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Preface

Microwave materials have been widely used in a variety of applications ranging from communication
devices to military satellite services, and the study of materials properties at microwave frequencies
and the development of functional microwave materials have always been among the most active areas
in solid-state physics, materials science, and electrical and electronic engineering. In recent years, the
increasing requirements for the development of high-speed, high-frequency circuits and systems require
complete understanding of the properties of materials functioning at microwave frequencies. All these
aspects make the characterization of materials properties an important field in microwave electronics.

Characterization of materials properties at microwave frequencies has a long history, dating from the
early 1950s. In past decades, dramatic advances have been made in this field, and a great deal of new
measurement methods and techniques have been developed and applied. There is a clear need to have a
practical reference text to assist practicing professionals in research and industry. However, we realize
the lack of good reference books dealing with this field. Though some chapters, reviews, and books
have been published in the past, these materials usually deal with only one or several topics in this
field, and a book containing a comprehensive coverage of up-to-date measurement methodologies is not
available. Therefore, most of the research and development activities in this field are based primarily
on the information scattered throughout numerous reports and journals, and it always takes a great deal
of time and effort to collect the information related to on-going projects from the voluminous literature.
Furthermore, because of the paucity of comprehensive textbooks, the training in this field is usually not
systematic, and this is undesirable for further progress and development in this field.

This book deals with the microwave methods applied to materials property characterization, and it
provides an in-depth coverage of both established and emerging techniques in materials characterization.
It also represents the most comprehensive treatment of microwave methods for materials property
characterization that has appeared in book form to date. Although this book is expected to be most
useful to those engineers actively engaged in designing materials property–characterization methods, it
should also be of considerable value to engineers in other disciplines, such as industrial engineers,
bioengineers, and materials scientists, who wish to understand the capabilities and limitations of
microwave measurement methods that they use. Meanwhile, this book also satisfies the requirement for
up-to-date texts at graduate and senior undergraduate levels on the subjects in materials characterization.

Among this book’s most outstanding features is its comprehensive coverage. This book discusses
almost all aspects of the microwave theory and techniques for the characterization of the electromagnetic
properties of materials at microwave frequencies. In this book, the materials under characterization
may be dielectrics, semiconductors, conductors, magnetic materials, and artificial materials; the
electromagnetic properties to be characterized mainly include permittivity, permeability, chirality,
mobility, and surface impedance.

The two introductory chapters, Chapter 1 and Chapter 2, are intended to acquaint the readers with the
basis for the research and engineering of electromagnetic materials from the materials and microwave
fundamentals respectively. As general knowledge of electromagnetic properties of materials is helpful
for understanding measurement results and correcting possible errors, Chapter 1 introduces the general
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properties of various electromagnetic materials and their underlying physics. After making a brief
review on the methods for materials properties characterization, Chapter 2 provides a summary of
the basic microwave theory and techniques, based on which the methods for materials characterization
are developed. This summary is mainly intended for reference rather than for tutorial purposes, although
some of the important aspects of microwave theory are treated at a greater length. References are cited
to permit readers to further study the topics they are interested in.

Chapters 3 to 8 deal with the measurements of the permittivity and permeability of low-conductivity
materials and the surface impedance of high-conductivity materials. Two types of nonresonant methods,
reflection method and transmission/reflection method, are discussed in Chapters 3 and 4 respectively;
two types of resonant methods, resonator method and resonant-perturbation method, are discussed in
Chapters 5 and 6 respectively. In the methods discussed in Chapters 3 to 6, the transmission lines used
are mainly coaxial-line, waveguide, and free-space, while Chapter 7 is concerned with the measurement
methods developed from planar transmission lines, including stripline, microstrip-, and coplanar line.
The methods discussed in Chapters 3 to 7 are suitable for isotropic materials, which have scalar or
complex permittivity and permeability. The permittivity of anisotropic dielectric materials is a tensor
parameter, and magnetic materials usually have tensor permeability under an external dc magnetic field.
Chapter 8 deals with the measurement of permittivity and permeability tensors.

Ferroelectric materials are a special category of dielectric materials often used in microwave electron-
ics for developing electrically tunable devices. Chapter 9 discusses the characterization of ferroelectric
materials, and the topics covered include the techniques for studying the temperature dependence and
electric field dependence of dielectric properties.

In recent years, the research on artificial materials has been active. Chapter 10 deals with a special
type of artificial materials: chiral materials. After introducing the concept and basic characteristics of
chiral materials, the methods for chirality measurements and the possible applications of chiral materials
are discussed.

The electrical transport properties at microwave frequencies are important for the development of high-
speed electronic circuits. Chapter 11 discusses the microwave Hall effect techniques for the measurement
of the electrical transport properties of low-conductivity, high-conductivity, and magnetic materials.

The measurement of materials properties at high temperatures is often required in industry, scientific
research, and biological and medical applications. In principle, most of the methods discussed in this
book can be extended to high-temperature measurements. Chapter 12 concentrates on the measurement
of the dielectric properties of materials at high temperatures, and the techniques for solving the problems
in high-temperature measurements can also be applied for the measurement of other materials property
parameters at high temperatures.

In this book, each chapter is written as a self-contained unit, so that readers can quickly get
comprehensive information related to their research interests or on-going projects. To provide a broad
treatment of various topics, we condensed mountains of literature into readable accounts within a text of
reasonable size. Many references have been included for the benefit of the readers who wish to pursue
a given topic in greater depth or refer to the original papers.

It is clear that the principle of a method for materials characterization is more important than
the techniques required for implementing this method. If we understand the fundamental principle
underlying a measurement method, we can always find a suitable way to realize this method. Although
the advances in technology may significantly change the techniques for implementing a measurement
method, they cannot greatly influence the measurement principle. In writing this book, we tried to
present the fundamental principles behind various designs so that readers can understand the process of
applying fundamental concepts to arrive at actual designs using different techniques and approaches. We
believe that an engineer with a sound knowledge of the basic concepts and fundamental principles for
materials property characterization and the ability apply to his knowledge toward design objectives, is



Preface xiii

the engineer who is most likely to make full use of the existing methods, and develop original methods
to fulfill ever-rising measurement requirements.

We would like to indicate that this text is a compilation of the work of many people. We cannot be held
responsible for the designs described that are still under patent. It is also difficult to always give proper
credits to those who are the originators of new concepts and the inventors of new methods. The names we
give to some measurement methods may not fit the intentions of the inventors or may not accurately reflect
the most characteristic features of these methods. We hope that there are not too many such errors and will
appreciate it if the readers could bring the errors they discover to our attention.

There are many people to whom we owe many thanks for helping us prepare this book. However,
space dictates that only a few of them can receive formal acknowledgements. But this should not be taken
as a disparagement of those whose contributions remain anonymous. Our foremost appreciation goes to
Mr. Quek Gim Pew, Deputy Chief Executive (Technology), Singapore Defence Science & Technology
Agency, Mr. Quek Tong Boon, Chief Executive Officer, Singapore DSO National Laboratories, and
Professor Lim Hock, Director, Temasek Laboratories, National University of Singapore, for their
encouragement and support along the way. We are grateful to Pennsylvania State University and HVS
Technologies for giving us permission to include the HVS Free Space Unit and the data in this book.
We really appreciate the valuable help and cooperation from Dr. Li Zheng-Wen, Dr. Rao Xuesong, and
Mr. Tan Chin Yaw. We are very grateful to the staff of John Wiley & Sons for their helpful efforts and
cheerful professionalism during this project.

L. F. Chen
C. K. Ong
C. P. Neo
V. V. Varadan
V. K. Varadan



1

Electromagnetic Properties of Materials

This chapter starts with the introduction of the
materials research and engineering at microwave
frequencies, with emphasis laid on the signifi-
cance and applications of the study of the elec-
tromagnetic properties of materials. The fun-
damental physics that governs the interactions
between materials and electromagnetic fields is
then discussed at both microscopic and macro-
scopic scales. Subsequently, we analyze the gen-
eral properties of typical electromagnetic materi-
als, including dielectric materials, semiconductors,
conductors, magnetic materials, and artificial mate-
rials. Afterward, we discuss the intrinsic proper-
ties and extrinsic performances of electromagnetic
materials.

1.1 MATERIALS RESEARCH AND
ENGINEERING AT MICROWAVE
FREQUENCIES

While technology decides how electromagnetic
materials can be utilized, science attempts to
decipher why materials behave as they do. The
responses of materials to electromagnetic fields
are closely determined by the displacement of
their free and bounded electrons by electric fields
and the orientation of their atomic moments by
magnetic fields. The deep understanding and full
utilization of electromagnetic materials have come
from decoding the interactions between materials
and electromagnetic fields by using both theoretical
and experimental strategies.

This book mainly deals with the methodology
for the characterization of electromagnetic materi-
als for microwave electronics, and also discusses

the applications of techniques for materials prop-
erty characterization in various fields of sciences
and engineering. The importance of the research
on the electromagnetic properties of materials at
microwave frequencies can be understood in the
aspects that follow.

Firstly, though it is an old field in physics,
the study of electromagnetic properties of mate-
rials at microwave frequencies is full of academic
importance (Solymar and Walsh 1998; Kittel 1997;
Von Hippel 1995a,b; Jiles 1994; Robert 1988),
especially for magnetic materials (Jiles 1998; Smit
1971) and superconductors (Tinkham 1996) and
ferroelectrics (Lines and Glass 1977). The knowl-
edge gained from microwave measurements con-
tributes to our information about both the macro-
scopic and the microscopic properties of materi-
als, so microwave techniques have been important
for materials property research. Though magnetic
materials are widely used in various fields, the
research of magnetic materials lags far behind their
applications, and this, to some extent, hinders us
from making full application of magnetic mate-
rials. Until now, the electromagnetic properties
of magnetic properties at microwave frequencies
have not been fully investigated yet, and this is
one of the main obstacles for the development of
microwave magnetoelectrics. Besides, one of the
most promising applications of superconductors is
microwave electronics. A lot of effort has been
put in the study of the microwave properties
of superconductors, while many areas are yet to
be explored. Meanwhile, as ferroelectric materi-
als have great application potential in developing
smart electromagnetic materials, structures, and
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devices in recent years, microwave ferroelectricity
is under intensive investigation.

Secondly, microwave communications are play-
ing more and more important roles in military,
industrial, and civilian life, and microwave engi-
neering requires precise knowledge of the elec-
tromagnetic properties of materials at microwave
frequencies (Ramo et al. 1994). Since World War
II, a lot of resources have been put into electromag-
netic signature control, and microwave absorbers
are widely used in reducing the radar cross sections
(RCSs) of vehicles. The study of electromagnetic
properties of materials and the ability of tailoring
the electromagnetic properties of composite mate-
rials are very important for the design and devel-
opment of radar absorbing materials and other
functional electromagnetic materials and struc-
tures (Knott et al. 1993).

Thirdly, as the clock speeds of electronic
devices are approaching microwave frequencies,
it becomes indispensable to study the microwave
electronic properties of materials used in elec-
tronic components, circuits, and packaging. The
development of electronic components working
at microwave frequencies needs the electrical
transport properties at microwave frequencies,
such as Hall mobility and carrier density; and
the development of electronic circuits work-
ing at microwave frequencies requires accu-
rate constitutive properties of materials, such
as permittivity and permeability. Meanwhile, the
electromagnetic interference (EMI) should be
taken into serious consideration in the design of
circuit and packaging, and special materials are
needed to ensure electromagnetic compatibility
(EMC) (Montrose 1999).

Fourthly, the study of electromagnetic properties
of materials is important for various fields of sci-
ence and technology. The principle of microwave
remote sensing is based on the reflection and
scattering of different objects to microwave sig-
nals, and the reflection and scattering proper-
ties of an object are mainly determined by the
electromagnetic properties of the object. Besides,
the conclusions of the research of electromag-
netic materials are helpful for agriculture, food
engineering, medical treatments, and bioengineer-
ing (Thuery and Grant 1992).

Finally, as the electromagnetic properties of
materials are related to other macroscopic or
microscopic properties of the materials, we can
obtain information about the microscopic or
macroscopic properties we are interested in from
the electromagnetic properties of the materials.
In materials research and engineering, microwave
techniques for the characterization of materials
properties are widely used in monitoring the fab-
rication procedure and nondestructive testing of
samples and products (Zoughi 2000; Nyfors and
Vainikainen 1989).

This chapter aims to provide basic knowledge
for understanding the results from microwave mea-
surements. We will give a general introduction
on electromagnetic materials at microscopic and
macroscopic scales and will discuss the parameters
describing the electromagnetic properties of mate-
rials, the classification of electromagnetic mate-
rials, and general properties of typical electro-
magnetic materials. Further discussions on various
topics can be found in later chapters or the refer-
ences cited.

1.2 PHYSICS FOR ELECTROMAGNETIC
MATERIALS

In physics and materials sciences, electromagnetic
materials are studied at both the microscopic
and the macroscopic scale (Von Hippel 1995a,b).
At the microscopic scale, the energy bands for
electrons and magnetic moments of the atoms
and molecules in materials are investigated, while
at the macroscopic level, we study the overall
responses of macroscopic materials to external
electromagnetic fields.

1.2.1 Microscopic scale

In the microscopic scale, the electrical properties of
a material are mainly determined by the electron
energy bands of the material. According to the
energy gap between the valence band and the
conduction band, materials can be classified into
insulators, semiconductors, and conductors. Owing
to its electron spin and electron orbits around the
nucleus, an atom has a magnetic moment. According
to the responses of magnetic moments to magnetic
field, materials can be generally classified into
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diamagnetic materials, paramagnetic materials, and
ordered magnetic materials.

1.2.1.1 Electron energy bands

According to Bohr’s model, an atom is characterized
by its discrete energy levels. When atoms are
brought together to constitute a solid, the discrete
levels combine to form energy bands and the
occupancy of electrons in a band is dictated
by Fermi-dirac statistics. Figure 1.1 shows the
relationship between energy bands and atomic
separation. When the atoms get closer, the energy
bands broaden, and usually the outer band broadens
more than the inner one. For some elements, for
example lithium, when the atomic separation is
reduced, the bands may broaden sufficiently for
neighboring bands to merge, forming a broader
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Figure 1.1 The relationships between energy bands
and atomic separation. (a) Energy bands of lithium
and (b) energy bands of carbon. (Bolton 1992) Source:
Bolton, W. (1992), Electrical and Magnetic Properties
of Materials, Longman Scientific & Technical, Harlow

band. While for some elements, for example carbon,
the merged broadband may further split into separate
bands at closer atomic separation.

The highest energy band containing occupied
energy levels at 0 K in a solid is called the valence
band. The valence band may be completely filled
or only partially filled with electrons. The electrons
in the valence band are bonded to their nuclei.
The conduction band is the energy band above the
valence energy band, and contains vacant energy
levels at 0 K. The electrons in the conduction band
are called free electrons, which are free to move.
Usually, there is a forbidden gap between the
valence band and the conduction band, and the
availability of free electrons in the conduction band
mainly depends on the forbidden gap energy. If the
forbidden gap is large, it is possible that no free
electrons are available, and such a material is called
an insulator. For a material with a small forbidden
energy gap, the availability of free electron in the
conduction band permits some electron conduction,
and such a material is a semiconductor. In a
conductor, the conduction and valence bands may
overlap, permitting abundant free electrons to be
available at any ambient temperature, thus giving
high electrical conductivity. The energy bands for
insulator, semiconductor, and good conductor are
shown schematically in Figure 1.2.

Insulators

For most of the insulators, the forbidden gap
between their valence and conduction energy bands
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Figure 1.2 Energy bands for different types of materials. (a) Insulator, (b) semiconductor, and (c) good
conductor. (Bolton 1992). Modified from Bolton, W. (1992), Electrical and Magnetic Properties of Materials,
Longman Scientific & Technical, Harlow
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is larger than 5 eV. Usually, we assume that an
insulate is nonmagnetic, and under this assump-
tion, insulators are called dielectrics. Diamond, a
form of carbon, is a typical example of a dielectric.
Carbon has two electrons in the 1s shell, two in the
2s shell, and two in the 2p shell. In a diamond,
the bonding between carbon atoms is achieved
by covalent bonds with electrons shared between
neighboring atoms, and each atom has a share in
eight 2p electrons (Bolton 1992). So all the elec-
trons are tightly held between the atoms by this
covalent bonding. As shown in Figure 1.1(b), the
consequence of this bonding is that diamond has
a full valence band with a substantial forbidden
gap between the valence band and the conduc-
tion band. But it should be noted that, graphite,
another form of carbon, is not a dielectric, but a
conductor. This is because all the electrons in the
graphite structure are not locked up in covalent
bonds and some of them are available for conduc-
tion. So the energy bands are related to not only the
atom structures but also the ways in which atoms
are combined.

Semiconductors

The energy gap between the valence and conduction
bands of a semiconductor is about 1 eV. Germanium
and silicon are typical examples of semiconductors.
Each germanium or silicon atom has four valence
electrons, and the atoms are held together by
covalent bonds. Each atom shares electrons with
each of four neighbors, so all the electrons are
locked up in bonds. So there is a gap between a full
valence band and the conduction band. However,
unlike insulators, the gap is relatively small. At
room temperature, some of the valence electrons
can break free from the bonds and have sufficient
energy to jump over the forbidden gap, arriving
at the conduction band. The density of the free
electrons for most of the semiconductors is in the
range of 1016 to 1019 per m3.

Conductors

For a conductor, there is no energy gap between
the valence gap and conduction band. For a good

conductor, the density of free electrons is on the
order of 1028 m3. Lithium is a typical example of
a conductor. It has two electrons in the 1s shell
and one in the 2s shell. The energy bands of such
elements are of the form shown in Figure 1.1(a).
The 2s and 2p bands merge, forming a large
band that is only partially occupied, and under an
electric field, electrons can easily move into vacant
energy levels.

In the category of conductors, superconduc-
tors have attracted much research interest. In a
normal conductor, individual electrons are scat-
tered by impurities and phonons. However, for
superconductors, the electrons are paired with
those of opposite spins and opposite wave vec-
tors, forming Cooper pairs, which are bonded
together by exchanging phonons. In the Bardeen–
Cooper–Schrieffer (BCS) theory, these Cooper
pairs are not scattered by the normal mechanisms.
A superconducting gap is found in superconduc-
tors and the size of the gap is in the microwave
frequency range, so study of superconductors at
microwave frequencies is important for the under-
standing of superconductivity and application of
superconductors.

1.2.1.2 Magnetic moments

An electron orbiting a nucleus is equivalent to a
current in a single-turn coil, so an atom has a
magnetic dipole moment. Meanwhile, an electron
also spins. By considering the electron to be a
small charged sphere, the rotation of the charge
on the surface of the sphere is also like a single-
turn current loop and also produces a magnetic
moment (Bolton 1992). The magnetic properties of
a material are mainly determined by its magnetic
moments that result from the orbiting and spinning
of electrons. According to the responses of the
magnetic moments of the atoms in a material to an
external magnetic field, materials can be generally
classified into diamagnetic, paramagnetic, and
ordered magnetic materials.

Diamagnetic materials

The electrons in a diamagnetic material are all paired
up with spins antiparallel, so there is no net magnetic
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moment on their atoms. When an external magnetic
field is applied, the orbits of the electrons change,
resulting in a net magnetic moment in the direction
opposite to the applied magnetic field. It should be
noted that all materials have diamagnetism since all
materials have orbiting electrons. However, for dia-
magnetic materials, the spin of the electrons does
not contribute to the magnetism; while for param-
agnetic and ferromagnetic materials, the effects of
the magnetic dipole moments that result from the
spinning of electrons are much greater than the dia-
magnetic effect.

Paramagnetic materials

The atoms in a paramagnetic material have net
magnetic moments due to the unpaired electron
spinning in the atoms. When there is no exter-
nal magnetic field, these individual moments are
randomly aligned, so the material does not show
macroscopic magnetism. When an external mag-
netic field is applied, the magnetic moments are
slightly aligned along the direction of the exter-
nal magnetic field. If the applied magnetic field
is removed, the alignment vanishes immediately.
So a paramagnetic material is weakly magnetic
only in the presence of an external magnetic
field. The arrangement of magnetic moments in a
paramagnetic material is shown in Figure 1.3(a).
Aluminum and platinum are typical paramag-
netic materials.

Ordered magnetic materials

In ordered magnetic materials, the magnetic mo-
ments are arranged in certain orders. According to
the ways in which magnetic moments are arranged,
ordered magnetic materials fall into several subcat-
egories, mainly including ferromagnetic, antiferro-
magnetic, and ferrimagnetic (Bolton 1992; Wohl-
farth 1980). Figure 1.3 shows the arrangements
of magnetic moments in paramagnetic, ferromag-
netic, antiferromagnetic, and ferrimagnetic materi-
als, respectively.

As shown in Figure 1.3(b), the atoms in a
ferromagnetic material are bonded together in such
a way that the dipoles in neighboring atoms are all
in the same direction. The coupling between atoms
of ferromagnetic materials, which results in the

(a) (b)

(c) (d)

Figure 1.3 Arrangements of magnetic moments in
various magnetic materials. (a) Paramagnetic, (b) ferro-
magnetic, (c) antiferromagnetic, and (d) ferrimagnetic
materials. Modified from Bolton, W. (1992). Electrical
and Magnetic Properties of Materials, Longman Scien-
tific & Technical, Harlow

ordered arrangement of magnetic dipoles shown in
Figure 1.3(b), is quite different from the coupling
between atoms of paramagnetic materials, which
results in the random arrangement of magnetic
dipoles shown in Figure 1.3(a). Iron, cobalt, and
nickel are typical ferromagnetic materials.

As shown in Figure 1.3(c), in an antiferromag-
netic material, half of the magnetic dipoles align
themselves in one direction and the other half of
the magnetic moments align themselves in exactly
the opposite direction if the dipoles are of the
same size and cancel each other out. Manganese,
manganese oxide, and chromium are typical anti-
ferromagnetic materials. However, as shown in
Figure 1.3(d), for a ferrimagnetic material, also
called ferrite, the magnetic dipoles have different
sizes and they do not cancel each other. Magnetite
(Fe3O4), nickel ferrite (NiFe2O4), and barium fer-
rite (BaFe12O19) are typical ferrites.

Generally speaking, the dipoles in a ferromag-
netic or ferrimagnetic material may not all be
arranged in the same direction. Within a domain, all
the dipoles are arranged in its easy-magnetization
direction, but different domains may have differ-
ent directions of arrangement. Owing to the random
orientations of the domains, the material does not
have macroscopic magnetism without an external
magnetic field.
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The crystalline imperfections in a magnetic
material have significant effects on the magneti-
zation of the material (Robert 1988). For an ideal
magnetic material, for example monocrystalline
iron without any imperfections, when a magnetic
field H is applied, due to the condition of minimum
energy, the sizes of the domains in H direction
increase, while the sizes of other domains decrease.
Along with the increase of the magnetic field, the
structures of the domains change successively, and
finally a single domain in H direction is obtained.
In this ideal case, the displacement of domain walls
is free. When the magnetic field H is removed, the
material returns to its initial state; so the magneti-
zation process is reversible.

Owing to the inevitable crystalline imperfec-
tions, the magnetization process becomes com-
plicated. Figure 1.4(a) shows the arrangement of
domains in a ferromagnetic material when no
external magnetic field is applied. The domain

(a) (b)

(c) (d)

H H

H

Figure 1.4 Domains in a ferromagnetic material.
(a) Arrangement of domains when no external mag-
netic field is applied, (b) arrangement of domains when
a weak magnetic field is applied, (c) arrangement of
domains when a medium magnetic field is applied,
and (d) arrangement of domains when a strong mag-
netic field is applied. Modified from Robert, P. (1988).
Electrical and Magnetic Properties of Materials, Artech
House, Norwood

walls are pinned by crystalline imperfections. As
shown in Figure 1.4(b), when an external magnetic
field H is applied, the domains whose orienta-
tions are near the direction of the external mag-
netic field grow in size, while the sizes of the
neighboring domains wrongly directed decrease.
When the magnetic field is very weak, the domain
walls behave like elastic membranes, and the
changes of the domains are reversible. When
the magnetic field increases, the pressure on the
domain walls causes the pinning points to give
way, and the domain walls move by a series of
jumps. Once a jump of domain wall happens,
the magnetization process becomes irreversible. As
shown in Figure 1.4(c), when the magnetic field H
reaches a certain level, all the magnetic moments
are arranged parallel to the easy magnetization
direction nearest to the direction of the external
magnetic field H. If the external magnetic field
H increases further, the magnetic moments are
aligned along H direction, deviating from the easy
magnetization direction, as shown in Figure 1.4(d).
In this state, the material shows its greatest magne-
tization, and the material is magnetically saturated.

In a polycrystalline magnetic material, the mag-
netization process in each grain is similar to that
in a monocrystalline material as discussed above.
However, due to the magnetostatic and magne-
tostrictions occurring between neighboring grains,
the overall magnetization of the material becomes
quite complicated. The grain structures are impor-
tant to the overall magnetization of a polycrys-
talline magnetic material. The magnetization pro-
cess of magnetic materials is further discussed in
Section 1.3.4.1.

It is important to note that for an ordered magnetic
material, there is a special temperature called Curie
temperature (Tc). If the temperature is below the
Curie temperature, the material is in a magnetically
ordered phase. If the temperature is higher than
the Curie temperature, the material will be in a
paramagnetic phase. The Curie temperature for iron
is 770 ◦C, for nickel 358 ◦C, and for cobalt 1115 ◦C.

1.2.2 Macroscopic scale

The interactions between a macroscopic mate-
rial and electromagnetic fields can be generally
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described by Maxwell’s equations:

∇ · D = ρ (1.1)

∇ · B = 0 (1.2)

∇ × H = ∂D/∂t + J (1.3)

∇ × E = −∂B/∂t (1.4)

with the following constitutive relations:

D = εE = (ε′ − jε′′)E (1.5)

B = µH = (µ′ − jµ′′)H (1.6)

J = σE (1.7)

where H is the magnetic field strength vector; E,
the electric field strength vector; B, the magnetic
flux density vector; D, the electric displacement
vector; J, the current density vector; ρ, the charge
density; ε = ε′ − jε′′, the complex permittivity of
the material; µ = µ′ − jµ′′, the complex perme-
ability of the material; and σ , the conductivity of
the material. Equations (1.1) to (1.7) indicate that
the responses of an electromagnetic material to
electromagnetic fields are determined essentially
by three constitutive parameters, namely permit-
tivity ε, permeability µ, and conductivity σ . These
parameters also determine the spatial extent to
which the electromagnetic field can penetrate into
the material at a given frequency.

In the following, we discuss the parameters
describing two general categories of materials:
low-conductivity materials and high-conductivity
materials.

1.2.2.1 Parameters describing low-conductivity
materials

Electromagnetic waves can propagate in a low-
conductivity material, so both the surface and inner
parts of the material respond to the electromag-
netic wave. There are two types of parameters
describing the electromagnetic properties of low-
conductivity materials: constitutive parameters and
propagation parameters.

Constitutive parameters

The constitutive parameters defined in Eqs. (1.5) to
(1.7) are often used to describe the electromagnetic

(a) (b)

C0

I

U

90°

I = jC0wU

U = U0exp(jwt)

Figure 1.5 The current in a circuit with a capacitor.
(a) Circuit layout and (b) complex plane showing cur-
rent and voltage

properties of low-conductivity materials. As the
value of conductivity σ is small, we concentrate
on permittivity and permeability. In a general case,
both permittivity and permeability are complex
numbers, and the imaginary part of permittivity
is related to the conductivity of the material. In
the following discussion, we analogize microwave
signals to ac signals, and distributed capacitor and
inductor to lumped capacitor and inductor (Von
Hippel 1995b).

Consider the circuit shown in Figure 1.5(a). The
vacuum capacitor with capacitance C0 is connected
to an ac voltage source U = U0exp(jωt). The
charge storage in the capacitor is Q = C0U , and
the current I flowing in the circuit is

I = dQ

dt
= d

dt
(C0U0ejωt ) = jC0 ωU (1.8)

So, in the complex plane shown in Figure 1.5(b),
the current I leads the voltage U by a phase angle
of 90◦.

Now, we insert a dielectric material into the
capacitor and the equivalent circuit is shown in
Figure 1.6(a). The total current consists of two parts,
the charging current (Ic) and loss current (Il):

I = Ic + Il = jCωU + GU = (jCω + G)U

(1.9)

where C is the capacitance of the capacitor
loaded with the dielectric material and G is the
conductance of the dielectric material. The loss
current is in phase with the source voltage U .
In the complex plane shown in Figure 1.6(b), the
charging current Ic leads the loss current Il by a
phase angle of 90◦, and the total current I leads
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G

Ic = jwCU

Il = GU

I

d

q

CU

Ic Il

I

(a) (b)

Figure 1.6 The relationships between charging current
and loss current. (a) Equivalent circuit and (b) complex
plane showing charging current and loss current

the source voltage U with an angle θ less than 90◦.
The phase angle between Ic and I is often called
loss angle δ.

We may alternatively use complex permittiv-
ity ε = ε′ − jε′′ to describe the effect of dielec-
tric material. After a dielectric material is inserted
into the capacitor, the capacitance C of the capaci-
tor becomes

C = εC0

ε0
= (ε′ − jε′′)

C0

ε0
(1.10)

And the charging current is

I = jω(ε′ − jε′′)
C0

ε0
U = (jωε′ + ωε′′)

C0

ε0
U

(1.11)

Therefore, as shown in Figure 1.6, the current
density J transverse to the capacitor under the
applied field strength E becomes

J = (jωε′ + ωε′′)E = ε
dE

dt
(1.12)

The product of angular frequency and loss factor
is equivalent to a dielectric conductivity: σ = ωε′′.
This dielectric conductivity sums over all the dis-
sipative effects of the material. It may represent
an actual conductivity caused by migrating charge
carriers and it may also refer to an energy loss asso-
ciated with the dispersion of ε′, for example, the
friction accompanying the orientation of dipoles.
The latter part of dielectric conductivity will be
discussed in detail in Section 1.3.1.

According to Figure 1.7, we define two parame-
ters describing the energy dissipation of a dielectric
material. The dielectric loss tangent is given by

tan δe = ε′′/ε′, (1.13)

Jc = jwe′E

Jl = we′′E

J

d

q

Figure 1.7 Complex plane showing the charging cur-
rent density and loss current density

and the dielectric power factor is given by

cos θe = ε′′/
√

(ε′)2 + (ε′′)2 (1.14)

Equations (1.13) and (1.14) show that for a
small loss angle δe, cos θ ≈ tan δe.

In microwave electronics, we often use relative
permittivity, which is a dimensionless quantity,
defined by

εr = ε

ε0
= ε′ − jε′′

ε0
= ε′

r − jε′′
r = ε′

r(1 − j tan δe)

(1.15)

where ε is complex permittivity,
εr is relative complex permittivity,
ε0 = 8.854 × 10−12 F/m is the
permittivity of free space,
ε′
r is the real part of relative complex

permittivity,
ε′′
r is the imaginary part of relative

complex permittivity,
tan δe is dielectric loss tangent, and
δe is dielectric loss angle.

Now, let us consider the magnetic response
of low-conductivity material. According to the
Faraday’s inductance law

U = L
dI

dt
, (1.16)

we can get the magnetization current Im:

Im = −j
U

ωL0
(1.17)

where U is the magnetization voltage, L0 is
the inductance of an empty inductor, and ω

is the angular frequency. If we introduce an
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Figure 1.8 The magnetization current in a complex
plane. (a) Relationship between magnetization current
and voltage and (b) relationship between magnetization
current and loss current

ideal, lossless magnetic material with relative
permeability µ′

r, the magnetization field becomes

Im = −j
U

ωL0µ′
r

(1.18)

In the complex plane shown in Figure 1.8(a),
the magnetization current Im lags the voltage
U by 90◦ for no loss of magnetic materials.
As shown in Figure 1.8(b), an actual magnetic
material has magnetic loss, and the magnetic loss
current Il caused by energy dissipation during
the magnetization cycle is in phase with U. By
introducing a complex permeability µ = µ′ − jµ′′
and a complex relative permeability µr = µ′

r − jµ′′
r

in complete analogy to the dielectric case, we
obtain the total magnetization current

I = Im + Il = U

jωL0µr
= − jU(µ′ + jµ′′)

ω(L0/µ0)(µ′2 + µ′′2)
(1.19)

Similar to the dielectric case, according to
Figure 1.8, we can also define two parameters
describing magnetic materials: the magnetic loss
tangent given by

tan δm = µ′′/µ′, (1.20)

and the power factor given by

cos θm = µ′′/
√

(µ′)2 + (µ′′)2. (1.21)

In microwave electronics, relative permeability
is often used, which is a dimensionless quantity

given by

µr = µ

µ0
= µ′ − jµ′′

µ0

= µ′
r − jµ′′

r = µ′
r(1 − j tan δm) (1.22)

where µ is complex complex permeability,
µr is relative complex permeability,
µ0 = 4π × 10−7 H/m is the permeability
of free space,
µ′

r is the real part of relative complex
permeability,
µ′′

r is the imaginary part of the relative
complex permeability,
tan δm is the magnetic loss tangent, and
δm is the magnetic loss angle.

In summary, the macroscopic electric and mag-
netic behavior of a low-conductivity material is
mainly determined by the two complex parame-
ters: permittivity (ε) and permeability (µ). Per-
mittivity describes the interaction of a material
with the electric field applied on it, while per-
meability describes the interaction of a material
with magnetic field applied on it. Both the elec-
tric and magnetic fields interact with materials in
two ways: energy storage and energy dissipation.
Energy storage describes the lossless portion of
the exchange of energy between the field and the
material, and energy dissipation occurs when elec-
tromagnetic energy is absorbed by the material. So
both permittivity and permeability are expressed as
complex numbers to describe the storage (real part)
and dissipation (imaginary part) effects of each.

Besides the permittivity and permeability, another
parameter, quality factor, is often used to describe
an electromagnetic material:

Qe = ε′
r

ε′′
r

= 1

tan δe
(1.23)

Qm = µ′
r

µ′′
r

= 1

tan δm
(1.24)

On the basis of the dielectric quality factor Qe

and magnetic quality factor Qm, we can get the
total quality factor Q of the material:

1

Q
= 1

Qe
+ 1

Qm
(1.25)
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Propagation parameters

The propagation of electromagnetic waves in a
medium is determined by the characteristic wave
impedance η of the medium and the wave veloc-
ity v in the medium. The characteristic wave
impedance η is also called the intrinsic impedance
of the medium. When a single wave propagates
with velocity v in the Z-positive direction, the
characteristic impedance η is defined as the ratio
of total electric field to total magnetic field at a
Z-plane. The wave impedance and velocity can be
calculated from the permittivity and permeability
of the medium:

η =
√

µ

ε
(1.26)

v = 1√
µε

(1.27)

From Eqs. (1.26) and (1.27), we can calculate the
wave impedance of free space, η0 = (µ0/ε0)

1/2

= 376.7 
, and the wave velocity in free space, c =
(µ0ε0)

−1/2 = 2.998 × 108 m/s. Expressing permit-
tivity and permeability as complex quantities leads
to a complex number for the wave velocity (v),
where the imaginary portion is a mathematical con-
venience for expressing loss.

Sometimes, it is more convenient to use the
complex propagation coefficient γ to describe
the propagation of electromagnetic waves in
a medium:

γ = α + jβ = jω
√

µε = j
ω

c

√
µrεr = j

ω

c
n

(1.28)

where n is the complex index of refraction, where
ω is the angular frequency, α is the attenua-
tion coefficient, β = 2π/λ is the phase change
coefficient, and λ is the operating wavelength in
the medium.

1.2.2.2 Parameters describing high-conductivity
materials

For a high-conductivity material, for example a
metal, Eq. (1.28) for the complex propagation
constant γ should be modified as

γ = α + jβ = jω
√

µε

√
1 − j

σ

ωε
(1.29)

For a high-conductivity material, we assume σ �
ωε, which means that the conducting current is
much larger than the displacement current. So,
Eq. (1.29) can be approximated by ignoring the
displacement current term:

γ = α + jβ = jω
√

µε

√
σ

jωε
= (1 + j)

√
ωµσ

2
(1.30)

We define the skin depth:

δs = 1

α
=

√
2

ωµσ
(1.31)

The physics meaning of skin depth is that, in a
high-conductivity material, the fields decay by an
amount e−1 in a distance of a skin depth δs. At
microwave frequencies, the skin depth δs is a very
small distance. For example, the skin depth of a
metal at microwave frequencies is usually on the
order of 10−7 m.

Because of the skin effect, the utility and behav-
ior of high-conductivity materials at microwave
frequencies are mainly determined by their surface
impedance Zs:

Zs = Rs + jXs = Et

Ht
= (1 + j)

√
µω

2σ
(1.32)

where Ht is the tangential magnetic field, Et

is the tangential electric field, Rs is the surface
resistance, and Xs is the surface reactance. For
normal conductors, σ is a real number. According
to Eq. (1.32), the surface resistance Rs and the
surface reactance Xs are equal and they are
proportional to ω1/2 for normal metals:

Rs = Xs =
√

µω

2σ
(1.33)

1.2.2.3 Classification of electromagnetic materials

Materials can be classified according to their
macroscopic parameters. According to conductiv-
ity, materials can be classified as insulators, semi-
conductors, and conductors. Meanwhile, materials
can also be classified according to their perme-
ability values. General properties of typical types
of materials are discussed in Section 1.3.

When classifying materials according to their
macroscopic parameters, it should be noted that we
use the terms insulator, semiconductor, conductor,
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and magnetic material to indicate the dominant
responses of different types of materials. All
materials have some response to magnetic fields
but, except for ferromagnetic and ferrimagnetic
types, their responses are usually very small,
and their permeability values differ from µ0 by
a negligible fraction. Most of the ferromagnetic
materials are highly conductive, but we call them
magnetic materials, as their magnetic properties
are the most significant in their applications. For
superconductors, the Meissner effect shows that
they are a kind of very special magnetic materials,
but in microwave electronics, people are more
interested in their surface impedance.

Insulators

Insulators have very low conductivity, usually in the
range of 10−12 to 10−20 (
m)−1. Often, we assume
insulators are nonmagnetic, so they are actually
dielectrics. In theoretical analysis of dielectric
materials, an ideal model, perfect dielectric, is often
used, representing a material whose imaginary part
of permittivity is assumed to be zero: ε′′ = 0.

Semiconductors

The conductivity of a semiconductor is higher
than that of a dielectric but lower than that
of a conductor. Usually, the conductivities of
semiconductors at room temperature are in the
range of 10−7 to 104 (
m)−1.

Conductors

Conductors have very high conductivity, usually
in the range of 104 to 108 (
m)−1. Metals are
typical conductors. There are two types of special
conductors: perfect conductors and superconduc-
tors. A perfect conductor is a theoretical model
that has infinite conductivity at any frequencies.
Superconductors have very special electromagnetic
properties. For dc electric fields, their conductivity
is virtually infinite; but for high-frequency electro-
magnetic fields, they have complex conductivities.

Magnetic materials

All materials respond to external magnetic fields,
so in a broad sense, all materials are magnetic

materials. According to their permeability values,
materials generally fall into three categories: dia-
magnetic (µ < µ0), paramagnetic (µ ≥ µ0), and
highly magnetic materials mainly including ferro-
magnetic and ferrimagnetic materials. The perme-
ability values of highly magnetic materials, espe-
cially ferromagnetic materials, are much larger
than µ0.

1.3 GENERAL PROPERTIES
OF ELECTROMAGNETIC MATERIALS

Here, we discuss the general properties of typi-
cal electromagnetic materials, including dielectric
materials, semiconductors, conductors, magnetic
materials, and artificial materials. The knowledge
of general properties of electromagnetic materi-
als is helpful for understanding the measurement
results and correcting the possible errors one may
meet in materials characterization. In the final part
of this section, we will discuss other descriptions
of electromagnetic materials, which are important
for the design and applications of electromag-
netic materials.

1.3.1 Dielectric materials

Figure 1.9 qualitatively shows a typical behavior
of permittivity (ε′ and ε′′) as a function of fre-
quency. The permittivity of a material is related to
a variety of physical phenomena. Ionic conduction,
dipolar relaxation, atomic polarization, and elec-
tronic polarization are the main mechanisms that
contribute to the permittivity of a dielectric mate-
rial. In the low frequency range, ε′′ is dominated
by the influence of ion conductivity. The variation
of permittivity in the microwave range is mainly
caused by dipolar relaxation, and the absorption
peaks in the infrared region and above is mainly
due to atomic and electronic polarizations.

1.3.1.1 Electronic and atomic polarizations

Electronic polarization occurs in neutral atoms
when an electric field displaces the nucleus with
respect to the surrounding electrons. Atomic polar-
ization occurs when adjacent positive and negative
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Dipolar and related relaxation phenomena
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Figure 1.9 Frequency dependence of permittivity for a hypothetical dielectric (Ramo et al. 1994). Source:
Ramo, S. Whinnery, J. R and Van Duzer, T. (1994). Fields and Waves in Communication Electronics, 3rd edition,
John Wiley & Sons, Inc., New York
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Figure 1.10 The behavior of permittivity due to elec-
tronic or atomic polarization. Reprinted with permis-
sion from Industrial Microwave Sensors, by Nyfors, E.
and Vainikainen, P., Artech House Inc., Norwood, MA,
USA, www.artechhouse.com

ions stretch under an applied electric field. Actu-
ally, electronic and atomic polarizations are of sim-
ilar nature. Figure 1.10 shows the behavior of per-
mittivity in the vicinity of the resonant frequency
ω0. In the figure, A is the contribution of higher
resonance to ε′

r at the present frequency range, and
2B/ω0 is the contribution of the present resonance
to lower frequencies. For many dry solids, these
are the dominant polarization mechanisms deter-
mining the permittivity at microwave frequencies,
although the actual resonance occurs at a much
higher frequency. If only these two polarizations

are present, the materials are almost lossless at
microwave frequencies.

In the following discussion, we focus on elec-
tronic polarization, and the conclusions for elec-
tronic polarization can be extended to atomic
polarization. When an external electric field is
applied to neutral atoms, the electron cloud of the
atoms will be distorted, resulting in the electronic
polarization. In a classical model, it is similar to a
spring-mass resonant system. Owing to the small
mass of the electron cloud, the resonant frequency
of electronic polarization is at the infrared region
or the visible light region. Usually, there are sev-
eral different resonant frequencies corresponding
to different electron orbits and other quantum-
mechanical effects. For a material with s different
oscillators, its permittivity is given by (Nyfors and
Vainikainen 1989)

εr = 1 +
∑

s

(nse
2)/(ε0ms)

ω2
s − ω2 + jω2αs

(1.34)

where ns is the number of electrons per volume with
resonant frequency ωs , e is the charge of electron,
ms is the mass of electron, ω is the operating angular
frequency, and αs is the damping factor.

As microwave frequencies are far below the
lowest resonant frequency of electronic polariza-
tion, the permittivity due to electronic polariza-
tion is almost independent of the frequency and
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temperature (Nyfors and Vainikainen 1989):

εr = 1 +
∑

s

Nse
2

ε0msω2
s

(1.35)

Eq. (1.35) indicates that the permittivity εr is a
real number. However, in actual materials, small
and constant losses are often associated with this
type of polarization in the microwave range.

1.3.1.2 Dipolar polarization

In spite of their different origins, various types
of polarizations at microwave and millimeter-wave
ranges can be described in a similar qualitative way.
In most cases, the Debye equations can be applied,
although they were firstly derived for the special
case of dipolar relaxation. According to Debye
theory, the complex permittivity of a dielectric can
be expressed as (Robert 1988)

εr = εr∞ + εr0 − εr∞
1 + jβ

(1.36)

with
εr∞ = limω→∞εr (1.37)

εr0 = limω→0εr (1.38)

β = εr0 + 2

εr∞ + 2
ωτ (1.39)

where τ is the relaxation time and ω is the oper-
ating angular frequency. Equation (1.36) indicates
that the dielectric permittivity due to Debye relax-
ation is mainly determined by three parameters, εr0,
εr∞, and τ . At sufficiently high frequencies, as the
period of electric field E is much smaller than the
relaxation time of the permanent dipoles, the orien-
tations of the dipoles are not influenced by electric
field E and remain random, so the permittivity at
infinite frequency εr∞ is a real number. As ε∞ is
mainly due to electronic and atomic polarization,
it is independent of the temperature. As at suffi-
ciently low frequencies there is no phase difference
between the polarization P and electric field E, εr0

is a real number. But the static permittivity εr0

decreases with increasing temperature because of
the increasing disorder, and the relaxation time τ

tan d

tan d

wmax w

er′

er0

er∞

er′

Figure 1.11 The frequency dependence of the com-
plex permittivity according to the Debye relation (Robert
1988). Reprinted with permission from Electrical and
Magnetic Properties of Materials by Robert, P., Artech
House Inc., Norwood, MA, USA, www.artechhouse.com

is inversely proportional to temperature as all the
movements become faster at higher temperatures.

From Eq. (1.36), we can get the real and imag-
inary parts of the permittivity and the dielectric
loss tangent:

ε′
r = εr∞ + εr0 − εr∞

1 + β2
(1.40)

ε′′
r = εr0 − εr∞

1 + β2
β (1.41)

tan δe = εr0 − εr∞
εr0 + εr∞β2

β (1.42)

Figure 1.11 shows the variation of complex per-
mittivity as a function of frequency. At the frequency

ωmax = 1

τ
·
√

εr0

εr∞
· εr∞ + 2

εr0 + 2
, (1.43)

the dielectric loss tangent reaches its maximum
value (Robert 1988)

tan δmax = 1

2
· εr0 − εr∞√

εr0εr∞
(1.44)

The permittivity as a function of frequency is
often presented as a two-dimensional diagram,
Cole–Cole diagram. We rewrite Eq. (1.36) as

ε′
r − εr∞ − jε′′

r = εr0 − εr∞
1 + jβ

(1.45)

As the moduli of both sides of Eq. (1.45) should
be equal, we have

(ε′
r − εr∞)2 + (ε′′

r )
2 = (εr0 − εr∞)2

1 + β2
(1.46)
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After eliminating the term β2 using Eq. (1.40),
we get (Robert 1988)

(ε′
r − εr∞)2 + (ε′′

r )
2 = (ε′

r − εr∞)(εr0 − εr∞)

(1.47)

Eq. (1.47) represents a circle with its center on
the ε′

r axis. Only the points at the top half
of this circle have physical meaning as all the
materials have nonnegative value of imaginary part
of permittivity. The top half of the circle is called
Cole–Cole diagram, as shown in Figure 1.12.

The relaxation time τ can be determined from
the Cole–Cole diagram. According to Eqs. (1.40)
and (1.41), we can get

ε′′
r = β(ε′

r − εr∞) (1.48)

ε′′
r = −(1/β)(ε′

r − εr0) (1.49)

As shown in Figure 1.12, for a given operating
frequency, the β value can be obtained from
the slope of a line pass through the point
corresponding to the operating frequency and the
point corresponding to εr0 or εr∞. After obtaining
the β value, the relaxation time τ can be calculated
from β according to Eq. (1.39).

In some cases, the relaxation phenomenon
may be caused by different sources, and the
dielectric material has a relaxation-time spectrum.
For example, a moist material contains water
molecules bound with different strength. Depend-
ing on the moisture and the strength of binding

er′′

er′er0er∞ er∞ + er0

b = ∞
b = 0

b = 1 Slope − 1/b

Slope b

2

Figure 1.12 The Cole–Cole presentation for a single
relaxation time (Robert 1988). Reprinted with permis-
sion from Electrical and Magnetic Properties of Mate-
rials by Robert, P., Artech House Inc., Norwood, MA,
USA, www.artechhouse.com

water, the material exhibits a distribution of relax-
ation frequencies. Often an empirical constant, a,
is introduced and Eq. (1.36) is modified into the
following form (Robert 1988):

εr = εr∞ + εr0 − εr∞
1 + (jβa)1−a

(1.50)

where a is related to the distribution of β values,
and βa denotes the most possible β value. The
constant a is in the range 0 � a < 1. When a = 0,
Eq. (1.50) becomes Eq. (1.36), and in this case,
there is only single relaxation time. When the value
of a increases, the relaxation time is distributed
over a broader range.

If we separate the real and imaginary parts of
Eq. (1.50) and then eliminate βa , we can find that
the ε′′

r (ε
′
r) curve is also a circle passing through

the points εr0 and εr∞, as shown in Figure 1.13.
The center of the circle is below the ε′

r axis with a
distance d given by

d = εr0 − εr∞
2

tan θ (1.51)

where θ is the angle between the ε′
r axis and the

line connecting the circle center and the point εr∞:

θ = a
π

2
(1.52)

Similar to Figure 1.12, only the points above the ε′
r

axis have physical meaning. Equations (1.51) and
(1.52) indicate that the empirical constant a can be
calculated from the value of d or θ .

d
q

er′′

er′

er0er∞

Figure 1.13 Cole–Cole diagram for a relaxation-time
spectrum. Reprinted with permission from Electrical
and Magnetic Properties of Materials by Robert, P.,
Artech House Inc., Norwood, MA, USA,
www.artechhouse.com
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1.3.1.3 Ionic conductivity

Usually, ionic conductivity only introduces losses
into a material. As discussed earlier, the dielectric
loss of a material can be expressed as a function
of both dielectric loss (ε′′

rd) and conductivity (σ):

ε′′
r = ε′′

rd + σ

ωε0
(1.53)

The overall conductivity of a material may con-
sist of many components due to different conduc-
tion mechanisms, and ionic conductivity is usually
the most common one in moist materials. At low
frequencies, ε′′

r is dominated by the influence of
electrolytic conduction caused by free ions in the
presence of a solvent, for example water. As indi-
cated by Eq. (1.53), the effect of ionic conductivity
is inversely proportional to operating frequency.

1.3.1.4 Ferroelectricity

Most of the dielectric materials are paraelectric.
As shown in Figure 1.14(a), the polarization of
a paraelectric material is linear. Besides, the
ions in paraelectric materials return to their
original positions once the external electric field is
removed; so the ionic displacements in paraelectric
materials are reversible.

Ferroelectric materials are a subgroup of pyro-
electric materials that are a subgroup of piezo-
electric materials. For ferroelectric materials, the

response of polarization versus electric field is non-
linear. As shown in Figure 1.14(b), ferroelectric
materials display a hysteresis effect of polarization
with an applied field. The hysteresis loop is caused
by the existence of permanent electric dipoles in
the material. When the external electric field is ini-
tially increased from the point 0, the polarization
increases as more of the dipoles are lined up. When
the field is strong enough, all dipoles are lined up
with the field, so the material is in a saturation
state. If the applied electric field decreases from the
saturation point, the polarization also decreases.
However, when the external electric field reaches
zero, the polarization does not reach zero. The
polarization at zero field is called the remanent
polarization. When the direction of the electric
field is reversed, the polarization decreases. When
the reversed field reaches a certain value, called
the coercive field, the polarization becomes zero.
By further increasing the field in this reverse direc-
tion, the reverse saturation can be reached. When
the field is decreased from the saturation point, the
sequence just reverses itself.

For a ferroelectric material, there exists a par-
ticular temperature called the Curie temperature.
Ferroelectricity can be maintained only below the
Curie temperature. When the temperature is higher
than the Curie temperature, a ferroelectric material
is in its paraelectric state.

Ferroelectric materials are very interesting sci-
entifically. There are rich physics phenomena near

Electric field Electric field
0

Saturation
all dipoles

Saturation
all dipoles

Remanent
polarization

Coercive field

PolarizationPolarization

(a) (b)

Figure 1.14 Polarization of dielectric properties. (a) Polarization of linear dielectric and (b) typical hysteresis
loop for ferroelectric materials. Modified from Bolton, W. (1992). Electrical and Magnetic Properties of Materials,
Longman Scientific & Technical, Harlow
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Figure 1.15 Schematic view of the temperature de-
pendence of a ferroelectric material near its Curie
temperature

the Curie temperature. As shown in Figure 1.15,
the permittivity of a ferroelectric material changes
greatly with temperature near the Curie tempera-
ture. Dielectric constant increases sharply to a high
value just below the Curie point and then steeply
drops just above the Curie point. For example, bar-
ium titanate has a relative permittivity on the order
of 2000 at about room temperature, with a sharp
increase to about 7000 at the Curie temperature of
120 ◦C. The dielectric loss decreases quickly when
the material changes from ferroelectric state to
paraelectric state. Furthermore, for a ferroelectric
material near its Curie temperature, its dielectric
constant is sensitive to the external electric field.

Ferroelectric materials have application poten-
tials in various fields, including miniature capaci-
tors, electrically tunable capacitors and electrically
tunable phase-shifters. Further discussions on fer-
roelectric materials can be found in Chapter 9.

1.3.2 Semiconductors

There are two general categories of semiconduc-
tors: intrinsic and extrinsic semiconductors. An
intrinsic semiconductor is also called a pure semi-
conductor or an undoped semiconductor. The band
structure shown in Figure 1.2(b) is that of an intrin-
sic semiconductor. In an intrinsic semiconductor,
there are the same numbers of electrons as holes.
Intrinsic semiconductors usually have high resis-
tivity, and they are often used as the starting
materials for fabricating extrinsic semiconductors.

Silicon and germanium are typical intrinsic semi-
conductors.

An extrinsic semiconductor is obtained by
adding a very small amount of impurities to
an intrinsic semiconductor, and this procedure is
called doping. If the impurities have a higher
number of valence electrons than that of the
host, the resulting extrinsic semiconductor is called
type n, indicating that the majority of the mobile
charges are negative (electrons). Usually the host is
silicon or germanium with four valence electrons,
and phosphorus, arsenic, and antimony with five
valence electrons are often used as dopants in
type n semiconductors. Another type of extrinsic
semiconductor is obtained by doping an intrinsic
semiconductor using impurities with a number of
valence electrons less than that of the host. Boron,
aluminum, gallium, and indium with three valence
electrons are often used for this purpose. The
resulted extrinsic semiconductor is called type p,
indicating that the majority of the charge carriers
are positive (holes).

Both the free charge carriers and bounded
electrons in ions in the crystalline lattice have
contributions to the dielectric permittivity ε = ε′ −
jε′′ (Ramo et al. 1994):

ε′ = ε1 − nee
2

m(v2 + ω2)
(1.54)

ε′′ = nee
2v

ωm(v2 + ω2)
(1.55)

where ε1 is related to the effects of the bound
electrons to the positive background, ne is the
density of the charge carriers, v is the collision
frequency, ω is the circular frequency, m is the
mass of the electron, and (nee

2/mv) equals the
low frequency conductivity σ .

At microwave frequency (ω2 	 v2), for semi-
conductors with low to moderate doping, whose
conductivity is usually not higher than 1 S/m, the
second term of Eq. (1.54) is negligible. So the per-
mittivity can be approximated as

ε = ε1 − j
σ

ω
(1.56)

Besides the permittivity discussed above, the
electrical transport properties of semiconductors,
including Hall mobility, carrier density, and con-
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ductivity are important parameters in the devel-
opment of electronic components. Discussions on
electrical transport properties can be found in
Chapter 11.

1.3.3 Conductors

Conductors have high conductivity. If the con-
ductivity is not very high, the concept of per-
mittivity is still applicable, and the value of per-
mittivity can be approximately calculated from
Eqs. (1.54) and (1.55). For good conductors with
very high conductivity, we usually use penetra-
tion depth and surface resistance to describe the
properties of conductors. As the general properties
of normal conductors have been discussed earlier,
here we focus on two special types of conductors:
perfect conductors and superconductors. It should
be noted that perfect conductor is only a theoretical
model, and no perfect conductor physically exists.

A perfect conductor refers to a material within
which there is no electric field at any frequency.
Maxwell equations ensure that there is also no
time-varying magnetic field in a perfect conduc-
tor. However, a strictly static magnetic field should
be unaffected by the conductivity of any value,
including infinite conductivity. Similar to an ideal
perfect conductor, a superconductor excludes time-
varying electromagnetic fields. Furthermore, the
Meissner’s effect shows that constant magnetic
fields, including strictly static magnetic fields, are
also excluded from the interior of a superconduc-
tor. From the London theory and the Maxwell’s
equations, we have

B = B0e−z/λL (1.57)

with the London penetration depth given by

λL =
(

m

µnee2

) 1
2

(1.58)

where B is the magnetic field in the depth z, B0

is the magnetic field at the surface z = 0, m is the
mass of an electron, µ is permeability, ne is the
density of the electron, and e is the electric charge
of an electron. So an important difference between
a superconductor and a perfect conductor is that,
for a superconductor, Eq. (1.57) applies for both
time-varying magnetic field and static magnetic

field; while for a perfect conductor, Eq. (1.57) only
applies for time-varying magnetic fields.

For a superconductor, there exists a critical tem-
perature Tc. When the temperature is lower than
Tc, the material is in superconducting state, and at
Tc, the material undergoes a transition from nor-
mal state into superconducting state. A material
with low Tc is called a low-temperature super-
conducting (LTS) material, while a material with
high Tc is called a high-temperature superconduct-
ing (HTS) material. LTS materials are metallic
elements, compounds, or alloys, and their critical
temperatures are usually below about 24 K. HTS
materials are complex oxides and their critical tem-
perature may be higher than 100 K. HTS materials
are of immediate interest for microwave applica-
tions because of their very low surface resistance at
microwave frequency at temperatures that can be
readily achieved by immersion in liquid nitrogen
or with cryocoolers. In contrast to metallic super-
conductors, HTS materials are usually anisotropic,
exhibiting strongest superconductive behavior in
preferred planes. When these materials are used
in planar microwave structures, for example, thin-
film transmission lines or resonators, these pre-
ferred planes are formed parallel to the surface
to facilitate current flow in the required direc-
tion (Lancaster 1997; Ramo et al. 1994).

The generally accepted mechanism for super-
conductivity of most LTS materials is phonon-
mediated coupling of electrons with opposite spin.
The paired electrons, called Cooper pairs, travel
through the superconductor without being scat-
tered. The BCS theory describes the electron pair-
ing process, and it explains the general behav-
ior of LTS materials very well. However, despite
the enormous efforts so far, there is no theory
that can explain all aspects of high-temperature
superconductivity. Fortunately, an understanding
of the microscopic theory of superconductivity in
HTS materials is not required for the design of
microwave devices (Lancaster 1997; Shen 1994).
In the following, we discuss some phenomeno-
logical theories based on the London equations
and the two-fluid model. We will introduce some
commonly accepted theories for explaining the
responses of superconductors to electromagnetic
fields, and our discussion will be focused on the



18 Microwave Electronics: Measurement and Materials Characterization

penetration depth, surface impedance, and complex
conductivity of superconductors.

1.3.3.1 Penetration depth

The two-fluid model is often used in analyzing
superconductors, and it is based on the assumption
that there are two kinds of fluids in a superconduc-
tor: a superconductive current with a carrier den-
sity ns and a normal current with a carrier density
nn, yielding a total carrier density n = ns + nn. At
temperatures below the transition temperature Tc,
the equilibrium fractions of the normal and the
superconducting electrons vary with the absolute
temperature T :

nn

n
=

(
T

Tc

)4

(1.59)

ns

n
= 1 −

(
T

Tc

)4

(1.60)

From Eqs. (1.59) and (1.60), we can get the
relationship between the penetration depth λL and
temperature T :

λL(T ) = λL(0)

[
1 −

(
T

Tc

)4
]− 1

2

(1.61)

with

λL(0) =
√

ms

µnq2
s
. (1.62)

where ms and qs are the effective mass and
electrical charge of the superconductive carriers.
Eq. (1.62) indicates that the penetration depth has
a minimum value of penetration depth λL(0) at
T = 0 K.

1.3.3.2 Surface impedance and complex
conductivity

The surface impedance is defined as the charac-
teristic impedance seen by a plane wave incident
perpendicularly upon a flat surface of a conductor.
According to Eqs. (1.32) and (1.33), the surface
impedance of normal conductors, such as silver,
copper, or gold, can be calculated from their con-
ductivity σ . For a normal conductor, the value of
its conductivity σ is a real number, and the sur-
face resistance Rs and the surface reactance Xs are

equal, and they are proportional to the square root
of the operating frequency ω1/2.

If we want to calculate the impedance of a super-
conductor using Eq. (1.32), the concept of complex
conductivity should be introduced. According to
the two-fluid model, there are two types of cur-
rents: a superconducting current with volume den-
sity Js and a normal current with volume density
Jn. Correspondingly, the conductivity σ also con-
sists of two components: superconducting conduc-
tivity σs and normal conductivity σn, respectively.
The total conductivity of a superconductor is given
by σ = σs + σn.

The superconducting conductivity σs is purely
imaginary and does not contribute to the loss:

σs = 1

jωµλ2
L

(1.63)

While the normal conductivity σn contains both
real and imaginary components and the real part
contributes to the loss:

σn = σn1 − jσn2 =
(

nnq
2
n

mn

)
τ

1 + jωτ

=
(

nnq
2
nτ

mn

)
1 − jωτ

1 + (ωτ )2
(1.64)

where qn is the electrical charge for the normal
carriers, τ is the relaxation time for electron
scattering, and mn is the effective mass of the
normal carriers. Therefore, the total conductivity
σ of a superconductor is then obtained:

σ = σn + σs =
(

nnq
2
nτ

mn

)
1

1 + (ωτ )2

− j

(
nnq

2
nτ

mn

)
ωτ

1 + (ωτ )2
− j

1

ωµλ2
L

(1.65)

At microwave frequencies (ωτ 	 1), Eq. (1.65)
can be simplified as

σ = σ1 − jσ2 = nnq
2
nτ

mn
− j

1

ωµλ2
L

(1.66)

where σ1 and σ2 are the real and imaginary
components of the complex conductivity. The
real part of complex conductivity represents the
loss due to the normal carriers, whereas its
imaginary part represents the kinetic energy of the
superconductive carriers.
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From Eqs. (1.32), (1.33) and Eq. (1.66), we can
calculate the surface impedance of a superconductor:

Zs = Rs + jXs

=
√

jωµ

σ1 − jσ2
= j

√
ωµ

σ2

(
1 + j

σ1

σ2

)− 1
2
(1.67)

As usually σ1 	 σ2, Eq. (1.67) can be simpli-
fied as

Zs = Rs + jXs

=
√

ωµ

σ2

(
σ1

2σ2
+ j

)

= ω2µ2λ3
Lnnq

2
nτ

2mn
+ jωµλL (1.68)

Rs = 1

2
ω2µ2λ3

LσN

(nn

n

)
(1.69)

Xs = ωµλL (1.70)

where σN is the conductivity of the superconductor
in its normal state:

σN = nq2
nτ

mn
(1.71)

σn = nnq
2
nτ

mn
= σN

nn

n
= σN

(
T

Tc

)4

(1.72)

According to Eqs. (1.67) to (1.72), the two-
fluid model leads to the prediction that the
surface resistance Rs is proportional to ω2 for
superconductors, which is quite different from the
ω1/2 frequency dependence for normal conductors.

1.3.4 Magnetic materials

As the penetration depth of metals at microwave
frequencies is on the order of a few microns,
the interior of a metallic magnetic material does
not respond to a microwave magnetic field.
So, metallic magnetic materials are seldom used
as magnetic materials at microwave frequencies.
Here, we concentrate on magnetic materials with
low conductivity.

The frequency dependence of magnetic materi-
als is quite complicated (Smit 1971; Fuller 1987),
and some of the underlying mechanisms have not
been fully understood. Figure 1.16 shows the typ-
ical magnetic spectrum of a magnetic material.
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Figure 1.16 Frequency dependence of permeability
for a hypothetical ferromagnetic material

At different frequency ranges, different physics
phenomena dominate. In the low frequency range
(f < 104 Hz), µ′ and µ′′ almost do not change
with frequency. In the intermediate frequency
range (104 < f < 106 Hz), µ′ and µ′′ change
a little, and for some materials, µ′′ may have
a maximum value. In the high-frequency range
(106 < f < 108 Hz), µ′ decreases greatly, while
µ′′ increase quickly. In the ultrahigh frequency
range (108 < f < 1010 Hz), ferromagnetic reso-
nance usually occurs. In the extremely high fre-
quency range (f > 1010 Hz), the magnetic proper-
ties have not been fully investigated yet.

1.3.4.1 Magnetization and hysteresis loop

Figure 1.17 shows the typical relationship between
the magnetic flux density B in a magnetic material
and the magnetic field strength H . As discussed in

Saturation

Saturation

B

H
HcHc

Br

Br

Bm

0

Figure 1.17 The hysteresis loop for a magnetic
material
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Section 1.2.1.2, at the starting point 0, the domains
are randomly orientated, so the net magnetic flux
density is zero. The magnetic flux density B

increases with the increase of the magnetic field
strength H , as the domains close to the direction
of the magnetic field grow. This continues until
all the domains are in the same direction with the
magnetic field H and the material is thus saturated.
At the saturation state, the flux density reaches
its maximum value Bm. When the magnetic field
strength is reduced to zero, the domains in the
material turn to their easy-magnetization directions
close to the direction of the magnetic field H, and
the material retains a remanence flux density Br.
If we reverse the direction of the magnetic field,
the domains grow in the reverse direction. When
the numbers of the domains in the H direction
and opposite the H direction are equal, that is, the
flux density becomes zero, the value of the applied
magnetic field is called coercive field Hc. Further
increase in the strength of the magnetic field in the
reverse direction results in further growth of the
domains in the reverse direction until saturation in
the reverse direction is achieved. When this field
is reduced to zero, and then reversed back to the
initial direction, we can get a closed hysteresis loop
of the magnetic material.

In most cases, magnetic materials are anisotropic
for magnetization. For a hexagonal ferrite, there
exists an easy-magnetization direction and a hard-
magnetization direction. As shown in Figure 1.18,
in the easy-magnetization direction, saturation can

2

1

0 Ha

Ms

M

H

Figure 1.18 Magnetization curves for an anisotropic
magnetic material. Curve 1 is the magnetization in
the easy-magnetization direction and Curve 2 is the
magnetization in the hard-magnetization direction

c-axis

60°
q

j

Figure 1.19 Preferential directions for a ferroxplana
material (Smit 1971). Source: Smit, J. (editor), (1971),
Magnetic Properties of Materials, McGraw-Hill,
New York

be easily achieved, while in the hard-magnetization
direction, high magnetic field is required for
saturation. The magnetic field Ha corresponding
to the cross point of the two magnetization curves
is called anisotropic field.

There are two typical types of anisotropies
of magnetic materials: axis anisotropy and plane
anisotropy for a hexagonal structure. Figure 1.19
shows the potential directions for a ferrox-
plana material. If the easy-magnetization direc-
tion is along the c-axis, the material has uniaxial
anisotropy, usually described by the anisotropic
field Ha. If the easy-magnetization direction is in
the c-plane, the material has planar anisotropy.
Planar anisotropy is usually described by the
anisotropic fields Hθ and Hϕ , where Hθ is the
magnetic field required for turning a domain in
one preferential magnetization direction in the c-
plane to another preferential magnetization direc-
tion in the c-plane through the hard-magnetization
c-axis, and Hϕ is the magnetic field required for
turning a domain in one preferential magnetiza-
tion direction in the c-plane to another preferential
magnetization direction in the c-plane within the
easy-magnetization plane.

The coercive field Hc is an important param-
eter in describing the properties of a magnetic
material. The value of coercive field Hc is mainly
governed by two magnetization phenomena: rota-
tion of domain and movement of domain wall. It
is related to intrinsic magnetic properties, such as
anisotropic field and domain-wall energy, and it is
also related to the microstructures of the material,
such as grain size and domain-wall thickness.
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Besides, the amount and distribution of impurities
in the material also affects the value of the coercive
field Hc.

1.3.4.2 Definitions of scalar permeability

As the relationship between the magnetic flux
density B and the magnetic field strength H is
nonlinear, the permeability is not a constant but
varies with the magnetic field strength. Usually, it
is not necessary to have a complete knowledge of
the magnetic field dependence of permeability. In
the mathematical treatment of general applications,
the relative permeability is simply a number
denoted by the symbol µr, but for different
cases, permeability has different physical meaning.
On the basis of the hysteresis loop shown in
Figure 1.20, we can distinguish four definitions
of scalar permeability often used in materials
research (Robert 1988).

The initial relative permeability is defined as

µri = 1

µ0
limH→0

B

H
(1.73)

It is applicable to a specimen that has never
been subject to irreversible polarization. It is a

Slope: m0 mrm

Slope: m0 mri

(Hm, Bm)
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∆ B

∆ H

Br

Hc−Hc

−Br

H

Figure 1.20 Definitions of four scalar permeabili-
ties (Robert 1988). Reprinted with permission from
Electrical and Magnetic Properties of Materials, by
Robert, P., Artech House Inc., Norwood, MA, USA,
www.artechhouse.com
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Figure 1.21 The dependence of permeability on mag-
netic field

theoretical value corresponding to a zero field,
and in a strict meaning, it cannot be directly
measured. Usually, the initial relative permeability
is determined by extrapolation. In practice, µri is
often given as the relative permeability measured
in a weak field lying between 100 and 200 A/m.

Figure 1.21 shows the relationship between
(dB/dH ) and H corresponding to the dashed line
in Figure 1.20. The (dB/dH ) value point at H = 0
equals the initial permeability discussed above. At
the point Hm, which satisfies

d2B

dH 2
= 0, (1.74)

the value of (dB/dH ) reaches its maximum value,
which is defined as maximum permeability (µ0µrm),
as shown in Figures 1.20 and 1.21. The value of µrm

can be taken as a good approximation of the relative
permeability for a low-frequency alternating field
with amplitude Hm.

Now, we consider the case when an alternating
field H2 is superimposed on a steady field H1

parallel to H2. If H2 � H1, the hysteresis loop is
simply translated without substantial deformation.
If H2 	 H1, there will be an eccentric local loop,
which is always contained within the main cycle.
In the presence of a superimposed steady field
H1, the differential relative permeability ur� is
defined by

µr� = 1

µ0

�B

�H
(1.75)

where �H is the amplitude of the alternating
field and �B is the corresponding variation of the
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magnetic induction. The reversible relative perme-
ability urr is the value of the differential relative
permeability for an alternating field tending to zero

µrr = 1

µ0
lim�H→0

�B

�H
(1.76)

1.3.4.3 Soft and hard magnetic materials

According to the values of their coercive fields,
magnetic materials can be classified into soft and
hard magnetic materials. Figure 1.22(a) shows a
typical hysteresis loop of a soft magnetic material.
The term soft is applied to a magnetic material
that has a low coercive field, so only a small
magnetic field strength is required to demagnetize
or reverse the direction of the magnetic flux
in the material. Usually, soft magnetic material
has high permeability. The area enclosed by the
hysteresis loop is usually small, so little energy is
lost in the magnetization cycle. In a microscopic
scale, the domains in a soft magnetic material can
easily grow and rotate. Soft magnetic materials
are widely used for electrical applications, such as
transformer cores. Figure 1.22(b) shows a typical
hysteresis curve for a hard magnetic material. A
hard magnetic material has a high coercive field, so
it is difficult to demagnetize it. The permeability of
a hard magnetic material is usually small. Besides,
a hard magnetic material usually has a large area
enclosed by the hysteresis loop. Hard magnetic
materials are often used as permanent magnets.

It should be emphasized that the coercive field
Hc is the criteria for the classification of soft and

00
HH

BB

(a) (b)

Figure 1.22 Hysteresis loops. (a) Soft magnetic mate-
rials and (b) hard magnetic materials. Source: Bolton,
W. (1992), Electrical and Magnetic Properties of Mate-
rials, Longman Scientific & Technical, Harlow
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Figure 1.23 Rectangular hysteresis loops. (a) Soft
magnetic material and (b) hard magnetic material

hard magnetic materials. Generally speaking, the
coercive field of a soft magnetic material is less than
ten oersted, while that of a hard magnetic material
is larger than several hundred oersted. It should be
noted that remanence flux density Br is not a criteria
for the classification of soft and hard magnetic
materials. A magnetic material with rectangular
hysteresis loop has a relatively high value of Br,
but high value of Br does not mean high value of
Hc. As shown in Figure 1.23(a) and (b), both soft
and hard magnetic materials can have rectangular
hysteresis loops.

For a material with rectangular hysteresis loop,
when the magnetizing field is removed, the flux
density almost remains unchanged, so that the
remanence flux density is virtually the same as the
saturation one. This means that, once the material
is magnetized, it retains most of the flux density
when the magnetizing field is switched off. These
materials are often used in magnetic recording.

1.3.4.4 Magnetic resonance

Magnetic resonance is an important loss mecha-
nism of magnetic materials, and should be taken
into full consideration in the application of mag-
netic materials. For most of the magnetic materials,
the energy dissipation at microwave frequencies is
related to natural resonance and wall resonance.

Natural resonance

As shown in Figure 1.24, under a dc magnetic field
H and ac magnetic field h, the magnetic moment M
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h

q

M

H

Figure 1.24 Precession of magnetic moment

makes a precession around the dc magnetic field H,
and the ac magnetic field h provides the energy to
compensate the energy dissipation of the precession.
This is the origin of ferromagnetic resonance, and
can be described by the Gilbert equation:

dM
dt

= −γ M × H + λ

M
M × dM

dt
(1.77)

where γ = 2.8 MHz/Oe is the gyromagnetic ratio
and λ is the damping coefficient. The dc magnetic
field H includes external dc magnetic field H0,
anisotropic field Ha, demagnetization field Hd, and
so on. If H0 = 0, the ferromagnetic resonance is
usually called natural resonance. In the following
text, we concentrate on natural resonance of

ferrites and ferromagnetic resonance under the
application of external dc magnetic field will be
discussed in Chapter 8.

The resonance frequency fr of a natural res-
onance is mainly determined by the anisotropic
field of material. For a material with uniaxial
anisotropy, the resonance frequency is given by

fr = γHa (1.78)

For a material with planar anisotropic anisotropy,
the resonance frequency is given by

fr = γ (Hθ · Hϕ)1/2 (1.79)

There are two typical types of resonances:
Lorentzian type and Debye type. It should be indi-
cated that, in actual materials, natural resonance
may be in a type between the Lorentzian one and
the Debye one. The Lorentzian type occurs when
λ is much smaller than one, and it is also called
resonant type. From Eq. (1.77), we can get

µr = 1 + χ0

1 − (f/fr)2 + j(2λf/fr)
(1.80)

where χ0 is the static susceptibility of the mate-
rial, fr is the resonance frequency, and f is
the operation frequency. Figure 1.25(a) shows a
typical permeability spectrum of a resonance with
Lorentzian type.
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Figure 1.25 Two types of permeability spectrums. (a) Lorentzian type. The results are calculated based on
Eq. (1.80) with λ = 0.1 and fa = fr. (b) Debye type. The results are calculated based on Eq. (1.81) with fa = fr/λ
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The Debye type occurs when λ is much larger
than one. The Debye type is also called relaxation
type. From Eq. (1.77), we can get

µr = 1 + A

1 + j(λf/fr)
(1.81)

Figure 1.25(b) shows a typical permeability spec-
trum of Debye type.

The Snoek limit describes the relationship
between the resonant frequency and permeability.
For a material with uniaxial anisotropy, we have

fr · (µr − 1) = 2

3
γMs (1.82)

where Ms is the saturated magnetization. For
a material with a given resonance frequency,
higher saturated magnetization corresponds to
higher permeability. For a material with planar
anisotropy, the Snoek limit is in the form of

fr · (µr − 1) = 1

2
γMs ·

(
Hθ

Hϕ

)1/2

(1.83)

Eq. (1.83) indicates that planar anisotropy provides
more flexibility for the design of materials with
expected resonant frequency and permeability.

Wall resonance

If a dc magnetic field H is applied to a magnetic
material, the domains in the directions close to
the direction of the magnetic field grow, while
the domains in the directions close to the opposite
directions of the magnetic field shrink. The growth
and shrink of domains are actually the movements
of the domain wall. If an ac magnetic field h
is applied, the domain wall will vibrate around
its equilibrium position, as shown in Figure 1.26.
When the frequency of the ac magnetic field
is equal to the frequency of the wall vibration,
resonance occurs, and such a resonance is usually
called wall resonance. Rado proposed a relationship
between the resonance frequency f0 and relative
permeability µr (Rado 1953):

fr · (µr − 1)1/2 = 2γMs ·
(

2δ

D

)1/2

(1.84)

Ms Ms

Z

 =

h

dZ
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Figure 1.26 Mechanism of wall resonance

where δ and D are the thickness and the width of
the domain wall respectively. Ms is the magneti-
zation within a domain and it equals the saturated
magnetization of the material.

The movement of domain wall is similar to a
forced harmonic movement. So the wall resonance
can be described using spring equation:

mw
d2Z

dt2
+ β

dZ

dt
+ αZ = 2Mshejωt (1.85)

where mw is the effective mass of the domain
wall, β is the damping coefficient, α is the
elastic coefficient, and h is the amplitude of the
microwave magnetic field. For a Lorentzian-type
resonance, we have

µr = 1 + A

1 − (f/fβ)2 + j(f/fτ )
(1.86)

where the intrinsic vibration frequency fβ is
given by

fβ = (α/mw)1/2 (1.87)

and the relaxation frequency fτ is given by

fτ = α/β (1.88)

For most of the wall resonance, fβ � fτ ,
Eq. (1.86) becomes

µr = 1 + A

1 + j(f/fτ )
(1.89)

Eq. (1.89) represents a Debye-type resonance.

1.3.5 Metamaterials

Electromagnetic metamaterials are artificial struc-
tures with unique or superior electromagnetic prop-
erties. The special properties of metamaterials



Electromagnetic Properties of Materials 25

come from the inclusion of artificially fabricated,
extrinsic, low-dimensional inhomogeneities. The
development of metamaterials includes the design
of unit cells that have dimensions commensurate
with small-scale physics and the assembly of the
unit cells into bulk materials exhibiting desired
electromagnetic properties. In recent years, the
research on electromagnetic metamaterials is very
active for their applications in developing func-
tional electromagnetic materials. In the following,
we discuss three examples of metamaterials: chi-
ral materials, left-handed materials, and photonic
band-gap materials.

1.3.5.1 Chiral materials

Chiral materials have received considerable atten-
tion during recent years (Jaggard et al. 1979; Mar-
iotte et al. 1995; Theron and Cloete 1996; Hui and
Edward 1996) and might have a variety of poten-
tial applications in the field of microwaves, such
as microwave absorbers, microwave antennae, and
devices (Varadan et al. 1987; Lindell and Sihvola
1995). (Lakhtakia et al. 1989) has given a fairly
complete set of references on the subject. (Bokut
and Federov 1960; Jaggard et al. 1979; Silver-
man 1986; Lakhtakia et al. 1986) have studied the
reflection and refraction of plane waves at planar
interfaces involving chiral media. The possibil-
ity of designing broadband antireflection coatings
with chiral materials was addressed by (Varadan
et al. 1987). These researchers have shown that the
introduction of chirality radically alters in scatter-
ing and absorption characteristics. In these papers,
the authors have used assumed values of chirality
parameter, permittivity, and permeability in their
numerical results.

(Winkler 1956; Tinoco and Freeman 1960) have
studied the rotation and absorption of electro-
magnetic waves in dielectric materials contain-
ing a distribution of large helices. Direct and
quantitative measurements are made possible with
the recent advances in microwave components
and measurement techniques. Urry and Krivacic
(1970) have measured the complex, frequency
dependent values of (nL − nR) for suspensions of
optically active molecules, where nL and nR are
the refractive indices for left- circularly polarized

(LCP) and right- circularly polarized (RCP) waves.
LCP and RCP waves propagate with different
velocities and attenuation in a chiral medium.
Still, these differential measurements are unable to
characterize completely the chiral medium. More
recently, (Guire et al. 1990) has studied experi-
mentally the normal incidence reflection of lin-
early polarized waves of metal-backed chiral com-
posite samples at microwave frequencies. The
beginning of a systematic experiment work came
from (Umari et al. 1991) when they reported mea-
surements of axial ratio, dichroism, and rotation
of microwaves transmitted through chiral samples.
However, in order to characterize completely the
chiral composites, the chirality parameter, permit-
tivity, and permeability have to be determined.

The chirality parameter, permittivity, and perme-
ability can be determined from inversion of three
measured scattering parameters. The new chirality
parameter can be obtained only with the substi-
tution of new sets of constitutive equations (Ro
1991; Sun et al. 1998),

D = εE + βε∇ × E and (1.90)

B = µH + βµ∇ × H , or (1.91)

D = εE + iξB and (1.92)

H = iξE + B/µ. (1.93)

Here, ε and µ are the usual permittivity and perme-
ability respectively, while β and ξ are the chirality
parameter that results from the handedness or lack
of inversion symmetry in the microstructure of the
medium. The values of chirality parameter, per-
mittivity, and permeability vary with frequency,
volume concentration of the inclusions, geometry
and size of the inclusion, and the electromagnetic
properties of the host medium. Further discussion
on chiral materials can be found in Chapter 10.

1.3.5.2 Left-handed materials

A left-handed material is a material whose perme-
ability and permittivity are simultaneously negative.
It should be noted that the term “left handed” does
not refer to either chirality or symmetry breaking.
These other phenomena are often referred to as “left
handed”, but are distinct from the effects that we are
discussing in left-handed materials.
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All the normal materials are “right handed”,
which means that the relationship between the fields
and the direction of wave vector follows the “right-
hand rule”. If the fingers of the right hand represent
the electric field of the wave, and if the fingers curl
around to the base of the right hand, representing
the magnetic field, then the outstretched thumb indi-
cates the direction of the flow of the wave energy.
However, for a left-handed material, the relationship
between the fields and the direction of wave vector
follows the “left-hand rule”.

Left-handed materials were first envisioned in
the 1960s by Russian physicist Victor Veselago of
the Lebedev Physics Institute. He predicted that
when light passed through a material with both
a negative dielectric permittivity and a negative
magnetic permeability, novel optical phenomena
would occur, including reversed Cherenkov radi-
ation, reversed Doppler shift, and reversed Snell
effect. Cherenkov radiation is the light emitted
when a charged particle passes through a medium,
under certain conditions. In a normal material, the
emitted light is in the forward direction, while in a
left-handed material, light is emitted in a reversed
direction. In a left-handed material, light waves are
expected to exhibit a reversed Doppler effect. The
light from a source coming toward you would be
reddened while the light from a receding source
would be blue shifted.

The Snell effect would also be reversed at the
interface between a left-handed material and a
normal material. For example, light that enters a
left-handed material from a normal material will
undergo refraction, but opposite to what is usually
observed. The apparent reversal comes about
because a left-handed material has a negative index
of refraction. Using a negative refractive index
in Snell’s law provides the correct description of
refraction at the interface between left- and right-
handed materials. As a further consequence of the
negative index of refraction, lenses made from left-
handed materials will produce unusual optics. As
shown in Figure 1.27, a flat plate of left-handed
material can focus radiation from a point source
back to a point. Furthermore, the plate can amplify
the evanescent waves from the source and thus
the sub-wavelength details of the source can be
restored at the image (Pendry 2000; Rao and Ong

(a) (b)

Figure 1.27 Effects of flat plates. (a) Flat plate made
from a normal material and (b) flat plate made from a
left-handed material

2003a, 2003b). Therefore, such a plate can work
as a superlens.

Left-handed materials do not exist naturally. In
Veselago’s day, no actual left-handed materials
were known. In the 1990s, John Pendry of Imperial
College discussed how negative-permittivity mate-
rials could be built from rows of wires (Pendry
et al. 1996) and negative-permeability materials
from arrays of tiny resonant rings (Pendry et al.
1999). In 2000, David Smith and his colleagues
constructed an actual material with both a neg-
ative permittivity and a negative permeability at
microwave frequencies (Smith et al. 2000). An
example of a left-handed material is shown in
Figure 1.28. The raw materials used, copper wires
and copper rings, do not have unusual properties of
their own and indeed are nonmagnetic. But when

Figure 1.28 A left-handed material made from wires
and rings. This picture is obtained from the homepage
for Dr David R. Smith (http://physics.ucsd.edu/∼drs/
index.html)



Electromagnetic Properties of Materials 27

incoming microwaves fall upon alternating rows of
the rings and wires, a resonant reaction between
the light and the whole of the ring-and-wire array
sets up tiny induced currents, making the whole
structure “left handed”. The dimensions, geomet-
ric details, and relative positioning of the wires
and the rings strongly influence the properties of
the left-handed material.

However, the surprising optical properties of
left-handed materials have been thrown into doubt
by physicists. Some researchers said that the claims
that left-handed materials could act as perfect
lenses violate the principle of energy conserva-
tion (Garcia and Nieto-Vesperinas 2002). Mean-
while, some researchers indicated that “negative
refraction” in left-handed materials would breach
the fundamental limit of the speed of light (Valanju
et al. 2002). But other researchers in the field
defended their claims on left-handed materials.
The debate should generate some light, and stim-
ulate better experiments, which would benefit the
understanding and utilization of this type of meta-
materials. If the negative refraction and perfect
lensing of left-handed materials can be proven,
left-handed materials could have a wide range of
applications including high-density data storage
and high-resolution optical lithography in the semi-
conductor industry.

Finally, it should be indicated that many research-
ers in this field object to the term “left handed,”

which often refers to the structures exhibiting chi-
rality. New descriptive terms have been introduced
to refer to materials with simultaneously nega-
tive permittivity and permeability. “Backward wave
materials” is used to signify the characteristic that
materials with negative permittivity and permeabil-
ity reverse the phase and group velocities. “Materi-
als with negative refractive index” emphasizes the
reversed Snell effect. And “double negative materi-
als” is a quick and easy way to indicate that both
the permittivity and permeability of the material
are negative.

1.3.5.3 Photonic band-gap materials

A photonic band-gap (PBG) material, also called
photonic crystal, is a material structure whose
refraction index varies periodically in space. The
periodicity of the refraction index may be in one
dimension, two dimensions, or three dimensions.
The name is applied since the electromagnetic
waves with certain wavelengths cannot propagate
in such a structure. The general properties of a
PBG structure are usually described by the rela-
tionship between circular frequency and wave vec-
tor, usually called wave dispersion. The wave dis-
persion in a PBG structure is analogous to the
band dispersion (electron energy versus wave vec-
tor) of electrons in a semiconductor. Figure 1.29(a)
schematically shows a three-dimensional PBG
structure, which is an array of dielectric spheres
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Figure 1.29 A PBG structure formed by dielectric spheres arranged in a diamond lattice. The background is air.
The refraction index of the spheres is 3.6 and the filling ratio of the spheres is 34 %. The frequency is given in unit
of c/a, where a is the cubic constant of the diamond lattice and c is the velocity of light in vacuum. (a) Schematic
illustration of the three-dimensional structure and (b) wave dispersion of the PBG structure. Theoretical results are
from (Ho et al. 1990). Source: Ho, K. M., Chan, C. T., and Soukoulis, C. (1990). “Existence of a photonic gap in
periodic dielectric structures”, Phys. Rev. Lett. 65(25), 3152–3155.  2003 The American Physical Society
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surrounded by vacuum. The photonic band of the
structure is shown in Figure 1.29(b).

The origin of the band gap stems from the very
nature of wave propagation in periodic structures.
When a wave propagates in a periodic structure,
a series of refraction and reflection processes
occur. The incident wave and the reflected wave
interfere and may reinforce or cancel one another
out according to their phase differences. If the
wavelength of the incident wave is of the same
scale as the period of the structure, very strong
interference happens and perfect cancellation may
be achieved. As a result, the wave is attenuated and
cannot propagate through the periodic structure.
In a broad sense, the electronic band gaps of
semiconductors, where electron waves propagate
in periodic electronic potentials, also fall into
this category. Owing to the similarity of PBGs
and the electronic band gaps, PBG materials
for electromagnetic waves can be treated as
semiconductors for photons.

The first PBG phenomenon was observed by
Yablonovitch and Gmitter in an artificial microstruc-
ture at microwave frequency (Yablonovitch and
Gmitter 1989). The microstructure was a dielectric
material with about 8000 spherical air “atoms”. The
air “atoms” were arranged in a face-centered-cubic
(fcc) lattice. Thereafter, many other structures and
material combinations were designed and fabricated
with superior PBG characteristics and greater man-
ufacturability.

PBG materials are of great technological and theo-
retical importance because their stop-band and pass-
band frequency characteristics can be used to mold
the flow of electromagnetic waves (Joannopoulos
et al. 1995). Extensive applications have been
achieved using the concept of PBG in various fields,
especially in optoelectronics and optical communi-
cation systems. The PBG is the basis of most appli-
cations of PBG materials, and it is characterized by
a strong reflection of electromagnetic waves over a
certain frequency range and high transmission out-
side this range. The center frequency, depth, and
width of the band gap can be tailored by modify-
ing the geometry and arrangement of units and the
intrinsic properties of the constituent materials.

It should be noted that PBG structures also exist
in the nature. The sparking gem opal, colorful

wings of butterflies, and the hairs of a wormlike
creature called the sea mouse have typical PBG
structures, and their lattice spacing is exactly
right to diffract visible light. It should also be
noted that, although “photonic” refers to light,
the principle of the band gap applies to all the
waves in a similar way, no matter whether they are
electromagnetic or elastic, transverse or longitude,
vector or scalar (Brillouin 1953).

1.3.6 Other descriptions of electromagnetic
materials

Besides the microscopic and macroscopic param-
eters discussed above, in materials research and
engineering, some other macroscopic properties
are often used to describe materials.

1.3.6.1 Linear and nonlinear materials

Linear materials respond linearly with externally
applied electric and magnetic fields. In weak
field ranges, most of the materials show linear
responses to applied fields. In the characterization
of materials’ electromagnetic properties, usually
weak fields are used, and we assume that the
materials under study are linear and that the
applied electric and magnetic fields do not affect
the properties of the materials under test.

However, some materials easily show nonlinear
properties. One typical type of nonlinear material is
ferrite. As discussed earlier, owing to the nonlinear
relationship between B and H , if different strength
of magnetic field H is applied, different value
of permeability can be obtained. High-temperature
superconducting thin films also easily show non-
linear properties. In the characterization of HTS
thin films and the development microwave devices
using HTS thin films, it should be kept in mind
that the surface impedance of HTS thin films are
dependent on the microwave power.

1.3.6.2 Isotropic and anisotropic materials

The macroscopic properties of an isotropic mate-
rial are the same in all orientations, so they can be
represented by scalars or complex numbers. How-
ever, the macroscopic properties of an anisotropic
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material have orientation dependency, and they are
usually represented by tensors or matrixes. Some
crystals are anisotropic because of their crystalline
structures. More discussion on anisotropic materi-
als can be found in Chapter 8, and further discus-
sion on this topic can be found in (Kong 1990).

1.3.6.3 Monolithic and composite materials

According to the number of constituents, materi-
als can be classified into monolithic or composite
materials. A monolithic material has a single con-
stituent. While a composite material has several
constituents, and usually one of the constituents is
called host medium, the others are called inclusions
or fillers. The properties of a composite material
are related to the properties and fractions of the
constituents, so the electromagnetic properties of
composites can be tailored by varying the proper-
ties and fractions of the constituents. The study of
the electromagnetic properties of composite mate-
rials has attracted much attention, with the aim of
developing composites with expected electromag-
netic properties.

The prediction of the properties of a composite
from those of the constituents of the composite
is a long-standing problem for theoretical and
experimental physics. The mixing laws relating
the macroscopic electromagnetic properties of
composite materials to those of their individual
constituents have been a subject of enquiry since
the end of the nineteenth century. The ability to
treat a composite with single effective permittivity
and effective permeability is essential to work
in many fields, for example, remote sensing,
industrial and medical applications of microwaves,
materials science, and electrical engineering.

The mean-field method and effective-medium
method are two traditional approaches in predict-
ing the properties of composite materials (Banhegyi
1994). In the mean-field method, we calculate the
upper and lower limits of properties represent-
ing the parallel and perpendicular arrangements of
the constituents. A practical method is to approxi-
mate the composite structure by elements of ellip-
soidal shape, and various techniques are avail-
able to calculate the composite permittivity. For
isotropic composites, closer limits can be calculated
and, depending on morphological knowledge, more

sophisticated limits are possible. In an effective-
medium method, we assume the presence of an
imaginary effective medium, whose properties are
calculated using general physical principles, such as
average fields, potential continuity, average polariz-
ability, and so on. Detailed discussion on effective-
medium theory can be found in (Choy 1999).

To achieve more accurate prediction, numerical
methods are often used in predicting the properties
of composite materials. Numerical computation of
the effective dielectric constant of discrete random
media is important for practical applications such
as geophysical exploration, artificial dielectrics,
and so on. In such dielectrics, a propagating
electromagnetic wave undergoes dispersion and
absorption. Some materials are naturally absorptive
owing to viscosity, whereas inhomogeneous media
exhibit absorption due to geometric dispersion or
multiple scattering. The scattering characteristics
of the individual particles (or the inclusions) in
the composite could be described by a transition
or T-matrix and the frequency-dependent dielectric
properties of the composite are calculated using
multiple scattering theory and appropriate correla-
tion functions between the particles (Varadan and
Varadan 1979; Bringi et al. 1983; Varadan et al.
1984; Varadan and Varadan 1985).

More discussions on monolithic and compos-
ite materials can be found in (Sihvola 1999; Nee-
lakanta 1995; Priou 1992; Van Beek 1967). In
the following, we concentrate on the dielec-
tric permittivity of composite materials, and we
mainly discuss dielectric–dielectric composites and
dielectric-conductor composites.

Dielectric–dielectric composites

The host media of composite materials are usually
dielectric materials, and if the inclusions are also
dielectric materials, such composites are called
dielectric–dielectric composites. The shapes and
structures of the inclusions affect the overall
properties of the composites.

A composite with spherical inclusions is the sim-
plest and a very important case. Consider a mixture
with a host medium of permittivity ε0 containing
n inclusions in unit volume, with each of the
inclusions having polarizability α. The permittivity
ε0 of the host medium can take any value,
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including complex ones. The effective permittivity
εeff of a composite is defined as the ratio between
the average electric displacement D and the
average electric field E: D = εeffE . The electric
displacement D depends on the polarization P in
the material, D = ε0E + P , and the polarization
can be calculated from the dipole moments p of the
n inclusions, P = np. This treatment assumes that
the dipole moments are the same for all inclusions.
If the inclusions are of different polarizabilities, the
polarization has to be summed by weighting each
dipole moment with its number density, and the
overall polarization thus consists of a sum or an
integral over all the individual inclusions.

The dipole moment p depends on the polariz-
ability and the exciting field Ee: p = αEe. For
spherical inclusions, the exciting field Ee is: Ee =
E + P/(3ε0). From the above equations, the effec-
tive permittivity can be calculated as a function of
the dipole moment density nα:

εeff = ε0 + 3ε0
nα

3ε0 − nα
(1.94)

Equation (1.94) can also be written in the form of
the Clausius–Mossotti formulas

εeff − ε0

εeff + 2ε0
= nα

3ε0
(1.95)

If the composite contains inclusions with different
polarization, for example N types of spheres
with different permittivities, Eq. (1.95) should
be modified into (Sihvola 1989a; Sihvola and
Lindell 1989b):

εeff − ε0

εeff + 2ε0
=

N∑
i=1

niαi

3ε0
(1.96)

Let the permittivity of the background medium
be ε0, that of the inclusions be ε1, and the volume
fraction of the inclusions be f1. The polarizability
of this kind of inclusions depends on the ratio
between the inside and the outside fields when
the inclusions are in a static field. According to
Sihvola(1989a) and Sihvola and Lindell (1989b),
the polarizability of a spherical inclusion with
radius a1 is

α = 4πε0a
3
1

ε1 − ε0

ε1 + 2ε0
(1.97)

So the effective permittivity of this mixture is

εeff − ε0

εeff + 2ε0
= f1

ε1 − ε0

ε1 + 2ε0
(1.98)

This formula is known as the Rayleigh’s formula.
The success of a mixture formula for a compos-

ite relies on the accuracy in the modeling of its
real microstructure details. Besides the Rayleigh’s
formula, several other formulas have been derived
using different approximations of the microstruc-
tural details of the composite. Several other pop-
ular formulas for the effective permittivity εeff of
two-phase nonpolar dielectric mixtures with host
medium of permittivity ε0 and spherical inclusion
of permittivity ε1 with volume fraction f1 are listed
in the following:
Looyenga’s formula:

ε

1
3
eff = f1ε

1
3
1 + (1 − f1)ε

1
3
0 (1.99)

Beer’s formula:

ε

1
2
eff = f1ε

1
2
1 + (1 − f1)ε

1
2
0 (1.100)

Lichtenecher’s formula:

ln εeff = f1 ln ε1 + (1 − f1) ln ε0 (1.101)

In the above formulas (1.98–1.101), the interpar-
ticle actions between the inclusions are neglected.
The above formulas can be extended to multiphase
composites, but they are not applicable to compos-
ites with layered inclusions, because they ignore
the interactions between the different layers in an
inclusion. The properties of composites with lay-
ered spherical inclusions are discussed in (Sihvola
and Lindell 1989b).

Dielectric-conductor composites

In a dielectric-conductor composite, the host me-
dium is a dielectric material, while the inclusions are
conductors. Such composite materials have exten-
sive electrical and electromagnetic applications,
such as antistatic materials, electromagnetic shields,
and radar absorbers. Here we do not consider the
frequency dependence of the electromagnetic prop-
erties of dielectric-conductor composites, and only
consider the static limit (ω → 0). Discussions on
the frequency dependence of the properties of such



Electromagnetic Properties of Materials 31

Volume concentration

(a)

(b) (c)

Vp

e′

e′′

Pe
rm

itt
iv

ity

Figure 1.30 Percolation in a dielectric-conductor composite. (a) Change of static permittivity near the percolation
threshold, (b) the case when the volume concentration of the fillers is less than the percolation threshold (Vp), and
(c) the case when the volume concentration of the fillers is close to the percolation threshold (Vp). In (b) and (c),
circle denotes inclusions, otherwise the host medium

composites can be found in (Potschke et al. 2003)
and the references given therein.

For a dielectric-conductor composite, there
exists a phenomenon called percolation. When the
volume concentration of the conductive inclusions
approaches the percolation threshold, the dielectric
composite becomes conductive. One can observe
a significant change in permittivity of the com-
posites filled with conductive inclusions when it
percolates. As shown in Figure 1.30(a), near the
percolation threshold, the real part of permittiv-
ity of the composite increases quickly along with
the increase of the volume concentration of the
conductive inclusions and reaches its maximum
value at the percolation threshold; while the imag-
inary part of permittivity monotonically increases
with the increase of the volume concentration of
the conductive inclusions. The origin of percola-
tion phenomenon is the connection of the con-
ductive inclusions. Figures 1.30(b) and (c) show
distributions of the conductive inclusions in the

host medium when the volume concentration of the
inclusions is less than and close to the percolation
threshold respectively.

The location of the percolation threshold and
the concentration dependence of permittivity and
conductivity around the threshold depend on
the properties of the host medium, conductive
inclusions, and the morphology of the composite.
Because of the rich physics phenomena near
the percolation threshold, in percolation research,
constructing models of permittivity or conductivity
near the percolation threshold is of great theoretical
importance and application meaning.

It should be emphasized that the geometry of
the inclusions plays an important role in deter-
mining the percolation threshold and the electro-
magnetic properties of a dielectric-conductor com-
posite. The general geometry of an inclusion is
elliptic sphere, which, at special conditions, can
be disk, sphere, and needle. In recent years, com-
posites with fiber inclusions have attracted great
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attentions (Lagarkov et al. 1998). Fiber can be
taken as a very thin and long needle. The mechan-
ical and electrical performance of polymer mate-
rials may be greatly improved by adding carbon
or metal fibers, and the resulted fiber-reinforced
composites have a wide range of practical applica-
tions due to their unique mechanical, chemical, and
physical properties. Fiber-filled composites present
more possibilities of tailoring the dielectric prop-
erties. For example, high values of dielectric con-
stant can be obtained at a low concentration of
fiber inclusions, and composites filled with metal
fibers possess pronounced microwave dielectric
dispersion, which are very important for the devel-
opment microwave absorbing materials.

Finally, it should be indicated that percolation
phenomena also exists in many other systems,
for example, the superconductivity of metal-
superconductor composites and leakage of fluids
through porous media.

1.4 INTRINSIC PROPERTIES
AND EXTRINSIC PERFORMANCES
OF MATERIALS

The properties of materials can be generally clas-
sified into two categories: intrinsic and extrinsic.
Intrinsic properties of a material are independent
of the size of the material. If the electromagnetic
properties of a material are related to the geo-
metrical structures and sizes, such properties are
extrinsic.

1.4.1 Intrinsic properties

Most of the electromagnetic properties discussed
above in this chapter are intrinsic, as they are gov-
erned by their respective underlying mechanisms,
not by their geometries. This book concentrates on
the characterization of intrinsic properties of mate-
rials. Here, we make a brief summary of the intrin-
sic properties of materials often studied in physics,
materials sciences, and microwave electronics.

The parameters describing the intrinsic electro-
magnetic properties of materials generally include
constitutive parameters, propagation parameters,
and electrical transport properties. The constitutive
parameter for low-conductivity materials mainly

includes permittivity, permeability, conductivity,
and chirality. Electromagnetic waves can propa-
gate within low-conductivity materials, and the
propagation parameters for low-conductivity mate-
rials mainly include wave impedance, propaga-
tion constant, and index of refraction. For con-
ductors and superconductors, the main propagation
parameters are skin depth and surface impedance.
For semiconductors, the intrinsic properties are
usually described by their electrical transport prop-
erties, including Hall mobility, conductivity, and
carrier density.

1.4.2 Extrinsic performances

As the performances of electromagnetic materi-
als and structures depend on their geometries, the
performance-related properties are usually extrin-
sic. The design of functional materials and struc-
tures is to realize the desired extrinsic perfor-
mances based on the intrinsic properties of the
raw materials to be used. The performance-related
properties could be monitored along the manufac-
turing procedures to ensure that the final products
have the specified extrinsic performances.

There are varieties of extrinsic performances,
and it is difficult to make a systematic classifica-
tion. In the following, we discuss the characteristic
impedance of a transmission line, the reflectivity of
a Dallenbach layer, and the resonance of a dielec-
tric resonator.

1.4.2.1 Characteristic impedance of a
transmission line

The characteristic impedance of a transmission
line should be taken into serious consideration
in the design of high-speed circuits. Figure 1.31

Z2Z1Rsource Z3

Figure 1.31 Impedance discontinuities in a transmis-
sion line. The solid arrows represent the transmission
signals and the dashed arrows represent the reflec-
tion signals
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shows a transmission line connected to a source,
and how the voltage and current signals from
the source interact with the transmission line as
they propagate along the transmission line. If the
characteristic impedance of the transmission line
changes, either by a geometry change or a material
change, some of the signals will be reflected. At the
interface between two segments of transmission
lines with characteristic impedances Z1 and Z2

respectively, the reflectivity is given by

� = Vreflected

Vincident
= Z2 − Z1

Z2 + Z1
. (1.102)

At each interface, there will be a series of
reflections. Therefore, the impedance discontinu-
ities distort signal, decrease the signal integrity,
increase standing waves, increase rise-time degra-
dation, and require longer setting time. The way
to solving these problems is to use the same char-
acteristic impedance throughout the transmission
line, including traces and connectors. By consider-
ing manufacturability, cost, noise sensitivity, and
power dissipation, the optimum Z0 value for most
systems is in the range of 50 to 80 
.

Microstrip is the most widely used transmis-
sion line in microwave electronics. As shown
in Figure 1.32, the structural parameters of a
microstrip line are the width W of the microstrip
and the thickness d of the dielectric substrate. The
characteristic impedance of a microstrip depends
on the dielectric constant of the substrate and
the structural parameters. For a thin substrate
case (d/W < 1), the characteristic impedance of
a microstrip line is given by (Pozar 1998):

Z0 = 120π√
εe[W/d + 1.393 + 0.667

ln(W/d + 1.444)]

(1.103)

W

d

t

er

Figure 1.32 Geometry of a microstrip line

where the effective dielectric constant εe is
given by

εe = εr + 1

2
+ εr − 1

2

1√
1 + 12d/W

(1.104)

If we want to fabricate a microstrip transmis-
sion line of 50 
 from a substrate with dielec-
tric thickness of 5 mils and dielectric constant
of 5, the line width should be around 9 mils. If
the line width varies by ±1 mil, the characteris-
tic impedance would vary by about ±10 %. If the
dielectric constant varies by ±10 %, the character-
istic impedance would vary by about ±5 %. There-
fore, the line width is more sensitive to the char-
acteristic impedance than the dielectric constant of
the substrate. More discussions on microstrip line
and other types of transmission lines will be made
in Chapter 2.

1.4.2.2 Reflectivity of a Dallenbach layer

As shown in Figure 1.33, a Dallenbach layer is
a homogeneous layer backed by a metal plate
and the dissipation of microwave energy is made
throughout the layer (Knott et al. 1993). The
reflectivity of a Dallenbach layer is dependent on
its thickness, and it is a typical example of extrinsic
performance. In the design of a Dallenbach layer,
we should consider the interferences between
the reflections at different interfaces. When a
microwave signal is incident to the layer, part
of the signal is reflected at the interface between
the free space and the material layer, and this
part of signal is called the first reflection. Part

Metal plate

Incident wave

First reflection

Second reflection

d

Figure 1.33 The structure and working principle of a
Dallenbach layer
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D

er = er′ − jer′′

L

Figure 1.34 Configuration of a cylindrical dielec-
tric resonator

of signal propagates into the material layer, and
this part of signal is reflected at the interface
between the material layer and the metal plate,
and part of the signal, called the second reflection,
comes out of the layer again. If the first reflection
and second reflection have the same amplitude
but are in opposite phase, they cancel each other,
and so no actual reflection occurs. To ensure this
cancellation, the thickness of the layer should be
the quarter wavelength of the microwave signal in
the material layer, and the layer should have proper
impedance and loss factor.

1.4.2.3 Resonance of a dielectric resonator

The resonance of a dielectric resonator is another
example of extrinsic performance. Figure 1.34
shows an isolated cylindrical dielectric resonator,
with diameter D and length L. The resonant prop-
erties, including the resonant frequency and quality
factor, of the dielectric resonator are determined by
the dielectric permittivity of the dielectric materials
and the geometrical parameters including diameter
D and length L. More discussion on the resonant
properties of dielectric resonators can be found in
Chapter 2.
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2

Microwave Theory and Techniques for
Materials Characterization

This chapter discusses the basic microwave theory
and techniques for the characterization of elec-
tromagnetic materials. The methods for materials
properties characterization generally fall into non-
resonant methods and resonant methods; and, cor-
respondingly, we mainly discuss two microwave
phenomena: microwave propagation based on
which the nonresonant methods are developed and
microwave resonance based on which the resonant
methods are developed. In our discussion, both the
field approach and the line approach are used in
analyzing electromagnetic structures. In the final
part of this chapter, we introduce the concept of
microwave network and discuss the experimental
techniques for characterizing propagation and res-
onance networks.

2.1 OVERVIEW OF THE MICROWAVE
METHODS FOR THE CHARACTERIZATION
OF ELECTROMAGNETIC MATERIALS

There have been many extensive review papers
(Afsar et al. 1986; Baker–Jarvis et al. 1993; Guil-
lon 1995; Krupka and Weil 1998; Weil 1995;
Zaki and Wang 1995) on the microwave methods
for materials property characterization, and there
are also several monographs on special measure-
ment methods and for special purposes (Musil and
Zacek 1986; Nyfors and Vainikainen 1989; Zoughi
2000). In this section, we focus on the basic prin-
ciples for the measurement of the permittivity and
permeability of low conductivity materials and the

surface impedance of high-conductivity materials.
We do not discuss the detailed structures of fix-
tures and detailed algorithms for the calculation
of materials properties, which will be discussed
in Chapters 3 to 8. The characterization of chi-
ral materials will be discussed in Chapter 10 and
the measurement of microwave electrical transport
properties will be discussed in Chapter 11.

The microwave methods for materials charac-
terization generally fall into nonresonant methods
and resonant methods. Nonresonant methods are
often used to get a general knowledge of electro-
magnetic properties over a frequency range, while
resonant methods are used to get accurate knowl-
edge of dielectric properties at single frequency or
several discrete frequencies. Nonresonant methods
and resonant methods are often used in combi-
nation. By modifying the general knowledge of
materials properties over a certain frequency range
obtained from nonresonant methods with the accu-
rate knowledge of materials properties at several
discrete frequencies obtained from resonant meth-
ods, accurate knowledge of materials properties
over a frequency range can be obtained.

In the following, we discuss the working princi-
ples of various measurement methods. It should be
noted that the examples given below are used only
to illustrate the basic configurations of the mea-
surement methods, and they are not necessarily the
configurations with highest accuracy and sensitivi-
ties. As will be discussed in later chapters, there are
many practical considerations in the development
of actual measurement methods.
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Figure 2.1 Boundary condition for material character-
ization using a nonresonant method

2.1.1 Nonresonant methods

In nonresonant methods, the properties of materials
are fundamentally deduced from their impedance
and the wave velocities in the materials. As shown
in Figure 2.1, when an electromagnetic wave prop-
agates from one material to another (from free
space to sample), both the characteristic wave
impedance and the wave velocity change, result-
ing in a partial reflection of the electromagnetic
wave from the interface between the two materials.
Measurements of the reflection from such an inter-
face and the transmission through the interface can
provide information for the deduction of permittiv-
ity and permeability relationships between the two
materials.

Nonresonant methods mainly include reflection
methods and transmission/reflection methods. In
a reflection method, the materials properties are
calculated on the basis of the reflection from the
sample, and in a transmission/reflection method,
the material properties are calculated on the
basis of the reflection from the sample and the
transmission through the sample.

Nonresonant methods require a means of direct-
ing the electromagnetic energy toward a material,
and then collecting what is reflected from the mate-
rial, and/or what is transmitted through the mate-
rial. In principle, all types of transmission lines can
be used to carry the wave for nonresonant methods,
such as coaxial line, hollow metallic waveguide,
dielectric waveguide, planar transmission line, and
free space. In this section, we use hollow metallic
waveguide or coaxial line as examples.

2.1.1.1 Reflection methods

In reflection methods, electromagnetic waves are
directed to a sample under study, and the properties
of the material sample are deduced from the
reflection coefficient at a defined reference plane.
Usually, a reflection method can only measure one
parameter, either permittivity or permeability.

Two types of reflections are often used in
materials property characterization: open-circuit
reflection and short-circuit reflection, and the
corresponding methods are called open-reflection
method and shorted reflection method. As coax-
ial lines can cover broad frequency bands, coax-
ial lines are often used in developing measure-
ment fixtures for reflection methods. Detailed dis-
cussions on reflection methods can be found in
Chapter 3.

Open-reflection method

Figure 2.2 shows the basic measurement config-
uration of an open – reflection method. In actual
applications, the outer conductor at the open end
is usually fabricated into a flange to provide suit-
able capacitance and ensure the repeatability of
sample loading (Li and Chen 1995; Stuchly and
Stuchy 1980), and the measurement fixture is
usually called the coaxial dielectric probe. This
method assumes that materials under measurement
are nonmagnetic, and that interactions of the elec-
tromagnetic field with the noncontacting bound-
aries of the sample are not sensed by the probe.
To satisfy the second assumption, the thickness of

Sample

Figure 2.2 Coaxial open-circuit reflection



Microwave Theory and Techniques for Materials Characterization 39

Sample

Figure 2.3 Coaxial short-circuit reflection

the sample should be much larger than the diame-
ter of the aperture of the open-ended coaxial line,
and, meanwhile, the material should have enough
loss.

Shorted reflection method

Figure 2.3 shows a coaxial short-circuit reflection.
In this method, the sample under study is usually
electrically short, and this method is often used
to measure magnetic permeability (Guillon 1995;
Fannis et al. 1995). In this method, the permittivity
of the sample is not sensitive to the measurement
results, and in the calculation of permeability, the
permittivity is often assumed to be ε0.

Reflection method for surface impedance
measurement

Besides their applications in the measurement of
permittivity and permeability of low-conductivity
materials, reflection methods are also used for the
measurement of the surface impedance of high-
conductivity materials. As shown in Figure 2.4,
the high-conductivity material under study contacts
the open end of a coaxial line. Microwave
radiation can propagate into some extent of the
high-conductivity material. The complex surface
impedance of the sample can be extracted from the
complex reflection coefficient. As the penetration
depth of high-conductivity materials is small,
microwave cannot go deep into the sample. This
method does not require a very thick sample, but
the thickness of the sample should be several
times larger than the penetration depth. Because
there are electrical currents flowing between the
inner and the outer conductors of the coaxial
line through the sample, this method requires

High-
conductivity
material

Figure 2.4 Reflection method for the measurement of
surface impedance of high-conductivity materials

that both the inner and the outer conductors
of the open end of the coaxial line have good
electrical contact with the sample. This method
has been used for the measurement of the surface
resistance of high-temperature superconducting
thin films (Booth et al. 1994).

2.1.1.2 Transmission/reflection methods

In a transmission/reflection method, the material
under test is inserted in a piece of transmission line,
and the properties of the material are deduced on
the basis of the reflection from the material and the
transmission through the material. This method is
widely used in the measurement of the permittiv-
ity and permeability of low conductivity materials,
and it can also be used in the measurement of
the surface impedance of high-conductivity materi-
als. Detailed discussions on transmission/reflection
methods can be found in Chapter 4.

Permittivity and permeability measurement

Transmission/reflection method can measure both
permittivity and permeability of low conductivity
materials. Figure 2.5 shows the configuration of
coaxial transmission/reflection method. The char-
acteristic impedance of the piece of transmission
line loaded with the sample is different from
that of the transmission line without the sample,
and such difference results in special transmis-
sion and reflection properties at the interfaces.
The permittivity and permeability of the sample
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Figure 2.5 Coaxial transmission/reflection method

are derived from the reflection and transmission
coefficients of the sample-loaded cell (Weir 1974;
Nicolson and Rose 1970).

Surface impedance measurement

Reflection/transmission method can also be used
for the measurement of surface impedance of high-
conductivity thin films. As shown in Figure 2.6,
the thin film under study forms a quasi-short circuit
in a waveguide transmission structure. From the
ratio of the transmitted power to the incident
power and the phase shift across the thin film,
the surface impedance of the thin film can be
deduced. However, this method is only suitable
for thin films whose thickness is less than the
penetration depth of the sample, and requires
a measurement system with very high dynamic
range. This method has been used to study the
microwave surface impedance of superconducting
extrathin films (Dew–Hughes 1997; Wu and Qian
1997).

Waveguide

Sample

Figure 2.6 Transmission/reflection method for surface
impedance measurements

2.1.2 Resonant methods

Resonant methods usually have higher accuracies
and sensitivities than nonresonant methods, and
they are most suitable for low-loss samples.
Resonant methods generally include the resonator
method and the resonant-perturbation method.
The resonator method is based on the fact that
the resonant frequency and quality factor of a
dielectric resonator with given dimensions are
determined by its permittivity and permeability.
This method is usually used to measure low-
loss dielectrics whose permeability is µ0. The
resonant-perturbation method is based on resonant-
perturbation theory. For a resonator with given
electromagnetic boundaries, when part of the
electromagnetic boundary condition is changed by
introducing a sample, its resonant frequency and
quality factor will also be changed. From the
changes of the resonant frequency and quality
factor, the properties of the sample can be derived.

2.1.2.1 Resonator method

This method is often called dielectric resonator
method. It can be used to measure the permittivity
of dielectric materials and the surface resistance of
conducting materials. More detailed discussions on
the resonator method can be found in Chapter 5.

Measurement of dielectric permittivity

In a resonator method for dielectric property mea-
surement, the dielectric sample under measurement
serves as a resonator in the measurement circuit,
and dielectric constant and loss tangent of the sam-
ple are determined from its resonant frequency
and quality factor (Kobayashi and Tanaka 1980).
Figure 2.7 shows the configuration often used in
the dielectric resonator method. In this config-
uration, the sample is sandwiched between two
conducting plates, and the resonant properties of
this configuration are mainly determined by the
properties of the dielectric cylinder and the two
pieces of the conducting plates. In the measure-
ment of the dielectric properties of the dielectric
cylinder, we assume the properties of the conduct-
ing plates are known. The TE011 mode is often
selected as the working mode, as this mode does



Microwave Theory and Techniques for Materials Characterization 41

Sample

Conducting
plates

D

Z

L

Y
X

Figure 2.7 A dielectric cylinder sandwiched between
two conducting plates

not have a transverse electric field between the
sample and the conducting plates. Therefore, a
small gap between the sample and the plates does
not greatly affect the measurement results. This
method can be used to measure high dielectric
constant (Cohn and Kelly 1966), low loss (Krupka
et al. 1994), and anisotropic materials (Geyer and
Krupka 1995).

Surface resistance measurement

The configuration shown in Figure 2.7 can also be
used for the measurement of the surface resistance
of conductors. If the dielectric properties of the
dielectric cylinder are known, from the quality fac-
tor of the whole resonant structure, we can calcu-
late the surface resistance of the conducting plates.

2.1.2.2 Resonant-perturbation method

When a sample is introduced into a resonator,
the resonant frequency and quality factor of the
resonator will be changed, and the electromagnetic
properties of the sample can be derived from the
changes of the resonant frequency and quality
factor of the resonator. Generally speaking, there
are three types of resonant perturbations: cavity
shape perturbation, wall-loss perturbation, and
material perturbation. Cavity shape perturbation is
often used to adjust the resonant frequency of a
cavity. In the wall-loss perturbation method, part
of the cavity wall is replaced by the sample under
study, and the resonant frequency and quality

factor of the cavity are changed subsequently. The
wall-loss perturbation method is usually used to
measure the surface resistance of conductors. In
the material perturbation method, the introduction
of the material into a cavity causes changes in the
resonant frequency and quality factor of the cavity.
The material perturbation method is also called
the cavity-perturbation method, and is suitable
for measuring low-loss materials. More detailed
discussions on resonant-perturbation methods can
be found in Chapter 6.

Permittivity and permeability measurement

In the cavity perturbation method, the sample
under study is introduced into an antinode of
the electric field or magnetic field, depending
on whether permittivity or permeability is being
measured. As shown in Figure 2.8, if the sample
under study is introduced into place A with
maximum dielectric field and minimum magnetic
field, the dielectric properties of the sample can
be characterized; if the sample is inserted into
place B with maximum electric field and minimum
magnetic field, the magnetic properties of the
sample can be characterized.

Surface resistance measurement

As shown in Figure 2.9, in this method, the end
wall of a hollow metallic cavity is replaced by the

A

B

Figure 2.8 Cylindrical cavity (TM010 mode) for
measurement of materials properties using reso-
nant-perturbation method. Position A is for permittiv-
ity measurement and position B is for permeability
measurement
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Cavity

Conducting
sample

Figure 2.9 Cavity perturbation method for the mea-
surement of surface resistance of conductors

conducting sample under test. With the knowledge
of the geometry and the resonant mode of the
cavity, the surface resistance of the conducting
sample can be derived from the change of the
quality factor due to the replacement of the end
wall.

For better understanding and application of var-
ious methods for materials property characteriza-
tion, in the following two sections, we discuss
two important microwave phenomena: microwave
propagation, which is the basis for nonresonant
methods, and microwave resonance, which is the
basis for resonant methods. In the last section of
this chapter, we discuss microwave network, which
is often used in microwave theoretical analysis and
experimental measurement.

Field approach and line approach are often
used in microwave theory and engineering. In the
field approach, we analyze the distributions of the
electric and magnetic fields. In the line approach,
we use equivalent circuits to represent microwave
structures. In the following discussions, both the
field and the line approaches are used.

2.2 MICROWAVE PROPAGATION

As discussed above, there are two general types
of methods for materials property characterization:
nonresonant methods and resonant methods, and
the microwave phenomena related to these two

types of methods are microwave propagation and
microwave resonance. In this section, we discuss
microwave propagation, and microwave resonance
will be discussed in Section 2.3.

In this section, we start with transmission-line
theory, and then we introduce transmission Smith
Charts, which are powerful tools in microwave the-
ory and engineering. Afterward, we discuss three
categories of transmission lines widely used in
materials property characterization: guided trans-
mission lines, surface-wave transmission lines, and
free space.

2.2.1 Transmission-line theory

In this part, line approach will be used to analyze
transmission structures. We use equivalent circuits
to represent transmission structures, and discuss
the propagation of equivalent voltage and current
along transmission structures.

2.2.1.1 General properties of transmission
structures

We consider a general cylindrical metallic trans-
mission structure whose cross sections do not
change in z-direction. As shown in Figure 2.10,
there are two types of metallic transmission lines,
one is a single hollow metallic tube and the other
consists of two or more conductors.

The propagation of an electromagnetic wave
along a transmission structure can be analyzed
using Maxwell’s equations. From Eqs. (1.1)–(1.4),
we can get the wave equations for electric field E

(a) (b)

Z
Z

Figure 2.10 Two types of cylindrical metallic trans-
mission lines. (a) Hollow tube and (b) two metal bars
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and magnetic field H :

∇2E + k2E = 0 (2.1)

∇2H + k2H = 0, (2.2)

where k = 2π/λ is the wave number and λ is the
wavelength.

In the transmission structure, the electromag-
netic fields can be decomposed into the transverse
components (ET and HT) and the axial components
(Ez and Hz ):

E = ET + Ez (2.3)

H = HT + Hz (2.4)

We can also revolve the ∇ operator into the
transverse part ∇T and axial part ∇Z:

∇ = ∇T + ∇Z (2.5)

with

∇Z = ẑ
∂

∂z
(2.6)

∇T = x̂
∂

∂x
+ ŷ

∂

∂y
(rectangular coordinates)

(2.7)

∇T = r̂
∂

∂r
+ φ̂

1

r

∂

∂φ
(cylindrical coordinates)

(2.8)

where ẑ , x̂ , ŷ , r̂ , and φ̂ are the unit vectors along
their corresponding axes.

From Eqs. (2.1)–(2.8), we can get the propaga-
tion equations for metallic waveguides

(k2 − k2
z )HT = −jωεẑ × ∇TEz − jkz∇THz

(2.9)

(k2 − k2
z )ET = −jωµẑ × ∇THz − jkz∇TEz ,

(2.10)

where kz is the wave number in Z-direction.
Equations (2.9) and (2.10) show the relationships
between the transverse and axial fields. If Ez and
Hz are known, other components of electromag-
netic waves can be calculated based on Ez and Hz .

There are three types of electromagnetic waves
with special Ez and Hz . If Ez = 0, the electromag-
netic wave is called transverse electric (TE) wave,

and such a wave is also called H wave. If Hz = 0,
the electromagnetic wave is called transverse mag-
netic (TM) wave, and such a wave is also called E
wave. If Ez = 0 and Hz = 0, the electromagnetic
wave is called transverse electromagnetic (TEM)
wave. In the following, we discuss the general
properties of TE, TM, and TEM waves.

TE wave

For TE wave (Ez = 0), from Eqs. (2.9) and (2.10),
we have

HT = − jkz

k2 − k2
z

∇THz (2.11)

ET = jωµ

k2 − k2
z

ẑ × ∇THz = −ωµ

kz

ẑ × HT (2.12)

Equation (2.12) indicates that ET, HT, and ẑ are
perpendicular to each other. If we define the wave
impedance of TE wave as

ηTE = ωµ

kz

, (2.13)

Eq. (2.12) can be rewritten as

ET = −ηTEẑ × HT (2.14)

The wave impedance for TE wave can be
rewritten as

ηTE = ω
√

εµ

kz

√
µ

ε
= k

kz

η (2.15)

with the wave impedance of plane wave

η =
√

µ

ε
(2.16)

and the wave number

k = ω
√

εµ (2.17)

TM wave

For TM wave (Hz = 0), from Eqs. (2.9) and
(2.10), we have

ET = − jkz

k2 − k2
z

∇TEz (2.18)

HT = − jωµ

k2 − k2
z

ẑ × ∇TEz = ωε

kz

ẑ × ET (2.19)
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Equation (2.19) also indicates that ET, HT, and ẑ
are perpendicular to each other. Also, we define
the wave impedance of TM wave:

ηTM = kz

ωε
(2.20)

Similarly, the wave impedance for TM wave can
be rewritten as

ηTM = kz

k
η (2.21)

TEM wave

For TEM wave (Ez = Hz = 0), from Eqs. (2.9)
and (2.10), we have

(k2 − k2
z )HT = 0 (2.22)

(k2 − k2
z )ET = 0 (2.23)

As ET �= 0 and HT �= 0, from Eqs. (2.22) and
(2.23), we have

k = kz (2.24)

Equation (2.24) indicates that the wave number of
TEM wave propagating in the z-direction is equal
to the wave number of that of a plane wave. Also,
the wave impedance for TEM wave is equal to that
for plane wave:

ηTEM = η. (2.25)

Also we have

ET = −ηTEMẑ × HT (2.26)

Equation (2.26) shows that ET, HT, and ẑ are
perpendicular to each other.

Meanwhile, it can be proven that (Pozar 1998),
for TEM wave, its field ET at a cross section can
be expressed by a scalar potential �:

ET = −∇T� (2.27)

We can further get that for a source-free transmis-
sion line

∇2
T� = 0 (2.28)

Equation (2.28) indicates that if a TEM wave
can propagate in a transmission line, the static
field can also be established there and vice versa.

(a) (b) (c)

Figure 2.11 Transmission structures for TE and TM
waves. (a) Rectangular waveguide, (b) circular waveg-
uide, and (c) ridged waveguide

(a) (b) (c)

Figure 2.12 Transmission structures for TEM waves.
(a) Two parallel lines, (b) coaxial line, and (c) stripline

Static electric field cannot be built within a hollow
tube, and TEM wave also cannot propagate in a
hollow tube. But TE wave and TM wave could
propagate in hollow tubes, and some hollow tube
examples are shown in Figure 2.11. TEM waves
can only propagate in a transmission structure with
at least two conductors, and some examples of
TEM transmission lines are shown in Figure 2.12.

2.2.1.2 Propagation equations

The above discussion indicates that, in the cross
section of a TEM transmission line, the distribution
of the electromagnetic field is the same as
that of the static field, so we can introduce
the concepts of equivalent voltage, equivalent
current, and equivalent impedance. Therefore, we
can use the “line” method to analyze the TEM
transmission line. However, to ensure that this
method is applicable, the geometrical length l

of the transmission line should be comparable
to the wavelength λ, which means l/λ ≥ 1, and
the current and voltage distribution along the
transmission line are not uniform. In engineering,
such a transmission line is called long line.

It should be indicated that in the following dis-
cussion, we use TEM transmission line. Actually,
TE transmission line and TM transmission line can
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∆z

R1∆z
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C1∆zG1∆x

Zg
ZLVg

(a)

(b)

Figure 2.13 Equivalent of a transmission line. (a) Equivalent circuit for a short line element and (b) equivalent
circuit for a long line. In the figure, Zg and Vg are the impedance and driving voltage of the generator, and ZL is
the impedance of the load

also be analyzed in this way, provided suitable
equivalent current and equivalent voltage are intro-
duced.

Equivalent circuit of transmission line

Owing to the distribution properties of a transmis-
sion line, the voltage and current on a long line are
functions of both time and positions. The distribu-
tions of the voltage and current are mainly deter-
mined by the shape, dimension, and the properties
of the conductors and dielectrics. In following dis-
cussion, we assume that the cross section of the
transmission structure does not change along with
its axis.

We divide a long line into many short line
elements with length 	z (	z � λ), and represent
the short line elements with effective parameters:
R1	z, L1	z, G1	z, and C1	z, with R1, L1, G1

and C1 representing the resistance, inductance,
conductance and capacitance of the line element
respectively. The transmission line can therefore
be represented by an equivalent circuit, as shown
in Figure 2.13.

Telegrapher equations

Consider a short line element with length 	z and
starting point at z, as shown in Figure 2.14. Let the

∆z

G1∆z

L1∆zR1∆z

C1∆z

z

i (z + ∆z, t)i (z, t)

Figure 2.14 A short transmission line with length 	z

at position z

voltage and current at the two ends of the element
be: v(z, t), i(z, t) and v(z + 	z, t), i(z + 	z, t).
According to the Kirchhoff’s law, we have

−	v(z, t) = v(z + 	z, t) − v(z, t)

= R1	z · i(z, t) + L1	z
∂i(z, t)

∂t
(2.29)

−	i(z, t) = i(z + 	z, t) − i(z, t)

= G1	z · v(z, t) + C1	z
∂v(z, t)

∂t
(2.30)

Letting 	z → 0, we can get the famous Telegra-
pher equations

−∂v(z, t)

∂z
= R1i(z, t) + L1

∂i(z, t)

∂t
(2.31)
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−∂i(z, t)

∂z
= G1v(z, t) + C1

∂v(z, t)

∂t
(2.32)

The above Telegrapher equations can be rewrit-
ten as

−dV (z)

dz
= Z1I (z) (2.33)

−dI (z)

dz
= Y1V (z) (2.34)

with
v(z, t) = V (z)ejωt (2.35)

i(z, t) = I (z)ejωt (2.36)

Z1 = R1 + jωL1 (2.37)

Y1 = G1 + jωC1. (2.38)

Equations (2.33) and (2.34) indicate that, in the
transmission line, the change of voltage is due to
the series impedance Z1 and the change of current
is due to the parallel admittance Y1.

Characteristic parameters of a transmission line

Following propagation equations can be obtained
from Eqs. (2.33) and (2.34):

d2V

dz2
= γ 2V (2.39)

d2I

dz2
= γ 2I (2.40)

with the transmission constant given by

γ = √
Y1Z1 = α + jβ (2.41)

The general solutions for Eqs. (2.39) and (2.40)
are

V = V0+e−γ z + V0−eγ z (2.42)

I = I0+e−γ z + I0−eγ z, (2.43)

where V0± and I0± are constants that should be
defined by the boundary conditions. Equations
(2.42) and (2.43) indicate that there may exist
waves propagating along the +z direction and the
−z direction, respectively. The phase velocity is
given by

vp = ω

β
(2.44)

From Eqs. (2.33) and (2.37), we can get

I (z) = 1

Zc
V0+e−γ z +

(
− 1

Zc

)
V0−eγ z, (2.45)

where Zc is the characteristic impedance of the
transmission line:

Zc = Z1

γ
=

√
Z1

Y1
= 1

Yc
, (2.46)

where Yc is the characteristic admittance of the
transmission line.

By rewriting Eq. (2.45) as

I (z) = I0+e−γ z + I0−eγ z = V0+
Zc

e−γ z + V0−
−Zc

eγ z

(2.47)

we can get
V0+
I0+

= Zc (2.48)

V0−
I0−

= −Zc (2.49)

The negative sign in Eq. (2.49) is totally due to the
definitions of voltage, current, and the direction of
z, and it does not indicate negative impedance.

In summary, Eqs. (2.42) and (2.45) are the
solutions of the Telegrapher Equations, and they
indicate that there are voltage waves and current
waves propagating in +Z direction and −Z

direction. As the propagation constant γ is a
complex number, these waves attenuate along the
transmission line. From Eq. (2.46), we have

γ = α + jβ = √
Y1Z1

= √
(R1 + jωL1)(G1 + jωC1) (2.50)

with

α =

√√√√√√
1

2

(√
(R2

1 + ω2L2
1)(G

2
1 + ω2C2

1)

− (ω2L1C1 − R1G1)
) (2.51)

β =

√√√√√√
1

2

(√
(R2

1 + ω2L2
1)(G

2
1 + ω2C2

1)

+ (ω2L1C1 − R1G1)
) (2.52)
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According to Eq. (2.46), the characteristic imped-
ance of the transmission line is given by

Zc =
√

R1 + jωL1√
G1 + jωC1

=
√

L1

C1

√
1 − j(R1/ωL1)

1 − j(G1/ωC1)

(2.53)

In the following, we discuss three typical con-
ditions: high loss, low loss, and no loss. In
microwave electronics, most of the actual condi-
tions can be approximated as these conditions.

High-loss transmission line

For a transmission line with high loss, we assume

ωL1 � R1 (2.54)

ωC1 � G1 (2.55)

From Eqs. (2.50)–(2.53), we can get

α ≈ √
R1G1 (2.56)

β ≈ 0 (2.57)

Zc ≈
√

R1

G1
(2.58)

So the electromagnetic waves attenuate quickly,
and cannot propagate in such a transmission line.
Matched load can be taken as such a kind of
transmission line.

Low-loss transmission line

For a low-loss transmission line, we assume

ωL1 � R1 (2.59)

ωC1 � G1 (2.60)

From Eqs. (2.50)–(2.53), we can get

α ≈ 1

2

(
R1

√
C1

L1
+ G1

√
L1

C1

)
(2.61)

β ≈ ω
√

L1C1 (2.62)

Equation (2.62) indicates that β is almost indepen-
dent of R1 and G1. The characteristic impedance

Zc becomes

Zc =
√

L1

C1

(
1 − j

2

(
R1

ωL1
− G1

ωC1

))
≈

√
L1

C1

(2.63)

No-loss transmission line

This is an ideal case. At microwave frequencies,
no actual transmission lines can be strictly no
loss. However, if the transmission line is made of
good conductors and low-loss dielectric, and the
transmission line is not very long, we can neglect
its loss. For a no-loss transmission line,

R1 = 0, (2.64)

G1 = 0. (2.65)

From Eqs. (2.50)–(2.53), we can get

α = 0 (2.66)

β = ω
√

L1C1 (2.67)

Zc =
√

L1

C1
(2.68)

In this condition, Eqs. (2.42) and (2.43) become

V (z) = V0+e−jβz + V0−ejβz (2.69)

I (z) = I0+e−βz + I0−ejβz

= V0+
Zc

e−jβz + V0−
−Zc

ejβz (2.70)

Equations (2.69) and (2.70) indicate that both the
voltage and current waves can propagate along +Z

direction and −Z direction. As the characteristic
impedance is a real number, the current and voltage
are in phase. This is the most common situation
in microwave engineering, and is usually called
lossless transmission line or ideal transmission
line.

2.2.1.3 Reflection and impedance

As discussed above, in a uniform transmission
line, both the voltage wave and current wave have
two components propagating along +z direction
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Zc ZL

Z

Figure 2.15 A transmission line connected to a load
with impedance ZL

and −z direction, and these two components
can be called incident wave and reflection wave.
In nonresonant methods for materials property
characterization, the sample under study is loaded
to a transmission line. We will discuss how the
load to a transmission line affects the relationship
between the incident wave and reflected wave.

Voltage reflection coefficient

As shown in Figure 2.15, a load with impedance
ZL is connected to a piece of transmission line with
length l. In analyzing the reflection properties, the
origin of the axis is chosen at the place of load, and
the positive direction of the axis is from the load
to the generator, while the positive direction of
current is still from the generator to the load. The
relationship between the voltage and the current is
determined by the loading impedance:

ZL = VL

IL
(2.71)

The voltage reflection coefficient represents the
voltage ratio between the reflected voltage V− and
incident voltage V+:


 = V−
V+

= V0−e−jβz

V0+e+jβz
= V0−

V0+
e−j2βz (2.72)

Equation (2.72) indicates that the reflection coeffi-
cient is related to the position along the z-axis. As
the origin of the axis is chosen at the position of the
load, the reflection at the load is: 
L = V0−/V0+.
The reflection coefficient at a position (z) is


 = 
Le−j2kZz (2.73)

It is clear that the amplitude of the reflection
coefficient does not change along a uniform
transmission line.

Input impedance

On the basis of the definition of reflection coeffi-
cient (
), the total voltage V (z) and total current
I (z) along a transmission line can be expressed as

V (z) = V+(1 + 
) (2.74)

I (z) = I+(1 − 
) (2.75)

The relationships between the total voltage V (z)

and total current I (z) are described by the input
impedance Zi and the input admittance Yi:

Zi = 1

Yi
= V

I
= V+(1 + 
)

I+(1 − 
)
(2.76)

Sometimes, we use normalized impedance:

z = Zi

Zc
, (2.77)

where Zc is the characteristic impedance of the
transmission line, and normalized admittance:

y = Yi

Yc
, (2.78)

where Yc is the characteristic admittance of the
transmission line. The relationships between the
reflection, impedance, and admittance are listed in
Table 2.1.

The reflection coefficient 
 is periodical with
period λg/2, and so are the impedance and

Table 2.1 Relationships between reflection coefficient
and impedance and admittance

Unnormalized Normalized

Relationship between
impedance and
reflection

Zi = Zc
1 + 


1 − 

z = 1 + 


1 − 



 = Zi − Zc

Zi + Zc

 = z − 1

z + 1

Relationship between
admittance and
reflection

Yi = Yc
1 − 


1 + 

y = 1 − 


1 + 



 = Yc − Yi

Yc + Yi

 = 1 − y

1 + y
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Figure 2.16 Impedance inversion along a transmission line. λg is the wavelength along the transmission line

admittance. We can find the inversion property of
the impedance:

z(z) = 1

z(z + λg/4)
, (2.79)

where z(z) is the normalized impedance at position
z, and z(z + λg/4) is the normalized impedance at
position (z + λg/4). As shown in Figure 2.16, if a
transmission line is loaded with a short, it is open,
seen at the position λg/4 away from the short, and
is short again seen at the position λg/2 away from
the short.

Other expressions for input impedance

If we write the total voltage and total current in
following forms

V (z) = (V0+ + V0−) cos kzz + j(V0+ − V0−) sin kzz,

(2.80)

I (z) = V0+ − V0−
Zc

cos kzz + j
V0+ + V0−

Zc
sin kzz,

(2.81)
the input impedance is given by

Zi(z) =
(V0+ + V0−) cos kzz+ j(V0+ − V0−) sin kzz

[(V0+ − V0−)/Zc] cos kzz+ j[(V0+ + V0−)/Zc] sin kzz

(2.82)

As the input impedance at z = 0 is the impedance
of the load ZL, we have

ZL = Zc
V0+ + V0−
V0+ − V0−

(2.83)

From Eqs. (2.82) and (2.83), we can get

Zi = Zc
ZL + jZc tan kzz

Zc + jZL tan kzz
(2.84)

zi = zL + j tan kzz

1 + jzL tan kzz
(2.85)

Yi = Yc
YL + jYc tan kzz

Yc + jYL tan kzz
(2.86)

y i = yL + j tan kzz

1 + jyL tan kzz
(2.87)

The above equations indicate that if the load
is purely reactive, the input impedance at any
position is also purely reactive. We consider two
special cases. For a short loading (zL = 0), we have

zi = j tan kzz (2.88)

For an open loading (zL = j∞), we have

zi = −j
1

tan kzz
(2.89)

2.2.1.4 Typical working states of transmission
lines

The distributions of current and voltage are
determined by the properties of the loading.
Here, we discuss three typical working states
of transmission lines: pure travelling wave, pure
standing wave, and mixed wave.

Pure travelling wave

In this state, there is no reflection wave: 
 = 0,
V (z) = V+, Zi = Zc, and zi = 1. The total voltage
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is the incident voltage, and the input impedance
at any position in the transmission line equals
the characteristic impedance of the transmission
line. The ratio between the voltage and current
equals to Zc, and the current and voltage are in
phase.

As the input impedance at any cross section
at the transmission line equals to Zc, the load
impedance is also Zc, and such a load is called
a matching load. In microwave electronics, the
matching loads for coaxial line and waveguide are
not an actual resistance, but a kind of material or
structure which can absorb all the energy from the
generator.

Pure standing wave

In this state, the load does not absorb any energy,
all the energy is reflected: |
| = 1. When the

load is short (ZL = 0), open (ZL = ∞), or purely
reactive (ZL = jX), the transmission line is in pure
standing-wave state.

Figure 2.17 shows the standing wave in a trans-
mission line terminated by a short. In this state,
ZL = 0 and 
L = −1. According to Eqs. (2.80)
and (2.81), we have

V (z) = j2V0+ sin

(
2π

λ
z

)
(2.90)

I (z) = 2V0+
Zc

cos

(
2π

λ
z

)
(2.91)

As shown in Figure 2.17(b), the phase differ-
ence between the voltage and current is 90◦.
Figure 2.17(c) shows the distributions of the
amplitudes of the voltage and current along the
transmission line.

7l
8

3l
4

3l
4

3l
8

5l
8

l

2

l

2

l

4

l

4

l

8
0

0

0

l

l

t3 t5

t3

t2
t1

t4t2, t4
t1, t5

Z

z

z

z

(a)

(b)

(c)

(d)

(e)

V , I
I

V

v, i

Figure 2.17 Standing wave of a shorted transmission line. (a) Short terminated transmission line, (b) instant
distributions of voltage (full line) and current (dashed line), (c) amplitudes of voltage and current, (d) the impedance
distribution along the transmission line, and (e) lumped equivalent circuits at typical positions
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Equation (2.88) indicates that the impedance of
the transmission line shorted at the end is sure reac-
tive. As shown in Figure 2.17(d), the impedance
periodically appears as inductive reactance and
capacitive reactance along z-direction with period
λ/2. Figure 2.17(e) shows the equivalent lumped-
element circuits at several typical positions. A
piece of shorted transmission line with length less
than λ/4 is equivalent to a lumped inductance, and
a piece of shorted transmission line with length
equal to λ/4 is equivalent to a lumped parallel LC
resonant circuit. A piece of shorted transmission
line with length more than λ/4 but less than λ/2
is equivalent to a lumped capacitor, and a piece
of shorted transmission line with length equal to
λ/2 is equivalent to a lumped series LC reso-
nant circuit.

Mixed wave

In most of the transmission lines, some of the
energy is absorbed by the load and some of the
energy is reflected. This state is a mixture of
pure travelling wave and pure standing wave. The
current and voltage along the line are

V = V+(1 + 
Le−j2kzz) (2.92)

I = V+
Zc

(1 − 
Le−j2kzz), (2.93)

where 
L is the reflection coefficient at the
loading, and 
 = 
L exp(−j2kzz) is the reflection
coefficient at position z. As 
L is a constant, the
voltage and current can be drawn using vector
rotation method, as shown in Figure 2.18.

I ∼ (1 − Γ)

Γ

−Γ
V ∼ (1 + Γ)

Figure 2.18 Vector forms of the voltage and current

ZL

V ∼ (1 + Γ)

I ∼ (1 − Γ)

Figure 2.19 The voltage and current distributions
along a loaded transmission line at the mixed state

Figure 2.19 indicates that the distributions of
voltage and current along a transmission line in
mixed state are periodical with period λ/2. The
voltage V is in the range of V+(1 + |
|) to V+(1 −
|
|), while current is in the range of I+(1 + |
|)
to I+(1 − |
|), with I+ = V+/Zc.

2.2.2 Transmission Smith charts

In microwave engineering, it is often required to
transform the impedance to different positions at
the transmission line. Such transformation is usu-
ally complicated (Eqs. (2.83)–(2.87)), while the
calculation of reflection coefficient is relatively
simple (Eqs. (2.72) and (2.73)). As there are corre-
sponding relationships between the impedance and
reflection coefficient, it is helpful to draw charts to
represent the corresponding relationships, so that
the transformation between impedance and reflec-
tion can be easily conducted.

Actually, there are two types of charts, square
chart and circle chart, for this purpose. In a square
chart, the magnitude and phase of the reflection
coefficient are plotted in rectangular normalized
impedance coordinates, while in a circle chart, the
real part and imaginary part of the normalized
impedance are plotted on polar coordinates of
the reflection coefficient. The equal radius curve
represents the magnitude of reflection, while equal
angle line represents the phase of reflection. As
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the reflection coefficient cannot be larger than
unity, the reflection coefficient is always within the
unit circle of the polar coordinate. In fact, these
two kinds of charts indicate the transformation
relationships between the impedance complex
plane and reflection complex plane. Usually, the
second chart is more often used and is often called
Smith chart.

Smith chart provides great convenience for
transmission-line calculation. In the following
discussion, we concentrate on Smith chart. There
are two kinds of Smith charts: impedance Smith
chart and admittance Smith chart. We will discuss
the impedance Smith chart first, and the admittance
Smith chart can then be transformed from the
impedance Smith chart.

2.2.2.1 Impedance Smith chart

The impedance Smith chart is formed by plotting
the impedance on the reflection polar plane.
Figure 2.20 shows the Smith chart and square chart
in the impedance plane. As r ≥ 0 and 
 ≤ 1, the
transformation between the square chart and Smith
chart is a transformation between the right half
plane in the impedance plane and the unit circle
area in the reflection plane.

The relationship between the reflection coeffi-
cient 
 and the normalized impedance is:

z = 1 + 


1 − 

(2.94)

As z = r + jx and 
 = u + jv, where r = R/Zc

is the normalized resistance and x = X/Zc is the
normalized reactance, Eq. (2.94) can be rewritten
as

r + jx = 1 + (u + jv)

1 − (u + jv)
= 1 − u2 − v2 + j2v

(1 − u)2 + v2

(2.95)

As the real parts and the imaginary parts at the two
sides of Eq. (2.95) should be equal, respectively,
we have

r = 1 − (u2 − v2)

(1 − u)2 + v2
(2.96)

x = 2v

(1 − u)2 + v2
(2.97)

The impedance Smith chart is based on
Eqs. (2.96) and (2.97). In the following, we discuss
several sets of special lines in the impedance Smith
chart, including r circles, x circles, ρ circles, and
θ lines.

r circles

We rewrite Eq. (2.96) into the following form:

(
u − r

1 + r

)2

+ v2 =
(

1

1 + r

)2

(2.98)

Equation (2.98) represents a circle in the reflec-
tion plane with center (r/(r + 1), 0) and radius

jx

2

1

0

−1

−2

1 2 3
r

jv

x = 0.5

x = −0.5
x = −1

r = 0.5 r = 1 r = 2

x = 1
x = 2

x = −2

u

(a) (b)

Figure 2.20 Normalized impedance charts. (a) Chart on impedance plane and (b) Smith chart (chart on reflection
plane)
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1/(r + 1). Different r values correspond to differ-
ent circles which form a series of tangent circles
with the tangent point (1, 0). When r = 0, the cir-
cle center is at the original point and the radius is 1,
representing a pure reactive state. When r → ∞,
the center is at (1, 0) and the radius becomes zero,
so the circle becomes a point (1, 0). Figure 2.21(a)
shows a series of r circles.

x circles

Equation (2.97) can be modified into the following
form:

(u − 1)2 +
(

v − 1

x

)2

=
(

1

x

)2

(2.99)

Equation (2.99) represents a circle in the reflection
plane with center (1, 1/x) and radius 1/x. Differ-
ent x values correspond to different circles which
form a series of tangent circles with the tangent
point (1, 0). The center for the circle correspond-
ing to x = 0 is at (1, ∞), and its radius is ∞. The
real axis of the impedance plane represents a pure
resistive state (x = 0). A circle with x > 0 is on
the upper half, representing an inductive reactance
state. A circle with x < 0 is at the lower half, rep-
resenting a capacitive reactance state. For the cases
x = ±∞, the center of the circle is at (1, 0) and
the radius is 0, so the circles become a point (1, 0).
Figure 2.21(b) shows a series of x circles.

ρ circles

The standing-wave coefficient ρ can be calculated
from the reflection coefficient 
:

ρ = 1 + |
|
1 − |
| (2.100)

The points with the same standing-wave coeffi-
cient ρ form a circle whose center is the origin of
the reflection plane. Different ρ values represent
a series of circles having the same center. When
r > 1, ρ = r and when r < 1, ρ = (1/r). A series
of ρ circles are shown in Figure 2.22(c).

θ lines

According to the expression: 
 = 
′ + j
′′ =
|
|ejθ , it is clear that θ = tan−1(
′′/
′). As shown
in Figure 2.22(c), the θ lines are a series of
straight lines passing through the center. Usually,
θ lines are not shown in Smith chart, while the
corresponding θ values are labeled at the outermost
circle. Sometimes the electric length is labeled
instead of θ values.

By combing the circles and lines in Figure 2.22,
we can get a full Smith chart. As shown in
Figure 2.22, to make the chart clear and simple,
ρ circles and θ lines are usually not shown.

Smith chart is often used to find the impedance
of a point at a transmission from the impedance
of another point at the transmission line. For
a lossless transmission line, the module of the
reflection coefficient does not change, and only the
phase angle changes. So the normalized impedance
points at different positions on the transmission
line are on a ρ circle. When we know the
impedance at one point, the impedance at another
point can be obtained by rotating the point along

q = 0°

jΓ′′

Γ′
180°

135°
90°

45°

1
q

(c)

r = 0
B

0.5 1 2
A
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∞
Γ′

(a)

x = 0

jΓ′′

∞
Γ′

(b)

+0.5
+1
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−1

−2

Figure 2.21 Typical circles and lines at the 
 plane. (a) r circles, (b) x circles, (c) ρ circles and θ lines
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Figure 2.22 A Smith chart. Source: Pozar, D. M. (1998). Microwave Engineering, 2nd ed., John Wiley & Sons,
Inc., New York

the ρ circle. In the rotation, it should be noted that
the θ value is calculated starting from the positive

′ axis. The θ value increases along the counter
clockwise direction, while it decreases along the
clockwise direction. As shown in Figure 2.15, in
a transmission line, the zero position is chosen at
the end of the transmission line, and the positive

direction of the z-axis is from the load to the signal
generator.

2.2.2.2 Admittance Smith chart

In some cases, it is more convenient to use
admittance. For a complex admittance y = g + jb,
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its normalized conductance is g = GZc, and its
normalized susceptance is b = BZc. According to
Table 2.1, the relationship between admittance and
reflection coefficient is

y = 1 − 


1 + 

= 1 + (−
)

1 − (−
)
(2.101)

Equations (2.94) and (2.101) indicate that the
relationship between y and (−
) are the same as
those between Z and 
. So the g lines and b lines
are also two groups of orthogonal tangent circles,
and they have the same shapes as r lines and x

lines. As every point on the impedance Smith chart
can be converted into its admittance counterpart by
taking a 180◦ rotation around the origin of the 


complex plane, an admittance Smith chart can be
obtained by rotating the whole impedance Smith
chart by 180◦, as shown in Figure 2.23. So a Smith
chart can be used as an impedance Smith chart or
an admittance Smith chart.

However, it is necessary to give special attention
to some special points and lines on the two Smith
charts. The main differences of the two Smith
charts are listed in Table 2.2.

Smith charts are powerful tools widely used in
microwave engineering. With known impedance or
admittance, we can calculate the reflection coeffi-
cient and standing-wave coefficient. We can also
calculate the impedance or admittance from the
standing-wave coefficient and position of voltage

x = 1

r = 1

b = −1

g = 1

b = 1x = −1

−1 1
0

−1 10

Toward load

Toward generator Toward generator

Toward load

(a) (b)

Figure 2.23 Two types of Smith charts. (a) Impedance Smith chart and (b) admittance Smith chart

Table 2.2 Comparison between the impedance Smith chart shown in Figure 2.23(a)
and the admittance Smith chart shown in Figure 2.23(b)

Impedance Smith chart Admittance Smith chart

Point “1” Open point,

 = 1, r = ∞, x = ∞

Open point,

 = 1, g = 0, b = 0

Point “−1” Short point

 = −1, r = 0, x = 0

Short point

 = −1, g = ∞, b = ∞

Point “0” Matching point

 = 0, r = 1, x = 0

Matching point

 = 0, g = 1, b = 0

Line “−1” to “0” Voltage nodes
r < 1, x = 0

Voltage nodes
g > 1, b = 0

Line “0” to “1” Voltage antinodes
r > 1, x = 0

Voltage antinodes
g < 1, x = 0

Upper half circle Inductive impedance
x > 0

Inductive admittance
b < 0

Lower half circle Capacitive impedance
X < 0

Capacitive admittance
b > 0
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node. Using Smith chart, we can realize impedance
transformation at two points on a transmission
line, and we can also design impedance match-
ing. Besides its applications in transmission lines,
as will be discussed in Section 2.4.7, Smith charts
can also be used in analyzing resonant structures.

2.2.3 Guided transmission lines

Here, we discuss several typical kinds of transmis-
sion lines often used in materials property char-
acterization, including coaxial lines, planar trans-
mission lines, and hollow metallic waveguides.
Coaxial lines and planar transmission lines can
support TE mode, TM mode, and TEM mode or
quasi-TEM mode, while hollow metallic waveg-
uides cannot support TEM mode, but can support
TE or TM modes.

In materials property characterization, both the
equivalent lumped parameters and the field distri-
butions of transmission lines are important. In the
following discussions, line approach and the field
approach are used in combination.

2.2.3.1 Coaxial line

As shown in Figure 2.24, a coaxial line mainly
consists of a central conductor with diameter a

and an outer conductor with inner diameter b.
For coaxial cables used in microwave circuits,
the space between the central conductor and outer
conductor is filled with a dielectric material, such
as Teflon. If the dielectric material between the

b
a

r

x

z

ϕ0

Figure 2.24 The structure of coaxial line

central conductor and outer conductor is air, the
coaxial line is usually called coaxial air line.
In materials property characterization, coaxial air
lines are often used, and the toroidal samples under
test are inserted in the space between the central
conductor and outer conductor.

Coaxial lines can support TEM, TE, and TM
modes, and TEM mode is its fundamental mode.
As in most of the microwave applications, single
mode is required, most of the coaxial lines work
at the TEM mode. In the following discussion, we
focus on TEM mode.

According to Eq. (2.28), for a coaxial line
shown in Figure 2.25, its potential function �

satisfies the two-dimensional Laplace’s equation:

∇2
T� = 1

r

∂

∂r

(
r
∂�

∂r

)
+ 1

r2

∂2�

∂ϕ2
= 0 (2.102)

As the potential function � does not change with
ϕ(∂�/∂φ = 0), Eq. (2.102) becomes

1

r

d

dr

(
r

d�

dr

)
= 0 (2.103)

Signal
Power

l
2

Signal
Power

Φ = V0

Φ = 0

(a) (b)

Figure 2.25 Field distributions of TEM mode in a coaxial line. (a) Field distribution at a transverse cross
section and (b) the field distribution along the z-axis. Modified from Ishii, T. K. (1995). Handbook of Microwave
Technology, vol 1, Academic Press, San Diago, CA, 1995
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The general solutions for Eq. (2.103) is

�(r) = C1 ln r + C2 (2.104)

According to the boundary conditions: �(a) = V0

and �(b) = 0, we can get

C1 = V0

ln(a/b)
(2.105)

C2 = −C1 ln b (2.106)

So the electric and magnetic fields of a TEM wave
propagating in +z direction are

ET = −r̂
∂�

∂r
e−jkz = r̂

1

r

V0

ln(b/a)
e−jkz

(2.107)

HT = 1

η
ẑ × Er e−jkz = ϕ̂

1

r

√
ε

µ

V0

ln(b/a)
e−jkz

(2.108)
The field distributions are shown in Figure 2.25.

The characteristic impedance Zc is defined by

Zc = V 2
0

2P
= V0

I
= 2P

I 2
, (2.109)

where I is the current flowing in the coaxial line
and P is the power transmitted by the line. For a
coaxial line, its characteristic impedance is

Zc = η

2π
ln

(
b

a

)
= 1

2π

√
µ

ε
ln

(
b

a

)
(2.110)

As the filling medium in a coaxial line is usually
dielectric and the wave impedance of free space is
377 �, we have

Zc = 60√
εr

ln

(
b

a

)
(�) (2.111)

The attenuation of a coaxial line consists of
conductor attenuation αc and dielectric attenuation
αd:

α = αc + αd (2.112)

with

αc = 4.34Rs

2bη

1 + (b/a)

ln(b/a)
(dB/unit length)

(2.113)

αd = 27.3
√

εr
tan δ

λ0
(dB/unit length),

(2.114)

where Rs is the surface resistance of the conduc-
tor and λ0 is the free-space wavelength. If the
conductor used is copper at 20 ◦C, the conductor
attenuation αc can be calculated using the follow-
ing equation (Chang 1989):

αc = 9.5 × 10−5√f (a + b)
√

εr

ab ln(b/a)

(dB/unit length), (2.115)

where f is the operating frequency.

2.2.3.2 Planar transmission line

As the characteristics of a planar transmission line
can be controlled by the dimensions in a single
plane, the circuit fabrication can be conveniently
carried out by photolithography and photoetching
techniques. The application of these techniques at
microwave frequencies has led to the development
of microwave integrated circuits. As will be
discussed in Chapter 7, planar transmission lines
are also used in materials property characterization.

As shown in Figure 2.26, three types of pla-
nar transmission lines are often used in microwave
electronics and materials characterization: stripline,
microstrip, and coplanar waveguide. The stripline
shown in Figure 2.26(a) has an advantage that the
radiation losses are negligible. The propagation in
a stripline is in pure TEM mode, and stripline
circuits are usually quite compact. The problem
with stripline is the difficulty of construction.
Usually, two substrates are required to be sand-
wiched together, and the air gaps between the sub-
strates may cause perturbation to the impedance.
Microstrip line, shown in Figure 2.26(b), is the
most widely used planar transmission structures.
Usually the propagation mode on a microstrip
circuit is quasi-TEM. For the development high-
density microstrip circuits, thin substrates are often

(a) (b) (c)

Figure 2.26 Cross-sectional views of three types of
transmission planar lines. (a) Stripline, (b) microstrip,
and (c) coplanar waveguide
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Figure 2.27 Structure of a stripline

used to maintain reasonable impedance and to
reduce the coupling between different parts of the
circuit. As shown in Figure 2.26(c), the circuit line
and the grounding of a coplanar waveguide are on
the same plane, and the wave propagation mode is
also quasi-TEM.

Stripline

As shown in Figure 2.27, a stripline consists of
upper and down grounding plates, and the central
conductor. Between the grounding plates and the
central conductor is air or dielectric materials.
This structure can be taken as a derivation from
a coaxial line, by cutting the outer conductor into
two pieces and flattening them. Usually, the filling
medium is dielectric (µ′

r = 1), and the dimensions
of the transverse cross section (b and w defined in
Figure 2.27) of a stripline are much less than the
wavelength.

The fundamental propagation mode for a
stripline is TEM. For the TEM wave propagating
in a stripline, the phase velocity is

vp = 1√
L1C1

= c√
εr

, (2.116)

where εr is the dielectric constant of the filling
medium, C1 and L1 are distributed capacitance and
inductance, respectively, and c is the speed of light.

The characteristic impedance is given by

Zc =
√

L1

C1
= 1

vpC1
(2.117)

As the calculations of phase velocity and dis-
tributed capacitance are quite complicated, it is dif-
ficult to give a general equation for the calculation

of Zc. In the following, we discuss two special
cases.

Thin central conductor (t/b � 1)

For a stripline with a thin central conductor, if
the width of the control conductor w is much
larger than the distance between the ground plate
and the central conductor (b/2), the field between
the central conductor and the ground plate is
uniform except the fields at the edges. Using
conformal mapping techniques, we can get an
appropriate equation for the stripline with zero-
thickness central conductor (t = 0):

Zc = 120π2

8
√

εr cosh−1 e(πw)/(2b)
(�) (2.118)

As the central conductor of an actual stripline has
certain thickness, Eq. (2.118) can be modified into

Zc = 120π2(1 − t/b)

8
√

εr cosh−1 e(πw)/(2b)
(2.119)

Thick central conductor

If the condition (t/b � 1) cannot be satisfied, the
calculation of the distributed capacitance becomes
complicated. We consider two conditions: wide
central conductor and narrow central conductor.
If the width of the central conductor satisfies
the condition w/(b − t) ≥ 0.35, we can assume
that the field at right side and left side do not
interfere. As shown in Figure 2.28, the distributed
capacitance C1 mainly consists of two parallel-
plate capacitors and four edge capacitors:

C1 = 2Cp + 4C′
f (2.120)

with

Cp = 0.0885εrw

(b − t)/2
(pF/cm) (2.121)

C′
f = 0.0885εr

π

{
2

1 − t/b
ln

(
1

1 − t/b
+ 1

)

−
(

1

1 − t/b
− 1

)
ln

[
1

(1 − t/b)2
− 1

]}
(pF/cm). (2.122)
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Figure 2.28 The distribution capacitance of stripline
with thick central conductor

Therefore the characteristic impedance can be
calculated using

Zc = 94.15

√
εr

(
w/b

1 − t/b
+ C′

f

0.0885εr

) (�)

(2.123)

If the central conductor is narrow, the interference
between the fields at the two edges cannot be
neglected. We may take the central conductor as
a cylinder by introducing equivalent diameter

d = w

2

{
1 + t

w

[
1 + ln

4πw

t
+ 0.51π

(
t

w

)2
]}

(2.124)

and the characteristic impedance can be calculated
using the following equation:

Zc = 60√
εr

ln

(
4b

πd

)
(�) (2.125)

Similar to coaxial line, the attenuation also con-
sists of conductor attenuation and dielectric attenu-
ation: α = αc + αd. An approximate expression for
attenuation resulting from conductor surface resis-
tance is (Ramo et al. 1994)

αc = Rs

ηb

(
πw/b + ln (4b/πt)

ln 2 + πw/2b

)
(nepers/unit length) (2.126)

Equation (2.126) is valid for w > 2b and t <

b/10. Approximations for other dimensions can be
found in (Hoffmann 1987). The attenuation caused
by dielectric loss is (Collin 1991)

αd = πε′′
r

λ0
√

ε′
r

= π
√

ε′
r tan δ

λ0
(nepers/unit length),

(2.127)

where λ0 is the free-space wavelength.

Here we make some explanations on two ratio
units: “dB” and “neper”. The definitions for “dB”
and “neper” are

dB = 10 · log10 (power ratio)

= 20 · log10 (voltage ratio) (2.128)

neper = ln (voltage ratio). (2.129)

The conversion relations between dB and neper are

neper = dB × 0.115129255, (2.130)

dB = neper × 8.685889638. (2.131)

Microstrip

As shown in Figure 2.29, a microstrip line consists
of a strip conductor and a ground plane separated
by a dielectric substrate. It can be taken as
a transformation of coaxial line by cutting the
outer conductor and flattening it. As the dielectric
constant of the substrate is usually high, the field
is concentrated near the substrate.

In a strict meaning, the wave propagating on a
microstrip line is not a pure TEM wave, nor a sim-
ple TE wave or TM wave. The wave propagating
on a microstrip is in a quasi-TEM mode. Accu-
rate determination of the wave propagation on a
microstrip line requires intense numerical simula-
tions. But in engineering design, we may take the
wave in a microstrip line as TEM wave, and use
the quasi-static method to calculate the distributed
capacitance, and then calculate its propagation con-
stant, wavelength, and characteristic impedance.

W

x

y
h

t

er

er

Figure 2.29 Geometry of a microstrip
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er = 1 eeff

er ′

(c) (d)

er = 1 er

(a) (b)

Figure 2.30 The concept of effective dielectric con-
stant. (a) Microstrip fully filled with air, (b) microstrip
fully filled with dielectric with permittivity εr, (c)
microstrip partially filled with dielectric with permittiv-
ity εr, and (d) microstrip fully filled with dielectric with
permittivity εeff

In the analysis of microstrip lines using quasi-
static method, we introduce the concept of
the effective dielectric constant, as shown in
Figure 2.30. If the filling medium is air (εr = 1),
as shown in Figure 2.30(a), the microstrip line
can support the TEM wave, and its phase veloc-
ity equals the speed of light c. If the transmission
system is fully filled with a dielectric material with
εr > 1, as shown in Figure 2.30(b), the microstrip
can support TEM wave, and its phase velocity:

vp = c/
√

εr. (2.132)

If a microstrip line is partially filled with a
dielectric material with dielectric constant εr,
as shown in Figure 2.30(c), we introduce the
concept of effective dielectric permittivity εeff

to calculate the transmission parameters of the
transmission line: wavelength λg, phase velocity
vp, and characteristic impedance Zc:

λg = λ0√
εeff

(2.133)

vp = c√
εeff

(2.134)

Zc = Z0
c√

εeff
= 1

vpC1
, (2.135)

where c is the speed of light, C1 is the distributed
capacitance of the microstrip, and Z0

c is the
characteristic impedance of the microstrip when
the filling medium is air.

In most cases, the thickness of the strip is negli-
gible (t/h ≤ 0.005). The characteristic impedance
and effective permittivity can be calculated using
appropriate equations. If we define the relative strip
width

u = w

h
, (2.136)

the effective dielectric constant and characteristic
impedance are given by (Ishii 1995)

εeff = εr + 1

2
+ εr − 1

2

[
1√

1 + 12/u

+ 0.041(1 − u)2

]
(for u ≤ 1) (2.137)

εeff = εr + 1

2
+ εr − 1

2

1√
1 + 12/u

(for u > 1) (2.138)

Z0 = 60√
εeff

ln

(
8

u
+ 0.25u

)
(�)

(for u ≤ 1) (2.139)

Zc = 120π√
εeff

1

1.393 + u + ln(u + 1.4444)
(�)

(for u > 1) (2.140)

Actually, the thickness of strip conductor affects
the transmission properties of the microstrip line.
We assume t < h and t < w/2. If the thickness of
the strip t is not negligible, the effective dielectric
constant should be modified (Ishii 1995):

εeff(t) = εeff − δεeff (2.141)

with
δεeff = (εr − 1)

t

4.6h
√

u
(2.142)

We should also introduce a concept of effective
relative strip width ueff:
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ueff = u + 1.25t

πh

(
1 + ln

(
4πw

t

))
(for u ≤ 1/(2π)) (2.143)

ueff = u + 1.25t

πh

(
1 + ln

(
2h

t

))
(for u > 1/(2π)) (2.144)

The attenuation factor of microstrip consists of
dielectric loss factor and conductor loss factor:
α = αc + αd (Ishii 1995). The dielectric loss factor
is given by

αd = 27.3
εr

εr − 1

εeff − 1√
εeff

tan δ

λ0
, (dB/unit length)

(2.145)

and the conductor loss factor can be calculated by

αc = 1.38A
Rs

hZc

32 − u2
eff

32 + u2
eff

(dB/unit length) (for u ≤ 1) (2.146)

αc = 6.1 × 10−5A
RsZcεeff

h

(
ueff + 0.667ueff

1.444 + ueff

)
(dB/unit length) (for u > 1) (2.147)

with

A = 1 + 1

ueff

[
1 + 1

π
ln

(
2B

t

)]
, (2.148)

B =
{
h for u ≥ (1/2π)

2πw for u ≤ (1/2π)
, (2.149)

where Rs is the surface resistance of the conductor.

Coplanar waveguide

As shown in Figure 2.31, in a coplanar waveguide,
all the conductors are on the top surface of a
dielectric substrate. Similar to the microstrip, the
fundamental mode of propagation in the coplanar
waveguide is a quasi-TEM mode. As shown in
Figure 2.31(b), the pattern of the electric field in
the space above the substrate is the same as in the
substrate if the thickness of the strip is negligible
and the substrate is thick enough. Therefore, we
can get the effective dielectric constant:

εeff = εr + 1

2
, (2.150)

and the phase velocity is given by

vp = 1√
µε0εeff

(2.151)

By assuming that the thickness of the conductors
is zero, ground conductors are infinitely wide,
and the substrate has infinite thickness, we have
the following approximate formulas (Ramo et al.
1994):

Zc = η0

π
√

εeff
ln

(
2

√
a

w

)
(�)

for 0 < w/a < 0.173 (2.152)

Zc = πη0

4
√

εeff

(
ln

(
2

1 + √
w/a

1 − √
w/a

))−1

(�)

for 0.173 < w/a < 1 (2.153)
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Figure 2.31 Coplanar line. (a) Structural dimensions and (b) field distributions. The solid lines represent electric
field and the dashed lines represent magnetic field
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Figure 2.32 Factor for calculation of conductor loss in coplanar waveguide (Hoffmann 1987). Source: Müller,
E.: Wellenwiderstand und Mittlere Dielektrizitätskonstante von koplanaren Zwei-und Dreidrahtleitungen auf einem
dielektrischen Träger und deren Beeinflussung durch Metallwände. Dissertation, Techn. Universität Stuttgart (1977)

The relations for coplanar waveguides with thick
conductor and thin substrate are very compli-
cated (Hoffmann 1987; Gupta et al. 1979).

The attenuation factor of a coplanar waveguide
consists of dielectric loss factor and conductor loss
factor: α = αc + αd. The attenuation from con-
ductor loss factor in the coplanar waveguide can
be calculated from the following equation (Ramo
et al. 1994):

αc = A
Rs

d

√
εeff (nippers/unit length) (2.154)

The value of A can be found from Figure 2.32 on
the condition that all the conductors have the same
Rs and have thickness satisfying t > 3δ, where
δ is the penetration depth of the conductor. If
d > a, the dielectric loss factor can be calculated
using (Hoffmann 1987)

αd = πf
√

εeff

c

(
1 − 1/εeff

1 − 1/εr

)
tan δ (nepers/m)

(2.155)

Finally, it should be noted that in the above dis-
cussions on microstrip and coplanar waveguide,
we do not consider the dispersion of the effective
dielectric constant. In a strict meaning, the oper-
ating frequency also affects the value of effective

dielectric constant. More discussions on this topic
can be found in (Ramo et al. 1994).

2.2.3.3 Hollow metallic waveguides

Hollow metallic waveguides are widely used in
microwave engineering and materials property
characterization. We first introduce the parameters
describing the propagation properties of hollow
metallic waveguides, and then discuss two types
of hollow metallic waveguides: rectangular waveg-
uide and circular waveguide. Finally, we introduce
a transition between a circular waveguide and a
rectangular waveguide.

Propagation parameters

As shown in Figure 2.33, a hollow metallic
waveguide refers to a straight metal tube which has
infinite length and whose cross section does change
along the z-axis. The wave propagation in a general
hollow metallic waveguide can be described by

E (u1, u2, z, t) = C1E (u1, u2)e
jωt−γ z (2.156)

H (u1, u2, z, t) = C2H (u1, u2)e
jωt−γ z (2.157)

γ 2 = −(k2 − k2
c ), (2.158)
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Figure 2.33 A general hollow metallic waveguide

where E and H are the electric and magnetic fields
propagating in the waveguide along the Z-axis, and
u1 and u2 are two orthogonal coordinates perpen-
dicular to Z-axis. The propagation parameter γ is
related to wave frequency, medium properties, and
field distributions.

If the frequency is high enough (k > kc), then γ

is an imaginary number:

γ = jβ (2.159)

with
β = k

√
1 − (kc/k)2 (2.160)

So Eqs. (2.156) and (2.157) can be rewritten as

E (u1, u2, z, t) = C1E (u1, u2)e
j(ωt−βz) (2.161)

H (u1, u2, z, t) = C2H (u1, u2)e
j(ωt−βz) (2.162)

Equations (2.161) and (2.162) show that β rep-
resents the phase change of a unit length along
z-axis, and is usually called the phase constant.

If the frequency is low (k < kc), γ becomes a
real number:

γ = α = kc

√
1 − (k/kc)2 (2.163)

So Eqs. (2.156) and (2.157) become

E (u1, u2, z, t) = C1E (u1, u2)e
−αzejωt (2.164)

H (u1, u2, z, t) = C2H (u1, u2)e
−αzejωt (2.165)

Equations (2.164) and (2.165) indicate that the
phase of E and H does not change with z-axis,
and the fields decrease along the z-axis. So the
wave is in a cutoff state.

There is a critical state between the transmis-
sion state and cutoff state: k = kc and so γ = 0.
The frequency corresponding to the critical state is

called the cutoff frequency fc, and its correspond-
ing wavelength is called the cutoff wavelength λc.
The relationship between kc and λc is

kc = 2π

λc
(2.166)

Both kc and λc are related to the transverse field
distribution in the waveguide. The transmission
requirement can be described as k > kc, λ < λc,
and Eq. (2.160) can be rewritten as

β = 2π

λ

√
1 −

(
λ

λc

)2

(2.167)

For a TEM wave, as β = k, the cutoff wavelength
is infinity, so TEM waves with any frequency
satisfy the propagation requirement.

In the following, we discuss parameters often
used in describing the propagation properties
of hollow metallic waveguides, including phase
velocity, group velocity, and the wave impedances
for TE and TM waves.

According to the definition, phase velocity is the
velocity of the movement of phase planes. From
Eqs. (2.161) and (2.162), for a certain phase plane
moving along the z-axis, following requirement is
satisfied:

ωt − βz = constant (2.168)

From Eq. (2.168), we have

d

dt
(ωt − βz) = ω − β

dz

dt
= 0 (2.169)

So the phase velocity is

vp = dz

dt
= ω

β
(2.170)

From (2.167), we have

vp = ω

β
= v√

1 − (λ/λc)2
= v√

1 − (λ/λc)2
,

(2.171)

where v is the velocity of electromagnetic wave:

v = ω

2π
λ = f λ (2.172)

Equation (2.171) indicates that the phase velocity
of TE or TM wave is frequency-dependent, while
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for TEM wave, the phase velocity does not change
with frequency:

vp = ω/k = 1/
√

εµ. (2.173)

The waveguide wavelength refers to the wave-
length of a wave propagating along a waveguide.
For TEM wave, the waveguide wavelength

λg = v/f (2.174)

So it is the same as the wavelength when the TEM
wave propagates in a free space filled with the
same medium. However, for TE and TM wave,
the waveguide wavelength λg is given by

λg = vp

f
= λ√

1 − (λ/λc)2
, (2.175)

where λ is the wavelength of wave propagation
in free space filled with the same medium.
Equation (2.175) indicates that λg is related to
the shape and size of the waveguide, and the
propagation mode in the waveguide.

Equation (2.171) indicates that the phase veloc-
ity may be greater than the speed of light. Actually,
phase velocity is defined to a single frequency and
endless signal (−∞ < t < +∞), and such a signal
does not transmit any information. Information is
transmitted through modulation, and the speed of
the transmitting information is the speed of trans-
mitting the information component in a modulated
wave. A modulated wave is not a single frequency
wave but a group of waves with different frequen-
cies, so its transmission velocity is called the group
velocity.

Here we discuss a simple example. We assume
that the wave group consists of two signals with
the same magnitude and very close frequencies and
phase constants:

E1 = E0ej((ω0+	ω)t−(β0+	β)z) (2.176)

E2 = E0ej((ω0−	ω)t−(β0−	β)z) (2.177)

So the modulated wave is

E = E1 + E2 = 2E0 cos(	ω · t − 	βz)ej(ω0t−β0z)

(2.178)

Equation (2.178) can also be written as

E = 2E0 cos(	ω · t − 	βz) cos(ω0t − β0z)

(2.179)

It is an amplitude-modulated wave with two cosine
factors. The factor cos(ω0t − β0z) corresponds to
the transmission of the wave group along z-axis,
and the factor cos(	ωt − 	βz) corresponds to
the change of magnitude along the z-axis. The
information transmitted is the change of magnitude
(envelope) along the z-axis. So the velocity of
information transmission is the velocity of the
envelope transmission. For a plane in the envelope,

	ω · t − 	βz = constant (2.180)

Differentiating Eq. (2.180) with t gives

dz

dt
= 	ω

	β
(2.181)

By taking 	ω → 0, we can get the group velocity

vg = dω

dβ
(2.182)

For TEM mode, as β = k = ω(εµ)1/2, we have

vg = dω

dβ
= 1√

εµ
= vp (2.183)

However, for TE and TM modes, as β2 = −γ 2 =
k2 − k2

c = ω2εµ − k2
c , we have

vg = dω

dβ
= β

k
√

εµ
= v

√
1 −

(
λ

λc

)2

(2.184)

It is clear that the group velocity is less than the
speed of light. From Eqs. (2.171) and (2.184), we
find that

vp · vg = v2 (2.185)

Figure 2.34 shows the relationship between group
velocity, phase velocity, and frequency of electro-
magnetic waves propagating along a hollow metal-
lic waveguide.

Now, we discuss the wave impedances of TE
and TM waves. As discussed earlier, the wave
impedance is defined as the ratio between the
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Figure 2.34 Relationship between phase velocity,
group velocity, and frequency

transverse electric field and magnetic field. For TE
mode at the transmission state, we have

ZTE = jωµ

γ
= ωµ

β
=

√
µ/ε√

1 − (λ/λc)
2

= ZTEM√
1 − (λ/λc)2

(2.186)

So, the impedance is pure resistance at transmis-
sion state. But in the cutoff state, γ = α, the wave
impedance is an inductive reactance:

ZTE = jωµ

α
(2.187)

Similarly, the wave impedance for TM modes at
the transmission state is

ZTM = γ

jωε
=

√
µ

ε

√
1 −

(
λ

λc

)2

= ZTEM

√
1 −

(
λ

λc

)2

(2.188)

It is pure resistance. But for the cutoff state, the
wave impedance is a capacitive reactance:

ZTM = α

jωε
(2.189)

In the following, we discuss two typical types
of waveguides: rectangular waveguide and circular
waveguide, which are widely used in materials
property characterization.

Rectangular waveguide

Figure 2.35 shows a rectangular waveguide with
width a and height b. Rectangular waveguides
can transmit TE and TM modes. Usually, two
subscripts m and n are used to specify TE or TM
modes, so the propagation mode is often denoted
as TEmn or TMmn . The subscript “m” indicates
the number of changing cycles along the width
a, while the subscript “n” indicates the number of
changing cycles along the height b.

The field components of a TEmn wave are

Hx = A
γmn

k2
c

mπ

a
sin

(mπ

a
x
)

cos
(nπ

b

)
(2.190)

Hy = A
γmn

k2
c

nπ

b
cos

(mπ

a
x
)

sin
(nπ

b

)
(2.191)

Hz = A cos
(mπ

a
x
)

cos
(nπ

b

)
(2.192)

Ex = ZTEHy (2.193)

Ey = −ZTEHx (2.194)

Ez = 0 (2.195)

The constant A is related to the power of the wave.
The parameters γmn , kc, and other parameters are
listed in Table 2.3.

The field components of a TMmn wave are:

Ex = B
γmn

k2
c

mπ

a
cos

(mπ

a
x
)

sin
(nπ

b

)
(2.196)

a

b

x

y z

Figure 2.35 Rectangular waveguide. Source: Ramo,
S. Whinnery, J. R. and Van Duzer, T. (1994). Fields
and Waves in Communication Electronics, 3rd ed., John
Wiley & Sons, Inc., New York
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Table 2.3 Properties of empty rectangular waveguide

TEmnmode TMmn mode

Cutoff wave number, kc

√(mπ

a

)2 +
(nπ

b

)2
√(mπ

a

)2 +
(nπ

b

)2

Propagation constant, γmn

√
k2

c − k2
0

√
k2

c − k2
0

Guided wavelength, λg
λ0√

1 − (kc/k0)2

λ0√
1 − (kc/k0)2

Group velocity, vg c
λ0

λg
c
λ0

λg

Phase velocity, vp c
λg

λ0
c
λg

λ0

Wave impedance, Z
jk0η0

γmn
− jγmnη0

k0

Attenuation for TEmn modes
(Ramo et al. 1994)

2Rs

bη
√

1 − (fc/f )2

{(
1 + b

a

)(
fc

f

)2

+
[

1 −
(

fc

f

)2
] [

(b/a)((b/a)m2 + n2)

(b2m2/a2 + n2)

]}

(nepers/unit length) (n �= 0)

Rs

bη
√

1 − (fc/f )2

[
1 + 2b

a

(
fc

f

)2
]

(nepers/unit length) (n = 0)

Attenuation for TMmn modes
(Ramo et al. 1994)

2Rs

bη
√

1 − (fc/f )2

m2(b/a)3 + n2

m2(b/a)2 + n2
(nepers/unit length)

Ey = B
γmn

k2
c

nπ

b
sin

(mπ

a
x
)

cos
(nπ

b

)
(2.197)

Ez = B sin
(mπ

a
x
)

sin
(nπ

b

)
(2.198)

Hx = −1

ZTM
Hy (2.199)

Hy = 1

ZTM
Hx (2.200)

Hz = 0 (2.201)

The constant B is related to the power of the wave.
The parameters γmn , kc, and other parameters are
listed in Table 2.3.

The constants A and B in Eqs. (2.190)–(2.201)
affect the amplitude of the fields, but do not affect
the field distribution. The field distributions of
several typical TE and TM modes are shown in
Figure 2.36.

Figure 2.37 shows the sequence in which var-
ious modes come into existence as the operation
frequency increases for aspect ratio b/a equals 1
and 0.5. In the cutoff range, no mode can propa-
gate in the waveguide. TE10 is the most often used
mode, and in most cases we should ensure wave-
guides work in single mode state. In microwave
engineering, waveguides with b/a = 0.5 is more
widely used.
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0 1 2 3

TE10 TE20 TE21

TE12

TE02 TM12
TM21

TM11
TE11

TE01
Cutoff
range

(a)

b/a = 1

fc/( fc)TE10

0 1 2 3

TE01
TE20 TE11
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TE10
Cutoff
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b/a = 1/2

fc/( fc)TE10

Figure 2.37 Relative cutoff frequencies of rectangular guides (Ramo et al. 1994). Modified from Ishii, T. K.
(1995). Handbook of Microwave Technology, vol 1, Academic Press, San Diago, CA, 1995; Ramo, S. Whinnery,
J. R. and Van Duzer, T. (1965). Fields and Waves in Communication Electronics, John Wiley & Sons, Inc., New
York

Circular waveguide

As shown in Figure 2.38, in the analysis of a circu-
lar waveguide, it is more convenient to use cylin-
drical coordinate (r, ϕ, z). The dimension of a cir-
cular waveguide is its radius a. Circular waveguide
can transmit TE and TM modes. Usually, the prop-
agation mode in a circular waveguide is denoted as
TEni or TMni . The subscript “n” indicates the num-
ber of changing periods in ϕ-direction, while the
subscript “i” indicates the number of the changing
periods in r-direction.

The field components of a TEni wave are

Hr = −Aγni

(
a

µni

)
J ′

n

(µni

a
r
)

cos nϕ (2.202)

ϕ X

Z

r

Figure 2.38 Circular waveguide

Hϕ = −Anγni

(
a

µni

)2

Jn

(µni

a
r
)

sin nϕ (2.203)

Hz = −AJn

(µni

a
r
)

cos nϕ (2.204)

Er = ZTEHϕ (2.205)

Eϕ = −ZTEHr (2.206)

Ez = 0 (2.207)

The constant A is related to the microwave power
transmitted in the waveguide, Jn is nth-order
Bessel function, and µni is the ith root of J ′

n. Some
characteristic parameters are listed in Table 2.4.

The field components of a TMni wave are

Er = −Bγni

(
a

vni

)
J ′

n

(vni

a
r
)

cos nϕ (2.208)

Eϕ = −B
n

r
γni

(
a

vni

)2

Jn

(vni

a
r
)

sin nϕ (2.209)

Ez = BJn

(vni

a
r
)

cos nϕ (2.210)

Hr = − 1

ZTM
Eϕ (2.211)

Hϕ = 1

ZTM
Er (2.212)

Hz = 0, (2.213)
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Table 2.4 Properties of empty rectangular waveguide

TEni mode TMni mode

Cutoff wave number, kc
µni

a

vni

a
(i = 0, 1, 2, 3, . . .) (i = 1, 2, 3, . . .)

Propagation constant, γni

√
k2

c − k2
0

√
k2

c − k2
0

Guided wavelength, λg
λ0√

1 − (kc/k0)2

λ0√
1 − (kc/k0)2

Group velocity, vg c
λ0

λg
c
λ0

λg

Phase velocity, vp c
λg

λ0
c
λg

λ0

Wave impedance, Z
jk0η0

γni
− jγni η0

k0

Attenuation for TEni modes
(Ishii 1995)

Rs

aη0

1√
1 − (kc/k0)2

[(
kc

k0

)2

+ n2

(kca)2 − i2

]

(nepers/unit length)

Attenuation for TMni modes
(Ishii 1995)

Rs

aη0

k2
0√

k2
0 − k2

c

(nepers/unit length)

where vni is the is the ith root of Jn, and B

is related to the microwave power transmitted in
the waveguide. Some characteristic parameters are
listed in Table 2.4.

Figure 2.39 shows the field distributions of
several typical circular waveguide modes. We can
see that along the ϕ direction, the field changes
in a sinuous way, and the number n indicates the
period number in the range of 0 to 2π . In the
radius direction, the field changes according to
Bessel function or differentiated Bessel functions,
and i indicates the number of zeros along the
radius (0 < r < a).

In circular waveguides, there exist degeneration
phenomena. There are two kinds of degenerations:
polar degeneration and E-H degeneration. For a
TEni or a TMni (n �= 0), mode there are two kinds
of field distributions that have the same shape,
but their polarization planes are perpendicular to
each other. Such degeneration is called polar
degeneration. Meanwhile, because

J ′
0(x) = −J 1(x), (2.214)

the roots for J ′
0(x) and J1(x) are the same: µ0i =

v1i . Therefore, TE0i and TM1i have the same
wavelength, and this is called E-H degeneration.

Figure 2.40 shows the cutoff frequencies for
different modes of circular waveguides. Similar
to rectangular waveguides, there is a cutoff range
where no mode can propagate, and the fundamental
mode is TE11 mode. In the design and selection of
circular waveguides, we should ensure single mode
requirement.

Transition from rectangular waveguide to circular
waveguide

In microwave engineering, we often use the prime
modes of rectangular and circular waveguides. The
prime mode of rectangular waveguide is TE10,
and that of circular waveguide is TE11. Owing
to the E-H degeneration of circular waveguides,
rectangular waveguides are more widely used
while circular waveguides are often used in
antennas, polarization attenuators, ferrite isolators,
and circulators.
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0 1 2 3

TE11

TM01 TM11 TM21 TM02

TE21 TE01 TE31 TE41 TE12

fc/( fc)TE11

Cutoff
range

Figure 2.40 Relative cutoff frequencies of waves in a circular guide (Ramo et al. 1994). Source: Ramo, S.
Whinnery, J. R. and Van Duzer, T. (1994). Fields and Waves in Communication Electronics, 3rd ed., John Wiley
& Sons, Inc., New York

TE10

TE11

Figure 2.41 Transition between a rectangular waveg-
uide and a circular waveguide

As the field distributions of rectangular TE10

and circular TE11 are similar, it is easy to realize
the transition between them. Figure 2.41 shows an
example for the transition between a rectangular
waveguide and a circular waveguide.

2.2.3.4 Transitions between different types
of transmission lines

In building microwave measurement circuits, it
is necessary to make transitions between differ-
ent types of transmission structures, for example,
transitions between waveguide and coaxial line,
and transitions between waveguide and microstrip
line. The function of a microwave transition is to
couple the electromagnetic wave in one type of
transmission structure into another. Meanwhile, a
transition between two different transmission struc-
tures transforms the electromagnetic field distribu-
tions in one transmission structure to conform to
the boundary conditions of another transmission
structure. Here, we discuss the basic requirements
for the design of transitions and then give several
transition examples. Detailed analysis and more
examples can be found in (Izadian and Izadian
1988).

Field matching and impedance matching

The objective of transition design is to make
the transformation between different types of
transmission structures as efficient as possible.
To obtain good transformation, two requirements
should be satisfied: impedance matching and field
matching.

A practical approach to realize the efficient
field transition from one transmission structure
to another is to smoothly and gradually change
the physical boundary conditions. A transition
example is the transition between rectangular and
circular waveguides, as shown in Figure 2.41.
Here, we discuss the transitions between different
types of transmission structures.

Waveguide, coaxial line, and microstrip are three
types of transmission structures often used in
microwave engineering and materials characteri-
zation, and their electric field and magnetic field
distributions are shown in Figure 2.42. To ensure
field matching, it is necessary to transform the
field geometry by reshaping the transmission struc-
tures. Figure 2.43 illustrates the evolution pro-
cedure of modifying a coaxial transmission line
into a microstrip line by cutting the coaxial line
along the longitudinal direction and unfolding it.
Meanwhile, the transition between two transmis-
sion structures must provide impedance matching

(a) (b) (c)

Figure 2.42 Field distributions of three types of trans-
mission structures. (a) Rectangular waveguide, (b)
coaxial line, and (c) microstrip
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A′

A Cut here

(a) (b)

Figure 2.43 The evolution from a coaxial line to a
microstrip line. (a) Coaxial line and (b) microstrip
line. Reprinted with permission from Microwave Tran-
sition Design, by Izadian, J. S. and Izadian, S. M.
(1988). Artech House Inc., Norwood, MA, USA.
www.artechhouse.com

between the two transmission structures to reduce
the reflection at the transition and improve the tran-
sition efficiency. To achieve both field matching
and impedance matching, most of the transitions
use step transition or continuous taper transition
approaches.

In the following, we discuss two typical tran-
sitions: transition between rectangular waveguide
and coaxial line, and transition between coaxial
line and microstrip line.

Transition between rectangular waveguide
and coaxial line

Rectangular waveguide is a non-TEM wave trans-
mission structure, which only supports TE or TM
modes, so a rectangular waveguide may be taken as
a high-pass or band-pass structure, while a coaxial
line supports a TEM mode and can be used from
dc. The upper frequency limit of coaxial lines is
the increase of loss of the transmission line and
the higher order modes.

Two classic approaches have been used in the
design of transition between a waveguide and a
coaxial line: the electric probe and the magnetic
probe. The coaxial line is usually 50 Ohms, but
the impedance of the TE10 mode in a rectangular
waveguide is usually several hundred Ohms. So, the
design procedure is to get an optimum impedance
matching by changing the location, height, and
diameter of the electric or magnetic probe.

Figure 2.44 shows a transition in magnetic probe
approach. The inner conductor of the coaxial line
is connected to the top side of the waveguide wall,

Figure 2.44 Magnetic-dipole approach for the tran-
sition between a rectangular waveguide and coaxial
line (Izadian and Izadian 1988). Reprinted with permis-
sion from Microwave Transition Design, by Izadian, J. S.
and Izadian, S. M. (1988). Artech House Inc., Norwood,
MA, USA. www.artechhouse.com

and the shield of the coaxial line is connected to
the bottom side of the waveguide wall. At the
connection region, the height of the waveguide is
decreased to achieve an impedance value close to
that of the coaxial line (50 �), and so the first
critical translation is made between coaxial line
and waveguide. Quarter-wavelength waveguide
sections between the normal waveguide and the
connection region are often used to make a
transition between the normal waveguide and 50 �

waveguide.
Figure 2.45 shows an electric probe approach

for making a transition between a rectangular
waveguide and a coaxial line. In this approach,
the central conductor of the coaxial line extends
into the waveguide, but is not connected to the
opposite waveguide wall. The central conductor
acts as a small monopole antenna exciting the
propagation mode in the rectangular waveguide.

C
B

A

(a) (b)

Figure 2.45 Electric-probe approach for a transition
between a rectangular waveguide and a coaxial line.
(a) Side view and (b) front view (Izadian and Izadian
1988). Reprinted with permission from Microwave
Transition Design, by Izadian, J. S. and Izadian, S.
M. (1988). Artech House Inc., Norwood, MA, USA.
www.artechhouse.com
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The impedance matching can be achieved by
varying the dimensional parameters, including
off-center position of the probe A, probe length
B, and probe position in the waveguide C.

Transition between coaxial line
and microstrip line

The transitions between coaxial and microstrip
line are the most frequently used transitions in
microwave electronics. In materials property char-
acterization, these types of transitions are often
required in developing planar circuit method,
which will be discussed in Chapter 7. The transi-
tions between coaxial line and microstrip lines are
often required to have broad working frequency
range, high return loss, and low insertion loss.

The basic principle for a transition between
coaxial line and microstrip line has been shown
in Figure 2.43. As microstrip circuits are usu-
ally hosted in a casing, the transition between
microstrip line and coaxial line is often designed
in the package casing. In the development of such
transitions, commercially available standard con-
nectors, including the central pins and shields, are
often used. In a transition structure, the central pin
is connected to the microstrip circuit, and the shield
is connected to the wall of the casing, as shown
in Figure 2.46(a). It is preferable to choose a con-
nector with a dielectric insulator whose thickness
is close to the thickness of the microstrip substrate,
and the dielectric insulator of the connector and the
microstrip substrate have close dielectric constant.

Meanwhile, to obtain better transition efficiency,
the width of the microstrip must be close to the
diameter of the coaxial central pin.

Figure 2.46(b) shows a right-angle transition
between a coaxial line and a microstrip line. Such
a transition can be fabricated by drilling a hole in
the microstrip substrate. The pin of the connector
is inserted through the hole and connected to the
microstrip circuit and the shield of the connector
is connected to the ground of the microstrip line.
This kind of transition is often used in antennas,
but it requires high fabrication techniques.

Figure 2.47 shows another example of transition
between a coaxial line and a microstrip line.
In such a transition, the central conductor of
the coaxial line goes gradually from the axis
position to the strip of the microstrip, and the
grounding plate of the microstrip is connected
to the outer conductor of the coaxial line. The
field distributions at different cross sections of the
transition structure indicate that the fields change
gradually, and so high transition efficiency can be
achieved using this transition structure.

2.2.4 Surface-wave transmission lines

Besides the guided transmission lines discussed in
Section 2.2.3, there exists a class of open-boundary
structures which can also be used in guiding
electromagnetic waves. Such structures are capable
of supporting a mode that is closely bound to the
surfaces of the structures. The field distributions
of the electromagnetic waves on such structures
are characterized by an exponential decay away

Coaxial connector
with flange

Coaxial connector
with flange

Microstrip
Microstrip

Substrate

Substrate

Grounding

Grounding

(a) (b)

Housing base plate

Figure 2.46 Transitions from coaxial line to microstrip. (a) Straight transition and (b) right angle transition
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Dielectric

Microstrip line

Housing
base plate

Coaxial line

Field distributions
at different
cross sections

Figure 2.47 A transition between a coaxial line and a microstrip line (Modified from Hoffmann, R. K. (1987).
Handbook of Microwave Integrated Circuits, Artech House, Norwood, MA, 1987.  2003 IEEE

from the surface and having the usual propagation
function exp(±jβz) along the axis of the structure.
Such an electromagnetic wave is called a surface
wave, and the structure that guides this wave is
often called a surface waveguide. One of the most
characteristic properties of a surface wave is that
it does not have low-frequency limit.

Sometimes, surface waveguides are also called
dielectric waveguides, as in most cases, the key
components consisting a surface waveguide are
dielectrics. In a surface waveguide, the wave trav-
els because of the total internal reflections at the
boundary between two different dielectric materi-
als. Figure 2.48 shows a cross section of a gener-
alized surface waveguide. The conductor loss in a
surface waveguide is usually very low, while the
loss due to the curvature, junction, and disconti-
nuities, and so on, may be quite large. The loss
of a dielectric waveguide can be decreased using

Dielectric

Conductor
boundary

er = e2

er = e1

Figure 2.48 Cross section of a generalized dielectric
waveguide

high permittivity and extremely low loss dielec-
tric materials. But the use of high permittivity
materials may result in very small size of the sur-
face waveguide and severe fabrication tolerance
requirements.

In the following, we mainly discuss the sur-
face waves at dielectric interfaces, dielectric
slabs, rectangular dielectric waveguides, cylindri-
cal dielectric waveguides, and coaxial surface-
wave transmission structures.

2.2.4.1 Dielectric interface

The simplest surface waveguide structure is a
dielectric interface between two dielectric materi-
als with different dielectric permittivities as shown
in Figure 2.49. For an electromagnetic wave inci-
dent on the interface, we have Snell’s laws of
reflection and refraction:

θi = θr (2.215)

k1 sin θi = k2 sin θt, (2.216)

where k1 and k2 are the wave-numbers in the two
dielectric media, given by

ki = ω
√

µ0εi (i = 1, 2), (2.217)

where ω is the operating frequency. Other param-
eters are defined in Figure 2.49. In the following
discussion, we assume ε1 > ε2.
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x

z

(Er, Hr)

(Ei,Hi)

(Et,Ht)

Region 1
(e1, m0)

Region 2
(e2,m0)

qr qt

q i

Figure 2.49 Geometry for a plane wave obliquely
incident at the interface between two dielectric regions

From Eq. (2.216), we have

sin θt = √
ε1/ε2 sin θi (2.218)

Equation (2.218) indicates that when the incident
angle θi increases from 0◦ to 90◦, the refraction
angle θt will increase, in a faster rate, from 0◦ to
90◦. At a critical incident angle θc defined by

sin θc = √
ε2/ε1, (2.219)

θt = 90◦. When the incident angle is equal to or
larger than the critical angle, the transmitted wave
does not propagate into region 2.

When θi > θc, the angle θt loses its physical
meaning defined in Figure 2.49. We write the
incident fields as

Ei = E0(x̂ cos θi − ẑ sin θi)

exp[−jk1(x sin θi + z cos θi)] (2.220)

Hi = E0

η1
ŷ exp[−jk1(x sin θi + z cos θi)] (2.221)

When θi > θc, the transmitted fields are usually
expressed as

Et = E0T

(
jα

k2
x̂ − β

k2
ẑ

)
exp(−jβx) exp(−αz)

(2.222)

Ht = E0T

η2
ŷ exp(−jβx) exp(−αz), (2.223)

where T is the transmission coefficient, β is
the propagation constant, and ηi is the wave
impedance given by

ηi = √
µ0/εi (i = 1, 2) (2.224)

From the boundary condition, we can get

β = k1 sin θi = k1 sin θr (2.225)

α =
√

β2 − k2
2 =

√
k2

1 sin2 θi − k2
2 . (2.226)

The reflection and transmission coefficients can
then be obtained (Pozar 1998):


 = (jα/k2)η2 − η1 cos θi

(jα/k2)η2 + η1 cos θi
(2.227)

T = 2η2 cos θi

(jα/k2)η2 + η1 cos θi
(2.228)

The magnitude of 
 is unity as it is of the form
(a − jb)/(a + jb), so all the incident power is
reflected.

Equations (2.222) and (2.223) indicate that the
transmitted wave propagates in the x-direction
along the interface, while it decays in the z-
direction. As the field is tightly bound to the inter-
face, the transmitted wave is called surface wave.
From Eqs. (2.222) and (2.223), we can calculate
the complex Poynting vector (Pozar 1998):

St = Et × H ∗
t = |E0|2|T |2

η2

(
ẑ

jα

k2
+ x̂

β

k2

)
exp(−2αz) (2.229)

Equation (2.229) indicates that no real power flow
occurs in the z-direction. The real power flow
in the x-direction is that of the surface wave
field, which decays exponentially with distance
into region 2. So, even though no real power is
transmitted into region 2, a nonzero field does exist
there in order to satisfy the boundary conditions at
the interface.

2.2.4.2 Dielectric slab

Surface waves can propagate on dielectric slabs,
including ungrounded and grounded dielectric
slabs.
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Figure 2.50 Cross section of an ungrounded dielectric
slab

Ungrounded dielectric slab

An ungrounded dielectric slab is also called sym-
metrical dielectric slab due to its structural sym-
metry. Figure 2.50 shows an ungrounded dielectric
slab with a thickness 2d , and at the regions x > d

and x < −d , the medium is air. We assume that
the dielectric loss of the slab is negligible and the
dielectric constant of the slab is εr. For a plane
wave propagating from the slab to the interface
between the dielectric and air, if the incident angle
satisfies

θi > sin−1(1/
√

εr), (2.230)

the wave energy will be totally reflected, resulting
in surface wave propagation.

We assume that the dielectric slab is infinitely
wide, the electromagnetic field does not change
along the y-direction, and the propagation factor
along the z-direction is exp(−jβz). According to
Maxwell’s equations and the boundary conditions,
it can be verified that there are two types of surface
waves: TM modes with components Hy , Ex , and
Ez, and TE modes with components Ey , Hx , and
Hz. Detailed discussions on TM and TE modes can
be found in (Collin 1991).

Owing to the symmetrical structure of the
dielectric slab, the surface waves also fall into
symmetrical modes and antisymmetrical modes.
For a symmetrical TM mode, as the distribution of
Hy along x-direction is symmetrical for the plane
x = 0, we have

∂Hy

∂x

∣∣∣∣
x =0

= 0. (2.231)

Equation (2.231) indicates that the tangent electric
field component along the x = 0 plane equals zero,
so we can put an electric wall at the x = 0 plane.

For an antisymmetrical TM mode, at x = 0 plane,
we have

Hy = 0, (2.232)

so we can put a magnetic wall at the x = 0 plane.
For TE modes, we have opposite conclusions.

For a symmetrical TE mode, we can put a magnetic
wall at the x = 0 plane; and for an antisymmetrical
TE mode, we can put an electrical wall at the x = 0
plane.

The cutoff wavelength for both TMn and TEn

modes are given by

2d

λc
= n

2(εr − 1)1/2
(n = 0, 1, 2, 3, . . .) (2.233)

Even values of n(0, 2, 4, . . .) correspond to
even TM or TE modes, while odd values of
n(1, 3, 5, . . .) correspond to odd TM or TE modes.
Equation (2.233) indicates that for an ungrounded
dielectric slab, the first even mode (n = 0) has no
low-frequency cutoff.

Grounded dielectric slabs

Figure 2.51 shows a dielectric slab grounded by
a metal plate. A grounded dielectric slab with
thickness d can be taken as a special case
of ungrounded dielectric slab with thickness 2d

as shown in Figure 2.50, with an electric wall
placed at the plane x = 0. Detailed discussion
on grounded dielectric slab can be found in
(Pozar 1998).

The surface waves propagating on a grounded
dielectric slab can also classified into TM and TE
modes. The cutoff wavelength for TMn mode is

Dielectric

x

d

e0

e0 er

z

Ground plane

Figure 2.51 Geometry of a grounded dielectric slab
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given by

2d

λc
= n

(εr − 1)1/2
(n = 0, 1, 2, . . .), (2.234)

while the cutoff wavelength for TEn mode is given
by:

2d

λc
= 2n − 1

2(εr − 1)1/2
(n = 1, 2, 3, . . .) (2.235)

Equations (2.234) and (2.235) indicate that the
order of propagation for the TMn and TEn modes
is TM0, TE1, TM1, TE2, TM2, . . ..

2.2.4.3 Rectangular dielectric waveguide

A rectangular dielectric waveguide can be taken
as a modification from a dielectric slab, by
limiting the width of the slab. Corresponding to
ungrounded and grounded dielectric slabs, we have
isolated dielectric waveguides and image guides.
The determination of propagation properties of

surface waves on dielectric waveguides usually
requires numerical techniques, among which the
mode-matching method is often used. Detailed
discussion on rectangular dielectric waveguide
can be found in (Ishii 1995; Goal 1969). In the
following, we discuss the propagation constants
of isolated rectangular dielectric waveguides and
image guides.

Isolated rectangular waveguide

Figure 2.52 shows the geometrical structure of
an isolated rectangular waveguide and its field
distributions along the x-direction and y-direction.
The axis of the dielectric waveguide is along the
z-direction, and dimensions along the x-direction
and y-direction are 2a and 2b, respectively.

The propagation constant for the surface wave
along the rectangular waveguide is given by (Ishii
1995)

kz = (εrk
2
0 − k2

x − k2
y)

1/2 (2.236)

2b

2a

2a 2b

Ey, Hx
Ey , Hx

cos (kx x)
cos (ky y)

cos (kx a) e−kxax
cos (ky b) e−kyay

x y

(a)

(b) (c)

y

x

z

eo

er

Figure 2.52 Rectangular dielectric waveguide and its field distributions (Ishii 1995). (a) Geometrical structure,
(b) field distribution along x-direction, and (c) field distribution along y-direction. Source: Ishii, T. K. (1995).
Handbook of Microwave Technology, Vol 1, Academic Press, San Diago, CA, 1995
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Ground plane2a

b

y

eoer

x

Figure 2.53 Configuration of an image guide (Ishii 1995). Source: Ishii, T. K. (1995). Handbook of Microwave
Technology, Vol 1, Academic Press, San Diago, CA, 1995

with

kx = mπ

2a

{
1 + 1

a[(εr − 1)k2
0 − k2

y]

}−1

(2.237)

ky = nπ

2b

{
1 + 1

εrb[(εr − 1)k0]1/2

}−1

(2.238)

kx0 = (εr − 1)k2
0 − k2

x − k2
y (2.239)

ky0 = (εr − 1)k2
0 − k2

y, (2.240)

where kx and ky , kx0 and ky0 are the trans-
verse propagation constants inside and outside the
dielectric waveguide respectively, and k0 is the
free-space propagation constant.

Rectangular image guide

A rectangular image guide can be taken as a
modification from the grounded dielectric slab by
limiting the width of the slab. Figure 2.53 shows
the configuration of an image guide whose axis is
along the z-direction. The width of the dielectric
is 2a while the height of the dielectric is b.

The propagation constant of a surface wave on
an image guide is also given by Eq. (2.236), where
the value of kx is the solution of the following set
of equations (Ishii 1995):

tan(kxa) = kx0/kx (2.241)

k2
x = εre(y)k2

0 − k2
z (2.242)

k2
x0 = k2

z − k2
0

= [εre(y) − 1]k2
0 − k2

x (2.243)

εre(y) = εr − (ky/k0)
2 (2.244)

and the value of ky is the solution of the following
set of equations (Ishii 1995):

tan(kyb) = εre(x)ky0/ky (2.245)

k2
y = εre(x)k2

0 − k2
z (2.246)

k2
y0 = [εre(x) − 1]k2

0 − k2
y (2.247)

εre(x) = εr − (kx/k0)
2 (2.248)

Dielectric microstrip

Figure 2.54 shows the geometry of a dielectric
microstrip, which is a modified image guide with
a dielectric slab interposed between a dielectric
ridge and the grounding plane. In this structure,
the dielectric constant of the ridge (εr2) is usually
greater than that of the substrate (εr1). The fields
are thus mostly confined to the area around the
dielectric ridge, resulting in low attenuation. On
the basis of this basic geometry, many variations
can be made for different purposes.

er2

er1

Dielectric 2

Dielectric 1
Conductor

Figure 2.54 Geometry of dielectric microstrip



Microwave Theory and Techniques for Materials Characterization 79

2.2.4.4 Cylindrical dielectric waveguide

Figure 2.55(a) shows a cylindrical dielectric wave-
guide whose cross section is a circle with radius
a. The dielectric constant of the cylinder is εr1,
and that of the environment is εr2. In some cases,
the dielectric cylinder is covered with a layer
of another dielectric material, and such a struc-
ture is often used in optical communications,
and is usually called optical cable, as shown
in Figure 2.55(b). For optical cables, usually the
refraction index n = (εr)

1/2 is used. Usually, the
refraction index of the core n1 is larger than
that of the cover n2. Both dielectric cylinders
and optical cables can support surface waves. As
electromagnetic fields decay quickly in the cover
layer along the r-direction, if the cover layer is
thick enough, the fields outside the cover can be
neglected and we can assume that the cover layer
has infinite thickness. Therefore, for the propa-
gation of surface waves, optical cables shown in
Figure 2.55(b) can be taken as a dielectric cylinder
shown in Figure 2.55(a). In the following discus-
sion, we concentrate on the surface waves propa-
gating along a dielectric cylinder.

As shown in Figure 2.55(a), we assume that the
axis of the dielectric cylinder is along the z-axis,
and the propagation factor of electromagnetic wave
along the z-direction is exp(−jβz). The longitudi-
nal field components Ez(r, ϕ) and Hz(r, ϕ) satisfy
the following equation:

∂2

∂r2

(
EzHz

) + 1

r

∂

∂r

(
EzHz

) + 1

r2

∂2

∂ϕ2

(
EzHz

)
+ k2

c

(
EzHz

) = 0 (2.249)

er2 er1
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j
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r

Figure 2.55 Cylindrical surface waveguides. (a) Di-
electric cylinder and (b) optical cable

with

k2
c = n2

1k
2
0 − β2 = h2 (r < a) (2.250)

k2
c = n2

2k
2
0 − β2 = −p2 (r > a) (2.251)

ni = √
εri (i = 1, 2) (2.252)

By assuming(
EzHz

) = (
AB

)
R(r)�(ϕ), (2.253)

from Eq. (2.249), we can get

d2�

dϕ2
+ n2� = 0 (2.254)

r2 d2R

dr2
+ r

dR

dr
+ (h2r2 − n2)R = 0 (r < a)

(2.255)

r2 d2R

dr2
+ r

dR

dr
− (p2r2 + n2)R = 0 (r > a)

(2.256)
Equations (2.254)–(2.256) indicate that the lon-

gitudinal field components are in the following
forms:

Ez = AnJn(hr) exp(jnϕ) exp(−jβz) (r < a)

(2.257)

Hz = BnJn(hr) exp(jnϕ) exp(−jβz) (r < a)

(2.258)

Ez = CnKn(pr) exp(jnϕ) exp(−jβz) (r > a)

(2.259)

Hz = DnKn(pr) exp(jnϕ) exp(−jβz) (r > a),

(2.260)
where An, Bn, Cn, and Dn are amplitude constants,
Jn(hr) is the first type Bessel function, and Kn(pr)

is the second type modified Bessel function.
According to wave propagation equations, we can
get the transverse field components (Er , Eϕ , Hr ,
and Hϕ) from the longitudinal field components
(Ez and Hz).

According to the boundary conditions at r = a,
we can determine the relative amplitudes of the
field components and get the eigenvalue equation:[

k2
1J

′
n(u1)

u1Jn(u1)
+ k2

2K
′
n(u2)

u2Kn(u2)

] [
J ′

n(u1)

u1Jn(u1)
+ K ′

n(u2)

u2Kn(u2)

]

= n2β2

(
1

u2
1

+ 1

u2
2

)2

, (2.261)
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where
k2
i = ωεriε0µ0 (i = 1, 2) (2.262)

and the two parameters (u1 = ha and u2 = pa)
satisfy the following equation:

u2
1 + µ2

2 = (n2
1 − n2

2)(k0a)2 (2.263)

From Eqs. (2.261) and (2.263), we can calculate
the values of u1 and u2 from which we can further
get the values of h, p, and β. The results obtained
are related to the value of n.

For Eq. (2.261), when n = 0, the right-hand side
vanishes, and one of the two factors should be
equal to zero. Actually, the two factors are the
eigenvalue equations for the axially symmetric TM
and TE modes, respectively:

k2
1J

′
n(u1)

u1Jn(u1)
+ k2

2K
′
n(u2)

u2Kn(u2)
= 0 (TM modes)

(2.264)
J ′

n(u1)

u1Jn(u1)
+ K ′

n(u2)

u2Kn(u2)
= 0 (TE modes)

(2.265)
TM0i and TE0i modes are degenerate, and their
cutoff wavelength is given by

λc,0i =
2πa

√
n2

1 − n2
2

v0i

, (2.266)

where v0i (i = 1, 2, 3, . . .) is the root of zero order
Bessel function. TM01 and TE01 modes have the
longest cutoff wavelength:

λc,01 =
2πa

√
n2

1 − n2
2

2.405
(2.267)

It should be indicated that pure TM or TE modes
are possible only if the field is independent of the
angular coordinate (n = 0). As the radius of the rod
increases, the number of TM and TE modes also
increases. When the field depends on the angular
coordinate (n �= 0), pure TM or TE modes no
longer exist. All modes with angular dependence
are a combination of a TM and a TE mode, and are
classified as hybrid EH or HE modes, depending
on whether the TM or TE mode predominates,
respectively. For hybrid EHni and HEni modes,
the solutions for Eq. (2.261) are quite complicated,
and usually numerical methods are needed.
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Figure 2.56 Ratio of β to k0 for the first three surface-wave modes on a polystyrene rod with εr = 2.56 (Collin
1991, p722). Source: Collin, R. E. (1991). Field Theory of Guided Waves, 2nd ed., IEEE Press, Piscataway, NJ,
1991.  2003 IEEE
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All the hybrid modes (n �= 0), with the exception
of the HE11 mode, exhibit cutoff phenomena
similar to those of the axially symmetric modes.
For n = 1, the cutoff condition for HE1i mode
is J1(u1) = 0, and the cutoff wavelength for
HE11 is infinity. Since the HE11 mode has no
low-frequency cutoff, it is the dominant mode.
Figure 2.56 shows the relationship between β and
λ0 of the three lowest surface wave modes (HE11,
TM01, TE01) of a polystyrene rod in air. It is clear
that if the diameter of the rod is less than 0.613λ0,
only the HE11 mode can propagate.

Figure 2.57 shows the field distribution of HE11

mode. The field distribution of HE11 mode is
quite similar to that of TE11 mode in a circular
waveguide. So the HE11 mode of a dielectric rod
can be excited using a circular waveguide, as
shown in Figure 2.58.

As shown in Figure 2.59, if we place an
infinitely large ideal conducting plane at the
center of the dielectric cylinder, as the electric
field is perpendicular to the conducting plane,
the field distribution is not affected. So we can

Figure 2.57 Field distribution of HE11 mode

move away the half below the conducting plane,
and such a structure is usually called cylindrical
image guide. As the electromagnetic energy is
concentrated on the space close to the dielectric
material, such structure does not require very wide
conducting plane. In practical applications, the
conducting plane is also used as a support to the
image guide.

2.2.4.5 Coaxial surface-wave transmission
structure

As shown in Figure 2.60, a conducting cylinder
covered with a dielectric layer can also support
surface waves. Among the possible propagation
modes, the TM01 one has no low-frequency cutoff.
Coaxial surface-wave structures have the advan-
tage that Maxwell’s equations for the structures
can be solved rigorously. Usually, a perfectly con-
ducting cylinder and a lossless dielectric coating
are assumed.

In a cylindrical coordinate system, if we
assume longitudinal field components in the form
G(r, ϕ) = R(r) exp(jvϕ), we have the following
differential equation (Marincic et al. 1986):

d2R

dr2
+ 1

r
· dR

dr
+

(
εrk

2
0 − β2 − v2

r2

)
R = 0

(2.268)

Equation (2.268) has to be solved in two regions:
the dielectric region and the outer space. In the
dielectric region, εr is the relative permittivity of
the dielectric, while in the outer region εr = 1.

Dielectric cylinderCircular waveguide

E

K
H

HE11TE11

Conical impedance match

Figure 2.58 Excitation of HE11 mode surface wave on a dielectric cylinder by a circular waveguide in TE11

mode (Musil and Zacek 1986). Reprinted from Musil, J. and Zacek, F. (1986). Microwave Measurements of Complex
Permittivity by Free Space Methods and Their Applications with permission from Elsevier, Amsterdam
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Figure 2.59 Cylindrical image guide
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Figure 2.60 Cross section of a coaxial surface-wave
guide

The solutions for Eq. (2.268) are either Bessel
functions of the first and second kind, Jv(x) and
Yv(x), or modified Bessel functions of the first and
second kind, Iv(x) and Kv(x). The selection of
solutions depends on the sign of (k2

0εr − β2). If this
term is positive, the solutions are Bessel functions
of the first and second kind. In the opposite case,
the solutions are the modified Bessel functions.

It can be shown that the phase coefficient β must
lie between the limits (Marincic et al. 1986):

1 ≤ β/k0 ≤ √
εr (2.269)

Here, we introduce following two parameters u

and w:

u2 = k2
0εr − β2 (2.270)

w2 = β2 − k2
0 (2.271)

If β satisfies Eq. (2.269), the parameters u and w

are real.
It can be shown that (Collin 1991) the charac-

teristic equation for TM modes is

u

εr

J0(ua)Y0(ub) − Y0(ua)J0(ub)

Y0(ua)J1(ub) − J0(ua)Y1(ub)
= wK0(wb)

K1(wb)
,

(2.272)

and the characteristic equation for TE modes is:

−u
J1(ua)Y0(ub) − Y1(ua)J0(ub)

J1(ua)Y1(ub) − Y1(ua)J1(ub)
= wK0(wb)

K1(wb)
(2.273)

Equation (2.272) gives a solution for the wave
that has no low-frequency cutoff, and in fact it
represents the eigenvalue equation for the TM0m

modes. The lowest-order mode is TM01, which
closely resembles coaxial line TEM mode in the
dielectric region. This type of wave is known
as the Sommerfeld–Goubau wave (Goubau 1950).
Equation (2.273) is the eigenvalue equation for the
TE0m modes. If v �= 0, the boundary conditions for
TE or TM modes cannot be satisfied, while those
for hybrid HE and EH modes can be satisfied. The
TE0m and all hybrid modes have low-frequency
cutoff.

Usually, TM01 mode is the prime mode. The
field components of TM01 mode in the dielectric
and free-space region are (Marincic et al. 1986)

Eϕ(r) = 0, Hr(r) = 0 (2.274)

In the dielectric region (a ≤ r ≤ b)

Ez(r) = AJ0(ur) + BY0(ur) (2.275)

Er(r) = j
β

u
[AJ1(ur) + BY1(ur)] (2.276)

Hϕ(r) = j
ωεrε0

u
[AJ1(ur) + BY1(ur)] (2.277)

In the free space region (r ≥ b)

Ez(r) = CK 0(wr) (2.278)

Er(r) = −j
β

w
CK 1(wr) (2.279)

Hϕ(r) = −j
ωε0

w
CK 1(wr) (2.280)

The constants A, B, and C satisfy the following
relations:

B = −A[J0(ua)/Y0(ua)] (2.281)

C = A
J0(ub)Y0(ua) − J0(ua)Y0(ub)

K0(wb)Y0(ua)
(2.282)

The surface waves on a coaxial surface waveguide
are usually launched and received using horns.
Figure 2.61 shows an example for launching
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Figure 2.61 Launching of surface waves on a coaxial surface waveguide. Modified from Friedman, M. and
Fernsler, R. F. (2001). “Low-loss RF transport over long distance”, IEEE Transactions on Microwave Theory and
Techniques, 49 (2), 341–348.  2003 IEEE

surface waves on a coaxial surface waveguide
(Friedman and Fernsler 2001).

In the design of a coaxial surface waveguide, it
is important to know the radius that determines the
contour through which a certain specified amount
of power is transmitted. Another important factor is
the cross section through which a certain specified
amount of power is transmitted. Discussions on
these two issues can be found in (Marincic et al.
1986).

2.2.5 Free space

Free space is an important wave transmission
scheme in communication and materials research.
In radar and satellite communication, electromag-
netic waves propagate through free-space. In mate-
rials property characterization, free-space provides
much flexibility in studying electromagnetic mate-
rials under different conditions. In this section, we
first introduce antennas as transitions from guided
lines to free-space, and then we discuss two types
of electromagnetic waves in free-space: parallel
electromagnetic beams and focused electromag-
netic beams.

2.2.5.1 Antenna as transition

Antennas are designed to efficiently radiate elec-
tromagnetic energy into free-space, while transmis-
sion lines are designed to efficiently transport the

energy from one point to another without signifi-
cant loss or dispersion. As shown in Figure 2.62,
antennas can be taken as a transition from a trans-
mission line to free space. In actual applications, a
piece of transmission line is used to transport elec-
tromagnetic energy from the signal source to the
antenna, or from the antenna to the receiver. So
antennas can be classified into transmitting anten-
nas and receiving antennas. Sometimes, an antenna
is used as both transmitting and receiving antenna.

a b c d

Figure 2.62 Antenna as a transition device. (a) Source,
(b) transmission line, (c) antenna, and (d) radiated
free-space wave (Balanis 1997). Source: Balanis, C.
A. (1997), Antenna Theory: Analysis and Design, John
Wiley, New York
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(a) (b) (c)

Figure 2.63 Configurations of typical aperture antennas. (a) Rectangular waveguide, (b) pyramidal horn, and (c)
conical horn (Balanis 1997). Source: Balanis, C. A. (1997), Antenna Theory: Analysis and Design, John Wiley,
New York

Figure 2.63 shows three types of aperture anten-
nas often used in microwave electronics and the
characterization of electromagnetic materials. An
open-end hollow pipe, such as rectangular waveg-
uide, can be taken as an antenna, and such antennas
can be used in materials property measurement
using reflection method. In materials characteriza-
tion, pyramidal horn and conical horn are often
used in reflection and transmission measurements
in free-space. Besides, antennas sometimes are
covered with a dielectric material to protect them
from hazardous conditions of the environment. In
addition, as will be discussed later, sometimes
dielectric lens is used to control the beam shape.

For the characterization of electromagnetic
properties of materials, important electromagnetic
parameters describing antennas mainly include
polarization, radiation pattern, power gain, band-
width, and reciprocity. In the following, we make
a brief discussion on these parameters, and detailed
discussions on them can be found in (Balanis
1997; Connor 1989; Wait 1986).

Generally speaking, the electromagnetic wave
radiated from an antenna is in elliptical polar-
ization. Linear and circular polarizations are two
special cases of the general form of elliptical polar-
ization. In experiments, linear polarizations are
further classified into vertical or horizontal polar-
izations. Circular polarization can be taken as a
combination of vertical and horizontal polariza-
tions. In materials property characterization, elec-
tromagnetic waves are usually linearly polarized
though other types of polarization may be used for
specific purposes on occasions. For example, in the
measurement of chirality, which will be discussed

in Chapter 10, circularly polarized electromagnetic
waves are often used.

Radiation pattern is one of the most impor-
tant properties of an antenna. For a transmitting
antenna, the pattern is a graphical plot of the power
or field strength radiated by the antenna in differ-
ent angular directions. Based on the principle of
reciprocity, the transmitting and receiving radiation
patterns of a given antenna are the same. Omnidi-
rectional and pencil-beam patterns are two typi-
cal polar patterns. In an omnidirectional pattern,
the antenna radiates or receives energy equally in
all directions, while in a pencil-beam pattern, the
antenna radiates or receives energy mainly in one
direction. A typical pencil-beam pattern consists of
a main lobe and a number of side lobes. The level
of the side lobes in a pencil-beam pattern must be
kept to a minimum as the energy in the side lobes is
wasted when the antenna is transmitting radiations
and the side lobes can pick up noise and interfer-
ence when the antenna is receiving radiations.

Two gain parameters are related to the radiation
pattern: power gain and directive gain. Power gain
G is normally defined in the direction of maximum
radiation per unit area as

G = P

P0
, (2.283)

where P is the power radiated by the antenna under
study, while P0 is the power radiated by a reference
antenna. A reference antenna usually is assumed
to be lossless and radiates equally in all directions.
The power gain G is expressed as a pure number
or in dB. Equation (2.283) assumes that the input
power to the given antenna is the same as the input
power to the reference antenna.
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If the antenna is lossless, its directive gain D is
defined by

D = Pmax

Pave
, (2.284)

where Pmax is the maximum power radiated per
unit solid angle, while Pave is the average power
radiated per unit solid angle. From their definitions,
G is slightly less than D.

Working bandwidth is also an important param-
eter describing an antenna. Three expressions for
the working frequency band are often used. For
an antenna with the lowest working frequency f1

and the highest working frequency f2, the absolute
bandwidth of the antenna is

	f = f2 − f1 (2.285)

The relative bandwidth is

	f

f
= 2

f2 − f1

f2 + f1
(2.286)

The bandwidth ratio is expressed as: f2 : f1.
Reciprocity is another important consideration in

selecting antennas for communication and materi-
als characterization. The properties of a transmit-
ting antenna are very similar to those of a receiving
antenna because of the theorem of reciprocity. It
is often assumed that the antenna parameters, such
as polar power gain and bandwidth, are the same
whenever the antenna is used for transmitting or
receiving electromagnetic waves.

2.2.5.2 Parallel microwave beam

The control of the beam shape is important for
microwave communication and materials property
characterization (Musil and Zacek 1986). In free-
space measurements, the sample under test is often
put between the transmitting and receiving anten-
nas. In the development of the algorithms for
materials property characterization, we assume that
all the energy of the plane electromagnetic wave
interacts with the sample, and the sample is infi-
nite in the direction perpendicular to the direc-
tion of wave propagation so that the diffractions

by the edges of the sample are negligible. How-
ever, in actual experiments, the dimensions of sam-
ples are limited. In some cases, we need to mea-
sure samples with small transverse dimensions, for
example, in the order of a few centimeters. There-
fore, to achieve accurate measurement results, we
should control the transverse cross section of the
beam. To ensure that the algorithm is applica-
ble for practical measurements, following require-
ments should be satisfied:

D >> h >> λ0, (2.287)

where D stands for the transverse dimensions of
the plate or specimen, h denotes the transverse
dimensions of the probing beam, λ0 is the wave-
length of the electromagnetic wave.

To satisfy the requirements of Eq. (2.287), two
kinds of microwave beams are often used: parallel
microwave beams and focused microwave beams.
As shown in Figure 2.64, a parallel microwave
beam can be achieved by using specially designed
lenses or reflectors. The function of the lens
and the reflector is to transform the spheri-
cal wave from a point-source feed to a plane
wave.

Though a lens and a reflector may have the
same functions in producing parallel beams, the
positions of the point-source feeds for a lens and a
reflector are different. As shown in Figure 2.64,
the point-source feed for a lens is located on
one side of the lens and the generated plane
wave emerges from the other side of the lens,
while for a reflector system, the point-source feed
and the generated plane wave lie on the same
side of a reflector. As the point-source feed is
placed at the region for the outgoing wave, the
output parallel beam is disturbed by the source
feed. So in materials property characterization,
we often use plane waves generated by dielectric
lenses. However, in some special cases such as
the measurement of radar cross section (RCS), as
the object to be measured is large, the required
parallel beam should also be large. As it is
impractical to build a very large lens, usually
reflectors are used to produce parallel beams,
and the perturbation of the source feed can be
minimized by proper arrangement of the source
feed and the reflector.
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Figure 2.64 The generation of a parallel microwave beam by means of (a) a lens and (b) a reflector. Source:
Musil, J. and Zacek, F. (1986). Microwave Measurements of Complex Permittivity by Free Space Methods and Their
Applications, Elsevier, Amsterdam
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Figure 2.65 Parameters describing a focused microwave beam. Source: Musil, J. and Zacek, F. (1986). Microwave
Measurements of Complex Permittivity by Free Space Methods and Their Applications, Elsevier, Amsterdam

It should be noted that the focus length f of a
lens or a reflector may be different for different
frequencies. If we want to generate parallel beams
using the configurations shown in Figure 2.64 at
frequencies far separated, it may be necessary to
adjust the position of the source feed for different
frequencies.

2.2.5.3 Focused microwave beam

For the characterization of small samples, focused
microwave beams are often required. A focused
microwave beam can be produced by focusing
microwave energy transmitted from an antenna

into a focus point, and its geometry is determined
by the spatial distribution of the electric field
strength in the beam (Musil and Zacek 1986).
As shown in Figure 2.65, a focused microwave
beam is usually described by three parameters:
focus distance f that determines the position of
the focal plane (z = 0), beam width h0 at the
focal plane, and beam depth that is the distance
between the two planes (z = z1) and (z = z2),
where the beam width increases by 50 % compared
to the beam width at the focal plane (z = 0).
It should be noted that the magnitudes used in
defining these parameters are determined at a
certain level of field intensity with respect to the
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field intensity on the axis of the focused beam.
The beam width increases with the decrease of the
field strength level at which we determine the beam
width.

Beam width determines minimum transverse
dimensions a specimen should have. If the sam-
ples have large transverse dimensions, the beam
width determines the spatial resolution for the
measurement of local inhomogeneities. Generally
speaking, a system with smaller wavelength λ0,
smaller focus distance l, and larger radius of the
lens aperture has smaller beam width. The small-
est beam width that can be obtained in practice at
a level of −10 dB is approximately 1.5λ0 (Muzil
1986).

The phase distribution in a focused microwave
beam is also important for materials property
characterization using focused microwave beams.
In the place near the focal plane z = 0, the
electromagnetic field can be taken as a plane
wave. So we use focused microwave beams in
nonresonant methods; we should ensure that the
sample under test is placed close to the focal plane
(z = 0). Therefore beams with larger depths are
favorable.

In summary, for materials characterization, we
hope to have minimum beam-width and meanwhile
a maximum beam depth. Practical configurations
using focused microwave beams in materials
property characterization will be given in later
chapters.

2.3 MICROWAVE RESONANCE

2.3.1 Introduction

The resonant methods for materials property char-
acterization are based on microwave resonance.
Generally speaking, there are two kinds of reso-
nant structures: transmission type, which is made
from transmission structures, and non-transmission
type, such as ring resonators and sphere resonators.
In the following discussions, we focus on trans-
mission type resonators, such as rectangular res-
onator, cylindrical resonator, coaxial resonator, and
microstrip resonator.

Similar to microwave transmission, microwave
resonance can be studied in both field approach

and line approach. After introducing the basic
parameters describing a resonator, we use equiva-
lent circuits to analyze the general properties of
microwave resonance, then we discuss the field
distributions of several types of resonators often
used in materials characterization, including coax-
ial resonators, planar-circuit resonators, waveguide
resonators, dielectric resonators, and open res-
onators.

2.3.1.1 Resonant frequency and quality factor

Resonance is related to energy exchange, and
electromagnetic resonance can be taken as a
phenomenon when electric energy and magnetic
energy can periodically change totally from one
to the other. If the resonance is lossless, the sum
of electric energy and magnetic energy does not
change with time:

We(t) + Wm(t) = W0 (2.288)

Resonant frequency is the frequency when the
electric energy can be totally changed to magnetic
frequency, and vice versa. Resonant frequency f0

is the most important parameter for a resonator.
The electric energy and magnetic energy can
be calculated from the field distributions in the
resonator. The electromagnetic field distribution
and the resonant frequency can be found by
solving the wave functions with certain boundary
conditions:

∇2E + k2E = 0 (2.289)

∇2H + k2H = 0, (2.290)

where k2 = ω2εµ, and ε and µ are the permittivity
and permeability of the medium in the resonator.
For an ideal lossless resonator, k is a series of
discrete real numbers k1, k2, . . ., and they are
called the eigenvalues of Eqs. (2.289) and (2.290).
The resonant frequencies can be calculated from
the eigenvalues:

fi = c

2π
ki (i = 1, 2, . . .), (2.291)

where c is the speed of light in free space.
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Quality factor is defined as

Q0 = 2π
W

PLT0
= ω0

W

PL
, (2.292)

where W is the total energy storage in the cavity,
PL is the average energy dissipation within the
cavity, and T0 is the resonant period. At resonance,
the total energy storage equals the maximum
electric energy or maximum magnetic energy:

W = We,max = ε

2

∫∫∫
V

|E|2dV

= µ

2

∫∫∫
V

|H |2dV = Wm,max (2.293)

The above integration is made over the whole res-
onator.

Here we consider a hollow metallic cavity filled
with a dielectric medium. If the medium within the
cavity is lossless the energy dissipation power is
caused by the cavity wall:

PL = Rs

2
x

∫∫Ž
S

|Ht |2dS (2.294)

The above integration is made over the whole
cavity wall. The surface resistance of the cavity
wall Rs in Eq. (2.294) is given by:

Rs = ωµ1δ

2
, (2.295)

where µ1 is the permeability of the conductor, δ is
the penetration depth of the conductor. According
to Eqs. (2.292)–(2.295), we have

Q0 = 2

δ
·

∫∫∫
V

|H |2dV∫∫
�

S

|Ht |2dS

(2.296)

If we also consider the dielectric loss of the
medium in the cavity, the value of Q0 will be
decreased:

Q0 = ω0W

PL
= ω0W

Pc + Pd

= 1

[Pc/(ω0W) + Pd/(ω0W)]

= 1

1/Q0c + 1/Q0d
, (2.297)

where Pc is the energy dissipation due to conductor
loss, Pd is the energy dissipation due to the
dielectric loss, Q0c and Q0d are the quality
factors of the resonator if we only consider the
conductor loss and dielectric loss, respectively. If
the conductivity of the dielectric medium within
the cavity is σ , we have

Pd = 1

2
σ

∫∫∫
V

|E|2dV (2.298)

So the value of Q0d can be calculated from

Q0d = ω0W

Pd
=

ω0 · 1

2
ε′

r

∫∫∫
V

|E|2dV

1

2
σ

∫∫∫
V

|E|2dV

= ω0ε
′
r

σ
= 1

tan δ
, (2.299)

where ε′
r is the dielectric constant of the medium

in the cavity, σ = ω0ε
′′
r , and tan δ = ε′

r/ε
′′
r .

The relationship between the energy storage and
energy dissipation can also be described by the
attenuation parameter α, which is related to the
attenuation rate of a resonator after the source is
removed. By defining E = E0e−αt , we have

W = W0e−2αt , (2.300)

where W0 is the energy storage when t = 0. So the
energy dissipation is given by

PL = −dW

dt
= 2αW (2.301)

From Eqs. (2.292) and (2.301), we can get

α = PL

2W
= ω0

2Q0
(2.302)

From Eqs. (2.300) and (2.302), we have

W = W0e
− ω0

Q0
t

(2.303)

Equation (2.303) indicates that the higher the qual-
ity factor, the slower the resonance attenuation.

2.3.1.2 Equivalent circuits of resonant structure

As shown in Figure 2.66, depending on the
selection of reference plane, a resonator can be
represented by a series equivalent circuit or a
parallel equivalent circuit. If the reference plane
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Figure 2.66 Equivalent RLC circuits for a resonator. (a) Series circuit and (b) parallel circuit

� V

|U(w)|
|I |
G

|I |
G

1
√2

w
w1 w0

∆w

w2

Current
source

I C G L U

(a) (b)

Figure 2.67 Frequency response of a resonator. (a) Parallel equivalent circuit of a resonator. The relationship
between conductance G and resistance R is: G = 1/R. (b) Characteristic frequencies on a resonant curve

is chosen at a place where the electric field
integration is zero (correspondingly the magnetic
field integration there is the maximum), the
resonator can be represented by a series RLC
circuit, and if the reference plane is chosen
at a plane where the electric field integration
is the maximum (correspondingly the magnetic
field integration there is zero), the resonator can
be represented by a parallel RLC equivalent
circuit. The following discussions focus on parallel
equivalent circuits.

As shown in Figure 2.67, when a current source
is connected to the resonator, a voltage U is built
across the resonator. The voltage U will change
with the change of frequency:

U = I

G + jωC + 1/(jωL)
(2.304)

For a parallel circuit, the voltage reaches its highest
value at resonance. From Eq. (2.304), we have

jω0C + 1

jω0L
= 0 (2.305)

So we can get the resonant frequency:

ω0 = 1√
LC

(2.306)

From Eqs. (2.304)–(2.306), we can get

U = 1

G + jC[ω − 1/(ωLC)]
= 1

G + jC	ω
(2.307)

with
	ω = 2(ω − ω0) (2.308)

If 	ω = ±G/C, the voltage amplitude decreases
to 1/

√
2 of the maximum value:

|U(ω)| = |I |√
2G

= |U(ω0)|√
2

(2.309)

From Eq. (2.309), we can get

U(ω)U ∗(ω) = 1

2
U(ω0)U

∗(ω0) (2.310)
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As the energy dissipation at G is given by

Pd = 1

2
UU ∗G, (2.311)

it also decreases to half of the maximum value.
Consider the average energy storage at the capac-
itor and inductor:

We = 1

4
UU ∗C (2.312)

Wm = 1

4
ILI ∗

LL = 1

4
L

(
U

jωL

)(
U

jωL

)∗

= 1

4

1

ω2L
UU ∗ = 1

4
CUU ∗ ω2

0

ω2
(2.313)

Equation (2.312) indicates that the energy storage
at the capacitor decreases to half of its maximum
value. As the frequency (ω) is close to the
resonant frequency (ω0), Eq. (2.313) indicates that
the energy storage at the inductor also decreases
to half the value of its maximum value.

The difference between two half-power frequen-
cies (ω1 = ω0 − G/(2C) and ω1 = ω0 + G/(2C))

is called the half-power bandwidth:

	ω = ω2 − ω1 = G

C
(2.314)

Sometimes, the half power bandwidth is described
as

	f = 	ω

2π
= 1

2π

G

C
(2.315)

It is clear that the narrower the half-power
bandwidth, the better the frequency selectivity of
the resonator.

The quality of the resonator can also be defined
as

Q = ω0

	ω
= ω0

C

G
= ω0

(1/2)UU ∗C
(1/2)UU ∗G

= ω0
W

Pd
(2.316)

Comparing Eqs. (2.292) and (2.316) indicates
that the two definitions are consistent, and in
experiments, Eq. (2.316) is more often used.

Equations (2.312) and (2.313) indicate that at
resonant frequency, the electric field energy in the

resonator equals the magnetic field energy in the
resonator.

We = Wm = 1

4
CUU ∗ (2.317)

Actually, Eq. (2.317) can be used as a criteria to
determine the resonant frequency of a resonator.
For a parallel equivalent circuit, if the working
frequency is higher than the resonant frequency
(ω > ω0), the electric field energy is larger than
the magnetic field energy; if the working frequency
is lower than the resonant frequency (ω < ω0),
the magnetic field energy is higher than the
electric field energy. For a series equivalent circuit,
contrary conclusions can be obtained.

2.3.1.3 Coupling to external circuit

An actual resonator is always coupled to external
circuits. Through coupling, the source provides
energy to the resonator, and such a procedure
is usually called excitation. A resonator can
also provide energy to an external load through
coupling, and such a procedure is usually called
loading.

The coupling mechanisms often used generally
fall into three categories: electrical coupling, mag-
netic coupling, and mixed coupling. In electrical
coupling, an electrical dipole, usually a coaxial
needle made from the central conductor of a coax-
ial line, is inserted into the place with maximum
electric field. In magnetic coupling, a magnetic
dipole, usually a coaxial loop made by connect-
ing the central conductor to the outer conductor
is often placed at the place with maximum mag-
netic field. A typical example of mixed coupling
is the coupling iris between a hollow cavity and
a metallic waveguide. In the equivalent circuits, a
coupling structure is often represented by a trans-
former.

Cavity coupled to one transmission line

Figure 2.68 shows the equivalent circuits of a
resonator coupled to a transmission line. As
shown in Figure 2.68(b), if the position of the
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reference plane Ts is suitably chosen, the res-
onator is represented by a parallel RLC cir-
cuit, and the coupler is represented by an ideal
transformer with transforming ratio (1 : n). As
shown in Figure 2.68(c), the parallel RLC cir-
cuit can be transformed to Ts plane through the
transformer: C′ = n2C, R′

P = RP/n2, and L′ =
L/n2.

After the transformation, the resonant frequency
and quality factor of the equivalent circuit do not
change:

ω′
0 = 1√

L′C′ = 1√
(L/n2)(n2C)

= 1√
LC

= ω0

(2.318)

Q′
0 = ω′

0C
′R′

P = ω0(n
2C)

(
RP

n2

)
= ω0CRP = Q0

(2.319)
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Figure 2.68 A resonant cavity coupled to a transmis-
sion line and its equivalent circuits. (a) A cavity coupled
to a transmission line, (b) an equivalent circuit of the
cavity with coupling structure and transmission line, (c)
the equivalent circuit transformed to the Ts plane, (d)
normalized equivalent circuit

The coupling coefficient β describes the relation-
ship between the energy dissipation in the cavity
Pd and the energy dissipation of the external circuit
Pe, and indicates the extent to which the external
circuit is coupled to the resonator:

β = Pe

Pd
=

1

2

U 2

Zc

1

2

U 2

RP/n2

= RP

n2Zc
= R′

P

Zc
= r ′

P,

(2.320)

where U is voltage applied to the resonator.
Equation (2.320) indicates that the coupling coef-
ficient equals the normalized resonance resistance
of the cavity transformed to the plane Ts. At a crit-
ical coupling state (β = 1), the energy dissipation
of the external circuit equals the energy dissipa-
tion in the cavity (Pe = Pd). At an over-coupling
state (β > 1), the energy dissipation of the exter-
nal load is larger than the energy dissipation in
the cavity (Pe > Pd). At an under-coupling state
(β < 1), the energy dissipation of the external load
is less than the energy dissipation in the cavity
(Pe < Pd).

The external quality factor of a resonator,
coupled to an external circuit, describes the energy
dissipation in the external circuit:

Qe = ω0
W

Pe
, (2.321)

where W is the energy storage in the res-
onator and Pe is the energy dissipation in the
external circuit coupled to the resonator. From
Eqs. (2.297), (2.320), and (2.321), we can get

β = Q0

Qe
(2.322)

So the coupling coefficient equals the ratio between
the intrinsic quality factor and external quality
factor of the resonator.

In experiments, loaded quality factor QL is often
used:

QL = ω0
W

P0 + Pe
(2.323)

The relationships between the loaded quality factor
QL, intrinsic quality factor Q0, external quality
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Figure 2.69 (a) A resonator coupled to two transmission lines and (b) its equivalent circuit

factor Qe, and coupling coefficient β are

QL = Q0
1

1 + β
= Qe

β

1 + β
(2.324)

1

QL
= 1

Q0
+ 1

Qe
(2.325)

Cavity coupled to two transmission lines

Figure 2.69(a) shows a resonator coupled to two
transmission lines. One transmission line is con-
nected to a matching source and the other trans-
mission line is connected to a matching load. The
equivalent circuit of the resonator is shown in
Figure 2.69(b), and the two transformers represent
the two couplers.

Using a similar method used in analyzing the
cavity coupled to one transmission line, we can
get the parameters describing the resonant and
coupling properties of the resonator. The intrinsic
quality factor Q0 of the resonator is given by

Q0 = ω0CRP (2.326)

The external quality factors for the two transmis-
sion lines are

Qe1 = ω0Cn2
1Zc1 (2.327)

Qe2 = ω0Cn2
2Zc2 (2.328)

The coupling coefficients of the two couplers are

β1 = Q0

Qe1
= RP

n2
1Zc1

(2.329)

β2 = Q0

Qe2
= RP

n2
2Zc2

(2.330)

The loaded quality factor

QL = ω0C
1

1/RP + 1/(n2
1Zc1) + 1/(n2

2Zc2)

= Q0
1

1 + β1 + β2
(2.331)

1

QL
= 1

Q0
+ 1

Qe1
+ 1

Qe2
(2.332)

Equations (2.331) and (2.332) are the extensions
of Eqs. (2.324) and (2.325), respectively. We can
analyze a resonator coupled to more transmission
lines in a similar way, and similar conclusions can
be drawn.

In the following, we discuss several typical
types of resonators, including coaxial resonators,
planar circuit resonators, waveguide resonators,
dielectric resonators, surface wave resonators,
and open resonators. As will be discussed in
Chapters 5 and 6, these resonators are often used
in the characterization of materials properties
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Figure 2.70 Three typical types of coaxial resonators. (a) Half-wavelength resonator, (b) quarter wavelength
resonator, and (c) capacitor-loaded resonator

using resonator methods and resonant-perturbation
methods.

2.3.2 Coaxial resonators

Coaxial resonators are made from coaxial trans-
mission lines. As shown in Figure 2.70, there
are three typical types of coaxial resonators:
half-wavelength resonator, quarter wavelength res-
onator, and capacitor-loaded resonator.

2.3.2.1 Half-wavelength resonator

As shown in Figure 2.70(a), a half-wavelength
coaxial resonator is a segment of coaxial line
with length l terminated at two ends. Usually, a
coaxial resonator works at TEM mode. To avoid
the possible resonance along ϕ direction, following
requirements should be satisfied:

π(a + b) < λmin, (2.333)

where a and b are the radius of the inner and outer
conductors respectively, and λmin is the shortest
wavelength corresponding to the highest working
frequency.

The field distributions can be calculated accord-
ing to the boundary conditions:

Er = −j
2E0

r
sin βz (2.334)

Hϕ = Y0
2E0

r
cos βz, (2.335)

where E0 = V0/ ln(b/a), Y0 = (ε/µ)1/2, and β =
nπ/l (n = 1, 2, 3, . . .). As β = 2π/λ0, we can get

2a
2b

l

Figure 2.71 Field distribution of a half-wavelength
resonator (n = 1). The solid lines stand for electric
fields. The dots stand for the magnetic fields coming
out from the paper, while the crosses stand for magnetic
field going into the paper

the relationship between the resonant wavelength
λ0 and the length of the resonator l:

l = n
λ0

2
(2.336)

Equation (2.336) indicates that the length of the
resonator is integral times of the half wavelength,
so such a resonator is called half-wavelength
resonator, and its field distribution is shown in
Figure 2.71.

In microwave engineering, the waveform factor
is often used, which is defined as: Q0δ/λ0, where
δ is the penetration depth of the conductor.
Waveform factor is only related to the geometry,
size, and working mode of the resonator. The
waveform factor of a half-wavelength resonator
(n = 1) is given by

Q0
δ

λ0
= 1

4 + l

b
· 1 + (b/a)

ln(b/a)

(2.337)
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It can be proven that when (b/a) = 3.6, the
waveform factor has the highest value. The quality
factor can be easily calculated from the waveform
factor.

2.3.2.2 Quarter-wavelength resonator

As shown in Figure 2.70(b), in a quarter-wave-
length resonator, one end is shorted, and the
other end is open. As an open load also causes
total reflection, pure standing wave is also built.
According to the boundary conditions, we have:
βl = (2n+1)π/2 (n = 0, 1, 2, . . .), so the relation-
ship between the length of the resonator l and
resonant wavelength λ0 is given by

l = (2n + 1)
λ0

4
(n = 0, 1, 2, . . .) (2.338)

Equation (2.338) indicates that the length of the
resonator is odd number times of the quarter
wavelength. The field distribution of a quarter-
wavelength resonator is shown in Figure 2.72.

In an actual structure, an open end has some
radiation loss. To minimize the radiation loss,
usually the outer conductor is extended, forming
a segment of cutting-off TM01 circular waveguide.
However, owing to the capacitance introduced by
extending the outer conductor, the inner conductor
is usually made a bit shorter than the quarter
wavelength.

l

Figure 2.72 The field distribution of quarter wave-
length resonator (n = 0). The solid lines stand for elec-
tric fields. The dotes stand for the magnetic fields com-
ing out from the paper, while the crosses stand for
magnetic field going into the paper

The quality factor of a quarter-wavelength
resonator can be calculated from the waveform
factor, which is given by

Q0
δ

λ0
= 1

4
· 1

4 + l

2b

1 + (b/a)

ln(b/a)

(2.339)

Similar to half-wavelength resonator, the wave-
form factor has the highest value at (b/a) = 3.6.

2.3.2.3 Capacitor-loaded resonator

In a capacitor-loaded resonator, shown in Figure
2.70(c), the two ends of the coaxial line are
shorted, but at one end of the resonator, there
is a small gap between the inner conductor and
the short plate. As shown in Figure 2.73(a), the
gap between the inner conductor and short plate
is equivalent to a lumped capacitor, so such a
resonator can be regarded as a hybrid resonator
with both lumped and distributed elements. The
field distribution of the basic mode is shown in
Figure 2.73(b). At the gap between the inner con-
ductor and the short plate, electric field dominates,
and the magnetic field is very weak.

The susceptance B1 at plane AA′ looking into the
left is B1 = − cot(βl)/Zc, with β = ω/c, where Zc

is the characteristic impedance of the coaxial line
and c is the speed of light. The susceptance B2 of
the lumped capacitor C0 is B2 = ωC0. At resonance,
B1 + B2 = 0: therefore we have

ZcωC0 = cot(βl) (2.340)

A

A

l l d
A′

A′

C0

(a) (b)

Figure 2.73 Capacitor-loaded resonator. (a) Equi-
valent circuit and (b) field distribution
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Figure 2.74 Graphical method for solving Eq. (2.340)

Equation (2.340) can be solved by numerical
method and graphical method. The graphical
method is shown in Figure 2.74. We draw the
graph BZ c = cot(βl) and BZ c = ZcωC0. Their
crossing points are the solutions of Eq. (2.340),
and each point corresponds to a resonant mode.

2.3.2.4 Coupling to external circuit

Coupling method is an important consideration
in the design of resonators. Here we introduce
magnetic coupling and electric coupling often used
for coaxial resonators.

Magnetic coupling

Figure 2.75 shows a magnetic coupling by a co-
axial loop often used in coaxial resonators. The
loop is placed at the place where the magnetic
field dominates, and usually the plane of the loop

Figure 2.75 Excitation of a half-wavelength resonator
using a magnetic coupling

(a) (b) (c)

Figure 2.76 Electric couplings. (a) Excitation of quar-
ter-wavelength resonator using a needle dipole,
(b) excitation of half-wavelength resonator, and (c) exci-
tation of capacitor-loaded resonator. The small metal
plates on the tips of the needles in (b) and (c) are used
to increase the couplings

is perpendicular to the magnetic field distribution
of the mode. The loop is equivalent to a magnetic
dipole, and the coupling can be adjusted by adjust-
ing the orientation and position of the loop.

Electric coupling

As shown in Figure 2.76, electric coupling is
often achieved by a needle made from the inner
conductor of a coaxial line. The needle should be
put at a place where electric field dominates, and
the orientation of the needle should be parallel to
the electric field. As shown in Figures 2.76(b) and
(c), adding a small metal plate on the tip of a
coupling needle may increase the coupling.

2.3.3 Planar-circuit resonators

The planar circuits used in microwave electronics
mainly include stripline, microstrip, and coplanar.
As microstrip is most widely used in microwave
integrated circuits, we concentrate our discussion
on microstrip circuits, and similar conclusions can
be obtained for other types of planar circuits.
The application of planar resonators in materials
characterization will be discussed in Chapter 7.

In the following, we will make a brief discussion
on the three types of microstrip resonators shown
in Figure 2.77: straight ribbon resonator, ring
resonator, and circular resonator. However, it
should be noted that the equations given below are
approximate and can only be used for estimation.
To make accurate analysis, numerical methods are
often required.
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Rr1
r2

l

(a) (b) (c)

Figure 2.77 Three types of microstrip resonators:
(a) straight ribbon resonator, (b) ring resonator, and
(c) circular resonator

2.3.3.1 Straight ribbon resonator

A straight ribbon resonator shown in Figure 2.77(a)
is a segment of microstrip line with two open
ends, and the relationship between the length of
the microstrip line l and the resonant wavelength
λg is given by

l = n
λg

2
(n = 1, 2, 3, . . .) (2.341)

In actual structures, the fields extend slightly
beyond the ends of the microstrip line on both
ends. The field effects can be represented by a
grounding capacitor Cend at each end, and Cend can
be transformed to a length of transmission line 	l.
So the resonant condition becomes

l + 2	l = n
λg

2
(n = 1, 2, 3, . . .). (2.342)

The values of Cend and 	l can be calculated
using some empirical equations, and can also be
measured experimentally.

Straight ribbon resonators are a type of transmis-
sion type resonators made from their correspond-
ing transmission line, microstrip. However, owing
to the radiations at the two open ends, the quality
factors of these types of resonators are usually not
very high.

2.3.3.2 Ring resonator

A ring resonator shown in Figure 2.77(b) does not
have open ends, so the radiation loss is greatly
decreased. Usually, a ring resonator has higher
quality factor than a straight ribbon resonator.
Mainly due to its high quality factor, in mate-
rials property characterization, the ring resonator

method has higher accuracy and sensitivity than
the straight ribbon resonator method.

Most of the ring resonators work at TMmn0, and
the prime mode is TM110. The resonant condition
for TMm10 is

π(r1 + r2) = mλg, (2.343)

where r1 and r2 are the inner and outer radius of the
ring respectively. As λg = λ0/(εeff)

1/2, where εeff

is the effective dielectric constant of a microstrip
line, we have

λ0 = π(r1 + r2)

m

√
εeff (2.344)

To avoid higher order modes, usually the dimen-
sions of the ring resonator should satisfy the fol-
lowing requirements:

r2 − r1

r2 + r1
< 0.05 (2.345)

2.3.3.3 Circular resonator

As shown in Figure 2.77(c), a circular resonator
can be taken as a special case of a ring resonator
when r2 = 0. Its resonant modes are also TMmno ,
and the prime mode is TM110 mode.

As the structure of the circular resonator is quite
simple, and has high quality factor, it is widely
used as resonant element in microwave electronic
circuits, and is also often used in materials property
characterization.

2.3.3.4 Coupling to external circuit

Here, we discuss the coupling methods for
microstrip half-wavelength resonator, while the
methods can be extended for other kinds of pla-
nar resonators. More discussions on the coupling
of planar circuits can be found in (Chang 1989).

Figure 2.78 schematically shows three types of
coupling methods for the half wavelength res-
onators: capacitive coupling, parallel-line cou-
pling, and tap coupling. In the following, we focus
on the coupling mechanisms of these methods.
However, it should be indicated that to get accurate
knowledge about the coupling properties, numeri-
cal simulations are often needed.
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Figure 2.78 Three types of coupling methods. (a) Capacitive coupling, (b) parallel-line coupling, and (c) tap
coupling (Chang 1989). Source: Chang, K. (1989). Handbook of Microwave and Optical Components, Vol. 1, John
Wiley, New York

As shown in Figure 2.78(a), capacitive coupling
is achieved by the capacitance resulted from the
fringing fields at the open ends of the resonator
and the coupling port. The impedance of the cou-
pling ports is usually chosen as the characteristic
impedance of the external transmission line. The
coupling coefficient is closely related to the width
of the gap (S) between the open ends of the res-
onator and the coupling port. Generally speaking,
the coupling coefficient increases with the decrease
of the gap. However, when the gap is very small,
a small variation in the gap width may result in
a large change in the coupling coefficient, so this
method requires high fabrication accuracy.

As shown in Figure 2.78(b), a parallel-line
coupler consists of a coupled line of an electrical
length θ with two open ports (2 and 4). The port
3 is connected to an open-circuited line of an
electrical length (π – θ), forming the resonator,
and the input port (port 1) is connected to a
transmission line with characteristic impedance Zc.
The coupling coefficient is mainly determined by
the electrical length θ and the spacing between the
parallel lines S. Compared to capacitive coupling,
coupled line coupling has more flexibility in
adjusting the coupling coefficient.

As shown in Figure 2.78(c), a tap coupling is
achieved by directly connecting the coupling port
to the resonator at an appropriate position. The
coupling coefficient is mainly related to the electri-
cal length θ between the open end of the resonator
and taping point. Theoretically, if the taping point
is at the center of the resonator, the coefficient is
zero because the center point is at the electric field
node. The smaller the θ value, the stronger the cou-
pling. Theoretical analysis shows that the coupling

coefficient is proportional to cos2 θ . In practical
structures, to minimize the effects of the T-junction
at the taping point to the resonant properties of
the resonator, the input line is often tapered, or
a quarter-wavelength transformer is used (Chang
1989).

2.3.4 Waveguide resonators

Waveguide resonators are widely used in materials
property characterization, especially in cavity per-
turbation methods. A waveguide resonator is usu-
ally made by shorting the two ends of a segment of
waveguide. According to the types of waveguides
from which the resonators are made, two kinds
of waveguide resonators are often used: rectangu-
lar cavity resonators and circular cavity resonators.
Corresponding to the wave propagation modes in
waveguides, resonant modes include TE and TM
modes.

2.3.4.1 Rectangular cavity resonator

Figure 2.79 shows a rectangular cavity resonator
made from a rectangular waveguide by shorting the
two ends. Its structural dimensions include width
a, height b, and length c. For a rectangular cavity
resonator, there are two groups of resonant modes
(TEmnp and TMmnp), which correspond to the TEmn

and TMmn propagation modes in a rectangular
waveguide respectively. The first two subscripts
m and n come from the wave propagation modes
TEmn and TMmn , and they represent the changing
cycles along the x and y directions. The last
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Figure 2.79 Structure of a rectangular cavity resonator

subscript p represents the changing cycles along
the z direction.

TE resonant modes

On the basis of our discussions on TE propagation
modes of rectangular waveguides and the boundary
conditions, we can get the field distributions of the
TEmnp mode:

Hx = j
2A

k2
c

· pπ

c
· mπ

a
sin

(mπ

a
x
)

× cos
(nπ

b
y
)

cos
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z
)
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Hz = −j2A cos
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Ez = 0 (2.351)

with

k2
c =

(mπ

a

)2 +
(nπ

b

)2
(2.352)

H

E

y

x
z

Figure 2.80 Field distribution of TE101 rectangular
cavity

A special resonant mode, TE101 mode is widely
used in the characterization of electromagnetic
materials. From Eqs. (2.346)–(2.352), we can get
the field components of TE101 mode:

Ey = −2
Aωµa

π
sin

(π

a
x
)

sin
(π

c
z
)

(2.353)

Hx = j
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)

cos
(π

c
z
)

(2.354)

Hz = −j2A cos
(π

a
x
)

sin
(π

c
z
)

(2.355)

Ex = Ez = Hy = 0 (2.356)

The field distribution is shown in Figure 2.80.
The resonant wavelength for TEmnp mode res-

onator can be calculated:

λ0 = 2√(m

a

)2 +
(n

b

)2 +
(p

c

)2
(2.357)

So the resonant wavelength for TE101 mode is
given by

λ0 = 2ac√
a2 + c2

(2.358)

Equation (2.358) indicates that, if b is the shortest
among the three sides (a, b, and c), TE101 mode
has the largest resonant wavelength, so it is the
lowest mode.

It should be indicated that, for a rectangular
cavity resonator with a = b, TE101 and TE011 are
degenerate modes. They have the same resonant
frequency and the field distribution pattern, but
their fields are perpendicular to each other. As
will be discussed in Chapter 11, these two degen-
erate modes can be used in the measurement of
microwave Hall effects.
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The quality factor of the resonance can be
estimated by (Ishii 1995)
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So the waveform factor for TE101 mode is given by

Q0
δ

λ0
= b

2
· (a2 + c2)

3
2

2b(a3 + c3) + ac(a2 + c2)
(2.360)

TM resonant modes

According to the properties of TM wave propaga-
tion modes and the boundary conditions, we can
get the field components of the TMmnp mode:
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Figure 2.81 The field distribution of TM111 mode
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Hz = 0, (2.366)

where kc can be calculated from Eq. (2.352). As an
example, the field distribution of TM111 is shown
Figure 2.81.

For TMmnp mode, the resonant wavelength can
be calculated from Eq. (2.357), and the waveform
factor can be calculated according to following
equation (Ishii 1995):
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(2.367)

TE101/TM110 mode

As discussed earlier, a rectangular cavity working
at TE101 mode can be made by shorting both ends
of a segment of rectangular waveguide working
at the TE10 mode with length λg/2. As shown in
Figure 2.82, if we change the coordinate system
from xyz to XYZ, the TE101 mode in the xyz
coordinate system becomes TM110 mode in the
XYZ coordinate system. For a rectangular cavity
resonator, its TE or TM modes with zero subscripts
can always be taken as TM or TE modes,
respectively, in another coordinate system.
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b(C)

x(Y)c(A)

Figure 2.82 A TE101 mode rectangular cavity in the
xyz coordinate system can be taken as a TM110 mode
rectangular cavity in the XYZ coordinate system

2.3.4.2 Cylindrical cavity resonator

Figure 2.83 shows a cylindrical cavity resonator
made from a segment of circular waveguide by
shorting the two ends. Cylindrical cavity res-
onators usually have higher quality factors than
corresponding rectangular resonators. The struc-
tural parameters of a cylindrical cavity resonator
include the radius a and the length l. The resonant
modes of a cylindrical cavity resonator include
TEnip and TMnip , corresponding to TEni and TMni

propagation modes in a cylindrical waveguide. The
first two subscripts n and i come from the wave
propagation modes TEni and TMni , representing
the changing cycles in ϕ-direction and r-direction
respectively, and the subscript p represents the
changing cycles in z-direction.

a

z

l

x

f

Figure 2.83 Structure of a cylindrical cavity resonator

TE resonant modes

On the basis the boundary conditions, we can get
the field components of the TEnip resonant modes
in a cylindrical cavity with radius a and length l:

Hr = −j
2A

kc
· pπ

l
J ′

n(kcr) cos nϕ cos
(pπ

l
z
)

(2.368)

Hϕ = j
2An

k2
c r

· pπ

l
Jn(kcr) sin nϕ cos

(pπ

l
z
)
(2.369)

Hz = −j2AJn(kcr) cos nϕ sin
(pπ

l
z
)

(2.370)

Er = 2Aωµn

k2
c r

Jn(kcr) sin nϕ sin
(pπ

l
z
)

(2.371)

Eϕ = 2Aωµn

k2
c r

J ′
n(kcr) cos nϕ sin

(pπ

l
z
)

(2.372)

Ez = 0 (2.373)

with

kc = µni

a
, (n = 0, 1, 2, . . . ; i = 1, 2, 3, . . .)

(2.374)

It should be noted that p should be a positive
integer. If p equals zero, all the field components
in Eqs. (2.368)–(2.373) become zero.

The resonant wavelength for a TEnip mode is
given by

λ0 = 1√( µni

2πa
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2l

)2
(2.375)

The waveform factor for a TEnip mode resonator
can be calculated (Ishii 1995):
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Two TE modes are widely used in microwave
engineering and materials property characteriza-
tion: TE011 and TE111. If l > 2.1a, TE111 mode is
the basic mode. From Eqs. (2.368)– (2.373), we
can get the field components for TE111 mode by
letting n = 1, j = 1, p = 1, and µ11 = 1.841. The
field distribution of TE111 mode is schematically
shown in Figure 2.84. As TE111 mode has degener-
ate modes with electric fields perpendicular to each
other, this mode is often used in the measurement
of microwave Hall effect. Detailed discussions on
the measurement of microwave Hall effect can be
found in Chapter 11.

From Eqs. (2.368)–(2.373), we can get the field
components of TE011 mode:
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Hϕ = Er = Ez = 0 (2.380)

As shown in Figure 2.85, in a TE011 mode
cavity resonator, all the electric fields are in ϕ-
direction. Near the sidewall, magnetic field is in
z-direction, and near the end wall, magnetic field is
in r-direction. So all the electric currents are in ϕ-
direction, and there is no current flowing between
the sidewall and end wall. Therefore this mode
does not require good electric contact between the
sidewall and end wall. This mode usually has very
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Figure 2.84 Field distribution of TE111 mode

H
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Figure 2.85 Field distribution of TE011 mode

high quality factor, and is often used in frequency
meters.

TM resonant modes

According to the boundary conditions, we can get
the field components of a TMnip mode:
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The resonant wavelength of a cylindrical cavity
in TMnip mode is given by

λ0 = 1√( vni
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(2.387)
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The waveform factor a TMnip mode can be
calculated from (Ishii 1995)

Q0
δ

λ0
=

√
v2

ni +
(pπa

l

)2

2π

(
1 + 2a

l

) (2.388)

The TM010 mode is often used in materials
property characterization. By letting n = 0, I = 1,
and p = 0, we can get the field distributions of
TM010 mode from Eqs. (2.381)–(2.385):
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Er = Eϕ = Hr = Hz = 0 (2.391)

The field distribution of TM010 mode is shown
in Figure 2.86. As the electric field at the central
part of the cavity is quite uniform, in the resonant-
perturbation method for permittivity measurement,
the dielectric sample under test is often placed at
the central part of the cavity.

Mode chart

In the design of cavity resonators, usually we
should ensure cavities working in a single mode
state. The mode chart is often used to check how
many modes may exist in a cylindrical cavity.

Mode chart is drawn on the basis of Eqs. (2.375)
and (2.387). If we use uni to represent µni and vni ,
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Figure 2.86 Field distribution of TM010 mode

Eq. (2.375) and (2.387) can be rewritten as

λ0 = 1√( uni

2πa

)2 +
( p

2l

)2
(2.392)

Equation (2.392) can be further modified as
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, (2.393)

where f0 is the resonant frequency, c is the
speed of light. So there are linear relationships
between (2af0)2 and (2a/l)2 with the tangent
(cp/2)2 and the cross value (cuni/π)2. These lines
form the mode chart, as shown in Figure 2.87.

The mode chart can be used in the following
three ways. First, if we know the diameter and
resonant mode of the cavity, we can get the
relationship between the resonant frequency and
the length of the cavity. Second, if we know
the diameter and the length of the cavity, we
can obtain the resonant frequencies for different
working modes. Third, we can build a working
rectangular from which we can check whether the
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Figure 2.87 Resonant mode chart for a cylindrical
cavity. Modified from Pozar, D. M. (1998). Microwave
Engineering, 2nd ed., John Wiley & Sons, Inc., New
York



Microwave Theory and Techniques for Materials Characterization 103

Table 2.5 Changes in resonant frequency due to materials perturbation and cavity
shape perturbation. In the table, ω0 is the resonant frequency before perturbation and ω

is the resonant frequency after the perturbation

Materials perturbation Cavity shape perturbation

Metal
Dielectric or

magnetic materials Inward Outward

Electric field ω < ω0 ω < ω0 ω < ω0 ω > ω0

dominates (εr > 1)
Magnetic field ω > ω0 ω < ω0 ω > ω0 ω < ω0

dominates (µr > 1)

cavity is in single-mode state. For a resonator with
a given working mode, diameter (2a), and working
frequency range (fmin and fmax), there are two
cross points between the resonant line and two
horizontal lines (2afmin)

2 and (2afmax)
2: (2a/l)2

fmin
and (2a/l)2

fmax. The two horizontal lines (2afmin)
2

and (2afmax)
2 and two vertical lines (2a/l)2

fmin
and (2a/l)2

fmax form a working rectangular. If there
is no other resonant line in the working rectangular,
the cavity works at a single mode state.

If different resonant modes have the same
resonant line, for example TE011 and TM111, these
modes are degenerate. In the design of resonators,
special methods are needed to eliminate degenerate
modes, which will be discussed in later chapters.

2.3.4.3 Resonant perturbation

In some cases, the boundary conditions of a
cavity may change slightly, or the properties of
the medium in the cavity may change slightly.
In materials property characterization, we may
introduce a small sample into a resonant cavity.
Such changes may result in small changes in the
resonant frequency and quality factor of the cavity.

The changes in resonant frequency and quality
factor can be approximately obtained on the basis
of the resonant-perturbation theory. Resonant-
perturbation theory focuses on the change of
the energy due to the perturbation, not the
change of the electromagnetic field distribution.
Some useful conclusions about the change of
the resonant frequency due to different types
of resonant perturbations are listed in Table 2.5.
Further discussions on resonant perturbation can
be found in Chapter 6.

2.3.4.4 Coupling to external circuit

Aperture coupling is often used for coupling
between a waveguide and a cavity. Usually, the
waveguide works at TE10 mode, whose magnetic
field and electric current distribution is shown in
Figure 2.88. The coupling is mainly based on the
continuity of the magnetic field or electric current.

Figure 2.89 shows two examples of the excita-
tion of resonant cavities using a rectangular waveg-
uide. In Figure 2.89(a), TM010 resonator is excited
by the magnetic field, while in Figure 2.89(b),
TE011 resonator is excited by the current along the
inside wall of the waveguide.

2.3.5 Dielectric resonators

Figure 2.90 shows several typical dielectric res-
onators, including spherical dielectric resonator,
cylindrical dielectric resonator, ring dielectric
resonator, and rectangular dielectric resonator.

a

b

j
H

Figure 2.88 Distributions of magnetic field and elec-
tric current of a rectangular waveguide at TE10 mode
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(a) (b)

Figure 2.89 Aperture coupling using rectangular waveguide. (a) Excitation of TM010 mode and (b) excitation of
TE011 mode

(a)

(c) (d)

(b)

Figure 2.90 Typical configurations of dielectric res-
onators. (a) Sphere, (b) cylinder, (c) ring, and (d) rec-
tangular

Dielectric resonators also fall into transmission
type, such as cylinder resonator and rectangu-
lar resonator, and non-transmission type, such as
sphere resonator. In the following discussion, we
concentrate on transmission-type dielectric res-
onators, especially the cylindrical dielectric res-
onators. A transmission-type dielectric resonator is
made from its corresponding dielectric waveguide,
and a cylindrical dielectric resonator is actually a
segment of cylindrical dielectric waveguide with
two open ends.

In a closed metallic cavity, all the electro-
magnetic fields are confined within the space
enclosed by the metallic cavity; however, there
is field fringing or leakage from the boundaries
of a dielectric resonator. The resonators shown
in Figure 2.90 are isolated dielectric resonators
without any support. Isolated dielectric resonators
are convenient for theoretical analysis. However,
in actual cases, dielectric resonators should be
supported or shielded. Owing to field fringing and
leakage, the support or shield affects the resonant
properties of the dielectric resonator. Usually, a
dielectric resonator with support or shield is called
a shielded dielectric resonator.

The dielectric permittivity εr of the dielectric
material is an important parameter in determining
the resonant properties of a dielectric resonator. For
a given resonant frequency, the higher the dielectric
constant, the smaller the dielectric resonator, and
the microwave energy is more concentrated within
the dielectric resonator and the effects of the exter-
nal circuit to the dielectric resonator become less.
For microwave dielectric resonators, the dielectric
constant is usually in the range of 10–100. If the
dielectric constant is very large, the dielectric res-
onator becomes very small, and the fabrication of
dielectric resonators becomes very difficult. There
are a type of resonators working at whispering-
gallery modes, which have relatively large sizes.
Such resonators are often used in the characteriza-
tion of high-dielectric-constant materials.

In the following, we start with the resonant
properties of isolated dielectric resonators, fol-
lowed by the resonant properties of shielded
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Figure 2.91 First three resonant frequencies versus lengths of a dielectric cylinder of constant diameter (Cohn
1968). Source: Cohn, S. B. (1968). “Microwave bandpass filters containing high-Q dielectric resonators”, IEEE
Transactions on Microwave Theory and Techniques, 16 (4), 218–227.  2003 IEEE

dielectric resonators. We then introduce the tech-
niques for realizing the couplings between dielec-
tric resonators and external circuits, and finally the
resonant properties of whispering-gallery dielectric
resonators will be discussed.

2.3.5.1 Isolated dielectric resonators

Cylindrical dielectric resonators are widely used in
microwave electronics and materials property char-
acterizations. Exact analyses of cylindrical dielec-
tric resonators are quite complicated, and approx-
imation techniques and experimental methods are
often used. Figure 2.91 shows some experimental
results for the resonant frequencies of cylindrical
dielectric resonators with same diameter but with
different lengths. The curve labelled f1 represents
the TE mode with zero axial electric field, and the
curve labelled f2 represents the TM mode with zero
axial magnetic field.

In most cases, the length L of the dielectric
resonator is chosen to be less than the diameter
(D = 2a) of the dielectric resonator. In microwave
electronics and materials characterization, the
prime resonance of interest is usually the lowest
order mode. From Figure 2.91, the lowest mode for
cylinder dielectric resonator with L < D is TE01δ

mode, where the first two subscript integers denote

the waveguide mode and δ is the non-integer ratio
2L/λg < 1. As shown in Figure 2.92, for a distant
observer, this mode appears as a magnetic dipole,
so this mode is also called magnetic dipole mode.

For a given dielectric resonator, its accurate
resonant frequency of TE01δ mode can be calculated
only by complicated numerical procedures. For an
appropriate estimation of the resonant frequency
of the isolated dielectric resonator, the following
simple formula can be used (Kajfez and Guillon
1986):

f = 34

a
√

ε′
r

( a

L
+ 3.45

)
(GHz), (2.394)

where a and L are the radius and length of the
dielectric resonator, ε′

r is the dielectric constant of
the material. In Eq. (2.394), the unit for frequency
is GHz, and the unit for a and L is mm. The
accuracy for Eq. (2.394) is about 2 % in the range
of 0.5 < (a/L) < 2 and 30 < ε′

r < 50.
For the case with L greater than D, the

prime mode has an equivalent magnetic dipole
moment transverse to the axis, as shown in
Figure 2.93 (Cohn 1968). Resonant properties for
cylindrical resonators with L = D can be found
in (Tsuji et al. 1984).
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Figure 2.92 Prime mode (TE01δ) of a cylindrical dielectric resonator with L < D. (a) Dimensions of the resonator,
(b) top view of the field distribution, and (c) three-dimensional view of magnetic field
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Figure 2.93 Prime mode of a cylindrical dielectric res-
onator with L > D. (a) Dimensions of the resonator,
(b) side view of the field distributions, (c) top view
of the field distributions, and (d) A–A′ cross view
of the field distributions. Source: Cohn, S. B. (1968).
“Microwave bandpass filters containing high-Q dielec-
tric resonators”, IEEE Transactions on Microwave The-
ory and Techniques, 16 (4), 218–227  2003 IEEE

2.3.5.2 Shielded dielectric resonators

In actual applications, dielectric resonators are
often supported or enclosed by metal shields, and
different ways of shielding may result in different
resonant properties. In this part, we discuss sev-
eral typical shielding methods, including parallel
plates, asymmetrical parallel plates, cut-off waveg-
uide, and closed shields.

Parallel-plate dielectric resonator

As shown in Figure 2.94, a parallel-plate dielec-
tric resonator consists of an isotropic cylindrical
dielectric between two parallel conducting plates
perpendicular to the axis of the dielectric cylinder.
It is a symmetrical structure, and in theoretical
analysis of its TE01δ mode, the following assump-
tions are made. Firstly, the dielectric cylinder
can be treated as a lossless cylindrical dielectric
waveguide with length L excited in TE01 mode.
Secondly, the z-dependence of the z-component
magnetic field (Hz) for |z| ≥ L/2 can be described
by sinh α(L1 + (L/2) ± z). Thirdly, the cross-
sectional field distribution of Hz for |z| ≥ (L/2) is
the same as for the TE01 mode in cylindrical dielec-
tric waveguide at the “cutoff” frequency. We fol-
low the method proposed by Pospieszalski (1979).

We define the normalized resonant frequency F0:

F0 = πD

λ0

√
εr, (2.395)

where λ0 is the free-space wavelength correspond-
ing to the resonant frequency f0, D is the diame-
ter, and εr is the relative dielectric constant. From
the first assumption, F0 satisfies the following
equations:

F 2
0 = (u2 + w2)

εr − 1

εr
(2.396)

J1(u)

uJ0(u)
= − K1(w)

wK0(w)
, (2.397)

where Jn is the Bessel function of the first kind
of nth order and Kn is the modified Hankel
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function of nth order. The parameters w and u

are defined by

(w

a

)2 = β2 −
(

F0

a

)2 1

εr
(2.398)

(u

a

)2 =
(

F0

a

)2

− β2, (2.399)

where β is the propagation constant of the mode in
cylindrical dielectric waveguide and a is the radius
of dielectric cylinder.

The second assumption indicates that α and β

satisfy the following transcendental equation:

cot β
L

2
= β

α
tanh αL1. (2.400)

According to the third assumption, α is given by

α2 =
(ρ01

a

)2 − 1

εr

(
F0

a

)2

(2.401)

where ρ01 is the first root of J0. From Eqs. (2.398)–
(2.401), we can get

tan

(
L

D

√
F 2

0 − u2

)

=

√
ρ2

01 − 1

εr
F 2

0√
F 2

0 − u2 tanh

(
2
L1

D
·
√

ρ2
01 − 1

εr
F 2

0

)
(2.402)

The normalized resonant frequency F0 can be
computed from the set of Eqs. (2.396), (2.397) and
(2.402) as a function of (D/L), (L1/L), and εr.
Figure 2.95 shows the TE01δ mode chart, which is
often used in the design of cylindrical dielectric
resonators.

As will be discussed later, in materials property
characterizations, usually the conducting plates
directly shorts the dielectric resonator (L1 = 0). So
the resonator is in TE011 mode, and it corresponds
to the line (S1 = 0) in Figure 2.95.

Asymmetrical parallel-plate dielectric resonator

Figure 2.96 shows an asymmetrical dielectric res-
onator structure with parallel conducting plates.

r
Dielectric
resonator
e0

e1

L1 L1LConducting
plate

Conducting
plate

z

D

e0

e1 = er

Hz

(a)

(b)
L
2

z

a

Figure 2.94 Parallel-plate dielectric resonator at TE01δ

mode. (a) Configuration of the resonator and (b) distri-
bution of magnetic field Hz along z-axis (Pospieszalski
1979). Source: Pospieszalski, M. W. (1979). “Cylin-
drical dielectric resonators and their applications in
TEM line microwave circuits”, IEEE Transactions on
Microwave Theory and Techniques, 27 (3), 233–238 
2003 IEEE

The present structure can be regarded as modified
from the one shown in Figure 2.94 by inserting a
dielectric layer in one side of the cylindrical dielec-
tric resonator, and the thickness values at the two
sides are not equal. This structure is often used in
microwave integrated circuits, and is also called
microstrip dielectric resonator.

On the basis of similar assumptions and with the
similar analysis method, we can get (Pospieszalski
1979)

2
L

D

√
F 2

0 − u2

= tan−1

√
ρ2

01 − 1

εr
F 2

0√
F 2

0 − u2 tanh

(
2
L1

D
·
√

ρ2
01 − 1

εr
F 2

0

)

+

√
ρ2

01 − 1

εr
F 2

0√
F 2

0 − u2 tanh

(
2
L2

D
·
√

ρ2
01 − εp

εr
F 2

0

) ,

(2.403)
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Figure 2.96 An asymmetrical parallel-plate dielectric
resonator. (a) Configuration of the dielectric resonator
and (b) distribution of magnetic field Hz along z-axis
for the TE01δ mode (Pospieszalski 1979). Source:
Pospieszalski, M. W. (1979). “Cylindrical dielectric
resonators and their applications in TEM line microwave
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where εp is the relative dielectric constant of
the dielectric layer (substrate). From the set of
Eqs. (2.396), (2.397), and (2.403), F0 can be found
as a function of (D/L), (L1/L), (L2/L), εr, and εp.

There are approximate and straightforward
equations for the design of this kind of dielec-
tric resonators (Ishii 1995). To design a cylindrical
dielectric resonator with resonant frequency f0, we
should determine its diameter D and length L. The
first step is to select D satisfying

5.4

k0
√

εr
≤ D ≤ 5.4

k0
√

εp
, (2.404)

where k0 = (ε0µ0)
1/2 is the free-space propagation

constant. The second step is to determine the length
L according to Eq. (2.405):

L = 1

β

[
tan−1

(
α1

β
coth α1L1

)

+ tan−1

(
α2

β
coth α2L2

)]
(2.405)

with

α1 =
√

h2 − k2
0 (2.406)
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α2 =
√

h2 − k2
0εp (2.407)

β =
√

k2
0εr − h2 (2.408)

h = 2

D
·
(

2.405 + y0

2.405(1 + 2.43/y0 + 0.291y0)

)
(2.409)

y0 =
√(

k0
D

2

)2

(εr − 1) − 2.4052 (2.410)

Figure 2.97 shows a generalized normalized
design curve for asymmetrical parallel-plate dielec-
tric resonators. In the figure, λ0 is the wavelength
in free space, t is the height of the dielectric res-
onator, R is the radius of the dielectric resonator,
d is the distance of air gap between the dielec-
tric resonator and metal plate, h is the thickness
of the substrate, εr is the dielectric constant of
the resonator, and εg is the dielectric constant of
the substrate. Figure 2.97 shows the case when
εr = 37.0 and εg = 2.1. There are two sets of
curves. One set of curves are for the condition of
(h/R = 0.2), and they are indicated by d/R = 0,
0.25, 0.50, and ∞ respectively. Another set of
curves are for the condition of (d/R = ∞), and
they are indicated by h/R = 0, 0.1, 0.2, and ∞,
respectively.
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Figure 2.98 Dielectric cylinder in magnetic-wall
waveguide boundary. Source: Cohn, S. B. (1968).
“Microwave bandpass filters containing high-Q dielec-
tric resonators”, IEEE Transactions on Microwave The-
ory and Techniques, 16 (4), 218–227.  2003 IEEE

Dielectric resonator in cutoff magnetic-wall
waveguide

Figure 2.98 shows a dielectric cylinder contained
in a contiguous magnetic-wall waveguide. In the
dielectric region, the waveguide is above its cutoff
frequency, while in the air regions, the waveguide
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is below the cut-off frequency. At resonance,
a standing wave exists in the dielectric region,
while exponentially attenuating waves exist in
air regions. The equivalent circuit is a piece of
transmission line with length L, terminated at both
ends by reactance equal to the pure imaginary
characteristic impedance of the cut-off air-filled
waveguide.

According to Cohn’s mode (Cohn 1968), we can
get the field distributions for TE01δ mode:

Eφ = 2E0
J1(kcr)

J1(p01)
cos βdz

(
|z| ≤ L

2

)
(2.411)

Eφ = 2E0
J1(kcr)

J1(p01)
cos

βdL

2

× e−αa(|z|−L/2)

(
|z| ≥ L

2

)
(2.412)

Hr = j
βd

ωµ
2E0

J1(kcr)

J1(p01)
sin βdz

(
|z| ≤ L

2

)
(2.413)

Hr = ±j
αa

ωµ
2E0

J1(kcr)

J1(p01)
cos βdz

× e−αa(|z|−L/2)

(
|z| ≥ L

2

)
(2.414)

where

kc = p01

a
= 2.405

a
(2.415)

βd =
√

εrk
2
0 − k2

c =
√

(2πf )2εr

c2
−

(p01

a

)2
(2.416)

αa =
√

k2
c − k2

0 =
√(p01

a

)2 −
(

2πf

c

)2

(2.417)

The upper sign in Eq. (2.414) applies at z = L/2
and the lower at z = −L/2. The matching tangent
fields at z = ±L/2 lead to

tan
βdL

2
= αa

βd
(2.418)

This equation can be solved numerically for the
resonant frequency. As αa and βd should be real
numbers, the possible frequency range is from f1

to f2, where

f1 = p01

a
· c

2π
√

εr
(2.419)
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Figure 2.99 Semispherical dielectric resonator in a
semispherical metal cavity

f2 = p01

a
· c

2π
(2.420)

Because of the magnetic-wall waveguide, the
resonant frequency of this configuration is about
10 % lower than those of an isolated dielectric
resonator and a parallel-plate dielectric resonator
with same dimensions and dielectric constant.

Dielectric resonator in closed metal shields

Dielectric resonators can be enclosed in closed
metal shields, and the study of the resonant
properties of such resonant structures is important
for the design of dielectric resonators and materials
property characterization.

A spherical dielectric resonator enclosed in a
metal sphere is often used in studying the effects
of a metal shield to the resonant properties of a
resonator, because the space between the dielectric
resonator and the shield can be described by one
parameter: radius. Imai and Yamamoto studied
the resonant properties a semi-spherical dielectric
resonator in a semi-spherical conductive shield, as
shown in Figure 2.99 (Imai and Yamamoto 1984).
The properties of a semi-spherical resonator at
TE011 mode are similar with those for TE021

spherical resonator. One advantage of using a
semi-spherical dielectric resonator is that the
ground conductor is also a support to the dielectric
resonator, and no other support is needed.
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In Figure 2.99, the radius of the dielectric res-
onator is R1, and that of the metal sphere is R2.
When R2 gradually increases while R1 keeps con-
stant, the change of the resonant frequency of the
resonant structure is shown in Figure 2.100. In
region a, R2 is slightly larger than R1, and the
resonant frequency changes rapidly as a function
of R2. When R2 is approaching R1, the resonant
frequency approaches that of a cavity fully filled
with a dielectric material. In region b, the resonant
frequency is almost independent of R2. In region
c, the resonant frequency again changes as a func-
tion of R2. When R2 is much larger than R1, the
resonant structure can be taken as a semi-spherical
dielectric resonator mounted on a ground plane,
which is discussed in (Collin 1992).

According to the incremental frequency rule, the
quality factor Qc related to conductor losses of the
shield is large when the slope df/dR2 (frequency
vs. the size of the cavity) is small (Kajfez and
Guillon 1986). Therefore, in the region b, Qc is
large and so the effect of the conductor loss to the
overall quality factor Q of the resonant structure
can be neglected. Therefore in this region Q is
mainly determined by the losses in the dielectric.

In materials property characterization, usually
cylindrical dielectric resonators are used, and
the cylindrical dielectric resonators are often
enclosed in metallic cylinders. The conclusions
for spherical resonators discussed above can
be extended to cylindrical dielectric resonators.
Figure 2.101 shows two typical configurations. In
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Figure 2.100 Resonant frequency of the semispherical dielectric resonator. (a) Transient mode, (b) dielectric
resonator mode, and (c) hollow cavity mode
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Figure 2.101 Cylindrical resonators in cylindrical cavities. (a) The dielectric resonator is at the center of the
cavity. (b) The dielectric resonator contacts the end wall of the cavity
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Figure 2.101(a), the dielectric resonator is at the
center of the cavity, and the contribution of the
conductor losses of the metal shield to the overall
quality factor of the resonant structure is small.
This configuration is often used in characteriz-
ing the dielectric permittivity of dielectric cylin-
ders. In Figure 2.101(b), one end of the dielec-
tric cylinder directly contacts the end-wall of the
resonant cavity. In this configuration, the surface
resistance of the end-wall contacting the dielec-
tric cylinder affects the overall quality factor of
the resonant structure. This configuration is often
used in characterizing the surface resistance of
conductors.

Kobayashi et al. made discussions on the qual-
ity factors of the circularly symmetric TE0 modes
for dielectric cylinders placed between two parallel
conductor plates and in a closed conductor
shield (Kobayashi et al. 1985). The techniques
allowing separate estimation of the quality factors
due to radiation, conductor, and dielectric losses
are proposed. The conclusions obtained are help-
ful for realizing high-quality dielectric resonators
and for the measurement of dielectric properties of
low-loss materials.

2.3.5.3 Coupling to external circuit

Generally speaking, all kinds of coupling methods
can be used for dielectric resonators. The coupling
probes often used for dielectric resonators include
electric dipole, magnetic dipole, microstrip line,
and waveguide. It should be noted that, for a
coupling probe, different coupling positions and
different orientations result in different resonant
modes. As shown in Figure 2.102, in materials
property characterization, electric dipole probe and
magnetic dipole probe are often used in couplings
to dielectric resonators. Using these kinds of
probes, the coupling coefficients can be easily
adjusted. Detailed discussions on the coupling
methods for dielectric resonators can be found
in (Kajfez and Guillon 1986).

2.3.5.4 Whispering-gallery dielectric resonator

Whispering-gallery mode (WGM) dielectric res-
onators form a class of rotationally invariant

Magnetic dipole
for TM modes

Magnetic dipole
for TE modes

Electric dipole
for TE modes

Electric dipole
for TM modes

Figure 2.102 Electric and magnetic dipole probes for
couplings of dielectric TE and TM resonant modes

Figure 2.103 Typical WGM resonance in a dielectric
resonator. The dark regions indicate areas of high energy
density

resonant structures, typically characterized by high
values of the azimuthal index n. The name is
applied due to the similarity with Lord Rayleigh’s
observations of whispers that would travel around
the inside wall of St. Catherine’s cathedral in
England in early 20th century. As shown in
Figure 2.103, WGM resonators exhibit a multiplic-
ity of sharp resonances and they are natural candi-
dates for the realization of an ultra wideband res-
onant structure. Since WGM dielectric resonators
are running essentially in the azimuthal direction,
they offer the possibility of new microwave devices,
such as directional filters and power combiners with
very low reflection coefficient. In materials prop-
erty characterization, WGM dielectric resonators
are often used in characterizing extremely low-
loss dielectrics, high-dielectric-constant materials,
anisotropic dielectrics, and ferrites.

In a WGM dielectric resonator, due to the
total internal reflections, the electromagnetic wave
bounces around inside the dielectric/air interface.
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For given boundary conditions, resonance occurs
only at certain wavelengths (λ) given by

nλ = πd
√

εrµr, (2.421)

where the integer n is the azimuthal index, d

is the diameter of the crystal, εr is the relative
permittivity, and µr is the relative permeability.
However, as will be indicated later, this relation
is only true at high frequency where n is large.
At lower frequencies, the electrical path length is
extended by reflections from an internal caustic
surface (Cros and Guillon 1990).

WGM in a dielectric rod can be described as
comprising waves running against the concave

side of the cylindrical boundary of the rod (Cros
and Guillon 1990). The waves move essentially
in the plane of the circular cross section. As
shown in Figure 2.104(a), most of the energy is
confined between the cylindrical boundary (r = a)
and an inner modal caustic (r = ac). Near this
region, the electromagnetic fields are evanescent.
The modal energy confinement can be explained
from a ray optics point of view. As shown in
Figure 2.104(b), a ray is totally reflected at the
dielectric–air interface; it is then tangent to an
inner circle called the caustic. Thus the ray moves
merely in a small region within the rod near the
rod boundaries.

Caustic Evanescent
field

Dielectric
rod

(a) (b)

Figure 2.104 WGM in a dielectric rod. (a) Electric field variation as a function of the radius, (b) representation
by ray optic techniques of WGM propagation in cylindrical rod (Cros and Guillon 1990). Source: Cros, D. and
Guillon, P. (1990). “Whispering gallery dielectric resonator modes for W-band devices”, IEEE Transactions on
Microwave Theory and Techniques, 38 (11), 1667–1674.  2003 IEEE
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Figure 2.105 Two types of WGM dielectric resonators. (a) Cylindrical dielectric resonator and (b) planar
dielectric resonator. Source: Cros, D. and Guillon, P. (1990). “Whispering gallery dielectric resonator modes for
W-band devices”, IEEE Transactions on Microwave Theory and Techniques, 38 (11), 1667–1674.  2003 IEEE
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As shown in Figure 2.105, WGM can be
excited in cylindrical dielectric resonators and
planar dielectric resonators. In the cylindrical
dielectric resonator shown in Figure 2.105(a),
its WGM is characterized by a second energy
confinement (axial) ensured by the enlargement of
the resonator radius in the central zone. In this
area, the modes propagate axially with a small
propagation constant and they decay exponentially
away from the discontinuity of the resonator
radius. In Figure 2.105(b), WGM is excited in a
thin dielectric disk with the diameter 2a much
larger than its thickness h. Such resonators have
been extensively investigated because they are
compatible with millimeter-wavelength integrated
circuits.

WGM dielectric resonators are very interesting
for a number of reasons (Cros and Guillon 1990).
First, their dimensions are relatively large, even
in the millimeter-wavelength band. Second, the
quality factors are very high: the unloaded quality
factor of a WGM dielectric resonator is limited
only by the value of the loss tangent of the
material used to realize the dielectric resonator,
and the radiation losses are negligible. This is
an important feature of WGM compared with the
conventional TE or TM modes, whose unloaded
quality factor depends not only on the material
loss tangent but also on the metallic shields in
which they are enclosed. Third, WGM resonators
have good suppression of spurious modes because

the propagation constant along the Z-axis is very
small and the unwanted modes leak out axially
and can be absorbed without perturbation. Last,
they offer a high level of integration. They can be
easily integrated into planar circuits.

As shown in Figure 2.106, the WGM of dielec-
tric resonators can be classified as WGEnml and
WGHnml . In a WGEnml mode, the electric field is
essentially transversal, while in a WGHnml mode,
the electric field is essentially axial. The integer n

denotes the azimuthal variations, m the radial vari-
ations, and l the axial ones. As an example, the
field distributions of WGE800 and WGE810 modes
are shown in Figure 2.107.

EzHzEθ Hθ

Er Hr

(a) (b)

Figure 2.106 Electromagnetic fields of WGE and
WGH modes in planar dielectric resonator. (a) WGE
mode and (b) WGH mode. Source: Cros, D. and
Guillon, P. (1990). “Whispering gallery dielectric res-
onator modes for W-band devices” IEEE Transac-
tions on Microwave Theory and Techniques, 38 (11),
1667–1674.  2003 IEEE

(a) (b) 

Figure 2.107 Field distributions of WGM. (a) Electric field amplitude for WGE800 mode and (b) electric field
distribution of WGE810 mode (Niman 1992). Source: Niman, M. J. (1992). “Comments on ‘Whispering gallery
dielectric resonator modes for W-band devices’ ”, IEEE Transactions on Microwave Theory and Techniques, 40 (5),
1035–1036.  2003 IEEE
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Figure 2.108 Whispering-gallery modes excited by
electric and magnetic dipole. Source: Cros, D. and Guil-
lon, P. (1990). “Whispering gallery dielectric resonator
modes for W-band devices”, IEEE Transactions on
Microwave Theory and Techniques, 38 (11), 1667–1674.
 2003 IEEE

WGM dielectric resonators can be excited in
various ways. As shown in Figure 2.108, in the
low microwave frequency range we use an electric
dipole or a magnetic dipole. Using this type
of excitation we can obtain stationary WGM.
In the high microwave frequency range we can
use dielectric image waveguides or microstrip
transmission lines as shown in Figure 2.109. Using
this method, we can build travelling WGM.

Finally, it should be indicated that WGM
could also be built in other types of reso-
nant structures. Figure 2.110 shows a travelling
microstrip resonator (Harvey 1963). If the length
of the microstrip ring is a multiple of the wave-
length, absorption can be observed from the
transmission line, indicating the occurrence of a
resonance. Correspondingly, we may also take the
resonance in a microstrip ring resonator discussed
in Section 2.3.3.2 as a stationary microstrip WGM.

2.3.6 Open resonators

2.3.6.1 Concept of open resonator

As discussed earlier, free space can also be taken as
a type of transmission line. We can also make res-
onators from free-space transmission line by termi-
nating it with two parallel metal plates, forming a
Fabry–Perot resonator, as shown in Figure 2.111.
In millimeter-wave and sub millimeter-wave fre-
quency range, the conductor loss is a main part
of energy dissipation of a resonant cavity. Com-
pared to closed resonators, open resonators may
have higher quality factors because the conductor
loss is decreased as some of the conductor walls
are moved away.

We assume the parallel plates in Figure 2.111 to
be infinite in extent, and a TEM mode standing
wave is built between the plates. From the
boundary conditions, we can get the resonant
frequency f0:

f0 = cn

2d
, (2.422)

where d is the distance between the two parallel
plates, n is the mode number (n = 1, 2, 3, . . .), c

is the speed of light. Equation (2.422) indicates
that the resonant frequency can be adjusted by
changing the distance between the two plates. In
an actual Fabry–Perot resonator, usually one of the
reflectors is movable so that the resonant frequency
can be changed continuously. This is an attractive
advantage for materials property research.

The quality factor Q0 of the resonator can be
estimated by

E field

Dielectric
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Ground plane
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Microstrip
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H field

w RD

hεεx εx
εx
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Figure 2.109 Whispering gallery modes excited by (a) dielectric image waveguide and (b) microstrip line. Source:
Cros, D. and Guillon, P. (1990). “Whispering gallery dielectric resonator modes for W-band devices”, IEEE
Transactions on Microwave Theory and Techniques, 38 (11), 1667–1674.  2003 IEEE
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Microstrip loop
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Figure 2.110 A traveling-wave microstrip resonator
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Figure 2.111 An ideal Fabry–Perot resonator

Q0 = πnη0

4Rs
, (2.423)

where n is the mode number, η0 is the intrinsic
impedance of the free space, and Rs is the
surface resistance of the reflector. Equation (2.423)
indicates that the quality factor increases with the
increase of the mode number. As n is often several
thousand or more, very high quality factors could
be achieved.

2.3.6.2 Stability requirements

Equation (2.423) gives the quality factor of an
ideal case: the two plates are infinite and they
are strictly parallel. However, in an actual case
as shown in Figure 2.112, the sizes of the plates
are limited, and the two plates may be not
strictly parallel, microwave energy will be radiated.
Therefore, the actual quality factor is less than
what Eq. (2.423) gives.

As shown in Figure 2.113, significant improve-
ments can be made if one or both of the reflect-
ing plane plates is replaced by a concave reflec-
tor (Musil and Zacek 1986). In these cases, the
field is focused in a smaller volume and the
requirements for arranging the two reflectors are
not very high. Furthermore, if one or both reflec-
tors have a concave spherical surface, the field

Figure 2.112 Leakage of Fabry–Perot resonator due
to limited size of the plates. Reprinted from Musil,
J. and Zacek, F. (1986). Microwave Measurements of
Complex Permittivity by Free Space Methods and Their
Applications, Permission from Elsevier, Amsterdam

r1 r1

r2

d

(a) (b)

Figure 2.113 Resonator geometries with planar and
spherical reflectors (Musil and Zacek 1986). Reprinted
from Musil, J. and Zacek, F. (1986). Microwave
Measurements of Complex Permittivity by Free Space
Methods and Their Applications, Permission from
Elsevier, Amsterdam

inside the resonator has a well-known Gaussian
distribution. This fact can be used to simulate free-
space field conditions, quite similar with the case
of focused beams described in Section 2.2.5.

An open resonator consisting of two spherical
reflectors with radii of r1 and r2 can support
a stable mode if the following condition is
met (Pozar 1998):

0 ≤
(

1 − d

r1

)(
1 − d

r2

)
≤ 1 (2.424)

On the basis of Eq. (2.424), a stability diagram
can be drawn, as shown in Figure 2.114. In the
stability diagram, the stable regions are shadowed.
There are three special conditions, representing
parallel-plane resonator, concentric resonator, and
symmetrical confocal resonator respectively.

Parallel plate can be taken as a spherical reflector
with infinite radius. The point corresponding to a
parallel plate resonator (d/r1 = d/r2 = 0) is at the
boundary between the stable region and unstable
region. If there are any irregularities, the system
becomes unstable.
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Figure 2.114 Stability diagram for open resonators

For a confocal resonator (r1 = r2 = d), the cor-
responding point is at the boundary between the
stable region and unstable region. For a concen-
tric resonator (r1 = r2 = (d/2)), the correspond-
ing point is at the stability boundary. So these
two kinds of resonators are also not very sta-
ble. To increase the stability, confocal and con-
centric resonators are often modified into near-
confocal and near-concentric geometries, as shown
in Figure 2.115.

When open resonators are used in materi-
als property characterization, we should con-
sider the beam-width in the resonator, as the
beam-width determines the minimum dimensions
of samples that can be measured. Similar to
focused microwave beam, in the determination of
beam width, we should define a certain level of

field intensity with respect to the field intensity on
the axis of the resonator.

2.3.6.3 Coupling to external circuit

In a microwave Fabry–Perot resonator, coupling
may be achieved by quasi-optical methods or typi-
cal microwave methods. Figure 2.116 diagrammat-
ically shows two common geometries for coupling
in a quasi-optical manner: through one or both mir-
rors or normal to the resonator axis (Clarke and
Rosenberg 1982). In the through-mirror method,
mirrors of the open resonator are perforated metal
plates, the RF signal is injected by means of a colli-
mating lens fed by a small horn placed at its focus,
and a similar lens-and-horn arrangement is used to
collect the small signals passing through the sys-
tem. The method shown in Figure 2.116(b) utilizes
a dielectric beam splitter set at 45◦ to the res-
onator axis, and usually the beam splitter is made
of polyethylene. In this system, the quality-factor
of the resonator can be continuously adjusted by
rotating the incident polarization. The quality fac-
tor reaches its maximum value when the electric
vector lies in the plane of incidence and reaches
its minimum value when the electric vector is per-
pendicular to the plane of incidence. Meanwhile,
the quality factor of the resonator is also affected
by the thickness of the beam splitter.

Fabry–Perot resonators can also be coupled
using typical microwave methods, such as the cou-
pling apertures in the mirror reflectors. Figure 2.117
shows an open resonator coupled to waveguides
through apertures. The details of the coupling aper-
ture are shown in Figure 2.118. It comprises a

0 0h(z) h(z)

r0 r0
z z

(a) (b)

Figure 2.115 Modification of confocal and concentric resonators. (a) Near-confocal resonator and (b) near-con-
centric resonator (Musil and Zacek 1986). Reprinted from Musil, J. and Zacek, F. (1986). Microwave Measurements
of Complex Permittivity by Free Space Methods and Their Applications, Permission from Elsevier, Amsterdam



118 Microwave Electronics: Measurement and Materials Characterization

(a) (b)

Figure 2.116 Two types of quasi-optical coupling methods. (a) Through-mirror method and (b) normal-to-axis
method. Modified from Clarke, R. N. and Rosenberg, C. B. (1982). “Fabry–Perot and open resonators at microwave
and millimeter wave frequencies, 2–300 GHz”, Journal of Physics E: Scientific Instruments, 15 (1), 9–24
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Figure 2.117 An open resonator coupled to waveguides through apertures

Figure 2.118 Structure of a coupling aperture (Clarke
and Rosenberg 1982). Source: Clarke, R. N. and
Rosenberg, C. B. (1982). “Fabry–Perot and open res-
onators at microwave and millimeter wave frequencies,
2–300 GHz”, Journal of Physics E: Scientific Instru-
ments, 15 (1), 9–24, by permission of The Institute of
Physics

standard TE10 mode feed-waveguide butted into a
rectangular recess in the back surface of one reflec-
tor. Loops of magnetic field emanate from the aper-
ture which thus acts as a magnetic dipole radiating
into a half-space (Clarke and Rosenberg 1982). The
coupling coefficient is mainly determined by the
diameter of the coupling hole and the thickness of
the wall.

Measurement of dielectric properties is a nat-
ural application for open resonators since easily
measured parameters of an open resonator, includ-
ing the resonant frequency f , quality factor Q,
and resonator length d , are simply related to the
dielectric constant and loss tangent of the mate-
rial included in the resonator. Actually, materials
property characterization was one of the first appli-
cations for microwave open resonators, and open-
resonator methods are presently among the most
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sensitive for low-loss dielectric measurements at
millimeter-wave frequencies (Cullen 1983). More
discussions on the application of open resonators
in materials property characterization can be found
in Chapter 5.

2.4 MICROWAVE NETWORK

As mentioned earlier, field method and line method
are two important methods in microwave the-
ory and engineering. In the field method, the
distributions of electric field and magnetic field
are analyzed. In the line method, the microwave
properties of the transmission lines or reso-
nant structures are represented by their equiv-
alent lumped elements. Network approach is
developed from the line method. In the net-
work approach, we do not care the distribu-
tions of electromagnetic fields within a microwave
structure, and we are only interested in how
the microwave structure responds to external
microwave signals.

In this section, we first introduce the concept of
microwave network and the parameters describing
microwave networks. We then introduce network
analyzer, followed by a discussion on the methods
for the measurements of reflection, transmission,
and resonant properties of microwave networks.

2.4.1 Concept of microwave network

The concept of microwave network is developed
from the transmission line theory, and is a powerful
tool in microwave engineering. Microwave net-
work method studies the responses of a microwave
structure to external signals, and it is a com-
plement to the microwave field theory that ana-
lyzes the field distribution inside the microwave
structure.

Two sets of physical parameters are often used in
network analysis. As shown in Figure 2.119, one
set of parameters are voltage V (or normalized
voltage v) and current I (or normalized current
i). The other set of parameters are the input
wave a (the wave going into the network) and
the output wave b (the wave coming out of
the network). Different network parameters are
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an
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b2
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b1 v1

Figure 2.119 Two definitions of a network

used for different sets of physical parameters. For
example, impedance and admittance matrixes are
used to describe the relationship between voltage
and current, while scattering parameters are used to
describe the relationships between the input waves
and output waves.

In the following discussion, we focus on two-
port networks, and the conclusions obtained for
two-port networks can be extended to multiport
networks. We will discuss impedance matrix,
admittance matrix, and scattering matrix, and we
will also discuss the conversions between these
parameters.

2.4.2 Impedance matrix and admittance
matrix

2.4.2.1 Unnormalized impedance and admittance
matrixes

There are two types of impedance matrixes
and admittance matrixes: unnormalized ones and
normalized ones. Unnormalized impedance and
admittance describe the relationships between
unnormalized voltage and unnormalized current.
For a two-port network as shown in Figure 2.120,
we have

[V ] = [Z][I ] (2.425)

[I ] = [Y ][V ], (2.426)

where [V ] is the unnormalized voltage: [V ] =
[V1, V2]T, [I ] is the unnormalized current: [I ] =
[I1, I2]T, and the impedance matrix is

[Z] =
[

Z11 Z12

Z21 Z22

]
(2.427)
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Figure 2.120 A two-port network with voltages and
currents defined

From Eq. (2.425), we know that if Ii = 0 (i �= j)

Zjj = Vj

Ij

, Zij = Vi

Ij

(i = 1, 2; j = 1, 2).

(2.428)

Equation (2.428) indicates that Zjj is the input
impedance at port j when the other port is open,
and Zij (i �= j ) is the transition impedance from j

port to i port when port i is open.
The admittance matrix [Y ] in Eq. (2.426) is in

the form of

[Y ] =
[

Y11 Y12

Y21 Y22

]
(2.429)

Similarly, Yjj is the input admittance at port j

when the other port is shorted, and Yij (i �= j) is
the transition admittance from j port to i port when
port i shorted. From Eqs. (2.425) and (2.426), we
can get the relationship between [Y ] and [Z]

[Z][Y ] = [1] (2.430)

2.4.2.2 Normalized impedance and admittance
matrixes

Normalized impedance matrix [z] and normalized
admittance matrix [y] defines the relationships
between the normalized currents and normalized
voltages:

[v] = [z][i] (2.431)

[i] = [y][v] (2.432)

From Eqs. (2.425), (2.426), (2.431), and (2.432),
we can get

[z] = [
√

Yc][Z][
√

Yc] (2.433)

[y] = [
√

Zc][Y ][
√

Zc] (2.434)

with:

[
√

Zc] =
[√

Zc1 0
0

√
Zc2

]
(2.435)

[
√

Yc] =
[√

Yc1 0
0

√
Yc2

]
, (2.436)

where Zc1 and Zc2 are the characteristic impedances
of the transmission lines connected to port 1 and
port 2 respectively; Yc1 and Yc2 are the characteristic
admittances of the transmission lines connected to
port 1 and port 2 respectively. It is clear that[√

Zc

] [√
Yc

]
= [1] (2.437)

For single components in Eqs. (2.433) and
(2.434), we have

zij = Zij

√
YciYcj = Zij√

ZciZcj
(2.438)

yij = Yij

√
ZciZcj = Yij√

YciYcj
(2.439)

When i = j ,

zii = Zii

Zci
(2.440)

yii = Yii

Yci
(2.441)

Equations (2.440) and (2.441) agree with the
definitions in transmission line theory.

2.4.3 Scattering parameters

As shown in Figure 2.121, the responses of a
network to external circuits can also be described
by the input and output microwave waves. The
input waves at port 1 and port 2 are denoted as
a1 and a2 respectively, and the output waves
from port 1 and port 2 are denoted as b1 and b2

respectively. These parameters (a1, a2, b1, and b2)
may be voltage or current, and in most cases, we do
not distinguish whether they are voltage or current.

The relationships between the input wave [a]
and output wave [b] are often described by
scattering parameters [S]:

[b] = [S][a], (2.442)
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Figure 2.121 A two-port network with “a”s and “b”s
defined

where [a] = [a1, a2]T, [b] = [b1, b2]T, and the
scattering matrix [S] is in the form of

[S] =
[

S11 S12

S21 S22

]
(2.443)

For a scattering parameter Sij , if ai = 0 (i �= j),
from Eq. (2.442), we have

Sjj = bj

aj

(j = 1, 2) (2.444)

Sij = bi

aj

(i �= j ; i = 1, 2; j = 1, 2) (2.445)

Equation (2.444) shows that when port j is
connected to a source and the other port is
connected to a matching load, the reflection
coefficient at port j is equal to Sjj :


j = Sjj = bj

aj

(2.446)

Equation (2.445) shows that when port j is
connected to a source, and port i is connected to
a matching load, the transmission coefficient from
port j to port i is equal to Sij :

Tj→i = Sij = bi

aj

(2.447)

2.4.4 Conversions between different network
parameters

From the relationships between different physical
parameters, we can get conversions between differ-
ent network parameters (Frickey 1994). From the
definitions of normalized voltage and current, input
and output waves, we have

v = a + b (2.448)

i = a − b (2.449)

and
a = 1

2 (v + i) (2.450)

b = 1
2 (v − i). (2.451)

From Eqs. (2.448)–(2.451), we can get the rela-
tionships between [S], [z], and [y] as listed in
Table 2.6. If we know any one of [S], [z], and
[y], from Table 2.6, we can find the other two.
As will be discussed later, in experiments, usu-
ally the scattering parameters are measured, and
other parameters including impedance parameters
and admittance parameters can be calculated from
scattering parameters.

2.4.5 Basics of network analyzer

Network analyzer is one of the most important
tools for analyzing analog circuits. By measur-
ing the amplitudes and phases of transmission and
reflection coefficients of an analog circuit, a net-
work analyzer reveals all the network characteris-
tics of the circuit. In microwave engineering, net-
work analyzers are used to analyze a wide variety
of materials, components, circuits, and systems.

In most of the methods, which will be discussed
in later chapters, for materials property character-
ization, measurements are conducted by network
analyzers. In this part, we discuss the basic princi-
ple of network analyzers and the error correction
techniques. More detailed information about net-
work analyzers can be found in (Ballo 1998).

2.4.5.1 Principle of network analyzers

Network analyzers are widely used to measure
the four elements in a scattering matrix: S11,
S12, S21, and S22. As shown in Figure 2.122, a
network analyzer mainly consists of a source,
signal separation devices, and detectors. Basically,
a network analyzer can measure the four waves
independently: two forward traveling waves a1 and
a2, and two reverse traveling waves b1 and b2.
The scattering parameters can then be obtained by
the combinations of these four waves according
to Eqs. (2.444) and (2.445). The four detectors,
labeled by a1, a2, b1, and b2 are used to measure
the four corresponding waves respectively, and the
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Table 2.6 Conversions between [S], [z], and [y]

Expression in [S] Expression in [z] Expression in [y]

[S] [S] =
[

S11 S12

S21 S22

]
s11 = |z| + z11 − z22 − 1

|z| + z11 + z22 + 1
s11 = 1 − y11 + y22 − |y|

1 + y11 + y22 + |y|

s12 = 2z12

|z| + z11 + z22 + 1
s12 = −2y12

1 + y11 + y22 + |y|

s21 = 2z21

|z| + z11 + z22 + 1
s21 = −2y21

1 + y11 + y22 + |y|

s22 = |z| − z11 + z22 − 1

|z| + z11 + z22 + 1
s22 = 1 + y11 − y22 − |y|

1 + y11 + y22 + |y|

[z] z11 = 1 + S11 − S22 − |S|
1 − S11 − S22 + |S| [z] =

[
z11 z12

z21 z22

]
[z] = 1

|y|
[

y22 −y12

−y21 y22

]

z12 = −2S12

1 − S11 − S22 + |S|

z21 = −2S21

1 − S11 − S22 + |S|

z22 = 1 − S11 + S22 − |S|
1 − S11 − S22 + |S|

[y] y11 = 1 − S11 + S22 − |S|
1 + S11 + S22 + |S| [y] = 1

|z|
[

z22 −z12

−z21 z22

]
[y] =

[
y11 y12

y21 y22

]

y12 = 1 − S11 + S22 − |S|
1 + S11 + S22 + |S|

y21 = 1 − S11 + S22 − |S|
1 + S11 + S22 + |S|

y22 = 1 − S11 + S22 − |S|
1 + S11 + S22 + |S|

a1
a2

b2
b1

Source

DUT

Figure 2.122 The block diagram for a network
analyzer

signal separation devices ensure the four waves be
measured independently.

2.4.5.2 Types of measurement errors

The measurement errors of a network analyzer
generally fall into three categories: systematic
errors, random errors, and drift errors.

Systematic errors

Systematic errors of a network analyzer mainly
include match, directivity, cross talk, and fre-
quency response. Match errors arise from multiple
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reflections of the device under test (DUT) that are
not sensed at the incident wave detector. Direc-
tivity errors are due to leakage signals that are
sensed at the reflected wave detector but are not
reflected from the DUT. Cross-talk errors are due
to leakage signals that are sensed at the transmitted
wave detector without passing through the DUT.
The frequency response errors arise from path loss,
phase delay, and detector response. These errors
are caused by imperfections in the measurement
systems. Most of these errors do not vary with
time, so they can be characterized through cal-
ibration and mathematically removed during the
measurement process.

The dynamic ranges of a measurement system
are limited by systematic errors. The dynamic
range for reflection measurements is mainly lim-
ited by directivity, while the dynamic range for
transmission measurement is mainly limited by
noise floor or cross talk.

Random errors

Random errors are usually unpredictable and
cannot be removed by calibration. The possible
sources of random errors include instrument noise,
switch repeatability, and connector repeatability.
Random errors can be minimized by making
measurements several times and taking the average
values.

Drift errors

Drift errors are mainly caused by the change of
working conditions of the measurement system
after a calibration has been done. Temperature
variation is one of the main sources for drift
errors. In experiments, we should try to keep
the working conditions as close to the calibration
conditions as possible. To remove drift errors,
further calibrations are needed.

2.4.5.3 Corrections of systematic errors

The systematic errors of a network analyzer can
be corrected by calibration. This process com-
putes the systematic errors from measurements
on known reference standards. When subsequent

measurements are made, the effects of the system-
atic errors are mathematically removed from the
measurement results. The two main types of error
corrections that can be done are response correc-
tions and vector corrections. Response calibration
is simple to perform, but only corrects for a few of
the possible systematic error terms. Response cal-
ibration is essentially a normalized measurement
where a reference trace is stored in memory, and
subsequent measurement data is divided by this
memory trace. A more advanced form of response
calibration is open/short averaging for reflection
measurements using broadband diode detectors.
In this case, two traces are averaged together to
derive the reference trace. Vector-error correction
requires the network analyzer can measure both
magnitude and phase data. Vector-error correction
can account for all major sources of systematic
error, and requires more calibration standards. It
should be noted that response calibration can be
performed on a vector network analyzer, in which
case we store a vector reference trace in memory,
so that we can display normalized magnitude or
phase data. This is not the same as vector-error
correction, because we cannot remove the indi-
vidual systematic errors, all of which are vector
quantities.

Vector-error correction is a process of character-
izing systematic vector error-terms by measuring
known calibration standards, and then removing
the effects of these errors from subsequent mea-
surements. In microwave electronics and materials
property characterization, one-port and two-port
measurements are often used. In the following,
we discuss one-port and two port calibrations.
More discussions on vector-error corrections can
be found in (Ballo 1998).

One-port calibration

In reflection methods for materials property char-
acterization, one-port reflection measurements are
required. One-port calibration can measure and
remove three systematic error terms in one-
port measurements: directivity, source match, and
reflection tracking.

Figure 2.123 shows the equivalent circuits of an
ideal case and an error adapter. The relationship
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Figure 2.123 Model for one-port calibration. In the figure, S11m is the measured S11 value, S11a the actual S11

value, ED the directivity, ERT the reflection tracking, and ES the source match. Source: Ballo, D. (1998). Network
Analyzer Basics, Hewlett-Packard Company. Santa Rosa, CA

between the actual S-parameter S11a and the
measurement result S11m is given by

S11m = ED + ERTS11a

1 − ESS11a
(2.452)

In order to get the three systematic error terms
so that the actual reflection S-parameters can be
derived from our measurements, it is necessary
to create three equations with three unknowns
and solve them simultaneously. So three known
standards, for example, a short, an open, and a Z0

load should be measured. Solving these equations
will yield the systematic error terms.

Two-port calibration

Two-port error correction accounts for all the
major sources of systematic errors. There are two
types of two-port calibrations often used: full
two-port calibration and through-reflect-line (TRL)
calibration. These two calibration methods are
based on similar models, and we focus on full two-
port calibration.

Full two-port calibration

All the systematic error terms are measured and
removed by full two-port calibration. After full
two-port calibration, the network analyzer can be
used for both reflection and transmission mea-
surements. The error model for a two-port device
is shown in Figure 2.124. There are six types
of systematic errors: directivity and cross-talk

errors relating to signal leakage, source, and load;
impedance mismatches relating to reflections; and
frequency response errors caused by reflection and
transmission tracking within the test receivers. The
full two-port error model includes all six of these
terms for the forward direction and the same six
terms in the reverse direction, for a total of 12 error
terms. So full two-port calibration is often referred
to as 12-term error correction.

The relationships between the actual device S-
parameters and the measured S-parameters are
given by (Ballo 1998)
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Figure 2.124 Systematic errors of network analyzer. (a) Forward model. In the figure, ED is the forward
directivity; ES, forward source match; ERT, forward reflection tracking; EL, forward load match; ETT, forward
transmission tracking; and EX, forward isolation and (b) reverse model. In the figure, E′

D is the reverse directivity;
E′

S, reverse source match; E′
RT, reverse reflection tracking; E′

L, reverse load match; E′
TT, reverse transmission

tracking; and E′
X, reverse isolation. Source: Ballo, D. (1998). Network Analyzer Basics, Hewlett-Packard Company.

Santa Rosa, CA
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To obtain the 12 terms of systematic error terms,
12 independent measurements on known standards
are required. Usually, four known standards,
short-open-load-thru (SOLT) are used, and thus
this calibration is also called SOLT calibration.
Some standards are measured multiple times, for
example, the thru standard is usually measured
four times. Once the systematic error terms have
been characterized, the actual device S-parameters
can be derived from the measured S-parameters
using Eqs. (2.453)– (2.456). It should be noted
that each actual S-parameter is a function of
all four measured S-parameters, so the network
analyzer must make a forward and reverse sweep
to update any one of the four S-parameters.

TRL calibration

To perform a two-port calibration, there are several
choices based on the type of calibration standards
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to be used. Besides the full two-port calibration
discussed above, TRL calibration is also widely
used. The name comes from the three standards
used: thru-reflect-line (TRL). TRL calibration is
a two-port calibration technique primarily used in
noncoaxial systems, such as waveguide, fixtures,
and wafer probing. It solves for the same 12
error terms as the full two-port calibration, using
a slightly different error model. One advantage of
TRL calibration is that the required standards can
be easily designed, fabricated, and characterized.

For a four-receiver network analyzer as shown
in Figure 2.122, true TRL calibration can be
performed, while for a three-receiver analyzer, the
version of TRL calibration is usually called TRL*.
There are several variations of TRL calibration,
such as Line-Reflect-Line (LRL), Line-Reflect-
Match (LRM), Thru-Reflect-Match (TRM), and
all these calibration methods share error models
similar to the ones for TRL calibration. More
discussions on TRL calibration can be found
in (Focus Microwaves Inc. 1994) and (Metzger
1995).

2.4.5.4 Improvement of the accuracy for materials
property characterization

Network analyzers are widely used in materi-
als property characterization. As discussed earlier,
there are two types of materials property char-
acterization methods: resonant methods and non-
resonant methods. Resonant methods usually have
higher accuracy and sensitivity, but require higher
frequency stability. To improve the accuracy and
sensitivity of resonant methods, the primary choice
is using synthesized source, and the secondary is
error correction. Nonresonant methods can char-
acterize materials over a frequency range. For
nonresonant methods, the primary choice is error
correction, and the secondary is using synthesized
source.

2.4.6 Measurement of reflection and
transmission properties

In nonresonant methods for materials property
characterization, the sample under test is inserted
in a segment of transmission line, and the reflection

from the sample and/or the transmission through
the sample are measured for the calculation of
materials properties. In the following, we dis-
cuss one-port method and two-port method for
reflection and transmission measurements. In one-
port and two-port measurements, the measurement
results may be affected by some unwanted signals,
such as the reflections from the mismatch between
the connectors in coaxial-line measurement and
the reflections from ground in free-space measure-
ment. So we will also discuss the time-domain
techniques, which are often used in reflection and
transmission measurement to eliminate unwanted
signals.

2.4.6.1 One-port method

One-port method is mainly for the reflection
measurement. In this method, the single port
transmits signals, and meanwhile receives the
signals reflected from the sample under study. The
S-parameter measured is S11 or S22.

The dynamic range of reflection measurements
is mainly limited by the directivity of the measure-
ment port. To improve the measurement accuracy
and sensitivity, it is usually required to conduct
one-port calibration, which requires three known
standards, as discussed in Section 2.4.5.3. How-
ever, in some cases, when we do not require high
accuracy and sensitivity, one known standard, such
as “short” or “air”, may be enough to conduct a
simple calibration.

2.4.6.2 Two-port method

Two-port method is suitable for the transmis-
sion/reflection method for materials property char-
acterization. In a two-port method, one port trans-
mits signal and the other port receives the sig-
nal from the sample under study. As shown in
Figure 2.125, two-port method can be used for
transmission/reflection measurement and bi-static
reflection or scattering measurement.

The dynamic range of a two-port method
is mainly limited by the noise floor of the
signal and the cross talk between the two
ports. Transmission measurement usually requires
two-port calibration discussed in Section 2.4.5.3.
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Figure 2.125 Two-port measurements. (a) Transmission/reflection measurement and (b) bistatic reflection or
scattering measurement

If we do not need accurate measurement, in
some cases a “through” calibration may be
enough. For bistatic reflection or scattering mea-
surement, special calibrations and measurement
techniques are needed (Knott 1993; Knott et al.
1993).

2.4.6.3 Time-domain techniques

The Fourier transform techniques provide a method
for transforming data between frequency domain
and time domain. In network analyzers, usually a
type of fast Fourier transform (FFT) known as the
Chirp Z Transform is used, which permits users to
“zoom in” on a specific time (distance) range of
interest. Here, we discuss the main properties of
the transform process and how the various pro-
cessing options can be used to obtain optimum
results. More discussions on the applications of
time-domain techniques in network analyzers can
be found in (Anritsu Company 1998; Rohde &
Schwarz 1998).

By means of the inverse Fourier transform, the
measurement results in the frequency domain can
be transformed to the time domain. The time-
domain results give clear representations of the
characteristics of the device under test (DUT).
For instance, the faults in cables can be directly
localized. Furthermore, special time domain filters,
called gates, can be used to suppress unwanted
signal components such as multireflections. The
measured data “gated” in the time domain can be
transformed back to the frequency domain and an
S-parameter representation without the unwanted
signal components can be obtained as a function
of frequency.

Fundamentals

The responses of a linear and invariant network
to electromagnetic waves can be represented in
the time domain by its impulse response h(t) or
in the frequency domain by its transfer function
H(f ). Fundamentally speaking, h(t) and H(f )

give the same information, and they can be
transformed from one to the other through the
Fourier transform:

H(f ) =
∫ ∞

−∞
h(t) exp(−j2πf t) dt (2.457)

It is clear that the data measured in the frequency
domain by a network analyzer can be transformed
to the time domain using inverse Fourier trans-
form:

h(t) =
∫ ∞

−∞
H(f ) exp(−j2πf t) df (2.458)

Impulse response and step response

In time domain, besides the impulse response,
signals can also be represented by the step
response, which can be obtained by integration of
the impulse response h(t). Figure 2.126 shows a
stepped coaxial line and its time-domain responses
in impulse and step forms. In general, the relation-
ship between the measured reflection coefficient
S11 and the impedance Z is given by

S11 = Z − Z0

Z + Z0
, (2.459)

where Z0 is the characteristic impedance. In
Figure 2.126, the characteristic impedance is 50 �.
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Figure 2.126 Time-domain responses (S11 in low-pass
mode) of a stepped coaxial line. (a) Impedance of a
stepped coaxial line, (b) impulse response, and (c) step
response

From time-domain responses, we can locate the
impedance discontinuities along a transmission
line. Furthermore, the step representation clearly
shows the variation of the impedance along the
coaxial line. There is no reflection in the regions
(I) and (IV), so the zero value in Figure 2.126(c)
represents the reference impedance Z0. Positive
values stand for higher impedances than the
reference impedance (Z > Z0) and negative values
for lower impedances (Z < Z0).

Mathematically, these two forms of representa-
tions are equivalent. They can be converted into
each other by differentiation or integration. It
is recommended to use the step response if the
impedance characteristics of the DUT are of inter-
est, while, in most of the other cases, the impulse
response should be used, especially for the deter-
mination of discontinuities.

Now, we consider the time domain responses of
reactive DUTs. As the signal components of the
step response occurring later in time correspond to
lower frequency components down to DC, only
the low-frequency behavior of the DUT has an
effect on the later part of the step response. A
capacitor now reacts like an interruption whereas
an inductor for low frequencies is similar to a
through connection.

Impulse

Step

(a) (b)

Figure 2.127 Ideal low-pass responses associated with
(a) shunt capacitance and (b) series inductance

Figure 2.127 shows the low-pass responses
associated with a series inductance and a shunt
capacitance. The meaning of “low-pass” will
be discussed later. Figure 2.127(a) shows the
response of a shunt capacitance. Before the capac-
itance, the impedance of the line is equal to the
reference impedance (Z0). The capacitor first acts
as a short and is responsible for the negative edge
of the step response. The capacitor charges up
gradually. When the capacitor is fully charged, it
acts as an open. The parallel connection consist-
ing of capacitor and resistor is then equivalent to
a single resistor. Since the value of the resistor in
the example is equal to the reference impedance
(Z0), no reflection will occur due to the match-
ing. Thus the step response again attains zero. The
characteristic of the impulse response can be imag-
ined by a differentiation of the step response. In a
similar way, we can understand the response of an
inductance in series, as shown in Figure 2.127(b).

Finite pulse width

Mathematically, in time domain, an infinitely wide
frequency range is assumed. By Fourier transform,
infinitely narrow Dirac pulses can be obtained.
However, in actual Fourier transform, as the
frequency span is limited, the frequency domain
data are multiplied by a rectangular weighting
function that takes the value 1 for the actual
frequency range of the network analyzer and
which is otherwise zero. This multiplication in the
frequency domain corresponds to a convolution of
ideal Dirac pulses with a si function in the time
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domain:

si(x) = sin x

x
, (2.460)

and the width 	T of the si impulses is inversely
proportional to the frequency span 	F of the
frequency range:

	T = 2

	F
(2.461)

The principal property of time domain tech-
niques for most microwave applications is reso-
lution, which reflects the ability to locate a spe-
cific signal in the presence of other signals. The
above discussion indicates that the basic limi-
tation of resolution is inversely related to data
collection bandwidth in the frequency domain.
A rule of thumb: resolution is on the order of
150 mm/[frequency span (GHz)]. For example, a
10-GHz frequency span will provide resolution of
about 15 mm. Besides, it should be noted that reso-
lution is also influenced by the processing method
and window selection which will be discussed
later.

Figure 2.128(a) shows another characteristic of
si pulses: the occurrence of side lobes to the
left and right of the main pulse. In experiments,
side lobes are perceived as interference. According
to the si function, the highest (negative) side

amplitudes to the left and right of the main pulse
are given by

sin(3π/2)

3π/2
= −0.212 (2.462)

This corresponds to a side-lobe suppression of
−13.46 dB. Similar to the width of the impulse, the
side lobes can also be reduced by suitable windows
in the frequency domain, as will be discussed later.

Alias

The actual measurement results in the frequency
domain are not obtained continuously with fre-
quency but only at a finite number of discrete
frequency points. The frequency discrete measure-
ments can be regarded as a modified continuous
spectrum by multiplying the continuous spectrum
with a comb function in the frequency domain.
In the time domain, this corresponds to a con-
volution of the time response with a periodic
Dirac impulse sequence. This results in the alias
effect of a frequent repetition of the original time
response, as shown in Figure 2.129. The time inter-
val 	t between the repetitions in the time domain
response is called the alias-free range, which is
related to the frequency step width 	f in the fre-
quency domain:

	t = 1/	f. (2.463)

CH1 S11 CH1 S11LIN Re Ref 0 U LIN Re Ref 0 U

STOP 2 nsSTART 0 s 200 ps/ STOP 2 nsSTART 0 s 200 ps/

(a) (b)

200.0 mU/ 200.0 mU/

−1 U −1 U

1 U 1 U

Figure 2.128 The time-domain responses of a shorted line. (a) Widened si impulse due to finite span
(	F = 4 GHz). The pulse width 	t is about 500 ps and (b) the width of si pulse is halved in low-pass mode.
The pulse width 	t is about 250 ps. Source: Rohde & Schwarz (1998). Time domain measurements using vector
network analyzer ZVR, Application Note 1EZ44 0E, Olaf Ostwald, Munich
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Figure 2.129 Example of alias. The alias-free range
is 	t = 100 ns. Source: Rohde & Schwarz (1998).
Time domain measurements using vector network ana-
lyzer ZVR, Application Note 1EZ44 0E, Olaf Ostwald,
Munich

In circuit measurements, alias is usually not a
serious problem. But in fault location, alias should
be taken into serious consideration. For example,
with a 10-GHz, 201-point frequency collection, the
alias free range is 1/(50 MHz) = 20 ns. This is
large for most circuits, but if one wants to locate
a fault in a 100-meter long cable, the range is
inadequate. For such applications, the step size
must be reduced either by decreasing the frequency
span or increasing the number of points.

Low-pass and band-pass transformations

There are many methods for time-domain con-
version, and the methods often used are mainly
lowpass and bandpass. To obtain accurate time-
domain results, suitable windows are often applied
to the data in the frequency domain before the con-
version, and after time-domain data are obtained,
suitable gating are often used to eliminate the
unwanted signals. In this part, we discuss lowpass
and bandpass modes, and windowing and gating
will be discussed in later parts.

The bandpass mode allows an arbitrary number
of points and an arbitrary frequency range. It
is suitable for displaying the magnitude of the
impulse response, and is generally recommended
for scalar applications. However, it does not

provide any information about zero frequency (dc),
and the spectrum is limited to positive frequencies
only. In some situations such as waveguide or
band-limited devices, bandpass processing is often
used. In this situation, vector information is
lost as there is no phase reference; but useful
magnitude information is still available. This type
of processing is often used in fault location of
transmission lines.

Actually, the impulse and step responses are
complex and their phases depend upon the distance
between the DUT and the reference plane. It is
therefore generally not recommended to use the
bandpass mode when the sign of the measured
reflection coefficient is of interest. In these cases,
the low-pass mode is often used.

Low-pass mode requires a special frequency
plan: a harmonically related set of frequencies with
starting frequency as low as possible. A dc term
is extrapolated which provides a phase reference,
so that the true nature of a discontinuity can be
obtained. In the frequency grid for low-pass mode,
the step width 	f between the frequency points
is equal to the start frequency, so that an exact
extrapolation to zero frequency is possible:

fstart = 	f (2.464)

A frequency grid meeting this requirement is called
a harmonic grid since the frequency value at each
frequency point is an integer multiple of the start
frequency. Sometimes, a more general definition
for a harmonic grid can be used:

fstart = n	f (2.465)

In this case, the start frequency is an integer
multiple n of the step width.

After generation of the required harmonic grid,
the network analyzer is able to add an additional
frequency point at zero frequency to the frequency
grid and mirror the data measured at positive
frequencies around zero frequency to the negative
frequencies in a conjugate complex way, as shown
in Figure 2.130. So, in the low-pass mode, the
width of the frequency domain is doubled, and in
contrast to the bandpass mode, the resolution in
the time domain is improved by the factor of 2, as
shown in Figure 2.128.
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Figure 2.130 Harmonic frequency grid for lowpass
mode

Figure 2.128 also indicates that the pulse in low-
pass mode has a negative amplitude in contrast to
the pulse in bandpass mode. Since the DUT is in
a shorted line (S11 = −1), the measured negative
amplitude of Figure 2.128(b) better complies with
the expectations. As the response of the DUT
in bandpass mode is complex, the bandpass
time domain cannot give correct sign as shown
in Figure 2.128(a), and usually people are only
interested in the amplitude of bandpass time
domain response, neglecting its sign. On the
other hand, the low-pass mode provides a real
time response (imaginary part = 0), and so it
always gives the correct sign and amplitude of the
reflection coefficient.

Windowing

As discussed earlier, due to the limited frequency
range, the pulses in the time domain are widened
and side lobes occur. The side lobes are very
disadvantageous for time domain measurements
since fraudulent echoes may be originated, and
widening of the pulse and the occurrence of side
lobes also decrease the resolution as well as the
accuracy of measurements.

The occurrence of side lobes can be reme-
died by suitably windowing the measured fre-
quency domain data. Windowing is essentially an
attenuation of spectral components in the vicin-
ity of the start and stop frequencies. It is a curve
derived from a mathematical function that tapers
off from unity gain at the center of the fre-
quency domain data to a low value at the ends.
Figures 2.131(a) and (b) show the effect of apply-
ing the widely used two-term Hamming window
to the data obtained by measuring a short circuit.
Figures 2.131(c) and (d) indicate that windowing
obviously decreases the levels of the side lobes.
But, at the same time, the window has the effect of
widening the main lobe, thus decreasing the effec-
tive resolution.

In actual experiments, it is good to have a
range of different window types available so that a
compromise between resolution and side-lobe level
can be reached. Table 2.7 shows several types of
windows often used in microwave measurements,
and detailed discussion on various windows can
be found in (Harris 1978; Anritsu Company 1998;
Rohde & Schwarz 1998).

Gating

Gate is essentially a filter in the time domain. It can
be used to select a special discontinuity, and it can
also be used to gate out a specific discontinuity
thus observing the performance of a microwave
circuit with an imperfection removed. Therefore,
when a suitable gate is applied, we can observe the
selected range without the influence of unwanted
elements, such as connectors, and in the case of
transmission measurements, we can eliminate the
effects of multipath signals.

The time gate allows filtering out the compo-
nents, impedance discontinuities or line faults that
are spatially separated in the time domain. Owing
to the different distances to the reference plane
of the network analyzer, the associated reflec-
tions arrive at the test port at different times can
thus be measured separately from each other in
the time domain. For transmission measurements,
direct transmissions can be distinguished from
indirect transmissions (such as multireflected trans-
missions) in the time domain, and the signal com-
ponents with different propagation speeds can be
identified. One of the real benefits of the gate func-
tion is the transformation of the impulse response
of the DUT filtered in the time domain back to
the frequency domain. The interesting part of the
DUT can thus be displayed without unwanted dis-
continuities. Figure 2.132 shows the application
of a gate and the frequency response with gat-
ing on the initial discontinuity of a transmission
line.

It should be indicated that for different gating
requirements, different shapes of gate should be
used. Table 2.7 shows several filtering shapes often
used in gating. Detailed discussions on these gate
shapes can be found in (Harris 1978; Anritsu
Company 1998; Rohde & Schwarz 1998).
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Figure 2.131 Effect of Hamming window. (a) Frequency domain data before application of Hamming window,
(b) frequency domain data after application of Hamming window, (c) time-domain data before application of
Hamming window, and (d) time-domain data after application of Hamming window. Source: Anritsu (1998). Time
domain for vector network analyzers, Application Note, Anritsu Company, Morgan Hill, CA

Table 2.7 Filter functions and corresponding windows
and gates

Filter
function

Window in
frequency
domain

Date in
time domain

Rectangular No profiling Steepest edges
Hamming Low first side

lobe
Steep edges

Hann Normal profile Normal gate
Bohman Steep falloff Maximum

flatness
Dolph-

Chebyshev
Arbitrary side

lobes
Arbitrary gate

shape

Application examples

Time-domain techniques are widely used in
microwave measurements. In the characterization
of materials properties, time domain techniques
are usually applied in the following procedure.
After raw data in frequency domain are obtained,
apply suitable windowing functions on the fre-
quency domain data, and then convert the fre-
quency domain data to the time domain. Once the
data is converted to the time domain, a suitable gat-
ing function may be applied to select the data of
interest. The processed data may then be displayed
in the time domain with start and stop times or in
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Figure 2.132 Effects of gating. (a) Frequency response, (b) lowpass time-domain response, (c) time-domain
response with gate applied, and (d) gated frequency domain display. Source: Anritsu (1998). Time domain for
vector network analyzers, Application Note, Anritsu Company, Morgan Hill, CA

the distance domain with start and stop distances.
The data may also be converted back to the fre-
quency domain with a time gate, so the frequency
response we are interested in can be obtained. In
the following, we give two application examples
of time-domain techniques.

Transmission/reflection method for materials
characterization

Coaxial air lines are widely used in the charac-
terization of permittivity and permeability of low-
conductivity materials using transmission/reflection
method, and the parameters used in calculating

permittivity and permeability are reflection (S11)

and transmission (S21). However, as shown in
Figure 2.133, due to the inevitable mismatch at the
interfaces between the connectors and coaxial air-
line, there are reflections (
1 and 
2) at the two
interfaces. At the frequencies when the length of
the coaxial air-line equals integer times of the half-
wavelength, the reflections at the interfaces will
cause obvious errors to the measurement results.

The effects of reflections at the interfaces can
be minimized by using time-domain technique. As
shown in Figure 2.133, if we place the sample at
the center of the coaxial line, the reflections due
to the interfaces (
1 and 
2) and the reflection
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Figure 2.133 Coaxial air-line for transmission/reflection measurement

Transmitting antenna Receiving antenna

Main path

Ground path

Figure 2.134 Free-space measurement set-up with a transmitting antenna and receiving antenna

due to the sample (
s) occur at different positions,
so they can be identified in time domain. The
reflections due to the interfaces (
1 and 
2) can
be gated out by time-domain gating. Using the
S11 data in the frequency domain with time gating,
accurate permittivity and permeability results can
be obtained.

Free-space measurement

Time-domain techniques play especially impor-
tant roles in free-space measurements. As shown
in Figure 2.134, most of the free-space measure-
ment systems are subject to multipath reflections.
Time domain provides an effective method of
eliminating the effects of multipath reflections,
and displays the information in time-gated fre-
quency domain. Therefore the distortion of mul-
tipath reflections to the DUT performance can be
eliminated.

2.4.7 Measurement of resonant properties

2.4.7.1 Introduction

In resonant methods, including resonator methods
and resonant-perturbation methods, we measure
the resonant frequency and quality factor of the
measurement fixture. As the resonant frequency
can be easily determined from S-parameters in the
frequency domain, in the following we focus on
the measurement of quality factor.

As discussed in Section 2.3.1, the quality factor
can be calculated according to

QL = f0

	f
, (2.466)

where f0 is the resonant frequency, 	f is the half-
power bandwidth. As shown in Figure 2.135, 	f

can be determined in different ways (Sucher and
Fox 1963).
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Figure 2.135 Determination of 	f for the measurement of loaded quality factor. (a) Power, (b) amplitude,
and (c) phase (Sucher and Fox 1963). Modified from Sucher, M. and Fox, J. (1963), Handbook of microwave
measurements, 3rd edition, vol. 2, by permission of Polytechnic Press of the Polytechnic Institute of Brooklyn

In actual measurements, the resonator under
test is coupled to the external measurement
circuit. The coupling between the resonator and
the measurement circuit is often described by
the coupling coefficient β. The resonant quality
factor obtained from Eq. (2.466) is the loaded
quality factor. For a resonator coupled to n pieces
of transmission lines, with coupling coefficients
βi (i = 1, 2, . . . , n) respectively, the relationship
between the loaded quality factor QL and the
unloaded quality factor Q0 is given by

Q0 =
(

1 +
n∑

i=1

βi

)
QL (2.467)

The measurement of the unloaded quality fac-
tor is crucial in resonant methods for the deter-
mination of loss tangent of materials. In the fol-
lowing, we discuss two methods often used for
quality factor measurement: reflection method and
transmission method. At the end of this part, we
discuss the nonlinear phenomena in quality-factor
measurements.

2.4.7.2 Reflection method

This is a one-port method, and the parameter
we directly measure is the scattering parameter
S11. As shown in Figure 2.136, the S11 value for
determining the half-power width is

S11,	f = 10 · log10

(
10S11,b/10 + 10S11,f0 /10

2

)
(dB),

(2.468)

where S11,b is the S11 value of the base line of
the resonance, and S11,f 0 is the S11 value at the
resonant frequency.

As shown in Figure 2.137, the coupling coef-
ficient β can be determined from the reflection
Smith chart (Kajfez 1995):

β = 1

(d2/d) − 1
, (2.469)

where d is the diameter of the “resonant circle”,
and d2 is the diameter of the loss circle. After
obtaining QL and β, the unloaded quality factor
Q0 can be calculated from

Q0 = (1 + β)QL. (2.470)
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Figure 2.136 Measurement of quality factor from S11

0 d

d2

Figure 2.137 Measurement of coupling coefficient
(Kajfez 1995). Modified from Kajfez, D. (1995).
Q-factor measurement with a scalar analyser, IEE
Proceedings-Microwaves, Antennas and Propagations,
142, 369–372, by permission of IEE

2.4.7.3 Transmission method

This is a two-port method, and the quality factor
is obtained from the scattering parameter S21.
As shown in Figure 2.138, the S21 value for
determining the half-power width is

S21,	f = S21,f0 − 3 (dB), (2.471)

where S21,f0 is the S21 value at the resonant
frequency.

The unloaded quality factor can be calculated
from

Q0 = (1 + β1 + β2) · QL, (2.472)

f0

S21

S21, f0

S21, ∆f

∆f

f

Figure 2.138 Measurement of quality factor from S21

where β1 and β2 are the coupling coefficients
of the cavity to the two ports respectively. If
the magnitudes of all the four S-parameters are
measured at the resonant frequency f0, we have

β1 = 1 − S11,f0

S11,f0 + S22,f0

(2.473)

β2 = 1 − S22,f0

S11,f0 + S22,f0

(2.474)

S21,f0 = S12,f0 = 2
√

β1β2

1 + β1 + β2
(2.475)

By assuming that the two couplings between the
cavity and the two transmission lines are weak and
equal, we can calculate the unloaded quality factor
Q0 from the loaded quality factor QL:

Q0 = QL

1 − |S21,f0 |
= QL

1 − 10S21,f0 (dB)/20
(2.476)

Further discussions on the transmission method
for quality factor measurement can be found in
(Kajfez et al. 1999) and the references given
therein.

2.4.7.4 Nonlinear phenomena in quality-factor
measurement

In the study of nonlinear materials, for example,
high-temperature superconducting thin films, after
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the microwave power reaches a certain level,
the resonance curve shows nonlinear phenomena,
changing from Lorentzian shape to non-Lorentzian
shape. In this case, the traditional 3-dB bandwidth
measurement may result in large errors. Rao et al.
proposed a method to extract QL with improved
accuracy for the case when nonlinear responses
are involved (Rao et al. 2000).

In the case involving only linear responses,
the frequency dependence of the transmission
loss T (f ) = |S21(f )|2 for a transmission mode
resonator is given by (Ginzton 1957)

T (f ) = |T (f0)|
1 + [2QL(f − f0)/f0]2

, (2.477)

where T (f0) = 4β1β2/(1 + β1 + β2)
2, β1 and β2

are the coupling coefficients. The resonance curve
of T (f ) is in Lorentzian shape and the loaded
Q-factor, QL, of the resonator can be obtained
by measuring the 3-dB (half-power) bandwidth,
	f3 dB, of the transmission curve and the resonant
frequency f0 using Eq. (2.466).

When the resonator undergoes a nonlinear
response, the resonance curve becomes asymmet-
ric. Figure 2.139 shows the resonance curves of
a microstrip resonator made from double-sided
superconducting YBa2Cu3O7−d (YBCO) thin film,
and measurements are made when the input power

3.5100 3.5105 3.5110 3.5115
0.00

0.02

0.04
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0.08

f, GHz

T
(f

)

Figure 2.139 The transmission loss of a supercon-
ducting microstrip resonator against frequency for input
power levels ranging from −18 to 12 dBm in 5 dB incre-
ments. Reproduced from Rao, X. S. Ong, C. K. and
Feng, Y. P. (2000). “Q-factor measurement of nonlin-
ear superconducting resonators”, Electronics Letter, 36,
pp. 271–273, by permission of IEE

is increased in 5-dB steps from −18 to 12 dBm.
When the input power is low, the resonance
curves are symmetric about the resonant frequency
and can be fitted well with the Lorentzian func-
tions though fluctuations due to small signal-to-
noise ratio are noticeable. As the input power
increases, the resonance curve broadens gradually
and becomes asymmetric and non-Lorentzian, with
the peak resonant frequency shifting to lower fre-
quency and the insertion loss increasing. Strictly
speaking, when the resonance curve is clearly non-
Lorentzian, the traditional 3-dB bandwidth mea-
surement of QL is no longer applicable.

The above non-Lorentzian resonance mainly
originates from following two reasons. Firstly,
due to the T (f ) response of the resonator, the
microwave power (P ) coupled into the microstrip
are different at different frequencies around the
resonance. Secondly, when microwave power is
high enough, the surface impedance of the super-
conducting microstrip shows a power dependent
behavior: ZS = ZS(P ). Therefore in a nonlinear
response, ZS is dependent on frequency. The vari-
ations of RS and XS make the overall resistance R,
capacitance C, and inductance L of the equivalent
circuit of the resonator also change with frequency.
So the different points on the resonance curve cor-
respond to different LCR resonant circuits and thus
have different effective values of QL and f0.

By rewriting Eq. (2.477), QL can be generally
calculated from (Rao et al. 2000)

QL = √
1/τ − 1

f0

fR − fL
(2.478)

with the relative power transmission ratio

τ = T (fR)

T (f0)
= T (fL)

T (f0)
(2.479)

In Eq. (2.478), (fR − fL) is the bandwidth mea-
sured at power transmission ratio τ . If we choose
the value of τ to be 0.5, fR − fL = 	f3 dB and
Eq. (2.478) becomes Eq. (2.466). If we choose
a larger value of τ , smaller difference between
P(fR) and P(fL) is expected and Eq. (2.478)
gives a better approximation for the actual QL(f0)

value.
Figure 2.140 shows a typical non-Lorentzian

transmission curve where P indicates the resonant
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Figure 2.140 Typical non-Lorentzian resonance curve. Reproduced from Rao, X. S. Ong, C. K. and Feng, Y. P.
(2000). “Q-factor measurement of nonlinear superconducting resonators”, Electronics Letter, 36, pp. 271–273, by
permission of IEE

peak; A and A′ are the 3-dB points used in
the traditional QL measurement; BB′, CC′, and
so on, indicate other pairs of reference points
with different τ values. For each pair of points,
an approximate QL(f0) value can be obtained.
The accuracy of the obtained QL(f0) increases
when the τ value becomes larger. Theoretically,
when τ is approaching unity, Eq. (2.478) gives
an accurate QL(f0) value. However, following
the error analysis similar to that in (Kajfez et al.
1999), we can get the relative uncertainty in
measuring QL, given by∣∣∣∣	QL

QL

∣∣∣∣ = 1

2τ (1 − τ)
	τ (2.480)

The error in τ is mainly caused by the inaccuracy
of the amplitude reading of the instrument. As
τ approaches unity, the error in τ may cause
a very large error in QL. This problem can
be circumvented using an extrapolation method.
First, we measure a set of QL values as a
function of τ and then extrapolate the results to
a common intercept at τ = 1. The resulting value
is a reasonable approximation for QL(f0).

Figure 2.141 shows the calculated QL versus the
τ values of the reference points for the curve in
Figure 2.140. When the τ value becomes large,
the resulting QL value gets smaller. This is mainly

0.5 0.6 0.7 0.8 0.9 1.0
2200

2600

3000

3400

t

QL
3 dB

QL
ex

Q
L

Figure 2.141 The QL values measured as a function
of τ of reference points for the resonance curve shown in
Figure 2.140. Reproduced from Rao, X. S. Ong, C. K.
and Feng, Y. P. (2000). “Q-factor measurement of non-
linear superconducting resonators”, Electronics Letter,
36, pp. 271–273, by permission of IEE

due to the fact that the YBCO thin film has a larger
surface resistance at the frequency point with larger
τ value. The difference between the QL value from
traditional 3-dB bandwidth measurement (Q3 dB

L )

and that obtained from the method presented above
(Qex

L ) is prominent.
The value of (Q3 dB

L − Qex
L )/Qex

L for the reso-
nance curves in Figure 2.139 are plotted as a func-
tion of the input power in Figure 2.142 and the
absolute values of Q3 dB

L and Qex
L are shown in
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L versus input power obtained from the resonance curves in Figure 2.139. The

insert shows the corresponding Q3 dB
L (circle) and Qex

L (triangle). Reproduced from Rao, X. S. Ong, C. K. and
Feng, Y. P. (2000). “Q-factor measurement of nonlinear superconducting resonators”, Electronics Letter, 36,
pp. 271–273, by permission of IEE

the insert. When the input power is not large, the
Q3 dB

L is close to Qex
L , and both of them give good

approximations for QL(f0). When the input power
increases, the difference between Q3 dB

L and Qex
L

becomes large. In this case, the application of the
3-dB method should be avoided.
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3

Reflection Methods

In a reflection method, the properties of a sample
are obtained from the reflection due to the
impedance discontinuity caused by the presence
of the sample in a transmission structure. We
first discuss the reflection methods developed from
coaxial line and free space. Subsequently, we
discuss the measurement of both permittivity and
permeability using modified reflection methods.
Following that, we discuss the reflection method
for the measurement of surface resistance. In the
last section, we discuss a near-field scanning probe
based on the reflection principle.

3.1 INTRODUCTION

As indicated in Chapter 2, reflection method is a
type of nonresonant method. From the view of
transmission line, in a reflection method, the sam-
ple under test is introduced into a certain position
of a transmission line, and so the impedance load-
ing to the transmission line is changed. The prop-
erties of the sample are derived from the reflec-
tion due to the impedance discontinuity caused by
the sample loading. The two types of reflections
in transmission line theory, short-circuited reflec-
tion and open-circuited reflection, can be used in
reflection methods. As will be indicated later, dif-
ferent ways of loading samples require different
calculation algorithms for the derivation of mate-
rials properties.

In a reflection method, the measurement fixture
made from a transmission line is usually called
measurement probe or sensor. In order to increase
the measurement accuracy and sensitivity, or

to satisfy special measurement requirements, the
measurement probes are often specially designed.
Though they share the same principle, probes
with different designs require different calculation
algorithms. Many technical literatures have been
published for different probe designs.

In the following, we make a general discussion
on open-circuited reflection and short-circuited
reflection. In the discussion, we assume that the
transmission line used is coaxial line, and the
conclusions obtained can be extended to other
types of transmission lines, such as waveguide and
free space.

3.1.1 Open-circuited reflection

Figure 3.1 shows an open-circuited flanged coaxial
dielectric probe, and the sample under test directly
contacts the open end of the coaxial line. The
impedances at the two sides of the interface are
different, so there is a reflection when electromag-
netic wave propagates through the interface, and
the reflectivity is determined by the impedances
of the media at the two sides of the interface. As
the impedance of the side occupied by the sample
is related to the electromagnetic properties of the
sample, from the reflectivity at the interface, the
properties of the sample can be obtained.

As the impedance of the space filled with the
sample is related to the permittivity and perme-
ability of the sample, in principle, both the permit-
tivity and permeability can be obtained provided
sufficient independent reflection measurements are

Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2
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Transmission
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Sample

Interface

Figure 3.1 Open-circuited reflection

made. However, in most cases, only one indepen-
dent measurement is made, so only one materials
property parameter, either permittivity or perme-
ability, can be obtained. In the following discus-
sion, we focus on the measurement of permittivity.
The measurement of both permittivity and perme-
ability using reflection methods will be discussed
in Section 3.4.

Figure 3.2 shows the equivalent circuits for a
general reflection method. In the general equiva-
lent circuit shown in Figure 3.2(a), the impedance
Z(εr) of the coaxial aperture is a function of the
relative permittivity εr of the sample under test.
The impedance Z(εr) can be obtained from the
reflection measurement, and the relative permit-
tivity εr of the sample can be deduced from the
impedance Z(εr). As terminating the open-ended
coaxial probe with a dielectric sample is equivalent
to introducing the sample into an equivalent capac-
itor, the equivalent circuit shown in Figure 3.2(a)
can be simplified to Figure 3.2(b), by replacing the
impedance Z(εr) with capacitance C(εr). From the

Z0 Z0Z (er) C (er)

(a) (b)

Figure 3.2 Equivalent circuits for reflections methods.
(a) General equivalent circuit and (b) simplified equiv-
alent circuit

change of capacitance due to the insertion of the
sample, the relative dielectric permittivity of the
sample can be obtained.

Iterative schemes are often used to find out the
relative permittivity εr of the sample. Usually, an
objective function is defined as

F(εr) = YL(εr) − Ym (3.1)

where YL(εr) is the admittance calculated by using
an aperture model and Ym is the admittance
of the aperture obtained by measurement. The
permittivity of the sample can be calculated by
finding the zero of the function. It is clear that the
model for the calculation of YL(εr) is crucial for
a reflection method, and many models have been
developed for various cases, some of which will
be discussed later. As an example, here we discuss
the simple model shown in Figure 3.2(b). In this
model, we assume C(εr) = εrC0, where C0 is the
capacitance of the capacitor when it is filled with
air. So the expression for the aperture admittance
can be represented in terms of the dielectric
constant and loss factor of the sample (Burdette
et al. 1980):

YL(εr) = jωε0εrC0 = jωε0ε
′
r · (1 − j tan δ)C0

(3.2)

where ε′
r and tan δ are the dielectric constant

and loss factor of the sample respectively. The
value of C0 is determined by the structure of
the probe. For a given probe with known C0,
the dielectric properties of the sample can be
calculated from the measured admittance Ym,
according to Eqs. (3.1) and (3.2).

3.1.2 Short-circuited reflection

Figure 3.3 shows a general case of short-circuited
reflection. A piece of sample is inserted in a
segment of shorted transmission line, with the
end face of the sample located at a distance �l

from the short. We assume that only the prime
mode exists in the transmission line, the sample is
homogeneous and isotropic, and there exists only
transverse electric field in the transmission line.
The electric fields in the three regions are

EI = exp(−γ0z) + C1 exp(γ0z) (3.3)
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Figure 3.3 A sample is inserted in a short-circuited
transmission line

EII = C2 exp(−γ z) + C3 exp(γ z) (3.4)

EIII = C4 exp(−γ0(z − l)) + C5 exp(γ0(z − l))

(3.5)
where γ0 and γ are the propagation constants
in air and the sample respectively. The five
constants (C1 to C5) can be obtained from the
boundary conditions.

If we assume that the sample plane coincides
with the calibration plane, the matching boundary
conditions of the field equations at the interfaces
yield an equation for the reflection coefficient
(Baker-Jarvis et al. 1993)

S11 = C1 = −2βδ + [(δ + 1) + (δ − 1)β2] tanh γ l

2β + [(δ + 1) − (δ − 1)β2] tanh γ l
(3.6)

with

β = γµ0

γ0µ
(3.7)

δ = exp(−2γ0�l) (3.8)

Eq. (3.6) can be modified in terms of hyperbolic
functions as

S11 =
tanh γ l + β tanh γ0�l

− β(1 + β tanh γ l tanh γ0�l)

tanh γ l + β tanh γ0�l
+ β(1 + β tanh γ l tanh γ0�l)

(3.9)

We can get the general expressions for the
reflection coefficient if the calibration plane is not
at the sample plane:

S11(trans) = exp(−2γ0l1)S11 (3.10)

where S11(trans) is the reflection coefficient trans-
formed at the reference plane of calibration, l1 is

the distance from the calibration reference plane
to the sample front face, and S11 can be calculated
from Eq. (3.6) or (3.9).

The effect of distance l1 can be eliminated. We
measure the reflection of the empty sample holder:

S11(empty) = − exp(−2γ0(l1 + �l + l)) (3.11)

From Eqs. (3.10) and (3.11), we can get

S11(trans)

S11(empty)

= − exp(2γ0(�l + l))S11 (3.12)

So the reflection coefficient S11 at the front face of
the sample can be measured experimentally. From
Eq. (3.9), we can obtain the propagation constant
in the sample, from which the electromagnetic
properties of the sample can be deduced. Usually,
reflection methods can only measure one complex
parameter, either permittivity or permeability.

For the configuration shown in Figure 3.3,
standing waves are built in the region between the
sample and the short circuit and between the cali-
bration plane and the sample front face. Depending
on the sample length and the other lengths, at
certain frequencies permittivity can be measured
accurately, and at other frequencies permeability
can be measured accurately. Meanwhile, according
to the parameters to be measured, we put the sam-
ples at suitable positions. The position of the short
termination is a low electric field and high mag-
netic field region, and the position λ/4 away from
the short termination is a high electric field and
low magnetic field region. For permittivity mea-
surements the sample should be moved away from
the short termination, while for permeability mea-
surements the sample should be moved near to the
short termination. Detailed discussion can be found
in (Baker-Jarvis 1990; Baker-Jarvis et al. 1993).

3.2 COAXIAL-LINE REFLECTION METHOD

Among various types of transmission lines, coax-
ial line is most widely used in the reflection
method for materials property characterization. A
coaxial probe made from a coaxial line has sev-
eral advantages over the ones made from other
types of transmission lines, and the most obvi-
ous one is its wide working frequency range.
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There are many excellent papers on this method
published by several groups of researchers, and
there are several in-depth review papers on this
topic (Stuchly and Stuchly 1980; Pournaropoulos
and Misra 1997).

In the past decades, several models for determin-
ing the aperture admittance of open-ended coax-
ial probe have been developed by assuming that
the radial electric field distribution at the aper-
ture region is inversely proportional to the radius.
These formulae have been further improved by
considering the effects of the higher-order modes
excited at the aperture when the electrical dimen-
sions of the probe are large, so that these formu-
lae can be extended to higher frequencies. Along
with the improvements in computational meth-
ods and speed, numerical methods have also been
used to rigorously analyze the field distributions
at the aperture, so more exact solutions to the
aperture admittance become possible. Furthermore,
in recent years, many efforts have been made in
investigating the radiation of open-ended probe
into layered media, and based on the results in this
topic, many variations in the conventional open-
end reflection method have been made for vari-
ous purposes.

In this section, we discuss the coaxial probes
mainly with respect to six aspects. Firstly, we dis-
cuss different admittance/capacitance models used
in analyzing open-ended coaxial probe terminated
by a semi-infinite material. Secondly, we discuss
the radiations of end-ended apertures into mul-
tilayer medium. Thirdly, we take the aperture
as a short monopole antenna, and analyze sev-
eral typical monopole antennas used in materi-
als property characterization. Fourthly, we discuss
the case when a truncated coaxial line is con-
nected to a circular waveguide, which may be
in a propagating or cutoff state. Fifthly, we dis-
cuss the shielded coaxial lines. Finally, we discuss
dielectric-filled cavities adapted at the end of a
coaxial line.

It should be noted that the working principles of
coaxial reflection methods are applicable for other
types of transmission lines. Most of the coaxial
reflection methods discussed in the following text
have their waveguide counterparts.

3.2.1 Open-ended apertures

In this part, we discuss the radiation of a coaxial
open-ended aperture into a homogeneous medium.
The theoretical background of this topic can
be traced to the work of Levine and Papas,
who analyzed an air-filled coaxial line with an
infinite conducting flange, radiating into free
space (Levine and Papas 1951).

In practical applications, coaxial dielectric pro-
bes sometimes are connected to grounding flanges.
In theoretical analysis, some models are developed
for open-ended probe with infinitely large ground-
ing flange, while some models are developed for
open-ended probe without grounding flange. In the
discussion of various models, we do not distin-
guish whether the probe is connected to a ground-
ing flange. After discussing the frequently used
models, we analyze the effects of the ground-
ing flange. Finally, we discuss some variations
in the structure of the conventional coaxial open-
ended apertures.

3.2.1.1 Modeling of the open-ended coaxial probe

Many models have been built to analyze open-
ended coaxial probes terminated by semi-infinite
homogeneous materials. There are four typical
models (Pournaropoulos and Misra 1997; Berube
et al. 1996): capacitive model (Stuchly et al. 1982;
Athey et al. 1982), antenna model (Brady et al.
1981), virtual line model (Ghannouchi and Bosisio
1989), and rational function model (Stuchly et al.
1994; Anderson et al. 1994). In recent years, full-
wave simulation method has also been used in
analyzing open-ended coaxial lines.

Capacitance model

A typical measurement configuration of coaxial
open-ended reflection is shown in Figure 3.4(a),
and the equivalent circuit for the capacitive model
is shown in shown in Figure 3.4(b). The difference
between Figure 3.2(b) and Figure 3.4(b) is that,
in the present model, the capacitance consists
of two parts: C(εr) which is related to the
dielectric properties of the sample, and Cf which
is independent of the dielectric properties of the
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Figure 3.4 Open-ended reflection method. (a) Coaxial
probe terminated by a semi-infinite sample and (b)
capacitive equivalent circuit at plane A − A′

sample. When the coaxial probe is connected
to a dielectric sample with complex relative
permittivity εr, the equivalent capacitor will be
changed, and the reflection coefficient at the tip
of the open-ended probe can be obtained from the
capacitances:

�∗ = �ej	 = 1 − jωZ0 · [C(εr) + Cf]

1 + jωZ0 · [C(εr) + Cf]
(3.13)

where C(εr) = εrC0, and C0 is the capacitance of
the capacitor filled with air, Cf is the capacitance
independent of the material, ω is the measurement
angular frequency, and Z0 is the characteristic
impedance of the coaxial line connected to the
open-ended probe.

From Eq. (3.13), we get

εr = 1 − �∗

jωZ0C0(1 + �∗)
− Cf

C0
(3.14)

In order to calculate the complex relative permit-
tivity εr from the complex reflection coefficient �*,
we should know the values of Cf and C0. These
two parameters are usually obtained by calibrat-
ing the open-ended probe with a standard sample
with known dielectric permittivity, for example,
deionized water (Berube et al. 1996):

C0 = (1 − |�∗
diel|2)

ωZ0(1 + 2|�∗
diel| cos(	diel) + |�∗

diel|2)ε′′
diel

(3.15)

Cf = −2|�∗
diel| sin(	diel)

ωZ0(1 + 2|�∗
diel| cos(	diel) + |�∗

diel|2)
− ε′

dielC0 (3.16)

where ε′
diel and ε′′

diel are the real and imaginary parts
of the complex permittivity of the standard sample

respectively, and |�∗
diel| and 	diel are the magnitude

and phase of the complex reflection coefficient
�∗

diel respectively. After obtaining C0 and Cf from
Eqs. (3.15) and (3.16), the dielectric properties of
the sample under test can be calculated from
the complex reflection coefficient according to
Eq. (3.14).

However, it should be noted that the reflection
coefficient should be measured at the plane A − A′.
If the reference plane has previously been defined
at the entrance of the probe (B − B ′ plane), then
we should find the phase difference between the
B − B ′ and A − A′ planes:

�∗
A−A′ = �∗

B−B ′ej2θ (3.17)

with
2θ = 	A−A′ − 	B−B ′ (3.18)

where 	A−A′ and 	B−B ′ are the reflection phase
angles of planes A − A′ and B − B ′ respectively.
The value of 	B−B ′ can be measured using vector
network analyzer directly. The determination of
the round-trip phase factor 2θ can be made by
measuring the complex reflection coefficient in air,
	B−B ′(air) (Berube et al. 1996).

Radiation model

The coaxial probe can be considered as a radia-
tion source, and the equivalent circuit of radiation
model is shown in Figure 3.5. The capacitance C1

is mainly determined by the structure of the coax-
ial probe, and is independent of the material under
test. The sample under study can be modeled as
a capacitance εrC2 and a resistance R (R = 1/G)

connected in parallel to the capacitances (Brady

C1 GerC2

Figure 3.5 Equivalent circuit for antenna model
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et al. 1981), which is mainly related to the radia-
tion from the coaxial aperture. So, the normalized
admittance is given by

Y

Y0
= jωC1Z0 + jωεrC2 + Z0G(ω, εr) (3.19)

where Z0 is the characteristic impedance of the
coaxial line, Y0 is the characteristic admittance
of the coaxial line (Y0 = 1/Z0), ω is the angular
frequency, and εr is the complex permittivity of
the material under test.

It has been shown that for an infinitesi-
mal antenna, the radiation conductance can be
expressed as (Burdette et al. 1980; Deschamps
1972)

G(ω, εr) = ε

5
2
r G(ω, ε0) (3.20)

From Eqs. (3.19) and (3.20), we can get

Y

Y0
= jωC1Z0 + jωεrC2Z0 + ε

5
2
r G(ω, ε0)Z0

(3.21)

Eq. (3.21) can be further modified into

Y

Y0
= K1 + K2εr + K3ε

5
2
r (3.22)

The factors K1, K2, and K3 are generally complex.
To determine these three factors, one must use
three media with known permittivity values to do
calibration. Similar to the capacitive mode, if the
measurement is made at B − B ′ plane, the complex
admittance should be transferred to A − A′ plane.

It should be noted that there are several admit-
tance expressions similar to Eq. (3.22), obtained
through different approaches and with different
approximations. If we consider the frequency
dependence of C1, we can get a more accurate
model (Gajda 1983):

Y

Y0
= K1 + K2εr + K3ε

2
r + K4ε

5
2
r (3.23)

From quasi-static analysis, we can get (Staebell
and Misra 1990)

Y

Y0
= K1εr + K2ε

2
r + K3ε

5
2
r (3.24)

At a very low frequency, Eq. (3.24) can be further
approximated (Staebell and Misra 1990):

Y

Y0
= K1εr + K2ε

2
r (3.25)

The applications of Eqs. (3.22)–(3.25) could be
found in their corresponding references. In actual
measurements, for each model, calibrations are
needed to determine their corresponding configu-
ration parameters Ki.

Virtual line model

When an open-ended coaxial probe is terminated
by a dielectric sample, the fringing field at the
extremity of the probe can be modeled as a seg-
ment of equivalent transmission line (Ghannouchi
and Bosisio 1989). As shown in Figure 3.6, in this
model, the transmission line consists of a segment
of physical line with length D and a segment of
virtual line with length L modeling the dielec-
tric medium.

The complex admittance at A − A′ plane is
given by

YL = Yd
YE + jYd tan(βdL)

Yd + jYE tan(βdL)
(3.26)

where YL is the admittance of the virtual trans-
mission line, Yd is the characteristic admittance of
the virtual transmission line, YE is the terminating
admittance of the virtual transmission line; βd is
the propagation constant in the test medium. As
in this model, the virtual line is terminated by an
open circuit (YE = 0), and Eq. (3.26) becomes

YL = jYd tan(βdL) (3.27)

D
B′

A′

A
B

Physical line Virtual line

Yt, et Yd, ed

YE = 0

L

Figure 3.6 Virtual line model
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The characteristic admittance Yd of the virtual line
can be expressed as a function of the physical
parameters of the effective transmission line as

Yd =
√

εd

60 ln(b/a)
(3.28)

where a and b are the inner and outer diameters
of the coaxial probe respectively.

The admittance YL can be related to the char-
acteristic admittance of the probe Yt and the mea-
sured reflection coefficient �m at plane B − B ′:

YL =
(

1 − �me2jβtD

1 + �me2jβtD

)
Yt (3.29)

with

Yt =
√

εt

60 ln(b/a)
(3.30)

where βt is the propagation constant in coaxial
probe, �m is the complex reflection coefficient
measured at plane B − B ′, and εt is the permittivity
of the dielectric material inside the coaxial line.
Usually the dielectric materials inside coaxial lines
are Teflon.

From Eqs. (3.27), (3.28), and (3.29), we can get
the complex permittivity of the material under test:

εd = −jc
√

εt

2πf L
· 1 − �me2jβtD

1 + �me2jβtD
· cot

(
2πf L

√
εd

c

)
(3.31)

where c is speed of light and f is the measurement
frequency. According to Eq. (3.31), the complex
permittivity of the sample can be calculated from
the measured reflection coefficient.

The calculation of complex permittivity requires
the values of D and L. The values of D and L can
be determined by calibration using two dielectric
media with known dielectric permittivity. From
Eqs. (3.27) and (3.29), we can get

�me2jβtD = ρ + e−2jβdL

1 + ρe−2jβdL
(3.32)

with

ρ =
√

εt − √
εd√

εt + √
εd

(3.33)

The two parameters D and L can be obtained from
Eqs. (3.29) and (3.32) with an iterative computa-
tion procedure. The two standard media often used
are air and deionized water.

Rational function model

In the geometry shown in Figure 3.7, the coaxial
probe is immersed in the dielectric medium under
test. In this model, the complex admittance of
the coaxial probe is computed with the moment
method. The radiation effects, the energy storage
in the near-field region, and the evanescent mode
of the guide are taken into consideration (Stuchly
et al. 1994; Anderson et al. 1994). This model
is usually applied for samples whose relative
complex permittivity is in the range of (1 ≤
ε′

r ≤ 80) and (1 ≤ ε′′
r ≤ 80), and the measurement

frequency is in the range of (1 ≤ f ≤ 20 GHz).
The admittance of the probe can be expressed as

Y

Y0
=

∑4
n=1

∑8
p=1 αnp(

√
εr)

p(jωa)n

1 + ∑4
m=1

∑8
q=0 βmq(

√
εr)

q(jωa)m
(3.34)

where Y is the admittance at the end of the coaxial
probe, Y0 is the characteristic admittance of the
coaxial probe, αnp and βmq are the coefficients of
the model, εr is the complex relative permittivity of
the material under test, and a is the inner diameter
of the coaxial line.

Equation (3.34) gives the value of the complex
admittance at the end of the probe as a function
of the complex permittivity of the material under
test and the dimensions of the probe. The inverse
problem for calculating the complex permittivity
of the material under test from the measured
complex admittance can be solved in the following
way (Anderson et al. 1994):

8∑
i=0

(bi − Yci)
√

εr
i = 0 (3.35)

2a

Dielectric
sample
under test
er

2b

Figure 3.7 Rational functional model
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with

bp =
4∑

m=1

αmp(jωa)m (p = 1, 2, . . . , 8) (3.36)

b0 = 0 (3.37)

cq =
8∑

m=1

βmp(jωa)m (q = 1, 2, . . . , 8) (3.38)

c0 = 1 +
8∑

m=1

βm0(jωa)m (3.39)

It should be noted that it is necessary to use the
complex admittance values referred at the end of
the probe.

In this model, it is not necessary to determine
any calibration parameters, and so we do not need
to use any standard dielectric samples. Actually,
the parameters αnp and βmq have been established
and optimized by using 56 dielectric media in the
range (1 ≤ ε′

r ≤ 80) (Berube et al. 1996).

Full-wave simulation method

Recently, with easy access to fast computers, full-
wave simulation method has been used in ana-
lyzing aperture admittance (Pournaropoulos and
Misra 1994; Stuchly et al. 1994; Panariello et al.
2001). With this method, more accurate value of
admittance can be obtained, and rigorous analysis
on the sensitivity and uncertainty of the probe can
be made. However, this method usually requires
much calculation time, and many efforts are being
made in improving this method.

3.2.1.2 Effect of flange

Among the various models discussed above, some
are developed for a probe with an infinite ground-
ing flange, and some are developed for a probe
without a grounding flange. Though, with certain
approximations, all these models could be applied
to coaxial probes with and without grounding
flanges, it is still necessary to discuss the effects
of flanges to the accuracies of models.

Figure 3.8 shows open-ended coaxial probes
with and without grounding flange. Zheng and

(a) (b)

Figure 3.8 Two types of open-ended coaxial probes.
(a) Probe without flange and (b) probe with flange.
Modified from Zheng, H. M. and Smith, C. E. (1991).
“Permittivity measurements using a short open-ended
coaxial line probe”, IEEE Microwave and Guided Wave
Letters, 1 (11), 337–339.  2003 IEEE

Smith compared the two models described by Eqs.
(3.24) and (3.25) (Zheng and Smith 1991).
Equation (3.24) is a three-term admittance for-
mula, while Eq. (3.25) is a two-term admittance
formula. It is found that, for a coaxial probe with-
out grounding flange, the three-term formula does
indeed give more accurate results than the two-
term formula. For a flanged probe, the results from
the two-term formula and the three-term formula
have quite close accuracy. It can be further con-
cluded that the use of flanged probes results in
more accurate measurements than the use of probes
without flange. Other researchers also recommend
that in the design of coaxial probes, it is better to
use grounding flange (Langhe et al. 1994).

3.2.1.3 Modifications of open-ended probe

The conventional coaxial dielectric probes have
been widely used in the study of the dielectric
properties of composite materials and biological
tissues. Meanwhile, open-ended probes have also
been modified to satisfy special measurement
requirements or to improve the measurement
accuracy and sensitivity.

Large open-ended coaxial probe

In the measurement of the effective complex
permittivity of composite materials with large-
grain heterogeneities, such as rocks and concretes,
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Figure 3.9 Large open-ended probe. Modified from
Otto, G. P. and Chew, W. C. (1991). “Improved calibra-
tion of a large open-ended coaxial probe for dielectric
measurement”, IEEE Transactions on Instrumentation
and Measurement, 40 (4), 742–746.  2003 IEEE

large sample sizes are needed. As the diameter
of commercially available dielectric probe is quite
small, for example 3.5 mm, large coaxial probes
should be specially designed. Figure 3.9 shows a
large open-ended coaxial probe. A transition is
needed between the enlarged coaxial line and the
normal coaxial line. As it is difficult to ensure
that the impedance at the transition region is 50 �,

a calibration procedure is often required for a
large probe.

Otto et al. developed a large probe with outer
diameter 32.5 mm, inner diameter 10.0 mm, and
flange diameter 100 mm, and the probe they devel-
oped can work up to about 2 GHz (Otto and Chew
1991). They also proposed a calibration method
utilizing a short, an open into air, and a short-cavity
termination. With the calibration method they pro-
posed, reliable and accurate measurement results
can be obtained.

Coaxial probe with an elliptic aperture

Theoretical analysis indicates that an open-ended
elliptic coaxial probe has higher sensitivity than
a conventional coaxial probe (Xu et al. 1992).
However, the fabrication of an elliptic line is
quite complicated. As shown in Figure 3.10, a
simple method to obtain an elliptic configura-
tion is to bevel a circular coaxial line. The
resulted aperture may be considered as a transi-
tion from circular coaxial line to elliptic coaxial
line, and subsequently the radiation aperture also
becomes elliptic.

Theoretical and experimental studies indicate
that the measurement sensitivity increases with
respect to the bevel angle ϕ for a circular coaxial
line with given dimension. A slant-cut aperture

Teflon

(a) (b)

2a1 2b1

2a1 2b1

2a

2b

j

Figure 3.10 Fabrication of coaxial probe with elliptic aperture. (a) Coaxial open end with a bevel angle and
(b) bevel section view of a coaxial line. Modified from Xu, Y. S. Ghannouchi, F. M. and Bosisio, R. G. (1992).
“Theoretical and experimental study of measurement of microwave permittivity using open-ended elliptical coaxial
probes”, IEEE Transactions on Microwave Theory and Techniques, 40 (1), 143–150.  2003 IEEE
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from a circular coaxial line (the beveled probe)
is a practical approach for the realization of probe
tips with elliptical aperture. Actually, a beveled
probe is more valuable than a right angle–cut
aperture made from an elliptical coaxial line. The
fabrication of the beveled probe is much simpler
than that of the elliptical probe. Furthermore, a
beveled probe is very useful in biological as well as
biochemical applications, as in vivo measurements
of biological tissues on a living body are often
essential in these fields.

3.2.2 Coaxial probes terminated into layered
materials

In the above discussion, the coaxial probe is termi-
nated by a homogeneous semi-infinite medium. In
some situations, the semi-infinite requirement can-
not be satisfied, and sometimes the samples under
study may be of multilayer structure. So the knowl-
edge about the admittance of coaxial probe termi-
nated into layered dielectric materials is important
for materials property characterization.

3.2.2.1 Admittance of coaxial probe terminated
into layered materials

The admittance of a coaxial probe terminated into
layered materials has been studied by lumped
parameter approach and quasi-static approximation
approach (Fan et al. 1990; Anderson et al. 1986).

Here, we introduce a general formulation for an
open-ended coaxial transmission line terminated
by a multilayered dielectric (Bakhtiari et al. 1994).

As shown in Figure 3.11, we assume that
the open end of a coaxial transmission line is
connected to a perfectly conducting infinite flange,
and the inner and outer diameters of the coaxial
line are 2a and 2b respectively. As shown in
Figure 3.12, the multilayer composite may be
terminated into an infinite half-space or backed by
a conductor.

y

x

z2a2b

r

f

Infinite
flange

Figure 3.11 Coaxial line with inner diameter 2a and
outer diameter 2b opening onto a perfectly conducting
infinite flange. Source: Bakhtiari, S. Ganchev, S. I. and
Zoughi, R. (1994). “Analysis of radiation from an
open-ended coaxial line into stratified dielectrics”, IEEE
Transactions on Microwave Theory and Techniques, 42
(7), 1261–1267.  2003 IEEE
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Figure 3.12 Cross sections of coaxial line radiating into layered media. (a) The multilayer material is terminated
into an infinite half-space and (b) cross section of a coaxial line radiating into a layered media terminated into
a perfectly conducting sheet. (Bakhtiari et al. 1994). Modified from Bakhtiari, S. Ganchev, S. I. and Zoughi, R.
(1994). “Analysis of radiation from an open-ended coaxial line into stratified dielectrics”, IEEE Transactions on
Microwave Theory and Techniques, 42 (7), 1261–1267.  2003 IEEE
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If only the fundamental transverse electromag-
netic (TEM) mode propagates inside the coaxial
line, the terminating admittance of the line can be
obtained using the continuity of the power flow
across the aperture (Bakhtiari et al. 1994):

ys = gs + jbs = εr1√
εrc ln(b/a)

∫ ∞

0

[J0(k0ξb) − J0(k0ξa)]2

ξ
F (ξ) dξ (3.40)

where gs and bs are the normalized aperture
conductance and susceptance, εrc is the relative
permittivity of the dielectric filling inside the
coaxial line, J0 is the zero-order first kind of Bessel
function, and the function F(ξ) is given by

F(ξ) = 1√
εr1 − ξ 2

(
1 + ρ1

1 − ρ1

)
(3.41)

For an N -layer medium, the value of ρ1 may be
calculated from the following recurrence relations:

ρi = 1 − κiβi+1

1 + κiβi+1
e−j2k0zi

√
εri−ξ 2

(3.42)

where

κi = εr(i+1)

εri
·

√
εr − ξ 2√

εr(i+1) − ξ 2
(3.43)

βi+1 = 1 − ρi+1ej2k0zi

√
εr(i+1)−ξ 2

1 + ρi+1ej2k0zi

√
εr(i+1)−ξ 2

(3.44)

zn =
n∑

i=1

di (3.45)

In Eq. (3.45), if the N th layer is infinite in +z-
direction, 1 ≤ n ≤ (N –1); if the N th layer is
backed by conducting sheet, 1 ≤ n ≤ N .

If the N th layer is infinite in +z-direction,

ρN = 0 (3.46)

If the N th layer is terminated into a conduct-
ing sheet,

ρN = e−j2k0zN

√
εrN −ξ 2

(3.47)

The above calculation must start from i = N − 1
and carried out backward to i = 1. The value of

ρN is chosen from Eq. (3.46) or (3.47) depending
on whether the N th medium is an infinite half-
space or is of finite thickness backed by a
conducting sheet.

3.2.2.2 Applications in materials property
characterization

The conclusions for the aperture admittance of
coaxial probe terminated into stratified dielectrics
can be used to modify the conventional reflec-
tion method using coaxial dielectric probe. In the
following, we discuss several examples of modifi-
cations often used in materials property character-
ization.

Dielectric samples with finite thickness backed by
metal plate

For a laminar sample, its thickness is usually
not thick enough for semi-infinite requirement.
As shown in Figure 3.13, the dielectric proper-
ties of a laminar sample backed by a conducting
plane can be measured by using an open-ended
coaxial probe. Actually, it is a special case of
Figure 3.12(b) with N = 1. The terminating admit-
tance of the probe can be calculated according to
Eq. (3.40), and the function F(ξ) can be calculated
according to Eq. (3.41) with ρ1 given by

ρ1 = e−j2k0d1

√
εr−ξ 2

(3.48)

Metal plate

d1

er

Figure 3.13 Geometry for the measurement of a
laminar dielectric sample backed by a conducting plane
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Free space

er2

d1

er1

Figure 3.14 Geometry for the measurement of a
laminar dielectric sample backed by free space

Dielectric samples with finite thickness backed by
free space

As shown in Figure 3.14, in the measurement of a
laminar sample, the sample can also be backed by
free space. This is a special case of Figure 3.12(a)
when N = 2. The second layer is infinite in +z-
direction. The explicit form of F(ξ) is given by

F(ξ) = 1√
εr1 − ξ 2

· κ1 + j tan(k0 d1

√
εr1 − ξ 2)

1 + jκ1 tan(k0 d1

√
εr1 − ξ 2)

(3.49)

with

κ1 = εr2

εr1
·
√

εr1 − ξ 2√
εr2 − ξ 2

(3.50)

where d1 is the thickness of the laminar sample
under test, εr1 is the relative permittivity of the
sample, and εr2 is the relative permittivity of the
half-infinite sample backing the sample. For a
sample backed by free space, εr2 = 1.

Two-layered media terminated by metal plate

In the measurement of dielectric properties using
coaxial probes, good contact between the coaxial
aperture and the sample surface is required. If there
is an air gap between the sample and the probe,
the discontinuity of the electric field causes a large
error in the calculation of permittivity. In actual
measurements, the air gap between the coaxial

aperture and the sample surface is inevitable. To
minimize the effect of the air gap, Baker-Jarvis
et al. developed a model for the electromagnetic
response of a coaxial probe with liftoff (Baker-
Jarvis et al. 1994).

Figure 3.15 shows a coaxial probe terminated
by a two-layer dielectric sample backed by a
conducting plane, and the dielectric permittivity
values of the two layers are εr1 and εr2 respectively.
It is a special case of Figure 3.12(b) when N = 2.
The explicit form of F(ξ) is given by

F(ξ) = j√
εr1 − ξ 2

·
tan(k0 d1

√
εr1 − ξ 2)

tan(k0 d2

√
εr2 − ξ 2) − κ1

κ1 tan(k0 d1

√
εr1 − ξ 2)

+ tan(k0 d2

√
εr2 − ξ 2)

(3.51)

For the case of coaxial probe with liftoff,
the first layer with thickness d1 is air (εr1 = 1),
and the second layer with thickness d2 is the
sample under test. Probes with liftoff are quite
useful for nondestructive material property testing
and material thickness testing. However, in order
to increase the interaction of the field with the
material under test, either larger diameter probes
or higher frequencies need to be used.

The configuration shown in Figure 3.15 can also
be used in the measurement of high-dielectric-
constant materials. When a dielectric probe is used
to measure materials with high dielectric constant,
for example, higher than 50, because of the serious

Metal plate

d1 d2

er1 er2

Figure 3.15 Geometry for the measurement of two-
layer dielectric sample backed by a conducting plate
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impedance mismatch between the sample and the
coaxial line, only a small part of the microwave
signal is radiated into the sample, and so the
measurement accuracy and sensitivity are low. To
increase the measurement accuracy and sensitivity,
we may introduce a matching layer with known
dielectric properties between the probe aperture
and the sample, so that more microwave signal
can be radiated into the sample under test.

Two-layered media terminated by free space

Figure 3.16 shows a coaxial probe terminated by
a two-layer sample backed by free space. The
free space can be taken as a third layer with
half-infinite thickness; so the medium terminating
the probe can be taken as a structure consisting
of three layers with relative permittivity εr1, εr2,
and εr3 respectively and thickness d1, d2, and
d3 respectively. The explicit expression for F(ξ)

when the third layer is an infinite half-space
extending in the z-direction with a dielectric
constant εr3 is given by (Ganchev et al. 1995)

F(ξ) = 1√
εr1 − ξ 2

· 1 + ρ1

1 − ρ1
(3.52)

where

ρ1 = κ1 − β2

κ1 + β2
e−j2k0 d1

√
εr1−ς2

(3.53)

Free space

d1 d2

er1 er2 er3

Figure 3.16 Geometry for the measurement of two-
layer dielectric sample backed by free space

κ1 = εr2

εr1
·
√

εr1 − ς2√
εr2 − ς2

(3.54)

β2 = 1 − ρ2ej2k0 d1

√
εr2−ς2

1 + ρ2ej2k0 d1

√
εr2−ς2

(3.55)

ρ2 = κ2 − 1

κ2 + 1
· e−j2k0(d1+d2)

√
εr2−ς2

(3.56)

κ2 = εr3

εr2
·
√

εr2 − ς2√
εr3 − ς2

(3.57)

Similar to the case of two-layer sample backed
by a conducting plane, the above model can
be used in improving the conventional coaxial
dielectric probe in two ways. One is to minimize
the uncertainties caused by the inevitable air gap
between the dielectric probe, and the other is to
measure samples with high dielectric constants.

3.2.3 Coaxial-line-excited monopole probes

Short monopole probes are widely used in the mea-
surement of dielectric properties of materials, espe-
cially biological samples. The theoretical basis of
monopole probe stems from the application of an
antenna-modeling theorem to the characterization
of unknown dielectric media. Monopole probes
have obvious advantages in materials property
characterization. The manufacturing of monopole
is easy, and the equations relating the permittiv-
ity to the measured parameters are simple (Stuchly
and Stuchly 1980).

3.2.3.1 Theoretical basis

In a nonmagnetic medium with µ = µ0, the
antenna-modeling theorem can be expressed as
(Burdette et al. 1980)

Z(ω, ε0εr)

η
= Z(nω, ε0)

η0
(3.58)

where Z(ω, ε) is the terminal impedance of the
antenna. The complex intrinsic impedance of the
dielectric medium is given by

η = √
µ0/(ε0εr) (3.59)
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and the intrinsic impedance of free space is
given by

η0 = √
µ0/ε0 (3.60)

The complex index of refraction of the dielectric
medium is given by

n = √
εr. (3.61)

Equation (3.58) is based on the assumption that
the medium surrounding the antenna is infinite
in extent, or conversely, the theorem is valid as
long as the probe’s radiation field is contained
completely within the medium. This theorem is
applicable for any probe provided that an analytical
expression for the terminal impedance of the
antenna is known both in free space and in
dielectric medium.

When the length of the probe antenna is approx-
imately one-tenth wavelength or larger, a radiation
field exists. In cases where the penetration depth in
the medium under study is greater than the sample
thickness, errors are introduced in the measure-
ment of the complex impedance of the medium
because the field is not totally within the sample.
Usually, short monopole antennas with length less
than one-tenth wavelength are used in materials
characterization, as shown in Figure 3.17.

The terminal impedance of a short antenna in
free space can be expressed as

Z(ω, ε0) = Aω2 + 1

jCω
(3.62)

where A and C are constants determined by the
physical dimensions of the antenna. The antenna
constants A and C can be determined analytically

(a) (b)

Figure 3.17 Short antennas used for materials pro-
perty characterization. (a) Short coaxial monopole
antenna and (b) very short coaxial monopole antenna

and experimentally. From the knowledge of the
antenna constants and the complex impedance
Z(ω, ε0εr) of the antenna in a lossy medium, the
complex permittivity of the medium εr can be
obtained from Eq. (3.58).

From Eqs. (3.58) and (3.62), we can get the
antenna impedance in the medium:

Z(ω, ε0εr) = Aω2√εr + 1

jCωεr
(3.63)

In terms of dielectric constant and loss tangent,
Eq. (3.63) can be rewritten as

Z(ω, ε0εr) = Aω2
√

ε′
r(1 − j tan δ)

+ 1

jCωε′
r(1 − j tan δ)

(3.64)

The antenna impedance Z(ω, ε0εr) can be deter-
mined through the measurements of the input
reflection coefficient S11. The complex Eq. (3.64)
can be written in the form Z = R + jX, which
results in two real equations

R = sin 2δ

2ε′
rωC

+ A
√

ε′
rω

2

√
sec δ + 1

2
(3.65)

X = cos2 δ

ε′
rωC

+ A
√

ε′
rω

2

√
sec δ − 1

2
(3.66)

In Eqs. (3.65) and (3.66), the parameters R and X

are the real and imaginary parts of the measured
impedance, A and C are the physical constants
of the probe, and all the other parameters are
known except ε′

r and δ. Because the inverse pair of
equations corresponding to Eqs. (3.65) and (3.66)
cannot be easily obtained, the solutions for ε′

r and
δ are often obtained using iterative method.

When the probe length decreases, the configura-
tion approaches to the one shown in Figure 3.17(b),
which is quite similar to an open-ended coaxial
probe, and the method for analyzing the open-
ended coaxial line can also be used.

3.2.3.2 Typical monopole antennas used in
materials property characterization

To achieve higher accuracy and sensitivity and to
satisfy various measurement requirements, many
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(a) (b)

Figure 3.18 Two coaxial antennas that can be used for materials characterization. (a) Coaxial antenna with step
transition and (b) hemispherical antenna. Modified from Wang, Y. and Fan, D. (1994). “Accurate global solutions
of EM boundary-value problems for coaxial radiators”, IEEE Transactions Antennas and Propagation, 42 (5),
767–770.  2003 IEEE

Teflon
bead

Teflon
bead

(a) (b)

Figure 3.19 Two types of coaxial antennas used in materials characterization. (a) Conical monopole antenna.
Modified from Smith, G. S. and Nordgard, J. D. (1985). “Measurement of the electrical constitutive parameters
of materials using antennas”, IEEE Transactions Antennas and Propagation, 33 (7), 783–792.  2003 IEEE.
(b) Spheroidal antenna. Modified from Stuchly, M. A. and Stuchly, S. S. (1980). “Coaxial line reflection methods
for measuring dielectric properties of biological substances at radio and microwave frequencies – A review”, IEEE
Transactions on Instrumentation and Measurement, 29 (3), 176–183.  2003 IEEE

types of antennas have been used in materials
property characterization. Figure 3.18 shows two
examples of coaxial antennas that can be used
in materials property characterization (Wang and
Fan 1994). A coaxial antenna mainly consists
of three regions: feedline, transition region, and
radiation region. The main purpose of the transition
is to improve the radiation properties of the

antenna so that higher accuracy and sensitivity can
be achieved.

Figure 3.19 shows two other types of coaxial
antennas: conical monopole antenna and spheroidal
antenna (Smith and Nordgard 1985; Bucci and
Franceschetti 1974). Such antennas have the
advantage that they can get more accurate values
of effective permittivity of composite materials.
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Aperture
plane Sample

Figure 3.20 Cross-sectional view of a conical-tip
coaxial-line probe

However, the insertion of the probe to the mate-
rial, unless it is a liquid, creates serious difficulty,
especially in assuring that the gap is filled with the
material under test.

There are many other types of monopole
antennas used in materials property characteri-
zation. Figure 3.20 shows a conical-tip coaxial-
line probe (Keam and Holdem 1997). Compared
to conventional monopole antennas, a conical-tip
coaxial-line probe has obvious advantages. Since
the conical-tip probe has a cone formed out of the
coaxial-line dielectric, it tends to push aside mate-
rial in the insertion procedure, so the influence of
moisture due to cell damage is minimized. It does
not require a flat sample surface, and it is suitable
for measurements on deformable materials. Fur-
thermore, the length of the probe may be optimized
for a specific permittivity and frequency range.

3.2.4 Coaxial lines open into circular
waveguides

In materials property characterization, the mea-
surement fixture can be a coaxial line open into
a circular waveguide (Stuchly and Stuchly 1980).
As will be discussed below, in such a fixture, the
sample may be placed at the coaxial line part or
the circular waveguide part.

3.2.4.1 Measurement of small-thickness sample

Figure 3.21 shows a coaxial line open into a circular
waveguide below cutoff. The sample under test in
a ring shape with length d is placed at the open
end of the coaxial line. The equivalent circuit of

Cutoff

er

d

Z0

Figure 3.21 Coaxial line open into a cutoff circu-
lar waveguide

Z0 Z0C(er) C(er)Cf

L

(a)

Cf

(b)

Figure 3.22 Equivalent circuits for the structure shown
in Figure 3.21. (a) Accurate equivalent circuit and
(b) simplified equivalent circuit

this configuration is shown in Figure 3.22(a). It has
an inductance component L and two capacitance
components C(εr) and Cf. The component Cf

is mainly caused by the fringing field, and is
independent of the sample. The component C(εr)

is related to the permittivity of the sample. Owing
to the dielectric losses, C(εr) also includes a
resistive component.

The dielectric properties of the sample under
measurement can be calculated from the reflection
coefficient S11 and its phase angle φ (Stuchly and
Stuchly 1980):

ε′
r = λ

2πd

·



(1 + S2
11)(2πd/λ) + 2S11 sin(−φ)

− 2S11 cos φ(2πd/λ)

1 + S2
11 + 4S11 sin(−φ)(2πd/λ)

+ 2S11 cos φ

− ωCfZ0

(2πd/λ)




(3.67)
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ε′′
r = λ

2πd
· 1 − S2

11

1 + S2
11 + 4S11 sin(−φ)(2πd/λ)

+ 2S11 cos φ
(3.68)

The fringe capacitance Cf is equal to 0.16 pF
and 0.08 pF for 14-mm and 7-mm coaxial lines
respectively.

For a thin sample with high dielectric constant
(d/λ ≤ 0.01 and ε′

r > 2), the inductance compo-
nent in Figure 3.22(a) is negligible in comparison
with the capacitance. So the equivalent circuit can
be simplified into Figure 3.22(b), and the permit-
tivity can be calculated from

ε′
r = 2S11 sin(−φ)

(2πd/λ)(1 + 2S11 cos φ + S2
11)

− ωCfZ0

(2πd/λ)
(3.69)

ε′′
r = 1 − S2

11

(2πd/λ)(1 + 2S11 cos φ + S2
11)

(3.70)

The highest accuracy can be achieved when the
sample thickness satisfies the following require-
ment (Stuchly and Stuchly 1980):

d = λ

2π
√

ε′2
r + ε′′2

r

(3.71)

Figure 3.23 shows another configuration of
coaxial line open into a circular waveguide. In this
configuration, the circular sample with thickness

Cutoff

d

er

Z0

Figure 3.23 Another configuration of coaxial line
open into a circular waveguide for materials property
characterization

d is placed in the circular waveguide. The advan-
tage of this configuration is that the sample can be
easily fabricated; however, the theoretical analy-
sis is rather complicated as the ratio of the fringe
capacitance to the capacitance resulting from the
presence of the dielectric sample cannot be easily
determined. A general solution for this configura-
tion is difficult, as two cases should be considered;
the wave propagation and lack of wave propaga-
tion in the dielectric-filled section of the circular
waveguide (Stuchly and Stuchly 1980).

3.2.4.2 Semi-infinite sample

If the sample thickness increases, the configuration
shown in Figure 3.23 changes to those of the cases
shown in Figure 3.24. As shown in Figure 3.24,
the circular waveguide filled with dielectric mate-
rial may be in propagation state and cutoff state.
These configurations have been used to measure
the dielectric properties of biological materials.
Such configurations may be analyzed in general
terms (Razaz and Davies 1979), but the analyzing
method is not convenient for permittivity determi-
nation due to its complexity. In actual measure-
ments, calibration method is often used, and the
uncertainty of measurements is usually large.

3.2.5 Shielded coaxial lines

In this part, we discuss coaxial lines shielded by
a short circuit. In this configuration, the inner
conductor may directly contact the short circuit, or
there may be a gap between the end of the central
conductor and the short circuit.

Z0

er er

Z0

(a)

Propagation

(b)

Cutoff

Figure 3.24 Coaxial lines opened into (a) propagation
waveguide, and (b) cutoff waveguide for measurement
of semi-infinite samples
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3.2.5.1 Short-circuited coaxial-line method

The configuration shown in Figure 3.25 is a special
case of the configuration shown in Figure 3.3 with
�l = 0. This configuration was first used by von
Hippel et al. to measure the dielectric properties of
materials (Von Hippel 1995). The input reflection
coefficient of the sample holder S∗

11 at plane A −
A′ is given by

S∗
11 = S11ejφ = Zi − Z0

Zi + Z0
(3.72)

where Zi is the input impedance at the plane
A − A′ and Z0 is the characteristic impedance of
the coaxial line. The input impedance is a function
of the relative permittivity:

Zi = Z0
tanh(2πd

√
εr/λ)√

εr
(3.73)

An obvious advantage of this method is the sim-
plicity of the sample holder, and this method has
been successfully applied to measure the permit-
tivity of biological materials. However, the method
has its disadvantages (Stuchly and Stuchly 1980).
First, it is necessary to solve a transcendental
equation. Second, proper corrections are needed to
achieve permittivity results with reasonable accu-
racy. Third, the sample thickness has to be selected
properly. Measurements of samples with various
thickness values may be needed before an opti-
mum thickness is selected. The highest accuracy
is obtained when the sample thickness is equal
to an odd number of quarter wavelengths in the
dielectric for low-loss dielectrics and one-quarter

A

A′

Z0

er

d

Short
circuit

Figure 3.25 Dielectric-filled section of a TEM line

Figure 3.26 Enlarged short-circuited coaxial-line
reflection method. Modified from Huang, Y., “Design,
calibration and data interpretation for a one-port large
coaxial dielectric measurement cell”, Measurement Sci-
ence and Technology, 12 (1), 111–115 (2001), by per-
mission of IOP Publishing Ltd

wavelength for high-loss dielectrics. Besides, for
liquid samples, a window has to be placed at the
interface A − A′. Unless the window is thin and
made of a material with low dielectric constant
and low loss factor, it may cause errors to the mea-
surement results.

To measure the dielectric properties of com-
posites with large inclusions, one-port large coax-
ial measurement cell can be used, as shown in
Figure 3.26 (Huang 2001). This configuration can
be taken as the counterpart of the configuration
shown in Figure 3.9. Similar to the configuration
shown in Figure 3.9, the enlarged short-circuited
coaxial line requires a transition. In the system
developed by Huang, measurements can be made
up to 1 GHz, and a three-position short-circuit cal-
ibration is used.

3.2.5.2 Lumped capacitance method

In the short-circuited coaxial lines shown in
Figure 3.27, there is a small gap between the

Short
circuit

Short
circuit

2b 2a2b 2a

Z0Z0

dd

(a) (b)

erer

Figure 3.27 Lumped capacitance methods. (a) Sample
with diameter 2a and (b) sample with diameter 2b
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end of the central conductor and the short circuit,
forming a lumped capacitor. The sample under test
is inserted into the gap, resulting in the change
of the lumped capacitance between the inner
conductor and the short circuit. The configurations
shown in Figure 3.27 can also be analyzed using
the equivalent circuit shown in Figure 3.22(b).

If there is no sample in the gap between the inner
conductor and the short plate, the total capacitance
is given by (Marcuvitz 1965)

CT = C0 + Cf = πa2

4d
ε0 + 2aε0 ln

(
b − a

2d

)
(3.74)

where C0 represents the capacitance of the parallel-
plate capacitor formed by the inner conductor
and the terminating short circuit, Cf is the fringe
capacitance, “d” is the distance between the end
of the central conductor and the short plate, “a”
and “b” are the radii of the inner and outer
conductor of the coaxial line respectively, and ε0

is the permittivity of free space. Equation (3.74)
is based on the assumptions that λ � (b − a) and
d � (b − a), where λ is the wavelength.

As shown in Figure 3.27(a), when a dielectric
sample is filled in the capacitor, we assume that
introducing the dielectric sample into the parallel-
plate capacitor causes a negligibly small variation
to the fringe capacitance Cf; so the reflection
coefficient is given by

S∗
11 = S11ejφ = 1 − jωZ0[C(εr) + Cf]

1 + jωZ0[C(εr) + Cf]
(3.75)

where C(ε∗
r ) = ε∗

r C0. In experiments, C0 and Cf

are usually determined by calibration.
According to Eq. (3.75), we can get the relative

dielectric constant and loss factor (Stuchly and
Stuchly 1980):

ε′
r = 2S11 sin(−φ)

ωZ0C0(1 + 2S11 cos φ + S2
11)

− Cf

C0
(3.76)

ε′′
r = 1 − S2

11

ωZ0C0(1 + 2S11 cos φ + S2
11)

(3.77)

The uncertainty in εr can be minimized by a proper
selection of C0 (Rzepecka and Stuchly 1975), and

the optimum capacitance value is given by

C0 = 1

2πf Z0
· 1√

ε′2
r + ε′′2

r

(3.78)

The configuration shown in Figure 3.27(b) can
be analyzed in a similar way, and similar con-
clusions can also be obtained. But the analysis
procedure is quite complicated.

3.2.6 Dielectric-filled cavity adapted to the end
of a coaxial line

Saed et al. proposed a technique utilizing a cylin-
drical cavity completely filled with a sample of the
material under test (Saed et al. 1990). As shown in
Figure 3.28, the cavity is adapted to the end of a
coaxial line. In the measurement, the cavity works
at off-resonance state, and the dielectric proper-
ties of the sample are derived from the measured
reflection coefficient.

The configuration shown in Figure 3.28 mainly
consists of two regions: the transmission line
region and the cavity region. There is no need
to cut or shape the sample to fit fixed structures.
The cavity walls can be molded or deposited on
a cylindrically shaped sample, so the presence of
any possible air gaps is eliminated. To establish
the relationship between the measured reflection
coefficient and the complex permittivity of the
dielectric sample, a full-wave analysis is needed.
The full-wave simulation mainly consists of two
problems: the forward problem of calculating the

Coaxial line

Dielectric
sample

Z0

Figure 3.28 Dielectric-filled cylindrical cavity adapted
to the end of a coaxial line
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reflection coefficient for given dielectric permittiv-
ity, and the inverse problem of determining the
dielectric permittivity for a given reflection coeffi-
cient. The detailed discussions on these two prob-
lems can be found in (Saed et al. 1990).

This method offers advantages over the conven-
tional methods in which the sample is placed in a
resonant cavity or inserted in a transmission line.
First, this technique is usable over a wide band
of frequencies that can extend into the millime-
ter wave region depending on the sample thick-
ness, the sample permittivity, and the measuring
equipment. Second, air gaps that might lead to
significant errors are eliminated. Third, there is
a well-defined reference plane necessary for the
calibration of the measurement system. Fourth,
higher-order modes can be taken into considera-
tion by precise field analysis. However, for the
low-loss dielectric materials, this method cannot
give very precise value of dielectric loss. Besides,
in the analysis of the structure, the losses in the
conductor walls of the cavity should be taken into
consideration since these losses are often on the
same order as the losses in the dielectric sample.

This technique is suitable for the sample prepa-
ration and thus characterization of thick-film
dielectric materials (Saed et al. 1989). As shown
in Figure 3.29, as thick-film materials cannot sup-
port themselves, they must be printed or layered
on a substrate. To construct the terminating cav-
ity structure, the thick-film dielectric layer along
with the thick-film conductor walls of the cavity
are printed on a ceramic substrate. The substrate

Thick-film sample
Substrate

Coaxial line

Conductor layer

Z0

Conductor
layer

Figure 3.29 Terminating cavity configuration for
thick-film materials

is isolated from the dielectric layer by the back-
conductor wall of the cavity, so it merely acts as
a support and does not contribute to the electrical
parameters of the cavity.

3.3 FREE-SPACE REFLECTION METHOD

In the measurement of the effective permittivity
of composite materials, it is required that the
sample dimensions should be much larger than
the sizes of the inclusions. For composites with
inclusions whose sizes are comparable with the
wavelength of the microwave signal, for example,
fiber composites, the conventional coaxial line,
and waveguide methods cannot be used. In these
cases, free-space methods are often used. In the
following, we discuss the general requirements
for free-space measurements, and we then discuss
three examples of free-space methods.

3.3.1 Requirements for free-space
measurements

To achieve accurate measurement results using
free-space method, several requirements should be
satisfied, which mainly include far-field require-
ment, sample size, and measurement environment.

3.3.1.1 Far-field requirement

In free-space measurement, to ensure that the wave
incident to the sample from the antenna can be
taken as a plane wave, the distance d between
the antenna and the sample should satisfy the
following far-field requirement:

d >
2D2

λ
(3.79)

where λ is the wavelength of the operating elec-
tromagnetic wave and D is the largest dimension
of the antenna aperture. For an antenna with circu-
lar aperture, D is the diameter of the aperture, and
for an antenna with rectangular aperture, D is the
diagonal length of the rectangular aperture. When
the far-field requirement is fulfilled, free space can
be taken as a uniform transmission line, and most
of the measurement schemes discussed above for
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coaxial reflection measurements can be realized by
free space.

3.3.1.2 Sample size

In the measurement of permittivity and permeabil-
ity of planar samples using free-space method, if
the sample size is much smaller than the wave-
length, the responses of the sample to electro-
magnetic waves are similar to those of a particle
object. To achieve convincing results, the size of
the sample should be larger than the wavelength of
the electromagnetic wave. To further minimize the
effects of the scatterings from the sample bound-
ary, the sample size should be twice larger than
the wavelength.

3.3.1.3 Measurement environment

In a free-space transmission structure, as the
electromagnetic wave is not limited by a sharp
boundary, the measurement results may be affected
by the environments. At lower frequencies, the
effects of environments are more serious. To
minimize the effects of the environments, it is
recommended to conduct free-space measurements
in an anechoic chamber. Meanwhile, we can also
use time-domain gating to eliminate the unwanted
signal caused by environment reflections and
multireflections, as discussed in Section 2.4.6.

3.3.2 Short-circuited reflection method

Figure 3.30 shows a typical setup for short-
circuited free-space reflection measurement. The
sample backed by a metal plate is placed in front of
an antenna with a distance satisfying the far-field
requirement.

The complex reflectivity S11 at the interface
between the free space and the sample is given by

S11 = jz tan(βd) − 1

jz tan(βd) + 1
, (3.80)

where z is the wave impedance of material
under test normalized to the wave impedance of
free space and β is the phase constant in the

d

Sample Metal plate

Γ

Figure 3.30 Free-space reflection method

material under test. For nonmagnetic materials, the
normalized wave impedance is given by

z = 1√
εr

, (3.81)

and the phase constant β is given by

β = 2π

λ

√
εr (3.82)

where λ is the free-space wavelength and d is the
thickness of the sample. Therefore, the dielectric
permittivity of the sample can be obtained from
the complex reflectivity.

However, Eqs. (3.80)–(3.82) indicate that the
permittivity of the sample cannot be expressed
explicitly in terms of S11 and d , and numerical
methods are often used in the calculation of
dielectric permittivity.

3.3.3 Movable metal-backing method

Kalachev et al. proposed a movable metal-backing
method, whose measurement configuration is
shown in Figure 3.31 (Kalachev et al. 1991). The
sample under test is placed directly against the
aperture of the horn, so the sample size does not
need to be very large, and the microwave anechoic
chamber is not required.

The measurement structure consisting of the
sample under test and the metal backing is
quite similar to an open resonator. As the metal
backing is movable, the resonant frequency can be
adjusted. The dielectric sample is semitransparent



Reflection Methods 163

t d

Horn antenna

Dielectric sample Movable
metal backing

Figure 3.31 Measurement configuration of dielectric
permittivity for semitransparent samples

to electromagnetic wave. When an electromagnetic
wave is incident to the dielectric sample, some
of the energy is reflected back and some of
the energy passes through the sample. In the
resonant structure, the dielectric sample serves as
a reflection mirror, and meanwhile it also provides
coupling to the antenna.

This method is based on the reflectivity mea-
surement near the resonant frequency of the open
resonator, and so it is a method between a nonres-
onant method and a resonant method. It should be
noted that, in this method, as the sample directly
contacts the antenna aperture, the far-field require-
ment is not satisfied, and the residual reflections
of the horn should be taken into consideration.
The residual reflections can be eliminated by time-
domain techniques, and they can also be corrected
by an additional measurement when the distance
between the sample and the horn is changed by a
quarter wavelength (Kalachev et al. 1991).

To determine the permittivity of the dielectric
sample, we measure the reflection coefficient of
the system consisting of the sample and the
metal backing. The distance d between the sample
and the metal backing can be varied, and the
distance dependence of the reflection coefficient
�(d) exhibits a resonance form. For an optically
thin sample satisfying

2πt
√|εr|
λ

� 1 (3.83)

where t is the thickness of the sample, we can
get (Kalachev et al. 1991)

cot
2πd0

λ
= 2πtε′

r

λ
(3.84)

2πtε′′
r

λ
= 1 ± �0

1 ∓ �0
(3.85)

where d0 is the distance satisfying the resonance
conditions and �0 is the reflection coefficient
at resonance.

So the dielectric properties of the sample can be
calculated from Eqs. (3.84) and (3.85). However,
there are two solutions for Eq. (3.85). This is a
common disadvantage of using reflection method
to measure resonant structures. One convenient
method to resolve this ambiguity is to introduce
an additional source of low dielectric loss into the
structure and find out whether the additional loss
results in an increase or decrease in the reflection
coefficient.

To avoid the limitation on the optical thick-
ness of the sample, and to reduce the random
experimental errors, we can measure the reflection
coefficient �(d) at several values of d near the
resonance. The reflection coefficient of the reso-
nant structure can be calculated using the multi-
layer interferometer model (Brekhovskikh 1980).
The value of complex permittivity is selected so
that the agreement between the measured reflection
constants �m(d) and the calculated ones �c(d) is
the best. The coincidence between the calculated
and the measured values of reflection coefficients
can be described by

F =
n∑

i=1

[�m(di ) − �c(di )]
2 (3.86)

The dielectric permittivity of the sample corre-
sponding to the minimum value of F can be found
by two-dimensional simplex minimization routine
with the use of Eqs. (3.84) and (3.85) as a start-
ing point.

The applicability of this method depends on the
value of �0 of the sample. When the dielectric
losses are absent (ε′′

r = 0) or very high (ε′′
r →

∞), the value of �0 is close to unity and
there are secondary wave reflections between the
sample and the horn, which increase the errors
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of reflection measurement as well as the errors
of the determination of the dielectric permittivity
values. Supposing that accurate measurement of
reflection coefficient is possible when � < −5 dB,
from Eq. (3.85) we can find the range of ε′′

r suitable
for this method (Kalachev 1991):

0.5 <
2πtε′′

r

λ
< 4 (3.87)

If the above requirements cannot be satisfied,
this method should be modified. For a low-loss
sample with

2πtε′′
r

λ
� 1, (3.88)

to obtain accurate results, it is recommended to
characterize the sample together with an additional
dielectric-sheet material with known properties.
The additional sample should provide the dielectric
loss that is sufficient for obtaining low reflectivity.

For an extremely high-loss material with

2πtε′′
r

λ
� 1, (3.89)

the sample is practically nontransparent and the
reflection coefficient does not depend on the pres-
ence and position of the metal backing behind
the sample. To measure such nontransparent sam-
ples, Kalachev et al. modified the measurement
technique discussed above (Kalachev et al. 1991).
As the loss factor of a material is proportional
to the conductivity of the material, we may use
surface impedance to describe the electromag-
netic properties of an extremely high-loss mate-
rial. The reflection methods used for the measure-
ment of surface impedance will be discussed in
Section 3.5.

3.3.4 Bistatic reflection method

In most of the reflection methods, only one
probe is used, and this probe transmits signal and
meanwhile receives signal. In such a configuration,
it is difficult to change the incident angle of the
transmitted signal. Figure 3.32 shows a bistatic
system for free-space reflection measurement. In
this configuration, two antennas are used for
transmitting and receiving signals respectively,

Sample terminated
by metal plate

Transmit
antenna

Receive
antenna

Figure 3.32 Bistatic reflection measurement

and the reflections at different incident angles
can be measured. Using this configuration, the
properties of materials at different directions can
be characterized.

It should be noted that in bistatic reflection mea-
surements, the reflection is dependent on the polar-
ization of the incident wave. Incident waves with
parallel and perpendicular polarization usually
result in different reflection coefficients. Besides,
special calibration is needed for free-space bistatic
reflection measurements (Umari et al. 1991).

3.4 MEASUREMENT OF BOTH
PERMITTIVITY AND PERMEABILITY
USING REFLECTION METHODS

Usually, in a reflection method, only one complex
reflection coefficient is measured, from which only
one complex materials property parameter, either
permittivity or permeability, can be derived. To
obtain both the complex permittivity and complex
permeability, at least two independent reflection
measurements are required. Here, we discuss six
examples for the measurement of both permittivity
and permeability using reflection method.

3.4.1 Two-thickness method

As shown in Figure 3.33, in a two-thickness
method, the two independent reflection measure-
ments are made by measuring the reflections from
two samples made of the same material under test
but with different thickness values. We assume that
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L1

L

Sample 2

Port 1

Sample 1
Short circuit

L2

Figure 3.33 Two samples in a short-circuited trans-
mission line. Source: Baker-Jarvis, J. Domich, M. D.
and Geyer, R. G. (1993), Transmission/reflection and
short-circuit line methods for measuring permittivity
and permeability, NIST Technical Note 1355 (revised),
National Institute of Standards and Technology, U.S.
Department of Commerce

the thickness values of the two samples are L and
αL respectively, and their corresponding reflec-
tions measurements are S11(1) and S11(2) respec-
tively.

According to the transmission theory, the two
independent reflections are given by

S11(1) = � − Z2

1 − �Z2
(3.90)

S11(2) = � − Z2α

1 − �Z2α
(3.91)

with the reflection coefficient � given by

� = (µ/γ ) − (µ0/γ0)

(µ/γ ) + (µ0/γ0)
(3.92)

and the transmission coefficient Z given by

Z = exp(−γL) (3.93)

From Eq. (3.90), we have

Z2 = S11(1) − �

S11(1)� − 1
(3.94)

Substituting Eq. (3.94) into Eq. (3.61) we get

S11(2) =
� −

(
S11(1) − �

S11(1)� − 1

)α

1 − �

(
S11(1) − �

S11(1)� − 1

)α (3.95)

Eq. (3.95) can be solved iteratively for �.

With � given by Eq. (3.95) and Z given by
Eq. (3.93), we can calculate the properties of
the material using the following equations (Baker-
Jarvis et al. 1993):

εr = λ2
0

µr

(
1

λ2
c

− 1

�2

)
(3.96)

µr = 1 + �

(1 − �)�

√
1/λ2

0 − 1/λ2
c

(3.97)

with

1

�2
= −

[
1

2πL
ln

(
1

Z

)]2

(3.98)

where λ0 is the free-space wavelength and λc

is the cutoff wavelength of the transmission
structure. It should be noted that Eq. (3.98)
has an infinite number of roots because the
logarithm of a complex number is multivalued. In
order to choose the correct root, it is necessary
to compare the measured group delay to the
calculated group delay.

3.4.2 Different-position method

The two independent reflections for the determi-
nation of permittivity and permeability can be
obtained when the sample is placed at different
positions of a transmission line (Baker-Jarvis et al.
1993). As shown in Figure 3.34, if measurements
are made when the sample is placed at two dif-
ferent positions at a short-circuited transmission
line, explicit solution to Eq. (3.6) can be obtained
by solving the Eq. (3.6) at a given short-circuit
position (position 1) for tanh γL and then sub-
stituting this expression into Eq. (3.6) at another
short-circuit position (position 2).

The reflection coefficients corresponding to the
two different positions shown in Figure 3.34 are
given by

�1 = 2βδ1 − [(δ1 + 1) + (δ1 − 1)β2] tanh γL

−2β + [(δ1 − 1)β2 − (δ1 + 1)] tanh γL

(3.99)

�2 = 2βδ2 − [(δ2 + 1) + (δ2 − 1)β2] tanh γL

−2β + [(δ2 − 1)β2 − (δ2 + 1)] tanh γL

(3.100)
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L1

L2 L ∆L2

∆L1L

Position 1

Port 1

Short circuit
Position 2

Figure 3.34 Two-position measurements in a short-circuited transmission line. Source: Baker-Jarvis, J. Janezic,
M. D. Grosvenor, J. H. Jr. and Geyer, R. G. (1993), Transmission/reflection and short-circuit line methods for
measuring permittivity and permeability, NIST Technical Note 1355 (revised), National Institute of Standards and
Technology, U.S. Department of Commerce

where δ1 and δ2 denote the phases calculated from
Eq. (3.8) for �L1 and �L2 respectively. From
Eqs. (3.99) and (3.100), we can get

tanh γL

= 2β(δ1 + �1)

β2(�1 + 1)(δ1 − 1) + (1 − �1)(δ1 + 1)

(3.101)

γ = 1

L{
tanh−1

[
2β(δ1 + �1)

β2(�1 + 1)(�1 − 1) + (1 − �1)(δ1 + 1)

]

+ 2nπ j

}
(3.102)

where n is an integer, whose correct value can be
determined from the group delay.

Meanwhile, we have

β2 =
δ1[δ2(�1 − �2) + �1�2 + 1 − �2]
−{δ2[�1(�2 − 2) + 1] + �2 − �1}
δ1[δ2(�1 − �2) + �1�2 + 1 + 2�2]
−{δ2[�1(�2 + 2) + 1] + �2 − �1}

(3.103)
Once the value of β is obtained, the permittivity
and permeability of the material can be calculated
according to Eqs. (3.102) and (3.103).

3.4.3 Combination method

The two independent complex parameters can be
obtained by the method shown in Figure 3.35.
First, measure the complex reflection �1 by
directly terminating the probe with the sample
shorted by a metal plate. Second, measure the
complex reflection �2 by inserting a material with
known electromagnetic properties, such as Teflon,
between the probe and the sample under test. From
the two complex reflection coefficients �1 and �2,
the materials complex parameters εr and µr can
be obtained.

In the calculation of the permittivity and per-
meability of the sample, we need to know the

Metal
plate

Metal
plate

d

(a) (b)

er

mr

dd1

er
er1

mr1 mr

Figure 3.35 Two independent reflection mea-
surements. (a) Sample directly contacts the probe and
(b) a layer of material with known permittivity and per-
meability is inserted between the probe and the sample
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admittance values at the two conditions shown
in Figure 3.35. The admittance of the probe con-
nected with the layered media can be analyzed
using the method discussed in Section 3.2.2.

3.4.4 Different backing method

As shown in Figure 3.36, the two independent
reflection measurements can be made by back-
ing the sample with free space and metal plate
respectively. We directly terminate probe with
the sample under test and measure the reflec-
tion coefficients when the sample is backed by
free space and metal plate respectively. From the
two complex reflection coefficients, the two com-
plex material property parameters εr and µr can
be obtained.

Similar to the combination method discussed
above, in the calculation of materials properties,
we need to know the admittance values when the
sample is backed by free space and metal plate
respectively. The admittance of the probe at these
two conditions can be done using the method
discussed in Section 3.2.2.

3.4.5 Frequency-variation method

The frequency-variation method was proposed
by Wang et al. for the measurement of both
permittivity and permeability using a reflection
probe (Wang et al. 1998). This method takes fre-
quency as an independent variable, and only
needs one frequency-sweeping measurement. This

(a) (b)

Free
space

d

er

mr

Metal
plate

d

er

mr

Figure 3.36 Two independent reflection measure-
ments. (a) Sample backed by free space and (b) sample
backed by a metal plate

method has some similarity with the two-thickness
method discussed in Section 3.4.1. For two mea-
surements made at two different frequencies,
though the physical thickness of the sample does
not change, the sample has different values of elec-
tric thickness at different frequencies. If we assume
that the sample has the same permittivity and per-
meability at different frequencies, the two reflec-
tions measured at two frequencies, corresponding
to two values of electric thickness of the sample,
can be used to determine the permittivity and per-
meability of the sample.

In this method, the open-ended probe may be
made from a coaxial line, rectangular or circular
waveguide. The material under test may be semi-
infinite, or it can be a single layer or multiple-layer
sample backed by free space or metal plate. As an
example, Figure 3.37 shows a flanged open-ended
coaxial probe terminated by a single-layer sample
backed by a metal plate. In this configuration, the
reflection coefficient �(a, b, d, εr, µr, f ) is a func-
tion of the coaxial dimensions a and b, sample
thickness d , electromagnetic property parameters
εr and µr, and measurement frequency f . From
the reflection coefficients �1 and �2 measured at
frequency f1 and f2 respectively, the permittivity
and permeability of the sample can be calculated.
The obtained permittivity and permeability can be
taken as the averages of the values at frequencies
f1 and f2.

d

er

mr

Metal
plate

Sample

Transmission line

Flange

Figure 3.37 Configuration for a typical reflection
measurement using a coaxial probe
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In some cases, we need to consider the
frequency dependence of the electromagnetic
properties of materials. In these cases, the permit-
tivity εr(f ) and permeability µr(f ) are functions
of frequency, and so interpolation techniques are
needed for extracting permittivity and permeabil-
ity from the frequency-sweeping reflection data.
Linear interpolation is the simplest interpolation:

εr(f ) = af + b (3.104)

µr(f ) = cf + d (3.105)

By using the linear interpolation in Eqs. (3.104)
and (3.105), the determination of permittivity and
permeability becomes the determination of four
complex parameters a, b, c, and d , and so the
reflection coefficients at four frequency points are
needed. If we use the parabolic interpolation,
reflection coefficients at six frequency points are
needed to determine the six complex parameters
involved. As at microwave frequencies, most of
the polarizations are Debye type, Debye equations
are often used in interpolation.

In the application of the frequency-variation
method, after the reflection coefficients are mea-
sured over a wide frequency range, the complex
permittivity and permeability are reconstructed
from the reflection coefficients at frequency points
in a certain frequency band according to the
adopted interpolation technique. This process con-
tinues throughout the entire measurement fre-
quency range.

The choice of the interpolation and frequency
interval �f depends on many factors such as the
natural characteristics of the electromagnetic prop-
erties of the materials and the requirements on
measurement speed and accuracy. In general, for
highly dispersive media and for critical accuracy
requirements, higher-order interpolation should be
used. At the same time, the inverse problem will
become more difficult and time consuming. A
trade-off between accuracy and speed must be
made in practical real-time and on-site measure-
ments. The frequency interval should guarantee
that the reflection coefficient is changed enough to
be distinguished by the network analyzer. Mean-
while, to improve the measurement resolution, the
frequency interval selected should be as small

Incident wave

Region 1
(air)

Γ1
Γ2

Region 2
(sample)

Figure 3.38 A short-ended coaxial line with a sample
loaded at the end. The time histories of the incident
wave and the first and second reflections (�1 and �2) are
measured at a location in front of the interface between
the air and the sample

as possible, especially for the highly dispersive
materials whose permittivity and permeability vary
rapidly with frequency.

3.4.6 Time-domain method

Besides the five methods discussed below, Court-
ney and Motil proposed a time-domain measure-
ment in a short-circuited coaxial geometry and
data-reduction procedure to experimentally deter-
mine the complex permittivity and permeabil-
ity of materials (Courtney and Motil 1999). As
shown in Figure 3.38, using time-domain tech-
niques, this method measures the first and second
reflection waves (partial components of the com-
plete reflection) in the short-circuited coaxial trans-
mission line that holds the material under test. In
this method, the two independent parameters for
the determination of permittivity and permeability
are the first and second reflections (�1 and �2).
Detailed discussions on this method can be found
in (Courtney and Motil 1999; Courtney 1998).

3.5 SURFACE IMPEDANCE MEASUREMENT

Figure 3.39 shows the measurement of surface
impedance of a conducting film using reflection
method. To ensure the electrical contact between
the end of coaxial line and the film sample,
gold contacts with a thickness of a few thousand
angstroms are evaporated on the film. The portion
of the film exposed between the contacts forms
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Conducting film

Substrate
Coaxial line

Figure 3.39 Measurement of surface resistance using
reflection method. (a) Measurement configuration using
coaxial line and (b) shape of a Corbino disc

the Corbino disc, as shown in Figure 3.39(b). In
this method, the surface impedance Zs is extracted
from the reflection coefficient S11, which is related
to the load impedance ZL of the sample:

S11 = ZL − Z0

ZL + Z0
(3.106)

where Z0 is the characteristic impedance of the
coaxial transmission line. The reflection coefficient
is a complex, dimensionless quantity that measures
the impedance mismatch between the transmission
line and the load, and is bounded in magnitude
between 0 and 1.

The load impedance ZL in Eq. (3.106) is the
ratio of the total voltage across the Corbino disc to
the total current flowing through the disc. The load
impedance ZL depends on the surface impedance
of the conducting film and the dimensions of the
Corbino disc. If only the TEM mode exists in
the coaxial line, ZL can be expressed in terms
of the surface impedance Zs of the film (Booth
et al. 1994):

ZL = αZs (3.107)

The scale factor α in this expression simply
relates the “ohmic” impedance ZIV and the field
impedance Zfield for the TEM mode in a coax-
ial system:

ZIV = V

I
(3.108)

Zfield = Er

Hφ

(3.109)

where V and I represent the voltage and current
across the coaxial cable respectively, and Er and

Hφ represent the electric and magnetic fields
within the coaxial cable, respectively. The surface
impedance Zs of the film is the field impedance
Zfield evaluated at the surface of the film. For a
coaxial line with inner radius a and outer radius b,
the scale factor is given by

α = 2π ln

(
b

a

)
(3.110)

Therefore, once the reflection coefficient S11 of the
sample has been measured, the surface impedance
of the conducting film can be obtained from
Eqs. (3.106) and (3.107).

The technique takes advantage of a special
geometry in which the self-fields from currents
flowing in the film are parallel to the film surface
everywhere, making it an ideal configuration for
the study of vortex dynamics in superconductors.
Furthermore, its broadband nature makes it suit-
able for investigating superconductivity in a broad-
frequency region. However, it should be noted that
this method requires very good contact between
the superconducting film and the inner and outer
conductors of the coaxial line. Figure 3.40 shows
a superconducting thin-film/connector interface
structure employing a spring-loaded inner conduc-
tor pin. Direct contact is made between the outer

Coaxial
cable

Microwave
connector

Spring-loaded
center conductor pin

Gold contacts

Superconducting film

Substrate

Al pedestal Spring

Figure 3.40 The thin-film/connector interface, just
prior to contact. Pressure is exerted on the aluminum
pedestal by a spring in order to maintain contact
between the film and connector throughout the tem-
perature range (Booth et al. 1994). Source: Booth, J. C.
Wu, D. H. and Anlage, S. M. (1994). “A broadband
method for the measurement of the surface impedance
of thin films at microwave frequencies”, Review of Sci-
entific Instruments, 65 (6), 2082–2090
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conductor of the connector and the outer gold con-
tact of the film, while the contact between the inner
conductor of the connector and the inner gold con-
tact of the film is ensured by using a small pin
inserted in the center conductor of the connector.
The contacts between the connector and the sample
are maintained by using an aluminum pedestal and
spring assembly that applies pressure to the back-
side of the substrate. The contacts can reliably hold
from room temperature to very low temperature
(several Kelvin), and the changes in contact resis-
tance with temperature are negligibly small (Booth
et al. 1994).

3.6 NEAR-FIELD SCANNING PROBE

Scanning techniques for local characterization of
conducting and insulating films are attracting much
interest. Many efforts have been made on devel-
oping microwave near-field scanning techniques,
and various types of near-field microwave micro-
scopes have been developed for different pur-
poses (Rosner and van der Weide 2002). The near-
field microwave microscopes generally fall into
the resonant type and the nonresonant type. In
a resonant near-field microwave microscope, the
probe is a resonator, and it works on the basis
of resonant-perturbation theory. While a nonres-
onant near-field microwave microscope is usu-
ally based on reflection method, and the prop-
erties of a sample are obtained from the reflec-
tivity due to the presence of the sample. Here
we focus on nonresonant near-field microwave
microscopes, and the discussions on resonant near-
field microwave microscopes can be found in
Chapter 6.

In principle, any type of transmission lines can
be used to develop near-field microwave micro-
scopes. In a near-field microwave microscope
developed from rectangular waveguide, the most
important part is an aperture in the form of a nar-
row rectangular slit. As shown in Figure 3.41, a
thin metal diaphragm is mounted across a rect-
angular waveguide, and a rectangular slit is cut
in the diaphragm parallel to the wide side. For
transverse electric (TE) mode propagation, this
slit is transparent at a certain wavelength λ,

a

a′

b′ b

Figure 3.41 A rectangular slit on a metal diaphragm
mounted across a rectangular waveguide

which can be found by solving the following
equation (Golosovsky et al. 1996)

a

b
·
√

1 −
(

λ

2a

)2

= a′

b′ ·
√

1 −
(

λ

2a′

)2

(3.111)

where λ is the free-space wavelength, a and b are
the wide and narrow sides of the waveguide, and
a′ and b′ are the wide and narrow sides of the
slit. Equation (3.111) has solution even for arbi-
trarily narrow slit. When b′ approaches zero, the
solution for λ approaches 2a′. We can also take a
rectangular waveguide terminated by a rectangu-
lar slit window as a junction of two rectangular
waveguides with different dimensions. The reflec-
tion from such a junction is determined by the
waveguide impedance (Golosovsky et al. 1996)

Z = Z0πb′

2a′√1 − [λ/(2a′)]2
(3.112)

where Z0 is the free-space impedance (Z0 =
377 �). By taking the slit as a section of a
rectangular waveguide, we can find that for given
a′ and arbitrarily small b′, there is always a certain
wavelength λ ≈ 2a′ at which Z ≈ Z0. Therefore,
even a very narrow slit may be matched to free
space at a narrowband.

When a conducting surface is in the near-field
zone of the slit, the microwave is reflected mostly
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from the region under the slit. Since reflection from
a conducting surface is determined by the resistiv-
ity, by measuring the amplitude and phase of the
reflected wave while raster scanning the surface,
it is possible to map the microwave resistivity of
the surface. For conductive layers with thicknesses
much larger than the skin depth, we can get sur-
face impedance, while for thin layers, we can get
sheet resistance. In the determination of microwave
resistivity, it is necessary to measure layer thick-
ness independently.

In measurement, the sample is placed close
to the slit. If the distance between the slit and
the sample is smaller than the narrow side of
the slit, the spatial resolution in the direction
perpendicular to the slit is determined by the
narrow side of the slit b′ and maybe as small
as λ/100. The spatial resolution in the direction
parallel to the slit is determined by the field
pattern in the slit and by the wide side of
the slit a′, and for a flat slit it is about λ/2.
However, the resolution in this direction may be
considerably improved (down to λ/60) if the slit is
fabricated in a curved surface. This improvement
originates from the strong decay of the field
upon increasing distance from the slit, so that the
central part of the slit, which is most close to the
tested surface, plays a dominant role. Generally
speaking, the spatial resolutions in the directions
of the wide and narrow sides of the slit are
different. However, by doing scans in several
directions and using deconvolution techniques and
image processing, it is possible to achieve two-
dimensional resistivity maps with equal resolution
in all directions.

Figure 3.42 shows a dual-frequency electro-
magnetic scanning probe for quantitative map-
ping of sheet resistance of conducting films (Lann
et al. 1998). The high-frequency (82 GHz) mode
is used for image acquisition, while the low-
frequency (5 MHz) mode is used for distance con-
trol. The key component is a thin-slit aperture in
a convex end plate of a rectangular waveguide.
This aperture operates as a transmitting/receiving
antenna at 82 GHz. A fundamental TE wave is
excited in the waveguide and the reflected wave
is analyzed. The electric field lines in the TE
mode stretch from one side of the slit to the

Metal base

Substrate
Conducting film

Dielectric spacer

Dielectric screw

WR-12 waveguide

mm-wave in/out

5-MHz oscillator

Clamp (optional)

Figure 3.42 A mm-wave near-field probe with a
capacitive distance control (Lann et al. 1998). Source:
Lann, A. F. Golosovsky, M. Davidov, D. and Frenkel,
A. (1998). “Combined millimeter-wave near-field micro-
scope and capacitance distance troll for the quanti-
tive mapping of sheet resistance of conducting layers”,
Applied Physics Letters, 73 (19), 2832–2834

Probe Probe

E
E

(a) (b)

Figure 3.43 Electric fields near the slit. (a) Electric
field of mm-wave operation (inductive mode) and
(b) electric field of rf operation (capacitive mode).
Source: Lann, A. F. Golosovsky, M. Davidov, D. and
Frenkel, A. (1998). “Combined millimeter-wave near-
field microscope and capacitance distance troll for the
quantitive mapping of sheet resistance of conducting
layers”, Applied Physics Letters, 73 (19), 2832–2834

other, as shown in Figure 3.43(a), and they are
mostly tangential to the sample surface and induce
currents in the sample. The magnitude of the
induced currents is determined by the sample
resistivity and thickness. In this high-frequency
operation mode, the probe behaves inductively
and provides information on the resistance of
the sample.
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In order to enable a simultaneous low-frequency
operation mode, a short waveguide section
containing the probe is electrically isolated from
the rest of the mm-wave circuitry by a thin mylar
sheet, as shown in Figure 3.42. A 5-MHz oscil-
lator is connected to the waveguide section with
the probe, while the ground of the oscillator is
connected to the rest of the mm-wave circuitry
and to the conducting sample. As the slit size
for the rf-operation mode is much smaller than
the rf wavelength, the surface of the probe is
equipotential. So, as shown in Figure 3.43(b), the
electric field lines stretch from the probe to the
sample surface, and they are almost normal to
the sample and induce charges rather than cur-
rents. Thus the probe behaves capacitively, and
is almost insensitive to the sample resistance.
The resonant frequency of the oscillator strongly
depends upon the probe-sample capacitance that is
determined by the probe-sample distance. There-
fore by measuring the resonant frequency of the
oscillator, the probe-sample distance can be pre-
cisely controlled.
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4

Transmission/Reflection Methods

In a transmission/reflection method, the sample
under test is inserted into a segment of trans-
mission line, and the permittivity and permeabil-
ity of the sample are derived from the reflec-
tion and transmission of the sample-loaded unit.
After analyzing the working principle and calcu-
lation algorithms, we discuss four types of trans-
mission/reflection methods, including coaxial air-
line method, hollow metallic waveguide method,
surface-wave method and free-space method. We
then make a brief review of the modifications of
the conventional transmission/reflection methods.
At the end of this chapter, we discuss the measure-
ment of complex conductivity of superconductors
using transmission/reflection methods.

4.1 THEORY FOR
TRANSMISSION/REFLECTION METHODS

As nonresonant methods can cover certain fre-
quency bands, they can be used for the mea-
surements of electromagnetic properties of mate-
rials for a multitude of applications, such as
the study of polarization mechanisms of materi-
als and the development of broadband functional
materials and structures. Owing to their relative
simplicity, the transmission/reflection methods, as
a category of nonresonant methods, are widely
used in various fields of materials research and
engineering.

In a transmission/reflection method, the sample
under test is inserted into a segment of transmis-
sion line, such as waveguide or coaxial line. From
the relevant scattering equations relating the scat-
tering parameters of the segment of transmission

line filled with the sample under study to the
permittivity and permeability of the sample, we
can get the electromagnetic properties of the sam-
ple. In a transmission/reflection method, all the
four scattering parameters can be measured, so we
have more data at our disposal than in reflection
measurements. For a transmission/reflection mea-
surement, the relevant scattering equations con-
tain variables including the complex permittivity
and permeability of the sample, the positions of
the two reference planes, and the sample length.
These relevant scattering equations are generally
overdetermined and therefore can be solved in var-
ious ways.

4.1.1 Working principle for
transmission/reflection methods

The working principles for transmission/reflection
methods have been systematically analyzed in
literatures (Baker-Jarvis et al. 1993, 1990; Baker-
Jarvis 1990). Here, we only discuss the basic
principle for transmission/reflection measurements.

Figure 4.1 shows a typical measurement config-
uration for a transmission/reflection method. The
sample under study is inserted into a segment of
transmission line, whose axis is in x-direction.
Scattering equations are often used to analyze the
electric fields at the sample interfaces. We assume
the electric fields at the three sections of the trans-
mission line as EI, EII, and EIII. For a normalized
incident wave, we have (Baker-Jarvis 1990)

EI = exp(−γ0x) + C1 exp(γ0x) (4.1)

Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan
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Figure 4.1 Electromagnetic waves transmitting
through and reflected from a sample in a transmis-
sion line

EII = C2 exp(−γ x) + C3 exp(γ x) (4.2)

EIII = C4 exp(−γ0x) (4.3)

with

γ = j

√
ω2µrεr

c2
−

(
2π

λc

)2

(4.4)

γ0 = j

√(ω

c

)2 −
(

2π

λc

)2

(4.5)

where ω is the angular frequency, c is the speed
of light in vacuum, γ0 and γ are the propagation
constants in the transmission lines filled with free
space and the sample respectively. λ0 is the cutoff
wavelength of the transmission line, and for a
transmission line in TEM mode, for example,
coaxial line, λc = ∞.

The constants Ci(i = 1, 2, 3, 4) in Eqs. (4.1)–
(4.3) can be determined from the boundary con-
ditions on the electric field and the magnetic
field. The boundary condition on the electric field
is the continuity of the tangential component at
the interfaces:

EI|x=L1 = EII|x=L1 (4.6)

EII|x=L1+L = EIII|x=L1+L (4.7)

where L1 and L2 are the distances from the respec-
tive ports to the sample faces and L is the sample
length. The total length of the transmission line is
denoted as Lair = L1 + L2 + L. The boundary con-
dition on the magnetic field requires the additional

assumption that no surface currents are generated,
so the tangent component of magnetic field is con-
tinuous across the interface:

1

µ0
· ∂EI

∂x

∣∣∣∣
x=L1

= 1

µ0µr
· ∂EII

∂x

∣∣∣∣
x=L1

(4.8)

1

µ0µr
· ∂EII

∂x

∣∣∣∣
x=(L1+L)

= 1

µ0
· ∂EIII

∂x

∣∣∣∣
x=(L1+L)

(4.9)

The scattering parameters of the two-port net-
work shown in Figure 4.1 can be obtained by solv-
ing Eqs. (4.1)–(4.3) subject to the boundary con-
ditions (Eqs. (4.6)–(4.9)). As the scattering matrix
is symmetric (S12 = S21), we have (Baker-Jarvis
1990)

S11 = R2
1 · �(1 − T 2)

1 − �2T 2
(4.10)

S22 = R2
2 · �(1 − T 2)

1 − �2T 2
(4.11)

S21 = R1R2 · �(1 − T 2)

1 − �2T 2
(4.12)

where R1 and R2 are the reference plane transfor-
mations at two ports:

Ri = exp(−γ0Li) (i = 1, 2) (4.13)

The transmission coefficient T is given by

T = exp(−γL) (4.14)

The reflection coefficient � is given by

� = (γ0/µ0) − (γ /µ)

(γ0/µ0) + (γ /µ)
(4.15)

For coaxial line, the cutoff wavelength is infinity,
so Eq. (4.15) can be rewritten as

� =
√

µr/εr − 1√
µr/εr + 1

(4.16)

Additionally, S21 for the empty sample holder is

S0
21 = R1R2 exp(−γ0L) (4.17)

For nonmagnetic materials, Eqs. (4.10), (4.11),
and (4.12) contain ε′

r, ε
′′
r , L, and the reference plane
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transformations R1 and R2 as unknown quantities.
We have four complex Eqs. (4.10), (4.11), (4.12),
and (4.17), plus the equation for the length of
the air line, so we have equivalently nine real
equations for the five unknowns. In many appli-
cations we know the sample length. For magnetic
materials we have seven unknowns. Thus, the sys-
tem of equations is overdetermined and it is possi-
ble to solve the equations in various combinations.
Therefore, the complex relative permittivity (εr)

and complex relative permeability (µr) of the sam-
ple can be determined using different ways. In the
following, we discuss the algorithms often used for
the calculation of εr and µr.

4.1.2 Nicolson–Ross–Weir (NRW) algorithm

Nicolson and Ross (1970) and Weir (1974) com-
bined the Eqs. (4.10) and (4.11) for S11 and
S21, and derived explicit formulas for the cal-
culation of permittivity and permeability. The
algorithm is usually called Nicolson–Ross–Weir
(NRW) algorithm.

In the NRW algorithm, the reflection and trans-
mission are expressed by the scattering parameters
S11 and S21. The reflection coefficient � is given by

� = K ±
√

K2 − 1 (4.18)

with

K = (S2
11 − S2

21) + 1

2S11
(4.19)

The correct choice of positive or negative sign
in Eq. (4.18) is made by requiring |�| ≤ 1. The
transmission coefficient T is given by

T = (S11 + S21) − �

1 − (S11 + S21)�
(4.20)

So the permittivity and permeability are calcu-
lated from

µr = 1 + �

(1 − �)�

√
(1/λ2

0) − (1/λ2
c)

(4.21)

εr = λ2
0

µr[(1/λ2
c) − (1/�2)]

(4.22)

with

1

�2
= −

[
1

2πD
ln

(
1

T

)]2

(4.23)

where λ0 is the free-space wavelength; λc is the
cutoff wavelength of the transmission line section,
and for a coaxial line λc = ∞.

It should be noted that Eq. (4.23) has an infinite
number of roots since the imaginary part of a
complex quantity (T ) is equal to the angle of the
complex value plus 2πn, where n is an integer.
Equation (4.23) is ambiguous because the phase
of the transmission coefficient T does not change
when the length of the material is increased by a
multiple of wavelength.

As the group delay through the material is
strictly a function of the total length of the sample,
the phase ambiguity can be resolved by finding
a solution for εr and µr from which a value of
group delay is computed that corresponds to the
value determined from measurement data at two
or more frequencies. For this method to work, the
discrete frequency steps at which measurements
are made must be small enough so that the phase
of the transmission coefficient (T ) changes less
than 2π from one measurement frequency to the
next. The group delay at each frequency may be
computed for each solution of εr and µr, assuming
that the changes in εr and µr are negligible over a
small increment of frequency:

τg,n = L
d

df

(
εrµr

λ2
0

− 1

λ2
c

) 1
2

n

(4.24)

where f is the frequency and τg,n is the group
delay for the nth solution of Eqs. (4.21) and (4.22).
The measured group delay is determined from the
slope of the phase of the transmission coefficient
versus frequency:

τg = − 1

2π
· dφ

df
(4.25)

where φ is the phase in radians of T . The correct
root (n = k) should satisfy

τg,k − τg = 0 (4.26)

Besides the group-delay method, the problem of
phase ambiguity can also be solved using phase-
unwrapping method (Hock 2002). It is possible to
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Figure 4.2 Wrapping and unwrapping of the phase of
the transmission coefficient

divide this problem into two parts: determination
of the initial phase, and phase unwrapping. Con-
sider a sample with constant permittivity over a
wide frequency range, such as Teflon. Figure 4.2
shows the phase of T calculated from Eq. (4.20),
which gives an answer between ±π . It is clear
from the figure that phase ambiguity arises from
the phase-wrapping effect. Obtaining the correct
additive constant of 2nπ for the logarithm in
Eq. (4.22) is then equivalent to phase unwrapping.
The unwrapped phase is also shown in Figure 4.2.

As the dielectric permittivity of an actual sample
may be frequency dependent, it is not easy to
determine the initial value correctly. One way
to resolve this is to choose the starting working
frequency (fmin) as low as possible, so that the
calculated phase can be seen to extrapolate to
the origin. In a low-loss sample, assuming that
εr and µr are fairly constant at low frequencies,
the maximum values of εr and µr that can be
determined unambiguously with a single sample is

εrµr =
(

c

2lfmin

)2

(4.27)

where fmin is the lowest frequency measurable and
l is the length of the sample. Equation (4.27) is
based on the assumption that the frequency of the
first wrapping of phase is equal to the starting
working frequency (fmin).

The phase-unwrapping can be done in a simple
way. The phase can be unwrapped by detecting a
jump in phase value of, say, more than π from
one measurement frequency to the next, and then
shifting all the subsequent phases by 2π in the
opposite direction. This is a commonly used phase-
unwrapping method. As long as the noise is less
than π , such an unwrapping is reliable.

Besides the phase ambiguities discussed above,
as will be discussed later, spurious peaks for
permittivity and permeability can be observed
when the sample length is a multiple of half
wavelength of the microwave within the sample. In
most of the transmission/reflection measurements,
the determinations of permittivity and permeability
are based on the NRW algorithm. To get the
correct permittivity and permeability results, the
phase ambiguities and spurious peaks should be
eliminated. In the following, we discuss three
methods to solve these problems.

4.1.3 Precision model for permittivity
determination

The NRW algorithm does not work well at fre-
quencies where the sample length is a multiple
of half wavelength in the material. The solid line
in Figure 4.3 displays the typical results calcu-
lated from the Nicolson–Ross–Weir equations. At
frequencies corresponding to integer multiples of
half wavelength in low-loss materials, the scat-
tering parameter |S11| becomes very small. The
equations are algebraically unstable as S11 → 0;
meanwhile, for small |S11|, the uncertainty in phase
measurement is large. To bypass this problem,
many researchers resort to using short samples.
However, use of short samples lowers the measure-
ment sensitivity. In fact, to minimize the uncer-
tainty in low-loss materials a relatively long sam-
ple is preferred (Baker-Jarvis 1990; Baker-Jarvis
et al. 1990).

Several ways can be used in solving the
scattering equations depending on the information
available. If the sample length and the positions
of the reference planes are exactly known, by
taking various linear combinations of the scattering
equations and solving the equations in an iterative
fashion, we can get stable solutions on samples of
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Figure 4.3 The determination of the permittivity of a PTFE sample as a function of frequency using
Nicolson–Ross–Weir equations (solid line) and the iteration procedure (dashed line) (Baker-Jarvis 1990). Source:
Baker-Jarvis, J. (1990), Transmission/Reflection and Short-circuit Line Permittivity Measurements, NIST Technical
Note, National Institute of Standards and Technology Boulder, CO

arbitrary length. A useful combination is (Baker-
Jarvis 1990)

1

2
[(S12 + S21) + β(S11 + S22)]

= T (1 − �2) + β�(1 − T 2)

1 − P 2�2
(4.28)

In Eq. (4.28), the S-parameters to be used need
to be transformed from the calibration planes to
the sample faces. Here β is a constant that varies
as a function of the sample length, uncertainty
in scattering parameters, and loss characteristics
of the material. For low-loss materials, the S21

signal is strong and so we can set β equal to zero,
whereas for high-loss materials, S11 dominates and
a large value of β is appropriate. A general relation
for β is given by the ratio of the uncertainty
in S21 divided by the uncertainty in S11. In
Figure 4.3, the iterative solution (in the dashed
line) is compared to the Nicolson–Ross–Weir
procedure for a sample of polytetrafluoroethylene
(PTFE) in 7-mm coaxial line. The contrast between
the two solutions is striking.

The measurement uncertainty for this method
has been analyzed (Baker-Jarvis 1990). Generally
speaking, for low-loss materials, the uncertainty
decreases as a function of increasing sample
length; for high-loss materials the uncertainty
increases as the sample length increases.

4.1.4 Effective parameter method

Boughriet et al. proposed a way to suppress the
inaccuracy peaks at multiple half-wavelength fre-
quencies, by introducing effective electromagnetic
parameters εeff and µeff that satisfy the following
equations (Boughriet et al. 1997):

� =
√

µeff/εeff − 1√
µeff/εeff + 1

(4.29)

T = exp

(
−j

2π

λ0g

√
µeffεrffL

)
(4.30)

γ = γ0
√

εeffµeff (4.31)

Z = Z0

√
µeff

εeff
(4.32)

with

λ0g = 1√
(1/λ2

0) − (1/λ2
c)

(4.33)

Though εeff and µeff presuppose a TEM propa-
gation mode in the measurement cell, the follow-
ing conclusions obtained can be extended to other
measurement cells, such as microstrip or coplanar
lines, or rectangular waveguide with TM01 propa-
gation mode (Boughriet et al. 1997).
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Figure 4.4 Influence of the n parameter on the calculated real permittivity for PTFE sample (observed for n = 0
and, respectively, n = 1 + x, n = 1 − x with x = 0.2) (Boughriet et al. 1997). Source: Boughriet, A. H. Legrand, C.
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From Eqs. (4.29) and (4.30), we can get

µeff = λ0g

�
· 1 + �

1 − �
(4.34)

εeff = λ0g

�
· 1 − �

1 + �
(4.35)

From Eqs. (4.31) and (4.32), we can get the rela-
tionship between the effective parameters and sam-
ple properties:

µr = µeff (4.36)

εr =
(

1 − λ2
0

λ2
c

)
εeff + λ2

0

λ2
c

· 1

µeff
(4.37)

On the basis of the above preparation, Boughriet
et al. established a new expression for the deter-
mination of permittivity of dielectric materials.
For a dielectric material (µr = µeff = 1), from
Eqs. (4.34) and (4.35), we can get

εeff = εeffµeff = λ2
0g

�2
(4.38)

In Eq. (4.38), as the term [(1 − �)/(1 + �)] in
Eqs. (4.34) and (4.35), which is the source of
source of the inaccuracy peaks, is eliminated, so
the inaccuracy peaks are suppressed (Boughriet
et al. 1997).

For dielectric material, a more general equation
can be obtained by combining Eqs. (4.34) and
(4.35):

εeff = εeff(µeff)
n =

(
1 − �

1 + �

)n−1

·
(

λ0g

�

)n+1

(4.39)

The exponent n is a real number and can be
positive or negative. This general equation includes
the Stuchly method (with n = −1) (Stuchly and
Matuszewski 1978), the NRW method (with n =
0), and Eq. (4.38) (with n = 1). Figure 4.4 shows
the calculated permittivity of PTFE versus the
frequency at various values of the n parameters.
We find that inaccuracy peak amplitudes decrease
as n approaches the value of one, and completely
disappear when n = 1. Figure 4.4 also shows a
symmetry in the inaccuracy peaks for the cases n =
1 + x and n = 1 – x. Detailed uncertainty analysis
can be found in Boughriet et al. (1997).

4.1.5 Nonlinear least-squares solution

Usually, the determination of permittivity and
permeability by the reduction of scattering data
is on a frequency-by-frequency or point-by-point
basis, that is, by the explicit or implicit solution of
a system of nonlinear scattering equations at each
particular frequency. The point-by-point reduction
techniques for magnetic materials contain large
random uncertainties because of the propagation
of uncertainties through the equations.

Baker-Jarvis et al. proposed a viable alternative
solution using nonlinear processes, which mini-
mize the square error (Baker-Jarvis et al. 1992).
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This optimization-based data reduction has an
advantage over point-by-point schemes in that cor-
relations are allowed between frequency measure-
ments. In nonlinear regression, if deemed appro-
priate, it is not necessary to even include S11 in
the set of constraint equations. Another advan-
tage of regression is that constraints such as
causality and positivity can be incorporated into
the solution.

This method is suitable for obtaining complex
permittivity and permeability spectra of isotropic,
homogeneous materials, from scattering parame-
ters, using a nonlinear regression model. The scat-
tering equations are solved in a nonlinear least-
squares sense with a regression algorithm over
the entire frequency measurement range. The com-
plex permittivity and permeability are obtained by
determining the coefficients of a pole-zero model
for these parameters consistent with linearity and
causality constraints. The method can be extended
to the analysis of multimode problems and the
determination of systematic uncertainty of mea-
surements (Baker-Jarvis et al. 1992).

In this method, an explicit frequency-dependent
form for εr and µr is used for the determination
of εr and µr. Usually, the general form for εr and
µr should satisfy a Kramers–Kronig relation. The
zeros and poles of a complex function determine
the function.

The Laplace transform of the real, time-
dependent permittivity satisfies

ε(r, s) =
∫ ∞

0
ε(r, t)e−stdt (4.40)

For stability, there can be no poles in the right of
the s-plane. Since ε(t) is real, the poles and zeros
are confined to the negative real s-axis of the s-
plane, and the poles which are off the real s-axis
must occur in complex conjugate pairs (Baker-
Jarvis et al. 1992).

According to the Debye model, the permittivity
of a material can be expressed in the form

εr = 1

1 + jBω
+ C (4.41)

where B and C are constants and ω is the angular
frequency. On the basis of the Debye model, we

can assume a series of poles of the first and second
order for εr and µr:

µr(ω) = A0 +
∑

i

A1i

1 + jB1iω

+
∑

i

A2i

(1 + jB2iω)2
(4.42)

εr(ω) = D0 +
∑

i

A3i

1 + jB3iω

+
∑

i

A4i

(1 + jB4iω)2
(4.43)

The above expansions can yield excellent results
where Bi are real numbers. The poles should all
reside in the left half plane. In the algorithm, a
couple of poles per frequency decade is assumed.

The approach for determining the parameters Aj

and Bj is to minimize the sum of the squares of
the differences between the predicted and observed
S-parameters (Baker-Jarvis et al. 1992):

min

∣∣∣∣
∣∣∣∣∑

ij

(Sij − Pij )

∣∣∣∣
∣∣∣∣ (4.44)

where the measured S-parameter vector is
denoted by

Sij = (Sij (ω1), Sij (ω2), . . . , Sij (ωn)) (4.45)

and the predicted S-parameter vector is expressed
as

Pij = (Pij (ω1), Pij (ω2), . . . , Pij (ωn)) (4.46)

So the problem becomes one of finding the
minimum normal solution to these equations. A
comparison of the optimized solution to a point-
by-point solution is shown in Figure 4.5. For
more complicated polarization phenomena, other
relations for permittivity can be used.

This technique has been successful for many
isotropic magnetic and relatively high-dielectric-
constant materials. The reflection data (S11) are
usually of lesser quality than the transmission
data (S21) for low-loss, low-permittivity materials.
Therefore, it is not necessary to include S11 in the
solution for low-loss materials. The use of analytic
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Figure 4.5 Permittivity for a leaded glass over 0.045–
18 GHz for the optimized solution (dashed line)
and point-by-point techniques (solid line) (Baker-Jarvis
et al. 1992). Source: Baker-Jarvis, J. Geyer, R. G. and
Domich, P. D. (1992). “A nonlinear least-squares solu-
tion with causality constraints applied to transmission
line permittivity and permeability determination”, IEEE
Transactions on Instrumentation and Measurement, 41
(5), 646–652.  2003 IEEE

functions for the expansion functions allows a
correlation between the real and imaginary parts
of the permittivity and permeability.

This method can be used to reduce the scatter-
ing data of high-dielectric-constant materials. In
some cases, the optimized procedure yields solu-
tions when the point-by-point technique fails com-
pletely. The optimized technique can also be used
to treat problems where sample lengths, sample
holder lengths, and sample positions are not known
to be highly accurate. More discussions on this
method can be found in Baker-Jarvis et al. (1992).

4.2 COAXIAL AIR-LINE METHOD

Coaxial air line is the most widely used trans-
mission line in the characterization of permittivity
and permeability of materials. In a coaxial air-line
method, the toroidal sample is inserted between
the inner and outer conductors of the coaxial line.
Coaxial air-line method has obvious advantages in
that it, theoretically, can work down to zero fre-
quency and can cover a wide frequency range. In
the choice of a coaxial air line, we should con-
sider the characteristic impedance and the working
frequency range.

4.2.1 Coaxial air lines with different diameters

As discussed in Chapter 2, the characteristic
impedance Zc of a coaxial line is given by

Zc = 60√
εr

ln

(
b

a

)
(4.47)

where b and a are the outer and inner radii of the
coaxial line and εr is the relative dielectric per-
mittivity of the insulator filled between the inner
and outer conductors. As in most measurement
systems, the characteristic impedance of the mea-
surement circuit is 50 � and the impedance of
coaxial line is often chosen as 50 �. To decrease
the insertion loss of a coaxial line, low-loss dielec-
tric, usually Teflon, is used as the insulator between
the inner and outer conductors.

For a coaxial air line often used in materials
property characterization, the insulation dielectric
between the inner and outer conductors is air. From
Eq. (4.47), we can get the relationship between the
inner and outer diameters of a 50 � coaxial line:

b = 2.3 · a (4.48)

Usually, a coaxial line is named according to its
outer diameter, for example, 3.5-mm coaxial line,
7-mm coaxial line, and 14-mm coaxial line.

Besides the fundamental TEM mode, TE and
TM modes can also propagate in a coaxial
cable. To ensure the measurement accuracy and
sensitivity, the coaxial line for materials property
characterization should work in a pure TEM mode.
The working frequency ranges for coaxial air lines
with different dimensions are listed in Table 4.1.
The coaxial air line with smaller outer diameter
has wider working frequency range, but it has
more strict requirements on sample fabrication
than the coaxial air line with larger outer diameter.

Table 4.1 The working frequency ranges of
50 � coaxial air lines with different outer
diameters

Outer diameter (mm)
Working frequency

range (GHz)

3.5 0–34.5
7.0 0–18.2

14.0 0– 8.6
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For composite samples with large size inclusions,
coaxial air lines with larger outer diameters are
more suitable.

4.2.2 Measurement uncertainties

As transmission/reflection methods have closed-
form solutions for the calculation of complex per-
mittivity and permeability, its uncertainty analy-
sis can be conducted systematically. The uncer-
tainty sources of transmission/reflection method
mainly include algorithm uncertainty, air gap,
uncertainty of sample position, and uncertainties
of S-parameter measurement.

4.2.2.1 Differential analysis of algorithm

Differential analysis on the algorithms for transmis-
sion/reflection method has been conducted by
many researchers, including Baker-Jarvis (1990)
Baker-Jarvis et al. (1993), Smith (1995) and Youngs
(1996). As an example, we discuss Nicolson–Ross–
Weir algorithm. In Eqs. (4.18)–(4.23), five parame-
ters are used to deduce the complex permittivity and
complex permeability: amplitude and phase of com-
plex reflection (S11 and φ11), amplitude and phase of
complex transmission (S21 and φ21), and the thick-
ness of sample D. In the uncertainty analysis, we
should consider the contributions from each of the
five parameters. The uncertainties of real and imag-
inary parts of permittivity and permeability can be
generally expressed as

Uε′
r
=

√√√√ n∑
n=1

Re

(
∂εr

∂ei

· Uei

)2

(4.49)

Uε′′
r
=

√√√√ n∑
n=1

Im

(
∂εr

∂ei

· Uei

)2

(4.50)

Uµ′
r
=

√√√√ n∑
n=1

Re

(
∂µr

∂ei

· Uei

)2

(4.51)

Uµ′′
r
=

√√√√ n∑
n=1

Im

(
∂µr

∂ei

· Uei

)2

(4.52)

where ei are S11, φ11, S21, φ21 and D; Ua indicates
the uncertainty of parameter a; and parameter

a refers to the real and imaginary parts of
permittivity and permeability, or parameters ei .

4.2.2.2 Effect of air gaps

For a coaxial air-line method, the uncertainties
caused by the air gaps are serious. As shown in
Figure 4.6, in a coaxial measurement cell, there
may exist air gaps between the sample and the
inner conductor, and between the sample and the
outer conductor.

The effects of air gaps, shown in Figure 4.6,
to the measurement results of permittivity and
permeability can be analyzed using the layered
capacitor model (Baker-Jarvis et al. 1993). In this
model, the air gaps are assumed to be uniform,
with circular symmetry, and the segment of
coaxial air-line filled with sample can be taken as
capacitors in series. The relationships between the
measurement results (εm and µm) and the corrected
results (εc and µc) are given by (Youngs 1996)

ε′
c = ε′

m ·
(

L2

L3 − ε′
mL1

)
(4.53)

ε′′
c =

(
ε′

c
ε′′

m

ε′
m

)
· L3

L3 − L1ε′
m[1 + (ε′′

m/ε′
m)2]

(4.54)

µ′
c = µ′

m · L3 − L1

L2
(4.55)

µ′′
c = µ′′

m · L3

L2
(4.56)

d1 d2 d3 d4

Figure 4.6 Air gaps in a coaxial-line sample holder.
Source: Baker-Jarvis, J. Janezic, M. D. Grosvenor, J. H.
Jr. and Geyer, R. G. (1993). Transmission/Reflection and
Short-circuit Line Methods for Measuring Permittivity
and Permeability, NIST Technical Note 1355 (revised),
National Institute of Standards and Technology, Boul-
der, CO



184 Microwave Electronics: Measurement and Materials Characterization

where

L1 = ln

(
d2

d1

)
+ ln

(
d4

d3

)
(4.57)

L2 = ln

(
d4

d1

)
(4.58)

L3 = ln

(
d3

d2

)
(4.59)

The correction factor is taken as the ratio of
the corrected component to the measured uncor-
rected component. Figure 4.7 shows the relation-
ship between the correction component of dielec-
tric constant and the air gap between the inner
conductor and the sample. It shows that when the
gap between the inner conductor and the sample
increases, the correction component increases; and
when the dielectric constant value increases, the
correction factor increases. Similar conclusions can
also be obtained for the correction components of
other components of materials’ intrinsic properties.

It should be noted that the air gap between
the inner conductor and the sample could cause
larger uncertainties than the one between the
sample and the outer conductor. As the electric
and magnetic field are concentrated near the inner
conductor, even a small air gap between the inner

1.56

1.50

1.44

1.38

1.31

1.25

1.19

1.13

1.06

0 0.01 0.02

(d1 − d2)/d1

0.03 0.4045
1

e ′m = 2

e ′m = 5

e
c′ /

e
m′

e ′m = 8

Figure 4.7 The gap correction calculated for various
values of dielectric constants, where d1 and d2 are
defined in Figure 4.6 (Baker-Jarvis et al. 1993). Source:
Baker-Jarvis, J. Domich, M. D. and Geyer, R. G.
(1993). Transmission/Reflection and Short-circuit Line
Methods for Measuring Permittivity and Permeability,
NIST Technical Note 1355 (revised), National Institute
of Standards and Technology, Boulder, CO

(a) (b)

Figure 4.8 Air gaps in a coaxial air line filled with a
sample. (a) A sample with an air gap between the inner
conductor and the sample, and an air gap between the
outer conductor and the sample and (b) a sample without
an air gap between the inner conductor and the sample,
but with an air gap between the outer conductor and
the sample

conductor and the sample may result in large
errors. Furthermore, as shown in Figure 4.8(a),
because of the existence of the air gap between the
inner conductor and the sample, the sample may
be not symmetrical in the coaxial air line, so the
above corrections could not be applied. Therefore,
we should try to eliminate the air gap between
the inner conductor and the sample. Besides, in
experiments, the outer diameter of the sample is
often made a little smaller than the inner diameter
of the outer conductor of the coaxial air-line,
as shown in Figure 4.8(b), so that the sample
could be easily inserted into the measurement
fixture, and the effect of the air gap between the
sample and outer conductor can be corrected using
Eqs. (4.53)–(4.59).

4.2.2.3 Effect of sample placement

In actual measurements, there may be some dis-
tances between the sample ends and the calibration
planes. A phase correction is required when any
length of transmission line is added beyond the
calibration plane. For the general case shown in
Figure 4.9, the phase corrections for S11 and S21

are given by


φ11 = 2a · 2πf

c
(4.60)


φ21 = (a + b) · 2πf

c
(4.61)
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Figure 4.10 Effects of measurement uncertainties of S11. (a) |S11| > |US11| and (b) |S11| < |US11|
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Figure 4.9 Sample placement in the sample holder

where f is the measurement frequency and c is
speed of light in vacuum.

In most of the algorithms for transmission/reflec-
tion methods, S11 and S21 are used in the calculation
of the properties of materials. So the uncertainties
of the sample position in the transmission line
may cause uncertainties to the measurement results.
Meanwhile, it should be noted that only the phases
of S11 and S21 varies with the position of the sample
within the transmission line, provided that the
overall length of the transmission line is accurately
known.

4.2.2.4 S -parameter measurement uncertainties

The measurement uncertainties of S-parameters
directly cause uncertainties of permittivity and per-
meability values. The uncertainties of S-parameters
can be minimized by calibration, but cannot be elim-
inated because of the limited dynamic range in an
actual measurement instrument.

Figure 4.10 schematically shows the effects of
measurement uncertainties of S11. In the figure, the
actual S11 value is denoted as S11, the measure-
ment uncertainty of S11 is denoted as US11, and
the measured value of S11 is denoted as MS11. The
vector MS11 is the vector sum of S11 and US11. The
amplitude and phase difference between the mea-
sured S11 and actual S11 is due to the measurement
uncertainty of S11. When |S11| > |US11| as shown
in Figure 4.10(a), the amplitude and phase differ-
ences between the measured S11 and the actual S11

are not large. Whereas, if |S11| < |US11| as shown
in Figure 4.10(b), the amplitude and phase differ-
ences between the measured S11 and actual S11

are large, and such differences cause great uncer-
tainties in the calculation of permittivity and per-
meability. In transmission/reflection method, when
the sample length is an integral times of the half
wavelength of the microwave in the sample, the
value of S11 is very small, so the uncertainties of
S11 cause great uncertainties in the results of per-
mittivity and permeability.

4.2.3 Enlarged coaxial line

For samples with coarse grains, such as soil,
concrete, and rock, large samples are needed
to average out the fluctuations in the dielectric
properties of the heterogeneous materials. So, the
coaxial lines need to be enlarged to host large
samples. Two kinds of enlarged coaxial lines are
often used: enlarged circular coaxial line and
enlarged square coaxial lines.
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Figure 4.11 Schematic drawings of an enlarged circular coaxial line. (a) Longitudinal view and (b) cross-
section view

4.2.3.1 Enlarged circular coaxial line

Chew et al. proposed an enlarged circular coaxial-
line structure (Chew et al. 1991). As shown in
Figure 4.11, the measurement cell mainly consists
of three parts: transition from normal coaxial line
to large coaxial line, large coaxial sample holder,
and transition from large coaxial line to normal
coaxial line.

In the design of an enlarged measurement cell,
the outer conductor radius b is made as large
as possible, while the inner conductor radius
a is adjusted for a characteristic impedance of
50 �. The restriction for this is that the value of
(b − a) should be no larger than the half-sample
wavelength at the highest operating frequency to
prevent the existence of higher-order propagating
modes. Meanwhile, the desired sample length is as
long as possible for low-frequency-phase accuracy,
but short enough to avoid resonance and to ensure
adequate transmission at high frequencies. For the
measurement cell developed by Chew et al., the
diameter of the inner conductor is 1.535 cm, and
the diameter of the outer conductor is 4.992 cm.

Similar to a conventional coaxial measure-
ment cell, an enlarged coaxial measurement cell
requires calibration. As calibration standards for
large coaxial lines are not commercially avail-
able, special calibration method should be devel-
oped in the design of large coaxial measurement
cell. As a coaxial line can cover a wide fre-
quency range, in calibration and measurement pro-
cedures, we can divide the whole frequency range
into several frequency subranges. Chew et al. pro-
posed three methods for three frequency sub-
ranges respectively: low frequency (1–30 MHz),

medium frequency (30–800 MHz), and high fre-
quency (800 MHz–3 GHz).

Standard “short” is often used in different kinds
of calibration methods. A standard “short” should
provide good electrical contact to both inner and
outer conductors, as there are electrical currents
flowing between the inner and outer conductors
through the “short”, and a small gap between the
standard “short” and the inner or outer conductor
may result in large errors. In the design of the
structure of a large coaxial line, the calibration
procedures and techniques should be taken into
consideration.

4.2.3.2 Enlarged square coaxial line

Enlarged square coaxial line has also been devel-
oped for the characterization of electromagnetic
properties of materials. As shown in Figure 4.12,
the structure of an enlarged square coaxial line
is similar to that of an enlarged circular coaxial
line. The measurement cell also consists mainly
of three parts: transition from normal coaxial line
to large square coaxial line, large square coaxial
sample holder, and transition from large square
coaxial line to normal coaxial line. In the design of
a square coaxial line, the side length b of the outer
conductor and the side length a of the inner con-
ductor should be chosen to ensure suitable charac-
teristic impedance and to avoid higher-order prop-
agation modes. The impedance of square coaxial
line is usually chosen as 50 � or 60 �. Similar
to the enlarged circular coaxial line method, in the
design of a square coaxial line, we should consider
the calibration techniques used in the enlarged
square coaxial line method.
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Figure 4.12 Schematic drawings of an enlarged rectangular coaxial line. (a) Longitudinal view and (b) cross view

The samples for square coaxial lines may con-
sist of several pieces of rectangle-shaped materials.
The fabrication of samples for square coaxial lines
is usually easier than the fabrication of toroid-
shaped samples for circular coaxial lines. Square
coaxial lines are also ideal for the characterization
of periodic structures such as pyramidal absorbers,
honeycombs, circuit-analog (CA) sheets, and fre-
quency selective surfaces (FSS). For these applica-
tions, square coaxial lines with 60-� characteristic
impedance have obvious advantage. For a 60-�
square coaxial line, the side length b of the outer
conductor is about three times of the side length
a of the inner conductor. To simulate a sample
with infinite array, we can arrange eight pieces
of square samples with side length b in the space
between the outer and inner conductors as shown
in Figure 4.12(b).

4.3 HOLLOW METALLIC
WAVEGUIDE METHOD

Two types of hollow metallic waveguides are
often used in microwave electronics: rectangular
waveguide and circular waveguide. Owing to the
possible degenerations in circular waveguides,
rectangular waveguides are more widely used,
while circular waveguides have advantages in the
characterization of chiral materials, which will
be discussed in Chapter 10. Here we focus on
rectangular waveguides.

Compared to the samples for coaxial-line
method, the samples for rectangular waveguide
method can be fabricated more easily, while a
coaxial-line method can cover much wider fre-
quency range than a waveguide method.

4.3.1 Waveguides with different
working bands

In most cases, the width a and height b of a
rectangular waveguide satisfies b/a = 1/2, and
the waveguide usually works at TE10 mode. As
discussed in Chapter 2, to ensure the single-mode
requirement in materials property characterization,
the wavelength should be larger than a and should
be less than 2a, so that for a given waveguide,
there are limits for minimum frequency and
maximum frequency. To ensure good propagations,
about 10 % of the frequency range next to the
minimum and maximum frequency limits is not
used. Table 4.2 lists several bands of waveguides
often used in microwave electronics and materials
property characterization.

4.3.2 Uncertainty analysis

The uncertainties of waveguide transmission/reflec-
tion methods can be analyzed in a similar way as that

Table 4.2 Properties of rectangular waveguides often
used in materials property characterization

Band a (mm) b (mm)

Cutoff
frequency

(GHz)

Maximum
frequency

(GHz)

Operating
frequency

range (GHz)

L 165.10 82.55 0.908 1.816 1.12–1.70
W 109.22 54.61 1.372 2.744 1.70–2.60
S 72.14 34.04 2.078 4.156 2.60–3.95
G 47.55 22.15 3.152 6.304 3.95–5.85
J 34.85 15.80 4.302 8.604 5.75–8.20
X 22.86 10.16 6.557 13.114 8.20–12.4
P 15.80 7.90 9.487 18.974 12.4–18.0
K 10.67 4.32 14.048 28.096 18.0–26.5
R 7.112 3.556 21.082 42.164 26.5–40.0



188 Microwave Electronics: Measurement and Materials Characterization

Sample

(a) (b)

d b

Air gap

Figure 4.13 Air gaps in a waveguide sample holder. (a) Waveguide with air gaps along the width and height and
(b) waveguide with air along the width only

conducted for coaxial-line transmission/reflection
method. In the following, we discuss the uncertain-
ties due to air gap and sample groove.

4.3.2.1 Air gap

As shown in Figure 4.13, for a waveguide filled
with sample, there may exist air gaps along the
width and height of the waveguide. As the effect
of air gap along the height is not as serious as the
one along the width, in the following discussion,
we consider the case with air gap along the width
only, as shown in Figure 4.13(b).

Many researchers have studied the effects of air
gap by representing the sample with air gap as a
layered capacitor (Champlin and Glover 1966). In
this approach, the gaps between the transmission
line and the sample are effectively modeled by a
set of capacitors in series. It should be noted that
this model is frequency independent and thus is
strictly valid only at low frequencies, and it breaks
down at high frequencies because the wavelength
decreases with increasing frequency to a point
where multiple scattering dominates.

In order to account for multiple scattering,
Baker-Jarvis et al. studied the effect of air gap in a
frequency-dependent approach (Baker-Jarvis et al.
1993). From the transverse resonance condition
for the structure shown in Figure 4.13(b), we can
get (Marcuvitz 1951)

tan(k1cd) + X tan[k2c(b − d)] = 0 (4.62)

with

k1c = ω

c

√
εrs − εr0 (4.63)

k2c = ω

c

√
εrg − εr0 (4.64)

X = εrs

εrg
·
√

εrg − εr0√
εrs − εr0

(4.65)

where εrs is the dielectric constant of the sample,
εrg is the dielectric constant of the gap, and εr0

is the measured value of dielectric constant. By
solving Eq. (4.62) using iteration method, we can
get the dielectric constant εrs of the sample from the
measured dielectric constant εr0. The relationship
between εr0 and εrs can also be approximately
expressed by (Musil and Zacek 1986)

ε′
rs = ε′

r0 · d

b − (b − d)ε′
r0

(4.66)

tan δs = tan δ · b

b − (b − d)ε′
r0

(4.67)

It should be noted that, if the air gaps in
waveguide sample holders are very small, the
errors due to the air gaps could essentially be
eliminated by using a conducting paste to fill the
gaps (Wilson 1988).

4.3.2.2 Sample groove

When a thin sample, much thinner than the
transverse dimensions of the waveguide, is held
in a waveguide measurement fixture, we may
encounter an error source that is difficult to be
removed (Luebbers 1993). This situation occurs
when measuring the complex permittivity and
permeability for very thin material samples at low
frequencies. Since very large waveguides must
be used, the sample thickness is only a small
fraction of the waveguide transverse dimensions,
and it is very difficult to reliably hold the samples
perpendicular to the waveguide axis.

One approach for holding thin samples perpen-
dicular to the measurement waveguide axis is to
cut a small groove in the waveguide walls with
the same thickness as the sample and just deep
enough to hold the sample in place, as shown
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Figure 4.14 Waveguide with material sample in the groove
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Figure 4.15 Dielectric rod within a cylindrical holder placed inside a rectangular waveguide. (a) Upper view and
(b) cross view A − A′

in Figure 4.14. The inclusion of the waveguide
groove for holding the sample introduces errors to
the measurement results. These errors are mainly
due to the excitation of higher-order modes in the
sample and in the waveguides. These higher-order
modes mainly have unwanted effects, as the deter-
mination of the complex constitutive parameters
of the material assumes single-mode propagation
through the waveguide.

In actual cases, it is usually difficult to ensure
that the groove strictly fits the thin sample under
study, for example, the thickness of the groove
may be larger than the thickness of the sample.
In these cases, the effects of the groove become
more serious. Detailed discussion on the effects of
the groove can be found in (Luebbers 1993).

4.3.3 Cylindrical rod in rectangular waveguide

Introducing a dielectric rod into a rectangular
waveguide is a kind of variation of the conven-
tional waveguide transmission/reflection method

(Abdulnour et al. 1995; Esteban et al. 2000). As
shown in Figure 4.15, a rod dielectric sample is
placed along the y-axis inside a rectangular waveg-
uide. The dielectric properties of the rod sample
can be calculated from the scattering parameters
measured at port 1 and port 2. For liquid samples
or granular samples, a sample holder is needed.

Using this method, the air gaps existing in
conventional waveguide method are eliminated,
and this method has wider working frequency
ranges as the possible higher-order modes can be
taken into consideration in the algorithms for the
calculation of properties of materials. Abdulnour
et al. (1995) proposed a genetic method based on
a combination of the boundary integral equation
technique with a modal expansion approach,
while Esteban et al. (2000) proposed a hybrid
iterative method. In this section, we discuss
Esteban’s method, and Abdulnour’s method is
discussed in Chapter 7 when this method is used
in microstrip lines.
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We consider the case when the dielectric pie
inside the waveguide is filled with the material
under test, as shown in Figure 4.15. In the sim-
ulation of the behavior of the multilayer dielec-
tric rod placed inside a rectangular waveguide, a
three-step analysis procedure is performed. First,
the plates of the rectangular guide are split into
smaller strips that are characterized individually
by using a numerical method. Next, the multilayer
dielectric rod is characterized using the analytic
spectral method (Kolawole 1992). The scattering
behavior of each element, including the strips and
the multilayer rod, is provided by an “individ-
ual scattering matrix”, which only relates inci-
dent and scattered spectral waves to that object.
Finally, the electromagnetic coupling among all
the elements previously characterized is solved by
an iterative method, initially proposed by Esteban
et al. (1997) for open-space problems, and which
has been revisited by Esteban et al. (2000) for the
accurate analysis of guided problems. Following
this method, each scattering object is finally char-
acterized by a “combined scattering matrix”, which
relates incident and scattered spectra to that object
but taking into account the presence of the other
scattering objects.

These combined scattering matrices give a full-
wave solution of the structure in an open-space
spectral domain. However, the scattering parame-
ters of the guided structure are needed to compare
with the measurement results. To obtain the desired
scattering parameters, a short circuit is placed in
the output reference plane (port 2 in Figure 4.15).
The “combined scattering matrices” of the objects
are used to compute the electric and magnetic
fields in both the reference planes, taking the fun-
damental mode in the input reference plane as the
excitation of the structure. Finally, the admittance
parameters Y11 and Y21 can be expressed as

Y11 =

∫ a

0
H1 · h ′′

i dx∫ a

0
E1 · e ′′

i dx

∣∣∣∣
E2=0

(4.68)

Y21 =

∫ a

0
H2 · h ′′

i dx∫ a

0
E1 · e′′

i dx

∣∣∣∣
E2=0

(4.69)

where E1, H1 and H2 are the electric and
magnetic fields in the input and output reference
planes, e ′′

i and h ′′
i are the TE10 vector mode

functions (Marcuvitz 1951), x is a coordinate in
the transversal direction, and a is the width of the
waveguide.

Once the admittance matrix has been obtained,
the scattering matrix is directly computed from
the admittance matrix. More detailed information
about the algorithm can be found in Esteban
et al. (2000).

4.4 SURFACE WAVEGUIDE METHOD

Regarding geometrical structure and field distri-
bution, surface waveguide is a type of transmis-
sion line between free space and closed transmis-
sion line such as coaxial line and hollow metallic
waveguide. Surface waveguides have been used in
the characterization of the electromagnetic prop-
erties of materials. In the following, we discuss
the applications of circular and rectangular dielec-
tric waveguides in the characterizations of materi-
als properties.

4.4.1 Circular dielectric waveguide

Figure 4.16 shows a configuration for the mea-
surement of complex permittivity using dielec-
tric waveguides. The sample under test is placed
between the ends of two dielectric waveguides, and
it is in direct contact with the two waveguides. This
configuration is suitable for the measurement of
samples in the form of plates. It is usually required
that the sample must be plane parallel. The sam-
ple may be of an arbitrary shape, but its transverse
dimensions must be greater than, or in the limit-
ing case equal to the transverse dimensions of the
dielectric waveguide.

This system is based on two basic properties
of dielectric waveguides (Musil and Zacek 1986).
The first property is that the energy transferred
in a dielectric waveguide is practically entirely
concentrated inside the dielectric waveguide. The
ability of dielectric waveguides to transfer prac-
tically the whole power inside themselves per-
mits us to measure specimens with the transverse
cross section practically equal to the cross section
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Figure 4.16 Principle of the nondestructive measurement of the complex permittivity with dielectric wave-
guides (Musil and Zacek 1986, p69). Reprinted from Musil, J. and Zacek, F. (1986). Microwave Measurements
of Complex Permittivity by Free Space Methods and Their Applications, with permission from Elsevier, Amsterdam

of the dielectric waveguide. So, with the help
of dielectric waveguides, we can measure plates
of small transverse dimensions, and we can also
make measurements on local inhomogeneities of
large specimens.

The other property is that the phase velocity vφ

of the wave propagation in a dielectric waveguide
is equal to the phase velocity of a plane wave in
an unbounded dielectric medium:

vφ = c/
√

εrd (4.70)

where εrd is the dielectric constant of the dielec-
tric waveguide. So, we can use the algorithms
discussed in the first section of this chapter for

evaluating the complex permittivity of the sample
being measured.

However, it should be noted that these formulae
may be used only for evaluating the complex per-
mittivity of specimens whose dielectric constant
is greater than, or at least equal to the dielec-
tric constant of the material of which the dielec-
tric waveguides are made. Only in this case, the
phase velocity of the wave passing through the
sample is equal to the phase velocity in the infi-
nite dielectric medium whose dielectric constant
equals the dielectric constant of the sample under
test (Musil and Zacek 1986). This can be seen
from Figure 4.17. Consider dielectric waveguides
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Figure 4.17 Dependence of the normalized phase velocity vφ/c of the hybrid HE11 mode on the diameter d/λ0

of a dielectric rod for different values of dielectric constant of the rod material (Musil and Zacek 1986, p67).
Reprinted from Musil, J. and Zacek, F. (1986). Microwave Measurements of Complex Permittivity by Free Space
Methods and Their Applications, with permission from Elsevier, Amsterdam
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made of the material with dielectric constant
εrd > 10 and diameter d = 0.8λ0. For samples
with εrs ≥ 10, the phase velocity of waves pass-
ing through the specimen is given by Eq. (4.70).
For samples with εrs < 10, the phase velocity of
waves passing through the specimen is larger than
what is given by Eq. (4.70). As the phase veloc-
ity of waves passing through the specimens with
εrs < εrd does not equal the phase velocity in an
unbounded dielectric medium having the same
dielectric constant εrs, the complex permittivity of
such specimens cannot be accurately measured in
this way.

In practice, dielectric waveguides of the circu-
lar shape are used most frequently. The design of
a cylindrical dielectric waveguide can easily be
performed by means of the dependences of vφ/c

on d/λ0, as shown in Figure 4.17. The graphs
of Figure 4.19 may also be used for approxi-
mate design of dielectric waveguides of noncir-
cular cross sections by defining the d/λ0 on the
abscissa axis as

d/λ0 = 1.13
√

S/λ0 (4.71)

where S is the area of the transverse cross section
of the waveguide (Schlesinger and King 1958).

4.4.2 Rectangular dielectric waveguide

A rectangular dielectric waveguide technique has
been proposed to determine the dielectric con-
stant of materials of various thickness and cross
sections at the Q and W bands (Abbas et al.
1998a, b, 2001). In a similar manner to the cylin-
drical dielectric waveguide technique described
above, a parallelepiped-shaped sample is placed in
direct mechanical contact between two rectangu-
lar dielectric waveguides, as shown in Figure 4.18.
Using this technique for the measurement of
dielectric materials, the dielectric constant of the
sample is usually determined iteratively from the
effective refractive index measurements by using
the solution of the wave equation. However, due to
the open discontinuity problem between the rectan-
gular dielectric waveguide and sample, this tech-
nique cannot give accurate value of loss tangent
(tan δ), especially for low-loss samples.

n1 n2

z = 0

Rectangular
dielectric
waveguide

Rectangular
dielectric
waveguide

Sample

z = d

n1

Figure 4.18 Effective index model of rectangular
dielectric waveguide and sample

We follow Abbas’s approach for measuring the
dielectric constant and loss tangent of a sample
using the rectangular dielectric waveguide tech-
nique (Abbas et al. 2001). In the following, we dis-
cuss the properties of rectangular dielectric wave-
guide, the calculation of the dielectric constant and
loss tangent, and the measurement setup.

4.4.2.1 Rectangular dielectric waveguide

The propagation characteristics in rectangular
dielectric waveguide and its derivatives have been
studied for quite a long time. The solution of each
mode lies between two extreme formulations given
by Marcatili’s method and the conventional effec-
tive index method (Abbas et al. 2001). Consider
the E

y
pq mode propagating along the z-direction

with the propagation constant βz. The electric field
is polarized along the y-direction with subscripts p

and q indicating the number of extrema of the elec-
tric field in the y and x directions, respectively. In
the conventional effective index method, the prop-
agation constant βz of the E

y
pq mode can be found

by solving the following equations:

βxa = pπ − 2 tan−1

(
βx

βx0

)
(4.72)

βya = qπ − 2 tan−1

(
βy

βy0

)
(4.73)

β2
z = k2

0εr − β2
x − β2

y (4.74)

with
βx0 = [(εeff − 1)2k2

0 − β2
x ]1/2 (4.75)

βy0 = [(εr − 1)2k2
0 − β2

y ]1/2 (4.76)
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k0 = 2π

λ
(4.77)

εeff = εr −
(

βy

k0

)2

(4.78)

The effective index method reduces to Marcatili’s
method if Eq. (4.78) is replaced by

εeff = ε′
r. (4.79)

Figure 4.19 shows the dispersion relation for
E

y

11 and E
y

21 modes for a rectangular dielectric
waveguide made of Teflon (εr = 2.0 − j0.0002)
with dimensions equal to the Ka-band waveguide.
It can be seen that according to the Marcatili’s
method, the E

y

21 modes do not appear in the waveg-
uide over the Ka-band frequency range. However,
when using the effective index method, the cut-
off frequency for the E

y

21 mode is approximately
37 GHz. The latter is used as the condition for
single-mode E

y

11 propagation in the waveguide.

4.4.2.2 Calculation of dielectric constant
and loss tangent

Using the Nicolson–Ross–Weir algorithm, the
dielectric constant can be calculated from effective
refractive index measurements from S-parameter

data

n∗
eff = −

(
c

ωd
ln

1

T

)2

(4.80)

where T is the complex transmission coefficient
obtained from S-parameter measurement data. It
is assumed that the sample has a homogeneous
material composition and is nonmagnetic, linear,
and isotropic. We also assume that only the single
mode E

y

11 propagates in the waveguide and the
sample. The effective complex refractive index of
the sample is defined as

n∗
eff = neff − jkeff (4.81)

where

neff =
[

1

2

(√
ε2

effR + ε2
effI + εeffR

)]1/2

(4.82)

keff =
[

1

2

(√
ε2

effR + ε2
effI − εeffR

)]1/2

(4.83)

where εeffR and εeffI are the real and imaginary
parts of the effective complex permittivity respec-
tively. The true dielectric constant ε′

r can be recov-
ered iteratively from the effective refractive index
neff by using the effective index method. Con-
versely, the effective index method can be used to
calculate neff for given values of the cross section
and the dielectric constant of a sample at a speci-
fied frequency.
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Figure 4.19 Variation in βz/β0 with frequency for E
y

11 and E
y

21 modes for the rectangular dielectric
waveguide (Abbas et al. 2001). Source: Abbas, Z. Pollard, R. D. Kelsall, R. W. (2001). “Complex permittivity
measurements at Ka-band using rectangular dielectric waveguide”, IEEE Transactions on Instrumentation and
Measurement, 50 (5), 1334–1342.  2003 IEEE
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A more accurate way to determine the true
dielectric constant is by means of an optimization
procedure, from which the loss tangent and accu-
rate sample thickness can be determined by using
a suitable objective function. Using the effective
index model, we can express the reflection and
transmission coefficients in simpler forms com-
pared to other solutions to the discontinuity prob-
lem in an open dielectric waveguide:

� = 1 − n∗
eff

1 + n∗
eff

(4.84)

T = exp

(
−j

ωd

c
n∗

eff

)
(4.85)

The following objective function F is the
most efficient to determine ε′

r, ε′′
r and d (Abbas

et al. 2001):

F =
a∑

i=1

{[
ln

(
1

|Tm|
)

− ln

(
1

|Tc|
)]2

+ [ � φm − � φc]2

}
(4.86)

where |T | and � φ are the magnitude and principal
value of the phase angle of the transmission coeffi-
cient, a is the number of measurement points, and
the subscripts m and c denote the measured and
calculated values, respectively. The first square dif-
ference component in Eq. (4.74) is related to the
attenuation, while the second component is associ-
ated with the phase angle of the probing wave. It
is appropriate to set |Tm| = 1 in the calculation of

objective function F to justify the lossless assump-
tion when using Eqs. (4.72)–(4.78). The problem
of multiple solutions for ε′

r and ε′′
r can be reduced

by applying the constraints on these parameters to
stay within the desired tolerance level.

4.4.2.3 Measurement setup

Figure 4.20 illustrates the setup for transmis-
sion/reflection method using the rectangular dielec-
tric waveguide, and usually TRL calibration is
used. The rectangular dielectric waveguide and its
one-quarter wavelength spacer (standard “Line”
for TRL calibration) have cross-sectional dimen-
sions equal to the standard hollow metallic waveg-
uide. The dielectric waveguides are usually made
of PTFE because of its ease of fabrication, very
low loss and low dielectric constant. The low
dielectric constant of PTFE provides a wide cover-
age of single-mode propagation in the waveguide.
On the other hand, the low-loss factor is an impor-
tant criterion for direct application of the effective
index method that assumes lossless material.

The length of the dielectric waveguide beyond
the horn aperture is approximately 5λ0. The dielec-
tric waveguide is tapered only at the feed section to
reduce the reflection coefficient between the dielec-
tric waveguide and the standard hollow metallic
waveguide. Only the H -plane of the dielectric
waveguide is tapered to allow a natural transi-
tion from center-loaded, partially dielectric–filled
to completely dielectric–filled metallic waveguide.
Usually, an extra length of PTFE is further allo-
cated within the metallic waveguide to form a tight
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x

Figure 4.20 The rectangular dielectric waveguide measurement setup. Source: Abbas, Z. Pollard, R. D. Kel-
sall, R. W. (2001). “Complex permittivity measurements at Ka-band using rectangular dielectric waveguide”, IEEE
Transactions on Instrumentation and Measurement, 50 (5), 1334–1342.  2003 IEEE
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Figure 4.21 Setup for free-space measurement. Modified from Ghodgaonkar, D. K. Varadan, V. V. and
Varadan, V. K. (1990). “Free-space measurement of complex permittivity and complex permeability of magnetic
materials at microwave frequencies”, IEEE Trans. Instrum. Meas. 39 (2) 387–394.  2003 IEEE

fit to the metal walls as well as to provide support
to the suspended rectangular dielectric waveguide
at the waveguide opening. A metallic waveguide
horn is employed to launch the E

y

11 mode into
the rectangular dielectric waveguide, as well as to
serve as a mechanical support. More detailed tech-
nical specifications about the measurement setup
can be found in (Abbas et al. 2001).

4.5 FREE-SPACE METHOD

In recent years, there has been an increas-
ing interest in using free-space techniques for
the measurement of electromagnetic properties
of materials and for estimating plasma parame-
ters of magnetoactive plasma (Varadan et al. 1991;
Ghodgaonkar et al. 1990, 1989; Musil and Zacek
1986). Because of the availability of precision horn
lens antennas that have far-field focusing ability, it
is possible to make accurate free-space measure-
ments at microwave frequencies. Free-space tech-
niques for material property measurements have
several advantages. First, materials such as ceram-
ics, composites, and so on are inhomogeneous
due to variations in manufacturing processes.
Because of inhomogeneity, the unwanted higher-
order modes can be excited at an air–dielectric
interface in hollow metallic waveguides, while this
problem does not exist in free-space measurement.
Second, measurements using free-space techniques
are nondestructive and contactless, so free-space
methods can be used to measure samples under
special conditions, such as high temperature. Third,
in hollow metallic waveguide methods, it is neces-
sary to machine the sample so as to fit the waveg-
uide cross section with negligible air gaps. This

requirement limits the accuracy of measurements
for materials that cannot be machined precisely; in
free-space method, this problem does not exist.

Figure 4.21 shows a typical measurement setup,
mainly consisting of two antennas and a sample
holder. The transmit and receive antennas are spot-
focusing horn lens antennas. The use of focusing
antennas is to minimize the effects of sample
boundaries and measurement environment. The
transmit and receive antennas are mounted on a
carriage and the distance between them can be
adjusted. A specially fabricated sample holder is
placed at the common focal plane for holding
planar samples. The microwave signal incident
to planar samples can be taken as plane waves,
and the properties of the sample under test are
obtained from the reflection from the sample and
transmission through the sample.

According to the orientations of the sample in
the measurement system, the microwave signal
incident to the sample may be normal or oblique
to the sample. In the following discussion, we
concentrate on the case with normal incidence.
The discussion on the cases with oblique incidence
can be found in (Munoz et al. 1998; Friedsam and
Biebl 1997).

4.5.1 Calculation algorithm

In principle, the algorithms discussed in Section 4.1
can be used in free-space methods for the determina-
tion of permittivity and permeability of the sample
under test. The following discussion is concentrated
on the special case for planar samples in free-space
measurement.

Figure 4.22 shows a planar sample with thick-
ness d placed in free space. It is assumed that the
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Sample (er, mr)

Incident wave

S21

S11

d

Figure 4.22 Schematic diagram of planar sample

planar sample is of infinite extent laterally so that
diffraction effects at the edges can be neglected. A
linearly polarized, uniform plane wave is normally
incident on the sample. The reflection and trans-
mission coefficients S11 and S21 are measured in
free space for the normally incident plane wave.

By applying boundary conditions at the air-
sample interface, it can be shown that the S11

and S21 parameters are related to the parameters
� and T by the following equations (Ghodgaonkar
et al. 1990):

S11 = �(1 − T 2)

1 − �2T 2
, (4.87)

S21 = T (1 − �2)

1 − �2T 2
, (4.88)

where � is the reflection coefficient of the air-
sample interface given by

� = (z − 1)

(z + 1)
, (4.89)

and the T is the transmission coefficient given by

T = e−γ d . (4.90)

In Eqs. (4.89) and (4.90), z and γ are the normal-
ized characteristic impedance and propagation con-
stant of the sample. They are related to permittivity
and permeability by the following relationships:

γ = γ0
√

εrµr, (4.91)

z =
√

µr

εr
, (4.92)

with
γ0 = (j2π/λ0) (4.93)

where γ0 the propagation constant of free space,
and λ0 is the free-space wavelength.

From Eqs. (4.87) and (4.88), � and T can be
written as

� = K ±
√

K2 − 1, (4.94)

T =
(

S11 + S21 − �

1 − (S11 + S21)�

)
(4.95)

with

K = S2
11 − S2

21 + 1

2S11
. (4.96)

The plus or minus sign in Eq. (4.94) is chosen such
that |�| < 1. According to Eq. (4.90), the complex
propagation constant γ can be written as

γ = ln(1/T )

d
(4.97)

From Eqs. (4.89) and (4.92), we have√
µr

εr
=

(
1 + �

1 − �

)
(4.98)

From Eqs. (4.91) and (4.98), we obtain

εr = γ

γ0

(
1 − �

1 + �

)
, (4.99)

µr = γ

γ0

(
1 + �

1 − �

)
. (4.100)

As the parameter T in Eq. (4.97) is a complex
number, there are multiple values of γ . If we define
T as

T = |T |ejφ, (4.101)

then γ is given by

γ = ln(1/|T |)
d

+ j

(
2πn − φ

d

)
, (4.102)

where n = 0,±1, ±2, . . . . The real part of γ is
unique and single valued, but the imaginary part
of γ has multiple values. We define the phase
constant β as

β = (2π/λm) = Im(γ ), (4.103)
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where λm is the wavelength in the sample material.
From Eqs. (4.102) and (4.103), we can get

d/λm = n − φ

2π
. (4.104)

If the sample thickness d is chosen to be less than
λm, then we can obtain the unique value of εr

and µr corresponding to n = 0. For d > λm, the
ambiguity in εr and µr can be resolved by making
measurements on two samples made of the same
material but with different thicknesses.

For the measurement of thin and flexible mate-
rials, the sample under test is usually sandwiched
between two fused-quartz plates that are half
wavelength at midband, as shown in Figure 4.23.
The parameters S11a and S21a of the quartz
plate–sample–quartz plate assembly are measured
in free space. Using the known complex permit-
tivity and the thickness of the quartz plates, S11

and S21 of the sample can be calculated from S11a

and S21a of the assembly, as will be shown in
the following.

The ABCD matrix of the assembly can be
obtained as

[Aa] =
[

Aa Ba

Ca Da

]
(4.105)

where

Aa = (1 + S11a)(1 − S22a) + S12aS21a

2S21a

, (4.106)

Ba = Z0
(1 + S11a)(1 + S22a) − S12aS21a

2S21a

, (4.107)

Sample

S21

dq dqd

S11

Quartz plateQuartz plate

Incident wave

Figure 4.23 Schematic diagram of quartz plate–sam-
ple–quartz plate assembly

Ca = 1

Z0

(1 − S11a)(1 − S22a) − S12aS21a

2S21a

, (4.108)

Da = (1 − S11a)(1 + S22a) + S12aS21a

2S21a

, (4.109)

and Z0 is the free space wave impedance.
The ABCD matrix for the quartz [Aq] can

be obtained similarly from the permittivity and
thickness of the quartz. The ABCD matrix of the
sample [As] can be obtained as

[As] = [Aq]−1[Aa][Aq]−1 (4.110)

The parameters S11 and S21 of the sample can then
be obtained using the following expressions:

S11 = As + Bs/Z0 − CsZ0 − Ds

As + Bs/Z0 + CsZ0 + Ds
(4.111)

S21 = 2

As + Bs/Z0 + CsZ0 + Ds
(4.112)

After obtaining the S-parameters, the permittivity
and permeability of the sample can be obtained
according to Eqs. (4.87)– (4.100).

4.5.2 Free-space TRL calibration

To accurately measure the S-parameters of the
sample or the sample assembly under test, it is
necessary to make calibration at the measurement
planes, and usually free-space TRL calibration
techniques are used (Ghodgaonkar et al. 1989).

To implement TRL calibration in free space,
it is necessary to establish TRL standards in the
free-space medium. The two reference planes for
port 1 and port 2 are located at the focal planes
of the transmit and receive antennas, respectively.
A through standard is configured by keeping the
distance between the two antennas equal to twice
that of the focal distance. The reflect standards
for port 1 and port 2 are obtained by placing a
metal plate at the focal planes of the transmit and
receive antenna, respectively. The line standard
is achieved by separating the focal planes of the
transmit and receive antennas by a distance equal
to a quarter of the free-space wavelength at the
center of the working band. The specifications for
TRL calibration in the network analyzer should be
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modified subsequently by defining TRL standards
regarding wave impedance and electrical delay.

The free-space calibration can be verified for
plane wave propagation by measuring S21 for
free-space delays of different lengths. For a
well-calibrated free-space system, a linear phase
variation and negligible amplitude change with
increasing length of delay line can be observed. So
the electromagnetic fields in the neighborhood of
the common focal plane are those of a plane wave.

It should be indicated that, as the TRL calibra-
tion could not fully correct the multiple reflec-
tions between the antennas and sample, time-
domain gating is often needed to eliminate multiple
reflections.

4.5.3 Uncertainty analysis

After free-space TRL calibration and time-domain
gating of the S-parameter response, the measure-
ment errors in S11 and S21 are mainly due to two
kinds of errors. The first kind comprises the resid-
ual postcalibration errors resulting from imperfec-
tions in the calibration standards, the instrumen-
tation, and the measurement circuit. Usually, the
instrumentation errors, such as frequency insta-
bility, power variation of microwave signals, are
negligible. In a TRL calibration, the error caused
by the calibration standards is mainly due to the
possible wave impedance of the line standard. This
impedance error causes errors in the normalization

of reflection and transmission coefficients to the
impedance of the line standard. The residual source
and load-mismatch errors due to the imperfections
in the calibration standards can be minimized by
time-domain gating. The errors due to the measure-
ment circuit can be minimized by ensuring a stable
configuration of the cables during the calibration
and measurement procedures.

The second kind of error has to do with small
changes in the reference planes (as defined by
through or reflect standard) between calibration
and measurement due to small changes in the
positions of plates holding the sample. When the
sample is translated or rotated from the refer-
ence planes by a small amount, it is possible
to have errors in the S-parameter measurements.
Figure 4.24 shows a schematic diagram of the
translated and rotated sample. It can be seen that
the path length for S11 is dependent on the sample
position relative to the reference plane, whereas
for S21 the path length is independent of sample
position. Also, if the incident signal is at an angle
φ, the reflected signal is at an angle of 2φ; so, not
all reflected power can be received by the antenna.
However, the transmitted signal through the sam-
ple is parallel to the incident beam with some very
small lateral displacement, and so for thin samples
and small angles the transmitted power loss is neg-
ligible. Therefore, if we only use S21 to calculate
the permittivity of a dielectric material, the effect
of small rotation and transition can be neglected,

S11

S21

Sample

2f f

Port 1
Reference planes

Transmit
antenna

Receive
antenna

Port 2

Figure 4.24 Schematic diagram of reflected and transmitted waves when the sample is translated and rotated from
the reference planes defined during calibration. Source: Varadan, V. V. Hollinger, R. D. Ghodgaonkar, D. K. and
Varadan, V. K. (1991). “Free-space, broadband measurements of high-temperature, complex dielectric properties at
microwave frequencies”, IEEE Transactions on Instrumentation and Measurement, 40 (5), 842–846.  2003 IEEE
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while if we use both S21 and S11 to calculate both
the permittivity and the permeability of a magnetic
sample, the effect of rotation and transition should
be taken into consideration.

4.5.4 High-temperature measurement

As flying vehicles such as aircraft and missiles fly
faster at higher Mach numbers, they experience
greater aerodynamic heating, mechanical stress,
and flight erosion (Dicaudo 1970; Gagnon et al.
1986). New materials are necessary particularly
for radome applications, which are often located
in areas of greatest exposure to the aforemen-
tioned elements. So the electromagnetic proper-
ties and their variation with temperature of poten-
tial radome materials must be characterized accu-
rately (Ho 1981). A lot of efforts have been made
for the development of microwave system for the
measurement of permittivity and permeability at
high temperatures. More discussions on the mea-
surement of materials properties at high tempera-
tures can be found in Chapter 12.

In a free-space measurement setup, the sam-
ple under test can be thermally insulated from the
measurement equipment, so free-space techniques
are suitable for the study of the electromagnetic
properties of materials at high temperatures. Sev-
eral free-space methods for high-temperature mate-
rial characterization have been developed (Varadan
et al. 1991; Ho 1988; Gagnon et al. 1986; Bree-
den 1969).

Figure 4.25 shows an experimental setup for
high-temperature measurement using free-space

method. Two spot-focusing horn lens antennas are
used, and the diffraction effects at the edges of the
sample are negligible if the minimum transverse
dimension of the sample is greater than three times
that of the E-plane 3-dB beam width of the antenna
at its focus. The antennas are mounted facing each
other and separated by a distance equal to twice
the focal distance. For high-temperature measure-
ments, the furnace with a high-temperature sample
holder is placed at the common focal plane of the
antennas. The furnace uses resistive heating pan-
els on the top, bottom, and two sides, while the
front and back of the furnace are enclosed only
by thermally insulating fibrous materials that are
virtually transparent to microwaves because of its
low density.

To achieve accurate measurement results, the
measurement system needed to be calibrated using
a free-space TRL calibration, and time-domain gat-
ing techniques should be used. However, because
of the presence of the furnace, it is difficult to
place the sample holder exactly at the reference
plane during and after calibration. Therefore, some
additional steps are needed to minimize the errors
due to the incorrect positioning of the sample. The
first step is to perform free-space TRL calibration
with the standard room-temperature sample holder
and measure S11 and S21 of the sample. Next, the
furnace and high-temperature sample holder are
placed between the antennas and TRL calibration
is performed again. Then the sample is placed in
the high-temperature sample holder in the furnace.
The position of the sample is adjusted such that

Mode
transition

Sample Electric heating panels

Fiberfrax thermal insulation Spot-focusing
horn lens
antenna

Figure 4.25 Schematic diagram of the free-space microwave measurement setup for high-temperature measure-
ment. Modified from Varadan, V. V. Hollinger, R. D. Ghodgaonkar, D. K. and Varadan, V. K. (1991). “Free-space,
broadband measurements of high-temperature, complex dielectric properties at microwave frequencies”, IEEE
Transactions on Instrumentation and Measurement, 40 (5), 842–846.  2003 IEEE
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the measured S11 and S21 are close to the values
obtained with the standard sample holder. After
that, we conduct measurements at high tempera-
tures.

As it is almost impossible to place the sample
exactly at the reference plane, a correction factor
is often used to introduce numerically an electrical
delay and magnitude offset to account for the slight
mispositioning of the sample. The measured data
can be corrected as follows:

Sc
11 = SSTD

11

SFRT
11

SHT
11 (4.113)

Sc
21 = SSTD

21

SFRT
21

SHT
21 (4.114)

where the superscripts C, STD, FRT, and HT
denotes corrected, standard room-temperature sam-
ple holder, furnace room temperature, and fur-
nace high-temperature data, respectively. From
Eqs. (4.113) and (4.114), it can be seen that when
the furnace room-temperature data is substituted
for the high-temperature data, the corrected data is
identically the standard room-temperature data.

4.6 MODIFICATIONS ON
TRANSMISSION/REFLECTION METHODS

The basic principle of transmission/reflection
methods is to deduce materials properties from the
signals reflected from the sample and the signals
transmitted through the sample. Many modifica-
tions have been made on the conventional trans-
mission/reflection methods to fulfill various mea-
surement requirements.

4.6.1 Coaxial discontinuity

The coaxial transmission/reflection methods can
cover wide frequency ranges, but, as discussed in
Section 4.2.2.2, the air gaps in the coaxial sample
holders cause large uncertainties in the measure-
ment results, especially the air gap between the
sample and the inner conductor. Many configu-
rations have been proposed to avoid the air gap
between the samples and the inner conductors.

As shown in Figure 4.26, a segment of inner
conductor is removed, and the sample completely

Sample

Figure 4.26 A coaxial discontinuity

fills the space within the outer conductor of the
coaxial line, resulting in a coaxial discontinuity.
This structure can also be considered as intro-
ducing a segment of circular waveguide between
the two coaxial lines, with the sample completely
filling the circular waveguide. This configura-
tion has been investigated by two groups inde-
pendently. Taherian et al. (1991) introduced the
deduction algorithm for permittivity, and Belhadj-
Tahar et al. (1998, 1992; 1990) introduced algo-
rithms for both permittivity and permeability. The
advantage of this method is the easiness of sample
fabrication.

4.6.2 Cylindrical cavity between
transmission lines

Figure 4.27 shows a dielectric-filled cylindrical
cavity separating two coaxial transmission lines.
The structure can be used as a building block
in constructing coaxial filters. Once the scattering
parameters of this building block are known,

Coaxial line Coaxial line

Cavity sample

Z0Z0

Figure 4.27 Cylindrical cavity placed between two
coaxial lines
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the overall characteristics of a filter consisting
of several blocks can be obtained using matrix-
manipulation techniques. Another application of
this structure is the measurement of the complex
permittivity of dielectric materials for the case
where the dielectric material under test forms the
dielectric-filled cavity (Saed 1991).

When this structure is used in the character-
ization of materials properties, it can be taken
as a general case of the coaxial discontinu-
ity method discussed in Section 4.6.1, and it
can also taken as the two-port counterpart of
the dielectric-filled cavity adapted at a coaxial
end discussed in Section 3.2.6. The configuration
shown in Figure 4.27 has an advantage in sam-
ple fabrication. A conventional coaxial transmis-
sion/reflection method requires the insertion of the
sample into a coaxial air line, usually resulting in
air-gap errors. The structure shown in Figure 4.27
does not need to insert the sample into a coaxial
line; instead, the conductor walls of the cavity can
be molded or deposited on the dielectric sample, so
the possible errors due to air gaps are eliminated.

Full-wave analysis techniques based on the
method of moments can be used to obtain the
relationships between the scattering parameters of
the cavity to its dimensions and the complex per-
mittivity of the filling dielectric. The algorithm
mainly consists of two parts. One part calcu-
lates the scattering parameters, S11 and S21, from
the permittivity of the sample and the dimen-
sions of the cavity. The other part is an optimiza-
tion program that calculates the complex permit-
tivity of the sample from the scattering param-
eters and dimensions of the cavity. As higher-
order modes can be taken into consideration in
the development of algorithm, this method can
cover a broad frequency range. To improve the
accuracy of the algorithm, especially for the cal-
culation of loss tangent, the wall loss of the
dielectric-filled cavity should be taken into con-
sideration.

The algorithm developed by Saed is for the mea-
surement of dielectric materials (Saed 1991). As
two independent S-parameters can be measured,
in principle, this method can be extended for the
determination of both permittivity and permeabil-
ity of the electromagnetic materials.

Planar
sample

Coaxial
probe

Coaxial
probe

Figure 4.28 Measurement configuration for two-probe
method

4.6.3 Dual-probe method

In Figure 4.28, a planar sample is placed between
two coaxial open-reflection probes. This configu-
ration is suitable for planar samples, and the most
important advantage of this method is that planar
samples can be characterized without any special
preparation. The algorithm for permittivity deduc-
tion is reported by Scott (1992), and in principle,
this configuration can measure both permittivity
and permeability. Yushchenko and Chizhov (1997)
proposed a similar structure for testing dielectric
substrates by using circular waveguide instead of
coaxial line.

4.6.4 Dual-line probe method

Figure 4.29 shows two open-circuited coaxial lines
connected to a metal plate, forming a dual-line
probe. Bird studied the coupling between the two
coaxial lines, and showed that when a semi-
infinite sample is in contact with the dual-line
probe, the electromagnetic properties of the mate-
rial can be deduced from the reflection back to
the coaxial lines and the coupling between the
coaxial open ends (Bird 1996). This configura-
tion is an improvement of the conventional coax-
ial dielectric probe; however, the algorithm for
extracting materials properties is quite compli-
cated.
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Figure 4.29 Coupling between two open-circuited coaxial lines

4.6.5 Antenna probe method

The methods for in situ characterization of materi-
als properties can be generally divided into two
categories: surface and drill-hole measurement
techniques. Surface techniques are used whenever
a drill hole is not feasible or when dielectric con-
stant values are needed over very large areas. Drill-
hole techniques, on the other hand, are usually used
to get localized values of dielectric constant and to
measure the depth profiles in materials.

Nassar et al. developed a handheld, ultra wide-
band drill-hole-type probe antenna for the in situ
measurement of the complex dielectric constant

Material
under test

Antenna
probe

Figure 4.30 Measurement setup for electromagnetic
probe (Nassar et al. 1999). Modified from Nassar, E. M.
Lee, R. and Young, J. D. (1999). “A probe for antenna
for in situ measurement of the complex dielectric
constant of materials”, IEEE Transactions on Antennas
and Propagation, 47 (6), 1085–1093.  2003 IEEE

(Nassar et al. 1999). The measurement configura-
tion is shown in Figure 4.30, and the structure of
the probe is shown in Figure 4.31. This probe uses
two stub antennas mounted on a copper cylinder.
To perform a measurement, the probe is inserted
in the material under study. Microwave signals are
transmitted by one of the antennas and received
by the other. On the basis of the comparison of
the received signal to the predicted signal from a
numerical model of the probe antenna, the complex
dielectric permittivity can be extracted.

Although the two stub antennas may have low
gain, the outer surface of the copper cylinder acts
as a guiding structure, so that the coupling between
the two antennas can be very strong. This coupling
is dependent upon the properties of the material
in which the probe is immersed. If an accurate
electromagnetic model can be obtained for the
interaction between the probe and the material, we
can accurately extract the complex permittivity of
the material. A simple plane-wave approximation
is assumed for the wave traveling between the
two antennas. This approximation is fairly accurate
because the guided wave along the surface of the
copper cylinder can be considered to be quasi-
TEM. There are several factors that may cause
differences from this ideal model. The plane-wave
model does not account for the input impedance
and radiation pattern of the antennas. Furthermore,
there may be reflections at the antenna/material
interface. An alternative model can be developed
based on the finite-difference time domain (FDTD)
method, which should produce more accurate
solutions, but is more computationally expensive.
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Figure 4.31 Front and side views of the electromagnetic probe showing the coaxial cables in the copper
cylinder, the antennas, and plaxiglass covers (Nassar et al. 1999). (a) Side view and (b) front view. Modified
from Nassar, E. M. Lee, R. and Young, J. D. (1999). “A probe for antenna for in situ measurement of the complex
dielectric constant of materials”, IEEE Transactions on Antennas and Propagation, 47 (6), 1085–1093.  2003 IEEE

In actual measurements, calibration is often
needed to check the operation of the probe by
taking measurements in free space. This is done by
recording three signals: the coupled signal between
the two antennas (S21), the reflected signal from
the tip antenna (S11), and the reflected signal
from the middle antenna (S22). According to these
signals, we can check whether the antennas and
the connections function properly.

In order to minimize measurement errors, it
is necessary to eliminate any air gaps between

Conducting
thin film Substrate

Waveguide

Figure 4.32 Measurement of power transmission
through a conducting thin film

the probe and the material walls. The antennas
on the probe should also be far enough from
the boundaries of the sample in order to prevent
the reflections at the boundaries from interfering
with the direct signal between the transmitter and
receiver. If these reflections are far enough in time
from the direct coupled signal, they can be gated
out before the signal is processed for extracting the
complex dielectric permittivity.

4.7 TRANSMISSION/REFLECTION
METHODS FOR COMPLEX CONDUCTIVITY
MEASUREMENT

In the structure shown in Figure 4.32, a conducting
thin film forms a quasi–short circuit in a waveg-
uide transmission line. From the transmission coef-
ficient, the conductivity of the thin film can be
obtained (Dew-Hughes 1997; Wu and Qian 1997).
However, this method is only suitable for extrathin
films whose thickness is less than the penetration
depth of the conductor, and requires a measure-
ment system with very high dynamic range. As
the thickness of most of the technologically useful
conducting thin films is often larger than the pene-
tration depth, this method is hardly used in current
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microwave electronics and engineering. However,
this method is useful for the study of complex
conductivity of high-temperature superconducting
(HTS) thin films at microwave frequencies.

The principle of this method can be under-
stood by taking a thin film deposited on a sub-
strate as a two-layer dielectric system shown in
Figure 4.33(a). We assume layer I to be a thin film
with refraction index n1 and thickness h1, and layer
II to be the substrate with refraction index n2 and
thickness h2. For a single layer, such as layer I
or layer II, as shown in Figure 4.33(b) or (c), the
transmission and reflection coefficients are given
by (Wu and Qian 1997)

ti = −2jniejk0hi

(1 + n2
i ) sin(k0nihi) − 2jni cos(k0nihi)

(4.115)

ri = (1 − n2
i ) sin(k0nihi)

(1 + n2
i ) sin(k0nihi) − 2jni cos(k0nihi)

(4.116)
with i = 1, 2.

The relationship between the total transmission
coefficient T of the two-layer system and (ti , ri)

(i = 1, 2) is given by

1

t1
· 1

t2
= 1

T
+ r1

t1
· r2

t2
(4.117)

Since the total transmission coefficient T and
the coefficients (t2, r2) of a substrate can be
measured directly in experiments, we retain T ,
r2, and t2 in Eq. (4.117) and replace r1 and t1
by Eqs. (4.115) and (4.116). For convenience, from
now on we use (t, r) to represent (t2, r2) and (ns, d)

to represent (n1, h1). From Eq. (4.117), we have
the basic equation of simplified power transmission
measurement (Wu and Qian 1997):

1

T
= e−jk0d

2t

{
2 cos(k0nsd) + j sin(k0nsd)

×
[(

1

ns
+ ns

)
− r

(
1

ns
− ns

)]}
(4.118)

For a metal with conductivity σ , the wave
number should be

k2
s = (k0ns)

2 = −jωµσ (4.119)
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Figure 4.33 Dielectric layers in free space. (a) Two-
layer structure, (b) layer II separated from (a), and
(c) layer I separated from (a). Source: Wu, R. X. and
Qian, M. (1997). “A simplified power transmission
method used for measuring the complex conductivity
of superconducting thin films”, Review of Scientific
Instruments, 68 (1), 155–158

On the basis of the two-fluid model, the conduc-
tivity of a superconductor is a complex parameter

σ = σ1 − jσ2. (4.120)

The equivalent reflection index ns of a supercon-
ductor is given by

ns = j
λ0

2πλL
·
√

1 + j
σ1

σ2
(4.121)

where λ0 is the wavelength in free space, and the
penetration depth is given by

λL = 1/
√

ωµσ2. (4.122)

Using Eqs. (4.118) and (4.121), the refraction
index of the thin film and its conductivity can be
obtained by the following procedures: first, measur-
ing the r and t of a bare substrate; next, depositing
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the superconducting film on the substrate; finally,
measuring again the total transmission coefficient
of the superconducting sample.

In practical situations, the measurement is done
in a waveguide. Therefore, it is necessary to make
some changes in the basic equations. For rectangular
waveguides, the propagation term is expressed in the
form of exp(−jkzz), where the kz is the propagation
constant. If the refraction index of filling dielectric
in a waveguide is n, the propagation constant can be
written as

k2
z = k2 − k2

c = k2
0

(
n2 − k2

c

k2
0

)
(4.123)

where kc is the cutoff wave number. If we define
an equivalent refraction index ñ in the waveguide

ñ =
√

n2 − k2
c

k2
0

(4.124)

then the propagation constant kz can be written as

kz = ñk0 (4.125)

Therefore the propagation term in the waveguide
is the same as that in free space with refraction
index ñ. The basic equations are still correct if
the ns and nd in the equation are replaced by
the normalized equivalent refraction index ñ′

s =
ñs/ñ0, ñ

′
d = ñd/ñ0, and k0 is replaced by ñ0k0. Here

ñ0, ñs, and ñd denote the equivalent refraction index
of vacuum, superconducting film, and substrate in
the waveguide, respectively.
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5

Resonator Methods

In a resonator method, the sample serves as a
resonator or a key part of a resonator in the mea-
surement circuit, and the properties of the sample
are derived from the resonant properties of the
resonator. Three major types of resonators are dis-
cussed for the characterization of dielectric mate-
rials, including conventional dielectric resonator,
coaxial surface-wave resonator, and split resonator.
The measurements of surface impedance of high-
conductivity materials using dielectric resonator
methods are discussed in the last section.

5.1 INTRODUCTION

Though resonant methods can only measure mate-
rials properties at single or several discrete
frequencies, resonant methods are widely used
because of their high accuracy and sensitiv-
ity. Resonant methods include resonator meth-
ods and resonant-perturbation methods. In a res-
onator method, the sample under test serves as
a resonator or a key part of a resonator, and
the properties of the sample are determined from
the resonant properties of the resonator. In a
resonant-perturbation method, the sample is intro-
duced into a resonant structure, and the prop-
erties of the sample are calculated from the
change of resonant properties of the resonant struc-
ture caused by the introduction of the sample.
In this chapter, we focus on resonator methods,
and the resonant-perturbation methods are dis-
cussed in Chapter 6. The planar resonators used
in materials property measurements are discussed
in Chapter 7.

The main requirement of a resonator method is
that the sample forms a resonator or a key part
of resonator, and the algorithm for materials prop-
erty calculation is related to the field distributions
in the resonator and the sample. In principle, any
kind of resonator can be used in materials prop-
erty characterization. In a resonator method, if the
electric energy is more concentrated on the sam-
ple, this method usually has higher sensitivity and
accuracy. In this chapter, we discuss three types of
resonators often used in materials property char-
acterization: dielectric resonators, coaxial surface-
wave resonators, and split resonators.

In actual measurement fixtures for materials
property characterization, resonators are often
shielded by conductors. In the measurement of
dielectric materials, the surface impedance of the
shielding conductors, usually metals, is assumed be
known. If the properties of the dielectric material
are known, from the resonant properties of the
resonator, the surface impedance of the shielding
conductors can be obtained. In the final part of this
chapter, we discuss the measurement of surface
impedance of high-conductivity materials using
dielectric resonator methods.

5.2 DIELECTRIC RESONATOR METHODS

Dielectric resonator methods are widely used in
the characterization of low-loss dielectric materi-
als (Kent 1988a). The basic properties of dielec-
tric resonators have been discussed in Chapter 2.
In the design of dielectric resonator methods for
the characterization of the dielectric properties of

Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2
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materials, the structures of both the dielectric mate-
rial to be studied, and the metal shield should
be designed. Different dielectric resonator methods
have different structures of metal shield and dielec-
tric sample, and thus have different algorithms for
the calculation of materials properties.

5.2.1 Courtney resonators

This method was first described by Hakki and
Coleman (1960), and later fully analyzed and
developed by Courtney (1970). Now this method
is simply known as “Courtney method.”

5.2.1.1 Configuration

As shown in Figure 5.1, the structure is essentially
a shorted dielectric waveguide. A finite length of
a cylindrical dielectric rod waveguide is shorted
by placing conducting plates at each end of the
rod, turning the transmission line into a resonator.
This structure can be taken as a special case of
the parallel-plate dielectric resonator discussed in
Section 2.3.5.2, with L1 = 0.

The theoretical model for this configuration
assumes that the two conducting plates are
infinitely large. The characteristic equation for the

D
Z

L

Y

X

r
z

er

f

Conducting
plates

Figure 5.1 Configuration of a Courtney resonator.
Modified from Kobayashi, Y. Tanaka, S. (1980). “Res-
onant modes of a dielectric rod resonator short-circuited
at both ends by parallel conducting plates”, IEEE Trans.
Microwave Theory Tech., 28, 1077–1086.  2003 IEEE

normal modes is (Courtney 1970)[
εrJ

′
m(α)

αJm(α)
+ K ′

m(β)

βKm(β)

] [
J ′

m(α)

αJm(α)
+ K ′

m(β)

Km(β)

]
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[
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α = πD

λ

[
εr −

(
lλ

2L

)2
] 1

2

(5.2)

β = πD

λ

[(
lλ

2L

)2

− 1

] 1
2

(5.3)

where Jm(α) and Km(β) are Bessel functions
of the first and second kind respectively, λ is
the free-space wavelength, D and L are the
diameter and the length of the dielectric specimen
respectively, εr is the dielectric constant of the
dielectric specimen, and l = 1, 2, 3, . . ., and so on,
corresponds to the multiple half wavelengths in
the resonator along the axial direction. Figure 5.2
shows the mode chart for a dielectric resonator
with dielectric constant 15 (Courtney 1970). More
detailed discussions on the resonant modes of this
kind of resonators can be found in (Kobayashi and
Tanaka 1980).

The TE011 mode is widely used in materials
property characterization because in this mode
there is no current crossing the dielectric and the
conducting plates, so the possible air gaps between
the dielectric and the conducting plates do not
have much effects on the resonant properties of
this mode. The mode chart shown in Figure 5.2
indicates that TE011 is the second low-frequency
mode. For the TE011 mode, the relationship
between α and β is given by

εr = 1.0 +
(

c

πDf1

)2

(α2
1 + β2

1 ) (5.4)

where α1 and β1 are the first roots of the
characteristic equation with m = 0, l = 1, and f1

is the resonant frequency. For a specimen with
known dimensions, by measuring the frequency
of the TE011 mode, the real part of the dielectric
permittivity can be found.
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Figure 5.2 Mode chart for a dielectric postresonator. The abscissa is the ratio of the diameter to the length of
the dielectric post. The ordinate is the diameter multiplied by the frequency (Courtney 1970). Source: Courtney,
W. E. (1970). “Analysis and evaluation of a method of measuring the complex permittivity and permeability of
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The loss tangent of the specimen can also be
obtained (Hakki and Coleman 1960):

tan δ = A

Q0
− BRs (5.5)

where

A = 1 + W

εr
(5.6)

B =
(

lλ

2L

)3 1 + W

30π2εrl
(5.7)

W = J 2
1 (α1)

K2
1 (β1)

· K0(β1)K2(β1) − K2
1 (β1)

J 2
1 (α1) − J0(α1)J2(α1)

(5.8)

Rs =
√

πf1µ

σ
(5.9)

where σ is the conductivity of the shorting plate,
Q0 is the unloaded quality factor of the dielectric
resonator, and the function W is the ratio of
electric field energy stored outside to inside the
rod. Using Eqs. (5.5)–(5.9), the loss tangent can be
evaluated from the resonant frequency, unloaded
quality factor, and sample dimensions.

For low-loss materials (tan δ � 1), the terms
A/Q0 and BRs in Eq. (5.5) may be of the same
orders of magnitude when the TE011 mode is
used. Therefore, the accurate effective value of
Rs is required for the measurement of tan δ with
high accuracy.

Detailed discussion on the measurement of
surface resistance can be found in Section 5.5 and
Chapter 6. Here we introduce a technique for the
measurement of Rs using the same instrument
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Figure 5.3 Dielectric rod resonators placed between two parallel conducting plates. (a) TE011 mode and (b) TE013

mode. Modified from Kobayashi, Y. Imai, T. and Kayano, H. (1990). “Microwave measurement of surface
impedance of high-Tc superconductor”, IEEE MTT-S Digest, 281–284.  2003 IEEE.

as used for the dielectric measurement discussed
above. As shown in Figure 5.3, we use two rod
samples cut from a dielectric rod, which have the
same diameters but different lengths. The rod for
a TE01l resonator is l times as long as the other
for a TE011 resonator, where l ≥ 2. We denote
the quantities for both resonators by subscripts l

and 1, respectively. If f0l = f01, because of the
different effects of conductor loss on the values
of unloaded quality factor, we have Q0l > Q01.
Owing to the fact that both rods have the same tan δ

values, from Eqs. (5.5)–(5.9), we know that Rs can
be determined from the measured values of Q01

and Q0l (Kobayashi and Katoh 1985; Kobayashi
et al. 1985; Kobayashi et al. 1990):

Rs = 30π2

(
2L

lλ

)3

· εr + W

1 + W
· l

l − 1
·
(

1

Q01
− 1

Q0l

)
(5.10)

It is clear that the difference between the Q01 and
Q0l values increases with εr and l. The substitution
of Eq. (5.10) into Eq. (5.5) yields

tan δ = A

l − 1

(
l

Q0l

− 1

Q01

)
(5.11)

which is independent of Rs and therefore allows
precise measurement of tan δ.

As it is difficult to precisely machine sam-
ples to the designed lengths, we often use the

following expressions instead of Eqs. (5.10) and
(5.11) (Kobayashi and Katoh 1985):

Rs(f0) = 1

C1 − Cl

·
(

A1

Q01
− Al

Q0l

)
(5.12)

tan δ = C1

C1 − Cl

·
(

Al

Q0l

− Cl

C1
· A1

Q01

)
(5.13)

which are derived from Eq. (5.5) by using relations

Rsl(f0l ) =
√

f0l

f0
Rs(f0) (5.14)

Cl = Bl

√
f0l

f0
(5.15)

where f0 is chosen arbitrarily near f01 and f0l and
the parameters Al and Bl are defined by Eqs. (5.6)
and (5.7) for a TE01l mode resonator.

Figure 5.4 shows a measurement configuration
of Courtney resonator method. The upper and
bottom plates are the two conducting plates
shorting the dielectric rod transmission line into
a resonant structure. The upper plate can be raised
or lowered to accommodate various lengths of
cylindrical samples. Couplings to the sample are
achieved by the right-angle E-field probes, both of
which can be moved in and out along the radius
direction, with respect to the sample, to vary the
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Figure 5.4 Explored view of the dielectric postres-
onator showing the sample and probes in posi-
tion (Courtney 1970). Source: Courtney, W. E. (1970).
“Analysis and evaluation of a method of measuring the
complex permittivity and permeability of microwave
insulators”, IEEE Transactions on Microwave Theory
and Techniques, 18 (8), 476–485.  2003 IEEE

coupling coefficients. To increase the accuracy and
sensitivity in the measurement of loss tangent, both
the upper and bottom plates are gold plated.

In this configuration, placing the specimen
exactly in the center is not critical. The specimen
merely needs to be placed approximately symmet-
rical with the two probes. Since the unloaded qual-
ity factor of the TE011 mode must be measured, the
coupling of each probe should be reduced until no
change is detectable in the resonant frequency or
3-dB line width of the resonance. If the sample
is isotropic, the TE011 mode can be identified by
finding the second low-frequency mode, as indi-
cated by the mode chart in Figure 5.2. Further
proof of a TE0nl mode can be made by raising and
lowering the upper plate. As the plate is raised,
the TM modes move rapidly to higher frequen-
cies, while the TE011 mode remains stationary. In
most situations, the dielectric constant is known
approximately so that the frequency of the TE011

resonance can be estimated. A combination of the
above three conditions enables the TE0l1 mode to
be identified unambiguously.

A dielectric resonator fixture for the measure-
ment of dielectric permittivity has a usable range.
Figure 5.5 shows the usable range of the particular
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Figure 5.5 Usable range of dielectric resonator with
0.085-in.-diameter probes and 2.5-in.-diameter conduct-
ing plates. The dielectric constant, εr, as a function of the
resonant frequency of the TE011 mode for maximum and
minimum values of dielectric samples (Courtney 1970).
Source: Courtney, W. E. (1970). “Analysis and evalua-
tion of a method of measuring the complex permittivity
and permeability of microwave insulators”, IEEE Trans-
actions on Microwave Theory and Techniques, 18 (8),
476–485.  2003 IEEE

dielectric resonator fixture. In the figure, the dielec-
tric constant is plotted as a function of the resonant
frequency of the TE011 mode for the maximum
and minimum values of specimen dimensions. The
maximum dimensions are determined by the diam-
eter of the shorting plates and the minimum dimen-
sions by the diameter of the coupling probes.

5.2.1.2 Effects of the size of conducting plates

In the design of dielectric resonator measurement
fixtures, we should make an estimation of the
dielectric constant of the sample to be tested
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and determine suitable dimensions for sample
rod. Meanwhile, we should also consider the
sizes of conducting plates, surface resistance of
conducting plates, and higher resonant modes. In
the following, we discuss the effects of the size of
conducting plates.

In the above analysis, the conducting plates are
assumed to be infinitely large (d = ∞). In actual
structures, since the field outside the dielectric
rod decays rapidly in radial direction, a suitable
finite size of the plates is permitted, provided the
influence on the measurement is negligible.

Let εr and tan δ be the values obtained from
given values of f0 and Q0 for a structure in the
case of d = ∞. We define

�εr(S) = εr − εr1 (5.16)

where εr1 is obtained from the same f0 value
for a structure short circuited with a conducting
ring of diameter d , as shown in Figure 5.6(a). We
also define

� tan δ(S) = tan δ − tan δ1, (5.17)

where tan δ1 is obtained from the same Q0

value for a structure enclosed with an ideal
wave absorber, in which the energy is per-
fectly dissipated without reflection, as shown in
Figure 5.6(b). It is clear that, if d = ∞, �εr(S) =
0 and � tan δ(S) = 0.

To make the influence of the finite size of
plates negligible, the required size ratio S = d/D

can be determined analytically from the view
point of the possible magnitudes of �εr(S) and
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� tan δ(S) (Kobayashi and Katoh 1985a):

�εr(S)

εr − 1
= g(β1)

f ′(α1)
· 2α1

β2
1 + α2

1

·
[

I0(β1)

K0(β1)
+ I1(β1)

K1(β1)

]
· K1(Sβ1)

I1(Sβ1)

(5.18)

εr� tan δ(S) = SW
K0(Sβ1)K2(Sβ1) − K2

1 (Sβ1)

K0(β1)K2(β1) − K2
1 (β1)

(5.19)
with

g(β1) = −α1
K0(β1)

K1(β1)
(5.20)

f ′(α1) = −α1
J 2

1 (α1) − J0(α1)J2(α1)

J 2
1 (α1)

(5.21)

where In(β1) is the modified Bessel function
of the first kind and W is given by Eq. (5.8).
The results computed from Eqs. (5.18) and (5.19)
are shown in Figure 5.5. For a resonator with
smaller β1, more energy is stored outside the
rod, and then the larger value of S is needed.
In experiments, �εr/εr of 0.1 % can be obtained
easily. In high-accuracy measurements, it is often
required that the S value should be sufficiently
large to satisfy �εr(S)/εr < 0.01 % at least. For
low-loss materials, the influence of S on tan δ is
more severe than that on εr.

5.2.1.3 Higher resonant modes

When we measure samples using Courtney res-
onator method, usually each sample is measured
at only one resonant frequency, corresponding to
the TE011 mode. In experiments, we can observe
the existence of other resonant frequencies. If we
can identify other resonant modes, it is possible to
measure the value of εr at the frequencies corre-
sponding to these resonant modes. Information on
other modes can be found in Figure 5.2. Usually,
it is not difficult to identify the resonant modes
including TE011, TE02l , TE03l , and TE04l . Besides,
quasi-TE modes are also well suited for the mea-
surement of materials properties, in particular, the
modes HEM12l , HEM22l , and HEM14l (Wheless Jr.
and Kajfez 1985).

The major challenge in using higher resonant
modes is the identification of different resonant
modes. Wheless Jr. and Kajfez proposed a mod-
ified Courtney resonator structure than can be
used for mode identification, and detailed infor-
mation about the modified Courtney resonator can
be found in (Wheless Jr. and Kajfez 1985; Kajfez
and Guillon 1986).

5.2.2 Cohn resonators

The basic properties of Cohn resonators have been
discussed in Section 2.3.5.2, and here we con-
centrate on its application in the characterization
of dielectric permittivity. In a Cohn resonator
method, a sample in the shape of a right circu-
lar cylinder resonates within a close-fitting circu-
lar waveguide that is below cutoff in its air-filled
regions, and the dielectric properties of the sam-
ple are obtained from the resonant properties of
the resonator.

For a Cohn resonator, the operating frequency
is above the cutoff frequency of the region filled
with the dielectric cylinder, but is below the
cutoff frequency of the air region. As shown in
Figure 5.7, because of the exponential decay of
the fields in the air regions, the total stored energy
of the resonance is mainly within the dielectric
sample. Resonance occurs when the following
condition is satisfied (Cohn and Kelly 1966):

Ba + Bd = 0 (5.22)

where Ba and Bd are the susceptances at one of the
transverse surfaces of the sample looking toward
the air region and dielectric region respectively.
The lowest-order resonant mode for which the
normal component of electric field En is zero
over the surface of the dielectric, as required to
make the air-gap effects negligible, is the TE011.
The characteristic admittance Y0 of the waveguide
is real in the propagating dielectric region and
imaginary in the cutoff air region. For the TE01

mode, the susceptance Ba is equal to Y0/j of the
air-filled waveguide:

Ba = Y0a

j
= −1

η

[(
λ

0.820D

)2

− 1

] 1
2

(5.23)
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Figure 5.7 Resonant electric field distribution in a
Cohn resonator at TE011 mode. Source: Cohn, S. B.
and Kelly, K. C. (1966). “Microwave measurement of
high-dielectric constant materials”, IEEE Transactions
on Microwave Theory and Techniques, 14 (9), 406–410.
 2003 IEEE

where η = 376.7 
 is the characteristic impedance
of free space, λ is free-space wavelength, and
D is the diameter of the waveguide and sample.
Equation (5.23) is obtained under the assumption
that the cutoff waveguide extends to plus and
minus infinity. In practice, when the air-filled
waveguide is terminated at points at which the
evanescing wave is attenuated by at least 30 dB,
errors caused by the termination are not significant.

As shown in Figure 5.7, in the TE011 mode,
at position z = 0, the transverse field Eφ reaches
its maximum value, while Ht = 0. So a magnetic
wall, or open-circuiting plane, may be assumed
to exist at z = 0. The susceptance Bd is therefore
given by

Bd = Y0d tan
βL

2
= λ

ηλgd
tan

πL

λgd
(5.24)

where

λgd = λ

{εr − [λ/(0.820D)]2} 1
2

(5.25)

By substituting Eqs. (5.23)–(5.25) into Eq. (5.22),
we can get (Cohn and Kelly 1966)

(
εr −

(
λ

0.820D

)2
)1

2

tan


πL

λ

(
εr −

(
λ

0.820D

)2
)1

2




=
((

λ

0.820D

)2

− 1

)1
2

(5.26)

Equation (5.26) is a transcendental equation that
may be solved for εr as a function of directly
measurable dimensions and the resonant frequency
f = c/λ, where c is the speed of light in
free space.

Employment of this technique is straightfor-
ward, but the desired TE011 resonance mode must
be identified among the various resonance modes
that may also appear, such as TE111, TM011, and
TM111. In experiments, this identification can be
easily accomplished. All the modes other than
circular-electric modes produce longitudinal cur-
rent on the conducting walls of the circular waveg-
uide. Therefore, when the two bored blocks shown
in Figure 5.8 are separated slightly, the TE011 res-
onance mode is hardly affected, while the other
resonance modes are severely detuned. It should
be noted that, to make a clear mode identifica-
tion, the sample under test is placed off-center
with respect to the gap. Otherwise, the gap would
coincide with the null of longitudinal current at
the midplane of the sample in some other res-
onance modes, such as TE111, TM012, and so
on, making mode identification difficult. Though
higher TE0mn modes are also unaffected by the
gap, as their resonant frequencies are separated
widely from the TE011 resonance, they gener-
ally do not present any ambiguity to TE011 res-
onance mode.

As shown in Figure 5.9, electric dipole and
magnetic dipole are two methods often used for
excitation of Cohn resonator and coupling to
external circuits. It is usually required that the
coupling coefficient should be adjustable for the
measurement of different samples.

This technique may be extended to measure
loss tangent in addition to dielectric constant.
For high-dielectric-constant samples, it is more
accurate and convenient to measure the unloaded
quality factor, Qu, of the sample as a band-stop
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Figure 5.8 Split-block structure of a dielectric resonator shielded by a cutoff circular waveguide (Cohn and Kelly
1966). Source: Cohn, S. B. and Kelly, K. C. (1966). “Microwave measurement of high-dielectric constant materials”,
IEEE Transactions on Microwave Theory and Techniques, 14 (9), 406–410.  2003 IEEE
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Figure 5.9 Coupling methods to a Cohn resonator. (a) Electric dipole coupling and (b) magnetic dipole coupling.
Reproduced from Kent, G. (1988a). “Dielectric resonances for measuring dielectric properties”, Microwave Journal,
31 (10), 99–114, by permission of Horizon House Publications, Inc.

resonator at the center of a large propagating
waveguide. If the electric energy were completely
stored inside the sample, and the dissipation loss
outside the sample were zero, the loss tangent
would be exactly 1/Qu. These conditions are not
met perfectly in practice, but when εr is greater
than 50, virtually all of the electric energy is stored
in the resonant sample, and dissipation loss on the
relatively distant waveguide walls is very small. So
the value of (1/Qu) can be approximately taken as
the loss tangent of the sample. The above analysis
is based on the assumption that the magnetic loss
is zero.

5.2.3 Circular-radial resonators

Figure 5.10 shows the ρ − z plane of a circular-
radial resonator that is rotationally symmetric
along the z-axis. It mainly consists of two circular
metallic plates placed opposing each other, where
each plate has a center hole to accommodate a
cylindrical rod of the material to be measured. The
fixture has circular and radial waveguide regions
with dimensions denoted by subscripts “c” and “r”
respectively. The circular waveguide contains the
dielectric rod and the radial waveguide contains the
surrounding medium, generally air. At the junction
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Figure 5.10 Structure of a circular-radial resonator.
Modified from Humbert, W. R. and Scott, Jr. W. R.
(1996). “A new technique for measuring the permittivity
and loss tangent of cylindrical dielectric rods”, IEEE
Microwave and Guided Wave Letters, 6 (7), 262–264.
 2003 IEEE

of these waveguide regions is the core of the
resonator. With properly chosen dimensions of hr

and Dc, the resonant mode will be confined in the
region near the core of the resonator and produce
exponentially decaying fields in the circular and
radial waveguide regions. So the height of the
fixture hc and the diameter of the fixture Dr

can be chosen to be of finite sizes. The relative
permittivity and loss tangent of the rod sample can
be derived from the measured resonant frequency
and quality factor of the resonator (Humbert and
Scott 1996).

We assume that the dielectric rod under test
is linear, isotropic, homogeneous, and nonmag-
netic. The fields and the resonant frequency for the
lossless case can be calculated using a numerical
method. Because the fixture is rotationally sym-
metric, it is an axis-symmetric problem; therefore,
the structure can be reduced to a two-dimensional
problem with a known φ dependence.

The quality factor is determined using the elec-
tromagnetic fields approximated by the perturba-
tional analysis. Because the stored energies in the
E- and H -fields are equal at resonance, we can
write the loaded quality factor as

Q = 2ω0We

Pl
(5.27)

where ω0 is the angular resonant frequency, We

is the time-average energy stored in the electric
field, and Pl is the time-average power loss in
the system. Both the losses in the dielectric rod
and conduction losses in the metallic walls of the
measurement fixture are considered. To achieve
accurate results, it is necessary to ensure that the
coupling of the probes to the resonator is weak and
the dimensions of hc and Dr are sufficiently large
so that no appreciable fields leak out of the ends of
the waveguide regions. So it can be assumed that
the power extracted from the probes and the energy
radiated out are negligible. Therefore, we have

Pl = Pd + Pc, (5.28)

where Pd is the power dissipated in the dielectric
sample given by

Pd = ω0

2

∫
V

ε′
rε0 tan δ|E |2dv (5.29)

and Pc is the power loss due to surface currents Js

on the walls of the fixture

Pc = Rs

2

∫
S

|Js|2ds (5.30)

where Rs is the surface resistance of the walls of
the fixture. From Eq. (5.27), we can get

1

Q
= 1

Qd
+ 1

Qc
(5.31)

where Qd and Qc are the quality factors corre-
sponding to the dielectric loss of the sample and
the conducting loss of the fixture walls, respec-
tively.

The permittivity of dielectric rod can be deter-
mined from the resonant frequency by using a
root-finding technique (Humbert and Scott 1996),
and the electromagnetic fields should be calculated.
The calculated fields can also be used to deter-
mine the loss tangent of the dielectric rod from
the quality factor, using Eqs. (5.27)–(5.31). The
lowest-measurable dielectric loss tangent is lim-
ited by the conduction loss. The loss tangent can
be accurately determined when the dielectric loss is
comparable to or greater than the conduction loss.
The highest-measurable dielectric loss tangent is



218 Microwave Electronics: Measurement and Materials Characterization

limited by the lowest-measurable quality factor of
experimental instrument.

The small air gaps between the dielectric rod and
the measurement fixture may produce significant
measurement errors for some resonance modes.
Having only Hz, Hρ , and Eφ field components, the
TE011 mode does not have an E-field component
normal to the air gaps; therefore, measurement
results using this mode will not be strongly affected
by the air gaps. In the following, we concentrate
our discussion on the TE011 mode using the method
by Humbert and Scott (1996).

The TE011 mode is φ-independent and has one
variation in both the ρ- and z-directions. In and
near the resonator core, the field distributions are
complicated because of the complex geometry, and
thus no closed-form expression for the field exists.
However, sufficiently far from the resonator core,
the field distributions are essentially zero due to a
single waveguide mode in the circular and radial
waveguide regions.

In the upper circular-waveguide region, the field
is essentially the TE01 circular-waveguide mode.
The mode is φ-independent, has one variation
in the ρ-direction and has the z-dependence
exp(−kzz). As the structure is in a resonant state,
the fields must decay, therefore kzz must be
positive. In the radial waveguide region, the field

is essentially the TE01 radial waveguide mode. It is
φ-independent, has one variation in the z-direction
and has the ρ dependence K0(kρρ). Similarly, the
fields must decay, and so kρρ must be positive.

Figure 5.11 shows all the possible operating
points for the TE011 mode. The operating bound-
aries are set by the cutoff conditions in the circu-
lar and radial waveguide regions, kzDc = 0, and
kρDc = 0, respectively. For example, for ε′

r = 3,
the TE011 mode will only resonate when hr/Dc

is between 0.23 and 0.97. The TE011 mode will
not resonate for any point outside the kzDc = 0
and kρDc = 0 curves. The curves corresponding
to kzDc and kρDc = 1, 2, and 4, respectively, are
also included. This allows the rates of decay in
each of the waveguide regions to be determined
at particular operating points. For example, with
ε′

r = 10 and hr/Dc = 0.5, the mode will resonate
with decay rates 2 < kzDc < 4 and kρDc > 4.

Figure 5.12 shows the normalized resonant fre-
quencies as a function of hr/Dc with ε′

r as a
parameter. In this graph, the left endpoints of
these curves correspond to kzDc = 0 and right end-
points are where kρDc = 0. Continuing the pre-
vious examples, for ε′

r = 3 the normalized res-
onant frequency ranges from 3.15 to 4.39. For
ε′

r = 10 and hr/Dc = 0.5, the normalized resonant
frequency is 2.2.
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Figure 5.11 Diagram depicting valid operating regions of the TE011 mode (Humbert and Scott 1996). Source:
Humbert, W. R. and Scott, Jr. W. R. (1996). “A new technique for measuring the permittivity and loss tangent of
cylindrical dielectric rods”, IEEE Microwave and Guided Wave Letters, 6 (7), 262–264.  2003 IEEE
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For accurate determination of the loss tangent,
an accurate value for the surface resistance of the
metal walls is needed. The surface resistance of the
metal walls can be measured using a known low-
loss dielectric material; in this case, the majority of
the loss is the conduction loss in the metal walls. In
most cases, the dielectric loss of air is negligible,
and the measurement fixture will resonate when
it is filled with air. Therefore, by measuring the
resonant frequency and quality factor of a fixture
filled with air, we can determine the permittivity
of air and the surface resistance of the metal walls
of the fixture.

5.2.4 Sheet resonators

Dielectric sheet materials are widely used as sub-
strates in microwave electronic circuits, and so
the characterization of the dielectric properties of
sheet materials is important. If a resonance is
excited in a sheet sample, the dielectric properties
of the sheet can be calculated from the resonant
frequency and the quality factor of the sheet res-
onator. Figure 5.13 schematically shows a method
of exciting a sheet resonator. The sheet sample is
placed between the flat flanges of the two metal cir-
cular waveguides. Usually, the waveguides work in
the TE01 mode and the dielectric sheet resonates
at a TE mode. Therefore, intimate contact between
the sample and the flat flanges is not required. The
thickness of the sheet can be thinner than the gap
between the two flat flanges, and the measurement
results are not sensitive to the position of the sheet
in the gap.

In the structure shown in Figure 5.13, the
transmission through the sheet sample of TE01

mode reaches its maximum at frequency below
the cutoff frequency of the waveguides and above
the cutoff frequency of the cylindrical portion of
the sample. If the sheet sample is large enough,
the frequency at which the maximum transmission
occurs is mainly determined by the waveguide
radius, the thickness, and the dielectric constant
of the sheet sample. The resonant frequency of
the sheet resonator is close to that of the TE01δ

mode of a dielectric resonator of diameter 2a and
height 2d .

Input

Dielectric
sheet

Dielectric
sheet

Output

h =2d

2a

(a) (b)

Figure 5.13 A sheet resonator for the characterization of dielectric sheets. (a) Three-dimensional view and
(b) cross-section view. Reproduced from Kent, G. (1988a). “Dielectric resonances for measuring dielectric
properties”, Microwave Journal, 31 (10), 99–114, by permission of Horizon House Publications, Inc.
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Figure 5.14 Absorbers are used to eliminate the
possible resonance of the metal shield (Kent 1988b).
Source: Kent, G. (1988b). “An evanescent-mode tester
for ceramic dielectric substrates”, IEEE Transactions on
Microwave Theory and Techniques, 36 (10), 1451–1454.
 2003 IEEE

Figure 5.13(a) shows an excitation and coupling
method for sheet resonators. Usually there is a
coupling port at the cylinder waveguide at each
side of sheet resonator. In the measurement system,
the waveguides are not in resonant states. As
shown in Figure 5.14, when shorted waveguides
are used, absorbers are often used at the shorting
plates of the waveguides to avoid the possible
resonance of the metal shield.

We follow the analysis method presented
in (Kent 1988b). We are interested in the condition
when dielectric sheet is in a resonant state while
the waveguides are in a cutoff state. It is not
needed to consider the modes that propagate or
are evanescent both in the empty portions of the
waveguide and in the dielectric sheet sample. It
is also not necessary to consider any narrowband
resonance phenomena of the cylinder waveguides.
Furthermore, we assume that a mode that is
evanescent in the waveguide but propagates in the
dielectric is evanescent in the radial waveguide in
the gap beyond the radius a. So we can use the
conducting wall boundary condition at r = a in
the dielectric, and the error that follows from this
approximation can be estimated by a perturbation
calculation.

The boundary conditions at the dielectric sur-
faces lead to the eigenvalue equations (Kent
1988b). For TE modes

(θ sin θ − γ cos θ)(θ cos θ + γ sin θ) = 0 (5.32)

and for TM modes

(θ sin θ − ε′
rγ cos θ)(θ cos θ + ε′

rγ sin θ) = 0
(5.33)

The notations for above two equations are as
follows:

θ2 = ε′
rθ

2
0 − θ2

c (5.34)

ε′
r = (ε′/ε0) (5.35)

γ 2 = θ2
c − θ2

0 (5.36)

θc = (xlmd/a) (5.37)

θ0 = (ωd/c) (5.38)

For a TElm mode, xlm is the mth zero of the
derivative of Jl , and for a TMlm mode, it is the
mth zero of Jl . A resonance exists when Eq. (5.36)
is positive, and Eq. (5.32) or (5.33) has a solution
for θ in terms of γ . Then, the dielectric constant
ε′

r can be calculated from Eq. (5.34).
In Eqs. (5.32) and (5.33), the first term is zero

for even modes and the second term vanishes for
odd modes. For the reasonable dielectric constant
constraints of ε′

r < 100 and (d/a) < 0.05, there
are no odd-mode solutions. The effect of the
substrate on TM modes is relatively small, and the
even-mode TM resonant frequencies are close to
their cutoff frequencies. For the TE01 and TM11

modes, which have the same cutoff frequency, the
substrate produces a wide separation between the
two even resonant modes.

The modes one expects to observe in order
of increasing frequency are TE11, TE21, TE01,
TE31, . . . . With small coupling loops in the
transverse plane, coupling to the TM modes is
very weak. The resonant modes of the first four
TE modes are well separated and can be easily
identified. All these frequencies can be used to
calculate the dielectric constant, but only the TE01

mode gives reliable results. Figure 5.15 shows the
relationship between the dielectric constant and the
resonant frequency of a TE01 mode resonator.
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For TE01 mode, the reciprocal of the unloaded
quality factor is given by

1

Q0
= (ε′′

r /ε
′
r) + (δ/a)(θc/θ0)

2U

1 + U
(5.39)

where δ is the skin depth of the waveguide wall,
(ε′

r − jε′′
r ) is the relative complex permittivity of

the substrate. We also have (Kent 1988b)

ε′
r · U = cos3 θ

(θ + sin θ cos θ) sin θ
(5.40)

where the quantity U is the ratio of the electric
energy in the waveguide to that in the substrate.
The value of U increases when the resonant
frequency f0 approaches the cutoff frequency fc

and the dielectric constant ε′
r decreases. The value

of U is not sensitive to (d/a) over its practical
range. The contribution to (1/Q0) from conductor
losses, represented by the second term in the
numerator of Eq. (5.39), cannot be made negligibly
small, and it cannot be measured at the correct
frequency in a simple way. The calculations of that
term, using the bulk conductivity of brass, indicate
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Figure 5.16 Plot of (δ/a)(fc/f0)
2 versus fc for brass

waveguide (Kent 1988b). Source: Kent, G. (1988b).
“An evanescent-mode tester for ceramic dielectric
substrates”, IEEE Transactions on Microwave Theory
and Techniques 36 (10), 1451–1454.  2003 IEEE

that it increases more or less as the root of the
cutoff frequency fc of the waveguide increases, as
shown in Figure 5.16.
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Three sources of error in the determination
of dielectric constant are uncertainties in the
measurement of a, d , and f . They can be estimated
by the following expressions (Kent 1988b):

(
�ε′

r

ε′
r

)
a

= −2

(
θc

θ0

)2 (
U + 1

ε′
r

) (
�a

a

)
(5.41)

(
�ε′

r

ε′
r

)
d

= − 2

ε′
r

(
θc

θ0

)2 1

1 + (sin 2θ)/(2θ)

(
�d

d

)
(5.42)(

�ε′
r

ε′
r

)
θ0

= −2(1 + U)

(
�θ0

θ0

)
(5.43)

A fourth source of error is the assumption that
the electric field in the substrate is zero at r = a.
This can be estimated as a frequency perturbation
produced by removing the stored energy of the
evanescent radial modes in the space r > a. The
approximate result is (Kent 1988b)

�ε′
r

ε′
r

= 4

πε′
r
·
(

θc

θ0

)2
[

1 − ε′
r ·

(
2θ0

π

)2
]− 1

2 (
d

a

)
(5.44)

The approximation is made by truncating the
Fourier expansion in evanescent modes and equat-
ing the remaining coefficient to its asymptotic
form. The validity depends on how small the value
of (d/a) is. For practical parameter values, (ε′

r ·
d/a) ∼ 0.25, and an overestimate of Eq. (5.44) is
about 10(d/a)2. Errors from this source are usually
below 1 %.

With different radii of sheet resonators, sheet
sample can be measured over a frequency range.
The maximum radius must be somewhat less than
the width of the substrate, and the minimum
radius is determined by the available instrumen-
tation and the maximum possible value of (d/a).
Figure (5.15) suggests that it should be possible to
span the frequency range up to one octave.

It should be noted that, if we want to make
an exact analysis on this measurement configura-
tion, full-wave simulation method is needed (Hum-
bert and Scott 1997). Using full-wave simulation
method, there is no limit on the sample thickness
and dielectric constant.

5.2.5 Dielectric resonators in closed
metal shields

In the configurations of the dielectric resonators
discussed above, the metal shields are physically
open, though cut off for the working microwave
signals. Here, we discuss dielectric resonators
shielded by closed metal shields. We mainly
discuss two types of dielectric resonators in closed
metal shields: TM0n0 resonators and dielectric-
loaded cavities.

5.2.5.1 TM0n0 resonators

Most of the dielectric resonators for the character-
ization of dielectric properties of materials work at
TE modes. Generally speaking, neither the quasi-
TM modes nor the TM modes are suitable for
the measurement of materials properties. The main
reason is that the presence of an air gap between
the dielectric sample and the metal shield may con-
siderably alter the resonant frequency, f , thereby
ruining the accuracy of measurement. Another rea-
son is that these resonant modes are leaky, in
the sense that a part of electromagnetic energy
may propagate radially outward. The leaky TM0np

modes have no radial cutoff frequency, and conse-
quently their quality factors are relatively low.

However, as shown in Figure 5.17, cylindrical
TM0n0 cavities can be used in the characteriza-
tion of dielectric materials (Gershon et al. 2000;
Damaskos 1995). In this configuration, the sample
is put at the center of the cavity, and the sample
has good contacts with the top and bottom end
plates of the metal shield. Usually for this config-
uration, the diameter of the cavity is larger than

e1m1 e2m2

(1)(2)

2b

2a

l

(a) (b)

Figure 5.17 Cylindrical TM0n0 cavity loaded with
cylindrical samples. (a) Three-dimensional view and
(b) cross view
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its height (2b > l). The coupling to the resonator
can be realized by coupling loops at the sidewalls
or electric dipoles at the two end plates. A small
air gap between the end plates of the cavity and
the sample may cause great uncertainties to the
measurement results. If the cavity has a movable
wall, samples with different thickness can be mea-
sured (Gershon et al. 2000).

The resonant frequency of the resonator shown
in Figure 5.17 is related to the radius of the
dielectric rod a and that of the metal shield b.
Conclusions to semispherical dielectric resonator
shown in Figure 2.99 can be extended to this
configuration. If a � b, the resonant frequency
of the resonator approaches that of the resonator
fully filled with materials with dielectric constant
ε2. If a ≈ b, the resonant frequency of the
resonator approaches that of the resonator fully
filled with materials with dielectric constant ε1.
In a certain range, the resonant frequency of
the resonator changes little with the radius of
the dielectric rod. To increase the measurement
accuracy and sensitivity of loss tangent, we should
use this region.

In the following, we analyze this measurement
configuration in a general case, so that we
can compute the complex permittivity from the
resonant frequency and quality factor of the
resonator loaded with the sample. As shown in
Figure 5.17, the sample, which is centered in
the cavity and labeled as region 1, has material
properties of ε1 and µ1. Region 2, which is air,
has material properties of ε2 and µ2. The resonant
cavity has an inside diameter of 2b and the sample
has a diameter of 2a. The height of the cavity and
the sample is l.

The electric and magnetic fields within the
cavity interact with the material under test. To
relate the shift and broadening of the resonant
modes to the intrinsic properties of the material, we
match the electromagnetic fields at the sample–air
interface. The general expressions for the electric
field in axial direction in region i (i = 1, 2)

are (Gershon et al. 2000)

Ezi = [AiJm(αiρ) + BiNm(αiρ)]

× (Cie
imφ + Die

−imφ)

× [Ei cos(kz) + Fi sin(kz)] (5.45)

with αi defined by

α2
i = µiεiω

2 − k2 (5.46)

where Jm and Nm are the Bessel and Newman
functions of order m. A,B,C, D, E, and F are
constants. ρ is the radius and φ is the angle around
the axis of symmetry, α is the transverse wave
number, ω is the angular frequency, and i indicates
the region in the cavity (i = 1, 2).

As the diameter of the cavity is larger than its
height, the lowest-order modes in a cylindrical cav-
ity are TM modes (Hz = 0). Boundary conditions
at the top and bottom ends of the cavity require
the electric field parallel to a conducting surface
to be zero. So we have

kl = pπ (p = 0, 1, 2, . . .) (5.47)

Applying this boundary condition at the cavity
walls and matching the tangential electric and
magnetic fields at the sample interface provides
the following relationship (Gershon et al. 2000):

ε1

α1
· J ′

m(α1a)

Jm(α1a)

= ε2

α2
·
[
Jm(α2b)N ′

m(α2a) − J ′
m(α2a)Nm(α2b)

Jm(α2b)Nm(α2a) − Jm(α2a)Nm(α2b)

]
(5.48)

The complex permittivity of the sample can then
be calculated from the measured complex angular
frequency of the cavity:

ω = 2π

(
f0 + f0

2Qs

)
(5.49)

and numerically solving Eq. (5.48) for complex
permittivity. Here, Qs is the quality factor of
the sample:

1

Qs
= 1

Ql
− 1

Qe
(5.50)

where Ql is the Q-factor of a loaded cavity and
Qe is the Q-factor of the empty cavity. In the
determination of the complex permittivity of the
material, an initial estimation is needed, and a two-
variable minimization routine is required. In actual
measurements, the accuracy and reproducibility
in the measurement of f0 and Qe are mainly
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Dielectric sample Dielectric sample

(a) (b)

Figure 5.18 Capacitively loaded TM010 mode cavity for permittivity measurement. (a) Single-post cavity and
(b) two-post cavity. Modified from Hakki, B. W. Coleman, P. D. (1960). “A dielectric resonator method of
measuring inductive capacities in the millimeter range”, IRE Trans. Microwave Theory Tech, 8, 402–410. 
2003 IEEE

determined by whether the electrical contacts
between the sample and the end plates of the metal
shield are good and consistent.

Sometimes, cylindrical TM0n0 cavities are mod-
ified into reentrant cavity by capacitive loading.
Figure 5.18 shows two configurations of TM010

mode cavity with capacitive loading. In these struc-
tures, the electric field is concentrated on the area
between the postends or between the postend and
the end plate of the cavity. The sample under test
is put at the place with the strongest electric field,
so the measurement sensitivity and accuracy can
be improved. Xi et al. (1994, 1992) analyzed the
cases when the gap is partially filled with a dielec-
tric material.

Figure 5.19 shows a modified cylindrical cavity
in the TM010 mode with two apertures at the two
end plates for sample loading. In this configuration,
a large part of the electromagnetic energy is
concentrated in the vicinity of the center. The
electric field lies along the axis, and the two
apertures hardly affect the current lines. As the
moisture of a material is related to its conductivity,
which is further related to the imaginary part
of permittivity, the moisture of the material
could be derived from the quality factor of
the resonator. This technique has been applied
for the measurement of the moisture content of
products on a fabrication line, for example, tobacco
in cigarettes, and this technique can obtain the
moisture-content information in real time (Bourdel
et al. 2000).

SampleAperture

Coupling
loop

Cavity

Figure 5.19 The structure of a modified TM010 mode
cavity. Modified from Bourdel, E. Pasquet, D. Denorme,
P. and Roussel, A. (2000). “Measurement of the
moisture content with a cylindrical resonating cavity
in TM010 mode”, IEEE Transactions on Instrumentation
and Measurement, 49 (5), 1023–1028.  2003 IEEE

5.2.5.2 Dielectric-loaded cavities

Here, we discuss a general case of a closed cavity
loaded with a dielectric sample. The cavity and the
dielectric rod can be in any shape, but usually the
cavity and the dielectric rod are in simple shapes,
such as cylinder, sphere, and rectangle. Figure 5.20
shows a cylinder cavity loaded with a dielectric
rod, which is supported by a low dielectric
constant, and a low-loss dielectric material.
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Figure 5.20 A closed cavity loaded with dielectric. (a) Three-dimensional view. Reproduced from Kent, G.
(1988a). “Dielectric resonances for measuring dielectric properties”, Microwave Journal, 31 (10), 99–114,
by permission of Horizon House Publications, Inc. (b) Cross-section view. Source: Krupka, J. Derzakowski,
K. Abramowicz, A. Tobar, M. E. and Baker-Jarvis, J. (1999). “Use of whispering-gallery modes for complex
permittivity determinations of ultra-low-loss dielectric materials”, IEEE Transactions on Microwave Theory and
Techniques, 47 (6), 752–759.  2003 IEEE

Measurement of dielectric constant

In a resonator method, the dielectric constant is
derived from the resonant frequency of the dielec-
tric resonator. Generally speaking, measurement
accuracies for dielectric constant are limited by
three factors (Krupka et al. 1999). First, in the res-
onant structure that requires contact between the
sample and the metal shield, the presence of air
gaps between the sample and the metal shield
may cause uncertainties. Second, computational
inaccuracies limit the accuracy of measurement
results. Third, the uncertainties in physical dimen-
sions of the sample under test and resonant struc-
ture are transferred to the final results of dielec-
tric constant.

The presence of air gaps limits the measurement
accuracy of high-permittivity solid materials when
the distribution of electromagnetic field in the mea-
surement system has an electric field component
normal to the sample surface. The depolarizing
effects of air gaps can be mitigated by metallizing
the sample surfaces. The metallization of sample
surfaces improves the measurement accuracy of
dielectric constant, but can substantially degrade
measurement accuracy of dielectric loss factor.

When the applied electric field is continuous
across a sample boundary, such as with cylindrical
samples in TE0np or quasi-TE0np-mode resonant
fixtures, high measurement accuracies can be
achieved, as in these cases, air gaps do not
play a significant role. In the structure shown in

Figure 5.20, the sample under test is far from
the metal shield. The problem of air gap does
not exist, and furthermore, the effect of conductor
losses on the complex permittivity determination
is negligible.

Numerical methods are often required for the
analysis of the resonant structure, and computa-
tional inaccuracies can be an important source of
the overall measurement uncertainty. Exact rela-
tions between permittivity, sample dimensions, and
measured resonant frequency exist when resonant
structures permit theoretical analysis by separation
of variables. Practically, this is only possible when
the resonant structure has simple cylindrical, spher-
ical, or rectangular geometry. Numerical meth-
ods, for example finite element, Rayleigh–Ritz,
and mode-matching methods, are often required
for analyzing more complicated resonant struc-
tures. All these techniques allow an improvement
of accuracy by taking into account more terms
in the field expansions or by refining the mesh.
In principle, if the convergence of a numerical
method used to analyze a particular structure is
sufficiently fast, the computations may have higher
accuracy than the measurement accuracy of phys-
ical dimensions (Krupka et al. 1999). However,
depending on the numerical method, substantial
computational effort is usually required.

If the effects of air gaps are not severe, and the
numerical method used for the analysis is suffi-
ciently accurate, the accuracy in the measurement
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of dielectric constant depends essentially on the
measurement accuracy of the physical dimensions
of the sample and measurement system. It can
be expected that the most accurate permittivity-
measurement techniques would be dominated by
the measurement accuracy of the physical dimen-
sions.

Measurement of dielectric loss tangent

For a resonant structure containing an isotropic
dielectric, the unloaded quality factor Qu can be
expressed in the form of (Krupka et al. 1999)

1

Qu
= pes tan δs + ped tan δd + Rs

G
+ 1

Qr
(5.51)

where Rs is the surface resistance of the metal
shield and Qr is the radiation quality factor of the
resonant structure. The parameter pes is the sample
partial electric-energy filling factor defined by

pes = Wes

Wet
=

∫∫∫
Vs

εsE · E ∗ dv∫∫∫
V

ε(v)E · E ∗ dv

(5.52)

where Wes is the electric energy stored in the
sample, Wet is the total electric energy stored
in the resonant-measurement fixture, εs is the
dielectric constant of the sample, ε(v) is the spa-
tially dependent dielectric constant in the resonant
structure, and * denotes complex conjugate. The
parameter ped is the electric-energy filling fac-
tors of dielectric supports with dielectric constant
εd and loss tangent tan δd, inside the resonant-
measurement system:

ped = Wed

Wet
=

∫∫∫
Vd

εdE · E ∗ dv∫∫∫
V

ε(v)E · E ∗ dv

(5.53)

where Wed is the electric energy stored in the
dielectric support. The parameter G is the geomet-
rical factor of the resonant system defined by

G =
ω

∫∫∫
V

µ0H · H ∗ dv

x

∫∫Ž
S

Ht · Ht ∗ dv

(5.54)

It is clear that, to obtain high accuracy and sen-
sitivity, the first term on the right-hand side of
Eq. (5.51) should be larger than other terms. The
estimation of the last three terms often requires the
rigorous numerical computation methods. Gener-
ally speaking, there are three methods to increase
the measurement accuracy. The first is to opti-
mize the structure of the metal shield, as will
be discussed below in details. The second is to
minimize the conductor loss of the metal shield
by using low-surface-resistance conductors. We
may use superconducting thin films, or coat the
shield with a layer of gold. The third is to use
resonant mode with low radiation loss, such as
whispering-gallery modes, which is further dis-
cussed in Section 8.3.3.4.

For most of the actual resonant-measurement
fixtures, the measurement uncertainties of the
dielectric loss tangent are limited by conductor
losses. Equation (5.51) indicates that conductor
losses decrease as the surface resistance becomes
small and as the geometric factor increases. One
common procedure by which conductor losses are
minimized is to situate the dielectric sample under
test in a position away from the conducting walls,
as shown in Figure 5.20.

In most cases, quasi-TE011 mode (TE01δ mode)
is used. Figure 5.21 shows the geometric factor for
TE01δ-mode dielectric resonators as a function of
permittivity and the diameter of the metal shield.
There is a maximum value for the geometric factors
as a function of Dc/D with the position and
value depending on the sample permittivity. So,
the optimal shield dimensions for dielectric loss-
tangent measurements depend on the permittivity
of the sample and its diameter. Besides, when
Dc/D becomes larger than the optimum value, the
electric-energy filling factor of the sample decreases
rapidly and the field distribution converges to that
for an empty cavity, and thus the geometric factor
converges to that of an empty cavity.

As shown in Figure 5.21, for an empty cavity
having an aspect ratio equal to two (Dc/D � 1),
the geometric factor is approximately 667. The
other limiting case is that the dimensions of the
shield are equal to those of the sample under test
(Dc/D = 1). For this case, the geometrical factors
are the same as that of the empty cavity normalized
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Figure 5.21 Geometrical factors versus relative di-
mensions of metal shield for TE01δ-mode dielectric
resonators with an aspect ratio Dc/Lc = D/L = 2
(Krupka et al. 1999). Source: Krupka, J. Derzakowski,
Abramowicz, A. Tobar, M. E. and Baker-Jarvis, J.
(1999). “Use of whispering-gallery modes for complex
permittivity determinations of ultra-low-loss dielectric
materials”, IEEE Transactions on Microwave Theory and
Techniques, 47 (6), 752–759.  2003 IEEE

by the square root of the sample permittivity, so the
geometrical factor becomes small, especially for
high-permittivity samples. Therefore, the sensitiv-
ity for the measurement of dielectric loss-tangent
is decreased. In a typical fixture for the measure-
ment of dielectric loss tangent, shield dimensions
are usually three times larger than that of the
dielectric resonator under test. It should be noted
that TE01δ-mode dielectric resonators without any
shield (Dc/D → ∞) are not suitable for dielectric

Figure 5.22 Open cavity for dielectric property charac-
terization. Reproduced from Kent, G. (1988a). “Dielec-
tric resonances for measuring dielectric properties”,
Microwave Journal, 31 (10), 99–114, by permission of
Horizon House Publications, Inc.

loss-tangent measurements as a result of very large
radiation losses.

In some cases, the closed metal shield is not
convenient for sample loading and unloading.
Figure 5.22 shows a resonator structure with one
of the end plates of the metal shield replaced by a
cutoff circular waveguide. For a carefully designed
structure, the radiation loss can be neglected.

5.3 COAXIAL SURFACE-WAVE RESONATOR
METHODS

Coaxial surface-wave resonators are developed
from coaxial surface-wave transmission struc-
tures. As shown in Figure 5.23, two types of
coaxial surface-wave transmission lines are often
used: open coaxial surface-wave transmission
line and closed coaxial surface-wave transmission

2a 2b
er 2a 2b 2cer

e0

Metal

MetalDielectric

(a) (b)

Figure 5.23 Cross sections of coaxial surface waveguides. (a) Open coaxial surface waveguides and (b) closed
coaxial surface waveguide. Reproduced from Marincic, A. Benson, F. A. and Tealby, J. M. (1986). Measurements
of permittivity by the use of surface waves in open and closed structures, IEE Proceedings-H, 133, 441–449, by
permission of IEE
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line (Marincic et al. 1986). For an open coax-
ial surface-wave transmission line, there are two-
dimensional parameters: the radius of the metal
cylinder a and the outer diameter of the dielectric
cylinder b, while for a closed coaxial surface-wave
transmission line, the radius of the outer screen c

has also to be included. The disadvantage of hav-
ing one more parameter in the latter case is usually
well compensated for by the fact that the measur-
ing system is more compact and less subject to the
effects of the surrounding medium and finite short-
circuit plates. The discussions on the properties of
open surface-wave transmission lines can be found
in Section 2.2.4.5. In the following, we focus on
the properties of coaxial surface-wave resonators
and their applications in the characterization of
dielectric properties.

5.3.1 Coaxial surface-wave resonators

A coaxial surface-wave resonator is formed by ter-
minating a segment of surface-wave transmission
lines with short circuits at both ends. By intro-
ducing an input signal probe at one end of the
resonator, and another probe at some other place
in the resonator, a transmission-type resonator is
produced. In building a coaxial surface-wave res-
onator, it is important to minimize the direct cou-
pling between the probes. If the couplings are
weak, a high quality factor of the resonator can be
obtained, and accurate determination on the reso-
nant frequency is possible. At resonance, the length
of the resonator is a multiple of half-waveguide
wavelength, and the phase coefficient of the sur-
face wave is given by

β = n
π

L
(5.55)

where n is the number of half waves along
the length L of the resonator. When resonant
frequency f and phase coefficient β are known,
the relative permittivity of the dielectric εr can be
obtained. The relationships between β, f, a, b, c,
and εr are usually quite complex, and so have to
be obtained numerically. However, in some special
cases, by using a simple quasi-static approach, it is

possible to obtain less accurate results for closed
structures at lower frequencies.

The basic requirement for the measurement of
dielectric properties using a coaxial conductor-
dielectric structure is that this structure should
always support a TM01 surface wave at any oper-
ating frequencies. The coaxial surface-wave res-
onator may have one or two ports. For a one-port
resonator, it is possible to detect resonance by
observing the reflected wave magnitude. However,
if a weak-probe coupling is preferable, the detec-
tion of the resonance can be very difficult because
of the relatively small change of in the magnitude
of the reflected wave. In the following discus-
sion, we concentrate on the two-port transmission-
type resonators, which are more convenient and
easier to use.

5.3.2 Open coaxial surface-wave resonator

As shown in Figure 5.24, an open surface-wave
resonator is a segment of open coaxial surface
waveguide terminated by two metal plates, and
usually there are several dielectric spacers fixing
the two metal plates. The plate size has to be
sufficiently large to act as an efficient reflector of
the surface waves. Its efficiency can be determined
by the decay rate of the field in the radial direction.
The determination of the plate size is based on

Dielectric spacer

Surface
waveguide

Metal
reflector

Figure 5.24 Open surface-wave resonator (Marincic
et al. 1986). Reproduced from Marincic, A. Benson,
F. A. and Tealby, J. M. (1986). Measurements of
permittivity by the use of surface waves in open and
closed structures, IEE Proceedings-H, 133, 441–449, by
permission of IEE
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the power transfer through the space around the
surface waveguide.

The calculation of relative permittivity εr of a
dielectric in the open surface-wave resonator is
based on the solution of characteristic equation
Eq. (2.272). The input parameters in this case
are a, b, f , and L. Parameters a, b, and L are
obtained from the geometry of the open surface-
wave resonator, and the resonant frequencies f

of the resonator can be obtained from actual
microwave measurements.

The experimental β/k0 values, which are the
basis for any calculation of εr at a number of res-
onant frequencies fn, are obtained from (Marincic
et al. 1986)

β

k0
= 150n

Lf n

, (n = 1, 2, 3, . . .) (5.56)

where L is the resonator length in meters, n

is the number of the resonance, and fn is in
megahertz. Calculation of εr, for known a, b, and
β/k0 determined from Eq. (5.56), requires solution
of Eqs. (2.270), (2.271), and (2.272) in terms of
εr. In the calculation, initial values of permittivity
are taken:

ε1 ≤ ε(x) ≤ ε2 (5.57)

where the lower limit is ε1 and the upper limit
is ε2. A search through the numerical solution of
the characteristic equation for the input parameters
can be carried out using the bisection technique.
The calculated values of β/k0 for several assumed
ε(x) values are compared with β/k0 values from
Eq. (5.56). The logical procedure of searching
narrower limits for ε(x) is repeated until the value
β/k0 calculated from ε(x) and the value β/k0

obtained from Eq. (5.56) differ by a specified
small amount.

Figure 5.25 shows the structure of an open
surface-wave resonator with two ports. Two metal
plates serve as the flat reflectors. The plates are
separated by dielectric spacers with low loss and
low dielectric constant, such as wooden rods, at
the edges. One loop probe is attached to the
reflector, and the other probe is fixed on one of
the dielectric spacers.
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Figure 5.25 Structure of open surface-wave resonator
(Marincic et al. 1986). Reproduced from Marincic, A.
Benson, F. A. and Tealby, J. M. (1986). Measurements
of permittivity by the use of surface waves in open and
closed structures, IEE Proceedings-H, 133, 441–449, by
permission of IEE

5.3.3 Closed coaxial surface-wave resonator

In practical experiments, as the reflecting plates
in an open coaxial surface-wave resonator have
limited size, it is difficult to realize the total
reflection at the two ends of the resonator.
This problem can be solved by using a closed
surface-wave structure, and a closed surface-
wave resonator is usually more compact than an
open one. The same idea for measurement of
permittivity as with the open resonator is used with
closed structures.

The geometry of the waveguide considered is
shown in Figure 5.23(b). Similar to the open
surface waveguide case discussed above, the wave
equation of Eq. (2.268) should be solved in the
dielectric and the surrounding region. In this case,
as there is another conducting surface at r = c, the
air region is limited. The solutions for the fields
Ez(r, ϕ) and Hz(r, ϕ) are also given in terms of
Bessel functions, but in the air region the modified
Bessel function of the first kind, Iv(wr), has to be
retained. The characteristic equation for the TM0m

modes is (Marincic et al. 1986)

u

εr

J0(ua)Y0(ub) − Y0(ua)J0(ub)

Y0(ua)J1(ub) − J0(ua)Y1(ub)

= w
K0(wb)I0(wc) − K0(wc)I0(wb)

K1(wb)I0(wc) + K0(wc)I1(wb)
(5.58)

It should be noted that the left side of Eq. (5.58)
is identical to that of Eq. (2.272) for the open
surface-wave structure. The right side would be
identical if K0(wc) = 0, corresponding to c → ∞.
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The characteristic equation Eq. (5.58) is also a
transcendental equation that can only be solved in
a numerical way.

For the case with c � b, in the low-frequency
range, a simple quasi-static model can be used
to relate β/k0 with a, b, c, and εr (Marincic
et al. 1986). The model is based on equality of
capacitances of the coaxial structures, as shown
in Figure 5.26. As shown in Figure 5.26(b), if the
coaxial structure is filled with dielectric of effective
relative permittivity εeff, the capacitance per unit
length is given by

Ceff = 2πεeffε0

ln(c/a)
(5.59)

The capacitance of the structure in Figure 5.26(a)
is equivalent to the series connection of the
capacitances Cd and C0 given by

Cd = 2πεrε0

ln(b/a)
(5.60)

C0 = 2πε0

ln(c/b)
(5.61)

By equalizing the capacitance of the two structures,
we have

ln(b/a)

εr
= ln(c/a)

εeff
− ln(c/b) (5.62)

The structure shown in Figure 5.26(b) is actually
a coaxial line. When a wave in TEM mode
propagates along the line, the phase constant is

β0 = ω
√

µ0ε0εeff = k0
√

εeff (5.63)
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Figure 5.26 Low-frequency approximate mode of
closed surface-wave guiding structure. (a) Actual struc-
ture and (b) equivalent quasi-static structures. (Marincic
et al. 1986). Reproduced from Marincic, A. Benson, F.
A. and Tealby, J. M. (1986). Measurements of permit-
tivity by the use of surface waves in open and closed
structures, IEE Proceedings-H, 133, 441–449, by per-
mission of IEE

By substituting εeff from Eq. (5.63) into Eq. (5.62),
we get

εr = ln(b/a)

(k0/β)2 ln(c/a) − ln(c/b)
(5.64)

So εr can be calculated from the values of (β/k0),
(b/a), and (c/a). It should be noted that, only
for relatively low frequencies, Eq. (5.64) gives
the same answer as the complex characteris-
tic equation Eq. (5.58). The result of εr from
Eq. (5.64) is always higher than the actual value.
But, in any case, Eq. (5.64) can be used to find
an approximate solution for εr prior to making the
calculation on the basis of Eq. (5.58).

Figure 5.27 shows the structure of a closed
surface-wave resonator for the measurement of
dielectric constant. Usually, the input port is fixed

Input
probe

Probe

L

2a 2b 2c

Figure 5.27 Geometry of closed surface-wave resonator (Marincic et al. 1986). Reproduced from Marincic, A.
Benson, F. A. and Tealby, J. M. (1986). Measurements of permittivity by the use of surface waves in open and
closed structures, IEE Proceedings-H, 133, 441–449, by permission of IEE
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to an end plate, and the other probe is fixed on
the outer conductor near the end of the resonator
opposite to where the input port is located.

A closed coaxial surface-wave resonator has
several advantages over an open one (Marincic
et al. 1986). The closed structure can be used
from the lowest resonance when the resonator is
half-wavelength long. Although the design and
fabrication of an open structure are simpler and
easier, the size of the end reflectors may be pro-
hibitively large because of the loosely bound waves
at low microwave frequencies, for example, less
than 5 GHz. Furthermore, for a closed structure,
a simple and accurate calculation of relative per-
mittivity is possible at low microwave frequencies.
As discussed above, the quasi-static model is appli-
cable for a closed coaxial surface-wave resonator
at low-microwave-frequency range, so the dielec-
tric constant of the material can be obtained using
Eq. (5.64), and it is not necessary to perform a
complex numerical calculation of the characteristic
equation. An open coaxial surface-wave structure
can be used at high-microwave-frequency range,
but the characteristic equation has to be solved
using numerical techniques. However, it should be
noted that, if the low-frequency approximation for
εr, obtained from Eq. (5.64) cannot give sufficient
accuracy, a numerical technique can be used in
the calculation of εr from Eq. (5.58). The calcu-
lation procedure is practically identical to that for
open surface-wave resonator method, except that a
different characteristic equation is involved.

5.4 SPLIT-RESONATOR METHOD

Split-resonator methods are suitable for the char-
acterization of dielectric sheet samples, including
dielectric substrates for planar circuits. In a split-
resonator method, the measurement fixture usually
has a cylindrical structure working at a TE mode,
and the resonator is split into two parts at the
electric current node along a plane perpendicu-
lar to the cylinder axis. The sample under test is
placed in the gap between the two parts of the res-
onator, and usually the sample is at the place of
maximum electric field. The loading of a dielec-
tric sheet sample changes the resonant properties
of a split resonator, and the dielectric properties

of the sample can be derived from the resonant
properties of the resonator loaded with sample and
the dimensions of the resonator and the sample.
The most distinguished advantage of this method
is that sample preparation is not required, and
dielectric sheet samples with enough area can be
measured directly.

Calibration technique is often used in a split-
resonator method, and the dielectric properties
of the sheet sample can be derived from the
differences of the resonant properties of the
split resonator with and without the sample.
There are two major differences between the
split-resonator method using calibration technique
and the resonant-perturbation method, which is
discussed in Chapter 6. One is that in a split-
resonator method, the change of the resonant
frequency due to the introduction of the sample
may be large, while in a resonant-perturbation
method, the frequency change due to sample
insertion should be small. The other is that in
a split-resonator method, the field distributions
outside the sample may be changed obviously,
while the resonant-perturbation method assumes
that the field distributions outside the sample
remain unchanged.

In this section, we discuss several typical split-
resonator methods, including split-cylinder-cavity
method, split-coaxial-resonator method, split-
dielectric-resonator method, and open-resonator
method. Besides, planar split resonators, for
example, microstrip split resonators, discussed in
Section 9.4.3.2, have also been developed for the
characterization of the properties of dielectric thin
films.

5.4.1 Split-cylinder-cavity method

As shown in Figure 5.28(a), Kent proposed the
split-cylinder-cavity method using a cylindrical
empty cavity, which is separated into two shorted
cylindrical-waveguide sections, and the sheet sam-
ple is placed in the gap between the two
halves (Kent 1996). The parameters measured in
this method are the resonant frequency and qual-
ity factor. These data together with the specimen
thickness, the cavity dimensions, and the cavity
losses are used for the calculation of the dielectric
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Figure 5.28 Models for split-cylinder-cavity method. (a) Split cylindrical cavity loaded with a dielectric sample.
The axis of rotation is the z-axis, and the x –y plane is at the center of the sample and (b) approximation structure
of the split cylindrical resonator

constant and loss tangent of the sheet sample. The
geometry requirement on samples is only that the
sample must be flat and must extend beyond the
diameter of the two cavity sections. Therefore, this
method requires little or no sample preparation.

This method requires a comprehensive model
for the split cylinder cavity. In a conventional
resonator method, the boundary condition is rel-
atively straightforward since the electric and mag-
netic fields are confined to the sample or within
a metallic cavity. However, for a split cylinder
cavity, a gap exists between the two cylindrical-
waveguide sections, and the electric and magnetic
fields extend into the sample outside of the cylin-
drical cavity regions. In this sense, the model
of this method is similar to that of the circular-
radial resonator method discussed in Section 5.2.3.
Janezic and Baker-Jarvis made an exact full-wave
analysis on this configuration (Janezic and Baker-
Jarvis 1999). In the following, we follow the
approximate model proposed by Kent (1996). But
it should be noted that this approximate model
is only suitable for optically thin samples whose
thickness h should satisfy

2π

λ
· h√

ε′
r � 1, (5.65)

while the full-wave analysis method does not have
a strict requirement on sample thickness.

In principle, any TE0mn mode can be used for
this method. But, if higher-order modes are used,
mode identification may be difficult and there
might be some overlap between the working mode

and its neighboring modes. So the TE011 mode is
often used. In the excitation of TE011 mode, TM
modes that are affected very little by the dielectric
constant of the sample should be avoided, and
this can be achieved by coupling only to the axial
magnetic field.

In Kent’s approximate model, the dielectric
properties of the sheet sample are obtained in two
steps. In the first step, we approximate the split
resonator with a closed cylinder cavity, and do not
consider the effect of the air gap. In the second
step, correction is made to consider the effect of the
air gap, so that accurate dielectric constant value
of the sheet sample can be obtained.

In the first step, we assume that the air gap
between the two parts of the cylinder cavity be
shorted, and it is equivalent to that the sample
be enclosed by a conducting ring at the cavity
diameter. So the structure can be approximated
as a closed cylinder cavity with diameter 2a

and length (2L + h), as shown in Figure 5.28(b).
The continuity of electric and magnetic fields at
the surface of the dielectric sample requires an
eigenvalue θ satisfying (Kent 1996)

θ tan θ = ψ cot ψ ·
(

h

2L

)
(5.66)

with
θ = βh/2 (5.67)

ψ = β0L (5.68)

β2
0 =

(
2π

λ0

)2

−
(

2π

λc

)2

(5.69)
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β2 = ε′
r

(
2π

λ0

)2

−
(

2π

λc

)2

(5.70)

where L is the length of the half cavity, h is the
thickness of the sample, λ0 is the wavelength of
the resonant frequency, λc is the cutoff wavelength
of the TE01 mode. The right side of Eq. (5.66)
can be determined by experimental and structural
data, so the value of θ can be determined from
Eq. (5.66). When the value of θ is known, the
dielectric constant can be calculated from the
defining relation

ε′
r = 1 + (θ/θc)

2

η2
(5.71)

with
η = λc/λ0 (5.72)

However, in the actual case shown in
Figure 5.28(a), the gap is not shorted and the
specimen extends some distance beyond the cavity
radius, and the resonant frequency becomes lower.
So the results from Eqs. (5.66) and (5.71) are
erroneously large.

The magnetic field Hz in the gap region is
a sum of waves with the approximate exponen-
tial decrease:

Hz ≈ 2r

h
exp{−[(π/2)2 − (θ2 + θ2

c )]
1
2 } (5.73)

We assume the dimensions of the specimen satisfy
the following two requirements:

h/(2a) ≤ 0.15 (5.74)

r ≥ 4a/3 (5.75)

where r is the radius of the sample. Equation (5.73)
indicates that the reflections from the outer edges
of the sample can be ignored. Under these assump-
tions, the gap correction can be obtained by calcu-
lating the frequency difference between the two
structures shown in Figure 5.28. The frequency
difference can be calculated in terms of the ener-
gies stored at the gap in the outside of the radius
of the cavity. With the corrected frequency, the
right side of Eq. (5.66) has a different value, and
its solution in Eq. (5.71) yields the correct value
for the dielectric constant. Detailed discussions on

gap correction and typical measurement results can
be found in (Kent and Bell 1996).

For the determination of loss tangent, the
unloaded quality factor of the split cylinder cavity
is needed. To separate the dielectric loss of the
sample from the losses of the cavity itself, we
introduce two partition functions. The ratio of the
electric energy in the cavity outside the dielectric
sample to the electric energy in the dielectric
sample is given by

U = 1

ε′
r

· cos3 θ

(θ + sin θ cos θ) sin θ
, (5.76)

and the ratio of the end-wall loss to sidewall loss
is given by

W = j11 · (ψ/ψc)
3

ψ − sin ψ cos ψ
(5.77)

with

ψc = πh

λc
= j11 · h

2a
(5.78)

where j11 = 3.83171 is the first zero of the Bessel
function derivative J ′

0(x). With these partition
functions, the loss tangent can be calculated
using (Kent 1996)

tan δ = (1 + U)

Q0
− SU(1 + W) (5.79)

where S is a measure of the loss of the cavity itself,
which depends on the frequency and conductivity
σ of the cavity:

S = 0.722/(aσς0η
3)1/2 (5.80)

where ς0 is the free-space wave impedance, and
η is given by η = λc/λ0. The term SU(1 + W) in
Eq. (5.79) is the inverse quality factor due to the
loss of the cavity itself. Because the calculation
ignores losses in the gap region and the radiation
from the outer edge of the sample, the value of
SU(1 + W) is an underestimate of the inverse
quality factor due to fixture loss. Discussions on
the measurement uncertainties about this method
can be found in (Kent 1996; Kent and Bell 1996).

5.4.2 Split-coaxial-resonator method

Matytsin et al. proposed a split coaxial res-
onator for the characterization of dielectric sheet
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Figure 5.29 (a) Scheme of the split coaxial resonator and (b) approximation structure of split resonator. Letters
A–D denote amplitudes of partial waves propagating in the resonator

samples (Matytsin et al. 1996). As shown in
Figure 5.29(a), in this method, the coaxial res-
onator is split into two halves. The slot is situated
at a peak of electrical field and it almost does not
interrupt electrical currents in the frame of the res-
onator. The sheet sample under test is inserted at
the slot between the two parts of the resonator,
and the dielectric properties of the sample can be
derived from the resonant properties of the split
resonator loaded with the sample under test.

The working principle of this method is simi-
lar to that of the split-cylinder-cavity method dis-
cussed in Section 5.4.1, and the most obvious dif-
ference is that the split coaxial resonator is made
from coaxial line, while split cylinder cavity is
made from circular waveguide. Full-wave anal-
ysis of this configuration can also be conducted
in a similar way discussed in (Janezic and Baker-
Jarvis 1999), but such an analysis is complicated
and not convenient since it involves a great deal
of computation. Here, we introduce the approx-
imate model proposed by Matytsin et al. (1996).
This model can be used for determining dielec-
tric constant up to several hundred, and this range
covers most of the practical applications. But it
should be noted that, similar to the mode proposed
by Kent (1996), this model is applicable only to
optically thin samples:

2π

λ0
· d√

ε′
r � 1 (5.81)

where λ0 is the free-space wavelength, d is the
thickness of the sample, and ε′

r is the dielectric
constant of the sample.

Calibration measurement is often used in this
method. We first measure the resonance frequency
fc of the empty resonator. When a sample is
inserted into the resonator, the resonance frequency
shifts to the other value fm. The complex per-
mittivity of the sample can be extracted from the
frequency shift due to the presence of the sam-
ple. The development of the calculation algorithm
mainly consists of two steps. In the first step, we
consider the case of a coaxial resonator loaded with
a ring sample, as shown in Figure 5.29(b). In the
second step, we modify the conclusions obtained
from the first step by considering the effects of
the slot.

The propagation of an electromagnetic wave
through a symmetrical resonator can be analyzed
using the method of partial waves based on a
section of transmission line. In Figure 5.29(b),
characters A,B,C, and D correspond to the
amplitudes of partial waves near the sample
boundaries, and we assume the amplitude of the
electromagnetic wave entering the resonator to be
equal to unity. The sample has reflectivity R and
transmittance T , and the complex transmittance
coefficient of one half of the resonator is Y . We
assume that the sample is optically thin and the
quality factor of the resonator is high (Q � 1). The
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quantities A, B,C, and D are related by equations

A = Y + BY 2 (5.82)

B = AR + DT (5.83)

C = AT + DR (5.84)

D = CY 2 (5.85)

Transmission coefficient of the resonator is propor-
tional to C, which can be found from Eqs. (5.82–
5.85):

C = YT

[1 − (R + T )Y 2][1 + (T − R)Y 2]
(5.86)

The two terms in the denominator of Eq. (5.86)
correspond to two different resonant modes. The
first term is related to an electric mode of the
resonator, while the second term corresponds to
a magnetic mode. Near an electrical resonance,
frequency dependence of the transmittance of the
resonator is mostly related to the first term of the
denominator in Eq. (5.86). Thus, we can neglect
the frequency dependence of other terms, and the
transmission coefficient of the resonator W(f ) can
be expressed by

W(f ) ∝ 1

1 − (R + T )Y 2
(5.87)

Resonance is achieved when the denominator
of Eq. (5.87) equals zero. So the shift of com-
plex resonance frequency caused by inserting the
sample into the resonator can be found from the
equation (Matytsin et al. 1996)

exp(j2πfmL/c) · (R + T )

= exp(j2πfcL/c) · (R0 + T0) (5.88)

where (R0 + T0) is the sum of the reflection
and transmission coefficients of the air gap of
thickness d:

R0 + T0 = exp(−j2πd/λ0) (5.89)

where L is the length of the resonator, c is
the velocity of light, and exp(jωt), the time
dependence of the fields, is assumed. Values R

and T can also be calculated with the partial waves

approach. For an optically thin sample inserted into
a coaxial line, we have

R = − j(εr − 1) · πd/λ0

1 + j(εr + 1) · πd/λ0
(5.90)

T = 1

1 + j(εr + 1) · πd/λ0
. (5.91)

By substituting Eqs. (5.90) and (5.91) into
Eq. (5.88), after some manipulations, we can
get (Matytsin et al. 1996)

εr = tan[(d + Lδ) · πfc/c]

πdfm/c
(5.92)

with
δ = (fc − fm)/fc (5.93)

In the case of small permittivity, the frequency
shift is also small (|δ| � 1). So from Eq. (5.92)
we can get

εr ≈ 1 + L

d
· fc − fm

fc
(5.94)

The effect of the slot can be analyzed by
comparing two cases. In the first case, a sample is
fitted into unslotted coaxial line, and in the second
case, the sample is inserted through a slot in the
line. The first case has been considered above. In
the second case, we assume that the slot width is
equal to the sample thickness d and hence is small
in comparison with λ0 and the transversal sizes
of the line. We can assume an electromagnetic
field corresponding to the second case to be a
small perturbation of the field in the unslotted
line. Thus, Eq. (5.94) can be modified as (Matytsin
et al. 1996)

εr = tan[d(1 + Lδ/d − αd) · πfc/c] · (1 + αd)

πdfm/c
(5.95)

with

α =
(

2

π

)3

· 1

ln(b/a)
·
(

1

a
+ 1

b

)
(5.96)

where a and b are the inner and outer radii of
the coaxial resonator respectively. Equation (5.95)
relates the permittivity of the sample and the shift
of the resonance frequency in the case of the
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slotted resonator. By comparing Eqs. (5.92) and
(5.95), we can find the error if the slot effect
is neglected. Denoting the permittivity values
obtained from Eqs. (5.95) and (5.92) as ε1 and ε2

respectively, we have

ε2 − ε1

ε2
≈ αd · ε1 − 1

ε1
. (5.97)

It should be noted that in the above discussion
the permittivity and frequency are all complex
parameters, so using this method both the resonant
frequency and quality factor should be measured
and both the real and the imaginary part of the
permittivity can be obtained (Matytsin et al. 1996).

5.4.3 Split-dielectric-resonator method

Krupka et al. proposed a split-dielectric-resonator
method for the measurements of the complex per-
mittivity of dielectric sheet samples (Krupka et al.
1996). The proposed geometry of a split-dielectric-
resonator fixture is shown in Figure 5.30. The res-
onator mainly consists of two dielectric disks in a
metal enclosure. The dielectric disks are thin and
the height of metal enclosure is relatively small,
so the evanescent electromagnetic field character
is strong not only in the air-gap region outside
the cavity but also in the cavity region for radii

Support Dielectric
resonators

L
h

Dc

hr

ha

drSample
Metal
enclosure

Figure 5.30 Schematic diagram of a split dielectric
resonator fixture (Krupka et al. 1996). Reproduced from
Krupka, J. Geyer, R. G. Baker-Jarvis, J. and Ceremuga,
J. (1996). “Measurements of the complex permittivity
of microwave circuit board substrates using split dielec-
tric resonator and reentrant cavity techniques”, Seventh
International Conference on Dielectric Materials Mea-
surements & Applications, IEE, London, 21–24, by per-
mission of IEE

greater than the radius of the dielectric resonator.
Therefore, the electromagnetic fields are also atten-
uated in the cavity so it is usually not necessary
to take them into account in the air gap. This sim-
plifies the numerical analysis and reduces possible
radiation.

Such a split dielectric resonator usually oper-
ates with the TE01δ mode, which only has the
azimuthal electric field component, so the electric
field remains continuous on the dielectric inter-
faces. Figure 5.31 shows the distributions of the
electric field component, Eϕ , in the split dielectric
resonator operating at the TE01δ mode, with and
without a sheet sample. Figure 5.31 shows that the
field distributions are affected by the introduction
of the sample, and the changes of the field dis-
tributions are related to changes of the resonant
frequency and the unloaded Q-factor of the split
resonator. The dielectric properties of the sample
are derived from the changes of resonant frequency
and unloaded quality factor due to the insertion
of sample.

For low-loss materials, the influence of losses
on the resonant frequencies is negligible, so the
real part of permittivity of the sample under test
is related to the resonant frequencies and physical
dimensions of the cavity and sample only. In
this method, calibration technique is used, and we
compare the difference of resonant frequency of
the split dielectric resonator before and after the
sample is inserted. The dielectric constant of the
sample is an iterative solution to the following
equation (Krupka et al. 1996):

ε′
r = 1 + f0 − fs

hf0Kε(ε′
r, h)

(5.98)

where h is the thickness of the sample under test,
f0 is the resonant frequency of empty resonant
fixture, fs is resonant frequency of the resonant
fixture with dielectric sample, Kε is a function of
ε′

r and h.
For a given resonant fixture and known ε′

r and
h, from Eq. (5.98), we have

Kε(ε
′
r, h) = f0 − fs

(ε′
r − 1) · hf0

. (5.99)

In the development of the calculation algorithm,
exact resonant frequencies and then the values
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Figure 5.31 Distributions of the electric field in a cross section of a split dielectric resonator with the following
parameters: εd = 28.9, L = 13 mm, ha = 1.6 mm, Dc = 30.2 mm, dr = 13.85 mm, and hr = 1.98 mm. (a) Without
sample and (b) with a sample of the following parameters: εr = 10 and h = 1.2 mm. (Krupka et al. 1996).
Reproduced from Krupka, J. Geyer, R. G. Baker-Jarvis, J. and Ceremuga, J. (1996). “Measurements of the complex
permittivity of microwave circuit board substrates using split dielectric resonator and reentrant cavity techniques”,
Seventh International Conference on Dielectric Materials Measurements & Applications, IEE, London, 21–24, by
permission of IEE

of Kε are computed for a number of ε′
r and

h, and interpolation is used to compute Kε for
any other values of ε′

r and h. In the calculation
of dielectric constant using Eq. (5.98), the initial
value of Kε is usually taken to be the same as
its corresponding value for a given h and ε′

r =
1. Subsequent values of Kε are found for the
subsequent dielectric constant values obtained in
the iterative procedure. As Kε is a slowly varying
function of ε′

r and h, the iterations using Eq. (5.98)
converge rapidly (Krupka et al. 1996).

The dielectric loss tangent of the sample can be
determined by (Krupka et al. 1996)

tan δ = 1

pes

(
1

Q
− 1

QDR
− 1

Qc

)
(5.100)

with
pes = hε′

rK1(ε
′
r, h) (5.101)

Qc = Qc0K2(ε
′
r, h) (5.102)

QDR = QDR0 · f0

fs
· peDR0

peDR
(5.103)

where pes and peDR are the electric-energy fill-
ing factors for the sample and for the dielectric
split resonator respectively; peDR0 is the electric-
energy filling factor of the dielectric split resonator

for empty resonant fixture; Qc0 is the quality fac-
tor depending on metal enclosure losses for empty
resonant fixture; QDR0 is the quality factor depend-
ing on dielectric losses in dielectric resonators for
empty resonant fixture; and Q is the unloaded qual-
ity factor of the resonant fixture containing the
dielectric sample.

The values of peDR, pes, and Qc for a given
resonant structure can be calculated using numer-
ical techniques. In the development of calculation
algorithm, these parameters usually are computed
for a number of h and ε′

r, and then the functions
K1 and K2 are evaluated and tabulated. Because
K1 and K2 vary slowly with h and ε′

r, inter-
polation can be used to evaluate these parame-
ters for any values of h and ε′

r with acceptable
accuracy.

The position of the sample in z-direction in the
gap is not sensitive to the measurement results.
Furthermore, the measurement results for stacked
dielectric films are independent of the number of
films so the split dielectric resonator method is
not sensitive to the presence of air gaps between
stacked films. Detailed discussion on measurement
accuracy and sensitivity can be found in (Krupka
et al. 1996).
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5.4.4 Open resonator method

The use of cavity resonators may run into diffi-
culties at high microwave frequencies, at which
wavelengths lie in the millimeter range (Cullen
1983). First, as the size of cavity resonator is
directly proportional to the wavelength, cavity res-
onators are inconveniently small for the charac-
terization of materials properties at millimeter-
wave frequencies. In particular, for solid dielec-
tric specimens, it becomes increasingly difficult
to ensure that the specimen fits the cavity with
a negligible air gap. Second, the quality factor
of a cavity resonator varies with the wavelength
as λ3/2, and so decreases rather rapidly as the
wavelength decreases. For a cavity with low qual-
ity factor, the additional loss due to the speci-
men may be swamped by the inherent loss of
the cavity. Because the loss tangent of a dielec-
tric specimen is determined by measuring the
change in the quality factor produced when the
specimen is inserted, the accuracy of measure-
ment must decrease as the wavelength decreases.
These difficulties can be solved by using open res-
onators (Afsar et al. 1990). The essential feature
of an open resonator is that the number of modes
is proportional to the length rather than the vol-
ume of the resonator. Thus, the number of modes
is proportional to L/λ rather than (L/λ)3, where L

is the characteristic length of the resonator. Even
for a fairly large value of L/λ, the mode sep-
aration is sufficient for single-mode operation to
be used.

The basic properties of open resonators have
been discussed in Chapter 2. When an open
resonator is used for the characterization of
materials properties, the sample under study is
placed between the two reflecting mirrors, and in
this meaning, an open resonator can be taken as a
special type of split resonator. This method usually
works in the frequency range of 10 to 200 GHz,
and generally speaking, it is easier to load and
unload samples to an open resonator than to a
cavity resonator. Using the open resonator method,
flat disc-shaped solid samples can be measured,
and liquids or powders can also be measured
provided they are restrained within a solid annulus,
which is outside the microwave beam area and

covered by plates with low dielectric constant and
low loss tangent.

In the characterization of materials properties
using open resonator method, the wavefront of
electromagnetic beam in the open resonator is an
important factor. If the face of a plane dielectric
specimen is situated at a point where the wavefront
is curved, the parameters of the beam, such as its
radius of curvature r , transform through the surface
in a way that is inaccessible to simple theories. So
the sample is usually placed at the beam waist,
where r is large, but corrections are still needed to
obtain accurate results.

Many resonator geometries have been used
in materials property characterization. Each of
them has its advantages and disadvantages. For
example, a hemispherical resonator can be used
to measure small-diameter specimens (not less
than 5 w0 for negligible diffraction), but, if the
specimen rests on the plane mirror, which is
at an electric field minimum, such a resonator
is not suitable for samples with a thickness
much less than λ/2. Lynch made a compar-
ison about the performances of “short” (D <

r0), confocal, semiconfocal and hemispherical
geometries for permittivity measurements (Lynch
1979).

In the following, we discuss the applications of
biconcave resonator and plano-concave resonator
in characterization of materials properties. These
types of resonators usually have high accuracy
and sensitivity. Such structures exhibit TEM
resonances, and the electromagnetic fields in the
resonators are in the form of a standing-wave
Gaussian beam. The resonant fields have maximum
amplitude on the axis and decrease when the
position moves away from the axis. When the
sample is placed at the “waist” of the resonator,
sample diameters down to six wavelengths are
quite adequate for measurements.

It should be indicated that in an open res-
onator method for materials property character-
ization, usually the refractive index n is used.
For a dielectric material, the relationship between
refractive index and dielectric permittivity is
given by

n = √
ε′

r (5.104)
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5.4.4.1 Biconcave open resonator

Figure 5.32 shows the measurement configuration
using a biconcave open resonator. A parallel-plane-
sided slab of dielectric material with thickness 2t

is placed midway between two identical spherical
mirrors with radius R0. The total length of the
resonator is D and the distance between the sample
plane and the spherical mirror is d . There are
two techniques for the measurement of materials
properties. In one technique, the length of the
cavity is fixed, and the resonant frequency is
measured with and without sample. In the other
technique, the length of the cavity is adjusted to
establish resonance with and without the sample
at the same frequency. Here, we discuss the basic
algorithms for these two techniques, and more
detailed discussions can be found in (Cullen 1983;
Yu and Cullen 1982).

Before we discuss the calculation algorithms,
consider the open resonator shown in Figure 5.32,
but with no sample present and with two spherical
mirrors of equal radii of curvature R0, located at
z = ±D/2. The radius wz of the beam at position
z is given by

w2
z = w2

0 · (1 + z2/z2
0) (5.105)

with

w2
0 = λ

2π

√
D(2R0 − D) (5.106)

z2
0 = D

2
·
(

R0 − D

2

)
(5.107)

d d

e0 e0

D

2t

e

Figure 5.32 An open resonator loaded with dielectric
sheet sample. Reproduced from Cullen, A. L. (1983).
“Chapter 4 Millimeter-wave open-resonator techniques”,
in Infrared and Millimeter Waves, Volume 10, Part II,
edited by Button, K. J. (Academic Press, Orlando),
233–281, by permission of Elsevier

where w0 is the radius of the “waist” of the
resonator. For a symmetrical biconcave open
resonator, the “waist” is at the position of z = 0.
As will be discussed later, when a sample is
inserted into the open resonator, the radius of the
beam should be modified.

Frequency-variation technique

The first step of this technique is to accurately
determine the total length D of the open resonator
by measuring the resonant frequency fe of the
empty open resonator. The value of D can be
derived according to following equation (Yu and
Cullen 1982):

fe = c

2D

[
q + 1 + 1

π
arccos

(
1 − D

R0

)
− 1

2πkeR0

]
(5.108)

where q is the axial mode number, R0 is the radius
of the curvature at z = t + d, ke = 2πfe/c, and c

is the speed of light in air. It is assumed that
R0 is sufficiently accurately known from mechan-
ical measurement, and, actually, as indicated by
Eq. (5.108), fe does not depend strongly on R0.
It is also assumed that the length D is sufficiently
well known in advance to enable the mode number
q to be determined unambiguously.

In the next step, we place the dielectric sam-
ple at the “waist” of the resonator as shown in
Figure 5.32 and measure the new resonant fre-
quency. The mode number is now uncertain unless
an approximate value of the refractive index is
available, and such ambiguity can be resolved by
using samples of different thickness values. The
measured frequency should be corrected by apply-
ing the interface correction and mirrored in reverse
to obtain an effective frequency from which the
wave number k is calculated. The measured fre-
quency should be decreased by δf given by (Yu
and Cullen 1982)

δf

f0
= t (n − �)

n2k2w2
t · (t� + d)

+ 3

4k2 · (t� + d)R0
(5.109)

with

� = n2

n2 sin2(nkt − �T) + cos2(nkt − �T)
(5.110)
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for symmetric modes and

� = n2

n2 cos2(nkt − �T) + sin2(nkt − �T)
(5.111)

for antisymmetric modes. Also, the radius of the
beam should also be modified:

w2
t = w2

0 · (1 + t2/z2
0) (5.112)

with
z0 = √

d ′ · (R0 − d ′) (5.113)

d ′ = d + t/n (5.114)

The value of k derived from the effective
frequency is then substituted in Eq. (5.115) or
Eq. (5.116), depending on whether the mode is
symmetric or antisymmetric. And the value of n

can be subsequently obtained by solving the tran-
scendental equation, and the value of dielectric
constant ε′

r = n2 can then be obtained. The tran-
scendental equation for symmetrical modes is

(1/n) cot(nkt − �T) = tan(kd − �D) (5.115)

and the one for antisymmetrical modes is

(1/n) tan(nkt − �T) = tan(kd − �D) (5.116)

with

�T = tan−1(t/nz0) − tan−1[1/nkR1(t)]

(5.117)
�D = tan−1(d ′/z0) − tan−1(1/kR0)

− tan−1(t/nz0) − tan−1[1/nkR2(t)]

(5.118)

R1(t) = t + n2z2
0/t (5.119)

R2(t) = t/n + nz2
0/t (5.120)

An approximate value of n must be assumed at
the outset in evaluating the correction terms given
by Eq. (5.109), and, if necessary, these corrections
can be recalculated using the value of n deduced
from the transcendental equation. This equation
may then be solved again to obtain an improved
value of n if necessary.

Length-variation technique

In this technique, we keep the frequency con-
stant and change the length of the resonator to
reestablish resonance after the dielectric specimen
is inserted. The starting point is to establish the
resonant length of the empty resonator, adjusting
the length at fixed frequency until the desired mode
is resonant. We denote the half-length by d0. After
inserting the specimen, the new resonant length
is found. We denote this by (d0 − p). The mod-
ified half-length, (d + t), is then calculated using
the previously derived interface and mirror cor-
rections in a suitable form as follows (Yu and
Cullen 1982):

d + t = d0 − p + t (n − �)

n2k2w2
t

+ 3

4k2R0
(5.121)

The rest of the calculation follows along the same
lines as the frequency-variation method, solving
the transcendental equation for n and iterating
if necessary.

Measurement of dielectric loss

As discussed earlier, each contribution to the
losses of a resonant mode can be described by an
individual quality factors, Qi . By combining these
individual quality factors, we can get the overall
resonator quality factor Q0 of the resonant mode:

1

Q0
=

∑
i

1

Qi

(5.122)

The quality factor associated with the sample
loss is inversely related to the loss tangent of
the sample:

Qd = F/ tan δ (5.123)

where F is a filling factor. Except for perturbation
methods, it is desirable that the quality factor
associated with the sample loss Qd is comparable
with the overall quality factor Q0. The quality
factors for plane-parallel resonators are often an
order of magnitude less than those for confocal
resonators of similar dimensions and at similar
frequencies. For this reason, planar resonators are
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more suitable for medium-loss samples, while
confocal resonators are more suitable for low-
loss samples.

The formulae relating the loss tangent tan δ to
the quality factor of the dielectric-loaded resonator
for both symmetric and antisymmetric modes can
be derived from Eqs. (5.115) and (5.116) by
working first in terms of a complex refractive index
and a complex phase coefficient k(= ω/c). The
imaginary part of the refractive index is simply
related to tan δ, and the imaginary part of k or
ω is simply related to the quality factor. If the
losses are small, with first-order approximations,
we have (Yu and Cullen 1982)

tan δ = 2nk(d + t�s)

Q[2nkt�s + �s sin 2(nkt − �T)]
(5.124)

for symmetric modes, where �s is given by
Eq. (5.110), while for antisymmetric modes,
we have

tan δ = 2nk(d + t�a)

Q[2nkt�a − �a sin 2(nkt − �T)]
(5.125)

where �a is given by Eq. (2.111).

5.4.4.2 Plano-concave resonator

Figure 5.33 shows a plano-convex resonator, and
the sample under test is placed on the plane
mirror. The axis of the resonator is usually
vertical, so liquid samples can be measured.
Usually it works in a transmission mode, and small
coupling apertures are situated near the pole of the
curved mirror. The resonator is usually used in a
configuration intermediate between semiconfocal
and hemispherical. In the following, we discuss
semiconfocal plano-concave resonator.

The plano-concave resonator works in a sim-
ilar principle as biconcave resonator method.
The measurement procedure for plano-concave
resonator method also consists of two steps.
First, measure the resonant frequency fq of a
fundamental TEM00q mode of empty resonator
with an arbitrary mode number q and calcu-
late the resonator length D, using the following

Output Input

WaveguideConcave
mirror

Dielectric
sample

Plane mirror

D

S′S

Figure 5.33 Schematic diagram of the semiconfo-
cal open resonator used for dielectric measure-
ment (Komiyama et al. 1991). Source: Komiyama, B.
Kiyokawa, M. and Matsui, T. (1991). “Open resonator
for precision dielectric measurements in the 100 GHz
band”, IEEE Transactions on Microwave Theory and
techniques, 39 (10), 1792–1796.  2003 IEEE

equation (Komiyama et al. 1991):

fq = c

2D

[
q + 1 + 1

π
tan−1

(
D

R0 − D

)1/2
]

(5.126)

The next step is to place a sample with thickness
t on the plane mirror and measure the new resonant
frequency fs, of the TEM00s mode with the sample
present. The refractive index n can be determined
by solving the following equation (Komiyama
et al. 1991):

(1/n) tan(nkt − �t) = − tan(kd − �d) (5.127)

with

k = 2πfs/c (5.128)

d = D − t (5.129)

�t = tan−1(t/nz0) (5.130)

�d = tan−1(d ′/z0) − tan−1(t/nz0) (5.131)

d ′ = d + t/n (5.132)

z0 = [d ′(R0 − d ′)]1/2 (5.133)
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The loss tangent of the sample is given
by (Komiyama et al. 1991)

tan δ = 1

Qe
· t� + d

t� + [sin 2(kd − �d)]/(2k)
(5.134)

with

� = εr

εr cos2(nkt − �t) + sin2(nkt − �t)
(5.135)

1

Qe
= 1

Qd
− 1

Q1
(5.136)

where Qd is the measured quality factor of the
resonator containing the sample and Q1 is the
calculated quality factor for resonator containing
a similar but loss-free sample

Q1 = Q0
2(t� + d)

D(� + 1)
(5.137)

where Q0 is the measured quality factor of the
empty resonator with the same axial mode number
s. If a combination of frequency and thickness is
made so that � = 1, the measurement results of ε′

r
and tan δ are most reliable (Cullen 1983).

5.5 DIELECTRIC RESONATOR METHODS
FOR SURFACE-IMPEDANCE
MEASUREMENT

The basic properties of the surface impedance
of normal conductors and superconductors have

been discussed in Chapter 2. The measurement
of the surface impedance of conductors is impor-
tant for developing microwave electronic circuits,
especially after the discovery of high-temperature
superconductivity. Dielectric resonator methods
for the measurement of the surface impedance
have been studied extensively (Taber 1990; Moura-
chkine and Barel 1995; Shen et al. 1992; Mazier-
ska 1997; Mazierska and Wilker 2001; Obara
et al. 2001; Talanov et al. 1999; Kobayashi and
Yoshikawa 1998; Kobayashi et al. 1991; Krupka
et al. 1993; Tellmann et al. 1994), and dielectric
resonator methods can be used as standards in the
characterization of surface impedance.

The dielectric resonator methods for this purpose
generally fall into two categories. In one category,
only the surface resistance is measured. In the
other category, both surface resistance and surface
impedance are measured.

5.5.1 Measurement of surface resistance

Many dielectric resonators with different configu-
rations have been developed for the measurement
of surface resistance (Taber 1990; Mourachkine
and Barel 1995; Shen et al. 1992; Mazierska 1997;
Mazierska and Wilker 2001; Obara et al. 2001;
Krupka et al. 1993; Tellmann et al. 1994), and they
share similar working principles. The basic con-
figuration of the measurement method is shown in
Figure 5.34. The two conducting plates short the

Conducting
or HTS plates

Dielectric
rod

Semirigid cables
with loop

(a) (b)

Figure 5.34 Configuration of a Courtney resonator for surface-resistance measurement. (a) Side view and (b) top
view without the upper conducting plate. Modified from Mourachkine, A. P. and Barel, A. R. F. (1995). “Microwave
measurement of surface resistance by the parallel-plate dielectric resonator method”, IEEE Transactions on
Microwave Theory and Techniques, 43 (3), 544–551.  2003 IEEE
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two open ends of a dielectric rod. The resonant
properties of such a configuration are related to
the dielectric properties of the dielectric rod and
the surface impedance of the conducting plates.
As discussed in Section 5.2.1, this configuration
can be used to characterize the dielectric proper-
ties of the dielectric rod. If we know the dielectric
properties of the dielectric rod, this configuration
can be used to characterize the surface impedance
of conducting plates.

In this method, the surface resistance Rs of
the conducting plates can be calculated from the
quality factor of the resonator using the following
equation that is derived from Eq. (5.5):

Rs = 1

B
·
(

A

Q0
− tan δ

)
(5.138)

where the parameters A and B, defined by
Eqs. (5.6)–(5.8), are related to the geometrical
dimensions and the dielectric properties of the
dielectric rod. Equation (5.138) indicates that the
knowledge of the dielectric constant and loss
tangent of the dielectric rod is needed. If the
dielectric constant and loss tangent of the dielectric
rod is unknown, two measurements on two sets of
conducting plates with known surface resistance
values are needed to calibrate the values of A

and B.
Usually, the dielectric constant of the dielectric

rod is accurately known, while the loss tangent
of a low-loss dielectric has large uncertainty.
As discussed in Section 5.2.1, we can use a
two-resonator method to avoid the uncertainty
due to the uncertainty in loss-tangent value, and
calculate the surface resistance using Eq. (5.12).
More discussion on this method can be found
in (Obara et al. 2001).

In an actual measurement system, the resonant
structure shown in Figure 5.34 is often housed
in a metal shield. Besides, the conducting plates
have limited sizes. With these considerations,
the unloaded quality factor Q0 of the resonant
structure can be expressed as

1

Q0
= 1

Qs
+ 1

Qm
+ 1

Qd
+ 1

Qrad
(5.139)

where Qs,Qm,Qd, and Qrad are the quality factors
related to the sample, metallic, dielectric, and

radiation losses respectively. The sample and
metallic losses can be directly determined by
the respective surface resistance (Rs, Rm) and the
dielectric losses can be determined by the loss
tangent of the dielectric rod:

1

Qs
= Rs

As
(5.140)

1

Qm
= Rm

Am
(5.141)

1

Qd
= pd tan δ (5.142)

where As and Am are geometrical factors of the
sample and metallic part respectively and pd is
the electric-energy filling factor of the dielectric
part. The geometrical factors depend on the
type, structure, and dimensions of the resonator.
Further discussion on these aspects can be found
in (Mazierska 1997; Mazierska and Wilker 2001;
Krupka et al. 1993).

5.5.2 Measurement of surface impedance

In order to understand the conduction mechanism
and the electronic application of normal conductors
and superconductors, it is necessary to measure
the surface impedance, including the surface
reactance and surface resistance, of conducting
plates or superconducting thin films. Though
there are many methods for the measurement
of surface resistance, there are only a few
methods for the measurement of surface reactance.
Talanov et al. proposed a modified parallel-
plate transmission-line resonator with a smoothly
variable thickness of dielectric spacer for the
measurement of the absolute penetration depth
and surface resistance of superconductors (Talanov
et al. 1999). In the following, we discuss two
methods proposed by Kobayashi et al: two-
resonator method (Kobayashi et al. 1991) and
dual-mode resonator method (Kobayashi and
Yoshikawa 1998).

5.5.2.1 Two-resonator method

Figure 5.35 (a) shows a TE011 mode dielectric
rod resonator placed between a perfect-conductor
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Figure 5.35 Analytical mode for surface resistance measurement. (a) TE011 mode dielectric rod resonator and
(b) equivalent circuit

plate (at the left side) with surface impedance
Zsl = Rsl + jXsl = 0, where the subscript l denotes
the left side and a superconductor or conductor
plate (at the right side) with a finite value of Zs,
such as a superconductor or a metal plate. The
dielectric rod with relative permittivity εr, diameter
D = 2R, and length L is assumed to be lossless.
Figure 5.35(b) shows an equivalent circuit for the
resonator, whose resonance condition is given by

Zs + jZβ tan βL = 0 (5.143)

with
Zβ = ωµ0

β
(5.144)

where µ0 = 4π × 10−7 (H/m), and Zβ and β

are the characteristic impedance and the phase
constant in a dielectric waveguide respectively.

We introduce a perturbational quantity of com-
plex angular frequency ��/ω:

��

ω
= �f

f
+ j

1

2Qs
(5.145)

with
�f = f0 − f (5.146)

where f is the resonant frequency when Zs = 0
and f0 and Qs are the resonant frequency and qual-
ity factor due to the loss in the upper conductor
when Zs 
= 0. By taking the first-order approxima-
tion of Eq. (5.143), we can derive a perturbation
formula for Zs (Kobayashi et al. 1991):

Zs = 960π2

(
L

λ0

)3

· εr + W

1 + W
·
(

−j
��

ω

)
(5.147)

where λ0 = c/f0, c is the speed of light, and W is
given by Eq. (5.8).

If the upper conductor plate is in the normal state
(Rs = Xs), the resonant frequency for Zs = 0 can
be determined from the measured values of f0 and
quality factor Qs by

f = 2Qs

2Qs − 1
f0 (5.148)

In an actual resonator, Rsl and the loss tangent
of dielectric tan δ are not zero. The value of Qs

can be obtained by removing the effects caused by
these losses from a measured Qu value (Kobayashi
et al. 1991):

1

Qs
= 1

Qu
− Rsl

480π2

(
λ0

L

)3 1 + W

εr + W
− tan δ

1 + W/εr
(5.149)

Equation (5.149) shows that in order to calculate
the surface impedance, the values of Rsl, εr, and
tan δ should be determined first. As shown in
Figure 5.3, by measuring the resonant properties of
TE011 and TE0ll (l ≥ 2) mode dielectric resonators
placed between two metal plates, the values of
Rsl, εr, and tan δ can be determined. As two
dielectric resonators are used, this method for the
measurement of the surface impedance is usually
called two-resonator method.



Resonator Methods 245

5.5.2.2 Dual-mode resonator method

Kobayashi and Yoshikawa proposed the dual-
mode resonator method for the measurement
of surface impedance (Kobayashi and Yoshikawa
1998). In this method, two resonant modes (TE021

and TE012) in a dielectric rod resonator are
used, and this method is also called the one-
resonator method.

Properties of dielectric rod resonator

Consider a dielectric rod resonator placed between
two parallel conducting plates. The dielectric rod
has relative permittivity εr, loss tangent tan δ,
diameter D, and length L, and the conducting
plates have surface impedance Zs and diameter
d . In this method, the TE012 and TE021 modes
are used, whose field distributions are shown in
Figure 5.36.

Figure 5.37 shows a mode chart for a dielectric
rod with dielectric constant εr = 24 (Kobayashi
and Yoshikawa 1998). The values of D and L of
the dielectric rod are chosen so that the resonant
frequency f1 for the TE021 mode is in proximity to
f2 for the TE012 mode, as indicated by the dashed
lines in Figure 5.37.

Figure 5.38 shows an analytical model for TE0ml

mode dielectric resonator. We assume that d = ∞,
tan δ = 0 and Rs = Xs = 0. The values of εrp,
with p = 1 representing TE021 mode and p = 2
representing the TE012 mode, can be obtained
from the measured values fp by (Kobayashi and
Yoshikawa 1998)

εrp =
(

c

πDfp

)2

(u2
p + v2

p) + 1 (5.150)

with

v2
p =

(
πDfp

c

)2
[(

cp

2Lfp

)2

− 1

]
(5.151)

up
J0(up)

J1(up)
= −vp

K0(vp)

K1(vp)
(5.152)

where c is the speed of light, Jn is the Bessel
function of the first kind, and Kn is the modified
Bessel function of the second kind. It should be
noted that u1 for the TE021 mode is the second
solution of Eq. (5.152) and u2 for the TE012 mode
is the first solution of Eq. (5.152).

The loss tangent of the dielectric rod can be
calculated from the unloaded quality factor Qup

Conducting
plates (Rs,Xs)

Dielectric rod
(er , tand)

d d

L L

D D

(a) (b)

Figure 5.36 Field distributions of (a) TE021 and (b) TE012 modes in a dielectric rod resonator placed between
two parallel conducting plates. The solid lines represent the electric force, while the dashed lines represent the
magnetic force. The resonant frequency and unloaded quality factor for TE021 mode are f1 and Qu1 respectively,
and the resonant frequency and unloaded quality factor for TE012 mode are f2 and Qu2 respectively (Kobayashi
1998). Source: Kobayashi, Y. Yoshikawa, H. (1998). “Microwave measurements of surface impedance of high-T-c
superconductors using two modes in a dielectric rod resonator”, IEEE Transactions on Microwave Theory and
Techniques, 46 (12), 2524–2530.  2003 IEEE
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Figure 5.37 A mode chart calculated for εr = 24 (Kobayashi and Yoshikawa 1998). Source: Kobayashi, Y.
Yoshikawa, H. (1998). “Microwave measurements of surface impedance of high-T-c superconductors using two
modes in a dielectric rod resonator”, IEEE Transactions on Microwave Theory and Techniques, 46 (12), 2524–2530.
 2003 IEEE
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Figure 5.38 Analytical model for TE0ml dielectric resonator. (a) Resonator configuration and (b) equivalent circuit

measured at fp using the following equation
similar to Eq. (5.5):

tan δp = Ap

Qup
− BpRsp (5.153)

with

Ap = 1 + Wp

εrp
(5.154)

Bp =
(

cp

2Lfp

)3 1 + Wp

30π2pεrp
(5.155)

Wp = J 2
1 (up)[K0(vp)K2(vp) − K2

1 (vp)]

K2
1 (vp)[J 2

1 (up) − J0(up)K2(up)]
(5.156)

where Rsp is the surface resistance of the conduct-
ing plates.

Measurement of surface resistance

In the following discussion, we use εr0, tan δ0, Rs0,
and Xs0 to represent the values of εr, tan δ, Rs,
and Xs at frequency f0 respectively, taking their
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frequency dependences into account. Here, f0 is
an arbitrarily given frequency near f1 and f2. For
ion-crystallized material such as polycrystalline
ceramics and sapphire, in the frequency region
including f1, f2, and f0, we assume

εrp = εr0 (5.157)

tan δp = fp

f0
tan δ0 (5.158)

For conducting plates, we assume

Rsp =
(

fp

f0

)n

Rs0 (5.159)

Xsp =
(

fp

f0

)m

Xs0 (5.160)

where n = m = 1/2 for a normal conductor and
n = 2 and m = 1 for a superconductor, accord-
ing to the two-fluid model. By substituting
Eqs. (5.158) and (5.159) into Eq. (5.153), we get

fp

f0
tan δ0 = Ap

Qup
− Bp

(
fp

f0

)n

Rsp (5.161)

By eliminating tan δ0 from two equations derived
from Eq. (5.161) for p = 1 and 2, we obtain

Rs0 = f n
0 f2 · (A1/Qu1) − f n

0 f1 · (A2/Qu2)

B1f
n
1 f2 − B2f

2
2 f1

(5.162)

Measurement of surface reactance

As indicated earlier, Eq. (5.150) is based on
the assumptions that d = ∞, tan δ = 0 and Rs =
Xs = 0. The values εr1 and εr2 calculated using
Eq. (5.150) values are different from each other
because of different effects of Xs depending on the
modes. Therefore, an intrinsic relative permittivity
of the dielectric rod εi can be calculated by

εi = εr1 − �εr1 = εr2 − �εr2 (5.163)

where �εr1 and �εr2 are correction terms due to
Xs1 for the TE021 mode and due to Xs2 for the
TE012 mode respectively given by

�εrp = 4(1 + Wp)

(
βp

kp

)2
Xsp

ωpµL
(5.164)

with
kp = ωp

c
(5.165)

βp = πp

L
(5.166)

From Eqs. (5.160), (5.163), and (5.164), we obtain

Xs0 = εr2 − εr1

C2 − C1
(5.167)

with

Cp = 4(1 + Wp)

(
βp

kp

)2 1

ωpµL

(
fp

f0

)m

(5.168)

Equation (5.167) indicates that the value of Xs0

can be obtained from the measured values of εr1

and εr2.
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6

Resonant-perturbation Methods

In a resonant perturbation method, the sample is
inserted into a resonator, and the properties of the
sample are calculated from the changes of the res-
onant frequency and the quality factor of the res-
onator caused by the sample. After analyzing the
resonant perturbation theory, we discuss the cavity-
perturbation method and the dielectric resonator
perturbation method for permittivity and perme-
ability measurement. We then discuss the mea-
surement of surface impedance using the resonant-
perturbation method. At the final section, we
discuss the resonant near-field microwave micro-
scopes, which can be used for mapping various
properties of materials, including permittivity, per-
meability, and sheet resistance.

6.1 RESONANT PERTURBATION

6.1.1 Basic theory

As discussed in Section 2.1, resonant methods,
including dielectric resonator methods and reso-
nant perturbation methods, usually have higher
accuracy and sensitivity than nonresonant meth-
ods. In a dielectric resonator method, the sample
under test resonates in the measurement circuit,
and the dielectric properties of the sample are
deduced from its resonant frequency and quality
factor. In a resonant perturbation method, the sam-
ple under test is introduced to a resonator, and
the electromagnetic properties of the sample are
deduced from the change of the resonant frequency
and quality factor of the resonator. Owing to its
high accuracy and sensitivity, and its flexibility

in sample preparation, resonant perturbation meth-
ods are widely used for low-loss bulk samples,
powders, small-size samples, and samples of irreg-
ular shapes.

Hollow metallic cavities and dielectric resonators
are two types of resonators often used in reso-
nant perturbation methods, and the corresponding
resonant perturbation methods are called the cavity-
perturbation method and the dielectric resonator per-
turbation method, respectively. In this section, we
focus on the perturbation to hollow metallic cav-
ities, and the conclusions can be extended to the
perturbations to dielectric resonators.

Generally speaking, there are three types of
cavity perturbations: cavity-shape perturbation,
wall-impedance perturbation, and material pertur-
bation. Cavity-shape perturbation can be achieved
by pulling out or pushing in part of the cavity wall.
Usually, cavity-shape perturbations change the res-
onant frequency of the cavity and the stored energy
in the cavity, but do not change the energy dissi-
pation in the cavity. The cavity-shape perturbation
is often used to retune the resonant frequency of a
resonant cavity. Wall-impedance perturbation can
be achieved by replacing part of the cavity wall,
keeping the shape of the cavity unchanged. The
wall-impedance perturbation is often used for mea-
suring the surface impedance of conductors. In
material perturbation, a material is introduced into
a cavity, and the resonant frequency and quality
factor of the cavity are thus changed. The com-
plex permittivity or complex permeability of the
material can be determined from the changes of
the resonant frequency and the quality factor of
the cavity due to the introduction of the sample.

Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2
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In the following discussion, “cavity-perturbation
method” refers to “material-perturbation method.”

Perturbation method is an approximate method
for finding the eigenvalues of the perturbed
resonant system, which does not have much
difference from the original system with known
eigenvalues. Perturbation method assumes that,
if the eigenvalues of system S are known and
system S’ is closely similar to system S, the
difference of the eigenvalues of system S’ from
the corresponding eigenvalues of system S is small,
and the eigenvalues of system S’ can be estimated
from those of system S.

An electromagnetic system can be defined by a
number of parameters, such as dimensions, conduc-
tivity of wall, dielectric permittivity, and magnetic
permeability of the medium filling the cavity space.
The dielectric permittivity and magnetic permeabil-
ity may be real or complex numbers, and they can
also be tensors. When we say that the system S is
close to the system S’, it means that most of the
parameters of these two systems are the same, and
only one or a few of the parameters of system S’ are
slightly different from the corresponding parame-
ters of system S. For example, a superconductor
may be replaced by a metal with large but finite
conductivity; a vacuum region may be filled with
gas of dielectric permittivity close to unity; a loss-
less dielectric with real dielectric permittivity may
be replaced by a lossy dielectric with a complex per-
mittivity; and the geometrical parameters of the two
cavities may be slightly different.

Consider a resonant cavity made from a per-
fectly conducting material, enclosed by a surface
S, with volume V . Before perturbation, the electric
field is E1, and the magnetic field is H1. According
to Maxwell’s equations, we have

∇ × E1 = −jω1µ1H1 (6.1)

∇ × H1 = jω1ε1E1 (6.2)

where ω1 is the angular resonant frequency of
the cavity before perturbation, and ε1 and µ1 are
the permittivity and permeability of the medium
in the cavity before perturbation. After a small
perturbation, the electric field becomes E2, and the
magnetic field becomes H2. The small perturbation
may be a very small change in properties of a large

volume of material, such as when the cavity is filled
with gas whose permittivity is to be measured, or
a large change in properties of a material with very
small volume, such as when a small solid object is
introduced into a cavity. Similarly, we have

∇ × E2 = −jω2µ2H2 (6.3)

∇ × H2 = jω2ε2E2 (6.4)

where ω2 is the resonant angular frequency of the
cavity after perturbation, and ε2 and µ2 are the
permittivity and permeability of the medium in the
cavity after perturbation.

From Eqs. (6.1)–(6.4), we have

H2 · ∇ × E ∗
1 = jω1µ1H2 · H ∗

1 (6.5)

−E2 · ∇ × H ∗
1 = jω1µ1E2 · E ∗

1 (6.6)

H ∗
1 · ∇ × E2 = jω2µ2H2 · H ∗

1 (6.7)

−E ∗
1 · ∇ × H2 = jω2µ2E2 · E ∗

1 (6.8)

By adding Eqs. (6.5)–(6.8), we obtain

H2 · ∇ × E ∗
1 − E2 · ∇ × H ∗

1

+ H ∗
1 · ∇E2 − E ∗

1 · ∇ × H2

= j[(ω2ε2 − ω1ε1)E2 · E ∗
1

+ (ω2µ2 − ω1µ1)H2 · H ∗
1 ]

(6.9)

According to the vector identity:

B · ∇ × A − A · ∇ × B = ∇ · (A × B) (6.10)

Eq. (6.9) can be rewritten as

∇ · (H2 × E ∗
1 + H ∗

1 × E2)

= j[(ω2ε2 − ω1ε1)E2 · E ∗
1 (6.11)

+ (ω2µ2 − ω1µ1)H2 · H ∗
1 ]

Integrating both sides of Eq. (6.11) over the
volume of the cavity V , we can get∫

V

∇ · (H2 × E ∗
1 + H ∗

1 × E2) dV

= j

[
(ω2 − ω1)

∫
V

(ε1E2 · E ∗
1 + µ1H2 · H ∗

1 ) dV

(6.12)

+ω2

∫
V

(�εE2 · E ∗
1 + �µH2 · H ∗

1 ) dV

]
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with
�ε = ε2 − ε1 (6.13)

�µ = µ2 − µ1 (6.14)

Till now, no approximation has been made, and
Eq. (6.12) is exact if the cavity is made from
a perfectly conducting material. Equation (6.12)
is the fundamental equation in cavity-perturbation
theory. In the following, we discuss cavity-
shape perturbation, material perturbation, and wall-
impedance perturbation.

6.1.2 Cavity-shape perturbation

As shown in Figure 6.1, before the perturbation,
the volume and surface of the cavity are V1 and S1.
After the perturbation, the new volume and the new
surface become V2 = V1 –�V and S2 = S1 –�S

respectively. The permittivity ε and permeability
µ of the medium in the cavity do not change. So
by assuming �ε = �µ = 0, Eq. (6.12) becomes∫

V2

∇ · (H2 × E ∗
1 + H ∗

1 × E2) dV

= j

[
(ω2 − ω1)

∫
V2

(εE2 · E ∗
1 + µH2 · H ∗

1 ) dV

]
(6.15)

As at the surface S2, n × E2 = 0, and at the surface
S1, n × E ∗

1 = 0, according to the divergence
theorem, we have∫

V2

∇ · (H2 × E ∗
1 + H ∗

1 × E2) dV

= −
∮

�S

H2 × E ∗
1 · dS (6.16)

From Eqs. (6.15) and (6.16), we get the perturba-
tion formula for cavity-shape perturbation:

�ω = ω2 − ω1 =
j
∮

�S

H2 × E ∗
1 · dS∫

V2

(εE2 · E ∗
1 + µH2 · H ∗

1 ) dV

(6.17)

It should be noted that in cavity-shape perturbation,
no energy dissipation is involved, so the angular
resonant frequency is a real number: ω = 2πf ,
where f is the resonant frequency.

Now we make an approximation. As the per-
turbation is small, by assuming: V1 ≈ V2 ≈ V ,
E1 ≈ E2, and H1 ≈ H2, we can get∮

�S

H2 × H ∗
1 · dS =

∮
�S

H1 × E ∗
1 · dS

=
∫

�V

∇ · (H1 × E ∗
1 ) dV

=
∫

�V

(jω1εE1 · E ∗
1 − jω1µH ∗

1 · H1) dV

= −jω1

∫
�V

(ε|E1|2 − µ|H1|2) dV (6.18)

From Eqs. (6.17) and (6.18), we have

�ω

ω1
= ω2 − ω1

ω1
≈

∫
�V

(µ|H1|2 − ε|E1|2) dV∫
V

(ε|E1|2 + µ|H1|2) dV

= �Wm − �We

W
(6.19)

where W is the total stored energy in the original
cavity, �We and �Wm are time-average electric

(a) (b)
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S2

E2 H2

V2

e m

n
S1

E1 H1

V1

e m

Figure 6.1 Cavity-shape perturbation. (a) Original cavity and (b) perturbed cavity
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and magnetic energies originally contained in �V .
As �V is very small, we assume

�Wm = wm�V (6.20)

�We = we�V (6.21)

where wm and we are the densities of the magnetic
energy and electric energy at �V , respectively. If
we assume that

W = wV (6.22)

where w is the space-average energy density in the
cavity, Eq. (6.19) becomes

�ω

ω
≈ (wm − we)�V

wV
= C

�V

V
(6.23)

with
C = (wm − we)/w (6.24)

The parameter C is determined by the shape of the
cavity and the position of the perturbation.

Equation (6.24) indicates that an outward per-
turbation (�V > 0) will increase the resonant fre-
quency if it is made at the place where the magnetic
field dominates (C > 0), and will increase the res-
onant frequency if it is made at the place where the
electric field dominates (C < 0). Correspondingly,
an inward perturbation (�V < 0) will lower the res-
onant frequency if it is made at the place where the
magnetic field dominates (C > 0) and raise the res-
onant frequency if it is made at a place where the
electric field dominates (C < 0). It is evident that
maximum changes in resonant frequency will occur
when the perturbation is at a position of maximum E

and minimum H , or maximum H and minimum E.
The change of frequency due to shape perturbation
is listed in Table 6.1.

In practice, inward perturbation can be achieved
by pushing the cavity wall inward, while the outward
perturbation can be achieved by pulling the cavity
wall outward. This method is often used in adjusting
cavity chains, for example, in the standing-wave
accelerating tubes. However, such perturbations are
difficult to reverse, and are not suitable for materials
characterization. If a plunger is installed on the
cavity wall, perturbations can be made by adjusting
the depth of the plunger into the cavity. As will be
discussed later in detail, a plunger installed on the
cavity wall can be used to retune the resonant cavity
for materials characterization.

Table 6.1 Change of resonant frequency due to res-
onant perturbation. ω0 and ω are the angular resonant
frequencies before and after perturbation respectively

Inward
perturbation

Outward
perturbation

Strong magnetic
field, weak
electric field

ω > ω0 ω < ω0

Weak magnetic
field, strong
electric field

ω < ω0 ω > ω0

6.1.3 Material perturbation

Material perturbation is widely used in the char-
acterization of materials properties. In order to
analyze the validity of the conventional cavity-
perturbation formulae for materials characteriza-
tion, it is important to discuss the approximations
made in their derivations.

At the boundary of the cavity S, the electric fields
before and after perturbation satisfy n × E ∗

1 = 0
and n × E2 = 0. According to the vector identity,∫

V

∇ · (A × B) dV =
∮

S

A × B · dS (6.25)

we have∫
Vc

(H2 × E ∗
1 + H ∗

1 × E2) dV = 0 (6.26)

So Eq. (6.12) can be rewritten as

�ω

ω
= ω2 − ω1

ω1

= −

∫
Vc

(�εE2 · E ∗
1 + �µH2 · H ∗

1 ) dV∫
Vc

(ε1E2 · E ∗
1 + µ1H2 · H ∗

1 ) dV

(6.27)

where ω1 and ω2 are the complex angular resonant
frequencies before and after the introduction of the
sample, ε1 and ε2 are the complex permittivities of
the original medium in the cavity and the sample,
µ1 and µ2 are the complex magnetic permeabilities
of the original medium in the cavity and the sample,
H1 and H2 are the microwave magnetic fields in
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the cavity before and after the introduction of the
sample, E1 and E2 are the microwave electric fields
in the cavity before and after the introduction of
the sample, and Vc is the region enclosed by the
cavity. Equation (6.27) is the basic formula for
cavity perturbation, and it stands on the assumptions
that the cavity wall is perfectly conducting and
the perturbation is small. The requirement of small
perturbation can be satisfied in the two ways
that follow.

6.1.3.1 Whole-medium perturbation

As shown in Figure 6.2, in this kind of per-
turbation, the whole original medium (ε1, µ1) is
replaced by a new medium (ε2, µ2). As a result,
the electric and magnetic fields are changed from
(E1, H1) to (E2, H2). To satisfy the perturba-
tion requirement, the differences of the dielectric
permittivity and magnetic permeability between
the original and new media should be small.
This kind of perturbation can be used to measure
the electromagnetic properties of gases, and the
electromagnetic properties of the gas under test can
be derived from Eq. (6.27).

6.1.3.2 Small-object perturbation

To use the cavity-perturbation method for mate-
rials characterization, as shown in Figure 6.3, a
material with permittivity ε2 and permeability
µ2 is introduced into the resonant cavity. The
sample occupies a small portion of the cavity,
and the electromagnetic properties of the space
except the sample do not change. On the basis
of three assumptions, Eq. (6.27) can be rewritten
as Eq. (6.28) (Meng et al. 1995; Waldron 1969).
First, the original medium in the cavity is lossless.
Second, the sample is homogenous and is much
smaller than the cavity. And third, the electromag-
netic field outside the sample does not change.

ω2 − ω1

ω1
≈ −

∫
Vs

(�εE ∗
1 · E2 + �µH ∗

1 · H2) dV∫
Vc

(ε1E ∗
1 · E2 + µH ∗

1 · H2) dV

≈ −

∫
Vs

(�εE ∗
1 · E2 + �µH ∗

1 · H2) dV

2
∫

Vc

ε1E ∗
1 · E2 dV

(6.28)

(a) (b)
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Figure 6.2 Whole-medium perturbation. (a) Original cavity with medium (ε1, µ1) and (b) cavity after perturbation
with medium (ε2, µ2)
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Figure 6.3 Material perturbation. (a) Original cavity and (b) perturbed cavity
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where Vs is the volume of the sample. It should be
noted that, in this way of perturbation, the difference
in the permittivity and permeability between the
original and new materials could be large, while the
volume of new material Vs should be small so that
the total perturbation is small.

Equation (6.28) can be further approximated by
taking E1 ≈ E2, H1 ≈ H2, and ω1 ≈ ω2:

�ω

ω1
= −

∫
Vc

(�ε|E1|2 + �µ|H1|2) dV∫
Vc

(ε|E1|2 + µ|H1|2) dV

= − 1

4 W

∫
�VS

(�ε|E1|2 + �|H1|2) dV

(6.29)

Equation (6.29) indicates that any increase in
ε and µ (�ε > 0, �µ > 0) will decrease the
resonant frequency.

6.1.4 Wall-impedance perturbation

As shown in Figure 6.4, for a resonant cavity, if
the surface impedance of the boundary is changed,
the resonant properties of the cavity will also be
changed, and such kind of perturbation is called
wall-impedance perturbation. Wall-impedance per-
turbation can be used to characterize the impedance
of conducting plates by replacing part of the cavity
wall with the sample under measurement, keeping
the cavity shape unchanged. Using this method, the
surface reactance of the conducting plate can be
deduced from the change of resonant frequency, and
the surface resistance of the conducting plate can be
deduced from the change of quality factor.

In the following discussion on wall-impedance
perturbation, we follow the analysis methods
in (Landau and Lifshitz 1960; Ormeno et al. 1997;
Sucher and Fox 1963). We assume that the cavity
walls have finite impedance Zs and the cavity con-
tains conducting samples that carry a finite-free
current density J. Let H1 and E1 be the mag-
netic and electric fields inside the original cav-
ity, and H2 and E2 be the corresponding fields
after perturbation. The integral over the cavity
volume∫

V

(E1 · ∇ × H2 − H2 · ∇ × E1 + H1 · ∇
× E2 − E2 · ∇ × H1) dV (6.30)

can be converted to a surface integral over the cavity
walls using the divergence theorem. By comparing
this surface integral with the volume integral using
the Maxwell equations (1.3) and (1.4), we arrive at
the following exact formula for the change in the
resonant angular frequency if the surface impedance
of the cavity wall changes by �Zs:

�ω

=

−ω1

∫
V

(H1 · H2�µ − E1 · E2�ε) dV

−j
∫

V

(E1 · J2 − E2 · J1) dV

+j
∫

s

H1 · H2�Zs dS∫
V

(H1 · H2µ2 − E1 · E2ε2) dV

(6.31)

where the surface integral is taken over the cav-
ity walls.

(a) (b)
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e m
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E2 H2

V

e m

Figure 6.4 Wall-impedance perturbation. (a) Original cavity with surface impedance Zs and (b) perturbed cavity
with surface impedance Zs + �Zs
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In the measurement of surface impedance, we
are not concerned with the changes in µ and ε.
For small perturbation of a cavity with high quality
factor, we may assume that over most of the cavity,
H1 ≈ H2, E1 ≈ E2, and J1 ≈ J2. If we choose the
phase of H to be zero, the phase of E will be
±π/2. We may then identify the denominator of
Eq. (6.31) as 4 W , where W is the energy stored
in the cavity. With these assumptions, we have

�ω =
j
∫

S

H2 · H2�Zs dS

4 W

= j




∫
V

H2 · H2 dS

4 W


 �Zs = j��Zs (6.32)

with

� =




∫
V

H2 · H2 dS

4 W


 . (6.33)

On the basis of our assumptions,� is a resonator con-
stant, determined by the properties of the resonator,
and is independent of the sample under study.

6.2 CAVITY-PERTURBATION METHOD

Cavity-perturbation methods are widely used in
the study of the electromagnetic properties of
dielectrics, semiconductors, magnetic materials,
and composite materials. It works well for the mea-
surement of low-loss and medium-loss materials.
However, extremely low-loss samples often ren-
der the conventional cavity-perturbation methods
less useful. If the quality factor of an empty cavity
before the perturbation is not high, the power dis-
sipation of the empty cavity may be much larger
than the loss due to the introduction of the sam-
ple to be measured, and so the introduction of the
sample hardly affects the quality factor of the cav-
ity. As such, the conventional cavity-perturbation
method could not correctly give the value of the
imaginary part of the permittivity. The situation
may be even more severe: the quality factor of
the cavity may even increase after introducing an

extremely low-loss sample, so that the conven-
tional cavity-perturbation formulae will give a neg-
ative value for the imaginary part of permittivity.
The main reason for this error is that the conven-
tional cavity-perturbation formulae for permittivity
measurements incorporate many approximations
and assumptions as discussed above. This prob-
lem is also discussed in (Waldron 1969; Sucher
and Fox 1963; Harrington 1961).

In this section, we discuss the measurement
of permittivity and permeability using cavity-
perturbation method, which works quite well for
low-loss and medium-loss samples. We then ana-
lyze the change of resonant properties of resonant
cavities due to the introduction of samples. Finally,
we discuss the methods for modifying the conven-
tional cavity-perturbation methods.

6.2.1 Measurement of permittivity
and permeability

If we introduce a sample to the antinode of an
electric field or a magnetic field in a cavity, the
resonant frequency and quality factor of the cavity
will be changed. If the perturbation requirements can
be satisfied, the dielectric permittivity or magnetic
permeability of the sample can be calculated from
the changes of the resonant frequency and the
quality factor.

This measurement method is based on material
perturbation as discussed above. In most cases,
the perturbation caused by the sample belongs
to small-object perturbation, and the following
discussion is based on Eq. (6.28).

6.2.1.1 Permittivity measurement

We assume that the medium inside the cavity
is a vacuum: µ1 = µ2 = µ0, and ε1 = ε0. So
Eq. (6.28) becomes

ω2 − ω1

ω2
= −

(
εr − 1

2

) ∫∫∫
Vs

E1 · E2 dV∫∫∫
Vc

|E1|2 dV

(6.34)

where εr is the relative complex permittivity of the
sample: εr = ε2/ε0.
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The complex angular frequency ω of a resonant
cavity is related to the real resonant frequency f

and the quality factor Q of the cavity by (Waldron
1969; Sucher and Fox 1963)

ω = ωr + jωi (6.35)

ωr = 2πf (6.36)

Q = ωr

2ωi
(6.37)

If we assume that ωr1 ≈ ωr2 and ωi � ωr, we have

ω2 − ω1

ω2
= (ωr2 − ωr1) + j(ωi2 − ωi1)

ωr2

(
1 + j

ωi2

ωr2

)

≈
[(

f2 − f1

f2

)
+ j

(
1

2Q2
− 1

2Q1

)]

×
(

1 − j
1

2Q2

)
(6.38)

≈
(

f2 − f1

f2

)
+ j

(
1

2Q2
− 1

2Q1

)

The last assumption made in Eq. (6.38) is that
Q2 � 1. From Eqs. (6.34) and (6.38), we have(

f2 − f1

f2

)
+ j

(
1

2Q2
− 1

2Q1

)

= −
(

εr − 1

2

) ∫∫∫
Vs

E ∗
1 · E2 dV∫∫∫

Vc

|E1|2 dV

(6.39)

Equation (6.39) can be further rewritten as

2

(
f1 − f2

f2

)
= (ε′

r − 1)C (6.40)

1

Q2
− 1

Q1
= ε′′

r C (6.41)

with

C =

∫∫∫
Vs

E ∗
1 · E2 dV∫∫∫

Vc

|E1|2 dV

(6.42)

In the cavity-perturbation method for permittiv-
ity measurements, the parameter C is assumed to

be a constant independent of the properties of sam-
ples. However, in Eq. (6.42), the perturbed field in
the sample E2 is related to the permittivity, shape,
and size of the sample under measurement, and so
C changes from case to case. Therefore, in a strict
sense, Eqs. (6.41) and (6.42) show that the change
of quality factor due to the perturbation is not only
related to the imaginary part of the permittivity of
the sample but also, to some extent, dependent on
the real part of the permittivity of the sample.

To make the expression clearer, we introduce
two parameters A and B, instead of C, in the
widely used cavity-perturbation formulae, which
then read as

f1 − f2

f2
= A(ε′

r − 1)
Vs

Vc
(6.43)

1

Q2
− 1

Q1
= Bε′′

r
Vs

Vc
(6.44)

Similar to parameter C, parameters A and B are
related to the configuration and working mode
of the cavity, the shape of the sample, and the
sample’s location in the cavity. As it is difficult to
calculate the parameters A and B analytically, A

and B are usually obtained by calibration using
a standard sample of known permittivity. From
the changes of the resonant frequency f and the
quality factor Q due to the introduction of a
standard sample, A and B can be calculated using
Eqs. (6.43) and (6.44). But it should be noted
that the standard sample used in calibration is
required to be of similar shape to the samples to
be measured.

Equations (6.43) and (6.44) are widely used in
permittivity measurements. However, it should be
kept in mind that these equations are based on
mainly three assumptions. First, the electromag-
netic fields in the cavity do not change due to the
introduction of the sample, and the stored energy in
the empty cavity equals that in the cavity with the
sample. Second, the difference between the cavity
wall losses with and without the sample is negli-
gible. Third, Q1 and Q2 are measured at the same
frequency. The first of these three assumptions is
the most fundamental. The second one is consistent
with and implied by the first one. Experimentally,
the first and second assumptions cannot be strictly
fulfilled. The third assumption provides a way to
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Figure 6.5 A cylinder cavity in TE112 mode. (a) Top view and (b) side view. 1, waveguide; 2, coupling adjusting
plunger; 3,4, retuning plungers; 5,6, quartz-tube holders; 7, dielectric sample; 8, quartz tube; 9, coupling iris.
Source: Chen, L. F. Ong, C. K. and Tan, B. T. G. (1996). “A resonant cavity for high-accuracy measurement of
microwave dielectric properties”, Measurement Science and Technology, 7, 1255–1259, IOP Publishing Ltd, by
permission of IOP Publishing Ltd, by permission of IOP Publishing Ltd

experimentally ensure high accuracy even if the
first two assumptions are not strictly fulfilled.

6.2.1.2 Permeability measurement

We assume that either the magnetic sample is
placed at the position with zero electric field or the
permittivity of the sample is ε0. With the approxi-
mations made in deducing Eqs. (6.43) and (6.44),
we have the following similar equations:

f1 − f2

f2
= A(µ′

r − 1)
Vs

Vc
(6.45)

1

Q2
− 1

Q1
= Bµ′′

r
Vs

Vc
(6.46)

Equations (6.45) and (6.46) can be used for the
characterization of magnetic materials using res-
onant perturbation method, and, similarly, the
parameters A and B are usually determined by
calibration.

6.2.2 Resonant properties of
sample-loaded cavities

In order to accurately measure the electromagnetic
properties of a material by inserting the material
into a resonant cavity, it is necessary to ana-
lyze the resonant properties of a sample-loaded
cavity, including resonant frequency, quality fac-
tor, and coupling coefficient. In the following
discussion, we concentrate on the measurement
of dielectric materials, while the conclusions
obtained can be extended to the measurement of
magnetic materials.

Figure 6.5 shows a cylinder cavity working in the
TE112 mode. The selection of the TE112 mode was
mainly based on two considerations. First, as the
strength of the electric field in TE112 mode changes
along the radius directions, it can be used to study
the relationship between the sample perturbation
and the electric field. Second, by selecting TE112

mode instead of TE111 mode, the perturbation area
and the coupling area are separated, as shown
in Figure 6.5(b), so that the dominant field at
the coupling area is almost unchanged after the
perturbation is introduced.

In Figure 6.5, the cavity has diameter D =
27.0 mm and length L = 44.2 mm, and its resonant
frequency is near 9 GHz. The sample (labeled
7) is placed in a quartz tube (labeled 8), which
is fastened by plastic screws in two quartz-tube
holders (labeled 5 and 6). The sample is located
at the center of the cavity where the electric field
is the strongest and where the frequency shift is
thus the largest. Two brass plungers (labeled 3
and 4) are used to adjust the resonant frequency
of the cavity. The plungers are located at the
positions where the magnetic field in the cavity is
the strongest. The cavity is coupled to a waveguide
(labeled 1) via an iris (labeled 9). There is a
plunger (labeled 2) lying close to the coupling iris.
By varying the insertion length d , the coupling
coefficient β can be adjusted. In order to protect
the main body of the cavity, each of the plungers is
covered by a plastic screw, as shown in Figure 6.6,
and the pitch of the screw is selected to be as small
as possible to increase the ease with which the
experiments could be repeated.
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1

2

Figure 6.6 The mechanical structure of the plungers:
1, brass plunger; 2, plastic screw. Source: Chen, L. F.
Ong, C. K. and Tan, B. T. G. (1996). “A resonant cav-
ity for high-accuracy measurement of microwave dielec-
tric properties”, Measurement Science and Technology,
7, 1255–1259, IOP Publishing Ltd, by permission of
IOP Publishing Ltd

There are two perpendicular degenerate TE112

modes in the cavity. Usually, only one is used
and hence the other one should be eliminated.
As shown in Figure 6.7, this can be achieved by
inserting a slender metal needle perpendicular to
the working mode. The needle hardly deforms the
working mode, but disturbs the modes perpendicu-
lar to the required working mode greatly and effec-
tively eliminates them (Maier and Slater 1952).
The mechanical structure of the slender metal nee-
dle is similar to that of the plungers shown in
Figure 6.6.

6.2.2.1 Resonant frequency

When a dielectric material is introduced into a res-
onant cavity, the change of the resonant frequency

Electric field of the
working mode

Metal
needle

Electric field of
the mode
to be prohibited

Figure 6.7 Selection of working TE112 mode. Modified
from Chen, L. F. Ong, C. K. and Tan, B. T. G. (1996).
“A resonant cavity for high-accuracy measurement of
microwave dielectric properties”, Measurement Science
and Technology, 7, 1255–1259, IOP Publishing Ltd, by
permission of IOP Publishing Ltd

of the cavity is related to the dielectric properties
of the sample and the electric field at the posi-
tion where the sample is placed. The stronger the
electric field, the greater is the effect on the res-
onant frequency. A standard Teflon sample with
dimensions φ = 3.0 × 3.0 mm and a permittivity
εr = 2.0008 − j0.00065 is introduced to different
positions along the radius of the cavity. Figure 6.8
shows the relationship between the change of the
resonant frequency and the position. In the figure,
�f, �Q, and Er are normalized to their maximum
values, respectively, and the electric field Er is cal-
culated from �f (Maier and Slater 1952):

Er = √
�f (6.47)

6.2.2.2 Quality factor

Knowledge of the quality factor of a sample-loaded
cavity is helpful in explaining some abnormal
phenomena in the permittivity measurement of
extremely low-loss samples, and it also shows the
validity limits of the conventional cavity-perturba-
tion method and justifies the amended method
discussed in Section 6.2.3.
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Figure 6.8 The relationships of the electric field Er,
the change of quality factor �Q, and the change of res-
onant frequency �f . In the figure, r is the distance of the
sample from the axis of the cavity. Source: Chen, L. F.
Ong, C. K. and Tan, B. T. G. (1999), “Amendment of
cavity perturbation method for permittivity measurement
of extremely low-loss dielectrics”, IEEE Transactions on
Instrumentation and Measurement, 48 (6), 1031–1037.
 2003 IEEE
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The quality factor Q of a sample-loaded cavity
is directly dependent on the quality factor of the
empty cavity without the sample, as well as the
shape, size, dielectric properties, and location of the
sample. By definition, Q = 2π fW/P , where W is
the total stored energy in the cavity and P is the
power dissipation of the cavity. We may regard
f as a constant because the resonant perturbation
requires that (f2 − f1)/f1 � 1, where f1 and f2 are
the resonant frequencies of the cavity before and
after the introduction of the sample respectively.
Introducing a dielectric sample to the antinode of
the electric field has two effects on the quality factor
of the cavity. First, the total stored energy of the
whole sample-loaded cavity is increased. Second,
the stored energy becomes more concentrated on the
sample, and so the electromagnetic field at the cavity
wall becomes weaker. Because it is impossible
for the cavity walls to be perfectly conductive at
microwave frequencies, the wall loss of the sample-
loaded cavity may be less than that of the cavity
without the sample. Therefore, the total stored
energy of the cavity increases and the total power
dissipation in the cavity may decrease after the
introduction of an extremely low-loss sample, thus
increasing the overall quality factor of the cavity.

The change of quality factor due to the insertion of
a sample can also be explained using the equivalent
circuit of a resonant cavity. At its resonance, a
resonant cavity can be expressed by a lumped-
element equivalent circuit consisting of inductance
L, resistance R, and capacitance C, as shown in
Figure 6.9. The equivalent capacitance C can be
expressed as the sum of a major part C1 and a
minor part C2. We then assume that the introduction
of a small sample only affects the minor part C2

while the major part C1 remaining unperturbed.
The resonant frequency f and the quality factor
Q of the resonant cavity can be expressed in
terms of its lumped-element circuit parameters:
capacitance C(C = C1 + C2), inductance L, and
resistance R (Collin 1992):

f = 1

2π
√

L(C1 + C2)
(6.48)

Q = R

√
C1 + C2

L
(6.49)

Dielectric
sample

C2C1

RL

Figure 6.9 The lumped-element equivalent circuit of a
resonant cavity at its resonance. Introducing a dielectric
sample into the cavity is equivalent to inserting the
sample into the capacitor C2

Introducing a dielectric sample into the antinode
of electric field is equivalent to inserting the sample
into the minor capacitor C2 and so increases
its capacitance C2. If the sample is a perfect
dielectric (ε′′

r = 0), the effect of the sample on
R is negligible. So according to Eq. (6.49), the
quality factor Q increases after introducing a perfect
dielectric sample.

The introduction of an actual dielectric sample
(ε′′

r > 0) not only increases the capacitance C but
also decreases the resistance R. The change of the
quality factor due to the introduction of an actual
dielectric sample is determined by the overall effects
of the increase of capacitance C and the decrease of
resistance R. For an extremely low-loss sample, if
its ε′′

r is so small that the effect of the decrease of
R is weaker than that of the increase of C, then,
according to Eq. (6.49), the overall quality factor
increases after the introduction of the sample.

The above discussions hint that the stronger the
local electric field at the position where the sample
is introduced, the greater is the increase of C, and
thus greater is the increase of the quality factor
Q. Figure 6.8 shows the measurement results of
resonant frequency and quality factor when a Teflon
sample (with diameter 3 mm and length 3 mm) is put
at different places in a quartz tube along the radial
direction of the cavity. The electric field distribution
at the cross section where the Teflon sample is put is
shown in Figure 6.10. Figure 6.8 indicates that the
quality factor of the sample-loaded cavity is higher
if the sample is at the position where the electric
field is stronger.
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Quartz tube

Sample

Thin metal needle

Figure 6.10 The electric field distribution in the
TE112-mode resonant cavity. Source: Chen, L. F. Ong,
C. K. and Tan, B. T. G. (1999), “Amendment of cavity
perturbation method for permittivity measurement of
extremely low-loss dielectrics”, IEEE Transactions on
Instrumentation and Measurement, 48 (6), 1031–1037.
 2003 IEEE

6.2.2.3 Coupling coefficient

The coupling coefficient β of the cavity to exter-
nal circuit is also affected by the introduction of a
dielectric sample. If we choose the reference plane
to be at the positions where the electric field is
the strongest, the cavity can be represented by a
parallel LRC circuit. If the losses of the coupling
devices are negligible, the coupling devices can
be represented by an ideal transformer with trans-
forming ratio n, as shown in Figure 6.11(b). The
problem can be simplified further by folding back
the equivalent circuit, shown in Figure 6.11(b), to
the transmission line and normalizing with respect
to the characteristic impedance of the transmission
line Z0, shown in Figure 6.11(c). The value of the
coupling coefficient β is equal to the normalized
input resistance R′

p looking into the cavity from
the transmission line (Collin 1992):

β = R′
P = RP

n2Z0
(6.50)

The value of R′
p decreases when an actual dielectric

sample (ε′′
r > 0) is inserted into the cavity, and so

does the coupling coefficient β.

6.2.3 Modification of cavity-perturbation
method

The above discussion shows that to obtain accurate
results for the imaginary part of permittivity, appro-
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Figure 6.11 A resonant cavity coupled to a trans-
mission line and its equivalent circuits. (a) A resonant
cavity coupled to a transmission line, (b) equivalent
circuit at X–X′ plane, where the electric field is the
strongest, and (c) normalized equivalent circuit folding
back to the transmission line with Z′

0 = 1. Modified
from Chen, L. F. Ong, C. K. and Tan, B. T. G. (1996).
“A resonant cavity for high-accuracy measurement of
microwave dielectric properties”, Measurement Science
and Technology, 7, 1255–1259, IOP Publishing Ltd, by
permission of IOP Publishing Ltd

priate quality factor should be used in Eq. (6.44).
To increase the measurement accuracy, Jow et al.
presented a single-frequency method to measure the
quality factor by retuning the cavity length to com-
pensate for the resonant frequency shift due to the
introduction of samples (Jow et al. 1989), and Tian
and Tinga proposed a way to measure the quality
factor at a single frequency by introducing a metal-
tuning stub at the antinode of the magnetic field
in the cavity (Tian and Tinga 1995, 1993). In the
following, we discuss two modification methods:
frequency-retuning method (Chen et al. 1996) and
calibration method (Chen et al. 1999).
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6.2.3.1 Frequency-retuning method

As the insertion of a dielectric sample at the posi-
tion where electric field is dominant will increase
the stored energy and decrease the resonant fre-
quency, the values of quality factor at different
frequencies before and after the introduction of
the sample are not comparable. If we retune the
cavity to its original frequency, the stored energy
will return to its original value also. Therefore, to
obtain comparable values of the quality factor that
can be used in Eq. (6.44), retuning is necessary.

As shown in Figure 6.5, we use the two retuning
plungers (labeled 3 and 4) to retune the resonant
frequency of the sample-loaded cavity back to
the frequency before the sample is introduced. In
the retuning procedure, the two plungers should
be inserted into the cavity to an equal extent to
maintain the structural symmetry of the cavity as
much as possible, thus decreasing the uncertainties
due to the field deformation caused by the insertion
of the plungers.

Figure 6.12 shows the Smith charts correspond-
ing to different conditions during the retuning pro-
cedure. Before the insertion of the sample, the
cavity is critically coupled to the waveguide (β =
1), and the corresponding S11 curve in the format of
Smith chart passes through the center of the chart,
as shown in Figure 6.12(a). After the introduction
of the sample, along with a decrease in resonant
frequency, the S11 curve in the format of Smith
chart shrinks, as shown in Figure 6.12(b), indicat-
ing that the cavity is undercoupled (β < 1). By
adjusting the retuning devices (labeled 3 and 4 in
Figure 6.5), the resonant frequency can be retuned
back to the value before the insertion of the sample.
However, Figure 6.12(c) indicates that the cavity
is still in an undercoupled condition after retuning.
Further tuning by adjusting the plunger (labeled 2
in Figure 6.5) can make the cavity become crit-
ically coupled to the transmission line again, as
shown in Figure 6.12(d).

The values of quality factors Q corresponding to
the above different conditions shown in Figure 6.12
are listed in Table 6.2. Different values of the sub-
script i(i = 1, 2, 3, 4) refer to the different corre-
sponding conditions shown in Figure 6.12(a) to (d)
respectively. It is essential to use the appropriate
valueofqualityfactor tocalculateε′′

r fromEq. (6.44).

O

O

O

O

(a)

(d)(c)

(b)

Figure 6.12 Smith charts corresponding to different
conditions during the adjustment procedure. The cen-
ter of each chart is labeled as O. The measurement
frequency range is 9.02–9.08 GHz. (a) Before the inser-
tion of sample (β = 1), S11 curve passes through O.
For comparison, this chart is also shown in parts (b),
(c), and (d). (b) After the insertion of sample (β < 1),
the corresponding S11 curve shrinks and is indicated by
an arrow. (c) After retuning (β < 1), the corresponding
S11 curve is indicated by an arrow. (d) After adjust-
ing the coupling adjustment screw (β = 1), the corre-
sponding S11 curve is indicated by an arrow. Modified
from Chen, L. F. Ong, C. K. and Tan, B. T. G. (1996).
“A resonant cavity for high-accuracy measurement of
microwave dielectric properties”, Measurement Science
and Technology, 7, 1255–1259, IOP Publishing Ltd, by
permission of IOP Publishing Ltd

Table 6.2 The measured values of f and Q correspond-
ing to the conditions shown in Figure 6.12(a) to (d). The
volume of the sample is 16.65 mm3, and the permittiv-
ity values of the sample are as follows: ε′

r = 2.08 and
ε′′

r = 0.0008

i = 1 i = 2 i = 3 i = 4

fi (GHz) 9.0475 9.0357 9.0475 9.0475
Qi 2469 2481 2453 2344

It should be noted that the quality factors in Table 6.2
are loaded quality factors.

Several low-loss samples have been measured,
namely, quartz, polyethylene, NaCl, Rexolite, and
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Table 6.3 The measurement results of ε′′
r by different techniques

Conventional method Retuning method Calibration method Reference values

Quartz −0.007 0.0003 0.0002 0.00018 ± 0.00005a

Polyethyleneb −0.004 0.0006 0.0006 0.00055 ± 0.00010a

NaCl −0.003 0.0006 0.0006 0.00059c

Rexolite 0.0008 0.002 0.002 0.0016 ± 0.0002a

Beryllia 0.003 0.004 0.004 0.0042 ± 0.0002a

a The reference values are deduced from “1991 NPL Report DES 115” and they are for 36 GHz. Our measurements are made
at 9 GHz.
b The sample is made from a piece of commercially available polyethylene-insulated cable.
c This reference value (at 10 GHz) is deduced from (Kaye and Laby 1995).

Beryllia, using the cavity described earlier. The
standardsample used incalibrationwasa cuboidTef-
lon sample with volume 16.65 mm3 and permittivity
εr = 2.08 − j0.0008. The samples under test had
similar sizes with the standard sample. Comparisons
are made between this technique and the conven-
tional technique, and the results for ε′′

r are listed in
the second and third columns of Table 6.3, respec-
tively. Because the introduction of extremely low-
loss samples does not decrease the Q-value signifi-
cantly, and at times may even increase the Q-value,
the conventional method cannot give the convincing
value of ε′′

r . Table 6.3 shows that the results ε′′
r from

the retuning method are more accurate than those
from the conventional cavity-perturbation method.
Table 6.3 also shows that, when the dielectric
losses (ε′′

r ) of samples become smaller and smaller,
the errors of the conventional cavity-perturbation
method become larger and larger.

6.2.3.2 Calibration method

As discussed above, Eq. (6.44) may lose its valid-
ity when it is used to calculate the permittivity of
extremely low-loss dielectric samples, as the intro-
duction of such extremely low-loss samples may
increase the quality factor of the resonant cavity
(Q2 > Q1), yielding a negative value of ε′′

r .
Here we introduce a new concept, the expected

quality factor Q0, denoting the quality factor of
a cavity loaded with a perfect dielectric (ε′′

r = 0).
The introduction of a perfect dielectric sample into
a resonant cavity increases the equivalent capaci-
tance C of the cavity, and hardly affects the equiv-
alent resistance R and equivalent inductance L

of the cavity. According to Eqs. (6.48) and (6.49),

the expected quality factor Q0 of the sample-
loaded cavity is larger than the quality factor of
the empty cavity, and the resonant frequency f of
the sample-loaded cavity is lower than that of the
empty cavity. For a given cavity, there is a certain
relationship between Q0 and f if the following
requirements are satisfied. First, the perturbations
caused by the samples are small. Second, all the
samples are homogeneous and of the same shape,
and their sizes are much smaller than that of the
cavity. Third, all the samples are introduced at the
same position in the cavity.

Because of the effect of ε′′
r on R, the quality factor

of a cavity loaded with an actual dielectric sample
(ε′′

r > 0) is lower than the expected quality factor Q0

of the cavity, but it may be higher than the quality
factor before the sample is introduced. Following
the concept of the expected quality factor, Eq. (6.44)
should be modified as

1

Q2
− 1

Q0
= Bε′′

r
Vs

Vc
(6.51)

where the expected quality factor Q0 corresponds to
the resonant frequency of the cavity after the sample
is introduced. So in Eq. (6.51), Q2 and Q0 are two
parameters that correspond to the same frequency.

Usually, the relationship between Q0 and f is
quite complicated and varies from case to case.
It is difficult to get a conclusive formula for the
relationship between Q0 and f . However, the
relationship between Q0 and f , for a given resonant
cavity and for samples with a given shape, can be
obtained by calibration, as described below.

1. Calibrate the cavity with a medium-loss stan-
dard dielectric sample with known permittivity,
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obtaining constants A and B using Eqs. (6.43)
and (6.44).

2. Load the cavity with a set of extremely low-loss
standard dielectric samples and calculate their
corresponding Q0 using Eq. (6.51) with the B

value obtained in step (1). As different standard
samples correspond to different Q0 and f , the
frequency dependence curve of Q0 is obtained.

3. To increase the accuracy of calibration, recalcu-
late the value of B using Eq. (6.51) with the value
of Q0 obtained from the frequency dependence
curve of Q0 obtained in step (2), and recalculate
the values of Q0 at different frequencies using
the more accurate B value to get a more accurate
frequency dependence curve of Q0.

Once the frequency dependence curve of Q0 is
obtained, more accurate permittivity results can be
obtained by using Eqs. (6.43) and (6.51).

Some words of caution are appropriate here.
Besides the shape and the location of the samples
in the cavity, the real part of the permittivity ε′

r
of the sample affects the relationship between Q0

and f . So the best results would be obtained by
doing a calibration using a set of extremely low-
loss samples, with ε′

r close to the expected value
for the sample to be measured, if a reasonably
accurate initial value is available. Also, the shapes
of the standard samples should be similar to those
of the samples to be measured. For example, if
the samples to be measured are spherical, we
should calibrate the cavity with a set of spherical
samples, whereas if the samples to be measured are
cylindrical, the cavity should be calibrated with a
set of cylindrical samples. It is important that all
the standard samples used in calibration and all
the samples to be measured should be placed at
the same position in the cavity.

We used a floating zone growth silicon sample
(ε′

r = 12.3, ε′′
r = 9.8) and a set of Teflon samples

(ε′
r = 2.08, ε′′

r = 0.00065) to calibrate the cavity.
All the samples were cylindrical. The frequency
dependence curve of Q0 is shown in Figure 6.13.
We focus our interest in the portion with small
perturbation, while we put the whole calibration
curve in the upper part of Figure 6.13 for refer-
ence. The rightmost point (f = 9.0508 GHz) rep-
resents the state without perturbation, and so Q0 =

Q1 = Q2. The bottom line (Q1 = 4812) indi-
cates the quality-factor value used in the con-
ventional cavity-perturbation method. The quality
factors shown in Figure 6.13 are unloaded quality
factors.

The five samples measured using the frequency-
retuning method are measured again using the
calibration method, and the measurement results
of ε′′

r are shown in the fourth column of Table 6.3.
It is clear that this calibration method gives results
in good agreement with reliable reference values.

The difference between the calibration method
and the frequency-retuning method is this: the
frequency-retuning method compares the quality
factors at the frequency before the introduction
of the sample (f1), while the calibration method
compares the quality factors at the frequency
after the introduction of the sample (f2). Both
methods take account of the increase of the total
stored energy of the sample-loaded cavity due
to the introduction of the sample. Experiments
show that both methods are able to give accurate
permittivity values of extremely low-loss dielectric
samples.
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Figure 6.13 The frequency dependence curve of Q0

for the TE112 cylindrical cavity. The relationships of
Q0, Q1, and Q2 are also shown in the figure. Modified
from Chen, L. F. Ong, C. K. and Tan, B. T. G. (1999).
“Amendment of cavity perturbation method for permit-
tivity measurement of extremely low-loss dielectrics”,
IEEE Transactions on Instrumentation and Measure-
ment, 48 (6), 1031–1037.  2003 IEEE
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6.2.4 Extracavity-perturbation method

In a cavity-perturbation method, if the sample
introduced into the cavity has high dielectric con-
stant and/or high loss, the perturbation require-
ments cannot be fulfilled, so the conventional
cavity-perturbation method cannot be used. One
way to solve this problem is to place the sample out
of the cavity, but coupled to the cavity. In this case,
the perturbation of the sample to the cavity can be
small, and the resonant perturbation requirements
can be fulfilled. This method is usually called
extracavity-perturbation method.

The extracavity-perturbation method for the
measurement of dielectric materials was proposed
by Barlow (1962), and improved by Kumar
(1976), Kumar and Smith (1976), Ni and Ni
(1997), and Wang and Ni (1997). As shown in
Figure 6.14, a TE01n cylindrical resonator is cou-
pled to an evanescent waveguide through the
coupling irises at one end plane of the cavity.

When there is no sample in the waveguide,
the perturbation of the waveguide to the cav-
ity is purely reactive if we do not consider the
energy dissipation at the wall of the waveguide.
If there is a sample within the waveguide, part
of the energy is dissipated by the sample, and
the perturbation of the waveguide to the cav-
ity has a resistive component, so the perturbation
becomes complex.

Here, we follow the analyzing method proposed
by Barlow (1962). The resistive and reactive com-
ponents (Re and Xe) of the complex perturba-
tion (Ze = Re + jXe) can be calculated from the
resonant frequency and the quality factor of the
cavity coupled to the evanescent waveguide loaded
with the sample under test. We then derive the
complex reflection coefficient (ρ = ρ ′ + jρ ′′) at the
interface between air and the sample from the
resistive and reactive components of the pertur-
bation. From the complex reflection coefficient,

b
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(b)
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Resonant cavity
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Evanescent guidel

2b

d s

Ze

Figure 6.14 A circular-cylinder cavity coupled to an evanescent circular waveguide. (a) Dimensions of cavity
and guide and (b) coupling irises (Kumar and Smith 1976). Source: Kumar, A. and Smith, D. G. (1976). “The
measurement of the permittivity of sheet materials at microwave frequencies using an evanescent waveguide
technique”, IEEE Transactions on Instrumentation and Measurement, 25 (3), 190–193.  2003 IEEE
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we can obtain the complex attenuation factor
(α = α′ + jα′′) of the segment of the waveguide
filled with the sample, from which the complex
dielectric permittivity (ε = ε′

r − jε′′
r ) of the sample

can be determined.
The resistive Re and reactive Xe components

of the evanescent waveguide loaded with the
sample under test are given by (Barlow 1962;
Kumar 1976)

Re = λg

λ0
· π2a2f µ0l

QLA
− Rmπa[2a + (λg/λc)

2l]

A

(6.52)

Xe = ωµ0c
2A + 8π2α0a

2l3µ0f
2 df

c2α0A
(6.53)

with

α0 = (h2 − ω2µ0ε0)
1/2 (6.54)

h = v/b (6.55)

where λg is guide wavelength, λc is cutoff
wavelength, λ0 is wavelength in free space, f

is operation frequency, a is the radius of the
cylindrical cavity, b is the radius of the evanescent
waveguide, l is the length of the cylindrical
cavity, A is the area of the coupling irises,
Rm is the surface resistance of the endplate,
ω is the angular frequency, QL is the quality
factor of the cavity loaded with the sample,
df is the shift of resonant frequency due to
the presence of the sample, c is the speed of
light, v is determined by the mode number in
the circular waveguide, and v = 3.831732 for the
TE011 mode.

From the transmission line theory, we can get
the relationship between the complex perturba-
tion (Ze) of the evanescent waveguide to the
cavity and the complex reflection coefficient (ρ)

at the first air–dielectric interface (Kumar and
Smith 1976):

Ze = Re + jXe = j
ωµ0

α0
· 1 + ρ exp(−2α0d)

1 − ρ exp(−2α0d)

(6.56)

According to Eq. (6.56), the complex reflection
coefficient (ρ = ρ ′ + jρ ′′) can be calculated from

the complex perturbation (Ze = Re + jXe)

ρ ′ = α2
0(X

2
e + R2

e ) − ω2µ0

exp(−2α0d)[R2
e α

2
0 + (ωµ0 + α0Xe)2]

(6.57)

ρ ′′ = 2α0Reωµ0

exp(−2α0d)[R2
e α

2
0 + (ωµ0 + α0Xe)2]

(6.58)

The relationship between the reflection coef-
ficient and the complex attenuation factor (α =
α′ + jα′′) can also be obtained based on transmis-
sion line theory

j
ωµ0

α0
· (1 + ρ)

(1 − ρ)
= j

ωµ

α
· 1 − ρ exp(−2αs)

1 + ρ exp(2αs)
(6.59)

where s is the thickness of the dielectric sheet.
If the sample is very thick or if it has a very

high dielectric constant or loss factor (|αs| � 1),
according to Eq. (6.59), the complex reflection
coefficient is given by

ρ ′ = µ2
r α

2
0 − α′2 − α′′2

(µrα0 + α′)2 + α′′2 (6.60)

ρ ′′ = 2α′′µrα0

(µrα0 + α′)2 + α′′2 (6.61)

From Eqs. (6.60) and (6.61), the complex attenua-
tion factor α can be obtained from complex reflec-
tion coefficient.

If the value of |αs| is not much larger than unity,
from Eq. (6.59), the following relationships can
be obtained:

Mα′ + Nα′′ − X = 0 (6.62)

Mα′′ − Nα′ − Y = 0 (6.63)

with

M = 1 − ρ ′ − ρ ′′2

α0[(1 − ρ ′)2 + ρ ′′2]
(6.64)

N = 2ρ ′′

α0[(1 − ρ ′)2 + ρ ′′2]
(6.65)

X = 1 − q2
1 − q2

2

(1 + q1)
2 + q2

2

(6.66)

Y = 2q2

(1 + q1)2 + q2
2

(6.67)
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Figure 6.15 Cylindrical cavity coupled to evanescent
guide (Kumar and Smith 1976). Source: Kumar, A. and
Smith, D. G. (1976). “The measurement of the permit-
tivity of sheet materials at microwave frequencies using
an evanescent waveguide technique”, IEEE Transactions
on Instrumentation and Measurement, 25 (3), 190–193.
 2003 IEEE

where

q1 = exp(−2α′s)(ρ ′ cos 2α′′s − ρ ′′ sin 2α′′s)
(6.68)

q2 = exp(−2α′s)(ρ ′ cos 2α′′s + ρ ′′ sin 2α′′s)
(6.69)

From the values of ρ ′ and ρ ′′ obtained from
Eqs. (6.57) and (6.58), the values of M , N , X,
and Y can be determined, and so the val-
ues of α′ and α′′ can be obtained by solving
Eqs. (6.62) and (6.63).

In the dielectric-filled portion of the waveguide,
the relationship between attenuation factor (α =
α′ + jα′′) and permittivity (ε = ε′

r –jε′′
r ) is given

by (Kumar and Smith 1976)

(α′ + jα′′)2 = h2 − ω2µ0(ε
′
r − jε′′

r ) (6.70)

So the dielectric permittivity can be calculated
from the complex attenuation factor

ε′
r = h2 + α′′2 − α′2

ω2µ0
(6.71)

ε′′
r = 2α′α′′

ω2µ0
(6.72)

It should be noted that in the determination of
Xs, besides the frequency-variation method dis-
cussed above, the length-variation method can also

be used (Ni and Ni 1997). In the length-variation
method, after introducing the sample, we adjust
the length of the cavity to ensure that the resonant
frequency of the cavity remains the same, and the
value of Xs can be obtained form the change of
the cavity length. Figure 6.15 shows a fixture for
extracavity-perturbation method. A movable pis-
ton is used so that the length of the cavity can be
adjusted in the measurement procedure.

6.3 DIELECTRIC RESONATOR
PERTURBATION METHOD

The mechanical stability is a critical parameter
determining the repeatability and reliability of the
cavity-perturbation method for materials measure-
ment. Though we may employ the TM010 mode
with nonradiative apertures so that samples may
be introduced without dismantling the cavity, such
approaches above are intended for a rod-shaped
sample or require an elaborate procedure for sam-
ple placement. A semiopen resonant structure with
good mode stability appears desirable for support-
ing perturbation techniques, since it would allevi-
ate the above mentioned constraints and allow for
a rapid placement of samples.

Shu and Wong proposed a method for permit-
tivity measurement based on the perturbation of
a resonant structure consisting of a dielectric res-
onator sandwiched between two metal plates (Shu
and Wong 1995). In the following discussion, we
assume the dielectric resonator is at TE011 mode,
and the procedure can be extended to other modes.

As shown in Figure 6.16, the resonant structure
consists of a dielectric resonator placed between
two polished metal plates and excited by a coaxial
loop. When a small sample in the form of a
thin plate or disk is placed with its broad surface
perpendicular to the electric field vector, the shift
in resonance frequency due to the presence of the
sample is given by (Shu and Wong 1995)

δω

ω0
≈ −εs − 1

εs
·

∫
Vs

E0 · D0 dV

2
∫

V

E0 · D0 dV

(6.73)

where εs is the relative permittivity of the sample,
E0 and D0 are the field quantities in the unper-
turbed system and Vs is the volume of the sample.
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Figure 6.16 Resonant structure with excitation coaxial
transmission line and test sample (Shu and Wong
1995). Reproduced from Shu, Y. and Wong, T. Y.
(1995). “Perturbation of dielectric resonator for material
measurement”, Electronics Letters, 31 (9), 704–705, by
permission of IEE

The integral in the denominator is made up of
two parts, one over the volume of the dielectric
resonator and the other over the air region. Sub-
stituting the appropriate expressions for the field
quantities corresponding to the TE011 mode, the
shift in resonant frequency is in the form of

δω

ω0
≈ −εs − 1

εs

· 2k2
2K

2
1 (β)Vs

{εdK
2
1 (β)[J 2

1 (α) − J0(α)J2(α)]

+J 2
1 (α)[K0(β)K2(β) − K2

1 (β)]}V
(6.74)

with
k2

2 = −ω2µ0ε0 + (π/L)2 (6.75)

α = πD

λ

√
εd −

(
λ0

2L

)2

(6.76)

β = πD

λ

√(
λ0

2L

)2

− 1 (6.77)

where Ji and Ki are Bessel functions, εd is the
relative permittivity of the dielectric resonator and
λ0 is the free-space wavelength. The dimensions
of the dielectric resonator, D and L, are defined in
Figure 6.16, with the volume denoted as V . From
Eq. (6.74), εs can be calculated once the resonance
frequencies have been measured.

When the change in the quality factor of the
resonator is incorporated to form a complex δω,
Eq. (6.74) enables the determination of the com-
plex permittivity of a lossy sample. It is also a

straightforward matter to extend this method to per-
meability measurements (Shu and Wong 1995).

6.4 MEASUREMENT OF SURFACE
IMPEDANCE

Besides the complex permittivity and complex per-
meability of low-conductivity materials, the com-
plex impedance of high-conductivity materials can
also be characterized using resonant perturba-
tion methods.

6.4.1 Surface resistance and surface reactance

Surface impedance Zs describes the interaction of
a conductor with the external electromagnetic field
when the penetration depth of the field is much less
than the sample size. For a uniform and isotropic
conductor, its surface impedance is in the form of

Zs = Rs + jXs (6.78)

where Rs is the surface resistance and Xs is the
surface reactance. In general, Zs is determined by
the magnetic permeability µr and the dielectric
permittivity εr of a conductor:

Zs =
√

µ0µr

ε0εr
(6.79)

where µ0 is the magnetic permeability and ε0 is
the dielectric permittivity of vacuum. For a normal
nonmagnetic conductor, the real and imaginary
parts of surface impedance are equal:

Rs = Xs = √
ωµ0/(2σ) (6.80)

where σ is the conductivity, which is a real
number for a normal conductor. However, for a
superconducting material, the conductivity is a
complex number, and the surface resistance and
surface reactance are not necessarily equal. The
measurement of surface impedance at microwave
frequency is important for the study of microwave
superconductivity and the microwave applications
of superconductors.

Because of their high accuracy and high sensitiv-
ity, resonant perturbation methods are widely used
in the surface resistance measurement of high-
temperature superconducting (HTS) thin films,
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though only the surface resistance at one or at
several discrete frequencies can be measured. The
additional advantage that makes resonant per-
turbation methods popular lies in the fact that
these methods are nondestructive and so the films
after characterization can still be used to fabricate
actual devices.

Resonant perturbation methods for surface imped-
ance measurement are based on wall-impedance per-
turbation. In a typical resonant method, part of the
resonator wall is replaced by the sample under study.
As ω = 2πf , Eq. (6.32) can be rewritten as

�f = j

2π
��Zs (6.81)

where f is the complex resonant frequency. The
real part of �f corresponds to a shift in the
actual resonant frequency f0 and is associated with
the surface reactance of the sample, while the
imaginary part of �f corresponds to the change
of the reciprocal of the quality factor (1/Q), and is
related to the surface resistance of the sample.

6.4.2 Measurement of surface resistance

For the measurement of surface resistance, from
Eq. (6.81), we can get

Rs2 = Rs1 + A

(
1

Q2
− 1

Q1

)
(6.82)

where Rs1 is the surface resistance of the original
cavity wall, Rs2 is the surface resistance of the
sample under study; Q1 and Q2 are the quality
factors of the resonator before and after part of the
cavity wall is replaced by the sample under study
respectively; and the constant A is independent
of the surface resistance of the sample, and it is
only related to the properties of the resonator. It
is clear that a resonator with a larger A value has
higher sensitivity. In experiments, the constant A

is usually determined by calibrating the cavity with
a sample with known surface resistance.

It should be noted that Eqs. (6.81) and (6.82)
stand on the assumption that the total stored
energy and the field configuration in the resonator
do not change due to the wall-loss perturbation.
So in Eq. (6.82), the difference between Rs1 and
Rs2 should be small. Equation (6.82) works quite

well for the measurement of normal conducting
materials because it is easy to find a calibrator
whose surface resistance is close to the surface
resistance of the sample under study.

In the following, we discuss two types of res-
onators used for surface resistance measurement:
hollow metallic resonant cavity and dielectric res-
onator enclosed in a metal shield. After that, we
discuss a mirror-image calibrator that is useful
for the measurement of samples with extremely
low surface resistance, such as superconducting
thin films.

6.4.2.1 Cavity-perturbation method

The cavity-perturbation method for measuring the
surface resistance of metals involves replacing one
wall of a cylindrical cavity resonator with the sample
being studied. In this method, a hollow metallic cav-
ity is often used. As shown in Figure 6.17, the end
wall of a hollow metal cavity is replaced by the sam-
ple under test. The surface resistance of the sample
can be obtained from the quality factors of the cavity
before and after one of the endplates is replaced by
the sample, respectively (Dew-Hughes 1997; Derov
et al. 1992). This method has acceptable accuracy
and sensitivity in the measurement of normal con-
ductors. To increase the measurement accuracy and

Coupling iris

Waveguide feed

Copper
cavity

Sample

Spring Retaining plate

Figure 6.17 Schematic of end-wall-replacement cav-
ity. Source: Dew-Hughes, D. (1997). “Microwave prop-
erties and applications of high temperature supercon-
ductors”, in H. Groll and I Nedkov (eds). Microwave
Physics and Techniques, Kluwer Academic Publishers,
Dordrecht, 83–114
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Figure 6.18 Schematic view of a split-ring resonator
for measurement of surface resistance. The outer cylin-
der and Teflon holder have been cut away to reveal the
resonator. Modified from Bonn, D. A. Morgan, D. C.
and Hargy, W. H. (1991). “Split-ring for measuring
microwave surface resistance of oxide superconductors”,
Review of Scientific Instruments, 62 (7), 1819–1823

sensitivity, the cavity structure can be optimized and
the cavity can be made from materials with lower
surface resistance, such as superconductors.

In the configuration shown in Figure 6.17, the
sample under study is thermally anchored to the
cavity. If we want to study the temperature depen-
dence of the surface resistance of the sample, the
temperature dependence of the loss in the cavity
walls must be carefully measured in order to min-
imize systematic errors. The thermal connection
between the sample and the resonator also makes
it impossible to use high-Q superconducting res-
onators, putting a serious limit on the sensitivity
of this technique. In the configuration shown in
Figure 6.18, the split-ring resonator has microwave

magnetic field lines coming out of the central
hole in the resonator, and the sample under test
is positioned with its face perpendicular to these
field lines (Bonn et al. 1991). The oscillating cir-
cular currents are induced in the surface and any
resistance to these currents manifests itself as a
decrease in the quality factor of the resonance. In
this configuration, the sample is thermally isolated
from the cavity, so we can adjust the temperature
of the sample while keeping the temperature of the
cavity unchanged.

6.4.2.2 Dielectric resonator method

Mainly owing to the two distinct advantages, the
dielectric resonator method is much more widely
used than the hollow metallic cavity method in
the measurement of surface resistance. First, the
dielectric resonator method has higher accuracy
and sensitivity, and second, the small samples
can be measured at lower frequencies, or different
positions in a large sample can be measured.

As shown in Figure 6.19, usually a cylindrical
dielectric pill located in a cylindrical metal shield
is used, and the samples under study may be placed
in contact with one end plane of the pill or with
both end planes. For the configuration with samples
placed in contact with both end planes of the dielec-
tric pill, as shown in Figure 6.19(b), there is an ana-
lytic field solution, so the surface resistance can be
accurately calculated from the resonant properties
of the dielectric resonator (Kobayashi and Katoh
1985; Shen et al. 1992; Holstein et al. 1993). This
scheme has been extensively investigated (Mazier-
ska and Grabovickic 1998; Mazierska 1997), and it

Dielectric
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Metal
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Sample

(a) (b)

Figure 6.19 Dielectric resonators for surface resistance measurement of HTS thin films. (a) One-sample
perturbation and (b) two-sample perturbation. Source: Ong, C. K. Chen, L. F. Lu, J. Xu, S. Y. Rao, X. S. and
Tan, B. T. G. (1999). “Mirror-image calibrator for resonant perturbation method in surface resistance measurement
of high-Tc superconducting thin films”, Review of Scientific Instruments, 70 (7), 3092–3096
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is a generally accepted method for the measurement
of the surface resistance of HTS thin films. How-
ever, it should be indicated that the value of surface
resistance obtained directly from this scheme is the
average value of the two samples.

For the configuration with a single piece of sample
placed in contact with one end plane of the dielec-
tric pill, as shown in Figure 6.19(a), the surface
resistance of the sample can be measured directly,
and with a higher sensitivity, though there is no
analytical solution for this scheme (Edgcombe and
Waldram 1994). Usually, the calibration method,
based on resonant perturbation theory, is used to
deduce the surface resistance of the sample. In this
configuration, the sample is thermally anchored to
the resonator, and this may cause difficulty in the
study of the temperature dependence of the sur-
face resistance of the sample. To avoid this prob-
lem, the configuration shown in Figure 6.20 can be
used (Ormeno et al. 1997). In this configuration, the
sample is thermally isolated from the dielectric res-
onator, and we can adjust the temperature of the
sample while keeping the temperature of the cavity
unchanged. However, the measurement sensitivity
of this configuration may be lower than that of the
configurations shown in Figure 6.19.

6.4.2.3 Mirror-image calibrator

The resonant perturbation methods discussed above
are accurate and sensitive enough for the mea-
surement of the surface resistance of normal con-
ductors; however, they may experience difficulty

Coaxial line

Sample holder
(Sapphire)

Sample

Couling loop

Metal shieldDielectirc pill

Figure 6.20 A configuration for the measurement of
surface resistance

in the measurement of surface resistance of HTS
thin films. As the surface resistance of the best
metals, such as silver and gold, is much larger
than that of HTS thin films, the surface resistance
obtained from the traditional perturbation methods
is not reliable. So it is not appropriate to calcu-
late the surface resistance of HTS thin films using
Eq. (6.82). Besides, if Rs1 is much larger than Rs2,
a small uncertainty in the resonator constant A may
result in a large error in Rs2. The ideal condition
for the measurement of HTS thin films is that the
value of Rs1 in Eq. (6.82) is zero, which requires a
zero surface resistance plate. With this condition,
Eq. (6.82) becomes

Rs = A

(
1

Q
− 1

Q0

)
(6.83)

where Rs is the surface resistance of HTS thin film
under study, and Q0 and Q are the quality factors
of the dielectric resonator when the zero surface
resistance plate and the HTS thin film are placed in
contact with the dielectric resonator respectively.

However, no material has zero surface resistance
at microwave frequencies, and in the measurement
of sample with extremely low surface resistance,
a mirror-image calibrator can be used (Lu et al.
1994, Luo et al. 1997; Krupka and Mazierska
1998; Ong et al. 1999). When the end plane of the
dielectric resonator (Rs probe) is in contact with
the mirror image of the probe, the quality factor
of the resonator, consisting of the probe and its
mirror image, is equal to the quality factor when
the end plane of the probe is in contact with an
ideal zero surface resistance plate. The principle
of the mirror-image calibrator is explained below.

The dielectric resonators used for surface resis-
tance measurement of HTS thin films are usu-
ally cylindrical dielectric resonators working in the
TE011 mode. As shown in Figure 6.21(a), the TE011

mode is axisymmetric. It has closed loops of trans-
verse electric field whose centers lie on the axis,
and the closed loops of magnetic field lie in the
planes containing the axis. There is no axial current
across any possible joints between the dielectric
resonator and the HTS thin film, so this mode is
not sensitive to the small gaps between the dielec-
tric resonators and HTS thin films.
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(a) (b) (c)

Figure 6.21 Field distributions of three dielectric res-
onators. (a) TE011 mode dielectric resonator in contact
with a conducting plate, (b) TE012 mode dielectric res-
onator, and (c) TE012 mode dielectric resonator consist-
ing of two TE011 mode dielectric resonators. Source:
Ong, C. K. Chen, L. F. Lu, J. Xu, S. Y. Rao, X. S. and
Tan, B. T. G. (1999). “Mirror-image calibrator for reso-
nant perturbation method in surface resistance measure-
ment of high-Tc superconducting thin films”, Review of
Scientific Instruments, 70 (7), 3092–3096

Figure 6.21 shows three cylindrical dielectric
resonators, which are made of the same material
and have the same diameter d . In Figure 6.21(a), the
dielectric resonator with length l is in contact with a
conducting plate, and it resonates in the TE011 mode.
The resonator shown in Figure 6.21(b) has length
2l, and resonates in the TE012 mode. The resonator
shown in Figure 6.21(c) also resonates in the TE012

mode, and it consists of two pieces of identical
dielectric cylindrical pills, each of which has length
l. If the surface impedance of the conducting plate
shown in Figure 6.21(a) is zero, there is no electric
field in the plate, and the magnetic field near the
plate is parallel to the surface of the plate. From the
field distributions of TE011 mode and TE012 mode,
it is clear that the field distribution in the dielectric
resonator shown in Figure 6.21(a) is the same as that
in the upper part of the dielectric resonator shown
in Figure 6.21(b), and these two resonators have
the same resonant frequency. As the plate shown in
Figure 6.21(a) does not dissipate microwave energy,
the dielectric resonator shown in Figure 6.21(b)
has twice the stored energy and also twice the
energy dissipation as the dielectric resonator shown
in Figure 6.19(a). Therefore, they have the same
quality factor (Kobayashi and Tanaka 1980; Kajfez
and Guillon 1986). Because there is no axial current
across the plane perpendicular to the axis at the
middle of the cylinder, a small gap perpendicular to

the axis at the middle of the cylinder hardly affects
the resonant properties of the resonator. As such,
the resonator shown in Figure 6.21(a) and the one
shown in Figure 6.21(c) also have the same resonant
frequency and quality factor. In experiments, the
size of the gap between the two pieces of dielectric
pills is much smaller than microwave wavelength,
so the uncertainty caused by the gap is negligible.

The above discussions show that if the zero
surface resistance plate shown in Figure 6.21(a)
is replaced by the mirror image of the dielectric
resonator, though the electromagnetic boundary
condition of the dielectric resonator is changed
from a short-circuit condition to an open-circuit
condition, its quality factor does not change.
Therefore, the quality factor of the dielectric
resonator when it is connected to its mirror-image
structure can be used as Q0 in Eq. (6.83). In the
following discussions, the mirror-image structure
is also called the mirror-image calibrator.

Figure 6.22 shows a probe for Rs measurement
in a calibration configuration: the probe (the upper
part) is in contact with its mirror-image calibrator

Coupling loop

Metal shield

Teflon

Dielectric pill

Callibrator

Probe

Figure 6.22 Structures of the Rs probe and its mir-
ror-image calibrator. Source: Ong, C. K. Chen, L. F.
Lu, J. Xu, S. Y. Rao, X. S. and Tan, B. T. G. (1999).
“Mirror-image calibrator for resonant perturbation
method in surface resistance measurement of high-Tc

superconducting thin films”, Review of Scientific Instru-
ments, 70 (7), 3092–3096
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(the lower part). The probe and its mirror-image
calibrator have the same structures except that the
probe has two coupling loops, while the mirror-
image calibrator does not have coupling loops. The
key components of the probe and the mirror-image
calibrator are the dielectric pills, the Teflon holders,
and the metal shields.

The probe and its mirror-image calibrator have
the same dielectric pills. For the Rs probe used in
the following discussions, each dielectric pill is a
piece of LaAlO3 single crystal with dimensions:

6.0 × 5.5 mm. The two dielectric pills are made
from the same piece of LaAlO3 single crystal,
and the symmetrical axis of each dielectric pill
is the c-axis of the crystal. The two end planes
of each dielectric pill are finely polished. When
the two dielectric pills are connected by end
plane to end plane, as shown in Figure 6.21(c)
and Figure 6.22, optical interference fringes can
be visually observed, indicating that the size of
the gap between the two dielectric pills is of the
order of optical wavelengths. Besides, experiments
made at room temperature show that the two TE011

mode dielectric resonators (formed by sandwiching
each of the two dielectric pills between two silver
plates) and the TE012 mode resonator (formed by
sandwiching two dielectric pills, connected by end
plane to end plane, between two silver plates)
have the same resonant frequency. The two TE011

resonators have the same quality factor, while the
TE012 resonator has a higher quality factor.

The structures of the Teflon holders in the
probe and the mirror-image calibrator are shown in
Figure 6.23. The relative positions of the LaAlO3

single crystal and the metal shield should not change
when the measurement temperature changes from
room temperature to liquid nitrogen temperature.
Because the thermal-expansion coefficient of Teflon
is much larger than those of brass and LaAlO3,
special attention should be paid to the design of
the Teflon holders: (1) plane A and plane B are
in the same plane perpendicular to the c–c′ axis,
so the perpendicular distance between these two
planes is always zero at any temperature; (2) the
tolerances of the Teflon holder are carefully selected
to ensure that the Teflon holder can tightly hold the
LaAlO3 pill at any temperature; (3) the hole in the
top of the holder is used to observe whether the

A

B

C

C′

Figure 6.23 Structure of the Teflon holder. Source:
Ong, C. K. Chen, L. F. Lu, J. Xu, S. Y. Rao, X. S.
and Tan, B. T. G. (1999). “Mirror-image calibrator for
resonant perturbation method in surface resistance
measurement of high-Tc superconducting thin films”,
Review of Scientific Instruments, 70 (7), 3092–3096

dielectric pill is correctly assembled; and (4) there
is a groove (not shown in the figure) to release the
difference in gas pressure between the upper and
lower part of the probe. However, it should be noted
that Teflon is a lossy material compared to single-
crystal LaAlO3. The Teflon holders add losses to the
probe and its mirror-image calibrator, and thus lower
the value of Q0. If lower-loss materials with good
mechanical and thermal properties are available, the
measurement accuracy and sensitivity of the probe
could be further increased.

The metal shields do not resonate at the working
frequency of the dielectric resonators, preventing
the microwave radiation from the dielectric res-
onators. In order to decrease their wall-loss contri-
butions to the quality factors of the dielectric res-
onators, the brass shields are usually coated with
silver or gold. In addition, the shields are sealed
with indium wire and hence the samples are sepa-
rated from the liquid nitrogen, and can be kept in
special gas environments, such as Helium.

Equations (6.82) and (6.83) are often used for the
measurement of the surface resistance of conducting
plates. For the measurement of HTS thin films,
Eq. (6.83) is more accurate and sensitive provided
that the mirror-image calibrator corresponding to the
probe is available. The calibration method is often
used to determine the constant A. In order to make a
comparison between the conventional perturbation
technique and the technique using mirror-image
calibrator, calibrations are made on the basis of
Eqs. (6.82) and (6.83) respectively.
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Table 6.4 Calibrations based on Eqs. (6.82) and (6.83). Two calibrations are made on the basis
of Eq. (6.83), as indicated by calibration (I) and calibration (II). All the calibrations were
performed at 10.65 GHz and 77 K

Calibration based
on Eq. (6.82)

Calibration (I) based
on Eq. (6.83)

Calibration (II) based
on Eq. (6.83)

Mirror-image
calibrator

– Q0 = 31,095 Q0 = 31,095

Silver Rs1 = 11.5 m� Rs = 11.5 m� –
Plate Q1 = 15,126 Q = 15,126
Gold Rs2 = 20.8 m� – Rs = 20.8 m�

Plate Q2 = 10,879 Q = 10,879
A 3.603 × 105 3.387 × 105 3.481 × 105

In the calibration procedure, three calibrators are
used: the mirror-image calibrator discussed above
and two conventional calibrators. One of the two
conventional calibrators is a silver plate whose
surface resistance is 11.5 m�, and the other is a
gold plate whose surface resistance is 20.8 m�.
The silver plate and the gold plate are used in the
calibration based on Eq. (6.82). Two calibrations
are made on the basis of Eq. (6.83) by using
the silver plate and the gold plate separately and
independently to check whether the selection of the
conventional calibrator is crucial if a mirror-image
calibrator is used. The calibration results are shown
in Table 6.4.

The uncertainties of surface resistance mea-
surement using mirror-image calibrator mainly
consist of three parts: the calibration uncertainty,
the instrument measurement uncertainty, and the
uncertainty due to the measurement method of
unloaded quality factor. Usually, the instrument
measurement uncertainty is much smaller than the
calibration uncertainty. The calibration uncertainty
is mainly related to two factors: the quality of the
mirror-image calibrator and the repeatability of the
mechanical assembling. The quality of the mirror-
image calibrator is determined by the extent to
which the probe and the mirror-image calibrator
are identical. To minimize the uncertainty, the two
dielectric pills, the two metal shields, and the two
Teflon holders in the probe and the mirror-image
calibrator are made to be as same as possible.
The only difference between the probe and the
mirror-image calibrator is that there are two cou-
pling loops in the probe, while there is no coupling

loop in the mirror-image calibrator. However, the
uncertainty caused by such a difference is negli-
gible because the couplings are very week. So the
calibration uncertainty is mainly determined by the
precision of the mechanical assembly. In the mea-
surement of the unloaded quality factor, usually the
two coupling coefficients (β1 and β2) are assumed
to be equal.

To make a comparison between the conventional
perturbation method and the modified perturba-
tion method, several YBa2Cu3O7-δ (YBCO) thin
films are characterized using these two methods.
The YBCO thin films are fabricated on LaAlO3

substrates by using pulsed laser ablation tech-
niques (Low et al. 1997), and their thickness is
around 5000 Å. The measurement results are
shown in Table 6.5.

In Table 6.5, the surface resistance of each piece
of YBCO thin film is calculated in three differ-
ent ways according to the three calibrations listed
in Table 6.4. To make a precise comparison of the
calculation results according to different calibra-
tions, we list five decimal digits for each Rs value.
Table 6.5 shows that the results following two cal-
ibrations of Eq. (6.83) are obviously more accurate
and credible than the ones following Eq. (6.82). The
differences in the calculation results caused by the
different calibrators in the calibrations (I) and (II) of
Eq. (6.83) are acceptable. So, when a mirror-image
calibrator is used, the selection of the conventional
calibrator is not very crucial, and even if there is
some error in the surface resistance value of the
conventional calibrator, the effect of such an error
is not very severe. For the conventional technique,
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Table 6.5 Different results of surface resistance measurements following different calibrations. The samples are
YBCO thin films fabricated on LaAlO3 substrates. All the measurements are made at 10.65 GHz and 77 K. The
unit of Rs values in the table is m�

Item numbers of
HTS thin films

Q2 in Eq. (6.82)
or Q in Eq. (6.83)

Rs values
following
Eq. (6.82)

Rs values following
Eq. (6.83) with
Calibration (I)

Rs values following
Eq. (6.83) with
Calibration (II)

1 21,379 4.5331 4.9502 5.0876
2 24,835 2.1878 2.7456 2.8218
3 27,104 0.9733 1.6039 1.6484
4 28,752 0.21139 0.88762 0.91226
5 29,563 −0.13238 0.56446 0.58013
6 29,861 −0.25401 0.45013 0.46262

Eq. (6.82) could give reasonable results for the HTS
thin films with large surface resistance (items 1–3).
However, for HTS thin films with low surface resis-
tance, the results following Eq. (6.82) are unreliable
(items 5 and 6). Furthermore, using Eq. (6.82), a
small uncertainty in the surface resistance values of
the two conventional calibrators may cause larger
uncertainties in the measurement results.

6.4.3 Measurement of surface reactance

As discussed earlier, for materials with normal
skin effect, the surface resistance and surface
reactance have the same value. However, for
superconductors and semiconductors, the values for
surface resistance and surface reactance are not
necessarily equal. For superconductors, thin-film
samples are often measured by the wall-replacement
method; while for semiconductors, bulk samples are
often measured by material-perturbation method.

6.4.3.1 Wall-replacement method

The measurement of the surface reactance is
important for the study of microwave superconduc-
tivity. The surface reactance of a superconductor
is related to the penetration depth of the supercon-
ductor λL:

Xs = ωµλL. (6.84)

In a resonant-perturbation method, the replacement
of part of the cavity wall by the sample under
study also results in a resonance-frequency shift
that is proportional to the difference in the values

of surface reactance of the sample (Xs) and the
original cavity wall (Xc):

fs − fc = A · (Xs − Xc) (6.85)

where fc and fs are the resonant frequency of the
cavity before and after part of the cavity wall is
replaced by the sample respectively. The parameter
A is a constant independent of the reactance of the
sample, and it is determined by the properties of
the cavity.

However, in actual experiments, the measure-
ments of absolute value of Xs based on Eq. (6.85)
are not feasible since the replacement of part of
the cavity wall is inevitably accompanied by the
uncontrolled alteration of the geometrical sizes of
the cavity. The resultant spurious shift of reso-
nance frequency may far exceed that caused by
the change of Xs of the part of a cavity wall.

When it is necessary to measure Xs, such as in
the investigation of metals in the superconducting
state or under conditions of anomalous skin effect,
the measurement results should be calibrated. We
may use the relationship Rs = Xs in the high-
temperature range where the conditions of normal
skin effect are still valid to calibrate the absolute
value of Xs; subsequently, the variation of Xs with
decreasing temperature can be measured.

6.4.3.2 Measurement of bulk samples

Kourov and Shcherbakov proposed a method
for the measurement of surface reactance of
semiconductor bulk samples with a size much
less than that of the wavelength (Kourov and
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Shcherbakov 1996). Consider an ideal conductor
placed inside a cavity. In experiments, a metal
with a sufficiently small value of dc resistivity,
such as copper, silver, or gold, can be taken
as an ideal conductor. If the ideal conductor
is substituted by a sample under study that is
of the same shape and size, and the sample is
placed at the same position inside the cavity
as the ideal conductor, then such a procedure
is equivalent to the replacement of the part of
the ideally conducting wall of the cavity by
the sample being investigated. This substitution
causes a shift of resonant frequency that is
proportional to the surface reactance of the sample
under study,

f − fid = −XsS/G (6.86)

where f and fid are the resonant frequencies of the
cavity with the sample and with the ideal conductor
respectively, S is the surface area of the sample,
and G is geometric factor given by (Kourov and
Shcherbakov 1996)

1

G
= 1

4πµ0S
·

∮
|H |2 dS∫
|H |2 dV

(6.87)

where H is the amplitude of the magnetic field.
The integrals in the numerator and denominator
are taken over the replaced area S of the cavity
inner surface and the volume of the cavity
respectively. But, in fact, as discussed above,
such a substitution inevitably leads to a spurious
resonance-frequency shift because of the difference
between the actual geometrical sizes of the two
samples. This spurious shift severely restricts the
possibility of determining Xs.

If sample sizes are much smaller than the
wavelength and if the samples are located at the
antinode of the magnetic field inside a cavity,
the amplitude of the field varies very slightly in
distances on the order of the sample sizes. The
sample appears to be placed in a region where
the field distribution is nearly uniform. According
to resonant-perturbation theory, placing an ideal
conductor in a region of uniform electromagnetic
field inside a cavity causes a resonance-frequency

shift that is proportional to the volume of the ideal
conductor Vid:

fid − f0 = K · Vid (6.88)

where f0 is the resonance frequency of the empty
cavity and K is the geometric factor. For a
spherical sample located in a uniform ac magnetic
field inside the cavity, K is given by (Kourov and
Shcherbakov 1996)

K = 3

4
· f0 · H 2

0∫
|H |2 dV

(6.89)

where H0 is the amplitude of the magnetic field in
the empty resonator in the region where the sample
is placed; the integration in the denominator is
taken over the volume of the cavity.

In the measurement of surface reactance of
samples with sizes much less than the wavelength,
we can use Eq. (6.88) where the volume of the
sample under study is used instead of Vid. Then,
from Eqs. (6.86) and (6.88), we have

Xs = G

S
[KV − (f − f0)] (6.90)

where V is the volume of the sample, and f is the
resonant frequency of the cavity when the sample
is loaded. Using this method, we can measure
Xs without replacing part of the cavity wall and
thus avoiding uncontrolled change of the cavity
geometry.

Figure 6.24 shows a cylindrical cavity for the
measurement of surface reactance of bulk samples.
To remove degeneracy in frequency between the
TE01p and TM11p modes, a metallic plunger is
inserted along the axis of the cavity through the
upper lid. The cavity is made of good conductor,
such as copper, and works in the TE01p modes.
The sample is assumed to be a cube of side a that
satisfies the condition

a � λ0, (6.91)

and the conditions of normal skin effect are valid:

l � δ � a (6.92)
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Plunger

Sample

Coupling
loops

Figure 6.24 Structure of the cavity for the measure-
ment of surface reactance

where l is the mean free path of the carriers and δ

is the skin depth. The sample is usually placed on
a polyfoam rod along the axis of the cavity where
only Hz, the component of the magnetic field that
is parallel to the cavity axis, is nonvanishing. The
amplitude of Hz depends on the distance z from
the bottom lid of a cylindrical cavity, as given by

Hz = H0 sin
(pπz

L

)
(6.93)

where L is the length of the cavity, and p is the
mode number.

Usually, the sample is placed at the antinode
of the magnetic field, that is, at the distance z =
L/2p. So the useful frequency shift due to Xs of
the sample under study reaches maximum value.
Also, near the antinode of the magnetic field, the
spatial derivatives of the field are small, resulting
in maximum homogeneity of the field in the region
where the sample is placed.

The determination of the geometric factor G is
based on the fact that the geometric factors in the
relationships for the change of bandwidth and shift
of the resonant frequency are the same (Kourov and
Shcherbakov 1996). As the change of bandwidth is
far less sensitive to the small difference of sample
sizes than the resonance-frequency shift, in the
calculation of the geometric factor G, the bandwidth
(�f ) of the cavity with a sample and the bandwidth
of the cavity with a copper sample (�fCu) having
a size close to that of the sample under test are
often used:

G = 2S · (Rs − RCu
s )

�f − �fCu
(6.94)

where Rs and RCu
s are the surface resistances of the

sample and copper samples respectively, which can
be calculated from their dc resistivities.

The other geometric factor K can be calibrated
with the copper samples having sizes close to those
of the sample under test by

K = (fCu − f0) + (XCu
s SCu/G)

VCu
(6.95)

where fCu is the resonant frequency of the cavity
with the copper sample. For other values, the
symbol Cu indicates that they are related to the
copper sample. Note that copper can be considered
as an ideal conductor, that is, within the accuracy
of the experiment, one can assume that XCu

s = 0,
because for all the modes under investigation, the
shift of resonant frequency due to the surface
reactance of copper (XCu

s SCu/G) is less than 0.1 %
of the measured value of the shift (fCu – f0). Thus,
the neglect of the distinction between copper and
the ideal conductor is responsible for the error
in the determination of K , which is substantially
less than what resulted from the inaccuracy of the
sample volume measurement.

The geometric factors (G and K) can also be
found on the basis of the known field distribution in
a cylindrical cavity. The geometric factor K can be
calculated according to Eq. (6.89). Besides, owing
to the relationship∮

|H |2 dS = 3

2
H 2

0 S (6.96)

for the integral of the magnetic field amplitude over
the sample surface, where H0 is the amplitude of the
uniform ac magnetic field in the empty cavity in the
region where the sample is placed, from Eq (6.87),
G can be calculated from

1

G
= 3

8πµ0
· H 2

0∫
|H |2 dV

(6.97)

It should be noted that Eqs. (6.89), (6.96), and
(6.97) are exact only for spherical samples, but they
can be used in the case of cubic samples also for
the estimation of G and K within the accuracy of
several percent (Kourov and Shcherbakov 1996). In
the calculation, the ideally conducting cube of side
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a is regarded as the sphere of the same volume, that
is, the one having the radius:

r = a

(
3

4π

)1/3

, (6.98)

and the cubic sample under study of side a is
regarded as the sphere of the same surface area, that
is, the one having the radius

r = a

(
3

2π

)1/2

. (6.99)

6.5 NEAR-FIELD MICROWAVE
MICROSCOPE

Many efforts have been made for the develop-
ment of near-field microwave microscopes to get
the spatial distribution of electromagnetic proper-
ties of materials (Rosner and van der Weide 2002).
Various types of near-field microwave microscopes
have been developed, and the material prop-
erty parameters that can be mapped by near-field
microwave microscopes mainly include conductiv-
ity, resistivity, permittivity, and permeability.

6.5.1 Basic working principle

A microwave microscope mainly consists of a
sensing probe, microwave measurement system,
and imaging system. The sensing probe of a near-
field microwave microscope transmits microwave
signal and meanwhile collects the microwave signal
reflected back to the probe in the presence of the
sample under study. According to the probes used,
there are two general types of near-field microwave
microscopes: nonresonant type and resonant type.
In a nonresonant type microwave microscope, the
probe is a segment of transmission in reflection state,
and the properties of materials are obtained from
the change of the reflectivity due to the sample. An
example of nonresonant-type near-field microwave
microscope is discussed in Chapter 3.

Resonant-type near-field microwave microscope
is based on the resonant-perturbation theory. In
a resonant near-field microwave microscope, the
sensing probe is a resonator, and the presence of
a sample introduces a perturbation to the resonant

probe. The properties of the sample under study
are deduced from the changes of resonant prop-
erties of the probe due to the sample. Usually,
a resonant near-field microwave microscope has
higher sensitivity and resolution than a nonreso-
nant one. In this part, we discuss several often-
used resonant probes: tip-coaxial resonator, open-
coaxial resonator, metallic waveguide resonator,
and dielectric resonator. Another resonant probe
often used is microstrip probe, which is discussed
in Chapter 7.

Two techniques are often used in microwave
measurement. In one technique, the resonant
frequency and quality factor of the resonant probe
are measured, and the properties of the sample
are derived from the change of resonant frequency
and quality factor due to the sample. In the other
technique, the reflectivity from the resonant probe
are measured, as shown in Figure 6.25. Usually,
the cavity is critically coupled without a sample,
the presence of the sample results in an increase
in reflected power, and the reflected power is
related to the properties of the sample. As shown
in Figure 6.25, using the reflection method, the
change in resonant frequency can also be obtained
using reflection method, and the information on the
resonant frequency can be used for accuracy and
sensitivity enhancement.

In an actual measurement, a suitable operation
frequency (fx) is chosen and the change in the
reflection amplitude �S11 is recorded. It should be
indicated that fx is not necessarily the resonant
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Figure 6.25 The change of resonant frequency and
reflectivity due to the presence of sample
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fx

∆S11

f2f1

Figure 6.26 Relationship between the change of reso-
nant frequency and change of reflection coefficient

frequency of the probe when no sample is present;
for different samples, the operation frequency may
be different. The operation frequency fx is often
chosen to yield maximum change in the probe’s
reflection coefficient for a given range of property
of a sample. As shown in Figure 6.26, the detected
signal �S11 can be related to the slope of the
resonance curve at the operation frequency fx ,
which is kept fixed throughout the measurement,
using the following relationship:

�S11 ≈ �S11

�f

∣∣∣∣
fx

× �f (6.100)

The slope (�S11/�f ) at frequency fx is the
sensitivity of the probe. For a given probe, a different
operation frequency can be used for different
frequencies to achieve maximum sensitivity.

In a near-field microwave microscope, the scan-
ning system and image-processing techniques play
crucial roles. Besides, feedback circuits are often
used in the microwave measurement systems to
increase the measurement reliability. In the follow-
ing discussion, we concentrate on the operation of
sensing probes often used in near-field microwave
microscopes.

6.5.2 Tip-coaxial resonator

As shown in Figure 6.27, in a near-field microwave
microscope, the sample under test is fixed on a
stage, which can scan in X- and Y -directions.
The tip of the sensing probe is in the vicinity of
the sample. The resonant frequency and quality

Sample

X–Y stage

Coaxial l/4
resonator

Coupling
loopsSapphire

Metal
coating

Tip

Figure 6.27 Schematic diagram of near-field micro-
wave microscope with tip-coaxial resonator. Modi-
fied from Gao, C. Wei, T. Duewer, F. Lu, Y. L. and
Xiang, X. D. (1997). “High spatial resolution quantita-
tive microwave impedance microscopy by a scanning
tip microwave near-field microscope”, Applied Physics
Letters, 71 (13), 1872–1874

factor, which are related to the properties (e.g.,
dielectric constant and loss tangent) of the sam-
ple, are recorded as functions of the positions
of the tip relative to the sample under test, and
the distributions of the properties of the sample
can then be mapped using image-processing tech-
niques.

As shown in Figure 6.28, the sensing probe in
Figure 6.27 can be taken as a modification of
a coaxial cavity (Shrom 1998). The fundamental
principle behind the operation of the microscope is

(a) (b)

Figure 6.28 Modification of (a) a coaxial cavity into
(b) a microwave microscope probe. Source: Shrom,
A. J. (1998). “A scanning microwave microscope”,
Physics Department of Physics, Princeton University,
Princeton, New Jersey
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that boring a hole in the end wall and extending
the center conductor past the outer surface allows
materials outside the cavity to perturb the coaxial
cavity, making the cavity a probe of the local
dielectric constant of a sample brought near the tip.
The key part of a sensing probe is the sharpened
metal tip, mounted on the center conductor of a λ/4
coaxial resonator and protruding beyond an aperture
formed on the end wall of the resonator. In the
structure developed by Gao and Xiang (1998), a
sapphire disk with a center hole of a size close to the
diameter of the tip wire and a metal layer coating on
the outside surface is used to shield off the far-field
propagating components. This design minimizes the
far-field background signal and allows submicron
spatial resolution even in the quantitative analysis
of complex dielectric constant. The coating layer
should be as thin as the skin depth to avoid
the formation of a microtransmission line with
heavy loss near the aperture while still maintaining
effective shielding of far-field components. To
prevent vibration against the shielding hole, the tip
is bonded to the sapphire disk with insulating glue.

A quasi-static model can be used to per-
form quantitative measurements (Gao et al. 1997).
Since dielectric samples are placed in the near-field
region of the tip, the electromagnetic interaction
can be treated as quasi-static, so the wave nature
can be ignored. Under this assumption, we can
model the tip as a conducting sphere, and the elec-
tric field inside the dielectric sample can be solved
using the image charge approach for samples with
thickness much greater than the tip radius. The the-
ory predicts that the intrinsic spatial resolution of
the microwave microscope is proportional to the
tip radius R0. The ratio depends on the dielec-
tric constant of the sample and decreases with the
increase of the dielectric constant. For dielectric
materials of common interest (εr > 20), the resolu-
tion can be one or two orders of magnitude smaller
than the tip radius.

We consider the simplest configuration: the
tip scans directly (soft contact) on the surface
of a dielectric material with a thickness much
larger than the tip radius. The shifts in resonant
frequency (fr) and quality factor (Q) caused by
the sample can be calculated using the perturbation

theory (Gao and Xiang 1998):

�fr

fr
= A

[
ln(1 − b)

b
+ 1

]
(6.101)

�

(
1

Q

)
d

= −�fr

fr
tan δ (6.102)

with
b = ε − ε0

ε + ε0
(6.103)

where A is a constant determined by the geometry
of the tip-resonator assembly. For an ideal λ/4
coaxial resonator

A ≈ 16R0 ln(R2/R1)

λ
(6.104)

where R0 is the radius of the tip, R1 and R2 are
the radii of the inner and the outer conductors of
the resonator respectively, and λ is the resonant
wavelength.

Besides the dielectric loss from the sample,
the extra current required to support the charge
redistribution induces additional resistivity loss.
The corresponding change of quality factor is
given by

�

(
1

Q

)
c

= −B
�fr

fr
(6.105)

So the total shift of quality factor can be
expressed by

�

(
1

Q

)
t

= −(B + tan δ)
�fr

fr
(6.106)

On the basis of Eqs. (6.101) and (6.106), quantita-
tive measurements of the local complex dielectric
permittivity for samples can be made. The con-
stants A and B can be calibrated by measuring a
standard sample such as sapphire with a known
dielectric constant and loss tangent.

6.5.3 Open-ended coaxial resonator

A type of sensing probe in a near-field microwave
microscope is developed from open-ended coaxial
resonator. The principle of such a probe is based
on the perturbation of material to an open-
ended coaxial resonator (Tanabe and Joines 1976;
Xu et al. 1987). As shown in Figure 6.29, the
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Figure 6.29 An open-ended coaxial resonator terminated by a dielectric material. (a) Configuration and
(b) equivalent circuit. Modified from Xu, D. M. Liu, L. P. and Jiang, Z. Y. (1987). “Measurement of the
dielectric properties of biological substances using an improved open-ended coaxial line resonator method”, IEEE
Transactions on Microwave Theory and Techniques, 35 (12), 1424–1428.  2003 IEEE

dielectric material alters the external admittance
and capacitance, so the resonant properties of the
coaxial resonator are changed. From the changes
of the resonant frequency and the quality factor,
the dielectric constant and loss tangent of the
material can be obtained. However, in a near-
field microwave scope, there is a layer of air gap
between the sample and the open end of the probe.

Figure 6.30 schematically shows a near-field
scanning microwave microscope with an open-
coaxial resonator probe. The probe is coupled to
a microwave source through a capacitive coupler.
Usually, the position of the probe is fixed, and the
sample under measurement is put on a translation

Capacitive
coupler

Coaxial
transmission
line

Probe

Sample

X
Y

R
es

on
at

or

Figure 6.30 Schematic of a microwave microscope
(Steinhauer et al. 2000). Source: Steinhauer, D. E. Vla-
hacos, C. P. Wellstood, F. C. et al. (2000). “Quantita-
tive imaging of dielectric permittivity and tunability with
a near-field scanning microwave microscope”, Review of
Scientific Instruments, 71 (7), 2751–2758

stage. The open end of the probe is close or
in soft contact with the sample. Owing to the
concentration of the microwave fields at the open
end of the probe, the boundary condition of the
resonator, and hence, the resonant frequency f0

and quality factor Q, are perturbed depending on
the electromagnetic properties of the region of
the sample immediately beneath the probe. The
position of the sample is controlled using the
translation stage along the X- and Y -directions.
As the changes of the resonant frequency and the
quality factor are related to the electromagnetic
properties in the region of the sample immediately
beneath the probe, images of the electromagnetic
properties of the sample under study can thus
be obtained from the frequency-shift image and
quality-factor image.

The sensing probe plays an important role in
a microwave microscope. On the basis of the
structure shown in Figure 6.29, various kinds of
probes have been developed. In the following, we
discuss three kinds of probes for the measurements
of sheet resistance, dielectric permittivity, and
magnetic permeability, respectively.

6.5.3.1 Sheet resistance measurement

Figure 6.31 shows a probe for the measurement of
sheet resistance Rx (Steinhauer et al. 1998, 1997).
The sample is coupled to the probe through the
capacitance formed at the gap between the probe
and the sample. The sheet resistance Rx affects
both the resonant frequency and the quality factor,
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conductor

Probe

Figure 6.31 The interaction between an open probe
and the sample, represented by a capacitance Cx and a
resistance Rx

and so can be derived from the change of resonant
frequency and quality factor due to the sample. The
coupling capacitance Cx is related to the thickness
of the gap between the probe and the sample. When
the gap becomes thinner, the coupling capacitance
increases, and the change of resonant frequency
due to the change of sheet resistance is greater. So
the sensitivity of the probe increases as the probe-
sample separation is reduced.

When the thickness of the gap is fixed, the
resonant frequencies decrease with the decrease
of Rx . This can be understood as follows: as Rx

decreases, the boundary condition of the resonator
tends from an open circuit toward a short circuit,
changing the circuit from a half-wave resonator
toward a quarter-wave resonator and lowering the
resonant frequency.

The relationships between the unloaded quality
factor (Q0) and the sheet resistance can also
be used to deduce the sheet resistance of the
sample. However, Rx is a double-valued function
of Q0 (Steinhauer et al. 1998). This presents a
problem for converting the measured Q0 to Rx .
However, Rx is a single-valued function of the
frequency shift, allowing one to use the frequency-
shift data to determine which branch of the Rx (Q)

curve should be used. In the derivation of sheet
resistance, combination of frequency and quality
factor results in higher accuracy.

6.5.3.2 Permittivity measurement

Figure 6.32 shows a probe that can be used to
measure the permeability of dielectric films and

Sample

Probe tip

Probe

Figure 6.32 Interaction between a probe and a sample

bulks (Steinhauer et al. 2000). The probe has a
sharp-tipped center conductor extending beyond
the outer conductor. The tip is in soft contact with
the sample, so the sample is not scratched when
it is scanned beneath the probe. Because the rf
fields are concentrated at the probe tip, the resonant
frequency and the quality factor of the resonator
are a function of the properties of the part of
sample near the probe tip.

On the basis of resonant-perturbation theory, we
can estimate the frequency shift of the probe as a
function of the fields near the probe tip. We define
εr1 and εr2 as the permittivities of two samples.
If E1 and E2 are the electric fields inside the
two samples, the frequency shift of the microscope
upon going from sample 1 to sample 2 is

�f

f
≈ ε0(εr2 − εr1)

4 W
·
∫

Vs

E1 · E2 dV (6.107)

where W is the energy stored in the resonator, and
the integral is over the volume Vs of the sample.
We calculate an approximate W using the equation
for the loaded Q of the resonator, QL = ω0W/Pl ,
where ω0 is the resonant frequency and Pl is the
power loss in the resonator.

Usually, the calibration method is used. A bare
LaAlO3 (LAO) substrate can be used as sample
1 (εr1 = 24, E1) because its properties are well
characterized and it is a common substrate for
oxide dielectric thin films. In the measurement
of a bulk dielectric sample, we calculate the
frequency shift �f upon the replacement of the
LAO substrate by the sample of interest with
permittivity εr2. In the measurement of thin films
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on a LAO substrate, we calculate the frequency
shift �f associated with replacing a thin top
layer of the LAO substrate with a thin film of
permittivity εr2.

6.5.3.3 Permeability measurement

Figure 6.33 shows a probe that can be used for
imaging the magnetic permeability of metals (Lee
et al. 2000). The magnetic permeability of the
sample under test is derived from the changes of
resonant frequency and quality factor due to the
existence of the sample.

The coupling between the loop probe and
a sample can be represented by an equivalent
circuit shown in Figure 6.33(b). The loop probe
is represented as an inductor L0, and the sample
under test is represented as a series combination of
its effective inductance Lx and complex impedance
Zx = Rx + Xx . The coupling between the loop
probe and the sample is represented by a mutual
inductance M .

Since the microwave skin depth of the sample
is much smaller than the thickness of the sample,
the inductance of the sample can be modeled by
an identical image of the loop probe:

Lx = L0 (6.108)

If we assume the inner diameter (a) of the loop is
equal to the wire thickness, the self-inductance of

Hext
Sample

(a) (b)

Loop probe

L0

Lx

Rx + Xx

M

Figure 6.33 Interaction between a loop probe and a
magnetized metal. (a) Measurement configuration and
(b) equivalent circuit. Modified from Lee, S. C. Vlaha-
cos, C. P. Feenstra, B. J. et al. (2000). “Magnetic per-
meability imaging of metals with a scanning near-field
microwave microscope”, Applied Physics Letters, 77
(26), 4404–4406

the loop probe can be roughly estimated:

L0 ≈ 1.25µ0a. (6.109)

In the high-frequency limit, the surface impedance
of the sample is given by

Zx = √
jµ0µrωρ (6.110)

where µr is the complex relative permeability
of the material, ω is the microwave frequency,
and ρ is the resistivity of the material, which is
considered to be independent of µr. Since the loop
and its image are roughly circular inductors, we
can calculate M as the mutual inductance between
two circular loops in the same plane. However, as
this two-circular-loop model only approximately
describes the geometry, we need to treat the value
of M as a fitting parameter.

The microscope resonator can be taken as a
transmission line that is capacitively coupled to
the microwave source. The frequency shift and
quality factor can be calculated using microwave
transmission line theory. In the high-frequency
limit, the value of ωL0 is much greater than
|Zx |. According to the equivalent circuit shown in
Figure 6.33(b), the load impedance presented by
the probe and sample is

Zload ≈ jωL0(1 − k2) + k2(Rx + jXx) (6.111)

with

k = M√
L0Lx

(6.112)

where the coupling coefficient k is a geometrical
factor. The frequency shift is produced by the imag-
inary part of ZLoad, while the real part of ZLoad

determines the quality factor of the probe. From
Eqs. (6.110) and (6.111), we can obtain the mag-
netic permeability of the sample from the resonant
frequency and the quality factor of the probe.

If an external magnetic field (Hext) is applied
uniformly parallel to the sample surface and the
plane of the loop probe, as shown in Figure 6.33(a),
we can study the ferromagnetic resonance of
the sample. Detailed discussion on ferromagnetic
resonance can be found in Chapter 8.
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6.5.4 Metallic waveguide cavity

Metallic waveguide cavities can also be used in
developing sensing probes for near-field microwave
microscopes (Gutmann and Borrego 1987). In a
probe developed from a one-port cylindrical-
waveguide cavity, a slide-screw tuner is often used
to ensure that the cavity is critically coupled to exter-
nal circuit. The cavity interacts with a planar sam-
ple through a circular aperture at the center of the
end surface. When the cavity operates in either the
TM014 or TM022 modes, the evanescent field in the
interaction region is dominantly electric. Though it
is difficult to laterally confine the evanescent electric
field, this kind of probe has high depth resolution.

As shown in Figure 6.34, to increase the lateral
resolution, an aperture-coupled rectangular-wave-
guide resonator with an inductive-iris/stripline-fed
coupling element of similar dimensions can be
used (Gutmann and Borrego 1987). The critical cou-
pling to the measurement instrument is achieved
by adjusting the tuning screw with the rectangular-
waveguide cavity. The spatial extent of the domi-
nantly magnetic, evanescent field at the sample is
controlled by the dimensions of the thin-conducting
coupling element and the separation between the
coupling element and the sample under test. Usually,
the samples under test have conducting patterns.

Microwave scanning microscopy using evanes-
cent wave coupling from one-port critically cou-
pled cavities to planar samples have demonstrated
lateral resolutions on the order of a few mils
(0.002λ) and depth resolution on the order of a
few microns (0.0001λ) with conventional X-band
instrumentation (Gutmann and Borrego 1987).

6.5.5 Dielectric resonator

A long and narrow slot on the convex surface of
a dielectric resonator can be used as a sensing
probe (Abu-Teir et al. 2001). The probe developed
by Abu-Teir et al. operates at 25 to 30 GHz and
has a spatial resolution of 1 to 10 µm. The probe
has a low impedance of about 20 �, and can
be used for characterization of metallic layers
with high conductivity, in particular, for thickness
mapping, which can be done through the local
measurement of the sheet resistance Rsh provided
the film thickness is smaller than the skin depth:

Rsh = ρ/d (6.113)

where ρ is the resistivity and d is the film
thickness. By increasing the dielectric constant
of the resonator, the sensitivity can be further
increased, and thicker films can be characterized.

Tuning screw Waveguide test
instrumentation

Sample with
conducting pattern

Coupling
element

Interaction
region

One wavelength

Blow up view of
stripline wedge
with sample

Figure 6.34 Rectangular-waveguide cavity. Source: Gutmann, R. J. Borrego, J. M. (1987). “Microwave scanning
microscopy for planar structure diagnostics”, IEEE MTT-S Digest, 281–284.  2003 IEEE
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Figure 6.35 Probe design. (a) Schematic drawing and (b) actual design (Abu-Teir et al. 2001). Source:
Abu-Teir, M. Golosovsky, M. Davidov, D. Frenkel, A. and Goldberger, H. (2001). “Near-field scanning microwave
probe based on a dielectric resonator”, Review of Scientific Instruments, 72 (4), 2073–2079

This probe combines a dielectric resonator with
a small aperture, and can be taken as a modifica-
tion of waveguide probe discussed in Section 3.6.
Figure 6.35(a) shows a resonant slot in the end wall
of a circular waveguide. The slot resonates when its
length is approximately equal to the half wavelength.
In the design of a sensing probe, we are interested
in the slot radiation from the circular waveguide
filled with dielectric material into free space. The
design of probe mainly consists of two steps. In
the first step, we model the unmatched dielectri-
cally filled slot antenna and determine the radiation
impedance (Zsl) around the resonance frequency of
the slot. Usually, the radiation impedance is quite
high (Zsl ≈ 1000 �), and the frequency bandwidth
is very narrow (less than 1 %). In the second step,
we design a low-Q resonator as an impedance trans-
former. This allows good impedance matching in a
frequency band comparable to the natural bandwidth
of the slot. As shown in Figure 6.35, we can use a
long waveguide filled with dielectric material as a
feeding structure and a short segment of the waveg-
uide filled with dielectric material as a resonator. It
should be noted that in the air gap between the short

and long segments of dielectrics, the dominant mode
is evanescent, so the energy coupling between the
feeding waveguide and the resonator can be adjusted
by changing the length of the air gap.

Figure 6.35(b) schematically shows the structure
of an actual probe. The basic design shown in
Figure 6.35(a) is modified mainly in one respect –
the flat front end of the probe is replaced by a spher-
ical one. The spherical probe shape is advantageous
for imaging purpose and alleviates sample approach,
while there is no dramatic change in microwave
performance. As shown in Figure 6.35(b), a short
alumina rod is mounted at the end of a brass tube, and
a sapphire hemisphere is attached to this alumina rod
using a thin adhesive layer. Since sapphire and alu-
mina have close dielectric constants, this assembly
operates as a single dielectric resonator. The hemi-
sphere is silver coated, leaving a long narrow slot
at the center, and the length of the slot is chosen to
ensure the working frequency. The brass tube with
the resonator at the end is attached to a specially
designed coax-to-cylindrical waveguide adapter. A
tuning screw is mounted at the cover plate of the
adapter along its symmetry axis. A long alumina
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rod is attached to the tuning screw through a glass
tube transducer. To allow the motion of the dielec-
tric rod inside the brass tube, the inner diameter of
the brass tube slightly exceeds the diameter of the
long alumina rod.

It is clear that the reflectivity increases with
the increase of the film thickness d. In order to
extract quantitative information about the intrinsic
properties of the film under test from the reflectiv-
ity measurement, it is necessary to build a model
for the probe–sample interaction. However, such
models are still at the initial stages of develop-
ment (Abu-Teir et al. 2001).
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7

Planar-circuit Methods

This chapter discusses the applications of
microwave planar circuits in the measurement
of the electromagnetic properties of materials,
including thin films, sheet samples, and substrate
samples. After a brief introduction on the
applications of planar circuits in materials
property characterization, we discuss the methods
developed from three typical types of planar
transmission lines: stripline, microstrip, and
coplanar line. We then discuss permeance meters,
which can be used for permeability measurement
of magnetic thin films. At the end of this chapter,
we discuss the near-field microwave microscopes
developed using planar circuits based on resonant
perturbation.

7.1 INTRODUCTION

As discussed in previous chapters, most of the
microwave methods for materials property char-
acterizations are based on transmission lines and
the resonant structures developed from transmis-
sion lines, and, correspondingly, materials property
characterization methods generally fall into non-
resonant methods and resonant methods. In the
previous chapters, discussions are focused on three
types of transmission lines: coaxial line, waveg-
uide, and free space. In materials property charac-
terization, three kinds of planar circuits, includ-
ing stripline, microstrip, and coplanar line, are
also widely used. Generally speaking, a planar
transmission line consists of dielectric substrates,
and conductors, including conducting strips and
grounding conductors. Besides their geometrical
structures, the electromagnetic properties of the

substrate and the conductors affect the properties
of the planar transmission lines. Therefore, pla-
nar transmission lines can be used to character-
ize dielectric materials and conductors. Similar to
the methods based on other types of transmission
lines, the methods based on planar transmission
lines also include nonresonant methods and reso-
nant methods.

7.1.1 Nonresonant methods

Similar to the methods developed from coaxial
line, waveguide and free space, planar-circuit non-
resonant methods also include reflection meth-
ods and transmission/reflection methods. The basic
principles of reflection methods and transmis-
sion methods have been discussed in Chapters 3
and 4. In the following discussion, we concentrate
on the problems in the development of planar-
circuit methods for the characterization of mate-
rials properties.

7.1.1.1 Reflection method

In a reflection method, the electromagnetic prop-
erties of the sample are obtained from the reflec-
tion properties of a segment of the transmission
line. However, as different types of transmission
lines can be used, the samples under test may be
arranged in different ways. For example, for an
open-end coaxial probe, the sample is attached to
the open end of the probe, while for a planar-circuit
reflection method, the sample under test usually
serves as the substrate or part of the substrate.

Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2
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Figure 7.1 Transmission-line analogy of reflection
method. (a) Transmission line with matched impedance
and (b) transmission line with unmatched impedance

Figure 7.1 shows the basic principle of a planar-
circuit reflection method. Consider a transmission
line fabricated on a theoretical material having a
dielectric constant of one, and the width of the
50 � planar transmission line can be calculated
theoretically. In this case, a matched condition
results in no reflection at the input point. When a
transmission line with the same dimensions is fab-
ricated on a material with a dielectric constant that
is not equal to one, the impedance of the transmis-
sion line is no longer 50 �, but some value deter-
mined by the dielectric constant of the material.
In experiments, the impedance of the transmission
line can be determined by measuring the reflections
caused by this new impedance, and calculations
can then be made determining the corresponding
value of the dielectric constant for that impedance.

To understand the principle of a transmission
line used for the measurement of dielectric con-
stant, the mathematical relationships between the
parameters that can be measured experimentally
and the materials properties of the sample should
be built. The relationship between the impedance
Z(εr) and reflectivity (�) is given by

� = Z0 − Z(εr)

Z0 + Z(εr)
(7.1)

where Z0 is the termination impedance, and for
the present case, it is 50 �. So the character-
istic impedance Z(εr) of the planar circuit can
be calculated from the measured reflectivity �.
The dielectric permittivity can then be obtained
from the relationship between the characteris-
tic impedance and the structural parameters. As
discussed in Chapter 2, for different types of
planar circuits, the expressions for characteristic
impedance are different. For a microstrip line with

w/h ≥ 1, its characteristic impedance is given by
(Laverghetta 1997)

Z(εr)

= 120π/
√

εeff

(w/h) + 1.393 + 0.667 ln[(w/h) + 1.444]
(7.2)

with

εeff = εr + 1

2
+ εr − 1

2

(
1 + 12

h

w

) 1
2

(7.3)

where w is the width of the microstrip and h

is the thickness of the dielectric material. From
Eq. (7.2) the dielectric properties of the substrate
material can be calculated from the characteristic
impedance of the microstrip line. The calculations
of the characteristic impedances of different planar
transmission lines are discussed in Chapter 2.

In Figure 7.1, the termination impedance is
50 �. In principle, any value of termination
impedance can be used. Figure 7.2 shows two
cases with open and short loads respectively. How-
ever, as there are technical difficulties to realize
good open and short terminations, the configura-
tion shown in Figure 7.1 is more widely used.

7.1.1.2 Transmission/reflection method

Planar-circuit transmission/reflection methods are
also based on Nicolson–Ross–Weir algorithm,
which has been discussed in Chapter 4. For a pla-
nar transmission line, the characteristic impedance
and propagation constant are functions of the
dielectric and magnetic properties of the sub-
strate. As shown in Figure 7.3, if the substrate
of a segment of a transmission line is replaced
by the material under test, the characteristic

(b)

Z = ?

er = ?
Ei

Er

(a)

Z = ?

er = ?
Ei

Er

Figure 7.2 Reflection methods with different termi-
nation impedance. (a) Open (L0 = ∞) and (b) short
(L0 = 0)
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Figure 7.3 Schematic diagram for the transmis-
sion/reflection method

impedance of the transmission line is changed
from Z0 to Z, and the propagation constant is
changed from γ0 to γ . There is reflectance at
the impedance and propagation constant discon-
tinuities, from which the electromagnetic proper-
ties of the material under test can be derived. In
the calculation of dielectric permittivity and mag-
netic permeability, the relationship between the
characteristic impedance, electromagnetic prop-
erties of the substrate and structure parameters
are needed.

As shown in Figure 7.3, in actual measurements,
the reference planes where calibrations are made
and the sample surfaces may not be at the same
positions. So in the calculation of materials prop-
erties, transformations are needed to obtain the
scattering parameters of the segment of transmis-
sion line filled with the sample.

7.1.2 Resonant methods

Similar to their coaxial and waveguide counter-
parts, planar-circuit resonant methods include res-
onator methods and resonant-perturbation meth-
ods. Usually, resonant methods have higher
accuracy and sensitivity than nonresonant ones,
but resonant methods can only provide results at
a single frequency or several discrete frequen-
cies. In the following, we discuss two examples
of resonator method and resonant-perturbation
method.

7.1.2.1 Resonator method

In a resonator method, the sample under test is
used as a substrate of a planar resonator. The

d

l

OutputInput

mrer

W

Figure 7.4 A microstrip resonator for material prop-
erty characterization. The sample under test is the sub-
strate of the resonator

dielectric constant of the sample is calculated from
the resonant frequency of the resonator, and the
loss tangent of the material is calculated from
the quality factor of the resonator. Figure 7.4
shows a straight-ribbon microstrip resonator. The
measurement frequency is mainly determined by
length of the microstrip, and the conductivity of the
strip and ground conductors affects the sensitivity
of loss tangent measurement.

7.1.2.2 Resonant-perturbation method

In a resonant-perturbation method, part of the sub-
strate of a planar resonator is replaced by the
sample under study. From the changes of the reso-
nant frequency and quality factor, the properties
of the sample can be derived (Abdulnour et al.
1995). Figure 7.5 shows a measurement fixture for
resonant-perturbation method. The position A-A
is close to the open end of the resonator, so the
electric field dominates at the position A-A. If a
sample is placed at position A-A, its dielectric
properties can be measured. The position B-B is
near the center of the resonator, so the magnetic
field dominates at the position B-B. If a sample

A

A

B

(a) (b)

W

B
W

Sample

Figure 7.5 Perturbation to the substrate of a microstrip
resonator. (a) Top view and (b) cross-section view at
positions A-A and B-B



Planar-circuit Methods 291

is placed at the position B-B, its magnetic proper-
ties can be measured. Usually, calibration with a
standard sample is needed to obtain absolute values
of materials properties.

7.2 STRIPLINE METHODS

In a stripline structure for the characterization of
materials properties, the sample under test can be
inserted above and below the center strip through
the open sides. A stripline structure does not have
low cutoff frequency, so broadband measurements
can be performed. More discussions on the trans-
mission properties of stripline structure can be
found in Chapter 2. There are varieties of stripline
structures, and, correspondingly, various stripline
measurement techniques have been developed for
different applications.

It deserves to be noted that the electric and
magnetic fields of the transverse electromagnetic
(TEM) wave propagating in a stripline structure
is essentially unidirectional, and so the anisotropic
effects of a sample can be characterized by rotating
the sample. More discussion on the measurement
of anisotropic samples can be found in Chapter 8.

7.2.1 Nonresonant methods

The transmission/reflection methods based on
Nicolson–Ross–Weir algorithm have been devel-
oped using symmetrical and asymmetrical stripline
structures. In these methods, the sample under
study fills the space between the strip and the
ground planes fully or partially. The samples are
usually of rectangular shape, so the sample fabri-
cation is relatively easy.

7.2.1.1 Symmetrical stripline method

Figure 7.6 shows a measurement fixture pro-
posed by Barry for permittivity and permeability
measurements (Barry 1986). The fixture mainly
consists of three portions: coaxial-line portion,
stripline portion, and another coaxial-line por-
tion. There are two transitions between coaxial
line and stripline. The stripline portion of the
fixture is designed for a characteristic impedance

Ground planes
Housing

Center conductor

Sample

Coaxial connector

Tuning screw

Figure 7.6 Stripline measurement fixture (Barry
1986). Source: Barry, W. (1986). “A broad-band, auto-
mated, stripline technique for the simultaneous measure-
ment of complex permittivity and permeability”, IEEE
Transactions on Microwave Theory and Techniques, 34
(1), 80–84.  2003 IEEE

Z0 = 50 �. The samples under test should fit
above and below the center conductor inside the
housing securely. The total thickness of the sam-
ple must be less than λm/2 in order to avoid
dimensional resonances. It should be noted that
although Figure 7.6 indicates grooves in the sam-
ples for a better fit around the center conduc-
tor, samples without grooves could be measured
equally well. Therefore, the grooves in samples
may be deleted in order to save time when prepar-
ing samples.

By comparing the fixture shown in Figure 7.6
with the equivalent circuit shown in Figure 7.3,
the empty line in a stripline measurement fixture
includes the coaxial line and the stripline without
sample, therefore, it is crucial to obtain the best
possible transition from the stripline to coaxial
connectors. In actual measurements, the transition
between the stripline and coaxial line could not
be perfect. The S-parameters of the imperfect
transition regions between coaxial connectors and
the front and back terminal planes of the sample
region can be found using short circuits (Hanson
et al. 1993). The S-parameters of the sample
region can be subsequently de-embedded from the
S-parameters measured at the coaxial connectors.
This leads to substantially improved accuracy
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in determining the S-parameters of the segment
of the stripline filled with sample, resulting in
an enhanced accuracy in the determination of
the complex permittivity and permeability of
the sample.

7.2.1.2 Asymmetrical stripline method

In order to increase the sensitivity of stripline
method, Salahun et al. proposed an asymmetrical
stripline structure as shown in Figure 7.7(a). Using
this structure, permeability and permittivity mea-
surements of multilayered materials and thin films
are allowed over a broad frequency band (Salahun
et al. 2001).

Consider a general case of an asymmetrical
stripline structure as shown in Figure 7.7(b).
Four layers compose the cross section of the
measurement fixture. This configuration enables
us to take different locations of the material into
account. The material may be laid on the ground
plane as shown in Figure 7.7(a), or the sample may
be laid on the strip, as shown in Figure 7.7(b), to
increase the cell sensitivity. An air gap between
the material and its support is taken into account
to represent the experimental conditions. Because
of the heterogeneity of the cross section, a
TEM wave cannot be propagated. However, for
low frequencies, longitudinal components of the
microwave fields can be neglected compared with
transversal ones. So the hypothesis of a quasi-TEM
mode can be used.

Because of the heterogeneity of the loaded cross
section, no analytical expression is available for the
calculation of the electromagnetic properties of the
material from the measured parameters. Therefore,
two steps are necessary for the determination
of electromagnetic properties of the sample. The
first step is the direct problem. The effective
constants of the transverse section are calculated
from the complex permeability and permittivity of
the sample. The second step is the inverse problem.
The complex permeability and the permittivity of
the material are extracted by matching theoretical
and measurement results. Detailed discussion on
the calculation algorithm is made in (Salahun
et al. 2001).

7.2.2 Resonant methods

A stripline resonator is a segment of a stripline.
It can be either open or short circuited at both
ends (λ/2-resonator) or short circuited at one end
and open at the other end (λ/4-resonator). If
the substrate of a stripline is homogeneous and
lossless, the stripline can support a pure TEM
propagation mode. Dispersion does not exist unless
the permittivity of the substrate has frequency
dependence. In materials property characterization,
the sample under test is inserted into the space
between the grounds, and the properties of the
sample are derived from the resonant frequency
and quality factor of the resonator loaded with
the sample.

Connector

Conducting Strip

Sample

W

(e0, m0)

Ground planes
Air

L

Strip
Air

Air
Magnetic material

(e0, m0)

(e0ed, m0md)

(e0er, m0mr)

h2

h1

Figure 7.7 An asymmetrical stripline structure. (a) Schematic drawing of an asymmetrical without the upper
ground plane. The sample is laid on the ground plane and (b) cross section of a general case of asymmetrical
stripline containing a sample. The sample covers the stripline (Salahun et al. 2001). Source: Salahun, E. Queffelec,
P. Le Floc’h, M. and Gelin, P. (2001). “A broadband permeameter for ‘in situ’ measurements of rectangular
samples”, IEEE Transactions on Magnetics, 37 (4), 2743–2745.  2003 IEEE



Planar-circuit Methods 293

Material
layer

Figure 7.8 End view of the electric field in a stripline
resonator. Reprinted with permission from Industrial
Microwave Sensors, by Nyfors, E. and Vainikainen,
P. (1989) Artech House Inc., Norwood, MA, USA.
www.artechhouse.com

In a stripline transmission structure, there may
exist one or more center conductors between the
two planar ground plates. In the following, we
discuss the applications of resonators made from
striplines with one and two center conductors,
respectively.

7.2.2.1 One-conductor stripline resonator method

Generally speaking, a stripline resonator has a
higher quality factor than a microstrip resonator,
and can be used for on-line measurement of
sheet samples and material layers. A one-conductor
stripline resonator usually has a symmetric electric
field, and if the ground plates are large enough, the
radiation loss is almost zero. However, as shown in
Figure 7.8, any asymmetric loading will upset the
balance in field distribution. The stripline resonator
method is suitable for noncontact measurement of
a dielectric layer on a conducting surface, in which
case there are two possibilities – measurement of
the permittivity of a layer of constant thickness,
or measurement of the thickness of a layer of
constant permittivity. This method is often used
in industry for thickness measurement or moisture
measurement (Nyfors and Vainikainen 1989). If
two independent measurements, for example S11

and S21, can be made, with proper calibration, two
parameters of materials properties, for example,
moisture and dry mass per area, may be obtained
simultaneously.

Figure 7.9 shows a configuration for measuring
the mass per unit area of powder samples. It
is assumed that small variations in density are

d
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z

Strip

Coupling loop
Upper ground plane
Dielectric support
Strip

Powder sample

Upper ground plane

Bottom ground plane

Figure 7.9 One-conductor stripline λ/2 resonator for
the measurement of the mass per unit area of powder
samples. Reproduced from Fischer, M. Vainikainen, P.
and Nyfors, E. (1995). “Design aspects of stripline res-
onator for industrial applications”, Journal of Microwave
Power and Electromagnetic Energy, 30 (4), 246–257, by
permission of International Microwave Power Institute

compensated by the variations in permittivity
(Fischer et al. 1995). The measurement accuracy
depends on the electric field in the space between
the lower ground plane and the strip. A broad
strip gives a uniform field and a good accuracy.
A narrow strip emphasizes the upper layers of
the material to be measured, but gives a better
spatial resolution in the cross direction. To avoid
the radiation from the stripline resonator, the
distance between the two ground planes should
not exceed 0.3λ. There is no strict requirement
on the size of the upper ground plane. A small
upper ground plane, only slightly larger than the
strip, suffices to give reliable results (Nyfors and
Vainikainen 1989).

7.2.2.2 Two-conductor stripline resonator method

Figure 7.10 shows a two-conductor λ/2 stripline
resonator, and the sample under test is put between
the two center conductors (Fischer et al. 1995).
This structure is convenient for the measurement of
sheet samples that can be transported between the
two center conductors. For example, this structure
can be used in the control of the paper thickness.

A resonator with two center conductors has
either one or two first-order resonant modes. A
λ/2-resonator has two degenerate resonant modes,
even and odd, but a λ/4-resonator has only the
even resonant mode. The electric potentials of the
center conductors are equal for the even mode,
but with opposite signs for the odd mode. The
electric field patterns for a λ/2-resonator with two
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Figure 7.10 Two-conductor stripline λ/2 resonator for
the measurement of sheet samples. Reproduced from
Fischer, M. Vainikainen, P. and Nyfors, E. (1995).
“Design aspects of stripline resonator for industrial
applications”, Journal of Microwave Power and Elec-
tromagnetic Energy, 30 (4), 246–257, by permission of
International Microwave Power Institute
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Figure 7.11 End views of the electric field strength
patterns of a two-conductor stripline λ/2 resonator.
(a) Even mode and (b) odd mode. Modified from Fis-
cher, M. Vainikainen, P. and Nyfors, E. (1995). “Design
aspects of stripline resonator for industrial applica-
tions”, Journal of Microwave Power and Electromag-
netic Energy, 30 (4), 246–257, by permission of Inter-
national Microwave Power Institute

center conductors are presented in Figure 7.11.
The electric field of the even mode is parallel
to the material layer in the middle of the center
conductors, and the electric field of the odd
mode is perpendicular to the material layer. This
orthogonality gives different properties for the two
modes, because the field inside the material layer
depends on the direction of the external field.

Theoretically, the two modes are degenerate, but,
in practice, the resonant frequencies differ by about
10 % because of different fringing of the fields at
the ends.

As shown in Figure 7.12, the radiation of the
two-conductor stripline resonator can be practi-
cally eliminated by bending the edges of the
ground planes 90◦ toward the plane of the sam-
ple (Nyfors and Vainikainen 1989). The edges may
reach the levels of the strips without altering the
normal performance of the resonator.

By taking the sheet sample as an ellipsoid and
locating it in such a way that the external field
is parallel to one axis of the ellipsoid, we have
(Fischer et al. 1995)
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(7.4)

where �f is the change in the resonant frequency
due to material perturbation, f0 is the resonant
frequency of the empty resonator, Q is the quality
factor of the resonator, A is the depolarization
factor of the sample placed in the resonator,
E0 is the external electric field strength, V is
the volume of the resonator, and Vs is the
volume of the dielectric object. In Eq. (7.4), the
unperturbed resonator is air-filled. The integral
term can be considered as a filling factor that
depends only on the location of the dielectric
object and its volume. The depolarization factor
can be accurately calculated only for ellipsoids. For
a thin sheet of material A ≈ 1 when the external
field is perpendicular to the sheet of material and
A ≈ 0 when the external field is parallel to the
sheet of material.

For a two-conductor stripline resonator, the
sheet sample is transported through the resonator
in the middle between the center conductors. The
electric field is parallel to the material layer for the
even mode and perpendicular to the layer for the
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Figure 7.12 Electrical fields of a two-conductor stripline with bent ground planes. (a) Even mode and (b) odd
mode. Modified from Fischer, M. Vainikainen, P. and Nyfors, E. (1995). “Design aspects of stripline resonator for
industrial applications”, Journal of Microwave Power and Electromagnetic Energy, 30 (4), 246–257, by permission
of International Microwave Power Institute

odd mode, as shown in Figure 7.11. So for even
mode (A ≈ 0), Eq. (7.4) becomes
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and for odd mode, Eq. (7.4) becomes
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For the even mode, the changes in f0 and 1/Q

depend linearly on ε′
r and ε′′

r . But for the odd
mode, the change in f0 is rapidly saturated when
ε′

r becomes large (Fischer et al. 1995). Thus, the
odd resonant mode is suitable for the measurement
of materials with low permittivity only.

It has been shown that the ratio ε′′
r /(ε

′
r − 1)

is independent of the density or thickness of the
material layer for most natural materials. The ratio
depends on the water content and is thus used for
the measurement of moisture content. For the even
mode, we can get from Eq. (7.5)
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r
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(7.7)

For the odd mode, we can get from Eq. (7.6)
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Equation (7.7) indicates that the moisture of a
sheet sample, independent of its density, can be
measured by using the ratio of the change of
the quality factor and the change of the resonant
frequency of the even mode.

7.2.2.3 Resonant-perturbation method

This method was first proposed by Waldron (1964),
and improved by Weil et al. (2000). In this method,
the sample under test is introduced into a stripline
resonator, and the properties of the sample are
derived from the changes of the resonant frequency
and quality factor of the stripline resonator due to
the presence of the sample. Because of the small
specimen sizes used and the correspondingly low
cavity filling factors, this method works well for
materials that possess a wide range of dielectric
and magnetic losses.

Compared to other measurement methods,
the stripline cavity-perturbation method possesses
some significant advantages and disadvantages
(Weil et al. 2000). One obvious advantage is that
the stripline unit is capable of multifrequency
operation over a wide frequency range, using
up to 10 or more harmonics of the fundamental
resonance of the unit. Another advantage is that
the resonator has a uniaxial or very nearly uniaxial
field structure. So anisotropic materials can be
characterized by orienting the sample under test
either parallel or normal to the electric or magnetic



296 Microwave Electronics: Measurement and Materials Characterization

fields of the resonator. Such measurements are
not possible in the coaxial air line, owing to its
radial field configuration. Other advantages include
the capability to measure small samples of high-
loss magnetic films, as well as the reduced cost
of sample preparation (rectangular shape versus
very accurately machined toroid). Besides, the
samples under test can be readily introduced
through the open sides of the structure. The
disadvantages of this method are also obvious.
This method is incapable of satisfactorily resolving
the highly dispersive permeability properties of
ferrites in the VHF/UHF frequency range due
to the cavity’s inadequate low-frequency limit
and its poor frequency resolution. Furthermore,
this method relies on small-perturbation theory
for the derivation of material parameters. Since
such techniques are known to be very susceptible
to measurement error, this constitutes another
potential disadvantage.

Figure 7.13 illustrates the basic structure of
a stripline resonator for resonant-perturbation
method (Weil et al. 2000). It mainly consists of
a center-strip conductor mounted equidistantly
between two ground planes and terminated by two
end plates. A propagating TEM mode is excited

X

2t

2b

Y Z

Magnetic
materialDielectric

material

2w

Figure 7.13 Stripline cavity showing the required
sample locations for the measurement of complex
permittivity (axial midpoint) and complex permeability
(adjacent to end plate) (Weil et al. 2000). Source: Weil,
C. M. Jones, C. A. Kantor, Y. and Grosvenor, Jr. J. H.
(2000). “On RF material characterization in the stripline
cavity”, IEEE Transactions on Microwave Theory and
Techniques, 48 (2), 266–275.  2003 IEEE

within the stripline structure using either cou-
pling loops mounted in one of the end plates or
a monopole probe mounted in the ground planes
and adjustable in the axial position. The funda-
mental resonance is achieved when the resonator
length corresponds to one half-guide wavelength of
the exciting frequency. Additional resonances may
occur at harmonic frequencies of the fundamental,
assuming that the length remains unchanged. Two-
port resonators, containing two coupling loops or
monopole probes mounted on both sides of the
center strip, allow for transmission factor mea-
surements, which usually provide more accurate
measurements than one-port resonators.

According to the perturbation theory, the dielec-
tric permittivity can be derived only when the mag-
netic field intensity is zero, and similarly, the mag-
netic permeability can be derived only when the
electric field intensity is zero. Therefore, complex
dielectric permittivity measurements are performed
by placing the specimen at an axial magnetic field
node of the resonator. For the case of fundamental
and odd-harmonic resonances, the magnetic field
node occurs at the axial midpoint of the struc-
ture, as shown in Figure 7.13. For even-harmonic
resonances, the test specimen needs to be axially
moved to a new magnetic field node location. Sim-
ilarly, measurements of the complex magnetic per-
meability are conducted by placing the specimen
under test at an axial electric field node, located at
the end plates of the resonator.

Permittivity measurement

As shown in Figure 7.13, for dielectric-property
measurements, the rectangular sample under test
needs to have a width along the y-axis that
covers the full distance (b − t) between center
strip and ground plane in order to minimize
dielectric depolarization errors. The slab is located
in the region of maximum and uniaxial electric
field, specifically at the midpoint of the center
strip (x = 0), and with the smallest dimension
oriented along the x-axis in order to minimize the
electric field nonuniformity across the specimen.
In the following discussions, the main dimensions
of the resonators are resonator length l0, ground
plane separation 2b, strip width 2w, and strip
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thickness 2t . The main dimensions of the dielectric
sample are x-direction 2y, y-direction (b − t) and
z-direction 2l1.

The dielectric properties of the sample can be
calculated from the resonant properties of the
stripline resonator with and without the sample,
and the dimensions of the stripline resonator and
sample (Weil et al. 2000):
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r = 1 + f0 − fL

f0
· bl0

2Ayl1
(7.9)

ε′′
r =

(
1

QL
− 1

Q0

)
· bl0

4Ayl1
(7.10)

where f0 and Q0 are the resonant frequency and
quality factor of the empty cavity respectively,
and fL and QL are the resonant frequency and
quality factor of the cavity loaded with the sample
respectively. The geometrical factor A can be
obtained by calibration, and a more detailed
discussion on A can be found in (Weil et al. 2000;
Jones 1999, Jones et al. 1998).

Permeability measurement

The way in which permeability measurements
for ferrite specimens are usually conducted is
illustrated in more detail in Figure 7.14. The need
to ensure the magnetic field uniformity across the
specimen and the critical need to minimize the
magnetic depolarization error dictates the use of
long and thin rectangular specimen shapes. The
single specimen is located in a region of maximum
and uniaxial magnetic fields; that is, on the center
strip and flush against the cavity end plate. The
sample under test has the following dimensions:
2y in the x-direction, s in the y-direction, and l1
in the z-direction.

According to resonant-perturbation theory, the
magnetic permeability of the sample can be
calculated by (Weil et al. 2000)

µ′
r = 1 + f0 − fL

f0
· b(b − t)l0

Bysl1
(7.11)

µ′′
r =

(
1

QL
− 1

Q

)
· b(b − t)l0

Bysl1
(7.12)
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Figure 7.14 Placement of magnetic specimen for the
measurement of the x-component of complex perme-
ability (Weil et al. 2000). Source: Weil, C. M. Jones, C.
A. Kantor, Y. and Grosvenor, Jr. J. H. (2000). “On RF
material characterization in the stripline cavity”, IEEE
Transactions on Microwave Theory and Techniques, 48
(2), 266–275.  2003 IEEE

where f0 and Q0 are the resonant frequency and
quality factor of the empty cavity respectively,
and fL and QL are the resonant frequency and
quality factor of the cavity loaded with the sample
respectively. The geometrical factor B can be
obtained by calibration, and a more detailed
discussion on B can be found in (Weil et al. 2000;
Jones 1999; Jones et al. 1998).

It should be noted that the permeability value
measured by the orientation shown in Figure 7.14
is the component in x-direction. If the sample
is magnetically anisotropic, other orientations of
the sample are needed to measure the other two
components of the permeability tensor (Jones
et al. 1998).

7.3 MICROSTRIP METHODS

Among various types of planar circuits, microstrip
is the most widely used in microwave electronics.
Microstrip circuits are also widely used in the
characterization of the electromagnetic properties
of materials, especially substrate materials and
thin films. The methods developed on the basis
of microstrip circuits also fall into nonresonant
methods and resonant methods.
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7.3.1 Nonresonant methods

Nonresonant microstrip circuit methods mainly
include transmission-line method and transmis-
sion/reflection method.

7.3.1.1 Transmission-line method

As shown in Figure 7.15, in a transmission-line
method, the sample under test is used as a substrate
for the development of a segment of microstrip
transmission line, and the electromagnetic prop-
erties of the substrate sample are obtained from
the transmission and reflection properties of the
microstrip circuit (Hinojosa et al. 2001; Hinojosa
2001). An obvious advantage of this method is that
there is no air gap between the strip and the sub-
strate, and the materials properties obtained using
this method can be directly used in the develop-
ment of microstrip circuits. However, this method
requires the complicated procedure of sample fab-
rication.

This method requires the propagation to be the
quasi-TEM dominant mode. The calculation of
materials properties is based on the S-parameter
measurements at the microstrip access planes
(P1 and P2 in Figure 7.15). The fixture for the
measurement of microstrip cells is shown in
Figure 7.16. It is necessary that the test fixture can
be used for different sizes of microstrip. Usually,
it employs a line-reflect-match (LRM) and/or
line-reflect-line (LRL) calibration, and the two
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Figure 7.15 Microstrip cell in which the sample
under test is the substrate. Reproduced from Hinojosa,
J. Faucon, L. Queffelec, P. and Huret, F. (2001a).
“S-parameter broadband measurements of microstrip
lines and extraction of the substrate intrinsic properties”,
Microwave and Optical Technology Letters, 30 (1),
65–69, by permission of John Wiley & Sons
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Figure 7.16 The measurement fixture with a micro-
strip cell (Hinojosa et al. 2001). Modified from
Hinojosa, J. Faucon, L. Queffelec, P. and Huret,
F. (2001). “S-parameter broadband measurements of
microstrip lines and extraction of the substrate intrinsic
properties”, Microwave and Optical Technology Letters,
30 (1), 65–69, by permission of John Wiley & Sons

measurement reference planes (P1 and P2) are at
the two probe outputs.

For a microstrip line on a substrate exhibiting
both dielectric and magnetic properties in quasi-
TEM mode, there are simple formulas for the
characteristic impedance Zc, propagation constant
γ , and total effective loss tangent tan δeff:

Zc = Z0

√
µreff

εreff
(7.13)

γ = ω
√

ε0µ0 · √εreffµreff (7.14)

tan δeff = 1 − (ε′
reff)

−1

1 − (ε′
r)

−1
tan δd + 1 − µ′

reff

1 − µ′
r

tan δm

(7.15)
where Z0 is the characteristic impedance when
εr = µr = 1, εreff and µreff are the effective relative
permittivity and permeability respectively, and
tan δe and tan δm are the effective electric and
magnetic loss tangents respectively.

The calculation of materials properties from S-
parameter measurement mainly includes two steps:
direct problem and inverse problem. The direct
problem computes the S-parameters at the access
planes of the microstrip cell under test propa-
gating only the quasi-TEM mode, according to
the complex substrate properties (εr, µr), the cell
dimensions and the frequency. From the given
complex εr and µr values, a given frequency
point, and knowing the microstrip-cell structure,
we can calculate the effective permittivity and
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permeability, and then the complex propagation
constant and the complex characteristic impedance
of the microstrip cell from analytical equations.
After that, the S-parameters can be computed by
the reflection/transmission method. The inverse
problem is based on an iterative technique derived
from the gradient method. It simultaneously car-
ries out the εr and µr computation and the
convergence between measured values of S-
parameters and those values computed by the
analytical equations (the direct problem) through
the successive increment of εr and µr initial
values.

The transmission-line method works well on
the condition that the transition effect of coax-
to-microstrip is relatively small. This means
that the approximate permittivity of the sub-
strate sample should be known before the mea-
surement, so that the characteristic impedance
of the test section can be designed in the
vicinity of 50 �. Besides, this method gives
accurate results when the electrical length of
lines is long. Lee and Nam proposed a two-
microstrip-line method for accurate measurement
of a substrate dielectric constant (Lee and Nam
1996). This technique can be used for microstrip
lines with arbitrary width. The measurement
errors caused by the coax-to-microstrip transi-
tions and the connection uncertainty can be
minimized by multiple measurements and by
choosing the measurement data set with minimum
error cost.

7.3.1.2 Transmission/reflection method

As discussed in Chapter 4, transmission/reflection
measurement systems are often built using coax-
ial air lines or rectangular waveguides. These
transmission lines impose strict restrictions on the
dimensions of the samples since the test material
has to entirely fill the cross section of the cell.
This makes sample machining difficult. Moreover,
for thin films, this implies the propagation of the
electromagnetic wave along the sample thickness,
thus lowering the measurement sensitivity. As a
consequence, these measurement systems are inad-
equate for thin-film measurements. On the basis
of microstrip circuit, Queffelec et al. developed a
broadband characterization method, which can be
applied to thick samples (Queffelec et al. 1994) as
well as to thin films (Queffelec et al. 1998).

The working principle of this method is similar
to that of the stripline methods discussed in
Section 7.2.1. As shown in Figure 7.17, a strong
interaction between the wave and the sample under
test is obtained when the thin film is laid on the
microstrip substrate close to the central conductor,
and this configuration is sensitive enough for the
measurement of thin-film samples.

The determination of complex permittivity and
permeability requires the knowledge of two mea-
surable complex parameters. Those are the reflec-
tion (S11) and transmission (S21) coefficients mea-
sured with a network analyzer in the microstrip
cell loaded with the thin film and its support. In

Substrate

(a)

Electrical strip

Sample

Ground plane

y

−L /2 −W/2 W/2

(b)

L /2

x

a b
c

d
h

Thin film
Support
Substrate

Air e0, m0

Air e0, m0

e0ed, m0

e0e*v, m0m*v

e0e*, m0m*

z

Figure 7.17 Test fixture loaded with a thin-film sample. (a) Three-dimensional view and (b) cross section
(Queffelec et al. 1998). Source: Queffelec, P. Le Floc’h, M. and Gelin, P. (1998). “Broad-band characterization of
magnetic and dielectric thin films using a microstrip line”, IEEE Transactions on Instrumentation and Measurement,
47 (4), 956–963.  2003 IEEE
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this configuration, the thin film occupies a part
of the cross section of the microstrip line, and a
full-wave analysis is needed to accurately deter-
mine the material properties. The calculation of
permittivity and permeability from the measured S-
parameters needs the use of a numerical optimiza-
tion procedure (inverse problem) combined with
the full-wave analysis of the cell (direct problem).

Direct problem

In the direct problem, the electromagnetic analysis
of the cell is made. On the basis of the mode-
matching method, the parameters of the transmis-
sion line as functions of the permittivity and per-
meability of the sample under test can be deter-
mined. The first step is the determination of the
dispersion characteristics of the microstrip line. As
shown in Figure 7.17(b), the cross section of the
cell is composed of a shielded microstrip structure,
which constitutes the sample holder, a thin film,
and its support. Full-wave analysis is required for
the modal study of the microstrip line.

The second step in the direct problem is the
calculation of the parameters imposing continuity
conditions on electromagnetic fields at the edge of
the cell discontinuities, as shown in Figure 7.18.
The use of the orthogonality of modes enables us
to determine the coupling coefficients ρn, tn, Rn,
and Tn between the modes from the continuity
conditions. The parameters of the microstrip cell
are given by (Queffelec et al. 1998)

S11 = S22 = ρ1 exp(−2jγ0l0) (7.16)

S21 = S12 = t1 exp(−2jγ0l0) (7.17)

where ρ1 and t1 represent the reflection and
transmission coefficients of the fundamental mode
through the cell discontinuities, l0 is the length of
the empty cell, and γ0 is the propagation constant
of the dominant mode. The parameters of the
measurement fixture depend on permittivity and
permeability of the sample under test through the
coefficients ρ1 and t1.

Inverse problem

In the inverse problem, the permittivity and
permeability of the sample are determined by
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Figure 7.18 Measurement cell discontinuities. Region
I: empty regions. Region II: region partly filled with the
sample under test. ρn, tn, Rn, and Tn are the coupling
coefficients between the modes (Queffelec et al. 1998).
Source: Queffelec, P. Le Floc’h, M. and Gelin, P.
(1998). “Broad-band characterization of magnetic and
dielectric thin films using a microstrip line”, IEEE
Transactions on Instrumentation and Measurement, 47
(4), 956–963.  2003 IEEE

matching the calculated and measured values of
the S-parameters using a numerical optimization
procedure. The optimization problem involves
minimizing an objective function, which can
be expressed as a sum of squared functions
as follows:

E(X) =
2∑

i=1

2∑
j=1

∣∣∣∣Sij (X)|theoretical

Sij |measured
− 1

∣∣∣∣
2

(7.18)

where X = (ε′, ε′′, µ′ µ′′). Suitable optimiza-
tion technique is required for a fast location
of the global minimum of E(X) by avoiding
local minima.

7.3.2 Resonant methods

Similar to the resonant methods using other trans-
mission lines, microstrip resonant methods include
resonator methods and resonant-perturbation meth-
ods. In a resonator method, the material under test
is used as the substrate or a layer of the multilayer
substrate, and the properties of the sample are cal-
culated from the resonant frequency and quality
factor of the resonator. In a resonant-perturbation
method, the sample under test is brought close to
a microstrip resonator, and the properties of the
sample are derived from the change of resonant
frequency and quality factor of the resonator due
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to the presence of the sample. Actually, most of
the stripline resonant methods have their microstrip
counterparts, and vice versa. In the following text,
we discuss the several microstrip resonant methods
often used.

7.3.2.1 Ring-resonator method

As discussed in Chapter 2, in a ring resonator,
there is no open end, so the problems due to the
end effects in straight-ribbon microstrip resonators
are avoided. Usually, a ring resonator has higher
quality factor than a straight-ribbon microstrip
resonator. Ring resonator is often used in the
characterization of dielectric sheet materials. There
are two types of ring-resonator methods. In one
method, the sample under test is used as the
substrate for the fabrication of a ring resonator. In
another method, a microstrip ring resonator is used
as a measurement fixture, and the sample under test
covers the microstrip ring circuit, so the sample can
be taken as a layer of the multilayer substrate of
the ring resonator.

Single-layer substrate ring resonator

As shown in Figure 7.19, the substrate of the
microstrip ring resonator is the dielectric sample
under test. The relationship between the resonant
frequency fn and the effective permittivity εreff(fn)

is given by

πD = nc

fn

√
εreff(fn)

(n = 1, 2, 3, . . .) (7.19)
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Figure 7.19 Microstrip ring resonator whose sub-
strate is the sample under test. (a) Top view and
(b) cross section

where D is the mean diameter of the ring (D =
2R), and n is the mode number.

The resonant frequencies fn at different orders
of harmonics can be measured directly, and the
effective permittivity of the microstrip structure at
that frequency can be calculated using Eq. (7.19).
The dielectric constant of the sample can be
calculated from the effective permittivity of the
microstrip structure and the width of the microstrip
and the thickness of the sample. In the calculation,
we assume that the resonant frequency of the
fundamental mode is known. Besides, the loss
tangent of the sample can also be calculated from
the quality factor of the resonator, provided that
the surface resistance of the microstrip conductor
is known.

Multilayer substrate ring resonator

Figure 7.20 shows a general configuration of a ring
resonator for the measurement of sheet samples.
The measurement fixture is the microstrip ring
resonator fabricated on the substrate with thickness
H , and the sample under test tightly covers the
fixture. The polytetrafluoro-ethylene (PTFE) block
situated above the sample is used to get rid of
the air gap between the microstrip circuit and the
sample by firm pressing.

e3
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D

Ground plane
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Substrate

PTFE block

S

H

Ground plane

Figure 7.20 Cross section of a ring microstrip res-
onator. H denotes substrate thickness, S, test material
thickness, and D, PTFE thickness. Not to scale. ε1, ε2,
and ε3 are the dielectric constants of the substrate, sam-
ple, and PTFE block respectively. Source: Bernard, P.
A. and Gautray, J. M. (1991). “Measurement of dielec-
tric constant using a microstrip ring resonator”, IEEE
Transactions on Microwave Theory and Techniques, 39
(3), 592–595.  2003 IEEE
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For a given measurement fixture, ε1 is known.
When no sample is loaded to fixture, the structure
can be represented by ε2 = ε3 = 1. When the
fixture is loaded with a sample, ε3 is known, and
ε2 is the parameter to be measured. The resonant
frequencies (F1 and F0) of the ring resonator
with and without the sample under test can be
measured. The effective permittivity εreff,0 for
unloaded case can be calculated from the structure
and substrate properties of the fixture, and the
effective permittivity εreff,1 for the loaded case can
be calculated based on the fact that the diameter of
the ring resonator does not change due to sample
loading (Bernard and Gautray 1991):

πD = nc

F0
√

εreff,0
= nc

F1
√

εreff,1
(7.20)

Equation (7.20) can be rewritten as:

εreff,1 = εreff,0

(
F0

F1

)2

(7.21)

It should be noted that the resonances correspond-
ing to F0 and F1 should have the same mode
number (n).

Once the loaded effective permittivity (εreff,1)
is obtained, the dielectric constant of the sample
can be derived from εreff,1. In the calculation of
the dielectric constant of the sample from εreff,1,
numerical calculation is needed, and full-wave
simulation is often used. The loss tangent of
the sample can also be obtained if the surface
resistance of the conductors, loss tangent values
of the substrate, and the PTFE block are known.

7.3.2.2 Straight-ribbon resonator method

As shown in Figure 7.4, in a microstrip straight-
ribbon resonator method, the sample under test is
used as a substrate for the microstrip circuit, and
the dielectric properties of the sample are deter-
mined from the resonant properties and structural
parameters of the microstrip straight ribbon res-
onator. If the length of the ribbon is l, the rela-
tionship between the resonant frequency and the
effective dielectric constant εeff of the microstrip
can be calculated from the resonant frequency f :

εeff =
(

nc

2lf

)2

(7.22)

where c is the speed of light, and n is the order
of resonance. The effective dielectric constant is
a composite of the dielectric constants above and
below the signal line. From εeff, the dielectric
constant of the substrate can be calculated.

The gaps and the coupling to the rest of the
lines add a loading that can be represented by an
incremental change in the length of the resonant
section. So the effective length of the resonator is
a bit longer than its physical length, and Eq. (7.22)
needs to be modified as

εeff =
(

nc

2(l + lc)f

)2

(7.23)

where lc is the contribution of the capacitance of
the two open ends. It is clear that to obtain accurate
value of dielectric constant of the substrate, the
effect of lc should be taken into consideration.

A method has been developed that allows
dielectric constants to be determined from resonant
frequency measurements made on two or more
series resonant structures (Rudy et al. 1998). The
resonant frequency of a segment of microstrip
occurs at frequencies where the length of the
segment is approximately equal to an integral
number of half wavelengths. Since the incremental
length is a property of the gap and coupling, it is
relatively independent of the length of the resonant
segment. The effect of the gap loading can be
eliminated by measuring the resonant frequencies
of two resonant segments with different lengths.
Consider two microstrip resonators with different
lengths, each coupled to identical external circuitry
through identical gaps, as shown in Figure 7.21.
Their resonance conditions are given by

l1 + lc = n1

2
· c

f1
√

εeff
(7.24)

l2 + lc = n2

2
· c

f2
√

εeff
(7.25)

where l1 and l2 are the physical lengths of the two
ribbons respectively, lc is the length correction, n1

and n2 are the orders of the resonances of the two
resonators respectively, f1 and f2 are the resonant
frequencies of the two resonators respectively, and
c is the speed of light. Eliminating the item of lc
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Figure 7.21 Straight-ribbon resonators with different
lengths

in Eqs. (7.24) and (7.25) gives

εeff =
[
c(n1f2 − n2f1)

2f1f2(l2 − l1)

]2

(7.26)

As lc has a small dependence on frequency, it is
desirable that resonant frequencies f1 and f2 are
close together. It is common to make the lengths l1
and l2 integral multiples of each other and to use
higher-order resonances to calculate the effective
dielectric constant.

In a microstrip circuit, the dielectric media
above the circuit usually is air and the dielectric
below the circuit is the substrate material. With
air as the dielectric above the circuit, the dielec-
tric constant εr of the substrate and the effective
dielectric constant εeff of the microstrip are related
by a filling factor that weighs the amount of the
field in air and the amount of field in the dielec-
tric substrate. Analytical modeling of microstrip
configurations is difficult and the results are gen-
erally complex, so semiempirical relations are typ-
ically used. For simple calculations, Eq. (7.3) can
be used. However, for more precise determina-
tions, a more complex set of expressions is needed.
The substrate dielectric constant from the mea-
sured effective dielectric constant of a microstrip
configuration can be determined by (Hammerstad
and Jensen 1980)

εr = 2εeff + f (u) − 1 − C

f (u) + 1 − C
(7.27)

with

u = w

h
(7.28)

a(u) = 1 + 1

49
ln

(
u4 + (u/52)2

u4 + 0.432

)

+ 1

18.7
ln

(
1 +

( u

18.1

)3
)

(7.29)

b(εr) = 0.564

(
εr − 0.9

εr + 3

)
(7.30)

f (u) =
(

1 + 10

u

)a(u)b(εr)

(7.31)

C = t

2.3 h
√

u
(7.32)

where h is the thickness of the dielectric substrate,
w and t are the width and thickness of the
metal strip. C is a small correction for the
finite thickness of the circuit trace and frequently
is neglected in the calculation of the dielectric
constant, but it is important in the calculation of
losses. The uncertainty of Eq. (7.27) is within a
fraction of 1 %.

The loss tangent of the sample can be obtained
from quality factor of the resonator, structural
parameters, and surface resistance of the conduct-
ing strips. Detailed discussion on the calculation
of loss tangent can be found in (Rudy et al. 1998).

The fringing fields of a λ/2 resonator can also be
used in the characterization of dielectric materials
(Nyfors and Vainikainen 1989). Figure 7.22(a)
shows a microstrip resonator sensor for industrial
applications. At the two open ends of the resonator,
there are strong fringing fields. Meanwhile, as
shown in Figure 7.22(b), in a microstrip circuit,
the electric field is concentrated between the strip
and ground plane, but a weak fringing field exists
beyond the dielectric substrate. If the microstrip
resonator is held against a dielectric slab, the
fringing fields will penetrate the surface of the
slab, thus changing the effective permittivity of
the microstrip and hence the resonant frequency
of the resonator. The dielectric constant of the slab
can be obtained from the change of the resonant
frequency, but it is difficult to measure the loss
tangent of low-loss materials using this technique.
In practice, the sensor is often coated with a
protective dielectric layer to prevent wear and
corrosion. This will decrease the sensitivity of the
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Figure 7.22 Microstrip resonator sensor. (a) Measurement configuration showing the fringing fields near the open
ends and (b) electric field distribution at a cross section (Nyfors and Vainikainen 1989). Reprinted with permission
from Industrial Microwave Sensors, by Nyfors, E. and Vainikainen, P. Artech House Inc., Norwood, MA, USA.
www.artechhouse.com
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Figure 7.23 A T-resonator. (a) Structure and (b) equivalent circuit. Modified from Carroll, J. Li, M. and Chang,
K. (1995). “New technique to measure transmission line attenuation”, IEEE Transactions on Microwave Theory
and Techniques, 43 (1), 219–222.  2003 IEEE

sensor, but permits the measurement of substances
with higher losses.

7.3.2.3 T-resonator method

The λ/2 resonator method has some inherent prob-
lems. First, the size of the resonator and required
feed lines take up a large amount of substrate
area. Secondly, the coupling gaps as shown in
Figure 7.4 cause measurement inaccuracies at high
frequencies due to radiation losses. The two gaps
are actually four open radiating microstrip ends,
whose large radiation losses at high frequencies are
undesirably included in the measured transmission-
line attenuation coefficient. To save space, reduce
radiation, and improve transmission-line charac-
terization, T-resonator structures are often used
(Carroll et al. 1995). The T-resonator method has
proven to be effective in the characterization of

many ceramic and organic materials (Amey and
Horowitz 1997). The resonant frequency is used
to determine the dielectric constant of the sample,
and the measured total quality factor (Q) is used
to determine the attenuation and the loss tangent
of the material.

As shown in Figure 7.23, a T-resonator is actu-
ally a quarter-wave stub resonator. The T-pattern
is an open-end transmission-line stub that res-
onates approximately at odd-integer multiples of
its quarter-wavelength frequency. The T-resonator
reduces the amount of space needed for the test
structure by at least 50 % over the λ/2 resonator.
This structure is directly coupled to the measure-
ment transmission line so that the inaccuracies
caused by the coupling gaps of a λ/2 resonator
are avoided. There is only one open end in a T-
resonator, which eliminates most of the radiation
and discontinuity losses found in the λ/2 resonator.
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The effective dielectric constant of the transmis-
sion line can be determined through the resonant
frequency and the known length of the quarter-
wave stub. The effective dielectric constant at the
frequency of each of the stub’s quarter-wave res-
onances is given by (Carroll et al. 1995)

εreff =
(

nc

4fn(l + lc)

)2

(n = 1, 3, 5, . . .)

(7.33)

where c is the speed of light in free space.
Equation (7.33) indicates that the fringing field at
the open end effectively lengthens the physical
length of the resonator (l) by an extra length (lc),
which can be determined by empirical equations
(Kirschning et al. 1981). From the effective dielec-
tric constant of the microstrip, the dielectric con-
stant of the sample can be determined.

The effect of the fringing field at the open
end of the T-resonator can also be eliminated
using the method discussed in straight-ribbon res-
onators. As shown in Figure 7.24, we can fabricate
two T-resonators with different stub lengths, and
Eq. (7.26) can be modified for T-resonators.

The loss tangent of the sample can be derived
from the quality factor of the resonator. The
measured quality factor Q includes the effects of
conductor, dielectric, and radiation losses and can
be expressed as

1

Q
= 1

Qc
+ 1

Qd
+ 1

Qr
(7.34)

where Qc is the quality factor due to conductor
losses, Qd is the quality factor due to dielectric
losses, and Qr is the quality factor due to radiation

l 1
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l 2

In Out

Figure 7.24 Microstrip T-resonators with different
stub lengths

losses. The radiation losses may be neglected since
they are very small. Qd can then be expressed as

Qd = QQc

Qc − Q
(7.35)

Q represents the measured value of quality Factor
while Qc is calculated from the measured phys-
ical properties (line width, line thickness, rough-
ness, etc.) as well as the impedance, conductivity,
and calculated dielectric constant. Loss tangent
can then be derived from Qd, the material dielec-
tric constant (εr), as well as the effective material
dielectric constant (εreff) using the following rela-
tionship (Amey and Horowitz 1997):

tan δ = εreff(εr − 1)

Qdεr(εreff − 1)
(7.36)

7.3.2.4 Cross-resonator method

Figure 7.25(a) shows the circuit layout of a
microstrip cross-resonator for the characterization
of dielectric materials. It consists of the power
feeding line L3, a three-quarter-wavelength long
resonator L1 and two inductive stubs L2. The
aperture in this resonant probe is the open end
of the line L1. The equivalent circuit of the
structure is shown in Figure 7.25(b). The two
stubs form a short to the three-quarter-wavelength
long resonator L1, labeled stub short. At the
position about λg/4 from the open end, there
is an equivalent short. Between the stub short
and the equivalent short is a λg/2 resonator. The
position of the equivalent short is related to the
loading conditions at the open end. As shown in
Figure 7.25(b), when a dielectric sample is brought
close to the open end of L1, the loading, including
the capacitance C and resistance R, of the open end
will be changed. The capacitance C is related to the
dielectric constant of the sample, and the resistance
R is related to the loss tangent of the sample. The
change of capacitance C causes the shift of the
position of the equivalent short, and thus changes
the resonant frequency. The change of resistance
changes the overall equivalent resistance of the
resonator, and thus changes the quality factor of
the resonator. According to resonant-perturbation
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Figure 7.25 A cross microstrip resonator probe. (a) Microstrip circuit and (b) equivalent circuit. Source: Wang,
M. S. Bothra, S. Borrego, J. M. and Kristal, K. W. (1990). “High spatial resolution dielectric constant uniformity
measurements using microstrip resonant probes”, IEEE MTT-S Digest, 1121–1124.  2003 IEEE

theory, the dielectric properties of the sample
can be derived from the change of the resonant
properties of the resonator due to the presence of
the sample.

The operation of the resonant probe is based on
the fact that when a piece of dielectric material is
brought in close proximity to the open aperture of
the microwave resonator, the resonant frequency
of the resonator is perturbed by the presence of
the material. The shift in the resonant frequency
depends upon the resonator, the aperture of the
resonator, and the dielectric properties of the
material, as given by (Wang et al. 1990)

�f

f0
= Va(εa − 1)

Vcεc
(7.37)

where f0 is the resonant frequency before pertur-
bation, �f is the change of resonant frequency
due to the perturbation, Vc represents the volume
of the cavity and Va represents the volume occu-
pied by the evanescent fields at the aperture, εa

and εc are the dielectric constant of the material
in the aperture and in the resonator respectively. If
the probe is properly calibrated, the dielectric con-
stant of a dielectric material or its spatial variation
can be obtained by measuring the change in reso-
nant frequency of the cavity as the aperture scans a
dielectric material. In experiments, the microstrip
probe is often mounted inside a shielding box to
eliminate the possible disturbance from the outside
during measurements. The dielectric sample under
test is placed on an X-Y -Z stage, and the sample is
in soft contact with the aperture of the resonator.
As the width of microstrip is much smaller than

the microwave wavelength, high spatial resolution
can be obtained.

7.3.2.5 Two-section microstrip method

Consider a microstrip structure consisting of
two identical, parallel metal strips placed closely
together, as shown in Figure 7.26. On each metal
strip, one end is open, and the other end, called
neighboring end, is connected to a transmission
line, usually coaxial line. As shown in Figure 7.27,
there is a damping pole in the frequency response
of this two-section microstrip structure. As the
position and amplitude of the pole are related to the
dielectric constant and loss tangent of the substrate
material, the dielectric properties of the substrate
can be obtained from the frequency response of the
structure. Compared to a conventional microstrip
resonator method, this technique has higher sensi-
tivity, and the measurement fixture is much smaller
(Belyaev et al. 1997; 1995).

The two sections of the microstrip structure
are coupled both electrically and magnetically.
The transmission coefficient can be calculated by
the formula

T = (Pe − Po)
2

(1 + P 2
e )(1 + P 2

o )
(7.38)

with
Pe = (Z/Ze) tan(kel) (7.39)

Po = (Z/Zo) tan(kol) (7.40)

ke = (ω/c)
√

εe (7.41)

ko = (ω/c)
√

εo (7.42)
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Figure 7.26 Two-section microstrip structure. Modi-
fied from Belyaev, B. A. Leksikov, A. A. and Tyurnev,
V. V. (1995). “Microstrip technique for measuring
microwave dielectric constant of solids”, Instruments
and Experimental Techniques, 38 (5), 646–650, by per-
mission of Plenum Publishing Corporation
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Figure 7.27 Typical frequency dependence of the
reflection coefficient of a two-section microstrip struc-
ture shown in Figure 7.26

where ω is the angular frequency, c is the speed of
light, l is the length of the microstrip section, Z is
the impedance of the transmission line, Ze, Zo and
εe, εo are the impedance of the microstrip lines and
the effective dielectric constants of the substrate for
even and odd modes respectively.

As shown in Figure 7.27, in the frequency
response of the structure, there are passbands
with high transmission and low reflection, and
damping poles with deep minimum transmission
and high reflection. The passbands are observed
around frequencies that are multiples of the half-
wave resonance in the microstrip sections, and the
damping poles at frequencies where the inductive
and capacitive couplings compensate for each

other. As a rule, at a substrate dielectric constant
εr ≥ 2, the frequency response of the structure has
only one damping pole, and its frequency is always
lower than that of the half-wave resonance.

We define a relative sensitivity η of a sensor:

η = �fp

�f3
(7.43)

where �fp is the change of the damping frequency
due to the change of one parameter of the two-
section structure, and �f3 is measured at a level
of 3 dB of loss at the damping pole frequency,
as shown in Figure 7.27. Generally speaking, the
relative measurement sensitivity increases with
the increase of separation (S) between the two
sections, but decreases with the increase of the
strip width (w) and the dielectric constant of the
substrate. In the determination of the dimensions
of the microstrip structure, many practical aspects
should be taken into consideration (Belyaev et al.
1997, 1995).

Two methods have been developed on the basis
of the above principle. In one method, the sample
under test is used as the substrate of the microstrip
structure, and we call it substrate method. In the
other method, the sample under test is loaded to the
open ends of the structure, causing a perturbation
on the frequency response of the structure, and we
call it perturbation method.

Substrate method

In the substrate method, though the dimensions
of a microstrip structure may be arbitrary, it is
advisable to follow certain guidelines in order to
obtain the maximum sensitivity. First, the gap S

between the strips should be as large as possible,
but no more than one-third of the strip length
l. Otherwise, other damping poles may appear
around the first one, which makes measurements
difficult. Second, to get a higher quality factor
for the microstrip, for most cases the substrate
thickness h should be larger than 1 mm. Besides,
the strip width w should not be less than the
substrate thickness, otherwise the quality factor
of the microstrip would be low and that would
result in a small pole amplitude, and hence low
measurement sensitivity.
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For a given configuration, the dielectric con-
stant ε′

r of the sample can be obtained from the
damping frequency fp and the structural parame-
ters according to the following equation (Belyaev
et al. 1995):

fp = 0.4c
√

ε′
r(h/S + 5/ε′

r)

2l · (ε′
r + 4)

(7.44)

The uncertainty for the above equation is
within 10 %.

Quasi-static analysis indicates that the amplitude
Lp of the damping pole of the microstrip structure
is given by

Lp = L0 + 20 log10 Q0 (7.45)

where L0 is a constant that can be calculated for a
specific microstrip structure with known frequency
response. Equation (7.45) indicates that the inher-
ent Q0 of the microstrip in the test structure can
be derived from the damping pole amplitude.

Similar to the traditional resonant techniques,
the loss tangent of the dielectric substrate can be
calculated from the inherent resonator Q0 and the
quality factor Qm of the fixture:

tan δ = Qm − Q0

QmQ0
(7.46)

Qm can be derived from the pole amplitude of
a reference sample with known loss tangent. It
should be noted that the amplitude of the damping
pole depends both on the loss tangent of the
dielectric and on the quality of substrate surface
and metal coating. Therefore, measurements of the
absolute value of tan δ of low-loss materials are
difficult. However, this technique can sensitively
detect the changes in the dielectric loss, for
example, due to temperature variations, even in
low-loss materials with tan δ < 10−3.

Perturbation method

The two-section microstrip method can be used
to measure the dielectric constant εr and the loss
tangent for samples of arbitrary shape and small
size, using perturbation method. The sample under
study is placed on the sensor either between
metallic strips or directly on them, close to their

l

Neighboring
ends

s

Open ends

f

f

w

Cx

Figure 7.28 Two-section microstrip structure for per-
turbation method. Modified from Belyaev, B. A. Lek-
sikov, A. A. Tyurnev, V. V. and Shikhov, Y. G. (1997).
“A microstrip sensor for measuring microwave dielec-
tric constants of solids”, Instruments and Experimental
Techniques, 40 (3), 395–398, by permission of MAIK
Hayka/Interperiodica Publishiing

open ends at the antinode of the microwave electric
field. As shown in Figure 7.28, placing a sample
on the open ends of the microstrip segments is
equivalent to introducing an additional capacitive
coupling Cx between the strips.

In this case, the damping pole frequency fp

can be expressed as a function of the linear
characteristics of the microstrip lines forming
the two-section structure: the inductance L1, the
mutual inductance L12, the capacitance C1, and the
mutual capacitance C12. By assuming that L1 >>

L12 and C1 >> C12, the damping pole frequency
of the structure is given by (Belyaev et al. 1997)

fp = f0 ·
√

3C12/C1

L12/L1 − 2C12/C1
(7.47)

where f0 is the half-wave resonance frequency of
the microstrip structure:

f0 =
(

4πl · √L1(C1 + C12)
)−1

. (7.48)

Equation (7.47) indicates that, as the linear mutual
strip capacitance C12 increases when the fixture is
loaded with a sample, the damping pole frequency
fp increases as well. Furthermore, the smaller the
value of (L12/L1) − (2C12/C1), the sharper the
function fp(C12).

It should be noted that the equivalent lumped-
element parameters cannot be easily expressed
using closed-form equations. In the design of
the measurement fixture, and the derivation of
materials properties, numerical calculations are
often needed.
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d

Figure 7.29 Optimized microstrip fixture. Modified
from Belyaev, B. A. Leksikov, A. A. Tyurnev, V. V. and
Shikhov, Y. G. (1997). “A microstrip sensor for mea-
suring microwave dielectric constants of solids”, Instru-
ments and Experimental Techniques, 40 (3), 395–398,
by permission of MAIK Hayka/Interperiodica Publishiing

It has been shown that the fixture shown in
Figure 7.29 has high sensitivity (Belyaev et al.
1997). The optimal strip width in the region
where transmission lines are connected to the
microstrip line is approximately equal to the
substrate thickness, and the gap between the strips
in this region is determined by the dielectric
constant of the substrate. The length of the opposite
segments of the coupled lines on which the sample
under study is placed and the gap between the
strips in this region are selected so that the sample
fully covers the gap.

7.4 COPLANAR-LINE METHODS

Similar to stripline and microstrip lines, copla-
nar lines have also been used in the development
of measurement fixtures for materials property
characterization in both nonresonant and resonant
methods. Many types of coplanar structures, such
as coplanar waveguide, two-strip coplanar line,
and three-strip coplanar line, have been used in
materials property characterization. In the follow-
ing discussion, we concentrate on the applications
of coplanar waveguides in the characterization of
materials properties.

7.4.1 Nonresonant methods

Coplanar transmission lines have several advan-
tages as sensors that stem from their single-sided
configuration (Stuchly and Bassey 1998; Hinojosa

et al. 2002a,b). Generally speaking, nonresonant
methods using coaxial lines, rectangular waveg-
uides and coaxial lines are not suitable for the char-
acterization of film samples, while the microstrip
and coplanar lines allow characterizing film sam-
ples by using the samples as the substrates. It is
possible to optimize the shape of the microstrip
or coplanar cell in order to propagate the dom-
inant quasi-TEM mode and to perform accu-
rate S-parameter measurements in a certain fre-
quency range.

Hinojosa et al. proposed a broadband elec-
tromagnetic characterization method of isotropic
sheet samples using coplanar lines as sample
cells (Hinojosa et al. 2002a, b), as shown in
Figure 7.30. The propagation modes in a coplanar
transmission line are hybrid because some of the
electric and magnetic fields are fringed out into the
air space above the conductive strip. In the extrac-
tion of the substrate properties, only the quasi-
TEM dominant mode is considered. The values of
the dielectric and magnetic constants entering into
the characteristic impedance and propagation con-
stant are less than the electromagnetic properties
(εr, µr) of the substrate and they are denoted as
effective (εreff, µreff).

As the coplanar quasi-TEM mode dispersion is
low, the propagation analysis method based on
the analytical relationships derived from conformal
mapping techniques can be used. The characteristic
impedance Zc, propagation constant γ , and effec-
tive total loss tangent tan δeff for a coplanar line on
a substrate exhibiting both dielectric and magnetic
properties are given by

Zc = Z0

√
µreff

εreff
(7.49)

S SW

t

her, mr

Figure 7.30 Coplanar cell for the characterization of
sheet materials
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γ = ω
√

ε0µ0 · √εreffµreff (7.50)

tan δeff = 1 − (εreff)
−1

1 − (εr)−1
tan δd + 1 − µreff

1 − µr
tan δm

(7.51)
where Z0 is the characteristic impedance when
εr = µr = 1. The dispersions of the effective
electromagnetic properties (εreff, µreff) can be
expressed by (Hinojosa et al. 2002a; Hasnain
et al. 1986)

εreff(f )

=
[√

εreff,stat +
√

εr − √
εreff,stat

1 + a · (f/fTE)−b

]2

(7.52)

µreff(f )

=
[√

(µreff,stat)−1 +
√

(µr)
−1 − √

(µreff,stat)
−1

1 + a · (f/fTM)−b

]−2

(7.53)
with the effective electromagnetic properties at
quasi-static limit given by

εreff,stat = 1 + (ε′
r − 1) · K(k1)K(k′)

2K(k′
1)K(k)

(7.54)

µreff,stat =
[

1 +
(

1

µ′
r

− 1

)
· K(k1)K(k′)

2K(k′
1)K(k)

]−1

(7.55)
where the parameters k, k′, k1, and k′

1 are deter-
mined by coplanar structures, and K(k),K(k′),

K(k1) and K(K ′
1) are the complete elliptical inte-

grals of first order of modulus k and k1 and comple-
mentary modulus k′ and k′

1 (Hilberg 1969; Stuchly
and Bassey 1998). The cutoff frequencies for the
lowest-order TE mode (fTE) and the lowest-order
TM mode (fTM), and the parameters a and b, are
defined in (Hinojosa 2002a; Hasnain 1986).

Figure 7.31 shows a measurement fixture for
this method. The two reference planes (P1, P2) are
the outputs of the two probes of the measurement
fixture. The calculation of the substrate properties
(εr, µr) is based on the S-parameter measurements
made at the coplanar access planes. It requires
an electromagnetic analysis of the coplanar cell
(the direct problem) together with an optimization
procedure (the inverse problem). The direct prob-
lem is computing the S-parameters at the access
planes of the coplanar cell under test propagating
only the quasi-TEM mode, according to the com-
plex properties of the substrate (εr, µr), the cell
dimensions and the frequency. For a coplanar cell
with known structure, given complex εr and µr

values, at a given frequency point, we can com-
pute the effective permittivity and permeability,
and then the complex propagation constant (γ ) and
the complex characteristic impedance (Zc) from
the analytical relationships defined in Eqs. (7.49)
to (7.55). The S-parameters can then be computed
based on the reflection/transmission theory. In the

er, mr

United to the test fixture
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Figure 7.31 An on-coplanar measurement fixture with a coplanar cell (Hinojosa et al. 2002a). Reproduced
from Hinojosa, J. Lmimouni, K. Lepilliet, S. and Dambrine, G. (2002a). “Very high broadband electromagnetic
characterization method of film-shaped materials using coplanar”, Microwave and Optical Technology Letters, 33
(5), 352–355, by permission of John Wiley & Sons
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Figure 7.32 The experimental setup for the measurement of liquid samples. (a) Side view and (b) axial view

optimization procedure (the inverse problem), iter-
ative technique derived from the gradient method
is often used. It simultaneously carries out the εr

and µr computation and the convergence between
measured (S11, S21) values and computed (S11, S21)
values by the direct problem through the succes-
sive increment of the initial values of εr and µr.

Figure 7.32 shows a configuration for the mea-
surement of the dielectric properties of liquid sam-
ples (Stuchly and Bassey 1998). In this configura-
tion, the coplanar sensor is fabricated on a very
thin dielectric sheet with low dielectric constant,
such as Teflon, and the contribution of the dielec-
tric sheet to the impedance of the coplanar line can
be neglected. The coplanar sensor is placed on a
piece of Styrofoam whose dielectric permittivity
is close to unity. The liquid sample is put inside
a container. From the S-parameters, the dielectric
constant of the liquid sample can be derived with
a method similar to the one discussed above.

7.4.2 Resonant methods

In a coplanar resonator method, the sample under
test is used as the substrate or part of the substrate
of a coplanar resonator. From the resonant proper-
ties of the resonator, the electromagnetic properties
of the sample can be derived. In principle, any
types of resonant structure can be used, while in
practical measurements, we should consider the
measurement sensitivity and accuracy.

Peterson and Drayton proposed a coplanar T-
resonator method (Peterson and Drayton 2002).
The basic principle of this method is similar to the
one for microstrip T-resonator discussed earlier. As

Port Port

L

W

Figure 7.33 Layout of a CPW T-resonator

shown in Figure 7.33, at odd quarter wavelengths,
a standing-wave distribution exists along the
open-ended T-resonator stub and presents well-
defined resonances. Under low-loss conditions, the
resonant frequency can be used to extract the
effective dielectric constant according to

εeff,n =
(

n · c
4 · L · fn

)2

(7.56)

where n is the resonance index (n = 1, 3, 5, . . .),
c is the speed of light in vacuum and L is
the effective physical length of the resonating
stub. Most of the conclusions for microstrip T-
resonators can be extended to coplanar ones.

7.5 PERMEANCE METERS FOR MAGNETIC
THIN FILMS

Measurement of permeability of magnetic thin
films at microwave frequencies is becoming more
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and more important owing to the increasing
working frequencies of electronic circuits. The
fixture for permeability measurement is often
called permeance meters. Most of the permeance
meters are based on the transmission measurement
of a two-port system consisting of a driving coil
and a pickup coil. In this section, we first discuss
the working principle of permeance meters, and
then discuss three examples of permeance meters.

7.5.1 Working principle

As shown in Figure 7.34, a typical permeance
meter mainly consists of a driving coil and a
pickup coil. The coupling between the driving coil
and the pickup coil is related to the magnetic
properties of the core material. When a magnetic
sample is inserted into the driving coil and the
pickup coil, the voltage output at the pickup coil
will be changed, and the change of voltage output
of the pickup coil is mainly determined by the
magnetic permeability of the sample.

If we neglect the contribution of the dielectric
permittivity of the sample, the relationship between
the magnetic permeability of the sample and the
change of output voltage is given by

(µr − 1) · Ss

S0
= Vs

V0
− 1 (7.57)

where µr is the magnetic permeability of the
sample, S0 and Ss are the areas of the cross sections
of the pickup coil and the sample respectively, V0

and Vs are the voltage outputs of the pickup coil
without and with sample respectively. To measure
magnetic permeability at microwave frequencies,

Sample

Pick-up
coil

Driving
coil

Figure 7.34 Permeability measurement at ac fre-
quencies

it is necessary to develop suitable driving coil
and pickup coil working at microwave frequencies.
In the following, we discuss three methods for
the measurement of magnetic thin films, including
two-coil method, single-coil method, and electrical
impedance method.

7.5.2 Two-coil method

In the two-coil method, the measurement circuit
shown in Figure 7.34 is realized at microwave
frequencies using planar circuits. The measurement
fixture mainly consists of a driving coil and a
pickup coil.

7.5.2.1 Driving coil

Figure 7.35(a) shows the principle for perme-
ability measurement, and it is actually a coun-
terpart at microwave frequencies of Figure 7.34.
Figure 7.35(b) shows a measurement fixture devel-
oped on the basis of Figure 7.35(a). In this config-
uration, the driving coil is a pair of parallel driving
plates that generate propagating quasi-TEM mode
electromagnetic field, and a voltage is induced in
the pickup coil because of the change of magnetic
flux at the area of the pickup coil.

The measurement frequency range and measure-
ment reliability of a permeance meter are closely
related to its driving coil. Two types of driving
coils are often used: traveling-wave type (Yam-
aguchi et al. 1997, 1996) and standing-wave type
(Yabukami et al. 2000, 1999). The driving coil
shown in Figure 7.35(b) is terminated by a 50-�
terminator, and it works in traveling-wave state.
Figure 7.36 shows a standing-wave driving coil.
The pair of parallel plates is shorted by a short
plate. Usually, a standing-wave driving coil results
in a higher sensitivity than a traveling-wave one.

In the design of driving coils, we should
consider the impedance matching between external
circuit (50 �) and the measurement fixture. The
length of the driving coils should be less than the
half wavelength of the highest working frequency,
so that there is no LC resonance in the driving coil.
Meanwhile, we should also consider effects of the
pickup coil on the driving coil.
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Figure 7.35 Transmission-type permeance meter. (a) Principle drawing and (b) structure (Yamaguchi et al. 1997).
Modified from Yamaguchi, M. Yabukami, S. and Arai, K. I. (1997). “A new 1 MHz-2 GHz permeance meter for
metallic thin films”, IEEE Transactions on Magnetics, 33 (5), 3619–3621.  2003 IEEE
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Figure 7.36 Reflection-type permeance meter
(Yabukami et al. 2000). Source: Yabukami, S. Takezawa,
M. Uo, T. Yamaguchi, M. Arai, K. I. Miyazawa, Y.
Watanabe, M. Itagaki, A. and Ando H. (2000). “An
evaluation of permeability for striped thin films in the
gigahertz range”, Journal of Applied Physics, 87 (9),
5998–6000

7.5.2.2 Pickup coil

The pickup coil is another key component in
a permeance meter, and the sensitivity of a
permeance meter is closely related to its pickup
coil. In the design of a pickup coil, we should
consider the coupling between the driving coil and
the pickup coil, and we should also consider the
wave resonance of the pickup coil and the effect
of electric field on the pickup coil. To decrease the
noise level, the ground plane of the pickup coil
should be connected to the ground plate of the
driving coil.

Figure 7.37 shows two types of pickup coils
often used: microstrip coil and shielded loop coil
(Yamaguchi et al. 1996). Figure 7.37(a) shows a
single turn of microstrip line. The characteristic
impedance of the microstrip is 50 � to ensure the

impedance matching. The end of the microstrip
line is connected to a 50-� terminator, so there
is no resonance in the loop. This kind of pickup
coil is easy for fabrication, but it is sensitive to the
electric field.

Figure 7.37(b) shows a shielded pickup coil
made from a stripline. Similar to microstrip pickup
coil, its characteristic impedance is 50 �. There
is a narrow gap on the shields at both sides.
The center conductor forms a half-turn pattern
and is terminated on the ground planes of the
opposite half-loop at the gap. The output voltage
of the coil is proportional to the average value
of the magnetic field through the loop aperture.
The coil is insensitive to the electric field because
the inner conductor is shielded electrically by the
ground planes.

For different types of pickup coils, different
measurement procedures should be followed. From
Eq. (7.57), we have

(µr − 1) · tm =
(

Vs

V0
− 1

)
S0

dm
(7.58)

where dm and tm are the width and thickness of the
thin film respectively. The presence of the sample
changes the electric field distribution. If a shielded
pickup coil is used, as the shielded pickup coil is
insensitive to the electric field, the value of V0 in
Eq. (7.58) is the voltage output without sample.
Whereas, if a microstrip pickup coil is used, to
obtain the reference voltage V0, the sample should
be saturated by applying a strong dc magnetic field
along the easy axis so that its permeability is close
to unity.
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Figure 7.37 Two types of pickup coils. (a) Microstrip pickup coil and (b) shielded pickup coil (Yamaguchi et al.
1996). Modified from Yamaguchi, M. Yabukami, S. and Arai, K. L. (1996). “A new permeance meter based on both
lumped elements/transmission line theories”, IEEE Transactions on Magnetics, 32 (5), 4941–4943.  2003 IEEE

To obtain more accurate results, Eq. (7.58) can
be further modified (Yamaguchi et al. 1997) as

(µr − 1) · tm = S0

dm
·
[

Vs(Zs + 50)

V0(Z0 + 50)
− 1

]
(7.59)

where Zs is the impedance of the pickup coil
during the main measurement and Z0 is the
impedance of the pickup coil during the reference
measurement.

7.5.3 Single-coil method

In a single-coil method, the driving coil and the
pickup coil is the same coil, and in this case,
we usually analyze the input impedance of the
coil. As shown in Figure 7.38, in a single-coil
method for the measurement of permeability of
magnetic thin films, the coil is essentially a short-
ended transmission line (Pain et al. 1999; Ledieu
et al. 2003). The input impedance of the loop
is measured with and without the sample. The
permeability is derived from the difference of the
input impedance of the short-ended microstrip line
with and without the sample under test.

The width w and the inner height h of the
microstrip are chosen to ensure a line with char-
acteristic impedance Z0 = 50 �. The length of the
microstrip line l is shorter than a quarter of wave-
length in vacuum in the measurement frequency
range to limit the electromagnetic resonance. The
phase reference plane corresponding to the begin-
ning of the microstrip line is set so that the reflec-
tion coefficient S11 = −1. This can be done by

h Z0

w

l

Thin film

Substrate

Figure 7.38 A short-ended microstrip line for the
measurement of the permeability of magnetic thin films

shorting the microstrip line to the ground plane
with a conducting choke. The input impedance Zm

of the cell is then given by

Zm = Zc · 1 + S11

1 − S11
(7.60)

where Zc is the characteristic impedance of the
microstrip. The impedance measurement is then
made in two steps: the first one with only the
substrate and the second one with the thin film
deposited on the substrate.

The calculation of the permeability of a mag-
netic thin film is based on the magnetic flux pertur-
bation induced by the insertion of the film into the
coil. The change of magnetic flux causes a change
in the voltage at the coil entry, which can also
be expressed as the impedance variation �Z of
the coil:

�Z = j2πf µ0K · (µr − 1) · ts (7.61)

where f is the operating frequency, K is a constant
that can be determined by a standard sample with
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known permeability, µr is the relative permeability
of the sample under test, and ts is the sample
thickness. So the relative permeability is given by

µr = 1 + �Z

jµ0Kts2πf
(7.62)

The impedance analysis with equivalent circuits
is adequate for the extraction of the permeability
values. At low frequencies (typically lower than
1 GHz) the strip can be modeled as a coil
with an inductance L (L-model) as shown in
Figure 7.39(a). Za is an impedance correction
due to the substrate. In this case, the change of
impedance due to the magnetic thin film is

�Z = ZF − ZS (7.63)

where ZS and ZF are the measured impedances
of the cell loaded with the substrate and the film
deposited on substrate respectively. But for higher
frequencies, the measured impedance should be
analyzed by a more appropriate equivalent RLC
circuit (RLC model) as shown in Figure 7.39(b)
(Pain et al. 1999):

Zm =

(
R + 1

j2πf C

)
(Za + �Z + j2πf L)

R + 1

j2πf C
+ j2πf L + Za + �Z

(7.64)

R,L, and C are determined from the best fit of
the measured impedance of the cell loaded with
the substrate. �Z is deduced from this equation. A
first measurement with only the substrate inserted
into the coil (�Z = 0) yields Za. A second
measurement with the magnetic film yields �Z.

L

∆ZZm

Za

L

∆ZZm

Za

R

C

(a) (b)

Figure 7.39 Equivalent electric circuits for the mea-
sured impedance Zm. (a) L-model and (b) RLC model.
Za is the impedance correction corresponding to the
behavior of the cell loaded with the substrate only

The permeability spectrum is then obtained from
Eq. (7.62).

This method permits a large domain of investi-
gation. For ferromagnetic thin films with in-plane
uniaxial anisotropy, the permeability measurement
can be done in any direction. The measurement
can be easily performed under an external static
field. With ferromagnetic thin films deposited on
flexible substrates, measurements under stress are
also possible.

Cross measurements of thin-film permeability
between the two-coil method and the single-coil
method have been made, and the results from
these two methods agree very well (Yamaguchi
et al. 2002). Finally, it should be indicated that
the single-coil method can also be realized in other
types of transmission structures, such as stripline
(Moraitakis et al. 2000).

7.5.4 Electrical impedance method

Permeability measurements of narrow magnetic
thin films are needed for evaluating high
frequency-characteristics of magnetic write head or
micromagnetic devices. Yabukami et al. proposed
a method for the measurement of the permeability
of striped conducting films (Yabukami et al. 2001).
In this method, the permeability of a striped film
is obtained by measuring its electrical impedance.
In principle, this method uses the sample under
study as the driving coil and the pickup coil. This
method has high sensitivity, it is reported that a
very narrow film (µ′

r = 10, 0.4 µm wide) can be
measured using this method.

Figure 7.40 shows a setup for the measurement
of a striped magnetic thin film. The striped film is
connected as the termination of a microstrip line.
One end of the striped film is electrically con-
nected to the microstrip conductor and the other
end of the film is connected to the ground plane
using bonding wires. High-frequency current then
passes through the magnetic film. The relation-
ship between the reflection coefficient and the
impedance of the striped film is given by

Zs = R + j2πf Ls = Zc
1 + S11

1 − S11
(7.65)

where R is the resistance, Ls is the inductance
of the film, f is the frequency, and Zc is the
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Bonding wire

Ground
plane

Substrate

Magnetic film under testDielectric substrate

Microstrip line

Network
analyzer

Figure 7.40 Configuration for the measurement of
striped films (Yabukami et al. 2001). Source: Yabukami,
S. Uo, T. Yamaguchi, M. Arai, K. I. Takezawa, M.
(2001). “High sensitivity permeability measurements
of striped films obtained by input impedance”, IEEE
Transactions on Magnetics, 37 (4), 2776–2778. 
2003 IEEE

characteristic impedance of the transmission line.
Usually, the resistance is fairly smaller than
reactance, and it can be ignored in the estimation
of inductance. The inductance of the film is
approximately given by

Ls = 200l ·
[

ln

(
2l

w + l

)
+ 0.25049

+ w + t

3l
+ µ0µr

4

]
(7.66)

where l is film length, t is film thickness, and w

is film width.
Figure 7.41 shows a model of a striped film

and the magnetic field distribution near the film.
High-frequency current flows inside the film, and
thus a closed magnetic flux loop is generated. The
permeability obtained in this method is the one
along the direction of film surface, but in the
calculation we should consider the leakage flux
from the edge of the film, correct orientation of
magnetic moments in the film, and the effect of
vertical (depth) permeability.

The measurement procedure of this method
consists of two steps. The first step is the
measurement of the impedance of the film Zs,
and the second step is the measurement of the
background impedance Z0, when a strong dc field
(500 Oe) is applied to the longitudinal direction
of the film. The effect of the contact resistance
between the film and the bonding wire or the outer

Magnetic field

Magnetic film Electric
current

Figure 7.41 Model of striped film and field distribu-
tion. Source: Yabukami, S. Uo, T. Yamaguchi, M. Arai,
K. I. Takezawa, M. (2001). “High sensitivity perme-
ability measurements of striped films obtained by input
impedance”, IEEE Transactions on Magnetics, 37 (4),
2776–2778.  2003 IEEE

inductance of the striped film can be eliminated by
using the difference between Zs and Z0:

Zs − Z0 = Zsc − Z0c (7.67)

where Zsc and Z0c are the calculated impedances,
which are a function of the relative permeability
of the film:

Zsc = ksρl

2w
coth

(
kst

2

)
(7.68)

Z0c = ksρl

2w
coth

(
k0t

2

)
(7.69)

ks = (1 + j)√
ρ/(πf µ0µr)

(7.70)

k0 = (1 + j)√
ρ/(πf µ0µr0)

(7.71)

where ρ is the resistivity of the film, t is the
film thickness, l is the film length, and w is the
film width. µr is the relative permeability of the
magnetic film, and µr0 is the relative permeability
of the striped film under strong dc field (500
Oe). The relative permeability of the magnetic
film µr can be calculated from Eqs. (7.67)–(7.71)
using the Newton–Raphson method (Yabukami
et al. 2001).
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7.6 PLANAR NEAR-FIELD MICROWAVE
MICROSCOPES

The basic principles for near-field microwave
microscopes have been discussed in Chapter 6.
In this section, we concentrate on the near-
field microwave microscopes developed from pla-
nar circuits.

7.6.1 Working principle

Planar near-field microwave microscopes are based
on resonant-perturbation theory. As shown in
Figure 7.42, when a sample is brought close to the
open end of a planar resonator, the electromag-
netic field at the open end will be perturbed, and
thus the resonant properties of the resonator will
be changed. From the change of the resonant fre-
quency f and quality factor Q, the electromagnetic
properties of the sample can be determined. Gener-
ally speaking, dielectrics, semiconductors, conduc-
tors, and magnetic materials can be characterized
by this technique.

To increase the measurement resolution, the
open end of the resonator is tapered, becoming
a tip, and the open end of the resonator can be
taken as an electric dipole. Near its resonance
frequency, the resonator can be modeled by a series

Resonator probe

Field

Area illuminated by
the probe's field

Figure 7.42 Interaction between a near-field probe and
a sample. Modified from Tabib-Azar, M. and Akin-
wande, D. (2000). “Real-time imaging of semiconduc-
tor space charge regions using high-spatial resolution
evanescent microwave microscope”, Review of Scientific
Instruments, 71 (3), 1460–1465

LCR circuit (Tabib-Azar et al. 1999a), as shown
in Figure 7.43(a). When a sample is placed near
the tip, it is coupled to the LCR circuit through a
coupling capacitor. For simplicity, insulators and
conductors are modeled in Figures 7.43(b) and (c)
respectively. In these figures, R0, L0, and C0 are
the intrinsic circuit parameters of the stripline
resonator; Cc is the coupling capacitance of the
air gap between the tip and the sample; Ls, Cs,
and Rs represent the microwave properties of
the sample. The resonance frequency of planar

Probe

(a)

L0R0

C0Ztotal

CcL0R0

CsC0
RsZtotal

(b)

C0

CcL0R0

Rs

Ls
Ztotal

(c)

Figure 7.43 Equivalent circuit models of the probe for a near-field microwave microscope. (a) Series LCR models
of the evanescent microwave probe, (b) circuit model in the presence of an insulating sample, and (c) circuit model
in presence of a conducting sample. Source: Tabib-Azar, M. Su, D. P. Pohar, A. LeClair, A. Ponchak, G. (1999a).
“0.4 µm spatial resolution with 1 GHz (λ = 30 cm) evanescent microwave probe”, Review of Scientific Instruments,
70 (3), 1725–1729
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Probe
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Sample
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Figure 7.44 Measurement system of a near-field
microwave microscope

resonator shifts in the presence of a sample near
the probe tip. It is clear that the shifts in resonance
frequency f and quality factor Q mainly depend
on the electromagnetic properties of the sample,
the probe-sample distance, and effective area of
the tip.

Figure 7.44 shows a typical measurement setup,
and it is similar to the system discussed in
Chapter 6. It consists of a microwave resonator
coupled to a feed-line and connected to a circu-
lator. The circulator is also connected to a signal
generator and a microwave crystal detector. The
detector output is a dc voltage proportional to
the magnitude of the reflected wave. The probe
is mounted vertically over an X-Y stage. A more
detailed description of the measurement setup can
be found in (Tabib-Azar et al. 1999c).

Owing to the penetration effect of the electro-
magnetic wave, electromagnetic waves with lower
frequencies can travel deeper into bulk materi-
als. Sometimes, near-field microwave microscopes
with probes operating at different frequencies are
developed to study the depth distributions of mate-
rials properties, as shown in Figure 7.45. Such
microwave microscopes can be used for nonde-
structive testing, impurity testing, and biomedi-
cal checking.

7.6.2 Electric and magnetic dipole probes

Two types of probes are often used in near-field
microwave microscopes: electric dipole probes

Sample

fnf1

EE

• • •

Figure 7.45 Probes with different operational fre-
quencies

and magnetic dipole probes. The discussions
above are based on the assumption that the
electric dipole probe is used, and the interaction
between the probe and the sample is made through
the coupling capacitor. For a magnetic dipole
probe, the interaction between the probe and the
sample is made through the coupling inductor of
the probe. Electric probes have relatively high
impedances and they are better suited to the
characterization of insulators and semiconductors,
whereas magnetic probes have lower impedances
and are better suited to the characterization of high-
conductivity materials.

Figure 7.46 shows three types of electric dipole
probes. A tapered strip can be used as an
electric dipole probe, as shown in Figure 7.46(a).
To improve the resolution, a metal needle can
be attached to the tip of the tapered strip, as
shown in Figure 7.46(b). Another type of electric
dipole probe is an open loop between the tip of
the strip and the grounding plate, as shown in
Figure 7.46(c) and (d). The open ends of the loop
form a capacitor, and the resolution of the probe is
thus greatly improved. The change in the reflection
coefficient of the resonator when a material object
is placed near the probe is calculated by treating
the probe as an electrically short and insulated
antenna (i.e., the length of the dipole is much
shorter than the microwave wavelength) in which
the insulation is provided by the air gap between
the probe and the sample. In the case when
the probe length T is larger than the distance
b between the probe and the sample, the input
admittance of this electrically short and insulated
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(d)(c)

T

(a) (b)

Figure 7.46 Three types of electric dipole probes.
(a) Top view of a tapered strip, (b) top view of a
needle dipole, (c) side view of an open loop dipole, and
(d) front view of the open loop dipole whose side view
is shown in (c)

antenna is approximately given by (Tabib-Azar
et al. 1993)

YL = σsπT

ln(T /b) − 1

(
γ 2

p2
s + (1 + γ )2

)

+ jω
εiπT

ln(b/c)

(
p2

s + (1 + γ )

p2
s + (1 + γ )2

)
(7.72)

where σs is the conductivity of the sample, εi is
the permittivity of the insulator (εi = εriε0), c is
the radius of the wire and

γ = εri

εs
· ln(T /b) − 1

ln(b/c)
(7.73)

ps = σs

2πf εs
(7.74)

where εs is the permittivity of the sample
(εs = εrsε0) and f is the frequency of the
microwave signal.

Figure 7.47 shows a magnetic dipole probe,
which is a closed loop connecting the tip of
the strip to the grounding plate. The method of
images can be applied to calculate the loop’s
impedance placed in front of a dissipative medium
like a real conductor or a semiconductor. In the
case of ideal conductors, the electric field of
the image loop cancels the electric field of the
original loop at the surface of the conductor. In
the case of dielectric and semiconductor samples,
the electric field produced by the image loop

(b)(a)

T

Figure 7.47 Closed loop magnetic dipole probe.
(a) Side view and (b) front view

modifies the electric field at the surface of the
sample. The phase and amplitude of the electric
and magnetic fields, produced by the image loop,
can be calculated from the reflection coefficients of
the corresponding fields. The reflection coefficient
for the electric field is given by (Tabib-Azar
et al. 1993)

�E = Er

Ei
=

√
1/ε0 − √

jω/(σs + jωεs)√
1/ε0 + √

jω/(σs + jωεs)
(7.75)

where σs and εs are the conductivity and the per-
mittivity of the sample respectively. The reflection
coefficient for the magnetic field contains the same
information as Eq. (7.75), which is derived for
nonmagnetic materials in which the relative mag-
netic permeability is unity.

The dielectric permittivity of the substrate of a
probe also affects the performances of the probe.
Higher permittivity substrates result in a smaller
line width of the strip for 50-� characteristic
impedance and have higher spatial resolutions. A
more detailed discussion on this aspect can be
found in (Tabib-Azar et al. 1999b).

7.6.3 Probes made from different types of
planar transmission lines

In the above discussions, we assume that the
probes are made from microstrip lines. Actually,
all types of the planar transmission lines can be
used for the development of near-field microwave
microscope probes. In the following text, we
discuss the probes made from stripline, microstrip,
and coplanar line, and we focus on electric dipole
probes whose tips are connected with a needle.

Figure 7.48 shows a probe developed from a
stripline. Stripline supports strict TEM mode, and
the electric fields near the tip are symmetrical
about the center plane. Stripline probes usually
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(a) (b)

Figure 7.48 Stripline needle electric dipole probe.
(a) Center plane and (b) side view

Figure 7.49 Microstrip needle electric dipole probe.
(a) Top view and (b) side view

Figure 7.50 Coplanar needle electric dipole probe.
(a) Top view and (b) side view

have high accuracy; however, the fabrication is
complicated. In the measurement procedure, to
increase the resolution, the adjustment of the
coupling between the feed-line and the resonator
is often needed, while it is not easy to make such
an adjustment for a stripline probe.

Microstrip probes are most widely used in planar
microwave microscopes. As shown in Figure 7.49,
the fabrication of microstrip probes is easy, and
such probes usually have high accuracy.

Microwave microscope probes can also be made
from coplanar lines (Tabib-Azar and Akinwande
2000). As shown in Figure 7.50, the fabrication
of a coplanar probe is easy, and it is also not
difficult to adjust the couplings between the feed-
line and the resonator. However, its accuracy and
resolution may not be as high as those of stripline
and microstrip ones.
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8

Measurement of Permittivity and
Permeability Tensors

Permittivity and permeability tensors are two
important parameters describing the electromag-
netic properties of anisotropic materials. The first
section discusses the permittivity tensors of vari-
ous anisotropic dielectric materials and the perme-
ability tensors of magnetic materials with differ-
ent magnetization directions. The second and third
sections discuss the measurements of permittivity
and permeability tensors respectively. In the final
section, the methods for the study of ferromagnetic
resonance are discussed.

8.1 INTRODUCTION

Anisotropic materials have found important appli-
cations in microwave engineering. Among the
applications are substrates for microwave inte-
grated circuits, antenna radomes, and electromag-
netic wave absorbers. Besides, isotropic substrates
may exhibit anisotropic properties due to the rota-
tion of the principal axes in some application sit-
uations. Therefore, it is important to study the
anisotropy of electromagnetic materials.

Though the electromagnetic theory of anisotro-
pic materials is well established (Kong 1975),
experimental techniques are always needed for
the determination of the constitutive parameters of
these materials. The determination of the constitu-
tive parameters of anisotropic materials is a typical
inverse problem, and the problem is complicated
by the fact that, in general, such materials are
both lossy and dispersive. First, we must ascertain

what measurement data are sufficient and neces-
sary for unequivocal determination of the consti-
tutive parameters, and, second, we should develop
experimental setups that are suitable for collect-
ing the needed data. In the past decades, a lot
of resources have been spent for the character-
ization of anisotropic materials, and as a result,
many methods have been developed for different
applications.

8.1.1 Anisotropic dielectric materials

For an anisotropic dielectric material, the rela-
tionship between the electric displacement tensor
[D] and the electric field tensor [E] is given by

 D1

D2

D3


 =


 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33





 E1

E2

E3


 (8.1)

For a physically real material, its permittivity
tensor [ε] is Hermitian, defined by εij = εji*. So
the matrix [ε] can be diagonalized by using the
principal coordinates x, y, and z:

Dx

Dy

Dz


 =


 εxx 0 0

0 εyy 0
0 0 εzz





Ex

Ey

Ez


 (8.2)

where εxx , εyy , and εzz are the principal permittiv-
ity components.

The electric-energy density U can then be
expressed as

U = 1

2

(
D2

x

εxx

+ D2
y

εyy

+ D2
z

εzz

)
(8.3)
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By defining quantities X, Y , and Z along the three
principal spatial axes

X = Dx√
2ε0U

, (8.4)

Y = Dy√
2ε0U

, (8.5)

Z = Dz√
2ε0U

, (8.6)

Eq. (8.3) can be rewritten as

X2

ε1
+ Y 2

ε2
+ Z2

ε3
= 1 (8.7)

with
ε1 = εxx/ε0, (8.8)

ε2 = εyy/ε0, (8.9)

ε3 = εzz/ε0. (8.10)

From Eqs. (8.2) and (8.8) to (8.10), the relative
permittivity tensor in the principal axes can be
expressed as

[εr] =

 ε1 0 0

0 ε2 0
0 0 ε3


 (8.11)

Equation (8.7) describes an ellipsoid known as
index ellipsoid, as shown in Figure 8.1. The semi-
axes of the index ellipsoid of a dielectric are equal
to the square roots of the relative permittivities
in the three corresponding principal directions.

√e1
√e2

√e3

x

y

z

Figure 8.1 The index ellipsoid of a dielectric

For a crystal, the shape of the ellipsoid depends
on its crystalline structural properties. Generally
speaking, crystals can be classified into three
types (Anderson 1964). Type I crystals have cubic
symmetry and have three equivalent directions:
ε1 = ε2 = ε3. Their corresponding ellipsoids are
spheres. Such crystals are isotropic, and their
dielectric permittivity can be described by a com-
plex number. Silicon and gallium arsenide are typ-
ical examples of cubic crystals. The measurement
of dielectric permittivity of isotropic materials has
been discussed in previous chapters.

Type II materials mainly include trigonal, tetrag-
onal, and hexagonal crystals, all of which have
one axis of symmetry. This axis is one of the
principal axes of the permittivity ellipsoid. The
symmetry of the crystal about this axis results in
corresponding symmetry of the ellipsoid. Crystals
of this type are called uniaxial. Quartz is a typical
example of uniaxial dielectric, which crystallizes
in the trigonal trapezohedral class with three crys-
tal axes usually labeled a, b, and c. For α-phase
SiO2 crystals, the c-axis is of threefold symme-
try: a rotation of such a crystal through 120◦ about
the c-axis leaves the crystal in an identical con-
figuration. Other examples of uniaxial dielectric
materials include calcium carbonate, lithium nio-
bate, and cadmium sulfide.

By assuming that the symmetric axis of the
dielectric ellipsoid is in the z-direction (ε1 =
ε2), the relative permittivity tensor of a uniaxial
dielectric can be expressed in the form of

[εr] =

 ε1 0 0

0 ε1 0
0 0 ε3


 (8.12)

This type is relatively simple but is a very
important group of anisotropic materials. In the
second section of this chapter, we mainly discuss
the measurement of permittivity tensors of uniaxial
dielectric materials.

Type III materials are usually biaxial crystals,
which have no axes of symmetry; and usually they
have the orthorhombic, monoclinic, and triclinic
structures. All the three principal axes of the index
ellipsoid are different. The form of permittivity ten-
sor is in the form of Eq. (8.11). The methods for the
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measurement of uniaxial dielectric materials can be
extended for the measurement of biaxial materials.

8.1.2 Anisotropic magnetic materials

Similar to the relationship between the electric dis-
placement tensor [D] and electric field tensor [E]
for an anisotropic dielectric material, the relation-
ship between inductance tensor [B] and magnetic
field tensor [H ] for an anisotropic magnetic material
can be expressed in the form of

 B1

B2

B3


 =


 µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33





 H1

H2

H3


 (8.13)

The permeability tensor [µ] can be also diagonal-
ized by using the principal coordinates x, y, and z

Bx

By

Bz


 =


µxx 0 0

0 µyy 0
0 0 µzz





Hx

Hy

Hz


 (8.14)

Similarly, the relative permeability tensor in the
principal axes can be expressed in the follow-
ing format:

[µr] =

 µ1 0 0

0 µ2 0
0 0 µ3


 (8.15)

with
µ1 = µxx/µ0, (8.16)

µ2 = µyy/µ0, (8.17)

µ3 = µzz/µ0. (8.18)

According to the relationships between µ1, µ2, and
µ3, we can also classify magnetic materials into
three general types: isotropic, uniaxial, and biaxial.

When a magnetic material is magnetized by an
external dc magnetic field, the relative permeability
tensor [µr] is usually different from Eq. (8.15).
When the external dc magnetic field H0 is in the
z-direction, the relative permeability tensor is in
the form of

[µr] =

 µ −jκ 0

jκ µ 0
0 0 µz


 (8.19)

If the magnetization is saturated, µz = 1. When
the external magnetic field H0 is applied in the x-
direction, the relative permeability is in the form of

[µr] =

µx 0 0

0 µ −jκ
0 jκ µ


 (8.20)

If the magnetization is saturated, µx = 1. When the
external magnetic field H0 is applied in y-direction,
the relative permeability tensor is in the form of

[µr] =

 µ 0 −jκ

0 µy 0
jκ 0 µ


 (8.21)

If the magnetization is saturate, µy = 1. In the
following discussions, we concentrate on the case
with the external dc magnetic field applied in z-
direction, so the relative permeability tensor is in
the form given by Eq. (8.19). Meanwhile, in most
cases, we assume that the magnetization is sat-
urated, so the measurement of the permeability
tensor becomes the measurement of two param-
eters µ and κ .

The components in permeability tensor are usu-
ally frequency-dependent. For a magnetic mate-
rial with external magnetic field H0 in z-direction,
according to Eq. (8.19), the relationship between
microwave magnetic inductance [b] and microwave
magnetic field [h] is given by

 bx

by

bz


 = µ0


 µ −jκ 0

jκ µ 0
0 0 1





hx

hy

hz


 (8.22)

with

µ = 1 + ωmω0

ω2
0 − ω2

(8.23)

κ = − ωmω0

ω2
0 − ω2

(8.24)

ω0 = γH0 (8.25)

ωm = γ 4πM0 (8.26)

where ω0 is the angular ferromagnetic resonance
frequency, M0 is the static magnetization due to
external dc magnetic field. γ is the gyromagnetic
ratio, and for most of the ferrites, γ = 2.8 ×
106 Hz/Oe = (1/4π) × 2.8 × 103 Hz/(A/m).
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In a general case, the permeability of a mag-
netized magnetic material is a tensor. To some
special types of magnetic fields, if we do not con-
sider the loss factor, permeability tensor becomes
a scalar. These fields can be obtained by finding
the eigenvalues and eigenvectors of [µ] of the fol-
lowing equation:

 µ0µ −jµ0κ 0
jµ0κ µ0µ 0

0 0 µ0





 hx

hy

hz


 = λ


hx

hy

hz



(8.27)

where λ is the eigenvalue to be determined.
Equation (8.27) can be transformed as∣∣∣∣∣∣

µ0µ − λ −jµ0κ 0
jµ0κ µ0µ − λ 0

0 0 µ0 − λ

∣∣∣∣∣∣ = 0 (8.28)

The three eigenvalues of Eq. (8.28) are

λ1 = µ0 (8.29)

λ2 = µ0(µ − κ) (8.30)

λ3 = µ0(µ + κ) (8.31)

The above eigenvalues are scalars, and their
corresponding eigenvectors are

h1 = hz =

 0

0
h0


 (8.32)

h2 = h+ = 1√
2


 h0

−jh0

0


 (8.33)

h3 = h− = 1√
2


 h0

jh0

0


 (8.34)

The three microwave magnetic fields described by
Eqs. (8.32) to (8.34) are usually called z-direction
linearly polarized magnetic field, right-hand (posi-
tive) circular-polarization magnetic field, and left-
hand (negative) circular-polarization magnetic field
respectively. For these microwave magnetic fields,
the magnetic material has a scalar permeability. For
example, for a magnetic fieldhz that is linearly polar-
ized in z-direction, the relationship between [b] and
[h] is given by

bz = µ0hz (8.35)

So the permeability is a scalar, which equals to the
corresponding eigenvalue (λ1 = µ0).

The concepts of right-hand polarization and left-
hand polarization are relative to the direction of
the external bias magnetic field H0 in the z-
direction. The permeability values, µ+ and µ−,
corresponding to the right-hand and left-hand
circular-polarization fields are eigenvalues, λ1 and
λ2 respectively:

µ+ = µ − κ = 1 + ωm

ω0 − ω
(8.36)

µ− = µ + κ = 1 + ωm

ω0 + ω
(8.37)

Equation (8.36) indicates that µ+ has resonant
characteristics. When the microwave angular fre-
quency approaches ω0, the value of µ+ will be
approaching infinity. This phenomenon is called
ferromagnetic resonance. The value of µ− does
not have resonant characteristics. The frequency
dependences of µ+ and µ− for an ideal mag-
netic material with no magnetic loss are shown
in Figure 8.2(a).

In the above discussion, the energy dissipation
of magnetic materials is not taken into consider-
ation. For actual magnetic materials, there exists
magnetic losses, and so µ+ and µ− have their
imaginary parts, representing the magnetic loss
factors. Owing to the energy dissipation, the real
part of µ+ cannot be infinity. Figure 8.2(b) shows
typical curves for complex µ+ and µ− of actual
magnetic materials.

Ferromagnetic resonance is important for the
study of ferromagnetism and the applications of
ferromagnetic materials. In Sections 8.3 and 8.4,
the origin of ferromagnetic resonance and the
methods for the measurement of ferromagnetic
resonance are further discussed.

8.2 MEASUREMENT OF PERMITTIVITY
TENSORS

In the measurement of permittivity tensors, usually
the electric field is applied to the sample along
the direction of one of the main axes of the
sample. Following the classification in Chapter 2,
the methods for the measurement of the permittivity
tensor of anisotropic materials generally fall into
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Figure 8.2 The frequency dependences of µ+ and µ−. (a) Ideal magnetic material with no magnetic loss and
(b) magnetic material with magnetic loss

nonresonant and resonant methods. A nonresonant
method can cover a certain frequency range, while
a resonant method usually has higher accuracy.

In this section, we concentrate only on the
measurement of permittivity tensors. The methods
that can be used to measure both permittivity
and permeability tensors are discussed in the
Section 8.3.

8.2.1 Nonresonant methods

Nonresonant methods mainly include reflection and
transmission/reflection methods. In principle, any
type of transmission lines can be used for the mea-
surement of anisotropic materials. As higher-order

modes are often involved, numerical techniques are
often used in the calculation of tensor components.

8.2.1.1 Reflection methods

The principles for reflection methods have been
discussed in Chapter 3. In the following text, we
discuss the reflection methods developed from three
types of transmission lines for the measurement of
permittivity tensors: coaxial line, waveguide, and
free space.

Coaxial-line method

Figure 8.3 shows a coaxial cell proposed for the
measurement of uniaxial materials using reflection

A

A

MicaShort

Sample

Quartz
A−A

Figure 8.3 Structure of the coaxial cell for the measurement of uniaxial materials. Source: Parneix, J. P.
Legrand, C. and Toutain, S. (1982). “Automatic permittivity measurements in a wide frequency range: application
to anisotropic fluids”, IEEE Transactions on Microwave Theory and Techniques, 30 (11), 2015–2017.  2003 IEEE
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method (Parneix et al. 1982). It is a short-circuited
rectangular hybrid structure with the same geomet-
rical sizes as the standard 7-mm coaxial connector,
so that the measurement cell can be connected to
a 7-mm coaxial connector. The input plane is a
piece of mica sheet. The gap between the internal
and the external conductors is partially filled with
quartz that makes it possible, firstly, to get a homo-
geneous electric field inside the sample under test
and, secondly, to limit the volume of sample. Quartz
is chosen because of its very low thermal coefficient
and low dielectric losses. What is more, it can be
easily machined with high accuracy.

The essence of this method is that, in the mea-
surement cell, the electric field lines are parallel
to each other, and there are two measurement con-
figurations: either the direction of the electric field
is parallel to the optical axis (ε3) or perpendicular
to it (ε1). So the components ε1 and ε3 of per-
mittivity tensor in the form of Eq. (8.12) can be
measured independently. Besides, the coaxial mea-
surement cell has two additional features. First, a
small sample volume is required so that samples
with small quantities can be tested. Second, a wide
frequency range of measurement can be realized by
optimizing the geometrical sizes of the cell.

The calculation of materials properties mainly
consists of two steps. In the first step, a fictitious
permittivity (εf) is calculated using the way as dis-
cussed in Chapter 3, assuming the cell to be coaxial
line of the same length and filled homogeneously
with the sample. In the second step, the permit-
tivity (εs) of the sample is obtained using a linear
relationship

εf = ε′
f − jε′′

f = (1 − θ)εq + θεs (8.38)

where εq is the permittivity of quartz and θ is a filling
factor. As quartz is extremely low loss, its imaginary
part of permittivity can be ignored. From Eq. (8.38),
the real and imaginary parts of the permittivity of the
sample can be obtained:

ε′
s = ε′

f − (1 − θ)εq

θ
(8.39)

ε′′
s = ε′′

f

θ
(8.40)

In the calculation of the filling factor θ , a quasi-
TEM propagation-mode approximation is assumed

in spite of the hybrid character of the measurement
cell. By using a numerical method, εf can be
calculated as a function of ε′

s by solving Laplace’s
equation in a cross-section plane of the cell. The
relationship between εf and ε′

s is approximately
linear, and the slope of the straight line gives the
value of θ .

In the working range of the coaxial cell, the quasi-
TEM approximation can give consistent results for
low-loss dielectric materials with ε′

s values up to 7.
Such a cell can be used to characterize both bulk
and liquid materials. The measurement accuracy
is close to that of a usual reflection method: the
overall uncertainty is less than 2 % for ε′

s and 5 %
for ε′′

s (Parneix et al. 1982).

Waveguide method

As discussed in Chapter 3, when a piece of dielec-
tric sample covers an open-end waveguide probe
with a flat plane, from the reflection at the inter-
face between the open end of the waveguide and the
sample, the dielectric permittivity of the sample can
be calculated. Chang et al. extended this method for
the characterization of anisotropic materials (Chang

Dielectric
material

Rectangular
waveguide

Higher-
order modes

TE10

Z = 0 Z = d

Infinite
flange

Free space

Figure 8.4 Nondestructive measurement using an
open-end waveguide. Source: Chang, C. W. Chen,
K. M. Qian, J. (1996). “Nondestructive measurements
of complex tensor permittivity of anisotropic materials
using a waveguide probe system”, IEEE Transactions on
Microwave Theory and Techniques, 44 (7), 1081–1090.
 2003 IEEE



Measurement of Permittivity and Permeability Tensors 329

et al. 1996). Figure 8.4 shows a measurement con-
figuration in which a flanged open-end rectangular
waveguide is placed against a layer of unknown
anisotropic material with thickness d and backed by
free space.

The essence of this method is that the total elec-
tric field in the probe aperture includes not only a
dominant TE10 mode but also higher-order modes.
Because of the higher-order modes, the electric
fields in the aperture generally have components
in any directions, and so the reflection from the
aperture is related to all the components in the per-
mittivity tensor of the material covering the aper-
ture. To determine the components of permittivity
tensor, independent reflection measurements are
needed. For example, three independent measure-
ments are required to determine the three principal
permittivity components in Eq. (8.11).

Numerical calculation is needed for the deter-
mination of permittivity tensor. The algorithm con-
sists of the direct problem and the inverse problem.
The direct problem can be solved by matching
the boundary conditions at discontinuity interfaces
to constitute two coupled integral equations for
the unknown aperture electric field. The electro-
magnetic field excited in the waveguide can be
expressed on the basis of the Hertzian potentials,
while the electromagnetic fields in the material
layer and the free space backing the material layer
can be derived on the basis of the concept of eigen-
modes of the spectrum-domain transverse electro-
magnetic fields. Two coupled electric field integral
equations (EFIEs) for the electric field in the aper-
ture can then be derived. The EFIEs can be con-
verted to a matrix equation using the method of
moments, and the aperture electric field can then be
determined by solving the matrix equation. Once
the aperture electric field is determined, relevant
quantities such as the reflection coefficient of the
incident dominant wave and the probe input admit-
tance can be expressed as functions of the electro-
magnetic properties of the material. If the reflection
coefficient of the incident wave can be experi-
mentally measured, the electromagnetic properties
of the material can be determined using Newton-
Raphson method in the inverse problem (Chang
et al. 1996).

For a layer of anisotropic material with a diagonal
form of the complex tensor permittivity in the form
of Eq. (8.11), three independent measurements are
required to determine the three unknown principal
permittivity components ε1, ε2, and ε3. The three
measurements can be obtained by three different
orientations of the probe with respect to a principal
axis of the material, for example, 0, 45, and
90 degrees, or 0, 30, and 90 degrees. Actually,
independent measurements can be obtained in
various configurations. For example, the sample
under test can be backed by a metal, and an
air gap can be left between the sample and the
backing metal. More configurations of reflection
measurements can be found in Chapter 3.

To accurately determine the tensor permittivity
components, especially the one in the z-direction,
the sample cannot be very thin. Similar to the
conventional reflection probe method, the air gap
between the probe and the sample causes serious
error to the measurement results. One possible
solution is to introduce a layer of air with
known thickness between the waveguide probe
and the sample under test. Finally, it should
be noted that, in principle, the waveguide probe
system is capable of simultaneously determining
both permittivity tensor and permeability tensor
of anisotropic materials provided that sufficient
independent measurements can be made.

Free-space method

Rubber sheets with various kinds of fillers have
many applications, such as shielding materials
and wave absorbers. These materials usually have
anisotropy that comes from the rolling method
of manufacturing, because the fillers tend to be
aligned along the rolling direction. Hashimoto
and Shimizu proposed a free-space reflection
method for the measurement of the permittivity
tensors of rubber sheets manufactured by rolling
process (Hashimoto and Shimizu 1986). In this
method, the permittivity tensor is determined
from the reflection coefficient measured at normal
incidence, and the procedure mainly consists of
two steps. First, the frequency characteristics of
the reflection coefficients of a rubber sheet backed
by metal plate are measured by changing the
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Figure 8.5 Measurement of permittivity tensor of
sheet samples. (a) Lossy anisotropic sheet backed by a
metal plate and (b) direction of incident electric field

angle between the rolling direction and the incident
electric field. Next, the elements of the permittivity
tensor are determined by the least-squares method
from the reflection coefficients of the samples
measured in the first step. After the tensor,
including off-diagonal elements, is obtained, the
principal directions of the tensor can be calculated
from the measured elements.

Figure 8.5 shows a sheet sample backed by a
metal plate, and the sample is anisotropic only in
the X–Y plane. The permittivity tensor of such a
sheet is in the form of

[ε] =

 ε11 ε12 0

ε21 ε22 0
0 0 ε33


 (8.41)

where ε12 = ε21, and the subscripts 1, 2, and
3 denote the directions of X-, Y - and Z-axes,
respectively.

In order to measure the permittivity tensor of
the anisotropic sheet, the reflection coefficients
from the sheet backed by a metal plate must
be analyzed. The coordinate system for analysis
and the direction of the incident electric field are
shown in Figure 8.5, in which the direction of
the X-axis is usually taken in the direction of
rolling. By substituting Eq. (8.41) into Maxwell’s
equations and eliminating the transverse compo-
nents of the magnetic field, the following differen-
tial equation can be obtained for the rubber-sheet

region (Hashimoto and Shimizu 1986):

− ∂

∂z2
Et = ω2µ0[εt]Et (8.42)

where [εt] is the dielectric permittivity tensor that
has elements εij (i, j = 1, 2), and the subscript t
denotes the transverse components.

The transverse electric field can be expressed by

Et =
[

A1

A2

]
exp(−γ z) exp(jωt) (8.43)

where A1 and A2 are amplitude coefficients of Ex

and Ey respectively, and γ is the propagation con-
stant. The reflection coefficients in the directions
of X- and Y -axes, 
x and 
y , can be calculated by
applying the boundary conditions that are the con-
tinuation of tangential field components. From 
x

and 
y , the reflection coefficient 
 of the direction
of angle θ can be calculated:


= (
′
x cos θ + 
′

y sin θ) + j(
′′
x cos θ + 
′′

y sin θ)

(8.44)

with

x = 
′

x + j
′′
x , (8.45)


y = 
′
y + j
′′

y . (8.46)

The elements of the tensor [εt] can be calculated
by the least-squares method, and the objective
function F is defined by

F(ε1, ε2, . . . , ε6) =
N∑

v=1

(X̂v − Xv)
2 (8.47)

with

X̂v = 20 log10 |
calc|v, (8.48)

Xv = 20 log10 |
meas|v, (8.49)

where εi (i = 1, 2, . . ., 6) are the six real or imagi-
nary parts of the three tensor elements (ε11, ε12, and
ε22) to be determined, and N is the number of data.
The value of |
calc|v is the reflection coefficient cal-
culated theoretically according to the guess values
of materials properties. |
meas|v , which is the abso-
lute value of the reflection coefficient in the same
direction as the direction of incident field, is mea-
sured by changing the angle θ between the direction
of electric field and the X-axis. So the determination
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Figure 8.6 Top view of a free-space measurement
setup

of materials properties becomes finding suitable εi

(i = 1, 2, . . . , 6) values, which result in minimum
F value defined by Eq. (8.47).

Figure 8.6 shows a free-space measurement sys-
tem for reflectivity measurement. Two antennas are
used for transmitting and receiving microwave sig-
nals respectively. The anisotropic sheet backed by a
metal plate is placed on a positioner. To decrease the
measurement noise, the measurement is often con-
ducted in an anechoic chamber. To reduce the effect
of the sample edge to the measurement results, the
samples under test are usually in a circular shape, as
shown in Figure 8.7. The different angles between
the electric field of the incident wave and the X-axis
can be achieved by rotating the sample around its
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Direction of rotation

Metal plate

Z, W

Anisotropic
sheet

V
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Figure 8.7 Schematic view of a circular sample. The
directions of X, Y , and Z are defined in Figure 8.5,
and U , V , and W denote the principal directions of
the sample. Source: Hashimoto, O. Shimizu, Y. (1986).
“Reflecting characteristics of anisotropic rubber sheets
and measurement of complex permittivity tensor”, IEEE
Transactions on Microwave Theory and Techniques, 34
(11), 1202–1207.  2003 IEEE

axis. After the complex permittivity tensors includ-
ing off-diagonal elements are obtained, the principal
directions of the tensor can be calculated from the
measured permittivity tensor.

8.2.1.2 Transmission/reflection method

The basic principle of transmission/reflection
method has been discussed in Chapter 4. Here,
we discuss the circular-waveguide method and the
coaxial discontinuity method for the measurement
of permittivity tensors of uniaxial materials.

Circular-waveguide method

Pradoux et al. studied the electromagnetic wave
propagation in circular waveguides filled with
anisotropic media and proposed a method for the
determination of the permittivity tensor of uniaxial
dielectrics (Pradoux et al. 1973a, b).

Figure 8.8 shows two coordinate systems for a
cylindrical uniaxial sample: the optical coordinates
(UVW) and geometrical coordinates (XYZ). The W -
axis in the optical coordinate system is along the
Z-axis in the geometrical system. The U -axis is
the main optical axis and is perpendicular to the
Z-axis. The angle between the U -axis and the X-
axis is ϕ. In the optical coordinates (UVW), its
permittivity tensor is in the form of

[εr] =

 ε1 0 0

0 ε2 0
0 0 ε2


 (8.50)

U
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E
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E

Y

j

Z, W

Figure 8.8 Two coordinate systems for a cylindrical
uniaxial sample
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Sample

d

Figure 8.9 Circular-waveguide measurement cell
loaded with a uniaxial sample

While in the geometrical coordinates (XYZ), the
permittivity tensor is in the form of

[εr] =

 ε1 + η sin2 ϕ η sin ϕ cos ϕ 0

η sin ϕ cos ϕ ε2 + η cos2 ϕ 0
0 0 ε2




(8.51)

with η = ε2 − ε1.
Figure 8.9 shows a circular waveguide filled with

an anisotropic substance with one of its optical
axes along the direction of propagation (Z-axis),
and its UVW coordinates are defined in Figure 8.8.
An incident TE wave can be split into two waves,
one with its electric field along the direction of the
U -axis, and the other along the V -axis, which is
perpendicular to the U -axis. The wave with electric
field parallel to U -axis propagates as a TE mode that
is very close to the incident mode that propagates
in an isotropic substance with dielectric constant
ε1. The electric field of this wave is Eu = E cos ϕ,
undergoes a phase change θ1 when it emerges from
the sample. The wave with electric field parallel
to V -axis propagates as a TE mode that is very
close to the incident mode that propagates in an
isotropic substance of dielectric constant ε2. The
electric field of this wave is Ev = E sin ϕ, and it
undergoes a phase change θ2. When they emerge
from the sample, the two electric fields are combined
together, taking into account their phase difference.

After the wave propagates through the sample,
the wave polarization is changed from linear
polarization to elliptic polarization with ellipticity
β, and the major axis of the elliptic wave
makes an angle α with the U -axis. From the
rotation and the ellipticity of the wave, which has
propagated through the sample, taking into account
the multiple reflections, the two elements of the

permittivity tensor of the uniaxial sample can
be obtained. Detailed discussion on this method
and its calculation algorithms can be found in
references (Pardoux et al. 1973a,b).

Coaxial discontinuity method

As shown in Figure 8.10, in this method, a seg-
ment of the central conductor of a coaxial line
is moved away, and the cylindrical sample under
test is inserted inside the outer conductor of coax-
ial line and between the two ends of the central
conductors. As two independent complex parame-
ters (reflection and transmission) can be measured,
two independent material property parameters can
be derived. The coaxial discontinuity method has
been discussed in Chapter 4 for the characteri-
zation of both permittivity and permeability of
isotropic materials.

This method can also be used in characterizing
the permittivity tensor of uniaxial dielectric mate-
rials (Belhadj–Tahar and Fourrier–Lamer 1991).
In the measurement, the main axis of the sam-
ple is along the axis of the coaxial line (Y0 − Y0).
In the region between the two ends of the cen-
tral conductors (T1 and T2), the electric field has
two components in the directions parallel and per-
pendicular to the coaxial axis, respectively. There-
fore, from the transmission and reflection param-
eters of the region filled with the sample, the two

Sample

Coaxial line2d

T1 T2

Y0Y0

Figure 8.10 Coaxial discontinuity method for mate-
rials property characterization. Modified from Bel-
hadj-Tahar, N. E. and Fourrier-Lamer, A. (1991).
“Broad-band simultaneous measurement of the complex
permittivity tensor for uniaxial materials using a coaxial
discontinuity”, IEEE Transactions on Microwave Theory
and Techniques, 39 (10), 1718–1724.  2003 IEEE
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permittivity-tensor components can be determined.
As there are no closed-form equations available
for materials property deduction, numerical calcu-
lations are required, and often the mode-matching
method is used.

8.2.2 Resonator methods

Because of their high accuracy and sensitivity,
resonant methods are more suitable for low-loss
materials. The resonant methods for the characteri-
zation of permittivity tensors also include resonator
method and resonant-perturbation method. Here,
we discuss the resonator methods for the charac-
terization of permittivity tensors, and the resonant-
perturbation methods for the characterization of
permittivity tensors are discussed in Section 8.2.3.

As discussed in Chapter 5, in a resonator method,
the sample under test serves as a dielectric resonator
in the measurement circuit, and the dielectric proper-
ties of the sample are determined from the resonant
properties of the dielectric resonator (Kobayashi
and Tanaka 1980). To measure the two complex
components of the permittivity tensor of a uniaxial
sample using a dielectric resonator method, usually
two modes with electric fields perpendicular to each
other are needed. In the following text, we discuss
three examples of dielectric resonator methods for
the measurement of permittivity tensors of uniaxial
dielectrics.

8.2.2.1 Shielded resonator methods

Figure 8.11 shows a cylindrical dielectric resonator
enclosed by a closed metal shield. The main
dielectric axis of the sample is along the cylindrical
axis of the sample. The sample with radius b is
at the center of a cylindrical metal shield with
radius a. The sample and the metal shield have
the same height, so there is no air gap between the
open ends of the sample and the endplates of the
metal shield.

In the measurements of isotropic materials, one
of the TE0nl modes (usually the TE011 mode) is
used. The same circularly symmetric modes can also
be used for the measurement of the permittivity-
tensor component (ε1) that is perpendicular to the
anisotropy axis of the uniaxially anisotropic sample.

z

r

L

Air
(e2, m2)

Sample
([e], m1)

ab0

Figure 8.11 Configuration of the dielectric resonator

The determination of the parallel permittivity-tensor
component (ε3) requires one of the hybrid or TM
modes. Usually, the HE111 and the HE211 modes
are used because they can be easily excited. Since
the permittivity component (ε1) perpendicular to the
anisotropy axis has been evaluated by solving the
characteristic equation for the TE0nl mode family,
the permittivity component (ε3) parallel to the
anisotropy axis can be obtained from the resonant
frequency of one hybrid mode by solving the
characteristic equation for the hybrid mode (Geyer
and Krupka 1995; Krupka et al. 1994a).

The dielectric loss tangent for the permittivity-
tensor component perpendicular to the anisotropy
axis can be calculated according to the method
used in characterizing the loss tangent of isotropic
materials:

tan δ = pe

(
1

Qu
− 1

Qc

)
(8.52)

where Qu is the unloaded quality factor of the TE0nl

mode of the resonant system with the dielectric
sample, Qc is the quality factor depending on
conductor losses of the metal shield, and pe is the
electric-energy filling factor of the dielectric sample.
The electric-energy filling factor pe, whose value
in most cases is close to 1, can be evaluated with
exact formulas that require prior knowledge of the
permittivity (Geyer and Krupka 1995). Evaluation
of Qc requires additional knowledge of the surface
resistances of endplates and sidewall of the metal
shield. Evaluation of the dielectric loss tangent
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Figure 8.12 Resonant setup for measurement of per-
mittivity tensor of uniaxial dielectrics at cryogenic tem-
peratures. Modified from Geyer, R. G. and Krupka, J.
(1995). “Microwave dielectric properties of anisotropic
materials at cryogenic temperatures”, IEEE Transactions
on Instrumentation and Measurement, 44 (2), 329–931.
 2003 IEEE

for the permittivity-tensor component parallel to
the anisotropy axis is also theoretically possible.
However, in this case, measurement error would
be much greater because of the appearance of
hybrid mode splitting. This splitting is caused by
unavoidable imperfections in the axial symmetry of
the resonant sample under test.

8.2.2.2 Sandwiched resonator method

Geyer and Krupka developed a method of mea-
suring the permittivity tensor using a circularly
symmetric mode and a hybrid mode of the
dielectric resonator formed by shorting the two
ends of a uniaxially anisotropic sample with
two pieces of high-temperature superconducting
thin films (Geyer and Krupka 1995; Krupka et al.
1994a). As shown in Figure 8.12, the dielectric
sample under test constitutes a cylindrical dielec-
tric resonator situated between two parallel super-
conducting films, and the cylindrical sample pos-
sesses uniaxial anisotropy along the cylinder axis.
Copper–beryllium springs are used to hold the
sample tightly between the endplates of the shield.
If the sample faces are optically finished, there are
essentially no air gaps between the sample and the
endplate. The general resonant properties of such a
sandwiched dielectric resonator has been discussed
in Chapter 2. In Chapter 5, this configuration has
been used for the measurement of the dielectric
permittivity of isotropic dielectric samples and sur-
face resistance of superconducting films.

When this configuration is used in the measure-
ment of permittivity tensor of a uniaxial dielec-
tric sample, the components of the permittivity
tensor can be obtained in a way similar to that
used in the shielded resonator method discussed
above. The permittivity-tensor component (ε1) that
is perpendicular to the anisotropy axis of uniax-
ially anisotropic material can be obtained from
the resonant properties of a circularly symmet-
ric mode. Then with the knowledge of ε1, the
permittivity-tensor component (ε3) that is parallel
to the anisotropy axis can be obtained from the
resonant properties of the hybrid mode. The use
of superconducting films is to increase the mea-
surement sensitivity of the loss tangent. However,
as superconducting films are used, this configura-
tion is only suitable for measurements at cryogenic
temperatures.

8.2.2.3 Whispering-gallery resonator method

The properties of whispering-gallery mode res-
onators have been discussed in Chapter 2. The
use of whispering-gallery modes in dielectric res-
onator specimens is one of the most accurate ways
for determining the complex permittivity of ultra-
low-loss dielectric materials, which may be either
isotropic or uniaxially anisotropic (Krupka et al.
1999, 1994b).

When whispering-gallery modes are employed,
the radiation losses are negligibly small, especially
for the modes with large azimuthal mode number.
Therefore, they can be used alternatively with
or without a metallic shield for high-resolution
dielectric loss tangent measurements of ultra-
low-loss materials. Figure 8.13 shows two typical
configurations of whispering-gallery resonators for
the characterization of the properties of dielectric
samples. In Figure 8.13(a), a crystal sample is
enclosed in a metal shield, while in Figure 8.13(b)
a ceramic sample is excited in an open space.

The relationship between resonant frequencies,
dimensions of the resonant structure, and permittiv-
ity of the sample under test can be calculated with
a radial mode-matching technique (Krupka et al.
1999, 1994b). In this method, the resonant struc-
ture is first subdivided into cylindrical regions hav-
ing dielectric inhomogeneity only along the axial
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Figure 8.13 Two types of whispering-gallery resonators. (a) Shielded resonator and (b) unshielded resonator.
Source: Krupka, J. Derzakowski, Abramowicz, A. Tobar, M. E. and Baker-Jarvis, J. (1999). “Use of whisper-
ing-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials”, IEEE Transactions
on Microwave Theory and Techniques, 47 (6), 752–759.  2003 IEEE

direction. The electromagnetic field components are
then expanded into series modal expansions sep-
arately in each region. Application of the bound-
ary conditions at the boundaries between adjacent
regions leads to a system of matrix equations with
respect to the field expansion coefficients that has
nonzero solutions only when the determinant van-
ishes. The resonant frequencies are the values mak-
ing the determinant of the square matrix vanish.
If the resonant structure has a plane of symme-
try, the system of equations splits into two separate
systems for the modes symmetrical and antisym-
metrical, with respect to the plane of symmetry.
Since for whispering-gallery modes the electromag-
netic fields are very well confined to the dielectric
sample, one can use subdivision into symmetrical
and antisymmetrical modes, even for structures that
physically do not exhibit a planar symmetry.

In order to find the principal permittivity-tensor
components of a uniaxially anisotropic dielectric
material, a cylindrical specimen whose cylindrical
axis is along one principal direction of anisotropy
should be used. The resonant frequencies of
two whispering-gallery modes of the specimen
that exhibit quasi-TE (H-mode) and quasi-TM
(E-mode) structures, respectively, must then be
identified and measured. After that, the following
two nonlinear determinant equations should be
solved (Krupka et al. 1999)

F1(f
(H), ε1, ε3) = 0 (8.53)

F2(f
(E), ε1, ε3) = 0 (8.54)

where f (H) and f (E) are the measured resonant
frequencies for the quasi-TE and the quasi-TM
whispering-gallery modes, ε1 and ε3 are the real

parts of the permittivity-tensor components perpen-
dicular and parallel to the anisotropy axis, respec-
tively. The eigenvalue equations represented by F1

and F2 result from the application of the mode-
matching technique.

Once permittivity components are evaluated
from Eqs. (8.53) and (8.54), dielectric loss tan-
gents can be computed as solutions to the follow-
ing two linear equations:

Q−1
(E) = p

(E)

e1 tan δ1 + p
(E)

e3 tan δ3 + Rs/G(E) (8.55)

Q−1
(H) = p

(H)

e1 tan δ1 + p
(H)

e3 tan δ3 + Rs/G(H) (8.56)

where tan δ1 and tan δ3 are the dielectric loss tan-
gents perpendicular and parallel to the anisotropy
axis; p

(H)

e1 , p
(H)

e3 , p
(E)

e1 , p
(E)

e3 are the electric-energy
filling factors perpendicular (subscript 1) and par-
allel (subscript 3) to the anisotropy axis of the res-
onant structure, for quasi-TM whispering-gallery
modes (superscript E) and quasi-TE whispering-
gallery modes (superscript H); and G(E) and G(H)

are the geometric factors for quasi-TM and quasi-
TE whispering-gallery modes. The electric-energy
filling factors may be determined from the incre-
mental frequency rule:

p
(H)

e1 = 2

∣∣∣∣∂f (H)

∂ε1

∣∣∣∣ ε1

f (H)
(8.57)

p
(H)

e3 = 2

∣∣∣∣∂f (H)

∂ε3

∣∣∣∣ ε3

f (H)
(8.58)

p
(E)

e1 = 2

∣∣∣∣∂f (E)

∂ε1

∣∣∣∣ ε1

f (E)
(8.59)

p
(E)

e3 = 2

∣∣∣∣∂f (E)

∂ε3

∣∣∣∣ ε3

f (E)
(8.60)



336 Microwave Electronics: Measurement and Materials Characterization

Using resonant modes at different frequencies,
complex permittivity measurements may be per-
formed over a relatively wide frequency range. As
the size of a whispering-gallery resonator can have
a much larger size than a conventional dielectric
resonator, the whispering-gallery modes may be
conveniently applied to dielectric measurements at
frequencies as high as 100 GHz. However, there
exists some difficulty in employing whispering-
gallery modes for measuring complex permittivity.
One of the difficult aspects is the identification of
the resonant modes. The identification is based on
resonance-frequency computations with initially
assumed permittivity values. This difficulty espe-
cially occurs when the initially assumed permit-
tivity differs substantially from the true intrinsic
permittivity. Another difficulty is the mode degen-
eracy, which may seriously affect the accuracy of
the measurement results.

8.2.3 Resonant-perturbation method

The permittivity tensor of uniaxial dielectric mate-
rials can also be characterized by resonant-
perturbation method using two degenerate TE112

modes in a cylindrical bimodal cavity (Chen
et al. 1999). Compared to resonator methods, this
method has the following advantages. First, this
method does not require an estimate of the dielec-
tric properties of samples, and the amount of
sample needed is small. Second, the measure-
ment frequency is determined by the resonant fre-
quency of the cavity that can be designed for a
selected frequency. For a specially designed cav-
ity, the two components in the permittivity ten-
sor of a uniaxial sample can be measured at the
same frequency. Third, as the conventional cavity-
perturbation method is modified by using the
frequency-retuning method discussed in Chapter 6,
the uncertainties caused by the increase of the total
stored energy in the cavity are eliminated.

8.2.3.1 Working principle

In this method, two resonant modes with electric
fields perpendicular to each other are used to mea-
sure the two complex components in the permittiv-
ity tensor of a uniaxially anisotropic dielectric. To

avoid the errors caused by the possible coupling
between the two modes, the two complex compo-
nents are measured separately and independently.
In the measurement of each component, only the
corresponding mode resonates, and the other mode
is eliminated.

The measurement of each component is based on
resonant perturbation theory, which has been dis-
cussed in Chapter 6. When a uniaxially anisotropic
sample is introduced at the position of maximum
electric field, its complex component (εi = ε′

i −
jε′′

i ) in the direction of the electric field can be
obtained from the changes of the resonant fre-
quency f and the quality factor Q of the cavity:

fia − fib

fib

= Ai(ε
′
i − 1)

v

V
(8.61)

1

Qib

− 1

Qia

= Biε
′′
i

v

V
(8.62)

where the subscript “i” indicates the component in
the direction of the electric field; and subscripts
“a” and “b” indicates the states before and after
the introduction of the sample respectively; v

and V are the volumes of the sample and the
cavity respectively. The two parameters Ai and
Bi are usually obtained by calibrating the cavity
using a standard sample with known complex
permittivity. As the introduction of the sample
alters the coupling condition between the cavity
and the transmission line, unloaded quality factors
are used in Eq. (8.62). In the conventional cavity-
perturbation method, because there is always a
decrease in the resonant frequency due to sample
insertion, Qia and Qib are usually measured at
different frequencies, fia and fib. However, as
indicated in Chapter 6, Eq. (8.62) is based on several
assumptions, among which the most fundamental
one is that the field configuration and the total stored
energy in the cavity do not change because of the
introduction of the sample (Sucher and Fox 1963;
Waldron 1970). However, when a dielectric sample
is placed at the position of maximum electric field
in a resonant cavity, the resonant frequency of the
cavity is decreased, and the total stored energy in the
cavity is increased (Jow et al. 1989; Tian and Tinga
1993, 1995; Maier and Slater 1952). Therefore, in a
strict sense, it is not appropriate to deduce ε′′

i from
Qia and Qib measured at fia and fib.
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The frequency-retuning method discussed in
Chapter 6 can be used to modify the conventional
cavity-perturbation method. For a resonant cavity
with a dielectric sample at the position of maxi-
mum electric field, when the resonant frequency
of the cavity is retuned to the value before the
sample is inserted by introducing an additional per-
turbation, the total stored energy in the cavity is
also retuned to its original value. If the additional
perturbation is purely reactive, the energy dissi-
pation in the cavity does not change because of
frequency retuning. So the difference between the
quality factor before sample insertion (Qia) and the
quality factor after sample insertion and frequency
retuning (Qib) reflects the increase of the energy
dissipation due to sample insertion. Therefore, Qia

and Qib can be used in Eq. (8.62) to calculate
the value of ε′′

i . In experiments, frequency retun-
ing can be achieved by cavity shape perturbation.
By installing a metal plunger on the cavity wall,

cavity shape perturbation can be made by adjusting
the plunger’s insertion depth in the cavity.

8.2.3.2 Bimode cavity

To measure the permittivity tensor of a uniaxi-
ally anisotropic material using cavity-perturbation
method, a resonant cavity with the following fea-
tures is needed. First, the cavity has two perpen-
dicular modes working at the same frequency;
second, the resonant frequency of the cavity is
adjustable so that frequency retuning is possible;
and third, the coupling coefficients between the
resonant cavity and the external transmission lines
are adjustable so that suitable coupling conditions
can be achieved for different samples.

Figure 8.14 shows a cylindrical cavity coupled
to two waveguides (labeled 1) through coupling
irises (labeled 3). Near each coupling iris, there
is a plunger (labeled 2) for adjusting the coupling
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Figure 8.14 Structure of the bimodal cavity. 1. Waveguide, 2. coupling adjusting plunger, 3. coupling iris, 4.
plunger, 5. quartz tube, 6. sample, 7. retuning plunger, 8 and 9. mode-selection needle. Source: Chen, L. F. Ong,
C. K. and Tan, B. T. G. (1999). “Cavity perturbation technique for the measurement of permittivity tensor of
uniaxially anisotropic dielectrics”, IEEE Transactions on Instrumentation and Measurement, 48 (6), 1023–1030. 
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condition by varying its insertion depth into the
waveguide. There is a quartz tube (labeled 5)
crossing the cavity, and the sample (labeled 6) in the
quartz tube is located at the position of maximum
electric field.

Because of the following considerations, the
cavity is selected to work at the TE112 mode. First,
as each TE11n mode has two degenerate modes with
electric fields perpendicular to each other, it can
be used to measure two complex components in
the permittivity tensor of a uniaxially anisotropic
material. Second, the change of the electric field
distribution of the TE11n mode is less near the
central part of the cavity, so the requirement for
the accuracy of sample location is less stringent.
And third, as shown in Figure 8.14, by selecting
TE112 mode instead of TE111 mode, the coupling
area (lower part of the cavity) and the perturbation
area (upper part of the cavity) are separated, so that
the field distribution in the cavity hardly changes
because of sample insertion and frequency retuning.
Four brass plungers (two labeled 4 and two labeled
7) are used to adjust the two degenerate TE112 modes
so that they have the same resonant frequency.

The two perpendicular degenerate TE112 modes
are used to measure the two components ε1 and
ε3 separately. In the measurement of each compo-
nent, only the corresponding mode resonates, and
the other mode is eliminated. Using the similar

Mode-selection
needle

Mode-selection
needle

Selected modeEliminated
mode

Figure 8.15 Mode selection. The mode whose electric
field is in the direction of the mode-selection needles
is eliminated. Modified from Chen, L. F. Ong, C. K.
and Tan, B. T. G. (1999). “Cavity perturbation tech-
nique for the measurement of permittivity tensor of
uniaxially anisotropic dielectrics”, IEEE Transactions on
Instrumentation and Measurement, 48 (6), 1023–1030.
 2003 IEEE

technique shown in Figure 6.7, mode selection can
be made by using two thin needles. As shown in
Figure 8.15, the two thin metal needles eliminate
the mode whose electric field is parallel to the two
needles, while the mode whose electric field is per-
pendicular to the needles remains unperturbed. The
two needles labeled 8 in Figure 8.14 are parallel to
the axis of the quartz tube, and they are used to
select the mode whose electric field is normal to the
axis of the quartz tube. The two needles labeled 9 in
Figure 8.14 are normal to the axis of the quartz tube,
and they are used to select the mode whose electric
field is parallel to the axis of the quartz tube.

Two brass plungers (labeled 7 in Figure 8.14) are
also used to retune the resonant frequencies of the
two perpendicular TE112 modes. For the mode with
electric field perpendicular to the plungers, shown
in Figure 8.16(a), the plungers are at the places of
maximum magnetic field, so the resonant frequency
of the cavity increases if the plungers are moved
in. For the mode with the electric field parallel
to the tuning plungers, shown in Figure 8.16(b),
the plungers are situated at the positions where
the electric fields are dominant, so the resonant
frequency of the cavity increases if the two plungers
are moved out. In frequency retuning, the two
plungers are adjusted simultaneously to preserve the
symmetry of the cavity.

(a) (b)

Figure 8.16 Frequency retuning. (a) The plungers are
at the places of maximum magnetic field and (b) the
plungers are at the places of maximum electric
field. Modified from Chen, L. F. Ong, C. K. and Tan,
B. T. G. (1999). “Cavity perturbation technique for
the measurement of permittivity tensor of uniaxially
anisotropic dielectrics”, IEEE Transactions on Instru-
mentation and Measurement, 48 (6), 1023–1030. 
2003 IEEE



Measurement of Permittivity and Permeability Tensors 339

8.2.3.3 Measurement procedure

To measure the two complex components in the
permittivity tensor, the perturbations of the sample
to the two modes are measured separately. The
measurements are carried out in the following
four steps.

First, the degeneration of TE112 mode: Install the
quartz tube, set the four metal plungers (labeled
4 and 7 in Figure 8.12) and the two coupling
adjustment plungers (labeled 2 in Figure 8.14) to
their proper positions, and move out all the mode-
selection needles. Two resonant peaks correspond-
ing to the two TE112 modes will be observed.
Adjust the four metal plungers till the two resonant
peaks overlap.

Second, the measurement of fia and Qia (i =
1, 3): Select the mode with electric field normal to
the axis of the quartz tube by moving in the two
mode-selection needles (labeled 8 in Figure 8.14).
Measure the resonant frequency f1 and the quality
factor Q1a , and move out the mode-selection
needles after the measurement. Then, select the
mode with electric field parallel to the axis of the
quartz tube by moving in the two mode-selection
needles (labeled 9 in Figure 8.14). Measure its
resonant frequency f3a and the quality factor Q3a ,
and move out the mode-selection needles after the
measurement. Fine adjustment is needed till f1a is
equal to f3a in the measurement accuracy.

Third, the measurement of f1b and f3b: Insert
the sample into the quartz tube and place the
sample at the position of maximum electric field.
Select resonant modes according to the method
described in the second step, and measure the
resonant frequencies of the two modes after sample
insertion, f1b and f3b.

Fourth, the measurement of Q1b and Q3b: Select
resonant modes according to the method described
in the second step, retune the resonant frequency
of the cavity to fia (f1a = f3a) by adjusting the
retuning plungers (labeled 7 in Figure 8.14), and
measure the quality factors Q1b and Q3b.

After obtaining the values of fia , fib, Qia , and
Qib (i = 1, 3), the complex components εi can be
calculated according to Eqs. (8.61) and (8.62). It
should be pointed out that, for Eqs. (8.61) and
(8.62), the two degenerate modes have their corre-
sponding parameters Ai and Bi (i = 1, 3), due to

the presence of the quartz tube, metal plungers, and
mode-selection needles. So the two modes should
be calibrated separately before measurements.

This method has been used to study the orienta-
tion dependence of the permittivity of α-SiO2 crys-
tals (Chen et al. 1999). As shown in Figure 8.17,
in a α-SiO2 cylindrical sample, there is an angle
θ between the cylindrical z-axis of the sample
and the c-axis in its crystal structure. As α-quartz
crystals with different crystalline orientations are
widely used in electrical engineering, it is impor-
tant to investigate the dielectric permittivity ε(θ)

of quartz samples with different θ values. The five
samples had different θ values: 0◦

, 30◦
, 45◦

, 60◦,
and 90◦ respectively. All the samples have the
same dimensions: �2.9 mm × 2.9 mm, and all the
quartz samples have been fired at 800 ◦C for 4 h,
and slowly cooled to room temperature to avoid
possible defects and also to keep their piezoelec-
tric structures.

For the sample shown in Figure 8.17, there are
two dielectric permittivities with a special meaning:
the dielectric permittivity when the electric field is
in the plane perpendicular to z-direction, ε⊥, and the
one when the electric field is in the z-direction, ε||.
Because of the piezoelectric effect, the permittivity
tensor of an α-SiO2 crystal is dependent on the
cutting angle θ . The relationship between ε⊥ and
θ may be represented by (Cady 1946)

ε⊥(θ) = ε′
⊥ − jε′′

⊥
= ε1 + (ε3 − ε1) sin2 θ

= ε1 cos2 θ + ε3 sin2 θ (8.63)

c-axis
q

z-axis

Figure 8.17 Schematic diagram of a α-SiO2 sample
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Figure 8.18 Relationships between the dielectric permittivity of α-SiO2 samples and their crystal orientations.
(a) Real part and (b) imaginary part. Source: Chen, L. F. Ong, C. K. and Tan, B. T. G. (1999). “Cavity perturbation
technique for the measurement of permittivity tensor of uniaxially anisotropic dielectrics”, IEEE Transactions on
Instrumentation and Measurement, 48 (6), 1023–1030.  2003 IEEE

where ε1 and ε3 are the permittivities in the
directions normal and parallel to the c-axis of the
crystal respectively.

The measurement results are shown in Figure
8.18. If a straight-line fit is used, ε⊥ can be
expressed as

ε′
⊥(θ) = 4.465 cos2 θ + 4.651 sin2 θ (8.64)

ε′′
⊥(θ) = 1.98 × 10−4 cos2 θ

+ 1.20 × 10−4 sin2 θ (8.65)

From Eqs. (8.63) to (8.65), ε1 and ε3 can be
obtained:

ε1 = 4.465 − j1.98 × 10−4 (8.66)

ε3 = 4.651 − j1.20 × 10−4 (8.67)

8.3 MEASUREMENT OF PERMEABILITY
TENSORS

The methods for the measurement of permeability
tensors can also be classified as the nonresonant
methods and the resonant methods. For magnetic
materials, there is a special phenomenon called
Faraday rotation, based on which both nonreso-
nant and resonant methods for the measurement of
permeability tensors can be developed. The four
parts of this section discuss nonresonant methods,

Faraday rotation methods, resonator methods, and
resonant-perturbation methods, respectively.

It should be noted that in the study of fer-
romagnetic resonance, people are more inter-
ested in the relationships between the absorption
of microwave energy, microwave frequency, and
external dc magnetic field, and such information
can be obtained from the permeability tensor. Most
of the methods for the measurement of permeabil-
ity tensor can be used for the study of ferromag-
netic resonance. This section concentrates on the
methods for the measurement of permeability ten-
sors, and the methods specially designed for the
measurement of ferromagnetic resonance are dis-
cussed in Section 8.4.

8.3.1 Nonresonant methods

The nonresonant methods for the measurement
of permeability tensors are mainly the transmis-
sion/reflection methods, and the transmission lines
often used are coaxial line and waveguide. In
this part, we discuss coaxial air-line method, par-
tially filled waveguide method, and waveguide-
junction method.

8.3.1.1 Coaxial air-line method

Coaxial air-line method is widely used in char-
acterizing the dielectric permittivity and magnetic
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permeability of isotropic materials. For the TEM
mode inside a coaxial line, the electric field is in
the radius direction, while the magnetic field is in
the circular direction. So coaxial line can be used in
measuring the permittivity component in the radius
direction and permeability component in the circu-
lar direction. This method has been used in charac-
terizing artificial high-impedance anisotropic mag-
netic materials (Jacquart and Acher 1996; Acher
et al. 1994).

For some microwave applications, it is a sig-
nificant advance to manufacture composite mate-
rials that combine the high saturation magnetiza-
tion and the high permeability of ferromagnetic
thin wires or films with small permittivity. How-
ever, composites manufactured by dispersing fer-
romagnetic particles in an insulating binder have
intrinsic impedances lower than unity. As shown
in Figure 8.19, one way of improving the intrinsic
impedance is to fabricate coaxial samples by wind-
ing thin ferromagnetic wires or ferromagnetic films
deposited on thin flexible substrates. This geome-
try can be approximated as consisting of coaxial
alternated ferromagnetic and insulating cylinders,
and the differences between strictly coaxial and
spiral-wound geometries are of little consequence.

Coaxial outer
conductor

Coaxial outer
conductor

Insulating
matrix

Ferromagnetic
wires or films

Radial electric fieldOrthoradial magnetic field

E
H

k

Figure 8.19 Sketch of a strongly anisotropic compos-
ite made of orientated conducting wires or films adapted
to coaxial-line geometry. The propagation vector is k,
and E and H represent the electromagnetic fields in
TEM mode. Source: Jacquart, P. M. Acher, O. (1996).
“Permeability measurement on composites made of ori-
ented metallic wires from 0.1 to 18 GHz”, IEEE Trans-
actions on Microwave Theory and Techniques, 44 (11),
2116–2120.  2003 IEEE

In such a composite, the component of the permit-
tivity tensor parallel to the laminations is expected
to be so large that a wave with electric field parallel
to the laminations can not penetrate the composite.

The strongly anisotropic composites made from
wiring thin wires or films can be character-
ized using coaxial air-line transmission/reflection
method. Using this method, the two most important
tensor components of such composites can be char-
acterized: the permittivity along the radius direction
and the permeability along the circular direction.

8.3.1.2 Partially filled waveguide method

A waveguide method has been developed for mea-
suring the complex permeability tensor compo-
nents and complex scalar permittivity of magne-
tized ferrites (Queffelec et al. 2000, 1999; Clerjon
et al. 1999). The principle behind this method is
using the anisotropy of the magnetic material to
achieve the nonreciprocity of the measurement fix-
ture loaded with the sample in order to have the
same number of measurable parameters (the S-
parameters of the fixture) as the number of the
characteristics to be determined.

The configuration of the measurement fixture
used in this method is identical to the one used for
the realization of nonreciprocal waveguide devices,
such as isolators and switches, except that there is
no absorbing material in contact with the ferrite,
as shown in Figure 8.20. To increase the cell
sensitivity, the gyrotropic effect is intensified by
setting the ferrite in a circularly polarized field
area of the guide with a dielectric support. The
waveguide is placed between the poles of an
electromagnet to magnetize the sample.

When a uniform dc magnetic field H0 is applied
along the narrow side of the waveguide (y-axis of a
Cartesian coordinate system), the field distributions
of TE10 mode in the rectangular waveguide are
given by

Ey = −jωµ
a

π
H10 sin

(πx

a

)
e∓jkzz (8.68)

Hx = ±jkz

a

π
H10 sin

(πx

a

)
e∓jkzz (8.69)

Hz = H10 cos
(πx

a

)
e∓jkzz (8.70)
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Figure 8.20 Measurement fixture. (a) Three-dimen-
sional view and (b) cross section. E+ and E− represent
the energy of microwave signals propagating along +z-
and −z-directions respectively. Modified from Queff-
elec. P. Le Floc’h, M. Gelin, P. (1999). “Nonreciprocal
cell for the broad-band measurement of tensorial per-
meability of magnetized ferrites: Direct problem”, IEEE
Transactions on Microwave Theory and Techniques, 47
(4), 390–397.  2003 IEEE

where a is the width of the wide side, and µ is the
permeability of the medium within the waveguide.
The upper sign in the ± or ∓ symbol represents
the wave in the +z-direction, while the lower sign
represents the wave in the −z-direction. H10 is the
amplitude of the components Hz.

From Eqs. (8.76) and (8.77), we can get

Hx

Hz

= ±jkz

a

π
tan

(πx

a

)
. (8.71)

At the position x = x1 satisfying

tan
(πx1

a

)
= π

akz

= λg

2a
, (8.72)

Eq. (8.71) becomes

Hx

Hz

= ±j (8.73)

Equation (8.73) indicates that at position x = x1,
the microwave magnetic field in the rectangular
waveguide is of circular polarization. Relative to
the direction of H0, the wave propagating in the
+z-direction is of left-hand circular polarization,
while the wave propagating in the −z-direction is of

right-hand circular polarization. It can also be found
that at position x = x2 = a − x1, the microwave
magnetic field is also of circular polarization, but the
polarization direction is opposite to the polarization
direction of the wave at position x = x1.

As shown in Figure 8.20(b), when a magnetic
material is placed at the position x = x2, the field
displacement occurs along the wide side of the
guide (x-axis). This can be understood in the fol-
lowing way. We assume that the operating fre-
quency is higher than the ferromagnetic-resonance
frequency of the magnetic material (ω > ω0 =
γH0). The microwave magnetic field propagat-
ing in the +z-direction is of right-hand circular
polarization. Figure 8.2(b) indicates that µ′+ < 1,
so the electromagnetic field is “expelled” out of
the magnetic material, and most of the electro-
magnetic energy of TE10 mode is concentrated in
the space filled with air. The wave propagating in
−z-direction is of left-hand circular polarization.
Figure 8.2(b) indicates that µ′− > 1, so the elec-
tromagnetic energy is concentrated on the space
filled with the magnetic sample.

The above discussions show that, in the mea-
surement fixture, the sample has different effects
on the forward modes (wave propagated in the
positive direction) and the backward modes (wave
propagated in the negative direction), so all the
scattering matrix elements of the cell will be
different. Thus, sufficient information is avail-
able to define specimen properties from scatter-
ing parameters.

Figure 8.21 shows the cross section along the
z-direction of the measurement fixture loaded with

Reference
plane

TE10

Γ (TE10)

T (TE10)

Reference
plane

Ferrite
sample

Dielectric
support

Evanescent
modes

I III

Figure 8.21 Discontinuities of the measurement fix-
ture. Waveguide I: empty regions. Waveguide II: region
partially filled with the ferrite
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the sample under test. As the magnetic field is
applied in y-direction, the permeability is in the
form of Eq. (8.21). When the magnetization is
saturate, µy = 1. If the sample has isotropic per-
mittivity εr, the electromagnetic properties of the
sample can be expressed using three parameters: µ,
κ , and εr. Therefore, three independent measure-
ment parameters are needed for the determination
of µ, κ , and εr.

The determination of material properties include
two calculation procedures: direct problem and
inverse problem. The direct problem is the elec-
tromagnetic analysis of the measurement cell that
calculates the S-parameters as functions of the
scalar permittivity, the permeability tensor, and
dimensions of the ferrite. The electromagnetic
analysis requires the modes determination in the
waveguide and the use of the orthogonality condi-
tions between the modes, and it is usually based
on the mode-matching method applied to the
waveguide discontinuities shown in Figure 8.21.
The electromagnetic analysis for this structure
is quite complicated, and detailed discussion on
this issue can be found in (Queffelec et al. 2000,
1999).

The inverse problem is the computation of µ, κ ,
and εr of a given ferrite from the measured values
of the S-parameters. It should be noted that the
permeability component µy cannot be determined,
as it does not appear in the S-parameters calcula-
tion, the modes being independent of this variable.
The electromagnetic constants of the sample under
test are determined by matching the calculated and
the measured values of the S-parameters using a
numerical optimization procedure, and the objec-
tive function for the optimization can be expressed
as a sum of squared functions:

E(x) =
2∑

i=1

2∑
j=1

|Sij,theoretical(x) − Sij,measured|2

(8.74)

where x = (µ′, µ′′, κ ′, κ ′′, ε′
r, ε

′′
r ). The optimiza-

tion algorithm should lead to a fast location of
the global minimum by avoiding local minima.
The most significant input parameters for opti-
mization algorithms are the number of variables,
initial estimate of the solution, and expression of
the objective function.

8.3.1.3 Waveguide-junction method

Damaskos et al. proposed a method for the deter-
mination of the constitutive parameters of an
anisotropic material, by inserting a slab of the
material in a rectangular waveguide (Damaskos
et al. 1984). If both permittivity and permeabil-
ity tensors have zero off-diagonal elements (biaxial
material), the six diagonal elements can be deter-
mined by measuring amplitude and phase of reflec-
tion and transmission coefficients. If the material is
nondispersive, two sets of measurements of TE10

excitation at two different frequencies are suffi-
cient. In the more general case of a lossy and
dispersive material, two sets of measurements at
the same frequency under TE10 and TE20 excita-
tions are needed.

For a biaxial medium, its relative permittivity
and permeability tensors [εr] and [µr] are diagonal
matrices represented by Eqs. (8.11) and (8.15) in a
rectangular Cartesian reference system (x, y, z). The
six constitutive parameters εi and µi (i = 1, 2, 3) in
[εr] and [µr] are dimensionless numbers and are, in
general, complex and frequency-dependent.

Consider a metallic rectangular waveguide ori-
ented along the z-axis, with horizontal walls of
width (a) parallel to the x-axis and vertical walls
of height (b ≤ a) parallel to the y-axis. The waveg-
uide is filled with a biaxial material in the range
0 ≤ z ≤ L, and the principal axes of the biax-
ial material coincide with the (x, y, z) axes of
the waveguide. The reflection coefficient Rm and
transmission coefficient Tm for TEm0 mode are
given by (Damaskos et al. 1984)

1

Tm

= cos βmL + j

2

(
u + 1

u
sin βmL

)
(8.75)

Rm

Tm

= − j

2

(
u − 1

u
sin βmL

)
(8.76)

with

u = µ1βm

µ2
3β0m

(8.77)

βm = k0

√
µ1

µ3

√
ε2µ3 −

(
mπ

k0a

)2

(8.78)

β0m =
√

k2
0 −

(mπ

a

)2
(8.79)



344 Microwave Electronics: Measurement and Materials Characterization

When L is given and the amplitude and phase of Rm

and Tm have been measured, the inverse problem is
to find u and βm from Eqs. (8.75) and (8.76). The
constitutive parameters of the sample can be found
from u and βm. In general, the parameters ε2, µ1,
and µ3 are complex, and therefore u and βm are
also complex.

From Eqs. (8.75) and (8.76), we can get

u = j sin βmL

1

Tm

+ Rm

Tm

− cos βmL

=
1

Tm

− Rm

Tm

− cos βmL

j sin βmL
(8.80)

cos βmL = T 2
m − R2

m + 1

2Tm

(8.81)

In the following discussion, the real and imagi-
nary parts of the right side of Eq. (8.81) are sepa-
rated by

T 2
m − R2

m + 1

2Tm

= α′ + jα′′, (8.82)

and the real and imaginary parts of βm are
defined by

βm = β ′
m − jβ ′′

m (8.83)

where β ′
m > 0 and β ′′

m ≥ 0.
On the basis of the above definitions, following

relationships can be obtained from Eq. (8.81):

cos β ′
mL cosh β ′′

mL = α′ (8.84)

sin β ′
mL sinh β ′′

mL = α′′ (8.85)

For given values of α′ and α′′, the inverse prob-
lem becomes finding β ′

m and β ′′
m from Eqs. (8.84)

and (8.85). Equations (8.84) and (8.85) also imply
that cos(β ′

mL) has the sign of α′ and sin(β ′
mL)

has the sign of α′′. Once βm is known, u can be
calculated from Eq. (8.80).

Eqs. (8.84) and (8.85) can be modified as

cos β ′
mL = √

ξsign(α′) (8.86)

sin β ′
mL = √

1 − ξsign(α′′) (8.87)

with

ξ = 1

2

[
α′2 + α′′2 + 1 −

√
(α′2 + α′′2 + 1)2 − 4α′2

]
(8.88)

where sign(α′) and sign(α′′) mean the signs of α′
and α′′ respectively. From Eqs. (8.86) and (8.87),
we can get

β ′
m = β̃ ′

m + 2πn

L
(n = 0, 1, 2, . . .) (8.89)

where 0 < β̃ ′
mL ≤ 2π , and β̃ ′

m can be directly
obtained from Eqs. (8.86) and (8.87).

From Eqs. (8.84) and (8.85), we can also get

sinh β ′′
mL =

√
α′2 + α′′2 − ξ (8.90)

from which β ′′
m can be uniquely determined. So β ′′

m

can be determined aside from the choice of the
integer n in Eq. (8.89). If the length L of the sample
is sufficiently small, then n = 0; however, in many
practical cases the length L cannot be arbitrarily
chosen; then n can be uniquely determined from
nondispersive media by carrying out measurements
at two different frequencies (Damaskos et al. 1984).

If the medium is dispersive, the measured data
at different frequencies cannot be mixed together,
and the only way to obtain a second, independent
measurement of Rm and Tm is to excite the
waveguide with a different mode. Thus, we conduct
two separate measurements at the same frequency
ω, the first with the TE10 mode yielding R1 and T1,
the second with the TE20 mode yielding R2 and T2.

According to Eq. (8.78), β1 and β2 are given by

β1 =
√

µ1

µ3

√
k2

0ε2µ3 −
(π

a

)2
(8.91)

β2 =
√

µ1

µ3

√
k2

0ε2µ3 − 4
(π

a

)2
(8.92)

According to Eq. (8.77), β1 and β2 are given by

β1 = µ2
3

µ1
β01µ1 (8.93)

β2 = µ2
3

µ1
β02µ2 (8.94)
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where µ1 and µ2 are the values of µ measured
with TE10 and TE20 excitation respectively, and

β01 =
√

k2
0 −

(π

a

)2
(8.95)

β02 =
√

k2
0 − 4

(π

a

)2
(8.96)

Equating the ratio of Eqs. (8.91) and (8.92) and
the ratio of Eqs. (8.93) and (8.94) and solving the
product ε2µ3 results in (Damaskos et al. 1984)

ε2µ3 =
1 − 4

(
β01µ1

β02µ2

)2

1 −
(

β01µ1

β02µ2

)2

(
π

k0a

)2

(8.97)

Equating Eq. (8.91) to Eq. (8.93) results in

µ3
1

µ5
3

= β2
01µ

2
1

k2
0ε2µ3 − (π/a)2

(8.98)

If the sample is sufficiently thin (β1L < 2π), then
β1 = β̃1. From Eqs. (8.91) and (8.92), we can get

µ1

µ3
= β̃2

1

k2
0ε2µ3 − (π/a)2

(8.99)

Therefore, µ1 and µ3 can be obtained from
Eqs. (8.98) and (8.99), and ε2 can be obtained from
Eq. (8.97). Similar measurements with a rotated
sample yield ε1, ε3, and µ2 (Damaskos et al. 1984).
This method is also applicable to the simpler case
of a lossless and nondispersive sample.

Figure 8.22 shows a waveguide junction that
is convenient for exciting TE10 and TE20 modes
(Damaskos et al. 1984). The TE10 mode is excited
by the horizontal arms that are standard waveg-
uides beyond the tapered transitions. The TE20

mode is excited by the branch arms that also are
standard waveguides. Both modes can propagate in
the central part of the junction, which is of double
width. Beyond the transition region, the horizon-
tal arms are below cutoff for TE20 modes. With
reasonable precision in the fabrication of the junc-
tion, TE10 mode will not be coupled into the branch
arms. Therefore, a circuit through the branch arms
can be used to measure reflection and transmis-
sion coefficients due to the TE20 mode, while a

Tapered transition

Sample inserted
at flange

Standard waveguide E

E a

a

2a

Figure 8.22 Sketch of TE10 –TE20 measurement fix-
ture (Damaskos et al. 1984). Source: Damaskos, N. J.
Mack, R. B. Maffett, A. L. Parmon, W. and Uslenghi,
P. L. E. (1984). “The inverse problem for biaxial materi-
als”, IEEE Transactions on Microwave Theory and Tech-
niques, 32 (4), 400–405.  2003 IEEE

circuit through the side arms can be used to mea-
sure reflection and transmission coefficients for the
TE10 mode. It is clear that impedance matching
is required at the branch arms and at the tapered
transitions.

Equations (8.81) and (8.91) to (8.99) require
measurements of four complex quantities to deter-
mine three unknown complex components of the
constitutive parameters from each orientation of
the sample. The additional measured quantity
greatly simplifies the mathematical steps that are
required to solve the inverse problem. If three
orientations of the sample are used to determine
the six unknown components, the measurements
provide ample redundancies that aid in imme-
diately evaluating the quality of the measure-
ment (Damaskos et al. 1984).

8.3.2 Faraday rotation methods

Consider the propagation of a linearly polarized
wave in a ferrite biased by a dc magnetic field. If
the direction of propagation is parallel to that of the
dc magnetic field, Faraday effect can be observed,
whereas, if the direction of propagation is transverse
to the dc magnetic field, birefringence occurs (Pozar
1998). In this section, after introducing the effect of
Faraday rotation, we discuss the circular waveguide
and cavity methods for the measurement of perme-
ability tensors based on Faraday effect.
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Figure 8.23 Faraday rotation of a ferrite magnetized
in z-direction

8.3.2.1 Faraday rotation

As shown in Figure 8.23, a linearly polarized
wave propagating in a magnetized ferrite can be
decomposed into two circularly polarized modes,
and the unequal propagation constants of these
modes lead to Faraday rotation.

We assume that the electric field of a linearly
polarized wave at position z = 0 is in the x-
direction; so it can be expressed as

E |z=0 = x̂E0 = E0

2
(x̂ − jŷ) + E0

2
(x̂ + jŷ)

(8.100)

The first term in the right side of Eq. (8.100)
represents a right-handed circularly polarized wave
(positive polarization), and it propagates in the z-
direction with propagation constant β+; the second
term represents a left-handed circularly polarized
wave (negative polarization), and it propagates in
the z-direction with propagation constant β−. So
the total field E propagates as

E = E0

2
(x̂ − jŷ)e−jβ+z + E0

2
(x̂ + jŷ)e−jβ−z

= E0

2
x̂(e−jβ+z + e−jβ−z)

− j
E0

2
ŷ(e−jβ+z − e−jβ−z) (8.101)

= E0

[
x̂ cos

(
β+ − β−

2

)
z

−ŷ sin

(
β+ − β−

2

)
z

]
e−j(β++β−)z/2

Eq. (8.101) shows that the wave in the magne-
tized ferrite is still a linearly polarized wave, but its
polarization rotates as the wave propagates along
the z-axis. At a given point along the z-axis, the
polarization angle φ measured from the x-axis is
given by

φ = −
(

β+ − β−
2

)
z (8.102)

In the above discussion, the loss of the ferrite
is neglected. However, an actual ferrite medium
has finite losses, which have a significant influence
on the wave propagation. The values of relative
permeability for the two circularly polarized waves
can be expressed as

µr± = µ′
r± − jµ′′

r± = 1 + χ ′ ± κ ′ − j(χ ′′ ± κ ′′)
(8.103)

with
χ = χ ′ − jχ ′′ = χxx = χyy (8.104)

jκ = j(κ ′ − jκ ′′) = χxy = −χyx (8.105)

The propagation constants for the two circularly
polarized waves can be expressed as

γ± = α± + jβ± (8.106)

with

β± = ω
√

µ0ε0εr√
2

[
1 + χ ′ ± κ ′

+
√

(1 + χ ′ ± κ ′)2 + (χ ′′ ± κ ′′)2
]1/2

(8.107)

α± = ω2µ0ε0εr
χ ′′ ± κ ′′

2β±
= ω2µ0ε0εr

µ′′
r±

2β±
(8.108)

where εr is the dielectric constant of the ferrite.
It should be noted that Faraday rotation is

different in the two regions above and below
the frequency of ferromagnetic resonance (Collin
1992). If the measurement frequency is lower than
the frequency of ferromagnetic resonance (ω < ω0),
then β+ > β−; while if ω > ω0, then β+ < β−.

Figure 8.24 shows a fixture for the measurement
of Faraday rotation (Hogan 1953). In the fixture,
two rectangular waveguides are separated by a
circular waveguide with nonreflective transitions at
each end of the circular section. One rectangular
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Figure 8.24 Test chamber for rotation measurement
(Hogan 1953). Source: Hogan, C. L. (1953). Reviews
of Modern Physics, 25 (1), 253–263, the American
Physical Society

waveguide can be rotated about the longitudinal
axis of the system. The dominant TE10 mode is
excited in one rectangular waveguide, and by means
of the smooth transition, it goes over into the
dominant TE11 mode in the circular waveguide.
The rectangular waveguide on the opposite end
accepts only the component of the polarization that
coincides with the TE10 mode in that waveguide, the
other component being reflected at the transition.
Absorbing vanes, inserted in the circular section,
absorb the reflected components. The circular
waveguide is placed in a solenoid to establish
an axial magnetic field along its length. The
ferrite cylinders to be measured are placed at the
midsection of the circular guide.

Using the fixture shown in Figure 8.24, insertion
loss can be measured by determining the power
transmitted under identical conditions with the
ferrite cylinder removed, and the ellipticity of the
transmitted wave can be determined by measuring
the power transmitted when the rectangular guide
on the detector side is rotated both to positions of
maximum and minimum transmissions.

8.3.2.2 Circularly polarized propagation method

Mullen and Carlson proposed a method making use
of measurements performed on a ferrite rod placed
along the axis of a circular waveguide (Mullen and
Carlson 1956). The sample under test is excited
successively with positive and negative circular

polarizations, and for each polarization, the phase
and attenuation of the sample are measured. Using
a perturbation treatment, the real and imaginary
parts of the tensor components can be obtained
from phase and attenuation of the positive and
negative circular polarizations.

The theoretic model of this method is a circu-
lar waveguide containing a concentric ferrite rod,
which is longitudinally magnetized, as shown in
Figure 8.25. The general solution for this config-
uration can be found in (Lax and Button 1962). In
actual measurements, the rods are often mounted in
a polyfoam cylinder and inserted in the waveguide,
which is inside a solenoid so that the magnetiza-
tion field can be applied. The diagonal element χ

and off-diagonal element κ can be calculated from
the phase and attenuation information of the prop-
agation constants of the negatively and positively
polarized waves (Mullen and Carlson 1956):

β∓ = β0

2

[
1 − A · s

S
(χ ′ ± κ ′) + k2

0

β2
0

χ ′
e

]
(8.109)

α∓ = β0

2

[
A · s
S

(χ ′′ ± κ ′′) + k2
0

β2
0

χ ′′
e

]
(8.110)

where β0 is the phase constant for the empty
waveguide, s is the cross section of the ferrite rod,
S is the cross-section area of the waveguide, the
constant “A” is 1.04 for circular waveguide, k0

is the wave number of free space, and χe is the
dielectric susceptibility of the sample.

Hdc

z

r0

r1

Figure 8.25 A cylindrical waveguide of radius r0

containing a concentric ferrite rod of radius r1 (Lax and
Button 1962, p400). Source: Lax, B. and Button, K. J.
(1962). Microwave Ferrites and Ferrimagnetics, New
York: McGraw-Hill Book Company Inc.
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Equations (8.109) and (8.110) indicate that this
method cannot separate out the dielectric contri-
butions to the phase and attenuation shifts. If the
dielectric properties of the sample are known or
can be estimated, the permeability tensor can be
derived using Eqs. (8.109) and (8.110). It should
be indicated that in the above discussion, the effect
of demagnetization of the sample is not taken into
consideration. If the ratio of the length/diameter
of the rod is larger than 10:1, the demagnetization
effect can be practically neglected, so this method
is suitable for long and thin rod samples.

8.3.2.3 Reflection method

As discussed earlier, when an electromagnetic
wave propagates along a ferrite cylinder, the
plane of polarization rotates in proportion to its
path length. The direction of the rotation depends
simply upon the direction of dc magnetic field
applied to the ferrite rod along its longitudinal
axis. As shown in Figure 8.26, if the wave is
reflected back through the ferrite sample, it does
not return to its original direction of polarization,
so Faraday rotation is nonreciprocal. Actually, the
polarized plane tilts to the same side whether it is
the polarized plane of the incident wave or the
reflected one. In Figure 8.26, the rotation angle
from z = 0 to z = l is assumed to be φ, and
the wave is reflected at the position z = l. After
the wave returns back to position z = 0, the total
rotation angle of the wave is 2φ.

On the basis of nonreciprocal property of
Faraday rotation, Ito et al. proposed a reflection
method for the measurement of the permeability
tensor of ferrite in the microwave frequencies (Ito
et al. 1984). In this method, a circular cylindrical
waveguide containing a longitudinally magnetized

E1 E1

H0

E1, E2
E2

E2

z = 0
Reflection plane

(z = l )

2f

f

Figure 8.26 Nonreciprocity of Faraday rotation

ferrite rod is used. A plane polarized TE11

wave is incident upon the section in which the
ferrite cylinder is placed. One end of the circular
waveguide is short circuited by a movable short-
circuit plunger, which holds the ferrite cylinder
through a hole drilled at the center. The angle of
Faraday rotation and the position of the minimum
voltage point of the elliptically polarized standing
wave are measured far from the ferrite section.

Figure 8.27(a) schematically illustrates the mea-
surement configuration. The ferrite rod is placed in
the region of 0 ≤ z ≤ l and the end is terminated
with a short circuit. An external dc magnetic field
H0 is applied to the ferrite along the z-axis. The
incident wave is a TE11 plane polarized wave with
polarization directed to the X-axis. If the reflection
at the front end (z = 0) of the ferrite is negligibly
small, the electric field E along the central axis in
the region of z < 0 can be expressed by

E = E+ + E− (8.111)

E± = 1

2
V±(z)(x̂ ∓ jŷ)ejωt (8.112)

V± = e−jβaz − e−2γ±l+jβaz (8.113)

where βa is a phase constant in the empty
waveguide region, γ±, the propagation constants
of right- and left-handed polarized waves and ω is
the angular frequency.

The output voltage of the detector probe scan-
ning the field in the cross section of the waveguide
has a shape like a dumbbell and along the axis it
has a standing-wave pattern as usual, as shown
in Figure 8.27(a). Suppose that the dumbbell at
the maximum (z = zmax) of the standing wave is
observed. As shown in Figure 8.27(b), it may be
characterized by a rotation angle if φ1 and two
extremes A1 and B1, where the subscript “1” stands
for the value of A, B, or φ at the maximum. If
the field intensity A2 is measured when the probe
is shifted to the node (z = zmin) and directed to
the angle φ1, the propagation constants γ± can
be determined from the following equations (Ito
et al. 1984):

γ± = α± + jβ± (8.114)

α±l = A2

A1
∓ B1

A1
≡ η± (8.115)

β±l = βazmin ∓ φ1(1 + α±l) ≡ θ± (8.116)
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Figure 8.27 Reflection method based on Faraday rotation. (a) Schematic illustration of the measurement circuit
and (b) locus of an output of the detector on the guide wall (Ito et al. 1984). Source: Ito, A. Ohkawa, S. and
Yamamoto, H. (1984). “On a measurement method of the tensor permeability of ferrite using Faraday rotation”,
IEEE Transactions on Instrumentation and Measurement, 33 (1), 26–31.  2003 IEEE

Equations (8.115) and (8.116) suggest that if η± and
θ± are plotted with various lengths l, α± and β±
can be obtained from the slopes of the expected
straight lines.

When the specimen is demagnetized, θ+ and θ−
(also η+ and η−) are reduced to the same value,
there is no difference between γ+ and γ−, so γ±
can be replaced by the notation γdem. If the special
permeability of the demagnetized specimen µdem is
known, the specific permeability µ± and the relative
permittivity εr can be obtained by (Ito et al. 1984)

µ± =
ξ ·

(
1 + µdem − 1

µdem + 1

)
+ (γ± − γdem)

ξ ·
(

1 − µdem − 1

µdem + 1

)
− (γ± − γdem)

(8.117)

εr =

1 + 1

ξ
·
(

βa

k0

)2

· (γdem − jβa) +
(

βa

k0

)2

· 1 − µdem

1 + µdem

1 − 1

ξ
·
(

βa

k0

)2

· (γdem − jβa) −
(

βa

k0

)2

· 1 − µdem

1 + µdem
(8.118)

with

ξ = χ2

2(χ2 − 1)J 2
1 (χ)

·
(

d

D

)2

βa (8.119)

k0 = ω
√

ε0µ0, (8.120)

where Jn is the Bessel function of the nth order,
χ the first root of J0(χ) − J2(χ) = 0, k0 is the
wave number in free space, d and D are diameters
of the ferrite rod or the waveguide, respectively.
Practically, the value of µdem may be taken as unity,
so Eqs. (8.117) and (8.118) can be simplified:

µ± = ξ + γ± − γdem

ξ − γ± + γdem
(8.121)

εr =
1 + 1

ξ
·
(

βa

k0

)2

· (γdem − jβa)

1 − 1

ξ
·
(

βa

k0

)2

· (γdem − jβa)

(8.122)

It should be noted that in the above discussion,
the possible higher-order modes and the reflection
from the tip of the ferrite are neglected. The effects
of these factors are discussed in (Ito et al. 1984).
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8.3.2.4 Bimodal-cavity method

In the microwave Faraday rotation methods dis-
cussed above, a section of cylindrical waveguide
is filled with the sample to be investigated, and
the rotation of the plane of polarization of the
microwaves on passage through the sample is mea-
sured. The rotation angle can be expressed as

θ = 4π2(l/λ)(ξ/ω) (8.123)

where ξ is the parameter characterizing the rota-
tion, l is the length of the sample, and λ is
the wavelength in the sample. Equation (8.123) is
based on the assumption that the sample is matched
to the guide so that internal reflections may be
neglected. If the magnetic medium is isotropic or
is at least cylindrically symmetric, the rotation may
be understood in terms of decomposition into cir-
cularly polarized microwave fields. If the medium
has axial symmetry along the waveguide, the two
circularly polarized components propagate inde-
pendently, the phase velocity of each wave can
be considered separately. The rotation parameter ξ

is given by

ξ = 1

2
ω(χ− − χ+) (8.124)

For ferrites and ferromagnetic materials, the
rotation parameter ξ can be calculated from

ξ/(γH0) = −M0/H0 (8.125)

As the initial susceptibilities of ferrites and fer-
romagnetic materials usually have a value on the
order of 102, their angles of Faraday rotation can be
accurately measured. For paramagnetic samples,
the rotation parameter ξ can be calculated from

ξ/(γH0) = −χ0 (8.126)

where χ0 is the static magnetic susceptibility. As
the static magnetic susceptibilities of paramagnetic
materials are on the order of 10−4 or smaller at
room temperature, the rotation angles cannot be
accurately measured using conventional Faraday
rotation methods. The rotation angle of an antifer-
romagnetic sample would be smaller than that of
a paramagnetic sample by a factor α (Portis and
Teaney 1959):

α = ω2/(γ 2HEHA) (8.127)

where HE and HA are the exchange and anisotropy
fields. For a typical antiferromagnetic sample with
1-cm length in a field of 10,000 oersteds, the rotation
angle is usually less than 10−5 radian. This angle is
too small to be measured directly with any accuracy.

To increase the measurement sensitivity, we can
make use of the fact that multiple reflections of
the electromagnetic wave back and forth through
a sample result in successive, cumulative rota-
tions in the same sense, as the sense of Fara-
day rotation depends only on the direction of the
external dc magnetic field, not on the direction of
propagation. In the propagation method discussed
in Section 8.3.2.2, the rotation angle is measured
directly for just one passage through the sample.
In the reflection method, the microwave signal
reflected back through the sample is further rotated
in the same direction. As long as there is no appre-
ciable absorption of microwave energy, we can have
the microwave signal multiply reflected through the
sample. For a sample biased far from resonance,
the cumulative absorption during the multiple pas-
sages is little. When such a sample is placed in a
microwave cavity, the number of passages of the
microwave signal through the sample is propor-
tional to the quality factor of the cavity. Putting
in representative numbers, one expects an enhance-
ment of the rotation angle by a factor of 103.

The rotation angle can be detected using a
bimodal cavity, which is resonant in two degenerate
TE111 modes, as shown in Figure 8.28. Microwave
power is coupled into the cavity through a coupling
iris on the top from a rectangular waveguide
propagating in a TE10 mode, and microwave power
is coupled out through the end of the cavity into a
second TE10 rectangular waveguide. For optimum
coupling, the second waveguide is shorted a half-
guide wavelength below the coupling window. If
the input and output waveguides are parallel and
the cavity is perfectly cylindrical, there can be no
coupling into the output waveguide. This can be
explained by the symmetry of the structure. The
magnetic fields in the input waveguide and the
cavity are symmetrical with respect to the plane
of the paper, while the magnetic field in the output
waveguide would be antisymmetrical with respect
to the plane of the paper. So there should be no
coupling between the input and output waveguides.
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Figure 8.28 Structure of a bimodal cavity for the measurement of Faraday rotation (Portis and Teaney 1959).
(a) Section through the bimodal cavity. Microwave power is coupled into the cavity through an iris in the top. The
dotted circles represent the microwave magnetic field and (b) transverse section showing tuning plugs and coupling
irises. Plugs 1 through 4 are metallic and vary the capacitance across the cavity. Plugs 5 and 6 are absorbers used
to adjust the losses in the x and y modes. Source: Portis, A. M. and Teaney, D. (1959). Physical Review, 116 (4),
838–845, the American Physical Society

As shown in Figure 8.26(a), a magnetic sample
is mounted opposite the output iris, and an external
dc magnetic field is applied along the axis of the
cavity. The sample produces Faraday rotation about
the axis of the cavity, and the microwave magnetic
field in the cavity is no longer symmetrical with
respect to the plane of the paper, so there will
be coupling to the output waveguide. The power
coupled to the output waveguide is related to the
angle of Faraday rotation.

It is desirable that no power is coupled between
the input and the output waveguides in the presence
of the unmagnetized sample so that any subsequent
rotation induced can be detected with maximum sen-
sitivity. Figure 8.26(b) shows a section perpendicu-
lar to the axis of the cavity, showing the arrangement
of capacitive and resistive tuning plugs. Plugs 1,
2, 3, and 4 are metallic and may be adjusted so
that the two cavity modes are degenerate. It can
be arranged so that either plug 2 or 4 is well out
of the cavity so that a quite sensitive final adjust-
ment may be made with that plug. However, the
cavity degeneracy alone does not insure that the
input and output waveguides will be decoupled after

a nonmagnetized sample is loaded in the cavity.
Consider two normal modes as having microwave
magnetic fields oriented along the −x- and +y-
axes. These modes are driven equally by a verti-
cal microwave magnetic field. However, if the two
modes have different loss rates, the amplitude of
their response will be different. Then, the cavity
magnetic field will not be vertical and there will
be coupling to the output waveguide. This coupling
may be avoided by artificially introducing additional
losses into one of the modes. This can be accom-
plished by adjusting the resistive plugs 5 and 6 made
from graphite-deposited resistance cards.

Further discussion on bimodal method for Fara-
day rotation measurement can be found in (Lax and
Button 1962). The analysis of the Faraday rotation
in terms of the susceptibility components for para-
magnetic and antiferromagnetic cases can be found
in (Portis and Teaney 1958, 1959).

8.3.3 Resonator methods

The permeability tensors of magnetic materi-
als can also be characterized by using reso-
nant methods, including resonator methods and
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Figure 8.29 Measurement configuration for TE111 resonator method. (a) Section view along z-axis and (b) section
view perpendicular to z-axis showing the sample-filled resonator working at TE111 mode and the input/output
couplings (Ogasawara et al. 1976). Source: Ogasawara, N. Fuse, T. Inui, T. and Saito, I. (1976). “Highly
sensitive procedures for measuring permeabilities (µ±) for circularly polarized fields in microwave ferrites”, IEEE
Transactions on Magnetics, 12 (3), 256–259.  2003 IEEE

resonant-perturbation methods. In the design of res-
onant methods for the measurement of permeabil-
ity tensors, one of the important considerations is
the identification of the direction of the microwave
magnetic field, so that the corresponding compo-
nents of the permeability tensors can be measured.
Resonant methods can work only at single or sev-
eral discrete frequencies. As resonant methods are
suitable for the measurement of low-loss materials,
these methods are only applicable at the regions far
from ferromagnetic resonance.

In this section, we discuss the resonator meth-
ods often used in the characterization of perme-
ability tensors, including TE111 resonator method,
shielded cylindrical resonator method, ring res-
onator method, and whispering-gallery resonator
method. The resonant-perturbation methods for the
measurement of permeability tensors are discussed
in Section 8.3.4.

8.3.3.1 TE111 resonator method

Ogasawara et al. proposed a resonator method
for the measurement of µ′± − jµ′′± of ferrites
based on the resonance splitting of counterrotating
TE11 modes in the cylindrical metallic cavity res-
onator filled with axially magnetized ferrite sample
under study (Ogasawara et al. 1976). As shown in

Figure 8.29, the cylindrical sample fills the metal-
lic cavity, which is excited in the TE111 mode by
a pair of coupling apertures on diagonally opposite
sides. The two end plates of the cavity are made of
a silver-plated soft iron, so the cavity resonator can
snugly fit the pole pieces.

In experiments, the change of reciprocal quality
factor (1/Q) and the resonant frequency (f ) while
varying the biasing magnetic field are measured.
At first, the biasing magnetic field is raised to
a level well above the ferromagnetic resonance
magnetic field, and one resonant peak can be
observed, as shown in Figure 8.30(a), which is
from the resonance of the TE111 mode of a

f0 f+ f−

(a) (b)

Figure 8.30 Resonance curves of the positive and neg-
ative polarities. (a) Resonance at biasing field far above
the ferromagnetic resonance field. The two resonance
curves coincide perfectly and (b) two resonance peaks
corresponding to the waves with positive and negative
polarities
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dielectric-filled resonator. When the biasing field
is lowered gradually, the resonance splits and
the quality factor of the resonator, Qs , decreases.
As shown in Figure 8.30(b), the lower frequency
resonance corresponds to the circularly polarized
TE111 mode of the positive sense, and the higher
frequency resonance corresponds to the mode of the
negative sense.

The real and imaginary parts of µ± can be derived
from the changes of the reciprocal quality factor
(1/Q) and the resonant frequency ratios, both rela-
tive to those at the highest biasing field (Ogasawara
et al. 1976):

f±
f0

= (µ′
±)

− 1
2 (8.128)

1

Q±
− 1

Q0
= µ′′±

µ′±
(8.129)

where f0 and Q0 are the resonant frequency and
quality factor of the resonator when the sample
is magnetized by a field well above the resonant
magnetic field, respectively; f± and Q± are the
resonant frequency and quality factor of positive
and negative polarized modes of the resonator
respectively. It should be noted that if the magnetic
field is close to the ferromagnetic resonance field,
the TE111 resonance could not be established
because of large magnetic loss.

8.3.3.2 Shielded cylindrical resonator method

Figure 8.31 shows a shielded cylindrical dielectric
resonator. In this configuration, the sample and
the metal shield have the same height. In exper-
iments, such configuration is usually realized by
sandwiching the cylindrical sample by two parallel

0

Z
j

Metal shieldSample

r

Figure 8.31 Shielded cylindrical dielectric resonator

conducting plates, and there is no air gap between
the sample and the conducting plates. As discussed
in Section 8.2.2, this configuration can be used in
characterizing permittivity tensors. Here, we dis-
cuss the application of this configuration in the
measurement of the permeability tensor.

When the external magnetic field is applied
along the z-direction, the permeability tensor is in
the form of Eq. (8.19). To fully characterize the
three complex components µ, κ , and µz, three
independent measurements are required. In the
method proposed by Krupka (1989), two cylindrical
parallel-plate resonators made of the same materials
but with different dimensions are used. Suitable
dimensions of the two resonators are chosen so
that the resonant frequencies for the HE111 mode
of the small resonator and the H011 mode of the
large one are approximately the same. The main
purpose of using two resonators is to minimize the
errors caused by the frequency dependence of the
tensor components. From the resonant frequency
and unloaded quality factor of the HE+

111, HE−
111, and

H011 modes, the real and imaginary parts of µ, κ , and
µz can be determined. In the determination of these
parameters, the surface resistance of conducting
plates, the permittivity, and scalar permeability are
needed and can be measured using the methods
discussed in earlier chapters.

8.3.3.3 Ring resonator method

Krupka and Geyer proposed a ring resonator method
for determining the real and imaginary parts of all
three permeability tensor components using only
one cylindrical ferrite sample (Krupka and Geyer
1996; Krupka 1991). The method is based on the
simultaneous utilization of the HE±

111 and H111

modes, which occur in dielectric ring resonators
containing the cylindrical ferrite sample under test.
Employing the corresponding eigenvalue equations
for these modes, the material parameters can be
computed from the measured resonant frequencies
and quality factors of the three modes of the
dielectric ring resonator with and without the ferrite
sample. To minimize frequency variations in the
measurement system, two dielectric ring resonators,
having the same height and internal diameter
but different external diameters, are needed. The
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Figure 8.32 Resonant structure for the measurement
of permeability tensor components of a cylindrical fer-
rite sample (Krupka et al. 1996). Source: Krupka, J. and
Geyer, G. (1996). “Complex permeability of demagne-
tized microwave ferrites near and above gyromagnetic
resonance”, IEEE Transactions on Magnetics, 32 (3),
1924–1933.  2003 IEEE

external diameters of the two ring resonators are
chosen so as to obtain close resonant frequencies
of the HE111 mode (the resonator with smaller
diameter) and of the H111 mode (the resonator with
larger diameter) for the two resonators containing
typical nonmagnetized ferrite samples.

The measurement fixture is shown in Figure 8.32.
As circularly polarized modes are used in measure-
ment, the resonators are coupled to external cir-
cuits through four identical loop-terminated coaxial
cables. The radial positions of the coaxial cables
are adjustable so that suitable couplings can be
achieved. As the computations are based on the
exact eigenvalue equations of the resonant modes
used in the measurement, the air gap that always
exists between the ferrite sample and the dielectric
resonator can be rigorously taken into considera-
tion (Krupka 1991).

8.3.3.4 Whispering-gallery resonator method

The resonator methods discussed above are suit-
able for the measurement of permeability ten-
sors at low microwave frequencies, usually less
than 10 GHz. Although these techniques may
be employed for the measurement of permeabil-
ity tensors at higher frequencies, mainly due to
two reasons, their measurement accuracies are
decreased. Firstly, when the frequency increases,
the metal loss and radiation loss increase, so
the quality factor of metal cavities and dielectric

resonators decrease. Secondly, the sample dimen-
sions become smaller with increasing frequency,
so the uncertainties of sample dimensions have
more serious effects on the measurement results.
Therefore, the use of whispering-gallery modes
for permeability tensor measurements at frequen-
cies greater than 10 GHz becomes quite attractive
since their quality factors depend principally on the
intrinsic ferrite material losses, and the ferrite sam-
ple dimensions also remain reasonably large, even
for frequencies up to 100 GHz. The basic prop-
erties of whispering-gallery resonators and their
applications in materials property characterization
have been discussed in Chapters 2 and 5.

The permeability tensor components of longitu-
dinally magnetized ferrites can be determined from
the resonant frequencies WGHn00 and WGEn00 as
a function of the external dc magnetic field applied
on the samples (Krupka et al. 1996). The mea-
surement configuration is schematically shown in
Figure 8.33. The sample has a circular disk shape,
and the whispering-gallery modes are excited by
adjustable coupling loops. The disk sample is mag-
netized along its axis, so the permeability tensor is
in the form of Eq. (8.19).

Usually, a sample is only partially magnetized
when the external static magnetic induction field
is 0.05 to 0.3 T. The behavior of the WGHn00 res-
onant frequencies is very similar to that of the
resonant frequencies of lower-order modes in a
cavity or dielectric ring resonator partially filled
with a magnetized ferrite sample (Krupka 1991).
The split between WGEn00 resonant frequencies
corresponds to modes polarized in opposite direc-
tions in a partially magnetized sample. The three
components of the permeability tensor (µ, κ , µz)
can be calculated from the resonant frequencies

Support

Coupling
loop

Ferrite
resonator

Figure 8.33 The structure of the resonator working
at whispering-gallery modes for the measurement of
permeability tensors
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and quality factors of the WGHn00 and the two
WGEn00 modes polarized in opposite directions.

For large external magnetic fields (usually above
0.4 T), the sample is saturated and the behavior
of WGEn00 resonant frequencies is the same as
that expected for a sample that has a uniform
longitudinal magnetization. The two components of
the permeability tensor (µ, κ) may be determined
from the resonant frequencies of two oppositely
polarized WGHn00 modes. The third component µz

can be ascertained from the average of resonant
frequencies of two WGEn00 modes.

8.3.4 Resonant-perturbation methods

In a resonant-perturbation method for the mea-
surement of permeability tensor, the small ferrite
sample under test is introduced into a degenerate
cavity in a region of maximum microwave mag-
netic field and zero electric field, and an external
dc magnetic field is applied perpendicular to the
microwave magnetic field. The magnetic perme-
ability tensor of the sample is calculated from the
perturbation effects of the sample on the resonance
frequency and quality factor of the cavity. The
prime requisite for a resonant-perturbation method
for the study of permeability tensor is that the
cavity is degenerate in two suitably chosen orthog-
onal linear modes. For a cavity with two orthog-
onal degenerate modes, after the sample is loaded
and necessary adjustments are made, the resonant
curves of the two modes overlap, so only one res-
onant peak can be observed. When an external dc
magnetic field is applied, the single resonance peak
splits into two, and the properties of the sample can
be derived from the splitting of the resonance peak.

To understand what happens as the external mag-
netic field is varied, it is necessary to analyze
the behavior of the electron spins in the sam-
ple (Artman and Tannenwald 1955). When a large
dc magnetic field is applied to a ferromagnetic mate-
rial, the unpaired electron spins tend to line up
with the applied field, and, consequently, the resul-
tant magnetic moment precesses about the steady
magnetic field. The classical precessional motion
would be quickly damped out by the crystal lattice
unless energy is supplied by an oscillating mag-
netic field; the microwave magnetic field provides

this oscillating field. Maximum energy is transferred
from the microwave field to the electron spin system
when the frequency of the microwave field equals
the precession frequency of the electron spins. This
is the condition of ferromagnetic resonance, which
is also called gyromagnetic resonance. Further dis-
cussions on ferromagnetic resonance are made in
Section 8.4.

For a cavity excited in one linear mode, the
precessing electron spins will couple to this mode
and in turn couple to and excite the orthogonal
mode. Because of this ferrite-cavity interaction,
the description of the cavity properties in terms
of two orthogonal linear modes is not convenient.
The linearly polarized excitation can be considered
as the sum of two modes circularly rotating in
opposite directions. Before the steady magnetic field
is applied, the cavity is degenerate in these two
rotating modes. After the steady magnetic field is
applied, the precessing spins in the ferrite affect
these two modes differently. The mode rotating
in the same direction as the precessing magnetic
dipoles of the ferrite spins strongly interacts with
the ferrite spins, so that the resonant frequency and
quality factor of this mode are greatly changed. The
other mode, rotating in a direction opposite to that of
the precessing magnetic dipoles, is hardly affected.

In the following, we discuss the resonant proper-
ties of the resonant cavities perturbed by magnetic
materials. Subsequently, we discuss the resonant-
perturbation method for the measurement of perme-
ability tensors, and we then discuss the geometrical
effects on the measurement of permeability tensors.
After that, several examples of exact-theory meth-
ods are given.

8.3.4.1 Resonant perturbation of magnetic
samples

The general perturbation theory has been discussed
in Chapter 6. In this part, we discuss the perturbation
of magnetic materials to resonant cavities, including
nondegenerate cavity and degenerate cavity.

Perturbation to a nondegenerate cavity

For a magnetic material with magnetic field applied
in z-direction, its permeability tensor is in the form
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of Eq. (8.19). If the magnetization is saturated (µz =
1), the susceptibility tensor [χm] of the magnetized
sample can be expressed as

[χm] =
(

χ −jκ
jκ χ

)
(8.130)

For a nondegenerate cavity, the change in energy
due to the magnetic sample depends on

(
H ∗ 0

) (
χ −jκ
jκ χ

)(
H

0

)
= χH 2 (8.131)

where H is the magnetic field of working mode.
Equation (8.131) indicates that only the diagonal
components χ of the tensor [χm] contributes
to the perturbation. The general relationships
between the change in resonant frequency and
change in quality factor are given by (Artman and
Tannenwald 1955)

�ωr

ω0
= − χ ′H 2�v

2
∫

v

H 2 dτ

(8.132)

�

(
1

2Q

)
= χ ′′H 2�v

2
∫

v

H 2 dτ

(8.133)

with

χ = χ ′ − jχ ′′ (8.134)

�ω = �ωr + j�ωi = �ωr + j�

(
ω0

2Q

)
(8.135)

where �v is the volume of the sample and ω0 is
angular resonant frequency of the cavity before the
sample is introduced.

It is clear that for a nondegenerate cavity, the
information on κ cannot be obtained, so it cannot
be used in the measurement of permeability ten-
sor. But nondegenerate cavities can be used in the
measurement of χ in the existence of κ . In the fol-
lowing text, we discuss two typical nondegenerate
cavities: circular cavity and rectangular cavity.

Figure 8.34 shows a nondegenerate TE11n cylin-
drical cavity with diameter a and length ln. In this
configuration, the angular symmetry is disturbed
by coupling through an iris located on the side
of the cavity. The sample under study is placed
near the center of one endplate, and the external

Ferrite sample

Hdc

a

Hrf

ln

Figure 8.34 Nondegenerate TE11n cylindrical cavity.
Source: Artman, J. O. and Tannenwald, P. E. (1955).
“Measurement of susceptibility tensor in ferrite”, Jour-
nal of Applied Physics, 26 (9), 1124–1132

dc magnetic field is applied along the axis of the
cavity. For a nondegenerate TE11n cylindrical cav-
ity, Eqs. (8.132) and (8.133) become (Artman and
Tannenwald 1955)

�ωr

ω0
= − 26.316χ ′

13.560 + (πa/l)2

�v

nl3
(8.136)

�

(
1

2Q

)
= 26.316χ ′′

13.560 + (πa/l)2

�v

nl3
(8.137)

Figure 8.35 shows a rectangular nondegener-
ate cavity constructed from a closed-off section
of rectangular waveguide resonating in a TE10n

mode. In the measurement of magnetic materi-
als, the sample under test is usually placed at the
point x = a/2, y = b/2, and z = L. The exter-
nal dc magnetic field is applied along the z-
direction, perpendicular to the microwave mag-
netic field. In this case, Eqs. (8.132) and (8.133)
become (Artman and Tannenwald 1955)

�ωr

ω0
= −χ ′ �v

V
· 2

[
1 −

(
λ0

2a

)2
]

(8.138)

�

(
1

2Q

)
= χ ′′ �v

V
· 2

[
1 −

(
λ0

2a

)2
]

(8.139)

where V is the volume of the cavity.
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Figure 8.35 Rectangular TE10n cavity. Modified from Artman, J. O. and Tannenwald, P. E. (1955). “Measurement
of susceptibility tensor in ferrite”, Journal of Applied Physics, 26 (9), 1124–1132
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Hdc

Ferrite sample

Figure 8.36 Orthogonal microwave magnetic field
lines in a degenerate cavity. Modified from Art-
man, J. O. and Tannenwald, P. E. (1955). “Measure-
ment of susceptibility tensor in ferrite”, Journal of
Applied Physics, 26 (9), 1124–1132

Perturbation to a degenerate cavity

Figure 8.36 shows a cavity that can support two
orthogonal resonant modes. The ferrite is placed
on the axis of the cavity in a region of zero
microwave electric field. The axes are chosen in
the orthogonal 1, 2 directions, and at the position
where the ferrite is placed, the amplitudes of the
microwave magnetic fields in these two directions
are H1, H2 respectively. The resonant mode
(H1H2)

T satisfies the following relation (Artman

and Tannenwald 1955):(
H ∗

1 H ∗
2

) (
χ −jκ
jκ χ

)(
H1

H2

)

= λ
(
H ∗

1 H ∗
2

) (
H1

H2

)
(8.140)

Equation (8.140) can be rewritten as(
H ∗

1 H ∗
2

) (
χ − λ −jκ

jκ χ − λ

)(
H1

H2

)
= 0

(8.141)

where λ is the eigenvalue, which can be obtained
from ∣∣∣∣ χ − λ −jκ

jκ χ − λ

∣∣∣∣ = 0 (8.142)

Two solutions exist: H2 = +jH1 corresponding to
λ = χ + κ and H2 = −jH1 corresponding to λ =
χ − κ . H1 and H2 are equal in magnitude, but due
to the factor (±j), they are in quadrature in time as
well as in space. Therefore, the two natural modes

H± =
(

H

±jH

)
(8.143)

are right- and left-hand circularly rotating modes.
Before the ferrite sample is introduced, the

empty cavity resonates at the frequency ω0, and
the Maxwell’s equations for the empty cavity are

∇ × H0 = jω0ε0E0 (8.144)

∇ × E0 = −jω0µ0H0 (8.145)
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The subscript 0 indicates the state of empty
cavity. If a perturbation object with a small volume
�v is introduced into the cavity, the cavity will
then resonate at a new frequency ω. The Maxwell’s
equations for the cavity containing the perturbation
object are

∇ × H = jω0ε0E + Je (8.146)

∇ × E = −jω0µ0H − Jm (8.147)

where Je and Jm only exist in the small volume
�v occupied by the perturbation object. If the
perturbation object is a ferrite located in a region
where the microwave magnetic field is circularly
polarized, then

Jm = jωµ0[χm] · H (8.148)

[χm] · H represents the multiplication of the tensor
[χm] into the vector H. As H is circularly
polarized, [χm] is the effective scalar χ ± κ . The
relation between Je and E is generally of a
scalar nature

Je = σE (8.149)

where σ is the conductivity.
According to resonant perturbation theory, the

shift of complex frequency of the cavity is related
to the tensor components, the sample volume, and
the microwave magnetic field configuration:

�ω±
ω0

= (χ ± κ)H 2�v

2
∫

v

H 2dτ

(8.150)

with

χ = χ ′ − jχ ′′ (8.151)

κ = κ ′ − jκ ′′ (8.152)

�ω = �ωr + j�ωi = �ωr + j�

(
ω0

2Q

)
(8.153)

According to Eq. (1.150), the real and imaginary
parts of the change of complex frequency due to
the introduction of the sample are given by(
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Figure 8.37 A degenerate TE11n cylindrical cavity
loaded with a magnetized ferrite sample. Source:
Lax, B. and Button, K. J. (1962). Microwave Ferrites
and Ferrimagnetics, New York: McGraw-Hill Book
Company Inc.; Artman, J. O. and Tannenwald, P. E.
(1955). “Measurement of susceptibility tensor in ferrite”,
Journal of Applied Physics, 26 (9), 1124–1132

Figure 8.37 shows a degenerate TE11n cylindri-
cal cavity with diameter a and length L = ln .
When such a cavity is used for the measurement
of susceptibility tensors, Eqs. (8.154) and (8.155)
become (Artman and Tannenwald 1955)(

�ωr

ω0

)
±

= − 26.316

13.560 + (πa/l)2
(χ ′ ± κ ′)

�v

nl3

(8.156)
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(8.157)

8.3.4.2 Measurement of permeability tensors

On the basis of the perturbation of magnetic
materials to resonant cavities discussed above,
resonant-perturbation method can be developed for
the measurement of permeability tensors. In the
design of resonant cavity, we should consider the
field distributions of resonant modes, excitation of
resonant modes, application of external dc magnetic
field, and the way for fixing samples.

Figure 8.38 shows an example of TE112 mode
degenerate cylindrical cavity for the characteriza-
tion of permeability tensors. The sample under
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Polyfoam
holder

Ferrite sphere

Figure 8.38 A typical TE112 mode cavity for the
characterization of permittivity tensors (Spencer et al.
1956b). Source: Spencer, E. G. LeCraw, R. C. and Reg-
gia, F. (1956b). “Measurement of microwave dielectric
constants and tensor permeabilities of ferrite spheres”,
Proceedings of the IRE, 44 (6), 790–800.  2003 IEEE

test is put at the center of the cavity, and the
dc magnetic field is applied along the axis of the
cylindrical cavity. The degenerate modes in the
cavity for permeability tensor measurement can be
in linear polarization or circular polarization. In the
following, we discuss two methods for the exci-
tation of resonant modes with linear and circular
polarizations respectively.

Linearly polarized cavity

Figure 8.37 schematically shows a method for the
excitation of degenerate TE11n modes in linear
polarization. In an actual structure, additional
adjustment structures are needed to ensure that the
cavity has two orthogonal degenerate modes after
a sample is loaded, and the tuning structure shown
in Figure 8.28(b) can be used. In the measurement,
when the cavity is loaded with a sample and no
steady magnetic field is applied, adjustments are
made to ensure that the two modes are degenerate
and perpendicular to each other, and it is preferable
that the two modes have the same quality factor.
After adjustments, only one resonant peak can be
observed, as shown in Figure 8.39(a).

When an external dc magnetic field is applied
perpendicularly to the microwave magnetic fields of
the two degenerate modes, the magnetized sample

(a) (b)

Figure 8.39 Typical resonant curves of a linearly
polarized degenerate cavity containing a ferrite sample.
(a) No external dc magnetic field is applied and (b) an
external dc magnetic field is applied perpendicular to
the microwave magnetic field

has different perturbations to the two modes, so the
resonant peaks of the two modes split, as shown
in Figure 8.39(b). Using Eqs. (8.154) and (8.155),
the real and imaginary parts of χ and κ can be
calculated from the changes of resonant frequencies
and quality factors of the two modes (Artman and
Tannenwald 1955).

However, it should be noted that, sometimes, the
two resonant peaks shown in Figure 8.39(b) cannot
totally split, so it may be difficult to accurately
measure the perturbation effects of the sample to
the two modes, especially the effects on quality
factor. This problem can be solved by separately
exciting the two circularly polarized modes, as will
be discussed below.

Circularly polarized cavity

In a linearly polarized cavity, two circularly polar-
ized modes coexist. The two circularly polarized
modes required for the measurement of perme-
ability tensor can be excited separately (Spencer
et al. 1955, 1956a,b). Figure 8.40 shows typical
resonant curves of a degenerate cavity in cir-
cular polarization, containing a magnetized sam-
ple with the steady magnetic field perpendicu-
lar to the microwave magnetic field. As shown
in Figure 8.40(a), if the cavity is in an arbitrary
elliptical polarization, two resonant peaks can be
observed, corresponding to the positive and neg-
ative polarizations respectively. If the cavity is
in a pure positive or negative circular polariza-
tion, only one resonant peak can be observed, as
shown in Figure 8.40(b) and (c). By choosing pos-
itive and negative circular polarizations separately,
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(a)

(b)

(c)

Figure 8.40 Typical resonant curves of a degenerate
cavity. (a) Arbitrary elliptical polarization, (b) positive
circular polarization, and (c) negative circular polar-
ization. Modified from Spencer, E. G. LeCraw, R. C.
and Reggia, F. (1956b). “Measurement of microwave
dielectric constants and tensor permeabilities of ferrite
spheres”, Proceedings of the IRE, 44 (6), 790–800. 
2003 IEEE

using Eqs. (8.154) and (8.155), the permeability
components χ and κ can be calculated from the
changes of resonant frequencies and quality factors
of the two modes due to the magnetized sample.

In experiments, circularly polarized resonant
modes are often excited by two ways. Figure 8.41
shows a typical transmission-type TE11n-mode
cylindrical cavity in circular polarization for the
measurement of permeability tensor (Baden Fuller
1987). In this configuration, at first the rectangular

waveguide is transformed to a circular waveguide
using a rectangular to circular transition; then
a polarized absorber is arranged to absorb any
cross-polarized wave in the circular waveguide.
After passing through the quarter-wave plate
circular polarizer, the microwave in the circular
waveguide becomes circularly polarized, and then
the resonance with circular polarization in the
cavity is excited through the coupling iris. The
output waveguide system is the mirror of the
input waveguide system, and the power coupled
from the cavity to the output waveguide system is
proportional to the response of the cavity.

In the measurement of permeability tensor,
both the positive and negative polarizations are
needed. In experiments, the direction of circular
polarization can be achieved by changing the
transmission direction of the cavity, or changing
the direction of the dc magnetic field.

Figure 8.42 shows another way of exciting the
circular-polarization resonant mode using two lin-
ear polarization waves. A TE112 mode cylindrical
cavity is excited by two linearly polarized waves
in space and time quadrature, which set up either
a positive or negative circularly polarized resonant
mode. By shifting the phase of one of the input
waves by 180◦, the positive or negative circularly
polarized mode may be selected.

8.3.4.3 Geometrical effects and intrinsic
properties

Many researchers have reported that, in the mea-
surement of the permeability tensor using resonant-
perturbation methods, the measurement results
may be dependent on the geometrical factors of

Polarized
absorber

Polarized
absorber

Quarter-wave
plate

Quarter-wave
plateCoupling iris

Cavity

Figure 8.41 Circularly polarized cavity (Baden Fuller 1987). Modified from Baden Fulle, A. J. (1987). Ferrites
at Microwave Frequencies, Peter Peregrinus Ltd., London, 235–255, by permission of Peter Peregrinus Ltd
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Figure 8.42 Excitation of a circular-polarization mode
using two linear polarization modes

the samples. To obtain the intrinsic properties of
the samples, it is necessary to consider the geo-
metrical effects to the measurement results. Lax
and Button have made systematic discussions on
various geometrical effects. In the following text,
we briefly analyze such effects, following the dis-
cussions made by Lax and Button (1962).

Wall effect

If a spherical ferrite sample is placed near the cavity
wall, the measurement results of the permeability
tensor of the sample are related to the distance
between the sample and the wall. The conventional
method in considering the wall effect is to introduce

the image of the sample on the other side of the wall.
This renders the wall as an equipotential surface that
may be removed from consideration and replaced by
the dipole field shown in Figure 8.43(b). It should
be noted that the dipole field of the sample and its
image gives rise to slightly different demagnetizing
conditions compared with the conditions arising
from the linear rf field in the cavity. However,
various refined electromagnetic treatments may be
formulated to describe the wall effect quantitatively.

In experiments, the wall effects are often
avoided by two methods. The first is to move
the sample some distance from the wall until the
correction becomes negligible. The second solution
is to use a longer cavity having an rf magnetic
field maximum at some point in the interior of the
cavity. The problem of supporting the magnetic
sample at some interior point of the cavity is
usually solved by suspending the sample with a
nylon string or attaching it to a polyfoam holder,
as shown in Figure 8.38.

Size effect

In the measurement of permeability tensors, the
measurement results are also related to the sizes
of the samples. The major contribution to the
size effect is the fact that the penetration of
the electromagnetic field into a sample depends
on the magnetic permeability and the dielectric
permittivity, which are to be measured. The size

+ + + + + +
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Figure 8.43 Cylindrical cavity loaded with magnetized spherical sample. (a) Three-dimensional view (Von
Aulock and Rowen 1957). Source: Von Aulock, W. and Rowen, J. H. (1957). “Measurement of dielectric and
magnetic properties of ferromagnetic materials at microwave frequencies”, The Bell System Technical Journal, 36
(3), 427–448, by permission of American Telephone and Telegraph Co. and (b) sample and its image. Modified
from Lax, B. and Button, K. J. (1962). Microwave Ferrites and Ferrimagnetics, New York: McGraw-Hill Book
Company Inc.
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Figure 8.44 The calculated skin depth (solid line) and
wavelength within the ferrite (dashed line) at 9 GHz
and with a line width of 500 oersteds (Lax and Button
1962, p481). Source: Lax, B. and Button, K. J. (1962).
Microwave Ferrites and Ferrimagnetics, New York:
McGraw-Hill Book Company Inc.

effect will be very obvious near the ferromagnetic
resonance. As shown in Figure 8.44, in the range
of ferromagnetic resonance, the permeability of the
sample changes drastically, and so the skin depth
and wavelength within the sample are also greatly
changed. The changes of the skin depths and
wavelength within the sample affect the resonant
frequency and quality factor of the cavity loaded
with the sample, from which the permeability
values are obtained.

In the study of ferromagnetic resonance, we usu-
ally study the relationship between the externally
applied dc magnetic field and the imaginary part
of permeability. There are three major phenom-
ena caused by the changes of the skin depth and
wavelength within the sample: the broadening of
the resonance line, the shift of the resonance peak
to higher magnetic fields, and the frequency depen-
dence of the line width. In Figure 8.45, the solid
line shows the intrinsic resonance line of µ′′. At
the low-field side of the intrinsic resonance line,
when the steady magnetic field H increases, µ′′
increases, the skin depth decreases, and the elec-
tromagnetic field within the sample weakens. So

H0

Resonance
line

Observed
line

m′′

Figure 8.45 The size effect causes an apparent flatten-
ing of the resonance line because the skin depth becomes
smaller in the resonance region

the maximum response cannot be reached and the
curve is flattened, as shown by the dashed line,
making the resonance appear to be broader because
line width �H is taken at half-maximum. Besides,
as shown in Figure 8.44, the skin depths are differ-
ent at the corresponding points below and above
resonance because of the reversal of the algebraic
sign of µ′. This asymmetry causes the peak of the
resonance curve to be shifted to higher fields. Fur-
thermore, the size effect leads implicitly to a fre-
quency dependence of the line width. For a sample
with a given size, the electromagnetic field penetra-
tion will be smaller at higher frequencies. There-
fore, the line broadening will increase when the
operation frequency increases because of incom-
plete penetration.

Body resonance

In the measurement of permeability tensors, by
changing the external dc magnetic field, resonance
caused by the body of the sample can be observed,
and such a resonance is usually called body
resonance. As shown in Figure 8.44, when the
external dc magnetic field is changed, both the
skin depth and the wavelength within the sample
experience drastic changes. If ferrite samples are
on the order of a wavelength thick, multiple
internal reflections may result in body resonance.
There are two basic conditions for body resonance.
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One is that the sample thickness must be equal to
an integral number of half wavelengths, and the
other is that the skin depth must be greater than
the sample thickness to permit the propagation of
multiple internal reflections.

It is necessary to compare the body resonance
with the ferromagnetic resonance. In ferromagnetic
resonance, the diagonal and off-diagonal elements
of the permeability tensor exhibit anomalous dis-
persion, and microwave fields are excluded from
the sample. In body resonance, nothing spectacular
is happening to the components of the permeabil-
ity tensor, but the fields in the sample become very
large, giving rise to a large loss (Waldron 1960).

Shape effect

In the measurement of the magnetic properties
of ferrites using cavity-perturbation methods, in
order to observe the true resonance line shape, it
is necessary to consider the effect of the sample
shape. This may not be a serious problem at very
high microwave frequencies, but the effects of
incomplete magnetization of some sample shapes by
the external dc magnetic field are often important at
lower frequencies, for example, below 5 GHz (Lax
and Button 1962).

Sphere is one of the most commonly used sample
shapes. A spherical sample may approach the
resonance condition while it is still incompletely
magnetized. This effect will be serious when
both the resonance line width and the value of
4πM0 of the material are relatively high. For
a spherical sample, to sweep out the magnetic
domains, the external steady magnetic field must be
greater than the demagnetizing field 4πM0/3. So
a ferrite having a saturation magnetization at room
temperature of 3000 gauss requires an applied field
of at least 1000 oersteds to be fully magnetized.
However, if the measurements are to be made
at 2.8 GHz, according to Kittel’s formula, ωr =
γH0, the peak of the resonance curve occurs at
1000 oersteds. Therefore, as the field intensity
is increased toward resonance, the magnetization
will be increasing. Since the rf susceptibility is
proportional to magnetization, the resonance line
will be asymmetrical: it will appear to be narrower
below resonance. Furthermore, the low-field losses
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Figure 8.46 Degenerate TE111 cylindrical cavity with
ferrite disk (Von Aulock and Rowen 1957). Source: Von
Aulock, W. and Rowen, J. H. (1957). “Measurement
of dielectric and magnetic properties of ferromagnetic
materials at microwave frequencies”, The Bell System
Technical Journal, 36 (3), 427–448, by permission of
American Telephone and Telegraph Co.

due to the existence of domains will contribute
additional distortion to the resonance line.

The use of a thin disk rather than a small sphere
as a cavity perturbation eliminates most of the
difficulties discussed above because the intrinsic
parameters χ and κ are measured directly. As
shown in Figure 8.46, when a thin-disk sample is
placed against the endplate of a cylindrical TE111

mode cavity, the intrinsic parameters χ and κ can
be obtained from the splitting of the resonance
frequency and the change in (1/Q) (Von Aulock
and Rowen 1957)

�ω±
ω0

= 1

4

λ2
0t

L3
(χ ′R1 ± κ ′R2) (8.158)
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(
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Q

)
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= 1

2

λ2
0t

L3
(χ ′′R1 ± κ ′′R2) (8.159)

where t is the thickness of the disc, L is the length
of the cavity, ω0 is the angular resonant frequency
of the cavity before the magnetic field is applied,
λ0 is the wavelength in free space associated with
ω0, and R1 and R2 are functions of the geometry
that take into account the fact that the microwave
magnetic field is not constant over the face of
the disk. Equations (8.158) and (8.159) are based
on the assumption that the disk is thin enough
to introduce only a first-order perturbation into
the cavity field. Figure 8.47 shows a plot of R1

and R2 versus the ratio of disc diameter d0 to



364 Microwave Electronics: Measurement and Materials Characterization

R1

1.0

0.8

0.6

0.4R
1 

A
N

D
 R

2

0.2

0
0 0.2 0.4

d0

D

d0 / D

0.6 0.8 1.0

R2

Figure 8.47 The functions of R1 and R2 versus
the ratio of disk d0 to cavity diameter D (Von
Aulock and Rowen 1957). Source: Von Aulock, W.
and Rowen, J. H. (1957). “Measurement of dielectric
and magnetic properties of ferromagnetic materials at
microwave frequencies”, The Bell System Technical
Journal, 36 (3), 427–448, by permission of American
Telephone and Telegraph Co.

cavity diameter D. According to Figure 8.47, it
is clear that the functions are closely equal for
disc diameters less than D/2. This implies circular
polarization of the magnetic field in this region,
whereas the field becomes elliptically polarized as
the sample diameter approaches the outer diameter
of the cavity.

As the values of �ω± and �(1/Q)± depend on
the volume of the perturbation object, the pertur-
bations caused by thin discs are at least an order
of magnitude larger than those caused by small
spheres. Therefore, accurate measurements of fer-
rite parameters can be made using thin discs in the
region below saturation and below and above res-
onance. In particular, the loss parameters χ ′′ ± κ ′′
of low-loss ferrites can be determined accurately
in these regions. However, in the resonance region,
these values become very large, so it is difficult
to accurately measure the resonant properties of
the cavity, especially the quality factor. Therefore,
the thin-disk method is not suitable for the mea-
surement of resonance line width. The obvious
advantage of the thin-disk method lies in its ability
to explore the region below resonance where many
ferrite devices operate.

It should be noted that the resonance field of
a sample is related to the shape of the sample.
According to Kittel’s relations, the field in the
ferrite at which resonance occurs for a given
saturation magnetization and operating frequency
is given by (Von Aulock and Rowen 1957)

Hres = ω

|γ | (for thin disk) (8.160)

Hres = ω

|γ | − Mz

3
(for small sphere) (8.161)

Hres = ω

|γ | − Mz

2
(for thin cylinder) (8.162)

Equations (8.160) to (8.162) indicate that for some
materials a small sphere or a thin cylinder may
be at resonance even before it is saturated.
Figure 8.48 is a plot of the real and imaginary
parts of µ + κ , for a theoretical Landau–Lifshitz
line, as a function of H0/Hr through ferromagnetic
resonance. H0 is the applied dc magnetic field,
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Hr is the resonance field. The results of disk
measurements, labeled “disk” in the figure, are
intrinsic. The peak of µ′′ + κ ′′, which is given
by 4πM0/kHr is normalized equal to 10 for
convenience, and the damping constant k in
the Landau–Lifshitz equation is chosen to be
0.06 (Spencer et al. 1956a).

8.3.4.4 Exact-theory methods

Cavity-perturbation methods may face difficulty.
If the sample is small enough for the resonant-
perturbation theory to be accurate, the frequency
change may be too small to be accurately mea-
sured, whereas if a big sample is used so that the
frequency change can be accurately measured, the
approximations associated with the use of pertur-
bation theory may become invalid. One way to
overcome such difficulty is to use exact theory
to calculate the resonant frequency of the cav-
ity. An advantage of the exact-theory method is
the convenience of measuring the comparatively
large changes of resonant frequency and quality
factor produced by samples. Furthermore, it should
be noted that the exact calculations yield directly
the intrinsic properties of the sample, that is, the
dielectric constant and the magnetic permeability
of the material from which the sample is made.
On the other hand, perturbation methods yield
a “demagnetized susceptibility,” (µ − µ0)F (µ),
where F(µ) is a demagnetizing factor, so the geo-
metrical effects should be considered in perturba-
tion methods, as discussed in Section 8.3.4.3.

In an exact-theory method, it is necessary
to draw up the relationships between resonant
frequency and quality factor of the cavity loaded
with the sample and the intrinsic properties of
the sample. One of the requirements of exact-
theory method is that the exact solutions of the
electromagnetic field in the resonator loaded with
the sample can be expressed in closed forms.
Therefore, the exact-theory method has special
requirements on the geometries of the cavity and
the sample. For a sample with arbitrary shape,
exact-theory method is difficult, but for a sample
with symmetrical shape, such as a rod or a circular
disk in a cylindrical cavity, or a rectangular disk or
longitudinal slab in a rectangular cavity, the exact

theory is available. To ensure that the exact-theory
method is feasible, the samples are usually required
to have either the same length or the same cross
section as the cavity.

Thin rod

As shown in Figure 8.49, the most commonly used
measurement configuration is a cylindrical cavity
containing a cylindrical sample of full height oper-
ating on two circularly polarized, oppositely rotat-
ing TM+

110 and TM−
110 modes, and the rod sample

is magnetized along its length. Such a measure-
ment configuration can be taken as made from a
circular waveguide containing a concentric ferrite
sample. In the following discussion, we follow the
analytical method by Bussy and Steinert (1958).

For a magnetic material magnetized by an
external dc magnetic field in the z-direction,
the relationship between the microwave magnetic
field [h] and the induction [b] in right-circular
cylindrical coordinates, is given by

 br

bφ

bz


 =


 µ jκ 0

−jκ µ 0
0 0 µz





 hr

hφ

hz


 (8.163)

The signs of the off-diagonal terms specify that the
time dependence is exp(−jωt). The antisymmetric
matrix [µ] in Eq. (8.163) is identical with the

Figure 8.49 A cylindrical cavity containing a thin-rod
sample (Baden Fuller 1987). Source: Baden Fulle, A. J.
(1987). Ferrites at Microwave Frequencies, Peter Pere-
grinus Ltd., London, 235–255, by permission of Peter
Peregrinus Ltd
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matrix that represents the permeability tensor in the
usual Cartesian coordinates. This may be shown by
applying rotation operators to the matrix equation
[b] = [µ][h] in Cartesian space and obtaining
Eq. (8.163) as a result. For convenience in the later
discussion, we introduce the inverse of the matrix
[µ]:

[µ]−1 =

 M jK 0

−jK M 0
0 0 Mz


 (8.164)

as its elements occur most naturally in the wave
solutions to be obtained.

To obtain a solution for the cavity with a ferrite
rod, the wave equation in the sample must be
solved and the waves in it must match those in the
remaining space of the cavity. For the simplicity
of solution, by assuming that the waves are
independent of the z-coordinate, two-dimensional
modes of resonance for the cavity can be used. The
two-dimensional wave equation is given by

(∇2
p + ω2ε/M)Ez = 0 (8.165)

where the Laplacian in transverse (r , φ) space is
given by

∇2
p = 1

r

∂

∂r
r

∂

∂r
+ 1

r2

∂2

∂φ2
, (8.166)

where ω is the angular frequency, and the dielec-
tric permittivity ε is assumed to be a scalar.
Equation (8.165) is applicable for free space after
replacing M by M0 = 1/µ0 and ε by ε0, where
µ0 and ε0 are the constitutive parameters of
free space.

The solutions of Eq. (8.165) are of the form

Ez = (Aejnφ + Be−jnφ)[FJ n(βr) + GYn(βr)]
(8.167)

with
β = ω(ε/M)1/2 (8.168)

where Jn and Yn are Bessel functions of the
first and second kinds, respectively, of integral
order n; and A, B,F , and G are coefficients to
be determined by the boundary conditions. The
solutions of Eq. (8.165) for free space are the same
as Eq. (8.167), provided that the cylinder functions

have the argument (kr) instead of (βr) with k

given by
k = ω(ε0/M0)

1/2. (8.169)

The waves given by Eq. (8.167) should be fit
into the boundary conditions of a right-circular
cylindrical cavity with radius b with a centered
ferrite rod with radius a. Since the fields do
not vary with z, the height of the structure is
arbitrary. In this problem, since the e+jnφ and
e−jnφ solutions have different resonant frequencies,
either frequency can be selected for excitation. To
fit the boundary conditions at r = 0 and r = b,
Eq. (8.167) can be expressed as

Ez = De±jnφJn(βr), (r < a) (8.170)

Ez = Ee±jnφCn(kr), (r > a) (8.171)

with

Cn(kr) = Jn(kr) − Yn(kr)[Jn(kb)/Yn(kb)]
(8.172)

Equation (8.172) indicates that Cn(kr) = 0 when
r = b.

The microwave magnetic fields can be obtained
from Eqs. (8.170) and (8.171) by applying Max-
well’s curl equation in matrix form:

 M jK 0
−jK M 0

0 0 Mz




×

 0 −Dz r−1Dφ

Dz 0 −Dr

−r−1Dφ r−1Drr 0




×

 Er

Eφ

Ez


 = jω


 hr

hφ

hz


 (8.173)

where the Ds are derivative operators.
From the boundary condition that Ez and hφ

should be continuous across the boundary at r = a,
the ratio of the amplitudes D/E and the value of
ω can be fixed, and the equation of resonance for
the structure can be obtained:

MβaJ ′
n(βa)

Jn(βa)
± nK = M0kaC′

n(ka)

Cn(ka)
(8.174)

where the primes indicate derivatives with respect
to the arguments. For n > 0, Eq. (8.174) represents
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two resonances, indicated by “+” and “–” signs.
For n = 0, we have a nondegenerate TM0m0 mode,
and in this mode, a small ferrite rod furnishes
mostly a dielectric effect on the resonator. In order
to evaluate the three components, ε, M and K ,
three measurements on a ferrite in three different
cavity modes are needed. It is convenient to
make one measurement in a TM0m0 resonator and
two in a TM110 resonator (positive and negative
circular polarization). To determine Mz defined in
Eq. (8.164), a fourth measurement is often made
in a TE011 cavity.

Figure 8.50 shows a cylindrical cavity contain-
ing a rod sample. The circularly polarized modes
are excited through two adjacent irises by waves
of equal magnitude and 90◦ out of phase. By this
approach, both positive and negative modes can be
excited. It should be noted that the symmetry in
the mechanical structure of the resonator is impor-
tant in tensor permeability measurements. In the
mathematical solutions to Eq. (8.174), it is often
assumed that the resonator is perfectly circular.
Insufficient symmetry may result in a deleterious
effect. To avoid the errors due to initial splitting of
the degeneracy by geometrical perturbations, it is
required that the symmetry group of the perturbed

TM110 resonator be C3 or higher (Bussy and Stein-
ert 1958). This means that with irises, loops, or
probes around the periphery of the cylinder, there
must be three or more identical irises, and so on,
spaced at equal angles. A circular iris on the axis
would be desirable, as it leaves the symmetry C∞,
but is not always practicable.

Besides the exact-theory method, approximation
methods can also be used for thin-rod method.
The permeability components µ and κ can also
be calculated by(

�f

f

)
±

= −2(µ′ ± κ ′ − 1) × 1.541 · Vs

(µ′ ± κ ′ + 1)Vc

(8.175)

�

(
1

Q

)
±

= −2(µ′′ ± κ ′′) × 1.541 · Vs

(µ′ ± κ ′ + 1)Vc
(8.176)

where Vs and Vc are the volumes of the sample
and the cavity respectively.

As mentioned above, the parallel component µz

is usually determined on the basis of an indepen-
dent measurement, for example, using cylindrical
cavity working at TE011 mode. Figure 8.51 shows
another method for measuring µz by placing the
thin rod sample at the center of a rectangular cav-
ity operating in the TE102 mode. The values of µ′

z

Ferrite rod
Ferrite rodrf magnetic

field

Coupling iris

Cavity

Waveguide Waveguide

(a) (b)

Hdc

Figure 8.50 Configuration of a TM110 resonator with four irises and guides permitting excitation of a rotating field
pattern. (a) Cross view and (b) top view. Modified from Bussy, H. E. and Steinert, L. A. (1958). “Exact solution
for a gyromagnetic sample and measurements on ferrite”, IRE Transactions on Microwave Theory and Techniques,
6 (1), 72–76.  2003 IEEE
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HdcCoupling
iris

rf magnetic
field

Ferrite rod

Figure 8.51 TE102 mode rectangular cavity for the
measurement of µ′

z and µ′′
z

and µ′′
z can be calculated by

�f

f
= (µ′

z − 1)Vs

[1 + (l/2a)2]Vc
(8.177)

�

(
1

Q

)
= 2µ′′

zVs

[1 + (l/2a)2]Vc
(8.178)

where l is the length and a is the width of the
cavity, Vs and Vc are the volumes of the sample
and the cavity respectively.

Thin disk

Figure 8.52 shows a ferrite disk completely filling
one end of a cylindrical cavity. This configuration
can be analyzed as a short length of completely
filled circular waveguide, coupled to a length of
empty circular waveguide. As such, structure can
be exactly analyzed in theory, no demagnetization
factors enter into the expressions used for the
microwave properties of the ferrite. Detailed
discussions on this configuration can be found
in (Baden Fuller 1987).

There are several other configurations of thin-
disk method. A rectangular cavity operating in
the TE10n-mode can be used, and the thin ferrite
slab completely fills one end of the rectangular
cavity (Viswanathan and Murthy 1990). Another
configuration often used is to mount a transversely
magnetized ferrite slab in a rectangular waveguide
cavity (Baden Fuller 1987).

Figure 8.52 Disk at one end of a cylindrical cav-
ity (Baden Fuller 1987). Source: Baden Fulle, A. J.
(1987). Ferrites at Microwave Frequencies, Peter Pere-
grinus Ltd., London, 235–255, by permission of Peter
Peregrinus Ltd

Small sphere

Besides a cylindrical cavity coaxial loaded with
thin rod and a cylindrical or rectangular cavity
loaded with thin disk, a spherical cavity loaded
with a small sphere sample can also be analyzed
by using closed-form equations. Okada and Tanaka
proposed a method for the measurement of the
permeability tensor using a spherical cavity res-
onator loaded with a spherical ferrite sample under
test (Okada and Tanaka 1990). For convenience,
a spherical coordinate system is used as shown
in Figure 8.53(a). The spherical TE011 mode has
symmetry in φ direction, and a spherical cav-
ity can support two degenerate TE011 modes. In
Figure 8.53(b), the microwave magnetic field of
one TE011 mode is shown by dotted line, labeled
“TE011,” and that of the orthogonally degenerate
TE011 mode (z-axis change to x-axis) is shown
by broken line, labeled “degenerate TE011.” The
external dc magnetic field Hdc is applied along the
y-axis.

If the two orthogonally degenerate TE011 modes
shown in Figure 8.53(b) are excited by a 90-degree
phase difference, the microwave magnetic fields
of the two modes constitute the circular polarized
magnetic field around the center point. In the center
point, the microwave electric field is almost zero,
so if a small spherical ferrite sample is placed at
this point and a biased Hdc field is impressed in the
y-axis, the relative permeability µr± for right- and
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Figure 8.53 Spherical cavity for the measurement
of permeability tensors. (a) Spherical coordinate and
(b) distributions of magnetic fields of two degenerate
TE011 modes (Okada and Tanaka 1990). Source: Okada,
F. and Tanaka, H. (1990). “Measurement of ferrites
tensor permeability by spherical cavity resonator”,
Digest of Conference on Precision Electromagnetic
Measurements ’90, 230–231.  2003 IEEE

left-hand circular polarized fields, the components
of the tensor [µr], can be derived from the resonant
properties of the spherical resonator loaded with
the spherical magnetic sample.

The electromagnetic field Eφ, Hr, Hθ of the
TE011 mode in a ferrite sample region 1 (r < a)

and outer region 2 (a < r < b) respectively can
be obtained from the wave equation. Then, from
the boundary conditions (Eφ1 = Eφ2, Hθ1 = Hθ2

at r = a and Eφ2 = 0 at r = b), the following
equation can be derived (Okada and Tanaka 1990):

1

µr±
·

∂

∂x
(xj1(x))|x=kf a

j1(kf a)

=
n1(k0b)

∂

∂x
(xj1(x))|x=k0a − j1(k0b)

∂

∂x
(xn1(x))|x=k0a

n1(k0b)j1(k0a) − j1(k0b)n1(k0a)

(8.179)
with

kf = k0 = ω
√

εrµr± (8.180)

k0 = ω
√

ε0µ0 (8.181)

ω = ω1 + jω2 = ω1 + j
ω1

2Q0
(8.182)

µr± = µ ∓ κ (8.183)

where µr± and εr are relative permeability for
circular-polarization wave and relative permittivity
of ferrite, and µ and κ are the components of
relative permeability tensor [µr]. The spherical
Bessel functions j1(x) and n1(x) are given by the
following trigonometric functions:

j1(x) = 1

x

(
sin x

x
− cos x

)
(8.184)

n1(x) = − 1

x

(cos x

x
+ sin x

)
(8.185)

If resonant frequency and quality factor are
measured when the ferrite sample is inserted into
the cavity, µr± can be computed from Eq. (8.179).

Figure 8.54 shows a spherical cavity constructed
of two semispheres. A hollow thin dielectric rod
is used to support the spherical ferrite sample.
Couplings are made by using coaxial cable loops.
1 and 1′ are the input and output ports for the
TE011 mode, while 2 and 2′ are used for the
orthogonally degenerate TE011 mode. The pine
labeled 3 is used to adjust the isolation between
the two degenerate modes.

Finally, it deserves to be noted that the quality
factor of a spherical cavity is usually about two
times higher than that of a rectangular or circular
cavity resonator, so spherical cavities usually

1′1

2

3

Sample
Sample

Dielectric
hollow rod

(a) (b)

2′

Figure 8.54 A spherical cavity with the top half
moved. (a) Plane view and (b) side view (Okada and
Tanaka 1990). Source: Okada, F. and Tanaka, H.
(1990). “Measurement of ferrites tensor permeability
by spherical cavity resonator”, Digest of Conference on
Precision Electromagnetic Measurements ’90, 230–231.
 2003 IEEE
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have higher accuracy than rectangular and circular
cylindrical cavities in materials characterization.

8.4 MEASUREMENT OF FERROMAGNETIC
RESONANCE

Ferromagnetic resonance is a special phenomenon
of magnetic materials, and the measurement of
ferromagnetic resonance is important for the study
of ferromagnetism and applications of magnetic
materials. The basic knowledge of ferromagnetic
resonance has been discussed in previous sections.
In this section, we further discuss the origin
of ferromagnetic resonance and the parameters
describing ferromagnetic resonance, and then we
discuss the methods for the measurement of
ferromagnetic resonance.

8.4.1 Origin of ferromagnetic resonance

Ferromagnetic resonance originates from the
precession of atoms under a magnetic field (Viswa-
nathan and Murthy 1990). For an atom possessing
both magnetic moment µ and angular momentum
J, the rate of change of angular momentum is equal
to the torque acting on the system:

h̄
dJ
dt

= µ × H (8.186)

where µ × H is the torque acted on the atom in
the magnetic field H. The relationship between the

magnetic moment µ and the angular momentum
J is

µ = −γ h̄J (8.187)

with the gyromagnetic ratio γ given by

γ = ge

2mc
(8.188)

where g is the Lande’s splitting factor, e and m

are the electricity and mass of an electron, and
c is the speed of light. The g-factor is related
to many aspects, and g = 2 for free spin. From
Eqs. (8.186) and (8.187), we obtain

dµ

dt
= −γ (µ × H ) (8.189)

As the magnetization M of the medium is the
sum of all the magnetic moments in a unit volume

M =
∑

µi (8.190)

From Eqs. (8.189) and (8.190), the following
movement equation can be obtained:

dM
dt

= −γ (M × H ) (8.191)

Equation (8.191) represents the precession of M
under the magnetic field H. Figure 8.55 (a) shows
the precession under dc magnetic field H0.

To consider the losses of the system, Eq. (8.191)
should be modified as

dM
dt

= −γ (M × H ) + λ

|M |2 (M × (M × H ))

(8.192)

H0 H0 H0

hrf

M M

(c)(b)(a)

M

Figure 8.55 Precession of magnetization vector. (a) Precession without damping, (b) precession with damping,
and (c) precession with damping and microwave field
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where λ is the damping constant. Figure 8.55(b)
shows a precession of M under external dc magnetic
field H0. Because of the damping effect, the angle of
the precession decreases. Finally, the spin magnetic
moment vector becomes parallel to H0.

Figure 8.55(c) shows the case when a circu-
larly polarized microwave field Hrf is applied to
the magnetic moments. Depending on the direc-
tion of the rotation of Hrf, there are two results. If
the electron and the microwave field are rotating
at the same direction, the microwave field pro-
vides energy to the electron. The precession of
magnetic moments continues, and when the fre-
quency of precession of magnetic moments equals
the frequency of the microwave field, the ferro-
magnetic resonance occurs. If the electron and the
microwave field are rotating in opposite directions,
the energy is alternately exchanged between the
electron and magnetic field, so that the ferromag-
netic resonance cannot take place. When a linearly
polarized microwave field is applied to the sample,
one of its two circular-polarization components
contributes to the ferromagnetic resonance.

8.4.2 Measurement principle

In the study of ferromagnetic resonance, we usu-
ally measure the microwave energy dissipation
parameters, such as the imaginary part of per-
meability or the magnetic power absorption P .
Generally speaking, ferromagnetic resonance can
be measured by two types of methods: sweep-
ing magnetic field method and sweeping frequency

method. In a sweeping magnetic field method, the
operation frequency is fixed, and the relationships
between the dissipation parameter and the exter-
nal dc magnetic field are measured. As shown in
Figure 8.56(a), two parameters can be determined
from the ferromagnetic resonance curve: resonance
magnetic field H0 and resonance line width �H .
The gyromagnetic ratio γ can be calculated from
H0 according to the following relationship:

ω0 = γH0. (8.193)

In this method, ω0 is the operating frequency of
the measurement system. After γ is obtained, the
g-factor can then be calculated from γ according
to Eq. (8.188).

The line width �H is related to the gyromag-
netic ratio γ and the relaxation time τ by

�H = 1

γ τ
. (8.194)

The damping constant can then be calculated
according to

λ = γ |M |
ω0τ

. (8.195)

In a sweeping frequency method, the external
dc magnetic field is fixed, and the relationships
between the energy dissipation parameter and the
microwave frequency are measured. As shown in
Figure 8.56(b), two parameters can be determined
from the ferromagnetic resonance curve: resonance
frequency ω0 and resonance line width �ω. The
gyromagnetic ratio γ can also be calculated from

∆H ∆w
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P0/2

P0

P

H0
w0

P0/2

P0

P

w0

(a) (b)

Figure 8.56 Two types of ferromagnetic resonance curves. (a) Sweeping magnetic field method and (b) sweeping
frequency method
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ω0 using Eq. (8.193), and in this method, H0 is
the fixed external dc magnetic field. The relation
between �H and �ω measured using the two
methods shown in Figure 8.56 is given by

�ω = γ�H = 1

τ
. (8.196)

In the measurement of ferromagnetic resonance
curves, besides the power absorption method
shown in Figure 8.56, cross-coupling method can
also be used, as ferromagnetic resonance can
also be characterized by the coupling between
two orthogonal modes that are normally isolated
when the sample is in off-resonance state. As
discussed earlier, for a magnetic sample saturately
magnetized in the z-direction, the rf magnetization
[m] is related to the rf field [h] through a tensor
susceptibility [χ ]:

[
mx

my

]
=

[
χxx χxy

χyx χyy

] [
hx

hy

]
(8.197)

The coupling between the two orthogonal modes
is related to the off-diagonal component χxy (χxy =
−χyx ). As the power coupled between the two
modes is proportional to |χxy |2, the values of H0

and �H are defined as shown in Figure 8.57, and
the values of ω0 and �ω can also be similarly
defined. It is clear that, the criteria for determining
the resonance line width is

|χxy |�H = |χxy |max/
√

2 (8.198)

where |χxy |max is the maximum value of |χxy |
corresponding to H0, and |χxy |�H is the value of
|χxy | for the determination of �H .

The above discussion indicates that precise
information on the magnetic state of the atom
in a magnetic medium can be gathered from its
ferromagnetic resonance curve, so this technique
gives information about the process at the atomic
level. Besides, the components of susceptibility
tensor can be calculated from the parameters of
ferromagnetic resonance.

The diagonal and off-diagonal components of
the tensor susceptibility χxx and χxy are com-
plex quantities and are functions of many param-
eters, including the dc magnetic field H0, the rf
frequency ω, the magnetization M, the gyromag-
netic ratio γ , and the damping constant λ. From
Eqs. (8.192) and (8.197), we can get

χxx = χyy = (ω0 + j�ω)ωm

(ω0 + j�ω)2 − ω2
(8.199)

χyx = −χxy = −jω0ωm

(ω0 + j�ω)2 − ω2
(8.200)

with
ωm = γ 4πM0 (8.201)

ω0 = γH0 (8.202)

where M0 is the magnetization of the sample due
to the external dc magnetic field H0.

Typical methods for the measurement of perme-
ability tensors have been discussed in Section 8.3,
and in principle, these methods can be used in the

0

2

cxy2max

cxy2max

cxy2

H0 H

∆H

Figure 8.57 Ferromagnetic resonance curve in the form of |χxy |2
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study of ferromagnetic resonance. However, if we
only need to measure the ferromagnetic resonance
curve, it is not necessary to characterize all the
components in the permeability tensor. In the fol-
lowing text, we discuss three types of methods
often used for the study of ferromagnetic reso-
nance: cavity methods, waveguide methods, and
planar-circuit methods.

8.4.3 Cavity methods

The usual method for measuring the microwave
susceptibility and the ferromagnetic resonance
curve of a ferrite depends upon the complex
frequency perturbation of a resonant cavity, and
the cavity-perturbation technique is used in a
large number of experiments mainly because of
its sensitivity and accuracy. However, the cavity
perturbation has some disadvantages. It does not
permit one to vary frequency easily, and the
measurement procedure is quite complicated. The
cavity-perturbation technique could be dispensed
with for the routine measurement of the line width
and the g-factor of microwave ferrites, especially
when one is concerned with comparative data
among a large number of ferrite samples. In such
a situation, saving time is more important than
obtaining very accurate data.

In the cavity methods that will be discussed
below, the sample under study is placed within a
resonant cavity. The energy dissipation of the sam-
ple is estimated from the energy dissipation of the
cavity containing the sample. Though quality fac-
tor is an accurate indicator of the energy dissipation
of the cavity, the measurement of quality factor
requires complicated instruments, and furthermore,
at the region of ferromagnetic resonance, the sam-
ple is usually quite lossy, so the measurement of
quality factor may become difficult. In the follow-
ing text, we discuss the principles of the reflection
method and transmission method for the measure-
ment of energy dissipation of a cavity loaded with
a magnetic sample under test.

8.4.3.1 Reflection method

In this method, the energy dissipation of the
sample under test is estimated from the reflec-
tion from the cavity containing the sample. As

N S

Output arm
Cavity with sample

Synthesizer Magic T Detector Indicator

Matching load

Figure 8.58 Reflection method for the measurement of
ferromagnetic resonance using magic T

shown in Figure 8.58, the measurement circuit is
a microwave bridge circuit built using a magic T
or hybrid ring. The cavity containing the sample is
connected to one arm of the magic T, and a match-
ing load is connected to the opposite arm. Before
the dc magnetic field is applied, the matching load
is adjusted so that there is no output at the output
arm. Then the external dc magnetic field is applied,
and from the relationship between the applied dc
magnetic field and the output at the output arm, the
ferromagnetic resonance curve can be obtained.

In the above measurement procedure, it is
assumed that the sample does not absorb
microwave energy at zero dc magnetic field. To
consider the loss of the sample at zero dc magnetic
field, at first, an external dc magnetic field that
is much higher than the resonance magnetic field
(H � H0) is applied, and the matching load is
adjusted so that there is no output at the output arm.
Then, the external dc magnetic field is decreased,
and the relationship between the output at the
output arm and the external dc magnetic field can
be obtained. When the external dc magnetic field
decreases to zero, the absorption of the sample at
zero magnetic field can be obtained.

8.4.3.2 Transmission method

For a high-quality factor cavity loaded with a
ferrite sample, most of the loss is due to the energy
dissipation of the sample, and the transmission
energy through the cavity at its resonance is related
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Micrometer screw
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Coupling iris

Ferrite sample

Detachable base

Figure 8.59 Schematic view of a transmission cavity.
Modified from Viswanathan, B. and Murthy, V. R.
K. (1990). Ferrite Materials, Science and Technology,
Narosa Publishing House, New Delhi, 85–105, by
permission of Narosa Publishing House

to the energy dissipation of the sample loaded in
the cavity. If the input microwave power is fixed,
from the relationship between the transmission
power of the cavity and the applied dc magnetic
field, the ferromagnetic resonance curve of the
sample can be obtained. Figure 8.59 shows the
basic structure of a transmission cavity. In the
measurement procedure, the resonant frequency of
the cavity may be changed because of the change
of the external dc magnetic field, so that at each
measurement point, it is desirable to adjust the
shorting plunger to ensure that the cavity is at its
resonant state.

8.4.4 Waveguide methods

In this type of method, the sample is loaded in
a waveguide structure, and measurements can be
made at a certain frequency range. In the follow-
ing, we discuss three waveguide methods often
used in the measurement of ferromagnetic res-
onance: frequency-variation method, cross-guide
method, and pickup-coil method.

8.4.4.1 Frequency-variation method

In this method, the sample under test is put inside
a shorted waveguide, which is placed between
the two poles of the electromagnet, as shown in
Figure 8.60(a). The electromagnet is driven by a
dc current and an ac current, so the magnetic field
H consists of a dc magnetic field Hdc and an ac
magnetic field Hac:

H = Hdc + Hac (8.203)

Suitable value of the dc magnetic field Hdc

and suitable amplitude of the ac magnetic field
are chosen so that the ferromagnetic resonance
curve of the sample can be observed in the
measurement range.

As shown in Figure 8.60(b), two ferromagnetic
resonance curves are measured corresponding to
two microwave frequencies ω1 and ω2. When the
operation frequency changes from ω1 and ω2, the
absorption curve shifts �H along the H axis. The
gyromagnetic ratio γ can be calculated by

γ = �ω

�H
(8.204)
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Figure 8.60 Frequency-variation method for the measurement of ferromagnetic resonance. (a) Measurement setup
and (b) measurement of �H
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with �ω = (ω2 − ω1). This method is widely used
by ferrite manufacturers.

8.4.4.2 Cross-guide method

Stinson proposed a method for the measurement
of the resonance line width and the g-factor of a
spherical ferrite sample in a cross-guide directional
coupler (Stinson 1958). This method is simple and
sufficiently accurate for most purposes. It is espe-
cially suitable for yielding reliable comparative
data during the development of optimum manu-
facturing techniques.

As shown in Figure 8.61, this method uses
a cross-guide directional coupler with a round,
centered coupling hole in the common broad wall.
The two waveguides of the cross-guide coupler
are soldered together, and the wall thickness at
the coupling hole is about half of the normal
waveguide wall thickness. A suitable diameter of
the hole is chosen so that the coupling is in the
range of 40 to 50 dB. An access hole is made for
inserting the sample into the coupling hole, and
the fit of the cover plate on the access hole is not
critical, as the leakage of power through it is not
important in relative power measurements of this
type as long as the leakage power remains constant
during the measurements. The ferrite sample is

Access hole

Hdc

Secondary
waveguide

Primary
waveguide

Coupling hole

Figure 8.61 Cross-guide coupler for the measurement
of ferromagnetic resonance (Stinson 1958). Source:
Stinson, D. C. (1958). “Ferrite line width measure-
ments in a cross-guide coupler”, IRE Transactions on
Microwave Theory and Techniques, 6, 446–450.  2003
IEEE

glued symmetrically in the coupling hole. Though
the placement of the sample in the coupling hole
has some effect on the level of the coupled power,
the effect on the line width or the g-factor is
not obvious.

The method for measuring the line widths of fer-
rite samples using a cross-guide coupler is devel-
oped from the theory of coupling through aper-
tures containing ferrites. The theory for coupling
through an aperture containing a ferrite assumes an
aperture that is small compared to the guide wave-
length and a ferrite sample that is small compared
to the wavelength inside it (Stinson 1958, 1957).
These assumptions can be easily realized, so the
theoretical conclusions can be used in obtaining
qualitative information concerning many ferrite-
coupling problems.

The expressions for the coupling between
waveguides contain terms for both the dielectric
and magnetic susceptibilities. However, the dielec-
tric susceptibility term could be removed by termi-
nating the primary waveguide with a short located
at a multiple of a half-guide wavelength from the
aperture so as to annul the electric field at the aper-
ture. Thus, the coupling expression for a collinear
coupler contains only the diagonal magnetic sus-
ceptibility, while the coupling expression for a
cross-guide coupler contains only the nondiagonal
magnetic susceptibility. Also, for the cross-guide
coupler, there is no coupled power in the absence
of the external dc magnetic field. For the collinear
coupler, there is coupled power in the absence of
external dc magnetic field. Therefore, the cross-
guide coupler is suitable for line-width measure-
ments, and very small samples may be measured.
In practice, garnet-structure ferrite spheres with
0.030-inch diameter are adequate for measure-
ments at X-band frequencies (Stinson 1958).

The expression for the coupled power in dB
in the cross-guide coupler for a centered aperture
and with a short located in the primary waveguide
so as to annul the electric field at the aperture
is (Stinson 1958)

C = C0 + 20 log10 |χxy | (8.205)

with

C0 = 20 log10

(
2πd3FH

2abλg

)
(8.206)
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where χxy is the nondiagonal magnetic susceptibil-
ity of the ferrite sample in the coupling aperture; d

is the diameter of the aperture; a and b are the wide
and narrow dimensions of the rectangular waveg-
uide respectively; λg is the guide wavelength; and
FH is a quantity that measures the attenuation
due to finite aperture thickness. Equation (8.205)
and all of the quantities involved are more com-
pletely defined in (Stinson 1958, 1957). According
to Eq. (8.205), ferromagnetic resonance curve in
the form of |χxy |2, as shown in Figure 8.57, can
be obtained.

8.4.4.3 Pickup-coil method

The working principle of the pickup-coil is similar
to that for the cross-guide method, but in the pickup-
coil method, the secondary waveguide in the cross-
guide method is replaced by a pickup coil (Masters
et al. 1960). As shown in Figure 8.62, the sample
is placed in the transverse, uniform microwave
magnetic field at a distance nλg/2 from the short
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Figure 8.62 Sliding short method for the measurement
of ferromagnetic line width. (a) Measurement config-
uration and (b) structure of the measurement fixture.
Modified from Masters, J. I. Capone, B. R. Gianino,
P. D. (1960). “Measurement technique for narrow line
width ferromagnets”, IRE Transactions on Microwave
Theory and Techniques, 8, 565–566.  2003 IEEE

in a shorted waveguide. A nearby pickup coil,
which senses the precession dipolar field of the
magnetic sample, is oriented so that the plane of the
loop and microwave magnetic field h are parallel,
producing a negligible coupling to the transverse
microwave field. When the dc magnetic field H is
near resonance a voltage is induced in the loop.

As the spatial relationship of the loop and the
sample is such that only the projection of the motion
along the y-direction is effective, the induced
voltage at the output port depends upon the absolute
value of the off-diagonal component of [χ]:

Voutput ∝ |χxy |. (8.207)

Therefore, from the voltage at the output port,
ferromagnetic resonance curve can be obtained.

In experiments, the microwave signal is fed to a
section of waveguide terminated by a sliding short.
The correct position of the sliding short can be
found by substitution of an electric probe for the
loop and adjusting for a null in the electric-probe
output. The correct loop orientation is then found
by rotation of the loop for minimum leakage of
the microwave field with the external dc magnetic
field H = 0, which is usually about 30 dB below
the loop output when H is adjusted for resonance.

8.4.5 Planar-circuit methods

As discussed above, ferromagnetic resonance prop-
erties of magnetic materials can be measured
using waveguide systems. However, because of the
coherent limitation of the narrowband of waveg-
uide systems, it is difficult to characterize the reso-
nance line width �H in multioctaves, and �H val-
ues are sometimes reported at a single frequency
point. In the following, we discuss two broadband
planar-circuit methods for line width measurement:
magnetostatic resonator method and slot-coplanar
junction method, and these methods can cover
wide frequency bands. Finally, we will discuss a
microstrip resonator method, based on near-field
microwave microscope techniques, which has high
sensitivity and spatial resolution.

8.4.5.1 MSW-SER method

This method is suitable for film and sheet sam-
ples. The measurement fixture is a piece of



Measurement of Permittivity and Permeability Tensors 377

microstrip transmission line, and the sample under
test forms a magnetostatic wave straight-edge res-
onator (MSW-SER) (Chen et al. 1993). The reso-
nance line width �H is calculated from the half
resonance band (�ω) for unloaded quality fac-
tor of the MSW-SER. As the resonant frequency
of a MSW-SER can be tuned via a bias mag-
netic field (Ishak and Chang 1986), using this
method, measurements can be made over a wide
frequency range.

Figure 8.63 shows a microstrip-line fixture
loaded with a film sample. The impedance of the
transmission line is 50 �. The sample to be tested
is placed on the top of the microstrip line. A proper
spacer is inserted between the sample and the cen-
tral conductor to adjust the coupling strength. The
fixture loaded with sample is a typical two-port
MSW-SER. Depending on the orientation of the
external dc magnetic field H , two kinds of reso-
nant modes can be excited. When the dc magnetic
field is perpendicular to the film plane, forward
volume wave is excited in the sample; whereas
when the dc magnetic field is parallel to the film
plane, surface wave is excited. Therefore, �H⊥
and �H|| can be separately measured, correspond-
ing to the cases when the external dc magnetic field
is perpendicular and parallel to the sample plane,
respectively.

The relationship between �H and �ω can
be obtained from the resonance condition of

Ground

Ferrite film
Spacer

Dielectric
substrate

Out

In

Figure 8.63 Microstrip-line fixture loaded with a
film sample (Chen et al. 1993). Source: Chen, H. De
Gasperis, P. and Marcelli, R. (1993). “Using microwave
network analyzer and MSW-SER to measure linewidth
spectrum in magnetic garnet film from 0.5 to 20 GHz”,
IEEE Transactions on Magnetics, 29 (6), 3013–3015. 
2003 IEEE

the MSW-SER. The resonant condition can be
expressed in an implicit form

F(ω, k, H) = 0 (8.208)

where ω is the angular frequency, k is the wave
number, and H is the external dc magnetic field.
The ferromagnetic resonance line width (�H ) of
the magnetic film can be obtained from (Chen
et al. 1993)

�H = �ω/γk (8.209)

with
γk = −γ

∂F/∂ω

∂F/∂ω0
(8.210)

ω0 = γH (8.211)

where γ is the gyromagnetic ratio, and γk is related
to the orientation of external dc magnetic field and
thus the resonance types of the MSW-SER. For
forward volume wave resonators, γk is given by

γk = γ (ω2 + ω2
0)

2ωω0
(8.212)

and for surface-wave resonators, γk is given by

γk = γ (2ω0 + ωm)

2ω
(8.213)

with
ωm = γ 4πMs (8.214)

8.4.5.2 Slot-coplanar junction method

Figure 8.64 schematically shows a slot-coplanar
junction for the measurement of ferromagnetic
resonance (Dorsey et al. 1992; Zhang et al. 1997).
The planar fixture is designed such that a slot
line is the input transmission line, with a coplanar
waveguide (CPW) being the output transmission
line. These collinearly aligned transmission lines
are shorted in a junction region, which appears
in the center. Figure 8.64(a) shows the slot line
and CPW geometries, and the microwave magnetic
field (h) patterns of their propagating modes. As
the low-frequency CPW mode is approximately
orthogonal to the slot-line propagating mode, the
fixture has a good isolation between input and
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Figure 8.64 Slot-coplanar junction for ferromagnetic
resonance measurement (Zhang et al. 1997). (a) The
geometry of the slot line and CPW in the junc-
tion region and (b) sample placement. Modified from
Zhang, S. Oliver, S. A. Israeloff, N. E. and Vittoria,
C. (1997). “High-sensitivity ferromagnetic resonance
measurements on micrometer-sized samples”, Applied
Physics Letters, 70 (20), 2756–2758

output ports, and the CPW effectively appears as
a short to the input slot line.

The geometry of the junction region is crucial
for fixture performance. The microwave magnetic
field at the shorted end of a slot line is predicted
to have a large component normal to the fixture
plane because of the large electrical currents
at the slot-line terminus. For a single shorted
slot line in an otherwise continuous metal plane,
this normal-oriented microwave magnetic field
pattern is distributed over a large area around
the slot-line terminus since the effective electrical
length of the slot line extends a fraction of a
wavelength into the metal. Placing the CPW close
to the slot-line terminus effectively maintains the
short, and greatly enhances the intensity of the
normal-oriented microwave magnetic field since
the electrical currents are restricted within the
junction region. So it is expected that the shorter
the junction region, that is, the slot line–to-CPW-
terminus spacing, the higher the intensity of the
normal-oriented microwave magnetic field in the
junction region.

Zhang et al. developed a fixture suitable for
measuring ferromagnetic resonance of microme-
ter–diameter magnetic disks (Zhang et al. 1997).
Figure 8.65 shows the basic structure of the junc-
tion. The slot line enters from the left, while
the CPW appears on the right. For measuring
micrometer-diameter disks, the measurement fix-
ture should have a junction of approximately 1-µm
length. To meet the very small junction region
dimension requirements, it is necessary to taper

Figure 8.65 The junction region where a sample
would be placed for testing

the slot line and CPW slots down to a point at
their termini.

The presence of intense microwave magnetic
fields oriented normal to the fixture plane in the
junction region is essential for the measurement
of ferromagnetic resonance. Figure 8.64(b) shows
the placement of a magnetic disk over the junction
region, where it overlaps both transmission line
termini. In this geometry, most of the microwave
energy transmitted across the junction region is
coupled through the sample, and so the trans-
mission of the microwave energy between the
input and output ports is highly dependent on the
microwave absorption of the sample. By applying
a magnetic field in the fixture plane, the ferromag-
netic resonance of the sample can be observed.

8.4.5.3 Microstrip resonator method

It is desirable to study the distributions of the ferro-
magnetic resonance properties of magnetic films.
The concept of near-field microwave microscope
can be used for this purpose, and a microstrip res-
onator with a measurement hole on the ground
plane can be used as the measurement sen-
sor (Belyaev et al. 1997). The measurement hole
serves as a localized microwave magnetic field
source and a communication channel between the
film and the resonator, and the magnetic absorption
is obtained on the basis of resonant-perturbation
theory, by measuring the change of quality factor
of the resonator with sweeping external dc mag-
netic field applied along the film.
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Figure 8.66 Schematic drawing of the microstrip res-
onator. (a) Three-dimensional view and (b) cross-section
view. 1, metal strip; 2, dielectric substrate; 3, bot-
tom metal; 4 measurement hole. The arrow shows the
direction of the microwave magnetic field. Modified
from Belyaev, B. A. Leksikov, A. A. Makievskii, I.
Y. and Tyurnev, V. V. (1997). “Ferromagnetic res-
onance spectrometer”, Instruments and Experimental
Techniques, 40 (3), 390–394, by permission of MAIK
Hayka/Interperiodica Publishiing

As shown in Figure 8.66, the measurement
hole is under the middle of the microstrip line,
where the microwave magnetic field antinode
with the frequency of the first half-wavelength
microstrip resonance is located. The microwave
magnetic field near the measurement hole has two
components: the normal component perpendicular
to the grounding plane, and the tangent component
parallel to the grounding plane and perpendicular
to the microstrip line. The tangent field component
is much larger than the normal component.

Figure 8.67 shows the basic structure of a
measurement head for a ferromagnetic resonance
microscope. The microstrip resonator is placed
within a metal shield, and the head axis runs
exactly through the center of the hole of the
microstrip resonator. The microstrip resonator
serves as the driving resonator of the transistor
microwave oscillator operating in the autodyne
mode. The output signal is proportional to the
microwave power absorbed by film area located
under the measurement hole. The prime advantage
of this head is its high sensitivity. A ferromag-
netic resonance spectrometer can be equipped with
many replaceable measurement heads for differ-
ent operating frequencies. Meanwhile, to inves-
tigate magnetic-film inhomogeneities, it is favor-
able to have replaceable measurement heads for
the same microwave frequency but with mea-
surement holes of different diameters, so that
different degrees of measurement locality can
be achieved.
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Figure 8.67 Structure of a measurement head for
ferromagnetic resonance microscope. 1, housing; 2,
microstrip resonator; 3, microwave oscillator; 4, detec-
tor; 5, magnetic film; and 6 magnetic-film sub-
strate. Modified from Belyaev, B. A. Leksikov, A. A.
Makievskii, I. Y. and Tyurnev, V. V. (1997). “Ferromag-
netic resonance spectrometer”, Instruments and Experi-
mental Techniques, 40 (3), 390–394, by permission of
MAIK Hayka/Interperiodica Publishiing

In measurements, the sample under test is placed
on a table that can move in two coordinates in
the horizontal plane. A dc magnetic field Hdc is
applied along the sample surface using Helmholtz
coils, and the value of Hdc is chosen to ensure that
ferromagnetic resonance can be observed in the
measurement range. The dc magnetic field Hdc is
modulated by an ac magnetic field Hac produced by
modulation coils. The amplitude of Hac is usually
set within a range of 0.05 to 5.0 Oe, depending on
the line width of the ferromagnetic resonance of
the film under study. If the measurement head can
rotate by 90◦ along its axis, the tangent component
of microwave magnetic field can be parallel or
perpendicular to the external dc magnetic field.
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9

Measurement of Ferroelectric Materials

Ferroelectric materials usually have high dielec-
tric constants, and their dielectric properties are
temperature- and electric-field-dependent. This
chapter discusses the methods for the characteri-
zation of the dielectric properties of ferroelectric
materials. After a brief introduction to the basic
properties of ferroelectric materials, three types
of measurement methods are discussed, includ-
ing nonresonant methods, resonant methods, and
planar-circuit methods. Special attention is paid
to planar-circuit methods, which are suitable for
ferroelectric thin films. The measurements of the
responding time and the nonlinear properties of
ferroelectric thin films are discussed in the final
two sections.

9.1 INTRODUCTION

Ferroelectric materials come under a subclassifi-
cation of pyroelectric materials that show a spon-
taneous polarization that depends on temperature
and the orientation of which can be changed by
applying an external dc electric field. Pyroelectric
materials in turn come from a class of piezoelectric
materials that show an electric polarization under
mechanical stress. Therefore ferroelectric materials
possess pyroelectric as well as piezoelectric prop-
erties (Lines 1977; Anderson 1964).

For many years, although ferroelectric mate-
rials are used in a wide variety of devices, it
has always been that it is the other properties of
the material such as pyroelectricity or piezoelec-
tricity that are actually employed. This situation
has been changed during the past few years. The
applications of ferroelectric materials in random

access memories are expected to replace mag-
netic core memories and magnetic bubble mem-
ories for many applications. Besides, ferroelectric
materials can be used in fabricating capacitors for
electronic industry because of their high dielectric
constants, and this is important in the trend toward
miniaturization and high functionability of elec-
tronic products. Furthermore, ferroelectric materi-
als can be used for the development of tunable
microwave devices, which have potential applica-
tions in satellite, terrestrial communications, and
other microwave applications where the working
frequencies are higher than the useful range of
Si-based devices (Varadan et al. 1999, 1995; Teo
et al. 2002, 2000). By using ferroelectric thin films,
electrically tunable microwave integrated circuits
can be developed. Therefore, it is very important
to characterize the dielectric constant and tunabil-
ity of ferroelectric thin films.

In this chapter, various methods for the mea-
surement of the dielectric properties of ferroelec-
tric materials will be discussed. As ferroelectric
materials may be in composite state, polycrys-
talline ceramic state, bulk single crystal state,
and thin-film state, different characterization meth-
ods are needed. Generally speaking, the methods
for characterizing dielectric composites, ceramics,
and bulk ferroelectric crystals include nonreso-
nant methods and resonant methods, and people
are interested in the dielectric relaxations of such
materials, whereas ferroelectric thin films are usu-
ally characterized using planar-circuit methods,
and almost all the dielectric properties, including
the dielectric relaxations and electric tunability, are
needed to be studied.

Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2
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A Barium O Oxygen B Titanium

Figure 9.1 The ABO3 perovskite structure. Repro-
duced from Jaffe, B. Cook, W. R. and Jaffe, H. (1971),
Piezoelectric Ceramics, Academic Press, London, by
permission of Elsevier

In principle, all the methods for characteriz-
ing the dielectric permittivity could be extended
for the characterization of ferroelectric materials.
However, in characterizing ferroelectric materials,
the following aspects should be taken into con-
sideration. First, the dielectric constants of ferro-
electric materials are usually quite high. Second,
it is necessary to consider the ways for applying
the bias dc electric field. Third, it is also neces-
sary to consider how to control the measurement
temperature.

9.1.1 Perovskite structure

The principal structure for most ferroelectric mate-
rials is a perovskite structure, which is a simple
cubic containing three different ions in the form
ABO3, as shown in Figure 9.1 (Jaffe et al. 1971).
The A and B atoms represent +2 and +4 ions
respectively, while the O atom is the oxygen ion
(O2−). This ABO3 structure can be thought of
as a face-centered cubic (FCC) lattice with the
A atoms at the corners and the O atoms on the
faces. The B atom is located at the center of the
lattice, and there are minimum-energy positions
off-centered from the original octahedron that can
be occupied by the B atom. Therefore, when an
electric field is applied, the B atom is shifted,
causing the structure to be altered and dipoles to
be created.

9.1.2 Hysteresis curve

As mentioned earlier, ferroelectric materials pos-
sess spontaneous electrical polarization, whose
direction can be changed by an external electric
field. Figure 9.2 shows the hysteresis behavior of
the polarization P versus electric field E. At zero
electric field, the polarization P has two stable
values +Pr and −Pr, known as the remnant polar-
ization. Reverse electrical field, called the coercive
field Ec, must be applied to annihilate the existing
polarization to achieve zero polarization. The name
“ferroelectricity” is used because the P-E rela-
tions of these materials are very similar to the B-
H relations of ferromagnetic materials. Analogous
to a ferromagnetic material, a ferroelectric mate-
rial possesses a Curie temperature, above which
it becomes paraelectric. Furthermore, a ferroelec-
tric material also has an internal domain structure,
similar to that of a ferromagnetic material.

9.1.3 Temperature dependence

One important feature of ferroelectric materials
is that many of their properties are temperature-
dependent. For example, the hysteresis curve,
dielectric constant, and crystal structure of a ferro-
electric material may change with temperature.

Figure 9.3 shows an example of temperature
dependence of hysteresis curves of ferroelectric
materials. At low temperatures, the hysteresis

P
B

E

C

A

+Pr

−Pr

Ec

Figure 9.2 A typical P-E hysteresis loop for a ferro-
electric. A: zero polarization at zero field; B and C:
saturation polarization. Pr: remnant polarization; Ec:
coercive field
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P P P

E E E

(a) (b) (c)

Figure 9.3 Typical temperature dependence of hys-
teresis curves. (a) T � Tc, (b) T < Tc, and (c) T ≥ Tc

loop is relatively wide. This is because at lower
temperatures the thermal motion energy is less
and so a greater field is required to orientate
the domains. When the temperature increases,
the corresponding coercive field required for
zero polarization decreases, resulting in a narrow
hysteresis loop and smaller value of remnant
polarization. If the temperature is increased beyond
the Curie temperature Tc, which is defined as the
temperature at which the material changes form
a ferroelectric state to a paraelectric state, the
hysteresis loop disappears.

The dielectric constant of a ferroelectric material
is also dependent on temperature. Figure 9.4 shows
the change of dielectric constant of BaTiO3 near
the Curie temperature Tc. The change of dielectric
constant is mainly due to the phase transformations
that BaTiO3 undergoes. The variation of the

crystal structure is illustrated in Figure 9.5. Above
the Curie point, BaTiO3 has a cubic structure.
On cooling through the Curie point at 120 ◦C,
the cubic structure transforms into a tetragonal
structure. A change from the tetragonal structure
to an orthorhombic structure occurs at 5 ◦C, and a
further change from the orthorhombic structure to
a rhombohedral structure occurs at −90 ◦C. Owing
to the variation of the crystal structure, a piece of
BaTiO3 crystal has different dielectric constants at
different temperatures.

(a) (b)

(d)(c)

Figure 9.5 Phase transformations of BaTiO3 at differ-
ent temperatures. (a) T > 120 ◦C, cubic, (b) 5 ◦C < T <

120 ◦C, tetragonal, (c) −90 ◦C < T < 5 ◦C, orthorhom-
bic, and (d) T < −90 ◦C, rhombohedral
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Figure 9.4 Temperature dependence of the dielectric constant of BaTiO3 (Data source: http://www.novacap.com)
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9.1.4 Electric field dependence

The dielectric constant of ferroelectric materials
can be varied by applying an external dc electric
field, and this property can be used in the devel-
opment of electrically tunable electronic devices.
The change of the dielectric constant because of
the external electric field is often described by tun-
ability, as defined below:

ξ = εr0 − εre

εr0
× 100 % (9.1)

where εr0 is the dielectric constant of the ferroelec-
tric material without external dc electric field, and
εre is the dielectric constant when the material is
biased by an external dc electric field.

The dielectric loss of a ferroelectric material is
also dependent on the applied dc electric field.
Generally speaking, the dielectric loss decreases
with the increase of the external dc electric field.

Experiments show that a ferroelectric material
with higher loss tangent usually has larger tunabil-
ity. As loss tangent of a material is an important
factor affecting the performances of electric cir-
cuits, in the development of electrically tunable
ferroelectric microwave devices, a figure of merit
K , defined by K = ξ/ tan δ, is often used to indi-
cate the quality of ferroelectric materials. Usually,
in the calculation of the figure of merit K , the loss
tangent with no external dc electric field is used.

9.2 NONRESONANT METHODS

As discussed in Chapter 2, nonresonant methods
can be generally classified into reflection methods
and reflection/transmission methods. Both reflec-
tion methods and transmission/reflection meth-
ods have been used in characterizing ferroelectric
materials. In principle, all types of transmission
lines can be used in developing nonresonant meth-
ods for the characterization of ferroelectric materi-
als. It should be noted that most of the nonresonant
methods are used in studying the dielectric relax-
ation of ferroelectric composites and ferroelectric
polycrystalline ceramics. In the following, we dis-
cuss several types of nonresonant methods often
used in the study of ferroelectric materials.

9.2.1 Reflection methods

Figure 9.6 shows a shielded coaxial reflection
method, whose working principle has been dis-
cussed in Chapter 3. In this method, the sample is
placed at the open end of the central conductor of
the coaxial line, and the coaxial line is shorted by
a metal plunger. The plunger is movable for sam-
ple loading and unloading. If the movable plunger
contacts the sample, the measurement configura-
tion becomes the one shown in Figure 3.27(a).

Before measurement, calibration is required at
the end of the coaxial line, and the standards used
are usually short, open, and matched load. The
dielectric properties of the ferroelectric sample are
obtained from the reflection of the coaxial line, and
the algorithms for deducting complex permittivity
are given by (McNeal et al. 1998).

ε′
r = 2� sin θ

ωC0Z0(�2 + 2� cos θ + 1)
− Cf

C0
(9.2)

ε′′
r = 1 − �2

ωC0Z0(�2 + 2� cos θ + 1)
(9.3)

where � and θ are the magnitude and phase angle
of the reflection coefficient respectively, Z0 is
the characteristic impedance of the coaxial line,
C0 and Cf are determined by the structure of
the measurement fixture, and can be obtained by

Movable
plunger

Sample

Inner
conductor

50 Ω
Coaxial

line

Figure 9.6 Shielded coaxial reflection method for the
characterization of bulk ferroelectric materials (McNeal
et al. 1998). Source: McNeal, M. P. Jang, S. J. and
Newnham, R. E. (1998). “The effect of grain and
particle size on the microwave properties of barium
titanate (BaTiO3)”, Journal of Applied Physics, 83 (6),
3288–3297
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calibrating the fixture using standard sample with
known permittivity.

This method has been used to study the effects
of the particle and grain sizes of ferroelectric pow-
ders, and the effects of the fabrication procedures
and techniques to the dielectric properties of fer-
roelectric composites and ceramics (McNeal et al.
1998). As the transmission line used in this method
is a coaxial line, this method can cover a wide
frequency range. Although, similar to other non-
resonant methods, the sensitivity and accuracy of
this method are not very high, this method is sensi-
tive and accurate enough for studying the dielectric
relaxation of most of the ferroelectric composites
and ceramics.

9.2.2 Transmission/reflection method

Figure 9.7 shows a coaxial discontinuity method
that can be used for the study of the dielectric
relaxation of ferroelectric composites and ceram-
ics. In this configuration, a segment of the central
conductor is moved away, and the sample is placed
between the two open ends of the two sections of
central conductors of the coaxial line. The bias dc
voltage can be applied through the two sections
of the central conductors of the coaxial line. This
method can be taken as a special case of the coaxial
discontinuity method discussed in Chapter 4.

The theoretical model of this method is similar to
Figure 3.27(a) with the short end in Figure 3.27(a)
being replaced by an electric wall and a mag-
netic wall. The dielectric permittivity of the sam-
ple can be obtained from the transmission and

Inner
conductor

Outer
conductor

Sample

Figure 9.7 Coaxial discontinuity for measuring the
dielectric properties of ferroelectric samples

reflection coefficients of the fixture. As two com-
plex coefficients are used in deducting the dielec-
tric properties, this method usually has higher
accuracies than the reflection methods. Further-
more, similar to the coaxial discontinuity method
discussed in Chapter 4, this method can be fur-
ther extended to characterize uniaxially anisotropic
dielectric samples.

9.3 RESONANT METHODS

Resonant methods, including dielectric resonator
method and cavity perturbation method, have
also been used in characterizing ferroelectric
composites, polycrystalline ceramics, and single
crystals. These methods have higher accuracy and
sensitivity than nonresonant ones. As resonant
methods can only be used in measuring dielectric
properties at single or several discrete frequencies,
they are not suitable for getting the dielectric
spectrums of ferroelectric materials over wide
frequency ranges but these methods are often
used to characterize ferroelectric substrates or
crystals for the development of microwave circuits
and devices.

9.3.1 Dielectric resonator method

The working principle of dielectric resonator
method has been discussed in Chapter 5. In the
following, we discuss several configurations of
resonators often used in the characterization of
ferroelectric bulk materials.

9.3.1.1 Courtney resonator

Figure 9.8 shows a dielectric resonator configura-
tion widely used in the characterization of dielec-
tric materials. The sample under test is sandwiched
between two metal plates, and the dielectric prop-
erties of the sample are determined from the reso-
nant frequency and quality factor of the resonator.
The two metal plates can be used as electrodes
to apply the biasing dc electric field for tunability
measurement. This method can be used in charac-
terizing isotropic dielectric materials as discussed
in Chapter 5 and can also be used to characterize
anisotropic materials as discussed in Chapter 8.
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SampleMetal plates

Figure 9.8 Configuration of a Courtney dielectric
resonator

This method is often used to characterize ferroelec-
tric composites and ceramics, which can be taken
as isotropic materials, and it can also be used to
characterize ferroelectric crystals, which are usu-
ally uniaxially anisotropic.

9.3.1.2 Disk resonator

Figure 9.9 shows a disk resonant configuration
often used in the characterization of ferroelectric
bulk materials (Vendik et al. 1995). The sample
under test is in disk shape, with its top and bottom
surfaces metallized. From the resonant frequency
and quality factor of the resonator, the dielectric
constant and loss tangent of the disk sample can
be derived. Bias dc voltage can be applied through
the two metallized top and bottom surfaces, so
the electric field dependence of the dielectric
properties can be studied.

As discussed in Chapter 2 and Chapter 5, the
assumption of a perfect magnetic wall at the
cylindrical surface is a fairly good approxima-
tion for a disk resonator. For the TM0n0 mode
of the resonator, from the solutions of the
Maxwell equations, the following relationship can
be obtained (Vendik et al. 1995):

r = κ0nλ0

2π
√

εr
(9.4)

Sample

Metal plates

Figure 9.9 Disk resonator for characterization of fer-
roelectric material

where r is the radius of the disk, κ0n is the nth root
of the derivative of the zero-order Bessel function
J0(z), λ0 is the free-space wavelength that can be
obtained from the resonant frequency of the disk
resonator, and εr is the dielectric constant of the
sample. Equation (9.4) indicates that the dielectric
constant εr of the sample can be calculated from
the resonant frequency of the resonator.

The loss tangent of the ferroelectric sample
can be calculated from the resonant frequency
and unloaded quality factor Qu of the resonator,
surface resistance of the metal, and the height h

of the disk. For the first mode (κ01 = 3.83), it is
given that (Vendik et al. 1995)

1

Qu
= tan δ + Rs

120π
· λ0

πh
(9.5)

where Qu is the unloaded quality factor of the
disk resonator, tanδ is the loss tangent of the
ferroelectric disk sample, and Rs is the surface
resistance of metal plates covering the disk.

9.3.1.3 Effects of air gap

As the dielectric constant of a ferroelectric material
is usually very large, a small air gap between
the ferroelectric sample and the metal plate may
seriously affect the measurement results (Lacey
et al. 1994). Lacey et al. studied the effect of
air gap between a ferroelectric sample and metal
plates using a single crystal square of strontium
titanate, SrTiO3 (STO), plate resonator with sizes
(10 × 10 × 1 mm3), as shown in Figure 9.10. A
parallel-plate resonator metallized in this way
can only exhibit TEmn modes with a resonant
frequency given by

fmn = c

4
√

εr

√(m

a

)2 +
(n

b

)2
(9.6)

where a and b are the linear dimensions of the
resonator and c is the free-space speed of light. In
experiments, it is possible to measure the resonant
frequencies of the first two or three modes (TE01,
TE11, TE02) and the value of dielectric constant εr

can be calculated from Eq. (9.6). As the dielectric
constant is mode independent, different resonant
modes should result in close values of εr.
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Sample

Metal plates

Figure 9.10 A square plate dielectric resonator with
its top and bottom surfaces metallized

Gap (egap), (Vgap)

Strontium titanate
(eSTO), (VSTO) d

t

Metal
plates

Figure 9.11 Maxwell–Wager two-layer condenser.
Lines of d must be continuous across the dielec-
tric–dielectric boundary

Effect of a gap on the dielectric constant can be
modeled as a classic Maxwell–Wagner two-layer
condenser as shown in Figure 9.11. The two-layer
structure has an effective dielectric constant given
by (Lacey et al. 1998)

εeff = d

(t/εgap) + (d/εSTO)
(9.7)

where d is the thickness of the STO and t is the
thickness of the gap. The values of εSTO = 300,
εgap = 1, d = 1 mm and t = 2 µm yield εeff = 187.
This has important implications because mode
identification is based on the assumption that
the permittivity of the sample lies between cer-
tain accepted values reported in the literature.
Figure 9.12(a) illustrates the importance of this
effect; εeff is normalized to the original estimation
of 300.

The air gap also affects the bias voltage
applied to the dielectric. In the structure shown in
Figure 9.11, the total voltage Vapp applied to the
two-layer condenser can be expressed as (Lacey
et al. 1998)

Vapp = VSTO + Vgap (9.8)

VSTO = εgap

εSTO
· d

t
· Vgap = β · Vgap (9.9)

VSTO =
(

β

1 + β

)
Vapp (9.10)

where VSTO is the voltage applied to STO, Vgap is
the voltage applied to the gap, and the parameter
β is defined in Eq. (9.9). Figure 9.12(b) shows the
relationships between the voltage applied to STO,
the air-gap thickness and the temperature. When
the temperature decreases, the dielectric constant
of STO increases, so the effects of air gap become
more obvious.
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Figure 9.12 Effects of air gap on ferroelectric resonator (Lacy et al. 1998). (a) Normalized effective dielectric
constant and (b) bias voltage. Modified from Lacey, D. Gallop, J. C. and Davis, L. E. (1998). “The effects of an
air gap on the measurement of the dielectric constant of STO at cryogenic temperatures”, Measurement Science
and Technology, 9 (3), 536–539, by permission of IOP Publishing Ltd
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The above discussion shows that in the charac-
terization of ferroelectric samples, the gap thick-
ness should be minimized. In experiments, though
it is impractical to completely eliminate the gap,
it is necessary to make an estimation of the air-
gap thickness and its possible effects to measure-
ment results.

9.3.2 Cavity-perturbation method

Figure 9.13 shows a TM010 mode cavity for char-
acterizing the dielectric properties of ferroelectric
materials using cavity perturbation method
(McNeal et al. 1998). The sample, in the form of
a long thin rod, is held symmetrically along the
axis of the cavity in a hole drilled through a thin
strip of mica. The bottom plate of the cavity is
adjustable, and an adjustable plunger is used to
adjust the position of the bottom plate to ensure
that the cavity height equals the sample length. The
upper plate of the cavity is removable for sample
loading and unloading.

The sample in the cavity can be treated as
a dipole having the same length as the sam-
ple (Parkash et al. 1979). Using the method of
images, taking account of the effects of the polar-
ization of the sample and its image dipoles on
the net polarizing field in the sample, the effective

Adjustable
bottom plate

Adjustable
plunger

Sample

Input/output
coupling

Thin mica strip

Figure 9.13 Cross section of TM010 cavity and sam-
ple used for cavity-perturbation measurements (McNeal
et al. 1998). Source: McNeal, M. P. Jang, S. J. and
Newnham, R. E. (1998). “The effect of grain and
particle size on the microwave properties of barium
titanate (BaTiO3)”, Journal of Applied Physics, 83 (6),
3288–3297

depolarizing factor is given by

Ne = N
πh

2H
cot

(
πh

2H

)
(9.11)

where N is the depolarizing factor that depends on
the axial ratio of the specimen, 2H is the height
of the cavity, and 2h is the length of the sample.
By considering the fields in both the unperturbed
and perturbed cavity, the dielectric parameters can
be obtained from (McNeal et al. 1998)

ε′
r = 1 +

Vc · δω

ω0

[
Vs

2J 2
1 (ka)

− NeVc
δω

ω0

]

− NeV
2

c

[
δ

(
1

2Q

)]2

[
Vs

2J 2
1 (ka)
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(9.12)

ε′′
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Vc · δ
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− NeVc
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+
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NeVcδ

(
1

2Q

)]2

(9.13)

where δ(1/2Q) represents (1/2)[(1/Q1) − (1/

Q0)], Q1 and Q0 are the quality factors of the
filled and unfilled cavity respectively; ω0 is the
resonant cavity of the unperturbed cavity, δω is
the difference between resonant frequencies for the
unperturbed and perturbed cavity, and (1/2)J 2

1 (ka)

is 1.8522 for first-order mode excitation.
In the configuration shown in Figure 9.13, the

sample and the cavity have the same height, so Eqs.
(9.12) and (9.13) become (McNeal et al. 1998)

ε′
r = 1 + 0.539 · Vc

Vs
· δω

ω0
(9.14)

ε′′
r = 0.539

2ε′
r

· Vc

Vs
·
(

1

Q
− 1

Q0

)
(9.15)

Equations (9.14) and (9.15) indicate that the dielec-
tric properties of the sample can be obtained from
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the changes in resonant frequency and quality factor
due to the introduction of the sample. However, it
should be indicated that this resonant-perturbation
method is only suitable for bulk ferroelectric mate-
rials, such as ferroelectric composites and crystals.
One disadvantage of using this method is that it is
difficult to apply bias voltage.

9.3.3 Near-field microwave microscope method

Near-field scanning microwave microscopes are
sensitive to linear permittivity as well as to
nonlinear dielectric terms, which can be described
as a function of an external dc electric field,
so they can be used to image the permittivity
and tunability of bulk and thin-film ferroelectric
samples (Steinhauer et al. 2000). The working
principle and measurement system for near-field
microwave microscopes have been discussed in
Chapter 6. The sensing probe is a key component
for a microwave microscope, and a probe with
a sharp-tipped center conductor extending beyond
the outer conductor is often used because of its
high spatial resolution. Figure 9.14 shows a probe
used in characterizing ferroelectric thin films. A
bias voltage Vb is applied to the thin-film sample
under test through a bias T component, and the
counter electrode beneath the thin film acts as
the ground plane. In Figure 9.14, the bias voltage
consists of a dc component and an ac component.
The ac component of the bias voltage is mainly for

Vb = Vac + Vdc cos wt

Probe tip Vac

Vdc

Ferroelectric
thin film

Counter
electrode

Substrate

Figure 9.14 Measurement of a ferroelectric thin film
using a scanning microwave microscope. The bias
voltage Vb is applied through the central conductor of
the sensing probe

the study of the nonlinear dielectric properties of
ferroelectric thin films.

9.4 PLANAR-CIRCUIT METHODS

Ferroelectric thin films are widely used in devel-
oping tunable microwave devices, such as tun-
able resonators, tunable filters, and phase shifters.
The development of such devices requires accu-
rate knowledge of the dielectric properties of the
ferroelectric thin films. The dielectric properties of
ferroelectric thin films are usually characterized by
planar-circuit methods. The working principles for
various planar-circuit methods have been discussed
in Chapter 7.

The planar-circuit methods used in characteriz-
ing ferroelectric thin films mainly include trans-
mission line method, resonator method, and capac-
itor method. Coplanar waveguide (CPW) method is
a typical transmission line method, and other pla-
nar transmission lines, such as microstrip (Carroll
et al. 1993), can also be used in characterizing
ferroelectric thin films. In the resonator method,
the thin film under test is fabricated into a pla-
nar resonator, and the dielectric properties of the
thin film are derived from the resonant frequency
and quality factor of the resonator. In the capac-
itor method, the thin film under test is fabricated
into a capacitor, and the dielectric properties of
the thin film are calculated from the capacitance
and quality factor of the capacitor. In the choice
of planar-circuit methods, it is desirable that the
measurement arrangement is close to that of the
actual applications of the films.

9.4.1 Coplanar waveguide method

Two types of CPWs are used in characterizing fer-
roelectric thin films: ungrounded waveguide and
grounded waveguide. In the following, we con-
centrate on ungrounded CPW, and the conclu-
sions obtained can be extended to grounded copla-
nar waveguide.

9.4.1.1 Measurement principle

Figure 9.15 shows a shielded two-layered CPW,
which can be used in characterizing the dielectric
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Figure 9.15 Two-layered substrate coplanar waveg-
uide (Gevorgian et al. 1995). Source: Gevorgian, S. Lin-
ner, L. J. P. and Kollberg, E. L. (1995). “CAD models
for shielded multi-layered CPW”, IEEE Transactions on
Microwave Theory and Techniques, 43 (4), 772–779. 
2003 IEEE

properties of ferroelectric thin films. The bottom
layer is the substrate with thickness (h1 − h2), on
which the ferroelectric thin film with thickness
h2 is deposited. The dielectric permittivity values
of the substrate and the ferroelectric thin film
are ε1 and ε2 respectively. The coplanar structure
is shielded by the bottom shielding and upper
shielding whose distances to the circuit are h3 and
h4, respectively.

The effective dielectric permittivity of the copla-
nar waveguide shown in Figure 9.15 is given
by (Gevorgian et al. 1995)

εr,eff = 1 + q1(ε1 − 1) + q2(ε2 − ε1) (9.16)

with the filling factors q1 and q2 given by

q1 = K(k1)

K(k′
1)

[
K(k3)

K(k′
3)

· K(k4)

K(k′
4)

]
(9.17)

q2 = K(k2)

K(k′
2)

[
K(k3)

K(k′
3)

· K(k4)

K(k′
4)

]
(9.18)

with

ki =
sinh

(
πs

2hi

)

sinh

[
π(s + g)

2hi

] (i = 1, 2) (9.19)

ki =
tanh

(
πs

2hi

)

tanh

[
π(s + g)

2hi

] (i = 3, 4) (9.20)

k′
i =

√
1 − k2

i (i = 1, 2, 3, 4) (9.21)

For unshielded coplanar waveguide, h3 = h4 =
∞. According to Eqs. (9.19)–(9.21)

k0 = k3 = k4 = s

s + g
(9.22)

So the filling factors become

q1 = 1

2
· K(k1)

K(k′
1)

· K(k′
0)

K(k0)
(9.23)

q2 = 1

2
· K(k2)

K(k′
2)

· K(k′
0)

K(k0)
(9.24)

Once the effective permittivity is experimentally
determined, the dielectric properties of the fer-
roelectric thin film can be derived according to
Eq. (9.16).

Figure 9.16 shows the basic structure of a CPW
fabricated from a ferroelectric thin film deposited
on a dielectric substrate. At each end of the CPW,
there is a taper discontinuity, with equal ratio
of s:g, for circuit packaging and transition from
CPW to a coaxial connector. To ensure good

L

Central strip

(b)

Ground

(a)

Ferroelectric
thin film

Gold

Substrate

Figure 9.16 Two-layered coplanar waveguide.
(a) Cross section and (b) plan view. Modified from
Physica C, 308, Chakalov, R. A. Ivanov, Z. G. Boikov,
Y. A. Larsson, P. Carlsson, E. Gevorgian, S. and Clae-
son, T., “Fabrication and investigation of YBCO/BSTO
thin film structures for voltage tunable devices”,
279–288, (1998), with permission from Elsevier Sci-
ence B.V.
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electric contact, the ends of the circuit are coated
with gold. The effective dielectric constant of
the CPW can be determined from the absolute
phase shift across the CPW that can be measured
experimentally (Chakalov et al. 1998):

εr,eff = ϕc0

2πf L
(9.25)

where ϕ is the average phase of S12 and S21,
c0 is the speed of light in free space, f is the
microwave frequency, and L is the actual length
of the transmission line. The effect of the taper
discontinuities on the phase can be estimated by
comparison between CPW lines with different
lengths. So in actual experiments, the parameter
L in Eq. (9.25) should be the effective length
for an actual transmission line. After obtaining
the effective dielectric constant of the CPW, the
dielectric constant of the ferroelectric thin film can
be extracted using Eq. (9.16).

In a first-order approximation, the effective loss
tangent, tan δeff, of the CPW can be taken as the
loss tangent of the ferroelectric thin film, tan δfilm.
The effective loss tangent, tan δeff, of the CPW can
be calculated from the insertion loss of the CPW
line (Chakalov et al. 1998):

tan δeff = αc0

1.89Lπf
√

εeff
(9.26)

where the insertion loss α is the average magnitude
of S12 and S21.

More accurate results of tan δfilm can be obtained
from the measurements of identical CPW struc-
tures with and without the ferroelectric film. In
this technique, two assumptions are made. First,
the planar dimensions in the cases with and with-
out ferroelectric film are the same. Second, the
qualities of the conductors deposited directly on
dielectric substrate and on the substrate covered
by ferroelectric films are the same. Upon these
assumptions, the difference of the losses between
the two cases reveals the contribution of the fer-
roelectric film. But in the calculation, to obtain
accurate results, the impedance difference in the
cases with and without the ferroelectric thin film
should be taken into consideration.

9.4.1.2 Packaging design

In experiments, the planar circuits developed from
ferroelectric thin films are usually housed by
metal packages. Figure 9.17 shows a package for
coplanar circuit. The contact between the central
conductor and the connector pin is maintained by
the springs behind the dielectric platform. If the
platform is thick enough, the effects of the springs
are negligible.

To study the tunability of a ferroelectric film,
it is necessary to apply a bias dc voltage to the
ferroelectric film under study. The dc voltage can
be applied across the two ground planes of the
coplanar circuit (Lancaster et al. 1998). In this
method, the two ground planes should be isolated
from each other and from the metal package. The
potential is dropped across the two gap widths. The
advantage of this approach is that the bias voltage
can be easily applied while the disadvantage is that
the grounding of the CPW circuit is not good.

Another method of applying the bias voltage is
to apply the positive bias voltage to the central
conductor of the CPW circuit, and drop the
potential across the gap between the central circuit
and the ground planes. As shown in Figure 9.18,
usually bias T components are used so that the
bias voltage applied to the CPW cannot reach the
microwave measurement instrument, for example
network analyzer, while the microwave signals
do not interfere with the dc source (Findikoglu
et al. 1999).

Dielectric
platform

Coupling pin

Metal housing CPW circuit

Coaxial
connector

Figure 9.17 Brass package used to house the copla-
nar circuits (Lancaster et al. 1998). Source: Lancaster,
M. J. Powell, J. and Porch, A. (1998). “Thin-film ferro-
electric microwave devices”, Superconductor Science &
Technology, 11 (11), 1323–1334, IOP Publishing Ltd.
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Figure 9.18 Measurement system for ferroelectric
CPW. Modified from Findikoglu, A. T. Reagor, D.W.
Rasmussen, K. O. Bishop, A. R. Gronbech-Jensen,
N. Jia, Q. X. Fan, Y. Kwon, C. and Ostrovsky,
L. A. (1999). “Electrodynamic properties of coplanar
waveguides made from high-temperature superconduct-
ing YBa2Cu3O7−δ electrodes on nonlinear dielectric
SrTiO substrates”, Journal of Applied Physics, 86 (3),
1558–1568

Temperature dependence is another important
parameter in the study of ferroelectric materials.
As shown in Figure 9.18, the temperature control
system is used to control the measurement temper-
ature so that samples can be measured at differ-
ent temperatures. Usually, the temperature-control
system is installed inside a vacuum chamber, so
that temperature can be more easily controlled,
and measurements at very high and very low tem-
perature can be conducted in a room-temperature
environment.

9.4.1.3 TRL calibration

In experiments, it is difficult to make a 50 
 match-
ing transmission line for measurement because the
dielectric constants of ferroelectric thin films are
not known before measurement. Because of the
transmission mismatch, multiple reflections occur
at the junctions, and this affects the measurement
accuracy. In addition, tapers between the much
wider electrical probing pads and the narrow trans-
mission lines act as reactance in the circuits, lead-
ing to the distortion of the phase response. Taking
these effects into account, Lue et al. proposed an
on-wafer transmission-reflection-line (TRL) cal-
ibration technique for the measurement of the

A l B

(c)

A B

(a)

A B

(b)

Figure 9.19 TRL calibration for CPW measurements.
(a) “Thru” with reference planes directly connected.
(b) “Reflect” with both reference planes opened and
(c) “Line” with reference planes connected by a match-
ing line. Source: Lue, H. T. and Tseng, T. Y. (2001).
“Application of on-wafer TRL calibration on the mea-
surement of microwave properties of Ba0.5Sr0.5TiO3

thin films”, IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 48 (6), 1640–1647. 
2003 IEEE

dielectric constant and loss tangent of ferroelectric
thin films (Lue and Tseng 2001).

As shown in Figure 9.19, the patterns for TRL
calibration, “thru”, “reflect”, and “line”, have the
same transition regions A and B with tapers.
Each “reflect” is terminated by open, and the
“line” is made by connecting A and B with two
segments of lines with different lengths, separately.
As discussed in Chapter 2, the purpose of TRL
calibration is to eliminate the unknown error box
of transition regions A and B by calculating the
“thru”, “reflect”, and “line”; then the embedded
S-matrix of the device under test (DUT) can be
converted to the de-embedded result, independent
of A and B. The function of the calibration is
equivalent to moving the reference plane from the
probe pad to the desired reference plane. Because
the transmission lines are identical at the two
sides of the reference plane, the “line” is expected
to be matched to the reference plane. Besides,
the reference plane should be far away from the
discontinuous region to prevent the disturbance of
local mode. It is not necessary for the “reflect” to
be exactly open, but it should be identical at both
of the two ports. Usually, the “reflect” is simply
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opened to the air. When the phase shift through l

is 0◦ or multiples of 180◦, the error associated with
the system becomes larger. The highest accuracy
is obtained at the frequency at which the length
l is one-quarter wavelength long or, equivalently,
at a 90◦ phase shift. It is a common practice
to limit a single line to between 20 and 160◦;
beyond this bandwidth, the calibration is replaced
by another line, and such a procedure is called
split-band TRL calibration. After TRL calibration,
the transmission line is nonreflective and matched
to the reference plane, and the effective dielectric
constant and characteristic impedance can then be
correctly extracted.

9.4.2 Coplanar resonator method

Figure 9.20 shows a coplanar resonator fabricated
from a ferroelectric thin film deposited on a
substrate (Lancaster et al. 1998). The dielectric
constant of the ferroelectric thin film can be
obtained from the resonant frequency of the
resonator, and its loss tangent can be obtained from
the quality factor of the resonator.

Similar to CPWs, to characterize ferroelectric
thin films under bias voltage and different temper-
ature, the coplanar resonators fabricated from fer-
roelectric thin films are usually packaged. Coplanar
resonator can be packaged and excited in the way
shown in Figure 9.17. Figure 9.21 shows another
coupling approach. The couplings are made by
coaxial coupling loops above the coplanar circuit,

t

L

S

W

Substrate

Ferroelectric
thin film

Figure 9.20 A ferroelectric coplanar resonator. Modi-
fied from Lancaster, M. J. Powell, J. and Porch, A. (1998).
“Thin-film ferroelectric microwave devices”, Supercon-
ductor Science & Technology, 11 (11), 1323–1334, IOP
Publishing Ltd, by permission of IOP Publishing Ltd
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Figure 9.21 Coaxial loop coupling approach

and the couplings can be adjusted by adjusting the
distance between the planar circuit and the coaxial
loop couplers. The advantage of this approach is
that samples can be easily loaded and unloaded,
and the disadvantage of this method is that there
may be direct couplings between the two cou-
pling loops.

The ways of applying bias voltage and control-
ling temperature for this method are quite similar
to those for CPW method. However, in applying
the bias voltage to the central conductor of the
CPW resonator, because the central conductor is
not physically connected to the couplers, the bias
voltage is often applied directly to the electric field
node of the center conductor of the CPW structure.
For a half-wavelength resonator, its electric field
node is at the midpoint of the center conductor.

9.4.3 Capacitor method

In this method, the ferroelectric thin film under
study is fabricated into a capacitor. The dielectric
constant of thin film is calculated from the capac-
itance of the capacitor, and the loss factor of the
thin film is estimated from the quality factor of
the capacitor. The two important aspects of this
method are the capacitor design and the capaci-
tance measurement. As there are many types of
capacitors (Vendik et al. 1999) and many meth-
ods for capacitance measurements, this method has
many variations. In the following, we first discuss
the capacitor design, and then discuss two methods
for capacitance measurement at microwave fre-
quencies: split-resonator method and fin-line res-
onator method.
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Rp C

Figure 9.22 Equivalent of a capacitor. C is the
capacitance of the capacitor and Rp is the equivalent
parallel resistance of the capacitor

9.4.3.1 Capacitor design

As shown in Figure 9.22, an actual capacitor can
be represented by a parallel RC circuit. Besides
the capacitance C, the dissipation factor D and
quality factor Q are also often used to describe
a capacitor:

D = 1

Q
= 1

2πf CRp
(9.27)

where f is the frequency and Rp is the equivalent
parallel resistance of the capacitor. The capacitance
is related to the dielectric constant of the dielectric
material between the electrodes of the capacitor
and the quality factor is related to the loss tangent
of the dielectric material between the electrodes of
the capacitor.

It should be noted that different results might
be obtained if different types of capacitors are
used. So we should choose a type of capacitor
that is closest to the practical application of the
ferroelectric thin film under test. Four types of
capacitors often used in the characterization of
ferroelectric thin films are shown in Figure 9.23.
If a trilayer capacitor shown in Figure 9.23(a)
is used, the dielectric constant can be obtained
from (Chakalov et al. 1998)

C = εrε0
wl

h
(9.28)

where C is the capacitance that can be measured by
LCR meter, w and l are the width and length of the
capacitor, and h is the thickness of the ferroelectric
thin film. The advantage of trilayer capacitor is that
the model for permittivity calculation is simple, but
it is difficult to fabricate trilayer capacitors.
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Figure 9.23 Cross sections and plane views of capac-
itors often used in the characterization of ferroelectric
thin films. (a) Trilayer capacitor; (b) rectangular capac-
itor; (c) step capacitor; (d) interdigital capacitor. Repro-
duced from Vendik, O. G. Hollmann, E. K. Kozyrev, A.
B. and Prudan, A. M. (1999). “Ferroelectric tuning of
planar and bulk microwave devices”, Journal of Super-
conductivity, 12 (2), 325–338, by permission of Plenum
Publication Corporation

Figure 9.23 also shows three types of coplanar
capacitors, and according to their shapes, these
capacitors are often called rectangular capacitor,
step capacitor, and interdigital capacitor. The cal-
culation of the capacitance of these capacitors usu-
ally requires numerical methods. Generally speak-
ing, interdigital capacitor has higher sensitivity
than the others in the characterization of dielec-
tric films. In the following, we discuss the design
of interdigital capacitor for the characterization
of ferroelectric thin films, following the method
discussed in references (Gevorgian et al. 1996a,
1996b).

In the interdigital capacitor shown in Figure
9.24, the substrate of the capacitor consists of
two layers: ferroelectric thin film with dielectric
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Figure 9.24 Interdigital capacitor. (a) Top view and (b) cross section. Reproduced from Gevorgian, S. Carlsson,
E. et al. (1996a). “Modeling of thin-film HTS/ferroelectric interdigital capacitors”, IEE Proceedings – Microwave
and Antenna Propagations, 143 (5), 397–401, by permission of IEE
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Figure 9.25 Potential distributions and schematic field distributions of interdigital capacitors with different finger
numbers. (a) Two-finger capacitor, (b) three-finger capacitor, and (c) multifinger (n > 3) capacitor. Modified from
Gevorgian, S. S. Martinsson, T. Linner, P. L. J. and Kollberg, E. L. (1996b). “CAD models for multi-layered
substrate interdigital capacitors”, IEEE Transactions on Microwave Theory and Techniques, 44 (6), 896–904. 
2003 IEEE

permittivity ε2 and the substrate with dielectric
permittivity ε1 for the ferroelectric thin film. The
total thickness of the substrate for the interdigital
capacitor is h1 and the thickness of the thin film is

h2. In most cases, the finger number n is larger than
3. As shown in Figure 9.25, because of the differ-
ence in the electric field distributions and symme-
try of the capacitance structures, the capacitances
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of the two- and three-finger capacitors, C2 and C3,
need to be analyzed separately.

According to Figure 9.25, a multifinger (n >

3) capacitor can be taken as a combination of
a three-finger capacitor and (n − 3) periodical
sections. Each periodical section is the part
between two adjacent magnetic walls AA′ and BB′.
Therefore, the capacitance C of a multifinger (n >

3) capacitor consists of three parts (Gevorgian
et al. 1996a, 1996b):

C = C3 + Cn + Cend (9.29)

where C3 is the capacitance of the three-finger
capacitor, Cn is the capacitance of the (n − 3)
periodical sections, and Cend is the correction
term for the fringing fields at the ends of the
strips.

As shown in Figure 9.25(c), the three-finger
capacitor consists of three outer fingers of the
multifinger capacitor, one and a half on each side.
The capacitance of the three-finger capacitor is
given by

C3 = 4ε0εe3
K(k′

03)

K(k03)
l (9.30)

where l is the finger length and K(k) is the first
kind of Basset function, which is the modified
Bessel function of the second kind, and other
parameters are given by

εe3 = 1 + q13
ε1 − 1

2
+ q23

ε2 − ε1

2
(9.31)

qi3 = K(ki3)

K(k′
i3)

· K(k′
03)

K(k03)
(i = 1, 2) (9.32)
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(9.34)
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√
1 − k2

i3 (9.35)

The capacitance of the (n − 3) periodical sect-
ions is given by

Cn = (n − 3)ε0εen

K(k0)

K(k′
0)

l (9.36)

where

k0 = s

s + g
(9.37)
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For a thin ferroelectric thin film, s/hi � 1, the last
expression can be simplified to

ki = √
2 exp

(
− πg

2hi

)
(9.42)

k′
i =

√
1 − k2

i (9.43)
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The capacitance of the finger end can be
approximately calculated by

Cend = 4 ns(2 + π)ε0εend
K(k0,end)

K(k′
0,end)

(9.44)

where

εend = 1 + q1,end
ε1 − 1

2
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ε2 − ε1

2
(9.45)
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K(k0,end)
(i = 1, 2) (9.46)
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x + 2gend
(9.47)
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)

sinh
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2hi
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Parameter x takes into account the fringing
of the field near the finger end. The most
reasonable value of x is 0.5s with s defined
in Figure 9.24(b) (Gevorgian et al. 1996a, 1996b).
For long fingers (l/s � 1), it is not necessary to
take into account the correction of the fringing
fields at the ends of the fingers. In this case, the
accuracy of the computed capacitance is around
5–10 %.

As will be discussed in the following, the capac-
itance can be experimentally measured. For a given
capacitor, its capacitance can be calculated accord-
ing to the equations discussed above. By compar-
ing the measurement results and the calculation
results, the dielectric properties of the film can
be obtained.

9.4.3.2 Planar split-resonator method

After a ferroelectric capacitor is designed and fab-
ricated, its capacitance and quality factor of the
capacitor should be experimentally characterized
so that the dielectric properties of the ferroelectric
thin film from which the capacitor is fabricated
can be calculated. At low microwave frequen-
cies, capacitors can be characterized using LCR
meters. At high microwave frequencies, capac-
itors are usually integrated into resonant struc-
tures, and the capacitance and quality factor of

the capacitors are derived from the resonant prop-
erties of the resonators. Two types of resonant
structures are often used: planar split resonator
and fin-line resonator. This section concentrates on
the planar split-resonator method, and the discus-
sion on fin-line-resonator method can be found in
Section 9.4.3.3.

Working principle

The concept of split resonator has been used
in characterizing dielectric sheet samples, as dis-
cussed in Chapter 5. Figure 9.26 shows a half-
wavelength resonator that splits into two parts at
its center point, and the planar capacitor is placed
between the two parts of the planar circuits. The
resonant frequency and quality factor of the reso-
nant structure, including the two parts of the pla-
nar resonator circuit and the planar capacitor, are
related to the capacitance and quality factor of the
planar capacitor.

For a planar resonator with effective dielectric
constant εr,eff and effective length Leff, it can res-
onate at different modes with frequencies given by

fn = c√
εr,eff

· n

2Leff
(9.49)

where c is the speed of light in free space, and
n is a positive integer, indicating the numbers of
cycles of field/current variations along the length
of the circuit. According to the values of n,
resonant modes can be classified into odd and even
modes.

Figure 9.27 shows the current distributions of
the first and the second modes of a straight-
ribbon resonator and a split resonator, which
have the same effective length. For a straight-
ribbon resonator at its first mode, as shown in

Open Open

C

Figure 9.26 Circuit model of a split-resonator method
loaded with a capacitor
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(a) (b)

(c) (d)

Figure 9.27 The current distributions of a straight-
ribbon resonator and a split resonator at their first and
second modes. (a) A straight-ribbon resonator at its first
mode, (b) a straight ribbon at its second mode, (c) split
resonator at its first mode, and (d) split resonator at its
second mode

Figure 9.27(a), the electric current reaches the
maximum value at the center of the resonator, and
the current distributions along the resonant circuit
are in the same direction; while for a straight-
ribbon resonator at its even mode, as shown in
Figure 9.27(b), there is a current node at the center
of the resonator, and the current distributions are
in opposite directions at the two sides of the
current node. If there is a narrow gap at the
center of the resonator, for an even mode, as there
is no current at the center of the resonator, the
narrow gap hardly affects the current distribution
and resonant frequency of the resonator, as shown
in Figure 9.26(d). However, for an odd mode, as
the electric current reaches maximum value at the
center, the gap at the center greatly changes the
current distribution and the resonant frequency of
the resonator. In an ideal case, if the capacitance
between the two parts of the split resonator can
be neglected, there is no current at the gap, as
shown in Figure 9.27(c). For a split resonator, the
difference between the first and the second mode
is that, for the first mode, the currents at the two

parts have the same direction, while for the second
mode, the currents at the two parts are in opposite
direction. By comparing Figures 9.27(c) and (d),
one can also find that, if the capacitance between
the two parts of a split resonator is neglected, the
first and second modes have the same resonant
frequency and quality factor.

When a planar capacitor is connected in series
between the two parts of the resonator as shown in
Figure 9.26, the current distribution and resonant
frequency for an even mode do not change. While
if the resonator works at an odd mode, as shown
in Figure 9.28, its current distribution and resonant
frequency are greatly changed because of the
capacitor. The capacitance of the capacitor can be
calculated from (Galt et al. 1995)

C = − tan(k0Leff/2)

2 ω0Z0
(9.50)

where k0 is the resonant wave number, ω0 is the
resonant angular resonant frequency, and Z0 is the
characteristic impedance of the resonator.

However, as the effective length of a split res-
onator loaded with a capacitor cannot be easily
determined, it is not convenient to use Eq. (9.50)
for capacitance calculation. In experiments, capac-
itance is often calculated from the resonant fre-
quencies of the first and second modes of the
split resonator loaded by the capacitor (Kozyrev
et al. 1998a):

C = − tan(πf1/f2)

4πf1Z0
(9.51)

Figure 9.28 The current distributions of the split res-
onator at the first mode with and without the capacitor.
The solid line represents the current distribution without
the capacitor and the dashed line represents the current
distribution with the capacitor
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where f1 and f2 are the resonant frequencies of the
first and the second modes respectively. After the
value of the capacitance is obtained, the dielectric
constant of the thin film can be obtained using
Eq. (9.29).

The quality-factor component Qc due to the loss
in the ferroelectric capacitor is given by

1

Qc
= 1

Q1
− 1

Q2
(9.52)

where Q1 and Q2 are the quality factors of the first
and the second modes respectively. The resultant
Qc can be transferred to the loss tangent of the
ferroelectric thin film from which the capacitor
is fabricated. The loss tangent of the ferroelectric
thin film can also be estimated in an approximate
way (Kozyrev et al. 1998a):

tan δ = 1

ξ

(
1

Q1
− 1

Q2

)
(9.53)

with

ξ = 2

1 − 2ϕ/ sin 2ϕ
(9.54)

ϕ = π
f1

f2
(9.55)

Therefore, according to Eqs. (9.51)–(9.55), the
capacitance of the ferroelectric capacitor and the
loss tangent of the ferroelectric thin film can be
obtained from the resonant frequencies and quality
factors of the first and second modes of the split
resonator integrated with the capacitor.

It should be noted that Eqs. (9.51)–(9.55) are
based on the assumption that the dielectric prop-
erties of the ferroelectric sample are independent
of the frequency. It should also be noted that,
though Figures 9.27 and 9.28 refer to the first and
the second modes, the above conclusions can be
extended to higher-order modes. When the reso-
nant mode becomes higher, it is more difficult for
mode identification. Usually, the first six modes
can be distinguished. If the dielectric properties of
the ferroelectric thin film are independent of fre-
quency, three groups of measurements based on
Eqs. (9.51)–(9.55) can be made, and they should
give close results.

In the following, we introduce two types of
planar split resonators often used in characterizing
ferroelectric thin films: microstrip and stripline
split resonators.

Microstrip split resonator

Microstrip is the most widely used planar circuit
in microwave electronics, and microstrip split res-
onator can be easily developed for the character-
ization of ferroelectric thin films. In this method,
the ferroelectric thin film is fabricated into a pla-
nar capacitor, and the capacitor covers the gap of
the split resonator, as shown in Figure 9.29 (Sok
et al. 2000). To achieve good electrical contact, the
metal strips of the microstrip split resonator and
the electrodes of the planar capacitor can be coated
with gold, and the planar capacitor can be soldered
to the microstrip split resonator. In Figure 9.29,
the ferroelectric thin film is fabricated into a
step capacitor. Actually, other structures of planar
capacitors, such as the ones shown in Figure 9.23,
can also be used. The selection of capacitor is
based on the sensitivity and accuracy requirements
and the fabrication techniques available.

Applying bias dc voltage is an important aspect
for the characterization of ferroelectric thin films.
Usually, the bias dc voltage can be applied to
the two parts of the microstrip circuit of the split
resonator at their voltage nodes through rf chokes.
Besides, Galt et al. used adjustable needles to
apply the dc bias voltage to the capacitor at voltage

Planar capacitor

Microstrip
split resonator

Ferroelectric film

Electrode Substrate

Substrate

Input/output
coupling Ground

Figure 9.29 Microstrip split resonator for the mea-
surement of ferroelectric thin films. The ferroelectric
thin film under test is fabricated into the planar capaci-
tor, which is connected at the gap between the two parts
of the split resonator
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nodes of the microstrip resonator, and this method
of biasing is satisfactory for the characterization
of ferroelectric thin films. Detailed discussions on
this method can be found in (Galt et al. 1995).

Stripline split resonator

Besides the microstrip split resonator discussed
above, other types of planar split resonators can
also be used in characterizing planar capacitor.
As shown in Figure 9.30, a planar capacitor made
from the ferroelectric thin film under test is
connected in series at the gap between the two
parts of a suspended stripline split resonator. The
stripline split resonator is coupled to the input and
output waveguides through irises (Kozyrev et al.
1998a). The dc bias voltage could be applied to
the ferroelectric capacitor through rf chokes or bias
T components.

The advantage of this approach is that high-
power microwave signals can be applied (Kozyrev
et al. 2000, 1999), so this approach can be used to
study the nonlinear properties of the ferroelectric
thin films, as will be discussed in Section 9.6. The

4
5
6

7

3
2
1 7

wl

6
Planar

capacitor

MW input

MW output

Figure 9.30 Schematic diagram of stripline resonator
and ferroelectric film. (1) Electrode, (2) ferroelectric
film, (3) capacitor substrate, (4) strip line, (5) suspended
substrate, (6) coupling iris, and (7) waveguide. (Kozy-
rev et al. 2000). Source: Kozyrev, A. Ivanov, A.
V. Samoilova, T. Soldatenkov, O. Astafiev, K. and
Sengupta, L. C. (2000). “Nonlinear response and power
handling capability of ferroelectric BaxSr1−xTiO3 film
capacitors and tunable microwave devices”, Journal of
Applied Physics, 88 (9), 5334–5342

disadvantage of this method is that the frequency
range of the measurement is limited by the working
band of the input/output waveguide. In the design
of the measurement fixture, it is usually required
that the measurement system can support one set of
odd and even modes, so that Eqs. (9.51) and (9.55)
can be applied to the computation of permittivity.

Nondestructive method

In the approaches shown in Figure 9.29 and
Figure 9.30, the ferroelectric thin film under test is
fabricated into a planar capacitor, and the capacitor
is connected to the test fixture: a microstrip
split resonator or a stripline split resonator. The
disadvantage of these approaches is that they are
destructive. Actually, the ferroelectric capacitor in
Figure 9.26 can also be formed by covering the
gap between the two parts of the split resonator
with the ferroelectric thin film to be tested, and
the dielectric properties of the ferroelectric thin
film can be obtained in a similar way as discussed

Ferroelectric
thin film

Microstrip split
resonator

Microstrip grounding

Film substrate

Ferroelectric thin film

Microstrip substrate

Microstrip circuit

(a)

(b)

Figure 9.31 Nondestructive testing of ferroelectric
thin films using a microstrip split resonator. The gap
between the two parts of the split resonator is covered
by the ferroelectric thin film under test. (a) Top view
and (b) cross section. The air gap between the thin film
and the microstrip circuit is not shown in the figure
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Elastic
material

Substrate of
the thin film

Ferroelectric
thin film

Air gapt

Substrate of the
microstrip line

Microstrip line

Figure 9.32 Schematic drawing of the air gap between
the planar circuit and the ferroelectric thin film
under test

above (Galt et al. 1995; Tan et al. 2004), as shown
in Figure 9.31. This approach is nondestructive,
and requires little or no sample preparation. It
is applicable to both microstrip and stripline
split resonators. In the following discussion, we
concentrate on microstrip split resonators.

The approach shown in Figure 9.31 has an
obvious disadvantage. When a piece of thin film
covers the gap between the two parts of a split
resonator, there is an inevitable air gap between
the planar circuit and the thin film. This air gap
greatly changes the resonant frequency of the
resonant structure consisting of the planar split
resonator and the ferroelectric thin film deposited
on a dielectric substrate, and it also affects the
actual bias voltage applied to the ferroelectric thin
film. To improve the measurement repeatability, an
elastic material, such as spring or rubber, is often
used to fix the position of the ferroelectric thin
film (Tan et al. 2004). To obtain accurate results,
the effects of the air gap should be considered.

Figure 9.32 shows the air gap between a ferro-
electric thin film and the circuit of a split resonator.
The air gap increases the resonant frequency of the
resonant structure. Owing to the existence of the
air gap, the model for the calculation of capaci-
tance discussed in Section 9.4.3.1 is not applicable.
If the air gaps between the fixture circuit and the
thin films are repeatable for different samples and
different times of sample loadings, the dielectric
constant of the sample under test can be calculated

from the resonant frequency of the resonant struc-
ture using a numerical way.

The dielectric constant of a ferroelectric thin
film can be obtained in the following steps (Tan
et al. 2004). First, determine the thickness of the
air gap. Measure the frequency response of the split
resonator when a substrate without ferroelectric
thin film is loaded, then adjust the thickness
of the air gap in the simulation code until the
simulation results fit the measurement results.
Second, establish the calibration curve between
the resonant frequency of the measurement fixture
and the dielectric constant of the sample loaded in
the fixture. The resonant frequencies for different
dielectric constant values are calculated using the
simulation code. From the relationships between
the dielectric constant and the resonant frequency,
the calibration curve can be obtained. Figure 9.33
shows an example of calibration curve. The two
lines in the figure correspond to the upper and
lower limits of the thickness value of the air
gap, which is determined from the uncertainties
of frequency measurement for different times of
loading. After the calibration curve is obtained,
according to the measured resonant frequency of
the fixture loaded with the sample under test,
the dielectric constant of the sample and its
uncertainties can be determined from the upper and
lower limit lines in the calibration curve.

It should be noted that the air-gap thickness
discussed above does not mean the exact thickness
value of the air gap. Actually it considers all
the uncertainty factors which affect the resonant
frequency of the sample-loaded fixture, so it can
be taken as a correction factor. It should also be
noted that for different fixtures, different materials
of substrates, different substrate thicknesses, or
different film thicknesses, the calibration curves
are different.

It should be indicated that when the air gap
between the microstrip circuit and the thin film
under study is small, the air gap has similar effects
to the quality factors of the even and odd modes
of the resonant structures. So Eq. (9.53) can still
be used in calculating the loss tangent of the thin
film under study.

The air gap also affects the results of tunability
measurement, as the actual bias voltage applied to
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Figure 9.33 The relationship between the dielectric constant and the resonant frequency. The two lines correspond
to the upper limit (1.05 µm) and the lower limit (1.00 µm) of the air gap, respectively

Electrode

Input/output
port

Microstrip
split resonator

Figure 9.34 An approach for applying bias voltage.
The ferroelectric thin film under study covers two
electrodes, and the bias voltage is applied to the
ferroelectric thin film through the two electrodes

the ferroelectric thin film is different from the dc
voltage applied to the measurement fixture because
of the presence of the air gap. The two parts of
the split resonator can be used as the electrodes
for the application of bias dc voltage. Figure 9.34
shows another way of applying bias voltage (Tan
et al. 2004). The bias voltage is applied through
the two additional metal pads as electrodes. The
distance between the microstrip circuit and the
two electrodes should be large enough so that the
effects of the electrodes to the microstrip circuit
are negligible. The advantage of this method is
that the electric field is uniform at the gap area, so
that more accurate information can be obtained for

the response of ferroelectric thin films to external
dc electric field. The disadvantage of this method
is that high voltage is required to establish the
electric field that is strong enough for the study
of the tunability of ferroelectric thin films.

As shown in Figure 9.35, the air gap between
the electrode and the ferroelectric thin film can
be represented by equivalent capacitance. To the
external bias voltage, the total capacitance C is
given by

1

C
= 1

Cs
+ 1

Cg1
+ 1

Cg2
(9.56)

where Cs is the part of capacitance due to the
ferroelectric sample, Cg1 and Cg2 are the equivalent

Electrode Electrode

Ferroelectric
thin film

Microstrip lineCg1

Cs

Cg2

Figure 9.35 The equivalent circuit model for the air
gap between the electrode and the ferroelectric thin film



404 Microwave Electronics: Measurement and Materials Characterization

capacitances because of the air gaps at the two
electrodes. If the bias voltage applied to the two
electrodes is V , the actual voltage applied to the
sample Vs is given by

Vs = V

1 + (Cs/Cg1) + (Cs/Cg2)
(9.57)

If there is no air gap between the sample, Cg1 and
Cg2 become infinity, and from Eq. (9.57), we can
get Vs = V . However, in actual situations, the air
gap is inevitable, so the Vs is always less than V .
Therefore, it is important to decrease the air gap
between the electrodes and the thin film under test,
and the tunability obtained in experiments can be
taken as a lower-limit value.

9.4.3.3 Fin-line-resonator method

In principle, any resonant structure can be used
to characterize planar capacitors provided pla-
nar capacitors can be integrated into the struc-
ture at the positions with microwave electric
currents. Kozyrev et al. proposed a fin-line res-
onator for the characterization of ferroelectric
capacitors (Kozyrev et al. 2001). As shown in
Figure 9.36, the symmetrical fin line is installed
in a rectangular waveguide. The fin-line resonator

l

Ub

Fin line resonator

First copper plate

Mica
Side part of
waveguide

Second
copper plate

Ferroelectric
capacitors

Side part of
waveguide

Mica

w

Figure 9.36 Schematic configuration of a fin-line res-
onator for the characterization of ferroelectric capaci-
tor (Kozyrev et al. 2001). Copyright 2001 from ‘Micro-
wave properties of ferroelectric film planar varactors’
by Kozyrey & Keis in Integrated Ferroelectrics, 34.
Reproduced by permission of Taylor & Francis, Inc.,
http://www.routledge ny.com

consists of two copper plates and two ferroelectric
capacitors. The first copper plate is a segment of
short-ended fin line, and it is grounded owing to
the contact with the side parts of the waveguide.
The second plate is insulated from the waveguide
by mica, and it is intended for controlling the bias
dc voltage applied to the ferroelectric capacitors.
The two planar ferroelectric capacitors under test
are soldered at the ends of the fin-line resonator
between the first and the second plates.

Similar to microstrip split-resonator method, the
capacitance and quality factor of the planar capaci-
tor can be derived from the resonant frequency and
quality factor of the resonant structure. However, it
should be noted that the resonant properties of the
whole resonant structure are related to the capaci-
tance and the quality factor of the two ferroelectric
capacitors together. To characterize one capacitor,
a standard capacitor with known capacitance and
quality factor is needed.

9.4.4 Influence of biasing schemes

In the characterization of ferroelectric thin films,
different measurement methods may result in dif-
ferent results. In the development of measurement
methods, we should ensure that the sample is in
the state we are interested in. In the measurement
of ferroelectric thin films, the films under study are
often used as one layer of multilayer substrates, on
which planar circuits are developed. Besides the
circuit layouts, the ways of applying bias voltage
may also affect the measurement results.

Van Keuls et al. studied the influence of bias-
ing schemes to the performances of ferroelec-
tric microstrip ring resonator (Van Keuls et al.
1998). In microwave electronics, microstrip ring
resonators are often used as materials character-
ization fixtures and critical resonant components
of high-frequency devices, such as the stabilizing
elements in oscillators. So the analysis of the prop-
erties of microstrip ring resonators is helpful for
not only the characterization of ferroelectric thin
films but also the development of tunable ferro-
electric devices.

As discussed in Chapter 2, the resonant wave-
length λg of a ring resonator is given by

2πR = nλg (n = 1, 2, 3, . . .) (9.58)
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where R is the mean radius of the ring resonator,
and n is the mode number. The unloaded quality
factor Q0 of a ring resonator is closely related to
the microwave properties of the materials forming
the resonant circuit (Tonkin and Hosking 1997):

Q0 = π

αλg
= πf

√
εeff

cα
(9.59)

where α is the attenuation coefficient of the
transmission line, c is the speed of light, f

is the resonant frequency, εeff is the effective
dielectric constant of the circuit. According to
the model for multilayer substrate discussed in
Section 9.4.1, the dielectric properties of the film
can be obtained from the resonant frequency and
quality factor of the resonator. Because of its
geometry, ring resonators usually have higher
quality factors than straight-ribbon resonators,
so ring resonator methods usually have higher
sensitivities and accuracies.

Figure 9.37 shows a typical scheme for applying
bias dc voltage to a microstrip ring resonator (Van
Keuls et al. 1998). The ring resonator is coupled
through a microstrip line. Both the microstrip line
and the ring resonator can be biased. Voltage VL is
applied to the microstrip transmission line through
bias T components, while VR is applied to the ring
resonator through a gold wire bonded to the ring
resonator. The gold wire is bonded to the ring at a
virtual short circuit position, nearly opposite of the
coupling gap, so does not to disturb the resonance.

There are three typical cases according to the
relationships between VL and VR (Van Keuls et al.

VL VR

Ferroelectric
thin film

Substrate

(b)

VL

(a)

VR

Figure 9.37 Biasing scheme for testing a tunable ring
resonator. (a) Top view and (b) front view. Modified
from Van Keuls, F. W. Romanofsky, R. R. Bohman, D.
Y. and Miranda, F. A. (1998). “Influence of the biasing
scheme on the performance of Au/SrTiO3/LaAlO3 thin
film conductor/ferroelectric tunable ring resonators”,
Integrated Ferroelectrics, 22, 363–372.

1998). In the first case (VL = VR), maximum
coupling between the ring resonator and the
microstrip line is obtained. The dc electric field
only exists between the resonant circuit and the
ground plane, with most of the electric field
concentrated in the dielectric substrate, so the
dielectric constant of the ferroelectric thin film in
the range between the ring and the line is close
to its highest possible value. When the applied
bias voltage increases, the resonant frequency
increases, but the change of resonant frequency
is small, and the coupling between the resonator
and the microstrip line almost does not change. In
the second case, the microstrip line is grounded,
and the bias dc voltage is applied to the ring
resonator (VL = 0 and VR > 0). When the bias dc
voltage increases, the dielectric constant decreases,
so the coupling between the ring resonator and
microstrip line also decreases. Therefore, the
coupling coefficient can be adjusted. Meanwhile,
the increase of bias voltage will increase the
resonant frequency of the ring resonator because
of the decrease of the dielectric constant of
ferroelectric thin film. The third case (VR >

VL) could be the most desirable biasing scheme
for practical microwave applications. Both the
resonant frequency and the coupling coefficient
can be adjusted more easily than the above
two schemes.

9.5 RESPONDING TIME OF
FERROELECTRIC THIN FILMS

In microelectronics, ferroelectric materials are used
in fabricating tunable devices, electronic con-
trollers, and switching modules. So, the responding
time of the permittivity of ferroelectric materials
on exposure to microwave signals and under the
action of videofrequency voltage pulses needs to
be investigated.

Kozyrev et al. proposed a method for study-
ing the responding time of the permittivity of
ferroelectric films (Kozyrev et al. 1998b). In this
method, the ferroelectric film under study is fabri-
cated into a planar ferroelectric capacitor, and the
ferroelectric capacitor is loaded to a planar res-
onator excited by a weak microwave signal. A
pulsed control voltage is applied to the ferroelectric
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1

3 3

4 2

Figure 9.38 Microstrip microwave circuit for the mea-
surement of the responding time of planar ferroelectric
capacitors (Kozyrev et al. 1998b). (1) Microstrip res-
onator, (2) connection point for planar capacitor, (3) rf
chokes, and (4) circuits for applying the pulsed control
voltage. Modified from Kozyrev, A. B. Soldatenkov, O.
I. and Ivanov, A. V. (1998b). “Switching time of planar
ferroelectric capacitors using strontium titanate and bar-
ium strontium titanate films”, Technical Physics Letters,
24 (10), 755–757

capacitor. The responding time of the ferroelectric
film to the pulsed control voltage is determined
from the variation of the response of the resonator
loaded with the ferroelectric capacitor to the weak
microwave signal. Figure 9.38 shows an example
of measurement circuit. The ferroelectric capacitor
is loaded at the gap of the microstrip split resonator
near its short-circuited end, and the other end of
the resonator is open. The resonator is coupled to
the external microwave circuit by capacitive cou-
plings, which also protect the microwave circuit
from the action of the control voltage. The pulsed
control voltage is applied to the ferroelectric capac-
itor through rf chokes, which are connected to
the microstrip resonator near the points of zero
microwave electric field, so the influence of the
circuits for applying the pulsed control voltage on
the resonant properties of the resonator is small.

The relationship between the resonant frequency
f0 of the resonator and the capacitance of the
capacitor is given by (Kozyrev et al. 1998b)

2πZ0f0C(Ub) = tan

(
2π

c

√
εeff · f0 · leff

)
(9.60)

where C(Ub) is the capacitance of the capacitor
when a control voltage Ub is applied, Z0 and εeff

∆ S21

S21

fs f

Figure 9.39 Change of the resonant characteristics of
the microstrip resonator when a dc control voltage is
applied to the ferroelectric capacitor. �S21 is the change
of the transmission coefficient at a fixed microwave
frequency (fs)

are the impedance and the effective permittivity of
the microstrip resonator, leff is the effective length
of the microstrip resonator, and c is the speed of
light. When the control voltage pulse is applied
to the capacitor, the capacitance of the capacitor
will be changed, so the resonant frequency will
also be changed. Therefore, at a fixed microwave
frequency, the transmission coefficient S21 will
also be changed, as shown in Figure 9.39. A
comparison between the applied voltage pulse and
the detected microwave response pulse can reveal
the responding time of the resonator loaded with
the ferroelectric capacitor under test.

Kozyrev et al. studied the responding time of
SrTiO3 and (Ba, Sr)TiO3, and the results are shown
in Figure 9.40. Figure 9.40(a) shows the trace of
the control voltage pulse (pulse length 100 µs,
rise time tf ≈ 30 ns, and amplitude Um = 30 V)
and Figure 9.40(b) shows the detected microwave
signal pulse after passing through the resonator
loaded with an SrTiO3 capacitor. For the resonator
loaded with a (Ba, Sr)TiO3 capacitor, the envelope
of the microwave signal, shown in Figure 9.40(c)
indicates that there are two different mechanisms
responsible for the change in the permittivity of the
(Ba, Sr)TiO3 film under the action of the control
voltage pulse: a fast variation in the permittivity
over a time less than the rise time of the control
pulse (∼30 ns) and a slow variation with a response
time of the order of 20 µs. The slow variation in
the amplitude of the detected microwave signal
is less than 5 to 10 % of the total amplitude of
the pulse.
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Figure 9.40 Traces showing (a) control pulse, (b) swit-
ching time of SrTiO3 capacitor, and (c) switching time
of (Ba, Sr)TiO3 capacitor. The scales of the microwave
responses of the SrTiO3 and (Ba, Sr)TiO3 elements
are different to reveal the “slow” (∼20 µs) relaxation
time (Kozyrev et al. 1998). Source: Kozyrev, A. B.
Soldatenkov, O. I. and Ivanov, A. V. (1998b). “Switching
time of planar ferroelectric capacitors using strontium
titanate and barium strontium titanate films”, Technical
Physics Letters, 24 (10), 755–757

9.6 NONLINEAR BEHAVIOR AND
POWER-HANDLING CAPABILITY OF
FERROELECTRIC FILMS

Most of the investigations on ferroelectric thin
films have been devoted to the properties of these
materials to weak microwave signals. In recent
years, progress has been made on the study of the
nonlinear response and power- handling capability
(PHC) of ferroelectric films and devices (Kozyrev
et al. 2000, 1998c). The research in this area
is important because the nonlinear response of
ferroelectric elements to a microwave signal is
undesirable in passive tunable devices and should
be minimized to reduce nonlinear distortion of the
operating microwave signal. On the other hand,
the nonlinear microwave properties can be utilized
for the development of nonlinear active devices.
Meanwhile, the heating of ferroelectric film due
to the microwave energy dissipation also leads
to variations in the properties of the films and,

consequently, in the performance of the microwave
electronic devices.

Two approaches have been used in the study of
the nonlinear behavior of ferroelectric films and
devices. One is to measure the response of a res-
onator loaded with a ferroelectric capacitor to a
pulsed microwave signal. By using pulsed sig-
nals, the effect of microwave electric field on the
dielectric properties of the ferroelectric films can
be separated from the effect of the overheating
of the ferroelectric capacitor under the action of
microwave power. So, the nonlinear parameters of
the ferroelectric film capacitors can be extracted.
The other method is to measure the intermodula-
tion distortion (IMD) of a resonator loaded with
a ferroelectric capacitor. This technique provides
the information of the IMD products generated in
a capacitor-loaded resonator under the action of
two-tone incident microwave signals.

PHC is another important parameter for
microwave electronic devices. PHC is defined as
the level of incident microwave power up to which
the device can function properly. The shift of the
working frequency of devices employing nonlinear
ferroelectric elements and the level of IMD
products under elevated power are two parameters
often used for the determination of PHC. The
nonlinear properties of ferroelectric films and
the heating of ferroelectric films by microwave
power are the main phenomenon governing these
parameters. In the following, we discuss the two
methods often used in the study of the nonlinear
properties of ferroelectric films: pulsed signal
method and intermodulation method.

9.6.1 Pulsed signal method

The structure proposed by Kozyrev et al. shown
in Figure 9.30 can be used for both small-
signal study and large-signal study. The capaci-
tance of ferroelectric capacitor and the loss tan-
gent of the ferroelectric film can be calculated
from Eqs. (9.51) and (9.53). For the study of high
microwave power properties of ferroelectric film
capacitors, it is necessary to separate the thermal
and microwave electric field effects responsible
for the nonlinearity of the ferroelectric capacitor.
Kozyrev et al. used pulsed microwave signal of
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Figure 9.41 Frequency response of a resonator loaded with a (Ba, Sr)TiO3 film capacitor to pulsed microwave
power of various levels measured at (a) leading and (b) trailing fronts. Incident power levels Pinc: (1) +6 dBm,
(2) +26 dBm, (3) +32 dBm, and (4) +35 dBm (Kozyrev et al. 2000). Source: Kozyrev, A. Ivanov, A. V.
Samoilova, T. Soldatenkov, O. Astafiev, K. and Sengupta, L. C. (2000). “Nonlinear response and power handling
capability of ferroelectric BaxSr1−xTiO3 film capacitors and tunable microwave devices”, Journal of Applied
Physics, 88 (9), 5334–5342

pulse duration 10 µs and pulse duty factor 10−3.
The duration of the pulse leading and trailing fronts
was Tf = 10−7 s. The pulsed microwave power was
varied between −10 and +50 dBm. The transmis-
sion S21 and reflection S11 coefficients were mea-
sured during the pulse duration, and the equipment
used allowed the registration of time variations in
the S21 and S11 coefficients with time resolution on
the order of 10 ns (Kozyrev et al. 2000).

Figure 9.41 shows the frequency responses of
a resonator loaded with a (Ba, Sr)TiO3 capac-
itor at various values of incident pulsed power
Pinc. At a low level of incident power, the res-
onant curves coincide with the small-signal mea-
surements at zero dc bias voltage. The increase of
microwave power leads to the following results.
When the microwave power is not very high, the
maximum of the transmission coefficient S21 shifts
toward higher frequencies and the resonant curve
is slightly widened. When Pinc is further increased,
the resonant curve becomes asymmetrical, and this
is a common characteristic of nonlinear resonators.

Owing to the thermal effect on the dielectric
properties of the (Ba, Sr)TiO3 film, the nonlinear
effects are more drastic at the trailing front than
those at the leading front. The deformation of the
envelope of the transmitted microwave pulse under
the elevated level of the incident microwave pulsed
power of +35 dBm at the different frequencies
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Figure 9.42 The deformation of the envelope of
the transmitted microwave pulse (insets) at different
frequencies for incident pulsed power +35 dBm. Curves
(a) and (b) show the resonant curves measured at
leading and trailing fronts of the microwave pulse,
respectively (Kozyrev et al. 2000). Source: Kozyrev, A.
Ivanov, A. V. Samoilova, T. Soldatenkov, O. Astafiev,
K. and Sengupta, L. C. (2000). “Nonlinear response and
power handling capability of ferroelectric BaxSr1−xTiO3

film capacitors and tunable microwave devices”, Journal
of Applied Physics, 88 (9), 5334–5342

is illustrated in the insets shown in Figure 9.42.
The resonator frequency response measured at the
leading (a) and the trailing (b) fronts at Pinc =



Measurement of Ferroelectric Materials 409

+35 dBm are shown in the figure as well. At
frequencies far below or far above the small-
signal resonant frequency (insets 1 and 4), the
output signal varies in time monotonically because
of the increase in resonant frequency during the
microwave pulse. For frequencies higher but close
to the peak transmission, nonmonotonic variation
in the transmitted power during the pulse takes
place (insets 2 and 3) because of the effect of
crossover between the measurement frequency and
resonant frequency.

It should be noted that, in the calculation of
the loss tangent of the ferroelectric film using
Eq. (9.53), the quality factor should be measured.
The measurement of quality factor of asymmetrical
transmission curve is discussed in Chapter 2.

9.6.2 Intermodulation method

For a microwave electronic device, it is desirable
to transmit high-power microwave signals with-
out causing unacceptable signal degradation due to
the generation of intermodulation distortion (IMD)
products. IMD products are caused by the non-
linear behavior of the device, and arise when the
original signal is mixed with a second signal at a
second frequency resulting in a third signal at a
third frequency. Nonlinear behavior also generates
harmonic signals at frequencies that are an integer
multiple of the input signal. A summary of the dif-
ferent types of distortion caused by IMD and har-
monic signal generation is shown in Figure 9.43.
The net result is that the nonlinear distortion takes

energy from the desired signal at the frequency of
interest, thus reducing the amplitude of this signal,
and the energy is used to generate harmonic and
IMD signals at frequencies that may interfere with
the desired signal (Mueller and Miranda 2000).

The intermodulation distortion becomes obvi-
ous when the input to the system consists of
two closely spaced frequencies, usually called
two tones:

vin = cos ω1t + cos ω2t (9.61)

Then, the output spectrum will consist of all the
harmonics in the form of

ω = mω1 + nω2 (9.62)

where m and n may be positive or negative
integers. The order of a given product is defined
as j = |m| + |n|, and the j th order harmonics is
denoted vj . The second-order harmonic products
v2 include 2ω1, 2ω2, ω1 − ω2 and ω1 + ω2. These
frequencies are generally far away from the
fundamentals ω1 and ω2, and so can be easily
filtered, but for a mixer, the ω1 − ω2 product is
usually the desired result. The third-order products
v3 include such as 3ω1, 3ω2, 2ω1 + ω2 and ω1 +
2ω2 which can be filtered, and the products 2ω1 −
ω2 and 2ω2 − ω1, which generally cannot be easily
filtered. Such products that arise from mixing two
input signals are called intermodulation, and the
products 2ω1 − ω2 and 2ω2 − ω1 are especially
important because they may set the dynamic range
or bandwidth of the system (Pozar 1998).

Linear passive
element

Nonlinear passive
element

w1

w2

w1

w2

w1

w2

w1 (fundamental)

w2 (fundamental)

nw1, nw2 (harmonics)

w1 + w2, w1 − w2 (second-order IMD)

2w1 − w2, 2w2 − w1 (third-order IMD)

Figure 9.43 Intermodulation distortion caused by transmission of signals through nonlinear components.
Reproduced from Mueller, C. H. and Miranda, F. A. (2000). “Tunable dielectric materials and devices for broadband
wireless communications”, Handbook of Thin Film Devices, edited by Francombe, M. H., volume 5: Ferroelectric
Film Devices, Academic Press, by permission of Elsevier
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Figure 9.44 shows a graph of output power ver-
sus input power for a nonlinear system, and the
intercept points between different output prod-
ucts are indicated. These intercept points show the
second- or third-order intermodulation distortion.
A plot of output signals (ω1 and ω2) power versus
input power has a slope of unity for small-signal
levels. As the input power increases, saturation sets
in, causing clipping of the output waveform and
signal distortion. This distortion manifests itself
by diverting part of the input power to various
harmonics. The curve for a second-order product
has a slope of two. If the linear part of the small-
signal gain curve is extended, it will intercept the
second-order product power curve at the second-
order intercept point. This point can be specified
by either the input or the output power at the inter-
section, and is a measure of the amount of second-
order inter-modulation distortion. The component
would actually be operated well below this point.
Similarly, the intercept point between small-signal
gain and third-order product can also be obtained.

Figure 9.45 shows a microstrip resonator for
IMD measurement of nonlinear planar capacitors
(Kozyrev et al. 1998c). The planar capacitor under

Microstrip resonator

Gap for loading
planar capacitor

MW output

f1, f2, f3

Substrate

MW input

f1, f2

Figure 9.45 Ferroelectric microstrip resonator for IMD
measurements (Kozyrev et al. 1998c). Modified from
Kozyrev, A. B. Samoilova, T. B. Golovkov, A. A.
Hollmann, E. K. Kalinikos, D. A. Loginov, V. E. Prudan,
A. M. Soldatenkov, O. I. Galt, D. Mueller, C. H. Rivkin,
T. V. and Koepf, G. A. (1998c). “Nonlinear behavior of
thin film SrTiO capacitors at microwave frequencies”,
Journal of Applied Physics, 84 (6), 3326–3332

test is loaded at the gap near the short end
of a λ/4 resonator, and the resonator is loosely
coupled to the external circuits. Two sinusoidal
microwave signals of the same power, P1inc, with
slightly different frequencies (f1 − f2 ∼ 1 MHz)
are applied to the resonator input. The resonator
output contains IMD products at frequencies f =
±mf1 ± nf2 where m and n are positive inte-
gers. The properties that can be measured are the
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fundamental transfer function, P1out as a function
of P1inc; the third-order IMD transfer function,
P3out at frequency f3 = 2f1 − f2 (or 2f2 − f1)
as a function of P1inc; the loaded quality factor,
QL; and the resonant frequency. All measurements
should be carried out under the condition that
f1, f2 and f3 are localized within the passband
of the resonator. To eliminate the possibility of
IMD phenomena arising from nonlinear behavior
of contacts between the capacitor electrodes and
the resonator microstrip line, identical measure-
ments can be performed using linear, nontunable
capacitor connected into the circuit. With the non-
tunable capacitors, usually no IMD products can
be detected.

Figure 9.46 shows the typical intermodula-
tion measurement results (Kozyrev et al. 1998c).
With the increase of the input power, both the
fundamental-order and third-order output powers
increase, and the difference between the funda-
mental power and the third-order power decreases.
Application of a dc bias voltage across the fer-
roelectric capacitor changes the properties of the
resonator loaded with the ferroelectric capaci-
tor. Figure 9.46(a) shows the fundamental and

third-order transfer functions for the resonator
loaded with capacitor at dc bias voltages of 0
and 100 V. Figure 9.46(b) illustrates the difference
in output power levels for the fundamental and
intermodulation products (�P = P3out − P1out) as
a function of dc bias voltage for incident power
levels of 9 and 21 dBm. From Figure 9.46, it can
be found that the level of the third-order intermod-
ulation product is reduced by applying a dc electric
field across the capacitor. Besides the external dc
electric field, sometimes it is necessary to consider
the microwave electric voltage across the capacitor
in analyzing the tunability of ferroelectric capac-
itors. Usually, the microwave electric voltage is
very small compared to the bias dc voltage; how-
ever, when the input power becomes very large,
the effect of microwave electric voltage cannot be
neglected.

The study of nonlinear properties is helpful for
estimating the microwave power-handling capabil-
ity of tunable microelectronic devices that incorpo-
rate nonlinear ferroelectric capacitors. The power
handling capability of a device can be defined as
the level of incident microwave power up to which
the device functions properly and the deviations
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Figure 9.46 Effects of bias dc voltage to IMD products. (a) Output power for the fundamental- and third-order
intermodulation distortion as a function of input power per tone. The square and triangle legends represent two
different sets of data taken with a 0 and 100 V dc bias applied across the capacitor, respectively. (b) Difference
between the output power levels of the fundamental- and third-order intermodulation distortion signals versus bias
dc voltage at different incident power levels. The circle and square legends represent two different incident power
P1inc = +21 and +9 dBm, respectively (Kozyrev et al. 1998c). Source: Kozyrev, A. B. Samoilova, T. B. Golovkov,
A. A. Hollmann, E. K. Kalinikos, D. A. Loginov, V. E. Prudan, A. M. Soldatenkov, O. I. Galt, D. Mueller, C.
H. Rivkin, T. V. and Koepf, G. A. (1998c). “Nonlinear behavior of thin film SrTiO capacitors at microwave
frequencies”, Journal of Applied Physics, 84 (6), 3326–3332
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of the operating parameters do not exceed accept-
able levels. Usually, the allowable levels of the
shift of the working frequency and the intermodu-
lation product power at the output of the device are
the essential parameters determining the power-
handling capability of a device loaded with non-
linear components.
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10

Microwave Measurement of Chiral
Materials

“Chiral” literally means “handed” and comes
from the Greek cheir for “hand” since our
hands are nonsuperimposable on their mirror
images. Its optical activity, which includes optical
rotatory dispersion and circular dichroism, has
been known for almost two centuries. It can
be explained by the direct substitution of new
constitutive relations, D = εE + βε∇ × E and
B = µH + βµ∇ × H , �D = ε �E + iξ �B and �H =
iξ �E + �B/µ, etc., into Maxwell’s equations. Here,
ε and µ are the complex dielectric permittivity
and magnetic permeability respectively, while β is
a complex chirality parameter that results directly
from the handedness in the microstructure of the
medium. Determination of these three complex
constitutive parameters requires three measured
complex S-parameters.

10.1 INTRODUCTION

“I call any geometrical figure, or group of points,
chiral, and say it has chirality, if its image in a
plane mirror, ideally realized, cannot be brought
to coincide with itself.” This is a celebrated defini-
tion of chirality stated by Lord Kelvin in 1904, in
his Baltimore Lectures on “Molecular Dynamics
and the Wave Theory of Light.” Such materials
have been known and studied since 1813, when
Biot (1812) first explained observations of color
changes for white linearly polarized light trans-
mitted through quartz. This phenomenon became
known as optical rotation or, alternatively, as opti-
cal activity. Cotton (1895) later showed that chiral

media can transform a linearly polarized wave into
an elliptically polarized wave. The phenomenon of
the rotation angle or activity changing sign as a
function of frequency is later called Cotton effect,
which can be observed in the region in which opti-
cally active absorption bands occur (Velluz et al.
1965; Crabbe and Syntex 1965). Since light is an
electromagnetic wave, similar phenomena can be
constructed at microwave and millimeter-wave fre-
quencies by embedding appropriately sized chiral
inclusions such as helices of one-handedness in a
host medium. All these effects can be explained by
substitution of new sets of constitutive equations,
for instance, �D = ε �E + βε∇ × �E and �B = µ �H +
βµ∇ × �H , �D = ε �E + iξ �B and �H = iξ �E + �B/µ,
etc., into Maxwell’s equations. Here, ε and µ are
the usual permittivity and permeability, respec-
tively, while β and ξ are the chirality parameters
that result from the handedness or lack of inversion
symmetry in the microstructure of the medium. It
can be shown that left and right circularly polar-
ized fields (LCP and RCP) are the eigenstates of
polarization that propagate with a different phase
velocity as well as attenuation (Bohren 1974).

Chiral materials have received considerable
attention during recent years (Jaggard et al. 1979;
Mariotte et al. 1995; Theron and Cloete 1996; Hui
and Edward 1996) and might have a variety of
potential applications in the field of microwaves,
such as microwave absorbers, microwave anten-
nas, and devices (Varadan et al. 1987; Lindell and
Sihvola 1995). Lakhtakia et al. (1989) have given
a fairly complete set of references on the subject.
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Bokut and Federov (1960), Jaggard et al. (1979),
Silverman (1986) and Lakhtakia et al. (1986) have
studied the reflection and refraction of plane waves
at planar interfaces involving chiral media. The
possibility of designing broadband antireflection
coatings with chiral materials was addressed by
Varadan et al. (1987). These researchers have
shown that the introduction of chirality radically
alters the scattering and absorption characteristics.
In these papers, the authors have used assumed
values of chirality parameter, permittivity, and per-
meability in their numerical results.

Winkler (1956) and Tinoco and Freeman (1960)
have studied the rotation and absorption of electro-
magnetic waves in dielectric materials containing
a distribution of large helices. Direct and quanti-
tative measurements are made possible with the
recent advances in microwave components and
measurement techniques. Urry and Krivacic (1970)
have measured the complex, frequency-dependent
values of (nL − nR) for suspensions of optically
active molecules, where nL and nR are the refrac-
tive indices for left and right circularly polarized
waves. LCP and RCP waves propagate with differ-
ent velocities and attenuation in a chiral medium.
Still, these differential measurements are unable to
characterize completely the chiral medium. More
recently, Guire et al. (1990) have studied experi-
mentally the normal incidence reflection of linearly
polarized waves of metal-backed chiral composite
samples at microwave frequencies. The beginning
of a systematic experiment work came from Umari
et al. (1991) when they reported measurements of
axial ratio, dichroism, and rotation of microwaves
transmitted through chiral samples. However, in
order to characterize completely the chiral com-
posites, the chirality parameter, permittivity, and
permeability have to be determined. The main
objective of this chapter is to present the free-space
and waveguide technique for complete characteri-
zation of chiral composites.

A free-space setup consisting sweep synthe-
sizer, vector network analyzer, waveguides, con-
nectors, and a pair of spot-focusing horn lens
antennas has been used for measurements. The
free-space through, reflect, line (TRL) calibration
technique along with time-domain gating devel-
oped by Ghodgaonkar et al. (1989, 1990) has been

implemented for reducing measurement errors. The
antennas provide plane-wave illumination at the
planar chiral composites. The transmitted wave
becomes an elliptically polarized wave whose
major axis is rotated from the direction of linear
polarization of the incident wave. Three scatter-
ing parameters were obtained to solve for three
complex electromagnetic parameters. A proce-
dure using time-domain response has been imple-
mented to remove the ambiguity in the inversion
of equations involving exponential terms. Standard
materials with known electromagnetic parameters
such as Quartz were used to assess the accuracy
of the experiments and the inversion algorithm.

Besides the free-space method, a waveguide-
measurement method can be used for measuring
the electromagnetic parameters of chiral materials.
The propagation modes in a waveguide filled
with chiral materials are complicated. It has been
demonstrated (Hollinger et al. 1991; Pelet and
Engheta 1990; Engheta and Pelet 1989, 1990)
that there are no independent TE, TM, and TEM
modes in waveguides filled with chiral materials.
The propagation mode is the hybrid mode of the
electrical field and the magnetic field. It is not
easy to obtain relations between the measurable
quantities and the electromagnetic parameters of
chiral materials. Hollinger et al. (1992) measured
the rotation angle and the axial ratio in a circular
waveguide (CW). The results show that the high-
order modes have little effect on the measurable
quantities. As such, only the dominant mode in
the CW is considered. The relations between
the measurable quantities and the electromagnetic
parameters are derived. The rotation angle, the
axial ratio, and the complex reflection coefficients
of short-circuited and open-circuited samples are
measured in order to simultaneously determine the
electromagnetic parameters of chiral materials.

10.2 FREE-SPACE METHOD

The free-space setup is shown in Figure 10.1. It
consists of a sweep synthesizer, vector network
analyzer, waveguides, connectors and a pair of
spot-focusing horn lens antennae. The free-space
TRL calibration technique along with time-domain
gating developed by Ghodgaonkar et al. (1989,
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Figure 10.1 Free-space measurement system

1990) has been implemented for reducing mea-
surement errors. The antenna provide plane-wave
illumination at the planar chiral composites. In this
section, sample preparation, experimental proce-
dure, calibration, computation of ε, µ, and β of
the chiral composite samples, accuracy considera-
tion and verification, and experimental results for
chiral composites have been discussed.

10.2.1 Sample preparation

The chiral samples are prepared by embed-
ding the required numbers of miniature metal
helices in an epoxy host material and are usu-
ally about 15 cm (length) × 15 cm (breadth) ×
1.2 cm (thick) in dimension. The matrix mate-
rial, Eccogel 1365–90, which is manufactured
by Emerson and Cumings, Inc., Canton, Mas-
sachusetts, is homogeneous, isotropic, and achi-
ral. The metal helices have three full turns, and
the helix parameters are radius, a = 0.05842 cm,
pitch, p = 0.05292 cm, and are either left- or
right-handed. Samples with metal volume concen-
tration varying from 0.8 % (37 springs/cm3) to
3.2 % (147 springs/cm3) were fabricated in order
to observe the effect of spring concentration on

the electromagnetic properties of chiral compos-
ites. This concentration is given by the percent
of volume occupied by the metal inclusions in
the 10 cm × 10 cm region that they lie within.
The chiral sample consists of two layers, one
layer contains only Eccogel, and the other layer
contains the random orientation of the dispersed
springs. A pure Eccogel sample has also been
fabricated to determine its electromagnetic param-
eters. This is to facilitate the computation of
electromagnetic properties of the chiral compos-
ite without the effect of the Eccogel layer by
using the two-layer inversion method described in
the next section. A more comprehensive report
on how the samples are fabricated is found in
(Guire 1990). A total of nine chiral samples at
three concentrations containing left-handed only,
right-handed only, and equichiral (racemic) mix-
tures of helices were prepared and characterized
as shown in the following.

10.2.2 Experimental procedure

A detailed experimental setup has been described
in (Guire 1990; Umari 1991; Ghodgaonkar et al.
1990) and a schematic diagram is presented in
Figure 10.1. Basically, it consists of a pair of
spot-focusing horn lens antennas, a vector net-
work analyzer, mode transitions, precision cables,
and a computer. Planar samples of the chiral
composite are placed at the common focal plane
of the two antennas such that linearly polarized
plane waves are normally incident on the samples.
The use of spot-focusing lens antennas has min-
imized the diffraction effects at the edges of the
samples. In addition, by implementing the TRL
calibration (Ghodgaonkar et al. 1990), errors due
to multiple reflections between the two antennas
and mismatches at the various transitions are cor-
rected. The TRL calibration is implemented in free
space by establishing TRL standards. The refer-
ence planes for port 1 and port 2 are located at
the focal planes of the transmitting and receiving
antennas, respectively. The “through” standard is
configured by keeping the distance between the
two antennas equal to twice the focal distance.
The “reflect” standards for port 1 and port 2 are
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obtained by placing a metal plate at the focal
planes of the transmitting and receiving antennas,
respectively. The “line” standard is achieved by
separating the focal planes of the transmitting and
receiving antennas by a distance equal to a quarter
of the free-space wavelength at midband.

Moreover, time-domain gating is employed to
remove the residual postcalibration errors such as
source and load mismatches, etc., which appear
as a ripple in the measured scattering parame-
ters. The network analyzer makes measurements
in the frequency domain and then computes
the inverse Fourier transform to give the time-
domain response. Then, gating is applied over the
time-domain response, which includes the main
reflection (or transmission) response and multiple
reflections within the sample. The Fourier trans-
form of the gated time-domain response gives the
frequency-domain response, which is an approxi-
mate average of the ungated response.

In order to obtain three electromagnetic parame-
ters, one reflection and two transmission measure-
ments are needed. After conducting the free-space
TRL calibration, the planar chiral sample is placed
in the sample holder for reflection and transmission
measurements. The reflected field S11co, which is
copolarized and one component of the elliptically
polarized transmitted field, S21co, are measured by
keeping the transmit and receive antennas in the
copolarized position. The other transmission mea-
surement, S21α , is obtained by rotating the receiv-
ing antenna by an angle α from its copolarized
position. The angle α is chosen to be 40◦ clock-
wise (CW) or 40◦ counterclockwise (CCW) since
it leads to best accuracy in measurements for the
setup used (Ro 1991).

The rotation angle can be measured more
accurately by starting two cross-polarized antennas
(Umari et al. 1991), which means that the direction
of the electric field of the receiving antenna is
perpendicular to that of the transmitting antenna,
rotating the receiving antenna by 1◦ steps, and
measuring the transmitted field at each angle. The
direction of the minor axis is determined by a
minimum in the transmitted field. This is the minor
axis of the transmitted field polarization ellipse.
Subsequently, the direction of the major axis can
easily be determined by adding 90◦ to this angle.

The direction of the minor axis can be determined
with greater accuracy than the direction of the
major axis because a slight angle deviation from
the direction of the axis will cause a greater relative
change in the magnitude of the transmitted field for
the minor axis than for the major axis (Umari et al.
1991). The measurement accuracy of the rotation
angle is ±0.5◦.

The synthesized source is swept in the range 8
to 40 GHz by using mode transitions and different
pairs of spot-focusing antennas in the free-space
measurement system. Frequency responses of each
sample are obtained for four different frequency
bands: X-band (8 to 12.4 GHz), Ku-band (12.4 to
18 GHz), K-band (18 to 26.5 GHz), and A-band
(26.5 to 40 GHz). The TRL calibration has to
be repeated for each frequency band when the
antennas are changed. Three amplitude and phase
measurements are obtained for each frequency. A
total of 400 data points were obtained in the 8 to
40 GHz range, and at each frequency 1000 signals
were averaged. The averaging is done over time
to decrease the influence of noise. This procedure
was repeated for each of the nine samples.

10.2.3 Calibration

Measurement errors exist in any microwave mea-
surement. Whether the measurement system is as
simple as a power meter or as complex as a vector
network analyzer, measurement ambiguities asso-
ciated with the system will add uncertainty to the
results. Measurement errors in network analysis
can be separated into two categories, random and
systematic errors. Random errors are nonrepeat-
able measurement variations due to noise, tem-
perature, and other physical changes in the test
setup. System errors include leakage and mismatch
signals in the test setup, isolation characteristics
between reference and test signal paths, and system
frequency response. In most microwave measure-
ments, systematic errors are the most significant
sources of measurement uncertainty. However, in a
stable measurement environment systematic errors
are repeatable and can be measured by the network
analyzer.

During measurement calibration, a series of
known devices (standards) are connected. The
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systematic effects are determined as the difference
between the measured and the known response
of the standards. Once characterized, these errors
can be mathematically related by solving a signal
flow graph. The twelve-term error model, shown in
Figure 10.2, includes all the significant systematic
effects for the two-port case (Hewlett–Packard
Product Note 8510-8 1987 and Hewlett–Packard
Product Note 8510-5A 1988).

In Figure 10.2, directivity is defined as the ratio
of power coupled into the coupled arm when the
coupler is in the forward direction to the power
available in the coupled arm when the coupler is

in the reverse direction, using a Z0 termination
that will not reflect any signal. Source match is
defined as the vector sum of signals appearing at
the system test input because of the inability of the
source to maintain constant power at the test device
input, as well as adapter and cable mismatches and
losses encountered by the reflected signal. Load
match results from the imperfect termination of the
device output by the test system. The frequency
response (reflection or transmission tracking) is
the vector sum of all test setup variations in
magnitude and phase with frequency, including
signal separation devices, test cables, adapter,
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and variations in frequency response between the
reference and the test channels. Isolation is due
to leakage of energy between the system test and
reference channels.

The process of mathematically removing these
systematic effects is called error correction. Under
ideal conditions, with perfectly known standards,
systematic effects would be completely character-
ized and removed. Since this calibration is at the
measurement plane, the errors caused by cables,
adapters, and fixtures can be greatly reduced. In
conventional two-port calibration, three known
impedance references, such as open, short, and
load (fixed or sliding), and a single transmission
standard are required. The accuracy to which these
standards are known establishes how well the sys-
tematic effects can be characterized.

In non-coaxial measurements, it is more difficult
to build impedance standards that are easily char-
acterized. In free space, for example, short circuits
can be achieved by using metal plates, open cir-
cuits are frequency-dispersive, and it is difficult to
build a high-quality purely resistive load. Because
of these limitations, an alternative method for cali-
bration in non-coaxial environments is needed that
uses simple, realizable standards.

THRU-REFLECT-LINE is a two-port cali-
bration that relies on transmission lines rather
than a set of discrete impedance standards. The
TRL calibration technique was initially devel-
oped by the United States National Bureau of
Standards as a precision calibration method for a
special-purpose network analyzer. Since that time,

Hewlett–Packard has adapted this method to the
HP 8510B network analyzer. Specifically, since the
only precision impedance reference required for
TRL calibration is a transmission line, obtaining
the required set of calibration will not be dis-
cussed here. For the interested reader, a detailed
description can be found from (Franzen and Spe-
ciale 1975; Engen and Hoer 1979; Rytting 1987).

Eight of the twelve error terms are characterized
using the basic TRL calibration and are shown in
Figure 10.3 (Hewlett–Packard Product Note 8510-
8 1987). Although this error model has a slightly
different topology than the twelve-term model, the
traditional error terms can be simply derived. For
example, forward reflection tracking is simply the
product of e10 and e01. In the model, e11 and e22

serve as both the source and the load match terms.
To solve for these eight unknown error terms, eight
linearly independent equations are required. To
compute the remaining four error terms, additional
measurements are needed.

The basic TRL calibration process is shown
in Figure 10.4 (Hewlett–Packard 1987). For the
THRU step, the test ports are mated and then trans-
mission frequency response and port match are
measured in both directions (four measurements:
S11T, S21T, S12T, S22T). For the REFLECT step, the
same highly reflective device is connected to each
port and its reflection coefficient is measured (two
measurements: S11R, S22R). In the LINE step, a
short transmission line is inserted and again the
frequency response and port match are measured
in each direction (S11L, S21L, S12L, S22L).

e01
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e00 = EDF

e11 = ESF, ELR

e10e32 = ETF

e23e33 = ERR

e01e23 = ETR

e33 = EDR
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Figure 10.3 Eight-term TRL error model and generalized coefficients. Source: Ro, Ruyen (1991), Determination
of the electromagnetic properties of chiral composites, using normal incidence measurements, The Pennsylvania
State University, Department of Engineering Science and Mechanics, Ph.D. Thesis
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At this point, ten measurements have been made
resulting in ten equations. However, the basic
TRL error model, shown in Figure 10.3, has only
eight unknowns. In the TRL solution, the complex
reflection coefficient (�) of the REFLECT standard
and the propagation constant (k) of the LINE are
also determined.

Two additional steps are required to complete
the calibration. Forward and reverse isolation is
measured as the leakage from port 1 to port 2 with
each port terminated. Up to this point, the solution
for the error model assumes a perfectly balanced
test system. The e11 and e22 terms represent both
source and load match. However, in any switching
test set, these terms are not equal. Additional
correction is provided by measuring the ratio of the
incident signals (a1 and a2) during the THRU and
LINE steps. Once the impedance of the switch is
measured, it is used to modify the e11 and e22 error
terms. The term e11 is then modified to produce the
forward source match (ESF) and the reverse load
match (ELR). Now, all the 12 terms of the two-
port error model are determined. Then, the actual
S-parameters can be determined from the measured
S-parameters and 12 error terms.

Recently, Ghodgaonkar et al. (1989, 1990) have
implemented the TRL calibration for the free-space
measurement system. The basic requirements and

operational procedures for implementing the HP
8510B’s TRL calibration method in the free-
space measurement system can be considered
in four steps as follows: (1) Selecting standards
appropriate for the application that meet the basic
requirements of the TRL technique, (2) defining
these standards for use with HP 8510B by
modification of the internal calibration kit registers,
(3) performing the calibration, and (4) checking
the performance.

For the THRU standard, it can be either a zero-
length or a nonzero length line. S21T and S12T are
defined to be 1 at 0 degrees and S11T and S22T

are defined to be zero for the zero-length THRU
standard. For the nonzero length THRU standard,
characteristic impedance Z0 of the THRU and
LINE must be the same and insertion phase or
electrical length must be specified if the THRU is
used to set the reference plane. For the REFLECT
standard, it is required that its value be the same
on both ports. It may be used to set the reference
plane if the phase response of the REFLECT is
well known and specified. For the LINE standard,
insertion phase of the line must never be the same
as that of the THRU (zero or nonzero length) and
line length is 1/4 wavelength or 90 degrees relative
to the THRU at the center frequency. S11L and
S22L of the LINE are also defined to be zero. With
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this assumption, the system impedance is set to
the characteristic impedance of the LINE. If Z0 is
known but not the desired value, the impedance
of the LINE can be specified when defining the
calibration standards.

For free space, the following expression can be
used to select a LINE with 1/4 wavelength line at
the center frequency.

Electrical Length (cm) = (LINE-THRU)

= 15

f1 (GHz) + f2 (GHz)
,

where f1 and f2 are the minimum and maximum
frequencies of the frequency range respectively.
For example, f1 = 12.4 GHz and f2 = 18 GHz for
Ku-band and the length of the LINE is equal to
0.49342 cm. Electrical length can be related to
physical length when the effective permittivity of
the LINE is known.

Once appropriate standards have been selected,
they must be defined mathematically and entered
into the calibration kit registers of the HP 8510B.
Under the CAL menu, there are submenus, MOD-
IFY CAL 1 and MODIFY CAL 2. Either reg-
ister may be modified to accept user-specified
definitions. Default values for the TRL standards
may exist, but can be changed simply by enter-
ing a new value. Further information on defin-
ing calibration standards in the HP 8510B can be
found in (Hewlett–Packard Product Note 8510-5A
1988). Although a variety of options and mea-
surement conditions exist, there are two funda-
mental classes in which TRL calibration tech-
nique will be applied for the free-space measure-
ment system. They are: (1) TRL with a zero-
length THRU, reference plane set by THRU,
and (2) TRL with a zero-length THRU, refer-
ence plane set by REFLECT. Under the MODIFY
CAL KIT menu, there is TRL OPTION menu.
In this menu, SET REF allows either the THRU
or the REFLECT to set the location of the ref-
erence plane. In addition, CAL Z0 relative to
the impedance of the LINE standards is chosen
for the free-space measurement system. In gen-
eral, the default standard numbers for the THRU,
REFLECT, and LINE classes are 15, 14, and
16 respectively. Each of the standards must be
defined in terms of the coefficients required by

the Standard Definition Table. It can be achieved
as follows. In DEFINE STANDARD menu, input
number 14 (15 or 16), selecting the corresponding
standard type REFLECT (THRU or LINE), and
then selecting SPECIFY OFFSET. One can then
define the REFLECT (THRU or LINE) standard
in the SPECIFY OFFSET menu.

THRU is specified to have an offset delay of 0 ps
and operates over the 12.4 to 18 GHz frequency
range (Ku band for example). REFLECT is
specified to have an offset delay of 0 ps and
operates over the same frequency range. LINE is
0.49342 cm for Ku-band. The approximate offset
delay for Ku-band is then 0.49342 cm/(2.9979 ×
1010 cm/s) ≈ 16.45 ps. If the ratio of the frequency
span to the start frequency is less than 8, one
THRU/LINE pairs will be sufficient. For each
frequency band, LINE operates in the same
frequency range as THRU.

Once the standards are fully specified, the
free-space TRL calibration can be performed. To
begin the calibration process, select the CAL
menu. Press TRL TWO-PORT. The TRL submenu
will be displayed. The THRU, S11REFLECT,
S22REFLECT, ISOLATION, and LINE calibra-
tions can be performed in any convenient order.
For the free-space measurement system, the ref-
erence planes for port 1 and port 2 are located
at the focal planes of the transmitting and receiv-
ing antennas, respectively. The THRU standard is
configured by keeping the distance between the
two antennas equal to twice the focal distance. The
LINE standard is achieved by separating the focal
plane of the transmit and receive antennas by a dis-
tance equal to a quarter of free-space wavelength at
the center of the band. The REFLECT standards
for port 1 and port 2 are obtained by placing a
metal plate at the focal planes of the transmitting
and receiving antenna respectively. To measure the
system cross talk, ISOLATION is measured with
each port terminated. When systematic cross talk
is sufficiently below the levels that are to be mea-
sured, it does not have to be characterized. Press
ISOLATION, OMIT ISOLATION, and ISOLA-
TION DONE.

Once a calibration has been generated, its per-
formance should be checked before making device
measurements. To check the accuracy that can be
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obtained using the new calibration kit, a device
with a well-defined frequency response (preferable
unlike any of the standard used) should be mea-
sured. When these devices are measured, the differ-
ence between the displayed results and the known

values indicate the level of measurement accu-
racy. In free space, unfortunately, these verification
devices do not exist. As a result, it will be difficult
to state the absolute accuracy of such measure-
ments.
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TRL calibration, where the reference is set by THRU. Source: Ro, Ruyen (1991), Determination of the
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However, there are some performance checks
that can be made to provide some insight into the
measurement integrity. Repeatability is the single
largest factor that will limit the effectiveness of
the calibration. The following figures plot the mea-
sured reflection and transmission coefficients of the

THRU and REFLECT standards in the frequency
range of 12.4 to 18 GHz after performing the free-
space calibration, where the reference plane is set
either by the THRU or REFLECT.

Figures 10.5 and 10.6 show the respective trans-
mission and reflection coefficients of the THRU
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Figure 10.6 The measured reflection coefficients of the THRU configuration after performing the free-space
TRL calibration, where the reference is set by THRU. Source: Ro, Ruyen (1991), Determination of the
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University, Department of Engineering Science and Mechanics, Ph.D. Thesis
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standards after performing the free-space TRL cali-
bration, where the reference plane is set by THRU.
The solid and dotted lines in these figures are the
measured quantities with and without respectively
the time-domain gating being applied. The detailed
description of the time-domain measurement will
be discussed in the next section. The vertical axes
of the upper and lower figures are the magnitude

in dB and phase in degree, respectively. The hori-
zontal axes are the frequency range in GHz. With-
out time-domain gating, the absolute values of the
magnitude and phase of the transmission coeffi-
cient shown in Figure 10.5, are less than 0.03 dB
and 0.2◦, respectively. After applying the time-
domain gating, the absolute values of the magni-
tude and phase of the transmission coefficients are
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Determination of the electromagnetic properties of chiral composites, using normal incidence measurements, The
Pennsylvania State University, Department of Engineering Science and Mechanics, Ph.D. Thesis
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less than 0.015 dB and 0.1◦, respectively. Since
the THRU standard is set to be perfect, the dif-
ference between the measured transmission coef-
ficients and the actual transmission coefficients
(0 dB and 0◦) is the error for the repeatability of
the THRU standard. It can be seen in Figure 10.6
that the magnitudes of the reflection coefficients
with and without time-domain gating are less

than −45 dB and −60 dB, respectively. However,
the actual reflection of the THRU standard is
assumed to be −∞ dB. Hence, one can say that
the dynamic range of the reflection coefficients is
around −60 dB after applying time-domain gating.

Figures 10.7 and 10.8 show the comparison
between the forward and reverse transmis-
sion and reflection coefficients of the THRU
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Figure 10.8 The measured forward and reverse reflection coefficients of the THRU configuration after performing
the free-space TRL calibration, where the reference is set by THRU. Source: Ro, Ruyen (1991), Determination of
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standard, respectively. In Figure 10.7, the differ-
ence between forward transmission coefficients
(S21) and reverse transmission coefficients (S12) is
less than −70 dB in magnitude and 0.03◦ in phase.
Comparing with the error of the transmission coef-
ficients, one can say S12 is equal to S21, as it should
according to the concept of reciprocity. It can be
seen in Figure 10.8 that the difference between the
magnitudes of the forward reflection coefficients

(S11) and reverse reflection coefficients (S22) is less
than −65 dB, which is less than the value of the
dynamic range of the reflection coefficients. Hence,
it is possible to say that S11 is equal to S22 and their
values are approximately zero. Under this circum-
stance, the phases of the reflection coefficients are
unimportant.

Figures 10.9 and 10.10 show the respective
reflection and transmission coefficients of the
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Figure 10.9 The measured forward and reverse reflection coefficients of the metal plate after performing the
free-space TRL calibration, where the reference is set by THRU. Source: Ro, Ruyen (1991), Determination of
the electromagnetic properties of chiral composites, using normal incidence measurements, The Pennsylvania State
University, Department of Engineering Science and Mechanics, Ph.D. Thesis
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Figure 10.10 The measured forward and reverse transmission coefficients of the metal plate after performing the
free-space TRL calibration, where the reference is set by THRU. Source: Ro, Ruyen (1991), Determination of
the electromagnetic properties of chiral composites, using normal incidence measurements, The Pennsylvania State
University, Department of Engineering Science and Mechanics, Ph.D. Thesis

metal plate after performing the free-space TRL
calibration, where the reference plane is set by
THRU. It can be observed in Figure 10.9 that
the difference between the magnitudes of S11 and
S22 is less than −63 dB and their absolute val-
ues are less than 0.05 dB; the difference between

the phase of S11 and S22 is less than 3◦ and
their values range from −178.5 to −180◦ and
from 178.5 to 180◦ for S11 and S22 respectively.
Hence, one can say S11 is equal to S22, which
implies that the measurement system is well bal-
anced and symmetric. Since the metal plate is
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a perfect conductor and the reference plane is
set by THRU, the difference between the mea-
sured reflection coefficients and the actual reflec-
tion coefficients (0 dB and ±180◦) is the mea-
surement error of the metal plate. It can be seen
in Figure 10.10 that the difference between the
magnitudes of S12 and S21 is less than −55 dB
and their values are less than −50 dB. The phases
of S12 and S21 are not important under this
circumstance. However, the actual transmission

coefficients of the metal plate equal to −∞ dB.
Hence, it is possible to say that the dynamic range
of the transmission coefficients is around −50 dB.

Figures 10.11 and 10.12 plot the measured
reflection coefficients of the metal plate and the
transmission coefficients of the THRU standard,
respectively after performing the free-space TRL
calibration, where the reference plane is set by
REFLECT. It can be seen in Figure 10.11 that
the difference between S11 and S22 is less than
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−59 dB in magnitude and ±2◦ in phase and the
absolute values of the phases are from 179.2 to
180◦. Since the REFLECT standard is chosen to
define the reference plane, the difference between
the measured reflection coefficients and the actual
reflection coefficients (0 dB and ±180◦) is the error

for the repeatability of the REFLECT standard.
It can be observed in Figure 10.12 that the
magnitudes of the transmission coefficients of
the THRU standard are less than 0.04 dB; the
absolute values of the phases are less than 2◦.
Since the actual transmission coefficients of the
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THRU standard are assumed to be 0 dB and 0◦,
the difference between the measured transmission
coefficients and the actual transmission coefficients
(0 dB and 0◦) is the error of the transmission
coefficients of the THRU standard.

Ghodgaonkar et al. (1989, 1990) have imple-
mented the TRL calibration for the free-space mea-
surement system. They reported that after the free-
space TRL calibration and time-domain gating, the
measurement errors in the reflection and transmis-
sion coefficients are mainly due to

(a) residual postcalibration errors resulting from
imperfections in the calibration standards, the
instrumentation and coaxial cables connecting
the spot-focusing antennas to the test ports
of the test set. In TRL calibration, the only
error caused by the calibration standards is
due to the wave impedance of the line
standard (if it is different from the wave
impedance in free space). This impedance
error will cause normalization of reflection
and transmission coefficients to the impedance
of the line standard. The residual source and
load mismatch errors due to imperfections in
the calibration standards are minimized by the
time-domain gating;

(b) small changes in the reference planes (as
defined by THRU or REFLECT standard)
between calibration and measurement due to
small changes in the position of plates holding
the samples.

Because of the combined effect of the sample
holder and the residual postcalibration errors,
the magnitude and phase errors in S11 are less
than ±0.055 dB and ±2◦ respectively. And the
amplitude and phase errors in S21 are less than
±0.035 dB and ±2◦ respectively.

10.2.4 Time-domain measurement

The relationship between the frequency-domain
response and time-domain response of a network
is described by the Fourier transform, and the
response of a device may be completely specified
in either domain. The network analyzer makes

measurements in the frequency domain and then
computes the inverse Fourier transform to give the
time-domain response. This computation technique
benefits from the wide dynamic range and the error
correction of the frequency domain data. Detailed
information on the time-domain measurement can
be found in (Rytting 1985).

In the time domain, the horizontal axis repre-
sents the propagation delay through the device. In
other words, this is the amount of time it takes
for an impulse to travel through the device. In
transmission measurements, the value displayed
is the actual one-way travel time of the impulse;
while for the reflection measurements, the hori-
zontal axis shows the two-way travel time of the
impulse. The electrical length is obtained by mul-
tiplying the time value by the speed of light in
free space. To find the actual physical length of the
device, multiply the electrical length by the relative
propagation velocity of the transmission medium.
This concept has been proposed in this study
when dealing with the ambiguity of the inverse
problem. The peak value of the time-domain
response represents an average reflection or trans-
mission coefficients for the reflection or transmis-
sion coefficients over the frequency range of the
measurement.

There are two time domain modes available:
Time Band Pass and Time Low Pass modes.
The Time Band Pass mode is used for bandpass
devices (devices that do not operate down to dc),
and it allows any frequency-domain response to
be transformed to the time domain. The Time
Low Pass mode is used to make time-domain
measurements on low-pass devices (devices that
operate down to or near DC), and it simulates
the traditional Time Domain Reflectometer (TDR)
measurement, which gives the response of the
device to a step or impulse stimulus. The Time
Band Pass mode is selected in this work for the
time-domain measurements.

The HP 8510B time domain has a feature
called Windowing that is designed to enhance
the time-domain measurements. Owing to the
limited bandwidth and the measurement system,
the transformation to the time domain gives
the time-domain response of the device to the
sin(x)/x stimulus. This nonideal impulse is the
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time-domain-resolving stimulus, which has two
effects that limit the usefulness of the time-domain
response. The finite impulse width caused by the
band-limited nature of the test system limits the
ability to resolve between two closely spaced
responses. The impulse side lobes, caused by
the abrupt cutoff at the stop frequency, limit the
dynamic range of the time-domain measurement
by hiding low-level response within the side lobes
of adjacent higher-level responses.

For time bandpass measurements, the frequency-
domain response has two cutoff points, at fstart and
at fstop. Therefore, in the time bandpass mode, the
windowing function rolls off both the low end and
the higher end of the frequency-domain response.

There are three windows available: Maxi-
mum, Normal, and Minimum. Selecting the Min-
imum window minimizes the filtering applied
to the frequency domain data; Normal selects a
general-purpose value for the roll-off; and Maxi-
mum applies maximum filtering to the frequency-
domain data. The effect of windowing on the
time- bandpass impulse response is a reduction in
side lobes with the trade-off of increased impulse
width. In this study, the Minimum window is
always selected.

In order to use the time domain effectively, one
must be aware of its limitations and ambiguities.
Since the measured frequency domain is not con-
tinuous, it is sampled at discrete frequency points
with the spacing of �f Hz and each time-domain
response is repeated every 1/�f seconds. This
length of time defines the range of the measurement.
Time-domain response resolution is defined as the
ability to resolve two closely spaced responses.

Response resolution depends upon the time
domain mode, the frequency range, whether it
is a reflection or a transmission measurement,
and the relative propagation velocity of the signal
path. The response resolution for the time band-
pass using the minimum window can be expressed
as follows:

Response resolution = 1.2/fspan

where fspan carries the units of Hz. For Ku-band
with the frequency range 5.6 GHz, the response
resolution is approximately equal to 214 and 107 ps
for transmission and reflection measurements

respectively. It will be difficult or impossible to
distinguish between equal magnitude responses
separated by less than 214 ps for transmission mea-
surements.

Time-domain range response is the ability to
locate a single response in time. When only one
response is present, this is how closely one can
locate the peak of the response and thus the
location of the discontinuity. Range resolution is
related to the digital resolution of the time domain
display, which uses the same number of points
as the frequency domain. Therefore, the range
resolution can be computed directly from the time
span and the number of points selected. In this
study, the time span is always 6 ns and the number
of points is 401. Therefore, the marker can read the
location of the response with range resolution of
15 ps (6 ns/400). In the time domain, one can center
a response on the display and then zoom in on the
response by simply narrowing the time span. This
improves the range resolution by a factor equal
to the reduction in the time span. Although the
network analyzer transformation algorithm allows
one to make the range resolution as small as
one wishes, this does not imply that the actual
physical location of the response may be measured
with arbitrary accuracy. First, the nonuniform
propagation velocity in the typical transmission
medium will limit the ability to precisely locate the
physical location of the discontinuity. In dispersive
media such as waveguides, the nonlinear phase
response will cause the time-domain impulse to be
smeared in time and thus limit the ability to locate
the actual peak of the response.

In the HP 8510B, the time-domain response
can be obtained from the frequency-domain
response as follows. Pressing DOMAIN presents
the Domain menu, selecting TIME BAND PASS,
pressing SPECIFY TIME, and then selecting
IMPULSE and MINIMUM WINDOW. In the time
domain, the STIMULUS hardkeys are redefined
to the time value of the horizontal axis, and
have no effect on the frequency-domain value.
Figure 10.13 plots the time-domain responses of
the transmission coefficient of the THRU standard
and the reflection coefficient of the metal plate after
performing the free-space TRL calibration, where
the reference plane is set by THRU. The vertical
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Figure 10.13 The measured time-domain responses of the transmission coefficients of the THRU standard
(upper) and the reflection coefficients of the metal plate (lower). Source: Ro, Ruyen (1991), Determination of
the electromagnetic properties of chiral composites, using normal incidence measurements, The Pennsylvania State
University, Department of Engineering Science and Mechanics, Ph.D. Thesis

axes are the magnitude in dB and the horizontal
axes represent the time span in nanosecond. It can
be observed in Figure 10.13 that the propagation
delay time for either THRU configuration or the
metal plate is 0 ns and the peak value is around
0 dB. Since the reference plane is set by THRU,

the propagation delay time for the THRU configu-
ration should be 0 ns. The propagation delay time
of the metal plate being 0 ns assures accuracy in
the location of the reference plane. Figure 10.14
plots the time-domain responses of the transmis-
sion coefficients of Eccogel and Quartz plates.
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Figure 10.14 The measured time-domain responses of the transmission coefficients of the Eccogel (upper)
and Quartz plate (lower). Source: Ro, Ruyen (1991), Determination of the electromagnetic properties of chiral
composites, using normal incidence measurements, The Pennsylvania State University, Department of Engineering
Science and Mechanics, Ph.D. Thesis

The thickness of the Eccogel and Quartz plate are
1.18364 and 0.65532 cm respectively. The prop-
agation delay for the Eccogel and Quartz plates
are 65 and 45 ps respectively. Hence, the approx-
imate propagation velocities for the Eccogel and
Quartz are around 1.8 × 108 m/s and 1.5 × 108 m/s
respectively. Then it is possible to determine the

precise value of the real part of wave number from
these data. Further discussion of the uniqueness of
the solution will be illustrated when we deal with
materials properties.

The network analyzer has a very powerful
feature called gating that provides the flexibil-
ity to selectively remove unwanted reflection or
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transmission time-domain responses. In convert-
ing back to the frequency domain, the effects of
the responses outside the gate are removed from
the measurement. A gate is a time filter that is
used to filter out specific time-domain responses.
There are four gate shapes available: MAXIMUM,
WIDE, NORMAL, and MINIMUM. Each of the
four gate shapes has a different filter character-
istic. The minimum gate has the least ripple and
highest side-lobe levels, and the maximum gate
has the largest ripples and lowest side-lobe lev-
els. In this study, the maximum gate shape is
always selected.

However, the gating operation can introduce
errors in the measurement, which, depending upon
the size and separation of the responses and how
the gate is set up, can be relatively small or
restrictively large. The first source of gating errors
to consider is an offset gate. This can produce
distortion of the gated response. In general, the
distortion caused by edge effects for the maximum
gate shape may be produced in both the upper
and the lower 10 % of the band. The second
source of gating error is the incomplete removal of
adjacent responses. This is most significant when
the responses that are to be removed are large in
magnitude and close in time to those responses
one wants to retain. In order to avoid the errors
induced by incorrectly positioning the gate, it is
important to center the gate at the peak of the time-
domain response. Secondly, one must ensure that
gate span is wide enough to include all responses
of interest. Using the widest gate span possible will
reduce the effect of the offset gate. The third gating
guideline is to use the widest gate shape possible.
This will minimize the effects of the offset gate
as well as reduce effects of gate passband flatness
and side lobes.

In the HP 8510B, the gate can be set up as
follows. Pressing DOMAIN, selecting SPECIFY
GATE, GATE SHAPE, and MAXIMUM. Then,
selecting GATE CENTER by pressing MARKER,
selecting MARKER to MAXIMUM, and then
pressing DOMAIN, selecting CENTER, and press-
ing the MARKER key. The GATE SPAN is chosen
as wide as possible to include all of the responses
of interest.

Figure 10.15 plots the reflection coefficients
(upper) and transmission coefficients (lower) of the
Eccogel plate with and without the time-domain
gating being applied. It can be seen in Figure 10.15
that ripples appear in the reflection and trans-
mission coefficients, which result from the resid-
ual postcalibration errors, without applying time-
domain gating. After applying time-domain gating,
the gated frequency-domain responses are approx-
imately the average of the ungated responses as
shown in Figure 10.15. In this study, the gated
reflection and transmission coefficients are used
as the reflection and transmission characteristics
of the measured material while determining mate-
rial properties.

10.2.5 Computation of ε, µ, and β of the
chiral composite samples

Out of several forms of the constitutive equations
for chiral media (Sihvola and Lindell 1991), the
set of constitutive equations, �D = ε �E + βε∇ × �E
and �B = µ �H + βµ∇ × �H , is chosen. The coef-
ficient β (in meters) is the chirality parameter,
which is equal to zero for achiral or nonchiral
as well as equichiral media. Following (Bohren
1974), the electromagnetic fields in achiral medium
are expressed as a combination of the LCP,
�QL, and RCP, �QR, waves by �E = �QL + aR �QR

and �H = aL �QL + �QR, where aR = −i
√

µ/ε and
aL = −i

√
ε/µ. These fields are found to prop-

agate with the wave numbers kL = k/(1 − kβ);
kR = k/(1 + kβ); k = ω

√
µε. In a chiral medium,

the LCP and RCP fields propagate with different
complex propagation constants. Since these con-
stants must be positive, its denominator cannot
become negative and hence |kβ|〈1. This condi-
tion implies that the real and imaginary parts of
the impedance are positive. Otherwise, the medium
will become an active medium. This results in an
upper bound on the chirality parameter, which is
a function of frequency and other material prop-
erties. In many cases, β is expected to decrease
with frequency.

For the case of a normal incident plane wave,
the field representations for the planar two-layer
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Figure 10.15 The measured reflection (upper) and transmission (lower) coefficients of the Eccogel plate with and
without the time-domain gating being applied. Source: Ro, Ruyen (1991), Determination of the electromagnetic
properties of chiral composites, using normal incidence measurements, The Pennsylvania State University,
Department of Engineering Science and Mechanics, Ph.D. Thesis

chiral sample can be illustrated by Figure 10.16.
Figure 10.16 is divided into four regions. Two of
them, region 0 (z ≤ 0) and region 3 (z ≥ d2), are
free spaces that do not exhibit chirality. Region

2, the eccogel layer (d1 ≤ z ≤ d2), is also achiral
material. The last one, region 1 (0 ≤ z ≤ d1), is
a chiral medium with electromagnetic properties,
ε, µ and β. In the chiral medium, the LCP and RCP
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waves propagate with different wave numbers,
while for the achiral media, these wave numbers
are identical.

In region 0, the normal plane wave is given by

�Einc = (AEêy + AHêx)e
ik0z (10.1)

�Hinc = 1

η0
(AHêy − AEêx)e

ik0z (10.2)

In the above expressions, η0 = k0/ωµ0 and k0

are the free-space impedance and wave num-
ber respectively. The coefficients AE 
= 0, AH =
0 refer to a TE-polarized incident plane wave,
whereas AE = 0, AH 
= 0 denote an incident TM-
polarized field. The coefficients AH = iAE and
AH = −iAE represent LCP and RCP incident plane
waves respectively.

In the chiral region, the field has to be expressed
in terms of positive- and negative-traveling LCP
and RCP plane waves. The representations of the
fields in the chiral medium are given by

�QL = A1(êy − iêx)e
ikLz + A2(êy + iêx)e

−ikLz

(10.3)

�QR = C1(êy + iêx)e
ikRz + C2(êy − iêx)e

−ikRz

(10.4)
where A1, A2, C1 and C2 are the unknown coeffi-
cients to be determined. From (Bohren 1974), one

obtains the electric and magnetic fields in the chiral
medium as �Ech = �QL + aR �QR (10.5)

�Hch = aL �QL + �QR (10.6)

In the Eccogel (achiral) layer, the electric and
magnetic fields are expressed in terms of circularly
polarized waves as

�Eecc = ((A3 + C3)êy + i(C3 − A3)êx)e
ikeccz

+ ((A4 + C4)êy + i(A4 − C4)êx)e
−ikeccz

(10.7)

�Hecc = 1

ηecc
[((C3 − A3)êy − i(A3 + C3)êx)e

ikeccz

+ ((A4 − C4)êy + i(A4 + C4)êx)e
−ikeccz]

(10.8)
in which ηeccand kecc are the impedance and wave
number of Eccogel respectively, and A3, A4, C3

and C4 are the unknown coefficients to be
determined. The transmitted field in region 3 (free
space), propagating only in the positive z-direction,
is given by

�Etra = ((TL + TR)êy + i(TR − TL)êx)e
ik0z (10.9)

�Htra = 1

η0
[((TL − TR)êy − i(TL + TR)êx)e

ik0z]

(10.10)
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The reflected fields in region 0 (free space) trav-
eling along the negative z-direction has the form

�Eref = ((RL + RR)êy + i(RL − RR)êx)e
−ik0z

(10.11)

�Href = 1

η0
[((RL − RR)êy + i(RL + RR)êx)e

−ik0z]

(10.12)
In the above expressions, TL, TR, RL, and RR

are the coefficients that need to be determined
as solutions to the boundary value problem. The
boundary conditions are:

At z = 0,

êz × � �Einc + �Eref − �Ech� = 0 (10.13)

êz × � �Hinc + �Href − �Hch� = 0 (10.14)

At z = d1,

êz × � �Eecc − �Ech� = 0 (10.15)

êz × � �Hecc − �Hch� = 0 (10.16)

At z = d2,

êz × � �Eecc − �Etra� = 0 (10.17)

êz × � �Hecc − �Htra� = 0 (10.18)

In Eqs. (10.13)–(10.18), we obtain a system
of 12 equations for the unknowns Aj , Cj , (j =
1–4), TL, TR, RL and RR. The unknowns can
be obtained numerically. It can be shown that
for a normally incident LCP plane wave, which
implies that only waves having the polarization
êy − iêx can propagate in either the positive or
negative z-direction, A2, A4, C1, C3, TR, and RL

equal zero. Similarly, it can be shown that for
a normally incident RCP plane wave, which
implies that only waves having the polarization
êy + iêx can propagate in either the positive or
negative z-direction, A1, A3, C2, C4, TL and RR

equal zero. The field representations for normally
incident, circularly polarized waves are shown
in Figure 10.17. There is no mode conversion,
and LCP and RCP waves will propagate in
each medium without interfering with each other.
Therefore, the impedance method can be applied
for a normally incident LCP or RCP wave.

According to the impedance method, the scalar
field in the ith layer is given by

	i(z) = A−
i e−k−

i
z + A+

i ek+
i
z (10.19)

where the ± superscripts denote a wave traveling
in the positive and negative z-direction respec-
tively. The wave numbers k+

i and k−
i are equal

to kL or kR according to

k+
i = kL and k−

i = kR (LCP incident)

k+
i = kR and k−

i = kL (RCP incident) (10.20)

with k+
i = k−

i = ki = ω
√

µiεi for the achi-
ral region.

The generalized reflection coefficient for any
medium is defined as the ratio of the back propa-
gation field to the forward propagating field. Thus,

�i(z) = A−
i

A+
i

e−i(k−
i
+k+

i
)z. (10.21)

Substituting Eq. (10.21) into (10.19) gives

	i(z) = A+
i ek+

i
z(1 + �i(z)) (10.22)

The total field impedance is defined as

Zi(z) = ηi

1 + �i(z)

1 − �i(z)
(10.23)

where ηi = √
µi/εi is the intrinsic impedance of

each medium. In Eq. (10.23),

�i(z) = Zi(z) − ηi

Zi(z) + ηi

(10.24)

For the first layer, the incident wave amplitude
A+

1 is known. For the last layer, region 3 is a free
space, which extends to infinity; there is no back
propagating wave in this medium and that implies
�3 = 0.

The reflection function at a point z′ if the
reflection function at a point z is known is given by

�i(z
′) = �i(z)e

−i(k−
i

+k+
i
)(z′−z) (10.25)

Thus, the generalized reflection coefficient �i(z)

of each layer can be obtained layer by layer
from the last layer. Then, the reflection coefficient
A−

1 /A+
1 and the transmission coefficient, A+

3 /A+
1
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Figure 10.17 Field representations for the normally incident, circularly polarized plane wave. Source: Ro, Ruyen
(1991), Determination of the electromagnetic properties of chiral composites, using normal incidence measurements,
The Pennsylvania State University, Department of Engineering Science and Mechanics, Ph.D. Thesis

can be obtained. For normally incident, circularly
polarized waves, one obtains (Ro 1991)

S11L = S11R = A + ABP + BCF + PCF

1 + PB + ABCF + PACF
(10.26)

S21L = (1 + �2(0))(1 + B)(1 + A)C1/2

(1 + PB + ABCF + PACF)e−ik2d2

(10.27)

S21R = S21Lei(kR−kL)d (10.28)

where S11L and S21L (S11R and S21R) are reflection
and transmission coefficients for LCP (RCP) waves

respectively, and

A = η − η0

η + η0
(10.29)

B = η2 − η

η2 + η
(10.30)

C = e2ikLd1 (10.31)

�2(0) = η0 − η2

η0 + η2
(10.32)

P = �2(0)e2ik2d2 (10.33)

F = ei(kR−kL)d1 (10.34)
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where η(= √
µ/ε) is the impedance of the chiral

composite, k2 and η2 are the respective wave
number and the impedance of Eccogel, d2 and
d1 are the thicknesses of Eccogel and chiral layer
respectively.

For a normally incident, linearly polarized wave,
one can obtain the reflection and transmission char-
acteristics by solving the 12 × 12 matrix by Gaus-
sian–Jordan elimination method. For normally
incident, circularly polarized waves, the reflec-
tion and transmission characteristics are obtained
from Eqs. (10.26)–(10.28). As the linearly polar-
ized waves can be mathematically decomposed
into coherent LCP and RCP waves of the same
magnitude, the reflection and transmission charac-
teristics of the different polarization of these waves
are given by

S11co = 1

2
(S11L + S11R) = S11L = S11R (10.35)

S21R = S21co + iS21cross (10.36)

S21L = S21co − iS21cross (10.37)

S21cross = S21θ − S21co cos θ

sin θ
(10.38)

where S11co and S21co are the measured reflection
and transmission fields with two copolarized
antennas. S21cross and S21θ are the measured
transmission fields that are obtained by rotating the
receiving antenna 90◦ and θ from its copolarized
position respectively. It can be seen that reflection
coefficients for LCP and RCP waves have the same
values, meaning that the resultant reflected wave
is a linearly polarized wave and is copolarized
with the incident wave. On the other hand,
the transmission coefficients for RCP and LCP
waves are different. The resultant transmitted wave
of these two circularly polarized waves is an
elliptically polarized wave and its polarization
direction is rotated from that of the incident
wave. It can also be observed from Eq. (10.28)
that the difference between kR and kL, which
results from the chirality parameter, causes circular
birefringence and circular dichroism between LCP
and RCP waves. Without chirality, transmission
coefficients for LCP and RCP waves are identical
and the resultant transmission field is linearly
polarized, as it should be for an achiral medium.

Once S11co, S21co and S21ϑ are obtained from
experiments for a normally incident, linearly polar-
ized wave, the reflection and transmission coeffi-
cients for a normally incident, circularly polarized
wave can be computed from Eqs. (10.35)–(10.38).
The electromagnetic properties of the chiral mate-
rial then may be determined from these quantities.
From Eqs. (10.29) and (10.30), one gets

B = (1 + A)η0 + (A − 1)η2

(A − 1)η2 − (A + 1)η0
(10.39)

Substituting Eq. (10.39) into Eq. (10.26) gives

C =
(A − S11L)((A − 1)η2(P + 1)

+ (1 + A)η0(P − 1))

F (AS11L − 1)((A − 1)η2(P + 1)
+ (1 + A)η0(1 − P))

(10.40)

Substituting Eqs. (10.39) and (10.40) into Eq.
(10.36) and after some algebraic manipulations, the
following quadratic equation is obtained.

aA2 + bA + a = 0 (10.41)

and A can be obtained as

A = −b ± √
b2 − 4a2

2a
(10.42)

where

a = S2
21LF(η2

2(1 + P)2 − η2
0(1 − P)2)

− 4S11Lη2
2(1 + �2(0))2e2ik2d2 (10.43)

b = −2(η2
2(1 + P)2 + η2

0(1 − P)2)S2
21LF

+ 4(S2
11L + 1)η2

2(1 + �2(0))2e2ik2d2 (10.44)

The appropriate sign in Eq. (10.44) is chosen so
that |A| ≤ 1, as it should be from the definition
given in Eq. (10.29). The impedance of the chiral
material is then obtained as

η = A + 1

1 − A
η0 (10.45)

and C can be computed from Eq. (10.40). Then
the wave numbers for LCP and RCP waves, kL
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and kR, can be calculated from C and F as shown
in Eqs.(10.31) and (10.34) as follows:

2ikLd1 + i2nπ = ln(C) (10.46)

i(kR − kL)d1 ± i2mπ = ln(F ) (10.47)

where m and n = 0, 1, 2, . . .

Since the actual phase velocity cannot be found
from experiment, the real parts of kL and kR, which
relate to the respective wave speeds for LCP and
RCP waves, have infinite numbers of solutions as
shown in Eqs. (10.46) and (10.47). The approxi-
mate phase velocity concept is proposed in this
study in order to properly choose the appropri-
ate values for m and n. Once kL, kR, and η are
determined uniquely, the macroscopic constitutive
parameters, the permittivity ε, the permeability µ

and the chirality parameter β can be calculated
from the following equations:

k = 2
1

kR
+ 1

kL

(10.48)

β = 1

2

(
1

kR
− 1

kL

)
(10.49)

µ = kη

w
(10.50)

ε = k

wη
(10.51)

10.2.6 Experimental results for chiral
composites

First, the accuracy of the technique is established
by obtaining the properties of pure Eccogel and
quartz samples. The properties of pure Eccogel are
required for the computation of electromagnetic
parameters of chiral composite samples. Since
the transmitted field is a linearly polarized wave,
S21cross is zero for both quartz and pure Eccogel.
The algorithm developed earlier is still applicable
to nonchiral materials by setting d2 = 0, k2 = k0,
and η2 = η0. The electromagnetic properties of
Eccogel and Quartz are obtained from S21co and
S11co. Figure 10.18 is a plot of the relative permit-
tivity and the relative permeability for quartz and

Eccogel. The properties were computed from S21co

and S11co. Ghodgaonkar et al. (1989) have reported
that the accuracy for the dielectric constant was
better than ±4 %. For low-loss dielectric samples,
the maximum error in dielectric loss tangent is
around ±0.06. Because the actual loss tangents of
Teflon and glass are less than ±0.06, the dielec-
tric loss tangent cannot be measured accurately.
It can be seen in Figure 10.2 that both the real
parts of permittivity and permeability have accu-
racy within ±2 %. Both the imaginary parts of the
relative permittivity and permeability cannot be
measured accurately since both quartz and Eccogel
are low-loss materials.

Figure 10.19 shows both the real and imagi-
nary parts of the chirality parameter β of quartz
and Eccogel. The chirality parameter β shown in
Figure 10.19 was calculated using additional trans-
mission measurement in the polarization direc-
tion 40◦ CW. It can be seen in Figure 10.19 that
both the real and imaginary parts of the chirality
parameter β are of the order of 10−6 or smaller
in magnitude.

Since quartz and Eccogel are achiral media,
both the real and imaginary parts of the chirality
parameter should be zero. The measured chirality
parameter for both Quartz and Eccogel is indica-
tive of the error in the measurement of the chirality
parameter. Both the permittivity and permeabil-
ity can also be obtained from one reflection and
two transmission measurements. When compared
with the data shown in Figure 10.19, the differ-
ence between the real parts of the permittivity and
permeability was found to be less than 1 %, but
the difference between the imaginary parts of the
permittivity and permeability is 8 %. The bigger
difference in the imaginary parts of the permittiv-
ity and permeability is due to the fact that the loss
tangent is less than 0.06, and the loss factor cannot
be measured accurately.

The measurements are one reflection and two
transmission measurements for a normally inci-
dent, linearly polarized plane wave. They are used
for characterizing chiral composites. As the sam-
ples have local inhomogeneities, which are resulted
from preparation error, the required S-parameters
are measured at five different positions and aver-
aged. This is done by rotating the sample in the
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Figure 10.18 Electromagnetic properties (εr, µr) of Eccogel and quartz. Source: Ro, Ruyen (1991), Determination
of the electromagnetic properties of chiral composites, using normal incidence measurements, The Pennsylvania
State University, Department of Engineering Science and Mechanics, Ph.D. Thesis

sample holder or by moving it so that the spot
focus of the antenna illuminates different positions
of each sample in the five measurements.

It is known that for achiral materials, the
imaginary part of k must be greater than or
equal to zero such that the wave traveling through
the medium will not gain any energy. The only
constraint is |kβ| ≤ 1 for chiral materials. The
following results show |kβ| ≤ 1 is of the order

10−1 or smaller in magnitude and is hence within
the constraint.

Figures 10.20–10.22 are the plots of the elec-
tromagnetic properties ε, µ, and β of the left-
handed chiral composite samples versus frequency.
The properties shown in these figures were com-
puted from one transmission measurement S21θ

at the polarization direction 40◦ CW, in addi-
tion to one reflection measurement S11co and
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Figure 10.19 Chirality parameter β of Eccogel and quartz. Source: Ro, Ruyen (1991), Determination of the
electromagnetic properties of chiral composites, using normal incidence measurements, The Pennsylvania State
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one transmission measurement S21co. The relative
permittivities of the left-handed chiral samples
are shown in Figure 10.20. It can be seen in
Figure 10.20 that all the curves of the real parts
of permittivities are concave. The frequency at
which the minimum is observed for each con-
centration varies as the concentration changes. In
general, the minimum for the lower-concentration
sample is at a higher frequency than that for the

higher-concentration sample. It is also observed
that the real part of the permittivity decreases as
the concentration increases. The imaginary parts
of the permittivities for all three samples have
positive values at lower frequency and nega-
tive values at higher frequency. The frequency
at which the imaginary part of the permittivity
is equal to zero decreases as the concentration
increases.
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Figure 10.21 shows the relative permeability of
the left-handed chiral composite samples versus
frequency. It can be seen that the real parts of
the relative permeability have the same trend for
all the three samples. Each curve of the real
part of the relative permeability is convex and
has a positive peak, whose value increases as
the concentration increases. The peak observed
for the lower-concentration sample is at higher

frequency than that for the higher-concentration
sample. It also can be observed from Figure 10.21
that each curve of the imaginary part of the relative
permeability exhibits anomalous dispersion, first
decreasing, then increasing, and then decreasing
with frequency. It has the value zero at the lower
frequency, then decreases to reach a negative
maximum and drastically moves to a maximum
peak, followed by a drop to zero at the higher
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frequencies. It can be seen that both the negative
and positive maxima occur at lower frequencies
for the higher concentration than for the lower-
concentration sample.

As shown in Figures 10.20 and 10.21, the curves
of the real parts of the relative permittivity and
permeability are concave and convex respectively.
The curves of the imaginary parts of the relative
permittivity and permeability are S-shaped, and

their absolute values increase as the concentration
increases in the frequency range of 8 to 40 GHz.
These results show that the wavelength for either
the LCP or the RCP wave in the chiral medium
decreases as the concentration increases at the
same frequency. With the wavelength inversely
proportional to the frequency, one can expect that
the cotton effect phenomenon, which occurred at
some particular value of L/λ (Tinoco and Freeman
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1960), will be observed at a lower frequency for a
higher-concentration sample as compared to that for
the lower-concentration sample.

Figure 10.22 plots the complex chirality param-
eter of the left-handed chiral samples. It can be
seen that the real parts of the chirality parame-
ters for all the three concentration samples have
negative values in the whole frequency range.

In general, the absolute value of the real part
of the chirality parameter increases as the con-
centration increases. The real part of the chiral-
ity parameter appears to approach to a negative
maximum at lower frequency. As the maximum
observed varies as the concentration changes, it
resulted in the absolute value of the real part
of the chirality parameter for the 3.2 % sample
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is somewhat smaller than the 1.6 % sample at
lower frequencies. The imaginary part of the chi-
rality parameters for all the three concentration
samples have the same trend, and their values
are positive at lower frequencies and become
negative at higher frequencies. In general, the
absolute value of the imaginary part of the

chirality parameter increases as the concentra-
tion increases.

The wave numbers for the LCP and RCP waves
kL and kR in all three left-handed chiral composite
samples can be calculated. It is seen that the real
part of the wave number kL increases as frequency
increases over the whole frequency range. It also
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increases as the volume fraction of the chiral
inclusion increases. Since the wave number is
inversely proportional to the wave speed, it can be
deduced that electromagnetic waves propagating
through the chiral sample become slower as the
concentration increases. The imaginary part of the
wave number kL increases as the concentration
increases over the whole frequency range, which
implies that LCP wave traveling through the
left-handed chiral samples is absorbed more as

concentration increases. Similarly, the real part
of the wave number kR increases as frequency
increases over the whole frequency range; the
imaginary part of the wave number kR increases
as the concentration increases. The difference
between the wave number kL and kR in the left-
handed samples are plotted in Figure 10.23. The
real part of (kL − kR) has a positive value and
increases as the concentration increases over the
whole frequency range. This implies that LCP
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waves propagate faster through the left-handed
chiral samples than RCP waves. The imaginary
part of (kL − kR) increases as the concentration
increases in the frequency range of 8 to 40 GHz.
Since rotation angle and ellipticity are related to
the real and imaginary parts of (kL − kR) shown in
Figure 10.23, they have the same characteristics.

Figure 10.24 presents the impedance η of the
left-handed chiral samples versus frequency. The
impedance η has the same characteristics as the
relative permeability µ. For example, the real part
of the impedance and permeability have a pos-
itive peak, which increases as the concentration
increases; the imaginary part of the impedance and

5

4

3

2

1

0

R
e 

(e
r)

5 10 15 20 25 30 35 40

4

3

2

1

0

−1

Im
 (

e
r)

5 10 15 20 25 30 35 40

Frequency (GHz)

3.2% Left-handed

3.2% Left-handed

3.2% Right-handed

3.2% Right-handed

3.2% Racemic

3.2% Racemic

Figure 10.25 Relative permittivity εr of the 3.2 % chiral composite samples. Source: Ro, Ruyen (1991),
Determination of the electromagnetic properties of chiral composites, using normal incidence measurements, The
Pennsylvania State University, Department of Engineering Science and Mechanics, Ph.D. Thesis



Microwave Measurement of Chiral Materials 449

permeability have a negative value at lower fre-
quencies and a positive value at higher frequencies.
This means that left-handed chiral samples behave
like capacitive and inductive media at lower and
higher frequencies, respectively, in the frequency
range of 8 to 40 GHz.

Figures 10.25–10.27 show the electromagnetic
properties ε, µ, and β of the 3.2 % chiral composite

samples. These plots allow us to compare ε, µ,
and β at one concentration between left-handed,
right-handed and racemic samples. It can be seen
in Figures 10.25 and 10.26 that all the curves
of the real part of the relative permittivity and
permeability are concave and convex respectively
for all samples. The curves of the imaginary parts
of the relative permittivity and permeability are
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S-shaped. Both the real and imaginary parts of the
relative permittivity for all samples have almost
the same value except at the lower and higher
frequencies. At lower frequencies (8 to 16 GHz),
there are two thickness resonance frequencies
observed for the Eccogel plate with a thickness
of 1.2 cm. The two peaks in the imaginary part
of the relative permittivity of the 3.2 % right-
handed sample at lower frequencies shown in
Figure 10.25 looks almost like the resonance effect

of Eccogel, which may be due to heterogeneity of
the 3.2 % right-handed sample. The discrepancy
of the imaginary part among all samples at higher
frequencies may be due to variations in sample
preparation, which become more apparent at higher
frequencies.

In Figure 10.26, the frequencies at which the
maxima of the real parts of the relative perme-
ability for all samples occurred are almost the
same. The difference of the imaginary part of the
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relative permeability among all samples at higher
frequencies may be due to the sample variation as
explained above. From Figures 10.25 and 10.26,
one may conclude that both the real and imaginary
parts of the relative permittivity and permeability
for all three-handed samples are almost the same
in the frequency range of 8 to 40 GHz.

Figure 10.27 shows the real and imaginary parts
of the chirality parameter of left-, right-handed
and racemic samples. The left- and right-handed
samples have almost the same values of β but are

of opposite sign. Similarly, the imaginary parts of
the left- and right-handed samples change sign at
the same frequency. On the other hand, racemic
sample has a value of β nearly equal to zero for
both real and imaginary parts and is of the order
of 10−5, which compares with the value of 10−6

for quartz, which is also achiral.
From Figures 10.25–10.27, one can conclude

that the electric permittivity and magnetic per-
meability of the same concentration samples
have almost the same values regardless of their
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handedness, while both the real and imaginary
parts of the chirality parameter are zero for
the racemic sample and have the same values
but with different signs for the left- and right-
handed samples.

The difference between the wave numbers kL

and kR in the 3.2 % chiral samples are plotted
in Figure 10.28. The real part of (kL − kR) has
a positive value in the 3.2 % left-handed chiral
sample and a negative value in the 3.2 % right-
handed chiral sample, which implies that LCP
waves traveling through a left-handed medium
are faster than RCP waves, and vice versa. The
imaginary part of (kL − kR) in the 3.2 % left-
handed chiral sample has a negative value at
lower frequencies and a positive value at higher
frequencies. For the right-handed chiral sample,
the imaginary part of (kL − kR) has a positive
value at lower frequencies and a negative value
at higher frequencies. Both the real and imaginary
parts of (kL − kR) are approximately equal to zero
over the whole frequency range. The rotation and
ellipticity have the same characteristics as the real
and imaginary parts of (kL − kR) respectively.

The impedance η of the 3.2 % chiral samples
versus frequency has the same characteristics as
the relative permeability µ. For example, the
frequencies at which the maxima of the real
parts of the relative permeability for all the
handed samples occurred are almost the same; the
imaginary part of the impedance has a negative
value at lower frequencies and a positive value at
higher frequencies. This means that all the handed
samples behave like capacitive and inductive
media at lower and higher frequencies respectively
in the frequency range of 8 to 40 GHz.

10.3 WAVEGUIDE METHOD

Waveguide measurement method can be used for
measuring the electromagnetic parameters of chi-
ral materials. It has been demonstrated (Hollinger
et al. 1991; Pelet and Engheta 1990; Engheta and
Pelet 1989, 1990) that there are no independent TE,
TM, and TEM modes in waveguides filled with
chiral materials. Hollinger et al. (1992) measured
the rotation angle and the axial ratio in a circular
waveguide. The results show that the high-order

modes have little effect on the measurable quanti-
ties. As such, only the dominant mode in the CW
is considered. The relations between the measur-
able quantities and the electromagnetic parameters
are derived. The rotation angle, the axial ratio, and
the complex reflection coefficients of short- and
open-circuited samples are measured in order to
determine the electromagnetic parameters of chi-
ral materials.

10.3.1 Sample preparation

The chiral material samples are prepared by ran-
domly embedding copper helices in low-loss paraf-
fin wax that has the electromagnetic parameters
ε = 2.2 + 0i and µ = 1.0 + 0i. Samples are right-
handed, left-handed, and racemic containing an
equal mix of right- and left-handed helices. The
helices have a diameter of 0.521 mm, a pitch of
0.500 mm, a gauge diameter of 0.110 mm and three
turns. These helices are distributed homogeneously
and randomly in the paraffin wax. All the chiral
samples have the same thickness of 4 mm and the
same diameter of 25 mm. However, they have dif-
ferent concentrations of helices and handedness.
The volume fractions of the helices are 0.4, 0.8,
and 1.6 %, which are the percentage volumes occu-
pied by the metal wires that constitute the helices
(Liu et al. 1999).

10.3.2 Experimental procedure

The main part of the experimental setup used
is shown in Figure 10.29. The mode launched
in this setup is linearly polarized. The dominant
mode in the empty rectangular waveguide (RW) is
the TE10 mode; its polarization is parallel to the
smaller side of the RW. In the empty CW, the
dominant mode is the TEll mode. The electrical
field intensity is the highest near the center of the
CW and the mode possesses an approximate plane-
wave characteristic. Usually, only the TEll mode is
considered in the CW filled with nonchiral material
or in the empty CW. It has been demonstrated
(Hollinger et al. 1991) that the HE±11 mode is
the dominant mode in the CW filled with chiral
materials and that the transverse electrical field
pattern of the mode is similar to that of the
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the electromagnetic parameters of chiral materials
at microwave frequencies,” Meas. Sci. Technol. 10,
374–379, IOP Publishing Ltd, by permission of IOP
Publishing Ltd

TEll mode, especially near the center of the CW.
Thus, in order to simplify the measurement and
treatment of measured data, the HE±11 mode is
approximately treated as the TEll mode.

The distribution of the electrical field in the lon-
gitudinal direction in the waveguide is measured
by the slotted line, and the complex reflection
coefficients are then calculated. The RW-to-CW
transition and the detector can be rotated around
the axis of the CW. Thus, the rotation angle and
the axial ratio of the transmission field can be mea-
sured when electromagnetic waves travel through
chiral samples.

Since the chiral composite samples will rotate
the direction of the electrical field, the component
that is parallel to the longer side of the RW
will be reflected back to the sample. This will
lead to multiple reflections and cause errors in
the measurement. In the RW-to-CW transition and
the CW-to-RW transition, there is a metal slice
that is parallel to the longer side of the RW.
The end facing the CW is cut to a taper in
order to obtain impedance matching. The electrical
field component perpendicular to the slice will
experience little attenuation, while the component
parallel to the slice will be highly attenuated.
Hence, the slice can reduce the influence of
multiple reflections.

Before measuring the complex reflection coef-
ficients, a calibration is conducted by putting a
metal plate in place of the chiral sample to act
as the short circuit. Before measuring the rotation

angle and the axial ratio, a calibration is performed
by connecting the two CWs directly to obtain the
transmission standard.

10.3.3 Computation of ε, µ, and ξ of the chiral
composite samples

For an electromagnetic wave in a nonchiral
material in free space, the propagation constant k

and wave impedance Z can be expressed as

k = w(εµ)1/2 (10.52)

Z = (µ/ε)1/2 (10.53)

For an electromagnetic wave in a CW filled with
a nonchiral material, the propagation constant k′
and wave impedance Z′ are

k′ = [w2 − k2
c /εµ]1/2 (10.54)

Z′ = wµ/k′ (10.55)

where kc = 1.841/R is a constant corresponding
to the TEll mode, 1.841 is the first root of the
first-order Bessel function of the first kind and R

is the radius of the CW. The waveguide angular
frequency is defined as w′ = 2πc/λw, where c

is the velocity of light in vacuum and λw is
the wavelength in the waveguide. The waveguide
angular frequency can be expressed as

w′ = [w2 − k2
c/εµ]1/2 (10.56)

Substituting Eq. (10.56) into Eq. (10.54) gives

k′ = w′(εµ)1/2 (10.57)

which has the same form as the propagation
constant for nonchiral materials in free space
(shown in Eq. (10.52)). The wave impedance Z′ in
the CW filled with a nonchiral material is given by

Z′ = wµ/k′ = Zw/w′ (10.58)

For an electromagnetic wave in a chiral material
in free space, there are only two eigenmodes of
propagation. One is the right-circular polarization
wave, the other is the left-circular polarization
wave. The wave numbers of the RCP and LCP
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waves are expressed as k+ and k− (Jaggard
et al. 1990).

k± = ±wµξ + w(εµ + µ2ξ 2)1/2 (10.59)

The intrinsic impedance of chiral materials is

Zc = [µ/(ε + µξ 2)]1/2 (10.60)

In the CW filled with a chiral material, the
waveguide angular frequency ww is related to ε, µ

and ξ . Here, ww can be expressed as

ww = [w2 − k2
c/(εµ + µ2ξ 2)]1/2 (10.61)

Therefore, the propagation constants k+ and
k− in a CW filled with a chiral material are
expressed as

kw± = ±wwµξ + ww(εµ + µ2ξ 2)1/2 (10.62)

The average propagation constants are given by

a = (kw+ + kw−)/2 = ww(εµ + µ2ξ 2)1/2

(10.63)

b = (kw+ − kw−)/2 = wwµξ (10.64)

The wave impedance in a CW filled with a chiral
material is expressed as

Zw = Zcw/ww = wµ/(w2εµ + w2µ2ξ 2 − k2
c )

1/2

(10.65)

By using the same method as that for propaga-
tion in free space (Sun et al. 1998), the complex
reflection coefficients of the open-circuited sample
�1 and the short-circuited �2 in the CW can be
derived as

�1 = i(1 − Z2
w/Z2

w0) tan(ad)

2Zw/Zw0 − i(1 + Z2
w/Z2

w0) tan(ad)
(10.66)

�2 = iZw tan(ad) + Zw0

iZw tan(ad) − Zw0
(10.67)

where Zw0 = wµ0/k′
0 and k

′
0 = [w2 − k2

c /

(ε0µ0)]1/2(ε0µ0)
1/2 are the wave impedance and

propagation constant for the empty CW, respec-
tively. d is the thickness of the chiral samples.

According to the definition of the rotation angle
(θ ) and the axial ratio (RA) (Hollinger et al. 1992),
one can also get the following relation:

b = 1

2d

[
2θ − i tanh−1

(
2RA

1 + R2
A

)]
(10.68)

On combining Eqs. (10.66) and (10.67), one
can get

a = 1

2d
arccos

(
�1�

2
2 + �2

2 − 2�1�2 − �1 + 1

2(�1 − �2)

)
(10.69)

Zw = Zw0

(
�1�2 + �1 + �2 + 1

�1�2 − 3�1 + �2 + 1

)1/2

(10.70)

From Eqs. (10.61–10.65), the following equations
are derived:

µ = Zwa

w
(10.71)

ξ = b(a2 + k2
c )

1/2

aµw
(10.72)

ε = (a2 − b2)µξ 2

b2
(10.73)

Using the setup shown in Figure 10.29, the
parameters �1, �2, θ and RA can be measured.
So ε, µ and ξ can be calculated using
Eqs. (10.68)–(10.73).

10.3.4 Experimental results for chiral
composites

The measurements are carried out in the range 8.5
to 11.5 GHz. Experiments (Liu et al. 1999) show
that the variance of the results for the same sample
is about 6 % when the samples are rotated 120◦ and
then measured. In order to improve the accuracy
of the results, the samples are rotated 120◦ twice
and measured each time, giving a total of three
measurements. The result for each sample is the
average of the three measurements.

Firstly, a paraffin wax sample is measured in
order to test the accuracy of this measurement sys-
tem. Figure 10.30 plots the permittivity and per-
meability of the paraffin wax sample. Both the
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Figure 10.30 The complex permittivity and perme-
ability of the paraffin wax sample. Source: Liu, Z.L.
Sun, G.C. Huang, Q.L. and Yao, K.L. (1999), “A circu-
lar waveguide method for measuring the electromagnetic
parameters of chiral materials at microwave frequen-
cies,” Meas. Sci. Technol. 10, 374–379, IOP Publish-
ing Ltd, by permission of IOP Publishing Ltd

measured values of the permittivity and permeabil-
ity agree with the values given in section 10.3.1.
Because it is a low-loss, nonmagnetic material, the
imaginary parts of the complex permittivity and
permeability of the paraffin wax sample should be
zero. The measured values are indicative of the
error of the measurement system in the measure-
ment of the complex permittivity and permeability.
It can be seen that the mean value of the imagi-
nary part of the permeability is smaller than that
of the imaginary part of the complex permittiv-
ity. This indicates that the accuracy of the mea-
surement of the imaginary part of the complex
permeability is higher than that of the complex
permittivity.

Figure 10.31 is a plot of the complex chirality
parameter of the paraffin wax sample. It can be
seen that the real and imaginary parts of the
chirality parameter of the paraffin wax are of
the order of 10−6 and 10−7, respectively. Since
the paraffin wax is a nonchiral material, both
the real and the imaginary part of the chirality

3

2

1

0
8 9 10 11 12

x′
(×

10
−6

) 
(1

/Ω
)

0.0

−4.0

−8.0

−12.0
8 9 10 11 12

x
″ (

×1
0−7

) 
(1

/Ω
)

Frequency (GHz)

Figure 10.31 The complex chirality parameter of the
paraffin wax sample. Source: Liu, Z.L. Sun, G.C. Huang,
Q.L. and Yao, K.L. (1999), “A circular waveguide
method for measuring the electromagnetic parameters
of chiral materials at microwave frequencies,” Meas.
Sci. Technol. 10, 374–379, IOP Publishing Ltd, by
permission of IOP publishing Ltd

parameter should be zero. The measured value
gives an indicative value of the error of the
measurement system in the measurement of the
chirality parameter. From the measured values of
the electromagnetic parameters of the paraffin wax
sample, it is obvious that the accuracy of the CW
method is comparable to that of the free-space
method (Varadan et al. 1994).

Figures 10.32–10.34 are plots of the elec-
tromagnetic parameters ε, µ, and ξ of the
right-handed chiral samples versus frequency,
respectively. Figure 10.32 shows the plots of the
complex permittivity of the right-handed chiral
samples. It can be seen that the real part of the per-
mittivity increases as the concentration increases
from 0.4 to 0.8 %. However, an increase in the
concentration to 1.6 % leads to a decrease in
the real part of the permittivity. The curves of
the imaginary part of the permittivity of the 0.4
and 0.8 % samples are flat, which indicates that
less sensitive to frequency. At lower frequencies,
the imaginary part of the permittivity increases as
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the concentration increases. At higher frequencies,
the imaginary part of the permittivity of the
1.6 % sample is smaller than those of the 0.4
and 0.8 % samples, owing to the higher frequency
sensitivity.

Figure 10.33 shows the plot of the complex
permeability of right-handed chiral samples. It can
be seen that both the real and the imaginary part
of the permeability increase as the concentration
increases. It appears that the real part of the
permeability has a peak in between 10.5 and
11.0 GHz.

Figure 10.34 plots the complex chirality param-
eter of right-handed chiral samples. It can be seen
that the real and the imaginary parts of the chiral-
ity parameter of the right-handed chiral materials
are positive and negative respectively. The values
of the real and the imaginary parts of the chiral-
ity parameter are of the order of 10−4, which are
much greater than the values obtained from achiral
materials. The absolute values of the real and the
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Figure 10.33 The complex permeabilities of the
right-handed chiral samples. Source: Liu, Z.L. Sun, G.C.
Huang, Q.L. and Yao, K.L. (1999), “A circular waveg-
uide method for measuring the electromagnetic parame-
ters of chiral materials at microwave frequencies,” Meas.
Sci. Technol. 10, 374–379, IOP Publishing Ltd, by per-
mission of IOP Publishing Ltd

imaginary parts of the chirality parameter increase
as the concentration increases.

Figures 10.35–10.37 are plots of the electro-
magnetic parameters of the 0.8 % chiral samples.
Figures 10.35 and 10.36 show the complex per-
mittivity and permeability of the 0.8 % chiral sam-
ples respectively. It can be seen that the complex
permittivities and permeabilities of right-handed,
left-handed, and racemic samples have almost the
same values. They also have the same trend as the
frequency changes. It can be concluded that the
complex permittivity and permeability are inde-
pendent of the handedness of chiral inclusions.

Figure 10.37 is the plot of the complex chirality
parameter of 0.8 % chiral samples. It can be
seen that the right- and left-handed samples have
almost the same absolute values of the chirality
parameter. The real and the imaginary parts for
a racemic sample are of the order of 10−6,
which is comparable to the values for nonchiral
materials.
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10.4 CONCLUDING REMARKS

The electromagnetic parameters of chiral materials
can be simultaneously measured by using the
CW short-circuit and open-circuit method. We
have reported the principle and techniques of this
method. The complex permittivity, permeability,
and chirality parameters are calculated from the
measured rotation angle, the axial ratio and the
complex reflection coefficients of short-circuited
and open-circuited samples. The dependence of the
electromagnetic parameters on the concentration
and handedness of the chiral inclusions has
been studied. The results are comparable to
those obtained by the use of free-space method
(Ro 1991).
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11

Measurement of Microwave Electrical
Transport Properties

This chapter discusses the measurement of elec-
trical transport properties of materials using
microwave Hall effect techniques. After a brief
introduction of the Hall effects at different fre-
quencies, the nonresonant and resonant methods
for the measurement of microwave Hall effects are
discussed. The nonresonant methods include trans-
mission method, reflection method, and turnstile-
junction method, and the resonant methods include
hollow cavity method, dielectric resonator method,
and planar resonator method. For a magnetic mate-
rial, its Hall effect includes an ordinary Hall effect
and an extraordinary Hall effect. The methods for
the measurement of microwave electrical transport
properties of magnetic materials are discussed in
Section 11.4.

11.1 HALL EFFECT AND ELECTRICAL
TRANSPORT PROPERTIES OF MATERIALS

The electrical transport properties of conductors,
semiconductors, dielectrics, and magnetic mate-
rials have always been active research topics in
solid-state physics and materials sciences, and are
important for the development of electronic com-
ponents and circuits. The electrical transport prop-
erties of a material include carrier density n, carrier
mobility µH, and conductivity σ . The three param-
eters describing the electrical transport properties
of materials (n, µH, and σ ) are related as follows:

n = σ

qµH
(11.1)

where q is the charge of the free carriers and
usually equals the electricity of an electron e =
1.602 × 10−19 Coulomb. Usually, the conductivity
σ and the carrier mobility µH are measured exper-
imentally, and the carrier density n is calculated
from the conductivity σ and carrier mobility µH

according to Eq. (11.1).
The measurement of the conductivity at direct

current (dc) or alternative current (ac) frequencies
is based on Ohm’s law. At microwave frequencies,
for a low-conductivity material, its conductivity σ

is usually calculated from the imaginary part of the
relative permittivity ε′′

r of the medium:

σ = ωε′′
r ε0 (11.2)

where ω is the angular frequency. So the methods
for the measurement of ε′′

r discussed in the
previous chapters can be used in determining the
conductivity of a low-conductivity sample. For a
high-conductivity material, its conductivity can be
calculated from its surface resistance Rs:

σ = ωµ

2R2
s

(11.3)

So, the methods for the measurement of sur-
face resistance can be used in determining the
high-frequency conductivity of high-conductivity
materials.

The measurement of carrier mobility µH is based
on the Hall effect. When an electric field Ex

is applied to a material, it induces an electric
current. If a static magnetic field B is then
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applied perpendicularly to the electric current,
the charge carriers in the electric current will
be deflected, resulting in an additional electric
field EH, perpendicular to both the electric current
and the external magnetic field B. From the
relationship between Ex and EH, the mobility of
the sample can be obtained as

µH = kµ

EH

ExB
(11.4)

where kµ is a parameter determined by the
dimensions of the sample.

According to the nature of the external electric
field applied to the sample, Hall effects can be gen-
erally classified into dc Hall effect, ac Hall effect,
and microwave Hall effect.

11.1.1 Direct current Hall effect

As shown in Figure 11.1, the driving electric
field in a dc Hall effect is a dc electric field,
and correspondingly the Hall field EH is also a
dc field. The measurement of the dc Hall effect
requires electrodes contacting the sample along
the direction of the Hall field, and this method
is usually known as the four-point probe method.
If the two electrodes for the measurement of the
Hall field are not symmetrical about the driving
electric field, there will be a systematic error in
the results of the Hall effect measurement. Such a
systematic error can be eliminated by making two
measurements when the driving electric currents
are in opposite directions and by calculating the
average value of the two measurements.

11.1.2 Alternate current Hall effect

As shown in Figure 11.2, when the external
electric field is an ac electric field, the Hall
field EH is also an ac electric field, and the
corresponding Hall effect is called the ac Hall
effect. The measurement of ac Hall effect also
requires electrodes contacting the sample along the
direction of the ac Hall field. Similar to dc Hall
effect, if the two electrodes are not symmetrical
about the driving electric field, there will be
systematic error in the Hall effect measurement.
Such error can be eliminated by shifting the Hall

B
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+ + ++ +

− − −− −

VH

VH

t

Figure 11.1 Measurement of dc Hall effect

Sample

VH

VH
t

B

Figure 11.2 Measurement of ac Hall effect

voltage curve to make the maximum and minimum
values symmetrical about the zero line.

Both the ac and dc Hall effect measurements
require electrodes contacting the samples under
test. Though this is feasible for bulk materials,
the measurement of ac and dc Hall effects are
less straightforward for powder samples, as elec-
trode contact is very difficult for such samples.
Even when the powder samples are pressed and
molded into bulk samples, the measurement results
may not be accurate because of charge polariza-
tion, grain boundaries, and particle–particle inter-
actions.

11.1.3 Microwave Hall effect

If the driving field is at microwave frequency, the
Hall field is also at microwave frequencies, and
such a Hall effect is called microwave Hall effect.
As the propagation of microwave signal does not
require direct electrode contact, the measurement
of microwave Hall effect does not require direct
electrode contact with the sample under test, so
both bulk and powder samples can be measured.
Furthermore, as the clock speeds of electronic
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circuits have already stepped into the microwave
frequency range, it becomes crucial to investigate
the electrical transport properties of materials at
microwave frequencies.

Figure 11.3 shows a microstrip measurement
cell for the measurement of electrical transport
properties of semiconductor layer samples (Druon
et al. 1990). In this method, the sample is only
lightly pressed on the fixture, and the fixture has
capacitive metal-insulator-semiconductor contacts
with the sample. The metal is the microstrip line,
which acts as the electrode, with the insulator
placed at the end of the line. The semiconductor
sample is in physical contact with the insulated
electrode. The sample size and the working
frequency are chosen in order to get small values
of the capacitive impedances with respect to the
sheet resistance of the sample and to satisfy the
conditions of measurement that enable the sample
to be considered as a lumped circuit element. As
the electrical contacts between the sample and the
cell are capacitive, this method is nondestructive
and requires no technological process for the
samples. Using this method, the sheet resistance
(Rs), the carrier density (n), and the mobility (µ)
of epitaxial layers can be measured.

Figure 11.4 shows the basic structure of the
measurement fixture. The measurement cell is
placed inside the case with four connecting
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Figure 11.3 Top view of a microstrip measure-
ment cell for the measurement of microwave Hall
effect (Druon et al. 1990). Modified from Druon, C.
Tabourier, P. Bourzgui, N. and Wacrenier, J. M. (1990).
“Novel microwave devices for nondestructive electrical
characterization of semiconducting layers”, Review of
Scientific Instruments, 61 (11), 3431–3434
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Figure 11.4 Cross-sectional view of the measure-
ment fixture (Druon et al. 1990). Source: Druon, C.
Tabourier, P. Bourzgui, N. and Wacrenier, J. M. (1990).
“Novel microwave devices for nondestructive electrical
characterization of semiconducting layers”, Review of
Scientific Instruments, 61 (11), 3431–3434

plugs and a device for pressing the sample
on the measurement cell. The position of the
sample on the microstrip lines can be reset with
sufficient accuracy to perform the measurements.
The magnetic field is applied perpendicularly to
plane of the microstrip circuit.

Figure 11.5 shows the circuit for the measure-
ment of electrical transport properties of layer
samples using the fixture shown in Figures 11.3
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Figure 11.5 Measurement circuit for electrical trans-
port properties of layer samples. Modified from Druon,
C. Tabourier, P. Bourzgui, N. and Wacrenier, J. M.
(1990). “Novel microwave devices for nondestructive
electrical characterization of semiconducting layers”,
Review of Scientific Instruments, 61 (11), 3431–3434
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and 11.4. The determination of Rs, µ, and n is
performed in two steps (Druon et al. 1990): a
low-frequency measurement and a high-frequency
measurement. In the low-frequency step, measure-
ments are performed at a frequency (usually sev-
eral MHz) low enough for capacitive impedances
to remain large with respect to Rs. The purpose of
the low-frequency measurement is to determine the
contact capacitances between the measurement cell
and the sample under test. The capacitance values
(typically 20 pF) are obtained from the measure-
ment of the power transmitted through the sample
between two chosen ports, the two others being
grounded, as shown in Figure 11.6. These values
provide control of the quality of the contacts. Fur-
thermore, they are used in the high-frequency step
to determine the correction factors needed when
Rs and the capacitive impedances are of the same
order of magnitude.

In the high-frequency step, measurements are
made in an external dc magnetic field B, and
the sheet resistance Rs, mobility µ, and carrier
density n are determined. In the measurement,
it is only necessary to measure the modulus of
the transmission factor Sij, and phase information
is not needed. Meanwhile, the measurement cell
is usually designed to be symmetrical, so that
measurements can be easily made.

The sheet resistance measurement is performed
between two opposite ports. In this case,
microswitches S3 and S4, in Figure 11.5, which

50 Ω

C3 + C4

V1

C1 C2

V2

21

Figure 11.6 Equivalent circuit for the measurement
of the contact capacitances in the low-frequency step
(switches S3 and S4 on C shown in Figure 11.5).
Source: Druon, C. Tabourier, P. Bourzgui, N. and
Wacrenier, J. M. (1990). “Novel microwave devices
for nondestructive electrical characterization of semi-
conducting layers”, Review of Scientific Instruments, 61
(11), 3431–3434
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Figure 11.7 Equivalent circuits for the high-frequency
step. (a) Measurement of Rs and �R/R (S3 and S4 on
R shown in Figure 11.5) and (b) measurement of the
Hall effect (S3 and S4 on H shown in Figure 11.5).
Source: Druon, C. Tabourier, P. Bourzgui, N. and
Wacrenier, J. M. (1990). “Novel microwave devices for
nondestructive electrical characterization of semicon-
ducting layers”, Review of Scientific Instruments, 61
(11), 3431–3434

are located one-half wavelength away from the
sample, enable the introduction of an open circuit
on the other two electrodes, strictly at their point
of contact with the sample. The equivalent circuit
for this measurement is shown in Figure 11.7(a),
and the value of Rs can be calculated by

Rs = CR(1/|S21| − 1) (11.5)

where CR is a parameter related to the measure-
ment fixture and sample shape and can be obtained
by calibration.

The mobility and carrier density can be mea-
sured on the basis of Hall effect. The measurement
of the Hall effect using the circuit and cell, shown
in Figure 11.5 and Figure 11.3 respectively, is sim-
ilar to the standard one performed with a dc, as
shown in Figure 11.1. In this case, the Hall resis-
tance ZH is defined as

ZH = VH/I (11.6)

As shown in Figure 11.7(b), when the incoming
current I is applied at port 1, the Hall voltage VH

is obtained between ports 3 and 4. The value of
the ZH can be determined from the measurement
of the transmission factors |S31| and |S41|. Then the
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Hall mobility can be obtained from (Druon et al.
1990)

µH = CHZH/(RsB) (11.7)

where CH is a factor that can be determined by
calibration.

The carrier concentration of the sample can then
be obtained from

n = 1/(RsqµHhe) (11.8)

where he is the electrical thickness of the sample
layer, and q is the charge of the free carriers. It
should be noted that the electrical thickness he of
the sample layer is different from the geometrical
thickness h of the sample, as the existence of
interfacial charged defects leads to a correction of
h (Druon et al. 1990).

It should be indicated that, in the measurement
circuit shown in Figure 11.5, the Hall effect mea-
surement is only carried out when µ2

HB2 � 1, and
Eq. (11.8) is also based on this assumption. If this
is not the case, magnetoresistance measurement is
often made. The equivalent circuit for magnetore-
sistance measurement is shown in Figure 11.7(a),
and the value of mobility can be obtained from
(Druon et al. 1990)

µH = CM(�R/R)1/2/B (11.9)

where CM is a factor that can be obtained by
calibration. With known µH and Rs, the car-
rier concentration n can also be obtained accord-
ing to Eq. (11.8). It should be noted that in the
magnetoresistance method, it is assumed that the
drift mobility is equal to the Hall mobility. This
magnetoresistance measurement method has been
extended for nondestructive mapping of large sam-
ples from the measurement of the magnetoresis-
tance effect, and the distribution of the electrical
transport properties of semiconductor wafers can
thus be obtained (Belbounaguia et al. 1994).

Besides the effects discussed above, the elec-
trical transport properties also show themselves
in two other important phenomena: Faraday rota-
tion and coupling between two orthogonal resonant
modes. On the basis of these phenomena, nonres-
onant and resonant methods have been developed
for the measurement of microwave Hall effect.

11.2 NONRESONANT METHODS FOR THE
MEASUREMENT OF MICROWAVE HALL
EFFECT

Most of the nonresonant methods for the mea-
surement of microwave Hall effect are based on
Faraday rotation. In this section, after a brief
discussion of the phenomenon of Faraday rota-
tion, three types of nonresonant methods will be
discussed: transmission method, reflection, and
turnstile-junction method.

11.2.1 Faraday rotation

As indicated earlier, in a Hall effect, the exter-
nal dc magnetic field is perpendicular to the driv-
ing electric field. The external dc magnetic field
may be parallel or perpendicular to the direction
of microwave propagation, and so there are two
types of geometries for the study of microwave
Hall effect: Cotton–Mouton geometry and Faraday
geometry. Let θ be the angle between the direction
of microwave propagation and the direction of the
external dc magnetic field. In a Cotton–Mouton
geometry, θ = π /2, which means that the dc mag-
netic field transverses the direction of microwave
propagation. Engineer and Nag analyzed the prop-
agation of electromagnetic waves in a rectangular
waveguide in the presence of a transverse magnetic
field (Engineer and Nag 1965). In a Faraday geom-
etry, θ = 0, which means that the dc magnetic field
is along the direction of microwave propagation. In
most of the microwave Hall effect measurements,
Faraday geometry is used. In the following discus-
sion, we concentrate on Faraday geometry.

For a gyrotropic dielectric medium under an
external dc magnetic field B in the z-direction,
its dielectric permittivity ε, resistivity ρ, and
conductivity σ are tensors in the following format:

[a] =

 axx axy 0

− axy ayy 0
0 0 azz


 (11.10)

where [a] may be [ε], [ρ], or [σ ]. The component
axy reflects the Hall effect.

As shown in Figure 11.8, a linearly polarized
electromagnetic wave propagating in the direction
of the external magnetic field is decomposed into



Measurement of Microwave Electrical Transport Properties 465

E

B

Einc

Einc

k

E

RHCP wave

LHCP wave

W
av

e

de
co

m
po

si
tio

n

W
av

e

co
m

po
si

tio
n

x

y

y

y

Etransx

y

a

Etrans

k z

Figure 11.8 Schematic view of the Faraday rotation
in a lossless gyrotropic dielectric medium. Modified
from Musil, J. and Zacek, F. (1986). Microwave Mea-
surements of Complex Permittivity by Free-space Meth-
ods and their Applications, Amsterdam, with permission
from Elsevier

two circularly polarized waves: left-handed cir-
cularly polarized (LHCP) wave and right-handed
circularly polarized (RHCP) wave. As the permit-
tivity ε is in the form of Eq. (11.10), the LHCP
wave and the RHCP wave propagate with different
velocities, and the different propagation velocities
of these two waves result in the fact that the polar-
ization plane of the resultant wave passing through
the medium rotates. The magnitude of the angle of
rotation of the polarization plane depends on the
path that the wave passes through and the materials
property parameters.

When a linearly polarized electromagnetic wave
passes through a material under a dc magnetic
field, the polarization plane will be rotated a degree
α given by

α = 1

2
· ω

c
· (nL − nR) · l (11.11)

where ω is the angular frequency, c is the speed
of light in free space, and l is the length of the
path passed by the electromagnetic wave. The
parameters nL and nR are the indexes of refraction
of the material for the LHCP wave and RHCP
wave, respectively, and they are related to the Hall

mobility of the sample (µH) and the external dc
magnetic field (B).

Musil and Zacek made detailed discussions on
the relationship between the angle of the Faraday
rotation α and the Hall mobility of the sample
(Musil and Zacek 1986). Here, we only give the
equations for the weak magnetic field (µHB �
1) and low-frequency (ωτ < 1) case, where τ is
the relaxation time of the sample. For low-loss
materials with ωεr > σ , where εr is the dielectric
constant and σ is the conductivity of the material,
the angle of rotation α is given by

α = −1

2

√
µ0

ε0εr
· σµHBl (11.12)

For high-loss materials with ωεr < σ0, α is
given by

α = −1

2

√
µ0ωσ

2
· µHBl (11.13)

The above discussion indicates that the Hall
mobility of a material can be measured using the
Faraday rotation method. In the following, we dis-
cuss three types of methods for measuring the
rotation of the polarization plane after a linear
polarized electromagnetic wave passes through or
is reflected back from a medium under study: trans-
mission method, reflection method, and turnstile-
junction method.

11.2.2 Transmission method

In a transmission method, the sample under
study is inserted in a segment of transmission
line, and the rotation angle of the polarization
plane is measured after the electromagnetic wave
passes through the sample. In the following, we
discuss the methods developed from the three
types of transmission lines: waveguide, dielectric
waveguide, and free space.

11.2.2.1 Waveguide method

Figure 11.9 shows a waveguide system for the
measurement of Faraday rotation angle α (Musil
and Zacek 1986). Two transitions between rectan-
gular and circular waveguides are used. The sam-
ple holder is a segment of a circular waveguide. A
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plane. Modified from Musil, J. and Zacek, F. (1986). Microwave Measurements of Complex Permittivity by
Free-space Methods and their Applications, Amsterdam, with permission from Elsevier

wave linearly polarized in the y-direction passes
through the sample placed between two circular
waveguides. If the external dc magnetic field B

is in the direction of the wave propagation, the
polarization plane of the wave passing through the
specimen is rotated by an angle α.

The rotation of the polarization plane manifests
itself by the decrease in a signal received by a
detector located in a rectangular waveguide. With
the square-law detection, the detected signal is
proportional to cos2 α:

Udet ∝ E2
trans · cos2 α

Therefore, the rotation angle α can be found by
rotating the rectangular waveguide by means of a
circular rotary joint into a position where a max-
imum signal can be obtained. Accuracy of the
determination of the angle α is determined mainly
by the perfection of the mechanical construction
of the rotary joint and the technique used for mea-
suring the angle of rotation. In actual experiments,
measurement of the angle that gives the minimum
received signal would give more accurate results
(αreal = π/2 − αmeas).

In the above discussion, the loss of the specimen
is neglected. A wave after passing a lossy specimen
is elliptically polarized. In this case, the properties
of a semiconductor can be evaluated from the
ellipticity of the emerging wave. The ellipticity of
the wave, defined as the ratio of the minor to the
major semiaxis of the ellipse, may be measured by
rotating the rectangular waveguide with the help
of a circular rotary joint and measuring minimum
and maximum signals at the detector.

This method has high requirements on the
waveguide transitions. To increase the measure-
ment accuracy and sensitivity, it is necessary to
insert a damping plate into the circular part of a
TE10 rectangular to TE11 circular mode transition
in such a way that its face is parallel to the longer
transverse dimension of the rectangular waveg-
uide. This plate absorbs a wave reflected from the
rectangular waveguide and thus prevents undesir-
able interference with the incident wave. A similar
structure is shown in Figure 8.41, where such a
damping plate is labeled “polarized absorber”.

Figure 11.10 shows a crossed waveguide
arrangement for the measurement of the Hall
conductivity of a two-dimensional sample at
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Figure 11.10 Crossed waveguide arrangement
(Meisels and Kuchar 1987). Modified from Meisels, R.
and Kuchar, F. (1987). “The microwave Hall effect of
a two-dimensional electron gas”, Zeitschrift fur Physik
B – Condensed matter, 67, 443–447, by permission of
Springer-Verlag GmbH & Co. KG.

microwave frequencies (Meisels and Kuchar
1987). In this arrangement, the two rectangular
waveguides are crossed by rotating them by 90◦

around their long axis against each other. It can be
taken as a special case of the arrangement shown
in Figure 11.9.

Under an external dc magnetic field in the z-
direction, according to Eq. (11.10), the conductiv-
ity of a two-dimensional sample in the structure is
a tensor in the form of

[σ ] =
[

σxx σxy

−σxy σxx

]
(11.14)

The component σxy is the Hall conductivity. The
field pattern in this structure is more complicated
than the case of a pure plane wave, while
the essential conclusion remains unchanged. The
relationship between the input power and the
transmitted power is given by (Meisels and Kuchar
1987)

Ptrans =
∣∣∣∣σxyZ

∗

2
· [(1 + σxxZ

∗/2)2

+ (σxyZ
∗/2)2]−1

∣∣∣∣
2

Pinc (11.15)

where Z∗ = µµ0ω/kz is the impedance of the
waveguide. For σxxZ

∗ � 1 and (σxyZ
∗) � 1,

Eq. (11.15) can be simplified as

Ptrans ≈
∣∣∣∣σxyZ

∗

2
· (1 − σxxZ

∗)
∣∣∣∣
2

Pinc (11.16)

With σxxZ
∗ � 1, Eq. (11.16) can be further

approximated:

Ptrans ≈
∣∣∣∣σxyZ

∗

2

∣∣∣∣
2

Pinc (11.17)

Equation (11.17) can be rewritten as

∣∣∣∣Etrans

Einc

∣∣∣∣ =
(

Ptr

Pinc

) 1
2 ≈

∣∣∣∣Z∗

2
· σxy

∣∣∣∣ (11.18)

So, from the relationship between the transmit-
ted electric field or power and the incident electric
field or power, we can estimate the Hall conduc-
tivity σxy of the two-dimensional sample.

11.2.2.2 Dielectric waveguide method

Dielectric waveguides can also be used in char-
acterizing the Hall mobility of materials using
the transmission method, and the measurement
arrangement is shown in Figure 11.11. The sam-
ple under test is inserted between the open ends of
two segments of dielectric waveguides. The speci-
men is in direct contact with the dielectric waveg-
uides. This method is nondestructive and does
not require special preparation on specimens. The
only requirement on a specimen is that it should
form a plane-parallel plate. In a dielectric waveg-
uide transmission line, the electromagnetic field
is focused on the range of the dielectric waveg-
uide; specimens whose transverse dimensions D

are practically equal to the transverse dimensions

Dielectric
waveguides

Dielectric waveguides
without specimen

Dielectric waveguides
with specimen

Specimen

d

Figure 11.11 Transmission method using dielectric
waveguide
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(Musil and Zacek 1986, p187). Modified from Musil, J. and Zacek, F. (1986). Microwave Measurements of Complex
Permittivity by Free-space Methods and their Applications, Amsterdam, by permission of Springer-Verlag GmbH
& Co. KG.

of waveguide can also be measured. The proper-
ties of the dielectric waveguide and the application
of materials property characterization using dielec-
tric waveguides have been discussed in Chapters 2
and 4.

The measurement circuit shown in Figure 11.9
for the measurement of the angle of rotation of
the polarization plane can be constructed using
dielectric waveguides (Musil and Zacek 1986).
As shown in Figure 11.12, the sample is placed
between two segments of dielectric waveguides.
There are two transitions between the metallic and
dielectric waveguides and two transitions between
the circular and rectangular waveguides. Similar
to the arrangement shown in Figure 11.9, the
measurement accuracy and the sensitivity of the
measurement system shown in Figure 11.12 are
closely related to the quality of the four transitions
and the rotating joint.

11.2.2.3 Free-space transmission method

The transmission measurement system can also be
built in a free-space approach. When a free-space
approach is used, the sample under test is placed
between two antennas that are usually corrected
by dielectric lenses. The properties of the free-
space propagation and its application in materials
property characterization have been discussed in
Chapters 2 and 4. Usually, the free-space method
has higher accuracy at higher frequencies.

Figure 11.13 shows another free-space measure-
ment system for the measurement of transmission
tensor (Parks et al. 1997; Mittleman et al. 1997;
Spielman et al. 1994). This system can achieve
high accuracy at a millimeter wave frequency
range. The input wave is polarized in the x-
direction by the first polarizer. The components of
the transmission tensor are selected by orientating
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Figure 11.13 Free-space measurement system for the measurement of complex transmission tensors in the
presence of a magnetic field. The items labeled as 1, 2, 3, and 4 are reflectors (Parks et al. 1997). Modified
from Spielman, S. Parks, B. Orenstein, J. Nemeth, D. T. Ludwig, F. Clarke, J. Merchant, P. and Lew, D. T. (1997).
“High-frequency Hall effect in the normal state of YBa2Cu3O7”, Physical Review B, 56 (1), 115–117
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the second polarizer either parallel (txx) or per-
pendicular (txy) to the first. The third polarizer at
45◦ ensures that the polarization state of the signal
finally reaching the detector is not affected by the
orientation of the polarization. After obtaining the
diagonal txx and off-diagonal txy components, the
angle of rotation α can be determined. The effect of
linear birefringence can be removed by reversing
the direction of the dc magnetic field B.

11.2.3 Reflection method

Besides transmission methods, the electrical trans-
port properties of materials can also be measured
by reflection methods. In the following, we discuss
two reflection methods: adjustable-short method
and cross-slit probe method.

11.2.3.1 Adjustable-short method

Baturina et al. analyzed a waveguide method for
the determination of the Hall mobility and conduc-
tivity of thin layer samples (Baturina et al. 1996),
and Coue et al. also discussed a similar method
(Coue et al. 1994). This method is based on the
measurements of magnetic field dependences of
the derivative of the reflection coefficient with
respect to the magnetic field. This method does
not require careful calibration of the microwave
system and does not require the accurate mea-
surements of the absolute values of the reflection
coefficient and phase. In the general case of arbi-
trary microwave frequency, the expressions for the
derivative of the reflection are complicated, but in
some specific cases, simple analytical expressions
are possible.

Working principle

Figure 11.14 shows a waveguide structure that
consists of a rectangular waveguide with an
adjustable short. Assume that only the basic mode
TE10 propagates in the rectangular waveguide
and that the reflection is determined by the
diagonal element of the conductivity tensor σyy

only. It is because the dominant TE10 wave
mode inside a rectangular waveguide possesses
the only component Ey of the electric field that

Adjustable short

Ze, be

Zg, bgZg, bg

Pi

Pr

Y

0 d L ZSample

Figure 11.14 Electrodynamic scheme of the waveg-
uide cell (Baturina et al. 1996). Source: Baturina, T. I.
Borodovski, P. A. Studenikin, S. A. (1996). “Micro-
wave waveguide method for the measurement of elec-
tron mobility and conductivity in GaAs/AlGaAs het-
erostructures”, Applied Physics A, 63, 293–298, by per-
mission of Springer-Verlag GmbH & Co. KG.

the absorption of the microwave radiation is
conditioned only by electron motion parallel to
Ey . The diagonal element σyy of the conductivity
tensor of the layer sample, subjected to an
alternating electric field and static magnetic field,
is given by Baturina et al. (1996)

σ ≡ σyy = σ0
1 − iωτ

(1 − iωτ)2 + µ2
HB2

= σR + iσI

(11.19)

with

σR = σ0
1 + µ2

HB2 + ω2τ 2

(1 − ω2τ 2 + µ2
HB2)2 + 4ω2τ 2

(11.20)

σI = σ0
ωτ (1 + µ2

HB2 + ω2τ 2)

(1 − ω2τ 2 + µ2
HB2)2 + 4ω2τ 2

(11.21)

where σ0 = enµH is the conductivity at zero
magnetic field, µH = eτm∗ is the carrier mobility,
τ is the momentum relaxation time, m∗ is the
effective mass of carriers, n is the sheet carrier
concentration, and ω = 2πf is the microwave
angular frequency.

For the case of the layer sample in the geometry
shown in Figure 11.14, the reflection coefficient is
given by (Baturina et al. 1996)


 = 1 − σ − ia

1 + σ + ia
(11.22)

with the normalized complex conductivity of the
sample given by

σ = σ R + iσ I = σyy(ω, B)
1√

1 − λ/λc
(11.23)
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where λ is the wavelength in the free space, and
λc is the cutoff wavelength in the waveguide.
The normalized waveguide reactive conductivity,
including the sample substrate, is given by

a =
[√

ε tan(βε d) tan(βgl)/
√

1 − λ/λc
] − 1

tan(βgl) + √
ε tan(βε d)/

√
1 − λ/λc

(11.24)
where ε is the dielectric constant of the substrate,
the length of the shorted waveguide segment is
l = L − d , and the propagation coefficients are
given by

βg = 2π
√

1 − λ/λc

λ
(11.25)

βε = 2π
√

ε · √1 − λ/λc

λ
(11.26)

According to Eq. (11.22), the modulus of the
reflection coefficient is given by

|
| =
√

(1 − σ R)2 + (σ I + a)2

(1 + σ R)2 + (σ I + a)2
(11.27)

Generally speaking, the derivative of the modu-
lus of the reflection coefficient with respect to the
magnetic field d|
|/dB deduced from Eq. (11.27)
is quite complicated. In the following, only several
special cases are discussed.

Low-frequency limit (ωτ � 1)

At low frequencies, if the length of the shorted
waveguide segment l after the sample is tuned
to produce the minimum of the reflected power
at B = 0, the reactive conductivity a of the
microwave circuit at the plane of the sheet sample
is equal to zero. In this condition, the reflection
coefficient and its derivative are given by (Baturina
1996):

|
| =
∣∣∣∣1 + µ2

HB2 − σ 0

1 + µ2
HB2 + σ 0

∣∣∣∣ (11.28)

d|
|
dB

= 4µ2
Hσ 0B

1 + µ2
HB2 − σ 0

|1 + µ2
HB2 − σ 0|(1 + µ2

HB2 + σ 0)2

(11.29)

with

σ 0 = σ0
1√

1 − λ/λc
(11.30)

When Eq. (11.29) has a maximum, we can
obtain

1 + σ0 = 3µ2
HB2

m1 (11.31)

where Bm1 is the magnetic field at which the
derivative has a maximum in the case of ωτ � 1
and a = 0.

For the ideal case with a = 0 and ωτ = 0
exactly, the derivative d|
|/dB has a jump from a
negative to a positive value at the magnetic field
B01 satisfying the following condition:

σ 0 = 1 + µ2
HB2

01. (11.32)

When a is small but not zero, the value of B01

can still be considered as the zero point of the
derivative. Equation (11.32) can be fulfilled only
for samples with sufficiently high conductivity
σ 0 � 0. The conductivity and carrier mobility of
the sample can be determined by

µH =
√

2√
3B2

m1 − B2
01

(11.33)

σ0 =
√

1 − λ/λc

120π
· 3B2

m1 + B2
01

3B2
m1 − B2

01

(11.34)

Figure 11.15(a) shows the d|
|/dB curves cor-
responding to ωτ = 0.1 (solid line) and ωτ = 0
(dashed line), with the other parameters: σ 0 = 1.1,
µH = 1.13 m2/Vs, and m∗ = 0.068me. It is clear
that the effect of ωτ 	= 0 substantially modifies
curves and has minor influence on the positions
of B01 and Bm1.

For samples with low conductivity (σ 0 < 1),
Eq. (11.31) is still applicable. In order to deter-
mine σ 0, additional measurements are needed.
This requires the measurements of d|
|/dB under
the condition |a| 
 σ 0. This condition can be
achieved by tuning the position of the short for
the maximum of the reflected microwave power,
because when the length of the terminated waveg-
uide segment is changed, the reactive conductivity



Measurement of Microwave Electrical Transport Properties 471

0

0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

d|
Γ

|/
dB

 (
ar

b.
 u

ni
ts

)

d|
Γ

|/
dB

 (
ar

b.
 u

ni
ts

)

B01 Bm2
Bm1 Bm1

s0 > 1 s0 < 1

a = 0
a = 0

wt = 0.1
wt = 0

Magnetic field B (T)

(a)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Magnetic field B (T)

(b)

 a >> s0

Figure 11.15 Calculated curves of the derivative of the modulus of the reflection coefficient with respect to
the magnetic field against the magnetic field in the case ωτ � 1. (a) σ 0 = 1.1 and (b) σ 0 = 0.9 (Baturina et al.
1996). Source: Baturina, T. I. Borodovski, P. A. Studenikin, S. A. (1996). “Microwave waveguide method for the
measurement of electron mobility and conductivity in GaAs/AlGaAs heterostructures”, Applied Physics A, 63,
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of the waveguide is subsequently changed. Under
this condition, Eq. (11.27) can be approximated as

|
| ≈ 1 − 2σ 0

a2(1 + µ2
HB2)

(11.35)

d|
|
dB

≈ 4µHσ 0

a2
· µHB

(1 + µ2
HB2)2

(11.36)

Equation (11.36) has a maximum at Bm2 given
by

3µ2
HB2

m2 = 1 (11.37)

Therefore, in this case (σ 0 < 1), two measure-
ments should be made at two positions of the
adjustable short corresponding to the maximum
(|a| 
 σ 0) and minimum (a = 0) of the reflected
power at B = 0. Figure 11.15(b) shows the curves
for this case with initial parameters ωτ = 0.1,
σ 0 = 0.9, µ = 1.13 m2/Vs, and m∗ = 0.068me.

High-frequency regime

For high frequencies (and/or high mobilities), the
conductivity becomes complex and the expression
for d|
|/dB becomes complicated (Baturina et al.
1996). However, simple expressions are available
for the two limit cases |a| 
 σ 0 and a = 0.
In experiments, by measuring the magnetic field
dependences of the derivative d|
|/dB at different

positions of the adjustable short, the carrier
mobility and conductivity of a layer sample
can be determined. Similar to the case in low-
frequency regime, this method uses only relative
measurements and does not need absolute value
of the reflection coefficient and phase of the
reflection signal. A more detailed discussion for
high-frequency regime can be found in (Baturina
et al. 1996).

Experimental setup

In experiments, two types of magnetic fields
are needed. As shown in Figure 11.16(a), the
measurement cell is placed between two magnetic
poles, and the dc magnetic field is along the z-axis
of the rectangular waveguide. The sample-loading
cell is shown in detail in Figure 11.16(b). The
layer sample on a substrate is clamped between
two plates, with the layer sample facing the
incident wave. The sample completely covers the
waveguide cross section. The waveguide section
behind the sample is terminated by adjustable
short, which enables one to adjust the value
of the reactive conductivity in the plane of
the layer sample. For the modulation of the
magnetic field, a two-section coil is placed near
the sample.
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Figure 11.16 Experimental set. (a) Application of dc magnetic field and (b) application of the modulating
magnetic field

11.2.3.2 Cross-slit probe method

Lann et al. proposed a near-field microwave
scanning probe, which allows local polarimetric
measurements with a subwavelength spatial res-
olution (Lann et al. 1999). The probe is a sym-
metrical transmitting/receiving antenna formed by
two orthogonal slits at the end plate of a circular
waveguide. If a linearly polarized incident wave
passes through one slit, and the wave reflected
from the sample mounted in the near field of the
probe generally has two components perpendicu-
lar to each other, the reflected wave component
with the incident polarization is received by the
same slit, while the orthogonal polarization com-
ponent is received by the orthogonal slit. From the
cross-polarization, the information about the Hall
mobility of the sample can be obtained. So, such a
probe can be used in mapping the Hall mobilities
in semiconductor wafers, and, in principle, its spa-
tial resolution is determined by the common area
of the two slits.

Figure 11.17(a) shows the basic structure of a
cross-slit probe. The fundamental working princi-
ple for a slit aperture as a transmitting/receiving
antenna has been discussed in Section 3.6. The
probe is fabricated on the surface of a ball-
shaped polymethyl-methacrylate (PMMA) insert
protruding from the end of a circular waveguide
(Lann et al. 1999). A layer of thick silver film is
deposited on the insert through a mask formed by
two perpendicularly placed thin varnished wires.

The length of each slit is approximately λ/2, while
the width w is determined by the mask and can be
very small.

Figure 11.17(b) shows the measurement setup.
The circular waveguide with the probe is attached
to the circular output of an orthomode transducer.
A linearly polarized incident wave is launched

Probe

(a) (b)

x, y
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waveguide
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y-polarized
reflected wave

XYZ-table

y x

x

x

E–H tuner
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transducer
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x

Figure 11.17 A cross-slit near-field microwave micro-
scope (Lann et al. 1999). (a) A cross-slit probe and
(b) measurement configuration. Source: Lann, A. F.
Golosovsky, M. Davidov, D. and Frenkel, A. (1999).
“Microwave near-field polarimetry”, Applied Physics
Letters, 75 (5), 603–605
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through the rectangular input port of the orthomode
transducer and comes out through the slit along the
longer dimension of this input (regular slit). This
wave is reflected from the sample mounted in close
proximity to the probe. The reflected wave with
the same polarization returns through the same
slit and comes out through the same rectangular
port of the orthomode transducer. If there is a
change of polarization upon reflection from the
sample, the orthogonal polarization component of
the reflected wave passes through the orthogonal
slit (cross-slit) to the other rectangular port of
the orthomode transducer. An impedance matching
component (E–H tuner) is inserted into each of the
two rectangular ports of the orthomode transducer.
The E–H tuner in the input port is tuned in such a
way that in the absence of the sample there is no
reflection. The E–H tuner in the orthogonal port
is tuned so that maximum signal with orthogonal
polarization can be obtained.

In experiments, there may be a cross-coupling
between the two ports owing to incomplete
isolation of the orthomode transducer and owing
to deviation of the slits from orthogonality. In
order to minimize this effect, one may measure the
magnitude and phase of the cross-coupling signals
in the absence of the sample and in the presence
of a homogeneous metallic sample and determine
the full cross-coupling matrix. In the analysis
of the measurement results of samples under
test, the cross-coupling signals can be vectorially
subtracted (Lann et al. 1999).

The signal transmitted from a slit can be
approximated as a plane wave. Assuming an x-
polarized plane wave normally incident on a flat
surface and neglecting the transmitted wave, the
relation between the fields in the incident and
reflected waves is given by

Erefl = R − Z0

R + Z0
Einc (11.38)

where R is the surface impedance tensor of the
sample and Z0 is the impedance of free space.
According to Eq. (11.10), when an external dc
magnetic field is the z direction, R can be
expressed in the form of

R =
[

Rxx Rxy

−Rxy Ryy

]
(11.39)

where the component Rxy reflects the Hall effect.
For thin samples with the thickness d much smaller
than the skin depth δ, the surface impedance
should be replaced by the sheet resistance tensor
R = ρ/d; for dielectrics, it should be replaced by
(µ/ε)1/2 (Lann et al. 1999).

From Eqs. (11.38) and (11.39), the components
along the x and y directions of the reflected wave
can be obtained

Ex
refl = R∗ − Z0

R∗ + Z0
Ex

inc (11.40)

E
y

refl = − 2Z0Rxy

(R∗ + Z0)(Ryy + Z0)
Ex

inc (11.41)

with

R∗ = Rxx + R2
xy

Z0 + Ryy

(11.42)

For highly conductive samples (R∗ � Z0),
Eqs. (11.40) and (11.41) can be simplified

Ex
refl ∝ (1 − 2R∗/Z0) (11.43)

E
y

refl ∝ Rxy/Z0 (11.44)

Equation (11.44) indicates that the orthogonal
polarization component of the reflected wave is
proportional to the off-diagonal element of the
surface impedance tensor, which is related to the
Hall mobility of the sample.

11.2.4 Turnstile-junction method

The angle of rotation α of the polarization
plane of an elliptically polarized wave can be
determined on the basis of the measurement of
the amplitudes of two perpendicular components
of the wave and measurement of the phase
difference between them (Musil and Zacek 1986).
As shown in Figure 11.18, an elliptically polarized
wave can be decomposed into two perpendicular
components oscillating in the x and y directions
with amplitudes a and b, mutually phase-shifted
by an angle ϕ:

Ex = a cos(ωt) (11.45)

Ey = b cos(ωt + ϕ) (11.46)
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Figure 11.18 Principle of the formation of polariza-
tion ellipse. Modified from Musil, J. and Zacek, F.
(1986). Microwave Measurements of Complex Permittiv-
ity by Free-space Methods and their Applications, Ams-
terdam, with permission from Elsevier

From Eqs. (11.45) and (11.46), an ellipse equ-
ation in the x –y coordinate system can be obtained

(
Ex

a

)2

− 2
ExEy

ab
cos ϕ +

(
Ey

b

)2

= sin2 ϕ

(11.47)

This ellipse is inscribed within a rectangle with
sides 2a and 2b. The ellipse is expressed in terms
of maximum amplitudes a and b of two perpen-
dicular components Ex and Ey , respectively, and
by means of the phase shift ϕ between these com-
ponents. If parameters a, b, and ϕ are known, the
angle of rotation of the ellipse α and its semi-
axes A and B may be expressed by (Musil and
Zacek 1986)

tan(2α) = 2ab

a2 − b2
cos ϕ = tan(2γ ) cos ϕ (11.48)

sin(2β) = sin(2γ ) sin ϕ (11.49)

with

tan γ ≡ b

a

(
0 < γ <

π

2

)
(11.50)

tan β ≡ B

A

(
0 < |β| <

π

4

)
. (11.51)

According to Eqs. (11.48) to (11.51), from the
amplitudes of the field components in the x- and
y-directions and the phase shift ϕ between these
components, both the angle of rotation of the
polarization plane α and the ellipticity e = B/A

of the ellipse can be determined, from which the
electrical transport properties of the sample can be
derived.

Figure 11.19 shows the structure of a turnstile
junction, which is a six-port device formed by
joining one circular waveguide perpendicularly to
two orthogonal rectangular waveguides. Using a
turnstile junction, an elliptically polarized wave
can be decomposed into two perpendicular com-
ponents. The properties of a turnstile junction can
be described by its scattering matrix [S]:

[S] = 1

2




0 1 0 1
√

2 0

1 0 1 0 0
√

2

0 1 0 1 −√
2 0

1 0 1 0 0 −√
2√

2 0 −√
2 0 0 0

0
√

2 0 −√
2 0 0




.
(11.52)

When an elliptically polarized wave enters the
circular waveguide port with its Ex component
along the arm 6 and Ey component along the arm
5, the wave components at the four rectangular

5 6 3

4 2

1

Figure 11.19 Schematic sketch of turnstile junction.
Reprinted from Musil, J. and Zacek, F. (1986).
Microwave Measurements of Complex Permittivity by
Free-space Methods and their Applications, Amsterdam,
with permission from Elsevier
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waveguide arms are given by

E1 = b√
2

cos(ωt + ϕ) (11.53)

E2 = a√
2

cos(ωt) (11.54)

E3 = − b√
2

cos(ωt + ϕ) (11.55)

E4 = − a√
2

cos(ωt) (11.56)

Equations (11.53) to (11.56) indicate that a wave
entering a turnstile junction is divided into different
rectangular waveguide ports. The components of a
wave entering the circular waveguide in direction
5 emerge from the arms 1 and 3, while the
components of a wave entering the junction in
direction 6 emerge from the arms 2 and 4. The
signal in the arm 3 is in an opposite phase to the
signal in the arm 1, and the signal in the arm 4
is in an opposite phase to the signal in the arm
2. In order to achieve high measurement accuracy,
high isolation between the neighboring rectangular
waveguides and between directions 5 and 6 in the
circular waveguide is required.

For the determination of the rotation angle
α of the polarization plane and the ellipticity
e, it is sufficient to use signals from the arms
1 and 2, and usually the arms 3 and 4 are
terminated by matching loads. More discussion on
the turnstile-junction method for the measurement
of the electrical transport properties of materials
can be found in (Musil and Zacek 1986).

11.3 RESONANT METHODS FOR THE
MEASUREMENT OF MICROWAVE HALL
EFFECT

Besides transmission and reflection systems as
discussed above, microwave Hall effects can also
be observed in resonant structures. For a resonator
with two orthogonal degenerate modes, when a
sample is placed at the electric field antinodes of
the two modes, and an external dc magnetic field
is applied perpendicular to the microwave electric
fields, the coupling between the two modes due to
the dc magnetic field is related to the Hall mobility

of the sample. Such a bimodal resonator is usually
called microwave Hall effect (MHE) resonator.

In the following, we first discuss the coupling
between the two orthogonal resonant modes of
a bimodal cavity due to microwave Hall effect
and the typical circuit for the measurement of
microwave Hall effect, and then discuss several
typical MHE resonators.

11.3.1 Coupling between two orthogonal
resonant modes

Figure 11.20 schematically shows the origin of
resonant microwave Hall effect. When a linearly
polarized driving microwave signal excites one
resonant mode, the carriers in the sample move
accordingly. If an external dc magnetic field is
applied to the sample in the direction perpendicular
to the direction of the electric field of the driving
microwave signal, the carriers in the sample move
in ellipsoid orbits. The resultant motion of carriers
has a component perpendicular to the electric
field of the driving microwave signal and the
external magnetic field, and this component excites
another resonant mode, called the MHE mode,
perpendicular to the driving microwave signal
and the external dc magnetic field. In this sense,
microwave Hall effect can be regarded as the
coupling between the two orthogonal modes in a

+B

Z X
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Figure 11.20 The origin of resonant microwave Hall
effect
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bimodal cavity due to the application of an external
dc magnetic field. From the relationships between
the input and output signals, the microwave Hall
mobility can be deduced.

To observe resonant microwave Hall effect, an
MHE resonator is needed. The basic requirement
for an MHE resonator is that the resonator has two
perpendicular and isolated resonant modes with
the same resonant frequency. Meanwhile, in the
resonator, there exists a region where the electric
fields of the two perpendicular modes coexist, and
in the measurement of microwave Hall effect, the
sample is placed in this region.

Figure 11.21 shows a basic system for the
measurement of microwave Hall effect. A dc
magnetic field B is applied to the sample in the
direction perpendicular to the electric fields of the
two resonant modes. A network analyzer is used to
conduct microwave measurements. As the primary
and secondary modes of the MHE resonator are
perpendicular to each other, in an ideal case, no
microwave signals can be transmitted between
the two modes. However, in actual experiments,
after the sample is loaded, in the absence of

Network analyzer

Canceling channel

1

2 3 4 5

Reflected
power

Hall
power

Incident
power

Figure 11.21 Basic measurement system for micro-
wave Hall effect. 1. MHE resonator, 2. directional cou-
pler, 3. attenuator, 4. phase shifter, and 5. directional
coupler. Modified from Na, B. K. Vannice, M. A. and
Walters, A. B. (1992). “Measurement of the effect of pre-
treatment and adsorption on the electrical properties of
ZnO powders using a microwave-Hall-effect technique”,
Physical Review B, 46 (19), 12266–12277

a dc magnetic field, some microwave signal, at
times greater than the signal associated with the
Hall effect, could be detected from the secondary
mode owing to the nonideality of the MHE
resonator. Imperfections in the geometry of the
resonator, impurities in the cavity material, and
the aberrations caused by the coupling and tuning
structures of the MHE resonator contribute to this
nonideal mode coupling. This nonideal transmitted
signal reduces the sensitivity of the measurement
of the microwave Hall effect.

The canceling channel composed of a variable
attenuator and a phase shifter is used to reduce this
nonideal transmitted microwave signal. A portion
of the primary mode microwave signal is taken
by a directional coupler (labeled 2) and sent to
the canceling channel. If the canceling channel is
tuned properly, at the second directional coupler
(labeled 5) the nonideal transmitted signal and
the signal from the canceling channel can have
the same amplitude but a phase difference of
180◦, so the nonideal transmitted signal can be
cancelled out, and no microwave signal can be
detected when no external dc magnetic field is
applied. When an external dc magnetic field is
applied, the microwave signal at the secondary
mode causes the microwave Hall effect, and it can
then be sensitively detected.

In microwave measurements, the coupling bet-
ween the primary and secondary modes is described
by S21. Figure 11.22 shows a typical change of
S21 due to the microwave Hall effect. When the
canceling channel is not in operation, there is a
resonant peak in the S21 curve corresponding to
the resonant peak in the S11 curve. When the phase
shifter and attenuator are suitably adjusted, there
is a sharp absorption peak in the S21 curve (solid
S21 curve). When an external dc magnetic field
is applied, the value of S21 increases (dashed S21

curve). The change of the transmitted signal (�S21)

corresponds to the Hall effect of the sample.

11.3.2 Hall effect of materials in MHE cavity

Hollow metallic MHE cavities are widely used
in the characterization of the electrical transport
properties of materials. As shown in Figure 11.23,
the sample under test is placed within the MHE
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Figure 11.23 Microwave Hall effect of a sample in an
MHE cavity

cavity. Under the effects of the driving mode and
the external dc magnetic field, the carriers in the
sample move in elliptic orbits, and the component
of the motion perpendicular to the driving mode
and the external dc magnetic field result in the
MHE mode.

Hollow metallic MHE cavity is suitable for low-
conductivity samples, and the sample may be in
the form of powders, bulks, or liquids. Generally
speaking, MHE methods are superior to dc and

ac Hall effect methods in the study of electrical
transport properties of powder samples because it
requires no electrode contact. The properties of
powders may be affected by their sizes, preparation
methods, degree of purity, and the prevailing
conditions (such as gas adsorption), and MHE
methods are useful for research on how these
aspects affect the properties of powders.

Now we describe resonant microwave Hall
effect using macroscopic parameters. The resistiv-
ity tensor [ρ] of a material relates the electric field
Ei with the current density Jj through

Ei =
∑

j

ρijJj (11.57)

where i = x, y, z; j = x, y, z; and ρij is the
component of the resistivity tensor. When a dc
magnetic field is applied along the z direction,
an isotropic medium has a resistivity tensor in the
form of (Buschow 1991)

[ρ] =

 ρa −ρH 0

ρH ρa 0
0 0 ρb


 (11.58)

where ρa and ρb are the resistivities for the electri-
cal currents applied perpendicular and parallel to
the direction of magnetization, and ρH is the Hall
resistivity.

When a sample is placed in an MHE cavity, in
the presence of a dc magnetic field perpendicular to
both of the two electric fields of the two orthogonal
modes, the resistivity of the sample is a tensor in
the form of Eq. (11.58). The Hall resistance ρH

causes the coupling between the two orthogonal
modes. The power transmission between the two
orthogonal modes due to the application of the dc
magnetic field perpendicular to the electric fields,
embodies the microwave Hall effect.

MHE cavity techniques are often combined with
the cavity-perturbation method to characterize the
electrical transport properties of samples. From
the changes in the resonant frequency f and
in the quality factor Q of the cavity due to
the introduction of a small sample, and the
change of the power transmission between the two
orthogonal modes due to the application of a dc
magnetic field, the electrical transport properties of
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the sample can be deduced. MHE cavity techniques
have been developed over decades. After Portis
and Teaney first introduced the bimodal cavity for
measurements of small samples (Portis and Teaney
1958), MHE cavity techniques have been used
in various fields. Using MHE cavity techniques,
Sayed et al. studied low-mobility semiconductors
and insulators (Sayed and Westgate 1975a, b); Ong
et al. studied the electron transport in TTF-TCNQ
(Ong and Portis 1977; Ong et al. 1981); Caverly
et al. measured the microwave Hall mobility of
copper phthalocyanine single crystals (Caverly and
Westgate 1982); Na et al. studied the electrical
properties of ZnO powders (Na et al. 1993, 1992);
and Chen et al. studied the electrical transport
properties of magnetic powders (Chen et al. 1998).

11.3.2.1 Measurement of microwave Hall mobility

Figure 11.24 shows a TE11n MHE cylindrical
cavity and the sample is placed at the antinode
of the electric field. For a specially designed
cavity, the two modes can be adjusted to be
orthogonal, and degenerate in frequency, and of
equal amplitude (i.e., Ea = Eb). Before a dc
magnetic field B is applied, the output mode is
not excited, that is, E2 = 0. When an external dc
magnetic field is applied, the relationship between
the output electric field E2 and input electric field
E1 is a measure of the microwave Hall mobility
µH (Na et al. 1991):(

E2

E1

)
= KµB

(
Q0 − QL

Q0

)
µH (11.59)

where Q0 and QL are the quality factors of the
cavity before and after the introduction of the
sample respectively; B is the dc magnetic field;
Kµ is a constant determined by the structural
parameters of the MHE cavity. In experiments, Kµ

can be obtained by calibration.
By taking the bimodal cavity as a two-port

network, Eq. (11.59) can be rewritten as

µH = 1

KµB

(
Q0

Q0 − QL

)
(S21) (11.60)

The subscripts 1 and 2 indicate the input port and
output port respectively (shown in Figure 11.24).
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Figure 11.24 The origin of the microwave Hall effect
in a bimodal cavity. E1 = Ea + Eb , E2 = Eah + Ebh,
where Eah is the Hall field of mode a, and Ebh is Hall
field of mode b

Equation (11.60) shows that the mobility of the
sample can be calculated from the change of
quality factor due to the introduction of the
sample, and the scattering coefficient S21 due to
the application of the external dc magnetic field B.

11.3.2.2 Determination of the sign of charge
carriers

From the phase relationship between the output
and input microwave fields, the sign of the
charge carriers can be determined, but the phase
information is ignored in the above discussion.
However, the sign of the carriers can still be
determined by calibration or by introducing a small
imbalance into the cavity as described below.

In an actual MHE cavity, because of the
structural asymmetries and manufacturing errors,
the two degenerate modes in the bimodal cavity
are not strictly orthogonal. Even if the two modes
are adjusted to be “orthogonal,” and the canceling
channel is used, there may be power transmission
between the two modes when no dc magnetic field
is applied. When a magnetic field is applied, the
total output microwave field E ′

2 is a vector sum of
two parts: E ′

2 = E20 + E2, where E20 corresponds
to the power transmission due to the structural
asymmetries and manufacturing errors, and E2

corresponds to the power transmission due to the
Hall effect. E20 does not contain any information
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about the Hall effect, and does not change with the
application of the dc magnetic field.

E20 and E2 can be in either the same phase or
the opposite phase depending on the phase of E2

that is dependent on the sign of the charge carriers
of the sample under study. If E20 and E2 are in
the same phase, the S21 value increases after the
application of the magnetic field; and if E20 and E2

are in the opposite phase, the S21 value decreases
after the application of the magnetic field. As such,
the sign of the charge carriers can be determined
by calibration. For example, if we know that S21

increases after a dc magnetic field is applied for
positive carriers, the decrease of S21 indicates that
the charge carriers are negative.

Besides the calibration method, Caverly and
Westgate used another approach by introducing a
small imbalance into the cavity by adjusting the
amplitude of one of the two modes (Ea and Eb

in Figure 11.24) to be a little smaller than that of
the other one (Caverly and Westgate 1982). The
imbalance between the two modes causes the value
of E2 to either increase or decrease, depending on
the choice of the reduced mode, direction of the dc
magnetic field, and the sign of the carriers. Thus, the
sign of the charge carriers can be determined from
the change of the output microwave field (Sayed
and Westgate 1975b; Na et al. 1992). Actually, this
method increases the coupling between the two
modes before the dc magnetic field is applied.

11.3.2.3 Measurement of microwave conductivity

As discussed in Chapter 1, the conductivity σ of
a material can be determined from the imaginary
part of the complex permittivity:

ε′′
r = σ

ωε0
= σ

2πf ε0
(11.61)

where ε0 = 8.85 × 10−12 F/m is the permittivity of
the vacuum. So the microwave conductivity can be
measured by the cavity-perturbation method.

On the basis of resonant perturbation theory,
the conductivity σ of the sample can be measured
from the change of the quality factors due to the
introduction of the sample (Na et al. 1993; Liu
et al. 1994; Jow et al. 1989). For low-conductivity

samples, the conductivity can be obtained from (Na
et al. 1993, 1992)

σ = 2.78 × 10−13f

(
Q0 − QL

Q0QL

)
1

α
(11.62)

and for intermediate conductivity samples, the
conductivity can be obtained from (Na et al. 1993,
1992)

σ = 1.11 × 10−12f
( α

N

)2
(

Q0QL

Q0 − QL

)
1

α
(11.63)

where α is the filling factor and N is a depolariza-
tion factor. For a TE112 cylindrical cavity,

α

N
= �f

f
, (11.64)

α = 2
Vs

Vc
(11.65)

where Vs and Vc are the volumes of the sample and
the cavity respectively. The unit of the conductivity
σ calculated using Eqs. (11.62) and (11.63) is
(ohm-cm)−1. After obtaining σ and µH, the
density of carriers n can be obtained according to
Eq. (11.1).

11.3.2.4 Typical MHE cavities

MHE cavities are the key components in the
measurements of microwave Hall effect. In the
design of an MHE cavity, two requirements
should be satisfied. First, the cavity should support
two isolated and perpendicular degenerate modes.
Second, to increase the measurement sensitivity,
at the place for sample loading, the electric fields
of the two modes should have their maximum
values. Usually, cavities with simple structures are
preferred, such as circular cylindrical cavities and
rectangular cavities.

Circular cylindrical MHE cavity

In a circular cylindrical MHE cavity, usually a
TE11n mode is used. As discussed in Chapter 2, a
circular TE11n mode has two perpendicular degen-
erate modes, and the electric field distributions near
the maximum values are relatively uniform. These
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Figure 11.25 A circular cylindrical TE111 bimodal cavity. (a) Schematic diagram of bimodal cavity with input and
output coupled modes and matching waveguide terminations (Eley and Lockhart 1983). Source: Eley, D. D. and
Lockhart, N. C. (1983). “Microwave Hall effects in low-mobility materials”, J. Phys. E: Sci. Instrum. 16, 47–51
and (b) section view perpendicular to the axis of the bimodal cavity showing coupling iris and tuning plugs. Four
capacitive plugs (labeled 1, 2, 3, and 4) and two resistive plugs (labeled 5 and 6) are employed to balance the cavity
(Portis and Teaney 1958). Source: Portis, A. M. and Teaney, D. (1958) “Microwave Faraday rotation: design and
analysis of a bimodal cavity”, Journal of Applied Physics, 29 (12), 1692–1698

properties are advantageous for the design of MHE
cavities.

Figure 11.25(a) schematically shows the basic
structure of a bimodal circular cylindrical cavity,
and the dotted lines represent the microwave
magnetic field (Portis and Teaney 1958; Eley
and Lockhart 1983). The cavity is excited in a
cylindrical TE111 mode through an iris in the
narrow face of the waveguide on the left. This
waveguide is terminated an odd number of quarter
wavelengths below the entrance iris in order
to conveniently match the cavity to the line.
The exit iris couples into the broad face of a
second waveguide. For matched conditions, this
waveguide is terminated an even number of quarter
wavelengths below the iris. If the waveguides are
parallel and the cavity is perfectly cylindrical, there
is no coupling into the second waveguide. This can
be explained by the symmetry of the arrangement.
The magnetic fields in the first waveguide and
in the cavity are symmetrical with respect to the
plane of the paper. The propagating mode in the
second waveguide is, however, antisymmetrical
with respect to the plane of the paper, and so there

is no coupling from the cavity to this mode. If the
cavity contains a sample under a dc magnetic field,
the microwave magnetic field in the cavity will no
longer be symmetrical and there will be coupling
to the second waveguide.

Figure 11.25(b) is a sectional view perpendicu-
lar to the axis of the cavity showing the arrange-
ment of capacitive and resistive tuning plugs. Plugs
1, 2, 3, and 4 are metallic and may be adjusted so
that the two modes are degenerate. One can arrange
them so that either plug 2 or plug 4 is well out of
the cavity, so that a quite sensitive final adjust-
ment may be made with that plug. However, the
cavity degeneracy alone does not insure that the
two waveguides are decoupled. Consider the nor-
mal modes as having microwave magnetic fields
oriented along the −x and +y axes. These two
modes are driven equally by a vertical microwave
magnetic field. If the two modes have different
quality factors, the amplitudes of their responses
are different. Then, the cavity magnetic field will
not be vertical and there will be coupling to the
second waveguide. This coupling may be avoided
by artificially introducing additional losses into



Measurement of Microwave Electrical Transport Properties 481

Sample

Sample

Waveguide

Waveguide Waveguide

Waveguide

Quartz tube

Waveguide

AA

A – A B – B

B B

1
8

2

7

3

5

4

6

Figure 11.26 The schematic drawing of the TE112 bimodal resonant cavity. 1, 2: coupling screw, 3, 4, 5, 6:
capacitive tuning bar, 7, 8: resistive tuning bar. Source: Chen, L. F. Ong, C. K. and Tan, B. T. G. (1998). “Study of
electrical transport properties of fine magnetic particles using microwave Hall effect techniques”, IEEE Transactions
on Magnetics, 34 (1), 272–277.  2003 IEEE

one of the modes. This can be accomplished by
adjusting the resistive plugs 5 and 6, which are
made from graphite-deposited resistance card (Por-
tis and Teaney 1958).

The TE112 mode is also often used in the mea-
surement of microwave Hall effect. Figure 11.26
shows a circular cylindrical MHE cavity working
at TE112 mode. The TE112 mode gives more space
for installing tuning bars. In Figure 11.26, the per-
turbation area is at the upper part while the cou-
pling structure is at the lower part of the cavity.
So the dominant field at the coupling part can be
kept almost unchanged after the sample is intro-
duced, ensuring that the coupling mechanism and
the field pattern of the mode remain the same. In this
structure, the coupling screws (labeled 1 and 2) are
used to adjust the coupling conditions between the
waveguides and the cavity. Four capacitive tuning
bars (labeled 3, 4, 5, and 6) are metallic and may be
adjusted so that the two TE112 modes are degenerate

and orthogonal. Two resistive tuning bars (labeled 7
and 8) are graphite-deposited, and may be adjusted
so that the amplitudes or the quality factors of the
two modes are equal. In the determination of the
sign of the carriers, the two resistive tuning bars may
be used to introduce an imbalance to the bimodal
cavity.

Rectangular MHE cavity

As discussed in Section 2.3.4, for a rectangular
cavity with a square section, its TE101 and TE011

modes are degenerate. These two degenerate
modes can be used in the measurement of the
microwave Hall effect (Cross et al. 1987). As
shown in Figure 11.27, the MHE cavity is excited
by electric dipoles, and its fundamental modes are
TE101 and TE011. The sample under test is held
at the electric field antinode at the center of the
cavity using a sample holder with a low dielectric
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Figure 11.27 TE101/011 bimodal cavity for the measurement of microwave Hall effect (Cross et al. 1987). (a)
Schematic view without the top and bottom plates and (b) positions of the four capacitive and two resistive tuning
stubs. Modified from Cross, T. E. De Cogan, D. Al Zoubi, A. Y. (1987). “Microwave Hall effect studies of low
mobility materials”, New Materials and Their Application, Warwick, Inst. Phys. Conf. Ser. No. 89, 301–306, by
permission of IOP Publishing Ltd
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Figure 11.28 Schematic drawing of a bimodal rect-
angular cavity and sample tube positioning. A and
B represent cavity-tuning screws (Liu et al. 1994).
Modified from Liu, C. C. Na, B. K. Walters, A. B. Van-
nice, M. A. (1994). “Microwave absorption measure-
ments of the electrical conductivity of small parti-
cles”, Catalysis Letters, 26, 9–24, by permission of J.C.
Baltzer, Science Publishers

constant and a low loss tangent. Four capacitive
stubs (labeled 1, 2, 3, and 4) and two resistive
stubs (labeled 5 and 6) are used for reactive
and resistive tuning of the cavity to produce a
maximum degeneracy of the two TE modes.

Similar to the case of circular cylindrical MHE
cavities, in order to separate the sample-loading
region and the coupling region, higher-order modes
can be used. Figure 11.28 shows a bimodal TE102

rectangular cavity (Liu et al. 1994). The two TE102

modes share half of each of their length. In the
region shared by two modes, the electric field
distributions are the same as those of a TE101

and TE011 bimodal cavity. The sample under test
is loaded at the antinodes of electric fields of
the two modes. The cavity is coupled to external
waveguides through two coupling irises, and the
couplings can be adjusted using two screws (not
shown in the figure) near the coupling irises. The
cavity has four cavity tuning screws. The two
perpendicular TE102 modes are built by adjusting
the tuning screws A1 and A2, and the resonant
frequencies of the two modes are equalized by
adjusting the tuning screws B1 and B2.

11.3.3 Hall effect of endplate of MHE cavity

As discussed above, in the measurement of
microwave Hall effect, the material under test is
usually placed within an MHE cavity and sub-
jected to an external dc magnetic field. Owing to
the microwave Hall effect of the material, there is
a power transfer between the input mode and the
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output orthogonal mode. The measurement sensi-
tivity is limited by a signal that appears when an
external magnetic field is applied to the empty
MHE cavity. This unwanted signal is superim-
posed on the signal from the sample and may
become dominant for materials of low mobility
and high resistivity. It has been suggested that this
empty cavity signal is due to the Hall effect in the
cavity end walls (Trukham 1966), and it has been
shown that this signal is indeed consistent with
that produced by the Hall effect in the end walls
(Fletcher 1976).

Al Zoubi et al. proposed a theoretical model that
describes the empty cavity signal in a rectangular
MHE cavity with a square section operating at
TE011 and TE101 modes (Al Zoubi 1990, 1991a,
b). As shown in Figure 11.29, the square-section
rectangular bimodal cavity of cross-sectional side a

and length d supports two independent orthogonal
modes. The cavity is iris-coupled to the matched
coaxial probes so that, in principle, there is
complete isolation between the input and the
output. In the case of perfect symmetry, only
the dominant TE011 mode coupled to the input is
excited. Owing to the Hall effect in the end walls,
the application of an external magnetic field B

along the cavity axis causes the mode I (TE011)
to couple to the orthogonal mode II (TE101). This
results in a transmission of a portion of the incident
power Pi to the output Po, which is usually referred
to as the empty cavity signal.

Input port n = 1
(mode I)

Output port n = 2
(mode II)

Pi

Po

d

a

a

xz

y

B

Figure 11.29 A bimodal rectangular cavity with a
square section

If the cavity is critically coupled at both the input
and the output ports, and tuned for equal resonant
frequency and quality factor using special tuning
stubs, then the Hall mobility µH of the end wall of
the cavity can be found:

µH =
(

R

B

)
· S21 (11.66)

where R is a cavity geometry coefficient given by

R =
(

π2

8

)
·
[

2 +
(

d

a

)
+ 3 ·

(
d

a

)3
]

(11.67)

Eq. (11.66) can be rewritten as

S21 = B ·
(µH

R

)
(11.68)

Equation (11.68) indicates that the unwanted
empty cavity signal is dependent upon the cavity
dimensions as well as the end-wall mobility. The
cavity geometry coefficient R, which is related to
the ratio (d/a), should be made as large as possible
when the cavity is used in the measurement of low
mobility samples. The empty signal can be reduced
by mimicking cross-grids on the end plates of the
cavity. The empty signal may also be reduced by
painting one of the cavity end walls with a metal
that exhibits a p-type mobility (e.g., Zn, Cd, or
In), and such an MHE cavity is usually called a
hybrid cavity.

Eq. (11.66) implies that if a conducting plate
is placed at the end wall of the bimodal cavity,
its mobility can be calculated from the value of
S21, the external magnetic field B and the cav-
ity geometry constant R. So the theoretical anal-
ysis presented above can be employed to deter-
mine the microwave Hall mobility of metals and
superconductors. Superconductors exhibit special
microwave properties. This suggests that super-
conductors may have different electrical transport
properties at microwave frequencies from their
electrical transport properties at dc or ac frequen-
cies, and understanding such properties is help-
ful for understanding the mechanism of supercon-
ductivity (Dorsey 1992; Harris et al. 1993; Bhat-
tacharya et al. 1994).

In the measurement of the microwave Hall
effects of high-conductivity samples, the end plates
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of the cavity could be made from the material
under study, or a layer of the material under study,
several skin depths thick, could be plated on the
endplates of the MHE cavity. The skin depth for
most metals is about 1 µm at 10 GHz.

11.3.4 Dielectric MHE resonator

As discussed above, the theoretical model devel-
oped by Al Zoubi et al. can be extended to the
measurement of microwave Hall mobility of high-
conductivity materials. To increase the measure-
ment sensitivity and to measure small samples
at low microwave frequencies, an MHE dielec-
tric resonator with two degenerate and orthogonal
modes could be used instead of a hollow metallic
MHE cavity.

Figure 11.30 shows the working principle of
a bimodal rectangular dielectric resonator for the
measurement of the electrical transport properties
of high-conductivity samples. For a specially
designed dielectric resonator with two orthogonal
modes with the same resonant frequency and the
same quality factor, if the open end of the dielectric
resonator is connected to a high-conductivity
sample, under the application of an external dc
magnetic field B in the direction perpendicular
to the sample surface, the electrical transport
properties of the sample can be derived from
the coupling between the two degenerate modes
of the dielectric resonator. To build an actual
measurement structure following the principle
shown in Figure 11.30, methods should be found
to provide suitable couplings for the input and

Sample

Pi

Po

d

a

a

B

Figure 11.30 A bimodal rectangular dielectric res-
onator for the measurement of microwave Hall effect
of high-conductivity samples

the output ports, and suitable tuning methods
are needed to ensure the degeneracy of the two
working modes.

Abu-Teir et al. proposed a polarization-sensitive
scanning microwave microscope with a cross-slit
aperture based on a bimodal dielectric resonator
(Abu-Teir et al. 2002). The microscope operates
in the reflection mode and has a subwavelength
spatial resolution. It allows contactless mapping
of the conductivity tensor, including magnetic
field–induced terms such as the Hall effect.

As shown in Figure 11.31, the probe is an
open bimodal dielectric resonator with a cross-
slit aperture, and each mode can radiate only
through one of the slits. The key part of the
probe is an oriented sapphire rod tightly mounted
in the cylindrical metal waveguide. One face of

Glass tube
Fine-tuning
screw

Cylindrical
waveguide

Cross-slit
aperture

Dielectric
resonatorAir gap

TransducerCoaxial
connector

Coupling
screw

Dual coax-to-
waveguide adaptor

Conductive
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Figure 11.31 Structure of the bimodal dielectric probe (Abu-Teir et al. 2002). Source: Abu-Teir, M. Sakran, F.
Golosovsky, M. and Davidov, D. (2002). “Local contactless measurement of the ordinary and extraordinary Hall
effect using near-field microwave microscopy”, Applied Physics Letters, 80 (10), 1776–1778



Measurement of Microwave Electrical Transport Properties 485

the rod is planar and uncoated, and another face
is convex and metal coated, leaving two narrow
orthogonal slits crossing in the center. The rod and
the slits are resonant elements with one common
resonant frequency. The length of the slit is about
λ/[2(εr)

1/2], where εr is the dielectric constant of
the rod, while the width w may be as small as
0.5 µm (Abu-Teir et al. 2002). Such a probe can
be taken as a modification of the cross-slit probe
discussed in Section 11.2.3.2 and the dielectric
resonator probe discussed in Section 6.5.5.

The probe mainly consists of a circular waveg-
uide, a dielectric resonator, and a transducer inte-
grated with a specially designed dual-channel
coaxial-to-waveguide adapter. The coupling to the
resonator is achieved by the transducer consist-
ing of a long dielectric rod attached to a cou-
pling screw via a thin-wall glass tube. An air
gap between the transducer and the resonator is
a segment of waveguide beyond cut off in which
the fields decay exponentially. By changing the
gap, one can achieve critical coupling at the res-
onant frequency, whereupon almost all the input
energy is radiated out through the corresponding
slit. Owing to the circular symmetry, critical cou-
pling is achieved simultaneously for both the TE11

modes.
The measurement setup is shown in Figure 11.32

(Abu-Teir et al. 2002). Both the resonant modes
are adjusted into the critical coupling condition
(minimum of S11, S22) using the coupling screw.
Fine-tuning is achieved by additional screws
mounted at the broad faces of the coaxial-to-
waveguide adapter and at the adapter cover plate.
Then, the sample is mounted very close to the
probe and the S matrix is measured once again.
The magnetic field is provided by an external
source or by a small coil mounted on the circu-
lar waveguide. A polarized microwave signal at
resonant frequency, launched through port 1, exits
through the corresponding slit, and hits the sam-
ple. A reflected wave with the same polarization
comes back through port 1, while a reflected wave
with a 90◦-rotated polarization comes back through
port 2. The procedure is repeated with ports 1 and
2 interchanged. The magnitude and phase of the
reflected waves yield the full conductivity tensor
of the sample.
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Dual coax-to-
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Sample
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Cross-slit
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Figure 11.32 Measurement setup of a microwave
microscope with a bimodal dielectric probe (Abu-Teir
et al. 2002). Modified from Abu-Teir, M. Sakran, F.
Golosovsky, M. and Davidov, D. (2002). “Local contact-
less measurement of the ordinary and extraordinary Hall
effect using near-field microwave microscopy”, Applied
Physics Letters, 80 (10), 1776–1778

The terms S11 and S22 carry information on the
sample resistance in two perpendicular directions,
while the off-diagonal terms S12 and S21 yield
the Hall effect. Since the Hall effect is nonre-
ciprocal (S12 = −S21), by taking the difference
(S12 − S21)/2, it can be separated from the recip-
rocal background contributions such as cross talk
between the two resonant modes and the birefrin-
gence in the sample. Quantitative measurements
of the Hall effect are possible via an appropriate
calibration procedure. For free-standing films, the
transmission-line formalism can be applied, which
yields (Abu-Teir et al. 2002)

S12 = −2σxyZ0d for d � 1/Z0σxx (thin film)

(11.69)

S12 = −2ρxy/Z0δ for d 
 δ (thick film) (11.70)

S12 = −2ρxy/Z0d for δ 
 d 
 1/Z0σxx

(intermediate thickness) (11.71)

where Z0 is the transmission-line impedance, d is
the layer thickness, and δ is the layer skin depth.
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For a layer on a substrate, Eqs. (11.69) and (11.71)
should be modified using the impedance transfor-
mation (Collin 1992). In the thin-film limit, S12

yields the Hall conductance δxyd , while for the film
with intermediate thickness it yields the Hall resis-
tance ρxy/d . So, S12 depends on the film thickness
nonmonotonously. When Eqs. (11.69) and (11.71)
are used for the description of results, Z0 can
be replaced by the effective probe impedance Zp,
which can be found by calibrating the probe using
the samples with known ρxx and ρxy .

11.3.5 Planar MHE resonator

Planar bimodal resonators have been used in devel-
oping filters (Curtis and Fiedziuszko 1991; Hong
and Lancaster 1995), and they can also be used
in characterizing the electrical transport properties
of high-conductivity materials by fabricating the
sample under test into a bimodal planar resonator.

Figure 11.33 shows two typical microstrip
bimodal resonators that can be used for the char-
acterization of electrical transport properties: cir-
cular disk resonators and square patch resonators.
In the design and fabrication of planar bimodal
resonators, the degeneracy of the two modes of
the resonator should be ensured, and the direct
coupling between the two ports should be mini-
mized. The external dc magnetic field is applied
perpendicular to the plane of the microstrip cir-
cuit. In experiments, special adjustment structures
are needed for correcting the errors in the fabrica-
tion procedure and tuning the resonant frequencies
and quality factors of the two modes.

(a) (b)

Figure 11.33 Two microstrip bimodal resonators.
(a) Bimodal circular disk resonator and (b) bimodal
square patch resonator

11.4 MICROWAVE ELECTRICAL
TRANSPORT PROPERTIES OF MAGNETIC
MATERIALS

The electrical transport properties of magnetic
materials are important in magnetoelectronics. For
a magnetic material, in addition to the ordinary
Hall electric field, the charge carriers produce
an electric field called the extraordinary Hall
field, that arises from the asymmetric scattering
in a magnetic material (Viswanathan and Murthy
1990; Bergmana 1979; Craik 1975; Lavine 1958).
Usually, the extraordinary Hall effect is much
greater than the ordinary Hall effect. In the
following, we first discuss the ordinary and
extraordinary Hall effects of magnetic materials,
and then discuss the bimodal cavity method
for bulk and powder samples and the bimodal
dielectric probe method for film samples.

11.4.1 Ordinary and extraordinary Hall effect

The Hall resistivity ρH of a magnetic material is
composed of an ordinary part and an extraordinary
part (Lavine 1959; Wohlforth 1982):

ρH = µ0(R0H + R1M1) (11.72)

where µ0 = 4π × 10−7 Henry/m, R0 is the ordi-
nary Hall coefficient, R1 is the extraordinary Hall
coefficient, H is the applied magnetic intensity,
and M1 is the magnetization in the sample. In the
measurement of Hall effect, Jy = 0, Jz = 0, and
Ey is also called the Hall electric field EH. Accord-
ing to Eq. (11.57), the Hall electric field EH is
given by

EH = µ0(R0H + R1M1)Jx (11.73)

On the basis of the following relationship

Jx = σEx = µHneEx, (11.74)

where σ is the conductivity of the material, n is
the density of carriers, and µH is the Hall mobility
of the material, Eq. (11.73) can be rewritten as

EH

Ex

= µ0(R0H + R1M1)neµH (11.75)
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In Eq. (11.75), M1 changes with the variation of
the applied magnetic field, and R1 is related to the
average resistivity ρ:

R1 = aρ + bρ2, (11.76)

where a and b are constants, and

ρ = 1

3
ρb + 2

3
ρa, (11.77)

with ρa and ρb defined in Eq. (11.58). It should
be noted that the value of ρ also changes with
the applied magnetic field due to the phenomenon
of magnetoresistance (Karplus and Luttinger 1954;
Kondo 1962).

When the level of magnetization of the magnetic
material is well beyond saturation, R1M1 can
be regarded as a constant. By considering the
derivative of Eq. (11.75) with respect to H , one
can obtain the relationship of the change of
(EH/Ex), the change of H , and the value of the
Hall mobility µH:

�

(
EH

Ex

)
= µ0neR0(�H)µH (11.78)

As B = µ0(H + M), and M changes little
beyond saturation, the change of magnetic intensity
�H is proportional to the change of magnetic field
�B. So Eq. (11.78) can also be written as

�

(
EH

Ex

)
= Kµ�BµH (11.79)

where Kµ is a constant. Equation (11.79) indicates
that the Hall mobility of a magnetic material can
be deduced from the change of the Hall field and
the change of the magnetic field provided that the
magnetization is saturated.

By analogy to the argument leading to
Eq. (11.59), we can obtain

�

(
E2

E1

)
= Kµ�B

(
Q0 − QL

Q0

)
µH (11.80)

Similarly, Eq. (11.80) works well provided that
the magnetization is saturated. By taking the

bimodal cavity as a two-port network, Eq. (11.80)
can be rewritten as

µH = 1

Kµ�B

(
Q0

Q0 − QL

)
(�S21) (11.81)

The subscripts 1 and 2 indicate the input and
output ports respectively. Equation (11.81) shows
that an MHE resonator can be calibrated by a
standard sample. If Kµ is known, the mobility of
the sample can be calculated from the change of
quality factor due to the introduction of the sample,
and the change of scattering coefficient �S21 due
to the variation of the magnetic field �B, provided
that the magnetization is beyond saturation.

11.4.2 Bimodal cavity method

The bimodal cavity method is suitable for the
measurement of bulk and powder samples. It
has been used in characterizing the electrical
transport properties of ferrite (Fe3O4) powders at
room temperature (Chen et al. 1998). Figure 11.34
shows the relationship between the transmission
coefficient (S21) and the dc magnetic field B

applied to the Fe3O4 powder sample. It is clear
that the Hall effect of the Fe3O4 sample is a
combination of two parts: ordinary Hall effect and
extraordinary Hall effect. In the initial part, where
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Figure 11.34 The relationship between S21 and the
external dc magnetic field B for the Fe3O4 powder
sample
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the magnetization is not saturated, the curve is very
steep, indicating a very large Hall coefficient (a
combination of the ordinary and the extraordinary
coefficients). For Fe3O4, it has been reported that
the extraordinary Hall coefficient is about 100
times larger than the ordinary one and so obscures
the latter, making it very difficult to separate the
ordinary Hall effect from the extraordinary before
the saturation of magnetization. At levels above
technical saturation, M remains a constant while
the magnetic field increases, so the slope of the
curve of S21 as a function of the applied dc
magnetic field B is related only to the ordinary
Hall effect. This portion of the curve is enlarged,
and inserted in the lower part of Figure 11.34. The
enlarged portion can be used to resolve the slope
of the curve above technical saturation to obtain
the ordinary Hall mobility using Eq. (11.81).

The ordinary Hall mobility of Fe3O4 powders
is estimated to be 0.49 cm2/volt-s. It should be
indicated that, if a stronger dc magnetic field is
applied, the measurement accuracy and sensitivity
could be improved. The difficulty in ensuring that
the magnetization is saturated over the region
of the measurement causes an uncertainty in the
mobility measurement. However, it is safe to
regard the value of the mobility obtained by the
above method as an upper limit. An analysis made
by Lavine shows that this effect does not alter
the measured results more than ±1 % (Lavine
1959, 1958).

The sign of the Hall carriers Fe3O4 was found
to be negative. This is in accord with Verwey’s
mode, which shows that the inverted spinel struc-
ture of Fe3O4 has one Fe2+ and Fe3+ per Fe3O4

group located in octahedral sites, and this may be
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alternatively described as two Fe3+ ions plus an
electron. The electrical properties of Fe3O4 are due
to the continuous interchange of the extra elec-
trons.

The conductivity of Fe3O4 was estimated to be
σ = 227 (ohm-cm)−1 using Eq. (11.63). Among
the ferrites, Fe3O4 has the highest room tempera-
ture conductivity. This is due to the free exchange
of electrons between equivalent ions with different
valence in the octahedral sites. Using the values
of σ and µ, the density of the carriers can be cal-
culated from Eq. (11.1): n = 2.89 × 1021 (cm3)−1.
Because of the uncertainty in the Hall mobil-
ity as mentioned above, the value of n is better
regarded as a lower limit on the charge carrier
density.

11.4.3 Bimodal dielectric probe method

The microwave microscope with bimodal dielec-
tric probe proposed by Abu-Teir et al., as shown
in Figure 11.31 and Figure 11.32, can be used
for contactless measurement of the ordinary and
extraordinary Hall effects of magnetic films (Abu-
Teir et al. 2002). Owing to the high spatial resolu-
tion of the probe, the results obtained are localized
to a certain position, while the results from dc mea-
surements are global.

Figure 11.35 shows an example of the Hall
effect in thin Ni films, which are evaporated on
glass by an e-beam. The results of local microwave
measurements agree well with the results of global
dc measurements, and the small differences may
come from sample inhomogeneity. As predicted
by Eq. (11.69), the Hall effect in thin Ni films is
proportional to the film thickness. Since, in the
fields below 0.3 T, the ordinary Hall effect in
Ni is negligible, Figure 11.35 mainly shows the
extraordinary Hall effect. This effect yields the
magnetization, which is consistent with the results
of superconducting quantum interference device
(SQUID) magnetometry on small pieces of the
same Ni films, shown in the inset. It should be
noted that the extraordinary Hall effect in the 10-
nm-thick Ni film can be easily measured using the
bimodal dielectric probe, while such a film is at the
edge of the sensitivity of SQUID magnetometry
(10−5 emu) (Abu-Teir et al. 2002).

The bimodal dielectric probe method is actually
a microwave polar Kerr effect study in the near-
field zone. Compared to the magneto-optic Kerr
effect routinely used for contactless measurement
of thin-film magnetization, this method has several
advantages (Abu-Teir et al. 2002). Firstly, it has
deeper penetration into the conducting layers
(∼1 µm vs ∼20 nm for optical waves); secondly,
it tracks conductivity at the ns timescale, which
is exactly the timescale of most applications; and
thirdly, the scattering effect is negligible.
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12

Measurement of Dielectric Properties
of Materials at High Temperatures

Measurements of the dielectric properties of mate-
rials at high temperatures are important for indus-
trial, scientific, and medical applications. The
methods for the measurements at high tempera-
tures can be generally classified into nonresonant
methods and resonant methods. In the second,
third, and fourth sections, three types of nonres-
onant methods are discussed, including coaxial-
line method, waveguide method, and free-space
method. In the fifth and sixth sections, two types of
resonant methods are discussed, including cavity-
perturbation method and dielectric-loaded cav-
ity method.

12.1 INTRODUCTION

Considerable efforts have been spent in the mea-
surement of dielectric properties of materials at
high temperatures. The conventional measurement
methods for measurements of materials properties
at room temperatures have been modified to cir-
cumvent the various practical limitations of mea-
surements at high temperatures, and many new
approaches are being developed to obtain data at
higher temperatures, of greater accuracy and for a
larger variety of materials.

In this chapter, various methods for the measure-
ment of dielectric properties of materials at high
temperatures are discussed. In this section, the sig-
nificance of measurements of dielectric properties
of materials at high temperatures is discussed, and
then the problems and solutions for dielectric prop-
erty measurements at high temperatures are raised,

and finally a brief review on the methods often
used for the measurements of high-temperature
dielectric properties is made.

12.1.1 Dielectric properties of materials at
high temperatures

The temperature dependence of the electromag-
netic properties of materials is important for
academic research, microwave propagation, and
microwave processing. In this chapter, we concen-
trate on the study of dielectric properties of mate-
rials at high temperatures; the high-temperature
measurement techniques can be extended to the
measurement of other properties, such as perme-
ability, of materials at high temperatures.

12.1.1.1 Academic research

The research on temperature dependence of the
electromagnetic properties of materials has been
very active in physics and materials sciences;
especially, the dielectric properties of materials
at high temperatures are under intense investi-
gation. For example, as discussed in Chapter 9,
along with the increase of temperature, ferroelec-
tric materials may experience phase transitions,
and subsequently, their dielectric properties will
change, especially near the transition temperatures
(Mouhsen et al. 2001). Experimental characteriza-
tion of dielectric properties at various temperatures
is helpful in understanding the underlying science
of such materials.

Microwave Electronics: Measurement and Materials Characterization L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan and V. K. Varadan
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84492-2
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For ordinary polycrystalline ceramics, the dielec-
tric constant at microwave frequencies generally
increases with the increase of temperature, and the
temperature dependence of the loss tangents of
polycrystalline ceramics usually shows a gradual
increase with the increase of temperature, followed
by a rapid rise around the range 800–1000 ◦C.
The high-temperature loss tangents can be over an
order of magnitude larger than their corresponding
room-temperature values. The mechanism giving
rise to the loss at room temperature and over the
temperature region of gradual increase appears to
be different from the one controlling the region of
rapid rise. The rapid increase in loss tangents at
high temperatures may be attributed to the addi-
tional loss associated with increasing electrical
conductivity when the temperature is approaching
the softening temperatures of residual amorphous
glassy phases (Ho 1988). For synthesizing mate-
rials with the desired temperature dependence of
dielectric properties, further and more systematic
investigations on the mechanisms governing the
temperature dependence of dielectric properties of
materials are needed.

12.1.1.2 Microwave propagation

Sophisticated knowledge of the dielectric proper-
ties of materials and their variation with tempera-
ture is important for various fields of microwave
engineering, especially in the design of com-
ponents for microwave propagations, including
microwave communications. Antenna window is a
typical example with temperature stability require-
ments, as an antenna window is often required
to work in different temperatures, and the knowl-
edge of the dielectric properties of materials and
their variation with temperature is crucial in the
design of antenna windows with special applica-
tions; for example, the antenna windows used in
space shuttles (Basset and Bomar 1973). Besides,
knowledge of the dielectric properties of materi-
als at high temperatures is also important for the
development of rf and microwave windows for
high-energy, high-current, charged-particle storage
loops and accelerators (Hutcheon et al. 1991).

For some engineering materials, though the
general information about the properties of these

materials may be well known, an engineered
optimum design requires detailed knowledge of
the rf and microwave properties, which is often
not available. For example, alumina materials
are widely used in various fields of microwave
engineering. For two samples with adequately low
dielectric loss at room temperature, the loss of
one of them may increase much more rapidly
with temperature. Therefore, the measurement of
electromagnetic properties at high temperatures is
important for the applications of these materials at
high temperatures.

12.1.1.3 Microwave processing

Microwave processing uses the energy of
microwave fields for various purposes, such as
heating materials, promoting chemical reactions,
and retorting minerals (Thuery and Grant 1992;
Metaxas and Meredith 1983). Two microwave
frequencies are generally used for microwave
processing: 915 MHz with wavelength 32 cm or
about 12.5 in., and 2450 MHz with wavelength
12 cm or about 5 in. These two frequencies are
allocated by the US Federal Communications
Commission for industrial, scientific, and medical
use, and they are often called the ISM frequencies.
However, it deserves to be noted that the low ISM
frequency in the United Kingdom is 896 MHz,
and currently, most of the effort in microwave
processing is being devoted to 2.45 GHz because
it provides a suitable compromise between power
deposition and penetration depth. The designing
of microwave processing systems requires a
knowledge of the temperature dependence of
the dielectric properties of the materials to be
processed, as the rapid increase in tanδ above
a certain critical value observed in a number of
materials can lead to difficulties in process control
unless the rapid change in material behavior can
be predicted (Binner et al. 1994).

Microwave heating

The use of microwave energy for obtaining heat-
ing effects offers a number of potential advantages
over conventional radiant heating techniques (Arai
et al. 1992; Sutton 1989; Metaxas and Meredith
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1983). The increasing use of microwave heating
in the polymer/rubber industries and the process-
ing of ceramic materials has resulted in the need to
characterize the relevant material properties over a
wide range of temperatures. The ability of a mate-
rial to extract energy from the microwave field
depends upon its dielectric properties; however,
these properties change as the material heats. So
there is a need for obtaining the microwave dielec-
tric properties at elevated temperatures (Bringhurst
et al. 1992; Craven et al. 1996). In general, the
effective loss factor of many ceramics increases
with temperature, with the rate of increase depend-
ing upon the type of ceramic and the operating
frequency. When a material exhibiting this positive
slope in the relationship between the loss tangent
and the temperature is heated using microwave
energy, a “runaway effect” or uncontrolled rise in
temperature often occurs. Damage to the material
is highly probable unless steps are taken to avoid
such a cumulative effect. If microwave processing
is to be applied to these materials, then a thorough
understanding of the dielectric properties, at least
up to their sintering temperatures, is required.

Promoting of chemical reactions

Microwave energy can also be used in promoting
chemical reactions that require heat (Jow et al.
1987). Many molecules contain polar groups
that undergo molecular rotation due to thermal
Brownian motion. Incident microwave radiation
interacts with the polar groups in the molecules
so that the normal random orientation of the
dipoles becomes ordered. The molecules then relax
to their normal random orientation. Since energy
is required to hold the dipoles in place, the
relaxation of the dipole is accompanied by transfer
of thermal energy to the material. The relaxation is
described by an exponential decay function with a
characteristic relaxation time. When the frequency
of the incident radiation is equal to the reciprocal
of the relaxation time, the system is said to be
in resonance. This resonant frequency, which is
defined as the molecular resonant frequency, is a
characteristic of the absorbing material.

Microwave processing for promoting chemical
reactions has several obvious advantages. Firstly,

selective and controlled heating can be made
because of the absorption of microwave energy by
polar groups. Secondly, the thermal degradation
can be decreased due to rapid uniform bulk heat-
ing. Thirdly, the control of material temperature
time profile and cure cycle can be improved. These
advantages may cause microwave-cured materials
to have superior mechanical characteristics when
compared to conventionally cured materials. Fur-
thermore, the heat-transfer mechanism is also dif-
ferent between microwave curing and conventional
thermal curing. The microwave energy directly
heats the polymer; however, in the conventional
thermal case, the mold is heated first and the heat is
subsequently transferred into the epoxy via thermal
conduction. So rapid cure and high efficiency of
energy utilization can be obtained using microwave
heating instead of conventional thermal process.

Microwave retorting

The temperature dependence of dielectric proper-
ties helps in evaluating the potential of microwave
retorting techniques (Iskander and DuBow 1983).
Researchers at the US Bureau of Mines have cen-
tered on a group of minerals identified as strategic
to the United States and are involved in finding
improved ways to process and recover these min-
erals by microwave processing (Holderfield and
Salesman 1992). Such improvements would ensure
that the United States does not have to depend on
other nations for supply of these natural resources.
However, the benefits cannot be exploited with-
out knowledge of how these minerals are affected
by microwave energy. The physical properties of a
material that describe how that material is affected
by microwaves are mainly its dielectric constant
and loss factor. As part of this research effort,
the U.S. Bureau of Mines has developed several
methods for measuring the dielectric properties
of minerals over a wide frequency and tempera-
ture range.

12.1.2 Problems in measurements at high
temperatures

There are many practical reasons why high temper-
atures cause measurement problems (Tinga 1992;
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Tinga and Xi 1993a). Though the measurement
principles of any method remain the same as for
room temperature operations, many technical diffi-
culties arise when the sample temperature is raised.
The measurement accuracy typically decreases as
temperature increases because of the increasing
parameter uncertainties. Stating and understand-
ing these problems makes it easier to find ways
of minimizing them. The three main difficulties
in the measurement of the dielectric properties of
materials at high temperatures include the intrin-
sic properties of samples, thermal expansion, and
heating and temperature measurement of samples.
It does not seem likely that we can obtain a single
optimum solution to all these problems so that the
permittivity of an arbitrary material can be mea-
sured at an arbitrary high temperature and at an
arbitrary frequency. In the design of measurement
methods, it is necessary to consider their specific
applications.

12.1.2.1 Temperature dependence of materials’
intrinsic properties

As the dielectric properties of materials are tem-
perature dependent, the propagation constant and
wavelength in a material will change when the
temperature changes. So the measurement accu-
racy will also change with the change in temper-
ature. Furthermore, at certain temperature ranges,
the dielectric loss or electrical conductivity may
become very high; so, it is very difficult to
make optimum matching and tuning of the sys-
tem. These problems are, more or less, com-
mon to all the dielectric measurement techniques
since all the measurement techniques involve
the wavelength and propagation constant of the
microwave signals.

12.1.2.2 Thermal expansion

The constraints associated with operations at high
temperatures mean that only a small number of
conventional dielectric measurement techniques
are suitable for use at high temperatures. Thermal
expansion distorts and changes the geometry of
both the sample and the measurement fixture,
and the fitting between them. To minimize the

effects of thermal expansion, the measurement
system must be thermally isolated from heating,
for example by water cooling; or the measurement
time must be short enough to prevent significant
thermal conduction from the hot sample to the
cool measurement system; or there should be
no physical contact between the hot sample and
the measurement fixture. For loaded waveguide
techniques, the sample is heated through the
apparatus and its measurement temperature range
is limited. For free-space measurements, only the
sample needs to be heated. As there is no physical
contact between the sample and the measurement
system in free-space measurements, the effects of
thermal expansion are not severe. A variety of
materials can be accurately characterized at high
temperature using free-space techniques.

12.1.2.3 Heating of samples

Heating technique is an important aspect in the
measurement of materials properties at high tem-
peratures. The required sample size and the
unavoidable heat losses, such as thermal conduc-
tion loss due to a required sample contact with a
metal part, set a practical upper temperature limit
for the measurement. The often used heating tech-
niques include conventional oven heating, electri-
cal heating, infrared heating, laser heating, solar
energy heating, and microwave heating.

As discussed above, a beneficial measurement
improvement would be the use of a noncon-
tact measurement method to minimize the ther-
mal expansion and heat conduction problems.
Free-space techniques have been successfully and
widely used in high-temperature measurements.
However, one disadvantage of free-space tech-
niques is that the samples should be electromag-
netically large, so the samples usually have large
thermal inertia, and the heating-testing time cycle
may be long. A reduction in effective sample size
results in lower energy requirements to reach a
given temperature and reduces testing time. Small
sample size naturally leads one to consider res-
onant techniques with the sample perturbing the
resonance in one way or another. Certain resonator
configurations allow suspension of the sample in a
more or less noncontacting manner thereby reduc-
ing the heat loss. However, it is necessary to
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note that, for high-temperature noncontact dielec-
tric measurements, the radiation heat loss will ulti-
mately set the achievable upper temperature limit.
To minimize the heat radiation losses in noncontact
methods, a high quality, microwave transparent,
high-temperature heat insulation becomes neces-
sary at temperatures exceeding 1200 ◦C.

Using methods with very short test cycles is
another way to counter the problem of heat loss
over time. Measuring the sample’s microwave
properties dynamically, while heating the sample,
minimizes the duration of the heating and testing
cycle. This suggests the use of microwaves for
both heating and characterizing a sample. A major
advantage of electromagnetic sample heating is
the inherently higher heating rate and the reduced
thermal gradient due to the localized volumetric
heating. However, one of the major difficulties is
the tuning system needed to keep the microwave
power source tuned and matched to the changing
cavity resonance and impedance.

Finally, it should be indicated that the heat
loss could also be used as an advantage in
the following way. First, a small sample is
heated to its maximum required temperature in an
external furnace in close proximity to a microwave
measurement fixture. After quickly pushing the
sample from the furnace into the measurement
fixture, the microwave properties of the sample are
rapidly measured while the sample is cooling back
to room temperature. But it should be noted that
the thermally induced material hysteresis effects
would affect the values of the cooling curve data.

12.1.2.4 Temperature measurement

Temperature measurement is also an important
problem in the measurement of dielectric proper-
ties of materials at high temperatures. As the sam-
ple under test is in a microwave environment, com-
monly used thermocouples significantly perturb the
heating and testing fields. Moreover, microwave
current could be coupled into the thermocouple-
detector circuit and mixed with the true tempera-
ture change signal, thereby further corrupting the
results. Infrared radiation thermometer can be used
as no contact is needed, and measurements can
be made at a certain distance away from the

sample. Optical fiber thermometer is also widely
used in high-temperature measurements, as opti-
cal fiber probe is microwave transparent, and has
little effect on the microwave environment. Using
an optical fiber thermometer, temperature can be
measured with the optical fiber probe contacting
the sample.

In temperature measurements, it is necessary
to consider the thermal gradient caused by heat-
ing techniques, so the temperatures at different
positions of a sample are often tested. In some
cases, the results of temperature measurement
are used in controlling the heating system, so
the speed and accuracy of temperature measure-
ments are required. If the sample under measure-
ment is heated by microwave energy, owing to
the high heating rate of microwave power, the
temperature of the sample should be measured
quickly and accurately to ensure stable and con-
trollable heating.

12.1.3 Overviews of the methods for
measurements at high temperatures

The methods for the measurement of materials
properties at high temperatures can be generally
classified into nonresonant methods and resonant
methods. The use of these two categories of tech-
niques is complementary. For example, the coax-
ial probe requires a minimum of sample prepa-
ration, is inherently broadband, can cope with a
wide range of permittivity values, and may be
operated under isothermal conditions. However, its
use is difficult with samples that cannot be pre-
pared with the required surface finish. In contrast,
the resonant-cavity-based technique can be used
with a wider range of samples, such as powders,
and has a high inherent accuracy. However, in a
cavity-perturbation technique, during measurement
the sample is removed from the furnace and this
will inevitably lead to some cooling. Furthermore,
because of the necessity to satisfy the perturbation
conditions, the cavity is limited in the range of
permittivity values that may be measured (Binner
et al. 1994).

12.1.3.1 Nonresonant methods

Nonresonant methods are useful in showing the
frequency relaxation behavior of the materials under
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test. Nonresonant methods mainly include reflection
method and transmission/reflection method, and
the reflection method is more widely used. Three
typical types of transmission lines are often used
including coaxial line, waveguide, and free-space.
In the second, third, and fourth sections of this
chapter, the applications of these transmission lines
in high-temperature measurements are discussed.

12.1.3.2 Resonant methods

Many microwave engineering applications remain
narrow band thereby making the resonant methods
attractive for obtaining accurate microwave behav-
ior of materials at high temperature. The resonant
methods used in the measurement of dielectric
properties of materials at high temperatures are
mainly cavity-perturbation method and dielectric-
loaded cavity method, which are discussed in the
fifth and sixth section respectively.

In resonant methods, microwave energy can also
be used to heat the sample under test. Usually,
the heating microwave power and the testing
microwave signal work at different modes and have
different frequencies. However, in some cases, one
resonant mode can work as both the heating mode
and the testing mode. In the active loop method
discussed in the final part of this chapter, the sample
under test is heated by the microwave power excited
from the oscillation of the loop consisting of the
cavity loaded with the sample.

12.2 COAXIAL-LINE METHODS

Nonresonant methods can be classified into refec-
tion methods and transmission/reflection methods.

In the measurement of dielectric properties of
materials at high temperatures, reflection methods
are more widely used (Blackham 1992). Reflec-
tion methods include short-reflection method and
open-reflection method, and the open-reflection
methods are more widely used in the measure-
ment of dielectric properties of materials at high
temperatures. In this section, we concentrate on
the measurements of samples with infinite thick-
ness, and the techniques and conclusions can be
extended to the measurements of sheet samples
with finite thickness.

The advantages of the open-ended coaxial-probe
method mainly include the relative ease of the
measurement procedure, the broadband measure-
ment capabilities, and the possible on-line mea-
surement. As shown in Figure 12.1(a), an open-
ended coaxial probe is basically a truncated section
of a coaxial line, with an optional extension of
a ground plane. The sample under test is placed
flush with the probe, and, in principle, the values of
the complex permittivity are determined from the
input impedance of the probe. The measurement
technique basically requires that the sample pos-
sesses a single flat and smooth surface. Its diam-
eter should be at least two times larger than the
probe diameter. Most theoretical models assume
that the sample is semi-infinitely thick. In experi-
ments, it is required that the presence of any object
behind the sample does not affect the measurement
results, therefore the sample thickness should allow
the magnitude of the electric field at the far end
of the sample to be at least two orders smaller
than that at the probe/sample interface. For sam-
ples with thin thickness, which do not satisfy this
condition, a multiplayer dielectric model with an

Coaxial line

(a) (b)

Sample

CfC0er*

Z0

ZL

Figure 12.1 Measurement of dielectric properties using an open-ended coaxial-line probe (a) Measurement
configuration and (b) equivalent circuit
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air termination could be applied. One of the criti-
cal elements in dielectric properties measurements,
using an open-ended coaxial probe, is making a
good contact between the probe and the material
under test. It has been shown that air gaps on the
order of fractions of a millimeter strongly influence
the measurement results.

12.2.1 Measurement of permittivity using
open-ended coaxial probe

As shown in Figure 12.1, in the measurement of
materials properties using an open-ended coax-
ial probe, the complex permittivity of the sample
is determined from the measurement of reflec-
tion from the open end of the probe. The design
of a suitable coaxial-line probe involves various
trade-offs such as operating frequencies, range of
measurement temperatures, range of complex per-
mittivities of the materials to be tested, possible
propagation of higher-order modes, adequate line
length for cooling purposes, and the selection of
a low thermal-expansion material for the fabri-
cation of the probe (Andrade et al. 1992; Arai
et al. 1992). A detailed discussion on the theory
for open-ended coaxial probes can be found in
Chapter 3. Here we introduce the basic working
principle for the measurement of dielectric perme-
ability using an open-ended coaxial probe.

As shown in Figure 12.1(b), there is an
impedance discontinuity at the interface between
the open-end of the coaxial line and the sample,
and the impedance discontinuity results in a
reflection at the interface. From the complex
reflection coefficient � seen at the end of the line,
the complex relative dielectric permittivity εr can
be obtained (Salsman 1991):

εr = 1 − �

jωZ0C0(1 + �)
− Cf

C0
(12.1)

where ω is the angular frequency, C0 and Cf are the
fringing capacitances associated with the coaxial-
line probe, and Z0 is the characteristic impedance
of the coaxial line. To obtain the permittivity value
of the sample under study, the values of C0 and
Cf should be determined before the measurements,
and this can be done by calibration.

Open-ended coaxial probe is widely used in
measuring the dielectric properties of liquid and
semisolid sample. When a coaxial probe is used
to measure solid samples, the roughness of the
sample surface will affect the measurement results
(Arai et al. 1995b), so the measurement surfaces
of samples are usually polished. Furthermore,
the air gap between the probe and the sample
greatly affects the measurement results, and the
air gap also decreases the measurement sensitivity.
Many efforts have been made to eliminate the
air gap between the probe and the sample. It
should also be indicated that relatively small
errors in the measurement of S11 of either the
material under test or the standard material result
in significant errors in the complex permittivity
results, and the resulting errors are much greater
in ε′′

r values than those in the ε′
r values. This

is due to open-ended coaxial probes’ inherent
problem of not being suitable for measuring the
loss factor accurately, in particularly low-loss
materials. However, the broadband capabilities of
this probe and the simplicity of use continue to
make this measurement technique attractive and
frequently used.

12.2.2 Problems related to high-temperature
measurements

Besides the general problems in measurements
at high temperatures discussed in Section 12.1.2,
there are special problems related to the applica-
tions of coaxial probes for measurement of dielec-
tric properties of materials at high temperatures.
We discuss the measurement temperature ranges
of normal coaxial probes, heating techniques often
used in coaxial probes, and the thermal elongation
of coaxial line.

12.2.2.1 Measurement temperature ranges of
conventional coaxial probes

The differential thermal expansion, which is inher-
ent in conventional coaxial probes, can lead
to erroneous results in the measurement of the
complex permittivity at high temperatures. This
is mainly due to both the air gaps between the
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probe and the material under test, and changes in
the characteristic impedance of the coaxial line,
because of the differential thermal expansion of
the inner and outer conductors in metal probes.
Most of the commercially available coaxial probes
cannot measure samples at temperatures higher
than 250 ◦C. Even the use of metals with small
thermal-expansion coefficients, such as kovar, has
resulted in limited success in providing reliable
results for temperatures up to 800 ◦C. At higher
temperatures, the differential thermal expansion
between the inner and outer conductors of the
kovar probe significantly increases and, hence,
affects the accuracy of the measurements. None
of the available metal probes can be used to pro-
vide accurate results at temperatures higher than
1000 ◦C.

12.2.2.2 Heating techniques for coaxial probes

Figure 12.2 shows a coaxial probe and its heating
system for measurements at high temperatures
(Arai et al. 1992). The probe is constructed of heat

Inside
furnace

Outside
furnace

Water jacket

Sample

Coaxial
line

Thermal-
conduction washer

Insulation

Figure 12.2 Schematic representation of high-
temperature coaxial dielectric probe. Modified from
Arai, M. Binner, J. G. P. Carr, G. E. and Cross, T. E.
(1992). “High temperature dielectric measurements on
ceramics”, Materials Research Society Symposium Pro-
ceedings, 269, 611–616, by permission of Materials
Research Society

resistant metal alloy, and the thin outer conductor
of the coaxial line reduces heat conduction.
Ceramic discs near the open end act as both the
support for the center conductor and a thermal path
to allow cooling of the center conductor, and they
also prevent sample debris from falling into the
open end of the probe. The end of the probe is
inserted into a conventional furnace and a length of
high-temperature coaxial line then passes through
the walls of the furnace. Outside the furnace, a
water jacket is used to ensure that the conventional
microwave parts remain at room temperature.
The thermal-conduction washers direct the heat
conducting down through the inner conductor to
the water jacket, and the washers are made of
dielectric materials with high thermal conductivity,
such as aluminum nitride (AlN) and beryllium
oxide (BeO). Using this technique, it is possible to
measure the dielectric properties at a wide range
of temperatures. This heating technique is widely
used in various coaxial probes for measurements
at high temperatures.

Besides the conventional oven method discussed
above, sample heating can also be done by optical
means using laser or image oven (Mouhsen et al.
2001). A conventional oven has the disadvantage
that the measurement cell and the connection
between the cell and the coaxial line that provides
the wave propagation are at a high temperature.
To solve this problem, an optical heating source,
for example, a CO2 laser emitting infrared beam,
can be used. The power of the laser is variable,
and can be controlled by a computer. The laser
beam is widened so that the heating of the sample
on the rear face (the face in contact with the
central conductor) is as uniform as possible. To
get a homogeneous distribution of the laser power
on the sample, the beam is spread over all of
the rear face by using an infrared mirror system.
In these conditions, the sample could be brought
to high temperatures in a time long enough to
avoid fractures, but short by comparison to the
heating period of a conventional oven. Moreover,
the measuring cell is heated only by the thermal
transfer due to its contact with the sample, and
it remains at a relatively low temperature, which
allows the use of coaxial lines and connections in
contact with the measuring cell.
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12.2.2.3 Thermal elongation of coaxial line

Besides the air gap between the sample and the
open end of the probe, another source of critical
errors emerges when the probe is adapted for high-
temperature systems: the thermal elongation of
the probe causes phase shift errors (Arai et al.
1995a). Though this problem can be minimized
by fabricating the open-ended coaxial probe from
invar to limit dilatations, theoretical analysis for
correcting the errors owing to thermal elongation
of high-temperature coaxial probe is needed.

As shown in Figure 12.3, the thermal elongation
of a coaxial line moves the aperture plane of the
probe from a reference plane where calibration is
initially performed at room temperature to a new
plane at high temperature, causing critical phase
shift errors. The extra length added to the probe
at a given temperature causing the shift in the
aperture plane position can be considered as a
lossless transmission line. Denoting the scattering
parameters for this extra line as S11, S21 (=S12)

and S22, the relationship between the reflection
coefficient with respect to the initial calibration
plane �c, and that with respect to the actual
aperture measurement plane �m is given by (Arai
et al. 1995a)

�c = S11 + S2
21�m

1 − S22�m
(12.2)

Using the condition for a lossless line S11 = S22 =
0 and substituting the transmission coefficient z for
S21, Eq. (12.2) becomes

�c = z2�m = exp(−2γL)�m (12.3)

Γc Γm

S11

Coaxial line
Thermal elongation of
coaxial line

S21

S12

S22

Figure 12.3 The thermal elongation of coaxial line

where γ is the propagation constant and L is the
distance between the two planes, which is the
elongation of the coaxial probe. Equation (12.3)
can be rewritten as

�m = |�c| exp(jφc + 2γL) (12.4)

where |�c| and φc are the magnitude and phase
of �c respectively. Equation (12.4) can be further
rewritten as

�m = |�c| exp

(
jφc + 2 ωL

c

)
(12.5)

where the item 2ωL/c (=�φ) is the extra phase
owing to the extra line added. This is a function
of both temperature and frequency and can be
measured with either an open circuit or a short
circuit, from which an experimental model of L as
a function of temperature can be established.

After analyzing the problems related to measure-
ments at high temperatures using coaxial probes,
in the following text we discuss three typical tech-
niques for high-temperature measurements: correc-
tion of phase shift, spring-loaded coaxial probe,
and metallized ceramic coaxial probe.

12.2.3 Correction of phase shift

Arai et al. developed a coaxial probe system for
the measurement of dielectric properties at high
temperatures as shown in Figure 12.4 (Arai et al.
1996). The sample is placed in contact with
the open end of the probe, and the sample is
heated using a conventional furnace via a ceramic
worktube. The probe is fabricated from a piece of
7-mm thin-walled coaxial airline made of a heat-
resistant alloy. A neutral gas, normally nitrogen
with an addition of 5 % hydrogen, is introduced
into the tube to prevent the probe from being
oxidized. A water jacket is mounted beneath the
worktube to protect the conventional microwave
components from heat damage. Heat conducting
down through the inner conductor is directed to
and absorbed by the water jacket via aluminum
nitride (AlN) washers.

As the system is cycled over a wide temperature
range, the probe will undergo thermal expansion.
As discussed earlier, the thermal expansion results
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Figure 12.4 High-temperature coaxial-probe system
(Arai et al. 1996). Reproduced from Arai, M. Binner,
J. G. P. and Cross, T. E. (1996). “Comparison of tech-
niques for measuring high-temperature microwave com-
plex permittivity: measurements on an alumina/zircona
system”, Journal of Microwave Power and Electromag-
netic Energy, 31 (1), 12–18, by permission of Interna-
tional Microwave Power Institute
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Figure 12.5 The temperature dependence of the shifts
in phase in reflection measurement using a coaxial probe
(Arai et al. 1996). Reproduced from Arai, M. Binner,
J. G. P. and Cross, T. E. (1996). “Comparison of tech-
niques for measuring high-temperature microwave com-
plex permittivity: measurements on an alumina/zircona
system”, Journal of Microwave Power and Electromag-
netic Energy, 31 (1), 12–18, by permission of Interna-
tional Microwave Power Institute

in an increase in the effective length of the probe,
and thus there is an increase in phase shifts of the
reflection coefficient, as shown in Figure 12.5.

The phase shift can be fitted by a polynomial
expression and incorporated into the expression for

reflection coefficient (Arai et al. 1996):

�m = |�c| exp

{
j

[
φc + 2 ω

c0

× (a0 + a1T + a2T
2 + a3T

3 + · · ·)
] }
(12.6)

where �m is the reflection coefficient with respect
to the actual sample-probe contact plane, and |�c|
and φc are the magnitude and phase of the reflec-
tion coefficient �c with respect to the initial cali-
bration plane. ω is the angular frequency (2πf ), c0

is the speed of light in free space and (a0 + a1T +
a2T

2 + a3T
3 + · · ·) describes the thermal expan-

sion of the probe as a function of temperature, T , in
which the polynomial coefficients, a0, a1, etc., can
be determined experimentally. Normally, a poly-
nomial expression consisting of four lower-order
terms can simulate the expansion sufficiently.

To verify the applicability of the phase correc-
tion method, complex permittivity of air is mea-
sured with and without phase shift correction.
Figure 12.6 indicates that the increase in phase
angle is effectively offset by the method discussed
above. The error associated with this technique is
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Figure 12.6 Permittivity values of air at different tem-
peratures with and without phase shift corrections. Mea-
surements are made at 2.45 GHz (Arai et al. 1996).
Reproduced from Arai, M. Binner, J. G. P. and Cross,
T. E. (1996). “Comparison of techniques for measur-
ing high-temperature microwave complex permittivity:
measurements on an alumina/zircona system”, Journal
of Microwave Power and Electromagnetic Energy, 31
(1), 12–18, by permission of International Microwave
Power Institute
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dependent upon the complex permittivity of the
material and the frequency of measurement, and
it is estimated to be within ±8 % for the samples
reported in (Arai et al. 1996).

12.2.4 Spring-loaded coaxial probe

The differential thermal expansion is inherent
in metal probes. In the heating procedure, the
outer conductor is heated up faster than the inner
conductor, and will therefore expand more than
the inner conductor, causing a measurement air gap
between the inner conductor and the material under
test. In the cooling down procedure, the outer
conductor is cooled faster than the inner conductor,
and therefore shrinks faster, causing an air gap
between the outer conductor and the material under
test. The air gaps in both cases may cause severe
errors to the measurement results, especially when
the sample is heated or cooled quickly.

As shown in Figure 12.7, Gershon et al. built a
stainless-steel coaxial probe with an air dielectric,

HBR washer

Stainless steel

Center contact for
type N connector

Spring

Figure 12.7 An open-ended coaxial probe for high-
temperature measurements. The spring-loaded inner
conductor forces the inner and outer conductors to main-
tain intimate contact with the sample under test (Gershon
et al. 1999). Modified from Gershon, D. L. Calame,
J. P. Carmel, Y. Antonsen, T. M. and Hutchen, R. M.
(1999). “Open-ended coaxial probe for high-temperature
and broad-band dielectric measurements”, IEEE Trans-
actions on Microwave Theory and Techniques, 47 (9),
1640–1648.  2003 IEEE

and such a probe can maintain intimate contact
with the sample under test at temperatures up to
1200 ◦C (Gershon et al. 1999). The spring-loaded
inner conductor is centered by a boron nitride
(HBR) washer near the probe head and by the
center contact of the type-N connector at the
other end. The inner diameter of the washer is
large enough to provide a slip fit for the inner
conductor at 1200 ◦C. The spring is positioned
inside the inner conductor, which is slip fitted
into the center contact of type-N connector. The
center contact assists in electrically shielding the
spring. In order to prevent damage to the connector
and other microwave components during a high-
temperature operation, a water jacket, which is
positioned near the connector, removes heat from
the outer conductor. Similar to the system shown in
Figure 12.4, the probe is housed inside a mullite
tube with a flowing neutral gas, minimizing the
oxidation of the probe and the sample

12.2.5 Metallized ceramic coaxial probe

To solve the thermal expansion problem in coaxial
probes, Bringhurst and Iskander developed a met-
allized ceramic coaxial probe for high-temperature
complex permittivity measurements (Bringhurst
and Iskander 1996). On the basis of carrying
out the network analysis calibration procedure up
to 1000 ◦C, the probe provides accurate dielec-
tric measurements over a broad frequency range
(500 MHz to 3 GHz) and for temperatures up to
1000 ◦C.

The probe is manufactured by using an alumina
rod and an alumina tube for the inner and outer
conductors of the coaxial probe respectively. The
dimensions of the rod and the tube are chosen so
that the characteristic impedance of the probe is
50 	. In such a probe, the metallization should be
of sufficient thickness so that skin-depth problems
are avoided at lower frequencies. The tube and
rod are metallized with about 3 mil of moly-
manganese, and a 0.5-mil protective coating of
nickel plating is applied upon the moly-manganese
layer. To connect the probe to the standard
accessories of a network analysis system, a GR-N-
type connector is chosen, because of its broadband
performance in the desired frequency range. The
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GR half of the connector is modified so that it
could facilitate the connection of the open-ended
coaxial probe (Bringhurst and Iskander 1996).

The thermal expansion of the metallized ceramic
is proved to be minimal by calibrating the probe
with a short. So, by using metallized-ceramic
coaxial dielectric probes, the differential thermal
expansion problem can be solved. Therefore, using
such a coaxial probe with small thermal expansions
coefficients significantly improves the quality of
the calibration procedure and certainly improves
the accuracy of the dielectric measurement results
(Bringhurst et al. 1997; Andrade et al. 1992).
Meanwhile, as the heat conduction of a metallized
ceramic probe is small, the water jacket for cooling
is usually not needed.

12.3 WAVEGUIDE METHODS

The conventional waveguide methods have been
extended for the measurement of materials prop-
erties at high temperatures. The problems related
to high-temperature measurement using waveguide
methods mainly include how to heat the sample,
how to keep the measurement system at room
temperature, and how to correct the possible geo-
metrical change of the measurement fixture due
to the change of measurement temperature. In
the following sections, we discuss two kinds of
waveguide methods for high-temperature measure-
ments: open-ended waveguide method and dual-
waveguide method.

12.3.1 Open-ended waveguide method

Chevalier et al. developed an open-end waveguide
method for permittivity measurement at tempera-
tures up to 1000 ◦C (Chevalier et al. 1992). The
test apparatus consists of an open-ended flanged
circular waveguide propagating TE11 mode, which
radiates into the material under test placed in front
of the flange. The complex permittivity is deduced
from the reflection coefficient. A solar source is
used for sample heating so that the complex per-
mittivity can be measurement as a function of
temperature.

As shown in Figure 12.8, the open-ended
flanged circular waveguide propagating the domi-
nant TE11 mode radiates into a layer of dielectric

Composite or
cooled copper guide

Flange

Sample
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side

Thermal
flux

TE11 mode Backside

Diaphragm

Figure 12.8 Open-ended circular waveguide method
for the measurement of dielectric permittivity at high
temperatures. The sample under study is heated by
solar flux (Chevalier et al. 1992). Modified from Cheva-
lier, B. Chatard-Moulin, M. Astier, J. P. and Guillon,
P. Y. (1992). “High temperature complex permittiv-
ity measurements of composite materials using an
open-ended waveguide”, Journal of Electromagnetic
Waves and Applications, 6 (9), 1259–1275, by permission
of VSP Brill

material with finite thickness backed by free space.
A solar furnace is used to heat the sample. Such
a source allows us to raise the temperature of the
sample in a definite area without directly heating
the measurement device or perturbing the elec-
tromagnetic waves. A solar furnace operates by
concentrating the energy received by a large sunlit
surface onto a relatively small surface by a con-
centrator. The concentrator is usually a focusing
mirror, and the solar energy is concentrated on the
focus of the mirror. The flux strength at the focus
can be controlled by adjusting a regulator (or flux
attenuator) between the large sunlit surface and the
concentrator. More information on the solar fur-
nace can be found in (Chevalier et al. 1992).

To protect the measurement instrument, the nor-
mal copper waveguide should be kept at room
temperatures. If the waveguide system is cooled,
for example, by water cooling, there may exist
thermal gradients in the sample. The sample tem-
perature can be homogenized by using a metal-
lized composite waveguide (Chevalier 1992). The
function, design, and fabrication of a metallized
composite are similar to those of the metallized
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Figure 12.9 Open-ended waveguide system for the measurement of dielectric properties at high temperatures
(Chevalier 1992). Modified from Chevalier, B. Chatard-Moulin, M. Astier, J. P. and Guillon, P. Y. (1992). “High
temperature complex permittivity measurements of composite materials using an open-ended waveguide”, Journal
of Electromagnetic Waves and Applications, 6 (9), 1259–1275, by permission of VSP Brill

ceramic coaxial probe discussed in Section 12.2.5.
In Figure 12.9, a metallized composite guide asso-
ciated with a heatproof mode filter is used. Such a
system does not need to be cooled, and the thermal
gradients in the sample are less important. More-
over, such a device has a very small dilation factor
versus temperature.

12.3.2 Dual-waveguide method

Among the room-temperature measurement tech-
niques, those using rectangular waveguide lend
themselves quite naturally to modification for high-
temperature measurements. As discussed earlier,
when extending any room-temperature technique
to high-temperature techniques, the effects caused
by temperature changes in the experimental appa-
ratus must be taken into full consideration. Ther-
mal expansion is the most apparent of these effects,
although thermally caused changes in the waveg-
uide electrical properties may also need attention if
the waveguide loss characteristics change signifi-
cantly upon heating. Batt et al. developed a variety
of microwave measurement techniques for high
temperatures, and central to these techniques is
the development of a “dual-waveguide” test fixture
(Batt et al. 1992). These techniques can be used
for a variety of material types and sample geome-
tries such as slab, post, and sheet. In the following
discussion, we concentrate on the dual-waveguide
method for the measurement of slab samples.

In the implementation of a dual-waveguide, two
adjacent and symmetric waveguides are machined

from a single block of alloy, one serving as the
test waveguide, the other as the reference waveg-
uide. The dual-waveguide is surrounded by a
programmable clam-shell furnace. The reference
waveguide provides data, which is used to com-
pensate for the electrical and dimensional thermal
changes in the test section. With the use of the ref-
erence and test waveguide arms, thermal effects can
be compensated for. This allows room-temperature
transmission line measurement techniques to be
modified for high-temperature measurements (Batt
et al. 1992).

The dual-waveguide technique relies on the use
of a reference waveguide to monitor electrical
and dimensional changes during the heating pro-
cess. Reference waveguide data is used to calcu-
late corrections for the raw data generated in the
arm of the waveguide containing the test sam-
ple. This modification procedure can be applied
to the reflection and the reflection/transmission
methods. A standard twelve-term network analyzer
calibration procedure is employed when a reflec-
tion/transmission method is used, while a three-
term procedure is used for a reflection method. For
a standard two-port test, at chosen temperatures,
data is collected for all four S-parameters in the
reference and test waveguide sections. Two coax-
ial switches are used so that data can be generated
in both the waveguide sections in rapid succession.

Figure 12.10 shows the dual-waveguide con-
figuration developed by Batt et al. The waveg-
uide assembly has vertical symmetry except for
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Figure 12.10 Measurement configurations for dual-waveguide method (Batt et al. 1992). (a) Dual-waveguide/
furnace assembly and (b) dual-waveguide assembly. Reproduced from Batt, J. A. Rukus, R. and Gilden, M. (1992).
“General purpose high temperature microwave measurement of electromagnetic properties”, Materials Research
Society Symposium Proceedings, 269, 553–559, by permission of Materials Research Society

the flange/sample region. Samples in the form
of transverse slabs are relatively easy to pro-
duce and analyze. Vertical mounting facilitates slab
positioning by the use of small projecting sup-
ports from the waveguide wall, and the slab is
held in place by gravity. The upper and lower
waveguide sections are machined from single
blocks of inconel alloy. The septum between the
waveguide sections is chosen to match the dual-
waveguide/single-waveguide transition. A slot is
machined in the interface wall for the placement
of an inconel key. This step significantly improved
the isolation between the adjacent waveguides at
the junction interfaces. Short waveguide sections
of stainless steel (not shown in Figure 12.10) are
positioned between the inconel sections and the
transition assemblies. The top section, which has
a tendency to heat because of convection as well
as conduction and radiative heat transfer, has a
thin brass plate located at the inconel/stainless
steel joint region. Air blown on the plate during

the heating cycle provides adequate cooling of
the upper waveguide region. The lower waveguide
assembly is attached to a large aluminum plate,
which serves as a heat sink.

The selection of the two flange/sample config-
urations for slab samples shown in Figure 12.11
is related to the choice of measurement technique.
The choice of the reference side of the waveg-
uide is between a short and a thru. Since the
purpose of the reference guide data is primar-
ily to provide phase corrections to the sample
test data, the S-parameter test data determines the
flange choice options for the reference guide. In
the most general case where all four S-parameters
are required, a shorting plate is needed as shown in
Figure 12.11(a). Reflection coefficient data can be
measured directly, whereas the transmission coef-
ficient phase changes can be determined by sum-
ming the phase changes in S11 and S22 data. In
the flange region, asymmetry exists between test
and reference waveguide arms. Phase changes in
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(a) (b)

Figure 12.11 Two flange/sample configurations for slab samples. (a) Short and (b) through (Batt et al. 1992).
Reproduced from Batt, J. A. Rukus, R. and Gilden, M. (1992). “General purpose high temperature microwave
measurement of electromagnetic properties”, Materials Research Society Symposium Proceedings, 269, 553–559,
by permission of Materials Research Society

this region must be calculated from the knowledge
of thermal expansion behavior of the sample and
flange. If only transmission data is required for the
test arm, one may measure the transmission coef-
ficient directly, and correct the transmission phase
using the thru sample/flange configuration shown
in Figure 12.11(b).

It should be noted that errors arise from the
air gaps caused by the differential expansion
between the waveguide and the sample. Owing to
the air gap, the measured dielectric constant and
loss tangent are less than their actual values. A
detailed discussion on this problem can be found
in Chapter 4.

12.4 FREE-SPACE METHODS

In the free space method, the antennas focus
microwave energy at the measurement plane and
the sample is fixed at the common focal plane
between the two antennas. Since the focused
beam is very nearly a plane wave, it is possi-
ble to have a precise reference for calibration,
which increases the accuracy of the method. Since
the sample is at the focal plane of the antenna
and is not in contact with the applicator, it can
easily be adapted for measurements at high or
low temperatures and hostile environments (Jose
et al. 2000). Discussions on the basic working
principles of free-space methods can be found in
Section 4.5.

In 1989, Ghodgaonkar et al. (1989, 1990) used
the free-space measurement system developed by
HVS Technologies (1986) for the measurement
of dielectric properties in the frequency range

14.5 to 17.5 GHz. This compact measurement
system proved to be ideal for the characteri-
zation of nonplanar surfaces (see e.g., Varadan
et al. 2000) and for measuring the properties
of materials at different temperatures (Varadan
et al. 1991). The free space method presented
here is capable of measuring complex permit-
tivity, permeability, and chirality parameters of
materials from 5.8 to 110 GHz as a function of
temperature.

The test setup was designed to keep the sam-
ples in different temperatures while measuring the
propagation parameters. Figure 12.12 shows the

Sweep
oscillator

S-parameter
test set

HP 8510C
network analyzer

Printer

Computer

Plotter

Coaxial cables

Spot focusing horn
lens antenna

SampleHigh/low
temperature cell

Figure 12.12 Free-space measurement system
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configuration of the measurement system using
spot focused antennas. The spot focusing horn
lens system is a combination of two equal plano-
convex dielectric lenses mounted back to back in
a conical antenna. At the focal point, the elec-
tromagnetic wave has the properties of a plane
wave. As the lens dimensions determine the width
and depth of the focus, the accuracy in evalua-
tion of permittivity from the experimental data is
determined by the design of an optimum focused
beam at the focal plane. The measured focal length
of the antenna is 30.5 cm with a spot size of
4.37 × 3.2 cm at 9.1 GHz (Varadan et al. 2000).
The HP 8510XF single connection, single sweep
Network Analyzer is used for the measurement
of the complex reflection (S11) and transmission
coefficients (S21). The focused plane wave beam
from the horn lens antenna system is incident on
the sample positioned at the common focal plane
of the two antennas. The sample is placed in the
sample holder inside an environmental chamber,
one for low temperature (down to −40 ◦C) and
another one for high-temperature measurements
(up to 1500 ◦C). For high-temperature measure-
ments, a furnace was specially designed and fab-
ricated along with a ceramic sample holder. The
sidewalls of the furnace are lined with a mate-
rial, which is thermally insulating but is virtually
transparent to microwaves. The low-temperature
cell was also designed and fabricated by HVS
Technologies. This consists of an aluminum sam-
ple holder, and the insulating materials used are
transparent to microwaves. A chiller unit, along
with a heat exchanger placed inside the cell, was
used to control the temperature inside the low-
temperature cell. Dry nitrogen was also pumped
inside the cell to prevent any moisture from con-
densing on the sample. Free space TRL calibra-
tion (Ghodgaonkar et al. 1990) along with time
domain gating was used for accurate measure-
ments. Three sets of antennas were used to cover
the range 5.8 to 110 GHz, one pair each for 5.8
to 8.2 GHz, 8.2 to 12.4 GHz, and 12.4 to 110 GHz.
The coaxial to waveguide adapters and rectangular
to circular waveguide transitions were changed for
different waveguide bands from 12.4 to 110 GHz
as required.

12.4.1 Computation of ε∗
r

The complex permittivity can be computed either
by reflection or transmission measurements. In the
reflection method, a perfectly conducting plate is
placed behind the sample being measured and
the permittivity is determined from the measured
reflection coefficient. In the transmission method,
the dielectric sample is measured in free space. In
this case, the complex permittivity of the unknown
sample is determined from the measured trans-
mission coefficient. If the sample size is greater
than three times the E-plane 3-dB beamwidth of
the focused antennas, the diffraction effects at
the edges of the sample can be neglected. At
10 GHz, the measured 3-dB beamwidth in E- and
H -planes of the spot focused antennas are 3.20 cm
and 4.37 cm.

Computation of complex permittivity from the
measured reflection and transmission coefficients
is presented by Ghodgaonkar et al. (1989). It
is assumed that magnetic permeability of the
sample is µr = 1 + j0. It can be shown that
the S11 and S21 parameters are related to the
reflection and transmission coefficients by the
following equation

S21 = T (1 − �2)

1 − �2T 2
(12.7)

where � and T can be written as

� = Zsn − 1

Zsn + 1
(12.8)

T = eikd (12.9)

Zsn and k are normalized characteristic impedance
and propagation constants of the sample respec-
tively and are related by

Zsn = 1√
εr

(12.10)

k = k0
√

εr (12.11)

where k0 = 2π/λ0, λ0 is the wavelength in
free space.

The complex permittivity ε∗
r is obtained by an

iterative technique with an initial estimate. From
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Figure 12.15 (a) Measured permittivity of metal-backed 2 × 2 sample alumina, t = 0.6604 mm. Sample size is
2′′ × 2′′ and (b) permittivity of BST-50, 2′′ × 2′′ sample, t = 2.5654 mm. Sample size is 2′′ × 2′′

Eq. (12.8) and the definitions that follow, it is
possible to obtain S21 in terms of ε∗

r . However,
the exact solution for ε∗

r is not straightforward
due to the multiple roots for Eq. (12.9). Hence,
an iterative technique using an initial guess for
the ε∗

r is used. The initial guess is obtained
from the estimated value of the phase velocity
in the sample computed from the difference in
phase at the measurement plane without and with
the sample.

Samples of different dielectric constant, thick-
ness, and size were tested and compared with
that of the published data (see Jose et al. 2000).
Measurements have been done for samples of
size 6′′ × 6′′ and 2′′ × 2′′ both with and without
metal backing for different temperatures. For the
low temperature measurements, precautions were
taken to avoid any condensation of moisture in
the environmental chamber or on the sample. TRL
calibration is first performed with an empty sample
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holder; this also calibrates out the presence of the
insulating material from the measurements.

Figure 12.13 presents typical results of mea-
sured permittivity of 6′′ × 6′′ samples of Teflon,
quartz, and boron nitride at room temperature.
Measured values of dielectric constant agree well
with those reported in (Von Hippel 1995); Ho
(1980); and ASTM Designation D2520-86. There
is some discrepancy in the loss tangent of very
low-loss materials like Teflon at 10 GHz. This may
be due to measurement and computation errors in
wideband measurement of S11 and S21 for low-loss
materials. The dielectric constant data reported in
(Ho 1980) and ASTM Designation D2520-86 were
mainly measured by resonant cavity or transmis-
sion line methods, which are known to have the
best accuracy for single frequency measurements.

The measurement of the change in permit-
tivity due to variation in temperature is very
important for substrates used in real time sys-
tems. Jose et al. (2000) measured the permittiv-
ity of the samples of size 6′′ × 6′′ as well as
those of 2′′ × 2′′ in the low temperature cell.
Figure 12.14 presents the measured permittivity of
a 6′′ × 6′′ quartz sample from −20 ◦C to 150 ◦C
while Figure 12.15(a) presents the results for the
alumina sample and 12.15(b) for a tunable ferro-
electric substrate (BST) of size 2′′ × 2′′ used for
antenna applications. These samples were mea-
sured for two frequency bands and the edges
of the bands are clearly seen at 75 GHz, in
both the figures. While the permittivity of Teflon
and alumina are not expected to change sig-
nificantly over this range of temperature, BST
will change considerably as the temperature drops
below the Curie point for this sample which is
close to 10 ◦C.

The free-space technique described in this
section gives accurate results of dielectric prop-
erties of materials. This in situ wideband char-
acterization is possible for different temperatures,
which is needed for many practical applications. It
is already established that the free space setup is
useful for accurate evaluation of dielectric proper-
ties of planar and nonplanar materials for a wide
range of temperatures and frequencies. Results for
a number of samples agree with published data
(please contact HVS Technologies if interested)

and demonstrate the usefulness of spot-focused
free space system for wideband in situ character-
ization and evaluation of materials. The noncon-
tact nature of the method allows measurements of
solids and liquids in high-low-temperature envi-
ronments. The TRL calibration and error correc-
tion technique can be very easily applied to real
time industrial applications ensuring accuracy of
the measurement data and subsequent inversion.

12.5 CAVITY-PERTURBATION METHODS

Resonant methods for characterizing the electro-
magnetic properties of materials at high tempera-
tures mainly include cavity-perturbation methods
and dielectric-loaded cavity methods. In a reso-
nant method, usually only the sample under test is
heated, while the cavity itself is kept at the room
temperature; so in most cases, no corrections are
needed. Besides, in a resonant method, the cav-
ity for materials property testing can also be used
as the microwave applicator for heating samples
under test.

In this section, cavity-perturbation methods will
be discussed. We first give a brief discussion on
the cavity-perturbation methods for measurements
of materials properties, and then introduce several
typical cavities often used in high-temperature
measurements, including TE mode rectangular
cavities and TM mode cylindrical cavities.

12.5.1 Cavity-perturbation methods for
high-temperature measurements

The working principle for cavity-perturbation
methods has been discussed in Chapter 5. In
the following section, we give a brief introduc-
tion on the cavity-perturbation theory based on
which the cavity-perturbation methods are devel-
oped, and then discuss the heating techniques often
used in the cavity-perturbation methods for high-
temperature measurements.

12.5.1.1 Cavity-perturbation theory

The shift of the resonant frequency of a cavity due
to the introduction of a small dielectric material
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may be expressed as (Hutcheon et al. 1991)

f2 − f1

f1
+ j ·

(
1

2Q2
− 1

2Q1

)

= −α · χe

1 + χeFsh
· Vs

Vc
(12.12)

where χe = εr − 1 is the relative complex suscepti-
bility; f1 and f2 are the resonant frequencies of the
cavity before and after the sample is introduced;
Q1 and Q2 are the unloaded quality factors of the
cavity before and after the sample is introduced;
Vs and Vc are the volumes of the sample and the
cavity; Fsh is a dimensionless sample shape factor;
and α is a dimensionless real constant depending
only on the shape of the cavity and the shape of
the unperturbed fields. Equation (12.12) is based
on the following three major assumptions. Firstly,
the sample is located in a region of uniform field.
Secondly, the sample shape is an ellipsoid of rota-
tion. Thirdly, the stored energy in the sample is
small compared to that stored in the rest of the
cavity. Equation (12.12) is applicable to nonellip-
soidal shapes if empirical values of α and Fsh are
used. This approximation has been checked with
full complex numerical calculations and found to
be accurate to ±3 % for sample length to diameter
ratios down to 3.5:1 (Hutcheon et al. 1991).

In actual measurements, more straightforward
equations are often used:

f1 − f2

f1
= A(ε′

r − 1)
Vs

Vc
(12.13)

1

Q2
− 1

Q1
= Bε′′

r
Vs

Vc
(12.14)

where A and B are constants depending on the
shapes of the cavity and the sample. In experi-
ments, A and B are usually obtained by calibrating
the cavity with standard dielectric samples with
known permittivity values.

12.5.1.2 Heating techniques

Heating techniques should be fully considered in
the design of resonant cavity for high-temperature
measurements using cavity-perturbation method.
With some modification, the heating techniques
used in nonresonant methods can be used in
resonant methods, and these techniques mainly
include conventional ovens, infrared radiation,
laser, and solar energy. In these techniques, the
sample is heated through heat conduction or heat
radiation. As the sample is heated from outside to
the inside, the temperature distribution within the
sample may be not uniform.

In a cavity-perturbation method, the cavity
itself can be used as a microwave applicator,
so the sample under test can be heated by
the microwave energy (Tinga and Xi 1993a).
A comparison between a conventional heating
scheme and microwave heating scheme is shown
in Figure 12.16. In a microwave heating scheme,
the heat is produced within the sample. Under
suitable control conditions, the sample can be
heated uniformly and quickly. In the following
discussion, both the conventional heating scheme
and microwave heating scheme will be used.

In a cavity-perturbation method or a dielectric-
loaded cavity method, the sample under test is usu-
ally held by an amorphous silica holder, because

Cavity

Microwave
heating
power

Testing
port

Testing
port

Cavity

Heating
element

Sa
m

pl
e

Sa
m

pl
e

(a) (b)

Figure 12.16 Two types of heating schemes (Tinga and Xi 1993a) (a) Conventional heating scheme and
(b) microwave heating scheme. Reproduced from Tinga, W. and Xi, X. (1993a). “Design of a new high-temperature
dielectrometer system”, Journal of Microwave Power and Electromagnetic Energy, 28 (2), 93–103, by permission
of International Microwave Power Institute
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of the ability of fused silica to withstand high
temperatures, and also because of the small vari-
ation of its dielectric properties with temperature
(including low loss). In the use of amorphous silica
holders, two effects should be taken into consid-
eration: first, the gradual nucleation and recrystal-
lization to cristoballite above 1000 ◦C, and second,
the chemical and physical interaction with the sam-
ple, particularly if the sample contains mobile or
reactive metal ions (Hutcheon et al. 1992a). The
first effect results in heavy frosting of the surface
of the holder. Though there is very little change in
the dielectric properties due to this effect, embrit-
tlement and cracking of the holder will eventually
occur. Regarding the second effect, the chemical
interaction with the holder is a function of the
number of physical contact points; so the reactive
powders, packed in the holder, may produce intol-
erable reaction, while pressed pellets of reactive
material can often be measured with insignificant
contamination of the holder.

12.5.2 TE10n mode rectangular cavity

Rectangular TE10n mode (n odd) cavities are often
used in characterization of the permittivity of
dielectric samples. Figure 12.17 shows a TE10n (n
odd) mode rectangular cavity with width a, height
b and length L, and a rectangular or cylindrical
sample is partially inserted at one antinode of
electric field. As shown in Figure 12.17(a), for a
cylindrical sample with radius r and height b′,
its dielectric permittivity can be calculated from

(Andrade et al. 1992)

ε′
r = 1 + f1 − f2

f1
· aL

2πr2
· b

b′ (12.15)

ε′′
r =

(
1

Q2
− 1

Q1

)
· aL

4πr2
· b

b′ (12.16)

For a rectangular sample with width a′, height
b′ and length L′, as shown in Figure 12.13(b),
its dielectric permittivity is given by (Andrade
et al. 1992)

ε′
r = 1 + f1 − f2
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(12.18)

In Eqs. (12.15)–(12.18), f1 and Q1 are the res-
onant frequency and quality factor of the cavity
before the sample is inserted, and f2 and Q2 are
the resonant frequency and quality factor of the

L

b′ b′

L′
a′

r

b

a

(a) (b)

L

b

a

Figure 12.17 Rectangular cavity with partially inserted (a) cylindrical sample and (b) rectangular sample
(Andrade et al. 1992). Reproduced from Andrade, O. M. Iskander, M. F. and Bringhurst, S. (1992). “High
temperature broadband dielectric properties measurement techniques”, Materials Research Society Symposium
Proceedings, 269, 527–539, by permission of Materials Research Society
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cavity after the sample is inserted. It should be
noted that these equations are based on resonant-
perturbation theory, so the assumptions based on
which the resonant-perturbation theory is devel-
oped should be fulfilled. One basic requirement
is that the sample should be much smaller than
the cavity.

Bringhurst et al. developed two TE10n rectangu-
lar cavities to measure the complex permittivity of
ceramic rod samples with circular and rectangu-
lar cross sections up to 1000 ◦C (Bringhurst et al.
1992). The S-band cavity (2.45 GHz) works at the
TE103 mode, and the X-band cavity (10 GHz) oper-
ates in the TE107-mode. The S-band rectangular
cavity is constructed from a section of WR-340
brass waveguide. As shown in Figure 12.18, the
two electric dipole couplers are installed in the cav-
ity’s broad wall on opposite sides at positions of
maximum electric field, which in this case is at a
distance of 1/6 of the length of the cavity from both
ends. The lengths of the couplers are adjustable to
obtain optimum couplings for different measure-
ments. Two small holes at the center of the cavity
are for sample insertion, and their diameter is cho-
sen such that the circular waveguides thus formed
are well below cutoff at the resonant frequency of
the cavity.

For measurements at high temperatures, the
sample is held in an adequate sample holder, which
is to be heated in a conventional furnace prior
to insertion into the cavity. Usually a thin-walled

Sample

Furnace

TE103 cavity

Quartz tube

Dipole coupler

Figure 12.18 A TE103 mode rectangular cavity for
the measurements of dielectric permittivity at high-
temperature

fused-silica cylindrical tube is selected as a sample
holder and a stop plate inside the silica tube is
used to accurately calculate the sample length.
This arrangement serves two purposes: to reduce
the volume of the sample inside the cavity when
losses are so high that a large reduction in the
quality factor would affect the accuracy of the
measurement, and also to allow for monitoring the
sample temperature with a thermocouple located
at the tip of the sample protruding from the cavity
(Bringhurst et al. 1992).

During the measurement, the tube is quickly
moved from the furnace into the cavity when
the desired temperature is reached. Initially, the
empty sample holder is calibrated as a function of
temperature (both resonant frequency and quality
factor), and these values are used as the “empty
cavity” parameters in the perturbation expressions.
Since the cooling rates of the sample and the tube
are very fast after removal from the furnace and
insertion into the cavity, special insulating blocks
are placed around the tube part that protrudes from
the furnace to minimize this effect. Also, to avoid
the heating of the cavity during the measurement,
fast data acquisition is needed when the sample is
positioned in the cavity.

As shown in Figure 12.19, Ho developed a
cavity-perturbation measurement system consist-
ing of a rectangular reflection-type cavity operating
in the TE107 mode near 35 GHz (Ho 1988). A small
cylindrical sample of the material to be tested is
inserted into the cavity through holes that center on
the broad sides of the cavity. In this position, the
sample is aligned along the direction of maximum
field intensity. The dielectric constant of the sam-
ple is calculated from the observed shift in resonant
frequency and the loss tangent from the change in
the quality factor of the cavity.

To achieve a high temperature without signif-
icant increase in the temperatures of the cavity
and the associated microwave measurement com-
ponents, small tungsten heating coils are positioned
around that portion of the sample that protrudes
from the cavity. Cooling channels are attached to
the body of the cavity. Constant-temperature recir-
culating water is used to maintain the cavity walls
at near room temperature. The cavity system is
placed inside a vacuum enclosure with viewing
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Figure 12.19 A TE107 mode rectangular cavity
for determining the dielectric properties of small
rod-shaped samples by cavity-perturbation measure-
ment method (Ho 1988). Modified from Ho, W. W.
(1988). “High-temperature dielectric properties of poly-
crystalline ceramics”, Materials Research Society Sym-
posium Proceedings, 124, 137–148, by permissions of
Materials Research Society

ports, which allow observation of samples and
measurement of sample temperatures. The vacuum
enclosure can be filled with a neutral gas mixture
to prevent oxidation of the sample and the tungsten
heating element at high temperatures.

12.5.3 TM mode cylindrical cavity

The cylindrical cavities for the characterization of
dielectric properties of materials usually operate
at TM modes, and TM modes often used include
two categories: TM0n0 modes and TM01n modes. In
the following section, we discuss the applications
of these two categories of TM modes in the
measurement of dielectric properties of materials
at high temperatures.

12.5.3.1 TM0n0 mode cavity

Owing to their field and current distributions,
TM0n0 mode cylindrical cavities are widely used in
the characterization of dielectric materials, and the
TM010 mode is the most widely used. Figure 12.20
shows the field distributions in a TM010 mode
cylindrical cavity. The sample is placed at a point
near the axis of the cavity. As the field distribution

E Sample

H

Figure 12.20 Field distributions of a TE010 mode
cylindrical cavity

To VNA

Accelerated
motion

Cavity

Inner conductor

Furnace

7 mm
connector

Silica-based
ceramic fibre
bungs

Sample

Insulation

Silica sample holder

Water Jacket

Figure 12.21 TM0n0 circular cylindrical cavity system
for dielectric property measurement at high temperatures
(Arai et al. 1996). Reproduced from Arai, M. Binner,
J. G. P. and Cross, T. E. (1996). “Comparison of tech-
niques for measuring high-temperature microwave com-
plex permittivity: measurements on an alumina/zircona
system”, Journal of Microwave Power and Electromag-
netic Energy, 31 (1), 12–18, by permission of Interna-
tional Microwave Power Institute

does not change with z-position, this method does
not have strict requirements on sample positioning.

Figure 12.21 shows a TM0n0 circular cylindri-
cal cavity system developed by Arai et al. (1996).
The cavity is positioned below the furnace in order
to avoid hot air entering the cavity and causing
dimensional changes that can lead to an addi-
tional error (Binner et al. 1994). A cylindrical
solid sample or a powder sample held in a silica
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(SiO2) sample holder using silica-based ceramic-
fiber bungs is rapidly moved from the furnace to
the cavity, measured and moved back again into
the furnace. Repeating this procedure allows mea-
surements over a range of temperatures. Usually,
several TM0n0 modes can be used before other
resonant modes appear, so dielectric properties at
several frequencies can be obtained.

It should be noted that this technique inevitably
leads to a sample cooling when the sample under
test is moved from the furnace to the cavity for
measurement, and the actual sample temperature
needs to be estimated using appropriate cooling
curves. This may introduce some errors unless
the curves are accurately designed to simulate the
cooling of the sample. Another course of errors is
attributable to volume changes of the sample with
temperature, and this effect can be estimated using
volume expansion coefficients.

Figure 12.22 shows a modified TM010 mode
cavity (Hutcheon et al. 1992a, b). In this structure,
the electric field is uniform in a larger area near
the axis of the cavity, and the electric field is
more concentrated near the central space, so this
cavity has higher accuracy and sensitivity than
a conventional cylindrical TM010 mode cavity
(Hutcheon et al. 1992c). Besides, the two openings
at both ends of the cavity make it easy to load and
unload samples.

12.5.3.2 TM01n mode cavity

The TM01n modes used in materials property
characterization mainly include TM012 mode (Jow

Flood
cooling
channels

Opening for sample
loading/unloading

TM010
cavity

Figure 12.22 Modified TM010 mode cylindrical cavity
for the measurement of dielectric properties at high
temperatures

et al. 1989, 1987; Ali et al. 2000) and TM013

mode (Tian and Tinga 1993). In these modes,
the cavities are in single-mode states. Usually the
single mode in a cavity is used to characterize the
dielectric properties of the sample, and meanwhile
the energy of this mode is also used in heating the
sample under test. In the following discussion, we
concentrate on TM012 mode.

Resonant perturbation of a TM012 mode cavity

Figure 12.23 shows a diagram of the field patterns
in a TM012 mode cavity loaded with a dielectric
sample. The cylindrical shape of the sample is
located at the center of the cavity, and this
is the position of the maximum TM012 mode
electric field. The perturbation equations for a
small material rod located at the center of a TM012

mode cavity are given as follows (Jow et al. 1989):

f0 − fs

f0
= (ε′

r − 1)ABG · Vs

Vc
(12.19)

1

Qs
− 1

Q0
= 2ε′′

r ABG · Vs

Vc
(12.20)

with

A = J 2
0 (2.405Rs/Rc) + J 2

1 (2.405Rs/Rc) (12.21)

E

H

Sample

Figure 12.23 Field distribution of TM012 mode reso-
nant cavity. Source: Jow, J. Hawley, M. C. and Finzel,
M. C. and Asmussen, Jr. J. (1989). “Microwave heating
and dielectric diagnosis technique in a single-mode res-
onant cavity”, Review of Scientific Instruments, 60 (1),
96–103, by permission of American Institute of Physics
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B = 1 + [Lc/(2πLs)] · sin(2πLs/Lc)

· cos(4πH/Ls) (12.22)

G = 0.2178 · [c0/(f0Rc)] (12.23)

where Lc, Rc, Vc, f0, and Q0 are the length, the
radius, the volume, the resonant frequency, and
the quality factor of the empty cavity respectively;
H, Rs, and Vs are the height, the radius, and the
volume of the sample of the material under test
respectively; fs and Qs are the resonant frequency
and the quality factor of the loaded cavity respec-
tively; J0(x) and J1(x) are the zero-order and
the first-order cylindrical Bessel functions respec-
tively, and c0 is the velocity of light in free space.

Equations (12.19)–(12.23) indicate that when
the assumptions for resonant-perturbation theory
are satisfied, the dielectric properties of a sample
can be calculated from the changes of the resonant
frequency and quality factor due to the introduction
of the sample and the geometrical parameters of
the cavity and the sample.

As shown in Figure 12.24, Jow et al. devel-
oped a TM012 mode cavity with tunable reso-
nant frequency for processing and characteriz-
ing materials (Jow et al. 1989). The cavity is
made of a cylindrical brass tube, covered with
three transverse brass circular plates. The short-
ing plate inside the cavity is adjustable to pro-
vide a variable cavity length Lc. One sample
insertion hole is drilled through the center of the
top plates. The sample can be loaded through
this hole using a cotton thread without remov-
ing the top plates of the cavity. The removable
and shorting bottom plate is designed to easily
place and process large disk materials. Silver fin-
gers are soldered around both the internal short
plates to provide good electrical contact with the
cavity wall. A semirigid 50 	 impedance copper
coaxial probe serves as a field excitation probe,
and the coupling of this coupling probe can be
adjusted by adjusting the inner conductor depth
Lp. A microcoaxial probe is used as an E-field
diagnostic probe. The inner conductor depth of
the diagnostic probe is carefully chosen so that
the electric field is detectable and is essentially
undisturbed.

q = 90°

Lp

Lc

(a)
To power meter

Power meter

Diagnostic probe

Metal block

Cavity wall

Pb

Pb

Cavity

Coupling probe

Microwave
power

Inner condector

Figure 12.24 A TM012 mode cylindrical cavity for
processing and diagnosing dielectric samples (Jow et al.
1989). (a) Cross-sectional view (the θ = 0◦ plane passes
through the coupling probe) and (b) top view of the
diagnostic probe. Modified from Jow, J. Hawley, M. C.
Finzel, M. C. and Asmussen, Jr. J. (1989). “Microwave
heating and dielectric diagnosis technique in a sin-
gle-mode resonant cavity”, Review of Scientific Instru-
ments, 60 (1), 96–103, by permission of American Insti-
tute of Physics

Swept-frequency method and
single-frequency method

To obtain complex permittivity using cavity-
perturbation technique, the resonant frequencies
and quality factors before and after the introduction
of the sample should be measured. Two methods
have been used to measure the changes of
resonant frequency and quality factor due to
sample insertion: swept-frequency method and
single-frequency method. The swept-frequency
method measures conventional resonant frequency
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shift and quality factor changes from the resonance
curve with sweeping frequency of a cavity at a
fixed cavity length. The single-frequency method
measures the changes of the cavity length and
the power reflection or transmission at a single
frequency. It is also found that the error in a single-
frequency method can be smaller than that in the
swept-frequency method (Tian and Tinga 1993;
Jow et al. 1989).

Both swept- and single-frequency methods can
be applied to on-line diagnosing and processing
of materials. However, most of the incident input
power in the swept-frequency method is reflected,
while, using the single-frequency method, the
microwave power can be more efficiently trans-
ferred into the materials under process and test.
Besides, power and cavity length measurements in
the single-frequency method are faster and more
accurate. Furthermore, the microwave power input
can also be easily controlled using the single-
frequency method. Therefore, compared with
the swept-frequency method, the single-frequency
method is more suitable to simultaneously heat the
material and diagnose the heating process.

Single-frequency methods for materials’ property
diagnosis

When a single-frequency method is used to
simultaneously process and diagnose materials, the

temperature of the material should be controlled by
adjusting the microwave power, and meanwhile,
the dielectric properties of the material under
process should be monitored. The techniques of
temperature control in the methods discussed in
Section 12.6 can be used in this method, with
suitable modifications. In the following section,
we discuss two single-frequency methods for the
measurement of materials properties: transmission
method and reflection method.

Transmission method

In the single-frequency method developed by Jow
et al. (1989), the cavity is kept at the same resonant
frequency by adjusting the cavity length. The shift
of resonant frequency due to sample insertion is
obtained from the change of the length of the cav-
ity, and change of the quality factor is obtained
from the change of the ratio between the power
detected from the cavity and the power incident to
the cavity.

The measurement circuit is shown in Fig-
ure 12.25. The microwave source is protected
by an isolator (not shown in the figure) and
incorporates an amplifier. Another isolator (not
shown in the figure) is used to protect the amplifier
from power reflected from the cavity. The incident
power Pi from the source is decoupled by a
directional coupler and measured by a power

Power meter

Power meter

Power meter

Microwave
source

Amplifier Circulator Coupling
probe

Temperature measurement system

Sample

Cavity

Directional
coupler

Directional
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Matched load

Attenuator

E-field diagnostic probe
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Pt = Pi − Pr

Figure 12.25 Microwave processing and diagnostic system circuit (Jow et al. 1989). Modified from Jow, J.
Hawley, M. C. Finzel, M. C. and Asmussen, Jr. J. (1989). “Microwave heating and dielectric diagnosis technique
in a single-mode resonant cavity”, Review of Scientific Instruments, 60 (1), 96–103, by permission of American
Institute of Physics
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meter. The incident microwave energy is fed into a
tunable cavity by the coupling probe. The reflected
power Pr from the cavity is guided by a circulator,
attenuated down by an attenuator and measured
by another power meter. The power Pb detected
by the diagnostic probe and measured by a power
meter is proportional to the storage of microwave
energy in the cavity.

The cavity shown in Figure 12.24 is used in
the circuit shown in Figure 12.25. Continuous
microwave input power at 2.45 GHz is fed into
the cavity, and the length of the cavity is tuned to
achieve TM012-mode resonance at this frequency,
indicated by the minimum reflection power. This
resonant frequency (2.45 GHz) is the frequency f0

in Eq. (12.19).
The coupling between the cavity and the external

circuit is determined by the depth of the coupling
probe Lp in Figure 12.24(a). A critically coupled
structure is established when the reflected power
Pr is negligible compared with the incident power
Pi. The total dissipated power Pt in the microwave
system is the difference between the measured inci-
dent and reflected powers. The quality factor of the
cavity is proportional to the power ratio (Pb/Pc)

at the resonant frequency f0 (Jow et al. 1989):

Qc ∝ Pb/Pc ∝ Pb/Pt (12.24)

where Pc is the dissipated power in the cavity,
and Pb is the power detected by the diagnostic
probe as shown in Figure 12.25. So the ratio of
the quality factor of the cavity with and without
the sample can be determined by the power ratio
measurements as described by

Qs/Q0 = (Pbs/Pts)/(Pb0/Pt0) (12.25)

where the subscript “0” indicates the state without
sample, and the subscript “s” indicates the state
with sample. Equation (12.25) indicates that only
the initial measurements of the quality factor
Q0 and the power ratio of Pb0 to Pt0 for the
unloaded resonant cavity are required to determine
the quality factor Qs from the power ratio of Pbs

to Pts for the loaded resonant cavity.
The measurement procedure mainly consists of

four steps (Jow et al. 1989). In the first step, the
microwave system operates at low-power swept

frequency state, and the cavity is adjusted to
critical coupling state. The resonant frequency f0

and the quality factor Q0 of the empty TM012 mode
cavity are measured using the swept-frequency
method. In the second step, the swept-frequency
power input is switched to a single-frequency
power input at frequency f0, and the values of
Pb0, Pi0, Pr0, and Lc0 are measured. In the third
step, the sample is loaded to the cavity at a
position of maximum electric field (about the
center of the cavity). Owing to the presence of
the sample, the cavity is not in a resonant state.
By adjusting the cavity length from Lc0 to a new
length Lcs, where the minimum reflection power
is obtained, the resonant state is built again. The
critical coupling is then restructured by adjusting
the coupling probe depth to the point where the
reflected power could be neglected compared to the
incident power. Measurements of Pbs, Pis, Prs, and
Lcs are then made. The quality factor of the loaded
cavity is determined according to Eq. (12.25). In
the fourth step, the material is removed out of the
cavity, and the system is switched into a swept-
frequency state. The resonant frequency fs of the
empty cavity at the new cavity length Lcs is then
determined using the swept-frequency method.

For a given cavity, the calibration curves of
the resonant frequency shift versus the new cavity
length and the cavity quality factor versus the
power ratio can be obtained by calibration (Jow
et al. 1989). The measured values of the cavity
length and the power ratio can be directly related to
the resonant frequency shift and the cavity quality
factor from these calibration curves. Generally
speaking, the cavity length and the power ratio
decrease when the dielectric constant and dielectric
loss factor of the sample increase. To monitor
the properties of the sample on-line during the
single-frequency microwave heating, continuous
measurements of the cavity length and the power
ratio are required.

Reflection method

Tian and Tinga developed a single-frequency
reflection method for the measurement of relative
quality factor (Tian and Tinga 1993), and this
method is based on the fact that the quality factor
of a resonator is directly or inversely proportional
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Figure 12.26 Cavity detuning and retuning. (a) Cavity
containing a coupling device and two disturbances
V1 and V2 and (b) equivalent circuit of the cavity
at resonance. Modified from Tian, B. Q. and Tinga,
W. R. (1993). “Single-frequency relative Q measure-
ments using perturbation theory”, IEEE Transactions on
Microwave Theory and Techniques, 41 (11), 1922–1927.
 2003 IEEE

to the normalized input resonant resistance if a
moderate perturbation condition is satisfied.

Figure 12.26 shows a resonant cavity, magneti-
cally coupled to an external transmission line with
characteristic impedance Z0. The quality factor Q of
the cavity can be expressed as (Tian and Tinga 1993)

Q = Cm/R (12.26)

with
R = n2R/Z0 (12.27)

where R is the resonant resistance of the cavity,
R is the normalized resistance looking into the
cavity from the outside, n is the current transformer
ratio of the coupling mechanism, and Cm is a
constant for a cavity satisfying the perturbation
assumptions. For a cavity electrically coupled to
an external transmission line, by the principle of
duality, we have (Tian and Tinga 1995, 1993)

Q = CeR (12.28)

where Ce is also a constant for a cavity satisfying
the perturbation assumptions. It should be noted
that the use of an ideal transformer model repre-
senting the coupling device in no way limits the
generality of the above conclusions.

According to transmission line theory, the
normalized resistance R is related to the reflection
coefficient |�| by

R = 1 ± |�|
1 ∓ |�| (12.29)

where the choice of the sign depends on whether
the cavity is overcoupled or undercoupled, respec-
tively. Applying Eqs. (12.26) – (12.29), the rela-
tive quality factor can be determined through the
measurement of the reflection coefficient. Only if
an absolute value of quality factor needs to be
found must a value for Cm or Ce be determined.
The value of Cm or Ce can be obtained by compar-
ing the results obtained from the single frequency
method and the standard swept- frequency method.

As discussed in Chapter 6, there are two typ-
ical cases in perturbation applications. One is
detuning, where a dielectric disturbance, V1 as in
Figure 12.26(a), causes a resonant frequency shift.
The other is retuning, where, after a first distur-
bance, the resonant frequency is retuned via a sec-
ond disturbance, say V2, to the original unperturbed
resonant frequency. In retuning, the second distur-
bance of volume V2 to pull the disturbed resonant
frequency back to its undisturbed value can be
done by adjusting a short circuit plunger or a tun-
ing stub installed in a cavity. To maintain a fixed
resonant frequency, the addition of the energy vari-
ations caused by the two disturbances must be zero.
In other words, the energy in the twice-disturbed
cavity is equal to that of the undisturbed cavity, and
the Q measured in the retuned case will be more
accurate than that measured in the detuned case.

The application of the single-frequency relative
quality factor measurement in the determination
of the dielectric loss factor is based on the fact
that the dielectric loss factor can be derived from
the drop in quality factor resulting from the loss
of the sample inserted in the cavity (Tian and
Tinga 1993):

ε′′
r = ε′

r

F

(
1

Qs
− 1

Q0

)
(12.30)

where Q0 and Qs are the quality factors of the
cavity before and after the sample is loaded respec-
tively, and F is the filling factor. Equation (12.30)
can be rewritten as

ε′′
r = ε′

r

FQ0

(
Q0

Qs
− 1

)
(12.31)

Item (Q0/Qs) in Eq. (12.31) can be experimen-
tally measured. By calibrating the value of (FQ0),
instead of F , using a standard sample, the absolute
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value of ε′′
r can be determined from Q0/Q.

Throughout the process, neither Cm (Ce) nor the
absolute quality factor need to be determined.

12.6 DIELECTRIC-LOADED CAVITY
METHOD

Besides the cavity-perturbation method, the di-
electric-loaded cavity method is another type
of resonant method, which can be extended to
measure the dielectric properties of materials
at high temperatures. The resonant properties
of a dielectric-loaded cavity are determined by
both the cavity and the dielectric material. The
effects of the dielectric material to the resonant
properties of the dielectric-loaded cavity may be
great, and such a resonant structure cannot be
analyzed using the resonant-perturbation theory.
The dielectric-loaded cavity can be taken as a
case between a perturbed cavity and a dielectric
resonator, and accurate analysis of such a cavity
is complicated, and usually numerical methods are
needed. In this section, we discuss two types of
dielectric-loaded cavities: coaxial reentrant cavity
and open resonator.

In a dielectric-loaded cavity method, microwave
energy can be used in heating the sample under
test. A dielectric-loaded cavity may operate in
dual-mode approach or single-mode approach. In
the dual-mode approach, two resonant modes are
used for heating and characterizing the sample
respectively. In the single-mode approach, one res-
onant mode is used for both heating and charac-
terizing the sample. Besides, in the oscillation-loop
method discussed in the final part of this section,
the microwave energy for sample heating is gen-
erated by the oscillation loop including the cavity
loaded with the dielectric sample under test.

12.6.1 Coaxial reentrant cavity

Figure 12.27 shows two types of coaxial reen-
trant cavities that are often used in materials prop-
erty characterization: single-post reentrant coax-
ial cavity and double-post reentrant coaxial cav-
ity. In a single-post coaxial cavity, the dielec-
tric sample is placed at the gap region between
the open end of the central conductor and one

Dielectric

Dielectric

Gap
region

(a) (b)

Figure 12.27 Two types of coaxial reentrant cavities
loaded with dielectric samples. (a) Single-post coaxial
cavity and (b) double-post coaxial cavity

end-wall of the cavity (Xi et al. 1992b). In a
double-post coaxial cavity, the sample under test
is placed between the two open-ends of the two
central conductors (Xi et al. 1994). The single-
post structure has the advantage of easier sam-
ple loading than the double-post structure. In the
following discussion, we concentrate on single-
post structure.

A single-post reentrant coaxial cavity, as shown
in Figure 12.27(a), supports a series of quasi-
TEM modes whose field patterns closely match
the TEM modes in the region far from the
gap, and in the gap region, are similar to the
TM mode pattern. These TM modes provide a
strong Ez component so that high measurement
sensitivity and high heating rate are attainable
for a sample present in the gap. Based on
this structure, Tinga et al. developed a coaxial
reentrant cavity both as a microwave heater and
a dielectrometer with the capability of measuring
the complex permittivity of a small sample from
300 to 1600 ◦C (Tinga 1992; Xi and Tinga 1992c).
By virtue of the selective and localized microwave
heating, a small sample can be rapidly heated
to its melting point, while the cavity remains at
room temperature, thereby greatly reducing the
expansion errors that occur in a conventional
sample-heating scheme.

12.6.1.1 Cavity structure

Figure 12.28 shows the gap regions of three single-
post coaxial reentrant cavities:

(a) without insertion hole or a sample holder,
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Sample Sample Sample

Sample holder

(a) (b) (c)

Figure 12.28 The gap regions of three cavities:
(a) without an insertion hole or a sample holder, (b)
with an insertion hole but without a sample holder, and
(c) with both an insertion hole and a sample holder

(b) with insertion hole but without sample holder,
and

(c) with both insertion hole and sample holder

In the design of measurement fixtures, the
structure (c) has obvious advantages. Using a
hollow center conductor and a metallic support
in the endplate, one can insert a cylindrical
sample through the insertion hole and push it
through the focused-field gap into the hollow
center conductor, without dismantling the cavity.
By making the diameter of the hole much smaller
than the wavelength in the sample, the hole can
only support evanescent modes. Thus, the fields
are strongly attenuated inside the hole, and the
physical discontinuities at the sample ends are
virtually invisible to the cavity fields (Tinga and
Xi 1993a). The use of the sample holder makes
it possible that various types of samples can
be processed and tested, including powders and
liquids. More discussions on the effects of the
hole and sample holder can be found in (Xi and
Tinga 1992a).

Figure 12.29 shows the basic structure of the
reentrant coaxial cavity developed by Tinga
et al. In this cavity, the gap structure shown in
Figure 12.28(c) is used. As this cavity is expected
to operate at dual-mode approach, the dimensions
of the cavity should be chosen such that two quasi-
TEM modes resonate simultaneously at the testing
and heating frequencies (Tinga and Xi 1993a).

Figure 12.30 shows the resonant frequency shift
�f0 of three cavities with different gap structures
shown in Figure 12.28. Except for the gap regions,
the three cavities have identical dimensions:
rs = 0.24 cm, r1 = 1.23 cm, r2 = 4.51 cm, L =
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Figure 12.29 Cross section of a single-post coaxial
reentrant cavity used as a heating and testing chamber
(Xi and Tinga 1992a). Modified from Xi, W. G. and
Tinga, W. R. (1992a). “Field analysis of new coaxial
dielectrometer”, IEEE Transactions on Microwave The-
ory and Techniques, 40 (10), 1927–1934.  2003 IEEE
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Figure 12.30 Resonant frequency shift produced by a
sample at about 3 GHz (Xi and Tinga 1992a). Cavities
(a), (b), and (c) respond to the three structures shown
in Figure 12.28. For cavity (a), r0 = 0. For cavity (b),
r0 = rs. For cavity (c), r0 = 0.37 cm, and the dielectric
constant of the sample holder is 3.78. The structural
parameters are defined in Figure 12.29. Modified from
Xi, W. G. and Tinga, W. R. (1992a). “Field analysis
of new coaxial dielectrometer”, IEEE Transactions on
Microwave Theory and Techniques, 40 (10), 1927–1934.
 2003 IEEE

20.5 cm, and D = 0.3 cm (Xi and Tinga 1992a).
The above structural parameters are defined in
Figure 12.29. The slope of �f0 versus εr deter-
mines the sensitivity in dielectric determinations,
and it also commands the measurable range of
dielectric properties because a larger detuning of
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a resonator tends to bring about more difficulties
such as impedance mismatch in practical measure-
ments. Therefore, a coaxial cavity with sample
insertion holes and holder can extend the mea-
surable range of dielectric properties. Moreover,
it presents a better linearity of frequency shift as a
function of dielectric constant. This improvement
in linearity is not only the consequence of a reduc-
tion of the gap field but also the outcome of an
increased effective hole depth at a higher dielec-
tric constant, which offsets the saturation exhibited
for a normal detuning curve, such as the curve for
cavity (a) (Xi and Tinga 1992a).

Convenient, rapid and repeatable measurements
can be made with this structure, which remains
at or near room temperature during the entire
test cycle time. If necessary, the hollow center
conductor can be cooled using liquid to keep the
cavity temperature constant. To allow a wider
complex permittivity range, the gap width can
be increased. The loss factor of the sample can
be determined from the cavity quality factor.
In addition, an accurate, theoretically derived
calibration of frequency shift versus permittivity
is available, from a mode-matching model of

this reentrant structure, making calibration against
reference materials unnecessary (Xi and Tinga
1992a). Error analysis for this method can be found
in (Tinga and Xi 1993b).

12.6.1.2 Control and measurement circuit for
dual-mode method

In a cavity for dual-mode method, both the heat-
ing mode and testing mode resonate, and these
two modes are driven by two separate microwave
sources. Figure 12.31 shows a block diagram of
the measurement system. In this setup, the cavity is
connected to three channels. A 2- to 4-GHz reflec-
tometer is used as the testing channel, in which
the frequency shift and change of quality factor
produced by an inserted sample are measured for
dielectric determinations. The heating channel is
mainly a microwave power source at 915 MHz,
tunable over a 30-MHz band and capable of pro-
viding high microwave power. An electronic tuner
is used to automatically adjust the power source
frequency to the resonant frequency of the cavity,
thus ensuring effective power delivery. An opti-
cal fiber thermometer (OFT) makes up the third
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Figure 12.31 High-temperature automatic dual-mode dielectrometer system (Tinga 1992). Reproduced from
Tinga, W. R. (1992). “Rapid high-temperature measurement of microwave dielectric properties”, Materials Research
Society Symposium Proceedings, 269, 505–516, by permission of Materials Research Society
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channel for measuring and controlling the temper-
ature of the sample. Besides, a computer is used for
automatic instrument setting, data acquisition and
processing, and testing and heating control (Xi and
Tinga 1992c; Tinga 1992).

12.6.1.3 Single-mode method

On the basis of single-frequency quality fac-
tor measurement techniques discussed in Sec-
tion 12.5.3, the dielectric-loaded cavity can work
at single-mode state (Tinga 1992). In a single-
mode cavity method, the dielectric sample is
heated while, simultaneously, its permittivity is
measured with a single frequency microwave
source. This eliminates most of the other-
wise required precision instruments and makes
the method suitable for on-line monitoring of
microwave material properties when those mate-
rials are being heated with microwave power.
The trade-off of this method is that electronic or
mechanical adjustment is required to keep the res-
onator tuned and matched to the power source
frequency. The frequency tuning can be made by
the movable end wall, and the coupling match-
ing can be accomplished by adjusting the coupling
structure, for example, a movable coupling loop.

12.6.2 Open-resonator method

The open-resonator method is the resonant method
corresponding to the free-space method discussed
in Section 12.4. The open-resonator method for
measuring dielectric materials at high temperatures
offers certain distinct advantages. The sample
under test does not need to contact the cavity
wall, and the cavity has high quality factor
though it is an open structure. Figure 12.32 shows
two structures for dielectric measurement using
open resonators. The spherical-mirror resonator is
convenient for flat sheet specimens (Cullen et al.
1972). The applications of using spherical-mirror
resonators for materials property characterization
have been discussed in Chapter 5. In this section,
we concentrate on the barrel-resonator method, and
follow the analyzing approach in (Nagenthieram
and Cullen 1974).

Z

r

f

(a) (b)

Figure 12.32 Open resonators for dielectric measure-
ment. (a) Spherical-mirror resonator and (b) barrel res-
onator. Source: Nagenthieram, P. and Cullen, A. L.
(1974). “A microwave barrel resonator for permittivity
measurements on dielectric rods”, Proceedings of the
IEEE, 62 (11), 1613–1614.  2003 IEEE

The inside surface of a barrel resonator is
constructed in the shape of a barrel, and both the
top and the bottom of the barrel are open. A barrel
resonator is convenient for rod specimens. A long
cylindrical rod of material may be introduced into
the barrel through the open ends, and the change
in resonant frequency and quality factor of the
barrel can be measured and related to the dielectric
properties of the rod. Regarding the measurement
procedure, the barrel resonator is usually coupled
to the source and detector waveguides by small
holes, as used in conventional closed resonators,
and the resonant modes can be identified by a small
bead perturbation method.

The resonant frequency of an empty barrel res-
onator can be calculated by two distinct methods
(Nagenthieram and Cullen 1974). The first method
synthesizes the expected Hermite function form
of axial field variation from circular waveguide
modes using a Fourier integral method. Accord-
ing to this method, the resonant frequency of an
empty barrel cavity is given by

fmnq = c

2πr0
vmn (or v′

mn)

+ (2q + 1)
c

2πr0

√
r0

4R0 − r0
= fc (12.32)

with
Jm(vmn) = 0 for E modes (12.33)

J ′
m(v′

mn) = 0 for H modes (12.34)
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where m, n, and q are the azimuthal, radial, and
axial mode numbers, respectively; R0 is the radius
of curvature of the barrel in a plane φ = constant;
r0 is the radius of the barrel in the plane z = 0;
and c is the speed of light in vacuum. The second
method first obtains an approximate solution to the
wave equation in prolate spheroidal coordinates,
which is then used in a variational formula to get
a more accurate result for the resonant frequency.
This method gives the resonant frequency of an
empty barrel cavity expressed as

fmnq = c

2πr0
vmn (or v′

mn)

+
(

q + 1

2

)
c

2πr0

√
r0

R0 − r0
= fν.

(12.35)
Measurement results were found to be in equally

good agreement with both theories and within
the estimated accuracy of 0.15 %, which is the
same for both theories. However, the variational
method is potentially the more powerful, as it is
capable of giving higher accuracy if more accurate
field expressions are available (Nagenthieram and
Cullen 1974).

For the measurement of dielectric permittivity,
it is necessary to calculate the resonant frequency
of a dielectric-loaded resonator, as shown in
Figure 12.32(b). We assume n1 = (εr)

1/2 is the
refractive index of the dielectric material with
respect to air, and the radius of the dielectric
rod is t . The equation of resonance in this case
can be determined by matching field components
across the dielectric-air interface (Nagenthieram
and Cullen 1974):

J0(x)J1(y)Y0(z)

−J0(x)Y1(y)J0(z)

= n1 · [J0(y)J1(x)Y0(z)

−J1(x)Y0(y)J0(z)]

for E0n0 modes (12.36)

J0(y)J1(x)Y1(z)

−J1(x)Y0(y)J1(z)

= n1 · [J0(x)J1(y)Y1(z)

−J0(x)Y1(y)J1(z)]

for H0n0 modes (12.37)

with

x = n1kt − 1

2
tan−1

(
2t

n1kw2
0

)
(12.38)

y = kt − 1

2
tan−1

(
2t

n1 kw2
0

)
(12.39)

z = kr0 − 1

2
tan−1

[
2t

kw2
0

·
(

r0 − t + t

n2
1

)]
(12.40)

kw2
0 = 2

√(
R0 − r0 + t − t

n2
1

)(
r0 − t + t

n2
1

)
(12.41)

where w0 is the scale width of the resonant
(beam) mode in the z direction. The preceding
transcendental equations may be used to calculate
n1, and hence εr from known values of R0, r0, t and
the measured resonant frequency f of the barrel
cavity loaded with the dielectric rod.

As the same approximate theory is used to
predict the resonant frequencies of the empty
and dielectric-loaded resonators, the error in the
resonant frequencies due to the approximation
in the theory is probably almost the same in
both cases. Therefore, it is not necessary to
mechanically measure r0. The value of r0 can be
determined by using the corresponding resonant
frequency of the empty resonator in Eq. (12.35),
and the errors arising from the approximate theory
will tend to cancel, therefore giving a more
accurate result for n1. Besides, it needs to be noted
that a large value of R0 could make the inaccuracy
in the theory negligible.

In a barrel-cavity method for measurements at
high temperatures, the rod sample may be heated
in a conventional furnace mounted above the
open end of the barrel. The sample may then be
rapidly transferred to the barrel where the dielectric
properties can be monitored as the sample cools
(Arai et al. 1992). Besides, we can also load the
rod sample to the barrel cavity first, and then heat
the sample using IR or laser methods. In order
to reduce heat transfer to the cavity, the inside
surface of the cavity is usually highly polished.
Meanwhile, the cavity itself can be maintained at
a constant temperature by water-cooling.

12.6.3 Oscillation method

Most of the microwave dielectric measurement
methods discussed in this book are passive. In
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a passive method, the microwave source and the
sample under test are independent of each other.
In contrast, an active microwave dielectric mea-
surement method incorporates the dielectric under
test into the microwave oscillation mechanism, so
that the properties of this dielectric are among the
factors that determine the oscillation parameters
such as the oscillation frequency and the power
level. The use of an active oscillation loop for
dielectric measurement was formally proposed by
Ajmera et al. (1974). Tian and Tinga designed and
analyzed a microwave oscillation loop formed by
a dielectric-loaded cavity, amplifiers, and trans-
mission lines for the dielectric-constant measure-
ment (Tian and Tinga 1994). From the measured
loop oscillation frequency, the cavity resonant fre-
quency, and thereby the dielectric constant of the
sample in the cavity can be determined. Further-
more, if a power amplifier is used in the oscillation
loop, a power high enough to heat the sample
can be achieved. In this case, the microwave gen-
erated in the loop serves not only the dielectric
measurement but also the sample heating, resulting
in a novel, active high-temperature dielectrometer.
Because of its self-regulated frequency, no tun-
ing and tracking system is needed, which normally
is an indispensable part of a dielectrometer using
microwave sample heating.

In this section, we first discuss the oscillation
condition of an arbitrary two-port network having
its input and output ports connected. Then, we
discuss the experimental systems for the dielectric
constant measurement at room temperature and
high temperatures respectively.

12.6.3.1 Oscillation conditions of an active loop

An active oscillation loop consisting of an ampli-
fier, transmission lines, and a cavity loaded
with the unknown dielectric, as shown in Fig-
ure 12.33(a) is a typical active microwave dielec-
tric measurement system. The oscillation fre-
quency, fL, of the loop is regulated by the dielec-
tric constant to be measured, and, in return,
the unknown dielectric constant can be deduced
from the oscillation frequency fL, which can be
directly measured.

In Figure 12.33(b), the oscillation loop is rep-
resented by a two-port network having its input
and output ports connected. The oscillation condi-
tion can be expressed in the form of S-parameters
(Tian and Tinga 1994):

(1 − S21)(1 − S12) = S11S22 (12.42)

As the position of the reference plane is
arbitrary, Eq. (12.42) is valid at any position in the
loop that may contain many different components.
In the special case of a unidirectional network
such as a loop with a high gain amplifier, one of
its transmission parameters, say S12, is zero, so
Eq. (12.42) becomes

1 − S21 = S11S22 (12.43)

Moreover, when one of its ports, say port 2, is
matched, S22 is also zero, and Eq. (12.43) can be
further reduced to

S21 = 1 (12.44)
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Figure 12.33 An oscillation loop for dielectric-constant measurement. (a) Oscillation loop consisting of a cavity,
an amplifier, and transmission lines and (b) a network with S-parameter representation. Modified from Tian, B. Q.
and Tinga, W. R. (1994). “A microwave oscillation loop for dielectric constant measurement”, IEEE Transactions
on Microwave Theory and Techniques, 42 (2), 169–176,  IEEE
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Equation (12.44) indicates that the phase of the
transmission parameter is equal to zero and its
magnitude is equal to unity or its gain is zero,
for the special cases when S11 = S21 = 0 or S22 =
S12 = 0. In these cases, the oscillation constraint
of an active loop can also be expressed as a phase
equation and a gain equation:

φ = 2nπ (12.45)

G = 0 (12.46)

where φ is the phase shift of the loop in radians,
G is the gain of the loop in dB and n is
an integer. However, it should be noted that
Eqs. (12.45) and (12.46) are applicable only for a
unidirectional loop at a matched reference plane
(Tian and Tinga 1994).

As the oscillation loop for dielectric constant
measurement usually includes high gain amplifiers
and a matched isolator at its port 2, the condition
of S22 = S12 = 0 is well satisfied, so we can prop-
erly use Eq. (12.44) as its oscillation condition.
Meanwhile, for the given reference plane in the
following discussion, the loop phase shift is actu-
ally the phase φ21 of S21, so it is not necessary to
distinguish between the loop phase and the phase
of S21.

12.6.3.2 Circuit for measurements at room
temperature

An oscillation loop for dielectric measurement
should consist, at least, of a cavity, an ampli-
fier, and transmission lines. In practice, the loop
may need more components such as attenuators
for adjusting the gain, directional couplers for
coupling signals from the loop, and isolators for
improving the impedance match to certain com-
ponents. Usually, an attenuator can be included in
an amplifier as a gain adjustment device, and a
directional coupler or an isolator can be treated
approximately as a section of transmission line.
Therefore, from a theoretical modeling point of
view, a cavity, an amplifier, and a transmission
line are the basic elements.

The active loop for the dielectric measurement
should be designed to operate in a cavity mode
instead of any noncavity modes (Tian and Tinga

1994). Using such a loop for a dielectric con-
stant measurement requires a quantitative relation
between the loop oscillation frequency fL and the
cavity resonant frequency fc, since it is fL that will
be measured, whereas it is fc that will be used to
determine the dielectric constant of the sample in
the cavity. If high accuracy is not required, fL can
be taken as fc. However, for high-accuracy mea-
surement, the exact value of fc should be used. The
cavity resonant frequency fc and the loop oscilla-
tion frequency fL are related to each other through
Eq. (12.44). According to the oscillation condition
Eq. (12.44), the loop oscillation frequency fL is
the frequency that makes φ21 = 0. Detailed discus-
sions on the relationship between fL and fc can be
found in (Tian and Tinga 1994).

Figure 12.34 shows a dielectric-constant mea-
surement system using an active loop. In princi-
ple, the cavity can be of any type, for example,
the reentrant coaxial cavity discussed earlier. The
limiting level of the limiter, depending on its dc
bias, can be adjusted to enable the amplifier to
achieve its maximum output. A circulator pro-
vides a matched input as seen from the cavity

Sample
cavity

Ac

Limiter
GA

Amp

Circulator

#2 #1

#3

Directional coupler

Power
meter

Power
meter

Computer

Frequency counter

Figure 12.34 Oscillation loop for dielectric-constant
measurement (Tian and Tinga 1994). Modified from
Tian, B. Q. and Tinga, W. R. (1994). “A microwave
oscillation loop for dielectric constant measurement”,
IEEE Transactions on Microwave Theory and Tech-
niques, 42 (2), 169–176.  2003 IEEE
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while isolating the cavity from the amplifier and
providing the frequency counter with a measure-
ment signal through its port 3. A dual directional
coupler forms a reflectometer to monitor the reflec-
tions from the cavity. Two power meters, a fre-
quency counter, and a computer form a data acqui-
sition system, which records the forward and the
reflected power as well as the loop frequency for
analysis by the computer (Tian and Tinga 1994). In
experiments, fL is initially measured for the empty
cavity. After a sample is inserted into the cavity,
fL is measured again. Then the fc values can be
calculated from corresponding fL values. The val-
ues of �fL and �fc are then used to calculate the
dielectric constant.

Here we discuss how the gain condition affects
the dynamic range of a sample’s allowable dielec-
tric loss factor. Considering the directional cou-
pler and the circulator as part of the transmission
line, the total gain around the loop should be the
summation of the gains, in dB, of the cavity, the
amplifiers and the attenuation in the rest of the
loop. According to (12.46), the gain should equal
zero when the loop oscillates:

Ac + AL + GA = 0 (12.47)

where Ac is the cavity attenuation (a reduction in
gain) including sample loss, GA is the amplifier
gain, AL is the attenuation in the rest of the loop
made up of the limiter and transmission lines.
Besides having to satisfy Eq. (12.47), in a practical
case, a stable oscillation cannot be established
unless the amplifier is saturated.

12.6.3.3 Circuits for measurements at high
temperatures

The oscillation method can be extended to
dielectric-constant measurement at high tempera-
tures (Tian and Tinga 1994). By adding a power
amplifier and a temperature measurement chan-
nel, as shown in Figure 12.35, this active loop
can be used to both heat the sample and mea-
sure its dielectric constant. The two preamplifiers
enable the loop oscillation to start from the system
noise level and supply the power amplifier with
the required input driving power. The attenuator
between the two preamplifiers ensures a proper
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Figure 12.35 Oscillation system for the measurements
of dielectric constant at high temperatures. In the system,
the sample is heated in the high-power region, while
the measurement components are all in the low-power
region (Tian and Tinga 1994). Modified from Tian, B. Q.
and Tinga, W. R. (1994). “A microwave oscillation loop
for dielectric constant measurement”, IEEE Transactions
on Microwave Theory and Techniques, 42 (2), 169–176.
 2003 IEEE

input power level for the amplifier. The power
amplifier boosts the power to a level high enough
to heat up the sample. The microwave power, loop
frequency, and the sample temperature are mea-
sured with a power meter, a frequency counter,
and an optical fiber thermometer respectively.

As indicated in Figure 12.35, there are two
different power regions in the active loop: a high-
power region and a low-power region. Only the
sample is located in the high-power region while
the rest of the components are in the low-power
region, avoiding high power–related problems
such as overheating, performance deterioration,
and damage to the measurement instruments.

In experiments, before the sample is introduced,
it is necessary to adjust the empty cavity frequency
and the output of the power amplifier to establish
a proper oscillation in the loop, then measure the
oscillation frequency, which serves as the reference
for the subsequent frequency shift due to the
introduction of the sample. The sample is inserted
into the cavity, and then the microwave energy
generated in the loop heats the sample. When
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the sample reaches the desired temperature, the
temperature and frequency data will be recorded.
The dielectric constant of the sample can be
then calculated from the measured frequency shift
due to the sample. In this way, the temperature
dependence of the dielectric constant can be
obtained in a short period, depending on the self-
oscillating microwave power, which is used in
sample heating.
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Admittance
characteristic, 46
matrix, 119–121

Anisotropic material, 28
dielectric, 323–325
magnetic, 325–326

Antenna
as transition, 83
bandwidth, 85
conical monopole, 156
directive gain, 85
hemispherical, 156
power gain, 84
spheroidal, 156
with step transition, 156

Antiferromagnetic material, 5
Atomic polarization, 11, 12
Attenuation coefficient, 10

BCS theory, 4, 17
Beam

focused, 86
parallel 85
width, 86

Bohr’s model, 3

Calibration, 123–126. See also Free-space calibration,
Measurement error, Network analyzer.
one-port, 123
two-port, 124–126

full two-port, 124
TRL, 125

Cavity perturbation, see also Resonant perturbation.
extra-cavity, 265–267
modification, 261–264

calibration, 263
frequency retuning, 262

permeability measurement, 258
permittivity measurement, 256

Cavity resonator
coupled to one transmission line, 90
coupled to two transmission lines, 91
cylindrical, 100–103

mode chart, 102
TE resonant mode, 100
TM resonant mode, 101

rectangular, 97–99
TE resonant mode, 98
TM resonant mode, 99

sample-loaded, 258
Chiral material, 25, 414–415
Chirality, 414, 434, 440, 445–450, 455–456.
Chirality measurement

free space, 415–452
waveguide, 452–457
rotation angle, 414–415, 417, 448, 452–453.

Circular birefringence, 439
Circular dichroism, 439
Circular-radial resonator, 216–219
Coaxial air-line transmission/reflection methods,

182–187
enlarged circular coaxial line, 186
enlarged square coaxial line, 186
measurement uncertainty, 183

Coaxial line:
attenuation, 57
characteristic impedance, 57
field distribution, 57
shielded, 158

Coaxial resonators:
capacitor-loaded, 94
half-wave length, 93
quarter-wave length, 94

Coaxial surface-wave:
resonator, 228–231
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Coaxial surface-wave: (continued )
closed, 229
open, 228

transmission structure, 81–83
Coaxial-line probe, see also Coaxial-line reflection

method.
terminated into layered materials, 151–154

sample backed by free space, 153, 154
sample backed by metal, 152, 153

modeling, 145–149
capacitance, 145
full wave simulation, 149
radiation, 146
rational function, 148
virtual line, 147

modification,
conical tip, 157
large, 149
with elliptic aperture, 150

Coaxial-line reflection method, 144–161. See also
Coaxial-line probe.
flange effect, 149

Cohn resonator, 214
Cole–Cole diagram, 14
Composite material:

dielectric-conductor, 31
dielectric–dielectric, 29

Conductivity, 7
complex, 18
dielectric, 8
ionic, 15

Conductor, 4, 11, 16
perfect, 17

Constitutive parameter, 7
Constitutive relation, 6, 414, 434
Coplanar nonresonant method, 309
Coplanar resonant method, 311
Coplanar waveguide:

attenuation factor, 62
characteristic impedance, 61
effective dielectric constant, 61

Cotton effect, 414, 444
Coupling:

capacitive, 97
coefficient, 91
electric, 95
magnetic, 95
parallel-line, 97
tap, 97

Courtney resonator, 209–214
conducting plate, 212
configuration, 209
higher resonant mode, 214

mode chart, 209
usable range, 212

Cut-off frequency, 63

Dallenbach layer, 33
Debye theory, 13
Diamagnetic material, 4
Dielectric interface, 74
Dielectric material, 11
Dielectric microstrip, 78
Dielectric property at high temperature, 492–494
Dielectric property measurement at high temperature:

cavity perturbation, 510–520
heating technique, 511
TE mode rectangular cavity, 512
TM mode cylindrical cavity, 514

coaxial re-entrant cavity, 520–523
heating technique, 522
measurement circuit, 522
structure, 520

coaxial-line, 497–503
heating technique, 499
phase shift correction, 500
thermal elongation, 500
spring-loaded, 502

free-space, 199, 506–510
measurement system, 506

measurement problem, 494
open-resonator, 523

barrel, 523
spherical-mirror, 523

oscillation, 524–528
circuit for high temperature, 527
circuit for room temperature, 526
oscillation condition, 525

waveguide, 503–506
dual-waveguide, 504
open-ended, 503

Dielectric resonator, 34, 103–119
isolated, 105
shielded, 106

asymmetrical parallel plate, 107
cut-off magnetic-wall waveguide, 109
closed metal shields, 110, 222–227
parallel-plate, 106

Dielectric resonator perturbation, 267
Dielectric slab:

grounded, 76
ungrounded, 76

Dielectric waveguide, see also Surface wave
transmission line.
cylindrical, 79–81
rectangular, 77–78
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Dielectric waveguide transmission / reflection method,
see Surface waveguide transmission / reflection
method.

Dipolar polarization, 13, 14

Effective medium method, 29
Electrical transport property, 460. See also Hall effect.

carrier density, 460
conductivity, 460
mobility, 461
of magnetic material, 486

bimodal cavity, 487
bimodal dielectric probe, 489

Electronic polarization, 11, 12
Energy band

conduction band, 3
forbidden gap, 3
valence band, 3

Extrinsic performance, 32

Fabry–Perot resonator, see Open resonator.
Faraday rotation, 464. See also MHE measurement,

Permeability tensor measurement.
Ferrimagnetic material, 5
Ferroelectric material, 15, 382
Ferroelectricity, 15–16, 382–385

Curie temperature, 15, 16
electric field dependence, 385
hysteresis curve, 383
perovskite, 383
temperature dependence, 383
tunability, 385

Ferroelectricity measurement 385–412
biasing scheme, 404
capacitor, 394

capacitor design, 395
fin-line resonator, 404
planar split-resonator, 398

cavity perturbation, 388
coplanar resonator, 394
coplanar waveguide, 390
dielectric resonator, 386

Courtney resonator, 386
disk resonator, 387

near-field microscope, 390
nonresonant, 385

reflection, 385
transmission/reflection, 386

nonlinear behavior, 406
inter-modulation, 409
pulsed signal, 407

responding time, 406
Ferromagnetic material, 5, 325–326, 346, 355.

Ferromagnetic resonance, 325–326, 370–371. See also
Magnetic resonance.

Ferromagnetic resonance measurement, see also
Permeability tensor measurement.
cavity, 373

reflection, 373
transmission, 373

planar-circuit, 376
microstrip resonator, 378
MSW-SER, 376
slot-coplanar junction, 377

principle, 371
waveguide, 374

cross-guide, 375
frequency variation, 374
pickup coil, 376

Fourier transform, 127
Free space, 83
Free-space calibration, 417–430. See also Calibration.
Free-space reflection method, 161–164

bistatic reflection, 164
far-field requirement, 161
movable metal backing, 162
short-circuited reflection, 162

Free-space transmission / reflection method, 195–200
algorithm, 195
high-temperature measurement, 199, 506–510
TRL calibration, 197
uncertainty, 198

Hall effect, see also Electrical transport property.
ac, 461
dc, 461
extraordinary, 486
microwave, 461
ordinary, 486

Helix, 414, 416, 452
Hysteresis loop

ferroelectric material, 15
magnetic material, 19

Image guide,
cylindrical, 81
rectangular, 78

Impedance,
characteristic, 46
input, 48
matching, 71
matrix, 119–121
wave, 10

Index ellipsoid, 324
Insulator, 3, 4, 11
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Intrinsic property, 32
Isotropic material, 28

Left-handed material, 25–27
Linear material, 28
Loss tangent:

dielectric, 8
magnetic, 9

Macroscopic scale, 6–11
Magnetic material, 11, 19–24

electrical transport property, 486–489
hard, 22
soft, 22
thin film, 311

Magnetic moment, 4
Magnetic resonance, 22–24. See also Ferromagnetic

resonance
natural resonance, 22
wall resonance, 24

Magnetization, 19
easy direction, 20
hard direction, 20

Matching,
field, 71
impedance, 71

Material perturbation, 253–255
small object, 254
whole medium, 254

Maxwell’s equation, 7
Mean-field method, 29
Measurement error, 122–123. See also Calibration,

Network analyzer.
drift, 123
random, 123, 417
systematic error, 122, 417

Metamaterial, 24
MHE cavity, 475–484. See also Hall effect, MHE

measurement, MHE resonator.
circular cylindrical, 479
endplate, 482
materials in, 476
orthogonal resonant modes, 475
rectangular, 481

MHE measurement, 464–486
Faraday rotation, 464
reflection, 469

adjustable short, 469
cross-slit probe, 472

resonance, 475. See also MHE cavity, MHE
resonator.
measurement circuit, 476

transmission, 465

dielectric waveguide, 468
free-space, 468
waveguide, 465

turnstile junction, 473
MHE resonator, 484–486. See also Hall effect, MHE

cavity
cross-slit dielectric probe, 484
planar resonator, 486
rectangular dielectric resonator, 484

Microscopic scale, 2–6
Microstrip, 59–61

attenuation, 61
characteristic impedance, 60
effective dielectric constant, 60

Microstrip nonresonant method, 298–300
transmission line, 298
transmission / reflection, 299

Microstrip resonant method, 300–309
cross-resonator, 305
ring resonator, 301
straight-ribbon resonator, 302
T-resonator, 304
two-section microstrip, 306

Microwave propagation, 42–87
high temperature, 493

Microwave processing, 493
Monolithic material, 29

Near-field microwave microscope, see also
Ferroelectricity measurement.
planar circuit, 317–320

electric dipole probe, 318
magnetic dipole probe, 319
working principle, 317

reflection, 170–172
capacitive mode, 172
inductive mode, 171
rectangular slit, 170

resonant perturbation, 278–286
dielectric resonator, 284
open-ended coaxial resonator, 280
permeability measurement, 283
permittivity measurement, 282
sheet resistance measurement, 281
tip-coaxial resonator, 279
waveguide cavity, 284
working principle, 278

Network analyzer, 121–126. See also Calibration,
Measurement error.

Nonlinear material, 28
Nonresonant method, 38–40. See also Planar-circuit

nonresonant method.
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reflection, 38
transmission/reflection, 39

Open resonator, 115–119, 523. See also Open
resonator method.
barrel, 523
concentric, 117
confocal, 117
coupling, 117
parallel plane, 115
spherical-mirror, 523
stability requirement, 116
stability diagram, 116

Open resonator method, 238–242. See also Open
resonator.
bi-concave resonator, 239

frequency variation, 239
length variation, 240

plano-concave resonator, 241
Ordered magnetic material, 5

Paraelectric material, 15
Paramagnetic material, 5
Penetration depth, 18
Percolation, 31
Permeability,

complex, 7, 10
relative, 9
tensor, 325

Permeability tensor measurement, 340–370. See also
Ferromagnetic resonance measurement.
coaxial air-line, 340
Faraday rotation, 345

bimodal cavity, 350
circularly polarized propagation, 347
reflection 348

partially-filled waveguide, 341
resonant perturbation, 355

circularly polarized cavity, 359
exact theory, 365
geometrical effect, 360–365
linearly polarized cavity, 359

resonator, 351
ring resonator, 353
shielded cylindrical resonator, 353
TE111 resonator, 352
whispering-gallery resonator, 354

Permeance meter for magnetic thin film, 311–316
electrical impedance, 315
single-coil, 314
two-coil, 312
working principle, 312

Permittivity:
complex, 7, 10
relative, 8
tensor, 323

Permittivity and permeability, measurement using
reflection method, 164–168
combination, 166
different backing, 167
different position, 165
frequency-variation, 167
time-domain, 168
two-thickness, 164

Permittivity tensor measurement,
326–340
reflection, 327

coaxial line, 327
free space, 329
waveguide, 328

resonant perturbation, 336
resonator, 333

sandwiched resonator, 334
shielded resonator, 333
whispering-gallery resonator, 334

transmission / reflection, 331
circular waveguide, 331
coaxial discontinuity, 332

Phase change coefficient, 10
Phase velocity, 63
Photonic band-gap material, 27–28
Piezoelectric material, 15, 382
Planar-circuit nonresonant method, 288–290. See also

Coplanar nonresonant method, Microstrip
nonresonant method, Stripline nonresonant method.
reflection, 288
transmission / reflection, 289

Planar circuit resonant method, 290–291. See also
Coplanar resonant method, Microstrip resonant
method, Stripline resonant method.
resonant perturbation, 290
resonator, 290

Planar-circuit resonator, 95–97
circular, 96
ring, 96
straight ribbon, 96

Propagation coefficient, 10
Pyroelectric material, 15, 382

Quality factor for material, 9
Quality factor for resonator, 87

loaded, 135
measurement,

134–139
nonlinear phenomena, 136
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Quality factor for material (continued )
reflection, 135
transmission, 136

unloaded, 135

Reflection, 47, 142–144. See also Reflection method.
open-circuited, 142
short-circuited, 143

Reflection coefficient, 48
Reflection method, 38–39. See also Permittivity and

permeability, measurement using reflection methods,
Reflection.
open, 38
shorted, 39
surface impedance measurement, 39

Reflectivity, 33
Refraction index, 238
Resonant frequency, 87
Resonant mode chart, 102
Resonant perturbation, 103, 250–256. See also Cavity

perturbation, Dielectric resonator perturbation,
Material perturbation.
cavity shape, 103, 252
material, 103, 253
wall impedance, 255

Resonant perturbation method, 41–42. See also
Resonant perturbation.
permeability measurement, 41
permittivity measurement, 41
surface impedance measurement, 41

Resonator method, 40–41
permittivity measurement, 3, 40
surface resistance measurement, 41

Scattering parameter, 120
Semiconductor, 4, 11, 16

extrinsic, 16
intrinsic, 16

Sheet resonator, 219
Skin depth, 10
Smith chart, 51–56

admittance, 54
impedance, 52

Snell effect, 26
Split coaxial resonator, 233
Split cylinder cavity, 231
Split dielectric resonator, 236
Stripline, 58–59

thick central conductor, 58
thin central conductor, 58

Stripline nonresonant method, 291–292
asymmetrical stripline, 292
symmetrical stripline, 291

Stripline resonant method, 292–297
resonant perturbation, 295

permeability measurement, 297
permittivity measurement, 296

resonator, 293
one-conductor, 293
two-conductor, 293

Superconductor, 4, 11, 17, 18
critical temperature, 17
high-temperature, 17
low-temperature, 17

Surface impedance, 10, 11, 18, 19
Surface impedance measurement, see also Surface

reactance measurement, Surface resistance
measurement.
dielectric resonator, 243–247

dual-mode resonator, 245
two-resonator, 243

reflection, 169
Surface reactance, 10
Surface reactance measurement, see also Surface

impedance measurement
resonant perturbation, 275–278

material perturbation, 275
wall-replacement, 275

Surface resistance, 10
Surface resistance measurement, see also Surface

impedance measurement
dielectric resonator, 242
resonant perturbation, 269–275

Surface wave transmission line, 73–83. See also
Coaxial surface-wave.

Surface waveguide transmission / reflection method,
190–195
circular dielectric waveguide, 190
rectangular dielectric waveguide, 192

Telegrapher equations, 45
Time-domain technique, 127–134, 430–434

gating, 131, 433
windowing, 131, 430

band pass mode, 430
low pass mode, 430

Transition, 71–73
antenna as, 83
between coaxial line and microstrip line, 73
between rectangular waveguide and circular

waveguide, 71
between rectangular waveguide and coaxial line, 72

Transmission line theory, 42–51
TE wave, 43
TEM wave, 44
TM wave, 43
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Transmission / reflection method, see also Coaxial
air-line transmission / reflection method, Free-space
transmission / reflection method, Surface waveguide
transmission / reflection method, Waveguide
transmission / reflection method.
complex conductivity measurement, 203
modification, 200–203

antenna probe, 201
coaxial discontinuity, 200
cylindrical cavity between transmission lines, 200
dual probe, 201
dual-line probe, 201

permittivity and permeability measurement, 39
surface impedance measurement, 40
theory

effective parameter, 179
nonlinear least-square, 180
NRW algorithm, 177
precision mode, 178
working principle, 175

Velocity:
group, 64
phase, 63
wave, 10

Wave:
mixed, 51
pure standing, 50
pure traveling, 49

Wave number, 43, 433, 434, 437, 439, 446
Wave polarization

circular, 347, 359, 371, 415,
436–439, 464

elliptical, 414, 415, 417, 439
axial ratio, 415, 452–454
ellipticity, 448, 452
major axis, 415, 417
minor axis, 417

linear, 359, 415, 439, 464
Waveguide, 62–71

circular, 68
rectangular, 65
transition, 69

Waveguide transmission / reflection method,
187–190

Whispering gallery dielectric resonator, 112–115. See
also Permeability tensor measurement, Permittivity
tensor measurement.
WGE mode, 114
WGH mode, 114
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