to the file. If the stage is implementing a second-order factor, the stage 
configuration could be either a Sallen-Key or a twin-tee notch form. If either the 
capacitor Co or the resistor Ro is nonzero, the twin-tee notch form is indicated, and 
the Write_BS_Section function is called since it implements the twin-tee 
notch filter form. Otherwise, the components for a standard Sallen-Key stage are 
written to the text file. 



252 Practical Analog and Digital Filter Design 

 



Appendix G 

C Code for IIR Filter Design 

The bilinear transform approach to IIR filter design is popular because it has wide 
application. Our procedure will be the same as outlined in Chapter 6: prewarp the 
critical digital frequencies to their analog counterparts, design a standard analog 
filter using the new specifications, perform the bilinear transform on the analog 
transfer function to produce the digital transfer function, and finally, set the 
frequencies back to their original values for future use. The design of the analog 
filter has already been covered in earlier chapters, so we won’t need to develop 
that code. Consequently, our work involves generating only a few new functions 
in order to add the IIR filter design capability to our project. 

 
In the Calc_DigIIR_Coefs function shown in Listing G.1, we first use  

Warp_Freqs to prewarp the frequencies; then, we call Calc_Filter_Order, 
Calc_Normal_Coefs, and Unnormalize_Coefs in order to design the 
analog filter. After the analog filter has been designed, the analog coefficients can 
be converted to digital coefficients by the Bilinear_Transform function. 
And, finally, the UnWarp_Freqs function converts the critical frequencies back 
to their original values. Throughout this process, all critical parameters are 
transferred to and from the function in the Filt_Params structure using the 
pointer FP. 

 
During the filter specification phase of our program, the user entered the 

desired frequency specifications that the digital filter must satisfy. In the 
Warp_Freqs function, these frequencies must be converted to analog 
frequencies using the techniques discussed in Chapter 6. We can combine (6.7) 
and (6.18) in order to determine the relationship that must exist between the 
analog and digital radian frequencies. The UnWarp_Freqs function simply 
resets the critical frequencies using the relationship of (G.2). 
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/*==================================================== 
  Calc_DigIIR_Coefs() - calcs digital IIR coefs 
  Prototype:  int Calc_DigIIR_Coefs(Filt_Params *FP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Calc_DigIIR_Coefs(Filt_Params *FP) 
{ int Error;        /*  error value */ 
 
  /*  Pre-warp frequencies before making calcs */ 
  Error = Warp_Freqs(FP); 
  if(Error) { return 10*Error+1;} 
  /*  Calc order and coefs, then unnormalized coefs */ 
  Error = Calc_Filter_Order(FP); 
  if(Error) { return 10*Error+2;} 
  Error = Calc_Normal_Coefs(FP); 
  if(Error) { return 10*Error+3;} 
  Error = Unnormalize_Coefs(FP); 
  if(Error) { return 10*Error+4;} 
  /*  Transform from s-domain to z-domain */ 
  Error = Bilinear_Transform(FP); 
  if(Error) { return 10*Error+5;} 
  /*  Put the critical freqs back to orig value */ 
  Error = UnWarp_Freqs(FP); 
  if(Error) { return 10*Error+6;} 
  return ERR_NONE; 
} 
 

Listing G.1  Calc_DigIIR_Coefs function. 
 

The objective of the Bilinear_Transform function shown in Listing G.2 
is to implement the transformation from an analog transfer function to a digital 
transfer function. A check that the acoefs and bcoefs arrays actually exist is 
made first in the function. Then, constants that will be used often are calculated 
and stored in f2 and f4. And, finally, the number of quadratics is calculated as 
well as a starting point for the quadratic loop. If the order of the filter is odd, then 
a first-order term is handled, and start is set to 1. Notice that start controls 
which quadratic factor will start the process. If a first-order factor (which is stored 
as a quadratic) has already been processed, the for loop will start with the second 
quadratic (if one is present). The actual transformation calculations are handled in 
exactly the same manner as derived in (6.20) to (6.25). Also notice that the total 
gain of the filter is adjusted in the first-order case as well as in the quadratic loop. 
By the end of the function, all gain adjustments have been included and the analog 
coefficients have been replaced by digital IIR coefficients. 
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/*==================================================== 
  Bilinear_Transform() - use bilinear transform to 
  convert transfer function from s-domain to z-domain 
  Prototype:  int Bilinear_Transform(Filt_Params *FP, 
                                        double fsamp); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Bilinear_Transform(Filt_Params *FP) 
{ int     i,j,start, /*  loop counters and index */ 
          num_quads; /*  number of quad factors */ 
  double  f2,f4,     /*  2 * fsamp, and 4 * fsamp^2 */ 
          N0,N1,N2,  /*  numerator temp variables */ 
          D0,D1,D2;  /*  denominator temp variables */ 
  if( (!FP->acoefs) || (!FP->bcoefs) ) 
  { return ERR_NULL;} 
  /*  determine some constants  */ 
  f2 = 2 * FP->fsamp; 
  f4 = f2 * f2; 
  num_quads = (FP->order + 1)/2; 
  /*  handle first-order factor if present  */ 
  start = 0; 
  if(FP->order % 2) 
  { N0 = FP->acoefs[2] + FP->acoefs[1] * f2; 
    N1 = FP->acoefs[2] - FP->acoefs[1] * f2; 
    D0 = FP->bcoefs[2] + FP->bcoefs[1] * f2; 
    D1 = FP->bcoefs[2] - FP->bcoefs[1] * f2; 
    FP->acoefs[0] = 1.0; 
    FP->acoefs[1] = N1 / N0; 
    FP->acoefs[2] = 0.0; 
    FP->bcoefs[0] = 1.0; 
    FP->bcoefs[1] = D1 / D0; 
    FP->bcoefs[2] = 0.0; 
    FP->gain *= (N0 / D0); 
    start = 1; 
  } 
  /*  Handle quadratic factors. */ 
  for(i = start; i < num_quads ;i++) 
  { j = 3 * i; 
    N0 = FP->acoefs[j]*f4 + FP->acoefs[j+1]*f2 + FP->acoefs[j+2]; 
    N1 = 2 * (FP->acoefs[j+2] - FP->acoefs[j]*f4); 
    N2 = FP->acoefs[j]*f4 - FP->acoefs[j+1]*f2 + FP->acoefs[j+2]; 
    D0 = FP->bcoefs[j]*f4 + FP->bcoefs[j+1]*f2 + FP->bcoefs[j+2]; 
    D1 = 2 * (FP->bcoefs[j+2] - FP->bcoefs[j]*f4); 
    D2 = FP->bcoefs[j]*f4 - FP->bcoefs[j+1]*f2 + FP->bcoefs[j+2]; 
    FP->acoefs[j] = 1.0; 
    FP->acoefs[j+1] = N1 / N0; 
    FP->acoefs[j+2] = N2 / N0; 
    FP->bcoefs[j] = 1.0; 
    FP->bcoefs[j+1] = D1 / D0; 
    FP->bcoefs[j+2] = D2 / D0; 
    FP->gain *= (N0 / D0); 
  } 
  return ERR_NONE; 
} 
 

Listing G.2  Bilinear_Transform function. 
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Appendix H 

C Code for FIR Filter Design 

The design of digital FIR filters is accomplished by Calc_DigFIR_Coefs 
shown in Listing H.1. (All of the functions necessary to implement that section of 
the project can be found in the \C_CODE\FILTER\F_DESIGN.C module on the 
software disc.) In this function, we see that all of the necessary steps in the design 
process are accomplished by the functions called from Calc_DigFIR_Coefs. 
In addition, the user is given an opportunity to adjust the length of the filter after it 
has been estimated. This option is necessary since the FIR filter length cannot be 
calculated exactly. Once the length has been accepted or changed, memory can be 
allocated for the filter coefficients. 

The length of the FIR filter is estimated by the Estm_Filter_Len 
function. In this function the various parameters required to estimate the length of 
either a window FIR design or a Parks-McClellan design are calculated. All 
window designs use the Kaiser estimate, which provides a starting point for the 
filter designer. In most cases, the Kaiser will be the preferred window design with 
the other methods used for comparison purposes. After the filter length has been 
estimated, the calculated value is converted to the next higher odd integer and 
stored in FP->order. We recognize that the variable is actually the filter’s 
length, but this saves us from defining another variable in the Filt_Params 
structure. 

If the design method uses the window technique, the ideal filter coefficients 
are calculated using Calc_Ideal_FIR_Coefs. This function implements the 
appropriate equation for ideal coefficient calculation and stores them in the 
FP−>bcoefs array. Next, the proper window coefficients are calculated using one 
of several Calc_xxxx_Win_Coefs functions and stored in the FP−>acoefs 
array. Finally, the ideal and window coefficients are multiplied by the 
Multi_Win_Ideal_Coefs function with the final coefficients stored in the 
FP−>acoefs.  
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/*==================================================== 
  Calc_DigFIR_Coefs() - calcs the digital FIR coefs 
  Prototype:  int Calc_DigFIR_Coefs(Filt_Params *FP); 
  Return:     error value 
  Arguments:  FP - ptr to struct holding filter params 
====================================================*/ 
int Calc_DigFIR_Coefs(Filt_Params *FP) 
{ char ans; 
  int Error;        /*  error value */ 
  double beta;      /*  parameter for Kaiser window */ 
 
  /*  Estimate the length (order) of filter. 
      Get beta for Kaiser window, if needed. */ 
  beta = Estm_Filter_Len(FP); 
  /*  See if user wants to adjust estimated length */ 
  printf("\n Filter length is estimated as %d.", FP->order); 
  ans = Get_YN("\n Do you wish to change it? (Y/N):"); 
  if(ans == 'Y') 
  { FP->order = Get_Int("\n Please enter new length: ",0,500);} 
  /*  Allocate memory for coefficients. */ 
  FP->acoefs = 
        (double *) malloc(FP->order * sizeof(double)); 
  if(!FP->acoefs) { return ERR_ALLOC;} 
  FP->bcoefs = (double *) malloc(FP->order * sizeof(double)); 
  if(!FP->bcoefs) { return ERR_ALLOC;} 
  /*  Set overall gain to 1.0 */ 
  FP->gain = 1.0; 
  /*  Calculate the ideal FIR coefficients 
      but not for Parks-McClellan. */ 
  if(FP->approx != '6') 
  { Error = Calc_Ideal_FIR_Coefs(FP); 
    if(Error) { return 10*Error+1;} 
  } 
  /*  Determine the approximation method to use.  */ 
  switch(FP->approx) 
  { case '0': Error = Calc_Rect_Win_Coefs(FP); 
              if(Error) { return 10*Error+2;}  break; 
    case '1': Error = Calc_Bart_Win_Coefs(FP); 
              if(Error) { return 10*Error+3;}  break; 
    case '2': Error = Calc_Blck_Win_Coefs(FP); 
              if(Error) { return 10*Error+4;}  break; 
    case '3': Error = Calc_Hamm_Win_Coefs(FP); 
              if(Error) { return 10*Error+5;}  break; 
    case '4': Error = Calc_Hann_Win_Coefs(FP); 
              if(Error) { return 10*Error+6;}  break; 
    case '5': Error = Calc_Kais_Win_Coefs(FP,beta); 
              if(Error) { return 10*Error+7;}  break; 
    case '6': Error = Calc_ParkMccl_Coefs(FP); 
              if(Error) { return 10*Error+8;}  break; 
    default:  return ERR_FILTER; 
  } 
  /*  Multiply window and ideal coefs only for 
      but not for Parks-McClellan coefficients */ 
  if(FP->approx != '6') 
  { Error = Mult_Win_Ideal_Coefs(FP); 
    if(Error) { return 10*Error+9;} 
  } 
  return ERR_NONE; 
} 
 

Listing H.1  Calc_DigFIR_Coefs function. 
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Appendix I 

Filtering Sound Files 

There are a number of sound file formats in use today, but one of the most popular 
is the WAVE file format (.WAV). This file format has a number of different ways 
that the file information can be stored, but we will concentrate on just the basic 
techniques. We discuss only the formats for monaural and stereo signals with 
either 8 bits or 16 bits per sample. Compression schemes are popular today to save 
space in transferring or saving music files, but we will concentrate only on 
uncompressed files. We will see that handling four different options will provide 
us with enough challenge for now. 

Each sound file begins with a header of information that describes the 
important characteristics of the file such as sampling frequency, number of 
samples, number of channels (mono or stereo) and number of bits per sample. For 
our work, the header information for each file is shown in Table I.1. 

After the header information, the raw data for the sound file is provided in 
one of the four formats. If the data file is monaural, the data is just a sequence of 
bytes or integers depending on the number of bits per sample. The number of data 
values can be determined from the information in the header, which specifies the 
number of data bytes in the file. If the file is using 16 bits (2 bytes) per sample, 
then the number of data values is one-half of the number of data bytes. In the case 
of a stereo sound file, the byte or integer samples of each channel are alternated 
starting with the left channel and then the right channel. Therefore, if we need to 
know how many samples to process for the left channel of a 16 bits per sample 
stereo sound file, we would need to divide the number of data bytes by four to 
arrive at the proper value. 

If the data is in the form of 16 bits per sample, then we can treat the data as a 
simple signed integer that has a range of values from +32,767 to −32,768. If the 
data is in the form of 8 bits per sample, then it is stored as an unsigned character 
with values from 0 to 255 with 128 considered as the midpoint. This is not the 
same as a signed character data type, and therefore special consideration must be 
given to the conversion of 8-bit to 16-bit representation. Equation (I.1) indicates 
the proper procedure to convert from 8-bit unsigned data to 16-bit signed data, 
while (I.2) shows the opposite conversion. (The functions Convert2Char and 
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Convert2Int are included in the \C_CODE\DIGITAL directory of the 
accompanying software disc as are all other functions associated with digital filter 
implementation.) 

 

Table I.1 
File Format for .WAV Files 

Bytes Description 
0 – 3 “RIFF” — identification string 
4 – 7 Reserved 
8 – 15 “WAVEfmt∅“ — ID string (∅ = space) 
16 – 19 Reserved 
20 – 21 Type of format — short integer 
22 – 23 Number of channels — short integer 
24 – 27 Samples per second — long integer 
28 – 31 Average bytes per second — long integer 
32 – 33 Block alignment — short integer 
34 – 35 Bits per sample — short integer 
36 – 39 “data” — identification string 
40 – 43 Number of data bytes — long integer 
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We are now ready to discuss the functions necessary to filter a sound file. We 

will need to determine the parameters of the filter as well as the waveform to be 
filtered. Then we will need to read in the waveform data, filter it, and write out the 
processed data. Since there are four different formats that could be used, and since 
we don’t want to generate four different filtering algorithms to handle each one, 
we standardize each file type into a monaural 16-bit data waveform. Then, the 
filtering algorithms can be optimized to operate on that type of file. Since we will 
be operating in a nonreal-time mode, this conversion should not be a problem. 

In the case of reading the input data and writing the output data, we must 
handle the conversion of 8 bits per sample and stereo files. If the file uses 8 bits 
per sample, the input data waveform is first converted to 16 bits per sample. If the 
input file is stereo, we then separate it into two monaural files and process them as 
two independent files. The filtering process will be relatively easy since we have 
already developed the functions to accomplish this in Chapter 8. A special 
structure is used to store information about the waveform to be processed. The 
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Wvfrm_Params structure contains all of the important information about the 
waveform. 
 

typedef struct 
{ char  *header;          /* ptr to header info */ 
  int   file_type,        /* type of data file */ 
        numb_chan,        /* number of channels */ 
        bytes_per_samp;   /* bytes per sample */ 
  long  samp_per_sec,     /* samples per second */ 
        numb_samples;     /* number of samples */ 
} Wvfrm_Params; 

 
Listing I.1  Wvfrm_Params structure. 
 

The Digital_Filter function performs most of the work in the program 
and is quite long. Therefore, only an abbreviated version is shown in Listing I.2. 
Array creation, error checking, and conversions from 8 to 16 bit as well as stereo 
to mono versions have been removed. (The complete function can be viewed on 
the software disc.) The actual digital filtering is handled by using one of the 
functions discussed in earlier sections. Based on the filter implementation type and 
the status of the REAL_TIME constant (defined in DIGITAL.H), we will use 
Dig_IIR_Filter, Dig_FIR_Filt_RT, or Dig_FIR_Filt_NRT to 
produce the filtering. 
 

/*==================================================== 
  Digital_Filter() - determines the type of waveform 
  (mono/stereo - 8bit/16bit), type of filter (FIR/IIR) 
  and sets up all memory for filtering process 
  Prototype:  int Digital_Filter(FILE *InFile, 
      FILE *OutFile,Filt_Params *FP,Wvfrm_Params *WP); 
  Return:     error value. 
  Arguments:  InFile - input data file 
              OutFile - output data file 
              FP - ptr to Filt_Params struct 
              WP - ptr to Wvfrm_Params struct 
====================================================*/ 
int Digital_Filter(FILE *InFile,FILE *OutFile, 
                     Filt_Params *FP,Wvfrm_Params *WP) 
{ /* Declaration of variables (not shown - NS) */ 
 
  /*  Set all pointers to null */ 
  a = c = C = M1 = M2 = 0; 
  X1 = X2 = Y1 = Y2 = 0; Z = 0; 
  /*  Set common values */ 
  bytes = WP->bytes_per_samp; 
  chan = WP->numb_chan; 
  error = ERR_NONE; 
 
  /* Allocate memory for data (NS) */ 
 
  /*  ===== ===== Handle the IIR case ===== =====  */ 
  if(FP->implem == 'I') 
  { /*  Set numb_quads and start for later use */ 
    numb_quads = (FP->order + 1) / 2; 
    start = 0; 
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    /*  Alloc memory for input, coefs and mem (NS) */ 
    /*  Set up second set of arrays if stereo (NS) */ 
    /*  Load the coef array with gain, b's and a's */ 
    c = C; 
    *c++ = FP->gain; 
    for(i = 0; i < numb_quads ;i++) 
    { j = i * 3; 
      *c++ = FP->bcoefs[j+1]; 
      *c++ = FP->bcoefs[j+2]; 
      *c++ = FP->acoefs[j+1]; 
      *c++ = FP->acoefs[j+2]; 
    } 
  } 
  /*  ===== ===== Handle the FIR case ===== =====  */ 
  else if(FP->implem == 'F') 
  { /*  Set numb_coefs and start for later use */ 
    numb_coefs = FP->order; 
    if(REAL_TIME) 
    { start = 0;} 
    else 
    { start = numb_coefs - 1;} 
    /*  Alloc memory for input, coefs and mem (NS) */ 
    /*  Set up second set of array if stereo (NS) */ 
    } 
    /*  Load the coef array (in reverse order) 
        with a's and gain */ 
    c = C; 
    a = FP->acoefs + numb_coefs - 1; 
    for(i = 0; i < numb_coefs ;i++) 
    { *c++ = *a--;} 
    *c++ = FP->gain; 
  } 
  else 
  { error = ERR_VALUE; goto TIDY_UP;} 
  k = 0; 
  /*  Start outer loop of filtering process */ 
  Total = WP->numb_samples * WP->numb_chan; 
  Done = 0; 
  while(!Done) 
  { /* Read in data */ 
    numb_read = fread(&X1[start],sizeof(int), 
                            CHUNK_SIZE * chan,InFile); 
    /*  Select IIR or FIR filter for ch 1 or mono */ 
    if(FP->implem == 'I') 
    { Dig_IIR_Filter(X1,Y1,M1,C,numb_quads,numb_read/chan);} 
    if(FP->implem == 'F') 
    { if(REAL_TIME) 
      { Dig_FIR_Filt_RT(X1,Y1,M1,C,numb_coefs,numb_read/chan);} 
      else 
      { Dig_FIR_Filt_NRT(X1,Y1,C,numb_coefs,numb_read/chan);} 
    } 
    /*  Write out data */ 
    numb_writ = fwrite(Y1,sizeof(int),numb_read,OutFile); 
  } /*  End of while loop */ 
  TIDY_UP: 
  /*  Free memory, close files and return (NS) */ 
  return error; 
} 

 
Listing I.2 Abbreviated Digital_Filter file. 
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